PR symtab/19914 fix handling of dwp + split debug
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2016 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72 #include "namespace.h"
73
74 #include <fcntl.h>
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83 static unsigned int dwarf_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf_die_debug = 0;
87
88 /* When non-zero, dump line number entries as they are read in. */
89 static unsigned int dwarf_line_debug = 0;
90
91 /* When non-zero, cross-check physname against demangler. */
92 static int check_physname = 0;
93
94 /* When non-zero, do not reject deprecated .gdb_index sections. */
95 static int use_deprecated_index_sections = 0;
96
97 static const struct objfile_data *dwarf2_objfile_data_key;
98
99 /* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101 static int dwarf2_locexpr_index;
102 static int dwarf2_loclist_index;
103 static int dwarf2_locexpr_block_index;
104 static int dwarf2_loclist_block_index;
105
106 /* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
122 struct dwarf2_section_info
123 {
124 union
125 {
126 /* If this is a real section, the bfd section. */
127 asection *section;
128 /* If this is a virtual section, pointer to the containing ("real")
129 section. */
130 struct dwarf2_section_info *containing_section;
131 } s;
132 /* Pointer to section data, only valid if readin. */
133 const gdb_byte *buffer;
134 /* The size of the section, real or virtual. */
135 bfd_size_type size;
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
139 /* True if we have tried to read this section. */
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.section and s.containing_section to use. */
143 char is_virtual;
144 };
145
146 typedef struct dwarf2_section_info dwarf2_section_info_def;
147 DEF_VEC_O (dwarf2_section_info_def);
148
149 /* All offsets in the index are of this type. It must be
150 architecture-independent. */
151 typedef uint32_t offset_type;
152
153 DEF_VEC_I (offset_type);
154
155 /* Ensure only legit values are used. */
156 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
171 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index
180 {
181 /* Index data format version. */
182 int version;
183
184 /* The total length of the buffer. */
185 off_t total_size;
186
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
189
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
192
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
195
196 /* Size in slots, each slot is 2 offset_types. */
197 offset_type symbol_table_slots;
198
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201 };
202
203 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204 DEF_VEC_P (dwarf2_per_cu_ptr);
205
206 struct tu_stats
207 {
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213 };
214
215 /* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
218 struct dwarf2_per_objfile
219 {
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
225 struct dwarf2_section_info macro;
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
228 struct dwarf2_section_info addr;
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
231 struct dwarf2_section_info gdb_index;
232
233 VEC (dwarf2_section_info_def) *types;
234
235 /* Back link. */
236 struct objfile *objfile;
237
238 /* Table of all the compilation units. This is used to locate
239 the target compilation unit of a particular reference. */
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
245 /* The number of .debug_types-related CUs. */
246 int n_type_units;
247
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
254 struct signatured_type **all_type_units;
255
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
259
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
266 struct tu_stats tu_stats;
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
289
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
292 unsigned char using_index;
293
294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
295 struct mapped_index *index_table;
296
297 /* When using index_table, this keeps track of all quick_file_names entries.
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
304 htab_t quick_file_names_table;
305
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
309
310 /* Table mapping type DIEs to their struct type *.
311 This is NULL if not allocated yet.
312 The mapping is done via (CU/TU + DIE offset) -> type. */
313 htab_t die_type_hash;
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
320 };
321
322 static struct dwarf2_per_objfile *dwarf2_per_objfile;
323
324 /* Default names of the debugging sections. */
325
326 /* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
329 static const struct dwarf2_debug_sections dwarf2_elf_names =
330 {
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
336 { ".debug_macro", ".zdebug_macro" },
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
340 { ".debug_addr", ".zdebug_addr" },
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
343 { ".gdb_index", ".zgdb_index" },
344 23
345 };
346
347 /* List of DWO/DWP sections. */
348
349 static const struct dwop_section_names
350 {
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
362 }
363 dwop_section_names =
364 {
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
376 };
377
378 /* local data types */
379
380 /* The data in a compilation unit header, after target2host
381 translation, looks like this. */
382 struct comp_unit_head
383 {
384 unsigned int length;
385 short version;
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
388 sect_offset abbrev_offset;
389
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
392
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
395
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
398 sect_offset offset;
399
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
402 cu_offset first_die_offset;
403 };
404
405 /* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407 struct delayed_method_info
408 {
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423 };
424
425 typedef struct delayed_method_info delayed_method_info;
426 DEF_VEC_O (delayed_method_info);
427
428 /* Internal state when decoding a particular compilation unit. */
429 struct dwarf2_cu
430 {
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
434 /* The header of the compilation unit. */
435 struct comp_unit_head header;
436
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
447 const char *producer;
448
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
464
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
479 /* Backlink to our per_cu entry. */
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
487 htab_t die_hash;
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE. */
521 ULONGEST addr_base;
522
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE.
526 Also note that the value is zero in the non-DWO case so this value can
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
533 ULONGEST ranges_base;
534
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 unsigned int has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
550 unsigned int producer_is_gcc_lt_4_3 : 1;
551 unsigned int producer_is_icc : 1;
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
558 };
559
560 /* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
562 read_symtab_private field of the psymtab. */
563
564 struct dwarf2_per_cu_data
565 {
566 /* The start offset and length of this compilation unit.
567 NOTE: Unlike comp_unit_head.length, this length includes
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
571 sect_offset offset;
572 unsigned int length;
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
576 unsigned int queued : 1;
577
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
587 unsigned int is_debug_types : 1;
588
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
611 struct dwarf2_section_info *section;
612
613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
616 struct dwarf2_cu *cu;
617
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
621 struct objfile *objfile;
622
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
628 or NULL for unread partial units. */
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
634
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
654 };
655
656 /* Entry in the signatured_types hash table. */
657
658 struct signatured_type
659 {
660 /* The "per_cu" object of this type.
661 This struct is used iff per_cu.is_debug_types.
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
666 /* The type's signature. */
667 ULONGEST signature;
668
669 /* Offset in the TU of the type's DIE, as read from the TU header.
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
693 };
694
695 typedef struct signatured_type *sig_type_ptr;
696 DEF_VEC_P (sig_type_ptr);
697
698 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701 struct stmt_list_hash
702 {
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708 };
709
710 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713 struct type_unit_group
714 {
715 /* dwarf2read.c's main "handle" on a TU symtab.
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
720 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
721 struct dwarf2_per_cu_data per_cu;
722
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
727
728 /* The compunit symtab.
729 Type units in a group needn't all be defined in the same source file,
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
732
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749 };
750
751 /* These sections are what may appear in a (real or virtual) DWO file. */
752
753 struct dwo_sections
754 {
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
764 VEC (dwarf2_section_info_def) *types;
765 };
766
767 /* CUs/TUs in DWP/DWO files. */
768
769 struct dwo_unit
770 {
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
780 struct dwarf2_section_info *section;
781
782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788 };
789
790 /* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794 enum dwp_v2_section_ids
795 {
796 DW_SECT_MIN = 1
797 };
798
799 /* Data for one DWO file.
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
809
810 struct dwo_file
811 {
812 /* The DW_AT_GNU_dwo_name attribute.
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
820
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
824
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
828 struct dwo_sections sections;
829
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840 };
841
842 /* These sections are what may appear in a DWP file. */
843
844 struct dwp_sections
845 {
846 /* These are used by both DWP version 1 and 2. */
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
867 };
868
869 /* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
871
872 struct virtual_v1_dwo_sections
873 {
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
881 That is recorded here, and copied to dwo_unit.section. */
882 struct dwarf2_section_info info_or_types;
883 };
884
885 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890 struct virtual_v2_dwo_sections
891 {
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914 };
915
916 /* Contents of DWP hash tables. */
917
918 struct dwp_hash_table
919 {
920 uint32_t version, nr_columns;
921 uint32_t nr_units, nr_slots;
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933 #define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
945 };
946
947 /* Data for one DWP file. */
948
949 struct dwp_file
950 {
951 /* Name of the file. */
952 const char *name;
953
954 /* File format version. */
955 int version;
956
957 /* The bfd. */
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
963 /* Table of CUs in the file. */
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
972
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
975 unsigned int num_sections;
976 asection **elf_sections;
977 };
978
979 /* This represents a '.dwz' file. */
980
981 struct dwz_file
982 {
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
989 struct dwarf2_section_info gdb_index;
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993 };
994
995 /* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
998 struct exists to abstract away the constant parameters of die reading. */
999
1000 struct die_reader_specs
1001 {
1002 /* The bfd of die_section. */
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1009 struct dwo_file *dwo_file;
1010
1011 /* The section the die comes from.
1012 This is either .debug_info or .debug_types, or the .dwo variants. */
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
1016 const gdb_byte *buffer;
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
1023 };
1024
1025 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1026 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1027 const gdb_byte *info_ptr,
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
1032 struct file_entry
1033 {
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
1042 };
1043
1044 /* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047 struct line_header
1048 {
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
1059 unsigned char maximum_ops_per_instruction;
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
1076 const char **include_dirs;
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
1082 struct file_entry *file_names;
1083
1084 /* The start and end of the statement program following this
1085 header. These point into dwarf2_per_objfile->line_buffer. */
1086 const gdb_byte *statement_program_start, *statement_program_end;
1087 };
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info
1092 {
1093 /* Offset of this DIE. */
1094 sect_offset offset;
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
1106 unsigned int may_be_inlined : 1;
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
1130 /* The name of this DIE. Normally the value of DW_AT_name, but
1131 sometimes a default name for unnamed DIEs. */
1132 const char *name;
1133
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
1140 const char *scope;
1141
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
1155
1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1157 DW_AT_sibling, if any. */
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
1160 const gdb_byte *sibling;
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
1165 sect_offset spec_offset;
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
1170 };
1171
1172 /* This data structure holds the information of an abbrev. */
1173 struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183 struct attr_abbrev
1184 {
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
1187 };
1188
1189 /* Size of abbrev_table.abbrev_hash_table. */
1190 #define ABBREV_HASH_SIZE 121
1191
1192 /* Top level data structure to contain an abbreviation table. */
1193
1194 struct abbrev_table
1195 {
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208 };
1209
1210 /* Attributes have a name and a value. */
1211 struct attribute
1212 {
1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
1221 union
1222 {
1223 const char *str;
1224 struct dwarf_block *blk;
1225 ULONGEST unsnd;
1226 LONGEST snd;
1227 CORE_ADDR addr;
1228 ULONGEST signature;
1229 }
1230 u;
1231 };
1232
1233 /* This data structure holds a complete die structure. */
1234 struct die_info
1235 {
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1245
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
1252 /* Offset in .debug_info or .debug_types section. */
1253 sect_offset offset;
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
1258 together via their SIBLING fields. */
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
1262
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
1267 };
1268
1269 /* Get at parts of an attribute structure. */
1270
1271 #define DW_STRING(attr) ((attr)->u.str)
1272 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1273 #define DW_UNSND(attr) ((attr)->u.unsnd)
1274 #define DW_BLOCK(attr) ((attr)->u.blk)
1275 #define DW_SND(attr) ((attr)->u.snd)
1276 #define DW_ADDR(attr) ((attr)->u.addr)
1277 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1278
1279 /* Blocks are a bunch of untyped bytes. */
1280 struct dwarf_block
1281 {
1282 size_t size;
1283
1284 /* Valid only if SIZE is not zero. */
1285 const gdb_byte *data;
1286 };
1287
1288 #ifndef ATTR_ALLOC_CHUNK
1289 #define ATTR_ALLOC_CHUNK 4
1290 #endif
1291
1292 /* Allocate fields for structs, unions and enums in this size. */
1293 #ifndef DW_FIELD_ALLOC_CHUNK
1294 #define DW_FIELD_ALLOC_CHUNK 4
1295 #endif
1296
1297 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300 static int bits_per_byte = 8;
1301
1302 struct nextfield
1303 {
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308 };
1309
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 };
1315
1316 struct fnfieldlist
1317 {
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321 };
1322
1323 struct typedef_field_list
1324 {
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327 };
1328
1329 /* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332 struct field_info
1333 {
1334 /* List of data member and baseclasses fields. */
1335 struct nextfield *fields, *baseclasses;
1336
1337 /* Number of fields (including baseclasses). */
1338 int nfields;
1339
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
1342
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
1345
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
1348 struct nextfnfield *fnfields;
1349
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
1353 struct fnfieldlist *fnfieldlists;
1354
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1360 struct typedef_field_list *typedef_field_list;
1361 unsigned typedef_field_list_count;
1362 };
1363
1364 /* One item on the queue of compilation units to read in full symbols
1365 for. */
1366 struct dwarf2_queue_item
1367 {
1368 struct dwarf2_per_cu_data *per_cu;
1369 enum language pretend_language;
1370 struct dwarf2_queue_item *next;
1371 };
1372
1373 /* The current queue. */
1374 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
1376 /* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
1381 static int dwarf_max_cache_age = 5;
1382 static void
1383 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
1385 {
1386 fprintf_filtered (file, _("The upper bound on the age of cached "
1387 "DWARF compilation units is %s.\n"),
1388 value);
1389 }
1390 \f
1391 /* local function prototypes */
1392
1393 static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395 static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
1397 static void dwarf2_locate_sections (bfd *, asection *, void *);
1398
1399 static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
1402 static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
1405 static void dwarf2_build_psymtabs_hard (struct objfile *);
1406
1407 static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
1409 int, struct dwarf2_cu *);
1410
1411 static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
1413
1414 static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1416 int set_addrmap, struct dwarf2_cu *cu);
1417
1418 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1419 CORE_ADDR *highpc, int set_addrmap,
1420 struct dwarf2_cu *cu);
1421
1422 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
1424
1425 static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1427 int need_pc, struct dwarf2_cu *cu);
1428
1429 static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
1431
1432 static void psymtab_to_symtab_1 (struct partial_symtab *);
1433
1434 static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437 static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440 static void abbrev_table_free (struct abbrev_table *);
1441
1442 static void abbrev_table_free_cleanup (void *);
1443
1444 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
1446
1447 static void dwarf2_free_abbrev_table (void *);
1448
1449 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1450
1451 static struct partial_die_info *load_partial_dies
1452 (const struct die_reader_specs *, const gdb_byte *, int);
1453
1454 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
1459
1460 static struct partial_die_info *find_partial_die (sect_offset, int,
1461 struct dwarf2_cu *);
1462
1463 static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
1466 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
1469
1470 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1471
1472 static int read_1_signed_byte (bfd *, const gdb_byte *);
1473
1474 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1475
1476 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1477
1478 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1479
1480 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1481 unsigned int *);
1482
1483 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_checked_initial_length_and_offset
1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1487 unsigned int *, unsigned int *);
1488
1489 static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
1491 unsigned int *);
1492
1493 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1494
1495 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
1498 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1499
1500 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1501
1502 static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
1505
1506 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1507
1508 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1509
1510 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
1514 unsigned int *);
1515
1516 static const char *read_str_index (const struct die_reader_specs *reader,
1517 ULONGEST str_index);
1518
1519 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1520
1521 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
1523
1524 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1525 unsigned int);
1526
1527 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
1530 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
1533 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1534
1535 static struct die_info *die_specification (struct die_info *die,
1536 struct dwarf2_cu **);
1537
1538 static void free_line_header (struct line_header *lh);
1539
1540 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
1542
1543 static void dwarf_decode_lines (struct line_header *, const char *,
1544 struct dwarf2_cu *, struct partial_symtab *,
1545 CORE_ADDR, int decode_mapping);
1546
1547 static void dwarf2_start_subfile (const char *, const char *);
1548
1549 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
1552
1553 static struct symbol *new_symbol (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
1559 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1560 struct dwarf2_cu *);
1561
1562 static void dwarf2_const_value_attr (const struct attribute *attr,
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
1566 struct dwarf2_cu *cu, LONGEST *value,
1567 const gdb_byte **bytes,
1568 struct dwarf2_locexpr_baton **baton);
1569
1570 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1571
1572 static int need_gnat_info (struct dwarf2_cu *);
1573
1574 static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
1576
1577 static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
1580 static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
1582
1583 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1584 struct dwarf2_cu *);
1585
1586 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1587
1588 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
1590 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1591
1592 static char *typename_concat (struct obstack *obs, const char *prefix,
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
1595
1596 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1597
1598 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
1600 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1601
1602 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1603
1604 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
1606 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
1609 static int dwarf2_get_pc_bounds (struct die_info *,
1610 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1611 struct partial_symtab *);
1612
1613 static void get_scope_pc_bounds (struct die_info *,
1614 CORE_ADDR *, CORE_ADDR *,
1615 struct dwarf2_cu *);
1616
1617 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1618 CORE_ADDR, struct dwarf2_cu *);
1619
1620 static void dwarf2_add_field (struct field_info *, struct die_info *,
1621 struct dwarf2_cu *);
1622
1623 static void dwarf2_attach_fields_to_type (struct field_info *,
1624 struct type *, struct dwarf2_cu *);
1625
1626 static void dwarf2_add_member_fn (struct field_info *,
1627 struct die_info *, struct type *,
1628 struct dwarf2_cu *);
1629
1630 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1631 struct type *,
1632 struct dwarf2_cu *);
1633
1634 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1635
1636 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1637
1638 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1639
1640 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1641
1642 static struct using_direct **using_directives (enum language);
1643
1644 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1645
1646 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1647
1648 static struct type *read_module_type (struct die_info *die,
1649 struct dwarf2_cu *cu);
1650
1651 static const char *namespace_name (struct die_info *die,
1652 int *is_anonymous, struct dwarf2_cu *);
1653
1654 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1655
1656 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1657
1658 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1659 struct dwarf2_cu *);
1660
1661 static struct die_info *read_die_and_siblings_1
1662 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1663 struct die_info *);
1664
1665 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1666 const gdb_byte *info_ptr,
1667 const gdb_byte **new_info_ptr,
1668 struct die_info *parent);
1669
1670 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1671 struct die_info **, const gdb_byte *,
1672 int *, int);
1673
1674 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1675 struct die_info **, const gdb_byte *,
1676 int *);
1677
1678 static void process_die (struct die_info *, struct dwarf2_cu *);
1679
1680 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1681 struct obstack *);
1682
1683 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1684
1685 static const char *dwarf2_full_name (const char *name,
1686 struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
1689 static const char *dwarf2_physname (const char *name, struct die_info *die,
1690 struct dwarf2_cu *cu);
1691
1692 static struct die_info *dwarf2_extension (struct die_info *die,
1693 struct dwarf2_cu **);
1694
1695 static const char *dwarf_tag_name (unsigned int);
1696
1697 static const char *dwarf_attr_name (unsigned int);
1698
1699 static const char *dwarf_form_name (unsigned int);
1700
1701 static char *dwarf_bool_name (unsigned int);
1702
1703 static const char *dwarf_type_encoding_name (unsigned int);
1704
1705 static struct die_info *sibling_die (struct die_info *);
1706
1707 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1708
1709 static void dump_die_for_error (struct die_info *);
1710
1711 static void dump_die_1 (struct ui_file *, int level, int max_level,
1712 struct die_info *);
1713
1714 /*static*/ void dump_die (struct die_info *, int max_level);
1715
1716 static void store_in_ref_table (struct die_info *,
1717 struct dwarf2_cu *);
1718
1719 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1720
1721 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1722
1723 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1724 const struct attribute *,
1725 struct dwarf2_cu **);
1726
1727 static struct die_info *follow_die_ref (struct die_info *,
1728 const struct attribute *,
1729 struct dwarf2_cu **);
1730
1731 static struct die_info *follow_die_sig (struct die_info *,
1732 const struct attribute *,
1733 struct dwarf2_cu **);
1734
1735 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1736 struct dwarf2_cu *);
1737
1738 static struct type *get_DW_AT_signature_type (struct die_info *,
1739 const struct attribute *,
1740 struct dwarf2_cu *);
1741
1742 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1743
1744 static void read_signatured_type (struct signatured_type *);
1745
1746 static int attr_to_dynamic_prop (const struct attribute *attr,
1747 struct die_info *die, struct dwarf2_cu *cu,
1748 struct dynamic_prop *prop);
1749
1750 /* memory allocation interface */
1751
1752 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1753
1754 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1755
1756 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1757
1758 static int attr_form_is_block (const struct attribute *);
1759
1760 static int attr_form_is_section_offset (const struct attribute *);
1761
1762 static int attr_form_is_constant (const struct attribute *);
1763
1764 static int attr_form_is_ref (const struct attribute *);
1765
1766 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1767 struct dwarf2_loclist_baton *baton,
1768 const struct attribute *attr);
1769
1770 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1771 struct symbol *sym,
1772 struct dwarf2_cu *cu,
1773 int is_block);
1774
1775 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1776 const gdb_byte *info_ptr,
1777 struct abbrev_info *abbrev);
1778
1779 static void free_stack_comp_unit (void *);
1780
1781 static hashval_t partial_die_hash (const void *item);
1782
1783 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1784
1785 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1786 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1787
1788 static void init_one_comp_unit (struct dwarf2_cu *cu,
1789 struct dwarf2_per_cu_data *per_cu);
1790
1791 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1792 struct die_info *comp_unit_die,
1793 enum language pretend_language);
1794
1795 static void free_heap_comp_unit (void *);
1796
1797 static void free_cached_comp_units (void *);
1798
1799 static void age_cached_comp_units (void);
1800
1801 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1802
1803 static struct type *set_die_type (struct die_info *, struct type *,
1804 struct dwarf2_cu *);
1805
1806 static void create_all_comp_units (struct objfile *);
1807
1808 static int create_all_type_units (struct objfile *);
1809
1810 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1811 enum language);
1812
1813 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1814 enum language);
1815
1816 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1817 enum language);
1818
1819 static void dwarf2_add_dependence (struct dwarf2_cu *,
1820 struct dwarf2_per_cu_data *);
1821
1822 static void dwarf2_mark (struct dwarf2_cu *);
1823
1824 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1825
1826 static struct type *get_die_type_at_offset (sect_offset,
1827 struct dwarf2_per_cu_data *);
1828
1829 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1830
1831 static void dwarf2_release_queue (void *dummy);
1832
1833 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1834 enum language pretend_language);
1835
1836 static void process_queue (void);
1837
1838 static void find_file_and_directory (struct die_info *die,
1839 struct dwarf2_cu *cu,
1840 const char **name, const char **comp_dir);
1841
1842 static char *file_full_name (int file, struct line_header *lh,
1843 const char *comp_dir);
1844
1845 static const gdb_byte *read_and_check_comp_unit_head
1846 (struct comp_unit_head *header,
1847 struct dwarf2_section_info *section,
1848 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1849 int is_debug_types_section);
1850
1851 static void init_cutu_and_read_dies
1852 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1853 int use_existing_cu, int keep,
1854 die_reader_func_ftype *die_reader_func, void *data);
1855
1856 static void init_cutu_and_read_dies_simple
1857 (struct dwarf2_per_cu_data *this_cu,
1858 die_reader_func_ftype *die_reader_func, void *data);
1859
1860 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1861
1862 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1863
1864 static struct dwo_unit *lookup_dwo_unit_in_dwp
1865 (struct dwp_file *dwp_file, const char *comp_dir,
1866 ULONGEST signature, int is_debug_types);
1867
1868 static struct dwp_file *get_dwp_file (void);
1869
1870 static struct dwo_unit *lookup_dwo_comp_unit
1871 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1872
1873 static struct dwo_unit *lookup_dwo_type_unit
1874 (struct signatured_type *, const char *, const char *);
1875
1876 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1877
1878 static void free_dwo_file_cleanup (void *);
1879
1880 static void process_cu_includes (void);
1881
1882 static void check_producer (struct dwarf2_cu *cu);
1883
1884 static void free_line_header_voidp (void *arg);
1885 \f
1886 /* Various complaints about symbol reading that don't abort the process. */
1887
1888 static void
1889 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1890 {
1891 complaint (&symfile_complaints,
1892 _("statement list doesn't fit in .debug_line section"));
1893 }
1894
1895 static void
1896 dwarf2_debug_line_missing_file_complaint (void)
1897 {
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line data without a file"));
1900 }
1901
1902 static void
1903 dwarf2_debug_line_missing_end_sequence_complaint (void)
1904 {
1905 complaint (&symfile_complaints,
1906 _(".debug_line section has line "
1907 "program sequence without an end"));
1908 }
1909
1910 static void
1911 dwarf2_complex_location_expr_complaint (void)
1912 {
1913 complaint (&symfile_complaints, _("location expression too complex"));
1914 }
1915
1916 static void
1917 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1918 int arg3)
1919 {
1920 complaint (&symfile_complaints,
1921 _("const value length mismatch for '%s', got %d, expected %d"),
1922 arg1, arg2, arg3);
1923 }
1924
1925 static void
1926 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1927 {
1928 complaint (&symfile_complaints,
1929 _("debug info runs off end of %s section"
1930 " [in module %s]"),
1931 get_section_name (section),
1932 get_section_file_name (section));
1933 }
1934
1935 static void
1936 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1937 {
1938 complaint (&symfile_complaints,
1939 _("macro debug info contains a "
1940 "malformed macro definition:\n`%s'"),
1941 arg1);
1942 }
1943
1944 static void
1945 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1946 {
1947 complaint (&symfile_complaints,
1948 _("invalid attribute class or form for '%s' in '%s'"),
1949 arg1, arg2);
1950 }
1951
1952 /* Hash function for line_header_hash. */
1953
1954 static hashval_t
1955 line_header_hash (const struct line_header *ofs)
1956 {
1957 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1958 }
1959
1960 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1961
1962 static hashval_t
1963 line_header_hash_voidp (const void *item)
1964 {
1965 const struct line_header *ofs = (const struct line_header *) item;
1966
1967 return line_header_hash (ofs);
1968 }
1969
1970 /* Equality function for line_header_hash. */
1971
1972 static int
1973 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1974 {
1975 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1976 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1977
1978 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1979 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1980 }
1981
1982 \f
1983 #if WORDS_BIGENDIAN
1984
1985 /* Convert VALUE between big- and little-endian. */
1986 static offset_type
1987 byte_swap (offset_type value)
1988 {
1989 offset_type result;
1990
1991 result = (value & 0xff) << 24;
1992 result |= (value & 0xff00) << 8;
1993 result |= (value & 0xff0000) >> 8;
1994 result |= (value & 0xff000000) >> 24;
1995 return result;
1996 }
1997
1998 #define MAYBE_SWAP(V) byte_swap (V)
1999
2000 #else
2001 #define MAYBE_SWAP(V) (V)
2002 #endif /* WORDS_BIGENDIAN */
2003
2004 /* Read the given attribute value as an address, taking the attribute's
2005 form into account. */
2006
2007 static CORE_ADDR
2008 attr_value_as_address (struct attribute *attr)
2009 {
2010 CORE_ADDR addr;
2011
2012 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2013 {
2014 /* Aside from a few clearly defined exceptions, attributes that
2015 contain an address must always be in DW_FORM_addr form.
2016 Unfortunately, some compilers happen to be violating this
2017 requirement by encoding addresses using other forms, such
2018 as DW_FORM_data4 for example. For those broken compilers,
2019 we try to do our best, without any guarantee of success,
2020 to interpret the address correctly. It would also be nice
2021 to generate a complaint, but that would require us to maintain
2022 a list of legitimate cases where a non-address form is allowed,
2023 as well as update callers to pass in at least the CU's DWARF
2024 version. This is more overhead than what we're willing to
2025 expand for a pretty rare case. */
2026 addr = DW_UNSND (attr);
2027 }
2028 else
2029 addr = DW_ADDR (attr);
2030
2031 return addr;
2032 }
2033
2034 /* The suffix for an index file. */
2035 #define INDEX_SUFFIX ".gdb-index"
2036
2037 /* Try to locate the sections we need for DWARF 2 debugging
2038 information and return true if we have enough to do something.
2039 NAMES points to the dwarf2 section names, or is NULL if the standard
2040 ELF names are used. */
2041
2042 int
2043 dwarf2_has_info (struct objfile *objfile,
2044 const struct dwarf2_debug_sections *names)
2045 {
2046 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2047 objfile_data (objfile, dwarf2_objfile_data_key));
2048 if (!dwarf2_per_objfile)
2049 {
2050 /* Initialize per-objfile state. */
2051 struct dwarf2_per_objfile *data
2052 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2053
2054 memset (data, 0, sizeof (*data));
2055 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2056 dwarf2_per_objfile = data;
2057
2058 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2059 (void *) names);
2060 dwarf2_per_objfile->objfile = objfile;
2061 }
2062 return (!dwarf2_per_objfile->info.is_virtual
2063 && dwarf2_per_objfile->info.s.section != NULL
2064 && !dwarf2_per_objfile->abbrev.is_virtual
2065 && dwarf2_per_objfile->abbrev.s.section != NULL);
2066 }
2067
2068 /* Return the containing section of virtual section SECTION. */
2069
2070 static struct dwarf2_section_info *
2071 get_containing_section (const struct dwarf2_section_info *section)
2072 {
2073 gdb_assert (section->is_virtual);
2074 return section->s.containing_section;
2075 }
2076
2077 /* Return the bfd owner of SECTION. */
2078
2079 static struct bfd *
2080 get_section_bfd_owner (const struct dwarf2_section_info *section)
2081 {
2082 if (section->is_virtual)
2083 {
2084 section = get_containing_section (section);
2085 gdb_assert (!section->is_virtual);
2086 }
2087 return section->s.section->owner;
2088 }
2089
2090 /* Return the bfd section of SECTION.
2091 Returns NULL if the section is not present. */
2092
2093 static asection *
2094 get_section_bfd_section (const struct dwarf2_section_info *section)
2095 {
2096 if (section->is_virtual)
2097 {
2098 section = get_containing_section (section);
2099 gdb_assert (!section->is_virtual);
2100 }
2101 return section->s.section;
2102 }
2103
2104 /* Return the name of SECTION. */
2105
2106 static const char *
2107 get_section_name (const struct dwarf2_section_info *section)
2108 {
2109 asection *sectp = get_section_bfd_section (section);
2110
2111 gdb_assert (sectp != NULL);
2112 return bfd_section_name (get_section_bfd_owner (section), sectp);
2113 }
2114
2115 /* Return the name of the file SECTION is in. */
2116
2117 static const char *
2118 get_section_file_name (const struct dwarf2_section_info *section)
2119 {
2120 bfd *abfd = get_section_bfd_owner (section);
2121
2122 return bfd_get_filename (abfd);
2123 }
2124
2125 /* Return the id of SECTION.
2126 Returns 0 if SECTION doesn't exist. */
2127
2128 static int
2129 get_section_id (const struct dwarf2_section_info *section)
2130 {
2131 asection *sectp = get_section_bfd_section (section);
2132
2133 if (sectp == NULL)
2134 return 0;
2135 return sectp->id;
2136 }
2137
2138 /* Return the flags of SECTION.
2139 SECTION (or containing section if this is a virtual section) must exist. */
2140
2141 static int
2142 get_section_flags (const struct dwarf2_section_info *section)
2143 {
2144 asection *sectp = get_section_bfd_section (section);
2145
2146 gdb_assert (sectp != NULL);
2147 return bfd_get_section_flags (sectp->owner, sectp);
2148 }
2149
2150 /* When loading sections, we look either for uncompressed section or for
2151 compressed section names. */
2152
2153 static int
2154 section_is_p (const char *section_name,
2155 const struct dwarf2_section_names *names)
2156 {
2157 if (names->normal != NULL
2158 && strcmp (section_name, names->normal) == 0)
2159 return 1;
2160 if (names->compressed != NULL
2161 && strcmp (section_name, names->compressed) == 0)
2162 return 1;
2163 return 0;
2164 }
2165
2166 /* This function is mapped across the sections and remembers the
2167 offset and size of each of the debugging sections we are interested
2168 in. */
2169
2170 static void
2171 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2172 {
2173 const struct dwarf2_debug_sections *names;
2174 flagword aflag = bfd_get_section_flags (abfd, sectp);
2175
2176 if (vnames == NULL)
2177 names = &dwarf2_elf_names;
2178 else
2179 names = (const struct dwarf2_debug_sections *) vnames;
2180
2181 if ((aflag & SEC_HAS_CONTENTS) == 0)
2182 {
2183 }
2184 else if (section_is_p (sectp->name, &names->info))
2185 {
2186 dwarf2_per_objfile->info.s.section = sectp;
2187 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2188 }
2189 else if (section_is_p (sectp->name, &names->abbrev))
2190 {
2191 dwarf2_per_objfile->abbrev.s.section = sectp;
2192 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2193 }
2194 else if (section_is_p (sectp->name, &names->line))
2195 {
2196 dwarf2_per_objfile->line.s.section = sectp;
2197 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2198 }
2199 else if (section_is_p (sectp->name, &names->loc))
2200 {
2201 dwarf2_per_objfile->loc.s.section = sectp;
2202 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2203 }
2204 else if (section_is_p (sectp->name, &names->macinfo))
2205 {
2206 dwarf2_per_objfile->macinfo.s.section = sectp;
2207 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2208 }
2209 else if (section_is_p (sectp->name, &names->macro))
2210 {
2211 dwarf2_per_objfile->macro.s.section = sectp;
2212 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2213 }
2214 else if (section_is_p (sectp->name, &names->str))
2215 {
2216 dwarf2_per_objfile->str.s.section = sectp;
2217 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2218 }
2219 else if (section_is_p (sectp->name, &names->addr))
2220 {
2221 dwarf2_per_objfile->addr.s.section = sectp;
2222 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2223 }
2224 else if (section_is_p (sectp->name, &names->frame))
2225 {
2226 dwarf2_per_objfile->frame.s.section = sectp;
2227 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2228 }
2229 else if (section_is_p (sectp->name, &names->eh_frame))
2230 {
2231 dwarf2_per_objfile->eh_frame.s.section = sectp;
2232 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2233 }
2234 else if (section_is_p (sectp->name, &names->ranges))
2235 {
2236 dwarf2_per_objfile->ranges.s.section = sectp;
2237 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2238 }
2239 else if (section_is_p (sectp->name, &names->types))
2240 {
2241 struct dwarf2_section_info type_section;
2242
2243 memset (&type_section, 0, sizeof (type_section));
2244 type_section.s.section = sectp;
2245 type_section.size = bfd_get_section_size (sectp);
2246
2247 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2248 &type_section);
2249 }
2250 else if (section_is_p (sectp->name, &names->gdb_index))
2251 {
2252 dwarf2_per_objfile->gdb_index.s.section = sectp;
2253 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2254 }
2255
2256 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2257 && bfd_section_vma (abfd, sectp) == 0)
2258 dwarf2_per_objfile->has_section_at_zero = 1;
2259 }
2260
2261 /* A helper function that decides whether a section is empty,
2262 or not present. */
2263
2264 static int
2265 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2266 {
2267 if (section->is_virtual)
2268 return section->size == 0;
2269 return section->s.section == NULL || section->size == 0;
2270 }
2271
2272 /* Read the contents of the section INFO.
2273 OBJFILE is the main object file, but not necessarily the file where
2274 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2275 of the DWO file.
2276 If the section is compressed, uncompress it before returning. */
2277
2278 static void
2279 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2280 {
2281 asection *sectp;
2282 bfd *abfd;
2283 gdb_byte *buf, *retbuf;
2284
2285 if (info->readin)
2286 return;
2287 info->buffer = NULL;
2288 info->readin = 1;
2289
2290 if (dwarf2_section_empty_p (info))
2291 return;
2292
2293 sectp = get_section_bfd_section (info);
2294
2295 /* If this is a virtual section we need to read in the real one first. */
2296 if (info->is_virtual)
2297 {
2298 struct dwarf2_section_info *containing_section =
2299 get_containing_section (info);
2300
2301 gdb_assert (sectp != NULL);
2302 if ((sectp->flags & SEC_RELOC) != 0)
2303 {
2304 error (_("Dwarf Error: DWP format V2 with relocations is not"
2305 " supported in section %s [in module %s]"),
2306 get_section_name (info), get_section_file_name (info));
2307 }
2308 dwarf2_read_section (objfile, containing_section);
2309 /* Other code should have already caught virtual sections that don't
2310 fit. */
2311 gdb_assert (info->virtual_offset + info->size
2312 <= containing_section->size);
2313 /* If the real section is empty or there was a problem reading the
2314 section we shouldn't get here. */
2315 gdb_assert (containing_section->buffer != NULL);
2316 info->buffer = containing_section->buffer + info->virtual_offset;
2317 return;
2318 }
2319
2320 /* If the section has relocations, we must read it ourselves.
2321 Otherwise we attach it to the BFD. */
2322 if ((sectp->flags & SEC_RELOC) == 0)
2323 {
2324 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2325 return;
2326 }
2327
2328 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2329 info->buffer = buf;
2330
2331 /* When debugging .o files, we may need to apply relocations; see
2332 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2333 We never compress sections in .o files, so we only need to
2334 try this when the section is not compressed. */
2335 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2336 if (retbuf != NULL)
2337 {
2338 info->buffer = retbuf;
2339 return;
2340 }
2341
2342 abfd = get_section_bfd_owner (info);
2343 gdb_assert (abfd != NULL);
2344
2345 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2346 || bfd_bread (buf, info->size, abfd) != info->size)
2347 {
2348 error (_("Dwarf Error: Can't read DWARF data"
2349 " in section %s [in module %s]"),
2350 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2351 }
2352 }
2353
2354 /* A helper function that returns the size of a section in a safe way.
2355 If you are positive that the section has been read before using the
2356 size, then it is safe to refer to the dwarf2_section_info object's
2357 "size" field directly. In other cases, you must call this
2358 function, because for compressed sections the size field is not set
2359 correctly until the section has been read. */
2360
2361 static bfd_size_type
2362 dwarf2_section_size (struct objfile *objfile,
2363 struct dwarf2_section_info *info)
2364 {
2365 if (!info->readin)
2366 dwarf2_read_section (objfile, info);
2367 return info->size;
2368 }
2369
2370 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2371 SECTION_NAME. */
2372
2373 void
2374 dwarf2_get_section_info (struct objfile *objfile,
2375 enum dwarf2_section_enum sect,
2376 asection **sectp, const gdb_byte **bufp,
2377 bfd_size_type *sizep)
2378 {
2379 struct dwarf2_per_objfile *data
2380 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2381 dwarf2_objfile_data_key);
2382 struct dwarf2_section_info *info;
2383
2384 /* We may see an objfile without any DWARF, in which case we just
2385 return nothing. */
2386 if (data == NULL)
2387 {
2388 *sectp = NULL;
2389 *bufp = NULL;
2390 *sizep = 0;
2391 return;
2392 }
2393 switch (sect)
2394 {
2395 case DWARF2_DEBUG_FRAME:
2396 info = &data->frame;
2397 break;
2398 case DWARF2_EH_FRAME:
2399 info = &data->eh_frame;
2400 break;
2401 default:
2402 gdb_assert_not_reached ("unexpected section");
2403 }
2404
2405 dwarf2_read_section (objfile, info);
2406
2407 *sectp = get_section_bfd_section (info);
2408 *bufp = info->buffer;
2409 *sizep = info->size;
2410 }
2411
2412 /* A helper function to find the sections for a .dwz file. */
2413
2414 static void
2415 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2416 {
2417 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2418
2419 /* Note that we only support the standard ELF names, because .dwz
2420 is ELF-only (at the time of writing). */
2421 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2422 {
2423 dwz_file->abbrev.s.section = sectp;
2424 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2425 }
2426 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2427 {
2428 dwz_file->info.s.section = sectp;
2429 dwz_file->info.size = bfd_get_section_size (sectp);
2430 }
2431 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2432 {
2433 dwz_file->str.s.section = sectp;
2434 dwz_file->str.size = bfd_get_section_size (sectp);
2435 }
2436 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2437 {
2438 dwz_file->line.s.section = sectp;
2439 dwz_file->line.size = bfd_get_section_size (sectp);
2440 }
2441 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2442 {
2443 dwz_file->macro.s.section = sectp;
2444 dwz_file->macro.size = bfd_get_section_size (sectp);
2445 }
2446 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2447 {
2448 dwz_file->gdb_index.s.section = sectp;
2449 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2450 }
2451 }
2452
2453 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2454 there is no .gnu_debugaltlink section in the file. Error if there
2455 is such a section but the file cannot be found. */
2456
2457 static struct dwz_file *
2458 dwarf2_get_dwz_file (void)
2459 {
2460 bfd *dwz_bfd;
2461 char *data;
2462 struct cleanup *cleanup;
2463 const char *filename;
2464 struct dwz_file *result;
2465 bfd_size_type buildid_len_arg;
2466 size_t buildid_len;
2467 bfd_byte *buildid;
2468
2469 if (dwarf2_per_objfile->dwz_file != NULL)
2470 return dwarf2_per_objfile->dwz_file;
2471
2472 bfd_set_error (bfd_error_no_error);
2473 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2474 &buildid_len_arg, &buildid);
2475 if (data == NULL)
2476 {
2477 if (bfd_get_error () == bfd_error_no_error)
2478 return NULL;
2479 error (_("could not read '.gnu_debugaltlink' section: %s"),
2480 bfd_errmsg (bfd_get_error ()));
2481 }
2482 cleanup = make_cleanup (xfree, data);
2483 make_cleanup (xfree, buildid);
2484
2485 buildid_len = (size_t) buildid_len_arg;
2486
2487 filename = (const char *) data;
2488 if (!IS_ABSOLUTE_PATH (filename))
2489 {
2490 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2491 char *rel;
2492
2493 make_cleanup (xfree, abs);
2494 abs = ldirname (abs);
2495 make_cleanup (xfree, abs);
2496
2497 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2498 make_cleanup (xfree, rel);
2499 filename = rel;
2500 }
2501
2502 /* First try the file name given in the section. If that doesn't
2503 work, try to use the build-id instead. */
2504 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2505 if (dwz_bfd != NULL)
2506 {
2507 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2508 {
2509 gdb_bfd_unref (dwz_bfd);
2510 dwz_bfd = NULL;
2511 }
2512 }
2513
2514 if (dwz_bfd == NULL)
2515 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2516
2517 if (dwz_bfd == NULL)
2518 error (_("could not find '.gnu_debugaltlink' file for %s"),
2519 objfile_name (dwarf2_per_objfile->objfile));
2520
2521 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2522 struct dwz_file);
2523 result->dwz_bfd = dwz_bfd;
2524
2525 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2526
2527 do_cleanups (cleanup);
2528
2529 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2530 dwarf2_per_objfile->dwz_file = result;
2531 return result;
2532 }
2533 \f
2534 /* DWARF quick_symbols_functions support. */
2535
2536 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2537 unique line tables, so we maintain a separate table of all .debug_line
2538 derived entries to support the sharing.
2539 All the quick functions need is the list of file names. We discard the
2540 line_header when we're done and don't need to record it here. */
2541 struct quick_file_names
2542 {
2543 /* The data used to construct the hash key. */
2544 struct stmt_list_hash hash;
2545
2546 /* The number of entries in file_names, real_names. */
2547 unsigned int num_file_names;
2548
2549 /* The file names from the line table, after being run through
2550 file_full_name. */
2551 const char **file_names;
2552
2553 /* The file names from the line table after being run through
2554 gdb_realpath. These are computed lazily. */
2555 const char **real_names;
2556 };
2557
2558 /* When using the index (and thus not using psymtabs), each CU has an
2559 object of this type. This is used to hold information needed by
2560 the various "quick" methods. */
2561 struct dwarf2_per_cu_quick_data
2562 {
2563 /* The file table. This can be NULL if there was no file table
2564 or it's currently not read in.
2565 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2566 struct quick_file_names *file_names;
2567
2568 /* The corresponding symbol table. This is NULL if symbols for this
2569 CU have not yet been read. */
2570 struct compunit_symtab *compunit_symtab;
2571
2572 /* A temporary mark bit used when iterating over all CUs in
2573 expand_symtabs_matching. */
2574 unsigned int mark : 1;
2575
2576 /* True if we've tried to read the file table and found there isn't one.
2577 There will be no point in trying to read it again next time. */
2578 unsigned int no_file_data : 1;
2579 };
2580
2581 /* Utility hash function for a stmt_list_hash. */
2582
2583 static hashval_t
2584 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2585 {
2586 hashval_t v = 0;
2587
2588 if (stmt_list_hash->dwo_unit != NULL)
2589 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2590 v += stmt_list_hash->line_offset.sect_off;
2591 return v;
2592 }
2593
2594 /* Utility equality function for a stmt_list_hash. */
2595
2596 static int
2597 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2598 const struct stmt_list_hash *rhs)
2599 {
2600 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2601 return 0;
2602 if (lhs->dwo_unit != NULL
2603 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2604 return 0;
2605
2606 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2607 }
2608
2609 /* Hash function for a quick_file_names. */
2610
2611 static hashval_t
2612 hash_file_name_entry (const void *e)
2613 {
2614 const struct quick_file_names *file_data
2615 = (const struct quick_file_names *) e;
2616
2617 return hash_stmt_list_entry (&file_data->hash);
2618 }
2619
2620 /* Equality function for a quick_file_names. */
2621
2622 static int
2623 eq_file_name_entry (const void *a, const void *b)
2624 {
2625 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2626 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2627
2628 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2629 }
2630
2631 /* Delete function for a quick_file_names. */
2632
2633 static void
2634 delete_file_name_entry (void *e)
2635 {
2636 struct quick_file_names *file_data = (struct quick_file_names *) e;
2637 int i;
2638
2639 for (i = 0; i < file_data->num_file_names; ++i)
2640 {
2641 xfree ((void*) file_data->file_names[i]);
2642 if (file_data->real_names)
2643 xfree ((void*) file_data->real_names[i]);
2644 }
2645
2646 /* The space for the struct itself lives on objfile_obstack,
2647 so we don't free it here. */
2648 }
2649
2650 /* Create a quick_file_names hash table. */
2651
2652 static htab_t
2653 create_quick_file_names_table (unsigned int nr_initial_entries)
2654 {
2655 return htab_create_alloc (nr_initial_entries,
2656 hash_file_name_entry, eq_file_name_entry,
2657 delete_file_name_entry, xcalloc, xfree);
2658 }
2659
2660 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2661 have to be created afterwards. You should call age_cached_comp_units after
2662 processing PER_CU->CU. dw2_setup must have been already called. */
2663
2664 static void
2665 load_cu (struct dwarf2_per_cu_data *per_cu)
2666 {
2667 if (per_cu->is_debug_types)
2668 load_full_type_unit (per_cu);
2669 else
2670 load_full_comp_unit (per_cu, language_minimal);
2671
2672 if (per_cu->cu == NULL)
2673 return; /* Dummy CU. */
2674
2675 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2676 }
2677
2678 /* Read in the symbols for PER_CU. */
2679
2680 static void
2681 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2682 {
2683 struct cleanup *back_to;
2684
2685 /* Skip type_unit_groups, reading the type units they contain
2686 is handled elsewhere. */
2687 if (IS_TYPE_UNIT_GROUP (per_cu))
2688 return;
2689
2690 back_to = make_cleanup (dwarf2_release_queue, NULL);
2691
2692 if (dwarf2_per_objfile->using_index
2693 ? per_cu->v.quick->compunit_symtab == NULL
2694 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2695 {
2696 queue_comp_unit (per_cu, language_minimal);
2697 load_cu (per_cu);
2698
2699 /* If we just loaded a CU from a DWO, and we're working with an index
2700 that may badly handle TUs, load all the TUs in that DWO as well.
2701 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2702 if (!per_cu->is_debug_types
2703 && per_cu->cu != NULL
2704 && per_cu->cu->dwo_unit != NULL
2705 && dwarf2_per_objfile->index_table != NULL
2706 && dwarf2_per_objfile->index_table->version <= 7
2707 /* DWP files aren't supported yet. */
2708 && get_dwp_file () == NULL)
2709 queue_and_load_all_dwo_tus (per_cu);
2710 }
2711
2712 process_queue ();
2713
2714 /* Age the cache, releasing compilation units that have not
2715 been used recently. */
2716 age_cached_comp_units ();
2717
2718 do_cleanups (back_to);
2719 }
2720
2721 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2722 the objfile from which this CU came. Returns the resulting symbol
2723 table. */
2724
2725 static struct compunit_symtab *
2726 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2727 {
2728 gdb_assert (dwarf2_per_objfile->using_index);
2729 if (!per_cu->v.quick->compunit_symtab)
2730 {
2731 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2732 increment_reading_symtab ();
2733 dw2_do_instantiate_symtab (per_cu);
2734 process_cu_includes ();
2735 do_cleanups (back_to);
2736 }
2737
2738 return per_cu->v.quick->compunit_symtab;
2739 }
2740
2741 /* Return the CU/TU given its index.
2742
2743 This is intended for loops like:
2744
2745 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2746 + dwarf2_per_objfile->n_type_units); ++i)
2747 {
2748 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2749
2750 ...;
2751 }
2752 */
2753
2754 static struct dwarf2_per_cu_data *
2755 dw2_get_cutu (int index)
2756 {
2757 if (index >= dwarf2_per_objfile->n_comp_units)
2758 {
2759 index -= dwarf2_per_objfile->n_comp_units;
2760 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2761 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2762 }
2763
2764 return dwarf2_per_objfile->all_comp_units[index];
2765 }
2766
2767 /* Return the CU given its index.
2768 This differs from dw2_get_cutu in that it's for when you know INDEX
2769 refers to a CU. */
2770
2771 static struct dwarf2_per_cu_data *
2772 dw2_get_cu (int index)
2773 {
2774 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2775
2776 return dwarf2_per_objfile->all_comp_units[index];
2777 }
2778
2779 /* A helper for create_cus_from_index that handles a given list of
2780 CUs. */
2781
2782 static void
2783 create_cus_from_index_list (struct objfile *objfile,
2784 const gdb_byte *cu_list, offset_type n_elements,
2785 struct dwarf2_section_info *section,
2786 int is_dwz,
2787 int base_offset)
2788 {
2789 offset_type i;
2790
2791 for (i = 0; i < n_elements; i += 2)
2792 {
2793 struct dwarf2_per_cu_data *the_cu;
2794 ULONGEST offset, length;
2795
2796 gdb_static_assert (sizeof (ULONGEST) >= 8);
2797 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2798 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2799 cu_list += 2 * 8;
2800
2801 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2802 struct dwarf2_per_cu_data);
2803 the_cu->offset.sect_off = offset;
2804 the_cu->length = length;
2805 the_cu->objfile = objfile;
2806 the_cu->section = section;
2807 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2808 struct dwarf2_per_cu_quick_data);
2809 the_cu->is_dwz = is_dwz;
2810 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2811 }
2812 }
2813
2814 /* Read the CU list from the mapped index, and use it to create all
2815 the CU objects for this objfile. */
2816
2817 static void
2818 create_cus_from_index (struct objfile *objfile,
2819 const gdb_byte *cu_list, offset_type cu_list_elements,
2820 const gdb_byte *dwz_list, offset_type dwz_elements)
2821 {
2822 struct dwz_file *dwz;
2823
2824 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2825 dwarf2_per_objfile->all_comp_units =
2826 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2827 dwarf2_per_objfile->n_comp_units);
2828
2829 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2830 &dwarf2_per_objfile->info, 0, 0);
2831
2832 if (dwz_elements == 0)
2833 return;
2834
2835 dwz = dwarf2_get_dwz_file ();
2836 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2837 cu_list_elements / 2);
2838 }
2839
2840 /* Create the signatured type hash table from the index. */
2841
2842 static void
2843 create_signatured_type_table_from_index (struct objfile *objfile,
2844 struct dwarf2_section_info *section,
2845 const gdb_byte *bytes,
2846 offset_type elements)
2847 {
2848 offset_type i;
2849 htab_t sig_types_hash;
2850
2851 dwarf2_per_objfile->n_type_units
2852 = dwarf2_per_objfile->n_allocated_type_units
2853 = elements / 3;
2854 dwarf2_per_objfile->all_type_units =
2855 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2856
2857 sig_types_hash = allocate_signatured_type_table (objfile);
2858
2859 for (i = 0; i < elements; i += 3)
2860 {
2861 struct signatured_type *sig_type;
2862 ULONGEST offset, type_offset_in_tu, signature;
2863 void **slot;
2864
2865 gdb_static_assert (sizeof (ULONGEST) >= 8);
2866 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2867 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2868 BFD_ENDIAN_LITTLE);
2869 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2870 bytes += 3 * 8;
2871
2872 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2873 struct signatured_type);
2874 sig_type->signature = signature;
2875 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2876 sig_type->per_cu.is_debug_types = 1;
2877 sig_type->per_cu.section = section;
2878 sig_type->per_cu.offset.sect_off = offset;
2879 sig_type->per_cu.objfile = objfile;
2880 sig_type->per_cu.v.quick
2881 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2882 struct dwarf2_per_cu_quick_data);
2883
2884 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2885 *slot = sig_type;
2886
2887 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2888 }
2889
2890 dwarf2_per_objfile->signatured_types = sig_types_hash;
2891 }
2892
2893 /* Read the address map data from the mapped index, and use it to
2894 populate the objfile's psymtabs_addrmap. */
2895
2896 static void
2897 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2898 {
2899 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2900 const gdb_byte *iter, *end;
2901 struct obstack temp_obstack;
2902 struct addrmap *mutable_map;
2903 struct cleanup *cleanup;
2904 CORE_ADDR baseaddr;
2905
2906 obstack_init (&temp_obstack);
2907 cleanup = make_cleanup_obstack_free (&temp_obstack);
2908 mutable_map = addrmap_create_mutable (&temp_obstack);
2909
2910 iter = index->address_table;
2911 end = iter + index->address_table_size;
2912
2913 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2914
2915 while (iter < end)
2916 {
2917 ULONGEST hi, lo, cu_index;
2918 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2919 iter += 8;
2920 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2921 iter += 8;
2922 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2923 iter += 4;
2924
2925 if (lo > hi)
2926 {
2927 complaint (&symfile_complaints,
2928 _(".gdb_index address table has invalid range (%s - %s)"),
2929 hex_string (lo), hex_string (hi));
2930 continue;
2931 }
2932
2933 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2934 {
2935 complaint (&symfile_complaints,
2936 _(".gdb_index address table has invalid CU number %u"),
2937 (unsigned) cu_index);
2938 continue;
2939 }
2940
2941 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2942 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2943 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2944 }
2945
2946 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2947 &objfile->objfile_obstack);
2948 do_cleanups (cleanup);
2949 }
2950
2951 /* The hash function for strings in the mapped index. This is the same as
2952 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2953 implementation. This is necessary because the hash function is tied to the
2954 format of the mapped index file. The hash values do not have to match with
2955 SYMBOL_HASH_NEXT.
2956
2957 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2958
2959 static hashval_t
2960 mapped_index_string_hash (int index_version, const void *p)
2961 {
2962 const unsigned char *str = (const unsigned char *) p;
2963 hashval_t r = 0;
2964 unsigned char c;
2965
2966 while ((c = *str++) != 0)
2967 {
2968 if (index_version >= 5)
2969 c = tolower (c);
2970 r = r * 67 + c - 113;
2971 }
2972
2973 return r;
2974 }
2975
2976 /* Find a slot in the mapped index INDEX for the object named NAME.
2977 If NAME is found, set *VEC_OUT to point to the CU vector in the
2978 constant pool and return 1. If NAME cannot be found, return 0. */
2979
2980 static int
2981 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2982 offset_type **vec_out)
2983 {
2984 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2985 offset_type hash;
2986 offset_type slot, step;
2987 int (*cmp) (const char *, const char *);
2988
2989 if (current_language->la_language == language_cplus
2990 || current_language->la_language == language_java
2991 || current_language->la_language == language_fortran
2992 || current_language->la_language == language_d)
2993 {
2994 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2995 not contain any. */
2996
2997 if (strchr (name, '(') != NULL)
2998 {
2999 char *without_params = cp_remove_params (name);
3000
3001 if (without_params != NULL)
3002 {
3003 make_cleanup (xfree, without_params);
3004 name = without_params;
3005 }
3006 }
3007 }
3008
3009 /* Index version 4 did not support case insensitive searches. But the
3010 indices for case insensitive languages are built in lowercase, therefore
3011 simulate our NAME being searched is also lowercased. */
3012 hash = mapped_index_string_hash ((index->version == 4
3013 && case_sensitivity == case_sensitive_off
3014 ? 5 : index->version),
3015 name);
3016
3017 slot = hash & (index->symbol_table_slots - 1);
3018 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3019 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3020
3021 for (;;)
3022 {
3023 /* Convert a slot number to an offset into the table. */
3024 offset_type i = 2 * slot;
3025 const char *str;
3026 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3027 {
3028 do_cleanups (back_to);
3029 return 0;
3030 }
3031
3032 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3033 if (!cmp (name, str))
3034 {
3035 *vec_out = (offset_type *) (index->constant_pool
3036 + MAYBE_SWAP (index->symbol_table[i + 1]));
3037 do_cleanups (back_to);
3038 return 1;
3039 }
3040
3041 slot = (slot + step) & (index->symbol_table_slots - 1);
3042 }
3043 }
3044
3045 /* A helper function that reads the .gdb_index from SECTION and fills
3046 in MAP. FILENAME is the name of the file containing the section;
3047 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3048 ok to use deprecated sections.
3049
3050 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3051 out parameters that are filled in with information about the CU and
3052 TU lists in the section.
3053
3054 Returns 1 if all went well, 0 otherwise. */
3055
3056 static int
3057 read_index_from_section (struct objfile *objfile,
3058 const char *filename,
3059 int deprecated_ok,
3060 struct dwarf2_section_info *section,
3061 struct mapped_index *map,
3062 const gdb_byte **cu_list,
3063 offset_type *cu_list_elements,
3064 const gdb_byte **types_list,
3065 offset_type *types_list_elements)
3066 {
3067 const gdb_byte *addr;
3068 offset_type version;
3069 offset_type *metadata;
3070 int i;
3071
3072 if (dwarf2_section_empty_p (section))
3073 return 0;
3074
3075 /* Older elfutils strip versions could keep the section in the main
3076 executable while splitting it for the separate debug info file. */
3077 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3078 return 0;
3079
3080 dwarf2_read_section (objfile, section);
3081
3082 addr = section->buffer;
3083 /* Version check. */
3084 version = MAYBE_SWAP (*(offset_type *) addr);
3085 /* Versions earlier than 3 emitted every copy of a psymbol. This
3086 causes the index to behave very poorly for certain requests. Version 3
3087 contained incomplete addrmap. So, it seems better to just ignore such
3088 indices. */
3089 if (version < 4)
3090 {
3091 static int warning_printed = 0;
3092 if (!warning_printed)
3093 {
3094 warning (_("Skipping obsolete .gdb_index section in %s."),
3095 filename);
3096 warning_printed = 1;
3097 }
3098 return 0;
3099 }
3100 /* Index version 4 uses a different hash function than index version
3101 5 and later.
3102
3103 Versions earlier than 6 did not emit psymbols for inlined
3104 functions. Using these files will cause GDB not to be able to
3105 set breakpoints on inlined functions by name, so we ignore these
3106 indices unless the user has done
3107 "set use-deprecated-index-sections on". */
3108 if (version < 6 && !deprecated_ok)
3109 {
3110 static int warning_printed = 0;
3111 if (!warning_printed)
3112 {
3113 warning (_("\
3114 Skipping deprecated .gdb_index section in %s.\n\
3115 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3116 to use the section anyway."),
3117 filename);
3118 warning_printed = 1;
3119 }
3120 return 0;
3121 }
3122 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3123 of the TU (for symbols coming from TUs),
3124 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3125 Plus gold-generated indices can have duplicate entries for global symbols,
3126 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3127 These are just performance bugs, and we can't distinguish gdb-generated
3128 indices from gold-generated ones, so issue no warning here. */
3129
3130 /* Indexes with higher version than the one supported by GDB may be no
3131 longer backward compatible. */
3132 if (version > 8)
3133 return 0;
3134
3135 map->version = version;
3136 map->total_size = section->size;
3137
3138 metadata = (offset_type *) (addr + sizeof (offset_type));
3139
3140 i = 0;
3141 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3142 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3143 / 8);
3144 ++i;
3145
3146 *types_list = addr + MAYBE_SWAP (metadata[i]);
3147 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3148 - MAYBE_SWAP (metadata[i]))
3149 / 8);
3150 ++i;
3151
3152 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3153 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3154 - MAYBE_SWAP (metadata[i]));
3155 ++i;
3156
3157 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3158 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3159 - MAYBE_SWAP (metadata[i]))
3160 / (2 * sizeof (offset_type)));
3161 ++i;
3162
3163 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3164
3165 return 1;
3166 }
3167
3168
3169 /* Read the index file. If everything went ok, initialize the "quick"
3170 elements of all the CUs and return 1. Otherwise, return 0. */
3171
3172 static int
3173 dwarf2_read_index (struct objfile *objfile)
3174 {
3175 struct mapped_index local_map, *map;
3176 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3177 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3178 struct dwz_file *dwz;
3179
3180 if (!read_index_from_section (objfile, objfile_name (objfile),
3181 use_deprecated_index_sections,
3182 &dwarf2_per_objfile->gdb_index, &local_map,
3183 &cu_list, &cu_list_elements,
3184 &types_list, &types_list_elements))
3185 return 0;
3186
3187 /* Don't use the index if it's empty. */
3188 if (local_map.symbol_table_slots == 0)
3189 return 0;
3190
3191 /* If there is a .dwz file, read it so we can get its CU list as
3192 well. */
3193 dwz = dwarf2_get_dwz_file ();
3194 if (dwz != NULL)
3195 {
3196 struct mapped_index dwz_map;
3197 const gdb_byte *dwz_types_ignore;
3198 offset_type dwz_types_elements_ignore;
3199
3200 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3201 1,
3202 &dwz->gdb_index, &dwz_map,
3203 &dwz_list, &dwz_list_elements,
3204 &dwz_types_ignore,
3205 &dwz_types_elements_ignore))
3206 {
3207 warning (_("could not read '.gdb_index' section from %s; skipping"),
3208 bfd_get_filename (dwz->dwz_bfd));
3209 return 0;
3210 }
3211 }
3212
3213 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3214 dwz_list_elements);
3215
3216 if (types_list_elements)
3217 {
3218 struct dwarf2_section_info *section;
3219
3220 /* We can only handle a single .debug_types when we have an
3221 index. */
3222 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3223 return 0;
3224
3225 section = VEC_index (dwarf2_section_info_def,
3226 dwarf2_per_objfile->types, 0);
3227
3228 create_signatured_type_table_from_index (objfile, section, types_list,
3229 types_list_elements);
3230 }
3231
3232 create_addrmap_from_index (objfile, &local_map);
3233
3234 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3235 *map = local_map;
3236
3237 dwarf2_per_objfile->index_table = map;
3238 dwarf2_per_objfile->using_index = 1;
3239 dwarf2_per_objfile->quick_file_names_table =
3240 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3241
3242 return 1;
3243 }
3244
3245 /* A helper for the "quick" functions which sets the global
3246 dwarf2_per_objfile according to OBJFILE. */
3247
3248 static void
3249 dw2_setup (struct objfile *objfile)
3250 {
3251 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3252 objfile_data (objfile, dwarf2_objfile_data_key));
3253 gdb_assert (dwarf2_per_objfile);
3254 }
3255
3256 /* die_reader_func for dw2_get_file_names. */
3257
3258 static void
3259 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3260 const gdb_byte *info_ptr,
3261 struct die_info *comp_unit_die,
3262 int has_children,
3263 void *data)
3264 {
3265 struct dwarf2_cu *cu = reader->cu;
3266 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3267 struct objfile *objfile = dwarf2_per_objfile->objfile;
3268 struct dwarf2_per_cu_data *lh_cu;
3269 struct line_header *lh;
3270 struct attribute *attr;
3271 int i;
3272 const char *name, *comp_dir;
3273 void **slot;
3274 struct quick_file_names *qfn;
3275 unsigned int line_offset;
3276
3277 gdb_assert (! this_cu->is_debug_types);
3278
3279 /* Our callers never want to match partial units -- instead they
3280 will match the enclosing full CU. */
3281 if (comp_unit_die->tag == DW_TAG_partial_unit)
3282 {
3283 this_cu->v.quick->no_file_data = 1;
3284 return;
3285 }
3286
3287 lh_cu = this_cu;
3288 lh = NULL;
3289 slot = NULL;
3290 line_offset = 0;
3291
3292 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3293 if (attr)
3294 {
3295 struct quick_file_names find_entry;
3296
3297 line_offset = DW_UNSND (attr);
3298
3299 /* We may have already read in this line header (TU line header sharing).
3300 If we have we're done. */
3301 find_entry.hash.dwo_unit = cu->dwo_unit;
3302 find_entry.hash.line_offset.sect_off = line_offset;
3303 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3304 &find_entry, INSERT);
3305 if (*slot != NULL)
3306 {
3307 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3308 return;
3309 }
3310
3311 lh = dwarf_decode_line_header (line_offset, cu);
3312 }
3313 if (lh == NULL)
3314 {
3315 lh_cu->v.quick->no_file_data = 1;
3316 return;
3317 }
3318
3319 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3320 qfn->hash.dwo_unit = cu->dwo_unit;
3321 qfn->hash.line_offset.sect_off = line_offset;
3322 gdb_assert (slot != NULL);
3323 *slot = qfn;
3324
3325 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3326
3327 qfn->num_file_names = lh->num_file_names;
3328 qfn->file_names =
3329 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3330 for (i = 0; i < lh->num_file_names; ++i)
3331 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3332 qfn->real_names = NULL;
3333
3334 free_line_header (lh);
3335
3336 lh_cu->v.quick->file_names = qfn;
3337 }
3338
3339 /* A helper for the "quick" functions which attempts to read the line
3340 table for THIS_CU. */
3341
3342 static struct quick_file_names *
3343 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3344 {
3345 /* This should never be called for TUs. */
3346 gdb_assert (! this_cu->is_debug_types);
3347 /* Nor type unit groups. */
3348 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3349
3350 if (this_cu->v.quick->file_names != NULL)
3351 return this_cu->v.quick->file_names;
3352 /* If we know there is no line data, no point in looking again. */
3353 if (this_cu->v.quick->no_file_data)
3354 return NULL;
3355
3356 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3357
3358 if (this_cu->v.quick->no_file_data)
3359 return NULL;
3360 return this_cu->v.quick->file_names;
3361 }
3362
3363 /* A helper for the "quick" functions which computes and caches the
3364 real path for a given file name from the line table. */
3365
3366 static const char *
3367 dw2_get_real_path (struct objfile *objfile,
3368 struct quick_file_names *qfn, int index)
3369 {
3370 if (qfn->real_names == NULL)
3371 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3372 qfn->num_file_names, const char *);
3373
3374 if (qfn->real_names[index] == NULL)
3375 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3376
3377 return qfn->real_names[index];
3378 }
3379
3380 static struct symtab *
3381 dw2_find_last_source_symtab (struct objfile *objfile)
3382 {
3383 struct compunit_symtab *cust;
3384 int index;
3385
3386 dw2_setup (objfile);
3387 index = dwarf2_per_objfile->n_comp_units - 1;
3388 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3389 if (cust == NULL)
3390 return NULL;
3391 return compunit_primary_filetab (cust);
3392 }
3393
3394 /* Traversal function for dw2_forget_cached_source_info. */
3395
3396 static int
3397 dw2_free_cached_file_names (void **slot, void *info)
3398 {
3399 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3400
3401 if (file_data->real_names)
3402 {
3403 int i;
3404
3405 for (i = 0; i < file_data->num_file_names; ++i)
3406 {
3407 xfree ((void*) file_data->real_names[i]);
3408 file_data->real_names[i] = NULL;
3409 }
3410 }
3411
3412 return 1;
3413 }
3414
3415 static void
3416 dw2_forget_cached_source_info (struct objfile *objfile)
3417 {
3418 dw2_setup (objfile);
3419
3420 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3421 dw2_free_cached_file_names, NULL);
3422 }
3423
3424 /* Helper function for dw2_map_symtabs_matching_filename that expands
3425 the symtabs and calls the iterator. */
3426
3427 static int
3428 dw2_map_expand_apply (struct objfile *objfile,
3429 struct dwarf2_per_cu_data *per_cu,
3430 const char *name, const char *real_path,
3431 int (*callback) (struct symtab *, void *),
3432 void *data)
3433 {
3434 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3435
3436 /* Don't visit already-expanded CUs. */
3437 if (per_cu->v.quick->compunit_symtab)
3438 return 0;
3439
3440 /* This may expand more than one symtab, and we want to iterate over
3441 all of them. */
3442 dw2_instantiate_symtab (per_cu);
3443
3444 return iterate_over_some_symtabs (name, real_path, callback, data,
3445 objfile->compunit_symtabs, last_made);
3446 }
3447
3448 /* Implementation of the map_symtabs_matching_filename method. */
3449
3450 static int
3451 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3452 const char *real_path,
3453 int (*callback) (struct symtab *, void *),
3454 void *data)
3455 {
3456 int i;
3457 const char *name_basename = lbasename (name);
3458
3459 dw2_setup (objfile);
3460
3461 /* The rule is CUs specify all the files, including those used by
3462 any TU, so there's no need to scan TUs here. */
3463
3464 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3465 {
3466 int j;
3467 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3468 struct quick_file_names *file_data;
3469
3470 /* We only need to look at symtabs not already expanded. */
3471 if (per_cu->v.quick->compunit_symtab)
3472 continue;
3473
3474 file_data = dw2_get_file_names (per_cu);
3475 if (file_data == NULL)
3476 continue;
3477
3478 for (j = 0; j < file_data->num_file_names; ++j)
3479 {
3480 const char *this_name = file_data->file_names[j];
3481 const char *this_real_name;
3482
3483 if (compare_filenames_for_search (this_name, name))
3484 {
3485 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3486 callback, data))
3487 return 1;
3488 continue;
3489 }
3490
3491 /* Before we invoke realpath, which can get expensive when many
3492 files are involved, do a quick comparison of the basenames. */
3493 if (! basenames_may_differ
3494 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3495 continue;
3496
3497 this_real_name = dw2_get_real_path (objfile, file_data, j);
3498 if (compare_filenames_for_search (this_real_name, name))
3499 {
3500 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3501 callback, data))
3502 return 1;
3503 continue;
3504 }
3505
3506 if (real_path != NULL)
3507 {
3508 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3509 gdb_assert (IS_ABSOLUTE_PATH (name));
3510 if (this_real_name != NULL
3511 && FILENAME_CMP (real_path, this_real_name) == 0)
3512 {
3513 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3514 callback, data))
3515 return 1;
3516 continue;
3517 }
3518 }
3519 }
3520 }
3521
3522 return 0;
3523 }
3524
3525 /* Struct used to manage iterating over all CUs looking for a symbol. */
3526
3527 struct dw2_symtab_iterator
3528 {
3529 /* The internalized form of .gdb_index. */
3530 struct mapped_index *index;
3531 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3532 int want_specific_block;
3533 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3534 Unused if !WANT_SPECIFIC_BLOCK. */
3535 int block_index;
3536 /* The kind of symbol we're looking for. */
3537 domain_enum domain;
3538 /* The list of CUs from the index entry of the symbol,
3539 or NULL if not found. */
3540 offset_type *vec;
3541 /* The next element in VEC to look at. */
3542 int next;
3543 /* The number of elements in VEC, or zero if there is no match. */
3544 int length;
3545 /* Have we seen a global version of the symbol?
3546 If so we can ignore all further global instances.
3547 This is to work around gold/15646, inefficient gold-generated
3548 indices. */
3549 int global_seen;
3550 };
3551
3552 /* Initialize the index symtab iterator ITER.
3553 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3554 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3555
3556 static void
3557 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3558 struct mapped_index *index,
3559 int want_specific_block,
3560 int block_index,
3561 domain_enum domain,
3562 const char *name)
3563 {
3564 iter->index = index;
3565 iter->want_specific_block = want_specific_block;
3566 iter->block_index = block_index;
3567 iter->domain = domain;
3568 iter->next = 0;
3569 iter->global_seen = 0;
3570
3571 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3572 iter->length = MAYBE_SWAP (*iter->vec);
3573 else
3574 {
3575 iter->vec = NULL;
3576 iter->length = 0;
3577 }
3578 }
3579
3580 /* Return the next matching CU or NULL if there are no more. */
3581
3582 static struct dwarf2_per_cu_data *
3583 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3584 {
3585 for ( ; iter->next < iter->length; ++iter->next)
3586 {
3587 offset_type cu_index_and_attrs =
3588 MAYBE_SWAP (iter->vec[iter->next + 1]);
3589 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3590 struct dwarf2_per_cu_data *per_cu;
3591 int want_static = iter->block_index != GLOBAL_BLOCK;
3592 /* This value is only valid for index versions >= 7. */
3593 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3594 gdb_index_symbol_kind symbol_kind =
3595 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3596 /* Only check the symbol attributes if they're present.
3597 Indices prior to version 7 don't record them,
3598 and indices >= 7 may elide them for certain symbols
3599 (gold does this). */
3600 int attrs_valid =
3601 (iter->index->version >= 7
3602 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3603
3604 /* Don't crash on bad data. */
3605 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3606 + dwarf2_per_objfile->n_type_units))
3607 {
3608 complaint (&symfile_complaints,
3609 _(".gdb_index entry has bad CU index"
3610 " [in module %s]"),
3611 objfile_name (dwarf2_per_objfile->objfile));
3612 continue;
3613 }
3614
3615 per_cu = dw2_get_cutu (cu_index);
3616
3617 /* Skip if already read in. */
3618 if (per_cu->v.quick->compunit_symtab)
3619 continue;
3620
3621 /* Check static vs global. */
3622 if (attrs_valid)
3623 {
3624 if (iter->want_specific_block
3625 && want_static != is_static)
3626 continue;
3627 /* Work around gold/15646. */
3628 if (!is_static && iter->global_seen)
3629 continue;
3630 if (!is_static)
3631 iter->global_seen = 1;
3632 }
3633
3634 /* Only check the symbol's kind if it has one. */
3635 if (attrs_valid)
3636 {
3637 switch (iter->domain)
3638 {
3639 case VAR_DOMAIN:
3640 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3641 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3642 /* Some types are also in VAR_DOMAIN. */
3643 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3644 continue;
3645 break;
3646 case STRUCT_DOMAIN:
3647 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3648 continue;
3649 break;
3650 case LABEL_DOMAIN:
3651 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3652 continue;
3653 break;
3654 default:
3655 break;
3656 }
3657 }
3658
3659 ++iter->next;
3660 return per_cu;
3661 }
3662
3663 return NULL;
3664 }
3665
3666 static struct compunit_symtab *
3667 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3668 const char *name, domain_enum domain)
3669 {
3670 struct compunit_symtab *stab_best = NULL;
3671 struct mapped_index *index;
3672
3673 dw2_setup (objfile);
3674
3675 index = dwarf2_per_objfile->index_table;
3676
3677 /* index is NULL if OBJF_READNOW. */
3678 if (index)
3679 {
3680 struct dw2_symtab_iterator iter;
3681 struct dwarf2_per_cu_data *per_cu;
3682
3683 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3684
3685 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3686 {
3687 struct symbol *sym, *with_opaque = NULL;
3688 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3689 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3690 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3691
3692 sym = block_find_symbol (block, name, domain,
3693 block_find_non_opaque_type_preferred,
3694 &with_opaque);
3695
3696 /* Some caution must be observed with overloaded functions
3697 and methods, since the index will not contain any overload
3698 information (but NAME might contain it). */
3699
3700 if (sym != NULL
3701 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3702 return stab;
3703 if (with_opaque != NULL
3704 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3705 stab_best = stab;
3706
3707 /* Keep looking through other CUs. */
3708 }
3709 }
3710
3711 return stab_best;
3712 }
3713
3714 static void
3715 dw2_print_stats (struct objfile *objfile)
3716 {
3717 int i, total, count;
3718
3719 dw2_setup (objfile);
3720 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3721 count = 0;
3722 for (i = 0; i < total; ++i)
3723 {
3724 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3725
3726 if (!per_cu->v.quick->compunit_symtab)
3727 ++count;
3728 }
3729 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3730 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3731 }
3732
3733 /* This dumps minimal information about the index.
3734 It is called via "mt print objfiles".
3735 One use is to verify .gdb_index has been loaded by the
3736 gdb.dwarf2/gdb-index.exp testcase. */
3737
3738 static void
3739 dw2_dump (struct objfile *objfile)
3740 {
3741 dw2_setup (objfile);
3742 gdb_assert (dwarf2_per_objfile->using_index);
3743 printf_filtered (".gdb_index:");
3744 if (dwarf2_per_objfile->index_table != NULL)
3745 {
3746 printf_filtered (" version %d\n",
3747 dwarf2_per_objfile->index_table->version);
3748 }
3749 else
3750 printf_filtered (" faked for \"readnow\"\n");
3751 printf_filtered ("\n");
3752 }
3753
3754 static void
3755 dw2_relocate (struct objfile *objfile,
3756 const struct section_offsets *new_offsets,
3757 const struct section_offsets *delta)
3758 {
3759 /* There's nothing to relocate here. */
3760 }
3761
3762 static void
3763 dw2_expand_symtabs_for_function (struct objfile *objfile,
3764 const char *func_name)
3765 {
3766 struct mapped_index *index;
3767
3768 dw2_setup (objfile);
3769
3770 index = dwarf2_per_objfile->index_table;
3771
3772 /* index is NULL if OBJF_READNOW. */
3773 if (index)
3774 {
3775 struct dw2_symtab_iterator iter;
3776 struct dwarf2_per_cu_data *per_cu;
3777
3778 /* Note: It doesn't matter what we pass for block_index here. */
3779 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3780 func_name);
3781
3782 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3783 dw2_instantiate_symtab (per_cu);
3784 }
3785 }
3786
3787 static void
3788 dw2_expand_all_symtabs (struct objfile *objfile)
3789 {
3790 int i;
3791
3792 dw2_setup (objfile);
3793
3794 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3795 + dwarf2_per_objfile->n_type_units); ++i)
3796 {
3797 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3798
3799 dw2_instantiate_symtab (per_cu);
3800 }
3801 }
3802
3803 static void
3804 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3805 const char *fullname)
3806 {
3807 int i;
3808
3809 dw2_setup (objfile);
3810
3811 /* We don't need to consider type units here.
3812 This is only called for examining code, e.g. expand_line_sal.
3813 There can be an order of magnitude (or more) more type units
3814 than comp units, and we avoid them if we can. */
3815
3816 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3817 {
3818 int j;
3819 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3820 struct quick_file_names *file_data;
3821
3822 /* We only need to look at symtabs not already expanded. */
3823 if (per_cu->v.quick->compunit_symtab)
3824 continue;
3825
3826 file_data = dw2_get_file_names (per_cu);
3827 if (file_data == NULL)
3828 continue;
3829
3830 for (j = 0; j < file_data->num_file_names; ++j)
3831 {
3832 const char *this_fullname = file_data->file_names[j];
3833
3834 if (filename_cmp (this_fullname, fullname) == 0)
3835 {
3836 dw2_instantiate_symtab (per_cu);
3837 break;
3838 }
3839 }
3840 }
3841 }
3842
3843 static void
3844 dw2_map_matching_symbols (struct objfile *objfile,
3845 const char * name, domain_enum domain,
3846 int global,
3847 int (*callback) (struct block *,
3848 struct symbol *, void *),
3849 void *data, symbol_compare_ftype *match,
3850 symbol_compare_ftype *ordered_compare)
3851 {
3852 /* Currently unimplemented; used for Ada. The function can be called if the
3853 current language is Ada for a non-Ada objfile using GNU index. As Ada
3854 does not look for non-Ada symbols this function should just return. */
3855 }
3856
3857 static void
3858 dw2_expand_symtabs_matching
3859 (struct objfile *objfile,
3860 expand_symtabs_file_matcher_ftype *file_matcher,
3861 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3862 expand_symtabs_exp_notify_ftype *expansion_notify,
3863 enum search_domain kind,
3864 void *data)
3865 {
3866 int i;
3867 offset_type iter;
3868 struct mapped_index *index;
3869
3870 dw2_setup (objfile);
3871
3872 /* index_table is NULL if OBJF_READNOW. */
3873 if (!dwarf2_per_objfile->index_table)
3874 return;
3875 index = dwarf2_per_objfile->index_table;
3876
3877 if (file_matcher != NULL)
3878 {
3879 struct cleanup *cleanup;
3880 htab_t visited_found, visited_not_found;
3881
3882 visited_found = htab_create_alloc (10,
3883 htab_hash_pointer, htab_eq_pointer,
3884 NULL, xcalloc, xfree);
3885 cleanup = make_cleanup_htab_delete (visited_found);
3886 visited_not_found = htab_create_alloc (10,
3887 htab_hash_pointer, htab_eq_pointer,
3888 NULL, xcalloc, xfree);
3889 make_cleanup_htab_delete (visited_not_found);
3890
3891 /* The rule is CUs specify all the files, including those used by
3892 any TU, so there's no need to scan TUs here. */
3893
3894 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3895 {
3896 int j;
3897 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3898 struct quick_file_names *file_data;
3899 void **slot;
3900
3901 QUIT;
3902
3903 per_cu->v.quick->mark = 0;
3904
3905 /* We only need to look at symtabs not already expanded. */
3906 if (per_cu->v.quick->compunit_symtab)
3907 continue;
3908
3909 file_data = dw2_get_file_names (per_cu);
3910 if (file_data == NULL)
3911 continue;
3912
3913 if (htab_find (visited_not_found, file_data) != NULL)
3914 continue;
3915 else if (htab_find (visited_found, file_data) != NULL)
3916 {
3917 per_cu->v.quick->mark = 1;
3918 continue;
3919 }
3920
3921 for (j = 0; j < file_data->num_file_names; ++j)
3922 {
3923 const char *this_real_name;
3924
3925 if (file_matcher (file_data->file_names[j], data, 0))
3926 {
3927 per_cu->v.quick->mark = 1;
3928 break;
3929 }
3930
3931 /* Before we invoke realpath, which can get expensive when many
3932 files are involved, do a quick comparison of the basenames. */
3933 if (!basenames_may_differ
3934 && !file_matcher (lbasename (file_data->file_names[j]),
3935 data, 1))
3936 continue;
3937
3938 this_real_name = dw2_get_real_path (objfile, file_data, j);
3939 if (file_matcher (this_real_name, data, 0))
3940 {
3941 per_cu->v.quick->mark = 1;
3942 break;
3943 }
3944 }
3945
3946 slot = htab_find_slot (per_cu->v.quick->mark
3947 ? visited_found
3948 : visited_not_found,
3949 file_data, INSERT);
3950 *slot = file_data;
3951 }
3952
3953 do_cleanups (cleanup);
3954 }
3955
3956 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3957 {
3958 offset_type idx = 2 * iter;
3959 const char *name;
3960 offset_type *vec, vec_len, vec_idx;
3961 int global_seen = 0;
3962
3963 QUIT;
3964
3965 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3966 continue;
3967
3968 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3969
3970 if (! (*symbol_matcher) (name, data))
3971 continue;
3972
3973 /* The name was matched, now expand corresponding CUs that were
3974 marked. */
3975 vec = (offset_type *) (index->constant_pool
3976 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3977 vec_len = MAYBE_SWAP (vec[0]);
3978 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3979 {
3980 struct dwarf2_per_cu_data *per_cu;
3981 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3982 /* This value is only valid for index versions >= 7. */
3983 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3984 gdb_index_symbol_kind symbol_kind =
3985 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3986 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3987 /* Only check the symbol attributes if they're present.
3988 Indices prior to version 7 don't record them,
3989 and indices >= 7 may elide them for certain symbols
3990 (gold does this). */
3991 int attrs_valid =
3992 (index->version >= 7
3993 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3994
3995 /* Work around gold/15646. */
3996 if (attrs_valid)
3997 {
3998 if (!is_static && global_seen)
3999 continue;
4000 if (!is_static)
4001 global_seen = 1;
4002 }
4003
4004 /* Only check the symbol's kind if it has one. */
4005 if (attrs_valid)
4006 {
4007 switch (kind)
4008 {
4009 case VARIABLES_DOMAIN:
4010 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4011 continue;
4012 break;
4013 case FUNCTIONS_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4015 continue;
4016 break;
4017 case TYPES_DOMAIN:
4018 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4019 continue;
4020 break;
4021 default:
4022 break;
4023 }
4024 }
4025
4026 /* Don't crash on bad data. */
4027 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4028 + dwarf2_per_objfile->n_type_units))
4029 {
4030 complaint (&symfile_complaints,
4031 _(".gdb_index entry has bad CU index"
4032 " [in module %s]"), objfile_name (objfile));
4033 continue;
4034 }
4035
4036 per_cu = dw2_get_cutu (cu_index);
4037 if (file_matcher == NULL || per_cu->v.quick->mark)
4038 {
4039 int symtab_was_null =
4040 (per_cu->v.quick->compunit_symtab == NULL);
4041
4042 dw2_instantiate_symtab (per_cu);
4043
4044 if (expansion_notify != NULL
4045 && symtab_was_null
4046 && per_cu->v.quick->compunit_symtab != NULL)
4047 {
4048 expansion_notify (per_cu->v.quick->compunit_symtab,
4049 data);
4050 }
4051 }
4052 }
4053 }
4054 }
4055
4056 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4057 symtab. */
4058
4059 static struct compunit_symtab *
4060 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4061 CORE_ADDR pc)
4062 {
4063 int i;
4064
4065 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4066 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4067 return cust;
4068
4069 if (cust->includes == NULL)
4070 return NULL;
4071
4072 for (i = 0; cust->includes[i]; ++i)
4073 {
4074 struct compunit_symtab *s = cust->includes[i];
4075
4076 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4077 if (s != NULL)
4078 return s;
4079 }
4080
4081 return NULL;
4082 }
4083
4084 static struct compunit_symtab *
4085 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4086 struct bound_minimal_symbol msymbol,
4087 CORE_ADDR pc,
4088 struct obj_section *section,
4089 int warn_if_readin)
4090 {
4091 struct dwarf2_per_cu_data *data;
4092 struct compunit_symtab *result;
4093
4094 dw2_setup (objfile);
4095
4096 if (!objfile->psymtabs_addrmap)
4097 return NULL;
4098
4099 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4100 pc);
4101 if (!data)
4102 return NULL;
4103
4104 if (warn_if_readin && data->v.quick->compunit_symtab)
4105 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4106 paddress (get_objfile_arch (objfile), pc));
4107
4108 result
4109 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4110 pc);
4111 gdb_assert (result != NULL);
4112 return result;
4113 }
4114
4115 static void
4116 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4117 void *data, int need_fullname)
4118 {
4119 int i;
4120 struct cleanup *cleanup;
4121 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4122 NULL, xcalloc, xfree);
4123
4124 cleanup = make_cleanup_htab_delete (visited);
4125 dw2_setup (objfile);
4126
4127 /* The rule is CUs specify all the files, including those used by
4128 any TU, so there's no need to scan TUs here.
4129 We can ignore file names coming from already-expanded CUs. */
4130
4131 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4132 {
4133 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4134
4135 if (per_cu->v.quick->compunit_symtab)
4136 {
4137 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4138 INSERT);
4139
4140 *slot = per_cu->v.quick->file_names;
4141 }
4142 }
4143
4144 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4145 {
4146 int j;
4147 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4148 struct quick_file_names *file_data;
4149 void **slot;
4150
4151 /* We only need to look at symtabs not already expanded. */
4152 if (per_cu->v.quick->compunit_symtab)
4153 continue;
4154
4155 file_data = dw2_get_file_names (per_cu);
4156 if (file_data == NULL)
4157 continue;
4158
4159 slot = htab_find_slot (visited, file_data, INSERT);
4160 if (*slot)
4161 {
4162 /* Already visited. */
4163 continue;
4164 }
4165 *slot = file_data;
4166
4167 for (j = 0; j < file_data->num_file_names; ++j)
4168 {
4169 const char *this_real_name;
4170
4171 if (need_fullname)
4172 this_real_name = dw2_get_real_path (objfile, file_data, j);
4173 else
4174 this_real_name = NULL;
4175 (*fun) (file_data->file_names[j], this_real_name, data);
4176 }
4177 }
4178
4179 do_cleanups (cleanup);
4180 }
4181
4182 static int
4183 dw2_has_symbols (struct objfile *objfile)
4184 {
4185 return 1;
4186 }
4187
4188 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4189 {
4190 dw2_has_symbols,
4191 dw2_find_last_source_symtab,
4192 dw2_forget_cached_source_info,
4193 dw2_map_symtabs_matching_filename,
4194 dw2_lookup_symbol,
4195 dw2_print_stats,
4196 dw2_dump,
4197 dw2_relocate,
4198 dw2_expand_symtabs_for_function,
4199 dw2_expand_all_symtabs,
4200 dw2_expand_symtabs_with_fullname,
4201 dw2_map_matching_symbols,
4202 dw2_expand_symtabs_matching,
4203 dw2_find_pc_sect_compunit_symtab,
4204 dw2_map_symbol_filenames
4205 };
4206
4207 /* Initialize for reading DWARF for this objfile. Return 0 if this
4208 file will use psymtabs, or 1 if using the GNU index. */
4209
4210 int
4211 dwarf2_initialize_objfile (struct objfile *objfile)
4212 {
4213 /* If we're about to read full symbols, don't bother with the
4214 indices. In this case we also don't care if some other debug
4215 format is making psymtabs, because they are all about to be
4216 expanded anyway. */
4217 if ((objfile->flags & OBJF_READNOW))
4218 {
4219 int i;
4220
4221 dwarf2_per_objfile->using_index = 1;
4222 create_all_comp_units (objfile);
4223 create_all_type_units (objfile);
4224 dwarf2_per_objfile->quick_file_names_table =
4225 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4226
4227 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4228 + dwarf2_per_objfile->n_type_units); ++i)
4229 {
4230 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4231
4232 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4233 struct dwarf2_per_cu_quick_data);
4234 }
4235
4236 /* Return 1 so that gdb sees the "quick" functions. However,
4237 these functions will be no-ops because we will have expanded
4238 all symtabs. */
4239 return 1;
4240 }
4241
4242 if (dwarf2_read_index (objfile))
4243 return 1;
4244
4245 return 0;
4246 }
4247
4248 \f
4249
4250 /* Build a partial symbol table. */
4251
4252 void
4253 dwarf2_build_psymtabs (struct objfile *objfile)
4254 {
4255
4256 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4257 {
4258 init_psymbol_list (objfile, 1024);
4259 }
4260
4261 TRY
4262 {
4263 /* This isn't really ideal: all the data we allocate on the
4264 objfile's obstack is still uselessly kept around. However,
4265 freeing it seems unsafe. */
4266 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4267
4268 dwarf2_build_psymtabs_hard (objfile);
4269 discard_cleanups (cleanups);
4270 }
4271 CATCH (except, RETURN_MASK_ERROR)
4272 {
4273 exception_print (gdb_stderr, except);
4274 }
4275 END_CATCH
4276 }
4277
4278 /* Return the total length of the CU described by HEADER. */
4279
4280 static unsigned int
4281 get_cu_length (const struct comp_unit_head *header)
4282 {
4283 return header->initial_length_size + header->length;
4284 }
4285
4286 /* Return TRUE if OFFSET is within CU_HEADER. */
4287
4288 static inline int
4289 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4290 {
4291 sect_offset bottom = { cu_header->offset.sect_off };
4292 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4293
4294 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4295 }
4296
4297 /* Find the base address of the compilation unit for range lists and
4298 location lists. It will normally be specified by DW_AT_low_pc.
4299 In DWARF-3 draft 4, the base address could be overridden by
4300 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4301 compilation units with discontinuous ranges. */
4302
4303 static void
4304 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4305 {
4306 struct attribute *attr;
4307
4308 cu->base_known = 0;
4309 cu->base_address = 0;
4310
4311 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4312 if (attr)
4313 {
4314 cu->base_address = attr_value_as_address (attr);
4315 cu->base_known = 1;
4316 }
4317 else
4318 {
4319 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4320 if (attr)
4321 {
4322 cu->base_address = attr_value_as_address (attr);
4323 cu->base_known = 1;
4324 }
4325 }
4326 }
4327
4328 /* Read in the comp unit header information from the debug_info at info_ptr.
4329 NOTE: This leaves members offset, first_die_offset to be filled in
4330 by the caller. */
4331
4332 static const gdb_byte *
4333 read_comp_unit_head (struct comp_unit_head *cu_header,
4334 const gdb_byte *info_ptr, bfd *abfd)
4335 {
4336 int signed_addr;
4337 unsigned int bytes_read;
4338
4339 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4340 cu_header->initial_length_size = bytes_read;
4341 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4342 info_ptr += bytes_read;
4343 cu_header->version = read_2_bytes (abfd, info_ptr);
4344 info_ptr += 2;
4345 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4346 &bytes_read);
4347 info_ptr += bytes_read;
4348 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4349 info_ptr += 1;
4350 signed_addr = bfd_get_sign_extend_vma (abfd);
4351 if (signed_addr < 0)
4352 internal_error (__FILE__, __LINE__,
4353 _("read_comp_unit_head: dwarf from non elf file"));
4354 cu_header->signed_addr_p = signed_addr;
4355
4356 return info_ptr;
4357 }
4358
4359 /* Helper function that returns the proper abbrev section for
4360 THIS_CU. */
4361
4362 static struct dwarf2_section_info *
4363 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4364 {
4365 struct dwarf2_section_info *abbrev;
4366
4367 if (this_cu->is_dwz)
4368 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4369 else
4370 abbrev = &dwarf2_per_objfile->abbrev;
4371
4372 return abbrev;
4373 }
4374
4375 /* Subroutine of read_and_check_comp_unit_head and
4376 read_and_check_type_unit_head to simplify them.
4377 Perform various error checking on the header. */
4378
4379 static void
4380 error_check_comp_unit_head (struct comp_unit_head *header,
4381 struct dwarf2_section_info *section,
4382 struct dwarf2_section_info *abbrev_section)
4383 {
4384 bfd *abfd = get_section_bfd_owner (section);
4385 const char *filename = get_section_file_name (section);
4386
4387 if (header->version != 2 && header->version != 3 && header->version != 4)
4388 error (_("Dwarf Error: wrong version in compilation unit header "
4389 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4390 filename);
4391
4392 if (header->abbrev_offset.sect_off
4393 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4394 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4395 "(offset 0x%lx + 6) [in module %s]"),
4396 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4397 filename);
4398
4399 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4400 avoid potential 32-bit overflow. */
4401 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4402 > section->size)
4403 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4404 "(offset 0x%lx + 0) [in module %s]"),
4405 (long) header->length, (long) header->offset.sect_off,
4406 filename);
4407 }
4408
4409 /* Read in a CU/TU header and perform some basic error checking.
4410 The contents of the header are stored in HEADER.
4411 The result is a pointer to the start of the first DIE. */
4412
4413 static const gdb_byte *
4414 read_and_check_comp_unit_head (struct comp_unit_head *header,
4415 struct dwarf2_section_info *section,
4416 struct dwarf2_section_info *abbrev_section,
4417 const gdb_byte *info_ptr,
4418 int is_debug_types_section)
4419 {
4420 const gdb_byte *beg_of_comp_unit = info_ptr;
4421 bfd *abfd = get_section_bfd_owner (section);
4422
4423 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4424
4425 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4426
4427 /* If we're reading a type unit, skip over the signature and
4428 type_offset fields. */
4429 if (is_debug_types_section)
4430 info_ptr += 8 /*signature*/ + header->offset_size;
4431
4432 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4433
4434 error_check_comp_unit_head (header, section, abbrev_section);
4435
4436 return info_ptr;
4437 }
4438
4439 /* Read in the types comp unit header information from .debug_types entry at
4440 types_ptr. The result is a pointer to one past the end of the header. */
4441
4442 static const gdb_byte *
4443 read_and_check_type_unit_head (struct comp_unit_head *header,
4444 struct dwarf2_section_info *section,
4445 struct dwarf2_section_info *abbrev_section,
4446 const gdb_byte *info_ptr,
4447 ULONGEST *signature,
4448 cu_offset *type_offset_in_tu)
4449 {
4450 const gdb_byte *beg_of_comp_unit = info_ptr;
4451 bfd *abfd = get_section_bfd_owner (section);
4452
4453 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4454
4455 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4456
4457 /* If we're reading a type unit, skip over the signature and
4458 type_offset fields. */
4459 if (signature != NULL)
4460 *signature = read_8_bytes (abfd, info_ptr);
4461 info_ptr += 8;
4462 if (type_offset_in_tu != NULL)
4463 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4464 header->offset_size);
4465 info_ptr += header->offset_size;
4466
4467 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4468
4469 error_check_comp_unit_head (header, section, abbrev_section);
4470
4471 return info_ptr;
4472 }
4473
4474 /* Fetch the abbreviation table offset from a comp or type unit header. */
4475
4476 static sect_offset
4477 read_abbrev_offset (struct dwarf2_section_info *section,
4478 sect_offset offset)
4479 {
4480 bfd *abfd = get_section_bfd_owner (section);
4481 const gdb_byte *info_ptr;
4482 unsigned int length, initial_length_size, offset_size;
4483 sect_offset abbrev_offset;
4484
4485 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4486 info_ptr = section->buffer + offset.sect_off;
4487 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4488 offset_size = initial_length_size == 4 ? 4 : 8;
4489 info_ptr += initial_length_size + 2 /*version*/;
4490 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4491 return abbrev_offset;
4492 }
4493
4494 /* Allocate a new partial symtab for file named NAME and mark this new
4495 partial symtab as being an include of PST. */
4496
4497 static void
4498 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4499 struct objfile *objfile)
4500 {
4501 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4502
4503 if (!IS_ABSOLUTE_PATH (subpst->filename))
4504 {
4505 /* It shares objfile->objfile_obstack. */
4506 subpst->dirname = pst->dirname;
4507 }
4508
4509 subpst->textlow = 0;
4510 subpst->texthigh = 0;
4511
4512 subpst->dependencies
4513 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4514 subpst->dependencies[0] = pst;
4515 subpst->number_of_dependencies = 1;
4516
4517 subpst->globals_offset = 0;
4518 subpst->n_global_syms = 0;
4519 subpst->statics_offset = 0;
4520 subpst->n_static_syms = 0;
4521 subpst->compunit_symtab = NULL;
4522 subpst->read_symtab = pst->read_symtab;
4523 subpst->readin = 0;
4524
4525 /* No private part is necessary for include psymtabs. This property
4526 can be used to differentiate between such include psymtabs and
4527 the regular ones. */
4528 subpst->read_symtab_private = NULL;
4529 }
4530
4531 /* Read the Line Number Program data and extract the list of files
4532 included by the source file represented by PST. Build an include
4533 partial symtab for each of these included files. */
4534
4535 static void
4536 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4537 struct die_info *die,
4538 struct partial_symtab *pst)
4539 {
4540 struct line_header *lh = NULL;
4541 struct attribute *attr;
4542
4543 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4544 if (attr)
4545 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4546 if (lh == NULL)
4547 return; /* No linetable, so no includes. */
4548
4549 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4550 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4551
4552 free_line_header (lh);
4553 }
4554
4555 static hashval_t
4556 hash_signatured_type (const void *item)
4557 {
4558 const struct signatured_type *sig_type
4559 = (const struct signatured_type *) item;
4560
4561 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4562 return sig_type->signature;
4563 }
4564
4565 static int
4566 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4567 {
4568 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4569 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4570
4571 return lhs->signature == rhs->signature;
4572 }
4573
4574 /* Allocate a hash table for signatured types. */
4575
4576 static htab_t
4577 allocate_signatured_type_table (struct objfile *objfile)
4578 {
4579 return htab_create_alloc_ex (41,
4580 hash_signatured_type,
4581 eq_signatured_type,
4582 NULL,
4583 &objfile->objfile_obstack,
4584 hashtab_obstack_allocate,
4585 dummy_obstack_deallocate);
4586 }
4587
4588 /* A helper function to add a signatured type CU to a table. */
4589
4590 static int
4591 add_signatured_type_cu_to_table (void **slot, void *datum)
4592 {
4593 struct signatured_type *sigt = (struct signatured_type *) *slot;
4594 struct signatured_type ***datap = (struct signatured_type ***) datum;
4595
4596 **datap = sigt;
4597 ++*datap;
4598
4599 return 1;
4600 }
4601
4602 /* Create the hash table of all entries in the .debug_types
4603 (or .debug_types.dwo) section(s).
4604 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4605 otherwise it is NULL.
4606
4607 The result is a pointer to the hash table or NULL if there are no types.
4608
4609 Note: This function processes DWO files only, not DWP files. */
4610
4611 static htab_t
4612 create_debug_types_hash_table (struct dwo_file *dwo_file,
4613 VEC (dwarf2_section_info_def) *types)
4614 {
4615 struct objfile *objfile = dwarf2_per_objfile->objfile;
4616 htab_t types_htab = NULL;
4617 int ix;
4618 struct dwarf2_section_info *section;
4619 struct dwarf2_section_info *abbrev_section;
4620
4621 if (VEC_empty (dwarf2_section_info_def, types))
4622 return NULL;
4623
4624 abbrev_section = (dwo_file != NULL
4625 ? &dwo_file->sections.abbrev
4626 : &dwarf2_per_objfile->abbrev);
4627
4628 if (dwarf_read_debug)
4629 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4630 dwo_file ? ".dwo" : "",
4631 get_section_file_name (abbrev_section));
4632
4633 for (ix = 0;
4634 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4635 ++ix)
4636 {
4637 bfd *abfd;
4638 const gdb_byte *info_ptr, *end_ptr;
4639
4640 dwarf2_read_section (objfile, section);
4641 info_ptr = section->buffer;
4642
4643 if (info_ptr == NULL)
4644 continue;
4645
4646 /* We can't set abfd until now because the section may be empty or
4647 not present, in which case the bfd is unknown. */
4648 abfd = get_section_bfd_owner (section);
4649
4650 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4651 because we don't need to read any dies: the signature is in the
4652 header. */
4653
4654 end_ptr = info_ptr + section->size;
4655 while (info_ptr < end_ptr)
4656 {
4657 sect_offset offset;
4658 cu_offset type_offset_in_tu;
4659 ULONGEST signature;
4660 struct signatured_type *sig_type;
4661 struct dwo_unit *dwo_tu;
4662 void **slot;
4663 const gdb_byte *ptr = info_ptr;
4664 struct comp_unit_head header;
4665 unsigned int length;
4666
4667 offset.sect_off = ptr - section->buffer;
4668
4669 /* We need to read the type's signature in order to build the hash
4670 table, but we don't need anything else just yet. */
4671
4672 ptr = read_and_check_type_unit_head (&header, section,
4673 abbrev_section, ptr,
4674 &signature, &type_offset_in_tu);
4675
4676 length = get_cu_length (&header);
4677
4678 /* Skip dummy type units. */
4679 if (ptr >= info_ptr + length
4680 || peek_abbrev_code (abfd, ptr) == 0)
4681 {
4682 info_ptr += length;
4683 continue;
4684 }
4685
4686 if (types_htab == NULL)
4687 {
4688 if (dwo_file)
4689 types_htab = allocate_dwo_unit_table (objfile);
4690 else
4691 types_htab = allocate_signatured_type_table (objfile);
4692 }
4693
4694 if (dwo_file)
4695 {
4696 sig_type = NULL;
4697 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4698 struct dwo_unit);
4699 dwo_tu->dwo_file = dwo_file;
4700 dwo_tu->signature = signature;
4701 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4702 dwo_tu->section = section;
4703 dwo_tu->offset = offset;
4704 dwo_tu->length = length;
4705 }
4706 else
4707 {
4708 /* N.B.: type_offset is not usable if this type uses a DWO file.
4709 The real type_offset is in the DWO file. */
4710 dwo_tu = NULL;
4711 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4712 struct signatured_type);
4713 sig_type->signature = signature;
4714 sig_type->type_offset_in_tu = type_offset_in_tu;
4715 sig_type->per_cu.objfile = objfile;
4716 sig_type->per_cu.is_debug_types = 1;
4717 sig_type->per_cu.section = section;
4718 sig_type->per_cu.offset = offset;
4719 sig_type->per_cu.length = length;
4720 }
4721
4722 slot = htab_find_slot (types_htab,
4723 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4724 INSERT);
4725 gdb_assert (slot != NULL);
4726 if (*slot != NULL)
4727 {
4728 sect_offset dup_offset;
4729
4730 if (dwo_file)
4731 {
4732 const struct dwo_unit *dup_tu
4733 = (const struct dwo_unit *) *slot;
4734
4735 dup_offset = dup_tu->offset;
4736 }
4737 else
4738 {
4739 const struct signatured_type *dup_tu
4740 = (const struct signatured_type *) *slot;
4741
4742 dup_offset = dup_tu->per_cu.offset;
4743 }
4744
4745 complaint (&symfile_complaints,
4746 _("debug type entry at offset 0x%x is duplicate to"
4747 " the entry at offset 0x%x, signature %s"),
4748 offset.sect_off, dup_offset.sect_off,
4749 hex_string (signature));
4750 }
4751 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4752
4753 if (dwarf_read_debug > 1)
4754 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4755 offset.sect_off,
4756 hex_string (signature));
4757
4758 info_ptr += length;
4759 }
4760 }
4761
4762 return types_htab;
4763 }
4764
4765 /* Create the hash table of all entries in the .debug_types section,
4766 and initialize all_type_units.
4767 The result is zero if there is an error (e.g. missing .debug_types section),
4768 otherwise non-zero. */
4769
4770 static int
4771 create_all_type_units (struct objfile *objfile)
4772 {
4773 htab_t types_htab;
4774 struct signatured_type **iter;
4775
4776 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4777 if (types_htab == NULL)
4778 {
4779 dwarf2_per_objfile->signatured_types = NULL;
4780 return 0;
4781 }
4782
4783 dwarf2_per_objfile->signatured_types = types_htab;
4784
4785 dwarf2_per_objfile->n_type_units
4786 = dwarf2_per_objfile->n_allocated_type_units
4787 = htab_elements (types_htab);
4788 dwarf2_per_objfile->all_type_units =
4789 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4790 iter = &dwarf2_per_objfile->all_type_units[0];
4791 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4792 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4793 == dwarf2_per_objfile->n_type_units);
4794
4795 return 1;
4796 }
4797
4798 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4799 If SLOT is non-NULL, it is the entry to use in the hash table.
4800 Otherwise we find one. */
4801
4802 static struct signatured_type *
4803 add_type_unit (ULONGEST sig, void **slot)
4804 {
4805 struct objfile *objfile = dwarf2_per_objfile->objfile;
4806 int n_type_units = dwarf2_per_objfile->n_type_units;
4807 struct signatured_type *sig_type;
4808
4809 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4810 ++n_type_units;
4811 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4812 {
4813 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4814 dwarf2_per_objfile->n_allocated_type_units = 1;
4815 dwarf2_per_objfile->n_allocated_type_units *= 2;
4816 dwarf2_per_objfile->all_type_units
4817 = XRESIZEVEC (struct signatured_type *,
4818 dwarf2_per_objfile->all_type_units,
4819 dwarf2_per_objfile->n_allocated_type_units);
4820 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4821 }
4822 dwarf2_per_objfile->n_type_units = n_type_units;
4823
4824 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4825 struct signatured_type);
4826 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4827 sig_type->signature = sig;
4828 sig_type->per_cu.is_debug_types = 1;
4829 if (dwarf2_per_objfile->using_index)
4830 {
4831 sig_type->per_cu.v.quick =
4832 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4833 struct dwarf2_per_cu_quick_data);
4834 }
4835
4836 if (slot == NULL)
4837 {
4838 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4839 sig_type, INSERT);
4840 }
4841 gdb_assert (*slot == NULL);
4842 *slot = sig_type;
4843 /* The rest of sig_type must be filled in by the caller. */
4844 return sig_type;
4845 }
4846
4847 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4848 Fill in SIG_ENTRY with DWO_ENTRY. */
4849
4850 static void
4851 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4852 struct signatured_type *sig_entry,
4853 struct dwo_unit *dwo_entry)
4854 {
4855 /* Make sure we're not clobbering something we don't expect to. */
4856 gdb_assert (! sig_entry->per_cu.queued);
4857 gdb_assert (sig_entry->per_cu.cu == NULL);
4858 if (dwarf2_per_objfile->using_index)
4859 {
4860 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4861 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4862 }
4863 else
4864 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4865 gdb_assert (sig_entry->signature == dwo_entry->signature);
4866 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4867 gdb_assert (sig_entry->type_unit_group == NULL);
4868 gdb_assert (sig_entry->dwo_unit == NULL);
4869
4870 sig_entry->per_cu.section = dwo_entry->section;
4871 sig_entry->per_cu.offset = dwo_entry->offset;
4872 sig_entry->per_cu.length = dwo_entry->length;
4873 sig_entry->per_cu.reading_dwo_directly = 1;
4874 sig_entry->per_cu.objfile = objfile;
4875 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4876 sig_entry->dwo_unit = dwo_entry;
4877 }
4878
4879 /* Subroutine of lookup_signatured_type.
4880 If we haven't read the TU yet, create the signatured_type data structure
4881 for a TU to be read in directly from a DWO file, bypassing the stub.
4882 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4883 using .gdb_index, then when reading a CU we want to stay in the DWO file
4884 containing that CU. Otherwise we could end up reading several other DWO
4885 files (due to comdat folding) to process the transitive closure of all the
4886 mentioned TUs, and that can be slow. The current DWO file will have every
4887 type signature that it needs.
4888 We only do this for .gdb_index because in the psymtab case we already have
4889 to read all the DWOs to build the type unit groups. */
4890
4891 static struct signatured_type *
4892 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4893 {
4894 struct objfile *objfile = dwarf2_per_objfile->objfile;
4895 struct dwo_file *dwo_file;
4896 struct dwo_unit find_dwo_entry, *dwo_entry;
4897 struct signatured_type find_sig_entry, *sig_entry;
4898 void **slot;
4899
4900 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4901
4902 /* If TU skeletons have been removed then we may not have read in any
4903 TUs yet. */
4904 if (dwarf2_per_objfile->signatured_types == NULL)
4905 {
4906 dwarf2_per_objfile->signatured_types
4907 = allocate_signatured_type_table (objfile);
4908 }
4909
4910 /* We only ever need to read in one copy of a signatured type.
4911 Use the global signatured_types array to do our own comdat-folding
4912 of types. If this is the first time we're reading this TU, and
4913 the TU has an entry in .gdb_index, replace the recorded data from
4914 .gdb_index with this TU. */
4915
4916 find_sig_entry.signature = sig;
4917 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4918 &find_sig_entry, INSERT);
4919 sig_entry = (struct signatured_type *) *slot;
4920
4921 /* We can get here with the TU already read, *or* in the process of being
4922 read. Don't reassign the global entry to point to this DWO if that's
4923 the case. Also note that if the TU is already being read, it may not
4924 have come from a DWO, the program may be a mix of Fission-compiled
4925 code and non-Fission-compiled code. */
4926
4927 /* Have we already tried to read this TU?
4928 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4929 needn't exist in the global table yet). */
4930 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4931 return sig_entry;
4932
4933 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4934 dwo_unit of the TU itself. */
4935 dwo_file = cu->dwo_unit->dwo_file;
4936
4937 /* Ok, this is the first time we're reading this TU. */
4938 if (dwo_file->tus == NULL)
4939 return NULL;
4940 find_dwo_entry.signature = sig;
4941 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
4942 if (dwo_entry == NULL)
4943 return NULL;
4944
4945 /* If the global table doesn't have an entry for this TU, add one. */
4946 if (sig_entry == NULL)
4947 sig_entry = add_type_unit (sig, slot);
4948
4949 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4950 sig_entry->per_cu.tu_read = 1;
4951 return sig_entry;
4952 }
4953
4954 /* Subroutine of lookup_signatured_type.
4955 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4956 then try the DWP file. If the TU stub (skeleton) has been removed then
4957 it won't be in .gdb_index. */
4958
4959 static struct signatured_type *
4960 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4961 {
4962 struct objfile *objfile = dwarf2_per_objfile->objfile;
4963 struct dwp_file *dwp_file = get_dwp_file ();
4964 struct dwo_unit *dwo_entry;
4965 struct signatured_type find_sig_entry, *sig_entry;
4966 void **slot;
4967
4968 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4969 gdb_assert (dwp_file != NULL);
4970
4971 /* If TU skeletons have been removed then we may not have read in any
4972 TUs yet. */
4973 if (dwarf2_per_objfile->signatured_types == NULL)
4974 {
4975 dwarf2_per_objfile->signatured_types
4976 = allocate_signatured_type_table (objfile);
4977 }
4978
4979 find_sig_entry.signature = sig;
4980 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4981 &find_sig_entry, INSERT);
4982 sig_entry = (struct signatured_type *) *slot;
4983
4984 /* Have we already tried to read this TU?
4985 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4986 needn't exist in the global table yet). */
4987 if (sig_entry != NULL)
4988 return sig_entry;
4989
4990 if (dwp_file->tus == NULL)
4991 return NULL;
4992 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4993 sig, 1 /* is_debug_types */);
4994 if (dwo_entry == NULL)
4995 return NULL;
4996
4997 sig_entry = add_type_unit (sig, slot);
4998 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4999
5000 return sig_entry;
5001 }
5002
5003 /* Lookup a signature based type for DW_FORM_ref_sig8.
5004 Returns NULL if signature SIG is not present in the table.
5005 It is up to the caller to complain about this. */
5006
5007 static struct signatured_type *
5008 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5009 {
5010 if (cu->dwo_unit
5011 && dwarf2_per_objfile->using_index)
5012 {
5013 /* We're in a DWO/DWP file, and we're using .gdb_index.
5014 These cases require special processing. */
5015 if (get_dwp_file () == NULL)
5016 return lookup_dwo_signatured_type (cu, sig);
5017 else
5018 return lookup_dwp_signatured_type (cu, sig);
5019 }
5020 else
5021 {
5022 struct signatured_type find_entry, *entry;
5023
5024 if (dwarf2_per_objfile->signatured_types == NULL)
5025 return NULL;
5026 find_entry.signature = sig;
5027 entry = ((struct signatured_type *)
5028 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5029 return entry;
5030 }
5031 }
5032 \f
5033 /* Low level DIE reading support. */
5034
5035 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5036
5037 static void
5038 init_cu_die_reader (struct die_reader_specs *reader,
5039 struct dwarf2_cu *cu,
5040 struct dwarf2_section_info *section,
5041 struct dwo_file *dwo_file)
5042 {
5043 gdb_assert (section->readin && section->buffer != NULL);
5044 reader->abfd = get_section_bfd_owner (section);
5045 reader->cu = cu;
5046 reader->dwo_file = dwo_file;
5047 reader->die_section = section;
5048 reader->buffer = section->buffer;
5049 reader->buffer_end = section->buffer + section->size;
5050 reader->comp_dir = NULL;
5051 }
5052
5053 /* Subroutine of init_cutu_and_read_dies to simplify it.
5054 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5055 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5056 already.
5057
5058 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5059 from it to the DIE in the DWO. If NULL we are skipping the stub.
5060 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5061 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5062 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5063 STUB_COMP_DIR may be non-NULL.
5064 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5065 are filled in with the info of the DIE from the DWO file.
5066 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5067 provided an abbrev table to use.
5068 The result is non-zero if a valid (non-dummy) DIE was found. */
5069
5070 static int
5071 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5072 struct dwo_unit *dwo_unit,
5073 int abbrev_table_provided,
5074 struct die_info *stub_comp_unit_die,
5075 const char *stub_comp_dir,
5076 struct die_reader_specs *result_reader,
5077 const gdb_byte **result_info_ptr,
5078 struct die_info **result_comp_unit_die,
5079 int *result_has_children)
5080 {
5081 struct objfile *objfile = dwarf2_per_objfile->objfile;
5082 struct dwarf2_cu *cu = this_cu->cu;
5083 struct dwarf2_section_info *section;
5084 bfd *abfd;
5085 const gdb_byte *begin_info_ptr, *info_ptr;
5086 ULONGEST signature; /* Or dwo_id. */
5087 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5088 int i,num_extra_attrs;
5089 struct dwarf2_section_info *dwo_abbrev_section;
5090 struct attribute *attr;
5091 struct die_info *comp_unit_die;
5092
5093 /* At most one of these may be provided. */
5094 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5095
5096 /* These attributes aren't processed until later:
5097 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5098 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5099 referenced later. However, these attributes are found in the stub
5100 which we won't have later. In order to not impose this complication
5101 on the rest of the code, we read them here and copy them to the
5102 DWO CU/TU die. */
5103
5104 stmt_list = NULL;
5105 low_pc = NULL;
5106 high_pc = NULL;
5107 ranges = NULL;
5108 comp_dir = NULL;
5109
5110 if (stub_comp_unit_die != NULL)
5111 {
5112 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5113 DWO file. */
5114 if (! this_cu->is_debug_types)
5115 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5116 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5117 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5118 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5119 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5120
5121 /* There should be a DW_AT_addr_base attribute here (if needed).
5122 We need the value before we can process DW_FORM_GNU_addr_index. */
5123 cu->addr_base = 0;
5124 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5125 if (attr)
5126 cu->addr_base = DW_UNSND (attr);
5127
5128 /* There should be a DW_AT_ranges_base attribute here (if needed).
5129 We need the value before we can process DW_AT_ranges. */
5130 cu->ranges_base = 0;
5131 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5132 if (attr)
5133 cu->ranges_base = DW_UNSND (attr);
5134 }
5135 else if (stub_comp_dir != NULL)
5136 {
5137 /* Reconstruct the comp_dir attribute to simplify the code below. */
5138 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5139 comp_dir->name = DW_AT_comp_dir;
5140 comp_dir->form = DW_FORM_string;
5141 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5142 DW_STRING (comp_dir) = stub_comp_dir;
5143 }
5144
5145 /* Set up for reading the DWO CU/TU. */
5146 cu->dwo_unit = dwo_unit;
5147 section = dwo_unit->section;
5148 dwarf2_read_section (objfile, section);
5149 abfd = get_section_bfd_owner (section);
5150 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5151 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5152 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5153
5154 if (this_cu->is_debug_types)
5155 {
5156 ULONGEST header_signature;
5157 cu_offset type_offset_in_tu;
5158 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5159
5160 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5161 dwo_abbrev_section,
5162 info_ptr,
5163 &header_signature,
5164 &type_offset_in_tu);
5165 /* This is not an assert because it can be caused by bad debug info. */
5166 if (sig_type->signature != header_signature)
5167 {
5168 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5169 " TU at offset 0x%x [in module %s]"),
5170 hex_string (sig_type->signature),
5171 hex_string (header_signature),
5172 dwo_unit->offset.sect_off,
5173 bfd_get_filename (abfd));
5174 }
5175 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5176 /* For DWOs coming from DWP files, we don't know the CU length
5177 nor the type's offset in the TU until now. */
5178 dwo_unit->length = get_cu_length (&cu->header);
5179 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5180
5181 /* Establish the type offset that can be used to lookup the type.
5182 For DWO files, we don't know it until now. */
5183 sig_type->type_offset_in_section.sect_off =
5184 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5185 }
5186 else
5187 {
5188 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5189 dwo_abbrev_section,
5190 info_ptr, 0);
5191 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5192 /* For DWOs coming from DWP files, we don't know the CU length
5193 until now. */
5194 dwo_unit->length = get_cu_length (&cu->header);
5195 }
5196
5197 /* Replace the CU's original abbrev table with the DWO's.
5198 Reminder: We can't read the abbrev table until we've read the header. */
5199 if (abbrev_table_provided)
5200 {
5201 /* Don't free the provided abbrev table, the caller of
5202 init_cutu_and_read_dies owns it. */
5203 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5204 /* Ensure the DWO abbrev table gets freed. */
5205 make_cleanup (dwarf2_free_abbrev_table, cu);
5206 }
5207 else
5208 {
5209 dwarf2_free_abbrev_table (cu);
5210 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5211 /* Leave any existing abbrev table cleanup as is. */
5212 }
5213
5214 /* Read in the die, but leave space to copy over the attributes
5215 from the stub. This has the benefit of simplifying the rest of
5216 the code - all the work to maintain the illusion of a single
5217 DW_TAG_{compile,type}_unit DIE is done here. */
5218 num_extra_attrs = ((stmt_list != NULL)
5219 + (low_pc != NULL)
5220 + (high_pc != NULL)
5221 + (ranges != NULL)
5222 + (comp_dir != NULL));
5223 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5224 result_has_children, num_extra_attrs);
5225
5226 /* Copy over the attributes from the stub to the DIE we just read in. */
5227 comp_unit_die = *result_comp_unit_die;
5228 i = comp_unit_die->num_attrs;
5229 if (stmt_list != NULL)
5230 comp_unit_die->attrs[i++] = *stmt_list;
5231 if (low_pc != NULL)
5232 comp_unit_die->attrs[i++] = *low_pc;
5233 if (high_pc != NULL)
5234 comp_unit_die->attrs[i++] = *high_pc;
5235 if (ranges != NULL)
5236 comp_unit_die->attrs[i++] = *ranges;
5237 if (comp_dir != NULL)
5238 comp_unit_die->attrs[i++] = *comp_dir;
5239 comp_unit_die->num_attrs += num_extra_attrs;
5240
5241 if (dwarf_die_debug)
5242 {
5243 fprintf_unfiltered (gdb_stdlog,
5244 "Read die from %s@0x%x of %s:\n",
5245 get_section_name (section),
5246 (unsigned) (begin_info_ptr - section->buffer),
5247 bfd_get_filename (abfd));
5248 dump_die (comp_unit_die, dwarf_die_debug);
5249 }
5250
5251 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5252 TUs by skipping the stub and going directly to the entry in the DWO file.
5253 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5254 to get it via circuitous means. Blech. */
5255 if (comp_dir != NULL)
5256 result_reader->comp_dir = DW_STRING (comp_dir);
5257
5258 /* Skip dummy compilation units. */
5259 if (info_ptr >= begin_info_ptr + dwo_unit->length
5260 || peek_abbrev_code (abfd, info_ptr) == 0)
5261 return 0;
5262
5263 *result_info_ptr = info_ptr;
5264 return 1;
5265 }
5266
5267 /* Subroutine of init_cutu_and_read_dies to simplify it.
5268 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5269 Returns NULL if the specified DWO unit cannot be found. */
5270
5271 static struct dwo_unit *
5272 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5273 struct die_info *comp_unit_die)
5274 {
5275 struct dwarf2_cu *cu = this_cu->cu;
5276 struct attribute *attr;
5277 ULONGEST signature;
5278 struct dwo_unit *dwo_unit;
5279 const char *comp_dir, *dwo_name;
5280
5281 gdb_assert (cu != NULL);
5282
5283 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5284 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5285 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5286
5287 if (this_cu->is_debug_types)
5288 {
5289 struct signatured_type *sig_type;
5290
5291 /* Since this_cu is the first member of struct signatured_type,
5292 we can go from a pointer to one to a pointer to the other. */
5293 sig_type = (struct signatured_type *) this_cu;
5294 signature = sig_type->signature;
5295 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5296 }
5297 else
5298 {
5299 struct attribute *attr;
5300
5301 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5302 if (! attr)
5303 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5304 " [in module %s]"),
5305 dwo_name, objfile_name (this_cu->objfile));
5306 signature = DW_UNSND (attr);
5307 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5308 signature);
5309 }
5310
5311 return dwo_unit;
5312 }
5313
5314 /* Subroutine of init_cutu_and_read_dies to simplify it.
5315 See it for a description of the parameters.
5316 Read a TU directly from a DWO file, bypassing the stub.
5317
5318 Note: This function could be a little bit simpler if we shared cleanups
5319 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5320 to do, so we keep this function self-contained. Or we could move this
5321 into our caller, but it's complex enough already. */
5322
5323 static void
5324 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5325 int use_existing_cu, int keep,
5326 die_reader_func_ftype *die_reader_func,
5327 void *data)
5328 {
5329 struct dwarf2_cu *cu;
5330 struct signatured_type *sig_type;
5331 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5332 struct die_reader_specs reader;
5333 const gdb_byte *info_ptr;
5334 struct die_info *comp_unit_die;
5335 int has_children;
5336
5337 /* Verify we can do the following downcast, and that we have the
5338 data we need. */
5339 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5340 sig_type = (struct signatured_type *) this_cu;
5341 gdb_assert (sig_type->dwo_unit != NULL);
5342
5343 cleanups = make_cleanup (null_cleanup, NULL);
5344
5345 if (use_existing_cu && this_cu->cu != NULL)
5346 {
5347 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5348 cu = this_cu->cu;
5349 /* There's no need to do the rereading_dwo_cu handling that
5350 init_cutu_and_read_dies does since we don't read the stub. */
5351 }
5352 else
5353 {
5354 /* If !use_existing_cu, this_cu->cu must be NULL. */
5355 gdb_assert (this_cu->cu == NULL);
5356 cu = XNEW (struct dwarf2_cu);
5357 init_one_comp_unit (cu, this_cu);
5358 /* If an error occurs while loading, release our storage. */
5359 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5360 }
5361
5362 /* A future optimization, if needed, would be to use an existing
5363 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5364 could share abbrev tables. */
5365
5366 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5367 0 /* abbrev_table_provided */,
5368 NULL /* stub_comp_unit_die */,
5369 sig_type->dwo_unit->dwo_file->comp_dir,
5370 &reader, &info_ptr,
5371 &comp_unit_die, &has_children) == 0)
5372 {
5373 /* Dummy die. */
5374 do_cleanups (cleanups);
5375 return;
5376 }
5377
5378 /* All the "real" work is done here. */
5379 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5380
5381 /* This duplicates the code in init_cutu_and_read_dies,
5382 but the alternative is making the latter more complex.
5383 This function is only for the special case of using DWO files directly:
5384 no point in overly complicating the general case just to handle this. */
5385 if (free_cu_cleanup != NULL)
5386 {
5387 if (keep)
5388 {
5389 /* We've successfully allocated this compilation unit. Let our
5390 caller clean it up when finished with it. */
5391 discard_cleanups (free_cu_cleanup);
5392
5393 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5394 So we have to manually free the abbrev table. */
5395 dwarf2_free_abbrev_table (cu);
5396
5397 /* Link this CU into read_in_chain. */
5398 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5399 dwarf2_per_objfile->read_in_chain = this_cu;
5400 }
5401 else
5402 do_cleanups (free_cu_cleanup);
5403 }
5404
5405 do_cleanups (cleanups);
5406 }
5407
5408 /* Initialize a CU (or TU) and read its DIEs.
5409 If the CU defers to a DWO file, read the DWO file as well.
5410
5411 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5412 Otherwise the table specified in the comp unit header is read in and used.
5413 This is an optimization for when we already have the abbrev table.
5414
5415 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5416 Otherwise, a new CU is allocated with xmalloc.
5417
5418 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5419 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5420
5421 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5422 linker) then DIE_READER_FUNC will not get called. */
5423
5424 static void
5425 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5426 struct abbrev_table *abbrev_table,
5427 int use_existing_cu, int keep,
5428 die_reader_func_ftype *die_reader_func,
5429 void *data)
5430 {
5431 struct objfile *objfile = dwarf2_per_objfile->objfile;
5432 struct dwarf2_section_info *section = this_cu->section;
5433 bfd *abfd = get_section_bfd_owner (section);
5434 struct dwarf2_cu *cu;
5435 const gdb_byte *begin_info_ptr, *info_ptr;
5436 struct die_reader_specs reader;
5437 struct die_info *comp_unit_die;
5438 int has_children;
5439 struct attribute *attr;
5440 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5441 struct signatured_type *sig_type = NULL;
5442 struct dwarf2_section_info *abbrev_section;
5443 /* Non-zero if CU currently points to a DWO file and we need to
5444 reread it. When this happens we need to reread the skeleton die
5445 before we can reread the DWO file (this only applies to CUs, not TUs). */
5446 int rereading_dwo_cu = 0;
5447
5448 if (dwarf_die_debug)
5449 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5450 this_cu->is_debug_types ? "type" : "comp",
5451 this_cu->offset.sect_off);
5452
5453 if (use_existing_cu)
5454 gdb_assert (keep);
5455
5456 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5457 file (instead of going through the stub), short-circuit all of this. */
5458 if (this_cu->reading_dwo_directly)
5459 {
5460 /* Narrow down the scope of possibilities to have to understand. */
5461 gdb_assert (this_cu->is_debug_types);
5462 gdb_assert (abbrev_table == NULL);
5463 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5464 die_reader_func, data);
5465 return;
5466 }
5467
5468 cleanups = make_cleanup (null_cleanup, NULL);
5469
5470 /* This is cheap if the section is already read in. */
5471 dwarf2_read_section (objfile, section);
5472
5473 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5474
5475 abbrev_section = get_abbrev_section_for_cu (this_cu);
5476
5477 if (use_existing_cu && this_cu->cu != NULL)
5478 {
5479 cu = this_cu->cu;
5480 /* If this CU is from a DWO file we need to start over, we need to
5481 refetch the attributes from the skeleton CU.
5482 This could be optimized by retrieving those attributes from when we
5483 were here the first time: the previous comp_unit_die was stored in
5484 comp_unit_obstack. But there's no data yet that we need this
5485 optimization. */
5486 if (cu->dwo_unit != NULL)
5487 rereading_dwo_cu = 1;
5488 }
5489 else
5490 {
5491 /* If !use_existing_cu, this_cu->cu must be NULL. */
5492 gdb_assert (this_cu->cu == NULL);
5493 cu = XNEW (struct dwarf2_cu);
5494 init_one_comp_unit (cu, this_cu);
5495 /* If an error occurs while loading, release our storage. */
5496 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5497 }
5498
5499 /* Get the header. */
5500 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5501 {
5502 /* We already have the header, there's no need to read it in again. */
5503 info_ptr += cu->header.first_die_offset.cu_off;
5504 }
5505 else
5506 {
5507 if (this_cu->is_debug_types)
5508 {
5509 ULONGEST signature;
5510 cu_offset type_offset_in_tu;
5511
5512 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5513 abbrev_section, info_ptr,
5514 &signature,
5515 &type_offset_in_tu);
5516
5517 /* Since per_cu is the first member of struct signatured_type,
5518 we can go from a pointer to one to a pointer to the other. */
5519 sig_type = (struct signatured_type *) this_cu;
5520 gdb_assert (sig_type->signature == signature);
5521 gdb_assert (sig_type->type_offset_in_tu.cu_off
5522 == type_offset_in_tu.cu_off);
5523 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5524
5525 /* LENGTH has not been set yet for type units if we're
5526 using .gdb_index. */
5527 this_cu->length = get_cu_length (&cu->header);
5528
5529 /* Establish the type offset that can be used to lookup the type. */
5530 sig_type->type_offset_in_section.sect_off =
5531 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5532 }
5533 else
5534 {
5535 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5536 abbrev_section,
5537 info_ptr, 0);
5538
5539 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5540 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5541 }
5542 }
5543
5544 /* Skip dummy compilation units. */
5545 if (info_ptr >= begin_info_ptr + this_cu->length
5546 || peek_abbrev_code (abfd, info_ptr) == 0)
5547 {
5548 do_cleanups (cleanups);
5549 return;
5550 }
5551
5552 /* If we don't have them yet, read the abbrevs for this compilation unit.
5553 And if we need to read them now, make sure they're freed when we're
5554 done. Note that it's important that if the CU had an abbrev table
5555 on entry we don't free it when we're done: Somewhere up the call stack
5556 it may be in use. */
5557 if (abbrev_table != NULL)
5558 {
5559 gdb_assert (cu->abbrev_table == NULL);
5560 gdb_assert (cu->header.abbrev_offset.sect_off
5561 == abbrev_table->offset.sect_off);
5562 cu->abbrev_table = abbrev_table;
5563 }
5564 else if (cu->abbrev_table == NULL)
5565 {
5566 dwarf2_read_abbrevs (cu, abbrev_section);
5567 make_cleanup (dwarf2_free_abbrev_table, cu);
5568 }
5569 else if (rereading_dwo_cu)
5570 {
5571 dwarf2_free_abbrev_table (cu);
5572 dwarf2_read_abbrevs (cu, abbrev_section);
5573 }
5574
5575 /* Read the top level CU/TU die. */
5576 init_cu_die_reader (&reader, cu, section, NULL);
5577 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5578
5579 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5580 from the DWO file.
5581 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5582 DWO CU, that this test will fail (the attribute will not be present). */
5583 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5584 if (attr)
5585 {
5586 struct dwo_unit *dwo_unit;
5587 struct die_info *dwo_comp_unit_die;
5588
5589 if (has_children)
5590 {
5591 complaint (&symfile_complaints,
5592 _("compilation unit with DW_AT_GNU_dwo_name"
5593 " has children (offset 0x%x) [in module %s]"),
5594 this_cu->offset.sect_off, bfd_get_filename (abfd));
5595 }
5596 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5597 if (dwo_unit != NULL)
5598 {
5599 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5600 abbrev_table != NULL,
5601 comp_unit_die, NULL,
5602 &reader, &info_ptr,
5603 &dwo_comp_unit_die, &has_children) == 0)
5604 {
5605 /* Dummy die. */
5606 do_cleanups (cleanups);
5607 return;
5608 }
5609 comp_unit_die = dwo_comp_unit_die;
5610 }
5611 else
5612 {
5613 /* Yikes, we couldn't find the rest of the DIE, we only have
5614 the stub. A complaint has already been logged. There's
5615 not much more we can do except pass on the stub DIE to
5616 die_reader_func. We don't want to throw an error on bad
5617 debug info. */
5618 }
5619 }
5620
5621 /* All of the above is setup for this call. Yikes. */
5622 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5623
5624 /* Done, clean up. */
5625 if (free_cu_cleanup != NULL)
5626 {
5627 if (keep)
5628 {
5629 /* We've successfully allocated this compilation unit. Let our
5630 caller clean it up when finished with it. */
5631 discard_cleanups (free_cu_cleanup);
5632
5633 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5634 So we have to manually free the abbrev table. */
5635 dwarf2_free_abbrev_table (cu);
5636
5637 /* Link this CU into read_in_chain. */
5638 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5639 dwarf2_per_objfile->read_in_chain = this_cu;
5640 }
5641 else
5642 do_cleanups (free_cu_cleanup);
5643 }
5644
5645 do_cleanups (cleanups);
5646 }
5647
5648 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5649 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5650 to have already done the lookup to find the DWO file).
5651
5652 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5653 THIS_CU->is_debug_types, but nothing else.
5654
5655 We fill in THIS_CU->length.
5656
5657 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5658 linker) then DIE_READER_FUNC will not get called.
5659
5660 THIS_CU->cu is always freed when done.
5661 This is done in order to not leave THIS_CU->cu in a state where we have
5662 to care whether it refers to the "main" CU or the DWO CU. */
5663
5664 static void
5665 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5666 struct dwo_file *dwo_file,
5667 die_reader_func_ftype *die_reader_func,
5668 void *data)
5669 {
5670 struct objfile *objfile = dwarf2_per_objfile->objfile;
5671 struct dwarf2_section_info *section = this_cu->section;
5672 bfd *abfd = get_section_bfd_owner (section);
5673 struct dwarf2_section_info *abbrev_section;
5674 struct dwarf2_cu cu;
5675 const gdb_byte *begin_info_ptr, *info_ptr;
5676 struct die_reader_specs reader;
5677 struct cleanup *cleanups;
5678 struct die_info *comp_unit_die;
5679 int has_children;
5680
5681 if (dwarf_die_debug)
5682 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5683 this_cu->is_debug_types ? "type" : "comp",
5684 this_cu->offset.sect_off);
5685
5686 gdb_assert (this_cu->cu == NULL);
5687
5688 abbrev_section = (dwo_file != NULL
5689 ? &dwo_file->sections.abbrev
5690 : get_abbrev_section_for_cu (this_cu));
5691
5692 /* This is cheap if the section is already read in. */
5693 dwarf2_read_section (objfile, section);
5694
5695 init_one_comp_unit (&cu, this_cu);
5696
5697 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5698
5699 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5700 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5701 abbrev_section, info_ptr,
5702 this_cu->is_debug_types);
5703
5704 this_cu->length = get_cu_length (&cu.header);
5705
5706 /* Skip dummy compilation units. */
5707 if (info_ptr >= begin_info_ptr + this_cu->length
5708 || peek_abbrev_code (abfd, info_ptr) == 0)
5709 {
5710 do_cleanups (cleanups);
5711 return;
5712 }
5713
5714 dwarf2_read_abbrevs (&cu, abbrev_section);
5715 make_cleanup (dwarf2_free_abbrev_table, &cu);
5716
5717 init_cu_die_reader (&reader, &cu, section, dwo_file);
5718 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5719
5720 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5721
5722 do_cleanups (cleanups);
5723 }
5724
5725 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5726 does not lookup the specified DWO file.
5727 This cannot be used to read DWO files.
5728
5729 THIS_CU->cu is always freed when done.
5730 This is done in order to not leave THIS_CU->cu in a state where we have
5731 to care whether it refers to the "main" CU or the DWO CU.
5732 We can revisit this if the data shows there's a performance issue. */
5733
5734 static void
5735 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5736 die_reader_func_ftype *die_reader_func,
5737 void *data)
5738 {
5739 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5740 }
5741 \f
5742 /* Type Unit Groups.
5743
5744 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5745 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5746 so that all types coming from the same compilation (.o file) are grouped
5747 together. A future step could be to put the types in the same symtab as
5748 the CU the types ultimately came from. */
5749
5750 static hashval_t
5751 hash_type_unit_group (const void *item)
5752 {
5753 const struct type_unit_group *tu_group
5754 = (const struct type_unit_group *) item;
5755
5756 return hash_stmt_list_entry (&tu_group->hash);
5757 }
5758
5759 static int
5760 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5761 {
5762 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5763 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5764
5765 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5766 }
5767
5768 /* Allocate a hash table for type unit groups. */
5769
5770 static htab_t
5771 allocate_type_unit_groups_table (void)
5772 {
5773 return htab_create_alloc_ex (3,
5774 hash_type_unit_group,
5775 eq_type_unit_group,
5776 NULL,
5777 &dwarf2_per_objfile->objfile->objfile_obstack,
5778 hashtab_obstack_allocate,
5779 dummy_obstack_deallocate);
5780 }
5781
5782 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5783 partial symtabs. We combine several TUs per psymtab to not let the size
5784 of any one psymtab grow too big. */
5785 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5786 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5787
5788 /* Helper routine for get_type_unit_group.
5789 Create the type_unit_group object used to hold one or more TUs. */
5790
5791 static struct type_unit_group *
5792 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5793 {
5794 struct objfile *objfile = dwarf2_per_objfile->objfile;
5795 struct dwarf2_per_cu_data *per_cu;
5796 struct type_unit_group *tu_group;
5797
5798 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5799 struct type_unit_group);
5800 per_cu = &tu_group->per_cu;
5801 per_cu->objfile = objfile;
5802
5803 if (dwarf2_per_objfile->using_index)
5804 {
5805 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5806 struct dwarf2_per_cu_quick_data);
5807 }
5808 else
5809 {
5810 unsigned int line_offset = line_offset_struct.sect_off;
5811 struct partial_symtab *pst;
5812 char *name;
5813
5814 /* Give the symtab a useful name for debug purposes. */
5815 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5816 name = xstrprintf ("<type_units_%d>",
5817 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5818 else
5819 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5820
5821 pst = create_partial_symtab (per_cu, name);
5822 pst->anonymous = 1;
5823
5824 xfree (name);
5825 }
5826
5827 tu_group->hash.dwo_unit = cu->dwo_unit;
5828 tu_group->hash.line_offset = line_offset_struct;
5829
5830 return tu_group;
5831 }
5832
5833 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5834 STMT_LIST is a DW_AT_stmt_list attribute. */
5835
5836 static struct type_unit_group *
5837 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5838 {
5839 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5840 struct type_unit_group *tu_group;
5841 void **slot;
5842 unsigned int line_offset;
5843 struct type_unit_group type_unit_group_for_lookup;
5844
5845 if (dwarf2_per_objfile->type_unit_groups == NULL)
5846 {
5847 dwarf2_per_objfile->type_unit_groups =
5848 allocate_type_unit_groups_table ();
5849 }
5850
5851 /* Do we need to create a new group, or can we use an existing one? */
5852
5853 if (stmt_list)
5854 {
5855 line_offset = DW_UNSND (stmt_list);
5856 ++tu_stats->nr_symtab_sharers;
5857 }
5858 else
5859 {
5860 /* Ugh, no stmt_list. Rare, but we have to handle it.
5861 We can do various things here like create one group per TU or
5862 spread them over multiple groups to split up the expansion work.
5863 To avoid worst case scenarios (too many groups or too large groups)
5864 we, umm, group them in bunches. */
5865 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5866 | (tu_stats->nr_stmt_less_type_units
5867 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5868 ++tu_stats->nr_stmt_less_type_units;
5869 }
5870
5871 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5872 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5873 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5874 &type_unit_group_for_lookup, INSERT);
5875 if (*slot != NULL)
5876 {
5877 tu_group = (struct type_unit_group *) *slot;
5878 gdb_assert (tu_group != NULL);
5879 }
5880 else
5881 {
5882 sect_offset line_offset_struct;
5883
5884 line_offset_struct.sect_off = line_offset;
5885 tu_group = create_type_unit_group (cu, line_offset_struct);
5886 *slot = tu_group;
5887 ++tu_stats->nr_symtabs;
5888 }
5889
5890 return tu_group;
5891 }
5892 \f
5893 /* Partial symbol tables. */
5894
5895 /* Create a psymtab named NAME and assign it to PER_CU.
5896
5897 The caller must fill in the following details:
5898 dirname, textlow, texthigh. */
5899
5900 static struct partial_symtab *
5901 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5902 {
5903 struct objfile *objfile = per_cu->objfile;
5904 struct partial_symtab *pst;
5905
5906 pst = start_psymtab_common (objfile, name, 0,
5907 objfile->global_psymbols.next,
5908 objfile->static_psymbols.next);
5909
5910 pst->psymtabs_addrmap_supported = 1;
5911
5912 /* This is the glue that links PST into GDB's symbol API. */
5913 pst->read_symtab_private = per_cu;
5914 pst->read_symtab = dwarf2_read_symtab;
5915 per_cu->v.psymtab = pst;
5916
5917 return pst;
5918 }
5919
5920 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5921 type. */
5922
5923 struct process_psymtab_comp_unit_data
5924 {
5925 /* True if we are reading a DW_TAG_partial_unit. */
5926
5927 int want_partial_unit;
5928
5929 /* The "pretend" language that is used if the CU doesn't declare a
5930 language. */
5931
5932 enum language pretend_language;
5933 };
5934
5935 /* die_reader_func for process_psymtab_comp_unit. */
5936
5937 static void
5938 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5939 const gdb_byte *info_ptr,
5940 struct die_info *comp_unit_die,
5941 int has_children,
5942 void *data)
5943 {
5944 struct dwarf2_cu *cu = reader->cu;
5945 struct objfile *objfile = cu->objfile;
5946 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5947 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5948 CORE_ADDR baseaddr;
5949 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5950 struct partial_symtab *pst;
5951 int has_pc_info;
5952 const char *filename;
5953 struct process_psymtab_comp_unit_data *info
5954 = (struct process_psymtab_comp_unit_data *) data;
5955
5956 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5957 return;
5958
5959 gdb_assert (! per_cu->is_debug_types);
5960
5961 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5962
5963 cu->list_in_scope = &file_symbols;
5964
5965 /* Allocate a new partial symbol table structure. */
5966 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5967 if (filename == NULL)
5968 filename = "";
5969
5970 pst = create_partial_symtab (per_cu, filename);
5971
5972 /* This must be done before calling dwarf2_build_include_psymtabs. */
5973 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5974
5975 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5976
5977 dwarf2_find_base_address (comp_unit_die, cu);
5978
5979 /* Possibly set the default values of LOWPC and HIGHPC from
5980 `DW_AT_ranges'. */
5981 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5982 &best_highpc, cu, pst);
5983 if (has_pc_info == 1 && best_lowpc < best_highpc)
5984 /* Store the contiguous range if it is not empty; it can be empty for
5985 CUs with no code. */
5986 addrmap_set_empty (objfile->psymtabs_addrmap,
5987 gdbarch_adjust_dwarf2_addr (gdbarch,
5988 best_lowpc + baseaddr),
5989 gdbarch_adjust_dwarf2_addr (gdbarch,
5990 best_highpc + baseaddr) - 1,
5991 pst);
5992
5993 /* Check if comp unit has_children.
5994 If so, read the rest of the partial symbols from this comp unit.
5995 If not, there's no more debug_info for this comp unit. */
5996 if (has_children)
5997 {
5998 struct partial_die_info *first_die;
5999 CORE_ADDR lowpc, highpc;
6000
6001 lowpc = ((CORE_ADDR) -1);
6002 highpc = ((CORE_ADDR) 0);
6003
6004 first_die = load_partial_dies (reader, info_ptr, 1);
6005
6006 scan_partial_symbols (first_die, &lowpc, &highpc,
6007 ! has_pc_info, cu);
6008
6009 /* If we didn't find a lowpc, set it to highpc to avoid
6010 complaints from `maint check'. */
6011 if (lowpc == ((CORE_ADDR) -1))
6012 lowpc = highpc;
6013
6014 /* If the compilation unit didn't have an explicit address range,
6015 then use the information extracted from its child dies. */
6016 if (! has_pc_info)
6017 {
6018 best_lowpc = lowpc;
6019 best_highpc = highpc;
6020 }
6021 }
6022 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6023 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6024
6025 end_psymtab_common (objfile, pst);
6026
6027 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6028 {
6029 int i;
6030 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6031 struct dwarf2_per_cu_data *iter;
6032
6033 /* Fill in 'dependencies' here; we fill in 'users' in a
6034 post-pass. */
6035 pst->number_of_dependencies = len;
6036 pst->dependencies =
6037 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6038 for (i = 0;
6039 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6040 i, iter);
6041 ++i)
6042 pst->dependencies[i] = iter->v.psymtab;
6043
6044 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6045 }
6046
6047 /* Get the list of files included in the current compilation unit,
6048 and build a psymtab for each of them. */
6049 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6050
6051 if (dwarf_read_debug)
6052 {
6053 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6054
6055 fprintf_unfiltered (gdb_stdlog,
6056 "Psymtab for %s unit @0x%x: %s - %s"
6057 ", %d global, %d static syms\n",
6058 per_cu->is_debug_types ? "type" : "comp",
6059 per_cu->offset.sect_off,
6060 paddress (gdbarch, pst->textlow),
6061 paddress (gdbarch, pst->texthigh),
6062 pst->n_global_syms, pst->n_static_syms);
6063 }
6064 }
6065
6066 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6067 Process compilation unit THIS_CU for a psymtab. */
6068
6069 static void
6070 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6071 int want_partial_unit,
6072 enum language pretend_language)
6073 {
6074 struct process_psymtab_comp_unit_data info;
6075
6076 /* If this compilation unit was already read in, free the
6077 cached copy in order to read it in again. This is
6078 necessary because we skipped some symbols when we first
6079 read in the compilation unit (see load_partial_dies).
6080 This problem could be avoided, but the benefit is unclear. */
6081 if (this_cu->cu != NULL)
6082 free_one_cached_comp_unit (this_cu);
6083
6084 gdb_assert (! this_cu->is_debug_types);
6085 info.want_partial_unit = want_partial_unit;
6086 info.pretend_language = pretend_language;
6087 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6088 process_psymtab_comp_unit_reader,
6089 &info);
6090
6091 /* Age out any secondary CUs. */
6092 age_cached_comp_units ();
6093 }
6094
6095 /* Reader function for build_type_psymtabs. */
6096
6097 static void
6098 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6099 const gdb_byte *info_ptr,
6100 struct die_info *type_unit_die,
6101 int has_children,
6102 void *data)
6103 {
6104 struct objfile *objfile = dwarf2_per_objfile->objfile;
6105 struct dwarf2_cu *cu = reader->cu;
6106 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6107 struct signatured_type *sig_type;
6108 struct type_unit_group *tu_group;
6109 struct attribute *attr;
6110 struct partial_die_info *first_die;
6111 CORE_ADDR lowpc, highpc;
6112 struct partial_symtab *pst;
6113
6114 gdb_assert (data == NULL);
6115 gdb_assert (per_cu->is_debug_types);
6116 sig_type = (struct signatured_type *) per_cu;
6117
6118 if (! has_children)
6119 return;
6120
6121 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6122 tu_group = get_type_unit_group (cu, attr);
6123
6124 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6125
6126 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6127 cu->list_in_scope = &file_symbols;
6128 pst = create_partial_symtab (per_cu, "");
6129 pst->anonymous = 1;
6130
6131 first_die = load_partial_dies (reader, info_ptr, 1);
6132
6133 lowpc = (CORE_ADDR) -1;
6134 highpc = (CORE_ADDR) 0;
6135 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6136
6137 end_psymtab_common (objfile, pst);
6138 }
6139
6140 /* Struct used to sort TUs by their abbreviation table offset. */
6141
6142 struct tu_abbrev_offset
6143 {
6144 struct signatured_type *sig_type;
6145 sect_offset abbrev_offset;
6146 };
6147
6148 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6149
6150 static int
6151 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6152 {
6153 const struct tu_abbrev_offset * const *a
6154 = (const struct tu_abbrev_offset * const*) ap;
6155 const struct tu_abbrev_offset * const *b
6156 = (const struct tu_abbrev_offset * const*) bp;
6157 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6158 unsigned int boff = (*b)->abbrev_offset.sect_off;
6159
6160 return (aoff > boff) - (aoff < boff);
6161 }
6162
6163 /* Efficiently read all the type units.
6164 This does the bulk of the work for build_type_psymtabs.
6165
6166 The efficiency is because we sort TUs by the abbrev table they use and
6167 only read each abbrev table once. In one program there are 200K TUs
6168 sharing 8K abbrev tables.
6169
6170 The main purpose of this function is to support building the
6171 dwarf2_per_objfile->type_unit_groups table.
6172 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6173 can collapse the search space by grouping them by stmt_list.
6174 The savings can be significant, in the same program from above the 200K TUs
6175 share 8K stmt_list tables.
6176
6177 FUNC is expected to call get_type_unit_group, which will create the
6178 struct type_unit_group if necessary and add it to
6179 dwarf2_per_objfile->type_unit_groups. */
6180
6181 static void
6182 build_type_psymtabs_1 (void)
6183 {
6184 struct objfile *objfile = dwarf2_per_objfile->objfile;
6185 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6186 struct cleanup *cleanups;
6187 struct abbrev_table *abbrev_table;
6188 sect_offset abbrev_offset;
6189 struct tu_abbrev_offset *sorted_by_abbrev;
6190 struct type_unit_group **iter;
6191 int i;
6192
6193 /* It's up to the caller to not call us multiple times. */
6194 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6195
6196 if (dwarf2_per_objfile->n_type_units == 0)
6197 return;
6198
6199 /* TUs typically share abbrev tables, and there can be way more TUs than
6200 abbrev tables. Sort by abbrev table to reduce the number of times we
6201 read each abbrev table in.
6202 Alternatives are to punt or to maintain a cache of abbrev tables.
6203 This is simpler and efficient enough for now.
6204
6205 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6206 symtab to use). Typically TUs with the same abbrev offset have the same
6207 stmt_list value too so in practice this should work well.
6208
6209 The basic algorithm here is:
6210
6211 sort TUs by abbrev table
6212 for each TU with same abbrev table:
6213 read abbrev table if first user
6214 read TU top level DIE
6215 [IWBN if DWO skeletons had DW_AT_stmt_list]
6216 call FUNC */
6217
6218 if (dwarf_read_debug)
6219 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6220
6221 /* Sort in a separate table to maintain the order of all_type_units
6222 for .gdb_index: TU indices directly index all_type_units. */
6223 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6224 dwarf2_per_objfile->n_type_units);
6225 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6226 {
6227 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6228
6229 sorted_by_abbrev[i].sig_type = sig_type;
6230 sorted_by_abbrev[i].abbrev_offset =
6231 read_abbrev_offset (sig_type->per_cu.section,
6232 sig_type->per_cu.offset);
6233 }
6234 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6235 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6236 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6237
6238 abbrev_offset.sect_off = ~(unsigned) 0;
6239 abbrev_table = NULL;
6240 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6241
6242 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6243 {
6244 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6245
6246 /* Switch to the next abbrev table if necessary. */
6247 if (abbrev_table == NULL
6248 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6249 {
6250 if (abbrev_table != NULL)
6251 {
6252 abbrev_table_free (abbrev_table);
6253 /* Reset to NULL in case abbrev_table_read_table throws
6254 an error: abbrev_table_free_cleanup will get called. */
6255 abbrev_table = NULL;
6256 }
6257 abbrev_offset = tu->abbrev_offset;
6258 abbrev_table =
6259 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6260 abbrev_offset);
6261 ++tu_stats->nr_uniq_abbrev_tables;
6262 }
6263
6264 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6265 build_type_psymtabs_reader, NULL);
6266 }
6267
6268 do_cleanups (cleanups);
6269 }
6270
6271 /* Print collected type unit statistics. */
6272
6273 static void
6274 print_tu_stats (void)
6275 {
6276 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6277
6278 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6279 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6280 dwarf2_per_objfile->n_type_units);
6281 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6282 tu_stats->nr_uniq_abbrev_tables);
6283 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6284 tu_stats->nr_symtabs);
6285 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6286 tu_stats->nr_symtab_sharers);
6287 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6288 tu_stats->nr_stmt_less_type_units);
6289 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6290 tu_stats->nr_all_type_units_reallocs);
6291 }
6292
6293 /* Traversal function for build_type_psymtabs. */
6294
6295 static int
6296 build_type_psymtab_dependencies (void **slot, void *info)
6297 {
6298 struct objfile *objfile = dwarf2_per_objfile->objfile;
6299 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6300 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6301 struct partial_symtab *pst = per_cu->v.psymtab;
6302 int len = VEC_length (sig_type_ptr, tu_group->tus);
6303 struct signatured_type *iter;
6304 int i;
6305
6306 gdb_assert (len > 0);
6307 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6308
6309 pst->number_of_dependencies = len;
6310 pst->dependencies =
6311 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6312 for (i = 0;
6313 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6314 ++i)
6315 {
6316 gdb_assert (iter->per_cu.is_debug_types);
6317 pst->dependencies[i] = iter->per_cu.v.psymtab;
6318 iter->type_unit_group = tu_group;
6319 }
6320
6321 VEC_free (sig_type_ptr, tu_group->tus);
6322
6323 return 1;
6324 }
6325
6326 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6327 Build partial symbol tables for the .debug_types comp-units. */
6328
6329 static void
6330 build_type_psymtabs (struct objfile *objfile)
6331 {
6332 if (! create_all_type_units (objfile))
6333 return;
6334
6335 build_type_psymtabs_1 ();
6336 }
6337
6338 /* Traversal function for process_skeletonless_type_unit.
6339 Read a TU in a DWO file and build partial symbols for it. */
6340
6341 static int
6342 process_skeletonless_type_unit (void **slot, void *info)
6343 {
6344 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6345 struct objfile *objfile = (struct objfile *) info;
6346 struct signatured_type find_entry, *entry;
6347
6348 /* If this TU doesn't exist in the global table, add it and read it in. */
6349
6350 if (dwarf2_per_objfile->signatured_types == NULL)
6351 {
6352 dwarf2_per_objfile->signatured_types
6353 = allocate_signatured_type_table (objfile);
6354 }
6355
6356 find_entry.signature = dwo_unit->signature;
6357 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6358 INSERT);
6359 /* If we've already seen this type there's nothing to do. What's happening
6360 is we're doing our own version of comdat-folding here. */
6361 if (*slot != NULL)
6362 return 1;
6363
6364 /* This does the job that create_all_type_units would have done for
6365 this TU. */
6366 entry = add_type_unit (dwo_unit->signature, slot);
6367 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6368 *slot = entry;
6369
6370 /* This does the job that build_type_psymtabs_1 would have done. */
6371 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6372 build_type_psymtabs_reader, NULL);
6373
6374 return 1;
6375 }
6376
6377 /* Traversal function for process_skeletonless_type_units. */
6378
6379 static int
6380 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6381 {
6382 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6383
6384 if (dwo_file->tus != NULL)
6385 {
6386 htab_traverse_noresize (dwo_file->tus,
6387 process_skeletonless_type_unit, info);
6388 }
6389
6390 return 1;
6391 }
6392
6393 /* Scan all TUs of DWO files, verifying we've processed them.
6394 This is needed in case a TU was emitted without its skeleton.
6395 Note: This can't be done until we know what all the DWO files are. */
6396
6397 static void
6398 process_skeletonless_type_units (struct objfile *objfile)
6399 {
6400 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6401 if (get_dwp_file () == NULL
6402 && dwarf2_per_objfile->dwo_files != NULL)
6403 {
6404 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6405 process_dwo_file_for_skeletonless_type_units,
6406 objfile);
6407 }
6408 }
6409
6410 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6411
6412 static void
6413 psymtabs_addrmap_cleanup (void *o)
6414 {
6415 struct objfile *objfile = (struct objfile *) o;
6416
6417 objfile->psymtabs_addrmap = NULL;
6418 }
6419
6420 /* Compute the 'user' field for each psymtab in OBJFILE. */
6421
6422 static void
6423 set_partial_user (struct objfile *objfile)
6424 {
6425 int i;
6426
6427 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6428 {
6429 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6430 struct partial_symtab *pst = per_cu->v.psymtab;
6431 int j;
6432
6433 if (pst == NULL)
6434 continue;
6435
6436 for (j = 0; j < pst->number_of_dependencies; ++j)
6437 {
6438 /* Set the 'user' field only if it is not already set. */
6439 if (pst->dependencies[j]->user == NULL)
6440 pst->dependencies[j]->user = pst;
6441 }
6442 }
6443 }
6444
6445 /* Build the partial symbol table by doing a quick pass through the
6446 .debug_info and .debug_abbrev sections. */
6447
6448 static void
6449 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6450 {
6451 struct cleanup *back_to, *addrmap_cleanup;
6452 struct obstack temp_obstack;
6453 int i;
6454
6455 if (dwarf_read_debug)
6456 {
6457 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6458 objfile_name (objfile));
6459 }
6460
6461 dwarf2_per_objfile->reading_partial_symbols = 1;
6462
6463 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6464
6465 /* Any cached compilation units will be linked by the per-objfile
6466 read_in_chain. Make sure to free them when we're done. */
6467 back_to = make_cleanup (free_cached_comp_units, NULL);
6468
6469 build_type_psymtabs (objfile);
6470
6471 create_all_comp_units (objfile);
6472
6473 /* Create a temporary address map on a temporary obstack. We later
6474 copy this to the final obstack. */
6475 obstack_init (&temp_obstack);
6476 make_cleanup_obstack_free (&temp_obstack);
6477 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6478 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6479
6480 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6481 {
6482 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6483
6484 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6485 }
6486
6487 /* This has to wait until we read the CUs, we need the list of DWOs. */
6488 process_skeletonless_type_units (objfile);
6489
6490 /* Now that all TUs have been processed we can fill in the dependencies. */
6491 if (dwarf2_per_objfile->type_unit_groups != NULL)
6492 {
6493 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6494 build_type_psymtab_dependencies, NULL);
6495 }
6496
6497 if (dwarf_read_debug)
6498 print_tu_stats ();
6499
6500 set_partial_user (objfile);
6501
6502 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6503 &objfile->objfile_obstack);
6504 discard_cleanups (addrmap_cleanup);
6505
6506 do_cleanups (back_to);
6507
6508 if (dwarf_read_debug)
6509 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6510 objfile_name (objfile));
6511 }
6512
6513 /* die_reader_func for load_partial_comp_unit. */
6514
6515 static void
6516 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6517 const gdb_byte *info_ptr,
6518 struct die_info *comp_unit_die,
6519 int has_children,
6520 void *data)
6521 {
6522 struct dwarf2_cu *cu = reader->cu;
6523
6524 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6525
6526 /* Check if comp unit has_children.
6527 If so, read the rest of the partial symbols from this comp unit.
6528 If not, there's no more debug_info for this comp unit. */
6529 if (has_children)
6530 load_partial_dies (reader, info_ptr, 0);
6531 }
6532
6533 /* Load the partial DIEs for a secondary CU into memory.
6534 This is also used when rereading a primary CU with load_all_dies. */
6535
6536 static void
6537 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6538 {
6539 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6540 load_partial_comp_unit_reader, NULL);
6541 }
6542
6543 static void
6544 read_comp_units_from_section (struct objfile *objfile,
6545 struct dwarf2_section_info *section,
6546 unsigned int is_dwz,
6547 int *n_allocated,
6548 int *n_comp_units,
6549 struct dwarf2_per_cu_data ***all_comp_units)
6550 {
6551 const gdb_byte *info_ptr;
6552 bfd *abfd = get_section_bfd_owner (section);
6553
6554 if (dwarf_read_debug)
6555 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6556 get_section_name (section),
6557 get_section_file_name (section));
6558
6559 dwarf2_read_section (objfile, section);
6560
6561 info_ptr = section->buffer;
6562
6563 while (info_ptr < section->buffer + section->size)
6564 {
6565 unsigned int length, initial_length_size;
6566 struct dwarf2_per_cu_data *this_cu;
6567 sect_offset offset;
6568
6569 offset.sect_off = info_ptr - section->buffer;
6570
6571 /* Read just enough information to find out where the next
6572 compilation unit is. */
6573 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6574
6575 /* Save the compilation unit for later lookup. */
6576 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6577 memset (this_cu, 0, sizeof (*this_cu));
6578 this_cu->offset = offset;
6579 this_cu->length = length + initial_length_size;
6580 this_cu->is_dwz = is_dwz;
6581 this_cu->objfile = objfile;
6582 this_cu->section = section;
6583
6584 if (*n_comp_units == *n_allocated)
6585 {
6586 *n_allocated *= 2;
6587 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6588 *all_comp_units, *n_allocated);
6589 }
6590 (*all_comp_units)[*n_comp_units] = this_cu;
6591 ++*n_comp_units;
6592
6593 info_ptr = info_ptr + this_cu->length;
6594 }
6595 }
6596
6597 /* Create a list of all compilation units in OBJFILE.
6598 This is only done for -readnow and building partial symtabs. */
6599
6600 static void
6601 create_all_comp_units (struct objfile *objfile)
6602 {
6603 int n_allocated;
6604 int n_comp_units;
6605 struct dwarf2_per_cu_data **all_comp_units;
6606 struct dwz_file *dwz;
6607
6608 n_comp_units = 0;
6609 n_allocated = 10;
6610 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6611
6612 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6613 &n_allocated, &n_comp_units, &all_comp_units);
6614
6615 dwz = dwarf2_get_dwz_file ();
6616 if (dwz != NULL)
6617 read_comp_units_from_section (objfile, &dwz->info, 1,
6618 &n_allocated, &n_comp_units,
6619 &all_comp_units);
6620
6621 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6622 struct dwarf2_per_cu_data *,
6623 n_comp_units);
6624 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6625 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6626 xfree (all_comp_units);
6627 dwarf2_per_objfile->n_comp_units = n_comp_units;
6628 }
6629
6630 /* Process all loaded DIEs for compilation unit CU, starting at
6631 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6632 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6633 DW_AT_ranges). See the comments of add_partial_subprogram on how
6634 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6635
6636 static void
6637 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6638 CORE_ADDR *highpc, int set_addrmap,
6639 struct dwarf2_cu *cu)
6640 {
6641 struct partial_die_info *pdi;
6642
6643 /* Now, march along the PDI's, descending into ones which have
6644 interesting children but skipping the children of the other ones,
6645 until we reach the end of the compilation unit. */
6646
6647 pdi = first_die;
6648
6649 while (pdi != NULL)
6650 {
6651 fixup_partial_die (pdi, cu);
6652
6653 /* Anonymous namespaces or modules have no name but have interesting
6654 children, so we need to look at them. Ditto for anonymous
6655 enums. */
6656
6657 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6658 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6659 || pdi->tag == DW_TAG_imported_unit)
6660 {
6661 switch (pdi->tag)
6662 {
6663 case DW_TAG_subprogram:
6664 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6665 break;
6666 case DW_TAG_constant:
6667 case DW_TAG_variable:
6668 case DW_TAG_typedef:
6669 case DW_TAG_union_type:
6670 if (!pdi->is_declaration)
6671 {
6672 add_partial_symbol (pdi, cu);
6673 }
6674 break;
6675 case DW_TAG_class_type:
6676 case DW_TAG_interface_type:
6677 case DW_TAG_structure_type:
6678 if (!pdi->is_declaration)
6679 {
6680 add_partial_symbol (pdi, cu);
6681 }
6682 break;
6683 case DW_TAG_enumeration_type:
6684 if (!pdi->is_declaration)
6685 add_partial_enumeration (pdi, cu);
6686 break;
6687 case DW_TAG_base_type:
6688 case DW_TAG_subrange_type:
6689 /* File scope base type definitions are added to the partial
6690 symbol table. */
6691 add_partial_symbol (pdi, cu);
6692 break;
6693 case DW_TAG_namespace:
6694 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6695 break;
6696 case DW_TAG_module:
6697 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6698 break;
6699 case DW_TAG_imported_unit:
6700 {
6701 struct dwarf2_per_cu_data *per_cu;
6702
6703 /* For now we don't handle imported units in type units. */
6704 if (cu->per_cu->is_debug_types)
6705 {
6706 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6707 " supported in type units [in module %s]"),
6708 objfile_name (cu->objfile));
6709 }
6710
6711 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6712 pdi->is_dwz,
6713 cu->objfile);
6714
6715 /* Go read the partial unit, if needed. */
6716 if (per_cu->v.psymtab == NULL)
6717 process_psymtab_comp_unit (per_cu, 1, cu->language);
6718
6719 VEC_safe_push (dwarf2_per_cu_ptr,
6720 cu->per_cu->imported_symtabs, per_cu);
6721 }
6722 break;
6723 case DW_TAG_imported_declaration:
6724 add_partial_symbol (pdi, cu);
6725 break;
6726 default:
6727 break;
6728 }
6729 }
6730
6731 /* If the die has a sibling, skip to the sibling. */
6732
6733 pdi = pdi->die_sibling;
6734 }
6735 }
6736
6737 /* Functions used to compute the fully scoped name of a partial DIE.
6738
6739 Normally, this is simple. For C++, the parent DIE's fully scoped
6740 name is concatenated with "::" and the partial DIE's name. For
6741 Java, the same thing occurs except that "." is used instead of "::".
6742 Enumerators are an exception; they use the scope of their parent
6743 enumeration type, i.e. the name of the enumeration type is not
6744 prepended to the enumerator.
6745
6746 There are two complexities. One is DW_AT_specification; in this
6747 case "parent" means the parent of the target of the specification,
6748 instead of the direct parent of the DIE. The other is compilers
6749 which do not emit DW_TAG_namespace; in this case we try to guess
6750 the fully qualified name of structure types from their members'
6751 linkage names. This must be done using the DIE's children rather
6752 than the children of any DW_AT_specification target. We only need
6753 to do this for structures at the top level, i.e. if the target of
6754 any DW_AT_specification (if any; otherwise the DIE itself) does not
6755 have a parent. */
6756
6757 /* Compute the scope prefix associated with PDI's parent, in
6758 compilation unit CU. The result will be allocated on CU's
6759 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6760 field. NULL is returned if no prefix is necessary. */
6761 static const char *
6762 partial_die_parent_scope (struct partial_die_info *pdi,
6763 struct dwarf2_cu *cu)
6764 {
6765 const char *grandparent_scope;
6766 struct partial_die_info *parent, *real_pdi;
6767
6768 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6769 then this means the parent of the specification DIE. */
6770
6771 real_pdi = pdi;
6772 while (real_pdi->has_specification)
6773 real_pdi = find_partial_die (real_pdi->spec_offset,
6774 real_pdi->spec_is_dwz, cu);
6775
6776 parent = real_pdi->die_parent;
6777 if (parent == NULL)
6778 return NULL;
6779
6780 if (parent->scope_set)
6781 return parent->scope;
6782
6783 fixup_partial_die (parent, cu);
6784
6785 grandparent_scope = partial_die_parent_scope (parent, cu);
6786
6787 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6788 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6789 Work around this problem here. */
6790 if (cu->language == language_cplus
6791 && parent->tag == DW_TAG_namespace
6792 && strcmp (parent->name, "::") == 0
6793 && grandparent_scope == NULL)
6794 {
6795 parent->scope = NULL;
6796 parent->scope_set = 1;
6797 return NULL;
6798 }
6799
6800 if (pdi->tag == DW_TAG_enumerator)
6801 /* Enumerators should not get the name of the enumeration as a prefix. */
6802 parent->scope = grandparent_scope;
6803 else if (parent->tag == DW_TAG_namespace
6804 || parent->tag == DW_TAG_module
6805 || parent->tag == DW_TAG_structure_type
6806 || parent->tag == DW_TAG_class_type
6807 || parent->tag == DW_TAG_interface_type
6808 || parent->tag == DW_TAG_union_type
6809 || parent->tag == DW_TAG_enumeration_type)
6810 {
6811 if (grandparent_scope == NULL)
6812 parent->scope = parent->name;
6813 else
6814 parent->scope = typename_concat (&cu->comp_unit_obstack,
6815 grandparent_scope,
6816 parent->name, 0, cu);
6817 }
6818 else
6819 {
6820 /* FIXME drow/2004-04-01: What should we be doing with
6821 function-local names? For partial symbols, we should probably be
6822 ignoring them. */
6823 complaint (&symfile_complaints,
6824 _("unhandled containing DIE tag %d for DIE at %d"),
6825 parent->tag, pdi->offset.sect_off);
6826 parent->scope = grandparent_scope;
6827 }
6828
6829 parent->scope_set = 1;
6830 return parent->scope;
6831 }
6832
6833 /* Return the fully scoped name associated with PDI, from compilation unit
6834 CU. The result will be allocated with malloc. */
6835
6836 static char *
6837 partial_die_full_name (struct partial_die_info *pdi,
6838 struct dwarf2_cu *cu)
6839 {
6840 const char *parent_scope;
6841
6842 /* If this is a template instantiation, we can not work out the
6843 template arguments from partial DIEs. So, unfortunately, we have
6844 to go through the full DIEs. At least any work we do building
6845 types here will be reused if full symbols are loaded later. */
6846 if (pdi->has_template_arguments)
6847 {
6848 fixup_partial_die (pdi, cu);
6849
6850 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6851 {
6852 struct die_info *die;
6853 struct attribute attr;
6854 struct dwarf2_cu *ref_cu = cu;
6855
6856 /* DW_FORM_ref_addr is using section offset. */
6857 attr.name = (enum dwarf_attribute) 0;
6858 attr.form = DW_FORM_ref_addr;
6859 attr.u.unsnd = pdi->offset.sect_off;
6860 die = follow_die_ref (NULL, &attr, &ref_cu);
6861
6862 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6863 }
6864 }
6865
6866 parent_scope = partial_die_parent_scope (pdi, cu);
6867 if (parent_scope == NULL)
6868 return NULL;
6869 else
6870 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6871 }
6872
6873 static void
6874 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6875 {
6876 struct objfile *objfile = cu->objfile;
6877 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6878 CORE_ADDR addr = 0;
6879 const char *actual_name = NULL;
6880 CORE_ADDR baseaddr;
6881 char *built_actual_name;
6882
6883 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6884
6885 built_actual_name = partial_die_full_name (pdi, cu);
6886 if (built_actual_name != NULL)
6887 actual_name = built_actual_name;
6888
6889 if (actual_name == NULL)
6890 actual_name = pdi->name;
6891
6892 switch (pdi->tag)
6893 {
6894 case DW_TAG_subprogram:
6895 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6896 if (pdi->is_external || cu->language == language_ada)
6897 {
6898 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6899 of the global scope. But in Ada, we want to be able to access
6900 nested procedures globally. So all Ada subprograms are stored
6901 in the global scope. */
6902 add_psymbol_to_list (actual_name, strlen (actual_name),
6903 built_actual_name != NULL,
6904 VAR_DOMAIN, LOC_BLOCK,
6905 &objfile->global_psymbols,
6906 addr, cu->language, objfile);
6907 }
6908 else
6909 {
6910 add_psymbol_to_list (actual_name, strlen (actual_name),
6911 built_actual_name != NULL,
6912 VAR_DOMAIN, LOC_BLOCK,
6913 &objfile->static_psymbols,
6914 addr, cu->language, objfile);
6915 }
6916 break;
6917 case DW_TAG_constant:
6918 {
6919 struct psymbol_allocation_list *list;
6920
6921 if (pdi->is_external)
6922 list = &objfile->global_psymbols;
6923 else
6924 list = &objfile->static_psymbols;
6925 add_psymbol_to_list (actual_name, strlen (actual_name),
6926 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6927 list, 0, cu->language, objfile);
6928 }
6929 break;
6930 case DW_TAG_variable:
6931 if (pdi->d.locdesc)
6932 addr = decode_locdesc (pdi->d.locdesc, cu);
6933
6934 if (pdi->d.locdesc
6935 && addr == 0
6936 && !dwarf2_per_objfile->has_section_at_zero)
6937 {
6938 /* A global or static variable may also have been stripped
6939 out by the linker if unused, in which case its address
6940 will be nullified; do not add such variables into partial
6941 symbol table then. */
6942 }
6943 else if (pdi->is_external)
6944 {
6945 /* Global Variable.
6946 Don't enter into the minimal symbol tables as there is
6947 a minimal symbol table entry from the ELF symbols already.
6948 Enter into partial symbol table if it has a location
6949 descriptor or a type.
6950 If the location descriptor is missing, new_symbol will create
6951 a LOC_UNRESOLVED symbol, the address of the variable will then
6952 be determined from the minimal symbol table whenever the variable
6953 is referenced.
6954 The address for the partial symbol table entry is not
6955 used by GDB, but it comes in handy for debugging partial symbol
6956 table building. */
6957
6958 if (pdi->d.locdesc || pdi->has_type)
6959 add_psymbol_to_list (actual_name, strlen (actual_name),
6960 built_actual_name != NULL,
6961 VAR_DOMAIN, LOC_STATIC,
6962 &objfile->global_psymbols,
6963 addr + baseaddr,
6964 cu->language, objfile);
6965 }
6966 else
6967 {
6968 int has_loc = pdi->d.locdesc != NULL;
6969
6970 /* Static Variable. Skip symbols whose value we cannot know (those
6971 without location descriptors or constant values). */
6972 if (!has_loc && !pdi->has_const_value)
6973 {
6974 xfree (built_actual_name);
6975 return;
6976 }
6977
6978 add_psymbol_to_list (actual_name, strlen (actual_name),
6979 built_actual_name != NULL,
6980 VAR_DOMAIN, LOC_STATIC,
6981 &objfile->static_psymbols,
6982 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6983 cu->language, objfile);
6984 }
6985 break;
6986 case DW_TAG_typedef:
6987 case DW_TAG_base_type:
6988 case DW_TAG_subrange_type:
6989 add_psymbol_to_list (actual_name, strlen (actual_name),
6990 built_actual_name != NULL,
6991 VAR_DOMAIN, LOC_TYPEDEF,
6992 &objfile->static_psymbols,
6993 0, cu->language, objfile);
6994 break;
6995 case DW_TAG_imported_declaration:
6996 case DW_TAG_namespace:
6997 add_psymbol_to_list (actual_name, strlen (actual_name),
6998 built_actual_name != NULL,
6999 VAR_DOMAIN, LOC_TYPEDEF,
7000 &objfile->global_psymbols,
7001 0, cu->language, objfile);
7002 break;
7003 case DW_TAG_module:
7004 add_psymbol_to_list (actual_name, strlen (actual_name),
7005 built_actual_name != NULL,
7006 MODULE_DOMAIN, LOC_TYPEDEF,
7007 &objfile->global_psymbols,
7008 0, cu->language, objfile);
7009 break;
7010 case DW_TAG_class_type:
7011 case DW_TAG_interface_type:
7012 case DW_TAG_structure_type:
7013 case DW_TAG_union_type:
7014 case DW_TAG_enumeration_type:
7015 /* Skip external references. The DWARF standard says in the section
7016 about "Structure, Union, and Class Type Entries": "An incomplete
7017 structure, union or class type is represented by a structure,
7018 union or class entry that does not have a byte size attribute
7019 and that has a DW_AT_declaration attribute." */
7020 if (!pdi->has_byte_size && pdi->is_declaration)
7021 {
7022 xfree (built_actual_name);
7023 return;
7024 }
7025
7026 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7027 static vs. global. */
7028 add_psymbol_to_list (actual_name, strlen (actual_name),
7029 built_actual_name != NULL,
7030 STRUCT_DOMAIN, LOC_TYPEDEF,
7031 (cu->language == language_cplus
7032 || cu->language == language_java)
7033 ? &objfile->global_psymbols
7034 : &objfile->static_psymbols,
7035 0, cu->language, objfile);
7036
7037 break;
7038 case DW_TAG_enumerator:
7039 add_psymbol_to_list (actual_name, strlen (actual_name),
7040 built_actual_name != NULL,
7041 VAR_DOMAIN, LOC_CONST,
7042 (cu->language == language_cplus
7043 || cu->language == language_java)
7044 ? &objfile->global_psymbols
7045 : &objfile->static_psymbols,
7046 0, cu->language, objfile);
7047 break;
7048 default:
7049 break;
7050 }
7051
7052 xfree (built_actual_name);
7053 }
7054
7055 /* Read a partial die corresponding to a namespace; also, add a symbol
7056 corresponding to that namespace to the symbol table. NAMESPACE is
7057 the name of the enclosing namespace. */
7058
7059 static void
7060 add_partial_namespace (struct partial_die_info *pdi,
7061 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7062 int set_addrmap, struct dwarf2_cu *cu)
7063 {
7064 /* Add a symbol for the namespace. */
7065
7066 add_partial_symbol (pdi, cu);
7067
7068 /* Now scan partial symbols in that namespace. */
7069
7070 if (pdi->has_children)
7071 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7072 }
7073
7074 /* Read a partial die corresponding to a Fortran module. */
7075
7076 static void
7077 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7078 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7079 {
7080 /* Add a symbol for the namespace. */
7081
7082 add_partial_symbol (pdi, cu);
7083
7084 /* Now scan partial symbols in that module. */
7085
7086 if (pdi->has_children)
7087 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7088 }
7089
7090 /* Read a partial die corresponding to a subprogram and create a partial
7091 symbol for that subprogram. When the CU language allows it, this
7092 routine also defines a partial symbol for each nested subprogram
7093 that this subprogram contains. If SET_ADDRMAP is true, record the
7094 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7095 and highest PC values found in PDI.
7096
7097 PDI may also be a lexical block, in which case we simply search
7098 recursively for subprograms defined inside that lexical block.
7099 Again, this is only performed when the CU language allows this
7100 type of definitions. */
7101
7102 static void
7103 add_partial_subprogram (struct partial_die_info *pdi,
7104 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7105 int set_addrmap, struct dwarf2_cu *cu)
7106 {
7107 if (pdi->tag == DW_TAG_subprogram)
7108 {
7109 if (pdi->has_pc_info)
7110 {
7111 if (pdi->lowpc < *lowpc)
7112 *lowpc = pdi->lowpc;
7113 if (pdi->highpc > *highpc)
7114 *highpc = pdi->highpc;
7115 if (set_addrmap)
7116 {
7117 struct objfile *objfile = cu->objfile;
7118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7119 CORE_ADDR baseaddr;
7120 CORE_ADDR highpc;
7121 CORE_ADDR lowpc;
7122
7123 baseaddr = ANOFFSET (objfile->section_offsets,
7124 SECT_OFF_TEXT (objfile));
7125 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7126 pdi->lowpc + baseaddr);
7127 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7128 pdi->highpc + baseaddr);
7129 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7130 cu->per_cu->v.psymtab);
7131 }
7132 }
7133
7134 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7135 {
7136 if (!pdi->is_declaration)
7137 /* Ignore subprogram DIEs that do not have a name, they are
7138 illegal. Do not emit a complaint at this point, we will
7139 do so when we convert this psymtab into a symtab. */
7140 if (pdi->name)
7141 add_partial_symbol (pdi, cu);
7142 }
7143 }
7144
7145 if (! pdi->has_children)
7146 return;
7147
7148 if (cu->language == language_ada)
7149 {
7150 pdi = pdi->die_child;
7151 while (pdi != NULL)
7152 {
7153 fixup_partial_die (pdi, cu);
7154 if (pdi->tag == DW_TAG_subprogram
7155 || pdi->tag == DW_TAG_lexical_block)
7156 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7157 pdi = pdi->die_sibling;
7158 }
7159 }
7160 }
7161
7162 /* Read a partial die corresponding to an enumeration type. */
7163
7164 static void
7165 add_partial_enumeration (struct partial_die_info *enum_pdi,
7166 struct dwarf2_cu *cu)
7167 {
7168 struct partial_die_info *pdi;
7169
7170 if (enum_pdi->name != NULL)
7171 add_partial_symbol (enum_pdi, cu);
7172
7173 pdi = enum_pdi->die_child;
7174 while (pdi)
7175 {
7176 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7177 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7178 else
7179 add_partial_symbol (pdi, cu);
7180 pdi = pdi->die_sibling;
7181 }
7182 }
7183
7184 /* Return the initial uleb128 in the die at INFO_PTR. */
7185
7186 static unsigned int
7187 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7188 {
7189 unsigned int bytes_read;
7190
7191 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7192 }
7193
7194 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7195 Return the corresponding abbrev, or NULL if the number is zero (indicating
7196 an empty DIE). In either case *BYTES_READ will be set to the length of
7197 the initial number. */
7198
7199 static struct abbrev_info *
7200 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7201 struct dwarf2_cu *cu)
7202 {
7203 bfd *abfd = cu->objfile->obfd;
7204 unsigned int abbrev_number;
7205 struct abbrev_info *abbrev;
7206
7207 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7208
7209 if (abbrev_number == 0)
7210 return NULL;
7211
7212 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7213 if (!abbrev)
7214 {
7215 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7216 " at offset 0x%x [in module %s]"),
7217 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7218 cu->header.offset.sect_off, bfd_get_filename (abfd));
7219 }
7220
7221 return abbrev;
7222 }
7223
7224 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7225 Returns a pointer to the end of a series of DIEs, terminated by an empty
7226 DIE. Any children of the skipped DIEs will also be skipped. */
7227
7228 static const gdb_byte *
7229 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7230 {
7231 struct dwarf2_cu *cu = reader->cu;
7232 struct abbrev_info *abbrev;
7233 unsigned int bytes_read;
7234
7235 while (1)
7236 {
7237 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7238 if (abbrev == NULL)
7239 return info_ptr + bytes_read;
7240 else
7241 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7242 }
7243 }
7244
7245 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7246 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7247 abbrev corresponding to that skipped uleb128 should be passed in
7248 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7249 children. */
7250
7251 static const gdb_byte *
7252 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7253 struct abbrev_info *abbrev)
7254 {
7255 unsigned int bytes_read;
7256 struct attribute attr;
7257 bfd *abfd = reader->abfd;
7258 struct dwarf2_cu *cu = reader->cu;
7259 const gdb_byte *buffer = reader->buffer;
7260 const gdb_byte *buffer_end = reader->buffer_end;
7261 const gdb_byte *start_info_ptr = info_ptr;
7262 unsigned int form, i;
7263
7264 for (i = 0; i < abbrev->num_attrs; i++)
7265 {
7266 /* The only abbrev we care about is DW_AT_sibling. */
7267 if (abbrev->attrs[i].name == DW_AT_sibling)
7268 {
7269 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7270 if (attr.form == DW_FORM_ref_addr)
7271 complaint (&symfile_complaints,
7272 _("ignoring absolute DW_AT_sibling"));
7273 else
7274 {
7275 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7276 const gdb_byte *sibling_ptr = buffer + off;
7277
7278 if (sibling_ptr < info_ptr)
7279 complaint (&symfile_complaints,
7280 _("DW_AT_sibling points backwards"));
7281 else if (sibling_ptr > reader->buffer_end)
7282 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7283 else
7284 return sibling_ptr;
7285 }
7286 }
7287
7288 /* If it isn't DW_AT_sibling, skip this attribute. */
7289 form = abbrev->attrs[i].form;
7290 skip_attribute:
7291 switch (form)
7292 {
7293 case DW_FORM_ref_addr:
7294 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7295 and later it is offset sized. */
7296 if (cu->header.version == 2)
7297 info_ptr += cu->header.addr_size;
7298 else
7299 info_ptr += cu->header.offset_size;
7300 break;
7301 case DW_FORM_GNU_ref_alt:
7302 info_ptr += cu->header.offset_size;
7303 break;
7304 case DW_FORM_addr:
7305 info_ptr += cu->header.addr_size;
7306 break;
7307 case DW_FORM_data1:
7308 case DW_FORM_ref1:
7309 case DW_FORM_flag:
7310 info_ptr += 1;
7311 break;
7312 case DW_FORM_flag_present:
7313 break;
7314 case DW_FORM_data2:
7315 case DW_FORM_ref2:
7316 info_ptr += 2;
7317 break;
7318 case DW_FORM_data4:
7319 case DW_FORM_ref4:
7320 info_ptr += 4;
7321 break;
7322 case DW_FORM_data8:
7323 case DW_FORM_ref8:
7324 case DW_FORM_ref_sig8:
7325 info_ptr += 8;
7326 break;
7327 case DW_FORM_string:
7328 read_direct_string (abfd, info_ptr, &bytes_read);
7329 info_ptr += bytes_read;
7330 break;
7331 case DW_FORM_sec_offset:
7332 case DW_FORM_strp:
7333 case DW_FORM_GNU_strp_alt:
7334 info_ptr += cu->header.offset_size;
7335 break;
7336 case DW_FORM_exprloc:
7337 case DW_FORM_block:
7338 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7339 info_ptr += bytes_read;
7340 break;
7341 case DW_FORM_block1:
7342 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7343 break;
7344 case DW_FORM_block2:
7345 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7346 break;
7347 case DW_FORM_block4:
7348 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7349 break;
7350 case DW_FORM_sdata:
7351 case DW_FORM_udata:
7352 case DW_FORM_ref_udata:
7353 case DW_FORM_GNU_addr_index:
7354 case DW_FORM_GNU_str_index:
7355 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7356 break;
7357 case DW_FORM_indirect:
7358 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7359 info_ptr += bytes_read;
7360 /* We need to continue parsing from here, so just go back to
7361 the top. */
7362 goto skip_attribute;
7363
7364 default:
7365 error (_("Dwarf Error: Cannot handle %s "
7366 "in DWARF reader [in module %s]"),
7367 dwarf_form_name (form),
7368 bfd_get_filename (abfd));
7369 }
7370 }
7371
7372 if (abbrev->has_children)
7373 return skip_children (reader, info_ptr);
7374 else
7375 return info_ptr;
7376 }
7377
7378 /* Locate ORIG_PDI's sibling.
7379 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7380
7381 static const gdb_byte *
7382 locate_pdi_sibling (const struct die_reader_specs *reader,
7383 struct partial_die_info *orig_pdi,
7384 const gdb_byte *info_ptr)
7385 {
7386 /* Do we know the sibling already? */
7387
7388 if (orig_pdi->sibling)
7389 return orig_pdi->sibling;
7390
7391 /* Are there any children to deal with? */
7392
7393 if (!orig_pdi->has_children)
7394 return info_ptr;
7395
7396 /* Skip the children the long way. */
7397
7398 return skip_children (reader, info_ptr);
7399 }
7400
7401 /* Expand this partial symbol table into a full symbol table. SELF is
7402 not NULL. */
7403
7404 static void
7405 dwarf2_read_symtab (struct partial_symtab *self,
7406 struct objfile *objfile)
7407 {
7408 if (self->readin)
7409 {
7410 warning (_("bug: psymtab for %s is already read in."),
7411 self->filename);
7412 }
7413 else
7414 {
7415 if (info_verbose)
7416 {
7417 printf_filtered (_("Reading in symbols for %s..."),
7418 self->filename);
7419 gdb_flush (gdb_stdout);
7420 }
7421
7422 /* Restore our global data. */
7423 dwarf2_per_objfile
7424 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7425 dwarf2_objfile_data_key);
7426
7427 /* If this psymtab is constructed from a debug-only objfile, the
7428 has_section_at_zero flag will not necessarily be correct. We
7429 can get the correct value for this flag by looking at the data
7430 associated with the (presumably stripped) associated objfile. */
7431 if (objfile->separate_debug_objfile_backlink)
7432 {
7433 struct dwarf2_per_objfile *dpo_backlink
7434 = ((struct dwarf2_per_objfile *)
7435 objfile_data (objfile->separate_debug_objfile_backlink,
7436 dwarf2_objfile_data_key));
7437
7438 dwarf2_per_objfile->has_section_at_zero
7439 = dpo_backlink->has_section_at_zero;
7440 }
7441
7442 dwarf2_per_objfile->reading_partial_symbols = 0;
7443
7444 psymtab_to_symtab_1 (self);
7445
7446 /* Finish up the debug error message. */
7447 if (info_verbose)
7448 printf_filtered (_("done.\n"));
7449 }
7450
7451 process_cu_includes ();
7452 }
7453 \f
7454 /* Reading in full CUs. */
7455
7456 /* Add PER_CU to the queue. */
7457
7458 static void
7459 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7460 enum language pretend_language)
7461 {
7462 struct dwarf2_queue_item *item;
7463
7464 per_cu->queued = 1;
7465 item = XNEW (struct dwarf2_queue_item);
7466 item->per_cu = per_cu;
7467 item->pretend_language = pretend_language;
7468 item->next = NULL;
7469
7470 if (dwarf2_queue == NULL)
7471 dwarf2_queue = item;
7472 else
7473 dwarf2_queue_tail->next = item;
7474
7475 dwarf2_queue_tail = item;
7476 }
7477
7478 /* If PER_CU is not yet queued, add it to the queue.
7479 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7480 dependency.
7481 The result is non-zero if PER_CU was queued, otherwise the result is zero
7482 meaning either PER_CU is already queued or it is already loaded.
7483
7484 N.B. There is an invariant here that if a CU is queued then it is loaded.
7485 The caller is required to load PER_CU if we return non-zero. */
7486
7487 static int
7488 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7489 struct dwarf2_per_cu_data *per_cu,
7490 enum language pretend_language)
7491 {
7492 /* We may arrive here during partial symbol reading, if we need full
7493 DIEs to process an unusual case (e.g. template arguments). Do
7494 not queue PER_CU, just tell our caller to load its DIEs. */
7495 if (dwarf2_per_objfile->reading_partial_symbols)
7496 {
7497 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7498 return 1;
7499 return 0;
7500 }
7501
7502 /* Mark the dependence relation so that we don't flush PER_CU
7503 too early. */
7504 if (dependent_cu != NULL)
7505 dwarf2_add_dependence (dependent_cu, per_cu);
7506
7507 /* If it's already on the queue, we have nothing to do. */
7508 if (per_cu->queued)
7509 return 0;
7510
7511 /* If the compilation unit is already loaded, just mark it as
7512 used. */
7513 if (per_cu->cu != NULL)
7514 {
7515 per_cu->cu->last_used = 0;
7516 return 0;
7517 }
7518
7519 /* Add it to the queue. */
7520 queue_comp_unit (per_cu, pretend_language);
7521
7522 return 1;
7523 }
7524
7525 /* Process the queue. */
7526
7527 static void
7528 process_queue (void)
7529 {
7530 struct dwarf2_queue_item *item, *next_item;
7531
7532 if (dwarf_read_debug)
7533 {
7534 fprintf_unfiltered (gdb_stdlog,
7535 "Expanding one or more symtabs of objfile %s ...\n",
7536 objfile_name (dwarf2_per_objfile->objfile));
7537 }
7538
7539 /* The queue starts out with one item, but following a DIE reference
7540 may load a new CU, adding it to the end of the queue. */
7541 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7542 {
7543 if ((dwarf2_per_objfile->using_index
7544 ? !item->per_cu->v.quick->compunit_symtab
7545 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7546 /* Skip dummy CUs. */
7547 && item->per_cu->cu != NULL)
7548 {
7549 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7550 unsigned int debug_print_threshold;
7551 char buf[100];
7552
7553 if (per_cu->is_debug_types)
7554 {
7555 struct signatured_type *sig_type =
7556 (struct signatured_type *) per_cu;
7557
7558 sprintf (buf, "TU %s at offset 0x%x",
7559 hex_string (sig_type->signature),
7560 per_cu->offset.sect_off);
7561 /* There can be 100s of TUs.
7562 Only print them in verbose mode. */
7563 debug_print_threshold = 2;
7564 }
7565 else
7566 {
7567 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7568 debug_print_threshold = 1;
7569 }
7570
7571 if (dwarf_read_debug >= debug_print_threshold)
7572 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7573
7574 if (per_cu->is_debug_types)
7575 process_full_type_unit (per_cu, item->pretend_language);
7576 else
7577 process_full_comp_unit (per_cu, item->pretend_language);
7578
7579 if (dwarf_read_debug >= debug_print_threshold)
7580 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7581 }
7582
7583 item->per_cu->queued = 0;
7584 next_item = item->next;
7585 xfree (item);
7586 }
7587
7588 dwarf2_queue_tail = NULL;
7589
7590 if (dwarf_read_debug)
7591 {
7592 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7593 objfile_name (dwarf2_per_objfile->objfile));
7594 }
7595 }
7596
7597 /* Free all allocated queue entries. This function only releases anything if
7598 an error was thrown; if the queue was processed then it would have been
7599 freed as we went along. */
7600
7601 static void
7602 dwarf2_release_queue (void *dummy)
7603 {
7604 struct dwarf2_queue_item *item, *last;
7605
7606 item = dwarf2_queue;
7607 while (item)
7608 {
7609 /* Anything still marked queued is likely to be in an
7610 inconsistent state, so discard it. */
7611 if (item->per_cu->queued)
7612 {
7613 if (item->per_cu->cu != NULL)
7614 free_one_cached_comp_unit (item->per_cu);
7615 item->per_cu->queued = 0;
7616 }
7617
7618 last = item;
7619 item = item->next;
7620 xfree (last);
7621 }
7622
7623 dwarf2_queue = dwarf2_queue_tail = NULL;
7624 }
7625
7626 /* Read in full symbols for PST, and anything it depends on. */
7627
7628 static void
7629 psymtab_to_symtab_1 (struct partial_symtab *pst)
7630 {
7631 struct dwarf2_per_cu_data *per_cu;
7632 int i;
7633
7634 if (pst->readin)
7635 return;
7636
7637 for (i = 0; i < pst->number_of_dependencies; i++)
7638 if (!pst->dependencies[i]->readin
7639 && pst->dependencies[i]->user == NULL)
7640 {
7641 /* Inform about additional files that need to be read in. */
7642 if (info_verbose)
7643 {
7644 /* FIXME: i18n: Need to make this a single string. */
7645 fputs_filtered (" ", gdb_stdout);
7646 wrap_here ("");
7647 fputs_filtered ("and ", gdb_stdout);
7648 wrap_here ("");
7649 printf_filtered ("%s...", pst->dependencies[i]->filename);
7650 wrap_here (""); /* Flush output. */
7651 gdb_flush (gdb_stdout);
7652 }
7653 psymtab_to_symtab_1 (pst->dependencies[i]);
7654 }
7655
7656 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7657
7658 if (per_cu == NULL)
7659 {
7660 /* It's an include file, no symbols to read for it.
7661 Everything is in the parent symtab. */
7662 pst->readin = 1;
7663 return;
7664 }
7665
7666 dw2_do_instantiate_symtab (per_cu);
7667 }
7668
7669 /* Trivial hash function for die_info: the hash value of a DIE
7670 is its offset in .debug_info for this objfile. */
7671
7672 static hashval_t
7673 die_hash (const void *item)
7674 {
7675 const struct die_info *die = (const struct die_info *) item;
7676
7677 return die->offset.sect_off;
7678 }
7679
7680 /* Trivial comparison function for die_info structures: two DIEs
7681 are equal if they have the same offset. */
7682
7683 static int
7684 die_eq (const void *item_lhs, const void *item_rhs)
7685 {
7686 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7687 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7688
7689 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7690 }
7691
7692 /* die_reader_func for load_full_comp_unit.
7693 This is identical to read_signatured_type_reader,
7694 but is kept separate for now. */
7695
7696 static void
7697 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7698 const gdb_byte *info_ptr,
7699 struct die_info *comp_unit_die,
7700 int has_children,
7701 void *data)
7702 {
7703 struct dwarf2_cu *cu = reader->cu;
7704 enum language *language_ptr = (enum language *) data;
7705
7706 gdb_assert (cu->die_hash == NULL);
7707 cu->die_hash =
7708 htab_create_alloc_ex (cu->header.length / 12,
7709 die_hash,
7710 die_eq,
7711 NULL,
7712 &cu->comp_unit_obstack,
7713 hashtab_obstack_allocate,
7714 dummy_obstack_deallocate);
7715
7716 if (has_children)
7717 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7718 &info_ptr, comp_unit_die);
7719 cu->dies = comp_unit_die;
7720 /* comp_unit_die is not stored in die_hash, no need. */
7721
7722 /* We try not to read any attributes in this function, because not
7723 all CUs needed for references have been loaded yet, and symbol
7724 table processing isn't initialized. But we have to set the CU language,
7725 or we won't be able to build types correctly.
7726 Similarly, if we do not read the producer, we can not apply
7727 producer-specific interpretation. */
7728 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7729 }
7730
7731 /* Load the DIEs associated with PER_CU into memory. */
7732
7733 static void
7734 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7735 enum language pretend_language)
7736 {
7737 gdb_assert (! this_cu->is_debug_types);
7738
7739 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7740 load_full_comp_unit_reader, &pretend_language);
7741 }
7742
7743 /* Add a DIE to the delayed physname list. */
7744
7745 static void
7746 add_to_method_list (struct type *type, int fnfield_index, int index,
7747 const char *name, struct die_info *die,
7748 struct dwarf2_cu *cu)
7749 {
7750 struct delayed_method_info mi;
7751 mi.type = type;
7752 mi.fnfield_index = fnfield_index;
7753 mi.index = index;
7754 mi.name = name;
7755 mi.die = die;
7756 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7757 }
7758
7759 /* A cleanup for freeing the delayed method list. */
7760
7761 static void
7762 free_delayed_list (void *ptr)
7763 {
7764 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7765 if (cu->method_list != NULL)
7766 {
7767 VEC_free (delayed_method_info, cu->method_list);
7768 cu->method_list = NULL;
7769 }
7770 }
7771
7772 /* Compute the physnames of any methods on the CU's method list.
7773
7774 The computation of method physnames is delayed in order to avoid the
7775 (bad) condition that one of the method's formal parameters is of an as yet
7776 incomplete type. */
7777
7778 static void
7779 compute_delayed_physnames (struct dwarf2_cu *cu)
7780 {
7781 int i;
7782 struct delayed_method_info *mi;
7783 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7784 {
7785 const char *physname;
7786 struct fn_fieldlist *fn_flp
7787 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7788 physname = dwarf2_physname (mi->name, mi->die, cu);
7789 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7790 = physname ? physname : "";
7791 }
7792 }
7793
7794 /* Go objects should be embedded in a DW_TAG_module DIE,
7795 and it's not clear if/how imported objects will appear.
7796 To keep Go support simple until that's worked out,
7797 go back through what we've read and create something usable.
7798 We could do this while processing each DIE, and feels kinda cleaner,
7799 but that way is more invasive.
7800 This is to, for example, allow the user to type "p var" or "b main"
7801 without having to specify the package name, and allow lookups
7802 of module.object to work in contexts that use the expression
7803 parser. */
7804
7805 static void
7806 fixup_go_packaging (struct dwarf2_cu *cu)
7807 {
7808 char *package_name = NULL;
7809 struct pending *list;
7810 int i;
7811
7812 for (list = global_symbols; list != NULL; list = list->next)
7813 {
7814 for (i = 0; i < list->nsyms; ++i)
7815 {
7816 struct symbol *sym = list->symbol[i];
7817
7818 if (SYMBOL_LANGUAGE (sym) == language_go
7819 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7820 {
7821 char *this_package_name = go_symbol_package_name (sym);
7822
7823 if (this_package_name == NULL)
7824 continue;
7825 if (package_name == NULL)
7826 package_name = this_package_name;
7827 else
7828 {
7829 if (strcmp (package_name, this_package_name) != 0)
7830 complaint (&symfile_complaints,
7831 _("Symtab %s has objects from two different Go packages: %s and %s"),
7832 (symbol_symtab (sym) != NULL
7833 ? symtab_to_filename_for_display
7834 (symbol_symtab (sym))
7835 : objfile_name (cu->objfile)),
7836 this_package_name, package_name);
7837 xfree (this_package_name);
7838 }
7839 }
7840 }
7841 }
7842
7843 if (package_name != NULL)
7844 {
7845 struct objfile *objfile = cu->objfile;
7846 const char *saved_package_name
7847 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7848 package_name,
7849 strlen (package_name));
7850 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7851 saved_package_name, objfile);
7852 struct symbol *sym;
7853
7854 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7855
7856 sym = allocate_symbol (objfile);
7857 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7858 SYMBOL_SET_NAMES (sym, saved_package_name,
7859 strlen (saved_package_name), 0, objfile);
7860 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7861 e.g., "main" finds the "main" module and not C's main(). */
7862 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7863 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7864 SYMBOL_TYPE (sym) = type;
7865
7866 add_symbol_to_list (sym, &global_symbols);
7867
7868 xfree (package_name);
7869 }
7870 }
7871
7872 /* Return the symtab for PER_CU. This works properly regardless of
7873 whether we're using the index or psymtabs. */
7874
7875 static struct compunit_symtab *
7876 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7877 {
7878 return (dwarf2_per_objfile->using_index
7879 ? per_cu->v.quick->compunit_symtab
7880 : per_cu->v.psymtab->compunit_symtab);
7881 }
7882
7883 /* A helper function for computing the list of all symbol tables
7884 included by PER_CU. */
7885
7886 static void
7887 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7888 htab_t all_children, htab_t all_type_symtabs,
7889 struct dwarf2_per_cu_data *per_cu,
7890 struct compunit_symtab *immediate_parent)
7891 {
7892 void **slot;
7893 int ix;
7894 struct compunit_symtab *cust;
7895 struct dwarf2_per_cu_data *iter;
7896
7897 slot = htab_find_slot (all_children, per_cu, INSERT);
7898 if (*slot != NULL)
7899 {
7900 /* This inclusion and its children have been processed. */
7901 return;
7902 }
7903
7904 *slot = per_cu;
7905 /* Only add a CU if it has a symbol table. */
7906 cust = get_compunit_symtab (per_cu);
7907 if (cust != NULL)
7908 {
7909 /* If this is a type unit only add its symbol table if we haven't
7910 seen it yet (type unit per_cu's can share symtabs). */
7911 if (per_cu->is_debug_types)
7912 {
7913 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7914 if (*slot == NULL)
7915 {
7916 *slot = cust;
7917 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7918 if (cust->user == NULL)
7919 cust->user = immediate_parent;
7920 }
7921 }
7922 else
7923 {
7924 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7925 if (cust->user == NULL)
7926 cust->user = immediate_parent;
7927 }
7928 }
7929
7930 for (ix = 0;
7931 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7932 ++ix)
7933 {
7934 recursively_compute_inclusions (result, all_children,
7935 all_type_symtabs, iter, cust);
7936 }
7937 }
7938
7939 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7940 PER_CU. */
7941
7942 static void
7943 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7944 {
7945 gdb_assert (! per_cu->is_debug_types);
7946
7947 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7948 {
7949 int ix, len;
7950 struct dwarf2_per_cu_data *per_cu_iter;
7951 struct compunit_symtab *compunit_symtab_iter;
7952 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7953 htab_t all_children, all_type_symtabs;
7954 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7955
7956 /* If we don't have a symtab, we can just skip this case. */
7957 if (cust == NULL)
7958 return;
7959
7960 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7961 NULL, xcalloc, xfree);
7962 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7963 NULL, xcalloc, xfree);
7964
7965 for (ix = 0;
7966 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7967 ix, per_cu_iter);
7968 ++ix)
7969 {
7970 recursively_compute_inclusions (&result_symtabs, all_children,
7971 all_type_symtabs, per_cu_iter,
7972 cust);
7973 }
7974
7975 /* Now we have a transitive closure of all the included symtabs. */
7976 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7977 cust->includes
7978 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7979 struct compunit_symtab *, len + 1);
7980 for (ix = 0;
7981 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7982 compunit_symtab_iter);
7983 ++ix)
7984 cust->includes[ix] = compunit_symtab_iter;
7985 cust->includes[len] = NULL;
7986
7987 VEC_free (compunit_symtab_ptr, result_symtabs);
7988 htab_delete (all_children);
7989 htab_delete (all_type_symtabs);
7990 }
7991 }
7992
7993 /* Compute the 'includes' field for the symtabs of all the CUs we just
7994 read. */
7995
7996 static void
7997 process_cu_includes (void)
7998 {
7999 int ix;
8000 struct dwarf2_per_cu_data *iter;
8001
8002 for (ix = 0;
8003 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8004 ix, iter);
8005 ++ix)
8006 {
8007 if (! iter->is_debug_types)
8008 compute_compunit_symtab_includes (iter);
8009 }
8010
8011 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8012 }
8013
8014 /* Generate full symbol information for PER_CU, whose DIEs have
8015 already been loaded into memory. */
8016
8017 static void
8018 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8019 enum language pretend_language)
8020 {
8021 struct dwarf2_cu *cu = per_cu->cu;
8022 struct objfile *objfile = per_cu->objfile;
8023 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8024 CORE_ADDR lowpc, highpc;
8025 struct compunit_symtab *cust;
8026 struct cleanup *back_to, *delayed_list_cleanup;
8027 CORE_ADDR baseaddr;
8028 struct block *static_block;
8029 CORE_ADDR addr;
8030
8031 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8032
8033 buildsym_init ();
8034 back_to = make_cleanup (really_free_pendings, NULL);
8035 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8036
8037 cu->list_in_scope = &file_symbols;
8038
8039 cu->language = pretend_language;
8040 cu->language_defn = language_def (cu->language);
8041
8042 /* Do line number decoding in read_file_scope () */
8043 process_die (cu->dies, cu);
8044
8045 /* For now fudge the Go package. */
8046 if (cu->language == language_go)
8047 fixup_go_packaging (cu);
8048
8049 /* Now that we have processed all the DIEs in the CU, all the types
8050 should be complete, and it should now be safe to compute all of the
8051 physnames. */
8052 compute_delayed_physnames (cu);
8053 do_cleanups (delayed_list_cleanup);
8054
8055 /* Some compilers don't define a DW_AT_high_pc attribute for the
8056 compilation unit. If the DW_AT_high_pc is missing, synthesize
8057 it, by scanning the DIE's below the compilation unit. */
8058 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8059
8060 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8061 static_block = end_symtab_get_static_block (addr, 0, 1);
8062
8063 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8064 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8065 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8066 addrmap to help ensure it has an accurate map of pc values belonging to
8067 this comp unit. */
8068 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8069
8070 cust = end_symtab_from_static_block (static_block,
8071 SECT_OFF_TEXT (objfile), 0);
8072
8073 if (cust != NULL)
8074 {
8075 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8076
8077 /* Set symtab language to language from DW_AT_language. If the
8078 compilation is from a C file generated by language preprocessors, do
8079 not set the language if it was already deduced by start_subfile. */
8080 if (!(cu->language == language_c
8081 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8082 COMPUNIT_FILETABS (cust)->language = cu->language;
8083
8084 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8085 produce DW_AT_location with location lists but it can be possibly
8086 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8087 there were bugs in prologue debug info, fixed later in GCC-4.5
8088 by "unwind info for epilogues" patch (which is not directly related).
8089
8090 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8091 needed, it would be wrong due to missing DW_AT_producer there.
8092
8093 Still one can confuse GDB by using non-standard GCC compilation
8094 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8095 */
8096 if (cu->has_loclist && gcc_4_minor >= 5)
8097 cust->locations_valid = 1;
8098
8099 if (gcc_4_minor >= 5)
8100 cust->epilogue_unwind_valid = 1;
8101
8102 cust->call_site_htab = cu->call_site_htab;
8103 }
8104
8105 if (dwarf2_per_objfile->using_index)
8106 per_cu->v.quick->compunit_symtab = cust;
8107 else
8108 {
8109 struct partial_symtab *pst = per_cu->v.psymtab;
8110 pst->compunit_symtab = cust;
8111 pst->readin = 1;
8112 }
8113
8114 /* Push it for inclusion processing later. */
8115 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8116
8117 do_cleanups (back_to);
8118 }
8119
8120 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8121 already been loaded into memory. */
8122
8123 static void
8124 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8125 enum language pretend_language)
8126 {
8127 struct dwarf2_cu *cu = per_cu->cu;
8128 struct objfile *objfile = per_cu->objfile;
8129 struct compunit_symtab *cust;
8130 struct cleanup *back_to, *delayed_list_cleanup;
8131 struct signatured_type *sig_type;
8132
8133 gdb_assert (per_cu->is_debug_types);
8134 sig_type = (struct signatured_type *) per_cu;
8135
8136 buildsym_init ();
8137 back_to = make_cleanup (really_free_pendings, NULL);
8138 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8139
8140 cu->list_in_scope = &file_symbols;
8141
8142 cu->language = pretend_language;
8143 cu->language_defn = language_def (cu->language);
8144
8145 /* The symbol tables are set up in read_type_unit_scope. */
8146 process_die (cu->dies, cu);
8147
8148 /* For now fudge the Go package. */
8149 if (cu->language == language_go)
8150 fixup_go_packaging (cu);
8151
8152 /* Now that we have processed all the DIEs in the CU, all the types
8153 should be complete, and it should now be safe to compute all of the
8154 physnames. */
8155 compute_delayed_physnames (cu);
8156 do_cleanups (delayed_list_cleanup);
8157
8158 /* TUs share symbol tables.
8159 If this is the first TU to use this symtab, complete the construction
8160 of it with end_expandable_symtab. Otherwise, complete the addition of
8161 this TU's symbols to the existing symtab. */
8162 if (sig_type->type_unit_group->compunit_symtab == NULL)
8163 {
8164 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8165 sig_type->type_unit_group->compunit_symtab = cust;
8166
8167 if (cust != NULL)
8168 {
8169 /* Set symtab language to language from DW_AT_language. If the
8170 compilation is from a C file generated by language preprocessors,
8171 do not set the language if it was already deduced by
8172 start_subfile. */
8173 if (!(cu->language == language_c
8174 && COMPUNIT_FILETABS (cust)->language != language_c))
8175 COMPUNIT_FILETABS (cust)->language = cu->language;
8176 }
8177 }
8178 else
8179 {
8180 augment_type_symtab ();
8181 cust = sig_type->type_unit_group->compunit_symtab;
8182 }
8183
8184 if (dwarf2_per_objfile->using_index)
8185 per_cu->v.quick->compunit_symtab = cust;
8186 else
8187 {
8188 struct partial_symtab *pst = per_cu->v.psymtab;
8189 pst->compunit_symtab = cust;
8190 pst->readin = 1;
8191 }
8192
8193 do_cleanups (back_to);
8194 }
8195
8196 /* Process an imported unit DIE. */
8197
8198 static void
8199 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8200 {
8201 struct attribute *attr;
8202
8203 /* For now we don't handle imported units in type units. */
8204 if (cu->per_cu->is_debug_types)
8205 {
8206 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8207 " supported in type units [in module %s]"),
8208 objfile_name (cu->objfile));
8209 }
8210
8211 attr = dwarf2_attr (die, DW_AT_import, cu);
8212 if (attr != NULL)
8213 {
8214 struct dwarf2_per_cu_data *per_cu;
8215 struct symtab *imported_symtab;
8216 sect_offset offset;
8217 int is_dwz;
8218
8219 offset = dwarf2_get_ref_die_offset (attr);
8220 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8221 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8222
8223 /* If necessary, add it to the queue and load its DIEs. */
8224 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8225 load_full_comp_unit (per_cu, cu->language);
8226
8227 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8228 per_cu);
8229 }
8230 }
8231
8232 /* Reset the in_process bit of a die. */
8233
8234 static void
8235 reset_die_in_process (void *arg)
8236 {
8237 struct die_info *die = (struct die_info *) arg;
8238
8239 die->in_process = 0;
8240 }
8241
8242 /* Process a die and its children. */
8243
8244 static void
8245 process_die (struct die_info *die, struct dwarf2_cu *cu)
8246 {
8247 struct cleanup *in_process;
8248
8249 /* We should only be processing those not already in process. */
8250 gdb_assert (!die->in_process);
8251
8252 die->in_process = 1;
8253 in_process = make_cleanup (reset_die_in_process,die);
8254
8255 switch (die->tag)
8256 {
8257 case DW_TAG_padding:
8258 break;
8259 case DW_TAG_compile_unit:
8260 case DW_TAG_partial_unit:
8261 read_file_scope (die, cu);
8262 break;
8263 case DW_TAG_type_unit:
8264 read_type_unit_scope (die, cu);
8265 break;
8266 case DW_TAG_subprogram:
8267 case DW_TAG_inlined_subroutine:
8268 read_func_scope (die, cu);
8269 break;
8270 case DW_TAG_lexical_block:
8271 case DW_TAG_try_block:
8272 case DW_TAG_catch_block:
8273 read_lexical_block_scope (die, cu);
8274 break;
8275 case DW_TAG_GNU_call_site:
8276 read_call_site_scope (die, cu);
8277 break;
8278 case DW_TAG_class_type:
8279 case DW_TAG_interface_type:
8280 case DW_TAG_structure_type:
8281 case DW_TAG_union_type:
8282 process_structure_scope (die, cu);
8283 break;
8284 case DW_TAG_enumeration_type:
8285 process_enumeration_scope (die, cu);
8286 break;
8287
8288 /* These dies have a type, but processing them does not create
8289 a symbol or recurse to process the children. Therefore we can
8290 read them on-demand through read_type_die. */
8291 case DW_TAG_subroutine_type:
8292 case DW_TAG_set_type:
8293 case DW_TAG_array_type:
8294 case DW_TAG_pointer_type:
8295 case DW_TAG_ptr_to_member_type:
8296 case DW_TAG_reference_type:
8297 case DW_TAG_string_type:
8298 break;
8299
8300 case DW_TAG_base_type:
8301 case DW_TAG_subrange_type:
8302 case DW_TAG_typedef:
8303 /* Add a typedef symbol for the type definition, if it has a
8304 DW_AT_name. */
8305 new_symbol (die, read_type_die (die, cu), cu);
8306 break;
8307 case DW_TAG_common_block:
8308 read_common_block (die, cu);
8309 break;
8310 case DW_TAG_common_inclusion:
8311 break;
8312 case DW_TAG_namespace:
8313 cu->processing_has_namespace_info = 1;
8314 read_namespace (die, cu);
8315 break;
8316 case DW_TAG_module:
8317 cu->processing_has_namespace_info = 1;
8318 read_module (die, cu);
8319 break;
8320 case DW_TAG_imported_declaration:
8321 cu->processing_has_namespace_info = 1;
8322 if (read_namespace_alias (die, cu))
8323 break;
8324 /* The declaration is not a global namespace alias: fall through. */
8325 case DW_TAG_imported_module:
8326 cu->processing_has_namespace_info = 1;
8327 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8328 || cu->language != language_fortran))
8329 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8330 dwarf_tag_name (die->tag));
8331 read_import_statement (die, cu);
8332 break;
8333
8334 case DW_TAG_imported_unit:
8335 process_imported_unit_die (die, cu);
8336 break;
8337
8338 default:
8339 new_symbol (die, NULL, cu);
8340 break;
8341 }
8342
8343 do_cleanups (in_process);
8344 }
8345 \f
8346 /* DWARF name computation. */
8347
8348 /* A helper function for dwarf2_compute_name which determines whether DIE
8349 needs to have the name of the scope prepended to the name listed in the
8350 die. */
8351
8352 static int
8353 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8354 {
8355 struct attribute *attr;
8356
8357 switch (die->tag)
8358 {
8359 case DW_TAG_namespace:
8360 case DW_TAG_typedef:
8361 case DW_TAG_class_type:
8362 case DW_TAG_interface_type:
8363 case DW_TAG_structure_type:
8364 case DW_TAG_union_type:
8365 case DW_TAG_enumeration_type:
8366 case DW_TAG_enumerator:
8367 case DW_TAG_subprogram:
8368 case DW_TAG_inlined_subroutine:
8369 case DW_TAG_member:
8370 case DW_TAG_imported_declaration:
8371 return 1;
8372
8373 case DW_TAG_variable:
8374 case DW_TAG_constant:
8375 /* We only need to prefix "globally" visible variables. These include
8376 any variable marked with DW_AT_external or any variable that
8377 lives in a namespace. [Variables in anonymous namespaces
8378 require prefixing, but they are not DW_AT_external.] */
8379
8380 if (dwarf2_attr (die, DW_AT_specification, cu))
8381 {
8382 struct dwarf2_cu *spec_cu = cu;
8383
8384 return die_needs_namespace (die_specification (die, &spec_cu),
8385 spec_cu);
8386 }
8387
8388 attr = dwarf2_attr (die, DW_AT_external, cu);
8389 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8390 && die->parent->tag != DW_TAG_module)
8391 return 0;
8392 /* A variable in a lexical block of some kind does not need a
8393 namespace, even though in C++ such variables may be external
8394 and have a mangled name. */
8395 if (die->parent->tag == DW_TAG_lexical_block
8396 || die->parent->tag == DW_TAG_try_block
8397 || die->parent->tag == DW_TAG_catch_block
8398 || die->parent->tag == DW_TAG_subprogram)
8399 return 0;
8400 return 1;
8401
8402 default:
8403 return 0;
8404 }
8405 }
8406
8407 /* Retrieve the last character from a mem_file. */
8408
8409 static void
8410 do_ui_file_peek_last (void *object, const char *buffer, long length)
8411 {
8412 char *last_char_p = (char *) object;
8413
8414 if (length > 0)
8415 *last_char_p = buffer[length - 1];
8416 }
8417
8418 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8419 compute the physname for the object, which include a method's:
8420 - formal parameters (C++/Java),
8421 - receiver type (Go),
8422 - return type (Java).
8423
8424 The term "physname" is a bit confusing.
8425 For C++, for example, it is the demangled name.
8426 For Go, for example, it's the mangled name.
8427
8428 For Ada, return the DIE's linkage name rather than the fully qualified
8429 name. PHYSNAME is ignored..
8430
8431 The result is allocated on the objfile_obstack and canonicalized. */
8432
8433 static const char *
8434 dwarf2_compute_name (const char *name,
8435 struct die_info *die, struct dwarf2_cu *cu,
8436 int physname)
8437 {
8438 struct objfile *objfile = cu->objfile;
8439
8440 if (name == NULL)
8441 name = dwarf2_name (die, cu);
8442
8443 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8444 but otherwise compute it by typename_concat inside GDB.
8445 FIXME: Actually this is not really true, or at least not always true.
8446 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8447 Fortran names because there is no mangling standard. So new_symbol_full
8448 will set the demangled name to the result of dwarf2_full_name, and it is
8449 the demangled name that GDB uses if it exists. */
8450 if (cu->language == language_ada
8451 || (cu->language == language_fortran && physname))
8452 {
8453 /* For Ada unit, we prefer the linkage name over the name, as
8454 the former contains the exported name, which the user expects
8455 to be able to reference. Ideally, we want the user to be able
8456 to reference this entity using either natural or linkage name,
8457 but we haven't started looking at this enhancement yet. */
8458 const char *linkage_name;
8459
8460 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8461 if (linkage_name == NULL)
8462 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8463 if (linkage_name != NULL)
8464 return linkage_name;
8465 }
8466
8467 /* These are the only languages we know how to qualify names in. */
8468 if (name != NULL
8469 && (cu->language == language_cplus || cu->language == language_java
8470 || cu->language == language_fortran || cu->language == language_d))
8471 {
8472 if (die_needs_namespace (die, cu))
8473 {
8474 long length;
8475 const char *prefix;
8476 struct ui_file *buf;
8477 char *intermediate_name;
8478 const char *canonical_name = NULL;
8479
8480 prefix = determine_prefix (die, cu);
8481 buf = mem_fileopen ();
8482 if (*prefix != '\0')
8483 {
8484 char *prefixed_name = typename_concat (NULL, prefix, name,
8485 physname, cu);
8486
8487 fputs_unfiltered (prefixed_name, buf);
8488 xfree (prefixed_name);
8489 }
8490 else
8491 fputs_unfiltered (name, buf);
8492
8493 /* Template parameters may be specified in the DIE's DW_AT_name, or
8494 as children with DW_TAG_template_type_param or
8495 DW_TAG_value_type_param. If the latter, add them to the name
8496 here. If the name already has template parameters, then
8497 skip this step; some versions of GCC emit both, and
8498 it is more efficient to use the pre-computed name.
8499
8500 Something to keep in mind about this process: it is very
8501 unlikely, or in some cases downright impossible, to produce
8502 something that will match the mangled name of a function.
8503 If the definition of the function has the same debug info,
8504 we should be able to match up with it anyway. But fallbacks
8505 using the minimal symbol, for instance to find a method
8506 implemented in a stripped copy of libstdc++, will not work.
8507 If we do not have debug info for the definition, we will have to
8508 match them up some other way.
8509
8510 When we do name matching there is a related problem with function
8511 templates; two instantiated function templates are allowed to
8512 differ only by their return types, which we do not add here. */
8513
8514 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8515 {
8516 struct attribute *attr;
8517 struct die_info *child;
8518 int first = 1;
8519
8520 die->building_fullname = 1;
8521
8522 for (child = die->child; child != NULL; child = child->sibling)
8523 {
8524 struct type *type;
8525 LONGEST value;
8526 const gdb_byte *bytes;
8527 struct dwarf2_locexpr_baton *baton;
8528 struct value *v;
8529
8530 if (child->tag != DW_TAG_template_type_param
8531 && child->tag != DW_TAG_template_value_param)
8532 continue;
8533
8534 if (first)
8535 {
8536 fputs_unfiltered ("<", buf);
8537 first = 0;
8538 }
8539 else
8540 fputs_unfiltered (", ", buf);
8541
8542 attr = dwarf2_attr (child, DW_AT_type, cu);
8543 if (attr == NULL)
8544 {
8545 complaint (&symfile_complaints,
8546 _("template parameter missing DW_AT_type"));
8547 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8548 continue;
8549 }
8550 type = die_type (child, cu);
8551
8552 if (child->tag == DW_TAG_template_type_param)
8553 {
8554 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8555 continue;
8556 }
8557
8558 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8559 if (attr == NULL)
8560 {
8561 complaint (&symfile_complaints,
8562 _("template parameter missing "
8563 "DW_AT_const_value"));
8564 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8565 continue;
8566 }
8567
8568 dwarf2_const_value_attr (attr, type, name,
8569 &cu->comp_unit_obstack, cu,
8570 &value, &bytes, &baton);
8571
8572 if (TYPE_NOSIGN (type))
8573 /* GDB prints characters as NUMBER 'CHAR'. If that's
8574 changed, this can use value_print instead. */
8575 c_printchar (value, type, buf);
8576 else
8577 {
8578 struct value_print_options opts;
8579
8580 if (baton != NULL)
8581 v = dwarf2_evaluate_loc_desc (type, NULL,
8582 baton->data,
8583 baton->size,
8584 baton->per_cu);
8585 else if (bytes != NULL)
8586 {
8587 v = allocate_value (type);
8588 memcpy (value_contents_writeable (v), bytes,
8589 TYPE_LENGTH (type));
8590 }
8591 else
8592 v = value_from_longest (type, value);
8593
8594 /* Specify decimal so that we do not depend on
8595 the radix. */
8596 get_formatted_print_options (&opts, 'd');
8597 opts.raw = 1;
8598 value_print (v, buf, &opts);
8599 release_value (v);
8600 value_free (v);
8601 }
8602 }
8603
8604 die->building_fullname = 0;
8605
8606 if (!first)
8607 {
8608 /* Close the argument list, with a space if necessary
8609 (nested templates). */
8610 char last_char = '\0';
8611 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8612 if (last_char == '>')
8613 fputs_unfiltered (" >", buf);
8614 else
8615 fputs_unfiltered (">", buf);
8616 }
8617 }
8618
8619 /* For Java and C++ methods, append formal parameter type
8620 information, if PHYSNAME. */
8621
8622 if (physname && die->tag == DW_TAG_subprogram
8623 && (cu->language == language_cplus
8624 || cu->language == language_java))
8625 {
8626 struct type *type = read_type_die (die, cu);
8627
8628 c_type_print_args (type, buf, 1, cu->language,
8629 &type_print_raw_options);
8630
8631 if (cu->language == language_java)
8632 {
8633 /* For java, we must append the return type to method
8634 names. */
8635 if (die->tag == DW_TAG_subprogram)
8636 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8637 0, 0, &type_print_raw_options);
8638 }
8639 else if (cu->language == language_cplus)
8640 {
8641 /* Assume that an artificial first parameter is
8642 "this", but do not crash if it is not. RealView
8643 marks unnamed (and thus unused) parameters as
8644 artificial; there is no way to differentiate
8645 the two cases. */
8646 if (TYPE_NFIELDS (type) > 0
8647 && TYPE_FIELD_ARTIFICIAL (type, 0)
8648 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8649 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8650 0))))
8651 fputs_unfiltered (" const", buf);
8652 }
8653 }
8654
8655 intermediate_name = ui_file_xstrdup (buf, &length);
8656 ui_file_delete (buf);
8657
8658 if (cu->language == language_cplus)
8659 canonical_name
8660 = dwarf2_canonicalize_name (intermediate_name, cu,
8661 &objfile->per_bfd->storage_obstack);
8662
8663 /* If we only computed INTERMEDIATE_NAME, or if
8664 INTERMEDIATE_NAME is already canonical, then we need to
8665 copy it to the appropriate obstack. */
8666 if (canonical_name == NULL || canonical_name == intermediate_name)
8667 name = ((const char *)
8668 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8669 intermediate_name,
8670 strlen (intermediate_name)));
8671 else
8672 name = canonical_name;
8673
8674 xfree (intermediate_name);
8675 }
8676 }
8677
8678 return name;
8679 }
8680
8681 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8682 If scope qualifiers are appropriate they will be added. The result
8683 will be allocated on the storage_obstack, or NULL if the DIE does
8684 not have a name. NAME may either be from a previous call to
8685 dwarf2_name or NULL.
8686
8687 The output string will be canonicalized (if C++/Java). */
8688
8689 static const char *
8690 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8691 {
8692 return dwarf2_compute_name (name, die, cu, 0);
8693 }
8694
8695 /* Construct a physname for the given DIE in CU. NAME may either be
8696 from a previous call to dwarf2_name or NULL. The result will be
8697 allocated on the objfile_objstack or NULL if the DIE does not have a
8698 name.
8699
8700 The output string will be canonicalized (if C++/Java). */
8701
8702 static const char *
8703 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8704 {
8705 struct objfile *objfile = cu->objfile;
8706 struct attribute *attr;
8707 const char *retval, *mangled = NULL, *canon = NULL;
8708 struct cleanup *back_to;
8709 int need_copy = 1;
8710
8711 /* In this case dwarf2_compute_name is just a shortcut not building anything
8712 on its own. */
8713 if (!die_needs_namespace (die, cu))
8714 return dwarf2_compute_name (name, die, cu, 1);
8715
8716 back_to = make_cleanup (null_cleanup, NULL);
8717
8718 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8719 if (mangled == NULL)
8720 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8721
8722 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8723 has computed. */
8724 if (mangled != NULL)
8725 {
8726 char *demangled;
8727
8728 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8729 type. It is easier for GDB users to search for such functions as
8730 `name(params)' than `long name(params)'. In such case the minimal
8731 symbol names do not match the full symbol names but for template
8732 functions there is never a need to look up their definition from their
8733 declaration so the only disadvantage remains the minimal symbol
8734 variant `long name(params)' does not have the proper inferior type.
8735 */
8736
8737 if (cu->language == language_go)
8738 {
8739 /* This is a lie, but we already lie to the caller new_symbol_full.
8740 new_symbol_full assumes we return the mangled name.
8741 This just undoes that lie until things are cleaned up. */
8742 demangled = NULL;
8743 }
8744 else
8745 {
8746 demangled = gdb_demangle (mangled,
8747 (DMGL_PARAMS | DMGL_ANSI
8748 | (cu->language == language_java
8749 ? DMGL_JAVA | DMGL_RET_POSTFIX
8750 : DMGL_RET_DROP)));
8751 }
8752 if (demangled)
8753 {
8754 make_cleanup (xfree, demangled);
8755 canon = demangled;
8756 }
8757 else
8758 {
8759 canon = mangled;
8760 need_copy = 0;
8761 }
8762 }
8763
8764 if (canon == NULL || check_physname)
8765 {
8766 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8767
8768 if (canon != NULL && strcmp (physname, canon) != 0)
8769 {
8770 /* It may not mean a bug in GDB. The compiler could also
8771 compute DW_AT_linkage_name incorrectly. But in such case
8772 GDB would need to be bug-to-bug compatible. */
8773
8774 complaint (&symfile_complaints,
8775 _("Computed physname <%s> does not match demangled <%s> "
8776 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8777 physname, canon, mangled, die->offset.sect_off,
8778 objfile_name (objfile));
8779
8780 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8781 is available here - over computed PHYSNAME. It is safer
8782 against both buggy GDB and buggy compilers. */
8783
8784 retval = canon;
8785 }
8786 else
8787 {
8788 retval = physname;
8789 need_copy = 0;
8790 }
8791 }
8792 else
8793 retval = canon;
8794
8795 if (need_copy)
8796 retval = ((const char *)
8797 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8798 retval, strlen (retval)));
8799
8800 do_cleanups (back_to);
8801 return retval;
8802 }
8803
8804 /* Inspect DIE in CU for a namespace alias. If one exists, record
8805 a new symbol for it.
8806
8807 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8808
8809 static int
8810 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8811 {
8812 struct attribute *attr;
8813
8814 /* If the die does not have a name, this is not a namespace
8815 alias. */
8816 attr = dwarf2_attr (die, DW_AT_name, cu);
8817 if (attr != NULL)
8818 {
8819 int num;
8820 struct die_info *d = die;
8821 struct dwarf2_cu *imported_cu = cu;
8822
8823 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8824 keep inspecting DIEs until we hit the underlying import. */
8825 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8826 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8827 {
8828 attr = dwarf2_attr (d, DW_AT_import, cu);
8829 if (attr == NULL)
8830 break;
8831
8832 d = follow_die_ref (d, attr, &imported_cu);
8833 if (d->tag != DW_TAG_imported_declaration)
8834 break;
8835 }
8836
8837 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8838 {
8839 complaint (&symfile_complaints,
8840 _("DIE at 0x%x has too many recursively imported "
8841 "declarations"), d->offset.sect_off);
8842 return 0;
8843 }
8844
8845 if (attr != NULL)
8846 {
8847 struct type *type;
8848 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8849
8850 type = get_die_type_at_offset (offset, cu->per_cu);
8851 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8852 {
8853 /* This declaration is a global namespace alias. Add
8854 a symbol for it whose type is the aliased namespace. */
8855 new_symbol (die, type, cu);
8856 return 1;
8857 }
8858 }
8859 }
8860
8861 return 0;
8862 }
8863
8864 /* Return the using directives repository (global or local?) to use in the
8865 current context for LANGUAGE.
8866
8867 For Ada, imported declarations can materialize renamings, which *may* be
8868 global. However it is impossible (for now?) in DWARF to distinguish
8869 "external" imported declarations and "static" ones. As all imported
8870 declarations seem to be static in all other languages, make them all CU-wide
8871 global only in Ada. */
8872
8873 static struct using_direct **
8874 using_directives (enum language language)
8875 {
8876 if (language == language_ada && context_stack_depth == 0)
8877 return &global_using_directives;
8878 else
8879 return &local_using_directives;
8880 }
8881
8882 /* Read the import statement specified by the given die and record it. */
8883
8884 static void
8885 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8886 {
8887 struct objfile *objfile = cu->objfile;
8888 struct attribute *import_attr;
8889 struct die_info *imported_die, *child_die;
8890 struct dwarf2_cu *imported_cu;
8891 const char *imported_name;
8892 const char *imported_name_prefix;
8893 const char *canonical_name;
8894 const char *import_alias;
8895 const char *imported_declaration = NULL;
8896 const char *import_prefix;
8897 VEC (const_char_ptr) *excludes = NULL;
8898 struct cleanup *cleanups;
8899
8900 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8901 if (import_attr == NULL)
8902 {
8903 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8904 dwarf_tag_name (die->tag));
8905 return;
8906 }
8907
8908 imported_cu = cu;
8909 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8910 imported_name = dwarf2_name (imported_die, imported_cu);
8911 if (imported_name == NULL)
8912 {
8913 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8914
8915 The import in the following code:
8916 namespace A
8917 {
8918 typedef int B;
8919 }
8920
8921 int main ()
8922 {
8923 using A::B;
8924 B b;
8925 return b;
8926 }
8927
8928 ...
8929 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8930 <52> DW_AT_decl_file : 1
8931 <53> DW_AT_decl_line : 6
8932 <54> DW_AT_import : <0x75>
8933 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8934 <59> DW_AT_name : B
8935 <5b> DW_AT_decl_file : 1
8936 <5c> DW_AT_decl_line : 2
8937 <5d> DW_AT_type : <0x6e>
8938 ...
8939 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8940 <76> DW_AT_byte_size : 4
8941 <77> DW_AT_encoding : 5 (signed)
8942
8943 imports the wrong die ( 0x75 instead of 0x58 ).
8944 This case will be ignored until the gcc bug is fixed. */
8945 return;
8946 }
8947
8948 /* Figure out the local name after import. */
8949 import_alias = dwarf2_name (die, cu);
8950
8951 /* Figure out where the statement is being imported to. */
8952 import_prefix = determine_prefix (die, cu);
8953
8954 /* Figure out what the scope of the imported die is and prepend it
8955 to the name of the imported die. */
8956 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8957
8958 if (imported_die->tag != DW_TAG_namespace
8959 && imported_die->tag != DW_TAG_module)
8960 {
8961 imported_declaration = imported_name;
8962 canonical_name = imported_name_prefix;
8963 }
8964 else if (strlen (imported_name_prefix) > 0)
8965 canonical_name = obconcat (&objfile->objfile_obstack,
8966 imported_name_prefix,
8967 (cu->language == language_d ? "." : "::"),
8968 imported_name, (char *) NULL);
8969 else
8970 canonical_name = imported_name;
8971
8972 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8973
8974 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8975 for (child_die = die->child; child_die && child_die->tag;
8976 child_die = sibling_die (child_die))
8977 {
8978 /* DWARF-4: A Fortran use statement with a “rename list” may be
8979 represented by an imported module entry with an import attribute
8980 referring to the module and owned entries corresponding to those
8981 entities that are renamed as part of being imported. */
8982
8983 if (child_die->tag != DW_TAG_imported_declaration)
8984 {
8985 complaint (&symfile_complaints,
8986 _("child DW_TAG_imported_declaration expected "
8987 "- DIE at 0x%x [in module %s]"),
8988 child_die->offset.sect_off, objfile_name (objfile));
8989 continue;
8990 }
8991
8992 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8993 if (import_attr == NULL)
8994 {
8995 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8996 dwarf_tag_name (child_die->tag));
8997 continue;
8998 }
8999
9000 imported_cu = cu;
9001 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9002 &imported_cu);
9003 imported_name = dwarf2_name (imported_die, imported_cu);
9004 if (imported_name == NULL)
9005 {
9006 complaint (&symfile_complaints,
9007 _("child DW_TAG_imported_declaration has unknown "
9008 "imported name - DIE at 0x%x [in module %s]"),
9009 child_die->offset.sect_off, objfile_name (objfile));
9010 continue;
9011 }
9012
9013 VEC_safe_push (const_char_ptr, excludes, imported_name);
9014
9015 process_die (child_die, cu);
9016 }
9017
9018 add_using_directive (using_directives (cu->language),
9019 import_prefix,
9020 canonical_name,
9021 import_alias,
9022 imported_declaration,
9023 excludes,
9024 0,
9025 &objfile->objfile_obstack);
9026
9027 do_cleanups (cleanups);
9028 }
9029
9030 /* Cleanup function for handle_DW_AT_stmt_list. */
9031
9032 static void
9033 free_cu_line_header (void *arg)
9034 {
9035 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
9036
9037 free_line_header (cu->line_header);
9038 cu->line_header = NULL;
9039 }
9040
9041 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9042 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9043 this, it was first present in GCC release 4.3.0. */
9044
9045 static int
9046 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9047 {
9048 if (!cu->checked_producer)
9049 check_producer (cu);
9050
9051 return cu->producer_is_gcc_lt_4_3;
9052 }
9053
9054 static void
9055 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9056 const char **name, const char **comp_dir)
9057 {
9058 /* Find the filename. Do not use dwarf2_name here, since the filename
9059 is not a source language identifier. */
9060 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9061 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9062
9063 if (*comp_dir == NULL
9064 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9065 && IS_ABSOLUTE_PATH (*name))
9066 {
9067 char *d = ldirname (*name);
9068
9069 *comp_dir = d;
9070 if (d != NULL)
9071 make_cleanup (xfree, d);
9072 }
9073 if (*comp_dir != NULL)
9074 {
9075 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9076 directory, get rid of it. */
9077 const char *cp = strchr (*comp_dir, ':');
9078
9079 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9080 *comp_dir = cp + 1;
9081 }
9082
9083 if (*name == NULL)
9084 *name = "<unknown>";
9085 }
9086
9087 /* Handle DW_AT_stmt_list for a compilation unit.
9088 DIE is the DW_TAG_compile_unit die for CU.
9089 COMP_DIR is the compilation directory. LOWPC is passed to
9090 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9091
9092 static void
9093 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9094 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9095 {
9096 struct objfile *objfile = dwarf2_per_objfile->objfile;
9097 struct attribute *attr;
9098 unsigned int line_offset;
9099 struct line_header line_header_local;
9100 hashval_t line_header_local_hash;
9101 unsigned u;
9102 void **slot;
9103 int decode_mapping;
9104
9105 gdb_assert (! cu->per_cu->is_debug_types);
9106
9107 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9108 if (attr == NULL)
9109 return;
9110
9111 line_offset = DW_UNSND (attr);
9112
9113 /* The line header hash table is only created if needed (it exists to
9114 prevent redundant reading of the line table for partial_units).
9115 If we're given a partial_unit, we'll need it. If we're given a
9116 compile_unit, then use the line header hash table if it's already
9117 created, but don't create one just yet. */
9118
9119 if (dwarf2_per_objfile->line_header_hash == NULL
9120 && die->tag == DW_TAG_partial_unit)
9121 {
9122 dwarf2_per_objfile->line_header_hash
9123 = htab_create_alloc_ex (127, line_header_hash_voidp,
9124 line_header_eq_voidp,
9125 free_line_header_voidp,
9126 &objfile->objfile_obstack,
9127 hashtab_obstack_allocate,
9128 dummy_obstack_deallocate);
9129 }
9130
9131 line_header_local.offset.sect_off = line_offset;
9132 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9133 line_header_local_hash = line_header_hash (&line_header_local);
9134 if (dwarf2_per_objfile->line_header_hash != NULL)
9135 {
9136 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9137 &line_header_local,
9138 line_header_local_hash, NO_INSERT);
9139
9140 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9141 is not present in *SLOT (since if there is something in *SLOT then
9142 it will be for a partial_unit). */
9143 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9144 {
9145 gdb_assert (*slot != NULL);
9146 cu->line_header = (struct line_header *) *slot;
9147 return;
9148 }
9149 }
9150
9151 /* dwarf_decode_line_header does not yet provide sufficient information.
9152 We always have to call also dwarf_decode_lines for it. */
9153 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9154 if (cu->line_header == NULL)
9155 return;
9156
9157 if (dwarf2_per_objfile->line_header_hash == NULL)
9158 slot = NULL;
9159 else
9160 {
9161 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9162 &line_header_local,
9163 line_header_local_hash, INSERT);
9164 gdb_assert (slot != NULL);
9165 }
9166 if (slot != NULL && *slot == NULL)
9167 {
9168 /* This newly decoded line number information unit will be owned
9169 by line_header_hash hash table. */
9170 *slot = cu->line_header;
9171 }
9172 else
9173 {
9174 /* We cannot free any current entry in (*slot) as that struct line_header
9175 may be already used by multiple CUs. Create only temporary decoded
9176 line_header for this CU - it may happen at most once for each line
9177 number information unit. And if we're not using line_header_hash
9178 then this is what we want as well. */
9179 gdb_assert (die->tag != DW_TAG_partial_unit);
9180 make_cleanup (free_cu_line_header, cu);
9181 }
9182 decode_mapping = (die->tag != DW_TAG_partial_unit);
9183 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9184 decode_mapping);
9185 }
9186
9187 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9188
9189 static void
9190 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9191 {
9192 struct objfile *objfile = dwarf2_per_objfile->objfile;
9193 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9194 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9195 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9196 CORE_ADDR highpc = ((CORE_ADDR) 0);
9197 struct attribute *attr;
9198 const char *name = NULL;
9199 const char *comp_dir = NULL;
9200 struct die_info *child_die;
9201 bfd *abfd = objfile->obfd;
9202 CORE_ADDR baseaddr;
9203
9204 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9205
9206 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9207
9208 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9209 from finish_block. */
9210 if (lowpc == ((CORE_ADDR) -1))
9211 lowpc = highpc;
9212 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9213
9214 find_file_and_directory (die, cu, &name, &comp_dir);
9215
9216 prepare_one_comp_unit (cu, die, cu->language);
9217
9218 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9219 standardised yet. As a workaround for the language detection we fall
9220 back to the DW_AT_producer string. */
9221 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9222 cu->language = language_opencl;
9223
9224 /* Similar hack for Go. */
9225 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9226 set_cu_language (DW_LANG_Go, cu);
9227
9228 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9229
9230 /* Decode line number information if present. We do this before
9231 processing child DIEs, so that the line header table is available
9232 for DW_AT_decl_file. */
9233 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9234
9235 /* Process all dies in compilation unit. */
9236 if (die->child != NULL)
9237 {
9238 child_die = die->child;
9239 while (child_die && child_die->tag)
9240 {
9241 process_die (child_die, cu);
9242 child_die = sibling_die (child_die);
9243 }
9244 }
9245
9246 /* Decode macro information, if present. Dwarf 2 macro information
9247 refers to information in the line number info statement program
9248 header, so we can only read it if we've read the header
9249 successfully. */
9250 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9251 if (attr && cu->line_header)
9252 {
9253 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9254 complaint (&symfile_complaints,
9255 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9256
9257 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9258 }
9259 else
9260 {
9261 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9262 if (attr && cu->line_header)
9263 {
9264 unsigned int macro_offset = DW_UNSND (attr);
9265
9266 dwarf_decode_macros (cu, macro_offset, 0);
9267 }
9268 }
9269
9270 do_cleanups (back_to);
9271 }
9272
9273 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9274 Create the set of symtabs used by this TU, or if this TU is sharing
9275 symtabs with another TU and the symtabs have already been created
9276 then restore those symtabs in the line header.
9277 We don't need the pc/line-number mapping for type units. */
9278
9279 static void
9280 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9281 {
9282 struct objfile *objfile = dwarf2_per_objfile->objfile;
9283 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9284 struct type_unit_group *tu_group;
9285 int first_time;
9286 struct line_header *lh;
9287 struct attribute *attr;
9288 unsigned int i, line_offset;
9289 struct signatured_type *sig_type;
9290
9291 gdb_assert (per_cu->is_debug_types);
9292 sig_type = (struct signatured_type *) per_cu;
9293
9294 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9295
9296 /* If we're using .gdb_index (includes -readnow) then
9297 per_cu->type_unit_group may not have been set up yet. */
9298 if (sig_type->type_unit_group == NULL)
9299 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9300 tu_group = sig_type->type_unit_group;
9301
9302 /* If we've already processed this stmt_list there's no real need to
9303 do it again, we could fake it and just recreate the part we need
9304 (file name,index -> symtab mapping). If data shows this optimization
9305 is useful we can do it then. */
9306 first_time = tu_group->compunit_symtab == NULL;
9307
9308 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9309 debug info. */
9310 lh = NULL;
9311 if (attr != NULL)
9312 {
9313 line_offset = DW_UNSND (attr);
9314 lh = dwarf_decode_line_header (line_offset, cu);
9315 }
9316 if (lh == NULL)
9317 {
9318 if (first_time)
9319 dwarf2_start_symtab (cu, "", NULL, 0);
9320 else
9321 {
9322 gdb_assert (tu_group->symtabs == NULL);
9323 restart_symtab (tu_group->compunit_symtab, "", 0);
9324 }
9325 return;
9326 }
9327
9328 cu->line_header = lh;
9329 make_cleanup (free_cu_line_header, cu);
9330
9331 if (first_time)
9332 {
9333 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9334
9335 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9336 still initializing it, and our caller (a few levels up)
9337 process_full_type_unit still needs to know if this is the first
9338 time. */
9339
9340 tu_group->num_symtabs = lh->num_file_names;
9341 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9342
9343 for (i = 0; i < lh->num_file_names; ++i)
9344 {
9345 const char *dir = NULL;
9346 struct file_entry *fe = &lh->file_names[i];
9347
9348 if (fe->dir_index && lh->include_dirs != NULL)
9349 dir = lh->include_dirs[fe->dir_index - 1];
9350 dwarf2_start_subfile (fe->name, dir);
9351
9352 if (current_subfile->symtab == NULL)
9353 {
9354 /* NOTE: start_subfile will recognize when it's been passed
9355 a file it has already seen. So we can't assume there's a
9356 simple mapping from lh->file_names to subfiles, plus
9357 lh->file_names may contain dups. */
9358 current_subfile->symtab
9359 = allocate_symtab (cust, current_subfile->name);
9360 }
9361
9362 fe->symtab = current_subfile->symtab;
9363 tu_group->symtabs[i] = fe->symtab;
9364 }
9365 }
9366 else
9367 {
9368 restart_symtab (tu_group->compunit_symtab, "", 0);
9369
9370 for (i = 0; i < lh->num_file_names; ++i)
9371 {
9372 struct file_entry *fe = &lh->file_names[i];
9373
9374 fe->symtab = tu_group->symtabs[i];
9375 }
9376 }
9377
9378 /* The main symtab is allocated last. Type units don't have DW_AT_name
9379 so they don't have a "real" (so to speak) symtab anyway.
9380 There is later code that will assign the main symtab to all symbols
9381 that don't have one. We need to handle the case of a symbol with a
9382 missing symtab (DW_AT_decl_file) anyway. */
9383 }
9384
9385 /* Process DW_TAG_type_unit.
9386 For TUs we want to skip the first top level sibling if it's not the
9387 actual type being defined by this TU. In this case the first top
9388 level sibling is there to provide context only. */
9389
9390 static void
9391 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9392 {
9393 struct die_info *child_die;
9394
9395 prepare_one_comp_unit (cu, die, language_minimal);
9396
9397 /* Initialize (or reinitialize) the machinery for building symtabs.
9398 We do this before processing child DIEs, so that the line header table
9399 is available for DW_AT_decl_file. */
9400 setup_type_unit_groups (die, cu);
9401
9402 if (die->child != NULL)
9403 {
9404 child_die = die->child;
9405 while (child_die && child_die->tag)
9406 {
9407 process_die (child_die, cu);
9408 child_die = sibling_die (child_die);
9409 }
9410 }
9411 }
9412 \f
9413 /* DWO/DWP files.
9414
9415 http://gcc.gnu.org/wiki/DebugFission
9416 http://gcc.gnu.org/wiki/DebugFissionDWP
9417
9418 To simplify handling of both DWO files ("object" files with the DWARF info)
9419 and DWP files (a file with the DWOs packaged up into one file), we treat
9420 DWP files as having a collection of virtual DWO files. */
9421
9422 static hashval_t
9423 hash_dwo_file (const void *item)
9424 {
9425 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9426 hashval_t hash;
9427
9428 hash = htab_hash_string (dwo_file->dwo_name);
9429 if (dwo_file->comp_dir != NULL)
9430 hash += htab_hash_string (dwo_file->comp_dir);
9431 return hash;
9432 }
9433
9434 static int
9435 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9436 {
9437 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9438 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9439
9440 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9441 return 0;
9442 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9443 return lhs->comp_dir == rhs->comp_dir;
9444 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9445 }
9446
9447 /* Allocate a hash table for DWO files. */
9448
9449 static htab_t
9450 allocate_dwo_file_hash_table (void)
9451 {
9452 struct objfile *objfile = dwarf2_per_objfile->objfile;
9453
9454 return htab_create_alloc_ex (41,
9455 hash_dwo_file,
9456 eq_dwo_file,
9457 NULL,
9458 &objfile->objfile_obstack,
9459 hashtab_obstack_allocate,
9460 dummy_obstack_deallocate);
9461 }
9462
9463 /* Lookup DWO file DWO_NAME. */
9464
9465 static void **
9466 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9467 {
9468 struct dwo_file find_entry;
9469 void **slot;
9470
9471 if (dwarf2_per_objfile->dwo_files == NULL)
9472 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9473
9474 memset (&find_entry, 0, sizeof (find_entry));
9475 find_entry.dwo_name = dwo_name;
9476 find_entry.comp_dir = comp_dir;
9477 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9478
9479 return slot;
9480 }
9481
9482 static hashval_t
9483 hash_dwo_unit (const void *item)
9484 {
9485 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9486
9487 /* This drops the top 32 bits of the id, but is ok for a hash. */
9488 return dwo_unit->signature;
9489 }
9490
9491 static int
9492 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9493 {
9494 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9495 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9496
9497 /* The signature is assumed to be unique within the DWO file.
9498 So while object file CU dwo_id's always have the value zero,
9499 that's OK, assuming each object file DWO file has only one CU,
9500 and that's the rule for now. */
9501 return lhs->signature == rhs->signature;
9502 }
9503
9504 /* Allocate a hash table for DWO CUs,TUs.
9505 There is one of these tables for each of CUs,TUs for each DWO file. */
9506
9507 static htab_t
9508 allocate_dwo_unit_table (struct objfile *objfile)
9509 {
9510 /* Start out with a pretty small number.
9511 Generally DWO files contain only one CU and maybe some TUs. */
9512 return htab_create_alloc_ex (3,
9513 hash_dwo_unit,
9514 eq_dwo_unit,
9515 NULL,
9516 &objfile->objfile_obstack,
9517 hashtab_obstack_allocate,
9518 dummy_obstack_deallocate);
9519 }
9520
9521 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9522
9523 struct create_dwo_cu_data
9524 {
9525 struct dwo_file *dwo_file;
9526 struct dwo_unit dwo_unit;
9527 };
9528
9529 /* die_reader_func for create_dwo_cu. */
9530
9531 static void
9532 create_dwo_cu_reader (const struct die_reader_specs *reader,
9533 const gdb_byte *info_ptr,
9534 struct die_info *comp_unit_die,
9535 int has_children,
9536 void *datap)
9537 {
9538 struct dwarf2_cu *cu = reader->cu;
9539 struct objfile *objfile = dwarf2_per_objfile->objfile;
9540 sect_offset offset = cu->per_cu->offset;
9541 struct dwarf2_section_info *section = cu->per_cu->section;
9542 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9543 struct dwo_file *dwo_file = data->dwo_file;
9544 struct dwo_unit *dwo_unit = &data->dwo_unit;
9545 struct attribute *attr;
9546
9547 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9548 if (attr == NULL)
9549 {
9550 complaint (&symfile_complaints,
9551 _("Dwarf Error: debug entry at offset 0x%x is missing"
9552 " its dwo_id [in module %s]"),
9553 offset.sect_off, dwo_file->dwo_name);
9554 return;
9555 }
9556
9557 dwo_unit->dwo_file = dwo_file;
9558 dwo_unit->signature = DW_UNSND (attr);
9559 dwo_unit->section = section;
9560 dwo_unit->offset = offset;
9561 dwo_unit->length = cu->per_cu->length;
9562
9563 if (dwarf_read_debug)
9564 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9565 offset.sect_off, hex_string (dwo_unit->signature));
9566 }
9567
9568 /* Create the dwo_unit for the lone CU in DWO_FILE.
9569 Note: This function processes DWO files only, not DWP files. */
9570
9571 static struct dwo_unit *
9572 create_dwo_cu (struct dwo_file *dwo_file)
9573 {
9574 struct objfile *objfile = dwarf2_per_objfile->objfile;
9575 struct dwarf2_section_info *section = &dwo_file->sections.info;
9576 bfd *abfd;
9577 htab_t cu_htab;
9578 const gdb_byte *info_ptr, *end_ptr;
9579 struct create_dwo_cu_data create_dwo_cu_data;
9580 struct dwo_unit *dwo_unit;
9581
9582 dwarf2_read_section (objfile, section);
9583 info_ptr = section->buffer;
9584
9585 if (info_ptr == NULL)
9586 return NULL;
9587
9588 /* We can't set abfd until now because the section may be empty or
9589 not present, in which case section->asection will be NULL. */
9590 abfd = get_section_bfd_owner (section);
9591
9592 if (dwarf_read_debug)
9593 {
9594 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9595 get_section_name (section),
9596 get_section_file_name (section));
9597 }
9598
9599 create_dwo_cu_data.dwo_file = dwo_file;
9600 dwo_unit = NULL;
9601
9602 end_ptr = info_ptr + section->size;
9603 while (info_ptr < end_ptr)
9604 {
9605 struct dwarf2_per_cu_data per_cu;
9606
9607 memset (&create_dwo_cu_data.dwo_unit, 0,
9608 sizeof (create_dwo_cu_data.dwo_unit));
9609 memset (&per_cu, 0, sizeof (per_cu));
9610 per_cu.objfile = objfile;
9611 per_cu.is_debug_types = 0;
9612 per_cu.offset.sect_off = info_ptr - section->buffer;
9613 per_cu.section = section;
9614
9615 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9616 create_dwo_cu_reader,
9617 &create_dwo_cu_data);
9618
9619 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9620 {
9621 /* If we've already found one, complain. We only support one
9622 because having more than one requires hacking the dwo_name of
9623 each to match, which is highly unlikely to happen. */
9624 if (dwo_unit != NULL)
9625 {
9626 complaint (&symfile_complaints,
9627 _("Multiple CUs in DWO file %s [in module %s]"),
9628 dwo_file->dwo_name, objfile_name (objfile));
9629 break;
9630 }
9631
9632 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9633 *dwo_unit = create_dwo_cu_data.dwo_unit;
9634 }
9635
9636 info_ptr += per_cu.length;
9637 }
9638
9639 return dwo_unit;
9640 }
9641
9642 /* DWP file .debug_{cu,tu}_index section format:
9643 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9644
9645 DWP Version 1:
9646
9647 Both index sections have the same format, and serve to map a 64-bit
9648 signature to a set of section numbers. Each section begins with a header,
9649 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9650 indexes, and a pool of 32-bit section numbers. The index sections will be
9651 aligned at 8-byte boundaries in the file.
9652
9653 The index section header consists of:
9654
9655 V, 32 bit version number
9656 -, 32 bits unused
9657 N, 32 bit number of compilation units or type units in the index
9658 M, 32 bit number of slots in the hash table
9659
9660 Numbers are recorded using the byte order of the application binary.
9661
9662 The hash table begins at offset 16 in the section, and consists of an array
9663 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9664 order of the application binary). Unused slots in the hash table are 0.
9665 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9666
9667 The parallel table begins immediately after the hash table
9668 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9669 array of 32-bit indexes (using the byte order of the application binary),
9670 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9671 table contains a 32-bit index into the pool of section numbers. For unused
9672 hash table slots, the corresponding entry in the parallel table will be 0.
9673
9674 The pool of section numbers begins immediately following the hash table
9675 (at offset 16 + 12 * M from the beginning of the section). The pool of
9676 section numbers consists of an array of 32-bit words (using the byte order
9677 of the application binary). Each item in the array is indexed starting
9678 from 0. The hash table entry provides the index of the first section
9679 number in the set. Additional section numbers in the set follow, and the
9680 set is terminated by a 0 entry (section number 0 is not used in ELF).
9681
9682 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9683 section must be the first entry in the set, and the .debug_abbrev.dwo must
9684 be the second entry. Other members of the set may follow in any order.
9685
9686 ---
9687
9688 DWP Version 2:
9689
9690 DWP Version 2 combines all the .debug_info, etc. sections into one,
9691 and the entries in the index tables are now offsets into these sections.
9692 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9693 section.
9694
9695 Index Section Contents:
9696 Header
9697 Hash Table of Signatures dwp_hash_table.hash_table
9698 Parallel Table of Indices dwp_hash_table.unit_table
9699 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9700 Table of Section Sizes dwp_hash_table.v2.sizes
9701
9702 The index section header consists of:
9703
9704 V, 32 bit version number
9705 L, 32 bit number of columns in the table of section offsets
9706 N, 32 bit number of compilation units or type units in the index
9707 M, 32 bit number of slots in the hash table
9708
9709 Numbers are recorded using the byte order of the application binary.
9710
9711 The hash table has the same format as version 1.
9712 The parallel table of indices has the same format as version 1,
9713 except that the entries are origin-1 indices into the table of sections
9714 offsets and the table of section sizes.
9715
9716 The table of offsets begins immediately following the parallel table
9717 (at offset 16 + 12 * M from the beginning of the section). The table is
9718 a two-dimensional array of 32-bit words (using the byte order of the
9719 application binary), with L columns and N+1 rows, in row-major order.
9720 Each row in the array is indexed starting from 0. The first row provides
9721 a key to the remaining rows: each column in this row provides an identifier
9722 for a debug section, and the offsets in the same column of subsequent rows
9723 refer to that section. The section identifiers are:
9724
9725 DW_SECT_INFO 1 .debug_info.dwo
9726 DW_SECT_TYPES 2 .debug_types.dwo
9727 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9728 DW_SECT_LINE 4 .debug_line.dwo
9729 DW_SECT_LOC 5 .debug_loc.dwo
9730 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9731 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9732 DW_SECT_MACRO 8 .debug_macro.dwo
9733
9734 The offsets provided by the CU and TU index sections are the base offsets
9735 for the contributions made by each CU or TU to the corresponding section
9736 in the package file. Each CU and TU header contains an abbrev_offset
9737 field, used to find the abbreviations table for that CU or TU within the
9738 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9739 be interpreted as relative to the base offset given in the index section.
9740 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9741 should be interpreted as relative to the base offset for .debug_line.dwo,
9742 and offsets into other debug sections obtained from DWARF attributes should
9743 also be interpreted as relative to the corresponding base offset.
9744
9745 The table of sizes begins immediately following the table of offsets.
9746 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9747 with L columns and N rows, in row-major order. Each row in the array is
9748 indexed starting from 1 (row 0 is shared by the two tables).
9749
9750 ---
9751
9752 Hash table lookup is handled the same in version 1 and 2:
9753
9754 We assume that N and M will not exceed 2^32 - 1.
9755 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9756
9757 Given a 64-bit compilation unit signature or a type signature S, an entry
9758 in the hash table is located as follows:
9759
9760 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9761 the low-order k bits all set to 1.
9762
9763 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9764
9765 3) If the hash table entry at index H matches the signature, use that
9766 entry. If the hash table entry at index H is unused (all zeroes),
9767 terminate the search: the signature is not present in the table.
9768
9769 4) Let H = (H + H') modulo M. Repeat at Step 3.
9770
9771 Because M > N and H' and M are relatively prime, the search is guaranteed
9772 to stop at an unused slot or find the match. */
9773
9774 /* Create a hash table to map DWO IDs to their CU/TU entry in
9775 .debug_{info,types}.dwo in DWP_FILE.
9776 Returns NULL if there isn't one.
9777 Note: This function processes DWP files only, not DWO files. */
9778
9779 static struct dwp_hash_table *
9780 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9781 {
9782 struct objfile *objfile = dwarf2_per_objfile->objfile;
9783 bfd *dbfd = dwp_file->dbfd;
9784 const gdb_byte *index_ptr, *index_end;
9785 struct dwarf2_section_info *index;
9786 uint32_t version, nr_columns, nr_units, nr_slots;
9787 struct dwp_hash_table *htab;
9788
9789 if (is_debug_types)
9790 index = &dwp_file->sections.tu_index;
9791 else
9792 index = &dwp_file->sections.cu_index;
9793
9794 if (dwarf2_section_empty_p (index))
9795 return NULL;
9796 dwarf2_read_section (objfile, index);
9797
9798 index_ptr = index->buffer;
9799 index_end = index_ptr + index->size;
9800
9801 version = read_4_bytes (dbfd, index_ptr);
9802 index_ptr += 4;
9803 if (version == 2)
9804 nr_columns = read_4_bytes (dbfd, index_ptr);
9805 else
9806 nr_columns = 0;
9807 index_ptr += 4;
9808 nr_units = read_4_bytes (dbfd, index_ptr);
9809 index_ptr += 4;
9810 nr_slots = read_4_bytes (dbfd, index_ptr);
9811 index_ptr += 4;
9812
9813 if (version != 1 && version != 2)
9814 {
9815 error (_("Dwarf Error: unsupported DWP file version (%s)"
9816 " [in module %s]"),
9817 pulongest (version), dwp_file->name);
9818 }
9819 if (nr_slots != (nr_slots & -nr_slots))
9820 {
9821 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9822 " is not power of 2 [in module %s]"),
9823 pulongest (nr_slots), dwp_file->name);
9824 }
9825
9826 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9827 htab->version = version;
9828 htab->nr_columns = nr_columns;
9829 htab->nr_units = nr_units;
9830 htab->nr_slots = nr_slots;
9831 htab->hash_table = index_ptr;
9832 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9833
9834 /* Exit early if the table is empty. */
9835 if (nr_slots == 0 || nr_units == 0
9836 || (version == 2 && nr_columns == 0))
9837 {
9838 /* All must be zero. */
9839 if (nr_slots != 0 || nr_units != 0
9840 || (version == 2 && nr_columns != 0))
9841 {
9842 complaint (&symfile_complaints,
9843 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9844 " all zero [in modules %s]"),
9845 dwp_file->name);
9846 }
9847 return htab;
9848 }
9849
9850 if (version == 1)
9851 {
9852 htab->section_pool.v1.indices =
9853 htab->unit_table + sizeof (uint32_t) * nr_slots;
9854 /* It's harder to decide whether the section is too small in v1.
9855 V1 is deprecated anyway so we punt. */
9856 }
9857 else
9858 {
9859 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9860 int *ids = htab->section_pool.v2.section_ids;
9861 /* Reverse map for error checking. */
9862 int ids_seen[DW_SECT_MAX + 1];
9863 int i;
9864
9865 if (nr_columns < 2)
9866 {
9867 error (_("Dwarf Error: bad DWP hash table, too few columns"
9868 " in section table [in module %s]"),
9869 dwp_file->name);
9870 }
9871 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9872 {
9873 error (_("Dwarf Error: bad DWP hash table, too many columns"
9874 " in section table [in module %s]"),
9875 dwp_file->name);
9876 }
9877 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9878 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9879 for (i = 0; i < nr_columns; ++i)
9880 {
9881 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9882
9883 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9884 {
9885 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9886 " in section table [in module %s]"),
9887 id, dwp_file->name);
9888 }
9889 if (ids_seen[id] != -1)
9890 {
9891 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9892 " id %d in section table [in module %s]"),
9893 id, dwp_file->name);
9894 }
9895 ids_seen[id] = i;
9896 ids[i] = id;
9897 }
9898 /* Must have exactly one info or types section. */
9899 if (((ids_seen[DW_SECT_INFO] != -1)
9900 + (ids_seen[DW_SECT_TYPES] != -1))
9901 != 1)
9902 {
9903 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9904 " DWO info/types section [in module %s]"),
9905 dwp_file->name);
9906 }
9907 /* Must have an abbrev section. */
9908 if (ids_seen[DW_SECT_ABBREV] == -1)
9909 {
9910 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9911 " section [in module %s]"),
9912 dwp_file->name);
9913 }
9914 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9915 htab->section_pool.v2.sizes =
9916 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9917 * nr_units * nr_columns);
9918 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9919 * nr_units * nr_columns))
9920 > index_end)
9921 {
9922 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9923 " [in module %s]"),
9924 dwp_file->name);
9925 }
9926 }
9927
9928 return htab;
9929 }
9930
9931 /* Update SECTIONS with the data from SECTP.
9932
9933 This function is like the other "locate" section routines that are
9934 passed to bfd_map_over_sections, but in this context the sections to
9935 read comes from the DWP V1 hash table, not the full ELF section table.
9936
9937 The result is non-zero for success, or zero if an error was found. */
9938
9939 static int
9940 locate_v1_virtual_dwo_sections (asection *sectp,
9941 struct virtual_v1_dwo_sections *sections)
9942 {
9943 const struct dwop_section_names *names = &dwop_section_names;
9944
9945 if (section_is_p (sectp->name, &names->abbrev_dwo))
9946 {
9947 /* There can be only one. */
9948 if (sections->abbrev.s.section != NULL)
9949 return 0;
9950 sections->abbrev.s.section = sectp;
9951 sections->abbrev.size = bfd_get_section_size (sectp);
9952 }
9953 else if (section_is_p (sectp->name, &names->info_dwo)
9954 || section_is_p (sectp->name, &names->types_dwo))
9955 {
9956 /* There can be only one. */
9957 if (sections->info_or_types.s.section != NULL)
9958 return 0;
9959 sections->info_or_types.s.section = sectp;
9960 sections->info_or_types.size = bfd_get_section_size (sectp);
9961 }
9962 else if (section_is_p (sectp->name, &names->line_dwo))
9963 {
9964 /* There can be only one. */
9965 if (sections->line.s.section != NULL)
9966 return 0;
9967 sections->line.s.section = sectp;
9968 sections->line.size = bfd_get_section_size (sectp);
9969 }
9970 else if (section_is_p (sectp->name, &names->loc_dwo))
9971 {
9972 /* There can be only one. */
9973 if (sections->loc.s.section != NULL)
9974 return 0;
9975 sections->loc.s.section = sectp;
9976 sections->loc.size = bfd_get_section_size (sectp);
9977 }
9978 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9979 {
9980 /* There can be only one. */
9981 if (sections->macinfo.s.section != NULL)
9982 return 0;
9983 sections->macinfo.s.section = sectp;
9984 sections->macinfo.size = bfd_get_section_size (sectp);
9985 }
9986 else if (section_is_p (sectp->name, &names->macro_dwo))
9987 {
9988 /* There can be only one. */
9989 if (sections->macro.s.section != NULL)
9990 return 0;
9991 sections->macro.s.section = sectp;
9992 sections->macro.size = bfd_get_section_size (sectp);
9993 }
9994 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9995 {
9996 /* There can be only one. */
9997 if (sections->str_offsets.s.section != NULL)
9998 return 0;
9999 sections->str_offsets.s.section = sectp;
10000 sections->str_offsets.size = bfd_get_section_size (sectp);
10001 }
10002 else
10003 {
10004 /* No other kind of section is valid. */
10005 return 0;
10006 }
10007
10008 return 1;
10009 }
10010
10011 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10012 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10013 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10014 This is for DWP version 1 files. */
10015
10016 static struct dwo_unit *
10017 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10018 uint32_t unit_index,
10019 const char *comp_dir,
10020 ULONGEST signature, int is_debug_types)
10021 {
10022 struct objfile *objfile = dwarf2_per_objfile->objfile;
10023 const struct dwp_hash_table *dwp_htab =
10024 is_debug_types ? dwp_file->tus : dwp_file->cus;
10025 bfd *dbfd = dwp_file->dbfd;
10026 const char *kind = is_debug_types ? "TU" : "CU";
10027 struct dwo_file *dwo_file;
10028 struct dwo_unit *dwo_unit;
10029 struct virtual_v1_dwo_sections sections;
10030 void **dwo_file_slot;
10031 char *virtual_dwo_name;
10032 struct dwarf2_section_info *cutu;
10033 struct cleanup *cleanups;
10034 int i;
10035
10036 gdb_assert (dwp_file->version == 1);
10037
10038 if (dwarf_read_debug)
10039 {
10040 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10041 kind,
10042 pulongest (unit_index), hex_string (signature),
10043 dwp_file->name);
10044 }
10045
10046 /* Fetch the sections of this DWO unit.
10047 Put a limit on the number of sections we look for so that bad data
10048 doesn't cause us to loop forever. */
10049
10050 #define MAX_NR_V1_DWO_SECTIONS \
10051 (1 /* .debug_info or .debug_types */ \
10052 + 1 /* .debug_abbrev */ \
10053 + 1 /* .debug_line */ \
10054 + 1 /* .debug_loc */ \
10055 + 1 /* .debug_str_offsets */ \
10056 + 1 /* .debug_macro or .debug_macinfo */ \
10057 + 1 /* trailing zero */)
10058
10059 memset (&sections, 0, sizeof (sections));
10060 cleanups = make_cleanup (null_cleanup, 0);
10061
10062 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10063 {
10064 asection *sectp;
10065 uint32_t section_nr =
10066 read_4_bytes (dbfd,
10067 dwp_htab->section_pool.v1.indices
10068 + (unit_index + i) * sizeof (uint32_t));
10069
10070 if (section_nr == 0)
10071 break;
10072 if (section_nr >= dwp_file->num_sections)
10073 {
10074 error (_("Dwarf Error: bad DWP hash table, section number too large"
10075 " [in module %s]"),
10076 dwp_file->name);
10077 }
10078
10079 sectp = dwp_file->elf_sections[section_nr];
10080 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10081 {
10082 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10083 " [in module %s]"),
10084 dwp_file->name);
10085 }
10086 }
10087
10088 if (i < 2
10089 || dwarf2_section_empty_p (&sections.info_or_types)
10090 || dwarf2_section_empty_p (&sections.abbrev))
10091 {
10092 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10093 " [in module %s]"),
10094 dwp_file->name);
10095 }
10096 if (i == MAX_NR_V1_DWO_SECTIONS)
10097 {
10098 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10099 " [in module %s]"),
10100 dwp_file->name);
10101 }
10102
10103 /* It's easier for the rest of the code if we fake a struct dwo_file and
10104 have dwo_unit "live" in that. At least for now.
10105
10106 The DWP file can be made up of a random collection of CUs and TUs.
10107 However, for each CU + set of TUs that came from the same original DWO
10108 file, we can combine them back into a virtual DWO file to save space
10109 (fewer struct dwo_file objects to allocate). Remember that for really
10110 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10111
10112 virtual_dwo_name =
10113 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10114 get_section_id (&sections.abbrev),
10115 get_section_id (&sections.line),
10116 get_section_id (&sections.loc),
10117 get_section_id (&sections.str_offsets));
10118 make_cleanup (xfree, virtual_dwo_name);
10119 /* Can we use an existing virtual DWO file? */
10120 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10121 /* Create one if necessary. */
10122 if (*dwo_file_slot == NULL)
10123 {
10124 if (dwarf_read_debug)
10125 {
10126 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10127 virtual_dwo_name);
10128 }
10129 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10130 dwo_file->dwo_name
10131 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10132 virtual_dwo_name,
10133 strlen (virtual_dwo_name));
10134 dwo_file->comp_dir = comp_dir;
10135 dwo_file->sections.abbrev = sections.abbrev;
10136 dwo_file->sections.line = sections.line;
10137 dwo_file->sections.loc = sections.loc;
10138 dwo_file->sections.macinfo = sections.macinfo;
10139 dwo_file->sections.macro = sections.macro;
10140 dwo_file->sections.str_offsets = sections.str_offsets;
10141 /* The "str" section is global to the entire DWP file. */
10142 dwo_file->sections.str = dwp_file->sections.str;
10143 /* The info or types section is assigned below to dwo_unit,
10144 there's no need to record it in dwo_file.
10145 Also, we can't simply record type sections in dwo_file because
10146 we record a pointer into the vector in dwo_unit. As we collect more
10147 types we'll grow the vector and eventually have to reallocate space
10148 for it, invalidating all copies of pointers into the previous
10149 contents. */
10150 *dwo_file_slot = dwo_file;
10151 }
10152 else
10153 {
10154 if (dwarf_read_debug)
10155 {
10156 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10157 virtual_dwo_name);
10158 }
10159 dwo_file = (struct dwo_file *) *dwo_file_slot;
10160 }
10161 do_cleanups (cleanups);
10162
10163 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10164 dwo_unit->dwo_file = dwo_file;
10165 dwo_unit->signature = signature;
10166 dwo_unit->section =
10167 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10168 *dwo_unit->section = sections.info_or_types;
10169 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10170
10171 return dwo_unit;
10172 }
10173
10174 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10175 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10176 piece within that section used by a TU/CU, return a virtual section
10177 of just that piece. */
10178
10179 static struct dwarf2_section_info
10180 create_dwp_v2_section (struct dwarf2_section_info *section,
10181 bfd_size_type offset, bfd_size_type size)
10182 {
10183 struct dwarf2_section_info result;
10184 asection *sectp;
10185
10186 gdb_assert (section != NULL);
10187 gdb_assert (!section->is_virtual);
10188
10189 memset (&result, 0, sizeof (result));
10190 result.s.containing_section = section;
10191 result.is_virtual = 1;
10192
10193 if (size == 0)
10194 return result;
10195
10196 sectp = get_section_bfd_section (section);
10197
10198 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10199 bounds of the real section. This is a pretty-rare event, so just
10200 flag an error (easier) instead of a warning and trying to cope. */
10201 if (sectp == NULL
10202 || offset + size > bfd_get_section_size (sectp))
10203 {
10204 bfd *abfd = sectp->owner;
10205
10206 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10207 " in section %s [in module %s]"),
10208 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10209 objfile_name (dwarf2_per_objfile->objfile));
10210 }
10211
10212 result.virtual_offset = offset;
10213 result.size = size;
10214 return result;
10215 }
10216
10217 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10218 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10219 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10220 This is for DWP version 2 files. */
10221
10222 static struct dwo_unit *
10223 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10224 uint32_t unit_index,
10225 const char *comp_dir,
10226 ULONGEST signature, int is_debug_types)
10227 {
10228 struct objfile *objfile = dwarf2_per_objfile->objfile;
10229 const struct dwp_hash_table *dwp_htab =
10230 is_debug_types ? dwp_file->tus : dwp_file->cus;
10231 bfd *dbfd = dwp_file->dbfd;
10232 const char *kind = is_debug_types ? "TU" : "CU";
10233 struct dwo_file *dwo_file;
10234 struct dwo_unit *dwo_unit;
10235 struct virtual_v2_dwo_sections sections;
10236 void **dwo_file_slot;
10237 char *virtual_dwo_name;
10238 struct dwarf2_section_info *cutu;
10239 struct cleanup *cleanups;
10240 int i;
10241
10242 gdb_assert (dwp_file->version == 2);
10243
10244 if (dwarf_read_debug)
10245 {
10246 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10247 kind,
10248 pulongest (unit_index), hex_string (signature),
10249 dwp_file->name);
10250 }
10251
10252 /* Fetch the section offsets of this DWO unit. */
10253
10254 memset (&sections, 0, sizeof (sections));
10255 cleanups = make_cleanup (null_cleanup, 0);
10256
10257 for (i = 0; i < dwp_htab->nr_columns; ++i)
10258 {
10259 uint32_t offset = read_4_bytes (dbfd,
10260 dwp_htab->section_pool.v2.offsets
10261 + (((unit_index - 1) * dwp_htab->nr_columns
10262 + i)
10263 * sizeof (uint32_t)));
10264 uint32_t size = read_4_bytes (dbfd,
10265 dwp_htab->section_pool.v2.sizes
10266 + (((unit_index - 1) * dwp_htab->nr_columns
10267 + i)
10268 * sizeof (uint32_t)));
10269
10270 switch (dwp_htab->section_pool.v2.section_ids[i])
10271 {
10272 case DW_SECT_INFO:
10273 case DW_SECT_TYPES:
10274 sections.info_or_types_offset = offset;
10275 sections.info_or_types_size = size;
10276 break;
10277 case DW_SECT_ABBREV:
10278 sections.abbrev_offset = offset;
10279 sections.abbrev_size = size;
10280 break;
10281 case DW_SECT_LINE:
10282 sections.line_offset = offset;
10283 sections.line_size = size;
10284 break;
10285 case DW_SECT_LOC:
10286 sections.loc_offset = offset;
10287 sections.loc_size = size;
10288 break;
10289 case DW_SECT_STR_OFFSETS:
10290 sections.str_offsets_offset = offset;
10291 sections.str_offsets_size = size;
10292 break;
10293 case DW_SECT_MACINFO:
10294 sections.macinfo_offset = offset;
10295 sections.macinfo_size = size;
10296 break;
10297 case DW_SECT_MACRO:
10298 sections.macro_offset = offset;
10299 sections.macro_size = size;
10300 break;
10301 }
10302 }
10303
10304 /* It's easier for the rest of the code if we fake a struct dwo_file and
10305 have dwo_unit "live" in that. At least for now.
10306
10307 The DWP file can be made up of a random collection of CUs and TUs.
10308 However, for each CU + set of TUs that came from the same original DWO
10309 file, we can combine them back into a virtual DWO file to save space
10310 (fewer struct dwo_file objects to allocate). Remember that for really
10311 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10312
10313 virtual_dwo_name =
10314 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10315 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10316 (long) (sections.line_size ? sections.line_offset : 0),
10317 (long) (sections.loc_size ? sections.loc_offset : 0),
10318 (long) (sections.str_offsets_size
10319 ? sections.str_offsets_offset : 0));
10320 make_cleanup (xfree, virtual_dwo_name);
10321 /* Can we use an existing virtual DWO file? */
10322 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10323 /* Create one if necessary. */
10324 if (*dwo_file_slot == NULL)
10325 {
10326 if (dwarf_read_debug)
10327 {
10328 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10329 virtual_dwo_name);
10330 }
10331 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10332 dwo_file->dwo_name
10333 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10334 virtual_dwo_name,
10335 strlen (virtual_dwo_name));
10336 dwo_file->comp_dir = comp_dir;
10337 dwo_file->sections.abbrev =
10338 create_dwp_v2_section (&dwp_file->sections.abbrev,
10339 sections.abbrev_offset, sections.abbrev_size);
10340 dwo_file->sections.line =
10341 create_dwp_v2_section (&dwp_file->sections.line,
10342 sections.line_offset, sections.line_size);
10343 dwo_file->sections.loc =
10344 create_dwp_v2_section (&dwp_file->sections.loc,
10345 sections.loc_offset, sections.loc_size);
10346 dwo_file->sections.macinfo =
10347 create_dwp_v2_section (&dwp_file->sections.macinfo,
10348 sections.macinfo_offset, sections.macinfo_size);
10349 dwo_file->sections.macro =
10350 create_dwp_v2_section (&dwp_file->sections.macro,
10351 sections.macro_offset, sections.macro_size);
10352 dwo_file->sections.str_offsets =
10353 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10354 sections.str_offsets_offset,
10355 sections.str_offsets_size);
10356 /* The "str" section is global to the entire DWP file. */
10357 dwo_file->sections.str = dwp_file->sections.str;
10358 /* The info or types section is assigned below to dwo_unit,
10359 there's no need to record it in dwo_file.
10360 Also, we can't simply record type sections in dwo_file because
10361 we record a pointer into the vector in dwo_unit. As we collect more
10362 types we'll grow the vector and eventually have to reallocate space
10363 for it, invalidating all copies of pointers into the previous
10364 contents. */
10365 *dwo_file_slot = dwo_file;
10366 }
10367 else
10368 {
10369 if (dwarf_read_debug)
10370 {
10371 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10372 virtual_dwo_name);
10373 }
10374 dwo_file = (struct dwo_file *) *dwo_file_slot;
10375 }
10376 do_cleanups (cleanups);
10377
10378 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10379 dwo_unit->dwo_file = dwo_file;
10380 dwo_unit->signature = signature;
10381 dwo_unit->section =
10382 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10383 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10384 ? &dwp_file->sections.types
10385 : &dwp_file->sections.info,
10386 sections.info_or_types_offset,
10387 sections.info_or_types_size);
10388 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10389
10390 return dwo_unit;
10391 }
10392
10393 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10394 Returns NULL if the signature isn't found. */
10395
10396 static struct dwo_unit *
10397 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10398 ULONGEST signature, int is_debug_types)
10399 {
10400 const struct dwp_hash_table *dwp_htab =
10401 is_debug_types ? dwp_file->tus : dwp_file->cus;
10402 bfd *dbfd = dwp_file->dbfd;
10403 uint32_t mask = dwp_htab->nr_slots - 1;
10404 uint32_t hash = signature & mask;
10405 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10406 unsigned int i;
10407 void **slot;
10408 struct dwo_unit find_dwo_cu, *dwo_cu;
10409
10410 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10411 find_dwo_cu.signature = signature;
10412 slot = htab_find_slot (is_debug_types
10413 ? dwp_file->loaded_tus
10414 : dwp_file->loaded_cus,
10415 &find_dwo_cu, INSERT);
10416
10417 if (*slot != NULL)
10418 return (struct dwo_unit *) *slot;
10419
10420 /* Use a for loop so that we don't loop forever on bad debug info. */
10421 for (i = 0; i < dwp_htab->nr_slots; ++i)
10422 {
10423 ULONGEST signature_in_table;
10424
10425 signature_in_table =
10426 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10427 if (signature_in_table == signature)
10428 {
10429 uint32_t unit_index =
10430 read_4_bytes (dbfd,
10431 dwp_htab->unit_table + hash * sizeof (uint32_t));
10432
10433 if (dwp_file->version == 1)
10434 {
10435 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10436 comp_dir, signature,
10437 is_debug_types);
10438 }
10439 else
10440 {
10441 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10442 comp_dir, signature,
10443 is_debug_types);
10444 }
10445 return (struct dwo_unit *) *slot;
10446 }
10447 if (signature_in_table == 0)
10448 return NULL;
10449 hash = (hash + hash2) & mask;
10450 }
10451
10452 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10453 " [in module %s]"),
10454 dwp_file->name);
10455 }
10456
10457 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10458 Open the file specified by FILE_NAME and hand it off to BFD for
10459 preliminary analysis. Return a newly initialized bfd *, which
10460 includes a canonicalized copy of FILE_NAME.
10461 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10462 SEARCH_CWD is true if the current directory is to be searched.
10463 It will be searched before debug-file-directory.
10464 If successful, the file is added to the bfd include table of the
10465 objfile's bfd (see gdb_bfd_record_inclusion).
10466 If unable to find/open the file, return NULL.
10467 NOTE: This function is derived from symfile_bfd_open. */
10468
10469 static bfd *
10470 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10471 {
10472 bfd *sym_bfd;
10473 int desc, flags;
10474 char *absolute_name;
10475 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10476 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10477 to debug_file_directory. */
10478 char *search_path;
10479 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10480
10481 if (search_cwd)
10482 {
10483 if (*debug_file_directory != '\0')
10484 search_path = concat (".", dirname_separator_string,
10485 debug_file_directory, (char *) NULL);
10486 else
10487 search_path = xstrdup (".");
10488 }
10489 else
10490 search_path = xstrdup (debug_file_directory);
10491
10492 flags = OPF_RETURN_REALPATH;
10493 if (is_dwp)
10494 flags |= OPF_SEARCH_IN_PATH;
10495 desc = openp (search_path, flags, file_name,
10496 O_RDONLY | O_BINARY, &absolute_name);
10497 xfree (search_path);
10498 if (desc < 0)
10499 return NULL;
10500
10501 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10502 xfree (absolute_name);
10503 if (sym_bfd == NULL)
10504 return NULL;
10505 bfd_set_cacheable (sym_bfd, 1);
10506
10507 if (!bfd_check_format (sym_bfd, bfd_object))
10508 {
10509 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10510 return NULL;
10511 }
10512
10513 /* Success. Record the bfd as having been included by the objfile's bfd.
10514 This is important because things like demangled_names_hash lives in the
10515 objfile's per_bfd space and may have references to things like symbol
10516 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10517 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10518
10519 return sym_bfd;
10520 }
10521
10522 /* Try to open DWO file FILE_NAME.
10523 COMP_DIR is the DW_AT_comp_dir attribute.
10524 The result is the bfd handle of the file.
10525 If there is a problem finding or opening the file, return NULL.
10526 Upon success, the canonicalized path of the file is stored in the bfd,
10527 same as symfile_bfd_open. */
10528
10529 static bfd *
10530 open_dwo_file (const char *file_name, const char *comp_dir)
10531 {
10532 bfd *abfd;
10533
10534 if (IS_ABSOLUTE_PATH (file_name))
10535 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10536
10537 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10538
10539 if (comp_dir != NULL)
10540 {
10541 char *path_to_try = concat (comp_dir, SLASH_STRING,
10542 file_name, (char *) NULL);
10543
10544 /* NOTE: If comp_dir is a relative path, this will also try the
10545 search path, which seems useful. */
10546 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10547 xfree (path_to_try);
10548 if (abfd != NULL)
10549 return abfd;
10550 }
10551
10552 /* That didn't work, try debug-file-directory, which, despite its name,
10553 is a list of paths. */
10554
10555 if (*debug_file_directory == '\0')
10556 return NULL;
10557
10558 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10559 }
10560
10561 /* This function is mapped across the sections and remembers the offset and
10562 size of each of the DWO debugging sections we are interested in. */
10563
10564 static void
10565 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10566 {
10567 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10568 const struct dwop_section_names *names = &dwop_section_names;
10569
10570 if (section_is_p (sectp->name, &names->abbrev_dwo))
10571 {
10572 dwo_sections->abbrev.s.section = sectp;
10573 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10574 }
10575 else if (section_is_p (sectp->name, &names->info_dwo))
10576 {
10577 dwo_sections->info.s.section = sectp;
10578 dwo_sections->info.size = bfd_get_section_size (sectp);
10579 }
10580 else if (section_is_p (sectp->name, &names->line_dwo))
10581 {
10582 dwo_sections->line.s.section = sectp;
10583 dwo_sections->line.size = bfd_get_section_size (sectp);
10584 }
10585 else if (section_is_p (sectp->name, &names->loc_dwo))
10586 {
10587 dwo_sections->loc.s.section = sectp;
10588 dwo_sections->loc.size = bfd_get_section_size (sectp);
10589 }
10590 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10591 {
10592 dwo_sections->macinfo.s.section = sectp;
10593 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10594 }
10595 else if (section_is_p (sectp->name, &names->macro_dwo))
10596 {
10597 dwo_sections->macro.s.section = sectp;
10598 dwo_sections->macro.size = bfd_get_section_size (sectp);
10599 }
10600 else if (section_is_p (sectp->name, &names->str_dwo))
10601 {
10602 dwo_sections->str.s.section = sectp;
10603 dwo_sections->str.size = bfd_get_section_size (sectp);
10604 }
10605 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10606 {
10607 dwo_sections->str_offsets.s.section = sectp;
10608 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10609 }
10610 else if (section_is_p (sectp->name, &names->types_dwo))
10611 {
10612 struct dwarf2_section_info type_section;
10613
10614 memset (&type_section, 0, sizeof (type_section));
10615 type_section.s.section = sectp;
10616 type_section.size = bfd_get_section_size (sectp);
10617 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10618 &type_section);
10619 }
10620 }
10621
10622 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10623 by PER_CU. This is for the non-DWP case.
10624 The result is NULL if DWO_NAME can't be found. */
10625
10626 static struct dwo_file *
10627 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10628 const char *dwo_name, const char *comp_dir)
10629 {
10630 struct objfile *objfile = dwarf2_per_objfile->objfile;
10631 struct dwo_file *dwo_file;
10632 bfd *dbfd;
10633 struct cleanup *cleanups;
10634
10635 dbfd = open_dwo_file (dwo_name, comp_dir);
10636 if (dbfd == NULL)
10637 {
10638 if (dwarf_read_debug)
10639 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10640 return NULL;
10641 }
10642 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10643 dwo_file->dwo_name = dwo_name;
10644 dwo_file->comp_dir = comp_dir;
10645 dwo_file->dbfd = dbfd;
10646
10647 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10648
10649 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10650
10651 dwo_file->cu = create_dwo_cu (dwo_file);
10652
10653 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10654 dwo_file->sections.types);
10655
10656 discard_cleanups (cleanups);
10657
10658 if (dwarf_read_debug)
10659 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10660
10661 return dwo_file;
10662 }
10663
10664 /* This function is mapped across the sections and remembers the offset and
10665 size of each of the DWP debugging sections common to version 1 and 2 that
10666 we are interested in. */
10667
10668 static void
10669 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10670 void *dwp_file_ptr)
10671 {
10672 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10673 const struct dwop_section_names *names = &dwop_section_names;
10674 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10675
10676 /* Record the ELF section number for later lookup: this is what the
10677 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10678 gdb_assert (elf_section_nr < dwp_file->num_sections);
10679 dwp_file->elf_sections[elf_section_nr] = sectp;
10680
10681 /* Look for specific sections that we need. */
10682 if (section_is_p (sectp->name, &names->str_dwo))
10683 {
10684 dwp_file->sections.str.s.section = sectp;
10685 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10686 }
10687 else if (section_is_p (sectp->name, &names->cu_index))
10688 {
10689 dwp_file->sections.cu_index.s.section = sectp;
10690 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10691 }
10692 else if (section_is_p (sectp->name, &names->tu_index))
10693 {
10694 dwp_file->sections.tu_index.s.section = sectp;
10695 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10696 }
10697 }
10698
10699 /* This function is mapped across the sections and remembers the offset and
10700 size of each of the DWP version 2 debugging sections that we are interested
10701 in. This is split into a separate function because we don't know if we
10702 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10703
10704 static void
10705 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10706 {
10707 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10708 const struct dwop_section_names *names = &dwop_section_names;
10709 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10710
10711 /* Record the ELF section number for later lookup: this is what the
10712 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10713 gdb_assert (elf_section_nr < dwp_file->num_sections);
10714 dwp_file->elf_sections[elf_section_nr] = sectp;
10715
10716 /* Look for specific sections that we need. */
10717 if (section_is_p (sectp->name, &names->abbrev_dwo))
10718 {
10719 dwp_file->sections.abbrev.s.section = sectp;
10720 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10721 }
10722 else if (section_is_p (sectp->name, &names->info_dwo))
10723 {
10724 dwp_file->sections.info.s.section = sectp;
10725 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10726 }
10727 else if (section_is_p (sectp->name, &names->line_dwo))
10728 {
10729 dwp_file->sections.line.s.section = sectp;
10730 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10731 }
10732 else if (section_is_p (sectp->name, &names->loc_dwo))
10733 {
10734 dwp_file->sections.loc.s.section = sectp;
10735 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10736 }
10737 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10738 {
10739 dwp_file->sections.macinfo.s.section = sectp;
10740 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10741 }
10742 else if (section_is_p (sectp->name, &names->macro_dwo))
10743 {
10744 dwp_file->sections.macro.s.section = sectp;
10745 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10746 }
10747 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10748 {
10749 dwp_file->sections.str_offsets.s.section = sectp;
10750 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10751 }
10752 else if (section_is_p (sectp->name, &names->types_dwo))
10753 {
10754 dwp_file->sections.types.s.section = sectp;
10755 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10756 }
10757 }
10758
10759 /* Hash function for dwp_file loaded CUs/TUs. */
10760
10761 static hashval_t
10762 hash_dwp_loaded_cutus (const void *item)
10763 {
10764 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10765
10766 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10767 return dwo_unit->signature;
10768 }
10769
10770 /* Equality function for dwp_file loaded CUs/TUs. */
10771
10772 static int
10773 eq_dwp_loaded_cutus (const void *a, const void *b)
10774 {
10775 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10776 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10777
10778 return dua->signature == dub->signature;
10779 }
10780
10781 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10782
10783 static htab_t
10784 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10785 {
10786 return htab_create_alloc_ex (3,
10787 hash_dwp_loaded_cutus,
10788 eq_dwp_loaded_cutus,
10789 NULL,
10790 &objfile->objfile_obstack,
10791 hashtab_obstack_allocate,
10792 dummy_obstack_deallocate);
10793 }
10794
10795 /* Try to open DWP file FILE_NAME.
10796 The result is the bfd handle of the file.
10797 If there is a problem finding or opening the file, return NULL.
10798 Upon success, the canonicalized path of the file is stored in the bfd,
10799 same as symfile_bfd_open. */
10800
10801 static bfd *
10802 open_dwp_file (const char *file_name)
10803 {
10804 bfd *abfd;
10805
10806 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10807 if (abfd != NULL)
10808 return abfd;
10809
10810 /* Work around upstream bug 15652.
10811 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10812 [Whether that's a "bug" is debatable, but it is getting in our way.]
10813 We have no real idea where the dwp file is, because gdb's realpath-ing
10814 of the executable's path may have discarded the needed info.
10815 [IWBN if the dwp file name was recorded in the executable, akin to
10816 .gnu_debuglink, but that doesn't exist yet.]
10817 Strip the directory from FILE_NAME and search again. */
10818 if (*debug_file_directory != '\0')
10819 {
10820 /* Don't implicitly search the current directory here.
10821 If the user wants to search "." to handle this case,
10822 it must be added to debug-file-directory. */
10823 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10824 0 /*search_cwd*/);
10825 }
10826
10827 return NULL;
10828 }
10829
10830 /* Initialize the use of the DWP file for the current objfile.
10831 By convention the name of the DWP file is ${objfile}.dwp.
10832 The result is NULL if it can't be found. */
10833
10834 static struct dwp_file *
10835 open_and_init_dwp_file (void)
10836 {
10837 struct objfile *objfile = dwarf2_per_objfile->objfile;
10838 struct dwp_file *dwp_file;
10839 char *dwp_name;
10840 bfd *dbfd;
10841 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
10842
10843 /* Try to find first .dwp for the binary file before any symbolic links
10844 resolving. */
10845
10846 /* If the objfile is a debug file, find the name of the real binary
10847 file and get the name of dwp file from there. */
10848 if (objfile->separate_debug_objfile_backlink != NULL)
10849 {
10850 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10851 const char *backlink_basename = lbasename (backlink->original_name);
10852 char *debug_dirname = ldirname (objfile->original_name);
10853
10854 make_cleanup (xfree, debug_dirname);
10855 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10856 SLASH_STRING, backlink_basename);
10857 }
10858 else
10859 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10860 make_cleanup (xfree, dwp_name);
10861
10862 dbfd = open_dwp_file (dwp_name);
10863 if (dbfd == NULL
10864 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10865 {
10866 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10867 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10868 make_cleanup (xfree, dwp_name);
10869 dbfd = open_dwp_file (dwp_name);
10870 }
10871
10872 if (dbfd == NULL)
10873 {
10874 if (dwarf_read_debug)
10875 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10876 do_cleanups (cleanups);
10877 return NULL;
10878 }
10879 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10880 dwp_file->name = bfd_get_filename (dbfd);
10881 dwp_file->dbfd = dbfd;
10882 do_cleanups (cleanups);
10883
10884 /* +1: section 0 is unused */
10885 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10886 dwp_file->elf_sections =
10887 OBSTACK_CALLOC (&objfile->objfile_obstack,
10888 dwp_file->num_sections, asection *);
10889
10890 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10891
10892 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10893
10894 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10895
10896 /* The DWP file version is stored in the hash table. Oh well. */
10897 if (dwp_file->cus->version != dwp_file->tus->version)
10898 {
10899 /* Technically speaking, we should try to limp along, but this is
10900 pretty bizarre. We use pulongest here because that's the established
10901 portability solution (e.g, we cannot use %u for uint32_t). */
10902 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10903 " TU version %s [in DWP file %s]"),
10904 pulongest (dwp_file->cus->version),
10905 pulongest (dwp_file->tus->version), dwp_name);
10906 }
10907 dwp_file->version = dwp_file->cus->version;
10908
10909 if (dwp_file->version == 2)
10910 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10911
10912 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10913 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10914
10915 if (dwarf_read_debug)
10916 {
10917 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10918 fprintf_unfiltered (gdb_stdlog,
10919 " %s CUs, %s TUs\n",
10920 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10921 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10922 }
10923
10924 return dwp_file;
10925 }
10926
10927 /* Wrapper around open_and_init_dwp_file, only open it once. */
10928
10929 static struct dwp_file *
10930 get_dwp_file (void)
10931 {
10932 if (! dwarf2_per_objfile->dwp_checked)
10933 {
10934 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10935 dwarf2_per_objfile->dwp_checked = 1;
10936 }
10937 return dwarf2_per_objfile->dwp_file;
10938 }
10939
10940 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10941 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10942 or in the DWP file for the objfile, referenced by THIS_UNIT.
10943 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10944 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10945
10946 This is called, for example, when wanting to read a variable with a
10947 complex location. Therefore we don't want to do file i/o for every call.
10948 Therefore we don't want to look for a DWO file on every call.
10949 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10950 then we check if we've already seen DWO_NAME, and only THEN do we check
10951 for a DWO file.
10952
10953 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10954 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10955
10956 static struct dwo_unit *
10957 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10958 const char *dwo_name, const char *comp_dir,
10959 ULONGEST signature, int is_debug_types)
10960 {
10961 struct objfile *objfile = dwarf2_per_objfile->objfile;
10962 const char *kind = is_debug_types ? "TU" : "CU";
10963 void **dwo_file_slot;
10964 struct dwo_file *dwo_file;
10965 struct dwp_file *dwp_file;
10966
10967 /* First see if there's a DWP file.
10968 If we have a DWP file but didn't find the DWO inside it, don't
10969 look for the original DWO file. It makes gdb behave differently
10970 depending on whether one is debugging in the build tree. */
10971
10972 dwp_file = get_dwp_file ();
10973 if (dwp_file != NULL)
10974 {
10975 const struct dwp_hash_table *dwp_htab =
10976 is_debug_types ? dwp_file->tus : dwp_file->cus;
10977
10978 if (dwp_htab != NULL)
10979 {
10980 struct dwo_unit *dwo_cutu =
10981 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10982 signature, is_debug_types);
10983
10984 if (dwo_cutu != NULL)
10985 {
10986 if (dwarf_read_debug)
10987 {
10988 fprintf_unfiltered (gdb_stdlog,
10989 "Virtual DWO %s %s found: @%s\n",
10990 kind, hex_string (signature),
10991 host_address_to_string (dwo_cutu));
10992 }
10993 return dwo_cutu;
10994 }
10995 }
10996 }
10997 else
10998 {
10999 /* No DWP file, look for the DWO file. */
11000
11001 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11002 if (*dwo_file_slot == NULL)
11003 {
11004 /* Read in the file and build a table of the CUs/TUs it contains. */
11005 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11006 }
11007 /* NOTE: This will be NULL if unable to open the file. */
11008 dwo_file = (struct dwo_file *) *dwo_file_slot;
11009
11010 if (dwo_file != NULL)
11011 {
11012 struct dwo_unit *dwo_cutu = NULL;
11013
11014 if (is_debug_types && dwo_file->tus)
11015 {
11016 struct dwo_unit find_dwo_cutu;
11017
11018 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11019 find_dwo_cutu.signature = signature;
11020 dwo_cutu
11021 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11022 }
11023 else if (!is_debug_types && dwo_file->cu)
11024 {
11025 if (signature == dwo_file->cu->signature)
11026 dwo_cutu = dwo_file->cu;
11027 }
11028
11029 if (dwo_cutu != NULL)
11030 {
11031 if (dwarf_read_debug)
11032 {
11033 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11034 kind, dwo_name, hex_string (signature),
11035 host_address_to_string (dwo_cutu));
11036 }
11037 return dwo_cutu;
11038 }
11039 }
11040 }
11041
11042 /* We didn't find it. This could mean a dwo_id mismatch, or
11043 someone deleted the DWO/DWP file, or the search path isn't set up
11044 correctly to find the file. */
11045
11046 if (dwarf_read_debug)
11047 {
11048 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11049 kind, dwo_name, hex_string (signature));
11050 }
11051
11052 /* This is a warning and not a complaint because it can be caused by
11053 pilot error (e.g., user accidentally deleting the DWO). */
11054 {
11055 /* Print the name of the DWP file if we looked there, helps the user
11056 better diagnose the problem. */
11057 char *dwp_text = NULL;
11058 struct cleanup *cleanups;
11059
11060 if (dwp_file != NULL)
11061 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11062 cleanups = make_cleanup (xfree, dwp_text);
11063
11064 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11065 " [in module %s]"),
11066 kind, dwo_name, hex_string (signature),
11067 dwp_text != NULL ? dwp_text : "",
11068 this_unit->is_debug_types ? "TU" : "CU",
11069 this_unit->offset.sect_off, objfile_name (objfile));
11070
11071 do_cleanups (cleanups);
11072 }
11073 return NULL;
11074 }
11075
11076 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11077 See lookup_dwo_cutu_unit for details. */
11078
11079 static struct dwo_unit *
11080 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11081 const char *dwo_name, const char *comp_dir,
11082 ULONGEST signature)
11083 {
11084 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11085 }
11086
11087 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11088 See lookup_dwo_cutu_unit for details. */
11089
11090 static struct dwo_unit *
11091 lookup_dwo_type_unit (struct signatured_type *this_tu,
11092 const char *dwo_name, const char *comp_dir)
11093 {
11094 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11095 }
11096
11097 /* Traversal function for queue_and_load_all_dwo_tus. */
11098
11099 static int
11100 queue_and_load_dwo_tu (void **slot, void *info)
11101 {
11102 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11103 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11104 ULONGEST signature = dwo_unit->signature;
11105 struct signatured_type *sig_type =
11106 lookup_dwo_signatured_type (per_cu->cu, signature);
11107
11108 if (sig_type != NULL)
11109 {
11110 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11111
11112 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11113 a real dependency of PER_CU on SIG_TYPE. That is detected later
11114 while processing PER_CU. */
11115 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11116 load_full_type_unit (sig_cu);
11117 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11118 }
11119
11120 return 1;
11121 }
11122
11123 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11124 The DWO may have the only definition of the type, though it may not be
11125 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11126 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11127
11128 static void
11129 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11130 {
11131 struct dwo_unit *dwo_unit;
11132 struct dwo_file *dwo_file;
11133
11134 gdb_assert (!per_cu->is_debug_types);
11135 gdb_assert (get_dwp_file () == NULL);
11136 gdb_assert (per_cu->cu != NULL);
11137
11138 dwo_unit = per_cu->cu->dwo_unit;
11139 gdb_assert (dwo_unit != NULL);
11140
11141 dwo_file = dwo_unit->dwo_file;
11142 if (dwo_file->tus != NULL)
11143 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11144 }
11145
11146 /* Free all resources associated with DWO_FILE.
11147 Close the DWO file and munmap the sections.
11148 All memory should be on the objfile obstack. */
11149
11150 static void
11151 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11152 {
11153 int ix;
11154 struct dwarf2_section_info *section;
11155
11156 /* Note: dbfd is NULL for virtual DWO files. */
11157 gdb_bfd_unref (dwo_file->dbfd);
11158
11159 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11160 }
11161
11162 /* Wrapper for free_dwo_file for use in cleanups. */
11163
11164 static void
11165 free_dwo_file_cleanup (void *arg)
11166 {
11167 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11168 struct objfile *objfile = dwarf2_per_objfile->objfile;
11169
11170 free_dwo_file (dwo_file, objfile);
11171 }
11172
11173 /* Traversal function for free_dwo_files. */
11174
11175 static int
11176 free_dwo_file_from_slot (void **slot, void *info)
11177 {
11178 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11179 struct objfile *objfile = (struct objfile *) info;
11180
11181 free_dwo_file (dwo_file, objfile);
11182
11183 return 1;
11184 }
11185
11186 /* Free all resources associated with DWO_FILES. */
11187
11188 static void
11189 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11190 {
11191 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11192 }
11193 \f
11194 /* Read in various DIEs. */
11195
11196 /* qsort helper for inherit_abstract_dies. */
11197
11198 static int
11199 unsigned_int_compar (const void *ap, const void *bp)
11200 {
11201 unsigned int a = *(unsigned int *) ap;
11202 unsigned int b = *(unsigned int *) bp;
11203
11204 return (a > b) - (b > a);
11205 }
11206
11207 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11208 Inherit only the children of the DW_AT_abstract_origin DIE not being
11209 already referenced by DW_AT_abstract_origin from the children of the
11210 current DIE. */
11211
11212 static void
11213 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11214 {
11215 struct die_info *child_die;
11216 unsigned die_children_count;
11217 /* CU offsets which were referenced by children of the current DIE. */
11218 sect_offset *offsets;
11219 sect_offset *offsets_end, *offsetp;
11220 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11221 struct die_info *origin_die;
11222 /* Iterator of the ORIGIN_DIE children. */
11223 struct die_info *origin_child_die;
11224 struct cleanup *cleanups;
11225 struct attribute *attr;
11226 struct dwarf2_cu *origin_cu;
11227 struct pending **origin_previous_list_in_scope;
11228
11229 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11230 if (!attr)
11231 return;
11232
11233 /* Note that following die references may follow to a die in a
11234 different cu. */
11235
11236 origin_cu = cu;
11237 origin_die = follow_die_ref (die, attr, &origin_cu);
11238
11239 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11240 symbols in. */
11241 origin_previous_list_in_scope = origin_cu->list_in_scope;
11242 origin_cu->list_in_scope = cu->list_in_scope;
11243
11244 if (die->tag != origin_die->tag
11245 && !(die->tag == DW_TAG_inlined_subroutine
11246 && origin_die->tag == DW_TAG_subprogram))
11247 complaint (&symfile_complaints,
11248 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11249 die->offset.sect_off, origin_die->offset.sect_off);
11250
11251 child_die = die->child;
11252 die_children_count = 0;
11253 while (child_die && child_die->tag)
11254 {
11255 child_die = sibling_die (child_die);
11256 die_children_count++;
11257 }
11258 offsets = XNEWVEC (sect_offset, die_children_count);
11259 cleanups = make_cleanup (xfree, offsets);
11260
11261 offsets_end = offsets;
11262 for (child_die = die->child;
11263 child_die && child_die->tag;
11264 child_die = sibling_die (child_die))
11265 {
11266 struct die_info *child_origin_die;
11267 struct dwarf2_cu *child_origin_cu;
11268
11269 /* We are trying to process concrete instance entries:
11270 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11271 it's not relevant to our analysis here. i.e. detecting DIEs that are
11272 present in the abstract instance but not referenced in the concrete
11273 one. */
11274 if (child_die->tag == DW_TAG_GNU_call_site)
11275 continue;
11276
11277 /* For each CHILD_DIE, find the corresponding child of
11278 ORIGIN_DIE. If there is more than one layer of
11279 DW_AT_abstract_origin, follow them all; there shouldn't be,
11280 but GCC versions at least through 4.4 generate this (GCC PR
11281 40573). */
11282 child_origin_die = child_die;
11283 child_origin_cu = cu;
11284 while (1)
11285 {
11286 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11287 child_origin_cu);
11288 if (attr == NULL)
11289 break;
11290 child_origin_die = follow_die_ref (child_origin_die, attr,
11291 &child_origin_cu);
11292 }
11293
11294 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11295 counterpart may exist. */
11296 if (child_origin_die != child_die)
11297 {
11298 if (child_die->tag != child_origin_die->tag
11299 && !(child_die->tag == DW_TAG_inlined_subroutine
11300 && child_origin_die->tag == DW_TAG_subprogram))
11301 complaint (&symfile_complaints,
11302 _("Child DIE 0x%x and its abstract origin 0x%x have "
11303 "different tags"), child_die->offset.sect_off,
11304 child_origin_die->offset.sect_off);
11305 if (child_origin_die->parent != origin_die)
11306 complaint (&symfile_complaints,
11307 _("Child DIE 0x%x and its abstract origin 0x%x have "
11308 "different parents"), child_die->offset.sect_off,
11309 child_origin_die->offset.sect_off);
11310 else
11311 *offsets_end++ = child_origin_die->offset;
11312 }
11313 }
11314 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11315 unsigned_int_compar);
11316 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11317 if (offsetp[-1].sect_off == offsetp->sect_off)
11318 complaint (&symfile_complaints,
11319 _("Multiple children of DIE 0x%x refer "
11320 "to DIE 0x%x as their abstract origin"),
11321 die->offset.sect_off, offsetp->sect_off);
11322
11323 offsetp = offsets;
11324 origin_child_die = origin_die->child;
11325 while (origin_child_die && origin_child_die->tag)
11326 {
11327 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11328 while (offsetp < offsets_end
11329 && offsetp->sect_off < origin_child_die->offset.sect_off)
11330 offsetp++;
11331 if (offsetp >= offsets_end
11332 || offsetp->sect_off > origin_child_die->offset.sect_off)
11333 {
11334 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11335 Check whether we're already processing ORIGIN_CHILD_DIE.
11336 This can happen with mutually referenced abstract_origins.
11337 PR 16581. */
11338 if (!origin_child_die->in_process)
11339 process_die (origin_child_die, origin_cu);
11340 }
11341 origin_child_die = sibling_die (origin_child_die);
11342 }
11343 origin_cu->list_in_scope = origin_previous_list_in_scope;
11344
11345 do_cleanups (cleanups);
11346 }
11347
11348 static void
11349 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11350 {
11351 struct objfile *objfile = cu->objfile;
11352 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11353 struct context_stack *newobj;
11354 CORE_ADDR lowpc;
11355 CORE_ADDR highpc;
11356 struct die_info *child_die;
11357 struct attribute *attr, *call_line, *call_file;
11358 const char *name;
11359 CORE_ADDR baseaddr;
11360 struct block *block;
11361 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11362 VEC (symbolp) *template_args = NULL;
11363 struct template_symbol *templ_func = NULL;
11364
11365 if (inlined_func)
11366 {
11367 /* If we do not have call site information, we can't show the
11368 caller of this inlined function. That's too confusing, so
11369 only use the scope for local variables. */
11370 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11371 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11372 if (call_line == NULL || call_file == NULL)
11373 {
11374 read_lexical_block_scope (die, cu);
11375 return;
11376 }
11377 }
11378
11379 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11380
11381 name = dwarf2_name (die, cu);
11382
11383 /* Ignore functions with missing or empty names. These are actually
11384 illegal according to the DWARF standard. */
11385 if (name == NULL)
11386 {
11387 complaint (&symfile_complaints,
11388 _("missing name for subprogram DIE at %d"),
11389 die->offset.sect_off);
11390 return;
11391 }
11392
11393 /* Ignore functions with missing or invalid low and high pc attributes. */
11394 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11395 {
11396 attr = dwarf2_attr (die, DW_AT_external, cu);
11397 if (!attr || !DW_UNSND (attr))
11398 complaint (&symfile_complaints,
11399 _("cannot get low and high bounds "
11400 "for subprogram DIE at %d"),
11401 die->offset.sect_off);
11402 return;
11403 }
11404
11405 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11406 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11407
11408 /* If we have any template arguments, then we must allocate a
11409 different sort of symbol. */
11410 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11411 {
11412 if (child_die->tag == DW_TAG_template_type_param
11413 || child_die->tag == DW_TAG_template_value_param)
11414 {
11415 templ_func = allocate_template_symbol (objfile);
11416 templ_func->base.is_cplus_template_function = 1;
11417 break;
11418 }
11419 }
11420
11421 newobj = push_context (0, lowpc);
11422 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11423 (struct symbol *) templ_func);
11424
11425 /* If there is a location expression for DW_AT_frame_base, record
11426 it. */
11427 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11428 if (attr)
11429 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11430
11431 /* If there is a location for the static link, record it. */
11432 newobj->static_link = NULL;
11433 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11434 if (attr)
11435 {
11436 newobj->static_link
11437 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11438 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11439 }
11440
11441 cu->list_in_scope = &local_symbols;
11442
11443 if (die->child != NULL)
11444 {
11445 child_die = die->child;
11446 while (child_die && child_die->tag)
11447 {
11448 if (child_die->tag == DW_TAG_template_type_param
11449 || child_die->tag == DW_TAG_template_value_param)
11450 {
11451 struct symbol *arg = new_symbol (child_die, NULL, cu);
11452
11453 if (arg != NULL)
11454 VEC_safe_push (symbolp, template_args, arg);
11455 }
11456 else
11457 process_die (child_die, cu);
11458 child_die = sibling_die (child_die);
11459 }
11460 }
11461
11462 inherit_abstract_dies (die, cu);
11463
11464 /* If we have a DW_AT_specification, we might need to import using
11465 directives from the context of the specification DIE. See the
11466 comment in determine_prefix. */
11467 if (cu->language == language_cplus
11468 && dwarf2_attr (die, DW_AT_specification, cu))
11469 {
11470 struct dwarf2_cu *spec_cu = cu;
11471 struct die_info *spec_die = die_specification (die, &spec_cu);
11472
11473 while (spec_die)
11474 {
11475 child_die = spec_die->child;
11476 while (child_die && child_die->tag)
11477 {
11478 if (child_die->tag == DW_TAG_imported_module)
11479 process_die (child_die, spec_cu);
11480 child_die = sibling_die (child_die);
11481 }
11482
11483 /* In some cases, GCC generates specification DIEs that
11484 themselves contain DW_AT_specification attributes. */
11485 spec_die = die_specification (spec_die, &spec_cu);
11486 }
11487 }
11488
11489 newobj = pop_context ();
11490 /* Make a block for the local symbols within. */
11491 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11492 newobj->static_link, lowpc, highpc);
11493
11494 /* For C++, set the block's scope. */
11495 if ((cu->language == language_cplus
11496 || cu->language == language_fortran
11497 || cu->language == language_d)
11498 && cu->processing_has_namespace_info)
11499 block_set_scope (block, determine_prefix (die, cu),
11500 &objfile->objfile_obstack);
11501
11502 /* If we have address ranges, record them. */
11503 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11504
11505 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11506
11507 /* Attach template arguments to function. */
11508 if (! VEC_empty (symbolp, template_args))
11509 {
11510 gdb_assert (templ_func != NULL);
11511
11512 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11513 templ_func->template_arguments
11514 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11515 templ_func->n_template_arguments);
11516 memcpy (templ_func->template_arguments,
11517 VEC_address (symbolp, template_args),
11518 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11519 VEC_free (symbolp, template_args);
11520 }
11521
11522 /* In C++, we can have functions nested inside functions (e.g., when
11523 a function declares a class that has methods). This means that
11524 when we finish processing a function scope, we may need to go
11525 back to building a containing block's symbol lists. */
11526 local_symbols = newobj->locals;
11527 local_using_directives = newobj->local_using_directives;
11528
11529 /* If we've finished processing a top-level function, subsequent
11530 symbols go in the file symbol list. */
11531 if (outermost_context_p ())
11532 cu->list_in_scope = &file_symbols;
11533 }
11534
11535 /* Process all the DIES contained within a lexical block scope. Start
11536 a new scope, process the dies, and then close the scope. */
11537
11538 static void
11539 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11540 {
11541 struct objfile *objfile = cu->objfile;
11542 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11543 struct context_stack *newobj;
11544 CORE_ADDR lowpc, highpc;
11545 struct die_info *child_die;
11546 CORE_ADDR baseaddr;
11547
11548 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11549
11550 /* Ignore blocks with missing or invalid low and high pc attributes. */
11551 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11552 as multiple lexical blocks? Handling children in a sane way would
11553 be nasty. Might be easier to properly extend generic blocks to
11554 describe ranges. */
11555 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11556 return;
11557 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11558 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11559
11560 push_context (0, lowpc);
11561 if (die->child != NULL)
11562 {
11563 child_die = die->child;
11564 while (child_die && child_die->tag)
11565 {
11566 process_die (child_die, cu);
11567 child_die = sibling_die (child_die);
11568 }
11569 }
11570 inherit_abstract_dies (die, cu);
11571 newobj = pop_context ();
11572
11573 if (local_symbols != NULL || local_using_directives != NULL)
11574 {
11575 struct block *block
11576 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11577 newobj->start_addr, highpc);
11578
11579 /* Note that recording ranges after traversing children, as we
11580 do here, means that recording a parent's ranges entails
11581 walking across all its children's ranges as they appear in
11582 the address map, which is quadratic behavior.
11583
11584 It would be nicer to record the parent's ranges before
11585 traversing its children, simply overriding whatever you find
11586 there. But since we don't even decide whether to create a
11587 block until after we've traversed its children, that's hard
11588 to do. */
11589 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11590 }
11591 local_symbols = newobj->locals;
11592 local_using_directives = newobj->local_using_directives;
11593 }
11594
11595 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11596
11597 static void
11598 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11599 {
11600 struct objfile *objfile = cu->objfile;
11601 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11602 CORE_ADDR pc, baseaddr;
11603 struct attribute *attr;
11604 struct call_site *call_site, call_site_local;
11605 void **slot;
11606 int nparams;
11607 struct die_info *child_die;
11608
11609 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11610
11611 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11612 if (!attr)
11613 {
11614 complaint (&symfile_complaints,
11615 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11616 "DIE 0x%x [in module %s]"),
11617 die->offset.sect_off, objfile_name (objfile));
11618 return;
11619 }
11620 pc = attr_value_as_address (attr) + baseaddr;
11621 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11622
11623 if (cu->call_site_htab == NULL)
11624 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11625 NULL, &objfile->objfile_obstack,
11626 hashtab_obstack_allocate, NULL);
11627 call_site_local.pc = pc;
11628 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11629 if (*slot != NULL)
11630 {
11631 complaint (&symfile_complaints,
11632 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11633 "DIE 0x%x [in module %s]"),
11634 paddress (gdbarch, pc), die->offset.sect_off,
11635 objfile_name (objfile));
11636 return;
11637 }
11638
11639 /* Count parameters at the caller. */
11640
11641 nparams = 0;
11642 for (child_die = die->child; child_die && child_die->tag;
11643 child_die = sibling_die (child_die))
11644 {
11645 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11646 {
11647 complaint (&symfile_complaints,
11648 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11649 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11650 child_die->tag, child_die->offset.sect_off,
11651 objfile_name (objfile));
11652 continue;
11653 }
11654
11655 nparams++;
11656 }
11657
11658 call_site
11659 = ((struct call_site *)
11660 obstack_alloc (&objfile->objfile_obstack,
11661 sizeof (*call_site)
11662 + (sizeof (*call_site->parameter) * (nparams - 1))));
11663 *slot = call_site;
11664 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11665 call_site->pc = pc;
11666
11667 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11668 {
11669 struct die_info *func_die;
11670
11671 /* Skip also over DW_TAG_inlined_subroutine. */
11672 for (func_die = die->parent;
11673 func_die && func_die->tag != DW_TAG_subprogram
11674 && func_die->tag != DW_TAG_subroutine_type;
11675 func_die = func_die->parent);
11676
11677 /* DW_AT_GNU_all_call_sites is a superset
11678 of DW_AT_GNU_all_tail_call_sites. */
11679 if (func_die
11680 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11681 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11682 {
11683 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11684 not complete. But keep CALL_SITE for look ups via call_site_htab,
11685 both the initial caller containing the real return address PC and
11686 the final callee containing the current PC of a chain of tail
11687 calls do not need to have the tail call list complete. But any
11688 function candidate for a virtual tail call frame searched via
11689 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11690 determined unambiguously. */
11691 }
11692 else
11693 {
11694 struct type *func_type = NULL;
11695
11696 if (func_die)
11697 func_type = get_die_type (func_die, cu);
11698 if (func_type != NULL)
11699 {
11700 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11701
11702 /* Enlist this call site to the function. */
11703 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11704 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11705 }
11706 else
11707 complaint (&symfile_complaints,
11708 _("Cannot find function owning DW_TAG_GNU_call_site "
11709 "DIE 0x%x [in module %s]"),
11710 die->offset.sect_off, objfile_name (objfile));
11711 }
11712 }
11713
11714 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11715 if (attr == NULL)
11716 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11717 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11718 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11719 /* Keep NULL DWARF_BLOCK. */;
11720 else if (attr_form_is_block (attr))
11721 {
11722 struct dwarf2_locexpr_baton *dlbaton;
11723
11724 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11725 dlbaton->data = DW_BLOCK (attr)->data;
11726 dlbaton->size = DW_BLOCK (attr)->size;
11727 dlbaton->per_cu = cu->per_cu;
11728
11729 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11730 }
11731 else if (attr_form_is_ref (attr))
11732 {
11733 struct dwarf2_cu *target_cu = cu;
11734 struct die_info *target_die;
11735
11736 target_die = follow_die_ref (die, attr, &target_cu);
11737 gdb_assert (target_cu->objfile == objfile);
11738 if (die_is_declaration (target_die, target_cu))
11739 {
11740 const char *target_physname;
11741
11742 /* Prefer the mangled name; otherwise compute the demangled one. */
11743 target_physname = dwarf2_string_attr (target_die,
11744 DW_AT_linkage_name,
11745 target_cu);
11746 if (target_physname == NULL)
11747 target_physname = dwarf2_string_attr (target_die,
11748 DW_AT_MIPS_linkage_name,
11749 target_cu);
11750 if (target_physname == NULL)
11751 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11752 if (target_physname == NULL)
11753 complaint (&symfile_complaints,
11754 _("DW_AT_GNU_call_site_target target DIE has invalid "
11755 "physname, for referencing DIE 0x%x [in module %s]"),
11756 die->offset.sect_off, objfile_name (objfile));
11757 else
11758 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11759 }
11760 else
11761 {
11762 CORE_ADDR lowpc;
11763
11764 /* DW_AT_entry_pc should be preferred. */
11765 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11766 complaint (&symfile_complaints,
11767 _("DW_AT_GNU_call_site_target target DIE has invalid "
11768 "low pc, for referencing DIE 0x%x [in module %s]"),
11769 die->offset.sect_off, objfile_name (objfile));
11770 else
11771 {
11772 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11773 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11774 }
11775 }
11776 }
11777 else
11778 complaint (&symfile_complaints,
11779 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11780 "block nor reference, for DIE 0x%x [in module %s]"),
11781 die->offset.sect_off, objfile_name (objfile));
11782
11783 call_site->per_cu = cu->per_cu;
11784
11785 for (child_die = die->child;
11786 child_die && child_die->tag;
11787 child_die = sibling_die (child_die))
11788 {
11789 struct call_site_parameter *parameter;
11790 struct attribute *loc, *origin;
11791
11792 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11793 {
11794 /* Already printed the complaint above. */
11795 continue;
11796 }
11797
11798 gdb_assert (call_site->parameter_count < nparams);
11799 parameter = &call_site->parameter[call_site->parameter_count];
11800
11801 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11802 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11803 register is contained in DW_AT_GNU_call_site_value. */
11804
11805 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11806 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11807 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11808 {
11809 sect_offset offset;
11810
11811 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11812 offset = dwarf2_get_ref_die_offset (origin);
11813 if (!offset_in_cu_p (&cu->header, offset))
11814 {
11815 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11816 binding can be done only inside one CU. Such referenced DIE
11817 therefore cannot be even moved to DW_TAG_partial_unit. */
11818 complaint (&symfile_complaints,
11819 _("DW_AT_abstract_origin offset is not in CU for "
11820 "DW_TAG_GNU_call_site child DIE 0x%x "
11821 "[in module %s]"),
11822 child_die->offset.sect_off, objfile_name (objfile));
11823 continue;
11824 }
11825 parameter->u.param_offset.cu_off = (offset.sect_off
11826 - cu->header.offset.sect_off);
11827 }
11828 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11829 {
11830 complaint (&symfile_complaints,
11831 _("No DW_FORM_block* DW_AT_location for "
11832 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11833 child_die->offset.sect_off, objfile_name (objfile));
11834 continue;
11835 }
11836 else
11837 {
11838 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11839 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11840 if (parameter->u.dwarf_reg != -1)
11841 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11842 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11843 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11844 &parameter->u.fb_offset))
11845 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11846 else
11847 {
11848 complaint (&symfile_complaints,
11849 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11850 "for DW_FORM_block* DW_AT_location is supported for "
11851 "DW_TAG_GNU_call_site child DIE 0x%x "
11852 "[in module %s]"),
11853 child_die->offset.sect_off, objfile_name (objfile));
11854 continue;
11855 }
11856 }
11857
11858 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11859 if (!attr_form_is_block (attr))
11860 {
11861 complaint (&symfile_complaints,
11862 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11863 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11864 child_die->offset.sect_off, objfile_name (objfile));
11865 continue;
11866 }
11867 parameter->value = DW_BLOCK (attr)->data;
11868 parameter->value_size = DW_BLOCK (attr)->size;
11869
11870 /* Parameters are not pre-cleared by memset above. */
11871 parameter->data_value = NULL;
11872 parameter->data_value_size = 0;
11873 call_site->parameter_count++;
11874
11875 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11876 if (attr)
11877 {
11878 if (!attr_form_is_block (attr))
11879 complaint (&symfile_complaints,
11880 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11881 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11882 child_die->offset.sect_off, objfile_name (objfile));
11883 else
11884 {
11885 parameter->data_value = DW_BLOCK (attr)->data;
11886 parameter->data_value_size = DW_BLOCK (attr)->size;
11887 }
11888 }
11889 }
11890 }
11891
11892 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11893 Return 1 if the attributes are present and valid, otherwise, return 0.
11894 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11895
11896 static int
11897 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11898 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11899 struct partial_symtab *ranges_pst)
11900 {
11901 struct objfile *objfile = cu->objfile;
11902 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11903 struct comp_unit_head *cu_header = &cu->header;
11904 bfd *obfd = objfile->obfd;
11905 unsigned int addr_size = cu_header->addr_size;
11906 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11907 /* Base address selection entry. */
11908 CORE_ADDR base;
11909 int found_base;
11910 unsigned int dummy;
11911 const gdb_byte *buffer;
11912 int low_set;
11913 CORE_ADDR low = 0;
11914 CORE_ADDR high = 0;
11915 CORE_ADDR baseaddr;
11916
11917 found_base = cu->base_known;
11918 base = cu->base_address;
11919
11920 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11921 if (offset >= dwarf2_per_objfile->ranges.size)
11922 {
11923 complaint (&symfile_complaints,
11924 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11925 offset);
11926 return 0;
11927 }
11928 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11929
11930 low_set = 0;
11931
11932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11933
11934 while (1)
11935 {
11936 CORE_ADDR range_beginning, range_end;
11937
11938 range_beginning = read_address (obfd, buffer, cu, &dummy);
11939 buffer += addr_size;
11940 range_end = read_address (obfd, buffer, cu, &dummy);
11941 buffer += addr_size;
11942 offset += 2 * addr_size;
11943
11944 /* An end of list marker is a pair of zero addresses. */
11945 if (range_beginning == 0 && range_end == 0)
11946 /* Found the end of list entry. */
11947 break;
11948
11949 /* Each base address selection entry is a pair of 2 values.
11950 The first is the largest possible address, the second is
11951 the base address. Check for a base address here. */
11952 if ((range_beginning & mask) == mask)
11953 {
11954 /* If we found the largest possible address, then we already
11955 have the base address in range_end. */
11956 base = range_end;
11957 found_base = 1;
11958 continue;
11959 }
11960
11961 if (!found_base)
11962 {
11963 /* We have no valid base address for the ranges
11964 data. */
11965 complaint (&symfile_complaints,
11966 _("Invalid .debug_ranges data (no base address)"));
11967 return 0;
11968 }
11969
11970 if (range_beginning > range_end)
11971 {
11972 /* Inverted range entries are invalid. */
11973 complaint (&symfile_complaints,
11974 _("Invalid .debug_ranges data (inverted range)"));
11975 return 0;
11976 }
11977
11978 /* Empty range entries have no effect. */
11979 if (range_beginning == range_end)
11980 continue;
11981
11982 range_beginning += base;
11983 range_end += base;
11984
11985 /* A not-uncommon case of bad debug info.
11986 Don't pollute the addrmap with bad data. */
11987 if (range_beginning + baseaddr == 0
11988 && !dwarf2_per_objfile->has_section_at_zero)
11989 {
11990 complaint (&symfile_complaints,
11991 _(".debug_ranges entry has start address of zero"
11992 " [in module %s]"), objfile_name (objfile));
11993 continue;
11994 }
11995
11996 if (ranges_pst != NULL)
11997 {
11998 CORE_ADDR lowpc;
11999 CORE_ADDR highpc;
12000
12001 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12002 range_beginning + baseaddr);
12003 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12004 range_end + baseaddr);
12005 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12006 ranges_pst);
12007 }
12008
12009 /* FIXME: This is recording everything as a low-high
12010 segment of consecutive addresses. We should have a
12011 data structure for discontiguous block ranges
12012 instead. */
12013 if (! low_set)
12014 {
12015 low = range_beginning;
12016 high = range_end;
12017 low_set = 1;
12018 }
12019 else
12020 {
12021 if (range_beginning < low)
12022 low = range_beginning;
12023 if (range_end > high)
12024 high = range_end;
12025 }
12026 }
12027
12028 if (! low_set)
12029 /* If the first entry is an end-of-list marker, the range
12030 describes an empty scope, i.e. no instructions. */
12031 return 0;
12032
12033 if (low_return)
12034 *low_return = low;
12035 if (high_return)
12036 *high_return = high;
12037 return 1;
12038 }
12039
12040 /* Get low and high pc attributes from a die. Return 1 if the attributes
12041 are present and valid, otherwise, return 0. Return -1 if the range is
12042 discontinuous, i.e. derived from DW_AT_ranges information. */
12043
12044 static int
12045 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12046 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12047 struct partial_symtab *pst)
12048 {
12049 struct attribute *attr;
12050 struct attribute *attr_high;
12051 CORE_ADDR low = 0;
12052 CORE_ADDR high = 0;
12053 int ret = 0;
12054
12055 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12056 if (attr_high)
12057 {
12058 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12059 if (attr)
12060 {
12061 low = attr_value_as_address (attr);
12062 high = attr_value_as_address (attr_high);
12063 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12064 high += low;
12065 }
12066 else
12067 /* Found high w/o low attribute. */
12068 return 0;
12069
12070 /* Found consecutive range of addresses. */
12071 ret = 1;
12072 }
12073 else
12074 {
12075 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12076 if (attr != NULL)
12077 {
12078 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12079 We take advantage of the fact that DW_AT_ranges does not appear
12080 in DW_TAG_compile_unit of DWO files. */
12081 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12082 unsigned int ranges_offset = (DW_UNSND (attr)
12083 + (need_ranges_base
12084 ? cu->ranges_base
12085 : 0));
12086
12087 /* Value of the DW_AT_ranges attribute is the offset in the
12088 .debug_ranges section. */
12089 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12090 return 0;
12091 /* Found discontinuous range of addresses. */
12092 ret = -1;
12093 }
12094 }
12095
12096 /* read_partial_die has also the strict LOW < HIGH requirement. */
12097 if (high <= low)
12098 return 0;
12099
12100 /* When using the GNU linker, .gnu.linkonce. sections are used to
12101 eliminate duplicate copies of functions and vtables and such.
12102 The linker will arbitrarily choose one and discard the others.
12103 The AT_*_pc values for such functions refer to local labels in
12104 these sections. If the section from that file was discarded, the
12105 labels are not in the output, so the relocs get a value of 0.
12106 If this is a discarded function, mark the pc bounds as invalid,
12107 so that GDB will ignore it. */
12108 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12109 return 0;
12110
12111 *lowpc = low;
12112 if (highpc)
12113 *highpc = high;
12114 return ret;
12115 }
12116
12117 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12118 its low and high PC addresses. Do nothing if these addresses could not
12119 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12120 and HIGHPC to the high address if greater than HIGHPC. */
12121
12122 static void
12123 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12124 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12125 struct dwarf2_cu *cu)
12126 {
12127 CORE_ADDR low, high;
12128 struct die_info *child = die->child;
12129
12130 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12131 {
12132 *lowpc = min (*lowpc, low);
12133 *highpc = max (*highpc, high);
12134 }
12135
12136 /* If the language does not allow nested subprograms (either inside
12137 subprograms or lexical blocks), we're done. */
12138 if (cu->language != language_ada)
12139 return;
12140
12141 /* Check all the children of the given DIE. If it contains nested
12142 subprograms, then check their pc bounds. Likewise, we need to
12143 check lexical blocks as well, as they may also contain subprogram
12144 definitions. */
12145 while (child && child->tag)
12146 {
12147 if (child->tag == DW_TAG_subprogram
12148 || child->tag == DW_TAG_lexical_block)
12149 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12150 child = sibling_die (child);
12151 }
12152 }
12153
12154 /* Get the low and high pc's represented by the scope DIE, and store
12155 them in *LOWPC and *HIGHPC. If the correct values can't be
12156 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12157
12158 static void
12159 get_scope_pc_bounds (struct die_info *die,
12160 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12161 struct dwarf2_cu *cu)
12162 {
12163 CORE_ADDR best_low = (CORE_ADDR) -1;
12164 CORE_ADDR best_high = (CORE_ADDR) 0;
12165 CORE_ADDR current_low, current_high;
12166
12167 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12168 {
12169 best_low = current_low;
12170 best_high = current_high;
12171 }
12172 else
12173 {
12174 struct die_info *child = die->child;
12175
12176 while (child && child->tag)
12177 {
12178 switch (child->tag) {
12179 case DW_TAG_subprogram:
12180 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12181 break;
12182 case DW_TAG_namespace:
12183 case DW_TAG_module:
12184 /* FIXME: carlton/2004-01-16: Should we do this for
12185 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12186 that current GCC's always emit the DIEs corresponding
12187 to definitions of methods of classes as children of a
12188 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12189 the DIEs giving the declarations, which could be
12190 anywhere). But I don't see any reason why the
12191 standards says that they have to be there. */
12192 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12193
12194 if (current_low != ((CORE_ADDR) -1))
12195 {
12196 best_low = min (best_low, current_low);
12197 best_high = max (best_high, current_high);
12198 }
12199 break;
12200 default:
12201 /* Ignore. */
12202 break;
12203 }
12204
12205 child = sibling_die (child);
12206 }
12207 }
12208
12209 *lowpc = best_low;
12210 *highpc = best_high;
12211 }
12212
12213 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12214 in DIE. */
12215
12216 static void
12217 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12218 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12219 {
12220 struct objfile *objfile = cu->objfile;
12221 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12222 struct attribute *attr;
12223 struct attribute *attr_high;
12224
12225 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12226 if (attr_high)
12227 {
12228 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12229 if (attr)
12230 {
12231 CORE_ADDR low = attr_value_as_address (attr);
12232 CORE_ADDR high = attr_value_as_address (attr_high);
12233
12234 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12235 high += low;
12236
12237 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12238 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12239 record_block_range (block, low, high - 1);
12240 }
12241 }
12242
12243 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12244 if (attr)
12245 {
12246 bfd *obfd = objfile->obfd;
12247 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12248 We take advantage of the fact that DW_AT_ranges does not appear
12249 in DW_TAG_compile_unit of DWO files. */
12250 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12251
12252 /* The value of the DW_AT_ranges attribute is the offset of the
12253 address range list in the .debug_ranges section. */
12254 unsigned long offset = (DW_UNSND (attr)
12255 + (need_ranges_base ? cu->ranges_base : 0));
12256 const gdb_byte *buffer;
12257
12258 /* For some target architectures, but not others, the
12259 read_address function sign-extends the addresses it returns.
12260 To recognize base address selection entries, we need a
12261 mask. */
12262 unsigned int addr_size = cu->header.addr_size;
12263 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12264
12265 /* The base address, to which the next pair is relative. Note
12266 that this 'base' is a DWARF concept: most entries in a range
12267 list are relative, to reduce the number of relocs against the
12268 debugging information. This is separate from this function's
12269 'baseaddr' argument, which GDB uses to relocate debugging
12270 information from a shared library based on the address at
12271 which the library was loaded. */
12272 CORE_ADDR base = cu->base_address;
12273 int base_known = cu->base_known;
12274
12275 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12276 if (offset >= dwarf2_per_objfile->ranges.size)
12277 {
12278 complaint (&symfile_complaints,
12279 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12280 offset);
12281 return;
12282 }
12283 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12284
12285 for (;;)
12286 {
12287 unsigned int bytes_read;
12288 CORE_ADDR start, end;
12289
12290 start = read_address (obfd, buffer, cu, &bytes_read);
12291 buffer += bytes_read;
12292 end = read_address (obfd, buffer, cu, &bytes_read);
12293 buffer += bytes_read;
12294
12295 /* Did we find the end of the range list? */
12296 if (start == 0 && end == 0)
12297 break;
12298
12299 /* Did we find a base address selection entry? */
12300 else if ((start & base_select_mask) == base_select_mask)
12301 {
12302 base = end;
12303 base_known = 1;
12304 }
12305
12306 /* We found an ordinary address range. */
12307 else
12308 {
12309 if (!base_known)
12310 {
12311 complaint (&symfile_complaints,
12312 _("Invalid .debug_ranges data "
12313 "(no base address)"));
12314 return;
12315 }
12316
12317 if (start > end)
12318 {
12319 /* Inverted range entries are invalid. */
12320 complaint (&symfile_complaints,
12321 _("Invalid .debug_ranges data "
12322 "(inverted range)"));
12323 return;
12324 }
12325
12326 /* Empty range entries have no effect. */
12327 if (start == end)
12328 continue;
12329
12330 start += base + baseaddr;
12331 end += base + baseaddr;
12332
12333 /* A not-uncommon case of bad debug info.
12334 Don't pollute the addrmap with bad data. */
12335 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12336 {
12337 complaint (&symfile_complaints,
12338 _(".debug_ranges entry has start address of zero"
12339 " [in module %s]"), objfile_name (objfile));
12340 continue;
12341 }
12342
12343 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12344 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12345 record_block_range (block, start, end - 1);
12346 }
12347 }
12348 }
12349 }
12350
12351 /* Check whether the producer field indicates either of GCC < 4.6, or the
12352 Intel C/C++ compiler, and cache the result in CU. */
12353
12354 static void
12355 check_producer (struct dwarf2_cu *cu)
12356 {
12357 const char *cs;
12358 int major, minor;
12359
12360 if (cu->producer == NULL)
12361 {
12362 /* For unknown compilers expect their behavior is DWARF version
12363 compliant.
12364
12365 GCC started to support .debug_types sections by -gdwarf-4 since
12366 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12367 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12368 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12369 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12370 }
12371 else if (producer_is_gcc (cu->producer, &major, &minor))
12372 {
12373 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12374 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12375 }
12376 else if (startswith (cu->producer, "Intel(R) C"))
12377 cu->producer_is_icc = 1;
12378 else
12379 {
12380 /* For other non-GCC compilers, expect their behavior is DWARF version
12381 compliant. */
12382 }
12383
12384 cu->checked_producer = 1;
12385 }
12386
12387 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12388 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12389 during 4.6.0 experimental. */
12390
12391 static int
12392 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12393 {
12394 if (!cu->checked_producer)
12395 check_producer (cu);
12396
12397 return cu->producer_is_gxx_lt_4_6;
12398 }
12399
12400 /* Return the default accessibility type if it is not overriden by
12401 DW_AT_accessibility. */
12402
12403 static enum dwarf_access_attribute
12404 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12405 {
12406 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12407 {
12408 /* The default DWARF 2 accessibility for members is public, the default
12409 accessibility for inheritance is private. */
12410
12411 if (die->tag != DW_TAG_inheritance)
12412 return DW_ACCESS_public;
12413 else
12414 return DW_ACCESS_private;
12415 }
12416 else
12417 {
12418 /* DWARF 3+ defines the default accessibility a different way. The same
12419 rules apply now for DW_TAG_inheritance as for the members and it only
12420 depends on the container kind. */
12421
12422 if (die->parent->tag == DW_TAG_class_type)
12423 return DW_ACCESS_private;
12424 else
12425 return DW_ACCESS_public;
12426 }
12427 }
12428
12429 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12430 offset. If the attribute was not found return 0, otherwise return
12431 1. If it was found but could not properly be handled, set *OFFSET
12432 to 0. */
12433
12434 static int
12435 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12436 LONGEST *offset)
12437 {
12438 struct attribute *attr;
12439
12440 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12441 if (attr != NULL)
12442 {
12443 *offset = 0;
12444
12445 /* Note that we do not check for a section offset first here.
12446 This is because DW_AT_data_member_location is new in DWARF 4,
12447 so if we see it, we can assume that a constant form is really
12448 a constant and not a section offset. */
12449 if (attr_form_is_constant (attr))
12450 *offset = dwarf2_get_attr_constant_value (attr, 0);
12451 else if (attr_form_is_section_offset (attr))
12452 dwarf2_complex_location_expr_complaint ();
12453 else if (attr_form_is_block (attr))
12454 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12455 else
12456 dwarf2_complex_location_expr_complaint ();
12457
12458 return 1;
12459 }
12460
12461 return 0;
12462 }
12463
12464 /* Add an aggregate field to the field list. */
12465
12466 static void
12467 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12468 struct dwarf2_cu *cu)
12469 {
12470 struct objfile *objfile = cu->objfile;
12471 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12472 struct nextfield *new_field;
12473 struct attribute *attr;
12474 struct field *fp;
12475 const char *fieldname = "";
12476
12477 /* Allocate a new field list entry and link it in. */
12478 new_field = XNEW (struct nextfield);
12479 make_cleanup (xfree, new_field);
12480 memset (new_field, 0, sizeof (struct nextfield));
12481
12482 if (die->tag == DW_TAG_inheritance)
12483 {
12484 new_field->next = fip->baseclasses;
12485 fip->baseclasses = new_field;
12486 }
12487 else
12488 {
12489 new_field->next = fip->fields;
12490 fip->fields = new_field;
12491 }
12492 fip->nfields++;
12493
12494 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12495 if (attr)
12496 new_field->accessibility = DW_UNSND (attr);
12497 else
12498 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12499 if (new_field->accessibility != DW_ACCESS_public)
12500 fip->non_public_fields = 1;
12501
12502 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12503 if (attr)
12504 new_field->virtuality = DW_UNSND (attr);
12505 else
12506 new_field->virtuality = DW_VIRTUALITY_none;
12507
12508 fp = &new_field->field;
12509
12510 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12511 {
12512 LONGEST offset;
12513
12514 /* Data member other than a C++ static data member. */
12515
12516 /* Get type of field. */
12517 fp->type = die_type (die, cu);
12518
12519 SET_FIELD_BITPOS (*fp, 0);
12520
12521 /* Get bit size of field (zero if none). */
12522 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12523 if (attr)
12524 {
12525 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12526 }
12527 else
12528 {
12529 FIELD_BITSIZE (*fp) = 0;
12530 }
12531
12532 /* Get bit offset of field. */
12533 if (handle_data_member_location (die, cu, &offset))
12534 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12535 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12536 if (attr)
12537 {
12538 if (gdbarch_bits_big_endian (gdbarch))
12539 {
12540 /* For big endian bits, the DW_AT_bit_offset gives the
12541 additional bit offset from the MSB of the containing
12542 anonymous object to the MSB of the field. We don't
12543 have to do anything special since we don't need to
12544 know the size of the anonymous object. */
12545 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12546 }
12547 else
12548 {
12549 /* For little endian bits, compute the bit offset to the
12550 MSB of the anonymous object, subtract off the number of
12551 bits from the MSB of the field to the MSB of the
12552 object, and then subtract off the number of bits of
12553 the field itself. The result is the bit offset of
12554 the LSB of the field. */
12555 int anonymous_size;
12556 int bit_offset = DW_UNSND (attr);
12557
12558 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12559 if (attr)
12560 {
12561 /* The size of the anonymous object containing
12562 the bit field is explicit, so use the
12563 indicated size (in bytes). */
12564 anonymous_size = DW_UNSND (attr);
12565 }
12566 else
12567 {
12568 /* The size of the anonymous object containing
12569 the bit field must be inferred from the type
12570 attribute of the data member containing the
12571 bit field. */
12572 anonymous_size = TYPE_LENGTH (fp->type);
12573 }
12574 SET_FIELD_BITPOS (*fp,
12575 (FIELD_BITPOS (*fp)
12576 + anonymous_size * bits_per_byte
12577 - bit_offset - FIELD_BITSIZE (*fp)));
12578 }
12579 }
12580
12581 /* Get name of field. */
12582 fieldname = dwarf2_name (die, cu);
12583 if (fieldname == NULL)
12584 fieldname = "";
12585
12586 /* The name is already allocated along with this objfile, so we don't
12587 need to duplicate it for the type. */
12588 fp->name = fieldname;
12589
12590 /* Change accessibility for artificial fields (e.g. virtual table
12591 pointer or virtual base class pointer) to private. */
12592 if (dwarf2_attr (die, DW_AT_artificial, cu))
12593 {
12594 FIELD_ARTIFICIAL (*fp) = 1;
12595 new_field->accessibility = DW_ACCESS_private;
12596 fip->non_public_fields = 1;
12597 }
12598 }
12599 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12600 {
12601 /* C++ static member. */
12602
12603 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12604 is a declaration, but all versions of G++ as of this writing
12605 (so through at least 3.2.1) incorrectly generate
12606 DW_TAG_variable tags. */
12607
12608 const char *physname;
12609
12610 /* Get name of field. */
12611 fieldname = dwarf2_name (die, cu);
12612 if (fieldname == NULL)
12613 return;
12614
12615 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12616 if (attr
12617 /* Only create a symbol if this is an external value.
12618 new_symbol checks this and puts the value in the global symbol
12619 table, which we want. If it is not external, new_symbol
12620 will try to put the value in cu->list_in_scope which is wrong. */
12621 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12622 {
12623 /* A static const member, not much different than an enum as far as
12624 we're concerned, except that we can support more types. */
12625 new_symbol (die, NULL, cu);
12626 }
12627
12628 /* Get physical name. */
12629 physname = dwarf2_physname (fieldname, die, cu);
12630
12631 /* The name is already allocated along with this objfile, so we don't
12632 need to duplicate it for the type. */
12633 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12634 FIELD_TYPE (*fp) = die_type (die, cu);
12635 FIELD_NAME (*fp) = fieldname;
12636 }
12637 else if (die->tag == DW_TAG_inheritance)
12638 {
12639 LONGEST offset;
12640
12641 /* C++ base class field. */
12642 if (handle_data_member_location (die, cu, &offset))
12643 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12644 FIELD_BITSIZE (*fp) = 0;
12645 FIELD_TYPE (*fp) = die_type (die, cu);
12646 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12647 fip->nbaseclasses++;
12648 }
12649 }
12650
12651 /* Add a typedef defined in the scope of the FIP's class. */
12652
12653 static void
12654 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12655 struct dwarf2_cu *cu)
12656 {
12657 struct objfile *objfile = cu->objfile;
12658 struct typedef_field_list *new_field;
12659 struct attribute *attr;
12660 struct typedef_field *fp;
12661 char *fieldname = "";
12662
12663 /* Allocate a new field list entry and link it in. */
12664 new_field = XCNEW (struct typedef_field_list);
12665 make_cleanup (xfree, new_field);
12666
12667 gdb_assert (die->tag == DW_TAG_typedef);
12668
12669 fp = &new_field->field;
12670
12671 /* Get name of field. */
12672 fp->name = dwarf2_name (die, cu);
12673 if (fp->name == NULL)
12674 return;
12675
12676 fp->type = read_type_die (die, cu);
12677
12678 new_field->next = fip->typedef_field_list;
12679 fip->typedef_field_list = new_field;
12680 fip->typedef_field_list_count++;
12681 }
12682
12683 /* Create the vector of fields, and attach it to the type. */
12684
12685 static void
12686 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12687 struct dwarf2_cu *cu)
12688 {
12689 int nfields = fip->nfields;
12690
12691 /* Record the field count, allocate space for the array of fields,
12692 and create blank accessibility bitfields if necessary. */
12693 TYPE_NFIELDS (type) = nfields;
12694 TYPE_FIELDS (type) = (struct field *)
12695 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12696 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12697
12698 if (fip->non_public_fields && cu->language != language_ada)
12699 {
12700 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12701
12702 TYPE_FIELD_PRIVATE_BITS (type) =
12703 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12704 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12705
12706 TYPE_FIELD_PROTECTED_BITS (type) =
12707 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12708 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12709
12710 TYPE_FIELD_IGNORE_BITS (type) =
12711 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12712 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12713 }
12714
12715 /* If the type has baseclasses, allocate and clear a bit vector for
12716 TYPE_FIELD_VIRTUAL_BITS. */
12717 if (fip->nbaseclasses && cu->language != language_ada)
12718 {
12719 int num_bytes = B_BYTES (fip->nbaseclasses);
12720 unsigned char *pointer;
12721
12722 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12723 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
12724 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12725 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12726 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12727 }
12728
12729 /* Copy the saved-up fields into the field vector. Start from the head of
12730 the list, adding to the tail of the field array, so that they end up in
12731 the same order in the array in which they were added to the list. */
12732 while (nfields-- > 0)
12733 {
12734 struct nextfield *fieldp;
12735
12736 if (fip->fields)
12737 {
12738 fieldp = fip->fields;
12739 fip->fields = fieldp->next;
12740 }
12741 else
12742 {
12743 fieldp = fip->baseclasses;
12744 fip->baseclasses = fieldp->next;
12745 }
12746
12747 TYPE_FIELD (type, nfields) = fieldp->field;
12748 switch (fieldp->accessibility)
12749 {
12750 case DW_ACCESS_private:
12751 if (cu->language != language_ada)
12752 SET_TYPE_FIELD_PRIVATE (type, nfields);
12753 break;
12754
12755 case DW_ACCESS_protected:
12756 if (cu->language != language_ada)
12757 SET_TYPE_FIELD_PROTECTED (type, nfields);
12758 break;
12759
12760 case DW_ACCESS_public:
12761 break;
12762
12763 default:
12764 /* Unknown accessibility. Complain and treat it as public. */
12765 {
12766 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12767 fieldp->accessibility);
12768 }
12769 break;
12770 }
12771 if (nfields < fip->nbaseclasses)
12772 {
12773 switch (fieldp->virtuality)
12774 {
12775 case DW_VIRTUALITY_virtual:
12776 case DW_VIRTUALITY_pure_virtual:
12777 if (cu->language == language_ada)
12778 error (_("unexpected virtuality in component of Ada type"));
12779 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12780 break;
12781 }
12782 }
12783 }
12784 }
12785
12786 /* Return true if this member function is a constructor, false
12787 otherwise. */
12788
12789 static int
12790 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12791 {
12792 const char *fieldname;
12793 const char *type_name;
12794 int len;
12795
12796 if (die->parent == NULL)
12797 return 0;
12798
12799 if (die->parent->tag != DW_TAG_structure_type
12800 && die->parent->tag != DW_TAG_union_type
12801 && die->parent->tag != DW_TAG_class_type)
12802 return 0;
12803
12804 fieldname = dwarf2_name (die, cu);
12805 type_name = dwarf2_name (die->parent, cu);
12806 if (fieldname == NULL || type_name == NULL)
12807 return 0;
12808
12809 len = strlen (fieldname);
12810 return (strncmp (fieldname, type_name, len) == 0
12811 && (type_name[len] == '\0' || type_name[len] == '<'));
12812 }
12813
12814 /* Add a member function to the proper fieldlist. */
12815
12816 static void
12817 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12818 struct type *type, struct dwarf2_cu *cu)
12819 {
12820 struct objfile *objfile = cu->objfile;
12821 struct attribute *attr;
12822 struct fnfieldlist *flp;
12823 int i;
12824 struct fn_field *fnp;
12825 const char *fieldname;
12826 struct nextfnfield *new_fnfield;
12827 struct type *this_type;
12828 enum dwarf_access_attribute accessibility;
12829
12830 if (cu->language == language_ada)
12831 error (_("unexpected member function in Ada type"));
12832
12833 /* Get name of member function. */
12834 fieldname = dwarf2_name (die, cu);
12835 if (fieldname == NULL)
12836 return;
12837
12838 /* Look up member function name in fieldlist. */
12839 for (i = 0; i < fip->nfnfields; i++)
12840 {
12841 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12842 break;
12843 }
12844
12845 /* Create new list element if necessary. */
12846 if (i < fip->nfnfields)
12847 flp = &fip->fnfieldlists[i];
12848 else
12849 {
12850 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12851 {
12852 fip->fnfieldlists = (struct fnfieldlist *)
12853 xrealloc (fip->fnfieldlists,
12854 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12855 * sizeof (struct fnfieldlist));
12856 if (fip->nfnfields == 0)
12857 make_cleanup (free_current_contents, &fip->fnfieldlists);
12858 }
12859 flp = &fip->fnfieldlists[fip->nfnfields];
12860 flp->name = fieldname;
12861 flp->length = 0;
12862 flp->head = NULL;
12863 i = fip->nfnfields++;
12864 }
12865
12866 /* Create a new member function field and chain it to the field list
12867 entry. */
12868 new_fnfield = XNEW (struct nextfnfield);
12869 make_cleanup (xfree, new_fnfield);
12870 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12871 new_fnfield->next = flp->head;
12872 flp->head = new_fnfield;
12873 flp->length++;
12874
12875 /* Fill in the member function field info. */
12876 fnp = &new_fnfield->fnfield;
12877
12878 /* Delay processing of the physname until later. */
12879 if (cu->language == language_cplus || cu->language == language_java)
12880 {
12881 add_to_method_list (type, i, flp->length - 1, fieldname,
12882 die, cu);
12883 }
12884 else
12885 {
12886 const char *physname = dwarf2_physname (fieldname, die, cu);
12887 fnp->physname = physname ? physname : "";
12888 }
12889
12890 fnp->type = alloc_type (objfile);
12891 this_type = read_type_die (die, cu);
12892 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12893 {
12894 int nparams = TYPE_NFIELDS (this_type);
12895
12896 /* TYPE is the domain of this method, and THIS_TYPE is the type
12897 of the method itself (TYPE_CODE_METHOD). */
12898 smash_to_method_type (fnp->type, type,
12899 TYPE_TARGET_TYPE (this_type),
12900 TYPE_FIELDS (this_type),
12901 TYPE_NFIELDS (this_type),
12902 TYPE_VARARGS (this_type));
12903
12904 /* Handle static member functions.
12905 Dwarf2 has no clean way to discern C++ static and non-static
12906 member functions. G++ helps GDB by marking the first
12907 parameter for non-static member functions (which is the this
12908 pointer) as artificial. We obtain this information from
12909 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12910 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12911 fnp->voffset = VOFFSET_STATIC;
12912 }
12913 else
12914 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12915 dwarf2_full_name (fieldname, die, cu));
12916
12917 /* Get fcontext from DW_AT_containing_type if present. */
12918 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12919 fnp->fcontext = die_containing_type (die, cu);
12920
12921 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12922 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12923
12924 /* Get accessibility. */
12925 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12926 if (attr)
12927 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12928 else
12929 accessibility = dwarf2_default_access_attribute (die, cu);
12930 switch (accessibility)
12931 {
12932 case DW_ACCESS_private:
12933 fnp->is_private = 1;
12934 break;
12935 case DW_ACCESS_protected:
12936 fnp->is_protected = 1;
12937 break;
12938 }
12939
12940 /* Check for artificial methods. */
12941 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12942 if (attr && DW_UNSND (attr) != 0)
12943 fnp->is_artificial = 1;
12944
12945 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12946
12947 /* Get index in virtual function table if it is a virtual member
12948 function. For older versions of GCC, this is an offset in the
12949 appropriate virtual table, as specified by DW_AT_containing_type.
12950 For everyone else, it is an expression to be evaluated relative
12951 to the object address. */
12952
12953 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12954 if (attr)
12955 {
12956 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12957 {
12958 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12959 {
12960 /* Old-style GCC. */
12961 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12962 }
12963 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12964 || (DW_BLOCK (attr)->size > 1
12965 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12966 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12967 {
12968 struct dwarf_block blk;
12969 int offset;
12970
12971 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12972 ? 1 : 2);
12973 blk.size = DW_BLOCK (attr)->size - offset;
12974 blk.data = DW_BLOCK (attr)->data + offset;
12975 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12976 if ((fnp->voffset % cu->header.addr_size) != 0)
12977 dwarf2_complex_location_expr_complaint ();
12978 else
12979 fnp->voffset /= cu->header.addr_size;
12980 fnp->voffset += 2;
12981 }
12982 else
12983 dwarf2_complex_location_expr_complaint ();
12984
12985 if (!fnp->fcontext)
12986 {
12987 /* If there is no `this' field and no DW_AT_containing_type,
12988 we cannot actually find a base class context for the
12989 vtable! */
12990 if (TYPE_NFIELDS (this_type) == 0
12991 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12992 {
12993 complaint (&symfile_complaints,
12994 _("cannot determine context for virtual member "
12995 "function \"%s\" (offset %d)"),
12996 fieldname, die->offset.sect_off);
12997 }
12998 else
12999 {
13000 fnp->fcontext
13001 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13002 }
13003 }
13004 }
13005 else if (attr_form_is_section_offset (attr))
13006 {
13007 dwarf2_complex_location_expr_complaint ();
13008 }
13009 else
13010 {
13011 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13012 fieldname);
13013 }
13014 }
13015 else
13016 {
13017 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13018 if (attr && DW_UNSND (attr))
13019 {
13020 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13021 complaint (&symfile_complaints,
13022 _("Member function \"%s\" (offset %d) is virtual "
13023 "but the vtable offset is not specified"),
13024 fieldname, die->offset.sect_off);
13025 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13026 TYPE_CPLUS_DYNAMIC (type) = 1;
13027 }
13028 }
13029 }
13030
13031 /* Create the vector of member function fields, and attach it to the type. */
13032
13033 static void
13034 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13035 struct dwarf2_cu *cu)
13036 {
13037 struct fnfieldlist *flp;
13038 int i;
13039
13040 if (cu->language == language_ada)
13041 error (_("unexpected member functions in Ada type"));
13042
13043 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13044 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13045 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13046
13047 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13048 {
13049 struct nextfnfield *nfp = flp->head;
13050 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13051 int k;
13052
13053 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13054 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13055 fn_flp->fn_fields = (struct fn_field *)
13056 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13057 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13058 fn_flp->fn_fields[k] = nfp->fnfield;
13059 }
13060
13061 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13062 }
13063
13064 /* Returns non-zero if NAME is the name of a vtable member in CU's
13065 language, zero otherwise. */
13066 static int
13067 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13068 {
13069 static const char vptr[] = "_vptr";
13070 static const char vtable[] = "vtable";
13071
13072 /* Look for the C++ and Java forms of the vtable. */
13073 if ((cu->language == language_java
13074 && startswith (name, vtable))
13075 || (startswith (name, vptr)
13076 && is_cplus_marker (name[sizeof (vptr) - 1])))
13077 return 1;
13078
13079 return 0;
13080 }
13081
13082 /* GCC outputs unnamed structures that are really pointers to member
13083 functions, with the ABI-specified layout. If TYPE describes
13084 such a structure, smash it into a member function type.
13085
13086 GCC shouldn't do this; it should just output pointer to member DIEs.
13087 This is GCC PR debug/28767. */
13088
13089 static void
13090 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13091 {
13092 struct type *pfn_type, *self_type, *new_type;
13093
13094 /* Check for a structure with no name and two children. */
13095 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13096 return;
13097
13098 /* Check for __pfn and __delta members. */
13099 if (TYPE_FIELD_NAME (type, 0) == NULL
13100 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13101 || TYPE_FIELD_NAME (type, 1) == NULL
13102 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13103 return;
13104
13105 /* Find the type of the method. */
13106 pfn_type = TYPE_FIELD_TYPE (type, 0);
13107 if (pfn_type == NULL
13108 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13109 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13110 return;
13111
13112 /* Look for the "this" argument. */
13113 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13114 if (TYPE_NFIELDS (pfn_type) == 0
13115 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13116 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13117 return;
13118
13119 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13120 new_type = alloc_type (objfile);
13121 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13122 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13123 TYPE_VARARGS (pfn_type));
13124 smash_to_methodptr_type (type, new_type);
13125 }
13126
13127 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13128 (icc). */
13129
13130 static int
13131 producer_is_icc (struct dwarf2_cu *cu)
13132 {
13133 if (!cu->checked_producer)
13134 check_producer (cu);
13135
13136 return cu->producer_is_icc;
13137 }
13138
13139 /* Called when we find the DIE that starts a structure or union scope
13140 (definition) to create a type for the structure or union. Fill in
13141 the type's name and general properties; the members will not be
13142 processed until process_structure_scope. A symbol table entry for
13143 the type will also not be done until process_structure_scope (assuming
13144 the type has a name).
13145
13146 NOTE: we need to call these functions regardless of whether or not the
13147 DIE has a DW_AT_name attribute, since it might be an anonymous
13148 structure or union. This gets the type entered into our set of
13149 user defined types. */
13150
13151 static struct type *
13152 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13153 {
13154 struct objfile *objfile = cu->objfile;
13155 struct type *type;
13156 struct attribute *attr;
13157 const char *name;
13158
13159 /* If the definition of this type lives in .debug_types, read that type.
13160 Don't follow DW_AT_specification though, that will take us back up
13161 the chain and we want to go down. */
13162 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13163 if (attr)
13164 {
13165 type = get_DW_AT_signature_type (die, attr, cu);
13166
13167 /* The type's CU may not be the same as CU.
13168 Ensure TYPE is recorded with CU in die_type_hash. */
13169 return set_die_type (die, type, cu);
13170 }
13171
13172 type = alloc_type (objfile);
13173 INIT_CPLUS_SPECIFIC (type);
13174
13175 name = dwarf2_name (die, cu);
13176 if (name != NULL)
13177 {
13178 if (cu->language == language_cplus
13179 || cu->language == language_java
13180 || cu->language == language_d)
13181 {
13182 const char *full_name = dwarf2_full_name (name, die, cu);
13183
13184 /* dwarf2_full_name might have already finished building the DIE's
13185 type. If so, there is no need to continue. */
13186 if (get_die_type (die, cu) != NULL)
13187 return get_die_type (die, cu);
13188
13189 TYPE_TAG_NAME (type) = full_name;
13190 if (die->tag == DW_TAG_structure_type
13191 || die->tag == DW_TAG_class_type)
13192 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13193 }
13194 else
13195 {
13196 /* The name is already allocated along with this objfile, so
13197 we don't need to duplicate it for the type. */
13198 TYPE_TAG_NAME (type) = name;
13199 if (die->tag == DW_TAG_class_type)
13200 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13201 }
13202 }
13203
13204 if (die->tag == DW_TAG_structure_type)
13205 {
13206 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13207 }
13208 else if (die->tag == DW_TAG_union_type)
13209 {
13210 TYPE_CODE (type) = TYPE_CODE_UNION;
13211 }
13212 else
13213 {
13214 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13215 }
13216
13217 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13218 TYPE_DECLARED_CLASS (type) = 1;
13219
13220 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13221 if (attr)
13222 {
13223 if (attr_form_is_constant (attr))
13224 TYPE_LENGTH (type) = DW_UNSND (attr);
13225 else
13226 {
13227 /* For the moment, dynamic type sizes are not supported
13228 by GDB's struct type. The actual size is determined
13229 on-demand when resolving the type of a given object,
13230 so set the type's length to zero for now. Otherwise,
13231 we record an expression as the length, and that expression
13232 could lead to a very large value, which could eventually
13233 lead to us trying to allocate that much memory when creating
13234 a value of that type. */
13235 TYPE_LENGTH (type) = 0;
13236 }
13237 }
13238 else
13239 {
13240 TYPE_LENGTH (type) = 0;
13241 }
13242
13243 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13244 {
13245 /* ICC does not output the required DW_AT_declaration
13246 on incomplete types, but gives them a size of zero. */
13247 TYPE_STUB (type) = 1;
13248 }
13249 else
13250 TYPE_STUB_SUPPORTED (type) = 1;
13251
13252 if (die_is_declaration (die, cu))
13253 TYPE_STUB (type) = 1;
13254 else if (attr == NULL && die->child == NULL
13255 && producer_is_realview (cu->producer))
13256 /* RealView does not output the required DW_AT_declaration
13257 on incomplete types. */
13258 TYPE_STUB (type) = 1;
13259
13260 /* We need to add the type field to the die immediately so we don't
13261 infinitely recurse when dealing with pointers to the structure
13262 type within the structure itself. */
13263 set_die_type (die, type, cu);
13264
13265 /* set_die_type should be already done. */
13266 set_descriptive_type (type, die, cu);
13267
13268 return type;
13269 }
13270
13271 /* Finish creating a structure or union type, including filling in
13272 its members and creating a symbol for it. */
13273
13274 static void
13275 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13276 {
13277 struct objfile *objfile = cu->objfile;
13278 struct die_info *child_die;
13279 struct type *type;
13280
13281 type = get_die_type (die, cu);
13282 if (type == NULL)
13283 type = read_structure_type (die, cu);
13284
13285 if (die->child != NULL && ! die_is_declaration (die, cu))
13286 {
13287 struct field_info fi;
13288 VEC (symbolp) *template_args = NULL;
13289 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13290
13291 memset (&fi, 0, sizeof (struct field_info));
13292
13293 child_die = die->child;
13294
13295 while (child_die && child_die->tag)
13296 {
13297 if (child_die->tag == DW_TAG_member
13298 || child_die->tag == DW_TAG_variable)
13299 {
13300 /* NOTE: carlton/2002-11-05: A C++ static data member
13301 should be a DW_TAG_member that is a declaration, but
13302 all versions of G++ as of this writing (so through at
13303 least 3.2.1) incorrectly generate DW_TAG_variable
13304 tags for them instead. */
13305 dwarf2_add_field (&fi, child_die, cu);
13306 }
13307 else if (child_die->tag == DW_TAG_subprogram)
13308 {
13309 /* C++ member function. */
13310 dwarf2_add_member_fn (&fi, child_die, type, cu);
13311 }
13312 else if (child_die->tag == DW_TAG_inheritance)
13313 {
13314 /* C++ base class field. */
13315 dwarf2_add_field (&fi, child_die, cu);
13316 }
13317 else if (child_die->tag == DW_TAG_typedef)
13318 dwarf2_add_typedef (&fi, child_die, cu);
13319 else if (child_die->tag == DW_TAG_template_type_param
13320 || child_die->tag == DW_TAG_template_value_param)
13321 {
13322 struct symbol *arg = new_symbol (child_die, NULL, cu);
13323
13324 if (arg != NULL)
13325 VEC_safe_push (symbolp, template_args, arg);
13326 }
13327
13328 child_die = sibling_die (child_die);
13329 }
13330
13331 /* Attach template arguments to type. */
13332 if (! VEC_empty (symbolp, template_args))
13333 {
13334 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13335 TYPE_N_TEMPLATE_ARGUMENTS (type)
13336 = VEC_length (symbolp, template_args);
13337 TYPE_TEMPLATE_ARGUMENTS (type)
13338 = XOBNEWVEC (&objfile->objfile_obstack,
13339 struct symbol *,
13340 TYPE_N_TEMPLATE_ARGUMENTS (type));
13341 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13342 VEC_address (symbolp, template_args),
13343 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13344 * sizeof (struct symbol *)));
13345 VEC_free (symbolp, template_args);
13346 }
13347
13348 /* Attach fields and member functions to the type. */
13349 if (fi.nfields)
13350 dwarf2_attach_fields_to_type (&fi, type, cu);
13351 if (fi.nfnfields)
13352 {
13353 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13354
13355 /* Get the type which refers to the base class (possibly this
13356 class itself) which contains the vtable pointer for the current
13357 class from the DW_AT_containing_type attribute. This use of
13358 DW_AT_containing_type is a GNU extension. */
13359
13360 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13361 {
13362 struct type *t = die_containing_type (die, cu);
13363
13364 set_type_vptr_basetype (type, t);
13365 if (type == t)
13366 {
13367 int i;
13368
13369 /* Our own class provides vtbl ptr. */
13370 for (i = TYPE_NFIELDS (t) - 1;
13371 i >= TYPE_N_BASECLASSES (t);
13372 --i)
13373 {
13374 const char *fieldname = TYPE_FIELD_NAME (t, i);
13375
13376 if (is_vtable_name (fieldname, cu))
13377 {
13378 set_type_vptr_fieldno (type, i);
13379 break;
13380 }
13381 }
13382
13383 /* Complain if virtual function table field not found. */
13384 if (i < TYPE_N_BASECLASSES (t))
13385 complaint (&symfile_complaints,
13386 _("virtual function table pointer "
13387 "not found when defining class '%s'"),
13388 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13389 "");
13390 }
13391 else
13392 {
13393 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13394 }
13395 }
13396 else if (cu->producer
13397 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13398 {
13399 /* The IBM XLC compiler does not provide direct indication
13400 of the containing type, but the vtable pointer is
13401 always named __vfp. */
13402
13403 int i;
13404
13405 for (i = TYPE_NFIELDS (type) - 1;
13406 i >= TYPE_N_BASECLASSES (type);
13407 --i)
13408 {
13409 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13410 {
13411 set_type_vptr_fieldno (type, i);
13412 set_type_vptr_basetype (type, type);
13413 break;
13414 }
13415 }
13416 }
13417 }
13418
13419 /* Copy fi.typedef_field_list linked list elements content into the
13420 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13421 if (fi.typedef_field_list)
13422 {
13423 int i = fi.typedef_field_list_count;
13424
13425 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13426 TYPE_TYPEDEF_FIELD_ARRAY (type)
13427 = ((struct typedef_field *)
13428 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13429 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13430
13431 /* Reverse the list order to keep the debug info elements order. */
13432 while (--i >= 0)
13433 {
13434 struct typedef_field *dest, *src;
13435
13436 dest = &TYPE_TYPEDEF_FIELD (type, i);
13437 src = &fi.typedef_field_list->field;
13438 fi.typedef_field_list = fi.typedef_field_list->next;
13439 *dest = *src;
13440 }
13441 }
13442
13443 do_cleanups (back_to);
13444
13445 if (HAVE_CPLUS_STRUCT (type))
13446 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13447 }
13448
13449 quirk_gcc_member_function_pointer (type, objfile);
13450
13451 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13452 snapshots) has been known to create a die giving a declaration
13453 for a class that has, as a child, a die giving a definition for a
13454 nested class. So we have to process our children even if the
13455 current die is a declaration. Normally, of course, a declaration
13456 won't have any children at all. */
13457
13458 child_die = die->child;
13459
13460 while (child_die != NULL && child_die->tag)
13461 {
13462 if (child_die->tag == DW_TAG_member
13463 || child_die->tag == DW_TAG_variable
13464 || child_die->tag == DW_TAG_inheritance
13465 || child_die->tag == DW_TAG_template_value_param
13466 || child_die->tag == DW_TAG_template_type_param)
13467 {
13468 /* Do nothing. */
13469 }
13470 else
13471 process_die (child_die, cu);
13472
13473 child_die = sibling_die (child_die);
13474 }
13475
13476 /* Do not consider external references. According to the DWARF standard,
13477 these DIEs are identified by the fact that they have no byte_size
13478 attribute, and a declaration attribute. */
13479 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13480 || !die_is_declaration (die, cu))
13481 new_symbol (die, type, cu);
13482 }
13483
13484 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13485 update TYPE using some information only available in DIE's children. */
13486
13487 static void
13488 update_enumeration_type_from_children (struct die_info *die,
13489 struct type *type,
13490 struct dwarf2_cu *cu)
13491 {
13492 struct obstack obstack;
13493 struct die_info *child_die;
13494 int unsigned_enum = 1;
13495 int flag_enum = 1;
13496 ULONGEST mask = 0;
13497 struct cleanup *old_chain;
13498
13499 obstack_init (&obstack);
13500 old_chain = make_cleanup_obstack_free (&obstack);
13501
13502 for (child_die = die->child;
13503 child_die != NULL && child_die->tag;
13504 child_die = sibling_die (child_die))
13505 {
13506 struct attribute *attr;
13507 LONGEST value;
13508 const gdb_byte *bytes;
13509 struct dwarf2_locexpr_baton *baton;
13510 const char *name;
13511
13512 if (child_die->tag != DW_TAG_enumerator)
13513 continue;
13514
13515 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13516 if (attr == NULL)
13517 continue;
13518
13519 name = dwarf2_name (child_die, cu);
13520 if (name == NULL)
13521 name = "<anonymous enumerator>";
13522
13523 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13524 &value, &bytes, &baton);
13525 if (value < 0)
13526 {
13527 unsigned_enum = 0;
13528 flag_enum = 0;
13529 }
13530 else if ((mask & value) != 0)
13531 flag_enum = 0;
13532 else
13533 mask |= value;
13534
13535 /* If we already know that the enum type is neither unsigned, nor
13536 a flag type, no need to look at the rest of the enumerates. */
13537 if (!unsigned_enum && !flag_enum)
13538 break;
13539 }
13540
13541 if (unsigned_enum)
13542 TYPE_UNSIGNED (type) = 1;
13543 if (flag_enum)
13544 TYPE_FLAG_ENUM (type) = 1;
13545
13546 do_cleanups (old_chain);
13547 }
13548
13549 /* Given a DW_AT_enumeration_type die, set its type. We do not
13550 complete the type's fields yet, or create any symbols. */
13551
13552 static struct type *
13553 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13554 {
13555 struct objfile *objfile = cu->objfile;
13556 struct type *type;
13557 struct attribute *attr;
13558 const char *name;
13559
13560 /* If the definition of this type lives in .debug_types, read that type.
13561 Don't follow DW_AT_specification though, that will take us back up
13562 the chain and we want to go down. */
13563 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13564 if (attr)
13565 {
13566 type = get_DW_AT_signature_type (die, attr, cu);
13567
13568 /* The type's CU may not be the same as CU.
13569 Ensure TYPE is recorded with CU in die_type_hash. */
13570 return set_die_type (die, type, cu);
13571 }
13572
13573 type = alloc_type (objfile);
13574
13575 TYPE_CODE (type) = TYPE_CODE_ENUM;
13576 name = dwarf2_full_name (NULL, die, cu);
13577 if (name != NULL)
13578 TYPE_TAG_NAME (type) = name;
13579
13580 attr = dwarf2_attr (die, DW_AT_type, cu);
13581 if (attr != NULL)
13582 {
13583 struct type *underlying_type = die_type (die, cu);
13584
13585 TYPE_TARGET_TYPE (type) = underlying_type;
13586 }
13587
13588 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13589 if (attr)
13590 {
13591 TYPE_LENGTH (type) = DW_UNSND (attr);
13592 }
13593 else
13594 {
13595 TYPE_LENGTH (type) = 0;
13596 }
13597
13598 /* The enumeration DIE can be incomplete. In Ada, any type can be
13599 declared as private in the package spec, and then defined only
13600 inside the package body. Such types are known as Taft Amendment
13601 Types. When another package uses such a type, an incomplete DIE
13602 may be generated by the compiler. */
13603 if (die_is_declaration (die, cu))
13604 TYPE_STUB (type) = 1;
13605
13606 /* Finish the creation of this type by using the enum's children.
13607 We must call this even when the underlying type has been provided
13608 so that we can determine if we're looking at a "flag" enum. */
13609 update_enumeration_type_from_children (die, type, cu);
13610
13611 /* If this type has an underlying type that is not a stub, then we
13612 may use its attributes. We always use the "unsigned" attribute
13613 in this situation, because ordinarily we guess whether the type
13614 is unsigned -- but the guess can be wrong and the underlying type
13615 can tell us the reality. However, we defer to a local size
13616 attribute if one exists, because this lets the compiler override
13617 the underlying type if needed. */
13618 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13619 {
13620 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13621 if (TYPE_LENGTH (type) == 0)
13622 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13623 }
13624
13625 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13626
13627 return set_die_type (die, type, cu);
13628 }
13629
13630 /* Given a pointer to a die which begins an enumeration, process all
13631 the dies that define the members of the enumeration, and create the
13632 symbol for the enumeration type.
13633
13634 NOTE: We reverse the order of the element list. */
13635
13636 static void
13637 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13638 {
13639 struct type *this_type;
13640
13641 this_type = get_die_type (die, cu);
13642 if (this_type == NULL)
13643 this_type = read_enumeration_type (die, cu);
13644
13645 if (die->child != NULL)
13646 {
13647 struct die_info *child_die;
13648 struct symbol *sym;
13649 struct field *fields = NULL;
13650 int num_fields = 0;
13651 const char *name;
13652
13653 child_die = die->child;
13654 while (child_die && child_die->tag)
13655 {
13656 if (child_die->tag != DW_TAG_enumerator)
13657 {
13658 process_die (child_die, cu);
13659 }
13660 else
13661 {
13662 name = dwarf2_name (child_die, cu);
13663 if (name)
13664 {
13665 sym = new_symbol (child_die, this_type, cu);
13666
13667 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13668 {
13669 fields = (struct field *)
13670 xrealloc (fields,
13671 (num_fields + DW_FIELD_ALLOC_CHUNK)
13672 * sizeof (struct field));
13673 }
13674
13675 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13676 FIELD_TYPE (fields[num_fields]) = NULL;
13677 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13678 FIELD_BITSIZE (fields[num_fields]) = 0;
13679
13680 num_fields++;
13681 }
13682 }
13683
13684 child_die = sibling_die (child_die);
13685 }
13686
13687 if (num_fields)
13688 {
13689 TYPE_NFIELDS (this_type) = num_fields;
13690 TYPE_FIELDS (this_type) = (struct field *)
13691 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13692 memcpy (TYPE_FIELDS (this_type), fields,
13693 sizeof (struct field) * num_fields);
13694 xfree (fields);
13695 }
13696 }
13697
13698 /* If we are reading an enum from a .debug_types unit, and the enum
13699 is a declaration, and the enum is not the signatured type in the
13700 unit, then we do not want to add a symbol for it. Adding a
13701 symbol would in some cases obscure the true definition of the
13702 enum, giving users an incomplete type when the definition is
13703 actually available. Note that we do not want to do this for all
13704 enums which are just declarations, because C++0x allows forward
13705 enum declarations. */
13706 if (cu->per_cu->is_debug_types
13707 && die_is_declaration (die, cu))
13708 {
13709 struct signatured_type *sig_type;
13710
13711 sig_type = (struct signatured_type *) cu->per_cu;
13712 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13713 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13714 return;
13715 }
13716
13717 new_symbol (die, this_type, cu);
13718 }
13719
13720 /* Extract all information from a DW_TAG_array_type DIE and put it in
13721 the DIE's type field. For now, this only handles one dimensional
13722 arrays. */
13723
13724 static struct type *
13725 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13726 {
13727 struct objfile *objfile = cu->objfile;
13728 struct die_info *child_die;
13729 struct type *type;
13730 struct type *element_type, *range_type, *index_type;
13731 struct type **range_types = NULL;
13732 struct attribute *attr;
13733 int ndim = 0;
13734 struct cleanup *back_to;
13735 const char *name;
13736 unsigned int bit_stride = 0;
13737
13738 element_type = die_type (die, cu);
13739
13740 /* The die_type call above may have already set the type for this DIE. */
13741 type = get_die_type (die, cu);
13742 if (type)
13743 return type;
13744
13745 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13746 if (attr != NULL)
13747 bit_stride = DW_UNSND (attr) * 8;
13748
13749 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13750 if (attr != NULL)
13751 bit_stride = DW_UNSND (attr);
13752
13753 /* Irix 6.2 native cc creates array types without children for
13754 arrays with unspecified length. */
13755 if (die->child == NULL)
13756 {
13757 index_type = objfile_type (objfile)->builtin_int;
13758 range_type = create_static_range_type (NULL, index_type, 0, -1);
13759 type = create_array_type_with_stride (NULL, element_type, range_type,
13760 bit_stride);
13761 return set_die_type (die, type, cu);
13762 }
13763
13764 back_to = make_cleanup (null_cleanup, NULL);
13765 child_die = die->child;
13766 while (child_die && child_die->tag)
13767 {
13768 if (child_die->tag == DW_TAG_subrange_type)
13769 {
13770 struct type *child_type = read_type_die (child_die, cu);
13771
13772 if (child_type != NULL)
13773 {
13774 /* The range type was succesfully read. Save it for the
13775 array type creation. */
13776 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13777 {
13778 range_types = (struct type **)
13779 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13780 * sizeof (struct type *));
13781 if (ndim == 0)
13782 make_cleanup (free_current_contents, &range_types);
13783 }
13784 range_types[ndim++] = child_type;
13785 }
13786 }
13787 child_die = sibling_die (child_die);
13788 }
13789
13790 /* Dwarf2 dimensions are output from left to right, create the
13791 necessary array types in backwards order. */
13792
13793 type = element_type;
13794
13795 if (read_array_order (die, cu) == DW_ORD_col_major)
13796 {
13797 int i = 0;
13798
13799 while (i < ndim)
13800 type = create_array_type_with_stride (NULL, type, range_types[i++],
13801 bit_stride);
13802 }
13803 else
13804 {
13805 while (ndim-- > 0)
13806 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13807 bit_stride);
13808 }
13809
13810 /* Understand Dwarf2 support for vector types (like they occur on
13811 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13812 array type. This is not part of the Dwarf2/3 standard yet, but a
13813 custom vendor extension. The main difference between a regular
13814 array and the vector variant is that vectors are passed by value
13815 to functions. */
13816 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13817 if (attr)
13818 make_vector_type (type);
13819
13820 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13821 implementation may choose to implement triple vectors using this
13822 attribute. */
13823 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13824 if (attr)
13825 {
13826 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13827 TYPE_LENGTH (type) = DW_UNSND (attr);
13828 else
13829 complaint (&symfile_complaints,
13830 _("DW_AT_byte_size for array type smaller "
13831 "than the total size of elements"));
13832 }
13833
13834 name = dwarf2_name (die, cu);
13835 if (name)
13836 TYPE_NAME (type) = name;
13837
13838 /* Install the type in the die. */
13839 set_die_type (die, type, cu);
13840
13841 /* set_die_type should be already done. */
13842 set_descriptive_type (type, die, cu);
13843
13844 do_cleanups (back_to);
13845
13846 return type;
13847 }
13848
13849 static enum dwarf_array_dim_ordering
13850 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13851 {
13852 struct attribute *attr;
13853
13854 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13855
13856 if (attr)
13857 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13858
13859 /* GNU F77 is a special case, as at 08/2004 array type info is the
13860 opposite order to the dwarf2 specification, but data is still
13861 laid out as per normal fortran.
13862
13863 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13864 version checking. */
13865
13866 if (cu->language == language_fortran
13867 && cu->producer && strstr (cu->producer, "GNU F77"))
13868 {
13869 return DW_ORD_row_major;
13870 }
13871
13872 switch (cu->language_defn->la_array_ordering)
13873 {
13874 case array_column_major:
13875 return DW_ORD_col_major;
13876 case array_row_major:
13877 default:
13878 return DW_ORD_row_major;
13879 };
13880 }
13881
13882 /* Extract all information from a DW_TAG_set_type DIE and put it in
13883 the DIE's type field. */
13884
13885 static struct type *
13886 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13887 {
13888 struct type *domain_type, *set_type;
13889 struct attribute *attr;
13890
13891 domain_type = die_type (die, cu);
13892
13893 /* The die_type call above may have already set the type for this DIE. */
13894 set_type = get_die_type (die, cu);
13895 if (set_type)
13896 return set_type;
13897
13898 set_type = create_set_type (NULL, domain_type);
13899
13900 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13901 if (attr)
13902 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13903
13904 return set_die_type (die, set_type, cu);
13905 }
13906
13907 /* A helper for read_common_block that creates a locexpr baton.
13908 SYM is the symbol which we are marking as computed.
13909 COMMON_DIE is the DIE for the common block.
13910 COMMON_LOC is the location expression attribute for the common
13911 block itself.
13912 MEMBER_LOC is the location expression attribute for the particular
13913 member of the common block that we are processing.
13914 CU is the CU from which the above come. */
13915
13916 static void
13917 mark_common_block_symbol_computed (struct symbol *sym,
13918 struct die_info *common_die,
13919 struct attribute *common_loc,
13920 struct attribute *member_loc,
13921 struct dwarf2_cu *cu)
13922 {
13923 struct objfile *objfile = dwarf2_per_objfile->objfile;
13924 struct dwarf2_locexpr_baton *baton;
13925 gdb_byte *ptr;
13926 unsigned int cu_off;
13927 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13928 LONGEST offset = 0;
13929
13930 gdb_assert (common_loc && member_loc);
13931 gdb_assert (attr_form_is_block (common_loc));
13932 gdb_assert (attr_form_is_block (member_loc)
13933 || attr_form_is_constant (member_loc));
13934
13935 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13936 baton->per_cu = cu->per_cu;
13937 gdb_assert (baton->per_cu);
13938
13939 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13940
13941 if (attr_form_is_constant (member_loc))
13942 {
13943 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13944 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13945 }
13946 else
13947 baton->size += DW_BLOCK (member_loc)->size;
13948
13949 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
13950 baton->data = ptr;
13951
13952 *ptr++ = DW_OP_call4;
13953 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13954 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13955 ptr += 4;
13956
13957 if (attr_form_is_constant (member_loc))
13958 {
13959 *ptr++ = DW_OP_addr;
13960 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13961 ptr += cu->header.addr_size;
13962 }
13963 else
13964 {
13965 /* We have to copy the data here, because DW_OP_call4 will only
13966 use a DW_AT_location attribute. */
13967 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13968 ptr += DW_BLOCK (member_loc)->size;
13969 }
13970
13971 *ptr++ = DW_OP_plus;
13972 gdb_assert (ptr - baton->data == baton->size);
13973
13974 SYMBOL_LOCATION_BATON (sym) = baton;
13975 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13976 }
13977
13978 /* Create appropriate locally-scoped variables for all the
13979 DW_TAG_common_block entries. Also create a struct common_block
13980 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13981 is used to sepate the common blocks name namespace from regular
13982 variable names. */
13983
13984 static void
13985 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13986 {
13987 struct attribute *attr;
13988
13989 attr = dwarf2_attr (die, DW_AT_location, cu);
13990 if (attr)
13991 {
13992 /* Support the .debug_loc offsets. */
13993 if (attr_form_is_block (attr))
13994 {
13995 /* Ok. */
13996 }
13997 else if (attr_form_is_section_offset (attr))
13998 {
13999 dwarf2_complex_location_expr_complaint ();
14000 attr = NULL;
14001 }
14002 else
14003 {
14004 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14005 "common block member");
14006 attr = NULL;
14007 }
14008 }
14009
14010 if (die->child != NULL)
14011 {
14012 struct objfile *objfile = cu->objfile;
14013 struct die_info *child_die;
14014 size_t n_entries = 0, size;
14015 struct common_block *common_block;
14016 struct symbol *sym;
14017
14018 for (child_die = die->child;
14019 child_die && child_die->tag;
14020 child_die = sibling_die (child_die))
14021 ++n_entries;
14022
14023 size = (sizeof (struct common_block)
14024 + (n_entries - 1) * sizeof (struct symbol *));
14025 common_block
14026 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14027 size);
14028 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14029 common_block->n_entries = 0;
14030
14031 for (child_die = die->child;
14032 child_die && child_die->tag;
14033 child_die = sibling_die (child_die))
14034 {
14035 /* Create the symbol in the DW_TAG_common_block block in the current
14036 symbol scope. */
14037 sym = new_symbol (child_die, NULL, cu);
14038 if (sym != NULL)
14039 {
14040 struct attribute *member_loc;
14041
14042 common_block->contents[common_block->n_entries++] = sym;
14043
14044 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14045 cu);
14046 if (member_loc)
14047 {
14048 /* GDB has handled this for a long time, but it is
14049 not specified by DWARF. It seems to have been
14050 emitted by gfortran at least as recently as:
14051 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14052 complaint (&symfile_complaints,
14053 _("Variable in common block has "
14054 "DW_AT_data_member_location "
14055 "- DIE at 0x%x [in module %s]"),
14056 child_die->offset.sect_off,
14057 objfile_name (cu->objfile));
14058
14059 if (attr_form_is_section_offset (member_loc))
14060 dwarf2_complex_location_expr_complaint ();
14061 else if (attr_form_is_constant (member_loc)
14062 || attr_form_is_block (member_loc))
14063 {
14064 if (attr)
14065 mark_common_block_symbol_computed (sym, die, attr,
14066 member_loc, cu);
14067 }
14068 else
14069 dwarf2_complex_location_expr_complaint ();
14070 }
14071 }
14072 }
14073
14074 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14075 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14076 }
14077 }
14078
14079 /* Create a type for a C++ namespace. */
14080
14081 static struct type *
14082 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14083 {
14084 struct objfile *objfile = cu->objfile;
14085 const char *previous_prefix, *name;
14086 int is_anonymous;
14087 struct type *type;
14088
14089 /* For extensions, reuse the type of the original namespace. */
14090 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14091 {
14092 struct die_info *ext_die;
14093 struct dwarf2_cu *ext_cu = cu;
14094
14095 ext_die = dwarf2_extension (die, &ext_cu);
14096 type = read_type_die (ext_die, ext_cu);
14097
14098 /* EXT_CU may not be the same as CU.
14099 Ensure TYPE is recorded with CU in die_type_hash. */
14100 return set_die_type (die, type, cu);
14101 }
14102
14103 name = namespace_name (die, &is_anonymous, cu);
14104
14105 /* Now build the name of the current namespace. */
14106
14107 previous_prefix = determine_prefix (die, cu);
14108 if (previous_prefix[0] != '\0')
14109 name = typename_concat (&objfile->objfile_obstack,
14110 previous_prefix, name, 0, cu);
14111
14112 /* Create the type. */
14113 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14114 objfile);
14115 TYPE_NAME (type) = name;
14116 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14117
14118 return set_die_type (die, type, cu);
14119 }
14120
14121 /* Read a namespace scope. */
14122
14123 static void
14124 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14125 {
14126 struct objfile *objfile = cu->objfile;
14127 int is_anonymous;
14128
14129 /* Add a symbol associated to this if we haven't seen the namespace
14130 before. Also, add a using directive if it's an anonymous
14131 namespace. */
14132
14133 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14134 {
14135 struct type *type;
14136
14137 type = read_type_die (die, cu);
14138 new_symbol (die, type, cu);
14139
14140 namespace_name (die, &is_anonymous, cu);
14141 if (is_anonymous)
14142 {
14143 const char *previous_prefix = determine_prefix (die, cu);
14144
14145 add_using_directive (using_directives (cu->language),
14146 previous_prefix, TYPE_NAME (type), NULL,
14147 NULL, NULL, 0, &objfile->objfile_obstack);
14148 }
14149 }
14150
14151 if (die->child != NULL)
14152 {
14153 struct die_info *child_die = die->child;
14154
14155 while (child_die && child_die->tag)
14156 {
14157 process_die (child_die, cu);
14158 child_die = sibling_die (child_die);
14159 }
14160 }
14161 }
14162
14163 /* Read a Fortran module as type. This DIE can be only a declaration used for
14164 imported module. Still we need that type as local Fortran "use ... only"
14165 declaration imports depend on the created type in determine_prefix. */
14166
14167 static struct type *
14168 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14169 {
14170 struct objfile *objfile = cu->objfile;
14171 const char *module_name;
14172 struct type *type;
14173
14174 module_name = dwarf2_name (die, cu);
14175 if (!module_name)
14176 complaint (&symfile_complaints,
14177 _("DW_TAG_module has no name, offset 0x%x"),
14178 die->offset.sect_off);
14179 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14180
14181 /* determine_prefix uses TYPE_TAG_NAME. */
14182 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14183
14184 return set_die_type (die, type, cu);
14185 }
14186
14187 /* Read a Fortran module. */
14188
14189 static void
14190 read_module (struct die_info *die, struct dwarf2_cu *cu)
14191 {
14192 struct die_info *child_die = die->child;
14193 struct type *type;
14194
14195 type = read_type_die (die, cu);
14196 new_symbol (die, type, cu);
14197
14198 while (child_die && child_die->tag)
14199 {
14200 process_die (child_die, cu);
14201 child_die = sibling_die (child_die);
14202 }
14203 }
14204
14205 /* Return the name of the namespace represented by DIE. Set
14206 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14207 namespace. */
14208
14209 static const char *
14210 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14211 {
14212 struct die_info *current_die;
14213 const char *name = NULL;
14214
14215 /* Loop through the extensions until we find a name. */
14216
14217 for (current_die = die;
14218 current_die != NULL;
14219 current_die = dwarf2_extension (die, &cu))
14220 {
14221 /* We don't use dwarf2_name here so that we can detect the absence
14222 of a name -> anonymous namespace. */
14223 name = dwarf2_string_attr (die, DW_AT_name, cu);
14224
14225 if (name != NULL)
14226 break;
14227 }
14228
14229 /* Is it an anonymous namespace? */
14230
14231 *is_anonymous = (name == NULL);
14232 if (*is_anonymous)
14233 name = CP_ANONYMOUS_NAMESPACE_STR;
14234
14235 return name;
14236 }
14237
14238 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14239 the user defined type vector. */
14240
14241 static struct type *
14242 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14243 {
14244 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14245 struct comp_unit_head *cu_header = &cu->header;
14246 struct type *type;
14247 struct attribute *attr_byte_size;
14248 struct attribute *attr_address_class;
14249 int byte_size, addr_class;
14250 struct type *target_type;
14251
14252 target_type = die_type (die, cu);
14253
14254 /* The die_type call above may have already set the type for this DIE. */
14255 type = get_die_type (die, cu);
14256 if (type)
14257 return type;
14258
14259 type = lookup_pointer_type (target_type);
14260
14261 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14262 if (attr_byte_size)
14263 byte_size = DW_UNSND (attr_byte_size);
14264 else
14265 byte_size = cu_header->addr_size;
14266
14267 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14268 if (attr_address_class)
14269 addr_class = DW_UNSND (attr_address_class);
14270 else
14271 addr_class = DW_ADDR_none;
14272
14273 /* If the pointer size or address class is different than the
14274 default, create a type variant marked as such and set the
14275 length accordingly. */
14276 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14277 {
14278 if (gdbarch_address_class_type_flags_p (gdbarch))
14279 {
14280 int type_flags;
14281
14282 type_flags = gdbarch_address_class_type_flags
14283 (gdbarch, byte_size, addr_class);
14284 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14285 == 0);
14286 type = make_type_with_address_space (type, type_flags);
14287 }
14288 else if (TYPE_LENGTH (type) != byte_size)
14289 {
14290 complaint (&symfile_complaints,
14291 _("invalid pointer size %d"), byte_size);
14292 }
14293 else
14294 {
14295 /* Should we also complain about unhandled address classes? */
14296 }
14297 }
14298
14299 TYPE_LENGTH (type) = byte_size;
14300 return set_die_type (die, type, cu);
14301 }
14302
14303 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14304 the user defined type vector. */
14305
14306 static struct type *
14307 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14308 {
14309 struct type *type;
14310 struct type *to_type;
14311 struct type *domain;
14312
14313 to_type = die_type (die, cu);
14314 domain = die_containing_type (die, cu);
14315
14316 /* The calls above may have already set the type for this DIE. */
14317 type = get_die_type (die, cu);
14318 if (type)
14319 return type;
14320
14321 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14322 type = lookup_methodptr_type (to_type);
14323 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14324 {
14325 struct type *new_type = alloc_type (cu->objfile);
14326
14327 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14328 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14329 TYPE_VARARGS (to_type));
14330 type = lookup_methodptr_type (new_type);
14331 }
14332 else
14333 type = lookup_memberptr_type (to_type, domain);
14334
14335 return set_die_type (die, type, cu);
14336 }
14337
14338 /* Extract all information from a DW_TAG_reference_type DIE and add to
14339 the user defined type vector. */
14340
14341 static struct type *
14342 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14343 {
14344 struct comp_unit_head *cu_header = &cu->header;
14345 struct type *type, *target_type;
14346 struct attribute *attr;
14347
14348 target_type = die_type (die, cu);
14349
14350 /* The die_type call above may have already set the type for this DIE. */
14351 type = get_die_type (die, cu);
14352 if (type)
14353 return type;
14354
14355 type = lookup_reference_type (target_type);
14356 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14357 if (attr)
14358 {
14359 TYPE_LENGTH (type) = DW_UNSND (attr);
14360 }
14361 else
14362 {
14363 TYPE_LENGTH (type) = cu_header->addr_size;
14364 }
14365 return set_die_type (die, type, cu);
14366 }
14367
14368 /* Add the given cv-qualifiers to the element type of the array. GCC
14369 outputs DWARF type qualifiers that apply to an array, not the
14370 element type. But GDB relies on the array element type to carry
14371 the cv-qualifiers. This mimics section 6.7.3 of the C99
14372 specification. */
14373
14374 static struct type *
14375 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14376 struct type *base_type, int cnst, int voltl)
14377 {
14378 struct type *el_type, *inner_array;
14379
14380 base_type = copy_type (base_type);
14381 inner_array = base_type;
14382
14383 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14384 {
14385 TYPE_TARGET_TYPE (inner_array) =
14386 copy_type (TYPE_TARGET_TYPE (inner_array));
14387 inner_array = TYPE_TARGET_TYPE (inner_array);
14388 }
14389
14390 el_type = TYPE_TARGET_TYPE (inner_array);
14391 cnst |= TYPE_CONST (el_type);
14392 voltl |= TYPE_VOLATILE (el_type);
14393 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14394
14395 return set_die_type (die, base_type, cu);
14396 }
14397
14398 static struct type *
14399 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14400 {
14401 struct type *base_type, *cv_type;
14402
14403 base_type = die_type (die, cu);
14404
14405 /* The die_type call above may have already set the type for this DIE. */
14406 cv_type = get_die_type (die, cu);
14407 if (cv_type)
14408 return cv_type;
14409
14410 /* In case the const qualifier is applied to an array type, the element type
14411 is so qualified, not the array type (section 6.7.3 of C99). */
14412 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14413 return add_array_cv_type (die, cu, base_type, 1, 0);
14414
14415 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14416 return set_die_type (die, cv_type, cu);
14417 }
14418
14419 static struct type *
14420 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14421 {
14422 struct type *base_type, *cv_type;
14423
14424 base_type = die_type (die, cu);
14425
14426 /* The die_type call above may have already set the type for this DIE. */
14427 cv_type = get_die_type (die, cu);
14428 if (cv_type)
14429 return cv_type;
14430
14431 /* In case the volatile qualifier is applied to an array type, the
14432 element type is so qualified, not the array type (section 6.7.3
14433 of C99). */
14434 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14435 return add_array_cv_type (die, cu, base_type, 0, 1);
14436
14437 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14438 return set_die_type (die, cv_type, cu);
14439 }
14440
14441 /* Handle DW_TAG_restrict_type. */
14442
14443 static struct type *
14444 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14445 {
14446 struct type *base_type, *cv_type;
14447
14448 base_type = die_type (die, cu);
14449
14450 /* The die_type call above may have already set the type for this DIE. */
14451 cv_type = get_die_type (die, cu);
14452 if (cv_type)
14453 return cv_type;
14454
14455 cv_type = make_restrict_type (base_type);
14456 return set_die_type (die, cv_type, cu);
14457 }
14458
14459 /* Handle DW_TAG_atomic_type. */
14460
14461 static struct type *
14462 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14463 {
14464 struct type *base_type, *cv_type;
14465
14466 base_type = die_type (die, cu);
14467
14468 /* The die_type call above may have already set the type for this DIE. */
14469 cv_type = get_die_type (die, cu);
14470 if (cv_type)
14471 return cv_type;
14472
14473 cv_type = make_atomic_type (base_type);
14474 return set_die_type (die, cv_type, cu);
14475 }
14476
14477 /* Extract all information from a DW_TAG_string_type DIE and add to
14478 the user defined type vector. It isn't really a user defined type,
14479 but it behaves like one, with other DIE's using an AT_user_def_type
14480 attribute to reference it. */
14481
14482 static struct type *
14483 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14484 {
14485 struct objfile *objfile = cu->objfile;
14486 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14487 struct type *type, *range_type, *index_type, *char_type;
14488 struct attribute *attr;
14489 unsigned int length;
14490
14491 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14492 if (attr)
14493 {
14494 length = DW_UNSND (attr);
14495 }
14496 else
14497 {
14498 /* Check for the DW_AT_byte_size attribute. */
14499 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14500 if (attr)
14501 {
14502 length = DW_UNSND (attr);
14503 }
14504 else
14505 {
14506 length = 1;
14507 }
14508 }
14509
14510 index_type = objfile_type (objfile)->builtin_int;
14511 range_type = create_static_range_type (NULL, index_type, 1, length);
14512 char_type = language_string_char_type (cu->language_defn, gdbarch);
14513 type = create_string_type (NULL, char_type, range_type);
14514
14515 return set_die_type (die, type, cu);
14516 }
14517
14518 /* Assuming that DIE corresponds to a function, returns nonzero
14519 if the function is prototyped. */
14520
14521 static int
14522 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14523 {
14524 struct attribute *attr;
14525
14526 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14527 if (attr && (DW_UNSND (attr) != 0))
14528 return 1;
14529
14530 /* The DWARF standard implies that the DW_AT_prototyped attribute
14531 is only meaninful for C, but the concept also extends to other
14532 languages that allow unprototyped functions (Eg: Objective C).
14533 For all other languages, assume that functions are always
14534 prototyped. */
14535 if (cu->language != language_c
14536 && cu->language != language_objc
14537 && cu->language != language_opencl)
14538 return 1;
14539
14540 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14541 prototyped and unprototyped functions; default to prototyped,
14542 since that is more common in modern code (and RealView warns
14543 about unprototyped functions). */
14544 if (producer_is_realview (cu->producer))
14545 return 1;
14546
14547 return 0;
14548 }
14549
14550 /* Handle DIES due to C code like:
14551
14552 struct foo
14553 {
14554 int (*funcp)(int a, long l);
14555 int b;
14556 };
14557
14558 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14559
14560 static struct type *
14561 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14562 {
14563 struct objfile *objfile = cu->objfile;
14564 struct type *type; /* Type that this function returns. */
14565 struct type *ftype; /* Function that returns above type. */
14566 struct attribute *attr;
14567
14568 type = die_type (die, cu);
14569
14570 /* The die_type call above may have already set the type for this DIE. */
14571 ftype = get_die_type (die, cu);
14572 if (ftype)
14573 return ftype;
14574
14575 ftype = lookup_function_type (type);
14576
14577 if (prototyped_function_p (die, cu))
14578 TYPE_PROTOTYPED (ftype) = 1;
14579
14580 /* Store the calling convention in the type if it's available in
14581 the subroutine die. Otherwise set the calling convention to
14582 the default value DW_CC_normal. */
14583 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14584 if (attr)
14585 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14586 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14587 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14588 else
14589 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14590
14591 /* Record whether the function returns normally to its caller or not
14592 if the DWARF producer set that information. */
14593 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14594 if (attr && (DW_UNSND (attr) != 0))
14595 TYPE_NO_RETURN (ftype) = 1;
14596
14597 /* We need to add the subroutine type to the die immediately so
14598 we don't infinitely recurse when dealing with parameters
14599 declared as the same subroutine type. */
14600 set_die_type (die, ftype, cu);
14601
14602 if (die->child != NULL)
14603 {
14604 struct type *void_type = objfile_type (objfile)->builtin_void;
14605 struct die_info *child_die;
14606 int nparams, iparams;
14607
14608 /* Count the number of parameters.
14609 FIXME: GDB currently ignores vararg functions, but knows about
14610 vararg member functions. */
14611 nparams = 0;
14612 child_die = die->child;
14613 while (child_die && child_die->tag)
14614 {
14615 if (child_die->tag == DW_TAG_formal_parameter)
14616 nparams++;
14617 else if (child_die->tag == DW_TAG_unspecified_parameters)
14618 TYPE_VARARGS (ftype) = 1;
14619 child_die = sibling_die (child_die);
14620 }
14621
14622 /* Allocate storage for parameters and fill them in. */
14623 TYPE_NFIELDS (ftype) = nparams;
14624 TYPE_FIELDS (ftype) = (struct field *)
14625 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14626
14627 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14628 even if we error out during the parameters reading below. */
14629 for (iparams = 0; iparams < nparams; iparams++)
14630 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14631
14632 iparams = 0;
14633 child_die = die->child;
14634 while (child_die && child_die->tag)
14635 {
14636 if (child_die->tag == DW_TAG_formal_parameter)
14637 {
14638 struct type *arg_type;
14639
14640 /* DWARF version 2 has no clean way to discern C++
14641 static and non-static member functions. G++ helps
14642 GDB by marking the first parameter for non-static
14643 member functions (which is the this pointer) as
14644 artificial. We pass this information to
14645 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14646
14647 DWARF version 3 added DW_AT_object_pointer, which GCC
14648 4.5 does not yet generate. */
14649 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14650 if (attr)
14651 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14652 else
14653 {
14654 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14655
14656 /* GCC/43521: In java, the formal parameter
14657 "this" is sometimes not marked with DW_AT_artificial. */
14658 if (cu->language == language_java)
14659 {
14660 const char *name = dwarf2_name (child_die, cu);
14661
14662 if (name && !strcmp (name, "this"))
14663 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14664 }
14665 }
14666 arg_type = die_type (child_die, cu);
14667
14668 /* RealView does not mark THIS as const, which the testsuite
14669 expects. GCC marks THIS as const in method definitions,
14670 but not in the class specifications (GCC PR 43053). */
14671 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14672 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14673 {
14674 int is_this = 0;
14675 struct dwarf2_cu *arg_cu = cu;
14676 const char *name = dwarf2_name (child_die, cu);
14677
14678 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14679 if (attr)
14680 {
14681 /* If the compiler emits this, use it. */
14682 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14683 is_this = 1;
14684 }
14685 else if (name && strcmp (name, "this") == 0)
14686 /* Function definitions will have the argument names. */
14687 is_this = 1;
14688 else if (name == NULL && iparams == 0)
14689 /* Declarations may not have the names, so like
14690 elsewhere in GDB, assume an artificial first
14691 argument is "this". */
14692 is_this = 1;
14693
14694 if (is_this)
14695 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14696 arg_type, 0);
14697 }
14698
14699 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14700 iparams++;
14701 }
14702 child_die = sibling_die (child_die);
14703 }
14704 }
14705
14706 return ftype;
14707 }
14708
14709 static struct type *
14710 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14711 {
14712 struct objfile *objfile = cu->objfile;
14713 const char *name = NULL;
14714 struct type *this_type, *target_type;
14715
14716 name = dwarf2_full_name (NULL, die, cu);
14717 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14718 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14719 TYPE_NAME (this_type) = name;
14720 set_die_type (die, this_type, cu);
14721 target_type = die_type (die, cu);
14722 if (target_type != this_type)
14723 TYPE_TARGET_TYPE (this_type) = target_type;
14724 else
14725 {
14726 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14727 spec and cause infinite loops in GDB. */
14728 complaint (&symfile_complaints,
14729 _("Self-referential DW_TAG_typedef "
14730 "- DIE at 0x%x [in module %s]"),
14731 die->offset.sect_off, objfile_name (objfile));
14732 TYPE_TARGET_TYPE (this_type) = NULL;
14733 }
14734 return this_type;
14735 }
14736
14737 /* Find a representation of a given base type and install
14738 it in the TYPE field of the die. */
14739
14740 static struct type *
14741 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14742 {
14743 struct objfile *objfile = cu->objfile;
14744 struct type *type;
14745 struct attribute *attr;
14746 int encoding = 0, size = 0;
14747 const char *name;
14748 enum type_code code = TYPE_CODE_INT;
14749 int type_flags = 0;
14750 struct type *target_type = NULL;
14751
14752 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14753 if (attr)
14754 {
14755 encoding = DW_UNSND (attr);
14756 }
14757 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14758 if (attr)
14759 {
14760 size = DW_UNSND (attr);
14761 }
14762 name = dwarf2_name (die, cu);
14763 if (!name)
14764 {
14765 complaint (&symfile_complaints,
14766 _("DW_AT_name missing from DW_TAG_base_type"));
14767 }
14768
14769 switch (encoding)
14770 {
14771 case DW_ATE_address:
14772 /* Turn DW_ATE_address into a void * pointer. */
14773 code = TYPE_CODE_PTR;
14774 type_flags |= TYPE_FLAG_UNSIGNED;
14775 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14776 break;
14777 case DW_ATE_boolean:
14778 code = TYPE_CODE_BOOL;
14779 type_flags |= TYPE_FLAG_UNSIGNED;
14780 break;
14781 case DW_ATE_complex_float:
14782 code = TYPE_CODE_COMPLEX;
14783 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14784 break;
14785 case DW_ATE_decimal_float:
14786 code = TYPE_CODE_DECFLOAT;
14787 break;
14788 case DW_ATE_float:
14789 code = TYPE_CODE_FLT;
14790 break;
14791 case DW_ATE_signed:
14792 break;
14793 case DW_ATE_unsigned:
14794 type_flags |= TYPE_FLAG_UNSIGNED;
14795 if (cu->language == language_fortran
14796 && name
14797 && startswith (name, "character("))
14798 code = TYPE_CODE_CHAR;
14799 break;
14800 case DW_ATE_signed_char:
14801 if (cu->language == language_ada || cu->language == language_m2
14802 || cu->language == language_pascal
14803 || cu->language == language_fortran)
14804 code = TYPE_CODE_CHAR;
14805 break;
14806 case DW_ATE_unsigned_char:
14807 if (cu->language == language_ada || cu->language == language_m2
14808 || cu->language == language_pascal
14809 || cu->language == language_fortran)
14810 code = TYPE_CODE_CHAR;
14811 type_flags |= TYPE_FLAG_UNSIGNED;
14812 break;
14813 case DW_ATE_UTF:
14814 /* We just treat this as an integer and then recognize the
14815 type by name elsewhere. */
14816 break;
14817
14818 default:
14819 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14820 dwarf_type_encoding_name (encoding));
14821 break;
14822 }
14823
14824 type = init_type (code, size, type_flags, NULL, objfile);
14825 TYPE_NAME (type) = name;
14826 TYPE_TARGET_TYPE (type) = target_type;
14827
14828 if (name && strcmp (name, "char") == 0)
14829 TYPE_NOSIGN (type) = 1;
14830
14831 return set_die_type (die, type, cu);
14832 }
14833
14834 /* Parse dwarf attribute if it's a block, reference or constant and put the
14835 resulting value of the attribute into struct bound_prop.
14836 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14837
14838 static int
14839 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14840 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14841 {
14842 struct dwarf2_property_baton *baton;
14843 struct obstack *obstack = &cu->objfile->objfile_obstack;
14844
14845 if (attr == NULL || prop == NULL)
14846 return 0;
14847
14848 if (attr_form_is_block (attr))
14849 {
14850 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14851 baton->referenced_type = NULL;
14852 baton->locexpr.per_cu = cu->per_cu;
14853 baton->locexpr.size = DW_BLOCK (attr)->size;
14854 baton->locexpr.data = DW_BLOCK (attr)->data;
14855 prop->data.baton = baton;
14856 prop->kind = PROP_LOCEXPR;
14857 gdb_assert (prop->data.baton != NULL);
14858 }
14859 else if (attr_form_is_ref (attr))
14860 {
14861 struct dwarf2_cu *target_cu = cu;
14862 struct die_info *target_die;
14863 struct attribute *target_attr;
14864
14865 target_die = follow_die_ref (die, attr, &target_cu);
14866 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14867 if (target_attr == NULL)
14868 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14869 target_cu);
14870 if (target_attr == NULL)
14871 return 0;
14872
14873 switch (target_attr->name)
14874 {
14875 case DW_AT_location:
14876 if (attr_form_is_section_offset (target_attr))
14877 {
14878 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14879 baton->referenced_type = die_type (target_die, target_cu);
14880 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14881 prop->data.baton = baton;
14882 prop->kind = PROP_LOCLIST;
14883 gdb_assert (prop->data.baton != NULL);
14884 }
14885 else if (attr_form_is_block (target_attr))
14886 {
14887 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14888 baton->referenced_type = die_type (target_die, target_cu);
14889 baton->locexpr.per_cu = cu->per_cu;
14890 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14891 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14892 prop->data.baton = baton;
14893 prop->kind = PROP_LOCEXPR;
14894 gdb_assert (prop->data.baton != NULL);
14895 }
14896 else
14897 {
14898 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14899 "dynamic property");
14900 return 0;
14901 }
14902 break;
14903 case DW_AT_data_member_location:
14904 {
14905 LONGEST offset;
14906
14907 if (!handle_data_member_location (target_die, target_cu,
14908 &offset))
14909 return 0;
14910
14911 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14912 baton->referenced_type = read_type_die (target_die->parent,
14913 target_cu);
14914 baton->offset_info.offset = offset;
14915 baton->offset_info.type = die_type (target_die, target_cu);
14916 prop->data.baton = baton;
14917 prop->kind = PROP_ADDR_OFFSET;
14918 break;
14919 }
14920 }
14921 }
14922 else if (attr_form_is_constant (attr))
14923 {
14924 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14925 prop->kind = PROP_CONST;
14926 }
14927 else
14928 {
14929 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14930 dwarf2_name (die, cu));
14931 return 0;
14932 }
14933
14934 return 1;
14935 }
14936
14937 /* Read the given DW_AT_subrange DIE. */
14938
14939 static struct type *
14940 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14941 {
14942 struct type *base_type, *orig_base_type;
14943 struct type *range_type;
14944 struct attribute *attr;
14945 struct dynamic_prop low, high;
14946 int low_default_is_valid;
14947 int high_bound_is_count = 0;
14948 const char *name;
14949 LONGEST negative_mask;
14950
14951 orig_base_type = die_type (die, cu);
14952 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14953 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14954 creating the range type, but we use the result of check_typedef
14955 when examining properties of the type. */
14956 base_type = check_typedef (orig_base_type);
14957
14958 /* The die_type call above may have already set the type for this DIE. */
14959 range_type = get_die_type (die, cu);
14960 if (range_type)
14961 return range_type;
14962
14963 low.kind = PROP_CONST;
14964 high.kind = PROP_CONST;
14965 high.data.const_val = 0;
14966
14967 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14968 omitting DW_AT_lower_bound. */
14969 switch (cu->language)
14970 {
14971 case language_c:
14972 case language_cplus:
14973 low.data.const_val = 0;
14974 low_default_is_valid = 1;
14975 break;
14976 case language_fortran:
14977 low.data.const_val = 1;
14978 low_default_is_valid = 1;
14979 break;
14980 case language_d:
14981 case language_java:
14982 case language_objc:
14983 low.data.const_val = 0;
14984 low_default_is_valid = (cu->header.version >= 4);
14985 break;
14986 case language_ada:
14987 case language_m2:
14988 case language_pascal:
14989 low.data.const_val = 1;
14990 low_default_is_valid = (cu->header.version >= 4);
14991 break;
14992 default:
14993 low.data.const_val = 0;
14994 low_default_is_valid = 0;
14995 break;
14996 }
14997
14998 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14999 if (attr)
15000 attr_to_dynamic_prop (attr, die, cu, &low);
15001 else if (!low_default_is_valid)
15002 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15003 "- DIE at 0x%x [in module %s]"),
15004 die->offset.sect_off, objfile_name (cu->objfile));
15005
15006 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15007 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15008 {
15009 attr = dwarf2_attr (die, DW_AT_count, cu);
15010 if (attr_to_dynamic_prop (attr, die, cu, &high))
15011 {
15012 /* If bounds are constant do the final calculation here. */
15013 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15014 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15015 else
15016 high_bound_is_count = 1;
15017 }
15018 }
15019
15020 /* Dwarf-2 specifications explicitly allows to create subrange types
15021 without specifying a base type.
15022 In that case, the base type must be set to the type of
15023 the lower bound, upper bound or count, in that order, if any of these
15024 three attributes references an object that has a type.
15025 If no base type is found, the Dwarf-2 specifications say that
15026 a signed integer type of size equal to the size of an address should
15027 be used.
15028 For the following C code: `extern char gdb_int [];'
15029 GCC produces an empty range DIE.
15030 FIXME: muller/2010-05-28: Possible references to object for low bound,
15031 high bound or count are not yet handled by this code. */
15032 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15033 {
15034 struct objfile *objfile = cu->objfile;
15035 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15036 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15037 struct type *int_type = objfile_type (objfile)->builtin_int;
15038
15039 /* Test "int", "long int", and "long long int" objfile types,
15040 and select the first one having a size above or equal to the
15041 architecture address size. */
15042 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15043 base_type = int_type;
15044 else
15045 {
15046 int_type = objfile_type (objfile)->builtin_long;
15047 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15048 base_type = int_type;
15049 else
15050 {
15051 int_type = objfile_type (objfile)->builtin_long_long;
15052 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15053 base_type = int_type;
15054 }
15055 }
15056 }
15057
15058 /* Normally, the DWARF producers are expected to use a signed
15059 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15060 But this is unfortunately not always the case, as witnessed
15061 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15062 is used instead. To work around that ambiguity, we treat
15063 the bounds as signed, and thus sign-extend their values, when
15064 the base type is signed. */
15065 negative_mask =
15066 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15067 if (low.kind == PROP_CONST
15068 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15069 low.data.const_val |= negative_mask;
15070 if (high.kind == PROP_CONST
15071 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15072 high.data.const_val |= negative_mask;
15073
15074 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15075
15076 if (high_bound_is_count)
15077 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15078
15079 /* Ada expects an empty array on no boundary attributes. */
15080 if (attr == NULL && cu->language != language_ada)
15081 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15082
15083 name = dwarf2_name (die, cu);
15084 if (name)
15085 TYPE_NAME (range_type) = name;
15086
15087 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15088 if (attr)
15089 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15090
15091 set_die_type (die, range_type, cu);
15092
15093 /* set_die_type should be already done. */
15094 set_descriptive_type (range_type, die, cu);
15095
15096 return range_type;
15097 }
15098
15099 static struct type *
15100 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15101 {
15102 struct type *type;
15103
15104 /* For now, we only support the C meaning of an unspecified type: void. */
15105
15106 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15107 TYPE_NAME (type) = dwarf2_name (die, cu);
15108
15109 return set_die_type (die, type, cu);
15110 }
15111
15112 /* Read a single die and all its descendents. Set the die's sibling
15113 field to NULL; set other fields in the die correctly, and set all
15114 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15115 location of the info_ptr after reading all of those dies. PARENT
15116 is the parent of the die in question. */
15117
15118 static struct die_info *
15119 read_die_and_children (const struct die_reader_specs *reader,
15120 const gdb_byte *info_ptr,
15121 const gdb_byte **new_info_ptr,
15122 struct die_info *parent)
15123 {
15124 struct die_info *die;
15125 const gdb_byte *cur_ptr;
15126 int has_children;
15127
15128 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15129 if (die == NULL)
15130 {
15131 *new_info_ptr = cur_ptr;
15132 return NULL;
15133 }
15134 store_in_ref_table (die, reader->cu);
15135
15136 if (has_children)
15137 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15138 else
15139 {
15140 die->child = NULL;
15141 *new_info_ptr = cur_ptr;
15142 }
15143
15144 die->sibling = NULL;
15145 die->parent = parent;
15146 return die;
15147 }
15148
15149 /* Read a die, all of its descendents, and all of its siblings; set
15150 all of the fields of all of the dies correctly. Arguments are as
15151 in read_die_and_children. */
15152
15153 static struct die_info *
15154 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15155 const gdb_byte *info_ptr,
15156 const gdb_byte **new_info_ptr,
15157 struct die_info *parent)
15158 {
15159 struct die_info *first_die, *last_sibling;
15160 const gdb_byte *cur_ptr;
15161
15162 cur_ptr = info_ptr;
15163 first_die = last_sibling = NULL;
15164
15165 while (1)
15166 {
15167 struct die_info *die
15168 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15169
15170 if (die == NULL)
15171 {
15172 *new_info_ptr = cur_ptr;
15173 return first_die;
15174 }
15175
15176 if (!first_die)
15177 first_die = die;
15178 else
15179 last_sibling->sibling = die;
15180
15181 last_sibling = die;
15182 }
15183 }
15184
15185 /* Read a die, all of its descendents, and all of its siblings; set
15186 all of the fields of all of the dies correctly. Arguments are as
15187 in read_die_and_children.
15188 This the main entry point for reading a DIE and all its children. */
15189
15190 static struct die_info *
15191 read_die_and_siblings (const struct die_reader_specs *reader,
15192 const gdb_byte *info_ptr,
15193 const gdb_byte **new_info_ptr,
15194 struct die_info *parent)
15195 {
15196 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15197 new_info_ptr, parent);
15198
15199 if (dwarf_die_debug)
15200 {
15201 fprintf_unfiltered (gdb_stdlog,
15202 "Read die from %s@0x%x of %s:\n",
15203 get_section_name (reader->die_section),
15204 (unsigned) (info_ptr - reader->die_section->buffer),
15205 bfd_get_filename (reader->abfd));
15206 dump_die (die, dwarf_die_debug);
15207 }
15208
15209 return die;
15210 }
15211
15212 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15213 attributes.
15214 The caller is responsible for filling in the extra attributes
15215 and updating (*DIEP)->num_attrs.
15216 Set DIEP to point to a newly allocated die with its information,
15217 except for its child, sibling, and parent fields.
15218 Set HAS_CHILDREN to tell whether the die has children or not. */
15219
15220 static const gdb_byte *
15221 read_full_die_1 (const struct die_reader_specs *reader,
15222 struct die_info **diep, const gdb_byte *info_ptr,
15223 int *has_children, int num_extra_attrs)
15224 {
15225 unsigned int abbrev_number, bytes_read, i;
15226 sect_offset offset;
15227 struct abbrev_info *abbrev;
15228 struct die_info *die;
15229 struct dwarf2_cu *cu = reader->cu;
15230 bfd *abfd = reader->abfd;
15231
15232 offset.sect_off = info_ptr - reader->buffer;
15233 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15234 info_ptr += bytes_read;
15235 if (!abbrev_number)
15236 {
15237 *diep = NULL;
15238 *has_children = 0;
15239 return info_ptr;
15240 }
15241
15242 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15243 if (!abbrev)
15244 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15245 abbrev_number,
15246 bfd_get_filename (abfd));
15247
15248 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15249 die->offset = offset;
15250 die->tag = abbrev->tag;
15251 die->abbrev = abbrev_number;
15252
15253 /* Make the result usable.
15254 The caller needs to update num_attrs after adding the extra
15255 attributes. */
15256 die->num_attrs = abbrev->num_attrs;
15257
15258 for (i = 0; i < abbrev->num_attrs; ++i)
15259 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15260 info_ptr);
15261
15262 *diep = die;
15263 *has_children = abbrev->has_children;
15264 return info_ptr;
15265 }
15266
15267 /* Read a die and all its attributes.
15268 Set DIEP to point to a newly allocated die with its information,
15269 except for its child, sibling, and parent fields.
15270 Set HAS_CHILDREN to tell whether the die has children or not. */
15271
15272 static const gdb_byte *
15273 read_full_die (const struct die_reader_specs *reader,
15274 struct die_info **diep, const gdb_byte *info_ptr,
15275 int *has_children)
15276 {
15277 const gdb_byte *result;
15278
15279 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15280
15281 if (dwarf_die_debug)
15282 {
15283 fprintf_unfiltered (gdb_stdlog,
15284 "Read die from %s@0x%x of %s:\n",
15285 get_section_name (reader->die_section),
15286 (unsigned) (info_ptr - reader->die_section->buffer),
15287 bfd_get_filename (reader->abfd));
15288 dump_die (*diep, dwarf_die_debug);
15289 }
15290
15291 return result;
15292 }
15293 \f
15294 /* Abbreviation tables.
15295
15296 In DWARF version 2, the description of the debugging information is
15297 stored in a separate .debug_abbrev section. Before we read any
15298 dies from a section we read in all abbreviations and install them
15299 in a hash table. */
15300
15301 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15302
15303 static struct abbrev_info *
15304 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15305 {
15306 struct abbrev_info *abbrev;
15307
15308 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15309 memset (abbrev, 0, sizeof (struct abbrev_info));
15310
15311 return abbrev;
15312 }
15313
15314 /* Add an abbreviation to the table. */
15315
15316 static void
15317 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15318 unsigned int abbrev_number,
15319 struct abbrev_info *abbrev)
15320 {
15321 unsigned int hash_number;
15322
15323 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15324 abbrev->next = abbrev_table->abbrevs[hash_number];
15325 abbrev_table->abbrevs[hash_number] = abbrev;
15326 }
15327
15328 /* Look up an abbrev in the table.
15329 Returns NULL if the abbrev is not found. */
15330
15331 static struct abbrev_info *
15332 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15333 unsigned int abbrev_number)
15334 {
15335 unsigned int hash_number;
15336 struct abbrev_info *abbrev;
15337
15338 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15339 abbrev = abbrev_table->abbrevs[hash_number];
15340
15341 while (abbrev)
15342 {
15343 if (abbrev->number == abbrev_number)
15344 return abbrev;
15345 abbrev = abbrev->next;
15346 }
15347 return NULL;
15348 }
15349
15350 /* Read in an abbrev table. */
15351
15352 static struct abbrev_table *
15353 abbrev_table_read_table (struct dwarf2_section_info *section,
15354 sect_offset offset)
15355 {
15356 struct objfile *objfile = dwarf2_per_objfile->objfile;
15357 bfd *abfd = get_section_bfd_owner (section);
15358 struct abbrev_table *abbrev_table;
15359 const gdb_byte *abbrev_ptr;
15360 struct abbrev_info *cur_abbrev;
15361 unsigned int abbrev_number, bytes_read, abbrev_name;
15362 unsigned int abbrev_form;
15363 struct attr_abbrev *cur_attrs;
15364 unsigned int allocated_attrs;
15365
15366 abbrev_table = XNEW (struct abbrev_table);
15367 abbrev_table->offset = offset;
15368 obstack_init (&abbrev_table->abbrev_obstack);
15369 abbrev_table->abbrevs =
15370 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15371 ABBREV_HASH_SIZE);
15372 memset (abbrev_table->abbrevs, 0,
15373 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15374
15375 dwarf2_read_section (objfile, section);
15376 abbrev_ptr = section->buffer + offset.sect_off;
15377 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15378 abbrev_ptr += bytes_read;
15379
15380 allocated_attrs = ATTR_ALLOC_CHUNK;
15381 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15382
15383 /* Loop until we reach an abbrev number of 0. */
15384 while (abbrev_number)
15385 {
15386 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15387
15388 /* read in abbrev header */
15389 cur_abbrev->number = abbrev_number;
15390 cur_abbrev->tag
15391 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15392 abbrev_ptr += bytes_read;
15393 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15394 abbrev_ptr += 1;
15395
15396 /* now read in declarations */
15397 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15398 abbrev_ptr += bytes_read;
15399 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15400 abbrev_ptr += bytes_read;
15401 while (abbrev_name)
15402 {
15403 if (cur_abbrev->num_attrs == allocated_attrs)
15404 {
15405 allocated_attrs += ATTR_ALLOC_CHUNK;
15406 cur_attrs
15407 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15408 }
15409
15410 cur_attrs[cur_abbrev->num_attrs].name
15411 = (enum dwarf_attribute) abbrev_name;
15412 cur_attrs[cur_abbrev->num_attrs++].form
15413 = (enum dwarf_form) abbrev_form;
15414 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15415 abbrev_ptr += bytes_read;
15416 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15417 abbrev_ptr += bytes_read;
15418 }
15419
15420 cur_abbrev->attrs =
15421 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15422 cur_abbrev->num_attrs);
15423 memcpy (cur_abbrev->attrs, cur_attrs,
15424 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15425
15426 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15427
15428 /* Get next abbreviation.
15429 Under Irix6 the abbreviations for a compilation unit are not
15430 always properly terminated with an abbrev number of 0.
15431 Exit loop if we encounter an abbreviation which we have
15432 already read (which means we are about to read the abbreviations
15433 for the next compile unit) or if the end of the abbreviation
15434 table is reached. */
15435 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15436 break;
15437 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15438 abbrev_ptr += bytes_read;
15439 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15440 break;
15441 }
15442
15443 xfree (cur_attrs);
15444 return abbrev_table;
15445 }
15446
15447 /* Free the resources held by ABBREV_TABLE. */
15448
15449 static void
15450 abbrev_table_free (struct abbrev_table *abbrev_table)
15451 {
15452 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15453 xfree (abbrev_table);
15454 }
15455
15456 /* Same as abbrev_table_free but as a cleanup.
15457 We pass in a pointer to the pointer to the table so that we can
15458 set the pointer to NULL when we're done. It also simplifies
15459 build_type_psymtabs_1. */
15460
15461 static void
15462 abbrev_table_free_cleanup (void *table_ptr)
15463 {
15464 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15465
15466 if (*abbrev_table_ptr != NULL)
15467 abbrev_table_free (*abbrev_table_ptr);
15468 *abbrev_table_ptr = NULL;
15469 }
15470
15471 /* Read the abbrev table for CU from ABBREV_SECTION. */
15472
15473 static void
15474 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15475 struct dwarf2_section_info *abbrev_section)
15476 {
15477 cu->abbrev_table =
15478 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15479 }
15480
15481 /* Release the memory used by the abbrev table for a compilation unit. */
15482
15483 static void
15484 dwarf2_free_abbrev_table (void *ptr_to_cu)
15485 {
15486 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15487
15488 if (cu->abbrev_table != NULL)
15489 abbrev_table_free (cu->abbrev_table);
15490 /* Set this to NULL so that we SEGV if we try to read it later,
15491 and also because free_comp_unit verifies this is NULL. */
15492 cu->abbrev_table = NULL;
15493 }
15494 \f
15495 /* Returns nonzero if TAG represents a type that we might generate a partial
15496 symbol for. */
15497
15498 static int
15499 is_type_tag_for_partial (int tag)
15500 {
15501 switch (tag)
15502 {
15503 #if 0
15504 /* Some types that would be reasonable to generate partial symbols for,
15505 that we don't at present. */
15506 case DW_TAG_array_type:
15507 case DW_TAG_file_type:
15508 case DW_TAG_ptr_to_member_type:
15509 case DW_TAG_set_type:
15510 case DW_TAG_string_type:
15511 case DW_TAG_subroutine_type:
15512 #endif
15513 case DW_TAG_base_type:
15514 case DW_TAG_class_type:
15515 case DW_TAG_interface_type:
15516 case DW_TAG_enumeration_type:
15517 case DW_TAG_structure_type:
15518 case DW_TAG_subrange_type:
15519 case DW_TAG_typedef:
15520 case DW_TAG_union_type:
15521 return 1;
15522 default:
15523 return 0;
15524 }
15525 }
15526
15527 /* Load all DIEs that are interesting for partial symbols into memory. */
15528
15529 static struct partial_die_info *
15530 load_partial_dies (const struct die_reader_specs *reader,
15531 const gdb_byte *info_ptr, int building_psymtab)
15532 {
15533 struct dwarf2_cu *cu = reader->cu;
15534 struct objfile *objfile = cu->objfile;
15535 struct partial_die_info *part_die;
15536 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15537 struct abbrev_info *abbrev;
15538 unsigned int bytes_read;
15539 unsigned int load_all = 0;
15540 int nesting_level = 1;
15541
15542 parent_die = NULL;
15543 last_die = NULL;
15544
15545 gdb_assert (cu->per_cu != NULL);
15546 if (cu->per_cu->load_all_dies)
15547 load_all = 1;
15548
15549 cu->partial_dies
15550 = htab_create_alloc_ex (cu->header.length / 12,
15551 partial_die_hash,
15552 partial_die_eq,
15553 NULL,
15554 &cu->comp_unit_obstack,
15555 hashtab_obstack_allocate,
15556 dummy_obstack_deallocate);
15557
15558 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15559
15560 while (1)
15561 {
15562 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15563
15564 /* A NULL abbrev means the end of a series of children. */
15565 if (abbrev == NULL)
15566 {
15567 if (--nesting_level == 0)
15568 {
15569 /* PART_DIE was probably the last thing allocated on the
15570 comp_unit_obstack, so we could call obstack_free
15571 here. We don't do that because the waste is small,
15572 and will be cleaned up when we're done with this
15573 compilation unit. This way, we're also more robust
15574 against other users of the comp_unit_obstack. */
15575 return first_die;
15576 }
15577 info_ptr += bytes_read;
15578 last_die = parent_die;
15579 parent_die = parent_die->die_parent;
15580 continue;
15581 }
15582
15583 /* Check for template arguments. We never save these; if
15584 they're seen, we just mark the parent, and go on our way. */
15585 if (parent_die != NULL
15586 && cu->language == language_cplus
15587 && (abbrev->tag == DW_TAG_template_type_param
15588 || abbrev->tag == DW_TAG_template_value_param))
15589 {
15590 parent_die->has_template_arguments = 1;
15591
15592 if (!load_all)
15593 {
15594 /* We don't need a partial DIE for the template argument. */
15595 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15596 continue;
15597 }
15598 }
15599
15600 /* We only recurse into c++ subprograms looking for template arguments.
15601 Skip their other children. */
15602 if (!load_all
15603 && cu->language == language_cplus
15604 && parent_die != NULL
15605 && parent_die->tag == DW_TAG_subprogram)
15606 {
15607 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15608 continue;
15609 }
15610
15611 /* Check whether this DIE is interesting enough to save. Normally
15612 we would not be interested in members here, but there may be
15613 later variables referencing them via DW_AT_specification (for
15614 static members). */
15615 if (!load_all
15616 && !is_type_tag_for_partial (abbrev->tag)
15617 && abbrev->tag != DW_TAG_constant
15618 && abbrev->tag != DW_TAG_enumerator
15619 && abbrev->tag != DW_TAG_subprogram
15620 && abbrev->tag != DW_TAG_lexical_block
15621 && abbrev->tag != DW_TAG_variable
15622 && abbrev->tag != DW_TAG_namespace
15623 && abbrev->tag != DW_TAG_module
15624 && abbrev->tag != DW_TAG_member
15625 && abbrev->tag != DW_TAG_imported_unit
15626 && abbrev->tag != DW_TAG_imported_declaration)
15627 {
15628 /* Otherwise we skip to the next sibling, if any. */
15629 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15630 continue;
15631 }
15632
15633 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15634 info_ptr);
15635
15636 /* This two-pass algorithm for processing partial symbols has a
15637 high cost in cache pressure. Thus, handle some simple cases
15638 here which cover the majority of C partial symbols. DIEs
15639 which neither have specification tags in them, nor could have
15640 specification tags elsewhere pointing at them, can simply be
15641 processed and discarded.
15642
15643 This segment is also optional; scan_partial_symbols and
15644 add_partial_symbol will handle these DIEs if we chain
15645 them in normally. When compilers which do not emit large
15646 quantities of duplicate debug information are more common,
15647 this code can probably be removed. */
15648
15649 /* Any complete simple types at the top level (pretty much all
15650 of them, for a language without namespaces), can be processed
15651 directly. */
15652 if (parent_die == NULL
15653 && part_die->has_specification == 0
15654 && part_die->is_declaration == 0
15655 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15656 || part_die->tag == DW_TAG_base_type
15657 || part_die->tag == DW_TAG_subrange_type))
15658 {
15659 if (building_psymtab && part_die->name != NULL)
15660 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15661 VAR_DOMAIN, LOC_TYPEDEF,
15662 &objfile->static_psymbols,
15663 0, cu->language, objfile);
15664 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15665 continue;
15666 }
15667
15668 /* The exception for DW_TAG_typedef with has_children above is
15669 a workaround of GCC PR debug/47510. In the case of this complaint
15670 type_name_no_tag_or_error will error on such types later.
15671
15672 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15673 it could not find the child DIEs referenced later, this is checked
15674 above. In correct DWARF DW_TAG_typedef should have no children. */
15675
15676 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15677 complaint (&symfile_complaints,
15678 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15679 "- DIE at 0x%x [in module %s]"),
15680 part_die->offset.sect_off, objfile_name (objfile));
15681
15682 /* If we're at the second level, and we're an enumerator, and
15683 our parent has no specification (meaning possibly lives in a
15684 namespace elsewhere), then we can add the partial symbol now
15685 instead of queueing it. */
15686 if (part_die->tag == DW_TAG_enumerator
15687 && parent_die != NULL
15688 && parent_die->die_parent == NULL
15689 && parent_die->tag == DW_TAG_enumeration_type
15690 && parent_die->has_specification == 0)
15691 {
15692 if (part_die->name == NULL)
15693 complaint (&symfile_complaints,
15694 _("malformed enumerator DIE ignored"));
15695 else if (building_psymtab)
15696 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15697 VAR_DOMAIN, LOC_CONST,
15698 (cu->language == language_cplus
15699 || cu->language == language_java)
15700 ? &objfile->global_psymbols
15701 : &objfile->static_psymbols,
15702 0, cu->language, objfile);
15703
15704 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15705 continue;
15706 }
15707
15708 /* We'll save this DIE so link it in. */
15709 part_die->die_parent = parent_die;
15710 part_die->die_sibling = NULL;
15711 part_die->die_child = NULL;
15712
15713 if (last_die && last_die == parent_die)
15714 last_die->die_child = part_die;
15715 else if (last_die)
15716 last_die->die_sibling = part_die;
15717
15718 last_die = part_die;
15719
15720 if (first_die == NULL)
15721 first_die = part_die;
15722
15723 /* Maybe add the DIE to the hash table. Not all DIEs that we
15724 find interesting need to be in the hash table, because we
15725 also have the parent/sibling/child chains; only those that we
15726 might refer to by offset later during partial symbol reading.
15727
15728 For now this means things that might have be the target of a
15729 DW_AT_specification, DW_AT_abstract_origin, or
15730 DW_AT_extension. DW_AT_extension will refer only to
15731 namespaces; DW_AT_abstract_origin refers to functions (and
15732 many things under the function DIE, but we do not recurse
15733 into function DIEs during partial symbol reading) and
15734 possibly variables as well; DW_AT_specification refers to
15735 declarations. Declarations ought to have the DW_AT_declaration
15736 flag. It happens that GCC forgets to put it in sometimes, but
15737 only for functions, not for types.
15738
15739 Adding more things than necessary to the hash table is harmless
15740 except for the performance cost. Adding too few will result in
15741 wasted time in find_partial_die, when we reread the compilation
15742 unit with load_all_dies set. */
15743
15744 if (load_all
15745 || abbrev->tag == DW_TAG_constant
15746 || abbrev->tag == DW_TAG_subprogram
15747 || abbrev->tag == DW_TAG_variable
15748 || abbrev->tag == DW_TAG_namespace
15749 || part_die->is_declaration)
15750 {
15751 void **slot;
15752
15753 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15754 part_die->offset.sect_off, INSERT);
15755 *slot = part_die;
15756 }
15757
15758 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15759
15760 /* For some DIEs we want to follow their children (if any). For C
15761 we have no reason to follow the children of structures; for other
15762 languages we have to, so that we can get at method physnames
15763 to infer fully qualified class names, for DW_AT_specification,
15764 and for C++ template arguments. For C++, we also look one level
15765 inside functions to find template arguments (if the name of the
15766 function does not already contain the template arguments).
15767
15768 For Ada, we need to scan the children of subprograms and lexical
15769 blocks as well because Ada allows the definition of nested
15770 entities that could be interesting for the debugger, such as
15771 nested subprograms for instance. */
15772 if (last_die->has_children
15773 && (load_all
15774 || last_die->tag == DW_TAG_namespace
15775 || last_die->tag == DW_TAG_module
15776 || last_die->tag == DW_TAG_enumeration_type
15777 || (cu->language == language_cplus
15778 && last_die->tag == DW_TAG_subprogram
15779 && (last_die->name == NULL
15780 || strchr (last_die->name, '<') == NULL))
15781 || (cu->language != language_c
15782 && (last_die->tag == DW_TAG_class_type
15783 || last_die->tag == DW_TAG_interface_type
15784 || last_die->tag == DW_TAG_structure_type
15785 || last_die->tag == DW_TAG_union_type))
15786 || (cu->language == language_ada
15787 && (last_die->tag == DW_TAG_subprogram
15788 || last_die->tag == DW_TAG_lexical_block))))
15789 {
15790 nesting_level++;
15791 parent_die = last_die;
15792 continue;
15793 }
15794
15795 /* Otherwise we skip to the next sibling, if any. */
15796 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15797
15798 /* Back to the top, do it again. */
15799 }
15800 }
15801
15802 /* Read a minimal amount of information into the minimal die structure. */
15803
15804 static const gdb_byte *
15805 read_partial_die (const struct die_reader_specs *reader,
15806 struct partial_die_info *part_die,
15807 struct abbrev_info *abbrev, unsigned int abbrev_len,
15808 const gdb_byte *info_ptr)
15809 {
15810 struct dwarf2_cu *cu = reader->cu;
15811 struct objfile *objfile = cu->objfile;
15812 const gdb_byte *buffer = reader->buffer;
15813 unsigned int i;
15814 struct attribute attr;
15815 int has_low_pc_attr = 0;
15816 int has_high_pc_attr = 0;
15817 int high_pc_relative = 0;
15818
15819 memset (part_die, 0, sizeof (struct partial_die_info));
15820
15821 part_die->offset.sect_off = info_ptr - buffer;
15822
15823 info_ptr += abbrev_len;
15824
15825 if (abbrev == NULL)
15826 return info_ptr;
15827
15828 part_die->tag = abbrev->tag;
15829 part_die->has_children = abbrev->has_children;
15830
15831 for (i = 0; i < abbrev->num_attrs; ++i)
15832 {
15833 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15834
15835 /* Store the data if it is of an attribute we want to keep in a
15836 partial symbol table. */
15837 switch (attr.name)
15838 {
15839 case DW_AT_name:
15840 switch (part_die->tag)
15841 {
15842 case DW_TAG_compile_unit:
15843 case DW_TAG_partial_unit:
15844 case DW_TAG_type_unit:
15845 /* Compilation units have a DW_AT_name that is a filename, not
15846 a source language identifier. */
15847 case DW_TAG_enumeration_type:
15848 case DW_TAG_enumerator:
15849 /* These tags always have simple identifiers already; no need
15850 to canonicalize them. */
15851 part_die->name = DW_STRING (&attr);
15852 break;
15853 default:
15854 part_die->name
15855 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15856 &objfile->per_bfd->storage_obstack);
15857 break;
15858 }
15859 break;
15860 case DW_AT_linkage_name:
15861 case DW_AT_MIPS_linkage_name:
15862 /* Note that both forms of linkage name might appear. We
15863 assume they will be the same, and we only store the last
15864 one we see. */
15865 if (cu->language == language_ada)
15866 part_die->name = DW_STRING (&attr);
15867 part_die->linkage_name = DW_STRING (&attr);
15868 break;
15869 case DW_AT_low_pc:
15870 has_low_pc_attr = 1;
15871 part_die->lowpc = attr_value_as_address (&attr);
15872 break;
15873 case DW_AT_high_pc:
15874 has_high_pc_attr = 1;
15875 part_die->highpc = attr_value_as_address (&attr);
15876 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15877 high_pc_relative = 1;
15878 break;
15879 case DW_AT_location:
15880 /* Support the .debug_loc offsets. */
15881 if (attr_form_is_block (&attr))
15882 {
15883 part_die->d.locdesc = DW_BLOCK (&attr);
15884 }
15885 else if (attr_form_is_section_offset (&attr))
15886 {
15887 dwarf2_complex_location_expr_complaint ();
15888 }
15889 else
15890 {
15891 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15892 "partial symbol information");
15893 }
15894 break;
15895 case DW_AT_external:
15896 part_die->is_external = DW_UNSND (&attr);
15897 break;
15898 case DW_AT_declaration:
15899 part_die->is_declaration = DW_UNSND (&attr);
15900 break;
15901 case DW_AT_type:
15902 part_die->has_type = 1;
15903 break;
15904 case DW_AT_abstract_origin:
15905 case DW_AT_specification:
15906 case DW_AT_extension:
15907 part_die->has_specification = 1;
15908 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15909 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15910 || cu->per_cu->is_dwz);
15911 break;
15912 case DW_AT_sibling:
15913 /* Ignore absolute siblings, they might point outside of
15914 the current compile unit. */
15915 if (attr.form == DW_FORM_ref_addr)
15916 complaint (&symfile_complaints,
15917 _("ignoring absolute DW_AT_sibling"));
15918 else
15919 {
15920 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15921 const gdb_byte *sibling_ptr = buffer + off;
15922
15923 if (sibling_ptr < info_ptr)
15924 complaint (&symfile_complaints,
15925 _("DW_AT_sibling points backwards"));
15926 else if (sibling_ptr > reader->buffer_end)
15927 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15928 else
15929 part_die->sibling = sibling_ptr;
15930 }
15931 break;
15932 case DW_AT_byte_size:
15933 part_die->has_byte_size = 1;
15934 break;
15935 case DW_AT_const_value:
15936 part_die->has_const_value = 1;
15937 break;
15938 case DW_AT_calling_convention:
15939 /* DWARF doesn't provide a way to identify a program's source-level
15940 entry point. DW_AT_calling_convention attributes are only meant
15941 to describe functions' calling conventions.
15942
15943 However, because it's a necessary piece of information in
15944 Fortran, and because DW_CC_program is the only piece of debugging
15945 information whose definition refers to a 'main program' at all,
15946 several compilers have begun marking Fortran main programs with
15947 DW_CC_program --- even when those functions use the standard
15948 calling conventions.
15949
15950 So until DWARF specifies a way to provide this information and
15951 compilers pick up the new representation, we'll support this
15952 practice. */
15953 if (DW_UNSND (&attr) == DW_CC_program
15954 && cu->language == language_fortran
15955 && part_die->name != NULL)
15956 set_objfile_main_name (objfile, part_die->name, language_fortran);
15957 break;
15958 case DW_AT_inline:
15959 if (DW_UNSND (&attr) == DW_INL_inlined
15960 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15961 part_die->may_be_inlined = 1;
15962 break;
15963
15964 case DW_AT_import:
15965 if (part_die->tag == DW_TAG_imported_unit)
15966 {
15967 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15968 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15969 || cu->per_cu->is_dwz);
15970 }
15971 break;
15972
15973 default:
15974 break;
15975 }
15976 }
15977
15978 if (high_pc_relative)
15979 part_die->highpc += part_die->lowpc;
15980
15981 if (has_low_pc_attr && has_high_pc_attr)
15982 {
15983 /* When using the GNU linker, .gnu.linkonce. sections are used to
15984 eliminate duplicate copies of functions and vtables and such.
15985 The linker will arbitrarily choose one and discard the others.
15986 The AT_*_pc values for such functions refer to local labels in
15987 these sections. If the section from that file was discarded, the
15988 labels are not in the output, so the relocs get a value of 0.
15989 If this is a discarded function, mark the pc bounds as invalid,
15990 so that GDB will ignore it. */
15991 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15992 {
15993 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15994
15995 complaint (&symfile_complaints,
15996 _("DW_AT_low_pc %s is zero "
15997 "for DIE at 0x%x [in module %s]"),
15998 paddress (gdbarch, part_die->lowpc),
15999 part_die->offset.sect_off, objfile_name (objfile));
16000 }
16001 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16002 else if (part_die->lowpc >= part_die->highpc)
16003 {
16004 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16005
16006 complaint (&symfile_complaints,
16007 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16008 "for DIE at 0x%x [in module %s]"),
16009 paddress (gdbarch, part_die->lowpc),
16010 paddress (gdbarch, part_die->highpc),
16011 part_die->offset.sect_off, objfile_name (objfile));
16012 }
16013 else
16014 part_die->has_pc_info = 1;
16015 }
16016
16017 return info_ptr;
16018 }
16019
16020 /* Find a cached partial DIE at OFFSET in CU. */
16021
16022 static struct partial_die_info *
16023 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
16024 {
16025 struct partial_die_info *lookup_die = NULL;
16026 struct partial_die_info part_die;
16027
16028 part_die.offset = offset;
16029 lookup_die = ((struct partial_die_info *)
16030 htab_find_with_hash (cu->partial_dies, &part_die,
16031 offset.sect_off));
16032
16033 return lookup_die;
16034 }
16035
16036 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16037 except in the case of .debug_types DIEs which do not reference
16038 outside their CU (they do however referencing other types via
16039 DW_FORM_ref_sig8). */
16040
16041 static struct partial_die_info *
16042 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16043 {
16044 struct objfile *objfile = cu->objfile;
16045 struct dwarf2_per_cu_data *per_cu = NULL;
16046 struct partial_die_info *pd = NULL;
16047
16048 if (offset_in_dwz == cu->per_cu->is_dwz
16049 && offset_in_cu_p (&cu->header, offset))
16050 {
16051 pd = find_partial_die_in_comp_unit (offset, cu);
16052 if (pd != NULL)
16053 return pd;
16054 /* We missed recording what we needed.
16055 Load all dies and try again. */
16056 per_cu = cu->per_cu;
16057 }
16058 else
16059 {
16060 /* TUs don't reference other CUs/TUs (except via type signatures). */
16061 if (cu->per_cu->is_debug_types)
16062 {
16063 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16064 " external reference to offset 0x%lx [in module %s].\n"),
16065 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16066 bfd_get_filename (objfile->obfd));
16067 }
16068 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16069 objfile);
16070
16071 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16072 load_partial_comp_unit (per_cu);
16073
16074 per_cu->cu->last_used = 0;
16075 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16076 }
16077
16078 /* If we didn't find it, and not all dies have been loaded,
16079 load them all and try again. */
16080
16081 if (pd == NULL && per_cu->load_all_dies == 0)
16082 {
16083 per_cu->load_all_dies = 1;
16084
16085 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16086 THIS_CU->cu may already be in use. So we can't just free it and
16087 replace its DIEs with the ones we read in. Instead, we leave those
16088 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16089 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16090 set. */
16091 load_partial_comp_unit (per_cu);
16092
16093 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16094 }
16095
16096 if (pd == NULL)
16097 internal_error (__FILE__, __LINE__,
16098 _("could not find partial DIE 0x%x "
16099 "in cache [from module %s]\n"),
16100 offset.sect_off, bfd_get_filename (objfile->obfd));
16101 return pd;
16102 }
16103
16104 /* See if we can figure out if the class lives in a namespace. We do
16105 this by looking for a member function; its demangled name will
16106 contain namespace info, if there is any. */
16107
16108 static void
16109 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16110 struct dwarf2_cu *cu)
16111 {
16112 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16113 what template types look like, because the demangler
16114 frequently doesn't give the same name as the debug info. We
16115 could fix this by only using the demangled name to get the
16116 prefix (but see comment in read_structure_type). */
16117
16118 struct partial_die_info *real_pdi;
16119 struct partial_die_info *child_pdi;
16120
16121 /* If this DIE (this DIE's specification, if any) has a parent, then
16122 we should not do this. We'll prepend the parent's fully qualified
16123 name when we create the partial symbol. */
16124
16125 real_pdi = struct_pdi;
16126 while (real_pdi->has_specification)
16127 real_pdi = find_partial_die (real_pdi->spec_offset,
16128 real_pdi->spec_is_dwz, cu);
16129
16130 if (real_pdi->die_parent != NULL)
16131 return;
16132
16133 for (child_pdi = struct_pdi->die_child;
16134 child_pdi != NULL;
16135 child_pdi = child_pdi->die_sibling)
16136 {
16137 if (child_pdi->tag == DW_TAG_subprogram
16138 && child_pdi->linkage_name != NULL)
16139 {
16140 char *actual_class_name
16141 = language_class_name_from_physname (cu->language_defn,
16142 child_pdi->linkage_name);
16143 if (actual_class_name != NULL)
16144 {
16145 struct_pdi->name
16146 = ((const char *)
16147 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16148 actual_class_name,
16149 strlen (actual_class_name)));
16150 xfree (actual_class_name);
16151 }
16152 break;
16153 }
16154 }
16155 }
16156
16157 /* Adjust PART_DIE before generating a symbol for it. This function
16158 may set the is_external flag or change the DIE's name. */
16159
16160 static void
16161 fixup_partial_die (struct partial_die_info *part_die,
16162 struct dwarf2_cu *cu)
16163 {
16164 /* Once we've fixed up a die, there's no point in doing so again.
16165 This also avoids a memory leak if we were to call
16166 guess_partial_die_structure_name multiple times. */
16167 if (part_die->fixup_called)
16168 return;
16169
16170 /* If we found a reference attribute and the DIE has no name, try
16171 to find a name in the referred to DIE. */
16172
16173 if (part_die->name == NULL && part_die->has_specification)
16174 {
16175 struct partial_die_info *spec_die;
16176
16177 spec_die = find_partial_die (part_die->spec_offset,
16178 part_die->spec_is_dwz, cu);
16179
16180 fixup_partial_die (spec_die, cu);
16181
16182 if (spec_die->name)
16183 {
16184 part_die->name = spec_die->name;
16185
16186 /* Copy DW_AT_external attribute if it is set. */
16187 if (spec_die->is_external)
16188 part_die->is_external = spec_die->is_external;
16189 }
16190 }
16191
16192 /* Set default names for some unnamed DIEs. */
16193
16194 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16195 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16196
16197 /* If there is no parent die to provide a namespace, and there are
16198 children, see if we can determine the namespace from their linkage
16199 name. */
16200 if (cu->language == language_cplus
16201 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16202 && part_die->die_parent == NULL
16203 && part_die->has_children
16204 && (part_die->tag == DW_TAG_class_type
16205 || part_die->tag == DW_TAG_structure_type
16206 || part_die->tag == DW_TAG_union_type))
16207 guess_partial_die_structure_name (part_die, cu);
16208
16209 /* GCC might emit a nameless struct or union that has a linkage
16210 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16211 if (part_die->name == NULL
16212 && (part_die->tag == DW_TAG_class_type
16213 || part_die->tag == DW_TAG_interface_type
16214 || part_die->tag == DW_TAG_structure_type
16215 || part_die->tag == DW_TAG_union_type)
16216 && part_die->linkage_name != NULL)
16217 {
16218 char *demangled;
16219
16220 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16221 if (demangled)
16222 {
16223 const char *base;
16224
16225 /* Strip any leading namespaces/classes, keep only the base name.
16226 DW_AT_name for named DIEs does not contain the prefixes. */
16227 base = strrchr (demangled, ':');
16228 if (base && base > demangled && base[-1] == ':')
16229 base++;
16230 else
16231 base = demangled;
16232
16233 part_die->name
16234 = ((const char *)
16235 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16236 base, strlen (base)));
16237 xfree (demangled);
16238 }
16239 }
16240
16241 part_die->fixup_called = 1;
16242 }
16243
16244 /* Read an attribute value described by an attribute form. */
16245
16246 static const gdb_byte *
16247 read_attribute_value (const struct die_reader_specs *reader,
16248 struct attribute *attr, unsigned form,
16249 const gdb_byte *info_ptr)
16250 {
16251 struct dwarf2_cu *cu = reader->cu;
16252 struct objfile *objfile = cu->objfile;
16253 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16254 bfd *abfd = reader->abfd;
16255 struct comp_unit_head *cu_header = &cu->header;
16256 unsigned int bytes_read;
16257 struct dwarf_block *blk;
16258
16259 attr->form = (enum dwarf_form) form;
16260 switch (form)
16261 {
16262 case DW_FORM_ref_addr:
16263 if (cu->header.version == 2)
16264 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16265 else
16266 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16267 &cu->header, &bytes_read);
16268 info_ptr += bytes_read;
16269 break;
16270 case DW_FORM_GNU_ref_alt:
16271 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16272 info_ptr += bytes_read;
16273 break;
16274 case DW_FORM_addr:
16275 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16276 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16277 info_ptr += bytes_read;
16278 break;
16279 case DW_FORM_block2:
16280 blk = dwarf_alloc_block (cu);
16281 blk->size = read_2_bytes (abfd, info_ptr);
16282 info_ptr += 2;
16283 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16284 info_ptr += blk->size;
16285 DW_BLOCK (attr) = blk;
16286 break;
16287 case DW_FORM_block4:
16288 blk = dwarf_alloc_block (cu);
16289 blk->size = read_4_bytes (abfd, info_ptr);
16290 info_ptr += 4;
16291 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16292 info_ptr += blk->size;
16293 DW_BLOCK (attr) = blk;
16294 break;
16295 case DW_FORM_data2:
16296 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16297 info_ptr += 2;
16298 break;
16299 case DW_FORM_data4:
16300 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16301 info_ptr += 4;
16302 break;
16303 case DW_FORM_data8:
16304 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16305 info_ptr += 8;
16306 break;
16307 case DW_FORM_sec_offset:
16308 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16309 info_ptr += bytes_read;
16310 break;
16311 case DW_FORM_string:
16312 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16313 DW_STRING_IS_CANONICAL (attr) = 0;
16314 info_ptr += bytes_read;
16315 break;
16316 case DW_FORM_strp:
16317 if (!cu->per_cu->is_dwz)
16318 {
16319 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16320 &bytes_read);
16321 DW_STRING_IS_CANONICAL (attr) = 0;
16322 info_ptr += bytes_read;
16323 break;
16324 }
16325 /* FALLTHROUGH */
16326 case DW_FORM_GNU_strp_alt:
16327 {
16328 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16329 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16330 &bytes_read);
16331
16332 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16333 DW_STRING_IS_CANONICAL (attr) = 0;
16334 info_ptr += bytes_read;
16335 }
16336 break;
16337 case DW_FORM_exprloc:
16338 case DW_FORM_block:
16339 blk = dwarf_alloc_block (cu);
16340 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16341 info_ptr += bytes_read;
16342 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16343 info_ptr += blk->size;
16344 DW_BLOCK (attr) = blk;
16345 break;
16346 case DW_FORM_block1:
16347 blk = dwarf_alloc_block (cu);
16348 blk->size = read_1_byte (abfd, info_ptr);
16349 info_ptr += 1;
16350 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16351 info_ptr += blk->size;
16352 DW_BLOCK (attr) = blk;
16353 break;
16354 case DW_FORM_data1:
16355 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16356 info_ptr += 1;
16357 break;
16358 case DW_FORM_flag:
16359 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16360 info_ptr += 1;
16361 break;
16362 case DW_FORM_flag_present:
16363 DW_UNSND (attr) = 1;
16364 break;
16365 case DW_FORM_sdata:
16366 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16367 info_ptr += bytes_read;
16368 break;
16369 case DW_FORM_udata:
16370 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16371 info_ptr += bytes_read;
16372 break;
16373 case DW_FORM_ref1:
16374 DW_UNSND (attr) = (cu->header.offset.sect_off
16375 + read_1_byte (abfd, info_ptr));
16376 info_ptr += 1;
16377 break;
16378 case DW_FORM_ref2:
16379 DW_UNSND (attr) = (cu->header.offset.sect_off
16380 + read_2_bytes (abfd, info_ptr));
16381 info_ptr += 2;
16382 break;
16383 case DW_FORM_ref4:
16384 DW_UNSND (attr) = (cu->header.offset.sect_off
16385 + read_4_bytes (abfd, info_ptr));
16386 info_ptr += 4;
16387 break;
16388 case DW_FORM_ref8:
16389 DW_UNSND (attr) = (cu->header.offset.sect_off
16390 + read_8_bytes (abfd, info_ptr));
16391 info_ptr += 8;
16392 break;
16393 case DW_FORM_ref_sig8:
16394 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16395 info_ptr += 8;
16396 break;
16397 case DW_FORM_ref_udata:
16398 DW_UNSND (attr) = (cu->header.offset.sect_off
16399 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16400 info_ptr += bytes_read;
16401 break;
16402 case DW_FORM_indirect:
16403 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16404 info_ptr += bytes_read;
16405 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16406 break;
16407 case DW_FORM_GNU_addr_index:
16408 if (reader->dwo_file == NULL)
16409 {
16410 /* For now flag a hard error.
16411 Later we can turn this into a complaint. */
16412 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16413 dwarf_form_name (form),
16414 bfd_get_filename (abfd));
16415 }
16416 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16417 info_ptr += bytes_read;
16418 break;
16419 case DW_FORM_GNU_str_index:
16420 if (reader->dwo_file == NULL)
16421 {
16422 /* For now flag a hard error.
16423 Later we can turn this into a complaint if warranted. */
16424 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16425 dwarf_form_name (form),
16426 bfd_get_filename (abfd));
16427 }
16428 {
16429 ULONGEST str_index =
16430 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16431
16432 DW_STRING (attr) = read_str_index (reader, str_index);
16433 DW_STRING_IS_CANONICAL (attr) = 0;
16434 info_ptr += bytes_read;
16435 }
16436 break;
16437 default:
16438 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16439 dwarf_form_name (form),
16440 bfd_get_filename (abfd));
16441 }
16442
16443 /* Super hack. */
16444 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16445 attr->form = DW_FORM_GNU_ref_alt;
16446
16447 /* We have seen instances where the compiler tried to emit a byte
16448 size attribute of -1 which ended up being encoded as an unsigned
16449 0xffffffff. Although 0xffffffff is technically a valid size value,
16450 an object of this size seems pretty unlikely so we can relatively
16451 safely treat these cases as if the size attribute was invalid and
16452 treat them as zero by default. */
16453 if (attr->name == DW_AT_byte_size
16454 && form == DW_FORM_data4
16455 && DW_UNSND (attr) >= 0xffffffff)
16456 {
16457 complaint
16458 (&symfile_complaints,
16459 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16460 hex_string (DW_UNSND (attr)));
16461 DW_UNSND (attr) = 0;
16462 }
16463
16464 return info_ptr;
16465 }
16466
16467 /* Read an attribute described by an abbreviated attribute. */
16468
16469 static const gdb_byte *
16470 read_attribute (const struct die_reader_specs *reader,
16471 struct attribute *attr, struct attr_abbrev *abbrev,
16472 const gdb_byte *info_ptr)
16473 {
16474 attr->name = abbrev->name;
16475 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16476 }
16477
16478 /* Read dwarf information from a buffer. */
16479
16480 static unsigned int
16481 read_1_byte (bfd *abfd, const gdb_byte *buf)
16482 {
16483 return bfd_get_8 (abfd, buf);
16484 }
16485
16486 static int
16487 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16488 {
16489 return bfd_get_signed_8 (abfd, buf);
16490 }
16491
16492 static unsigned int
16493 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16494 {
16495 return bfd_get_16 (abfd, buf);
16496 }
16497
16498 static int
16499 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16500 {
16501 return bfd_get_signed_16 (abfd, buf);
16502 }
16503
16504 static unsigned int
16505 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16506 {
16507 return bfd_get_32 (abfd, buf);
16508 }
16509
16510 static int
16511 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16512 {
16513 return bfd_get_signed_32 (abfd, buf);
16514 }
16515
16516 static ULONGEST
16517 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16518 {
16519 return bfd_get_64 (abfd, buf);
16520 }
16521
16522 static CORE_ADDR
16523 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16524 unsigned int *bytes_read)
16525 {
16526 struct comp_unit_head *cu_header = &cu->header;
16527 CORE_ADDR retval = 0;
16528
16529 if (cu_header->signed_addr_p)
16530 {
16531 switch (cu_header->addr_size)
16532 {
16533 case 2:
16534 retval = bfd_get_signed_16 (abfd, buf);
16535 break;
16536 case 4:
16537 retval = bfd_get_signed_32 (abfd, buf);
16538 break;
16539 case 8:
16540 retval = bfd_get_signed_64 (abfd, buf);
16541 break;
16542 default:
16543 internal_error (__FILE__, __LINE__,
16544 _("read_address: bad switch, signed [in module %s]"),
16545 bfd_get_filename (abfd));
16546 }
16547 }
16548 else
16549 {
16550 switch (cu_header->addr_size)
16551 {
16552 case 2:
16553 retval = bfd_get_16 (abfd, buf);
16554 break;
16555 case 4:
16556 retval = bfd_get_32 (abfd, buf);
16557 break;
16558 case 8:
16559 retval = bfd_get_64 (abfd, buf);
16560 break;
16561 default:
16562 internal_error (__FILE__, __LINE__,
16563 _("read_address: bad switch, "
16564 "unsigned [in module %s]"),
16565 bfd_get_filename (abfd));
16566 }
16567 }
16568
16569 *bytes_read = cu_header->addr_size;
16570 return retval;
16571 }
16572
16573 /* Read the initial length from a section. The (draft) DWARF 3
16574 specification allows the initial length to take up either 4 bytes
16575 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16576 bytes describe the length and all offsets will be 8 bytes in length
16577 instead of 4.
16578
16579 An older, non-standard 64-bit format is also handled by this
16580 function. The older format in question stores the initial length
16581 as an 8-byte quantity without an escape value. Lengths greater
16582 than 2^32 aren't very common which means that the initial 4 bytes
16583 is almost always zero. Since a length value of zero doesn't make
16584 sense for the 32-bit format, this initial zero can be considered to
16585 be an escape value which indicates the presence of the older 64-bit
16586 format. As written, the code can't detect (old format) lengths
16587 greater than 4GB. If it becomes necessary to handle lengths
16588 somewhat larger than 4GB, we could allow other small values (such
16589 as the non-sensical values of 1, 2, and 3) to also be used as
16590 escape values indicating the presence of the old format.
16591
16592 The value returned via bytes_read should be used to increment the
16593 relevant pointer after calling read_initial_length().
16594
16595 [ Note: read_initial_length() and read_offset() are based on the
16596 document entitled "DWARF Debugging Information Format", revision
16597 3, draft 8, dated November 19, 2001. This document was obtained
16598 from:
16599
16600 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16601
16602 This document is only a draft and is subject to change. (So beware.)
16603
16604 Details regarding the older, non-standard 64-bit format were
16605 determined empirically by examining 64-bit ELF files produced by
16606 the SGI toolchain on an IRIX 6.5 machine.
16607
16608 - Kevin, July 16, 2002
16609 ] */
16610
16611 static LONGEST
16612 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16613 {
16614 LONGEST length = bfd_get_32 (abfd, buf);
16615
16616 if (length == 0xffffffff)
16617 {
16618 length = bfd_get_64 (abfd, buf + 4);
16619 *bytes_read = 12;
16620 }
16621 else if (length == 0)
16622 {
16623 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16624 length = bfd_get_64 (abfd, buf);
16625 *bytes_read = 8;
16626 }
16627 else
16628 {
16629 *bytes_read = 4;
16630 }
16631
16632 return length;
16633 }
16634
16635 /* Cover function for read_initial_length.
16636 Returns the length of the object at BUF, and stores the size of the
16637 initial length in *BYTES_READ and stores the size that offsets will be in
16638 *OFFSET_SIZE.
16639 If the initial length size is not equivalent to that specified in
16640 CU_HEADER then issue a complaint.
16641 This is useful when reading non-comp-unit headers. */
16642
16643 static LONGEST
16644 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16645 const struct comp_unit_head *cu_header,
16646 unsigned int *bytes_read,
16647 unsigned int *offset_size)
16648 {
16649 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16650
16651 gdb_assert (cu_header->initial_length_size == 4
16652 || cu_header->initial_length_size == 8
16653 || cu_header->initial_length_size == 12);
16654
16655 if (cu_header->initial_length_size != *bytes_read)
16656 complaint (&symfile_complaints,
16657 _("intermixed 32-bit and 64-bit DWARF sections"));
16658
16659 *offset_size = (*bytes_read == 4) ? 4 : 8;
16660 return length;
16661 }
16662
16663 /* Read an offset from the data stream. The size of the offset is
16664 given by cu_header->offset_size. */
16665
16666 static LONGEST
16667 read_offset (bfd *abfd, const gdb_byte *buf,
16668 const struct comp_unit_head *cu_header,
16669 unsigned int *bytes_read)
16670 {
16671 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16672
16673 *bytes_read = cu_header->offset_size;
16674 return offset;
16675 }
16676
16677 /* Read an offset from the data stream. */
16678
16679 static LONGEST
16680 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16681 {
16682 LONGEST retval = 0;
16683
16684 switch (offset_size)
16685 {
16686 case 4:
16687 retval = bfd_get_32 (abfd, buf);
16688 break;
16689 case 8:
16690 retval = bfd_get_64 (abfd, buf);
16691 break;
16692 default:
16693 internal_error (__FILE__, __LINE__,
16694 _("read_offset_1: bad switch [in module %s]"),
16695 bfd_get_filename (abfd));
16696 }
16697
16698 return retval;
16699 }
16700
16701 static const gdb_byte *
16702 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16703 {
16704 /* If the size of a host char is 8 bits, we can return a pointer
16705 to the buffer, otherwise we have to copy the data to a buffer
16706 allocated on the temporary obstack. */
16707 gdb_assert (HOST_CHAR_BIT == 8);
16708 return buf;
16709 }
16710
16711 static const char *
16712 read_direct_string (bfd *abfd, const gdb_byte *buf,
16713 unsigned int *bytes_read_ptr)
16714 {
16715 /* If the size of a host char is 8 bits, we can return a pointer
16716 to the string, otherwise we have to copy the string to a buffer
16717 allocated on the temporary obstack. */
16718 gdb_assert (HOST_CHAR_BIT == 8);
16719 if (*buf == '\0')
16720 {
16721 *bytes_read_ptr = 1;
16722 return NULL;
16723 }
16724 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16725 return (const char *) buf;
16726 }
16727
16728 static const char *
16729 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16730 {
16731 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16732 if (dwarf2_per_objfile->str.buffer == NULL)
16733 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16734 bfd_get_filename (abfd));
16735 if (str_offset >= dwarf2_per_objfile->str.size)
16736 error (_("DW_FORM_strp pointing outside of "
16737 ".debug_str section [in module %s]"),
16738 bfd_get_filename (abfd));
16739 gdb_assert (HOST_CHAR_BIT == 8);
16740 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16741 return NULL;
16742 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16743 }
16744
16745 /* Read a string at offset STR_OFFSET in the .debug_str section from
16746 the .dwz file DWZ. Throw an error if the offset is too large. If
16747 the string consists of a single NUL byte, return NULL; otherwise
16748 return a pointer to the string. */
16749
16750 static const char *
16751 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16752 {
16753 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16754
16755 if (dwz->str.buffer == NULL)
16756 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16757 "section [in module %s]"),
16758 bfd_get_filename (dwz->dwz_bfd));
16759 if (str_offset >= dwz->str.size)
16760 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16761 ".debug_str section [in module %s]"),
16762 bfd_get_filename (dwz->dwz_bfd));
16763 gdb_assert (HOST_CHAR_BIT == 8);
16764 if (dwz->str.buffer[str_offset] == '\0')
16765 return NULL;
16766 return (const char *) (dwz->str.buffer + str_offset);
16767 }
16768
16769 static const char *
16770 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16771 const struct comp_unit_head *cu_header,
16772 unsigned int *bytes_read_ptr)
16773 {
16774 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16775
16776 return read_indirect_string_at_offset (abfd, str_offset);
16777 }
16778
16779 static ULONGEST
16780 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16781 unsigned int *bytes_read_ptr)
16782 {
16783 ULONGEST result;
16784 unsigned int num_read;
16785 int i, shift;
16786 unsigned char byte;
16787
16788 result = 0;
16789 shift = 0;
16790 num_read = 0;
16791 i = 0;
16792 while (1)
16793 {
16794 byte = bfd_get_8 (abfd, buf);
16795 buf++;
16796 num_read++;
16797 result |= ((ULONGEST) (byte & 127) << shift);
16798 if ((byte & 128) == 0)
16799 {
16800 break;
16801 }
16802 shift += 7;
16803 }
16804 *bytes_read_ptr = num_read;
16805 return result;
16806 }
16807
16808 static LONGEST
16809 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16810 unsigned int *bytes_read_ptr)
16811 {
16812 LONGEST result;
16813 int i, shift, num_read;
16814 unsigned char byte;
16815
16816 result = 0;
16817 shift = 0;
16818 num_read = 0;
16819 i = 0;
16820 while (1)
16821 {
16822 byte = bfd_get_8 (abfd, buf);
16823 buf++;
16824 num_read++;
16825 result |= ((LONGEST) (byte & 127) << shift);
16826 shift += 7;
16827 if ((byte & 128) == 0)
16828 {
16829 break;
16830 }
16831 }
16832 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16833 result |= -(((LONGEST) 1) << shift);
16834 *bytes_read_ptr = num_read;
16835 return result;
16836 }
16837
16838 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16839 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16840 ADDR_SIZE is the size of addresses from the CU header. */
16841
16842 static CORE_ADDR
16843 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16844 {
16845 struct objfile *objfile = dwarf2_per_objfile->objfile;
16846 bfd *abfd = objfile->obfd;
16847 const gdb_byte *info_ptr;
16848
16849 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16850 if (dwarf2_per_objfile->addr.buffer == NULL)
16851 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16852 objfile_name (objfile));
16853 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16854 error (_("DW_FORM_addr_index pointing outside of "
16855 ".debug_addr section [in module %s]"),
16856 objfile_name (objfile));
16857 info_ptr = (dwarf2_per_objfile->addr.buffer
16858 + addr_base + addr_index * addr_size);
16859 if (addr_size == 4)
16860 return bfd_get_32 (abfd, info_ptr);
16861 else
16862 return bfd_get_64 (abfd, info_ptr);
16863 }
16864
16865 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16866
16867 static CORE_ADDR
16868 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16869 {
16870 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16871 }
16872
16873 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16874
16875 static CORE_ADDR
16876 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16877 unsigned int *bytes_read)
16878 {
16879 bfd *abfd = cu->objfile->obfd;
16880 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16881
16882 return read_addr_index (cu, addr_index);
16883 }
16884
16885 /* Data structure to pass results from dwarf2_read_addr_index_reader
16886 back to dwarf2_read_addr_index. */
16887
16888 struct dwarf2_read_addr_index_data
16889 {
16890 ULONGEST addr_base;
16891 int addr_size;
16892 };
16893
16894 /* die_reader_func for dwarf2_read_addr_index. */
16895
16896 static void
16897 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16898 const gdb_byte *info_ptr,
16899 struct die_info *comp_unit_die,
16900 int has_children,
16901 void *data)
16902 {
16903 struct dwarf2_cu *cu = reader->cu;
16904 struct dwarf2_read_addr_index_data *aidata =
16905 (struct dwarf2_read_addr_index_data *) data;
16906
16907 aidata->addr_base = cu->addr_base;
16908 aidata->addr_size = cu->header.addr_size;
16909 }
16910
16911 /* Given an index in .debug_addr, fetch the value.
16912 NOTE: This can be called during dwarf expression evaluation,
16913 long after the debug information has been read, and thus per_cu->cu
16914 may no longer exist. */
16915
16916 CORE_ADDR
16917 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16918 unsigned int addr_index)
16919 {
16920 struct objfile *objfile = per_cu->objfile;
16921 struct dwarf2_cu *cu = per_cu->cu;
16922 ULONGEST addr_base;
16923 int addr_size;
16924
16925 /* This is intended to be called from outside this file. */
16926 dw2_setup (objfile);
16927
16928 /* We need addr_base and addr_size.
16929 If we don't have PER_CU->cu, we have to get it.
16930 Nasty, but the alternative is storing the needed info in PER_CU,
16931 which at this point doesn't seem justified: it's not clear how frequently
16932 it would get used and it would increase the size of every PER_CU.
16933 Entry points like dwarf2_per_cu_addr_size do a similar thing
16934 so we're not in uncharted territory here.
16935 Alas we need to be a bit more complicated as addr_base is contained
16936 in the DIE.
16937
16938 We don't need to read the entire CU(/TU).
16939 We just need the header and top level die.
16940
16941 IWBN to use the aging mechanism to let us lazily later discard the CU.
16942 For now we skip this optimization. */
16943
16944 if (cu != NULL)
16945 {
16946 addr_base = cu->addr_base;
16947 addr_size = cu->header.addr_size;
16948 }
16949 else
16950 {
16951 struct dwarf2_read_addr_index_data aidata;
16952
16953 /* Note: We can't use init_cutu_and_read_dies_simple here,
16954 we need addr_base. */
16955 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16956 dwarf2_read_addr_index_reader, &aidata);
16957 addr_base = aidata.addr_base;
16958 addr_size = aidata.addr_size;
16959 }
16960
16961 return read_addr_index_1 (addr_index, addr_base, addr_size);
16962 }
16963
16964 /* Given a DW_FORM_GNU_str_index, fetch the string.
16965 This is only used by the Fission support. */
16966
16967 static const char *
16968 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16969 {
16970 struct objfile *objfile = dwarf2_per_objfile->objfile;
16971 const char *objf_name = objfile_name (objfile);
16972 bfd *abfd = objfile->obfd;
16973 struct dwarf2_cu *cu = reader->cu;
16974 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16975 struct dwarf2_section_info *str_offsets_section =
16976 &reader->dwo_file->sections.str_offsets;
16977 const gdb_byte *info_ptr;
16978 ULONGEST str_offset;
16979 static const char form_name[] = "DW_FORM_GNU_str_index";
16980
16981 dwarf2_read_section (objfile, str_section);
16982 dwarf2_read_section (objfile, str_offsets_section);
16983 if (str_section->buffer == NULL)
16984 error (_("%s used without .debug_str.dwo section"
16985 " in CU at offset 0x%lx [in module %s]"),
16986 form_name, (long) cu->header.offset.sect_off, objf_name);
16987 if (str_offsets_section->buffer == NULL)
16988 error (_("%s used without .debug_str_offsets.dwo section"
16989 " in CU at offset 0x%lx [in module %s]"),
16990 form_name, (long) cu->header.offset.sect_off, objf_name);
16991 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16992 error (_("%s pointing outside of .debug_str_offsets.dwo"
16993 " section in CU at offset 0x%lx [in module %s]"),
16994 form_name, (long) cu->header.offset.sect_off, objf_name);
16995 info_ptr = (str_offsets_section->buffer
16996 + str_index * cu->header.offset_size);
16997 if (cu->header.offset_size == 4)
16998 str_offset = bfd_get_32 (abfd, info_ptr);
16999 else
17000 str_offset = bfd_get_64 (abfd, info_ptr);
17001 if (str_offset >= str_section->size)
17002 error (_("Offset from %s pointing outside of"
17003 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
17004 form_name, (long) cu->header.offset.sect_off, objf_name);
17005 return (const char *) (str_section->buffer + str_offset);
17006 }
17007
17008 /* Return the length of an LEB128 number in BUF. */
17009
17010 static int
17011 leb128_size (const gdb_byte *buf)
17012 {
17013 const gdb_byte *begin = buf;
17014 gdb_byte byte;
17015
17016 while (1)
17017 {
17018 byte = *buf++;
17019 if ((byte & 128) == 0)
17020 return buf - begin;
17021 }
17022 }
17023
17024 static void
17025 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17026 {
17027 switch (lang)
17028 {
17029 case DW_LANG_C89:
17030 case DW_LANG_C99:
17031 case DW_LANG_C11:
17032 case DW_LANG_C:
17033 case DW_LANG_UPC:
17034 cu->language = language_c;
17035 break;
17036 case DW_LANG_C_plus_plus:
17037 case DW_LANG_C_plus_plus_11:
17038 case DW_LANG_C_plus_plus_14:
17039 cu->language = language_cplus;
17040 break;
17041 case DW_LANG_D:
17042 cu->language = language_d;
17043 break;
17044 case DW_LANG_Fortran77:
17045 case DW_LANG_Fortran90:
17046 case DW_LANG_Fortran95:
17047 case DW_LANG_Fortran03:
17048 case DW_LANG_Fortran08:
17049 cu->language = language_fortran;
17050 break;
17051 case DW_LANG_Go:
17052 cu->language = language_go;
17053 break;
17054 case DW_LANG_Mips_Assembler:
17055 cu->language = language_asm;
17056 break;
17057 case DW_LANG_Java:
17058 cu->language = language_java;
17059 break;
17060 case DW_LANG_Ada83:
17061 case DW_LANG_Ada95:
17062 cu->language = language_ada;
17063 break;
17064 case DW_LANG_Modula2:
17065 cu->language = language_m2;
17066 break;
17067 case DW_LANG_Pascal83:
17068 cu->language = language_pascal;
17069 break;
17070 case DW_LANG_ObjC:
17071 cu->language = language_objc;
17072 break;
17073 case DW_LANG_Cobol74:
17074 case DW_LANG_Cobol85:
17075 default:
17076 cu->language = language_minimal;
17077 break;
17078 }
17079 cu->language_defn = language_def (cu->language);
17080 }
17081
17082 /* Return the named attribute or NULL if not there. */
17083
17084 static struct attribute *
17085 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17086 {
17087 for (;;)
17088 {
17089 unsigned int i;
17090 struct attribute *spec = NULL;
17091
17092 for (i = 0; i < die->num_attrs; ++i)
17093 {
17094 if (die->attrs[i].name == name)
17095 return &die->attrs[i];
17096 if (die->attrs[i].name == DW_AT_specification
17097 || die->attrs[i].name == DW_AT_abstract_origin)
17098 spec = &die->attrs[i];
17099 }
17100
17101 if (!spec)
17102 break;
17103
17104 die = follow_die_ref (die, spec, &cu);
17105 }
17106
17107 return NULL;
17108 }
17109
17110 /* Return the named attribute or NULL if not there,
17111 but do not follow DW_AT_specification, etc.
17112 This is for use in contexts where we're reading .debug_types dies.
17113 Following DW_AT_specification, DW_AT_abstract_origin will take us
17114 back up the chain, and we want to go down. */
17115
17116 static struct attribute *
17117 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17118 {
17119 unsigned int i;
17120
17121 for (i = 0; i < die->num_attrs; ++i)
17122 if (die->attrs[i].name == name)
17123 return &die->attrs[i];
17124
17125 return NULL;
17126 }
17127
17128 /* Return the string associated with a string-typed attribute, or NULL if it
17129 is either not found or is of an incorrect type. */
17130
17131 static const char *
17132 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17133 {
17134 struct attribute *attr;
17135 const char *str = NULL;
17136
17137 attr = dwarf2_attr (die, name, cu);
17138
17139 if (attr != NULL)
17140 {
17141 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17142 || attr->form == DW_FORM_GNU_strp_alt)
17143 str = DW_STRING (attr);
17144 else
17145 complaint (&symfile_complaints,
17146 _("string type expected for attribute %s for "
17147 "DIE at 0x%x in module %s"),
17148 dwarf_attr_name (name), die->offset.sect_off,
17149 objfile_name (cu->objfile));
17150 }
17151
17152 return str;
17153 }
17154
17155 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17156 and holds a non-zero value. This function should only be used for
17157 DW_FORM_flag or DW_FORM_flag_present attributes. */
17158
17159 static int
17160 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17161 {
17162 struct attribute *attr = dwarf2_attr (die, name, cu);
17163
17164 return (attr && DW_UNSND (attr));
17165 }
17166
17167 static int
17168 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17169 {
17170 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17171 which value is non-zero. However, we have to be careful with
17172 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17173 (via dwarf2_flag_true_p) follows this attribute. So we may
17174 end up accidently finding a declaration attribute that belongs
17175 to a different DIE referenced by the specification attribute,
17176 even though the given DIE does not have a declaration attribute. */
17177 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17178 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17179 }
17180
17181 /* Return the die giving the specification for DIE, if there is
17182 one. *SPEC_CU is the CU containing DIE on input, and the CU
17183 containing the return value on output. If there is no
17184 specification, but there is an abstract origin, that is
17185 returned. */
17186
17187 static struct die_info *
17188 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17189 {
17190 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17191 *spec_cu);
17192
17193 if (spec_attr == NULL)
17194 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17195
17196 if (spec_attr == NULL)
17197 return NULL;
17198 else
17199 return follow_die_ref (die, spec_attr, spec_cu);
17200 }
17201
17202 /* Free the line_header structure *LH, and any arrays and strings it
17203 refers to.
17204 NOTE: This is also used as a "cleanup" function. */
17205
17206 static void
17207 free_line_header (struct line_header *lh)
17208 {
17209 if (lh->standard_opcode_lengths)
17210 xfree (lh->standard_opcode_lengths);
17211
17212 /* Remember that all the lh->file_names[i].name pointers are
17213 pointers into debug_line_buffer, and don't need to be freed. */
17214 if (lh->file_names)
17215 xfree (lh->file_names);
17216
17217 /* Similarly for the include directory names. */
17218 if (lh->include_dirs)
17219 xfree (lh->include_dirs);
17220
17221 xfree (lh);
17222 }
17223
17224 /* Stub for free_line_header to match void * callback types. */
17225
17226 static void
17227 free_line_header_voidp (void *arg)
17228 {
17229 struct line_header *lh = (struct line_header *) arg;
17230
17231 free_line_header (lh);
17232 }
17233
17234 /* Add an entry to LH's include directory table. */
17235
17236 static void
17237 add_include_dir (struct line_header *lh, const char *include_dir)
17238 {
17239 if (dwarf_line_debug >= 2)
17240 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17241 lh->num_include_dirs + 1, include_dir);
17242
17243 /* Grow the array if necessary. */
17244 if (lh->include_dirs_size == 0)
17245 {
17246 lh->include_dirs_size = 1; /* for testing */
17247 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17248 }
17249 else if (lh->num_include_dirs >= lh->include_dirs_size)
17250 {
17251 lh->include_dirs_size *= 2;
17252 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17253 lh->include_dirs_size);
17254 }
17255
17256 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17257 }
17258
17259 /* Add an entry to LH's file name table. */
17260
17261 static void
17262 add_file_name (struct line_header *lh,
17263 const char *name,
17264 unsigned int dir_index,
17265 unsigned int mod_time,
17266 unsigned int length)
17267 {
17268 struct file_entry *fe;
17269
17270 if (dwarf_line_debug >= 2)
17271 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17272 lh->num_file_names + 1, name);
17273
17274 /* Grow the array if necessary. */
17275 if (lh->file_names_size == 0)
17276 {
17277 lh->file_names_size = 1; /* for testing */
17278 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17279 }
17280 else if (lh->num_file_names >= lh->file_names_size)
17281 {
17282 lh->file_names_size *= 2;
17283 lh->file_names
17284 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
17285 }
17286
17287 fe = &lh->file_names[lh->num_file_names++];
17288 fe->name = name;
17289 fe->dir_index = dir_index;
17290 fe->mod_time = mod_time;
17291 fe->length = length;
17292 fe->included_p = 0;
17293 fe->symtab = NULL;
17294 }
17295
17296 /* A convenience function to find the proper .debug_line section for a CU. */
17297
17298 static struct dwarf2_section_info *
17299 get_debug_line_section (struct dwarf2_cu *cu)
17300 {
17301 struct dwarf2_section_info *section;
17302
17303 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17304 DWO file. */
17305 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17306 section = &cu->dwo_unit->dwo_file->sections.line;
17307 else if (cu->per_cu->is_dwz)
17308 {
17309 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17310
17311 section = &dwz->line;
17312 }
17313 else
17314 section = &dwarf2_per_objfile->line;
17315
17316 return section;
17317 }
17318
17319 /* Read the statement program header starting at OFFSET in
17320 .debug_line, or .debug_line.dwo. Return a pointer
17321 to a struct line_header, allocated using xmalloc.
17322 Returns NULL if there is a problem reading the header, e.g., if it
17323 has a version we don't understand.
17324
17325 NOTE: the strings in the include directory and file name tables of
17326 the returned object point into the dwarf line section buffer,
17327 and must not be freed. */
17328
17329 static struct line_header *
17330 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17331 {
17332 struct cleanup *back_to;
17333 struct line_header *lh;
17334 const gdb_byte *line_ptr;
17335 unsigned int bytes_read, offset_size;
17336 int i;
17337 const char *cur_dir, *cur_file;
17338 struct dwarf2_section_info *section;
17339 bfd *abfd;
17340
17341 section = get_debug_line_section (cu);
17342 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17343 if (section->buffer == NULL)
17344 {
17345 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17346 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17347 else
17348 complaint (&symfile_complaints, _("missing .debug_line section"));
17349 return 0;
17350 }
17351
17352 /* We can't do this until we know the section is non-empty.
17353 Only then do we know we have such a section. */
17354 abfd = get_section_bfd_owner (section);
17355
17356 /* Make sure that at least there's room for the total_length field.
17357 That could be 12 bytes long, but we're just going to fudge that. */
17358 if (offset + 4 >= section->size)
17359 {
17360 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17361 return 0;
17362 }
17363
17364 lh = XNEW (struct line_header);
17365 memset (lh, 0, sizeof (*lh));
17366 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17367 (void *) lh);
17368
17369 lh->offset.sect_off = offset;
17370 lh->offset_in_dwz = cu->per_cu->is_dwz;
17371
17372 line_ptr = section->buffer + offset;
17373
17374 /* Read in the header. */
17375 lh->total_length =
17376 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17377 &bytes_read, &offset_size);
17378 line_ptr += bytes_read;
17379 if (line_ptr + lh->total_length > (section->buffer + section->size))
17380 {
17381 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17382 do_cleanups (back_to);
17383 return 0;
17384 }
17385 lh->statement_program_end = line_ptr + lh->total_length;
17386 lh->version = read_2_bytes (abfd, line_ptr);
17387 line_ptr += 2;
17388 if (lh->version > 4)
17389 {
17390 /* This is a version we don't understand. The format could have
17391 changed in ways we don't handle properly so just punt. */
17392 complaint (&symfile_complaints,
17393 _("unsupported version in .debug_line section"));
17394 return NULL;
17395 }
17396 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17397 line_ptr += offset_size;
17398 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17399 line_ptr += 1;
17400 if (lh->version >= 4)
17401 {
17402 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17403 line_ptr += 1;
17404 }
17405 else
17406 lh->maximum_ops_per_instruction = 1;
17407
17408 if (lh->maximum_ops_per_instruction == 0)
17409 {
17410 lh->maximum_ops_per_instruction = 1;
17411 complaint (&symfile_complaints,
17412 _("invalid maximum_ops_per_instruction "
17413 "in `.debug_line' section"));
17414 }
17415
17416 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17417 line_ptr += 1;
17418 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17419 line_ptr += 1;
17420 lh->line_range = read_1_byte (abfd, line_ptr);
17421 line_ptr += 1;
17422 lh->opcode_base = read_1_byte (abfd, line_ptr);
17423 line_ptr += 1;
17424 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17425
17426 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17427 for (i = 1; i < lh->opcode_base; ++i)
17428 {
17429 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17430 line_ptr += 1;
17431 }
17432
17433 /* Read directory table. */
17434 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17435 {
17436 line_ptr += bytes_read;
17437 add_include_dir (lh, cur_dir);
17438 }
17439 line_ptr += bytes_read;
17440
17441 /* Read file name table. */
17442 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17443 {
17444 unsigned int dir_index, mod_time, length;
17445
17446 line_ptr += bytes_read;
17447 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17448 line_ptr += bytes_read;
17449 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17450 line_ptr += bytes_read;
17451 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17452 line_ptr += bytes_read;
17453
17454 add_file_name (lh, cur_file, dir_index, mod_time, length);
17455 }
17456 line_ptr += bytes_read;
17457 lh->statement_program_start = line_ptr;
17458
17459 if (line_ptr > (section->buffer + section->size))
17460 complaint (&symfile_complaints,
17461 _("line number info header doesn't "
17462 "fit in `.debug_line' section"));
17463
17464 discard_cleanups (back_to);
17465 return lh;
17466 }
17467
17468 /* Subroutine of dwarf_decode_lines to simplify it.
17469 Return the file name of the psymtab for included file FILE_INDEX
17470 in line header LH of PST.
17471 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17472 If space for the result is malloc'd, it will be freed by a cleanup.
17473 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17474
17475 The function creates dangling cleanup registration. */
17476
17477 static const char *
17478 psymtab_include_file_name (const struct line_header *lh, int file_index,
17479 const struct partial_symtab *pst,
17480 const char *comp_dir)
17481 {
17482 const struct file_entry fe = lh->file_names [file_index];
17483 const char *include_name = fe.name;
17484 const char *include_name_to_compare = include_name;
17485 const char *dir_name = NULL;
17486 const char *pst_filename;
17487 char *copied_name = NULL;
17488 int file_is_pst;
17489
17490 if (fe.dir_index && lh->include_dirs != NULL)
17491 dir_name = lh->include_dirs[fe.dir_index - 1];
17492
17493 if (!IS_ABSOLUTE_PATH (include_name)
17494 && (dir_name != NULL || comp_dir != NULL))
17495 {
17496 /* Avoid creating a duplicate psymtab for PST.
17497 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17498 Before we do the comparison, however, we need to account
17499 for DIR_NAME and COMP_DIR.
17500 First prepend dir_name (if non-NULL). If we still don't
17501 have an absolute path prepend comp_dir (if non-NULL).
17502 However, the directory we record in the include-file's
17503 psymtab does not contain COMP_DIR (to match the
17504 corresponding symtab(s)).
17505
17506 Example:
17507
17508 bash$ cd /tmp
17509 bash$ gcc -g ./hello.c
17510 include_name = "hello.c"
17511 dir_name = "."
17512 DW_AT_comp_dir = comp_dir = "/tmp"
17513 DW_AT_name = "./hello.c"
17514
17515 */
17516
17517 if (dir_name != NULL)
17518 {
17519 char *tem = concat (dir_name, SLASH_STRING,
17520 include_name, (char *)NULL);
17521
17522 make_cleanup (xfree, tem);
17523 include_name = tem;
17524 include_name_to_compare = include_name;
17525 }
17526 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17527 {
17528 char *tem = concat (comp_dir, SLASH_STRING,
17529 include_name, (char *)NULL);
17530
17531 make_cleanup (xfree, tem);
17532 include_name_to_compare = tem;
17533 }
17534 }
17535
17536 pst_filename = pst->filename;
17537 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17538 {
17539 copied_name = concat (pst->dirname, SLASH_STRING,
17540 pst_filename, (char *)NULL);
17541 pst_filename = copied_name;
17542 }
17543
17544 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17545
17546 if (copied_name != NULL)
17547 xfree (copied_name);
17548
17549 if (file_is_pst)
17550 return NULL;
17551 return include_name;
17552 }
17553
17554 /* State machine to track the state of the line number program. */
17555
17556 typedef struct
17557 {
17558 /* These are part of the standard DWARF line number state machine. */
17559
17560 unsigned char op_index;
17561 unsigned int file;
17562 unsigned int line;
17563 CORE_ADDR address;
17564 int is_stmt;
17565 unsigned int discriminator;
17566
17567 /* Additional bits of state we need to track. */
17568
17569 /* The last file that we called dwarf2_start_subfile for.
17570 This is only used for TLLs. */
17571 unsigned int last_file;
17572 /* The last file a line number was recorded for. */
17573 struct subfile *last_subfile;
17574
17575 /* The function to call to record a line. */
17576 record_line_ftype *record_line;
17577
17578 /* The last line number that was recorded, used to coalesce
17579 consecutive entries for the same line. This can happen, for
17580 example, when discriminators are present. PR 17276. */
17581 unsigned int last_line;
17582 int line_has_non_zero_discriminator;
17583 } lnp_state_machine;
17584
17585 /* There's a lot of static state to pass to dwarf_record_line.
17586 This keeps it all together. */
17587
17588 typedef struct
17589 {
17590 /* The gdbarch. */
17591 struct gdbarch *gdbarch;
17592
17593 /* The line number header. */
17594 struct line_header *line_header;
17595
17596 /* Non-zero if we're recording lines.
17597 Otherwise we're building partial symtabs and are just interested in
17598 finding include files mentioned by the line number program. */
17599 int record_lines_p;
17600 } lnp_reader_state;
17601
17602 /* Ignore this record_line request. */
17603
17604 static void
17605 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17606 {
17607 return;
17608 }
17609
17610 /* Return non-zero if we should add LINE to the line number table.
17611 LINE is the line to add, LAST_LINE is the last line that was added,
17612 LAST_SUBFILE is the subfile for LAST_LINE.
17613 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17614 had a non-zero discriminator.
17615
17616 We have to be careful in the presence of discriminators.
17617 E.g., for this line:
17618
17619 for (i = 0; i < 100000; i++);
17620
17621 clang can emit four line number entries for that one line,
17622 each with a different discriminator.
17623 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17624
17625 However, we want gdb to coalesce all four entries into one.
17626 Otherwise the user could stepi into the middle of the line and
17627 gdb would get confused about whether the pc really was in the
17628 middle of the line.
17629
17630 Things are further complicated by the fact that two consecutive
17631 line number entries for the same line is a heuristic used by gcc
17632 to denote the end of the prologue. So we can't just discard duplicate
17633 entries, we have to be selective about it. The heuristic we use is
17634 that we only collapse consecutive entries for the same line if at least
17635 one of those entries has a non-zero discriminator. PR 17276.
17636
17637 Note: Addresses in the line number state machine can never go backwards
17638 within one sequence, thus this coalescing is ok. */
17639
17640 static int
17641 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17642 int line_has_non_zero_discriminator,
17643 struct subfile *last_subfile)
17644 {
17645 if (current_subfile != last_subfile)
17646 return 1;
17647 if (line != last_line)
17648 return 1;
17649 /* Same line for the same file that we've seen already.
17650 As a last check, for pr 17276, only record the line if the line
17651 has never had a non-zero discriminator. */
17652 if (!line_has_non_zero_discriminator)
17653 return 1;
17654 return 0;
17655 }
17656
17657 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17658 in the line table of subfile SUBFILE. */
17659
17660 static void
17661 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17662 unsigned int line, CORE_ADDR address,
17663 record_line_ftype p_record_line)
17664 {
17665 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17666
17667 if (dwarf_line_debug)
17668 {
17669 fprintf_unfiltered (gdb_stdlog,
17670 "Recording line %u, file %s, address %s\n",
17671 line, lbasename (subfile->name),
17672 paddress (gdbarch, address));
17673 }
17674
17675 (*p_record_line) (subfile, line, addr);
17676 }
17677
17678 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17679 Mark the end of a set of line number records.
17680 The arguments are the same as for dwarf_record_line_1.
17681 If SUBFILE is NULL the request is ignored. */
17682
17683 static void
17684 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17685 CORE_ADDR address, record_line_ftype p_record_line)
17686 {
17687 if (subfile == NULL)
17688 return;
17689
17690 if (dwarf_line_debug)
17691 {
17692 fprintf_unfiltered (gdb_stdlog,
17693 "Finishing current line, file %s, address %s\n",
17694 lbasename (subfile->name),
17695 paddress (gdbarch, address));
17696 }
17697
17698 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17699 }
17700
17701 /* Record the line in STATE.
17702 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17703
17704 static void
17705 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17706 int end_sequence)
17707 {
17708 const struct line_header *lh = reader->line_header;
17709 unsigned int file, line, discriminator;
17710 int is_stmt;
17711
17712 file = state->file;
17713 line = state->line;
17714 is_stmt = state->is_stmt;
17715 discriminator = state->discriminator;
17716
17717 if (dwarf_line_debug)
17718 {
17719 fprintf_unfiltered (gdb_stdlog,
17720 "Processing actual line %u: file %u,"
17721 " address %s, is_stmt %u, discrim %u\n",
17722 line, file,
17723 paddress (reader->gdbarch, state->address),
17724 is_stmt, discriminator);
17725 }
17726
17727 if (file == 0 || file - 1 >= lh->num_file_names)
17728 dwarf2_debug_line_missing_file_complaint ();
17729 /* For now we ignore lines not starting on an instruction boundary.
17730 But not when processing end_sequence for compatibility with the
17731 previous version of the code. */
17732 else if (state->op_index == 0 || end_sequence)
17733 {
17734 lh->file_names[file - 1].included_p = 1;
17735 if (reader->record_lines_p && is_stmt)
17736 {
17737 if (state->last_subfile != current_subfile || end_sequence)
17738 {
17739 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17740 state->address, state->record_line);
17741 }
17742
17743 if (!end_sequence)
17744 {
17745 if (dwarf_record_line_p (line, state->last_line,
17746 state->line_has_non_zero_discriminator,
17747 state->last_subfile))
17748 {
17749 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17750 line, state->address,
17751 state->record_line);
17752 }
17753 state->last_subfile = current_subfile;
17754 state->last_line = line;
17755 }
17756 }
17757 }
17758 }
17759
17760 /* Initialize STATE for the start of a line number program. */
17761
17762 static void
17763 init_lnp_state_machine (lnp_state_machine *state,
17764 const lnp_reader_state *reader)
17765 {
17766 memset (state, 0, sizeof (*state));
17767
17768 /* Just starting, there is no "last file". */
17769 state->last_file = 0;
17770 state->last_subfile = NULL;
17771
17772 state->record_line = record_line;
17773
17774 state->last_line = 0;
17775 state->line_has_non_zero_discriminator = 0;
17776
17777 /* Initialize these according to the DWARF spec. */
17778 state->op_index = 0;
17779 state->file = 1;
17780 state->line = 1;
17781 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17782 was a line entry for it so that the backend has a chance to adjust it
17783 and also record it in case it needs it. This is currently used by MIPS
17784 code, cf. `mips_adjust_dwarf2_line'. */
17785 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17786 state->is_stmt = reader->line_header->default_is_stmt;
17787 state->discriminator = 0;
17788 }
17789
17790 /* Check address and if invalid nop-out the rest of the lines in this
17791 sequence. */
17792
17793 static void
17794 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17795 const gdb_byte *line_ptr,
17796 CORE_ADDR lowpc, CORE_ADDR address)
17797 {
17798 /* If address < lowpc then it's not a usable value, it's outside the
17799 pc range of the CU. However, we restrict the test to only address
17800 values of zero to preserve GDB's previous behaviour which is to
17801 handle the specific case of a function being GC'd by the linker. */
17802
17803 if (address == 0 && address < lowpc)
17804 {
17805 /* This line table is for a function which has been
17806 GCd by the linker. Ignore it. PR gdb/12528 */
17807
17808 struct objfile *objfile = cu->objfile;
17809 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17810
17811 complaint (&symfile_complaints,
17812 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17813 line_offset, objfile_name (objfile));
17814 state->record_line = noop_record_line;
17815 /* Note: sm.record_line is left as noop_record_line
17816 until we see DW_LNE_end_sequence. */
17817 }
17818 }
17819
17820 /* Subroutine of dwarf_decode_lines to simplify it.
17821 Process the line number information in LH.
17822 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17823 program in order to set included_p for every referenced header. */
17824
17825 static void
17826 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17827 const int decode_for_pst_p, CORE_ADDR lowpc)
17828 {
17829 const gdb_byte *line_ptr, *extended_end;
17830 const gdb_byte *line_end;
17831 unsigned int bytes_read, extended_len;
17832 unsigned char op_code, extended_op;
17833 CORE_ADDR baseaddr;
17834 struct objfile *objfile = cu->objfile;
17835 bfd *abfd = objfile->obfd;
17836 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17837 /* Non-zero if we're recording line info (as opposed to building partial
17838 symtabs). */
17839 int record_lines_p = !decode_for_pst_p;
17840 /* A collection of things we need to pass to dwarf_record_line. */
17841 lnp_reader_state reader_state;
17842
17843 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17844
17845 line_ptr = lh->statement_program_start;
17846 line_end = lh->statement_program_end;
17847
17848 reader_state.gdbarch = gdbarch;
17849 reader_state.line_header = lh;
17850 reader_state.record_lines_p = record_lines_p;
17851
17852 /* Read the statement sequences until there's nothing left. */
17853 while (line_ptr < line_end)
17854 {
17855 /* The DWARF line number program state machine. */
17856 lnp_state_machine state_machine;
17857 int end_sequence = 0;
17858
17859 /* Reset the state machine at the start of each sequence. */
17860 init_lnp_state_machine (&state_machine, &reader_state);
17861
17862 if (record_lines_p && lh->num_file_names >= state_machine.file)
17863 {
17864 /* Start a subfile for the current file of the state machine. */
17865 /* lh->include_dirs and lh->file_names are 0-based, but the
17866 directory and file name numbers in the statement program
17867 are 1-based. */
17868 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17869 const char *dir = NULL;
17870
17871 if (fe->dir_index && lh->include_dirs != NULL)
17872 dir = lh->include_dirs[fe->dir_index - 1];
17873
17874 dwarf2_start_subfile (fe->name, dir);
17875 }
17876
17877 /* Decode the table. */
17878 while (line_ptr < line_end && !end_sequence)
17879 {
17880 op_code = read_1_byte (abfd, line_ptr);
17881 line_ptr += 1;
17882
17883 if (op_code >= lh->opcode_base)
17884 {
17885 /* Special opcode. */
17886 unsigned char adj_opcode;
17887 CORE_ADDR addr_adj;
17888 int line_delta;
17889
17890 adj_opcode = op_code - lh->opcode_base;
17891 addr_adj = (((state_machine.op_index
17892 + (adj_opcode / lh->line_range))
17893 / lh->maximum_ops_per_instruction)
17894 * lh->minimum_instruction_length);
17895 state_machine.address
17896 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17897 state_machine.op_index = ((state_machine.op_index
17898 + (adj_opcode / lh->line_range))
17899 % lh->maximum_ops_per_instruction);
17900 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17901 state_machine.line += line_delta;
17902 if (line_delta != 0)
17903 state_machine.line_has_non_zero_discriminator
17904 = state_machine.discriminator != 0;
17905
17906 dwarf_record_line (&reader_state, &state_machine, 0);
17907 state_machine.discriminator = 0;
17908 }
17909 else switch (op_code)
17910 {
17911 case DW_LNS_extended_op:
17912 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17913 &bytes_read);
17914 line_ptr += bytes_read;
17915 extended_end = line_ptr + extended_len;
17916 extended_op = read_1_byte (abfd, line_ptr);
17917 line_ptr += 1;
17918 switch (extended_op)
17919 {
17920 case DW_LNE_end_sequence:
17921 state_machine.record_line = record_line;
17922 end_sequence = 1;
17923 break;
17924 case DW_LNE_set_address:
17925 {
17926 CORE_ADDR address
17927 = read_address (abfd, line_ptr, cu, &bytes_read);
17928
17929 line_ptr += bytes_read;
17930 check_line_address (cu, &state_machine, line_ptr,
17931 lowpc, address);
17932 state_machine.op_index = 0;
17933 address += baseaddr;
17934 state_machine.address
17935 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17936 }
17937 break;
17938 case DW_LNE_define_file:
17939 {
17940 const char *cur_file;
17941 unsigned int dir_index, mod_time, length;
17942
17943 cur_file = read_direct_string (abfd, line_ptr,
17944 &bytes_read);
17945 line_ptr += bytes_read;
17946 dir_index =
17947 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17948 line_ptr += bytes_read;
17949 mod_time =
17950 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17951 line_ptr += bytes_read;
17952 length =
17953 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17954 line_ptr += bytes_read;
17955 add_file_name (lh, cur_file, dir_index, mod_time, length);
17956 }
17957 break;
17958 case DW_LNE_set_discriminator:
17959 /* The discriminator is not interesting to the debugger;
17960 just ignore it. We still need to check its value though:
17961 if there are consecutive entries for the same
17962 (non-prologue) line we want to coalesce them.
17963 PR 17276. */
17964 state_machine.discriminator
17965 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17966 state_machine.line_has_non_zero_discriminator
17967 |= state_machine.discriminator != 0;
17968 line_ptr += bytes_read;
17969 break;
17970 default:
17971 complaint (&symfile_complaints,
17972 _("mangled .debug_line section"));
17973 return;
17974 }
17975 /* Make sure that we parsed the extended op correctly. If e.g.
17976 we expected a different address size than the producer used,
17977 we may have read the wrong number of bytes. */
17978 if (line_ptr != extended_end)
17979 {
17980 complaint (&symfile_complaints,
17981 _("mangled .debug_line section"));
17982 return;
17983 }
17984 break;
17985 case DW_LNS_copy:
17986 dwarf_record_line (&reader_state, &state_machine, 0);
17987 state_machine.discriminator = 0;
17988 break;
17989 case DW_LNS_advance_pc:
17990 {
17991 CORE_ADDR adjust
17992 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17993 CORE_ADDR addr_adj;
17994
17995 addr_adj = (((state_machine.op_index + adjust)
17996 / lh->maximum_ops_per_instruction)
17997 * lh->minimum_instruction_length);
17998 state_machine.address
17999 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18000 state_machine.op_index = ((state_machine.op_index + adjust)
18001 % lh->maximum_ops_per_instruction);
18002 line_ptr += bytes_read;
18003 }
18004 break;
18005 case DW_LNS_advance_line:
18006 {
18007 int line_delta
18008 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18009
18010 state_machine.line += line_delta;
18011 if (line_delta != 0)
18012 state_machine.line_has_non_zero_discriminator
18013 = state_machine.discriminator != 0;
18014 line_ptr += bytes_read;
18015 }
18016 break;
18017 case DW_LNS_set_file:
18018 {
18019 /* The arrays lh->include_dirs and lh->file_names are
18020 0-based, but the directory and file name numbers in
18021 the statement program are 1-based. */
18022 struct file_entry *fe;
18023 const char *dir = NULL;
18024
18025 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18026 &bytes_read);
18027 line_ptr += bytes_read;
18028 if (state_machine.file == 0
18029 || state_machine.file - 1 >= lh->num_file_names)
18030 dwarf2_debug_line_missing_file_complaint ();
18031 else
18032 {
18033 fe = &lh->file_names[state_machine.file - 1];
18034 if (fe->dir_index && lh->include_dirs != NULL)
18035 dir = lh->include_dirs[fe->dir_index - 1];
18036 if (record_lines_p)
18037 {
18038 state_machine.last_subfile = current_subfile;
18039 state_machine.line_has_non_zero_discriminator
18040 = state_machine.discriminator != 0;
18041 dwarf2_start_subfile (fe->name, dir);
18042 }
18043 }
18044 }
18045 break;
18046 case DW_LNS_set_column:
18047 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18048 line_ptr += bytes_read;
18049 break;
18050 case DW_LNS_negate_stmt:
18051 state_machine.is_stmt = (!state_machine.is_stmt);
18052 break;
18053 case DW_LNS_set_basic_block:
18054 break;
18055 /* Add to the address register of the state machine the
18056 address increment value corresponding to special opcode
18057 255. I.e., this value is scaled by the minimum
18058 instruction length since special opcode 255 would have
18059 scaled the increment. */
18060 case DW_LNS_const_add_pc:
18061 {
18062 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18063 CORE_ADDR addr_adj;
18064
18065 addr_adj = (((state_machine.op_index + adjust)
18066 / lh->maximum_ops_per_instruction)
18067 * lh->minimum_instruction_length);
18068 state_machine.address
18069 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18070 state_machine.op_index = ((state_machine.op_index + adjust)
18071 % lh->maximum_ops_per_instruction);
18072 }
18073 break;
18074 case DW_LNS_fixed_advance_pc:
18075 {
18076 CORE_ADDR addr_adj;
18077
18078 addr_adj = read_2_bytes (abfd, line_ptr);
18079 state_machine.address
18080 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18081 state_machine.op_index = 0;
18082 line_ptr += 2;
18083 }
18084 break;
18085 default:
18086 {
18087 /* Unknown standard opcode, ignore it. */
18088 int i;
18089
18090 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18091 {
18092 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18093 line_ptr += bytes_read;
18094 }
18095 }
18096 }
18097 }
18098
18099 if (!end_sequence)
18100 dwarf2_debug_line_missing_end_sequence_complaint ();
18101
18102 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18103 in which case we still finish recording the last line). */
18104 dwarf_record_line (&reader_state, &state_machine, 1);
18105 }
18106 }
18107
18108 /* Decode the Line Number Program (LNP) for the given line_header
18109 structure and CU. The actual information extracted and the type
18110 of structures created from the LNP depends on the value of PST.
18111
18112 1. If PST is NULL, then this procedure uses the data from the program
18113 to create all necessary symbol tables, and their linetables.
18114
18115 2. If PST is not NULL, this procedure reads the program to determine
18116 the list of files included by the unit represented by PST, and
18117 builds all the associated partial symbol tables.
18118
18119 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18120 It is used for relative paths in the line table.
18121 NOTE: When processing partial symtabs (pst != NULL),
18122 comp_dir == pst->dirname.
18123
18124 NOTE: It is important that psymtabs have the same file name (via strcmp)
18125 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18126 symtab we don't use it in the name of the psymtabs we create.
18127 E.g. expand_line_sal requires this when finding psymtabs to expand.
18128 A good testcase for this is mb-inline.exp.
18129
18130 LOWPC is the lowest address in CU (or 0 if not known).
18131
18132 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18133 for its PC<->lines mapping information. Otherwise only the filename
18134 table is read in. */
18135
18136 static void
18137 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18138 struct dwarf2_cu *cu, struct partial_symtab *pst,
18139 CORE_ADDR lowpc, int decode_mapping)
18140 {
18141 struct objfile *objfile = cu->objfile;
18142 const int decode_for_pst_p = (pst != NULL);
18143
18144 if (decode_mapping)
18145 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18146
18147 if (decode_for_pst_p)
18148 {
18149 int file_index;
18150
18151 /* Now that we're done scanning the Line Header Program, we can
18152 create the psymtab of each included file. */
18153 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18154 if (lh->file_names[file_index].included_p == 1)
18155 {
18156 const char *include_name =
18157 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18158 if (include_name != NULL)
18159 dwarf2_create_include_psymtab (include_name, pst, objfile);
18160 }
18161 }
18162 else
18163 {
18164 /* Make sure a symtab is created for every file, even files
18165 which contain only variables (i.e. no code with associated
18166 line numbers). */
18167 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18168 int i;
18169
18170 for (i = 0; i < lh->num_file_names; i++)
18171 {
18172 const char *dir = NULL;
18173 struct file_entry *fe;
18174
18175 fe = &lh->file_names[i];
18176 if (fe->dir_index && lh->include_dirs != NULL)
18177 dir = lh->include_dirs[fe->dir_index - 1];
18178 dwarf2_start_subfile (fe->name, dir);
18179
18180 if (current_subfile->symtab == NULL)
18181 {
18182 current_subfile->symtab
18183 = allocate_symtab (cust, current_subfile->name);
18184 }
18185 fe->symtab = current_subfile->symtab;
18186 }
18187 }
18188 }
18189
18190 /* Start a subfile for DWARF. FILENAME is the name of the file and
18191 DIRNAME the name of the source directory which contains FILENAME
18192 or NULL if not known.
18193 This routine tries to keep line numbers from identical absolute and
18194 relative file names in a common subfile.
18195
18196 Using the `list' example from the GDB testsuite, which resides in
18197 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18198 of /srcdir/list0.c yields the following debugging information for list0.c:
18199
18200 DW_AT_name: /srcdir/list0.c
18201 DW_AT_comp_dir: /compdir
18202 files.files[0].name: list0.h
18203 files.files[0].dir: /srcdir
18204 files.files[1].name: list0.c
18205 files.files[1].dir: /srcdir
18206
18207 The line number information for list0.c has to end up in a single
18208 subfile, so that `break /srcdir/list0.c:1' works as expected.
18209 start_subfile will ensure that this happens provided that we pass the
18210 concatenation of files.files[1].dir and files.files[1].name as the
18211 subfile's name. */
18212
18213 static void
18214 dwarf2_start_subfile (const char *filename, const char *dirname)
18215 {
18216 char *copy = NULL;
18217
18218 /* In order not to lose the line information directory,
18219 we concatenate it to the filename when it makes sense.
18220 Note that the Dwarf3 standard says (speaking of filenames in line
18221 information): ``The directory index is ignored for file names
18222 that represent full path names''. Thus ignoring dirname in the
18223 `else' branch below isn't an issue. */
18224
18225 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18226 {
18227 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18228 filename = copy;
18229 }
18230
18231 start_subfile (filename);
18232
18233 if (copy != NULL)
18234 xfree (copy);
18235 }
18236
18237 /* Start a symtab for DWARF.
18238 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18239
18240 static struct compunit_symtab *
18241 dwarf2_start_symtab (struct dwarf2_cu *cu,
18242 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18243 {
18244 struct compunit_symtab *cust
18245 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18246
18247 record_debugformat ("DWARF 2");
18248 record_producer (cu->producer);
18249
18250 /* We assume that we're processing GCC output. */
18251 processing_gcc_compilation = 2;
18252
18253 cu->processing_has_namespace_info = 0;
18254
18255 return cust;
18256 }
18257
18258 static void
18259 var_decode_location (struct attribute *attr, struct symbol *sym,
18260 struct dwarf2_cu *cu)
18261 {
18262 struct objfile *objfile = cu->objfile;
18263 struct comp_unit_head *cu_header = &cu->header;
18264
18265 /* NOTE drow/2003-01-30: There used to be a comment and some special
18266 code here to turn a symbol with DW_AT_external and a
18267 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18268 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18269 with some versions of binutils) where shared libraries could have
18270 relocations against symbols in their debug information - the
18271 minimal symbol would have the right address, but the debug info
18272 would not. It's no longer necessary, because we will explicitly
18273 apply relocations when we read in the debug information now. */
18274
18275 /* A DW_AT_location attribute with no contents indicates that a
18276 variable has been optimized away. */
18277 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18278 {
18279 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18280 return;
18281 }
18282
18283 /* Handle one degenerate form of location expression specially, to
18284 preserve GDB's previous behavior when section offsets are
18285 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18286 then mark this symbol as LOC_STATIC. */
18287
18288 if (attr_form_is_block (attr)
18289 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18290 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18291 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18292 && (DW_BLOCK (attr)->size
18293 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18294 {
18295 unsigned int dummy;
18296
18297 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18298 SYMBOL_VALUE_ADDRESS (sym) =
18299 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18300 else
18301 SYMBOL_VALUE_ADDRESS (sym) =
18302 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18303 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18304 fixup_symbol_section (sym, objfile);
18305 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18306 SYMBOL_SECTION (sym));
18307 return;
18308 }
18309
18310 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18311 expression evaluator, and use LOC_COMPUTED only when necessary
18312 (i.e. when the value of a register or memory location is
18313 referenced, or a thread-local block, etc.). Then again, it might
18314 not be worthwhile. I'm assuming that it isn't unless performance
18315 or memory numbers show me otherwise. */
18316
18317 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18318
18319 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18320 cu->has_loclist = 1;
18321 }
18322
18323 /* Given a pointer to a DWARF information entry, figure out if we need
18324 to make a symbol table entry for it, and if so, create a new entry
18325 and return a pointer to it.
18326 If TYPE is NULL, determine symbol type from the die, otherwise
18327 used the passed type.
18328 If SPACE is not NULL, use it to hold the new symbol. If it is
18329 NULL, allocate a new symbol on the objfile's obstack. */
18330
18331 static struct symbol *
18332 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18333 struct symbol *space)
18334 {
18335 struct objfile *objfile = cu->objfile;
18336 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18337 struct symbol *sym = NULL;
18338 const char *name;
18339 struct attribute *attr = NULL;
18340 struct attribute *attr2 = NULL;
18341 CORE_ADDR baseaddr;
18342 struct pending **list_to_add = NULL;
18343
18344 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18345
18346 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18347
18348 name = dwarf2_name (die, cu);
18349 if (name)
18350 {
18351 const char *linkagename;
18352 int suppress_add = 0;
18353
18354 if (space)
18355 sym = space;
18356 else
18357 sym = allocate_symbol (objfile);
18358 OBJSTAT (objfile, n_syms++);
18359
18360 /* Cache this symbol's name and the name's demangled form (if any). */
18361 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18362 linkagename = dwarf2_physname (name, die, cu);
18363 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18364
18365 /* Fortran does not have mangling standard and the mangling does differ
18366 between gfortran, iFort etc. */
18367 if (cu->language == language_fortran
18368 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18369 symbol_set_demangled_name (&(sym->ginfo),
18370 dwarf2_full_name (name, die, cu),
18371 NULL);
18372
18373 /* Default assumptions.
18374 Use the passed type or decode it from the die. */
18375 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18376 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18377 if (type != NULL)
18378 SYMBOL_TYPE (sym) = type;
18379 else
18380 SYMBOL_TYPE (sym) = die_type (die, cu);
18381 attr = dwarf2_attr (die,
18382 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18383 cu);
18384 if (attr)
18385 {
18386 SYMBOL_LINE (sym) = DW_UNSND (attr);
18387 }
18388
18389 attr = dwarf2_attr (die,
18390 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18391 cu);
18392 if (attr)
18393 {
18394 int file_index = DW_UNSND (attr);
18395
18396 if (cu->line_header == NULL
18397 || file_index > cu->line_header->num_file_names)
18398 complaint (&symfile_complaints,
18399 _("file index out of range"));
18400 else if (file_index > 0)
18401 {
18402 struct file_entry *fe;
18403
18404 fe = &cu->line_header->file_names[file_index - 1];
18405 symbol_set_symtab (sym, fe->symtab);
18406 }
18407 }
18408
18409 switch (die->tag)
18410 {
18411 case DW_TAG_label:
18412 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18413 if (attr)
18414 {
18415 CORE_ADDR addr;
18416
18417 addr = attr_value_as_address (attr);
18418 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18419 SYMBOL_VALUE_ADDRESS (sym) = addr;
18420 }
18421 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18422 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18423 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18424 add_symbol_to_list (sym, cu->list_in_scope);
18425 break;
18426 case DW_TAG_subprogram:
18427 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18428 finish_block. */
18429 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18430 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18431 if ((attr2 && (DW_UNSND (attr2) != 0))
18432 || cu->language == language_ada)
18433 {
18434 /* Subprograms marked external are stored as a global symbol.
18435 Ada subprograms, whether marked external or not, are always
18436 stored as a global symbol, because we want to be able to
18437 access them globally. For instance, we want to be able
18438 to break on a nested subprogram without having to
18439 specify the context. */
18440 list_to_add = &global_symbols;
18441 }
18442 else
18443 {
18444 list_to_add = cu->list_in_scope;
18445 }
18446 break;
18447 case DW_TAG_inlined_subroutine:
18448 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18449 finish_block. */
18450 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18451 SYMBOL_INLINED (sym) = 1;
18452 list_to_add = cu->list_in_scope;
18453 break;
18454 case DW_TAG_template_value_param:
18455 suppress_add = 1;
18456 /* Fall through. */
18457 case DW_TAG_constant:
18458 case DW_TAG_variable:
18459 case DW_TAG_member:
18460 /* Compilation with minimal debug info may result in
18461 variables with missing type entries. Change the
18462 misleading `void' type to something sensible. */
18463 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18464 SYMBOL_TYPE (sym)
18465 = objfile_type (objfile)->nodebug_data_symbol;
18466
18467 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18468 /* In the case of DW_TAG_member, we should only be called for
18469 static const members. */
18470 if (die->tag == DW_TAG_member)
18471 {
18472 /* dwarf2_add_field uses die_is_declaration,
18473 so we do the same. */
18474 gdb_assert (die_is_declaration (die, cu));
18475 gdb_assert (attr);
18476 }
18477 if (attr)
18478 {
18479 dwarf2_const_value (attr, sym, cu);
18480 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18481 if (!suppress_add)
18482 {
18483 if (attr2 && (DW_UNSND (attr2) != 0))
18484 list_to_add = &global_symbols;
18485 else
18486 list_to_add = cu->list_in_scope;
18487 }
18488 break;
18489 }
18490 attr = dwarf2_attr (die, DW_AT_location, cu);
18491 if (attr)
18492 {
18493 var_decode_location (attr, sym, cu);
18494 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18495
18496 /* Fortran explicitly imports any global symbols to the local
18497 scope by DW_TAG_common_block. */
18498 if (cu->language == language_fortran && die->parent
18499 && die->parent->tag == DW_TAG_common_block)
18500 attr2 = NULL;
18501
18502 if (SYMBOL_CLASS (sym) == LOC_STATIC
18503 && SYMBOL_VALUE_ADDRESS (sym) == 0
18504 && !dwarf2_per_objfile->has_section_at_zero)
18505 {
18506 /* When a static variable is eliminated by the linker,
18507 the corresponding debug information is not stripped
18508 out, but the variable address is set to null;
18509 do not add such variables into symbol table. */
18510 }
18511 else if (attr2 && (DW_UNSND (attr2) != 0))
18512 {
18513 /* Workaround gfortran PR debug/40040 - it uses
18514 DW_AT_location for variables in -fPIC libraries which may
18515 get overriden by other libraries/executable and get
18516 a different address. Resolve it by the minimal symbol
18517 which may come from inferior's executable using copy
18518 relocation. Make this workaround only for gfortran as for
18519 other compilers GDB cannot guess the minimal symbol
18520 Fortran mangling kind. */
18521 if (cu->language == language_fortran && die->parent
18522 && die->parent->tag == DW_TAG_module
18523 && cu->producer
18524 && startswith (cu->producer, "GNU Fortran"))
18525 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18526
18527 /* A variable with DW_AT_external is never static,
18528 but it may be block-scoped. */
18529 list_to_add = (cu->list_in_scope == &file_symbols
18530 ? &global_symbols : cu->list_in_scope);
18531 }
18532 else
18533 list_to_add = cu->list_in_scope;
18534 }
18535 else
18536 {
18537 /* We do not know the address of this symbol.
18538 If it is an external symbol and we have type information
18539 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18540 The address of the variable will then be determined from
18541 the minimal symbol table whenever the variable is
18542 referenced. */
18543 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18544
18545 /* Fortran explicitly imports any global symbols to the local
18546 scope by DW_TAG_common_block. */
18547 if (cu->language == language_fortran && die->parent
18548 && die->parent->tag == DW_TAG_common_block)
18549 {
18550 /* SYMBOL_CLASS doesn't matter here because
18551 read_common_block is going to reset it. */
18552 if (!suppress_add)
18553 list_to_add = cu->list_in_scope;
18554 }
18555 else if (attr2 && (DW_UNSND (attr2) != 0)
18556 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18557 {
18558 /* A variable with DW_AT_external is never static, but it
18559 may be block-scoped. */
18560 list_to_add = (cu->list_in_scope == &file_symbols
18561 ? &global_symbols : cu->list_in_scope);
18562
18563 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18564 }
18565 else if (!die_is_declaration (die, cu))
18566 {
18567 /* Use the default LOC_OPTIMIZED_OUT class. */
18568 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18569 if (!suppress_add)
18570 list_to_add = cu->list_in_scope;
18571 }
18572 }
18573 break;
18574 case DW_TAG_formal_parameter:
18575 /* If we are inside a function, mark this as an argument. If
18576 not, we might be looking at an argument to an inlined function
18577 when we do not have enough information to show inlined frames;
18578 pretend it's a local variable in that case so that the user can
18579 still see it. */
18580 if (context_stack_depth > 0
18581 && context_stack[context_stack_depth - 1].name != NULL)
18582 SYMBOL_IS_ARGUMENT (sym) = 1;
18583 attr = dwarf2_attr (die, DW_AT_location, cu);
18584 if (attr)
18585 {
18586 var_decode_location (attr, sym, cu);
18587 }
18588 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18589 if (attr)
18590 {
18591 dwarf2_const_value (attr, sym, cu);
18592 }
18593
18594 list_to_add = cu->list_in_scope;
18595 break;
18596 case DW_TAG_unspecified_parameters:
18597 /* From varargs functions; gdb doesn't seem to have any
18598 interest in this information, so just ignore it for now.
18599 (FIXME?) */
18600 break;
18601 case DW_TAG_template_type_param:
18602 suppress_add = 1;
18603 /* Fall through. */
18604 case DW_TAG_class_type:
18605 case DW_TAG_interface_type:
18606 case DW_TAG_structure_type:
18607 case DW_TAG_union_type:
18608 case DW_TAG_set_type:
18609 case DW_TAG_enumeration_type:
18610 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18611 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18612
18613 {
18614 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18615 really ever be static objects: otherwise, if you try
18616 to, say, break of a class's method and you're in a file
18617 which doesn't mention that class, it won't work unless
18618 the check for all static symbols in lookup_symbol_aux
18619 saves you. See the OtherFileClass tests in
18620 gdb.c++/namespace.exp. */
18621
18622 if (!suppress_add)
18623 {
18624 list_to_add = (cu->list_in_scope == &file_symbols
18625 && (cu->language == language_cplus
18626 || cu->language == language_java)
18627 ? &global_symbols : cu->list_in_scope);
18628
18629 /* The semantics of C++ state that "struct foo {
18630 ... }" also defines a typedef for "foo". A Java
18631 class declaration also defines a typedef for the
18632 class. */
18633 if (cu->language == language_cplus
18634 || cu->language == language_java
18635 || cu->language == language_ada
18636 || cu->language == language_d)
18637 {
18638 /* The symbol's name is already allocated along
18639 with this objfile, so we don't need to
18640 duplicate it for the type. */
18641 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18642 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18643 }
18644 }
18645 }
18646 break;
18647 case DW_TAG_typedef:
18648 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18649 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18650 list_to_add = cu->list_in_scope;
18651 break;
18652 case DW_TAG_base_type:
18653 case DW_TAG_subrange_type:
18654 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18655 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18656 list_to_add = cu->list_in_scope;
18657 break;
18658 case DW_TAG_enumerator:
18659 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18660 if (attr)
18661 {
18662 dwarf2_const_value (attr, sym, cu);
18663 }
18664 {
18665 /* NOTE: carlton/2003-11-10: See comment above in the
18666 DW_TAG_class_type, etc. block. */
18667
18668 list_to_add = (cu->list_in_scope == &file_symbols
18669 && (cu->language == language_cplus
18670 || cu->language == language_java)
18671 ? &global_symbols : cu->list_in_scope);
18672 }
18673 break;
18674 case DW_TAG_imported_declaration:
18675 case DW_TAG_namespace:
18676 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18677 list_to_add = &global_symbols;
18678 break;
18679 case DW_TAG_module:
18680 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18681 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18682 list_to_add = &global_symbols;
18683 break;
18684 case DW_TAG_common_block:
18685 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18686 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18687 add_symbol_to_list (sym, cu->list_in_scope);
18688 break;
18689 default:
18690 /* Not a tag we recognize. Hopefully we aren't processing
18691 trash data, but since we must specifically ignore things
18692 we don't recognize, there is nothing else we should do at
18693 this point. */
18694 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18695 dwarf_tag_name (die->tag));
18696 break;
18697 }
18698
18699 if (suppress_add)
18700 {
18701 sym->hash_next = objfile->template_symbols;
18702 objfile->template_symbols = sym;
18703 list_to_add = NULL;
18704 }
18705
18706 if (list_to_add != NULL)
18707 add_symbol_to_list (sym, list_to_add);
18708
18709 /* For the benefit of old versions of GCC, check for anonymous
18710 namespaces based on the demangled name. */
18711 if (!cu->processing_has_namespace_info
18712 && cu->language == language_cplus)
18713 cp_scan_for_anonymous_namespaces (sym, objfile);
18714 }
18715 return (sym);
18716 }
18717
18718 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18719
18720 static struct symbol *
18721 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18722 {
18723 return new_symbol_full (die, type, cu, NULL);
18724 }
18725
18726 /* Given an attr with a DW_FORM_dataN value in host byte order,
18727 zero-extend it as appropriate for the symbol's type. The DWARF
18728 standard (v4) is not entirely clear about the meaning of using
18729 DW_FORM_dataN for a constant with a signed type, where the type is
18730 wider than the data. The conclusion of a discussion on the DWARF
18731 list was that this is unspecified. We choose to always zero-extend
18732 because that is the interpretation long in use by GCC. */
18733
18734 static gdb_byte *
18735 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18736 struct dwarf2_cu *cu, LONGEST *value, int bits)
18737 {
18738 struct objfile *objfile = cu->objfile;
18739 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18740 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18741 LONGEST l = DW_UNSND (attr);
18742
18743 if (bits < sizeof (*value) * 8)
18744 {
18745 l &= ((LONGEST) 1 << bits) - 1;
18746 *value = l;
18747 }
18748 else if (bits == sizeof (*value) * 8)
18749 *value = l;
18750 else
18751 {
18752 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
18753 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18754 return bytes;
18755 }
18756
18757 return NULL;
18758 }
18759
18760 /* Read a constant value from an attribute. Either set *VALUE, or if
18761 the value does not fit in *VALUE, set *BYTES - either already
18762 allocated on the objfile obstack, or newly allocated on OBSTACK,
18763 or, set *BATON, if we translated the constant to a location
18764 expression. */
18765
18766 static void
18767 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18768 const char *name, struct obstack *obstack,
18769 struct dwarf2_cu *cu,
18770 LONGEST *value, const gdb_byte **bytes,
18771 struct dwarf2_locexpr_baton **baton)
18772 {
18773 struct objfile *objfile = cu->objfile;
18774 struct comp_unit_head *cu_header = &cu->header;
18775 struct dwarf_block *blk;
18776 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18777 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18778
18779 *value = 0;
18780 *bytes = NULL;
18781 *baton = NULL;
18782
18783 switch (attr->form)
18784 {
18785 case DW_FORM_addr:
18786 case DW_FORM_GNU_addr_index:
18787 {
18788 gdb_byte *data;
18789
18790 if (TYPE_LENGTH (type) != cu_header->addr_size)
18791 dwarf2_const_value_length_mismatch_complaint (name,
18792 cu_header->addr_size,
18793 TYPE_LENGTH (type));
18794 /* Symbols of this form are reasonably rare, so we just
18795 piggyback on the existing location code rather than writing
18796 a new implementation of symbol_computed_ops. */
18797 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
18798 (*baton)->per_cu = cu->per_cu;
18799 gdb_assert ((*baton)->per_cu);
18800
18801 (*baton)->size = 2 + cu_header->addr_size;
18802 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
18803 (*baton)->data = data;
18804
18805 data[0] = DW_OP_addr;
18806 store_unsigned_integer (&data[1], cu_header->addr_size,
18807 byte_order, DW_ADDR (attr));
18808 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18809 }
18810 break;
18811 case DW_FORM_string:
18812 case DW_FORM_strp:
18813 case DW_FORM_GNU_str_index:
18814 case DW_FORM_GNU_strp_alt:
18815 /* DW_STRING is already allocated on the objfile obstack, point
18816 directly to it. */
18817 *bytes = (const gdb_byte *) DW_STRING (attr);
18818 break;
18819 case DW_FORM_block1:
18820 case DW_FORM_block2:
18821 case DW_FORM_block4:
18822 case DW_FORM_block:
18823 case DW_FORM_exprloc:
18824 blk = DW_BLOCK (attr);
18825 if (TYPE_LENGTH (type) != blk->size)
18826 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18827 TYPE_LENGTH (type));
18828 *bytes = blk->data;
18829 break;
18830
18831 /* The DW_AT_const_value attributes are supposed to carry the
18832 symbol's value "represented as it would be on the target
18833 architecture." By the time we get here, it's already been
18834 converted to host endianness, so we just need to sign- or
18835 zero-extend it as appropriate. */
18836 case DW_FORM_data1:
18837 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18838 break;
18839 case DW_FORM_data2:
18840 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18841 break;
18842 case DW_FORM_data4:
18843 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18844 break;
18845 case DW_FORM_data8:
18846 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18847 break;
18848
18849 case DW_FORM_sdata:
18850 *value = DW_SND (attr);
18851 break;
18852
18853 case DW_FORM_udata:
18854 *value = DW_UNSND (attr);
18855 break;
18856
18857 default:
18858 complaint (&symfile_complaints,
18859 _("unsupported const value attribute form: '%s'"),
18860 dwarf_form_name (attr->form));
18861 *value = 0;
18862 break;
18863 }
18864 }
18865
18866
18867 /* Copy constant value from an attribute to a symbol. */
18868
18869 static void
18870 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18871 struct dwarf2_cu *cu)
18872 {
18873 struct objfile *objfile = cu->objfile;
18874 struct comp_unit_head *cu_header = &cu->header;
18875 LONGEST value;
18876 const gdb_byte *bytes;
18877 struct dwarf2_locexpr_baton *baton;
18878
18879 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18880 SYMBOL_PRINT_NAME (sym),
18881 &objfile->objfile_obstack, cu,
18882 &value, &bytes, &baton);
18883
18884 if (baton != NULL)
18885 {
18886 SYMBOL_LOCATION_BATON (sym) = baton;
18887 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18888 }
18889 else if (bytes != NULL)
18890 {
18891 SYMBOL_VALUE_BYTES (sym) = bytes;
18892 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18893 }
18894 else
18895 {
18896 SYMBOL_VALUE (sym) = value;
18897 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18898 }
18899 }
18900
18901 /* Return the type of the die in question using its DW_AT_type attribute. */
18902
18903 static struct type *
18904 die_type (struct die_info *die, struct dwarf2_cu *cu)
18905 {
18906 struct attribute *type_attr;
18907
18908 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18909 if (!type_attr)
18910 {
18911 /* A missing DW_AT_type represents a void type. */
18912 return objfile_type (cu->objfile)->builtin_void;
18913 }
18914
18915 return lookup_die_type (die, type_attr, cu);
18916 }
18917
18918 /* True iff CU's producer generates GNAT Ada auxiliary information
18919 that allows to find parallel types through that information instead
18920 of having to do expensive parallel lookups by type name. */
18921
18922 static int
18923 need_gnat_info (struct dwarf2_cu *cu)
18924 {
18925 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18926 of GNAT produces this auxiliary information, without any indication
18927 that it is produced. Part of enhancing the FSF version of GNAT
18928 to produce that information will be to put in place an indicator
18929 that we can use in order to determine whether the descriptive type
18930 info is available or not. One suggestion that has been made is
18931 to use a new attribute, attached to the CU die. For now, assume
18932 that the descriptive type info is not available. */
18933 return 0;
18934 }
18935
18936 /* Return the auxiliary type of the die in question using its
18937 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18938 attribute is not present. */
18939
18940 static struct type *
18941 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18942 {
18943 struct attribute *type_attr;
18944
18945 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18946 if (!type_attr)
18947 return NULL;
18948
18949 return lookup_die_type (die, type_attr, cu);
18950 }
18951
18952 /* If DIE has a descriptive_type attribute, then set the TYPE's
18953 descriptive type accordingly. */
18954
18955 static void
18956 set_descriptive_type (struct type *type, struct die_info *die,
18957 struct dwarf2_cu *cu)
18958 {
18959 struct type *descriptive_type = die_descriptive_type (die, cu);
18960
18961 if (descriptive_type)
18962 {
18963 ALLOCATE_GNAT_AUX_TYPE (type);
18964 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18965 }
18966 }
18967
18968 /* Return the containing type of the die in question using its
18969 DW_AT_containing_type attribute. */
18970
18971 static struct type *
18972 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18973 {
18974 struct attribute *type_attr;
18975
18976 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18977 if (!type_attr)
18978 error (_("Dwarf Error: Problem turning containing type into gdb type "
18979 "[in module %s]"), objfile_name (cu->objfile));
18980
18981 return lookup_die_type (die, type_attr, cu);
18982 }
18983
18984 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18985
18986 static struct type *
18987 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18988 {
18989 struct objfile *objfile = dwarf2_per_objfile->objfile;
18990 char *message, *saved;
18991
18992 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18993 objfile_name (objfile),
18994 cu->header.offset.sect_off,
18995 die->offset.sect_off);
18996 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
18997 message, strlen (message));
18998 xfree (message);
18999
19000 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
19001 }
19002
19003 /* Look up the type of DIE in CU using its type attribute ATTR.
19004 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19005 DW_AT_containing_type.
19006 If there is no type substitute an error marker. */
19007
19008 static struct type *
19009 lookup_die_type (struct die_info *die, const struct attribute *attr,
19010 struct dwarf2_cu *cu)
19011 {
19012 struct objfile *objfile = cu->objfile;
19013 struct type *this_type;
19014
19015 gdb_assert (attr->name == DW_AT_type
19016 || attr->name == DW_AT_GNAT_descriptive_type
19017 || attr->name == DW_AT_containing_type);
19018
19019 /* First see if we have it cached. */
19020
19021 if (attr->form == DW_FORM_GNU_ref_alt)
19022 {
19023 struct dwarf2_per_cu_data *per_cu;
19024 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19025
19026 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19027 this_type = get_die_type_at_offset (offset, per_cu);
19028 }
19029 else if (attr_form_is_ref (attr))
19030 {
19031 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19032
19033 this_type = get_die_type_at_offset (offset, cu->per_cu);
19034 }
19035 else if (attr->form == DW_FORM_ref_sig8)
19036 {
19037 ULONGEST signature = DW_SIGNATURE (attr);
19038
19039 return get_signatured_type (die, signature, cu);
19040 }
19041 else
19042 {
19043 complaint (&symfile_complaints,
19044 _("Dwarf Error: Bad type attribute %s in DIE"
19045 " at 0x%x [in module %s]"),
19046 dwarf_attr_name (attr->name), die->offset.sect_off,
19047 objfile_name (objfile));
19048 return build_error_marker_type (cu, die);
19049 }
19050
19051 /* If not cached we need to read it in. */
19052
19053 if (this_type == NULL)
19054 {
19055 struct die_info *type_die = NULL;
19056 struct dwarf2_cu *type_cu = cu;
19057
19058 if (attr_form_is_ref (attr))
19059 type_die = follow_die_ref (die, attr, &type_cu);
19060 if (type_die == NULL)
19061 return build_error_marker_type (cu, die);
19062 /* If we find the type now, it's probably because the type came
19063 from an inter-CU reference and the type's CU got expanded before
19064 ours. */
19065 this_type = read_type_die (type_die, type_cu);
19066 }
19067
19068 /* If we still don't have a type use an error marker. */
19069
19070 if (this_type == NULL)
19071 return build_error_marker_type (cu, die);
19072
19073 return this_type;
19074 }
19075
19076 /* Return the type in DIE, CU.
19077 Returns NULL for invalid types.
19078
19079 This first does a lookup in die_type_hash,
19080 and only reads the die in if necessary.
19081
19082 NOTE: This can be called when reading in partial or full symbols. */
19083
19084 static struct type *
19085 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19086 {
19087 struct type *this_type;
19088
19089 this_type = get_die_type (die, cu);
19090 if (this_type)
19091 return this_type;
19092
19093 return read_type_die_1 (die, cu);
19094 }
19095
19096 /* Read the type in DIE, CU.
19097 Returns NULL for invalid types. */
19098
19099 static struct type *
19100 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19101 {
19102 struct type *this_type = NULL;
19103
19104 switch (die->tag)
19105 {
19106 case DW_TAG_class_type:
19107 case DW_TAG_interface_type:
19108 case DW_TAG_structure_type:
19109 case DW_TAG_union_type:
19110 this_type = read_structure_type (die, cu);
19111 break;
19112 case DW_TAG_enumeration_type:
19113 this_type = read_enumeration_type (die, cu);
19114 break;
19115 case DW_TAG_subprogram:
19116 case DW_TAG_subroutine_type:
19117 case DW_TAG_inlined_subroutine:
19118 this_type = read_subroutine_type (die, cu);
19119 break;
19120 case DW_TAG_array_type:
19121 this_type = read_array_type (die, cu);
19122 break;
19123 case DW_TAG_set_type:
19124 this_type = read_set_type (die, cu);
19125 break;
19126 case DW_TAG_pointer_type:
19127 this_type = read_tag_pointer_type (die, cu);
19128 break;
19129 case DW_TAG_ptr_to_member_type:
19130 this_type = read_tag_ptr_to_member_type (die, cu);
19131 break;
19132 case DW_TAG_reference_type:
19133 this_type = read_tag_reference_type (die, cu);
19134 break;
19135 case DW_TAG_const_type:
19136 this_type = read_tag_const_type (die, cu);
19137 break;
19138 case DW_TAG_volatile_type:
19139 this_type = read_tag_volatile_type (die, cu);
19140 break;
19141 case DW_TAG_restrict_type:
19142 this_type = read_tag_restrict_type (die, cu);
19143 break;
19144 case DW_TAG_string_type:
19145 this_type = read_tag_string_type (die, cu);
19146 break;
19147 case DW_TAG_typedef:
19148 this_type = read_typedef (die, cu);
19149 break;
19150 case DW_TAG_subrange_type:
19151 this_type = read_subrange_type (die, cu);
19152 break;
19153 case DW_TAG_base_type:
19154 this_type = read_base_type (die, cu);
19155 break;
19156 case DW_TAG_unspecified_type:
19157 this_type = read_unspecified_type (die, cu);
19158 break;
19159 case DW_TAG_namespace:
19160 this_type = read_namespace_type (die, cu);
19161 break;
19162 case DW_TAG_module:
19163 this_type = read_module_type (die, cu);
19164 break;
19165 case DW_TAG_atomic_type:
19166 this_type = read_tag_atomic_type (die, cu);
19167 break;
19168 default:
19169 complaint (&symfile_complaints,
19170 _("unexpected tag in read_type_die: '%s'"),
19171 dwarf_tag_name (die->tag));
19172 break;
19173 }
19174
19175 return this_type;
19176 }
19177
19178 /* See if we can figure out if the class lives in a namespace. We do
19179 this by looking for a member function; its demangled name will
19180 contain namespace info, if there is any.
19181 Return the computed name or NULL.
19182 Space for the result is allocated on the objfile's obstack.
19183 This is the full-die version of guess_partial_die_structure_name.
19184 In this case we know DIE has no useful parent. */
19185
19186 static char *
19187 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19188 {
19189 struct die_info *spec_die;
19190 struct dwarf2_cu *spec_cu;
19191 struct die_info *child;
19192
19193 spec_cu = cu;
19194 spec_die = die_specification (die, &spec_cu);
19195 if (spec_die != NULL)
19196 {
19197 die = spec_die;
19198 cu = spec_cu;
19199 }
19200
19201 for (child = die->child;
19202 child != NULL;
19203 child = child->sibling)
19204 {
19205 if (child->tag == DW_TAG_subprogram)
19206 {
19207 const char *linkage_name;
19208
19209 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19210 if (linkage_name == NULL)
19211 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19212 cu);
19213 if (linkage_name != NULL)
19214 {
19215 char *actual_name
19216 = language_class_name_from_physname (cu->language_defn,
19217 linkage_name);
19218 char *name = NULL;
19219
19220 if (actual_name != NULL)
19221 {
19222 const char *die_name = dwarf2_name (die, cu);
19223
19224 if (die_name != NULL
19225 && strcmp (die_name, actual_name) != 0)
19226 {
19227 /* Strip off the class name from the full name.
19228 We want the prefix. */
19229 int die_name_len = strlen (die_name);
19230 int actual_name_len = strlen (actual_name);
19231
19232 /* Test for '::' as a sanity check. */
19233 if (actual_name_len > die_name_len + 2
19234 && actual_name[actual_name_len
19235 - die_name_len - 1] == ':')
19236 name = (char *) obstack_copy0 (
19237 &cu->objfile->per_bfd->storage_obstack,
19238 actual_name, actual_name_len - die_name_len - 2);
19239 }
19240 }
19241 xfree (actual_name);
19242 return name;
19243 }
19244 }
19245 }
19246
19247 return NULL;
19248 }
19249
19250 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19251 prefix part in such case. See
19252 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19253
19254 static char *
19255 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19256 {
19257 struct attribute *attr;
19258 const char *base;
19259
19260 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19261 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19262 return NULL;
19263
19264 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19265 return NULL;
19266
19267 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19268 if (attr == NULL)
19269 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19270 if (attr == NULL || DW_STRING (attr) == NULL)
19271 return NULL;
19272
19273 /* dwarf2_name had to be already called. */
19274 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19275
19276 /* Strip the base name, keep any leading namespaces/classes. */
19277 base = strrchr (DW_STRING (attr), ':');
19278 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19279 return "";
19280
19281 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19282 DW_STRING (attr),
19283 &base[-1] - DW_STRING (attr));
19284 }
19285
19286 /* Return the name of the namespace/class that DIE is defined within,
19287 or "" if we can't tell. The caller should not xfree the result.
19288
19289 For example, if we're within the method foo() in the following
19290 code:
19291
19292 namespace N {
19293 class C {
19294 void foo () {
19295 }
19296 };
19297 }
19298
19299 then determine_prefix on foo's die will return "N::C". */
19300
19301 static const char *
19302 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19303 {
19304 struct die_info *parent, *spec_die;
19305 struct dwarf2_cu *spec_cu;
19306 struct type *parent_type;
19307 char *retval;
19308
19309 if (cu->language != language_cplus && cu->language != language_java
19310 && cu->language != language_fortran && cu->language != language_d)
19311 return "";
19312
19313 retval = anonymous_struct_prefix (die, cu);
19314 if (retval)
19315 return retval;
19316
19317 /* We have to be careful in the presence of DW_AT_specification.
19318 For example, with GCC 3.4, given the code
19319
19320 namespace N {
19321 void foo() {
19322 // Definition of N::foo.
19323 }
19324 }
19325
19326 then we'll have a tree of DIEs like this:
19327
19328 1: DW_TAG_compile_unit
19329 2: DW_TAG_namespace // N
19330 3: DW_TAG_subprogram // declaration of N::foo
19331 4: DW_TAG_subprogram // definition of N::foo
19332 DW_AT_specification // refers to die #3
19333
19334 Thus, when processing die #4, we have to pretend that we're in
19335 the context of its DW_AT_specification, namely the contex of die
19336 #3. */
19337 spec_cu = cu;
19338 spec_die = die_specification (die, &spec_cu);
19339 if (spec_die == NULL)
19340 parent = die->parent;
19341 else
19342 {
19343 parent = spec_die->parent;
19344 cu = spec_cu;
19345 }
19346
19347 if (parent == NULL)
19348 return "";
19349 else if (parent->building_fullname)
19350 {
19351 const char *name;
19352 const char *parent_name;
19353
19354 /* It has been seen on RealView 2.2 built binaries,
19355 DW_TAG_template_type_param types actually _defined_ as
19356 children of the parent class:
19357
19358 enum E {};
19359 template class <class Enum> Class{};
19360 Class<enum E> class_e;
19361
19362 1: DW_TAG_class_type (Class)
19363 2: DW_TAG_enumeration_type (E)
19364 3: DW_TAG_enumerator (enum1:0)
19365 3: DW_TAG_enumerator (enum2:1)
19366 ...
19367 2: DW_TAG_template_type_param
19368 DW_AT_type DW_FORM_ref_udata (E)
19369
19370 Besides being broken debug info, it can put GDB into an
19371 infinite loop. Consider:
19372
19373 When we're building the full name for Class<E>, we'll start
19374 at Class, and go look over its template type parameters,
19375 finding E. We'll then try to build the full name of E, and
19376 reach here. We're now trying to build the full name of E,
19377 and look over the parent DIE for containing scope. In the
19378 broken case, if we followed the parent DIE of E, we'd again
19379 find Class, and once again go look at its template type
19380 arguments, etc., etc. Simply don't consider such parent die
19381 as source-level parent of this die (it can't be, the language
19382 doesn't allow it), and break the loop here. */
19383 name = dwarf2_name (die, cu);
19384 parent_name = dwarf2_name (parent, cu);
19385 complaint (&symfile_complaints,
19386 _("template param type '%s' defined within parent '%s'"),
19387 name ? name : "<unknown>",
19388 parent_name ? parent_name : "<unknown>");
19389 return "";
19390 }
19391 else
19392 switch (parent->tag)
19393 {
19394 case DW_TAG_namespace:
19395 parent_type = read_type_die (parent, cu);
19396 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19397 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19398 Work around this problem here. */
19399 if (cu->language == language_cplus
19400 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19401 return "";
19402 /* We give a name to even anonymous namespaces. */
19403 return TYPE_TAG_NAME (parent_type);
19404 case DW_TAG_class_type:
19405 case DW_TAG_interface_type:
19406 case DW_TAG_structure_type:
19407 case DW_TAG_union_type:
19408 case DW_TAG_module:
19409 parent_type = read_type_die (parent, cu);
19410 if (TYPE_TAG_NAME (parent_type) != NULL)
19411 return TYPE_TAG_NAME (parent_type);
19412 else
19413 /* An anonymous structure is only allowed non-static data
19414 members; no typedefs, no member functions, et cetera.
19415 So it does not need a prefix. */
19416 return "";
19417 case DW_TAG_compile_unit:
19418 case DW_TAG_partial_unit:
19419 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19420 if (cu->language == language_cplus
19421 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19422 && die->child != NULL
19423 && (die->tag == DW_TAG_class_type
19424 || die->tag == DW_TAG_structure_type
19425 || die->tag == DW_TAG_union_type))
19426 {
19427 char *name = guess_full_die_structure_name (die, cu);
19428 if (name != NULL)
19429 return name;
19430 }
19431 return "";
19432 case DW_TAG_enumeration_type:
19433 parent_type = read_type_die (parent, cu);
19434 if (TYPE_DECLARED_CLASS (parent_type))
19435 {
19436 if (TYPE_TAG_NAME (parent_type) != NULL)
19437 return TYPE_TAG_NAME (parent_type);
19438 return "";
19439 }
19440 /* Fall through. */
19441 default:
19442 return determine_prefix (parent, cu);
19443 }
19444 }
19445
19446 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19447 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19448 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19449 an obconcat, otherwise allocate storage for the result. The CU argument is
19450 used to determine the language and hence, the appropriate separator. */
19451
19452 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19453
19454 static char *
19455 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19456 int physname, struct dwarf2_cu *cu)
19457 {
19458 const char *lead = "";
19459 const char *sep;
19460
19461 if (suffix == NULL || suffix[0] == '\0'
19462 || prefix == NULL || prefix[0] == '\0')
19463 sep = "";
19464 else if (cu->language == language_java)
19465 sep = ".";
19466 else if (cu->language == language_d)
19467 {
19468 /* For D, the 'main' function could be defined in any module, but it
19469 should never be prefixed. */
19470 if (strcmp (suffix, "D main") == 0)
19471 {
19472 prefix = "";
19473 sep = "";
19474 }
19475 else
19476 sep = ".";
19477 }
19478 else if (cu->language == language_fortran && physname)
19479 {
19480 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19481 DW_AT_MIPS_linkage_name is preferred and used instead. */
19482
19483 lead = "__";
19484 sep = "_MOD_";
19485 }
19486 else
19487 sep = "::";
19488
19489 if (prefix == NULL)
19490 prefix = "";
19491 if (suffix == NULL)
19492 suffix = "";
19493
19494 if (obs == NULL)
19495 {
19496 char *retval
19497 = ((char *)
19498 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
19499
19500 strcpy (retval, lead);
19501 strcat (retval, prefix);
19502 strcat (retval, sep);
19503 strcat (retval, suffix);
19504 return retval;
19505 }
19506 else
19507 {
19508 /* We have an obstack. */
19509 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19510 }
19511 }
19512
19513 /* Return sibling of die, NULL if no sibling. */
19514
19515 static struct die_info *
19516 sibling_die (struct die_info *die)
19517 {
19518 return die->sibling;
19519 }
19520
19521 /* Get name of a die, return NULL if not found. */
19522
19523 static const char *
19524 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19525 struct obstack *obstack)
19526 {
19527 if (name && cu->language == language_cplus)
19528 {
19529 char *canon_name = cp_canonicalize_string (name);
19530
19531 if (canon_name != NULL)
19532 {
19533 if (strcmp (canon_name, name) != 0)
19534 name = (const char *) obstack_copy0 (obstack, canon_name,
19535 strlen (canon_name));
19536 xfree (canon_name);
19537 }
19538 }
19539
19540 return name;
19541 }
19542
19543 /* Get name of a die, return NULL if not found.
19544 Anonymous namespaces are converted to their magic string. */
19545
19546 static const char *
19547 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19548 {
19549 struct attribute *attr;
19550
19551 attr = dwarf2_attr (die, DW_AT_name, cu);
19552 if ((!attr || !DW_STRING (attr))
19553 && die->tag != DW_TAG_namespace
19554 && die->tag != DW_TAG_class_type
19555 && die->tag != DW_TAG_interface_type
19556 && die->tag != DW_TAG_structure_type
19557 && die->tag != DW_TAG_union_type)
19558 return NULL;
19559
19560 switch (die->tag)
19561 {
19562 case DW_TAG_compile_unit:
19563 case DW_TAG_partial_unit:
19564 /* Compilation units have a DW_AT_name that is a filename, not
19565 a source language identifier. */
19566 case DW_TAG_enumeration_type:
19567 case DW_TAG_enumerator:
19568 /* These tags always have simple identifiers already; no need
19569 to canonicalize them. */
19570 return DW_STRING (attr);
19571
19572 case DW_TAG_namespace:
19573 if (attr != NULL && DW_STRING (attr) != NULL)
19574 return DW_STRING (attr);
19575 return CP_ANONYMOUS_NAMESPACE_STR;
19576
19577 case DW_TAG_subprogram:
19578 /* Java constructors will all be named "<init>", so return
19579 the class name when we see this special case. */
19580 if (cu->language == language_java
19581 && DW_STRING (attr) != NULL
19582 && strcmp (DW_STRING (attr), "<init>") == 0)
19583 {
19584 struct dwarf2_cu *spec_cu = cu;
19585 struct die_info *spec_die;
19586
19587 /* GCJ will output '<init>' for Java constructor names.
19588 For this special case, return the name of the parent class. */
19589
19590 /* GCJ may output subprogram DIEs with AT_specification set.
19591 If so, use the name of the specified DIE. */
19592 spec_die = die_specification (die, &spec_cu);
19593 if (spec_die != NULL)
19594 return dwarf2_name (spec_die, spec_cu);
19595
19596 do
19597 {
19598 die = die->parent;
19599 if (die->tag == DW_TAG_class_type)
19600 return dwarf2_name (die, cu);
19601 }
19602 while (die->tag != DW_TAG_compile_unit
19603 && die->tag != DW_TAG_partial_unit);
19604 }
19605 break;
19606
19607 case DW_TAG_class_type:
19608 case DW_TAG_interface_type:
19609 case DW_TAG_structure_type:
19610 case DW_TAG_union_type:
19611 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19612 structures or unions. These were of the form "._%d" in GCC 4.1,
19613 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19614 and GCC 4.4. We work around this problem by ignoring these. */
19615 if (attr && DW_STRING (attr)
19616 && (startswith (DW_STRING (attr), "._")
19617 || startswith (DW_STRING (attr), "<anonymous")))
19618 return NULL;
19619
19620 /* GCC might emit a nameless typedef that has a linkage name. See
19621 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19622 if (!attr || DW_STRING (attr) == NULL)
19623 {
19624 char *demangled = NULL;
19625
19626 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19627 if (attr == NULL)
19628 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19629
19630 if (attr == NULL || DW_STRING (attr) == NULL)
19631 return NULL;
19632
19633 /* Avoid demangling DW_STRING (attr) the second time on a second
19634 call for the same DIE. */
19635 if (!DW_STRING_IS_CANONICAL (attr))
19636 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19637
19638 if (demangled)
19639 {
19640 const char *base;
19641
19642 /* FIXME: we already did this for the partial symbol... */
19643 DW_STRING (attr)
19644 = ((const char *)
19645 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19646 demangled, strlen (demangled)));
19647 DW_STRING_IS_CANONICAL (attr) = 1;
19648 xfree (demangled);
19649
19650 /* Strip any leading namespaces/classes, keep only the base name.
19651 DW_AT_name for named DIEs does not contain the prefixes. */
19652 base = strrchr (DW_STRING (attr), ':');
19653 if (base && base > DW_STRING (attr) && base[-1] == ':')
19654 return &base[1];
19655 else
19656 return DW_STRING (attr);
19657 }
19658 }
19659 break;
19660
19661 default:
19662 break;
19663 }
19664
19665 if (!DW_STRING_IS_CANONICAL (attr))
19666 {
19667 DW_STRING (attr)
19668 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19669 &cu->objfile->per_bfd->storage_obstack);
19670 DW_STRING_IS_CANONICAL (attr) = 1;
19671 }
19672 return DW_STRING (attr);
19673 }
19674
19675 /* Return the die that this die in an extension of, or NULL if there
19676 is none. *EXT_CU is the CU containing DIE on input, and the CU
19677 containing the return value on output. */
19678
19679 static struct die_info *
19680 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19681 {
19682 struct attribute *attr;
19683
19684 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19685 if (attr == NULL)
19686 return NULL;
19687
19688 return follow_die_ref (die, attr, ext_cu);
19689 }
19690
19691 /* Convert a DIE tag into its string name. */
19692
19693 static const char *
19694 dwarf_tag_name (unsigned tag)
19695 {
19696 const char *name = get_DW_TAG_name (tag);
19697
19698 if (name == NULL)
19699 return "DW_TAG_<unknown>";
19700
19701 return name;
19702 }
19703
19704 /* Convert a DWARF attribute code into its string name. */
19705
19706 static const char *
19707 dwarf_attr_name (unsigned attr)
19708 {
19709 const char *name;
19710
19711 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19712 if (attr == DW_AT_MIPS_fde)
19713 return "DW_AT_MIPS_fde";
19714 #else
19715 if (attr == DW_AT_HP_block_index)
19716 return "DW_AT_HP_block_index";
19717 #endif
19718
19719 name = get_DW_AT_name (attr);
19720
19721 if (name == NULL)
19722 return "DW_AT_<unknown>";
19723
19724 return name;
19725 }
19726
19727 /* Convert a DWARF value form code into its string name. */
19728
19729 static const char *
19730 dwarf_form_name (unsigned form)
19731 {
19732 const char *name = get_DW_FORM_name (form);
19733
19734 if (name == NULL)
19735 return "DW_FORM_<unknown>";
19736
19737 return name;
19738 }
19739
19740 static char *
19741 dwarf_bool_name (unsigned mybool)
19742 {
19743 if (mybool)
19744 return "TRUE";
19745 else
19746 return "FALSE";
19747 }
19748
19749 /* Convert a DWARF type code into its string name. */
19750
19751 static const char *
19752 dwarf_type_encoding_name (unsigned enc)
19753 {
19754 const char *name = get_DW_ATE_name (enc);
19755
19756 if (name == NULL)
19757 return "DW_ATE_<unknown>";
19758
19759 return name;
19760 }
19761
19762 static void
19763 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19764 {
19765 unsigned int i;
19766
19767 print_spaces (indent, f);
19768 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19769 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19770
19771 if (die->parent != NULL)
19772 {
19773 print_spaces (indent, f);
19774 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19775 die->parent->offset.sect_off);
19776 }
19777
19778 print_spaces (indent, f);
19779 fprintf_unfiltered (f, " has children: %s\n",
19780 dwarf_bool_name (die->child != NULL));
19781
19782 print_spaces (indent, f);
19783 fprintf_unfiltered (f, " attributes:\n");
19784
19785 for (i = 0; i < die->num_attrs; ++i)
19786 {
19787 print_spaces (indent, f);
19788 fprintf_unfiltered (f, " %s (%s) ",
19789 dwarf_attr_name (die->attrs[i].name),
19790 dwarf_form_name (die->attrs[i].form));
19791
19792 switch (die->attrs[i].form)
19793 {
19794 case DW_FORM_addr:
19795 case DW_FORM_GNU_addr_index:
19796 fprintf_unfiltered (f, "address: ");
19797 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19798 break;
19799 case DW_FORM_block2:
19800 case DW_FORM_block4:
19801 case DW_FORM_block:
19802 case DW_FORM_block1:
19803 fprintf_unfiltered (f, "block: size %s",
19804 pulongest (DW_BLOCK (&die->attrs[i])->size));
19805 break;
19806 case DW_FORM_exprloc:
19807 fprintf_unfiltered (f, "expression: size %s",
19808 pulongest (DW_BLOCK (&die->attrs[i])->size));
19809 break;
19810 case DW_FORM_ref_addr:
19811 fprintf_unfiltered (f, "ref address: ");
19812 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19813 break;
19814 case DW_FORM_GNU_ref_alt:
19815 fprintf_unfiltered (f, "alt ref address: ");
19816 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19817 break;
19818 case DW_FORM_ref1:
19819 case DW_FORM_ref2:
19820 case DW_FORM_ref4:
19821 case DW_FORM_ref8:
19822 case DW_FORM_ref_udata:
19823 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19824 (long) (DW_UNSND (&die->attrs[i])));
19825 break;
19826 case DW_FORM_data1:
19827 case DW_FORM_data2:
19828 case DW_FORM_data4:
19829 case DW_FORM_data8:
19830 case DW_FORM_udata:
19831 case DW_FORM_sdata:
19832 fprintf_unfiltered (f, "constant: %s",
19833 pulongest (DW_UNSND (&die->attrs[i])));
19834 break;
19835 case DW_FORM_sec_offset:
19836 fprintf_unfiltered (f, "section offset: %s",
19837 pulongest (DW_UNSND (&die->attrs[i])));
19838 break;
19839 case DW_FORM_ref_sig8:
19840 fprintf_unfiltered (f, "signature: %s",
19841 hex_string (DW_SIGNATURE (&die->attrs[i])));
19842 break;
19843 case DW_FORM_string:
19844 case DW_FORM_strp:
19845 case DW_FORM_GNU_str_index:
19846 case DW_FORM_GNU_strp_alt:
19847 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19848 DW_STRING (&die->attrs[i])
19849 ? DW_STRING (&die->attrs[i]) : "",
19850 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19851 break;
19852 case DW_FORM_flag:
19853 if (DW_UNSND (&die->attrs[i]))
19854 fprintf_unfiltered (f, "flag: TRUE");
19855 else
19856 fprintf_unfiltered (f, "flag: FALSE");
19857 break;
19858 case DW_FORM_flag_present:
19859 fprintf_unfiltered (f, "flag: TRUE");
19860 break;
19861 case DW_FORM_indirect:
19862 /* The reader will have reduced the indirect form to
19863 the "base form" so this form should not occur. */
19864 fprintf_unfiltered (f,
19865 "unexpected attribute form: DW_FORM_indirect");
19866 break;
19867 default:
19868 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19869 die->attrs[i].form);
19870 break;
19871 }
19872 fprintf_unfiltered (f, "\n");
19873 }
19874 }
19875
19876 static void
19877 dump_die_for_error (struct die_info *die)
19878 {
19879 dump_die_shallow (gdb_stderr, 0, die);
19880 }
19881
19882 static void
19883 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19884 {
19885 int indent = level * 4;
19886
19887 gdb_assert (die != NULL);
19888
19889 if (level >= max_level)
19890 return;
19891
19892 dump_die_shallow (f, indent, die);
19893
19894 if (die->child != NULL)
19895 {
19896 print_spaces (indent, f);
19897 fprintf_unfiltered (f, " Children:");
19898 if (level + 1 < max_level)
19899 {
19900 fprintf_unfiltered (f, "\n");
19901 dump_die_1 (f, level + 1, max_level, die->child);
19902 }
19903 else
19904 {
19905 fprintf_unfiltered (f,
19906 " [not printed, max nesting level reached]\n");
19907 }
19908 }
19909
19910 if (die->sibling != NULL && level > 0)
19911 {
19912 dump_die_1 (f, level, max_level, die->sibling);
19913 }
19914 }
19915
19916 /* This is called from the pdie macro in gdbinit.in.
19917 It's not static so gcc will keep a copy callable from gdb. */
19918
19919 void
19920 dump_die (struct die_info *die, int max_level)
19921 {
19922 dump_die_1 (gdb_stdlog, 0, max_level, die);
19923 }
19924
19925 static void
19926 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19927 {
19928 void **slot;
19929
19930 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19931 INSERT);
19932
19933 *slot = die;
19934 }
19935
19936 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19937 required kind. */
19938
19939 static sect_offset
19940 dwarf2_get_ref_die_offset (const struct attribute *attr)
19941 {
19942 sect_offset retval = { DW_UNSND (attr) };
19943
19944 if (attr_form_is_ref (attr))
19945 return retval;
19946
19947 retval.sect_off = 0;
19948 complaint (&symfile_complaints,
19949 _("unsupported die ref attribute form: '%s'"),
19950 dwarf_form_name (attr->form));
19951 return retval;
19952 }
19953
19954 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19955 * the value held by the attribute is not constant. */
19956
19957 static LONGEST
19958 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19959 {
19960 if (attr->form == DW_FORM_sdata)
19961 return DW_SND (attr);
19962 else if (attr->form == DW_FORM_udata
19963 || attr->form == DW_FORM_data1
19964 || attr->form == DW_FORM_data2
19965 || attr->form == DW_FORM_data4
19966 || attr->form == DW_FORM_data8)
19967 return DW_UNSND (attr);
19968 else
19969 {
19970 complaint (&symfile_complaints,
19971 _("Attribute value is not a constant (%s)"),
19972 dwarf_form_name (attr->form));
19973 return default_value;
19974 }
19975 }
19976
19977 /* Follow reference or signature attribute ATTR of SRC_DIE.
19978 On entry *REF_CU is the CU of SRC_DIE.
19979 On exit *REF_CU is the CU of the result. */
19980
19981 static struct die_info *
19982 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19983 struct dwarf2_cu **ref_cu)
19984 {
19985 struct die_info *die;
19986
19987 if (attr_form_is_ref (attr))
19988 die = follow_die_ref (src_die, attr, ref_cu);
19989 else if (attr->form == DW_FORM_ref_sig8)
19990 die = follow_die_sig (src_die, attr, ref_cu);
19991 else
19992 {
19993 dump_die_for_error (src_die);
19994 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19995 objfile_name ((*ref_cu)->objfile));
19996 }
19997
19998 return die;
19999 }
20000
20001 /* Follow reference OFFSET.
20002 On entry *REF_CU is the CU of the source die referencing OFFSET.
20003 On exit *REF_CU is the CU of the result.
20004 Returns NULL if OFFSET is invalid. */
20005
20006 static struct die_info *
20007 follow_die_offset (sect_offset offset, int offset_in_dwz,
20008 struct dwarf2_cu **ref_cu)
20009 {
20010 struct die_info temp_die;
20011 struct dwarf2_cu *target_cu, *cu = *ref_cu;
20012
20013 gdb_assert (cu->per_cu != NULL);
20014
20015 target_cu = cu;
20016
20017 if (cu->per_cu->is_debug_types)
20018 {
20019 /* .debug_types CUs cannot reference anything outside their CU.
20020 If they need to, they have to reference a signatured type via
20021 DW_FORM_ref_sig8. */
20022 if (! offset_in_cu_p (&cu->header, offset))
20023 return NULL;
20024 }
20025 else if (offset_in_dwz != cu->per_cu->is_dwz
20026 || ! offset_in_cu_p (&cu->header, offset))
20027 {
20028 struct dwarf2_per_cu_data *per_cu;
20029
20030 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20031 cu->objfile);
20032
20033 /* If necessary, add it to the queue and load its DIEs. */
20034 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20035 load_full_comp_unit (per_cu, cu->language);
20036
20037 target_cu = per_cu->cu;
20038 }
20039 else if (cu->dies == NULL)
20040 {
20041 /* We're loading full DIEs during partial symbol reading. */
20042 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20043 load_full_comp_unit (cu->per_cu, language_minimal);
20044 }
20045
20046 *ref_cu = target_cu;
20047 temp_die.offset = offset;
20048 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20049 &temp_die, offset.sect_off);
20050 }
20051
20052 /* Follow reference attribute ATTR of SRC_DIE.
20053 On entry *REF_CU is the CU of SRC_DIE.
20054 On exit *REF_CU is the CU of the result. */
20055
20056 static struct die_info *
20057 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20058 struct dwarf2_cu **ref_cu)
20059 {
20060 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20061 struct dwarf2_cu *cu = *ref_cu;
20062 struct die_info *die;
20063
20064 die = follow_die_offset (offset,
20065 (attr->form == DW_FORM_GNU_ref_alt
20066 || cu->per_cu->is_dwz),
20067 ref_cu);
20068 if (!die)
20069 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20070 "at 0x%x [in module %s]"),
20071 offset.sect_off, src_die->offset.sect_off,
20072 objfile_name (cu->objfile));
20073
20074 return die;
20075 }
20076
20077 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20078 Returned value is intended for DW_OP_call*. Returned
20079 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20080
20081 struct dwarf2_locexpr_baton
20082 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20083 struct dwarf2_per_cu_data *per_cu,
20084 CORE_ADDR (*get_frame_pc) (void *baton),
20085 void *baton)
20086 {
20087 struct dwarf2_cu *cu;
20088 struct die_info *die;
20089 struct attribute *attr;
20090 struct dwarf2_locexpr_baton retval;
20091
20092 dw2_setup (per_cu->objfile);
20093
20094 if (per_cu->cu == NULL)
20095 load_cu (per_cu);
20096 cu = per_cu->cu;
20097 if (cu == NULL)
20098 {
20099 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20100 Instead just throw an error, not much else we can do. */
20101 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20102 offset.sect_off, objfile_name (per_cu->objfile));
20103 }
20104
20105 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20106 if (!die)
20107 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20108 offset.sect_off, objfile_name (per_cu->objfile));
20109
20110 attr = dwarf2_attr (die, DW_AT_location, cu);
20111 if (!attr)
20112 {
20113 /* DWARF: "If there is no such attribute, then there is no effect.".
20114 DATA is ignored if SIZE is 0. */
20115
20116 retval.data = NULL;
20117 retval.size = 0;
20118 }
20119 else if (attr_form_is_section_offset (attr))
20120 {
20121 struct dwarf2_loclist_baton loclist_baton;
20122 CORE_ADDR pc = (*get_frame_pc) (baton);
20123 size_t size;
20124
20125 fill_in_loclist_baton (cu, &loclist_baton, attr);
20126
20127 retval.data = dwarf2_find_location_expression (&loclist_baton,
20128 &size, pc);
20129 retval.size = size;
20130 }
20131 else
20132 {
20133 if (!attr_form_is_block (attr))
20134 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20135 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20136 offset.sect_off, objfile_name (per_cu->objfile));
20137
20138 retval.data = DW_BLOCK (attr)->data;
20139 retval.size = DW_BLOCK (attr)->size;
20140 }
20141 retval.per_cu = cu->per_cu;
20142
20143 age_cached_comp_units ();
20144
20145 return retval;
20146 }
20147
20148 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20149 offset. */
20150
20151 struct dwarf2_locexpr_baton
20152 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20153 struct dwarf2_per_cu_data *per_cu,
20154 CORE_ADDR (*get_frame_pc) (void *baton),
20155 void *baton)
20156 {
20157 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20158
20159 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20160 }
20161
20162 /* Write a constant of a given type as target-ordered bytes into
20163 OBSTACK. */
20164
20165 static const gdb_byte *
20166 write_constant_as_bytes (struct obstack *obstack,
20167 enum bfd_endian byte_order,
20168 struct type *type,
20169 ULONGEST value,
20170 LONGEST *len)
20171 {
20172 gdb_byte *result;
20173
20174 *len = TYPE_LENGTH (type);
20175 result = (gdb_byte *) obstack_alloc (obstack, *len);
20176 store_unsigned_integer (result, *len, byte_order, value);
20177
20178 return result;
20179 }
20180
20181 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20182 pointer to the constant bytes and set LEN to the length of the
20183 data. If memory is needed, allocate it on OBSTACK. If the DIE
20184 does not have a DW_AT_const_value, return NULL. */
20185
20186 const gdb_byte *
20187 dwarf2_fetch_constant_bytes (sect_offset offset,
20188 struct dwarf2_per_cu_data *per_cu,
20189 struct obstack *obstack,
20190 LONGEST *len)
20191 {
20192 struct dwarf2_cu *cu;
20193 struct die_info *die;
20194 struct attribute *attr;
20195 const gdb_byte *result = NULL;
20196 struct type *type;
20197 LONGEST value;
20198 enum bfd_endian byte_order;
20199
20200 dw2_setup (per_cu->objfile);
20201
20202 if (per_cu->cu == NULL)
20203 load_cu (per_cu);
20204 cu = per_cu->cu;
20205 if (cu == NULL)
20206 {
20207 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20208 Instead just throw an error, not much else we can do. */
20209 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20210 offset.sect_off, objfile_name (per_cu->objfile));
20211 }
20212
20213 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20214 if (!die)
20215 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20216 offset.sect_off, objfile_name (per_cu->objfile));
20217
20218
20219 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20220 if (attr == NULL)
20221 return NULL;
20222
20223 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20224 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20225
20226 switch (attr->form)
20227 {
20228 case DW_FORM_addr:
20229 case DW_FORM_GNU_addr_index:
20230 {
20231 gdb_byte *tem;
20232
20233 *len = cu->header.addr_size;
20234 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20235 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20236 result = tem;
20237 }
20238 break;
20239 case DW_FORM_string:
20240 case DW_FORM_strp:
20241 case DW_FORM_GNU_str_index:
20242 case DW_FORM_GNU_strp_alt:
20243 /* DW_STRING is already allocated on the objfile obstack, point
20244 directly to it. */
20245 result = (const gdb_byte *) DW_STRING (attr);
20246 *len = strlen (DW_STRING (attr));
20247 break;
20248 case DW_FORM_block1:
20249 case DW_FORM_block2:
20250 case DW_FORM_block4:
20251 case DW_FORM_block:
20252 case DW_FORM_exprloc:
20253 result = DW_BLOCK (attr)->data;
20254 *len = DW_BLOCK (attr)->size;
20255 break;
20256
20257 /* The DW_AT_const_value attributes are supposed to carry the
20258 symbol's value "represented as it would be on the target
20259 architecture." By the time we get here, it's already been
20260 converted to host endianness, so we just need to sign- or
20261 zero-extend it as appropriate. */
20262 case DW_FORM_data1:
20263 type = die_type (die, cu);
20264 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20265 if (result == NULL)
20266 result = write_constant_as_bytes (obstack, byte_order,
20267 type, value, len);
20268 break;
20269 case DW_FORM_data2:
20270 type = die_type (die, cu);
20271 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20272 if (result == NULL)
20273 result = write_constant_as_bytes (obstack, byte_order,
20274 type, value, len);
20275 break;
20276 case DW_FORM_data4:
20277 type = die_type (die, cu);
20278 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20279 if (result == NULL)
20280 result = write_constant_as_bytes (obstack, byte_order,
20281 type, value, len);
20282 break;
20283 case DW_FORM_data8:
20284 type = die_type (die, cu);
20285 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20286 if (result == NULL)
20287 result = write_constant_as_bytes (obstack, byte_order,
20288 type, value, len);
20289 break;
20290
20291 case DW_FORM_sdata:
20292 type = die_type (die, cu);
20293 result = write_constant_as_bytes (obstack, byte_order,
20294 type, DW_SND (attr), len);
20295 break;
20296
20297 case DW_FORM_udata:
20298 type = die_type (die, cu);
20299 result = write_constant_as_bytes (obstack, byte_order,
20300 type, DW_UNSND (attr), len);
20301 break;
20302
20303 default:
20304 complaint (&symfile_complaints,
20305 _("unsupported const value attribute form: '%s'"),
20306 dwarf_form_name (attr->form));
20307 break;
20308 }
20309
20310 return result;
20311 }
20312
20313 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20314 PER_CU. */
20315
20316 struct type *
20317 dwarf2_get_die_type (cu_offset die_offset,
20318 struct dwarf2_per_cu_data *per_cu)
20319 {
20320 sect_offset die_offset_sect;
20321
20322 dw2_setup (per_cu->objfile);
20323
20324 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20325 return get_die_type_at_offset (die_offset_sect, per_cu);
20326 }
20327
20328 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20329 On entry *REF_CU is the CU of SRC_DIE.
20330 On exit *REF_CU is the CU of the result.
20331 Returns NULL if the referenced DIE isn't found. */
20332
20333 static struct die_info *
20334 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20335 struct dwarf2_cu **ref_cu)
20336 {
20337 struct objfile *objfile = (*ref_cu)->objfile;
20338 struct die_info temp_die;
20339 struct dwarf2_cu *sig_cu;
20340 struct die_info *die;
20341
20342 /* While it might be nice to assert sig_type->type == NULL here,
20343 we can get here for DW_AT_imported_declaration where we need
20344 the DIE not the type. */
20345
20346 /* If necessary, add it to the queue and load its DIEs. */
20347
20348 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20349 read_signatured_type (sig_type);
20350
20351 sig_cu = sig_type->per_cu.cu;
20352 gdb_assert (sig_cu != NULL);
20353 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20354 temp_die.offset = sig_type->type_offset_in_section;
20355 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20356 temp_die.offset.sect_off);
20357 if (die)
20358 {
20359 /* For .gdb_index version 7 keep track of included TUs.
20360 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20361 if (dwarf2_per_objfile->index_table != NULL
20362 && dwarf2_per_objfile->index_table->version <= 7)
20363 {
20364 VEC_safe_push (dwarf2_per_cu_ptr,
20365 (*ref_cu)->per_cu->imported_symtabs,
20366 sig_cu->per_cu);
20367 }
20368
20369 *ref_cu = sig_cu;
20370 return die;
20371 }
20372
20373 return NULL;
20374 }
20375
20376 /* Follow signatured type referenced by ATTR in SRC_DIE.
20377 On entry *REF_CU is the CU of SRC_DIE.
20378 On exit *REF_CU is the CU of the result.
20379 The result is the DIE of the type.
20380 If the referenced type cannot be found an error is thrown. */
20381
20382 static struct die_info *
20383 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20384 struct dwarf2_cu **ref_cu)
20385 {
20386 ULONGEST signature = DW_SIGNATURE (attr);
20387 struct signatured_type *sig_type;
20388 struct die_info *die;
20389
20390 gdb_assert (attr->form == DW_FORM_ref_sig8);
20391
20392 sig_type = lookup_signatured_type (*ref_cu, signature);
20393 /* sig_type will be NULL if the signatured type is missing from
20394 the debug info. */
20395 if (sig_type == NULL)
20396 {
20397 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20398 " from DIE at 0x%x [in module %s]"),
20399 hex_string (signature), src_die->offset.sect_off,
20400 objfile_name ((*ref_cu)->objfile));
20401 }
20402
20403 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20404 if (die == NULL)
20405 {
20406 dump_die_for_error (src_die);
20407 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20408 " from DIE at 0x%x [in module %s]"),
20409 hex_string (signature), src_die->offset.sect_off,
20410 objfile_name ((*ref_cu)->objfile));
20411 }
20412
20413 return die;
20414 }
20415
20416 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20417 reading in and processing the type unit if necessary. */
20418
20419 static struct type *
20420 get_signatured_type (struct die_info *die, ULONGEST signature,
20421 struct dwarf2_cu *cu)
20422 {
20423 struct signatured_type *sig_type;
20424 struct dwarf2_cu *type_cu;
20425 struct die_info *type_die;
20426 struct type *type;
20427
20428 sig_type = lookup_signatured_type (cu, signature);
20429 /* sig_type will be NULL if the signatured type is missing from
20430 the debug info. */
20431 if (sig_type == NULL)
20432 {
20433 complaint (&symfile_complaints,
20434 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20435 " from DIE at 0x%x [in module %s]"),
20436 hex_string (signature), die->offset.sect_off,
20437 objfile_name (dwarf2_per_objfile->objfile));
20438 return build_error_marker_type (cu, die);
20439 }
20440
20441 /* If we already know the type we're done. */
20442 if (sig_type->type != NULL)
20443 return sig_type->type;
20444
20445 type_cu = cu;
20446 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20447 if (type_die != NULL)
20448 {
20449 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20450 is created. This is important, for example, because for c++ classes
20451 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20452 type = read_type_die (type_die, type_cu);
20453 if (type == NULL)
20454 {
20455 complaint (&symfile_complaints,
20456 _("Dwarf Error: Cannot build signatured type %s"
20457 " referenced from DIE at 0x%x [in module %s]"),
20458 hex_string (signature), die->offset.sect_off,
20459 objfile_name (dwarf2_per_objfile->objfile));
20460 type = build_error_marker_type (cu, die);
20461 }
20462 }
20463 else
20464 {
20465 complaint (&symfile_complaints,
20466 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20467 " from DIE at 0x%x [in module %s]"),
20468 hex_string (signature), die->offset.sect_off,
20469 objfile_name (dwarf2_per_objfile->objfile));
20470 type = build_error_marker_type (cu, die);
20471 }
20472 sig_type->type = type;
20473
20474 return type;
20475 }
20476
20477 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20478 reading in and processing the type unit if necessary. */
20479
20480 static struct type *
20481 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20482 struct dwarf2_cu *cu) /* ARI: editCase function */
20483 {
20484 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20485 if (attr_form_is_ref (attr))
20486 {
20487 struct dwarf2_cu *type_cu = cu;
20488 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20489
20490 return read_type_die (type_die, type_cu);
20491 }
20492 else if (attr->form == DW_FORM_ref_sig8)
20493 {
20494 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20495 }
20496 else
20497 {
20498 complaint (&symfile_complaints,
20499 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20500 " at 0x%x [in module %s]"),
20501 dwarf_form_name (attr->form), die->offset.sect_off,
20502 objfile_name (dwarf2_per_objfile->objfile));
20503 return build_error_marker_type (cu, die);
20504 }
20505 }
20506
20507 /* Load the DIEs associated with type unit PER_CU into memory. */
20508
20509 static void
20510 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20511 {
20512 struct signatured_type *sig_type;
20513
20514 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20515 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20516
20517 /* We have the per_cu, but we need the signatured_type.
20518 Fortunately this is an easy translation. */
20519 gdb_assert (per_cu->is_debug_types);
20520 sig_type = (struct signatured_type *) per_cu;
20521
20522 gdb_assert (per_cu->cu == NULL);
20523
20524 read_signatured_type (sig_type);
20525
20526 gdb_assert (per_cu->cu != NULL);
20527 }
20528
20529 /* die_reader_func for read_signatured_type.
20530 This is identical to load_full_comp_unit_reader,
20531 but is kept separate for now. */
20532
20533 static void
20534 read_signatured_type_reader (const struct die_reader_specs *reader,
20535 const gdb_byte *info_ptr,
20536 struct die_info *comp_unit_die,
20537 int has_children,
20538 void *data)
20539 {
20540 struct dwarf2_cu *cu = reader->cu;
20541
20542 gdb_assert (cu->die_hash == NULL);
20543 cu->die_hash =
20544 htab_create_alloc_ex (cu->header.length / 12,
20545 die_hash,
20546 die_eq,
20547 NULL,
20548 &cu->comp_unit_obstack,
20549 hashtab_obstack_allocate,
20550 dummy_obstack_deallocate);
20551
20552 if (has_children)
20553 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20554 &info_ptr, comp_unit_die);
20555 cu->dies = comp_unit_die;
20556 /* comp_unit_die is not stored in die_hash, no need. */
20557
20558 /* We try not to read any attributes in this function, because not
20559 all CUs needed for references have been loaded yet, and symbol
20560 table processing isn't initialized. But we have to set the CU language,
20561 or we won't be able to build types correctly.
20562 Similarly, if we do not read the producer, we can not apply
20563 producer-specific interpretation. */
20564 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20565 }
20566
20567 /* Read in a signatured type and build its CU and DIEs.
20568 If the type is a stub for the real type in a DWO file,
20569 read in the real type from the DWO file as well. */
20570
20571 static void
20572 read_signatured_type (struct signatured_type *sig_type)
20573 {
20574 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20575
20576 gdb_assert (per_cu->is_debug_types);
20577 gdb_assert (per_cu->cu == NULL);
20578
20579 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20580 read_signatured_type_reader, NULL);
20581 sig_type->per_cu.tu_read = 1;
20582 }
20583
20584 /* Decode simple location descriptions.
20585 Given a pointer to a dwarf block that defines a location, compute
20586 the location and return the value.
20587
20588 NOTE drow/2003-11-18: This function is called in two situations
20589 now: for the address of static or global variables (partial symbols
20590 only) and for offsets into structures which are expected to be
20591 (more or less) constant. The partial symbol case should go away,
20592 and only the constant case should remain. That will let this
20593 function complain more accurately. A few special modes are allowed
20594 without complaint for global variables (for instance, global
20595 register values and thread-local values).
20596
20597 A location description containing no operations indicates that the
20598 object is optimized out. The return value is 0 for that case.
20599 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20600 callers will only want a very basic result and this can become a
20601 complaint.
20602
20603 Note that stack[0] is unused except as a default error return. */
20604
20605 static CORE_ADDR
20606 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20607 {
20608 struct objfile *objfile = cu->objfile;
20609 size_t i;
20610 size_t size = blk->size;
20611 const gdb_byte *data = blk->data;
20612 CORE_ADDR stack[64];
20613 int stacki;
20614 unsigned int bytes_read, unsnd;
20615 gdb_byte op;
20616
20617 i = 0;
20618 stacki = 0;
20619 stack[stacki] = 0;
20620 stack[++stacki] = 0;
20621
20622 while (i < size)
20623 {
20624 op = data[i++];
20625 switch (op)
20626 {
20627 case DW_OP_lit0:
20628 case DW_OP_lit1:
20629 case DW_OP_lit2:
20630 case DW_OP_lit3:
20631 case DW_OP_lit4:
20632 case DW_OP_lit5:
20633 case DW_OP_lit6:
20634 case DW_OP_lit7:
20635 case DW_OP_lit8:
20636 case DW_OP_lit9:
20637 case DW_OP_lit10:
20638 case DW_OP_lit11:
20639 case DW_OP_lit12:
20640 case DW_OP_lit13:
20641 case DW_OP_lit14:
20642 case DW_OP_lit15:
20643 case DW_OP_lit16:
20644 case DW_OP_lit17:
20645 case DW_OP_lit18:
20646 case DW_OP_lit19:
20647 case DW_OP_lit20:
20648 case DW_OP_lit21:
20649 case DW_OP_lit22:
20650 case DW_OP_lit23:
20651 case DW_OP_lit24:
20652 case DW_OP_lit25:
20653 case DW_OP_lit26:
20654 case DW_OP_lit27:
20655 case DW_OP_lit28:
20656 case DW_OP_lit29:
20657 case DW_OP_lit30:
20658 case DW_OP_lit31:
20659 stack[++stacki] = op - DW_OP_lit0;
20660 break;
20661
20662 case DW_OP_reg0:
20663 case DW_OP_reg1:
20664 case DW_OP_reg2:
20665 case DW_OP_reg3:
20666 case DW_OP_reg4:
20667 case DW_OP_reg5:
20668 case DW_OP_reg6:
20669 case DW_OP_reg7:
20670 case DW_OP_reg8:
20671 case DW_OP_reg9:
20672 case DW_OP_reg10:
20673 case DW_OP_reg11:
20674 case DW_OP_reg12:
20675 case DW_OP_reg13:
20676 case DW_OP_reg14:
20677 case DW_OP_reg15:
20678 case DW_OP_reg16:
20679 case DW_OP_reg17:
20680 case DW_OP_reg18:
20681 case DW_OP_reg19:
20682 case DW_OP_reg20:
20683 case DW_OP_reg21:
20684 case DW_OP_reg22:
20685 case DW_OP_reg23:
20686 case DW_OP_reg24:
20687 case DW_OP_reg25:
20688 case DW_OP_reg26:
20689 case DW_OP_reg27:
20690 case DW_OP_reg28:
20691 case DW_OP_reg29:
20692 case DW_OP_reg30:
20693 case DW_OP_reg31:
20694 stack[++stacki] = op - DW_OP_reg0;
20695 if (i < size)
20696 dwarf2_complex_location_expr_complaint ();
20697 break;
20698
20699 case DW_OP_regx:
20700 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20701 i += bytes_read;
20702 stack[++stacki] = unsnd;
20703 if (i < size)
20704 dwarf2_complex_location_expr_complaint ();
20705 break;
20706
20707 case DW_OP_addr:
20708 stack[++stacki] = read_address (objfile->obfd, &data[i],
20709 cu, &bytes_read);
20710 i += bytes_read;
20711 break;
20712
20713 case DW_OP_const1u:
20714 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20715 i += 1;
20716 break;
20717
20718 case DW_OP_const1s:
20719 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20720 i += 1;
20721 break;
20722
20723 case DW_OP_const2u:
20724 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20725 i += 2;
20726 break;
20727
20728 case DW_OP_const2s:
20729 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20730 i += 2;
20731 break;
20732
20733 case DW_OP_const4u:
20734 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20735 i += 4;
20736 break;
20737
20738 case DW_OP_const4s:
20739 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20740 i += 4;
20741 break;
20742
20743 case DW_OP_const8u:
20744 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20745 i += 8;
20746 break;
20747
20748 case DW_OP_constu:
20749 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20750 &bytes_read);
20751 i += bytes_read;
20752 break;
20753
20754 case DW_OP_consts:
20755 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20756 i += bytes_read;
20757 break;
20758
20759 case DW_OP_dup:
20760 stack[stacki + 1] = stack[stacki];
20761 stacki++;
20762 break;
20763
20764 case DW_OP_plus:
20765 stack[stacki - 1] += stack[stacki];
20766 stacki--;
20767 break;
20768
20769 case DW_OP_plus_uconst:
20770 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20771 &bytes_read);
20772 i += bytes_read;
20773 break;
20774
20775 case DW_OP_minus:
20776 stack[stacki - 1] -= stack[stacki];
20777 stacki--;
20778 break;
20779
20780 case DW_OP_deref:
20781 /* If we're not the last op, then we definitely can't encode
20782 this using GDB's address_class enum. This is valid for partial
20783 global symbols, although the variable's address will be bogus
20784 in the psymtab. */
20785 if (i < size)
20786 dwarf2_complex_location_expr_complaint ();
20787 break;
20788
20789 case DW_OP_GNU_push_tls_address:
20790 /* The top of the stack has the offset from the beginning
20791 of the thread control block at which the variable is located. */
20792 /* Nothing should follow this operator, so the top of stack would
20793 be returned. */
20794 /* This is valid for partial global symbols, but the variable's
20795 address will be bogus in the psymtab. Make it always at least
20796 non-zero to not look as a variable garbage collected by linker
20797 which have DW_OP_addr 0. */
20798 if (i < size)
20799 dwarf2_complex_location_expr_complaint ();
20800 stack[stacki]++;
20801 break;
20802
20803 case DW_OP_GNU_uninit:
20804 break;
20805
20806 case DW_OP_GNU_addr_index:
20807 case DW_OP_GNU_const_index:
20808 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20809 &bytes_read);
20810 i += bytes_read;
20811 break;
20812
20813 default:
20814 {
20815 const char *name = get_DW_OP_name (op);
20816
20817 if (name)
20818 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20819 name);
20820 else
20821 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20822 op);
20823 }
20824
20825 return (stack[stacki]);
20826 }
20827
20828 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20829 outside of the allocated space. Also enforce minimum>0. */
20830 if (stacki >= ARRAY_SIZE (stack) - 1)
20831 {
20832 complaint (&symfile_complaints,
20833 _("location description stack overflow"));
20834 return 0;
20835 }
20836
20837 if (stacki <= 0)
20838 {
20839 complaint (&symfile_complaints,
20840 _("location description stack underflow"));
20841 return 0;
20842 }
20843 }
20844 return (stack[stacki]);
20845 }
20846
20847 /* memory allocation interface */
20848
20849 static struct dwarf_block *
20850 dwarf_alloc_block (struct dwarf2_cu *cu)
20851 {
20852 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
20853 }
20854
20855 static struct die_info *
20856 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20857 {
20858 struct die_info *die;
20859 size_t size = sizeof (struct die_info);
20860
20861 if (num_attrs > 1)
20862 size += (num_attrs - 1) * sizeof (struct attribute);
20863
20864 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20865 memset (die, 0, sizeof (struct die_info));
20866 return (die);
20867 }
20868
20869 \f
20870 /* Macro support. */
20871
20872 /* Return file name relative to the compilation directory of file number I in
20873 *LH's file name table. The result is allocated using xmalloc; the caller is
20874 responsible for freeing it. */
20875
20876 static char *
20877 file_file_name (int file, struct line_header *lh)
20878 {
20879 /* Is the file number a valid index into the line header's file name
20880 table? Remember that file numbers start with one, not zero. */
20881 if (1 <= file && file <= lh->num_file_names)
20882 {
20883 struct file_entry *fe = &lh->file_names[file - 1];
20884
20885 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20886 || lh->include_dirs == NULL)
20887 return xstrdup (fe->name);
20888 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20889 fe->name, (char *) NULL);
20890 }
20891 else
20892 {
20893 /* The compiler produced a bogus file number. We can at least
20894 record the macro definitions made in the file, even if we
20895 won't be able to find the file by name. */
20896 char fake_name[80];
20897
20898 xsnprintf (fake_name, sizeof (fake_name),
20899 "<bad macro file number %d>", file);
20900
20901 complaint (&symfile_complaints,
20902 _("bad file number in macro information (%d)"),
20903 file);
20904
20905 return xstrdup (fake_name);
20906 }
20907 }
20908
20909 /* Return the full name of file number I in *LH's file name table.
20910 Use COMP_DIR as the name of the current directory of the
20911 compilation. The result is allocated using xmalloc; the caller is
20912 responsible for freeing it. */
20913 static char *
20914 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20915 {
20916 /* Is the file number a valid index into the line header's file name
20917 table? Remember that file numbers start with one, not zero. */
20918 if (1 <= file && file <= lh->num_file_names)
20919 {
20920 char *relative = file_file_name (file, lh);
20921
20922 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20923 return relative;
20924 return reconcat (relative, comp_dir, SLASH_STRING,
20925 relative, (char *) NULL);
20926 }
20927 else
20928 return file_file_name (file, lh);
20929 }
20930
20931
20932 static struct macro_source_file *
20933 macro_start_file (int file, int line,
20934 struct macro_source_file *current_file,
20935 struct line_header *lh)
20936 {
20937 /* File name relative to the compilation directory of this source file. */
20938 char *file_name = file_file_name (file, lh);
20939
20940 if (! current_file)
20941 {
20942 /* Note: We don't create a macro table for this compilation unit
20943 at all until we actually get a filename. */
20944 struct macro_table *macro_table = get_macro_table ();
20945
20946 /* If we have no current file, then this must be the start_file
20947 directive for the compilation unit's main source file. */
20948 current_file = macro_set_main (macro_table, file_name);
20949 macro_define_special (macro_table);
20950 }
20951 else
20952 current_file = macro_include (current_file, line, file_name);
20953
20954 xfree (file_name);
20955
20956 return current_file;
20957 }
20958
20959
20960 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20961 followed by a null byte. */
20962 static char *
20963 copy_string (const char *buf, int len)
20964 {
20965 char *s = (char *) xmalloc (len + 1);
20966
20967 memcpy (s, buf, len);
20968 s[len] = '\0';
20969 return s;
20970 }
20971
20972
20973 static const char *
20974 consume_improper_spaces (const char *p, const char *body)
20975 {
20976 if (*p == ' ')
20977 {
20978 complaint (&symfile_complaints,
20979 _("macro definition contains spaces "
20980 "in formal argument list:\n`%s'"),
20981 body);
20982
20983 while (*p == ' ')
20984 p++;
20985 }
20986
20987 return p;
20988 }
20989
20990
20991 static void
20992 parse_macro_definition (struct macro_source_file *file, int line,
20993 const char *body)
20994 {
20995 const char *p;
20996
20997 /* The body string takes one of two forms. For object-like macro
20998 definitions, it should be:
20999
21000 <macro name> " " <definition>
21001
21002 For function-like macro definitions, it should be:
21003
21004 <macro name> "() " <definition>
21005 or
21006 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21007
21008 Spaces may appear only where explicitly indicated, and in the
21009 <definition>.
21010
21011 The Dwarf 2 spec says that an object-like macro's name is always
21012 followed by a space, but versions of GCC around March 2002 omit
21013 the space when the macro's definition is the empty string.
21014
21015 The Dwarf 2 spec says that there should be no spaces between the
21016 formal arguments in a function-like macro's formal argument list,
21017 but versions of GCC around March 2002 include spaces after the
21018 commas. */
21019
21020
21021 /* Find the extent of the macro name. The macro name is terminated
21022 by either a space or null character (for an object-like macro) or
21023 an opening paren (for a function-like macro). */
21024 for (p = body; *p; p++)
21025 if (*p == ' ' || *p == '(')
21026 break;
21027
21028 if (*p == ' ' || *p == '\0')
21029 {
21030 /* It's an object-like macro. */
21031 int name_len = p - body;
21032 char *name = copy_string (body, name_len);
21033 const char *replacement;
21034
21035 if (*p == ' ')
21036 replacement = body + name_len + 1;
21037 else
21038 {
21039 dwarf2_macro_malformed_definition_complaint (body);
21040 replacement = body + name_len;
21041 }
21042
21043 macro_define_object (file, line, name, replacement);
21044
21045 xfree (name);
21046 }
21047 else if (*p == '(')
21048 {
21049 /* It's a function-like macro. */
21050 char *name = copy_string (body, p - body);
21051 int argc = 0;
21052 int argv_size = 1;
21053 char **argv = XNEWVEC (char *, argv_size);
21054
21055 p++;
21056
21057 p = consume_improper_spaces (p, body);
21058
21059 /* Parse the formal argument list. */
21060 while (*p && *p != ')')
21061 {
21062 /* Find the extent of the current argument name. */
21063 const char *arg_start = p;
21064
21065 while (*p && *p != ',' && *p != ')' && *p != ' ')
21066 p++;
21067
21068 if (! *p || p == arg_start)
21069 dwarf2_macro_malformed_definition_complaint (body);
21070 else
21071 {
21072 /* Make sure argv has room for the new argument. */
21073 if (argc >= argv_size)
21074 {
21075 argv_size *= 2;
21076 argv = XRESIZEVEC (char *, argv, argv_size);
21077 }
21078
21079 argv[argc++] = copy_string (arg_start, p - arg_start);
21080 }
21081
21082 p = consume_improper_spaces (p, body);
21083
21084 /* Consume the comma, if present. */
21085 if (*p == ',')
21086 {
21087 p++;
21088
21089 p = consume_improper_spaces (p, body);
21090 }
21091 }
21092
21093 if (*p == ')')
21094 {
21095 p++;
21096
21097 if (*p == ' ')
21098 /* Perfectly formed definition, no complaints. */
21099 macro_define_function (file, line, name,
21100 argc, (const char **) argv,
21101 p + 1);
21102 else if (*p == '\0')
21103 {
21104 /* Complain, but do define it. */
21105 dwarf2_macro_malformed_definition_complaint (body);
21106 macro_define_function (file, line, name,
21107 argc, (const char **) argv,
21108 p);
21109 }
21110 else
21111 /* Just complain. */
21112 dwarf2_macro_malformed_definition_complaint (body);
21113 }
21114 else
21115 /* Just complain. */
21116 dwarf2_macro_malformed_definition_complaint (body);
21117
21118 xfree (name);
21119 {
21120 int i;
21121
21122 for (i = 0; i < argc; i++)
21123 xfree (argv[i]);
21124 }
21125 xfree (argv);
21126 }
21127 else
21128 dwarf2_macro_malformed_definition_complaint (body);
21129 }
21130
21131 /* Skip some bytes from BYTES according to the form given in FORM.
21132 Returns the new pointer. */
21133
21134 static const gdb_byte *
21135 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21136 enum dwarf_form form,
21137 unsigned int offset_size,
21138 struct dwarf2_section_info *section)
21139 {
21140 unsigned int bytes_read;
21141
21142 switch (form)
21143 {
21144 case DW_FORM_data1:
21145 case DW_FORM_flag:
21146 ++bytes;
21147 break;
21148
21149 case DW_FORM_data2:
21150 bytes += 2;
21151 break;
21152
21153 case DW_FORM_data4:
21154 bytes += 4;
21155 break;
21156
21157 case DW_FORM_data8:
21158 bytes += 8;
21159 break;
21160
21161 case DW_FORM_string:
21162 read_direct_string (abfd, bytes, &bytes_read);
21163 bytes += bytes_read;
21164 break;
21165
21166 case DW_FORM_sec_offset:
21167 case DW_FORM_strp:
21168 case DW_FORM_GNU_strp_alt:
21169 bytes += offset_size;
21170 break;
21171
21172 case DW_FORM_block:
21173 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21174 bytes += bytes_read;
21175 break;
21176
21177 case DW_FORM_block1:
21178 bytes += 1 + read_1_byte (abfd, bytes);
21179 break;
21180 case DW_FORM_block2:
21181 bytes += 2 + read_2_bytes (abfd, bytes);
21182 break;
21183 case DW_FORM_block4:
21184 bytes += 4 + read_4_bytes (abfd, bytes);
21185 break;
21186
21187 case DW_FORM_sdata:
21188 case DW_FORM_udata:
21189 case DW_FORM_GNU_addr_index:
21190 case DW_FORM_GNU_str_index:
21191 bytes = gdb_skip_leb128 (bytes, buffer_end);
21192 if (bytes == NULL)
21193 {
21194 dwarf2_section_buffer_overflow_complaint (section);
21195 return NULL;
21196 }
21197 break;
21198
21199 default:
21200 {
21201 complain:
21202 complaint (&symfile_complaints,
21203 _("invalid form 0x%x in `%s'"),
21204 form, get_section_name (section));
21205 return NULL;
21206 }
21207 }
21208
21209 return bytes;
21210 }
21211
21212 /* A helper for dwarf_decode_macros that handles skipping an unknown
21213 opcode. Returns an updated pointer to the macro data buffer; or,
21214 on error, issues a complaint and returns NULL. */
21215
21216 static const gdb_byte *
21217 skip_unknown_opcode (unsigned int opcode,
21218 const gdb_byte **opcode_definitions,
21219 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21220 bfd *abfd,
21221 unsigned int offset_size,
21222 struct dwarf2_section_info *section)
21223 {
21224 unsigned int bytes_read, i;
21225 unsigned long arg;
21226 const gdb_byte *defn;
21227
21228 if (opcode_definitions[opcode] == NULL)
21229 {
21230 complaint (&symfile_complaints,
21231 _("unrecognized DW_MACFINO opcode 0x%x"),
21232 opcode);
21233 return NULL;
21234 }
21235
21236 defn = opcode_definitions[opcode];
21237 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21238 defn += bytes_read;
21239
21240 for (i = 0; i < arg; ++i)
21241 {
21242 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21243 (enum dwarf_form) defn[i], offset_size,
21244 section);
21245 if (mac_ptr == NULL)
21246 {
21247 /* skip_form_bytes already issued the complaint. */
21248 return NULL;
21249 }
21250 }
21251
21252 return mac_ptr;
21253 }
21254
21255 /* A helper function which parses the header of a macro section.
21256 If the macro section is the extended (for now called "GNU") type,
21257 then this updates *OFFSET_SIZE. Returns a pointer to just after
21258 the header, or issues a complaint and returns NULL on error. */
21259
21260 static const gdb_byte *
21261 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21262 bfd *abfd,
21263 const gdb_byte *mac_ptr,
21264 unsigned int *offset_size,
21265 int section_is_gnu)
21266 {
21267 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21268
21269 if (section_is_gnu)
21270 {
21271 unsigned int version, flags;
21272
21273 version = read_2_bytes (abfd, mac_ptr);
21274 if (version != 4)
21275 {
21276 complaint (&symfile_complaints,
21277 _("unrecognized version `%d' in .debug_macro section"),
21278 version);
21279 return NULL;
21280 }
21281 mac_ptr += 2;
21282
21283 flags = read_1_byte (abfd, mac_ptr);
21284 ++mac_ptr;
21285 *offset_size = (flags & 1) ? 8 : 4;
21286
21287 if ((flags & 2) != 0)
21288 /* We don't need the line table offset. */
21289 mac_ptr += *offset_size;
21290
21291 /* Vendor opcode descriptions. */
21292 if ((flags & 4) != 0)
21293 {
21294 unsigned int i, count;
21295
21296 count = read_1_byte (abfd, mac_ptr);
21297 ++mac_ptr;
21298 for (i = 0; i < count; ++i)
21299 {
21300 unsigned int opcode, bytes_read;
21301 unsigned long arg;
21302
21303 opcode = read_1_byte (abfd, mac_ptr);
21304 ++mac_ptr;
21305 opcode_definitions[opcode] = mac_ptr;
21306 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21307 mac_ptr += bytes_read;
21308 mac_ptr += arg;
21309 }
21310 }
21311 }
21312
21313 return mac_ptr;
21314 }
21315
21316 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21317 including DW_MACRO_GNU_transparent_include. */
21318
21319 static void
21320 dwarf_decode_macro_bytes (bfd *abfd,
21321 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21322 struct macro_source_file *current_file,
21323 struct line_header *lh,
21324 struct dwarf2_section_info *section,
21325 int section_is_gnu, int section_is_dwz,
21326 unsigned int offset_size,
21327 htab_t include_hash)
21328 {
21329 struct objfile *objfile = dwarf2_per_objfile->objfile;
21330 enum dwarf_macro_record_type macinfo_type;
21331 int at_commandline;
21332 const gdb_byte *opcode_definitions[256];
21333
21334 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21335 &offset_size, section_is_gnu);
21336 if (mac_ptr == NULL)
21337 {
21338 /* We already issued a complaint. */
21339 return;
21340 }
21341
21342 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21343 GDB is still reading the definitions from command line. First
21344 DW_MACINFO_start_file will need to be ignored as it was already executed
21345 to create CURRENT_FILE for the main source holding also the command line
21346 definitions. On first met DW_MACINFO_start_file this flag is reset to
21347 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21348
21349 at_commandline = 1;
21350
21351 do
21352 {
21353 /* Do we at least have room for a macinfo type byte? */
21354 if (mac_ptr >= mac_end)
21355 {
21356 dwarf2_section_buffer_overflow_complaint (section);
21357 break;
21358 }
21359
21360 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21361 mac_ptr++;
21362
21363 /* Note that we rely on the fact that the corresponding GNU and
21364 DWARF constants are the same. */
21365 switch (macinfo_type)
21366 {
21367 /* A zero macinfo type indicates the end of the macro
21368 information. */
21369 case 0:
21370 break;
21371
21372 case DW_MACRO_GNU_define:
21373 case DW_MACRO_GNU_undef:
21374 case DW_MACRO_GNU_define_indirect:
21375 case DW_MACRO_GNU_undef_indirect:
21376 case DW_MACRO_GNU_define_indirect_alt:
21377 case DW_MACRO_GNU_undef_indirect_alt:
21378 {
21379 unsigned int bytes_read;
21380 int line;
21381 const char *body;
21382 int is_define;
21383
21384 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21385 mac_ptr += bytes_read;
21386
21387 if (macinfo_type == DW_MACRO_GNU_define
21388 || macinfo_type == DW_MACRO_GNU_undef)
21389 {
21390 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21391 mac_ptr += bytes_read;
21392 }
21393 else
21394 {
21395 LONGEST str_offset;
21396
21397 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21398 mac_ptr += offset_size;
21399
21400 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21401 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21402 || section_is_dwz)
21403 {
21404 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21405
21406 body = read_indirect_string_from_dwz (dwz, str_offset);
21407 }
21408 else
21409 body = read_indirect_string_at_offset (abfd, str_offset);
21410 }
21411
21412 is_define = (macinfo_type == DW_MACRO_GNU_define
21413 || macinfo_type == DW_MACRO_GNU_define_indirect
21414 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21415 if (! current_file)
21416 {
21417 /* DWARF violation as no main source is present. */
21418 complaint (&symfile_complaints,
21419 _("debug info with no main source gives macro %s "
21420 "on line %d: %s"),
21421 is_define ? _("definition") : _("undefinition"),
21422 line, body);
21423 break;
21424 }
21425 if ((line == 0 && !at_commandline)
21426 || (line != 0 && at_commandline))
21427 complaint (&symfile_complaints,
21428 _("debug info gives %s macro %s with %s line %d: %s"),
21429 at_commandline ? _("command-line") : _("in-file"),
21430 is_define ? _("definition") : _("undefinition"),
21431 line == 0 ? _("zero") : _("non-zero"), line, body);
21432
21433 if (is_define)
21434 parse_macro_definition (current_file, line, body);
21435 else
21436 {
21437 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21438 || macinfo_type == DW_MACRO_GNU_undef_indirect
21439 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21440 macro_undef (current_file, line, body);
21441 }
21442 }
21443 break;
21444
21445 case DW_MACRO_GNU_start_file:
21446 {
21447 unsigned int bytes_read;
21448 int line, file;
21449
21450 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21451 mac_ptr += bytes_read;
21452 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21453 mac_ptr += bytes_read;
21454
21455 if ((line == 0 && !at_commandline)
21456 || (line != 0 && at_commandline))
21457 complaint (&symfile_complaints,
21458 _("debug info gives source %d included "
21459 "from %s at %s line %d"),
21460 file, at_commandline ? _("command-line") : _("file"),
21461 line == 0 ? _("zero") : _("non-zero"), line);
21462
21463 if (at_commandline)
21464 {
21465 /* This DW_MACRO_GNU_start_file was executed in the
21466 pass one. */
21467 at_commandline = 0;
21468 }
21469 else
21470 current_file = macro_start_file (file, line, current_file, lh);
21471 }
21472 break;
21473
21474 case DW_MACRO_GNU_end_file:
21475 if (! current_file)
21476 complaint (&symfile_complaints,
21477 _("macro debug info has an unmatched "
21478 "`close_file' directive"));
21479 else
21480 {
21481 current_file = current_file->included_by;
21482 if (! current_file)
21483 {
21484 enum dwarf_macro_record_type next_type;
21485
21486 /* GCC circa March 2002 doesn't produce the zero
21487 type byte marking the end of the compilation
21488 unit. Complain if it's not there, but exit no
21489 matter what. */
21490
21491 /* Do we at least have room for a macinfo type byte? */
21492 if (mac_ptr >= mac_end)
21493 {
21494 dwarf2_section_buffer_overflow_complaint (section);
21495 return;
21496 }
21497
21498 /* We don't increment mac_ptr here, so this is just
21499 a look-ahead. */
21500 next_type
21501 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21502 mac_ptr);
21503 if (next_type != 0)
21504 complaint (&symfile_complaints,
21505 _("no terminating 0-type entry for "
21506 "macros in `.debug_macinfo' section"));
21507
21508 return;
21509 }
21510 }
21511 break;
21512
21513 case DW_MACRO_GNU_transparent_include:
21514 case DW_MACRO_GNU_transparent_include_alt:
21515 {
21516 LONGEST offset;
21517 void **slot;
21518 bfd *include_bfd = abfd;
21519 struct dwarf2_section_info *include_section = section;
21520 struct dwarf2_section_info alt_section;
21521 const gdb_byte *include_mac_end = mac_end;
21522 int is_dwz = section_is_dwz;
21523 const gdb_byte *new_mac_ptr;
21524
21525 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21526 mac_ptr += offset_size;
21527
21528 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21529 {
21530 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21531
21532 dwarf2_read_section (objfile, &dwz->macro);
21533
21534 include_section = &dwz->macro;
21535 include_bfd = get_section_bfd_owner (include_section);
21536 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21537 is_dwz = 1;
21538 }
21539
21540 new_mac_ptr = include_section->buffer + offset;
21541 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21542
21543 if (*slot != NULL)
21544 {
21545 /* This has actually happened; see
21546 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21547 complaint (&symfile_complaints,
21548 _("recursive DW_MACRO_GNU_transparent_include in "
21549 ".debug_macro section"));
21550 }
21551 else
21552 {
21553 *slot = (void *) new_mac_ptr;
21554
21555 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21556 include_mac_end, current_file, lh,
21557 section, section_is_gnu, is_dwz,
21558 offset_size, include_hash);
21559
21560 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21561 }
21562 }
21563 break;
21564
21565 case DW_MACINFO_vendor_ext:
21566 if (!section_is_gnu)
21567 {
21568 unsigned int bytes_read;
21569 int constant;
21570
21571 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21572 mac_ptr += bytes_read;
21573 read_direct_string (abfd, mac_ptr, &bytes_read);
21574 mac_ptr += bytes_read;
21575
21576 /* We don't recognize any vendor extensions. */
21577 break;
21578 }
21579 /* FALLTHROUGH */
21580
21581 default:
21582 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21583 mac_ptr, mac_end, abfd, offset_size,
21584 section);
21585 if (mac_ptr == NULL)
21586 return;
21587 break;
21588 }
21589 } while (macinfo_type != 0);
21590 }
21591
21592 static void
21593 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21594 int section_is_gnu)
21595 {
21596 struct objfile *objfile = dwarf2_per_objfile->objfile;
21597 struct line_header *lh = cu->line_header;
21598 bfd *abfd;
21599 const gdb_byte *mac_ptr, *mac_end;
21600 struct macro_source_file *current_file = 0;
21601 enum dwarf_macro_record_type macinfo_type;
21602 unsigned int offset_size = cu->header.offset_size;
21603 const gdb_byte *opcode_definitions[256];
21604 struct cleanup *cleanup;
21605 htab_t include_hash;
21606 void **slot;
21607 struct dwarf2_section_info *section;
21608 const char *section_name;
21609
21610 if (cu->dwo_unit != NULL)
21611 {
21612 if (section_is_gnu)
21613 {
21614 section = &cu->dwo_unit->dwo_file->sections.macro;
21615 section_name = ".debug_macro.dwo";
21616 }
21617 else
21618 {
21619 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21620 section_name = ".debug_macinfo.dwo";
21621 }
21622 }
21623 else
21624 {
21625 if (section_is_gnu)
21626 {
21627 section = &dwarf2_per_objfile->macro;
21628 section_name = ".debug_macro";
21629 }
21630 else
21631 {
21632 section = &dwarf2_per_objfile->macinfo;
21633 section_name = ".debug_macinfo";
21634 }
21635 }
21636
21637 dwarf2_read_section (objfile, section);
21638 if (section->buffer == NULL)
21639 {
21640 complaint (&symfile_complaints, _("missing %s section"), section_name);
21641 return;
21642 }
21643 abfd = get_section_bfd_owner (section);
21644
21645 /* First pass: Find the name of the base filename.
21646 This filename is needed in order to process all macros whose definition
21647 (or undefinition) comes from the command line. These macros are defined
21648 before the first DW_MACINFO_start_file entry, and yet still need to be
21649 associated to the base file.
21650
21651 To determine the base file name, we scan the macro definitions until we
21652 reach the first DW_MACINFO_start_file entry. We then initialize
21653 CURRENT_FILE accordingly so that any macro definition found before the
21654 first DW_MACINFO_start_file can still be associated to the base file. */
21655
21656 mac_ptr = section->buffer + offset;
21657 mac_end = section->buffer + section->size;
21658
21659 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21660 &offset_size, section_is_gnu);
21661 if (mac_ptr == NULL)
21662 {
21663 /* We already issued a complaint. */
21664 return;
21665 }
21666
21667 do
21668 {
21669 /* Do we at least have room for a macinfo type byte? */
21670 if (mac_ptr >= mac_end)
21671 {
21672 /* Complaint is printed during the second pass as GDB will probably
21673 stop the first pass earlier upon finding
21674 DW_MACINFO_start_file. */
21675 break;
21676 }
21677
21678 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21679 mac_ptr++;
21680
21681 /* Note that we rely on the fact that the corresponding GNU and
21682 DWARF constants are the same. */
21683 switch (macinfo_type)
21684 {
21685 /* A zero macinfo type indicates the end of the macro
21686 information. */
21687 case 0:
21688 break;
21689
21690 case DW_MACRO_GNU_define:
21691 case DW_MACRO_GNU_undef:
21692 /* Only skip the data by MAC_PTR. */
21693 {
21694 unsigned int bytes_read;
21695
21696 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21697 mac_ptr += bytes_read;
21698 read_direct_string (abfd, mac_ptr, &bytes_read);
21699 mac_ptr += bytes_read;
21700 }
21701 break;
21702
21703 case DW_MACRO_GNU_start_file:
21704 {
21705 unsigned int bytes_read;
21706 int line, file;
21707
21708 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21709 mac_ptr += bytes_read;
21710 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21711 mac_ptr += bytes_read;
21712
21713 current_file = macro_start_file (file, line, current_file, lh);
21714 }
21715 break;
21716
21717 case DW_MACRO_GNU_end_file:
21718 /* No data to skip by MAC_PTR. */
21719 break;
21720
21721 case DW_MACRO_GNU_define_indirect:
21722 case DW_MACRO_GNU_undef_indirect:
21723 case DW_MACRO_GNU_define_indirect_alt:
21724 case DW_MACRO_GNU_undef_indirect_alt:
21725 {
21726 unsigned int bytes_read;
21727
21728 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21729 mac_ptr += bytes_read;
21730 mac_ptr += offset_size;
21731 }
21732 break;
21733
21734 case DW_MACRO_GNU_transparent_include:
21735 case DW_MACRO_GNU_transparent_include_alt:
21736 /* Note that, according to the spec, a transparent include
21737 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21738 skip this opcode. */
21739 mac_ptr += offset_size;
21740 break;
21741
21742 case DW_MACINFO_vendor_ext:
21743 /* Only skip the data by MAC_PTR. */
21744 if (!section_is_gnu)
21745 {
21746 unsigned int bytes_read;
21747
21748 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21749 mac_ptr += bytes_read;
21750 read_direct_string (abfd, mac_ptr, &bytes_read);
21751 mac_ptr += bytes_read;
21752 }
21753 /* FALLTHROUGH */
21754
21755 default:
21756 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21757 mac_ptr, mac_end, abfd, offset_size,
21758 section);
21759 if (mac_ptr == NULL)
21760 return;
21761 break;
21762 }
21763 } while (macinfo_type != 0 && current_file == NULL);
21764
21765 /* Second pass: Process all entries.
21766
21767 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21768 command-line macro definitions/undefinitions. This flag is unset when we
21769 reach the first DW_MACINFO_start_file entry. */
21770
21771 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21772 NULL, xcalloc, xfree);
21773 cleanup = make_cleanup_htab_delete (include_hash);
21774 mac_ptr = section->buffer + offset;
21775 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21776 *slot = (void *) mac_ptr;
21777 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21778 current_file, lh, section,
21779 section_is_gnu, 0, offset_size, include_hash);
21780 do_cleanups (cleanup);
21781 }
21782
21783 /* Check if the attribute's form is a DW_FORM_block*
21784 if so return true else false. */
21785
21786 static int
21787 attr_form_is_block (const struct attribute *attr)
21788 {
21789 return (attr == NULL ? 0 :
21790 attr->form == DW_FORM_block1
21791 || attr->form == DW_FORM_block2
21792 || attr->form == DW_FORM_block4
21793 || attr->form == DW_FORM_block
21794 || attr->form == DW_FORM_exprloc);
21795 }
21796
21797 /* Return non-zero if ATTR's value is a section offset --- classes
21798 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21799 You may use DW_UNSND (attr) to retrieve such offsets.
21800
21801 Section 7.5.4, "Attribute Encodings", explains that no attribute
21802 may have a value that belongs to more than one of these classes; it
21803 would be ambiguous if we did, because we use the same forms for all
21804 of them. */
21805
21806 static int
21807 attr_form_is_section_offset (const struct attribute *attr)
21808 {
21809 return (attr->form == DW_FORM_data4
21810 || attr->form == DW_FORM_data8
21811 || attr->form == DW_FORM_sec_offset);
21812 }
21813
21814 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21815 zero otherwise. When this function returns true, you can apply
21816 dwarf2_get_attr_constant_value to it.
21817
21818 However, note that for some attributes you must check
21819 attr_form_is_section_offset before using this test. DW_FORM_data4
21820 and DW_FORM_data8 are members of both the constant class, and of
21821 the classes that contain offsets into other debug sections
21822 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21823 that, if an attribute's can be either a constant or one of the
21824 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21825 taken as section offsets, not constants. */
21826
21827 static int
21828 attr_form_is_constant (const struct attribute *attr)
21829 {
21830 switch (attr->form)
21831 {
21832 case DW_FORM_sdata:
21833 case DW_FORM_udata:
21834 case DW_FORM_data1:
21835 case DW_FORM_data2:
21836 case DW_FORM_data4:
21837 case DW_FORM_data8:
21838 return 1;
21839 default:
21840 return 0;
21841 }
21842 }
21843
21844
21845 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21846 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21847
21848 static int
21849 attr_form_is_ref (const struct attribute *attr)
21850 {
21851 switch (attr->form)
21852 {
21853 case DW_FORM_ref_addr:
21854 case DW_FORM_ref1:
21855 case DW_FORM_ref2:
21856 case DW_FORM_ref4:
21857 case DW_FORM_ref8:
21858 case DW_FORM_ref_udata:
21859 case DW_FORM_GNU_ref_alt:
21860 return 1;
21861 default:
21862 return 0;
21863 }
21864 }
21865
21866 /* Return the .debug_loc section to use for CU.
21867 For DWO files use .debug_loc.dwo. */
21868
21869 static struct dwarf2_section_info *
21870 cu_debug_loc_section (struct dwarf2_cu *cu)
21871 {
21872 if (cu->dwo_unit)
21873 return &cu->dwo_unit->dwo_file->sections.loc;
21874 return &dwarf2_per_objfile->loc;
21875 }
21876
21877 /* A helper function that fills in a dwarf2_loclist_baton. */
21878
21879 static void
21880 fill_in_loclist_baton (struct dwarf2_cu *cu,
21881 struct dwarf2_loclist_baton *baton,
21882 const struct attribute *attr)
21883 {
21884 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21885
21886 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21887
21888 baton->per_cu = cu->per_cu;
21889 gdb_assert (baton->per_cu);
21890 /* We don't know how long the location list is, but make sure we
21891 don't run off the edge of the section. */
21892 baton->size = section->size - DW_UNSND (attr);
21893 baton->data = section->buffer + DW_UNSND (attr);
21894 baton->base_address = cu->base_address;
21895 baton->from_dwo = cu->dwo_unit != NULL;
21896 }
21897
21898 static void
21899 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21900 struct dwarf2_cu *cu, int is_block)
21901 {
21902 struct objfile *objfile = dwarf2_per_objfile->objfile;
21903 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21904
21905 if (attr_form_is_section_offset (attr)
21906 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21907 the section. If so, fall through to the complaint in the
21908 other branch. */
21909 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21910 {
21911 struct dwarf2_loclist_baton *baton;
21912
21913 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
21914
21915 fill_in_loclist_baton (cu, baton, attr);
21916
21917 if (cu->base_known == 0)
21918 complaint (&symfile_complaints,
21919 _("Location list used without "
21920 "specifying the CU base address."));
21921
21922 SYMBOL_ACLASS_INDEX (sym) = (is_block
21923 ? dwarf2_loclist_block_index
21924 : dwarf2_loclist_index);
21925 SYMBOL_LOCATION_BATON (sym) = baton;
21926 }
21927 else
21928 {
21929 struct dwarf2_locexpr_baton *baton;
21930
21931 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
21932 baton->per_cu = cu->per_cu;
21933 gdb_assert (baton->per_cu);
21934
21935 if (attr_form_is_block (attr))
21936 {
21937 /* Note that we're just copying the block's data pointer
21938 here, not the actual data. We're still pointing into the
21939 info_buffer for SYM's objfile; right now we never release
21940 that buffer, but when we do clean up properly this may
21941 need to change. */
21942 baton->size = DW_BLOCK (attr)->size;
21943 baton->data = DW_BLOCK (attr)->data;
21944 }
21945 else
21946 {
21947 dwarf2_invalid_attrib_class_complaint ("location description",
21948 SYMBOL_NATURAL_NAME (sym));
21949 baton->size = 0;
21950 }
21951
21952 SYMBOL_ACLASS_INDEX (sym) = (is_block
21953 ? dwarf2_locexpr_block_index
21954 : dwarf2_locexpr_index);
21955 SYMBOL_LOCATION_BATON (sym) = baton;
21956 }
21957 }
21958
21959 /* Return the OBJFILE associated with the compilation unit CU. If CU
21960 came from a separate debuginfo file, then the master objfile is
21961 returned. */
21962
21963 struct objfile *
21964 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21965 {
21966 struct objfile *objfile = per_cu->objfile;
21967
21968 /* Return the master objfile, so that we can report and look up the
21969 correct file containing this variable. */
21970 if (objfile->separate_debug_objfile_backlink)
21971 objfile = objfile->separate_debug_objfile_backlink;
21972
21973 return objfile;
21974 }
21975
21976 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21977 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21978 CU_HEADERP first. */
21979
21980 static const struct comp_unit_head *
21981 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21982 struct dwarf2_per_cu_data *per_cu)
21983 {
21984 const gdb_byte *info_ptr;
21985
21986 if (per_cu->cu)
21987 return &per_cu->cu->header;
21988
21989 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21990
21991 memset (cu_headerp, 0, sizeof (*cu_headerp));
21992 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21993
21994 return cu_headerp;
21995 }
21996
21997 /* Return the address size given in the compilation unit header for CU. */
21998
21999 int
22000 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22001 {
22002 struct comp_unit_head cu_header_local;
22003 const struct comp_unit_head *cu_headerp;
22004
22005 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22006
22007 return cu_headerp->addr_size;
22008 }
22009
22010 /* Return the offset size given in the compilation unit header for CU. */
22011
22012 int
22013 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22014 {
22015 struct comp_unit_head cu_header_local;
22016 const struct comp_unit_head *cu_headerp;
22017
22018 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22019
22020 return cu_headerp->offset_size;
22021 }
22022
22023 /* See its dwarf2loc.h declaration. */
22024
22025 int
22026 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22027 {
22028 struct comp_unit_head cu_header_local;
22029 const struct comp_unit_head *cu_headerp;
22030
22031 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22032
22033 if (cu_headerp->version == 2)
22034 return cu_headerp->addr_size;
22035 else
22036 return cu_headerp->offset_size;
22037 }
22038
22039 /* Return the text offset of the CU. The returned offset comes from
22040 this CU's objfile. If this objfile came from a separate debuginfo
22041 file, then the offset may be different from the corresponding
22042 offset in the parent objfile. */
22043
22044 CORE_ADDR
22045 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22046 {
22047 struct objfile *objfile = per_cu->objfile;
22048
22049 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22050 }
22051
22052 /* Locate the .debug_info compilation unit from CU's objfile which contains
22053 the DIE at OFFSET. Raises an error on failure. */
22054
22055 static struct dwarf2_per_cu_data *
22056 dwarf2_find_containing_comp_unit (sect_offset offset,
22057 unsigned int offset_in_dwz,
22058 struct objfile *objfile)
22059 {
22060 struct dwarf2_per_cu_data *this_cu;
22061 int low, high;
22062 const sect_offset *cu_off;
22063
22064 low = 0;
22065 high = dwarf2_per_objfile->n_comp_units - 1;
22066 while (high > low)
22067 {
22068 struct dwarf2_per_cu_data *mid_cu;
22069 int mid = low + (high - low) / 2;
22070
22071 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22072 cu_off = &mid_cu->offset;
22073 if (mid_cu->is_dwz > offset_in_dwz
22074 || (mid_cu->is_dwz == offset_in_dwz
22075 && cu_off->sect_off >= offset.sect_off))
22076 high = mid;
22077 else
22078 low = mid + 1;
22079 }
22080 gdb_assert (low == high);
22081 this_cu = dwarf2_per_objfile->all_comp_units[low];
22082 cu_off = &this_cu->offset;
22083 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22084 {
22085 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22086 error (_("Dwarf Error: could not find partial DIE containing "
22087 "offset 0x%lx [in module %s]"),
22088 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22089
22090 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22091 <= offset.sect_off);
22092 return dwarf2_per_objfile->all_comp_units[low-1];
22093 }
22094 else
22095 {
22096 this_cu = dwarf2_per_objfile->all_comp_units[low];
22097 if (low == dwarf2_per_objfile->n_comp_units - 1
22098 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22099 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22100 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22101 return this_cu;
22102 }
22103 }
22104
22105 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22106
22107 static void
22108 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22109 {
22110 memset (cu, 0, sizeof (*cu));
22111 per_cu->cu = cu;
22112 cu->per_cu = per_cu;
22113 cu->objfile = per_cu->objfile;
22114 obstack_init (&cu->comp_unit_obstack);
22115 }
22116
22117 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22118
22119 static void
22120 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22121 enum language pretend_language)
22122 {
22123 struct attribute *attr;
22124
22125 /* Set the language we're debugging. */
22126 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22127 if (attr)
22128 set_cu_language (DW_UNSND (attr), cu);
22129 else
22130 {
22131 cu->language = pretend_language;
22132 cu->language_defn = language_def (cu->language);
22133 }
22134
22135 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22136 }
22137
22138 /* Release one cached compilation unit, CU. We unlink it from the tree
22139 of compilation units, but we don't remove it from the read_in_chain;
22140 the caller is responsible for that.
22141 NOTE: DATA is a void * because this function is also used as a
22142 cleanup routine. */
22143
22144 static void
22145 free_heap_comp_unit (void *data)
22146 {
22147 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22148
22149 gdb_assert (cu->per_cu != NULL);
22150 cu->per_cu->cu = NULL;
22151 cu->per_cu = NULL;
22152
22153 obstack_free (&cu->comp_unit_obstack, NULL);
22154
22155 xfree (cu);
22156 }
22157
22158 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22159 when we're finished with it. We can't free the pointer itself, but be
22160 sure to unlink it from the cache. Also release any associated storage. */
22161
22162 static void
22163 free_stack_comp_unit (void *data)
22164 {
22165 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22166
22167 gdb_assert (cu->per_cu != NULL);
22168 cu->per_cu->cu = NULL;
22169 cu->per_cu = NULL;
22170
22171 obstack_free (&cu->comp_unit_obstack, NULL);
22172 cu->partial_dies = NULL;
22173 }
22174
22175 /* Free all cached compilation units. */
22176
22177 static void
22178 free_cached_comp_units (void *data)
22179 {
22180 struct dwarf2_per_cu_data *per_cu, **last_chain;
22181
22182 per_cu = dwarf2_per_objfile->read_in_chain;
22183 last_chain = &dwarf2_per_objfile->read_in_chain;
22184 while (per_cu != NULL)
22185 {
22186 struct dwarf2_per_cu_data *next_cu;
22187
22188 next_cu = per_cu->cu->read_in_chain;
22189
22190 free_heap_comp_unit (per_cu->cu);
22191 *last_chain = next_cu;
22192
22193 per_cu = next_cu;
22194 }
22195 }
22196
22197 /* Increase the age counter on each cached compilation unit, and free
22198 any that are too old. */
22199
22200 static void
22201 age_cached_comp_units (void)
22202 {
22203 struct dwarf2_per_cu_data *per_cu, **last_chain;
22204
22205 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22206 per_cu = dwarf2_per_objfile->read_in_chain;
22207 while (per_cu != NULL)
22208 {
22209 per_cu->cu->last_used ++;
22210 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22211 dwarf2_mark (per_cu->cu);
22212 per_cu = per_cu->cu->read_in_chain;
22213 }
22214
22215 per_cu = dwarf2_per_objfile->read_in_chain;
22216 last_chain = &dwarf2_per_objfile->read_in_chain;
22217 while (per_cu != NULL)
22218 {
22219 struct dwarf2_per_cu_data *next_cu;
22220
22221 next_cu = per_cu->cu->read_in_chain;
22222
22223 if (!per_cu->cu->mark)
22224 {
22225 free_heap_comp_unit (per_cu->cu);
22226 *last_chain = next_cu;
22227 }
22228 else
22229 last_chain = &per_cu->cu->read_in_chain;
22230
22231 per_cu = next_cu;
22232 }
22233 }
22234
22235 /* Remove a single compilation unit from the cache. */
22236
22237 static void
22238 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22239 {
22240 struct dwarf2_per_cu_data *per_cu, **last_chain;
22241
22242 per_cu = dwarf2_per_objfile->read_in_chain;
22243 last_chain = &dwarf2_per_objfile->read_in_chain;
22244 while (per_cu != NULL)
22245 {
22246 struct dwarf2_per_cu_data *next_cu;
22247
22248 next_cu = per_cu->cu->read_in_chain;
22249
22250 if (per_cu == target_per_cu)
22251 {
22252 free_heap_comp_unit (per_cu->cu);
22253 per_cu->cu = NULL;
22254 *last_chain = next_cu;
22255 break;
22256 }
22257 else
22258 last_chain = &per_cu->cu->read_in_chain;
22259
22260 per_cu = next_cu;
22261 }
22262 }
22263
22264 /* Release all extra memory associated with OBJFILE. */
22265
22266 void
22267 dwarf2_free_objfile (struct objfile *objfile)
22268 {
22269 dwarf2_per_objfile
22270 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22271 dwarf2_objfile_data_key);
22272
22273 if (dwarf2_per_objfile == NULL)
22274 return;
22275
22276 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22277 free_cached_comp_units (NULL);
22278
22279 if (dwarf2_per_objfile->quick_file_names_table)
22280 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22281
22282 if (dwarf2_per_objfile->line_header_hash)
22283 htab_delete (dwarf2_per_objfile->line_header_hash);
22284
22285 /* Everything else should be on the objfile obstack. */
22286 }
22287
22288 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22289 We store these in a hash table separate from the DIEs, and preserve them
22290 when the DIEs are flushed out of cache.
22291
22292 The CU "per_cu" pointer is needed because offset alone is not enough to
22293 uniquely identify the type. A file may have multiple .debug_types sections,
22294 or the type may come from a DWO file. Furthermore, while it's more logical
22295 to use per_cu->section+offset, with Fission the section with the data is in
22296 the DWO file but we don't know that section at the point we need it.
22297 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22298 because we can enter the lookup routine, get_die_type_at_offset, from
22299 outside this file, and thus won't necessarily have PER_CU->cu.
22300 Fortunately, PER_CU is stable for the life of the objfile. */
22301
22302 struct dwarf2_per_cu_offset_and_type
22303 {
22304 const struct dwarf2_per_cu_data *per_cu;
22305 sect_offset offset;
22306 struct type *type;
22307 };
22308
22309 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22310
22311 static hashval_t
22312 per_cu_offset_and_type_hash (const void *item)
22313 {
22314 const struct dwarf2_per_cu_offset_and_type *ofs
22315 = (const struct dwarf2_per_cu_offset_and_type *) item;
22316
22317 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22318 }
22319
22320 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22321
22322 static int
22323 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22324 {
22325 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22326 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22327 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22328 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22329
22330 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22331 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22332 }
22333
22334 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22335 table if necessary. For convenience, return TYPE.
22336
22337 The DIEs reading must have careful ordering to:
22338 * Not cause infite loops trying to read in DIEs as a prerequisite for
22339 reading current DIE.
22340 * Not trying to dereference contents of still incompletely read in types
22341 while reading in other DIEs.
22342 * Enable referencing still incompletely read in types just by a pointer to
22343 the type without accessing its fields.
22344
22345 Therefore caller should follow these rules:
22346 * Try to fetch any prerequisite types we may need to build this DIE type
22347 before building the type and calling set_die_type.
22348 * After building type call set_die_type for current DIE as soon as
22349 possible before fetching more types to complete the current type.
22350 * Make the type as complete as possible before fetching more types. */
22351
22352 static struct type *
22353 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22354 {
22355 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22356 struct objfile *objfile = cu->objfile;
22357 struct attribute *attr;
22358 struct dynamic_prop prop;
22359
22360 /* For Ada types, make sure that the gnat-specific data is always
22361 initialized (if not already set). There are a few types where
22362 we should not be doing so, because the type-specific area is
22363 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22364 where the type-specific area is used to store the floatformat).
22365 But this is not a problem, because the gnat-specific information
22366 is actually not needed for these types. */
22367 if (need_gnat_info (cu)
22368 && TYPE_CODE (type) != TYPE_CODE_FUNC
22369 && TYPE_CODE (type) != TYPE_CODE_FLT
22370 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22371 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22372 && TYPE_CODE (type) != TYPE_CODE_METHOD
22373 && !HAVE_GNAT_AUX_INFO (type))
22374 INIT_GNAT_SPECIFIC (type);
22375
22376 /* Read DW_AT_allocated and set in type. */
22377 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22378 if (attr_form_is_block (attr))
22379 {
22380 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22381 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22382 }
22383 else if (attr != NULL)
22384 {
22385 complaint (&symfile_complaints,
22386 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22387 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22388 die->offset.sect_off);
22389 }
22390
22391 /* Read DW_AT_associated and set in type. */
22392 attr = dwarf2_attr (die, DW_AT_associated, cu);
22393 if (attr_form_is_block (attr))
22394 {
22395 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22396 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22397 }
22398 else if (attr != NULL)
22399 {
22400 complaint (&symfile_complaints,
22401 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22402 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22403 die->offset.sect_off);
22404 }
22405
22406 /* Read DW_AT_data_location and set in type. */
22407 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22408 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22409 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22410
22411 if (dwarf2_per_objfile->die_type_hash == NULL)
22412 {
22413 dwarf2_per_objfile->die_type_hash =
22414 htab_create_alloc_ex (127,
22415 per_cu_offset_and_type_hash,
22416 per_cu_offset_and_type_eq,
22417 NULL,
22418 &objfile->objfile_obstack,
22419 hashtab_obstack_allocate,
22420 dummy_obstack_deallocate);
22421 }
22422
22423 ofs.per_cu = cu->per_cu;
22424 ofs.offset = die->offset;
22425 ofs.type = type;
22426 slot = (struct dwarf2_per_cu_offset_and_type **)
22427 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22428 if (*slot)
22429 complaint (&symfile_complaints,
22430 _("A problem internal to GDB: DIE 0x%x has type already set"),
22431 die->offset.sect_off);
22432 *slot = XOBNEW (&objfile->objfile_obstack,
22433 struct dwarf2_per_cu_offset_and_type);
22434 **slot = ofs;
22435 return type;
22436 }
22437
22438 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22439 or return NULL if the die does not have a saved type. */
22440
22441 static struct type *
22442 get_die_type_at_offset (sect_offset offset,
22443 struct dwarf2_per_cu_data *per_cu)
22444 {
22445 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22446
22447 if (dwarf2_per_objfile->die_type_hash == NULL)
22448 return NULL;
22449
22450 ofs.per_cu = per_cu;
22451 ofs.offset = offset;
22452 slot = ((struct dwarf2_per_cu_offset_and_type *)
22453 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
22454 if (slot)
22455 return slot->type;
22456 else
22457 return NULL;
22458 }
22459
22460 /* Look up the type for DIE in CU in die_type_hash,
22461 or return NULL if DIE does not have a saved type. */
22462
22463 static struct type *
22464 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22465 {
22466 return get_die_type_at_offset (die->offset, cu->per_cu);
22467 }
22468
22469 /* Add a dependence relationship from CU to REF_PER_CU. */
22470
22471 static void
22472 dwarf2_add_dependence (struct dwarf2_cu *cu,
22473 struct dwarf2_per_cu_data *ref_per_cu)
22474 {
22475 void **slot;
22476
22477 if (cu->dependencies == NULL)
22478 cu->dependencies
22479 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22480 NULL, &cu->comp_unit_obstack,
22481 hashtab_obstack_allocate,
22482 dummy_obstack_deallocate);
22483
22484 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22485 if (*slot == NULL)
22486 *slot = ref_per_cu;
22487 }
22488
22489 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22490 Set the mark field in every compilation unit in the
22491 cache that we must keep because we are keeping CU. */
22492
22493 static int
22494 dwarf2_mark_helper (void **slot, void *data)
22495 {
22496 struct dwarf2_per_cu_data *per_cu;
22497
22498 per_cu = (struct dwarf2_per_cu_data *) *slot;
22499
22500 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22501 reading of the chain. As such dependencies remain valid it is not much
22502 useful to track and undo them during QUIT cleanups. */
22503 if (per_cu->cu == NULL)
22504 return 1;
22505
22506 if (per_cu->cu->mark)
22507 return 1;
22508 per_cu->cu->mark = 1;
22509
22510 if (per_cu->cu->dependencies != NULL)
22511 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22512
22513 return 1;
22514 }
22515
22516 /* Set the mark field in CU and in every other compilation unit in the
22517 cache that we must keep because we are keeping CU. */
22518
22519 static void
22520 dwarf2_mark (struct dwarf2_cu *cu)
22521 {
22522 if (cu->mark)
22523 return;
22524 cu->mark = 1;
22525 if (cu->dependencies != NULL)
22526 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22527 }
22528
22529 static void
22530 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22531 {
22532 while (per_cu)
22533 {
22534 per_cu->cu->mark = 0;
22535 per_cu = per_cu->cu->read_in_chain;
22536 }
22537 }
22538
22539 /* Trivial hash function for partial_die_info: the hash value of a DIE
22540 is its offset in .debug_info for this objfile. */
22541
22542 static hashval_t
22543 partial_die_hash (const void *item)
22544 {
22545 const struct partial_die_info *part_die
22546 = (const struct partial_die_info *) item;
22547
22548 return part_die->offset.sect_off;
22549 }
22550
22551 /* Trivial comparison function for partial_die_info structures: two DIEs
22552 are equal if they have the same offset. */
22553
22554 static int
22555 partial_die_eq (const void *item_lhs, const void *item_rhs)
22556 {
22557 const struct partial_die_info *part_die_lhs
22558 = (const struct partial_die_info *) item_lhs;
22559 const struct partial_die_info *part_die_rhs
22560 = (const struct partial_die_info *) item_rhs;
22561
22562 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22563 }
22564
22565 static struct cmd_list_element *set_dwarf_cmdlist;
22566 static struct cmd_list_element *show_dwarf_cmdlist;
22567
22568 static void
22569 set_dwarf_cmd (char *args, int from_tty)
22570 {
22571 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22572 gdb_stdout);
22573 }
22574
22575 static void
22576 show_dwarf_cmd (char *args, int from_tty)
22577 {
22578 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22579 }
22580
22581 /* Free data associated with OBJFILE, if necessary. */
22582
22583 static void
22584 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22585 {
22586 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
22587 int ix;
22588
22589 /* Make sure we don't accidentally use dwarf2_per_objfile while
22590 cleaning up. */
22591 dwarf2_per_objfile = NULL;
22592
22593 for (ix = 0; ix < data->n_comp_units; ++ix)
22594 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22595
22596 for (ix = 0; ix < data->n_type_units; ++ix)
22597 VEC_free (dwarf2_per_cu_ptr,
22598 data->all_type_units[ix]->per_cu.imported_symtabs);
22599 xfree (data->all_type_units);
22600
22601 VEC_free (dwarf2_section_info_def, data->types);
22602
22603 if (data->dwo_files)
22604 free_dwo_files (data->dwo_files, objfile);
22605 if (data->dwp_file)
22606 gdb_bfd_unref (data->dwp_file->dbfd);
22607
22608 if (data->dwz_file && data->dwz_file->dwz_bfd)
22609 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22610 }
22611
22612 \f
22613 /* The "save gdb-index" command. */
22614
22615 /* The contents of the hash table we create when building the string
22616 table. */
22617 struct strtab_entry
22618 {
22619 offset_type offset;
22620 const char *str;
22621 };
22622
22623 /* Hash function for a strtab_entry.
22624
22625 Function is used only during write_hash_table so no index format backward
22626 compatibility is needed. */
22627
22628 static hashval_t
22629 hash_strtab_entry (const void *e)
22630 {
22631 const struct strtab_entry *entry = (const struct strtab_entry *) e;
22632 return mapped_index_string_hash (INT_MAX, entry->str);
22633 }
22634
22635 /* Equality function for a strtab_entry. */
22636
22637 static int
22638 eq_strtab_entry (const void *a, const void *b)
22639 {
22640 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22641 const struct strtab_entry *eb = (const struct strtab_entry *) b;
22642 return !strcmp (ea->str, eb->str);
22643 }
22644
22645 /* Create a strtab_entry hash table. */
22646
22647 static htab_t
22648 create_strtab (void)
22649 {
22650 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22651 xfree, xcalloc, xfree);
22652 }
22653
22654 /* Add a string to the constant pool. Return the string's offset in
22655 host order. */
22656
22657 static offset_type
22658 add_string (htab_t table, struct obstack *cpool, const char *str)
22659 {
22660 void **slot;
22661 struct strtab_entry entry;
22662 struct strtab_entry *result;
22663
22664 entry.str = str;
22665 slot = htab_find_slot (table, &entry, INSERT);
22666 if (*slot)
22667 result = (struct strtab_entry *) *slot;
22668 else
22669 {
22670 result = XNEW (struct strtab_entry);
22671 result->offset = obstack_object_size (cpool);
22672 result->str = str;
22673 obstack_grow_str0 (cpool, str);
22674 *slot = result;
22675 }
22676 return result->offset;
22677 }
22678
22679 /* An entry in the symbol table. */
22680 struct symtab_index_entry
22681 {
22682 /* The name of the symbol. */
22683 const char *name;
22684 /* The offset of the name in the constant pool. */
22685 offset_type index_offset;
22686 /* A sorted vector of the indices of all the CUs that hold an object
22687 of this name. */
22688 VEC (offset_type) *cu_indices;
22689 };
22690
22691 /* The symbol table. This is a power-of-2-sized hash table. */
22692 struct mapped_symtab
22693 {
22694 offset_type n_elements;
22695 offset_type size;
22696 struct symtab_index_entry **data;
22697 };
22698
22699 /* Hash function for a symtab_index_entry. */
22700
22701 static hashval_t
22702 hash_symtab_entry (const void *e)
22703 {
22704 const struct symtab_index_entry *entry
22705 = (const struct symtab_index_entry *) e;
22706 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22707 sizeof (offset_type) * VEC_length (offset_type,
22708 entry->cu_indices),
22709 0);
22710 }
22711
22712 /* Equality function for a symtab_index_entry. */
22713
22714 static int
22715 eq_symtab_entry (const void *a, const void *b)
22716 {
22717 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22718 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
22719 int len = VEC_length (offset_type, ea->cu_indices);
22720 if (len != VEC_length (offset_type, eb->cu_indices))
22721 return 0;
22722 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22723 VEC_address (offset_type, eb->cu_indices),
22724 sizeof (offset_type) * len);
22725 }
22726
22727 /* Destroy a symtab_index_entry. */
22728
22729 static void
22730 delete_symtab_entry (void *p)
22731 {
22732 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
22733 VEC_free (offset_type, entry->cu_indices);
22734 xfree (entry);
22735 }
22736
22737 /* Create a hash table holding symtab_index_entry objects. */
22738
22739 static htab_t
22740 create_symbol_hash_table (void)
22741 {
22742 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22743 delete_symtab_entry, xcalloc, xfree);
22744 }
22745
22746 /* Create a new mapped symtab object. */
22747
22748 static struct mapped_symtab *
22749 create_mapped_symtab (void)
22750 {
22751 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22752 symtab->n_elements = 0;
22753 symtab->size = 1024;
22754 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22755 return symtab;
22756 }
22757
22758 /* Destroy a mapped_symtab. */
22759
22760 static void
22761 cleanup_mapped_symtab (void *p)
22762 {
22763 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
22764 /* The contents of the array are freed when the other hash table is
22765 destroyed. */
22766 xfree (symtab->data);
22767 xfree (symtab);
22768 }
22769
22770 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22771 the slot.
22772
22773 Function is used only during write_hash_table so no index format backward
22774 compatibility is needed. */
22775
22776 static struct symtab_index_entry **
22777 find_slot (struct mapped_symtab *symtab, const char *name)
22778 {
22779 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22780
22781 index = hash & (symtab->size - 1);
22782 step = ((hash * 17) & (symtab->size - 1)) | 1;
22783
22784 for (;;)
22785 {
22786 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22787 return &symtab->data[index];
22788 index = (index + step) & (symtab->size - 1);
22789 }
22790 }
22791
22792 /* Expand SYMTAB's hash table. */
22793
22794 static void
22795 hash_expand (struct mapped_symtab *symtab)
22796 {
22797 offset_type old_size = symtab->size;
22798 offset_type i;
22799 struct symtab_index_entry **old_entries = symtab->data;
22800
22801 symtab->size *= 2;
22802 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22803
22804 for (i = 0; i < old_size; ++i)
22805 {
22806 if (old_entries[i])
22807 {
22808 struct symtab_index_entry **slot = find_slot (symtab,
22809 old_entries[i]->name);
22810 *slot = old_entries[i];
22811 }
22812 }
22813
22814 xfree (old_entries);
22815 }
22816
22817 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22818 CU_INDEX is the index of the CU in which the symbol appears.
22819 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22820
22821 static void
22822 add_index_entry (struct mapped_symtab *symtab, const char *name,
22823 int is_static, gdb_index_symbol_kind kind,
22824 offset_type cu_index)
22825 {
22826 struct symtab_index_entry **slot;
22827 offset_type cu_index_and_attrs;
22828
22829 ++symtab->n_elements;
22830 if (4 * symtab->n_elements / 3 >= symtab->size)
22831 hash_expand (symtab);
22832
22833 slot = find_slot (symtab, name);
22834 if (!*slot)
22835 {
22836 *slot = XNEW (struct symtab_index_entry);
22837 (*slot)->name = name;
22838 /* index_offset is set later. */
22839 (*slot)->cu_indices = NULL;
22840 }
22841
22842 cu_index_and_attrs = 0;
22843 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22844 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22845 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22846
22847 /* We don't want to record an index value twice as we want to avoid the
22848 duplication.
22849 We process all global symbols and then all static symbols
22850 (which would allow us to avoid the duplication by only having to check
22851 the last entry pushed), but a symbol could have multiple kinds in one CU.
22852 To keep things simple we don't worry about the duplication here and
22853 sort and uniqufy the list after we've processed all symbols. */
22854 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22855 }
22856
22857 /* qsort helper routine for uniquify_cu_indices. */
22858
22859 static int
22860 offset_type_compare (const void *ap, const void *bp)
22861 {
22862 offset_type a = *(offset_type *) ap;
22863 offset_type b = *(offset_type *) bp;
22864
22865 return (a > b) - (b > a);
22866 }
22867
22868 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22869
22870 static void
22871 uniquify_cu_indices (struct mapped_symtab *symtab)
22872 {
22873 int i;
22874
22875 for (i = 0; i < symtab->size; ++i)
22876 {
22877 struct symtab_index_entry *entry = symtab->data[i];
22878
22879 if (entry
22880 && entry->cu_indices != NULL)
22881 {
22882 unsigned int next_to_insert, next_to_check;
22883 offset_type last_value;
22884
22885 qsort (VEC_address (offset_type, entry->cu_indices),
22886 VEC_length (offset_type, entry->cu_indices),
22887 sizeof (offset_type), offset_type_compare);
22888
22889 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22890 next_to_insert = 1;
22891 for (next_to_check = 1;
22892 next_to_check < VEC_length (offset_type, entry->cu_indices);
22893 ++next_to_check)
22894 {
22895 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22896 != last_value)
22897 {
22898 last_value = VEC_index (offset_type, entry->cu_indices,
22899 next_to_check);
22900 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22901 last_value);
22902 ++next_to_insert;
22903 }
22904 }
22905 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22906 }
22907 }
22908 }
22909
22910 /* Add a vector of indices to the constant pool. */
22911
22912 static offset_type
22913 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22914 struct symtab_index_entry *entry)
22915 {
22916 void **slot;
22917
22918 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22919 if (!*slot)
22920 {
22921 offset_type len = VEC_length (offset_type, entry->cu_indices);
22922 offset_type val = MAYBE_SWAP (len);
22923 offset_type iter;
22924 int i;
22925
22926 *slot = entry;
22927 entry->index_offset = obstack_object_size (cpool);
22928
22929 obstack_grow (cpool, &val, sizeof (val));
22930 for (i = 0;
22931 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22932 ++i)
22933 {
22934 val = MAYBE_SWAP (iter);
22935 obstack_grow (cpool, &val, sizeof (val));
22936 }
22937 }
22938 else
22939 {
22940 struct symtab_index_entry *old_entry
22941 = (struct symtab_index_entry *) *slot;
22942 entry->index_offset = old_entry->index_offset;
22943 entry = old_entry;
22944 }
22945 return entry->index_offset;
22946 }
22947
22948 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22949 constant pool entries going into the obstack CPOOL. */
22950
22951 static void
22952 write_hash_table (struct mapped_symtab *symtab,
22953 struct obstack *output, struct obstack *cpool)
22954 {
22955 offset_type i;
22956 htab_t symbol_hash_table;
22957 htab_t str_table;
22958
22959 symbol_hash_table = create_symbol_hash_table ();
22960 str_table = create_strtab ();
22961
22962 /* We add all the index vectors to the constant pool first, to
22963 ensure alignment is ok. */
22964 for (i = 0; i < symtab->size; ++i)
22965 {
22966 if (symtab->data[i])
22967 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22968 }
22969
22970 /* Now write out the hash table. */
22971 for (i = 0; i < symtab->size; ++i)
22972 {
22973 offset_type str_off, vec_off;
22974
22975 if (symtab->data[i])
22976 {
22977 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22978 vec_off = symtab->data[i]->index_offset;
22979 }
22980 else
22981 {
22982 /* While 0 is a valid constant pool index, it is not valid
22983 to have 0 for both offsets. */
22984 str_off = 0;
22985 vec_off = 0;
22986 }
22987
22988 str_off = MAYBE_SWAP (str_off);
22989 vec_off = MAYBE_SWAP (vec_off);
22990
22991 obstack_grow (output, &str_off, sizeof (str_off));
22992 obstack_grow (output, &vec_off, sizeof (vec_off));
22993 }
22994
22995 htab_delete (str_table);
22996 htab_delete (symbol_hash_table);
22997 }
22998
22999 /* Struct to map psymtab to CU index in the index file. */
23000 struct psymtab_cu_index_map
23001 {
23002 struct partial_symtab *psymtab;
23003 unsigned int cu_index;
23004 };
23005
23006 static hashval_t
23007 hash_psymtab_cu_index (const void *item)
23008 {
23009 const struct psymtab_cu_index_map *map
23010 = (const struct psymtab_cu_index_map *) item;
23011
23012 return htab_hash_pointer (map->psymtab);
23013 }
23014
23015 static int
23016 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
23017 {
23018 const struct psymtab_cu_index_map *lhs
23019 = (const struct psymtab_cu_index_map *) item_lhs;
23020 const struct psymtab_cu_index_map *rhs
23021 = (const struct psymtab_cu_index_map *) item_rhs;
23022
23023 return lhs->psymtab == rhs->psymtab;
23024 }
23025
23026 /* Helper struct for building the address table. */
23027 struct addrmap_index_data
23028 {
23029 struct objfile *objfile;
23030 struct obstack *addr_obstack;
23031 htab_t cu_index_htab;
23032
23033 /* Non-zero if the previous_* fields are valid.
23034 We can't write an entry until we see the next entry (since it is only then
23035 that we know the end of the entry). */
23036 int previous_valid;
23037 /* Index of the CU in the table of all CUs in the index file. */
23038 unsigned int previous_cu_index;
23039 /* Start address of the CU. */
23040 CORE_ADDR previous_cu_start;
23041 };
23042
23043 /* Write an address entry to OBSTACK. */
23044
23045 static void
23046 add_address_entry (struct objfile *objfile, struct obstack *obstack,
23047 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23048 {
23049 offset_type cu_index_to_write;
23050 gdb_byte addr[8];
23051 CORE_ADDR baseaddr;
23052
23053 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23054
23055 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23056 obstack_grow (obstack, addr, 8);
23057 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23058 obstack_grow (obstack, addr, 8);
23059 cu_index_to_write = MAYBE_SWAP (cu_index);
23060 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23061 }
23062
23063 /* Worker function for traversing an addrmap to build the address table. */
23064
23065 static int
23066 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23067 {
23068 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23069 struct partial_symtab *pst = (struct partial_symtab *) obj;
23070
23071 if (data->previous_valid)
23072 add_address_entry (data->objfile, data->addr_obstack,
23073 data->previous_cu_start, start_addr,
23074 data->previous_cu_index);
23075
23076 data->previous_cu_start = start_addr;
23077 if (pst != NULL)
23078 {
23079 struct psymtab_cu_index_map find_map, *map;
23080 find_map.psymtab = pst;
23081 map = ((struct psymtab_cu_index_map *)
23082 htab_find (data->cu_index_htab, &find_map));
23083 gdb_assert (map != NULL);
23084 data->previous_cu_index = map->cu_index;
23085 data->previous_valid = 1;
23086 }
23087 else
23088 data->previous_valid = 0;
23089
23090 return 0;
23091 }
23092
23093 /* Write OBJFILE's address map to OBSTACK.
23094 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23095 in the index file. */
23096
23097 static void
23098 write_address_map (struct objfile *objfile, struct obstack *obstack,
23099 htab_t cu_index_htab)
23100 {
23101 struct addrmap_index_data addrmap_index_data;
23102
23103 /* When writing the address table, we have to cope with the fact that
23104 the addrmap iterator only provides the start of a region; we have to
23105 wait until the next invocation to get the start of the next region. */
23106
23107 addrmap_index_data.objfile = objfile;
23108 addrmap_index_data.addr_obstack = obstack;
23109 addrmap_index_data.cu_index_htab = cu_index_htab;
23110 addrmap_index_data.previous_valid = 0;
23111
23112 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23113 &addrmap_index_data);
23114
23115 /* It's highly unlikely the last entry (end address = 0xff...ff)
23116 is valid, but we should still handle it.
23117 The end address is recorded as the start of the next region, but that
23118 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23119 anyway. */
23120 if (addrmap_index_data.previous_valid)
23121 add_address_entry (objfile, obstack,
23122 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23123 addrmap_index_data.previous_cu_index);
23124 }
23125
23126 /* Return the symbol kind of PSYM. */
23127
23128 static gdb_index_symbol_kind
23129 symbol_kind (struct partial_symbol *psym)
23130 {
23131 domain_enum domain = PSYMBOL_DOMAIN (psym);
23132 enum address_class aclass = PSYMBOL_CLASS (psym);
23133
23134 switch (domain)
23135 {
23136 case VAR_DOMAIN:
23137 switch (aclass)
23138 {
23139 case LOC_BLOCK:
23140 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23141 case LOC_TYPEDEF:
23142 return GDB_INDEX_SYMBOL_KIND_TYPE;
23143 case LOC_COMPUTED:
23144 case LOC_CONST_BYTES:
23145 case LOC_OPTIMIZED_OUT:
23146 case LOC_STATIC:
23147 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23148 case LOC_CONST:
23149 /* Note: It's currently impossible to recognize psyms as enum values
23150 short of reading the type info. For now punt. */
23151 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23152 default:
23153 /* There are other LOC_FOO values that one might want to classify
23154 as variables, but dwarf2read.c doesn't currently use them. */
23155 return GDB_INDEX_SYMBOL_KIND_OTHER;
23156 }
23157 case STRUCT_DOMAIN:
23158 return GDB_INDEX_SYMBOL_KIND_TYPE;
23159 default:
23160 return GDB_INDEX_SYMBOL_KIND_OTHER;
23161 }
23162 }
23163
23164 /* Add a list of partial symbols to SYMTAB. */
23165
23166 static void
23167 write_psymbols (struct mapped_symtab *symtab,
23168 htab_t psyms_seen,
23169 struct partial_symbol **psymp,
23170 int count,
23171 offset_type cu_index,
23172 int is_static)
23173 {
23174 for (; count-- > 0; ++psymp)
23175 {
23176 struct partial_symbol *psym = *psymp;
23177 void **slot;
23178
23179 if (SYMBOL_LANGUAGE (psym) == language_ada)
23180 error (_("Ada is not currently supported by the index"));
23181
23182 /* Only add a given psymbol once. */
23183 slot = htab_find_slot (psyms_seen, psym, INSERT);
23184 if (!*slot)
23185 {
23186 gdb_index_symbol_kind kind = symbol_kind (psym);
23187
23188 *slot = psym;
23189 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23190 is_static, kind, cu_index);
23191 }
23192 }
23193 }
23194
23195 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23196 exception if there is an error. */
23197
23198 static void
23199 write_obstack (FILE *file, struct obstack *obstack)
23200 {
23201 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23202 file)
23203 != obstack_object_size (obstack))
23204 error (_("couldn't data write to file"));
23205 }
23206
23207 /* Unlink a file if the argument is not NULL. */
23208
23209 static void
23210 unlink_if_set (void *p)
23211 {
23212 char **filename = (char **) p;
23213 if (*filename)
23214 unlink (*filename);
23215 }
23216
23217 /* A helper struct used when iterating over debug_types. */
23218 struct signatured_type_index_data
23219 {
23220 struct objfile *objfile;
23221 struct mapped_symtab *symtab;
23222 struct obstack *types_list;
23223 htab_t psyms_seen;
23224 int cu_index;
23225 };
23226
23227 /* A helper function that writes a single signatured_type to an
23228 obstack. */
23229
23230 static int
23231 write_one_signatured_type (void **slot, void *d)
23232 {
23233 struct signatured_type_index_data *info
23234 = (struct signatured_type_index_data *) d;
23235 struct signatured_type *entry = (struct signatured_type *) *slot;
23236 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23237 gdb_byte val[8];
23238
23239 write_psymbols (info->symtab,
23240 info->psyms_seen,
23241 info->objfile->global_psymbols.list
23242 + psymtab->globals_offset,
23243 psymtab->n_global_syms, info->cu_index,
23244 0);
23245 write_psymbols (info->symtab,
23246 info->psyms_seen,
23247 info->objfile->static_psymbols.list
23248 + psymtab->statics_offset,
23249 psymtab->n_static_syms, info->cu_index,
23250 1);
23251
23252 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23253 entry->per_cu.offset.sect_off);
23254 obstack_grow (info->types_list, val, 8);
23255 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23256 entry->type_offset_in_tu.cu_off);
23257 obstack_grow (info->types_list, val, 8);
23258 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23259 obstack_grow (info->types_list, val, 8);
23260
23261 ++info->cu_index;
23262
23263 return 1;
23264 }
23265
23266 /* Recurse into all "included" dependencies and write their symbols as
23267 if they appeared in this psymtab. */
23268
23269 static void
23270 recursively_write_psymbols (struct objfile *objfile,
23271 struct partial_symtab *psymtab,
23272 struct mapped_symtab *symtab,
23273 htab_t psyms_seen,
23274 offset_type cu_index)
23275 {
23276 int i;
23277
23278 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23279 if (psymtab->dependencies[i]->user != NULL)
23280 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23281 symtab, psyms_seen, cu_index);
23282
23283 write_psymbols (symtab,
23284 psyms_seen,
23285 objfile->global_psymbols.list + psymtab->globals_offset,
23286 psymtab->n_global_syms, cu_index,
23287 0);
23288 write_psymbols (symtab,
23289 psyms_seen,
23290 objfile->static_psymbols.list + psymtab->statics_offset,
23291 psymtab->n_static_syms, cu_index,
23292 1);
23293 }
23294
23295 /* Create an index file for OBJFILE in the directory DIR. */
23296
23297 static void
23298 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23299 {
23300 struct cleanup *cleanup;
23301 char *filename, *cleanup_filename;
23302 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23303 struct obstack cu_list, types_cu_list;
23304 int i;
23305 FILE *out_file;
23306 struct mapped_symtab *symtab;
23307 offset_type val, size_of_contents, total_len;
23308 struct stat st;
23309 htab_t psyms_seen;
23310 htab_t cu_index_htab;
23311 struct psymtab_cu_index_map *psymtab_cu_index_map;
23312
23313 if (dwarf2_per_objfile->using_index)
23314 error (_("Cannot use an index to create the index"));
23315
23316 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23317 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23318
23319 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23320 return;
23321
23322 if (stat (objfile_name (objfile), &st) < 0)
23323 perror_with_name (objfile_name (objfile));
23324
23325 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23326 INDEX_SUFFIX, (char *) NULL);
23327 cleanup = make_cleanup (xfree, filename);
23328
23329 out_file = gdb_fopen_cloexec (filename, "wb");
23330 if (!out_file)
23331 error (_("Can't open `%s' for writing"), filename);
23332
23333 cleanup_filename = filename;
23334 make_cleanup (unlink_if_set, &cleanup_filename);
23335
23336 symtab = create_mapped_symtab ();
23337 make_cleanup (cleanup_mapped_symtab, symtab);
23338
23339 obstack_init (&addr_obstack);
23340 make_cleanup_obstack_free (&addr_obstack);
23341
23342 obstack_init (&cu_list);
23343 make_cleanup_obstack_free (&cu_list);
23344
23345 obstack_init (&types_cu_list);
23346 make_cleanup_obstack_free (&types_cu_list);
23347
23348 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23349 NULL, xcalloc, xfree);
23350 make_cleanup_htab_delete (psyms_seen);
23351
23352 /* While we're scanning CU's create a table that maps a psymtab pointer
23353 (which is what addrmap records) to its index (which is what is recorded
23354 in the index file). This will later be needed to write the address
23355 table. */
23356 cu_index_htab = htab_create_alloc (100,
23357 hash_psymtab_cu_index,
23358 eq_psymtab_cu_index,
23359 NULL, xcalloc, xfree);
23360 make_cleanup_htab_delete (cu_index_htab);
23361 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23362 dwarf2_per_objfile->n_comp_units);
23363 make_cleanup (xfree, psymtab_cu_index_map);
23364
23365 /* The CU list is already sorted, so we don't need to do additional
23366 work here. Also, the debug_types entries do not appear in
23367 all_comp_units, but only in their own hash table. */
23368 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23369 {
23370 struct dwarf2_per_cu_data *per_cu
23371 = dwarf2_per_objfile->all_comp_units[i];
23372 struct partial_symtab *psymtab = per_cu->v.psymtab;
23373 gdb_byte val[8];
23374 struct psymtab_cu_index_map *map;
23375 void **slot;
23376
23377 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23378 It may be referenced from a local scope but in such case it does not
23379 need to be present in .gdb_index. */
23380 if (psymtab == NULL)
23381 continue;
23382
23383 if (psymtab->user == NULL)
23384 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23385
23386 map = &psymtab_cu_index_map[i];
23387 map->psymtab = psymtab;
23388 map->cu_index = i;
23389 slot = htab_find_slot (cu_index_htab, map, INSERT);
23390 gdb_assert (slot != NULL);
23391 gdb_assert (*slot == NULL);
23392 *slot = map;
23393
23394 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23395 per_cu->offset.sect_off);
23396 obstack_grow (&cu_list, val, 8);
23397 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23398 obstack_grow (&cu_list, val, 8);
23399 }
23400
23401 /* Dump the address map. */
23402 write_address_map (objfile, &addr_obstack, cu_index_htab);
23403
23404 /* Write out the .debug_type entries, if any. */
23405 if (dwarf2_per_objfile->signatured_types)
23406 {
23407 struct signatured_type_index_data sig_data;
23408
23409 sig_data.objfile = objfile;
23410 sig_data.symtab = symtab;
23411 sig_data.types_list = &types_cu_list;
23412 sig_data.psyms_seen = psyms_seen;
23413 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23414 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23415 write_one_signatured_type, &sig_data);
23416 }
23417
23418 /* Now that we've processed all symbols we can shrink their cu_indices
23419 lists. */
23420 uniquify_cu_indices (symtab);
23421
23422 obstack_init (&constant_pool);
23423 make_cleanup_obstack_free (&constant_pool);
23424 obstack_init (&symtab_obstack);
23425 make_cleanup_obstack_free (&symtab_obstack);
23426 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23427
23428 obstack_init (&contents);
23429 make_cleanup_obstack_free (&contents);
23430 size_of_contents = 6 * sizeof (offset_type);
23431 total_len = size_of_contents;
23432
23433 /* The version number. */
23434 val = MAYBE_SWAP (8);
23435 obstack_grow (&contents, &val, sizeof (val));
23436
23437 /* The offset of the CU list from the start of the file. */
23438 val = MAYBE_SWAP (total_len);
23439 obstack_grow (&contents, &val, sizeof (val));
23440 total_len += obstack_object_size (&cu_list);
23441
23442 /* The offset of the types CU list from the start of the file. */
23443 val = MAYBE_SWAP (total_len);
23444 obstack_grow (&contents, &val, sizeof (val));
23445 total_len += obstack_object_size (&types_cu_list);
23446
23447 /* The offset of the address table from the start of the file. */
23448 val = MAYBE_SWAP (total_len);
23449 obstack_grow (&contents, &val, sizeof (val));
23450 total_len += obstack_object_size (&addr_obstack);
23451
23452 /* The offset of the symbol table from the start of the file. */
23453 val = MAYBE_SWAP (total_len);
23454 obstack_grow (&contents, &val, sizeof (val));
23455 total_len += obstack_object_size (&symtab_obstack);
23456
23457 /* The offset of the constant pool from the start of the file. */
23458 val = MAYBE_SWAP (total_len);
23459 obstack_grow (&contents, &val, sizeof (val));
23460 total_len += obstack_object_size (&constant_pool);
23461
23462 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23463
23464 write_obstack (out_file, &contents);
23465 write_obstack (out_file, &cu_list);
23466 write_obstack (out_file, &types_cu_list);
23467 write_obstack (out_file, &addr_obstack);
23468 write_obstack (out_file, &symtab_obstack);
23469 write_obstack (out_file, &constant_pool);
23470
23471 fclose (out_file);
23472
23473 /* We want to keep the file, so we set cleanup_filename to NULL
23474 here. See unlink_if_set. */
23475 cleanup_filename = NULL;
23476
23477 do_cleanups (cleanup);
23478 }
23479
23480 /* Implementation of the `save gdb-index' command.
23481
23482 Note that the file format used by this command is documented in the
23483 GDB manual. Any changes here must be documented there. */
23484
23485 static void
23486 save_gdb_index_command (char *arg, int from_tty)
23487 {
23488 struct objfile *objfile;
23489
23490 if (!arg || !*arg)
23491 error (_("usage: save gdb-index DIRECTORY"));
23492
23493 ALL_OBJFILES (objfile)
23494 {
23495 struct stat st;
23496
23497 /* If the objfile does not correspond to an actual file, skip it. */
23498 if (stat (objfile_name (objfile), &st) < 0)
23499 continue;
23500
23501 dwarf2_per_objfile
23502 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23503 dwarf2_objfile_data_key);
23504 if (dwarf2_per_objfile)
23505 {
23506
23507 TRY
23508 {
23509 write_psymtabs_to_index (objfile, arg);
23510 }
23511 CATCH (except, RETURN_MASK_ERROR)
23512 {
23513 exception_fprintf (gdb_stderr, except,
23514 _("Error while writing index for `%s': "),
23515 objfile_name (objfile));
23516 }
23517 END_CATCH
23518 }
23519 }
23520 }
23521
23522 \f
23523
23524 int dwarf_always_disassemble;
23525
23526 static void
23527 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23528 struct cmd_list_element *c, const char *value)
23529 {
23530 fprintf_filtered (file,
23531 _("Whether to always disassemble "
23532 "DWARF expressions is %s.\n"),
23533 value);
23534 }
23535
23536 static void
23537 show_check_physname (struct ui_file *file, int from_tty,
23538 struct cmd_list_element *c, const char *value)
23539 {
23540 fprintf_filtered (file,
23541 _("Whether to check \"physname\" is %s.\n"),
23542 value);
23543 }
23544
23545 void _initialize_dwarf2_read (void);
23546
23547 void
23548 _initialize_dwarf2_read (void)
23549 {
23550 struct cmd_list_element *c;
23551
23552 dwarf2_objfile_data_key
23553 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23554
23555 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23556 Set DWARF specific variables.\n\
23557 Configure DWARF variables such as the cache size"),
23558 &set_dwarf_cmdlist, "maintenance set dwarf ",
23559 0/*allow-unknown*/, &maintenance_set_cmdlist);
23560
23561 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23562 Show DWARF specific variables\n\
23563 Show DWARF variables such as the cache size"),
23564 &show_dwarf_cmdlist, "maintenance show dwarf ",
23565 0/*allow-unknown*/, &maintenance_show_cmdlist);
23566
23567 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23568 &dwarf_max_cache_age, _("\
23569 Set the upper bound on the age of cached DWARF compilation units."), _("\
23570 Show the upper bound on the age of cached DWARF compilation units."), _("\
23571 A higher limit means that cached compilation units will be stored\n\
23572 in memory longer, and more total memory will be used. Zero disables\n\
23573 caching, which can slow down startup."),
23574 NULL,
23575 show_dwarf_max_cache_age,
23576 &set_dwarf_cmdlist,
23577 &show_dwarf_cmdlist);
23578
23579 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23580 &dwarf_always_disassemble, _("\
23581 Set whether `info address' always disassembles DWARF expressions."), _("\
23582 Show whether `info address' always disassembles DWARF expressions."), _("\
23583 When enabled, DWARF expressions are always printed in an assembly-like\n\
23584 syntax. When disabled, expressions will be printed in a more\n\
23585 conversational style, when possible."),
23586 NULL,
23587 show_dwarf_always_disassemble,
23588 &set_dwarf_cmdlist,
23589 &show_dwarf_cmdlist);
23590
23591 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23592 Set debugging of the DWARF reader."), _("\
23593 Show debugging of the DWARF reader."), _("\
23594 When enabled (non-zero), debugging messages are printed during DWARF\n\
23595 reading and symtab expansion. A value of 1 (one) provides basic\n\
23596 information. A value greater than 1 provides more verbose information."),
23597 NULL,
23598 NULL,
23599 &setdebuglist, &showdebuglist);
23600
23601 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23602 Set debugging of the DWARF DIE reader."), _("\
23603 Show debugging of the DWARF DIE reader."), _("\
23604 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23605 The value is the maximum depth to print."),
23606 NULL,
23607 NULL,
23608 &setdebuglist, &showdebuglist);
23609
23610 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23611 Set debugging of the dwarf line reader."), _("\
23612 Show debugging of the dwarf line reader."), _("\
23613 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23614 A value of 1 (one) provides basic information.\n\
23615 A value greater than 1 provides more verbose information."),
23616 NULL,
23617 NULL,
23618 &setdebuglist, &showdebuglist);
23619
23620 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23621 Set cross-checking of \"physname\" code against demangler."), _("\
23622 Show cross-checking of \"physname\" code against demangler."), _("\
23623 When enabled, GDB's internal \"physname\" code is checked against\n\
23624 the demangler."),
23625 NULL, show_check_physname,
23626 &setdebuglist, &showdebuglist);
23627
23628 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23629 no_class, &use_deprecated_index_sections, _("\
23630 Set whether to use deprecated gdb_index sections."), _("\
23631 Show whether to use deprecated gdb_index sections."), _("\
23632 When enabled, deprecated .gdb_index sections are used anyway.\n\
23633 Normally they are ignored either because of a missing feature or\n\
23634 performance issue.\n\
23635 Warning: This option must be enabled before gdb reads the file."),
23636 NULL,
23637 NULL,
23638 &setlist, &showlist);
23639
23640 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23641 _("\
23642 Save a gdb-index file.\n\
23643 Usage: save gdb-index DIRECTORY"),
23644 &save_cmdlist);
23645 set_cmd_completer (c, filename_completer);
23646
23647 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23648 &dwarf2_locexpr_funcs);
23649 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23650 &dwarf2_loclist_funcs);
23651
23652 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23653 &dwarf2_block_frame_base_locexpr_funcs);
23654 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23655 &dwarf2_block_frame_base_loclist_funcs);
23656 }