Make init_type/arch_type take a size in bits
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "filename-seen-cache.h"
78 #include "producer.h"
79 #include <fcntl.h>
80 #include <sys/types.h>
81 #include <algorithm>
82 #include <unordered_set>
83 #include <unordered_map>
84
85 typedef struct symbol *symbolp;
86 DEF_VEC_P (symbolp);
87
88 /* When == 1, print basic high level tracing messages.
89 When > 1, be more verbose.
90 This is in contrast to the low level DIE reading of dwarf_die_debug. */
91 static unsigned int dwarf_read_debug = 0;
92
93 /* When non-zero, dump DIEs after they are read in. */
94 static unsigned int dwarf_die_debug = 0;
95
96 /* When non-zero, dump line number entries as they are read in. */
97 static unsigned int dwarf_line_debug = 0;
98
99 /* When non-zero, cross-check physname against demangler. */
100 static int check_physname = 0;
101
102 /* When non-zero, do not reject deprecated .gdb_index sections. */
103 static int use_deprecated_index_sections = 0;
104
105 static const struct objfile_data *dwarf2_objfile_data_key;
106
107 /* The "aclass" indices for various kinds of computed DWARF symbols. */
108
109 static int dwarf2_locexpr_index;
110 static int dwarf2_loclist_index;
111 static int dwarf2_locexpr_block_index;
112 static int dwarf2_loclist_block_index;
113
114 /* A descriptor for dwarf sections.
115
116 S.ASECTION, SIZE are typically initialized when the objfile is first
117 scanned. BUFFER, READIN are filled in later when the section is read.
118 If the section contained compressed data then SIZE is updated to record
119 the uncompressed size of the section.
120
121 DWP file format V2 introduces a wrinkle that is easiest to handle by
122 creating the concept of virtual sections contained within a real section.
123 In DWP V2 the sections of the input DWO files are concatenated together
124 into one section, but section offsets are kept relative to the original
125 input section.
126 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
127 the real section this "virtual" section is contained in, and BUFFER,SIZE
128 describe the virtual section. */
129
130 struct dwarf2_section_info
131 {
132 union
133 {
134 /* If this is a real section, the bfd section. */
135 asection *section;
136 /* If this is a virtual section, pointer to the containing ("real")
137 section. */
138 struct dwarf2_section_info *containing_section;
139 } s;
140 /* Pointer to section data, only valid if readin. */
141 const gdb_byte *buffer;
142 /* The size of the section, real or virtual. */
143 bfd_size_type size;
144 /* If this is a virtual section, the offset in the real section.
145 Only valid if is_virtual. */
146 bfd_size_type virtual_offset;
147 /* True if we have tried to read this section. */
148 char readin;
149 /* True if this is a virtual section, False otherwise.
150 This specifies which of s.section and s.containing_section to use. */
151 char is_virtual;
152 };
153
154 typedef struct dwarf2_section_info dwarf2_section_info_def;
155 DEF_VEC_O (dwarf2_section_info_def);
156
157 /* All offsets in the index are of this type. It must be
158 architecture-independent. */
159 typedef uint32_t offset_type;
160
161 DEF_VEC_I (offset_type);
162
163 /* Ensure only legit values are used. */
164 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
165 do { \
166 gdb_assert ((unsigned int) (value) <= 1); \
167 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure only legit values are used. */
171 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
174 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
175 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
176 } while (0)
177
178 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
179 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
180 do { \
181 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
182 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
183 } while (0)
184
185 /* A description of the mapped index. The file format is described in
186 a comment by the code that writes the index. */
187 struct mapped_index
188 {
189 /* Index data format version. */
190 int version;
191
192 /* The total length of the buffer. */
193 off_t total_size;
194
195 /* A pointer to the address table data. */
196 const gdb_byte *address_table;
197
198 /* Size of the address table data in bytes. */
199 offset_type address_table_size;
200
201 /* The symbol table, implemented as a hash table. */
202 const offset_type *symbol_table;
203
204 /* Size in slots, each slot is 2 offset_types. */
205 offset_type symbol_table_slots;
206
207 /* A pointer to the constant pool. */
208 const char *constant_pool;
209 };
210
211 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
212 DEF_VEC_P (dwarf2_per_cu_ptr);
213
214 struct tu_stats
215 {
216 int nr_uniq_abbrev_tables;
217 int nr_symtabs;
218 int nr_symtab_sharers;
219 int nr_stmt_less_type_units;
220 int nr_all_type_units_reallocs;
221 };
222
223 /* Collection of data recorded per objfile.
224 This hangs off of dwarf2_objfile_data_key. */
225
226 struct dwarf2_per_objfile
227 {
228 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
229 dwarf2 section names, or is NULL if the standard ELF names are
230 used. */
231 dwarf2_per_objfile (struct objfile *objfile,
232 const dwarf2_debug_sections *names);
233
234 ~dwarf2_per_objfile ();
235
236 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
237
238 /* Free all cached compilation units. */
239 void free_cached_comp_units ();
240 private:
241 /* This function is mapped across the sections and remembers the
242 offset and size of each of the debugging sections we are
243 interested in. */
244 void locate_sections (bfd *abfd, asection *sectp,
245 const dwarf2_debug_sections &names);
246
247 public:
248 dwarf2_section_info info {};
249 dwarf2_section_info abbrev {};
250 dwarf2_section_info line {};
251 dwarf2_section_info loc {};
252 dwarf2_section_info loclists {};
253 dwarf2_section_info macinfo {};
254 dwarf2_section_info macro {};
255 dwarf2_section_info str {};
256 dwarf2_section_info line_str {};
257 dwarf2_section_info ranges {};
258 dwarf2_section_info rnglists {};
259 dwarf2_section_info addr {};
260 dwarf2_section_info frame {};
261 dwarf2_section_info eh_frame {};
262 dwarf2_section_info gdb_index {};
263
264 VEC (dwarf2_section_info_def) *types = NULL;
265
266 /* Back link. */
267 struct objfile *objfile = NULL;
268
269 /* Table of all the compilation units. This is used to locate
270 the target compilation unit of a particular reference. */
271 struct dwarf2_per_cu_data **all_comp_units = NULL;
272
273 /* The number of compilation units in ALL_COMP_UNITS. */
274 int n_comp_units = 0;
275
276 /* The number of .debug_types-related CUs. */
277 int n_type_units = 0;
278
279 /* The number of elements allocated in all_type_units.
280 If there are skeleton-less TUs, we add them to all_type_units lazily. */
281 int n_allocated_type_units = 0;
282
283 /* The .debug_types-related CUs (TUs).
284 This is stored in malloc space because we may realloc it. */
285 struct signatured_type **all_type_units = NULL;
286
287 /* Table of struct type_unit_group objects.
288 The hash key is the DW_AT_stmt_list value. */
289 htab_t type_unit_groups {};
290
291 /* A table mapping .debug_types signatures to its signatured_type entry.
292 This is NULL if the .debug_types section hasn't been read in yet. */
293 htab_t signatured_types {};
294
295 /* Type unit statistics, to see how well the scaling improvements
296 are doing. */
297 struct tu_stats tu_stats {};
298
299 /* A chain of compilation units that are currently read in, so that
300 they can be freed later. */
301 dwarf2_per_cu_data *read_in_chain = NULL;
302
303 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
304 This is NULL if the table hasn't been allocated yet. */
305 htab_t dwo_files {};
306
307 /* True if we've checked for whether there is a DWP file. */
308 bool dwp_checked = false;
309
310 /* The DWP file if there is one, or NULL. */
311 struct dwp_file *dwp_file = NULL;
312
313 /* The shared '.dwz' file, if one exists. This is used when the
314 original data was compressed using 'dwz -m'. */
315 struct dwz_file *dwz_file = NULL;
316
317 /* A flag indicating whether this objfile has a section loaded at a
318 VMA of 0. */
319 bool has_section_at_zero = false;
320
321 /* True if we are using the mapped index,
322 or we are faking it for OBJF_READNOW's sake. */
323 bool using_index = false;
324
325 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
326 mapped_index *index_table = NULL;
327
328 /* When using index_table, this keeps track of all quick_file_names entries.
329 TUs typically share line table entries with a CU, so we maintain a
330 separate table of all line table entries to support the sharing.
331 Note that while there can be way more TUs than CUs, we've already
332 sorted all the TUs into "type unit groups", grouped by their
333 DW_AT_stmt_list value. Therefore the only sharing done here is with a
334 CU and its associated TU group if there is one. */
335 htab_t quick_file_names_table {};
336
337 /* Set during partial symbol reading, to prevent queueing of full
338 symbols. */
339 bool reading_partial_symbols = false;
340
341 /* Table mapping type DIEs to their struct type *.
342 This is NULL if not allocated yet.
343 The mapping is done via (CU/TU + DIE offset) -> type. */
344 htab_t die_type_hash {};
345
346 /* The CUs we recently read. */
347 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
348
349 /* Table containing line_header indexed by offset and offset_in_dwz. */
350 htab_t line_header_hash {};
351
352 /* Table containing all filenames. This is an optional because the
353 table is lazily constructed on first access. */
354 gdb::optional<filename_seen_cache> filenames_cache;
355 };
356
357 static struct dwarf2_per_objfile *dwarf2_per_objfile;
358
359 /* Default names of the debugging sections. */
360
361 /* Note that if the debugging section has been compressed, it might
362 have a name like .zdebug_info. */
363
364 static const struct dwarf2_debug_sections dwarf2_elf_names =
365 {
366 { ".debug_info", ".zdebug_info" },
367 { ".debug_abbrev", ".zdebug_abbrev" },
368 { ".debug_line", ".zdebug_line" },
369 { ".debug_loc", ".zdebug_loc" },
370 { ".debug_loclists", ".zdebug_loclists" },
371 { ".debug_macinfo", ".zdebug_macinfo" },
372 { ".debug_macro", ".zdebug_macro" },
373 { ".debug_str", ".zdebug_str" },
374 { ".debug_line_str", ".zdebug_line_str" },
375 { ".debug_ranges", ".zdebug_ranges" },
376 { ".debug_rnglists", ".zdebug_rnglists" },
377 { ".debug_types", ".zdebug_types" },
378 { ".debug_addr", ".zdebug_addr" },
379 { ".debug_frame", ".zdebug_frame" },
380 { ".eh_frame", NULL },
381 { ".gdb_index", ".zgdb_index" },
382 23
383 };
384
385 /* List of DWO/DWP sections. */
386
387 static const struct dwop_section_names
388 {
389 struct dwarf2_section_names abbrev_dwo;
390 struct dwarf2_section_names info_dwo;
391 struct dwarf2_section_names line_dwo;
392 struct dwarf2_section_names loc_dwo;
393 struct dwarf2_section_names loclists_dwo;
394 struct dwarf2_section_names macinfo_dwo;
395 struct dwarf2_section_names macro_dwo;
396 struct dwarf2_section_names str_dwo;
397 struct dwarf2_section_names str_offsets_dwo;
398 struct dwarf2_section_names types_dwo;
399 struct dwarf2_section_names cu_index;
400 struct dwarf2_section_names tu_index;
401 }
402 dwop_section_names =
403 {
404 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
405 { ".debug_info.dwo", ".zdebug_info.dwo" },
406 { ".debug_line.dwo", ".zdebug_line.dwo" },
407 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
408 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
409 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
410 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
411 { ".debug_str.dwo", ".zdebug_str.dwo" },
412 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
413 { ".debug_types.dwo", ".zdebug_types.dwo" },
414 { ".debug_cu_index", ".zdebug_cu_index" },
415 { ".debug_tu_index", ".zdebug_tu_index" },
416 };
417
418 /* local data types */
419
420 /* The data in a compilation unit header, after target2host
421 translation, looks like this. */
422 struct comp_unit_head
423 {
424 unsigned int length;
425 short version;
426 unsigned char addr_size;
427 unsigned char signed_addr_p;
428 sect_offset abbrev_sect_off;
429
430 /* Size of file offsets; either 4 or 8. */
431 unsigned int offset_size;
432
433 /* Size of the length field; either 4 or 12. */
434 unsigned int initial_length_size;
435
436 enum dwarf_unit_type unit_type;
437
438 /* Offset to the first byte of this compilation unit header in the
439 .debug_info section, for resolving relative reference dies. */
440 sect_offset sect_off;
441
442 /* Offset to first die in this cu from the start of the cu.
443 This will be the first byte following the compilation unit header. */
444 cu_offset first_die_cu_offset;
445
446 /* 64-bit signature of this type unit - it is valid only for
447 UNIT_TYPE DW_UT_type. */
448 ULONGEST signature;
449
450 /* For types, offset in the type's DIE of the type defined by this TU. */
451 cu_offset type_cu_offset_in_tu;
452 };
453
454 /* Type used for delaying computation of method physnames.
455 See comments for compute_delayed_physnames. */
456 struct delayed_method_info
457 {
458 /* The type to which the method is attached, i.e., its parent class. */
459 struct type *type;
460
461 /* The index of the method in the type's function fieldlists. */
462 int fnfield_index;
463
464 /* The index of the method in the fieldlist. */
465 int index;
466
467 /* The name of the DIE. */
468 const char *name;
469
470 /* The DIE associated with this method. */
471 struct die_info *die;
472 };
473
474 typedef struct delayed_method_info delayed_method_info;
475 DEF_VEC_O (delayed_method_info);
476
477 /* Internal state when decoding a particular compilation unit. */
478 struct dwarf2_cu
479 {
480 /* The objfile containing this compilation unit. */
481 struct objfile *objfile;
482
483 /* The header of the compilation unit. */
484 struct comp_unit_head header;
485
486 /* Base address of this compilation unit. */
487 CORE_ADDR base_address;
488
489 /* Non-zero if base_address has been set. */
490 int base_known;
491
492 /* The language we are debugging. */
493 enum language language;
494 const struct language_defn *language_defn;
495
496 const char *producer;
497
498 /* The generic symbol table building routines have separate lists for
499 file scope symbols and all all other scopes (local scopes). So
500 we need to select the right one to pass to add_symbol_to_list().
501 We do it by keeping a pointer to the correct list in list_in_scope.
502
503 FIXME: The original dwarf code just treated the file scope as the
504 first local scope, and all other local scopes as nested local
505 scopes, and worked fine. Check to see if we really need to
506 distinguish these in buildsym.c. */
507 struct pending **list_in_scope;
508
509 /* The abbrev table for this CU.
510 Normally this points to the abbrev table in the objfile.
511 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
512 struct abbrev_table *abbrev_table;
513
514 /* Hash table holding all the loaded partial DIEs
515 with partial_die->offset.SECT_OFF as hash. */
516 htab_t partial_dies;
517
518 /* Storage for things with the same lifetime as this read-in compilation
519 unit, including partial DIEs. */
520 struct obstack comp_unit_obstack;
521
522 /* When multiple dwarf2_cu structures are living in memory, this field
523 chains them all together, so that they can be released efficiently.
524 We will probably also want a generation counter so that most-recently-used
525 compilation units are cached... */
526 struct dwarf2_per_cu_data *read_in_chain;
527
528 /* Backlink to our per_cu entry. */
529 struct dwarf2_per_cu_data *per_cu;
530
531 /* How many compilation units ago was this CU last referenced? */
532 int last_used;
533
534 /* A hash table of DIE cu_offset for following references with
535 die_info->offset.sect_off as hash. */
536 htab_t die_hash;
537
538 /* Full DIEs if read in. */
539 struct die_info *dies;
540
541 /* A set of pointers to dwarf2_per_cu_data objects for compilation
542 units referenced by this one. Only set during full symbol processing;
543 partial symbol tables do not have dependencies. */
544 htab_t dependencies;
545
546 /* Header data from the line table, during full symbol processing. */
547 struct line_header *line_header;
548 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
549 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
550 this is the DW_TAG_compile_unit die for this CU. We'll hold on
551 to the line header as long as this DIE is being processed. See
552 process_die_scope. */
553 die_info *line_header_die_owner;
554
555 /* A list of methods which need to have physnames computed
556 after all type information has been read. */
557 VEC (delayed_method_info) *method_list;
558
559 /* To be copied to symtab->call_site_htab. */
560 htab_t call_site_htab;
561
562 /* Non-NULL if this CU came from a DWO file.
563 There is an invariant here that is important to remember:
564 Except for attributes copied from the top level DIE in the "main"
565 (or "stub") file in preparation for reading the DWO file
566 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
567 Either there isn't a DWO file (in which case this is NULL and the point
568 is moot), or there is and either we're not going to read it (in which
569 case this is NULL) or there is and we are reading it (in which case this
570 is non-NULL). */
571 struct dwo_unit *dwo_unit;
572
573 /* The DW_AT_addr_base attribute if present, zero otherwise
574 (zero is a valid value though).
575 Note this value comes from the Fission stub CU/TU's DIE. */
576 ULONGEST addr_base;
577
578 /* The DW_AT_ranges_base attribute if present, zero otherwise
579 (zero is a valid value though).
580 Note this value comes from the Fission stub CU/TU's DIE.
581 Also note that the value is zero in the non-DWO case so this value can
582 be used without needing to know whether DWO files are in use or not.
583 N.B. This does not apply to DW_AT_ranges appearing in
584 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
585 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
586 DW_AT_ranges_base *would* have to be applied, and we'd have to care
587 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
588 ULONGEST ranges_base;
589
590 /* Mark used when releasing cached dies. */
591 unsigned int mark : 1;
592
593 /* This CU references .debug_loc. See the symtab->locations_valid field.
594 This test is imperfect as there may exist optimized debug code not using
595 any location list and still facing inlining issues if handled as
596 unoptimized code. For a future better test see GCC PR other/32998. */
597 unsigned int has_loclist : 1;
598
599 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
600 if all the producer_is_* fields are valid. This information is cached
601 because profiling CU expansion showed excessive time spent in
602 producer_is_gxx_lt_4_6. */
603 unsigned int checked_producer : 1;
604 unsigned int producer_is_gxx_lt_4_6 : 1;
605 unsigned int producer_is_gcc_lt_4_3 : 1;
606 unsigned int producer_is_icc_lt_14 : 1;
607
608 /* When set, the file that we're processing is known to have
609 debugging info for C++ namespaces. GCC 3.3.x did not produce
610 this information, but later versions do. */
611
612 unsigned int processing_has_namespace_info : 1;
613 };
614
615 /* Persistent data held for a compilation unit, even when not
616 processing it. We put a pointer to this structure in the
617 read_symtab_private field of the psymtab. */
618
619 struct dwarf2_per_cu_data
620 {
621 /* The start offset and length of this compilation unit.
622 NOTE: Unlike comp_unit_head.length, this length includes
623 initial_length_size.
624 If the DIE refers to a DWO file, this is always of the original die,
625 not the DWO file. */
626 sect_offset sect_off;
627 unsigned int length;
628
629 /* DWARF standard version this data has been read from (such as 4 or 5). */
630 short dwarf_version;
631
632 /* Flag indicating this compilation unit will be read in before
633 any of the current compilation units are processed. */
634 unsigned int queued : 1;
635
636 /* This flag will be set when reading partial DIEs if we need to load
637 absolutely all DIEs for this compilation unit, instead of just the ones
638 we think are interesting. It gets set if we look for a DIE in the
639 hash table and don't find it. */
640 unsigned int load_all_dies : 1;
641
642 /* Non-zero if this CU is from .debug_types.
643 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
644 this is non-zero. */
645 unsigned int is_debug_types : 1;
646
647 /* Non-zero if this CU is from the .dwz file. */
648 unsigned int is_dwz : 1;
649
650 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
651 This flag is only valid if is_debug_types is true.
652 We can't read a CU directly from a DWO file: There are required
653 attributes in the stub. */
654 unsigned int reading_dwo_directly : 1;
655
656 /* Non-zero if the TU has been read.
657 This is used to assist the "Stay in DWO Optimization" for Fission:
658 When reading a DWO, it's faster to read TUs from the DWO instead of
659 fetching them from random other DWOs (due to comdat folding).
660 If the TU has already been read, the optimization is unnecessary
661 (and unwise - we don't want to change where gdb thinks the TU lives
662 "midflight").
663 This flag is only valid if is_debug_types is true. */
664 unsigned int tu_read : 1;
665
666 /* The section this CU/TU lives in.
667 If the DIE refers to a DWO file, this is always the original die,
668 not the DWO file. */
669 struct dwarf2_section_info *section;
670
671 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
672 of the CU cache it gets reset to NULL again. This is left as NULL for
673 dummy CUs (a CU header, but nothing else). */
674 struct dwarf2_cu *cu;
675
676 /* The corresponding objfile.
677 Normally we can get the objfile from dwarf2_per_objfile.
678 However we can enter this file with just a "per_cu" handle. */
679 struct objfile *objfile;
680
681 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
682 is active. Otherwise, the 'psymtab' field is active. */
683 union
684 {
685 /* The partial symbol table associated with this compilation unit,
686 or NULL for unread partial units. */
687 struct partial_symtab *psymtab;
688
689 /* Data needed by the "quick" functions. */
690 struct dwarf2_per_cu_quick_data *quick;
691 } v;
692
693 /* The CUs we import using DW_TAG_imported_unit. This is filled in
694 while reading psymtabs, used to compute the psymtab dependencies,
695 and then cleared. Then it is filled in again while reading full
696 symbols, and only deleted when the objfile is destroyed.
697
698 This is also used to work around a difference between the way gold
699 generates .gdb_index version <=7 and the way gdb does. Arguably this
700 is a gold bug. For symbols coming from TUs, gold records in the index
701 the CU that includes the TU instead of the TU itself. This breaks
702 dw2_lookup_symbol: It assumes that if the index says symbol X lives
703 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
704 will find X. Alas TUs live in their own symtab, so after expanding CU Y
705 we need to look in TU Z to find X. Fortunately, this is akin to
706 DW_TAG_imported_unit, so we just use the same mechanism: For
707 .gdb_index version <=7 this also records the TUs that the CU referred
708 to. Concurrently with this change gdb was modified to emit version 8
709 indices so we only pay a price for gold generated indices.
710 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
711 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
712 };
713
714 /* Entry in the signatured_types hash table. */
715
716 struct signatured_type
717 {
718 /* The "per_cu" object of this type.
719 This struct is used iff per_cu.is_debug_types.
720 N.B.: This is the first member so that it's easy to convert pointers
721 between them. */
722 struct dwarf2_per_cu_data per_cu;
723
724 /* The type's signature. */
725 ULONGEST signature;
726
727 /* Offset in the TU of the type's DIE, as read from the TU header.
728 If this TU is a DWO stub and the definition lives in a DWO file
729 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
730 cu_offset type_offset_in_tu;
731
732 /* Offset in the section of the type's DIE.
733 If the definition lives in a DWO file, this is the offset in the
734 .debug_types.dwo section.
735 The value is zero until the actual value is known.
736 Zero is otherwise not a valid section offset. */
737 sect_offset type_offset_in_section;
738
739 /* Type units are grouped by their DW_AT_stmt_list entry so that they
740 can share them. This points to the containing symtab. */
741 struct type_unit_group *type_unit_group;
742
743 /* The type.
744 The first time we encounter this type we fully read it in and install it
745 in the symbol tables. Subsequent times we only need the type. */
746 struct type *type;
747
748 /* Containing DWO unit.
749 This field is valid iff per_cu.reading_dwo_directly. */
750 struct dwo_unit *dwo_unit;
751 };
752
753 typedef struct signatured_type *sig_type_ptr;
754 DEF_VEC_P (sig_type_ptr);
755
756 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
757 This includes type_unit_group and quick_file_names. */
758
759 struct stmt_list_hash
760 {
761 /* The DWO unit this table is from or NULL if there is none. */
762 struct dwo_unit *dwo_unit;
763
764 /* Offset in .debug_line or .debug_line.dwo. */
765 sect_offset line_sect_off;
766 };
767
768 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
769 an object of this type. */
770
771 struct type_unit_group
772 {
773 /* dwarf2read.c's main "handle" on a TU symtab.
774 To simplify things we create an artificial CU that "includes" all the
775 type units using this stmt_list so that the rest of the code still has
776 a "per_cu" handle on the symtab.
777 This PER_CU is recognized by having no section. */
778 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
779 struct dwarf2_per_cu_data per_cu;
780
781 /* The TUs that share this DW_AT_stmt_list entry.
782 This is added to while parsing type units to build partial symtabs,
783 and is deleted afterwards and not used again. */
784 VEC (sig_type_ptr) *tus;
785
786 /* The compunit symtab.
787 Type units in a group needn't all be defined in the same source file,
788 so we create an essentially anonymous symtab as the compunit symtab. */
789 struct compunit_symtab *compunit_symtab;
790
791 /* The data used to construct the hash key. */
792 struct stmt_list_hash hash;
793
794 /* The number of symtabs from the line header.
795 The value here must match line_header.num_file_names. */
796 unsigned int num_symtabs;
797
798 /* The symbol tables for this TU (obtained from the files listed in
799 DW_AT_stmt_list).
800 WARNING: The order of entries here must match the order of entries
801 in the line header. After the first TU using this type_unit_group, the
802 line header for the subsequent TUs is recreated from this. This is done
803 because we need to use the same symtabs for each TU using the same
804 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
805 there's no guarantee the line header doesn't have duplicate entries. */
806 struct symtab **symtabs;
807 };
808
809 /* These sections are what may appear in a (real or virtual) DWO file. */
810
811 struct dwo_sections
812 {
813 struct dwarf2_section_info abbrev;
814 struct dwarf2_section_info line;
815 struct dwarf2_section_info loc;
816 struct dwarf2_section_info loclists;
817 struct dwarf2_section_info macinfo;
818 struct dwarf2_section_info macro;
819 struct dwarf2_section_info str;
820 struct dwarf2_section_info str_offsets;
821 /* In the case of a virtual DWO file, these two are unused. */
822 struct dwarf2_section_info info;
823 VEC (dwarf2_section_info_def) *types;
824 };
825
826 /* CUs/TUs in DWP/DWO files. */
827
828 struct dwo_unit
829 {
830 /* Backlink to the containing struct dwo_file. */
831 struct dwo_file *dwo_file;
832
833 /* The "id" that distinguishes this CU/TU.
834 .debug_info calls this "dwo_id", .debug_types calls this "signature".
835 Since signatures came first, we stick with it for consistency. */
836 ULONGEST signature;
837
838 /* The section this CU/TU lives in, in the DWO file. */
839 struct dwarf2_section_info *section;
840
841 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
842 sect_offset sect_off;
843 unsigned int length;
844
845 /* For types, offset in the type's DIE of the type defined by this TU. */
846 cu_offset type_offset_in_tu;
847 };
848
849 /* include/dwarf2.h defines the DWP section codes.
850 It defines a max value but it doesn't define a min value, which we
851 use for error checking, so provide one. */
852
853 enum dwp_v2_section_ids
854 {
855 DW_SECT_MIN = 1
856 };
857
858 /* Data for one DWO file.
859
860 This includes virtual DWO files (a virtual DWO file is a DWO file as it
861 appears in a DWP file). DWP files don't really have DWO files per se -
862 comdat folding of types "loses" the DWO file they came from, and from
863 a high level view DWP files appear to contain a mass of random types.
864 However, to maintain consistency with the non-DWP case we pretend DWP
865 files contain virtual DWO files, and we assign each TU with one virtual
866 DWO file (generally based on the line and abbrev section offsets -
867 a heuristic that seems to work in practice). */
868
869 struct dwo_file
870 {
871 /* The DW_AT_GNU_dwo_name attribute.
872 For virtual DWO files the name is constructed from the section offsets
873 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
874 from related CU+TUs. */
875 const char *dwo_name;
876
877 /* The DW_AT_comp_dir attribute. */
878 const char *comp_dir;
879
880 /* The bfd, when the file is open. Otherwise this is NULL.
881 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
882 bfd *dbfd;
883
884 /* The sections that make up this DWO file.
885 Remember that for virtual DWO files in DWP V2, these are virtual
886 sections (for lack of a better name). */
887 struct dwo_sections sections;
888
889 /* The CUs in the file.
890 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
891 an extension to handle LLVM's Link Time Optimization output (where
892 multiple source files may be compiled into a single object/dwo pair). */
893 htab_t cus;
894
895 /* Table of TUs in the file.
896 Each element is a struct dwo_unit. */
897 htab_t tus;
898 };
899
900 /* These sections are what may appear in a DWP file. */
901
902 struct dwp_sections
903 {
904 /* These are used by both DWP version 1 and 2. */
905 struct dwarf2_section_info str;
906 struct dwarf2_section_info cu_index;
907 struct dwarf2_section_info tu_index;
908
909 /* These are only used by DWP version 2 files.
910 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
911 sections are referenced by section number, and are not recorded here.
912 In DWP version 2 there is at most one copy of all these sections, each
913 section being (effectively) comprised of the concatenation of all of the
914 individual sections that exist in the version 1 format.
915 To keep the code simple we treat each of these concatenated pieces as a
916 section itself (a virtual section?). */
917 struct dwarf2_section_info abbrev;
918 struct dwarf2_section_info info;
919 struct dwarf2_section_info line;
920 struct dwarf2_section_info loc;
921 struct dwarf2_section_info macinfo;
922 struct dwarf2_section_info macro;
923 struct dwarf2_section_info str_offsets;
924 struct dwarf2_section_info types;
925 };
926
927 /* These sections are what may appear in a virtual DWO file in DWP version 1.
928 A virtual DWO file is a DWO file as it appears in a DWP file. */
929
930 struct virtual_v1_dwo_sections
931 {
932 struct dwarf2_section_info abbrev;
933 struct dwarf2_section_info line;
934 struct dwarf2_section_info loc;
935 struct dwarf2_section_info macinfo;
936 struct dwarf2_section_info macro;
937 struct dwarf2_section_info str_offsets;
938 /* Each DWP hash table entry records one CU or one TU.
939 That is recorded here, and copied to dwo_unit.section. */
940 struct dwarf2_section_info info_or_types;
941 };
942
943 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
944 In version 2, the sections of the DWO files are concatenated together
945 and stored in one section of that name. Thus each ELF section contains
946 several "virtual" sections. */
947
948 struct virtual_v2_dwo_sections
949 {
950 bfd_size_type abbrev_offset;
951 bfd_size_type abbrev_size;
952
953 bfd_size_type line_offset;
954 bfd_size_type line_size;
955
956 bfd_size_type loc_offset;
957 bfd_size_type loc_size;
958
959 bfd_size_type macinfo_offset;
960 bfd_size_type macinfo_size;
961
962 bfd_size_type macro_offset;
963 bfd_size_type macro_size;
964
965 bfd_size_type str_offsets_offset;
966 bfd_size_type str_offsets_size;
967
968 /* Each DWP hash table entry records one CU or one TU.
969 That is recorded here, and copied to dwo_unit.section. */
970 bfd_size_type info_or_types_offset;
971 bfd_size_type info_or_types_size;
972 };
973
974 /* Contents of DWP hash tables. */
975
976 struct dwp_hash_table
977 {
978 uint32_t version, nr_columns;
979 uint32_t nr_units, nr_slots;
980 const gdb_byte *hash_table, *unit_table;
981 union
982 {
983 struct
984 {
985 const gdb_byte *indices;
986 } v1;
987 struct
988 {
989 /* This is indexed by column number and gives the id of the section
990 in that column. */
991 #define MAX_NR_V2_DWO_SECTIONS \
992 (1 /* .debug_info or .debug_types */ \
993 + 1 /* .debug_abbrev */ \
994 + 1 /* .debug_line */ \
995 + 1 /* .debug_loc */ \
996 + 1 /* .debug_str_offsets */ \
997 + 1 /* .debug_macro or .debug_macinfo */)
998 int section_ids[MAX_NR_V2_DWO_SECTIONS];
999 const gdb_byte *offsets;
1000 const gdb_byte *sizes;
1001 } v2;
1002 } section_pool;
1003 };
1004
1005 /* Data for one DWP file. */
1006
1007 struct dwp_file
1008 {
1009 /* Name of the file. */
1010 const char *name;
1011
1012 /* File format version. */
1013 int version;
1014
1015 /* The bfd. */
1016 bfd *dbfd;
1017
1018 /* Section info for this file. */
1019 struct dwp_sections sections;
1020
1021 /* Table of CUs in the file. */
1022 const struct dwp_hash_table *cus;
1023
1024 /* Table of TUs in the file. */
1025 const struct dwp_hash_table *tus;
1026
1027 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1028 htab_t loaded_cus;
1029 htab_t loaded_tus;
1030
1031 /* Table to map ELF section numbers to their sections.
1032 This is only needed for the DWP V1 file format. */
1033 unsigned int num_sections;
1034 asection **elf_sections;
1035 };
1036
1037 /* This represents a '.dwz' file. */
1038
1039 struct dwz_file
1040 {
1041 /* A dwz file can only contain a few sections. */
1042 struct dwarf2_section_info abbrev;
1043 struct dwarf2_section_info info;
1044 struct dwarf2_section_info str;
1045 struct dwarf2_section_info line;
1046 struct dwarf2_section_info macro;
1047 struct dwarf2_section_info gdb_index;
1048
1049 /* The dwz's BFD. */
1050 bfd *dwz_bfd;
1051 };
1052
1053 /* Struct used to pass misc. parameters to read_die_and_children, et
1054 al. which are used for both .debug_info and .debug_types dies.
1055 All parameters here are unchanging for the life of the call. This
1056 struct exists to abstract away the constant parameters of die reading. */
1057
1058 struct die_reader_specs
1059 {
1060 /* The bfd of die_section. */
1061 bfd* abfd;
1062
1063 /* The CU of the DIE we are parsing. */
1064 struct dwarf2_cu *cu;
1065
1066 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1067 struct dwo_file *dwo_file;
1068
1069 /* The section the die comes from.
1070 This is either .debug_info or .debug_types, or the .dwo variants. */
1071 struct dwarf2_section_info *die_section;
1072
1073 /* die_section->buffer. */
1074 const gdb_byte *buffer;
1075
1076 /* The end of the buffer. */
1077 const gdb_byte *buffer_end;
1078
1079 /* The value of the DW_AT_comp_dir attribute. */
1080 const char *comp_dir;
1081 };
1082
1083 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1084 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1085 const gdb_byte *info_ptr,
1086 struct die_info *comp_unit_die,
1087 int has_children,
1088 void *data);
1089
1090 /* A 1-based directory index. This is a strong typedef to prevent
1091 accidentally using a directory index as a 0-based index into an
1092 array/vector. */
1093 enum class dir_index : unsigned int {};
1094
1095 /* Likewise, a 1-based file name index. */
1096 enum class file_name_index : unsigned int {};
1097
1098 struct file_entry
1099 {
1100 file_entry () = default;
1101
1102 file_entry (const char *name_, dir_index d_index_,
1103 unsigned int mod_time_, unsigned int length_)
1104 : name (name_),
1105 d_index (d_index_),
1106 mod_time (mod_time_),
1107 length (length_)
1108 {}
1109
1110 /* Return the include directory at D_INDEX stored in LH. Returns
1111 NULL if D_INDEX is out of bounds. */
1112 const char *include_dir (const line_header *lh) const;
1113
1114 /* The file name. Note this is an observing pointer. The memory is
1115 owned by debug_line_buffer. */
1116 const char *name {};
1117
1118 /* The directory index (1-based). */
1119 dir_index d_index {};
1120
1121 unsigned int mod_time {};
1122
1123 unsigned int length {};
1124
1125 /* True if referenced by the Line Number Program. */
1126 bool included_p {};
1127
1128 /* The associated symbol table, if any. */
1129 struct symtab *symtab {};
1130 };
1131
1132 /* The line number information for a compilation unit (found in the
1133 .debug_line section) begins with a "statement program header",
1134 which contains the following information. */
1135 struct line_header
1136 {
1137 line_header ()
1138 : offset_in_dwz {}
1139 {}
1140
1141 /* Add an entry to the include directory table. */
1142 void add_include_dir (const char *include_dir);
1143
1144 /* Add an entry to the file name table. */
1145 void add_file_name (const char *name, dir_index d_index,
1146 unsigned int mod_time, unsigned int length);
1147
1148 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1149 is out of bounds. */
1150 const char *include_dir_at (dir_index index) const
1151 {
1152 /* Convert directory index number (1-based) to vector index
1153 (0-based). */
1154 size_t vec_index = to_underlying (index) - 1;
1155
1156 if (vec_index >= include_dirs.size ())
1157 return NULL;
1158 return include_dirs[vec_index];
1159 }
1160
1161 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1162 is out of bounds. */
1163 file_entry *file_name_at (file_name_index index)
1164 {
1165 /* Convert file name index number (1-based) to vector index
1166 (0-based). */
1167 size_t vec_index = to_underlying (index) - 1;
1168
1169 if (vec_index >= file_names.size ())
1170 return NULL;
1171 return &file_names[vec_index];
1172 }
1173
1174 /* Const version of the above. */
1175 const file_entry *file_name_at (unsigned int index) const
1176 {
1177 if (index >= file_names.size ())
1178 return NULL;
1179 return &file_names[index];
1180 }
1181
1182 /* Offset of line number information in .debug_line section. */
1183 sect_offset sect_off {};
1184
1185 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1186 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1187
1188 unsigned int total_length {};
1189 unsigned short version {};
1190 unsigned int header_length {};
1191 unsigned char minimum_instruction_length {};
1192 unsigned char maximum_ops_per_instruction {};
1193 unsigned char default_is_stmt {};
1194 int line_base {};
1195 unsigned char line_range {};
1196 unsigned char opcode_base {};
1197
1198 /* standard_opcode_lengths[i] is the number of operands for the
1199 standard opcode whose value is i. This means that
1200 standard_opcode_lengths[0] is unused, and the last meaningful
1201 element is standard_opcode_lengths[opcode_base - 1]. */
1202 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1203
1204 /* The include_directories table. Note these are observing
1205 pointers. The memory is owned by debug_line_buffer. */
1206 std::vector<const char *> include_dirs;
1207
1208 /* The file_names table. */
1209 std::vector<file_entry> file_names;
1210
1211 /* The start and end of the statement program following this
1212 header. These point into dwarf2_per_objfile->line_buffer. */
1213 const gdb_byte *statement_program_start {}, *statement_program_end {};
1214 };
1215
1216 typedef std::unique_ptr<line_header> line_header_up;
1217
1218 const char *
1219 file_entry::include_dir (const line_header *lh) const
1220 {
1221 return lh->include_dir_at (d_index);
1222 }
1223
1224 /* When we construct a partial symbol table entry we only
1225 need this much information. */
1226 struct partial_die_info
1227 {
1228 /* Offset of this DIE. */
1229 sect_offset sect_off;
1230
1231 /* DWARF-2 tag for this DIE. */
1232 ENUM_BITFIELD(dwarf_tag) tag : 16;
1233
1234 /* Assorted flags describing the data found in this DIE. */
1235 unsigned int has_children : 1;
1236 unsigned int is_external : 1;
1237 unsigned int is_declaration : 1;
1238 unsigned int has_type : 1;
1239 unsigned int has_specification : 1;
1240 unsigned int has_pc_info : 1;
1241 unsigned int may_be_inlined : 1;
1242
1243 /* This DIE has been marked DW_AT_main_subprogram. */
1244 unsigned int main_subprogram : 1;
1245
1246 /* Flag set if the SCOPE field of this structure has been
1247 computed. */
1248 unsigned int scope_set : 1;
1249
1250 /* Flag set if the DIE has a byte_size attribute. */
1251 unsigned int has_byte_size : 1;
1252
1253 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1254 unsigned int has_const_value : 1;
1255
1256 /* Flag set if any of the DIE's children are template arguments. */
1257 unsigned int has_template_arguments : 1;
1258
1259 /* Flag set if fixup_partial_die has been called on this die. */
1260 unsigned int fixup_called : 1;
1261
1262 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1263 unsigned int is_dwz : 1;
1264
1265 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1266 unsigned int spec_is_dwz : 1;
1267
1268 /* The name of this DIE. Normally the value of DW_AT_name, but
1269 sometimes a default name for unnamed DIEs. */
1270 const char *name;
1271
1272 /* The linkage name, if present. */
1273 const char *linkage_name;
1274
1275 /* The scope to prepend to our children. This is generally
1276 allocated on the comp_unit_obstack, so will disappear
1277 when this compilation unit leaves the cache. */
1278 const char *scope;
1279
1280 /* Some data associated with the partial DIE. The tag determines
1281 which field is live. */
1282 union
1283 {
1284 /* The location description associated with this DIE, if any. */
1285 struct dwarf_block *locdesc;
1286 /* The offset of an import, for DW_TAG_imported_unit. */
1287 sect_offset sect_off;
1288 } d;
1289
1290 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1291 CORE_ADDR lowpc;
1292 CORE_ADDR highpc;
1293
1294 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1295 DW_AT_sibling, if any. */
1296 /* NOTE: This member isn't strictly necessary, read_partial_die could
1297 return DW_AT_sibling values to its caller load_partial_dies. */
1298 const gdb_byte *sibling;
1299
1300 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1301 DW_AT_specification (or DW_AT_abstract_origin or
1302 DW_AT_extension). */
1303 sect_offset spec_offset;
1304
1305 /* Pointers to this DIE's parent, first child, and next sibling,
1306 if any. */
1307 struct partial_die_info *die_parent, *die_child, *die_sibling;
1308 };
1309
1310 /* This data structure holds the information of an abbrev. */
1311 struct abbrev_info
1312 {
1313 unsigned int number; /* number identifying abbrev */
1314 enum dwarf_tag tag; /* dwarf tag */
1315 unsigned short has_children; /* boolean */
1316 unsigned short num_attrs; /* number of attributes */
1317 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1318 struct abbrev_info *next; /* next in chain */
1319 };
1320
1321 struct attr_abbrev
1322 {
1323 ENUM_BITFIELD(dwarf_attribute) name : 16;
1324 ENUM_BITFIELD(dwarf_form) form : 16;
1325
1326 /* It is valid only if FORM is DW_FORM_implicit_const. */
1327 LONGEST implicit_const;
1328 };
1329
1330 /* Size of abbrev_table.abbrev_hash_table. */
1331 #define ABBREV_HASH_SIZE 121
1332
1333 /* Top level data structure to contain an abbreviation table. */
1334
1335 struct abbrev_table
1336 {
1337 /* Where the abbrev table came from.
1338 This is used as a sanity check when the table is used. */
1339 sect_offset sect_off;
1340
1341 /* Storage for the abbrev table. */
1342 struct obstack abbrev_obstack;
1343
1344 /* Hash table of abbrevs.
1345 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1346 It could be statically allocated, but the previous code didn't so we
1347 don't either. */
1348 struct abbrev_info **abbrevs;
1349 };
1350
1351 /* Attributes have a name and a value. */
1352 struct attribute
1353 {
1354 ENUM_BITFIELD(dwarf_attribute) name : 16;
1355 ENUM_BITFIELD(dwarf_form) form : 15;
1356
1357 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1358 field should be in u.str (existing only for DW_STRING) but it is kept
1359 here for better struct attribute alignment. */
1360 unsigned int string_is_canonical : 1;
1361
1362 union
1363 {
1364 const char *str;
1365 struct dwarf_block *blk;
1366 ULONGEST unsnd;
1367 LONGEST snd;
1368 CORE_ADDR addr;
1369 ULONGEST signature;
1370 }
1371 u;
1372 };
1373
1374 /* This data structure holds a complete die structure. */
1375 struct die_info
1376 {
1377 /* DWARF-2 tag for this DIE. */
1378 ENUM_BITFIELD(dwarf_tag) tag : 16;
1379
1380 /* Number of attributes */
1381 unsigned char num_attrs;
1382
1383 /* True if we're presently building the full type name for the
1384 type derived from this DIE. */
1385 unsigned char building_fullname : 1;
1386
1387 /* True if this die is in process. PR 16581. */
1388 unsigned char in_process : 1;
1389
1390 /* Abbrev number */
1391 unsigned int abbrev;
1392
1393 /* Offset in .debug_info or .debug_types section. */
1394 sect_offset sect_off;
1395
1396 /* The dies in a compilation unit form an n-ary tree. PARENT
1397 points to this die's parent; CHILD points to the first child of
1398 this node; and all the children of a given node are chained
1399 together via their SIBLING fields. */
1400 struct die_info *child; /* Its first child, if any. */
1401 struct die_info *sibling; /* Its next sibling, if any. */
1402 struct die_info *parent; /* Its parent, if any. */
1403
1404 /* An array of attributes, with NUM_ATTRS elements. There may be
1405 zero, but it's not common and zero-sized arrays are not
1406 sufficiently portable C. */
1407 struct attribute attrs[1];
1408 };
1409
1410 /* Get at parts of an attribute structure. */
1411
1412 #define DW_STRING(attr) ((attr)->u.str)
1413 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1414 #define DW_UNSND(attr) ((attr)->u.unsnd)
1415 #define DW_BLOCK(attr) ((attr)->u.blk)
1416 #define DW_SND(attr) ((attr)->u.snd)
1417 #define DW_ADDR(attr) ((attr)->u.addr)
1418 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1419
1420 /* Blocks are a bunch of untyped bytes. */
1421 struct dwarf_block
1422 {
1423 size_t size;
1424
1425 /* Valid only if SIZE is not zero. */
1426 const gdb_byte *data;
1427 };
1428
1429 #ifndef ATTR_ALLOC_CHUNK
1430 #define ATTR_ALLOC_CHUNK 4
1431 #endif
1432
1433 /* Allocate fields for structs, unions and enums in this size. */
1434 #ifndef DW_FIELD_ALLOC_CHUNK
1435 #define DW_FIELD_ALLOC_CHUNK 4
1436 #endif
1437
1438 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1439 but this would require a corresponding change in unpack_field_as_long
1440 and friends. */
1441 static int bits_per_byte = 8;
1442
1443 struct nextfield
1444 {
1445 struct nextfield *next;
1446 int accessibility;
1447 int virtuality;
1448 struct field field;
1449 };
1450
1451 struct nextfnfield
1452 {
1453 struct nextfnfield *next;
1454 struct fn_field fnfield;
1455 };
1456
1457 struct fnfieldlist
1458 {
1459 const char *name;
1460 int length;
1461 struct nextfnfield *head;
1462 };
1463
1464 struct typedef_field_list
1465 {
1466 struct typedef_field field;
1467 struct typedef_field_list *next;
1468 };
1469
1470 /* The routines that read and process dies for a C struct or C++ class
1471 pass lists of data member fields and lists of member function fields
1472 in an instance of a field_info structure, as defined below. */
1473 struct field_info
1474 {
1475 /* List of data member and baseclasses fields. */
1476 struct nextfield *fields, *baseclasses;
1477
1478 /* Number of fields (including baseclasses). */
1479 int nfields;
1480
1481 /* Number of baseclasses. */
1482 int nbaseclasses;
1483
1484 /* Set if the accesibility of one of the fields is not public. */
1485 int non_public_fields;
1486
1487 /* Member function fieldlist array, contains name of possibly overloaded
1488 member function, number of overloaded member functions and a pointer
1489 to the head of the member function field chain. */
1490 struct fnfieldlist *fnfieldlists;
1491
1492 /* Number of entries in the fnfieldlists array. */
1493 int nfnfields;
1494
1495 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1496 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1497 struct typedef_field_list *typedef_field_list;
1498 unsigned typedef_field_list_count;
1499 };
1500
1501 /* One item on the queue of compilation units to read in full symbols
1502 for. */
1503 struct dwarf2_queue_item
1504 {
1505 struct dwarf2_per_cu_data *per_cu;
1506 enum language pretend_language;
1507 struct dwarf2_queue_item *next;
1508 };
1509
1510 /* The current queue. */
1511 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1512
1513 /* Loaded secondary compilation units are kept in memory until they
1514 have not been referenced for the processing of this many
1515 compilation units. Set this to zero to disable caching. Cache
1516 sizes of up to at least twenty will improve startup time for
1517 typical inter-CU-reference binaries, at an obvious memory cost. */
1518 static int dwarf_max_cache_age = 5;
1519 static void
1520 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1521 struct cmd_list_element *c, const char *value)
1522 {
1523 fprintf_filtered (file, _("The upper bound on the age of cached "
1524 "DWARF compilation units is %s.\n"),
1525 value);
1526 }
1527 \f
1528 /* local function prototypes */
1529
1530 static const char *get_section_name (const struct dwarf2_section_info *);
1531
1532 static const char *get_section_file_name (const struct dwarf2_section_info *);
1533
1534 static void dwarf2_find_base_address (struct die_info *die,
1535 struct dwarf2_cu *cu);
1536
1537 static struct partial_symtab *create_partial_symtab
1538 (struct dwarf2_per_cu_data *per_cu, const char *name);
1539
1540 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1541 const gdb_byte *info_ptr,
1542 struct die_info *type_unit_die,
1543 int has_children, void *data);
1544
1545 static void dwarf2_build_psymtabs_hard (struct objfile *);
1546
1547 static void scan_partial_symbols (struct partial_die_info *,
1548 CORE_ADDR *, CORE_ADDR *,
1549 int, struct dwarf2_cu *);
1550
1551 static void add_partial_symbol (struct partial_die_info *,
1552 struct dwarf2_cu *);
1553
1554 static void add_partial_namespace (struct partial_die_info *pdi,
1555 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1556 int set_addrmap, struct dwarf2_cu *cu);
1557
1558 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1559 CORE_ADDR *highpc, int set_addrmap,
1560 struct dwarf2_cu *cu);
1561
1562 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1563 struct dwarf2_cu *cu);
1564
1565 static void add_partial_subprogram (struct partial_die_info *pdi,
1566 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1567 int need_pc, struct dwarf2_cu *cu);
1568
1569 static void dwarf2_read_symtab (struct partial_symtab *,
1570 struct objfile *);
1571
1572 static void psymtab_to_symtab_1 (struct partial_symtab *);
1573
1574 static struct abbrev_info *abbrev_table_lookup_abbrev
1575 (const struct abbrev_table *, unsigned int);
1576
1577 static struct abbrev_table *abbrev_table_read_table
1578 (struct dwarf2_section_info *, sect_offset);
1579
1580 static void abbrev_table_free (struct abbrev_table *);
1581
1582 static void abbrev_table_free_cleanup (void *);
1583
1584 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1585 struct dwarf2_section_info *);
1586
1587 static void dwarf2_free_abbrev_table (void *);
1588
1589 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1590
1591 static struct partial_die_info *load_partial_dies
1592 (const struct die_reader_specs *, const gdb_byte *, int);
1593
1594 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1595 struct partial_die_info *,
1596 struct abbrev_info *,
1597 unsigned int,
1598 const gdb_byte *);
1599
1600 static struct partial_die_info *find_partial_die (sect_offset, int,
1601 struct dwarf2_cu *);
1602
1603 static void fixup_partial_die (struct partial_die_info *,
1604 struct dwarf2_cu *);
1605
1606 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1607 struct attribute *, struct attr_abbrev *,
1608 const gdb_byte *);
1609
1610 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1611
1612 static int read_1_signed_byte (bfd *, const gdb_byte *);
1613
1614 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1615
1616 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1617
1618 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1619
1620 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1621 unsigned int *);
1622
1623 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1624
1625 static LONGEST read_checked_initial_length_and_offset
1626 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1627 unsigned int *, unsigned int *);
1628
1629 static LONGEST read_offset (bfd *, const gdb_byte *,
1630 const struct comp_unit_head *,
1631 unsigned int *);
1632
1633 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1634
1635 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1636 sect_offset);
1637
1638 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1639
1640 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1641
1642 static const char *read_indirect_string (bfd *, const gdb_byte *,
1643 const struct comp_unit_head *,
1644 unsigned int *);
1645
1646 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1647 const struct comp_unit_head *,
1648 unsigned int *);
1649
1650 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1651
1652 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1653
1654 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1655 const gdb_byte *,
1656 unsigned int *);
1657
1658 static const char *read_str_index (const struct die_reader_specs *reader,
1659 ULONGEST str_index);
1660
1661 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1662
1663 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1664 struct dwarf2_cu *);
1665
1666 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1667 unsigned int);
1668
1669 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1670 struct dwarf2_cu *cu);
1671
1672 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1673 struct dwarf2_cu *cu);
1674
1675 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1676
1677 static struct die_info *die_specification (struct die_info *die,
1678 struct dwarf2_cu **);
1679
1680 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1681 struct dwarf2_cu *cu);
1682
1683 static void dwarf_decode_lines (struct line_header *, const char *,
1684 struct dwarf2_cu *, struct partial_symtab *,
1685 CORE_ADDR, int decode_mapping);
1686
1687 static void dwarf2_start_subfile (const char *, const char *);
1688
1689 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1690 const char *, const char *,
1691 CORE_ADDR);
1692
1693 static struct symbol *new_symbol (struct die_info *, struct type *,
1694 struct dwarf2_cu *);
1695
1696 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1697 struct dwarf2_cu *, struct symbol *);
1698
1699 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1700 struct dwarf2_cu *);
1701
1702 static void dwarf2_const_value_attr (const struct attribute *attr,
1703 struct type *type,
1704 const char *name,
1705 struct obstack *obstack,
1706 struct dwarf2_cu *cu, LONGEST *value,
1707 const gdb_byte **bytes,
1708 struct dwarf2_locexpr_baton **baton);
1709
1710 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1711
1712 static int need_gnat_info (struct dwarf2_cu *);
1713
1714 static struct type *die_descriptive_type (struct die_info *,
1715 struct dwarf2_cu *);
1716
1717 static void set_descriptive_type (struct type *, struct die_info *,
1718 struct dwarf2_cu *);
1719
1720 static struct type *die_containing_type (struct die_info *,
1721 struct dwarf2_cu *);
1722
1723 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1724 struct dwarf2_cu *);
1725
1726 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1727
1728 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1729
1730 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1731
1732 static char *typename_concat (struct obstack *obs, const char *prefix,
1733 const char *suffix, int physname,
1734 struct dwarf2_cu *cu);
1735
1736 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1737
1738 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1739
1740 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1741
1742 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1743
1744 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1745
1746 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1747 struct dwarf2_cu *, struct partial_symtab *);
1748
1749 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1750 values. Keep the items ordered with increasing constraints compliance. */
1751 enum pc_bounds_kind
1752 {
1753 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1754 PC_BOUNDS_NOT_PRESENT,
1755
1756 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1757 were present but they do not form a valid range of PC addresses. */
1758 PC_BOUNDS_INVALID,
1759
1760 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1761 PC_BOUNDS_RANGES,
1762
1763 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1764 PC_BOUNDS_HIGH_LOW,
1765 };
1766
1767 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1768 CORE_ADDR *, CORE_ADDR *,
1769 struct dwarf2_cu *,
1770 struct partial_symtab *);
1771
1772 static void get_scope_pc_bounds (struct die_info *,
1773 CORE_ADDR *, CORE_ADDR *,
1774 struct dwarf2_cu *);
1775
1776 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1777 CORE_ADDR, struct dwarf2_cu *);
1778
1779 static void dwarf2_add_field (struct field_info *, struct die_info *,
1780 struct dwarf2_cu *);
1781
1782 static void dwarf2_attach_fields_to_type (struct field_info *,
1783 struct type *, struct dwarf2_cu *);
1784
1785 static void dwarf2_add_member_fn (struct field_info *,
1786 struct die_info *, struct type *,
1787 struct dwarf2_cu *);
1788
1789 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1790 struct type *,
1791 struct dwarf2_cu *);
1792
1793 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1794
1795 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1796
1797 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1798
1799 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1800
1801 static struct using_direct **using_directives (enum language);
1802
1803 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1804
1805 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1806
1807 static struct type *read_module_type (struct die_info *die,
1808 struct dwarf2_cu *cu);
1809
1810 static const char *namespace_name (struct die_info *die,
1811 int *is_anonymous, struct dwarf2_cu *);
1812
1813 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1814
1815 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1816
1817 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1818 struct dwarf2_cu *);
1819
1820 static struct die_info *read_die_and_siblings_1
1821 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1822 struct die_info *);
1823
1824 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1825 const gdb_byte *info_ptr,
1826 const gdb_byte **new_info_ptr,
1827 struct die_info *parent);
1828
1829 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1830 struct die_info **, const gdb_byte *,
1831 int *, int);
1832
1833 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1834 struct die_info **, const gdb_byte *,
1835 int *);
1836
1837 static void process_die (struct die_info *, struct dwarf2_cu *);
1838
1839 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1840 struct obstack *);
1841
1842 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1843
1844 static const char *dwarf2_full_name (const char *name,
1845 struct die_info *die,
1846 struct dwarf2_cu *cu);
1847
1848 static const char *dwarf2_physname (const char *name, struct die_info *die,
1849 struct dwarf2_cu *cu);
1850
1851 static struct die_info *dwarf2_extension (struct die_info *die,
1852 struct dwarf2_cu **);
1853
1854 static const char *dwarf_tag_name (unsigned int);
1855
1856 static const char *dwarf_attr_name (unsigned int);
1857
1858 static const char *dwarf_form_name (unsigned int);
1859
1860 static const char *dwarf_bool_name (unsigned int);
1861
1862 static const char *dwarf_type_encoding_name (unsigned int);
1863
1864 static struct die_info *sibling_die (struct die_info *);
1865
1866 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1867
1868 static void dump_die_for_error (struct die_info *);
1869
1870 static void dump_die_1 (struct ui_file *, int level, int max_level,
1871 struct die_info *);
1872
1873 /*static*/ void dump_die (struct die_info *, int max_level);
1874
1875 static void store_in_ref_table (struct die_info *,
1876 struct dwarf2_cu *);
1877
1878 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1879
1880 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1881
1882 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1883 const struct attribute *,
1884 struct dwarf2_cu **);
1885
1886 static struct die_info *follow_die_ref (struct die_info *,
1887 const struct attribute *,
1888 struct dwarf2_cu **);
1889
1890 static struct die_info *follow_die_sig (struct die_info *,
1891 const struct attribute *,
1892 struct dwarf2_cu **);
1893
1894 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1895 struct dwarf2_cu *);
1896
1897 static struct type *get_DW_AT_signature_type (struct die_info *,
1898 const struct attribute *,
1899 struct dwarf2_cu *);
1900
1901 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1902
1903 static void read_signatured_type (struct signatured_type *);
1904
1905 static int attr_to_dynamic_prop (const struct attribute *attr,
1906 struct die_info *die, struct dwarf2_cu *cu,
1907 struct dynamic_prop *prop);
1908
1909 /* memory allocation interface */
1910
1911 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1912
1913 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1914
1915 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1916
1917 static int attr_form_is_block (const struct attribute *);
1918
1919 static int attr_form_is_section_offset (const struct attribute *);
1920
1921 static int attr_form_is_constant (const struct attribute *);
1922
1923 static int attr_form_is_ref (const struct attribute *);
1924
1925 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1926 struct dwarf2_loclist_baton *baton,
1927 const struct attribute *attr);
1928
1929 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1930 struct symbol *sym,
1931 struct dwarf2_cu *cu,
1932 int is_block);
1933
1934 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1935 const gdb_byte *info_ptr,
1936 struct abbrev_info *abbrev);
1937
1938 static void free_stack_comp_unit (void *);
1939
1940 static hashval_t partial_die_hash (const void *item);
1941
1942 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1943
1944 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1945 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
1946
1947 static void init_one_comp_unit (struct dwarf2_cu *cu,
1948 struct dwarf2_per_cu_data *per_cu);
1949
1950 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1951 struct die_info *comp_unit_die,
1952 enum language pretend_language);
1953
1954 static void free_heap_comp_unit (void *);
1955
1956 static void free_cached_comp_units (void *);
1957
1958 static void age_cached_comp_units (void);
1959
1960 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1961
1962 static struct type *set_die_type (struct die_info *, struct type *,
1963 struct dwarf2_cu *);
1964
1965 static void create_all_comp_units (struct objfile *);
1966
1967 static int create_all_type_units (struct objfile *);
1968
1969 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1970 enum language);
1971
1972 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1973 enum language);
1974
1975 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1976 enum language);
1977
1978 static void dwarf2_add_dependence (struct dwarf2_cu *,
1979 struct dwarf2_per_cu_data *);
1980
1981 static void dwarf2_mark (struct dwarf2_cu *);
1982
1983 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1984
1985 static struct type *get_die_type_at_offset (sect_offset,
1986 struct dwarf2_per_cu_data *);
1987
1988 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1989
1990 static void dwarf2_release_queue (void *dummy);
1991
1992 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1993 enum language pretend_language);
1994
1995 static void process_queue (void);
1996
1997 /* The return type of find_file_and_directory. Note, the enclosed
1998 string pointers are only valid while this object is valid. */
1999
2000 struct file_and_directory
2001 {
2002 /* The filename. This is never NULL. */
2003 const char *name;
2004
2005 /* The compilation directory. NULL if not known. If we needed to
2006 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2007 points directly to the DW_AT_comp_dir string attribute owned by
2008 the obstack that owns the DIE. */
2009 const char *comp_dir;
2010
2011 /* If we needed to build a new string for comp_dir, this is what
2012 owns the storage. */
2013 std::string comp_dir_storage;
2014 };
2015
2016 static file_and_directory find_file_and_directory (struct die_info *die,
2017 struct dwarf2_cu *cu);
2018
2019 static char *file_full_name (int file, struct line_header *lh,
2020 const char *comp_dir);
2021
2022 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2023 enum class rcuh_kind { COMPILE, TYPE };
2024
2025 static const gdb_byte *read_and_check_comp_unit_head
2026 (struct comp_unit_head *header,
2027 struct dwarf2_section_info *section,
2028 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2029 rcuh_kind section_kind);
2030
2031 static void init_cutu_and_read_dies
2032 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2033 int use_existing_cu, int keep,
2034 die_reader_func_ftype *die_reader_func, void *data);
2035
2036 static void init_cutu_and_read_dies_simple
2037 (struct dwarf2_per_cu_data *this_cu,
2038 die_reader_func_ftype *die_reader_func, void *data);
2039
2040 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2041
2042 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2043
2044 static struct dwo_unit *lookup_dwo_unit_in_dwp
2045 (struct dwp_file *dwp_file, const char *comp_dir,
2046 ULONGEST signature, int is_debug_types);
2047
2048 static struct dwp_file *get_dwp_file (void);
2049
2050 static struct dwo_unit *lookup_dwo_comp_unit
2051 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2052
2053 static struct dwo_unit *lookup_dwo_type_unit
2054 (struct signatured_type *, const char *, const char *);
2055
2056 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2057
2058 static void free_dwo_file_cleanup (void *);
2059
2060 static void process_cu_includes (void);
2061
2062 static void check_producer (struct dwarf2_cu *cu);
2063
2064 static void free_line_header_voidp (void *arg);
2065 \f
2066 /* Various complaints about symbol reading that don't abort the process. */
2067
2068 static void
2069 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2070 {
2071 complaint (&symfile_complaints,
2072 _("statement list doesn't fit in .debug_line section"));
2073 }
2074
2075 static void
2076 dwarf2_debug_line_missing_file_complaint (void)
2077 {
2078 complaint (&symfile_complaints,
2079 _(".debug_line section has line data without a file"));
2080 }
2081
2082 static void
2083 dwarf2_debug_line_missing_end_sequence_complaint (void)
2084 {
2085 complaint (&symfile_complaints,
2086 _(".debug_line section has line "
2087 "program sequence without an end"));
2088 }
2089
2090 static void
2091 dwarf2_complex_location_expr_complaint (void)
2092 {
2093 complaint (&symfile_complaints, _("location expression too complex"));
2094 }
2095
2096 static void
2097 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2098 int arg3)
2099 {
2100 complaint (&symfile_complaints,
2101 _("const value length mismatch for '%s', got %d, expected %d"),
2102 arg1, arg2, arg3);
2103 }
2104
2105 static void
2106 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2107 {
2108 complaint (&symfile_complaints,
2109 _("debug info runs off end of %s section"
2110 " [in module %s]"),
2111 get_section_name (section),
2112 get_section_file_name (section));
2113 }
2114
2115 static void
2116 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2117 {
2118 complaint (&symfile_complaints,
2119 _("macro debug info contains a "
2120 "malformed macro definition:\n`%s'"),
2121 arg1);
2122 }
2123
2124 static void
2125 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2126 {
2127 complaint (&symfile_complaints,
2128 _("invalid attribute class or form for '%s' in '%s'"),
2129 arg1, arg2);
2130 }
2131
2132 /* Hash function for line_header_hash. */
2133
2134 static hashval_t
2135 line_header_hash (const struct line_header *ofs)
2136 {
2137 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2138 }
2139
2140 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2141
2142 static hashval_t
2143 line_header_hash_voidp (const void *item)
2144 {
2145 const struct line_header *ofs = (const struct line_header *) item;
2146
2147 return line_header_hash (ofs);
2148 }
2149
2150 /* Equality function for line_header_hash. */
2151
2152 static int
2153 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2154 {
2155 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2156 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2157
2158 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2159 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2160 }
2161
2162 \f
2163 #if WORDS_BIGENDIAN
2164
2165 /* Convert VALUE between big- and little-endian. */
2166 static offset_type
2167 byte_swap (offset_type value)
2168 {
2169 offset_type result;
2170
2171 result = (value & 0xff) << 24;
2172 result |= (value & 0xff00) << 8;
2173 result |= (value & 0xff0000) >> 8;
2174 result |= (value & 0xff000000) >> 24;
2175 return result;
2176 }
2177
2178 #define MAYBE_SWAP(V) byte_swap (V)
2179
2180 #else
2181 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
2182 #endif /* WORDS_BIGENDIAN */
2183
2184 /* Read the given attribute value as an address, taking the attribute's
2185 form into account. */
2186
2187 static CORE_ADDR
2188 attr_value_as_address (struct attribute *attr)
2189 {
2190 CORE_ADDR addr;
2191
2192 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2193 {
2194 /* Aside from a few clearly defined exceptions, attributes that
2195 contain an address must always be in DW_FORM_addr form.
2196 Unfortunately, some compilers happen to be violating this
2197 requirement by encoding addresses using other forms, such
2198 as DW_FORM_data4 for example. For those broken compilers,
2199 we try to do our best, without any guarantee of success,
2200 to interpret the address correctly. It would also be nice
2201 to generate a complaint, but that would require us to maintain
2202 a list of legitimate cases where a non-address form is allowed,
2203 as well as update callers to pass in at least the CU's DWARF
2204 version. This is more overhead than what we're willing to
2205 expand for a pretty rare case. */
2206 addr = DW_UNSND (attr);
2207 }
2208 else
2209 addr = DW_ADDR (attr);
2210
2211 return addr;
2212 }
2213
2214 /* The suffix for an index file. */
2215 #define INDEX_SUFFIX ".gdb-index"
2216
2217 /* See declaration. */
2218
2219 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2220 const dwarf2_debug_sections *names)
2221 : objfile (objfile_)
2222 {
2223 if (names == NULL)
2224 names = &dwarf2_elf_names;
2225
2226 bfd *obfd = objfile->obfd;
2227
2228 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2229 locate_sections (obfd, sec, *names);
2230 }
2231
2232 dwarf2_per_objfile::~dwarf2_per_objfile ()
2233 {
2234 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2235 free_cached_comp_units ();
2236
2237 if (quick_file_names_table)
2238 htab_delete (quick_file_names_table);
2239
2240 if (line_header_hash)
2241 htab_delete (line_header_hash);
2242
2243 /* Everything else should be on the objfile obstack. */
2244 }
2245
2246 /* See declaration. */
2247
2248 void
2249 dwarf2_per_objfile::free_cached_comp_units ()
2250 {
2251 dwarf2_per_cu_data *per_cu = read_in_chain;
2252 dwarf2_per_cu_data **last_chain = &read_in_chain;
2253 while (per_cu != NULL)
2254 {
2255 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2256
2257 free_heap_comp_unit (per_cu->cu);
2258 *last_chain = next_cu;
2259 per_cu = next_cu;
2260 }
2261 }
2262
2263 /* Try to locate the sections we need for DWARF 2 debugging
2264 information and return true if we have enough to do something.
2265 NAMES points to the dwarf2 section names, or is NULL if the standard
2266 ELF names are used. */
2267
2268 int
2269 dwarf2_has_info (struct objfile *objfile,
2270 const struct dwarf2_debug_sections *names)
2271 {
2272 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2273 objfile_data (objfile, dwarf2_objfile_data_key));
2274 if (!dwarf2_per_objfile)
2275 {
2276 /* Initialize per-objfile state. */
2277 struct dwarf2_per_objfile *data
2278 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2279
2280 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2281 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
2282 }
2283 return (!dwarf2_per_objfile->info.is_virtual
2284 && dwarf2_per_objfile->info.s.section != NULL
2285 && !dwarf2_per_objfile->abbrev.is_virtual
2286 && dwarf2_per_objfile->abbrev.s.section != NULL);
2287 }
2288
2289 /* Return the containing section of virtual section SECTION. */
2290
2291 static struct dwarf2_section_info *
2292 get_containing_section (const struct dwarf2_section_info *section)
2293 {
2294 gdb_assert (section->is_virtual);
2295 return section->s.containing_section;
2296 }
2297
2298 /* Return the bfd owner of SECTION. */
2299
2300 static struct bfd *
2301 get_section_bfd_owner (const struct dwarf2_section_info *section)
2302 {
2303 if (section->is_virtual)
2304 {
2305 section = get_containing_section (section);
2306 gdb_assert (!section->is_virtual);
2307 }
2308 return section->s.section->owner;
2309 }
2310
2311 /* Return the bfd section of SECTION.
2312 Returns NULL if the section is not present. */
2313
2314 static asection *
2315 get_section_bfd_section (const struct dwarf2_section_info *section)
2316 {
2317 if (section->is_virtual)
2318 {
2319 section = get_containing_section (section);
2320 gdb_assert (!section->is_virtual);
2321 }
2322 return section->s.section;
2323 }
2324
2325 /* Return the name of SECTION. */
2326
2327 static const char *
2328 get_section_name (const struct dwarf2_section_info *section)
2329 {
2330 asection *sectp = get_section_bfd_section (section);
2331
2332 gdb_assert (sectp != NULL);
2333 return bfd_section_name (get_section_bfd_owner (section), sectp);
2334 }
2335
2336 /* Return the name of the file SECTION is in. */
2337
2338 static const char *
2339 get_section_file_name (const struct dwarf2_section_info *section)
2340 {
2341 bfd *abfd = get_section_bfd_owner (section);
2342
2343 return bfd_get_filename (abfd);
2344 }
2345
2346 /* Return the id of SECTION.
2347 Returns 0 if SECTION doesn't exist. */
2348
2349 static int
2350 get_section_id (const struct dwarf2_section_info *section)
2351 {
2352 asection *sectp = get_section_bfd_section (section);
2353
2354 if (sectp == NULL)
2355 return 0;
2356 return sectp->id;
2357 }
2358
2359 /* Return the flags of SECTION.
2360 SECTION (or containing section if this is a virtual section) must exist. */
2361
2362 static int
2363 get_section_flags (const struct dwarf2_section_info *section)
2364 {
2365 asection *sectp = get_section_bfd_section (section);
2366
2367 gdb_assert (sectp != NULL);
2368 return bfd_get_section_flags (sectp->owner, sectp);
2369 }
2370
2371 /* When loading sections, we look either for uncompressed section or for
2372 compressed section names. */
2373
2374 static int
2375 section_is_p (const char *section_name,
2376 const struct dwarf2_section_names *names)
2377 {
2378 if (names->normal != NULL
2379 && strcmp (section_name, names->normal) == 0)
2380 return 1;
2381 if (names->compressed != NULL
2382 && strcmp (section_name, names->compressed) == 0)
2383 return 1;
2384 return 0;
2385 }
2386
2387 /* See declaration. */
2388
2389 void
2390 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2391 const dwarf2_debug_sections &names)
2392 {
2393 flagword aflag = bfd_get_section_flags (abfd, sectp);
2394
2395 if ((aflag & SEC_HAS_CONTENTS) == 0)
2396 {
2397 }
2398 else if (section_is_p (sectp->name, &names.info))
2399 {
2400 this->info.s.section = sectp;
2401 this->info.size = bfd_get_section_size (sectp);
2402 }
2403 else if (section_is_p (sectp->name, &names.abbrev))
2404 {
2405 this->abbrev.s.section = sectp;
2406 this->abbrev.size = bfd_get_section_size (sectp);
2407 }
2408 else if (section_is_p (sectp->name, &names.line))
2409 {
2410 this->line.s.section = sectp;
2411 this->line.size = bfd_get_section_size (sectp);
2412 }
2413 else if (section_is_p (sectp->name, &names.loc))
2414 {
2415 this->loc.s.section = sectp;
2416 this->loc.size = bfd_get_section_size (sectp);
2417 }
2418 else if (section_is_p (sectp->name, &names.loclists))
2419 {
2420 this->loclists.s.section = sectp;
2421 this->loclists.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &names.macinfo))
2424 {
2425 this->macinfo.s.section = sectp;
2426 this->macinfo.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.macro))
2429 {
2430 this->macro.s.section = sectp;
2431 this->macro.size = bfd_get_section_size (sectp);
2432 }
2433 else if (section_is_p (sectp->name, &names.str))
2434 {
2435 this->str.s.section = sectp;
2436 this->str.size = bfd_get_section_size (sectp);
2437 }
2438 else if (section_is_p (sectp->name, &names.line_str))
2439 {
2440 this->line_str.s.section = sectp;
2441 this->line_str.size = bfd_get_section_size (sectp);
2442 }
2443 else if (section_is_p (sectp->name, &names.addr))
2444 {
2445 this->addr.s.section = sectp;
2446 this->addr.size = bfd_get_section_size (sectp);
2447 }
2448 else if (section_is_p (sectp->name, &names.frame))
2449 {
2450 this->frame.s.section = sectp;
2451 this->frame.size = bfd_get_section_size (sectp);
2452 }
2453 else if (section_is_p (sectp->name, &names.eh_frame))
2454 {
2455 this->eh_frame.s.section = sectp;
2456 this->eh_frame.size = bfd_get_section_size (sectp);
2457 }
2458 else if (section_is_p (sectp->name, &names.ranges))
2459 {
2460 this->ranges.s.section = sectp;
2461 this->ranges.size = bfd_get_section_size (sectp);
2462 }
2463 else if (section_is_p (sectp->name, &names.rnglists))
2464 {
2465 this->rnglists.s.section = sectp;
2466 this->rnglists.size = bfd_get_section_size (sectp);
2467 }
2468 else if (section_is_p (sectp->name, &names.types))
2469 {
2470 struct dwarf2_section_info type_section;
2471
2472 memset (&type_section, 0, sizeof (type_section));
2473 type_section.s.section = sectp;
2474 type_section.size = bfd_get_section_size (sectp);
2475
2476 VEC_safe_push (dwarf2_section_info_def, this->types,
2477 &type_section);
2478 }
2479 else if (section_is_p (sectp->name, &names.gdb_index))
2480 {
2481 this->gdb_index.s.section = sectp;
2482 this->gdb_index.size = bfd_get_section_size (sectp);
2483 }
2484
2485 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2486 && bfd_section_vma (abfd, sectp) == 0)
2487 this->has_section_at_zero = true;
2488 }
2489
2490 /* A helper function that decides whether a section is empty,
2491 or not present. */
2492
2493 static int
2494 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2495 {
2496 if (section->is_virtual)
2497 return section->size == 0;
2498 return section->s.section == NULL || section->size == 0;
2499 }
2500
2501 /* Read the contents of the section INFO.
2502 OBJFILE is the main object file, but not necessarily the file where
2503 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2504 of the DWO file.
2505 If the section is compressed, uncompress it before returning. */
2506
2507 static void
2508 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2509 {
2510 asection *sectp;
2511 bfd *abfd;
2512 gdb_byte *buf, *retbuf;
2513
2514 if (info->readin)
2515 return;
2516 info->buffer = NULL;
2517 info->readin = 1;
2518
2519 if (dwarf2_section_empty_p (info))
2520 return;
2521
2522 sectp = get_section_bfd_section (info);
2523
2524 /* If this is a virtual section we need to read in the real one first. */
2525 if (info->is_virtual)
2526 {
2527 struct dwarf2_section_info *containing_section =
2528 get_containing_section (info);
2529
2530 gdb_assert (sectp != NULL);
2531 if ((sectp->flags & SEC_RELOC) != 0)
2532 {
2533 error (_("Dwarf Error: DWP format V2 with relocations is not"
2534 " supported in section %s [in module %s]"),
2535 get_section_name (info), get_section_file_name (info));
2536 }
2537 dwarf2_read_section (objfile, containing_section);
2538 /* Other code should have already caught virtual sections that don't
2539 fit. */
2540 gdb_assert (info->virtual_offset + info->size
2541 <= containing_section->size);
2542 /* If the real section is empty or there was a problem reading the
2543 section we shouldn't get here. */
2544 gdb_assert (containing_section->buffer != NULL);
2545 info->buffer = containing_section->buffer + info->virtual_offset;
2546 return;
2547 }
2548
2549 /* If the section has relocations, we must read it ourselves.
2550 Otherwise we attach it to the BFD. */
2551 if ((sectp->flags & SEC_RELOC) == 0)
2552 {
2553 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2554 return;
2555 }
2556
2557 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2558 info->buffer = buf;
2559
2560 /* When debugging .o files, we may need to apply relocations; see
2561 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2562 We never compress sections in .o files, so we only need to
2563 try this when the section is not compressed. */
2564 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2565 if (retbuf != NULL)
2566 {
2567 info->buffer = retbuf;
2568 return;
2569 }
2570
2571 abfd = get_section_bfd_owner (info);
2572 gdb_assert (abfd != NULL);
2573
2574 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2575 || bfd_bread (buf, info->size, abfd) != info->size)
2576 {
2577 error (_("Dwarf Error: Can't read DWARF data"
2578 " in section %s [in module %s]"),
2579 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2580 }
2581 }
2582
2583 /* A helper function that returns the size of a section in a safe way.
2584 If you are positive that the section has been read before using the
2585 size, then it is safe to refer to the dwarf2_section_info object's
2586 "size" field directly. In other cases, you must call this
2587 function, because for compressed sections the size field is not set
2588 correctly until the section has been read. */
2589
2590 static bfd_size_type
2591 dwarf2_section_size (struct objfile *objfile,
2592 struct dwarf2_section_info *info)
2593 {
2594 if (!info->readin)
2595 dwarf2_read_section (objfile, info);
2596 return info->size;
2597 }
2598
2599 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2600 SECTION_NAME. */
2601
2602 void
2603 dwarf2_get_section_info (struct objfile *objfile,
2604 enum dwarf2_section_enum sect,
2605 asection **sectp, const gdb_byte **bufp,
2606 bfd_size_type *sizep)
2607 {
2608 struct dwarf2_per_objfile *data
2609 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2610 dwarf2_objfile_data_key);
2611 struct dwarf2_section_info *info;
2612
2613 /* We may see an objfile without any DWARF, in which case we just
2614 return nothing. */
2615 if (data == NULL)
2616 {
2617 *sectp = NULL;
2618 *bufp = NULL;
2619 *sizep = 0;
2620 return;
2621 }
2622 switch (sect)
2623 {
2624 case DWARF2_DEBUG_FRAME:
2625 info = &data->frame;
2626 break;
2627 case DWARF2_EH_FRAME:
2628 info = &data->eh_frame;
2629 break;
2630 default:
2631 gdb_assert_not_reached ("unexpected section");
2632 }
2633
2634 dwarf2_read_section (objfile, info);
2635
2636 *sectp = get_section_bfd_section (info);
2637 *bufp = info->buffer;
2638 *sizep = info->size;
2639 }
2640
2641 /* A helper function to find the sections for a .dwz file. */
2642
2643 static void
2644 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2645 {
2646 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2647
2648 /* Note that we only support the standard ELF names, because .dwz
2649 is ELF-only (at the time of writing). */
2650 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2651 {
2652 dwz_file->abbrev.s.section = sectp;
2653 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2654 }
2655 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2656 {
2657 dwz_file->info.s.section = sectp;
2658 dwz_file->info.size = bfd_get_section_size (sectp);
2659 }
2660 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2661 {
2662 dwz_file->str.s.section = sectp;
2663 dwz_file->str.size = bfd_get_section_size (sectp);
2664 }
2665 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2666 {
2667 dwz_file->line.s.section = sectp;
2668 dwz_file->line.size = bfd_get_section_size (sectp);
2669 }
2670 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2671 {
2672 dwz_file->macro.s.section = sectp;
2673 dwz_file->macro.size = bfd_get_section_size (sectp);
2674 }
2675 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2676 {
2677 dwz_file->gdb_index.s.section = sectp;
2678 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2679 }
2680 }
2681
2682 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2683 there is no .gnu_debugaltlink section in the file. Error if there
2684 is such a section but the file cannot be found. */
2685
2686 static struct dwz_file *
2687 dwarf2_get_dwz_file (void)
2688 {
2689 char *data;
2690 struct cleanup *cleanup;
2691 const char *filename;
2692 struct dwz_file *result;
2693 bfd_size_type buildid_len_arg;
2694 size_t buildid_len;
2695 bfd_byte *buildid;
2696
2697 if (dwarf2_per_objfile->dwz_file != NULL)
2698 return dwarf2_per_objfile->dwz_file;
2699
2700 bfd_set_error (bfd_error_no_error);
2701 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2702 &buildid_len_arg, &buildid);
2703 if (data == NULL)
2704 {
2705 if (bfd_get_error () == bfd_error_no_error)
2706 return NULL;
2707 error (_("could not read '.gnu_debugaltlink' section: %s"),
2708 bfd_errmsg (bfd_get_error ()));
2709 }
2710 cleanup = make_cleanup (xfree, data);
2711 make_cleanup (xfree, buildid);
2712
2713 buildid_len = (size_t) buildid_len_arg;
2714
2715 filename = (const char *) data;
2716
2717 std::string abs_storage;
2718 if (!IS_ABSOLUTE_PATH (filename))
2719 {
2720 gdb::unique_xmalloc_ptr<char> abs
2721 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2722
2723 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2724 filename = abs_storage.c_str ();
2725 }
2726
2727 /* First try the file name given in the section. If that doesn't
2728 work, try to use the build-id instead. */
2729 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2730 if (dwz_bfd != NULL)
2731 {
2732 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2733 dwz_bfd.release ();
2734 }
2735
2736 if (dwz_bfd == NULL)
2737 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2738
2739 if (dwz_bfd == NULL)
2740 error (_("could not find '.gnu_debugaltlink' file for %s"),
2741 objfile_name (dwarf2_per_objfile->objfile));
2742
2743 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2744 struct dwz_file);
2745 result->dwz_bfd = dwz_bfd.release ();
2746
2747 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2748
2749 do_cleanups (cleanup);
2750
2751 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2752 dwarf2_per_objfile->dwz_file = result;
2753 return result;
2754 }
2755 \f
2756 /* DWARF quick_symbols_functions support. */
2757
2758 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2759 unique line tables, so we maintain a separate table of all .debug_line
2760 derived entries to support the sharing.
2761 All the quick functions need is the list of file names. We discard the
2762 line_header when we're done and don't need to record it here. */
2763 struct quick_file_names
2764 {
2765 /* The data used to construct the hash key. */
2766 struct stmt_list_hash hash;
2767
2768 /* The number of entries in file_names, real_names. */
2769 unsigned int num_file_names;
2770
2771 /* The file names from the line table, after being run through
2772 file_full_name. */
2773 const char **file_names;
2774
2775 /* The file names from the line table after being run through
2776 gdb_realpath. These are computed lazily. */
2777 const char **real_names;
2778 };
2779
2780 /* When using the index (and thus not using psymtabs), each CU has an
2781 object of this type. This is used to hold information needed by
2782 the various "quick" methods. */
2783 struct dwarf2_per_cu_quick_data
2784 {
2785 /* The file table. This can be NULL if there was no file table
2786 or it's currently not read in.
2787 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2788 struct quick_file_names *file_names;
2789
2790 /* The corresponding symbol table. This is NULL if symbols for this
2791 CU have not yet been read. */
2792 struct compunit_symtab *compunit_symtab;
2793
2794 /* A temporary mark bit used when iterating over all CUs in
2795 expand_symtabs_matching. */
2796 unsigned int mark : 1;
2797
2798 /* True if we've tried to read the file table and found there isn't one.
2799 There will be no point in trying to read it again next time. */
2800 unsigned int no_file_data : 1;
2801 };
2802
2803 /* Utility hash function for a stmt_list_hash. */
2804
2805 static hashval_t
2806 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2807 {
2808 hashval_t v = 0;
2809
2810 if (stmt_list_hash->dwo_unit != NULL)
2811 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2812 v += to_underlying (stmt_list_hash->line_sect_off);
2813 return v;
2814 }
2815
2816 /* Utility equality function for a stmt_list_hash. */
2817
2818 static int
2819 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2820 const struct stmt_list_hash *rhs)
2821 {
2822 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2823 return 0;
2824 if (lhs->dwo_unit != NULL
2825 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2826 return 0;
2827
2828 return lhs->line_sect_off == rhs->line_sect_off;
2829 }
2830
2831 /* Hash function for a quick_file_names. */
2832
2833 static hashval_t
2834 hash_file_name_entry (const void *e)
2835 {
2836 const struct quick_file_names *file_data
2837 = (const struct quick_file_names *) e;
2838
2839 return hash_stmt_list_entry (&file_data->hash);
2840 }
2841
2842 /* Equality function for a quick_file_names. */
2843
2844 static int
2845 eq_file_name_entry (const void *a, const void *b)
2846 {
2847 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2848 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2849
2850 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2851 }
2852
2853 /* Delete function for a quick_file_names. */
2854
2855 static void
2856 delete_file_name_entry (void *e)
2857 {
2858 struct quick_file_names *file_data = (struct quick_file_names *) e;
2859 int i;
2860
2861 for (i = 0; i < file_data->num_file_names; ++i)
2862 {
2863 xfree ((void*) file_data->file_names[i]);
2864 if (file_data->real_names)
2865 xfree ((void*) file_data->real_names[i]);
2866 }
2867
2868 /* The space for the struct itself lives on objfile_obstack,
2869 so we don't free it here. */
2870 }
2871
2872 /* Create a quick_file_names hash table. */
2873
2874 static htab_t
2875 create_quick_file_names_table (unsigned int nr_initial_entries)
2876 {
2877 return htab_create_alloc (nr_initial_entries,
2878 hash_file_name_entry, eq_file_name_entry,
2879 delete_file_name_entry, xcalloc, xfree);
2880 }
2881
2882 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2883 have to be created afterwards. You should call age_cached_comp_units after
2884 processing PER_CU->CU. dw2_setup must have been already called. */
2885
2886 static void
2887 load_cu (struct dwarf2_per_cu_data *per_cu)
2888 {
2889 if (per_cu->is_debug_types)
2890 load_full_type_unit (per_cu);
2891 else
2892 load_full_comp_unit (per_cu, language_minimal);
2893
2894 if (per_cu->cu == NULL)
2895 return; /* Dummy CU. */
2896
2897 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2898 }
2899
2900 /* Read in the symbols for PER_CU. */
2901
2902 static void
2903 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2904 {
2905 struct cleanup *back_to;
2906
2907 /* Skip type_unit_groups, reading the type units they contain
2908 is handled elsewhere. */
2909 if (IS_TYPE_UNIT_GROUP (per_cu))
2910 return;
2911
2912 back_to = make_cleanup (dwarf2_release_queue, NULL);
2913
2914 if (dwarf2_per_objfile->using_index
2915 ? per_cu->v.quick->compunit_symtab == NULL
2916 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2917 {
2918 queue_comp_unit (per_cu, language_minimal);
2919 load_cu (per_cu);
2920
2921 /* If we just loaded a CU from a DWO, and we're working with an index
2922 that may badly handle TUs, load all the TUs in that DWO as well.
2923 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2924 if (!per_cu->is_debug_types
2925 && per_cu->cu != NULL
2926 && per_cu->cu->dwo_unit != NULL
2927 && dwarf2_per_objfile->index_table != NULL
2928 && dwarf2_per_objfile->index_table->version <= 7
2929 /* DWP files aren't supported yet. */
2930 && get_dwp_file () == NULL)
2931 queue_and_load_all_dwo_tus (per_cu);
2932 }
2933
2934 process_queue ();
2935
2936 /* Age the cache, releasing compilation units that have not
2937 been used recently. */
2938 age_cached_comp_units ();
2939
2940 do_cleanups (back_to);
2941 }
2942
2943 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2944 the objfile from which this CU came. Returns the resulting symbol
2945 table. */
2946
2947 static struct compunit_symtab *
2948 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2949 {
2950 gdb_assert (dwarf2_per_objfile->using_index);
2951 if (!per_cu->v.quick->compunit_symtab)
2952 {
2953 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2954 scoped_restore decrementer = increment_reading_symtab ();
2955 dw2_do_instantiate_symtab (per_cu);
2956 process_cu_includes ();
2957 do_cleanups (back_to);
2958 }
2959
2960 return per_cu->v.quick->compunit_symtab;
2961 }
2962
2963 /* Return the CU/TU given its index.
2964
2965 This is intended for loops like:
2966
2967 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2968 + dwarf2_per_objfile->n_type_units); ++i)
2969 {
2970 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2971
2972 ...;
2973 }
2974 */
2975
2976 static struct dwarf2_per_cu_data *
2977 dw2_get_cutu (int index)
2978 {
2979 if (index >= dwarf2_per_objfile->n_comp_units)
2980 {
2981 index -= dwarf2_per_objfile->n_comp_units;
2982 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2983 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2984 }
2985
2986 return dwarf2_per_objfile->all_comp_units[index];
2987 }
2988
2989 /* Return the CU given its index.
2990 This differs from dw2_get_cutu in that it's for when you know INDEX
2991 refers to a CU. */
2992
2993 static struct dwarf2_per_cu_data *
2994 dw2_get_cu (int index)
2995 {
2996 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2997
2998 return dwarf2_per_objfile->all_comp_units[index];
2999 }
3000
3001 /* A helper for create_cus_from_index that handles a given list of
3002 CUs. */
3003
3004 static void
3005 create_cus_from_index_list (struct objfile *objfile,
3006 const gdb_byte *cu_list, offset_type n_elements,
3007 struct dwarf2_section_info *section,
3008 int is_dwz,
3009 int base_offset)
3010 {
3011 offset_type i;
3012
3013 for (i = 0; i < n_elements; i += 2)
3014 {
3015 gdb_static_assert (sizeof (ULONGEST) >= 8);
3016
3017 sect_offset sect_off
3018 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3019 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3020 cu_list += 2 * 8;
3021
3022 dwarf2_per_cu_data *the_cu
3023 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3024 struct dwarf2_per_cu_data);
3025 the_cu->sect_off = sect_off;
3026 the_cu->length = length;
3027 the_cu->objfile = objfile;
3028 the_cu->section = section;
3029 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3030 struct dwarf2_per_cu_quick_data);
3031 the_cu->is_dwz = is_dwz;
3032 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
3033 }
3034 }
3035
3036 /* Read the CU list from the mapped index, and use it to create all
3037 the CU objects for this objfile. */
3038
3039 static void
3040 create_cus_from_index (struct objfile *objfile,
3041 const gdb_byte *cu_list, offset_type cu_list_elements,
3042 const gdb_byte *dwz_list, offset_type dwz_elements)
3043 {
3044 struct dwz_file *dwz;
3045
3046 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3047 dwarf2_per_objfile->all_comp_units =
3048 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3049 dwarf2_per_objfile->n_comp_units);
3050
3051 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3052 &dwarf2_per_objfile->info, 0, 0);
3053
3054 if (dwz_elements == 0)
3055 return;
3056
3057 dwz = dwarf2_get_dwz_file ();
3058 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3059 cu_list_elements / 2);
3060 }
3061
3062 /* Create the signatured type hash table from the index. */
3063
3064 static void
3065 create_signatured_type_table_from_index (struct objfile *objfile,
3066 struct dwarf2_section_info *section,
3067 const gdb_byte *bytes,
3068 offset_type elements)
3069 {
3070 offset_type i;
3071 htab_t sig_types_hash;
3072
3073 dwarf2_per_objfile->n_type_units
3074 = dwarf2_per_objfile->n_allocated_type_units
3075 = elements / 3;
3076 dwarf2_per_objfile->all_type_units =
3077 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3078
3079 sig_types_hash = allocate_signatured_type_table (objfile);
3080
3081 for (i = 0; i < elements; i += 3)
3082 {
3083 struct signatured_type *sig_type;
3084 ULONGEST signature;
3085 void **slot;
3086 cu_offset type_offset_in_tu;
3087
3088 gdb_static_assert (sizeof (ULONGEST) >= 8);
3089 sect_offset sect_off
3090 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3091 type_offset_in_tu
3092 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3093 BFD_ENDIAN_LITTLE);
3094 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3095 bytes += 3 * 8;
3096
3097 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3098 struct signatured_type);
3099 sig_type->signature = signature;
3100 sig_type->type_offset_in_tu = type_offset_in_tu;
3101 sig_type->per_cu.is_debug_types = 1;
3102 sig_type->per_cu.section = section;
3103 sig_type->per_cu.sect_off = sect_off;
3104 sig_type->per_cu.objfile = objfile;
3105 sig_type->per_cu.v.quick
3106 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3107 struct dwarf2_per_cu_quick_data);
3108
3109 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3110 *slot = sig_type;
3111
3112 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3113 }
3114
3115 dwarf2_per_objfile->signatured_types = sig_types_hash;
3116 }
3117
3118 /* Read the address map data from the mapped index, and use it to
3119 populate the objfile's psymtabs_addrmap. */
3120
3121 static void
3122 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3123 {
3124 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3125 const gdb_byte *iter, *end;
3126 struct addrmap *mutable_map;
3127 CORE_ADDR baseaddr;
3128
3129 auto_obstack temp_obstack;
3130
3131 mutable_map = addrmap_create_mutable (&temp_obstack);
3132
3133 iter = index->address_table;
3134 end = iter + index->address_table_size;
3135
3136 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3137
3138 while (iter < end)
3139 {
3140 ULONGEST hi, lo, cu_index;
3141 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3142 iter += 8;
3143 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3144 iter += 8;
3145 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3146 iter += 4;
3147
3148 if (lo > hi)
3149 {
3150 complaint (&symfile_complaints,
3151 _(".gdb_index address table has invalid range (%s - %s)"),
3152 hex_string (lo), hex_string (hi));
3153 continue;
3154 }
3155
3156 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3157 {
3158 complaint (&symfile_complaints,
3159 _(".gdb_index address table has invalid CU number %u"),
3160 (unsigned) cu_index);
3161 continue;
3162 }
3163
3164 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3165 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3166 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3167 }
3168
3169 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3170 &objfile->objfile_obstack);
3171 }
3172
3173 /* The hash function for strings in the mapped index. This is the same as
3174 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3175 implementation. This is necessary because the hash function is tied to the
3176 format of the mapped index file. The hash values do not have to match with
3177 SYMBOL_HASH_NEXT.
3178
3179 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3180
3181 static hashval_t
3182 mapped_index_string_hash (int index_version, const void *p)
3183 {
3184 const unsigned char *str = (const unsigned char *) p;
3185 hashval_t r = 0;
3186 unsigned char c;
3187
3188 while ((c = *str++) != 0)
3189 {
3190 if (index_version >= 5)
3191 c = tolower (c);
3192 r = r * 67 + c - 113;
3193 }
3194
3195 return r;
3196 }
3197
3198 /* Find a slot in the mapped index INDEX for the object named NAME.
3199 If NAME is found, set *VEC_OUT to point to the CU vector in the
3200 constant pool and return 1. If NAME cannot be found, return 0. */
3201
3202 static int
3203 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3204 offset_type **vec_out)
3205 {
3206 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3207 offset_type hash;
3208 offset_type slot, step;
3209 int (*cmp) (const char *, const char *);
3210
3211 if (current_language->la_language == language_cplus
3212 || current_language->la_language == language_fortran
3213 || current_language->la_language == language_d)
3214 {
3215 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3216 not contain any. */
3217
3218 if (strchr (name, '(') != NULL)
3219 {
3220 char *without_params = cp_remove_params (name);
3221
3222 if (without_params != NULL)
3223 {
3224 make_cleanup (xfree, without_params);
3225 name = without_params;
3226 }
3227 }
3228 }
3229
3230 /* Index version 4 did not support case insensitive searches. But the
3231 indices for case insensitive languages are built in lowercase, therefore
3232 simulate our NAME being searched is also lowercased. */
3233 hash = mapped_index_string_hash ((index->version == 4
3234 && case_sensitivity == case_sensitive_off
3235 ? 5 : index->version),
3236 name);
3237
3238 slot = hash & (index->symbol_table_slots - 1);
3239 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3240 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3241
3242 for (;;)
3243 {
3244 /* Convert a slot number to an offset into the table. */
3245 offset_type i = 2 * slot;
3246 const char *str;
3247 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3248 {
3249 do_cleanups (back_to);
3250 return 0;
3251 }
3252
3253 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3254 if (!cmp (name, str))
3255 {
3256 *vec_out = (offset_type *) (index->constant_pool
3257 + MAYBE_SWAP (index->symbol_table[i + 1]));
3258 do_cleanups (back_to);
3259 return 1;
3260 }
3261
3262 slot = (slot + step) & (index->symbol_table_slots - 1);
3263 }
3264 }
3265
3266 /* A helper function that reads the .gdb_index from SECTION and fills
3267 in MAP. FILENAME is the name of the file containing the section;
3268 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3269 ok to use deprecated sections.
3270
3271 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3272 out parameters that are filled in with information about the CU and
3273 TU lists in the section.
3274
3275 Returns 1 if all went well, 0 otherwise. */
3276
3277 static int
3278 read_index_from_section (struct objfile *objfile,
3279 const char *filename,
3280 int deprecated_ok,
3281 struct dwarf2_section_info *section,
3282 struct mapped_index *map,
3283 const gdb_byte **cu_list,
3284 offset_type *cu_list_elements,
3285 const gdb_byte **types_list,
3286 offset_type *types_list_elements)
3287 {
3288 const gdb_byte *addr;
3289 offset_type version;
3290 offset_type *metadata;
3291 int i;
3292
3293 if (dwarf2_section_empty_p (section))
3294 return 0;
3295
3296 /* Older elfutils strip versions could keep the section in the main
3297 executable while splitting it for the separate debug info file. */
3298 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3299 return 0;
3300
3301 dwarf2_read_section (objfile, section);
3302
3303 addr = section->buffer;
3304 /* Version check. */
3305 version = MAYBE_SWAP (*(offset_type *) addr);
3306 /* Versions earlier than 3 emitted every copy of a psymbol. This
3307 causes the index to behave very poorly for certain requests. Version 3
3308 contained incomplete addrmap. So, it seems better to just ignore such
3309 indices. */
3310 if (version < 4)
3311 {
3312 static int warning_printed = 0;
3313 if (!warning_printed)
3314 {
3315 warning (_("Skipping obsolete .gdb_index section in %s."),
3316 filename);
3317 warning_printed = 1;
3318 }
3319 return 0;
3320 }
3321 /* Index version 4 uses a different hash function than index version
3322 5 and later.
3323
3324 Versions earlier than 6 did not emit psymbols for inlined
3325 functions. Using these files will cause GDB not to be able to
3326 set breakpoints on inlined functions by name, so we ignore these
3327 indices unless the user has done
3328 "set use-deprecated-index-sections on". */
3329 if (version < 6 && !deprecated_ok)
3330 {
3331 static int warning_printed = 0;
3332 if (!warning_printed)
3333 {
3334 warning (_("\
3335 Skipping deprecated .gdb_index section in %s.\n\
3336 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3337 to use the section anyway."),
3338 filename);
3339 warning_printed = 1;
3340 }
3341 return 0;
3342 }
3343 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3344 of the TU (for symbols coming from TUs),
3345 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3346 Plus gold-generated indices can have duplicate entries for global symbols,
3347 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3348 These are just performance bugs, and we can't distinguish gdb-generated
3349 indices from gold-generated ones, so issue no warning here. */
3350
3351 /* Indexes with higher version than the one supported by GDB may be no
3352 longer backward compatible. */
3353 if (version > 8)
3354 return 0;
3355
3356 map->version = version;
3357 map->total_size = section->size;
3358
3359 metadata = (offset_type *) (addr + sizeof (offset_type));
3360
3361 i = 0;
3362 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3363 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3364 / 8);
3365 ++i;
3366
3367 *types_list = addr + MAYBE_SWAP (metadata[i]);
3368 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3369 - MAYBE_SWAP (metadata[i]))
3370 / 8);
3371 ++i;
3372
3373 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3374 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3375 - MAYBE_SWAP (metadata[i]));
3376 ++i;
3377
3378 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3379 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3380 - MAYBE_SWAP (metadata[i]))
3381 / (2 * sizeof (offset_type)));
3382 ++i;
3383
3384 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3385
3386 return 1;
3387 }
3388
3389
3390 /* Read the index file. If everything went ok, initialize the "quick"
3391 elements of all the CUs and return 1. Otherwise, return 0. */
3392
3393 static int
3394 dwarf2_read_index (struct objfile *objfile)
3395 {
3396 struct mapped_index local_map, *map;
3397 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3398 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3399 struct dwz_file *dwz;
3400
3401 if (!read_index_from_section (objfile, objfile_name (objfile),
3402 use_deprecated_index_sections,
3403 &dwarf2_per_objfile->gdb_index, &local_map,
3404 &cu_list, &cu_list_elements,
3405 &types_list, &types_list_elements))
3406 return 0;
3407
3408 /* Don't use the index if it's empty. */
3409 if (local_map.symbol_table_slots == 0)
3410 return 0;
3411
3412 /* If there is a .dwz file, read it so we can get its CU list as
3413 well. */
3414 dwz = dwarf2_get_dwz_file ();
3415 if (dwz != NULL)
3416 {
3417 struct mapped_index dwz_map;
3418 const gdb_byte *dwz_types_ignore;
3419 offset_type dwz_types_elements_ignore;
3420
3421 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3422 1,
3423 &dwz->gdb_index, &dwz_map,
3424 &dwz_list, &dwz_list_elements,
3425 &dwz_types_ignore,
3426 &dwz_types_elements_ignore))
3427 {
3428 warning (_("could not read '.gdb_index' section from %s; skipping"),
3429 bfd_get_filename (dwz->dwz_bfd));
3430 return 0;
3431 }
3432 }
3433
3434 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3435 dwz_list_elements);
3436
3437 if (types_list_elements)
3438 {
3439 struct dwarf2_section_info *section;
3440
3441 /* We can only handle a single .debug_types when we have an
3442 index. */
3443 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3444 return 0;
3445
3446 section = VEC_index (dwarf2_section_info_def,
3447 dwarf2_per_objfile->types, 0);
3448
3449 create_signatured_type_table_from_index (objfile, section, types_list,
3450 types_list_elements);
3451 }
3452
3453 create_addrmap_from_index (objfile, &local_map);
3454
3455 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3456 *map = local_map;
3457
3458 dwarf2_per_objfile->index_table = map;
3459 dwarf2_per_objfile->using_index = 1;
3460 dwarf2_per_objfile->quick_file_names_table =
3461 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3462
3463 return 1;
3464 }
3465
3466 /* A helper for the "quick" functions which sets the global
3467 dwarf2_per_objfile according to OBJFILE. */
3468
3469 static void
3470 dw2_setup (struct objfile *objfile)
3471 {
3472 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3473 objfile_data (objfile, dwarf2_objfile_data_key));
3474 gdb_assert (dwarf2_per_objfile);
3475 }
3476
3477 /* die_reader_func for dw2_get_file_names. */
3478
3479 static void
3480 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3481 const gdb_byte *info_ptr,
3482 struct die_info *comp_unit_die,
3483 int has_children,
3484 void *data)
3485 {
3486 struct dwarf2_cu *cu = reader->cu;
3487 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3488 struct objfile *objfile = dwarf2_per_objfile->objfile;
3489 struct dwarf2_per_cu_data *lh_cu;
3490 struct attribute *attr;
3491 int i;
3492 void **slot;
3493 struct quick_file_names *qfn;
3494
3495 gdb_assert (! this_cu->is_debug_types);
3496
3497 /* Our callers never want to match partial units -- instead they
3498 will match the enclosing full CU. */
3499 if (comp_unit_die->tag == DW_TAG_partial_unit)
3500 {
3501 this_cu->v.quick->no_file_data = 1;
3502 return;
3503 }
3504
3505 lh_cu = this_cu;
3506 slot = NULL;
3507
3508 line_header_up lh;
3509 sect_offset line_offset {};
3510
3511 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3512 if (attr)
3513 {
3514 struct quick_file_names find_entry;
3515
3516 line_offset = (sect_offset) DW_UNSND (attr);
3517
3518 /* We may have already read in this line header (TU line header sharing).
3519 If we have we're done. */
3520 find_entry.hash.dwo_unit = cu->dwo_unit;
3521 find_entry.hash.line_sect_off = line_offset;
3522 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3523 &find_entry, INSERT);
3524 if (*slot != NULL)
3525 {
3526 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3527 return;
3528 }
3529
3530 lh = dwarf_decode_line_header (line_offset, cu);
3531 }
3532 if (lh == NULL)
3533 {
3534 lh_cu->v.quick->no_file_data = 1;
3535 return;
3536 }
3537
3538 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3539 qfn->hash.dwo_unit = cu->dwo_unit;
3540 qfn->hash.line_sect_off = line_offset;
3541 gdb_assert (slot != NULL);
3542 *slot = qfn;
3543
3544 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3545
3546 qfn->num_file_names = lh->file_names.size ();
3547 qfn->file_names =
3548 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3549 for (i = 0; i < lh->file_names.size (); ++i)
3550 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3551 qfn->real_names = NULL;
3552
3553 lh_cu->v.quick->file_names = qfn;
3554 }
3555
3556 /* A helper for the "quick" functions which attempts to read the line
3557 table for THIS_CU. */
3558
3559 static struct quick_file_names *
3560 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3561 {
3562 /* This should never be called for TUs. */
3563 gdb_assert (! this_cu->is_debug_types);
3564 /* Nor type unit groups. */
3565 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3566
3567 if (this_cu->v.quick->file_names != NULL)
3568 return this_cu->v.quick->file_names;
3569 /* If we know there is no line data, no point in looking again. */
3570 if (this_cu->v.quick->no_file_data)
3571 return NULL;
3572
3573 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3574
3575 if (this_cu->v.quick->no_file_data)
3576 return NULL;
3577 return this_cu->v.quick->file_names;
3578 }
3579
3580 /* A helper for the "quick" functions which computes and caches the
3581 real path for a given file name from the line table. */
3582
3583 static const char *
3584 dw2_get_real_path (struct objfile *objfile,
3585 struct quick_file_names *qfn, int index)
3586 {
3587 if (qfn->real_names == NULL)
3588 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3589 qfn->num_file_names, const char *);
3590
3591 if (qfn->real_names[index] == NULL)
3592 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3593
3594 return qfn->real_names[index];
3595 }
3596
3597 static struct symtab *
3598 dw2_find_last_source_symtab (struct objfile *objfile)
3599 {
3600 struct compunit_symtab *cust;
3601 int index;
3602
3603 dw2_setup (objfile);
3604 index = dwarf2_per_objfile->n_comp_units - 1;
3605 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3606 if (cust == NULL)
3607 return NULL;
3608 return compunit_primary_filetab (cust);
3609 }
3610
3611 /* Traversal function for dw2_forget_cached_source_info. */
3612
3613 static int
3614 dw2_free_cached_file_names (void **slot, void *info)
3615 {
3616 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3617
3618 if (file_data->real_names)
3619 {
3620 int i;
3621
3622 for (i = 0; i < file_data->num_file_names; ++i)
3623 {
3624 xfree ((void*) file_data->real_names[i]);
3625 file_data->real_names[i] = NULL;
3626 }
3627 }
3628
3629 return 1;
3630 }
3631
3632 static void
3633 dw2_forget_cached_source_info (struct objfile *objfile)
3634 {
3635 dw2_setup (objfile);
3636
3637 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3638 dw2_free_cached_file_names, NULL);
3639 }
3640
3641 /* Helper function for dw2_map_symtabs_matching_filename that expands
3642 the symtabs and calls the iterator. */
3643
3644 static int
3645 dw2_map_expand_apply (struct objfile *objfile,
3646 struct dwarf2_per_cu_data *per_cu,
3647 const char *name, const char *real_path,
3648 gdb::function_view<bool (symtab *)> callback)
3649 {
3650 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3651
3652 /* Don't visit already-expanded CUs. */
3653 if (per_cu->v.quick->compunit_symtab)
3654 return 0;
3655
3656 /* This may expand more than one symtab, and we want to iterate over
3657 all of them. */
3658 dw2_instantiate_symtab (per_cu);
3659
3660 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3661 last_made, callback);
3662 }
3663
3664 /* Implementation of the map_symtabs_matching_filename method. */
3665
3666 static bool
3667 dw2_map_symtabs_matching_filename
3668 (struct objfile *objfile, const char *name, const char *real_path,
3669 gdb::function_view<bool (symtab *)> callback)
3670 {
3671 int i;
3672 const char *name_basename = lbasename (name);
3673
3674 dw2_setup (objfile);
3675
3676 /* The rule is CUs specify all the files, including those used by
3677 any TU, so there's no need to scan TUs here. */
3678
3679 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3680 {
3681 int j;
3682 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3683 struct quick_file_names *file_data;
3684
3685 /* We only need to look at symtabs not already expanded. */
3686 if (per_cu->v.quick->compunit_symtab)
3687 continue;
3688
3689 file_data = dw2_get_file_names (per_cu);
3690 if (file_data == NULL)
3691 continue;
3692
3693 for (j = 0; j < file_data->num_file_names; ++j)
3694 {
3695 const char *this_name = file_data->file_names[j];
3696 const char *this_real_name;
3697
3698 if (compare_filenames_for_search (this_name, name))
3699 {
3700 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3701 callback))
3702 return true;
3703 continue;
3704 }
3705
3706 /* Before we invoke realpath, which can get expensive when many
3707 files are involved, do a quick comparison of the basenames. */
3708 if (! basenames_may_differ
3709 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3710 continue;
3711
3712 this_real_name = dw2_get_real_path (objfile, file_data, j);
3713 if (compare_filenames_for_search (this_real_name, name))
3714 {
3715 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3716 callback))
3717 return true;
3718 continue;
3719 }
3720
3721 if (real_path != NULL)
3722 {
3723 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3724 gdb_assert (IS_ABSOLUTE_PATH (name));
3725 if (this_real_name != NULL
3726 && FILENAME_CMP (real_path, this_real_name) == 0)
3727 {
3728 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3729 callback))
3730 return true;
3731 continue;
3732 }
3733 }
3734 }
3735 }
3736
3737 return false;
3738 }
3739
3740 /* Struct used to manage iterating over all CUs looking for a symbol. */
3741
3742 struct dw2_symtab_iterator
3743 {
3744 /* The internalized form of .gdb_index. */
3745 struct mapped_index *index;
3746 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3747 int want_specific_block;
3748 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3749 Unused if !WANT_SPECIFIC_BLOCK. */
3750 int block_index;
3751 /* The kind of symbol we're looking for. */
3752 domain_enum domain;
3753 /* The list of CUs from the index entry of the symbol,
3754 or NULL if not found. */
3755 offset_type *vec;
3756 /* The next element in VEC to look at. */
3757 int next;
3758 /* The number of elements in VEC, or zero if there is no match. */
3759 int length;
3760 /* Have we seen a global version of the symbol?
3761 If so we can ignore all further global instances.
3762 This is to work around gold/15646, inefficient gold-generated
3763 indices. */
3764 int global_seen;
3765 };
3766
3767 /* Initialize the index symtab iterator ITER.
3768 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3769 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3770
3771 static void
3772 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3773 struct mapped_index *index,
3774 int want_specific_block,
3775 int block_index,
3776 domain_enum domain,
3777 const char *name)
3778 {
3779 iter->index = index;
3780 iter->want_specific_block = want_specific_block;
3781 iter->block_index = block_index;
3782 iter->domain = domain;
3783 iter->next = 0;
3784 iter->global_seen = 0;
3785
3786 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3787 iter->length = MAYBE_SWAP (*iter->vec);
3788 else
3789 {
3790 iter->vec = NULL;
3791 iter->length = 0;
3792 }
3793 }
3794
3795 /* Return the next matching CU or NULL if there are no more. */
3796
3797 static struct dwarf2_per_cu_data *
3798 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3799 {
3800 for ( ; iter->next < iter->length; ++iter->next)
3801 {
3802 offset_type cu_index_and_attrs =
3803 MAYBE_SWAP (iter->vec[iter->next + 1]);
3804 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3805 struct dwarf2_per_cu_data *per_cu;
3806 int want_static = iter->block_index != GLOBAL_BLOCK;
3807 /* This value is only valid for index versions >= 7. */
3808 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3809 gdb_index_symbol_kind symbol_kind =
3810 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3811 /* Only check the symbol attributes if they're present.
3812 Indices prior to version 7 don't record them,
3813 and indices >= 7 may elide them for certain symbols
3814 (gold does this). */
3815 int attrs_valid =
3816 (iter->index->version >= 7
3817 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3818
3819 /* Don't crash on bad data. */
3820 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3821 + dwarf2_per_objfile->n_type_units))
3822 {
3823 complaint (&symfile_complaints,
3824 _(".gdb_index entry has bad CU index"
3825 " [in module %s]"),
3826 objfile_name (dwarf2_per_objfile->objfile));
3827 continue;
3828 }
3829
3830 per_cu = dw2_get_cutu (cu_index);
3831
3832 /* Skip if already read in. */
3833 if (per_cu->v.quick->compunit_symtab)
3834 continue;
3835
3836 /* Check static vs global. */
3837 if (attrs_valid)
3838 {
3839 if (iter->want_specific_block
3840 && want_static != is_static)
3841 continue;
3842 /* Work around gold/15646. */
3843 if (!is_static && iter->global_seen)
3844 continue;
3845 if (!is_static)
3846 iter->global_seen = 1;
3847 }
3848
3849 /* Only check the symbol's kind if it has one. */
3850 if (attrs_valid)
3851 {
3852 switch (iter->domain)
3853 {
3854 case VAR_DOMAIN:
3855 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3856 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3857 /* Some types are also in VAR_DOMAIN. */
3858 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3859 continue;
3860 break;
3861 case STRUCT_DOMAIN:
3862 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3863 continue;
3864 break;
3865 case LABEL_DOMAIN:
3866 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3867 continue;
3868 break;
3869 default:
3870 break;
3871 }
3872 }
3873
3874 ++iter->next;
3875 return per_cu;
3876 }
3877
3878 return NULL;
3879 }
3880
3881 static struct compunit_symtab *
3882 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3883 const char *name, domain_enum domain)
3884 {
3885 struct compunit_symtab *stab_best = NULL;
3886 struct mapped_index *index;
3887
3888 dw2_setup (objfile);
3889
3890 index = dwarf2_per_objfile->index_table;
3891
3892 /* index is NULL if OBJF_READNOW. */
3893 if (index)
3894 {
3895 struct dw2_symtab_iterator iter;
3896 struct dwarf2_per_cu_data *per_cu;
3897
3898 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3899
3900 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3901 {
3902 struct symbol *sym, *with_opaque = NULL;
3903 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3904 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3905 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3906
3907 sym = block_find_symbol (block, name, domain,
3908 block_find_non_opaque_type_preferred,
3909 &with_opaque);
3910
3911 /* Some caution must be observed with overloaded functions
3912 and methods, since the index will not contain any overload
3913 information (but NAME might contain it). */
3914
3915 if (sym != NULL
3916 && SYMBOL_MATCHES_SEARCH_NAME (sym, name))
3917 return stab;
3918 if (with_opaque != NULL
3919 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, name))
3920 stab_best = stab;
3921
3922 /* Keep looking through other CUs. */
3923 }
3924 }
3925
3926 return stab_best;
3927 }
3928
3929 static void
3930 dw2_print_stats (struct objfile *objfile)
3931 {
3932 int i, total, count;
3933
3934 dw2_setup (objfile);
3935 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3936 count = 0;
3937 for (i = 0; i < total; ++i)
3938 {
3939 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3940
3941 if (!per_cu->v.quick->compunit_symtab)
3942 ++count;
3943 }
3944 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3945 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3946 }
3947
3948 /* This dumps minimal information about the index.
3949 It is called via "mt print objfiles".
3950 One use is to verify .gdb_index has been loaded by the
3951 gdb.dwarf2/gdb-index.exp testcase. */
3952
3953 static void
3954 dw2_dump (struct objfile *objfile)
3955 {
3956 dw2_setup (objfile);
3957 gdb_assert (dwarf2_per_objfile->using_index);
3958 printf_filtered (".gdb_index:");
3959 if (dwarf2_per_objfile->index_table != NULL)
3960 {
3961 printf_filtered (" version %d\n",
3962 dwarf2_per_objfile->index_table->version);
3963 }
3964 else
3965 printf_filtered (" faked for \"readnow\"\n");
3966 printf_filtered ("\n");
3967 }
3968
3969 static void
3970 dw2_relocate (struct objfile *objfile,
3971 const struct section_offsets *new_offsets,
3972 const struct section_offsets *delta)
3973 {
3974 /* There's nothing to relocate here. */
3975 }
3976
3977 static void
3978 dw2_expand_symtabs_for_function (struct objfile *objfile,
3979 const char *func_name)
3980 {
3981 struct mapped_index *index;
3982
3983 dw2_setup (objfile);
3984
3985 index = dwarf2_per_objfile->index_table;
3986
3987 /* index is NULL if OBJF_READNOW. */
3988 if (index)
3989 {
3990 struct dw2_symtab_iterator iter;
3991 struct dwarf2_per_cu_data *per_cu;
3992
3993 /* Note: It doesn't matter what we pass for block_index here. */
3994 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3995 func_name);
3996
3997 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3998 dw2_instantiate_symtab (per_cu);
3999 }
4000 }
4001
4002 static void
4003 dw2_expand_all_symtabs (struct objfile *objfile)
4004 {
4005 int i;
4006
4007 dw2_setup (objfile);
4008
4009 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4010 + dwarf2_per_objfile->n_type_units); ++i)
4011 {
4012 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4013
4014 dw2_instantiate_symtab (per_cu);
4015 }
4016 }
4017
4018 static void
4019 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4020 const char *fullname)
4021 {
4022 int i;
4023
4024 dw2_setup (objfile);
4025
4026 /* We don't need to consider type units here.
4027 This is only called for examining code, e.g. expand_line_sal.
4028 There can be an order of magnitude (or more) more type units
4029 than comp units, and we avoid them if we can. */
4030
4031 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4032 {
4033 int j;
4034 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4035 struct quick_file_names *file_data;
4036
4037 /* We only need to look at symtabs not already expanded. */
4038 if (per_cu->v.quick->compunit_symtab)
4039 continue;
4040
4041 file_data = dw2_get_file_names (per_cu);
4042 if (file_data == NULL)
4043 continue;
4044
4045 for (j = 0; j < file_data->num_file_names; ++j)
4046 {
4047 const char *this_fullname = file_data->file_names[j];
4048
4049 if (filename_cmp (this_fullname, fullname) == 0)
4050 {
4051 dw2_instantiate_symtab (per_cu);
4052 break;
4053 }
4054 }
4055 }
4056 }
4057
4058 static void
4059 dw2_map_matching_symbols (struct objfile *objfile,
4060 const char * name, domain_enum domain,
4061 int global,
4062 int (*callback) (struct block *,
4063 struct symbol *, void *),
4064 void *data, symbol_compare_ftype *match,
4065 symbol_compare_ftype *ordered_compare)
4066 {
4067 /* Currently unimplemented; used for Ada. The function can be called if the
4068 current language is Ada for a non-Ada objfile using GNU index. As Ada
4069 does not look for non-Ada symbols this function should just return. */
4070 }
4071
4072 static void
4073 dw2_expand_symtabs_matching
4074 (struct objfile *objfile,
4075 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4076 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4077 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4078 enum search_domain kind)
4079 {
4080 int i;
4081 offset_type iter;
4082 struct mapped_index *index;
4083
4084 dw2_setup (objfile);
4085
4086 /* index_table is NULL if OBJF_READNOW. */
4087 if (!dwarf2_per_objfile->index_table)
4088 return;
4089 index = dwarf2_per_objfile->index_table;
4090
4091 if (file_matcher != NULL)
4092 {
4093 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4094 htab_eq_pointer,
4095 NULL, xcalloc, xfree));
4096 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4097 htab_eq_pointer,
4098 NULL, xcalloc, xfree));
4099
4100 /* The rule is CUs specify all the files, including those used by
4101 any TU, so there's no need to scan TUs here. */
4102
4103 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4104 {
4105 int j;
4106 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4107 struct quick_file_names *file_data;
4108 void **slot;
4109
4110 QUIT;
4111
4112 per_cu->v.quick->mark = 0;
4113
4114 /* We only need to look at symtabs not already expanded. */
4115 if (per_cu->v.quick->compunit_symtab)
4116 continue;
4117
4118 file_data = dw2_get_file_names (per_cu);
4119 if (file_data == NULL)
4120 continue;
4121
4122 if (htab_find (visited_not_found.get (), file_data) != NULL)
4123 continue;
4124 else if (htab_find (visited_found.get (), file_data) != NULL)
4125 {
4126 per_cu->v.quick->mark = 1;
4127 continue;
4128 }
4129
4130 for (j = 0; j < file_data->num_file_names; ++j)
4131 {
4132 const char *this_real_name;
4133
4134 if (file_matcher (file_data->file_names[j], false))
4135 {
4136 per_cu->v.quick->mark = 1;
4137 break;
4138 }
4139
4140 /* Before we invoke realpath, which can get expensive when many
4141 files are involved, do a quick comparison of the basenames. */
4142 if (!basenames_may_differ
4143 && !file_matcher (lbasename (file_data->file_names[j]),
4144 true))
4145 continue;
4146
4147 this_real_name = dw2_get_real_path (objfile, file_data, j);
4148 if (file_matcher (this_real_name, false))
4149 {
4150 per_cu->v.quick->mark = 1;
4151 break;
4152 }
4153 }
4154
4155 slot = htab_find_slot (per_cu->v.quick->mark
4156 ? visited_found.get ()
4157 : visited_not_found.get (),
4158 file_data, INSERT);
4159 *slot = file_data;
4160 }
4161 }
4162
4163 for (iter = 0; iter < index->symbol_table_slots; ++iter)
4164 {
4165 offset_type idx = 2 * iter;
4166 const char *name;
4167 offset_type *vec, vec_len, vec_idx;
4168 int global_seen = 0;
4169
4170 QUIT;
4171
4172 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
4173 continue;
4174
4175 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
4176
4177 if (!symbol_matcher (name))
4178 continue;
4179
4180 /* The name was matched, now expand corresponding CUs that were
4181 marked. */
4182 vec = (offset_type *) (index->constant_pool
4183 + MAYBE_SWAP (index->symbol_table[idx + 1]));
4184 vec_len = MAYBE_SWAP (vec[0]);
4185 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4186 {
4187 struct dwarf2_per_cu_data *per_cu;
4188 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4189 /* This value is only valid for index versions >= 7. */
4190 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4191 gdb_index_symbol_kind symbol_kind =
4192 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4193 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4194 /* Only check the symbol attributes if they're present.
4195 Indices prior to version 7 don't record them,
4196 and indices >= 7 may elide them for certain symbols
4197 (gold does this). */
4198 int attrs_valid =
4199 (index->version >= 7
4200 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4201
4202 /* Work around gold/15646. */
4203 if (attrs_valid)
4204 {
4205 if (!is_static && global_seen)
4206 continue;
4207 if (!is_static)
4208 global_seen = 1;
4209 }
4210
4211 /* Only check the symbol's kind if it has one. */
4212 if (attrs_valid)
4213 {
4214 switch (kind)
4215 {
4216 case VARIABLES_DOMAIN:
4217 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4218 continue;
4219 break;
4220 case FUNCTIONS_DOMAIN:
4221 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4222 continue;
4223 break;
4224 case TYPES_DOMAIN:
4225 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4226 continue;
4227 break;
4228 default:
4229 break;
4230 }
4231 }
4232
4233 /* Don't crash on bad data. */
4234 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4235 + dwarf2_per_objfile->n_type_units))
4236 {
4237 complaint (&symfile_complaints,
4238 _(".gdb_index entry has bad CU index"
4239 " [in module %s]"), objfile_name (objfile));
4240 continue;
4241 }
4242
4243 per_cu = dw2_get_cutu (cu_index);
4244 if (file_matcher == NULL || per_cu->v.quick->mark)
4245 {
4246 int symtab_was_null =
4247 (per_cu->v.quick->compunit_symtab == NULL);
4248
4249 dw2_instantiate_symtab (per_cu);
4250
4251 if (expansion_notify != NULL
4252 && symtab_was_null
4253 && per_cu->v.quick->compunit_symtab != NULL)
4254 {
4255 expansion_notify (per_cu->v.quick->compunit_symtab);
4256 }
4257 }
4258 }
4259 }
4260 }
4261
4262 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4263 symtab. */
4264
4265 static struct compunit_symtab *
4266 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4267 CORE_ADDR pc)
4268 {
4269 int i;
4270
4271 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4272 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4273 return cust;
4274
4275 if (cust->includes == NULL)
4276 return NULL;
4277
4278 for (i = 0; cust->includes[i]; ++i)
4279 {
4280 struct compunit_symtab *s = cust->includes[i];
4281
4282 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4283 if (s != NULL)
4284 return s;
4285 }
4286
4287 return NULL;
4288 }
4289
4290 static struct compunit_symtab *
4291 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4292 struct bound_minimal_symbol msymbol,
4293 CORE_ADDR pc,
4294 struct obj_section *section,
4295 int warn_if_readin)
4296 {
4297 struct dwarf2_per_cu_data *data;
4298 struct compunit_symtab *result;
4299
4300 dw2_setup (objfile);
4301
4302 if (!objfile->psymtabs_addrmap)
4303 return NULL;
4304
4305 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4306 pc);
4307 if (!data)
4308 return NULL;
4309
4310 if (warn_if_readin && data->v.quick->compunit_symtab)
4311 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4312 paddress (get_objfile_arch (objfile), pc));
4313
4314 result
4315 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4316 pc);
4317 gdb_assert (result != NULL);
4318 return result;
4319 }
4320
4321 static void
4322 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4323 void *data, int need_fullname)
4324 {
4325 dw2_setup (objfile);
4326
4327 if (!dwarf2_per_objfile->filenames_cache)
4328 {
4329 dwarf2_per_objfile->filenames_cache.emplace ();
4330
4331 htab_up visited (htab_create_alloc (10,
4332 htab_hash_pointer, htab_eq_pointer,
4333 NULL, xcalloc, xfree));
4334
4335 /* The rule is CUs specify all the files, including those used
4336 by any TU, so there's no need to scan TUs here. We can
4337 ignore file names coming from already-expanded CUs. */
4338
4339 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4340 {
4341 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4342
4343 if (per_cu->v.quick->compunit_symtab)
4344 {
4345 void **slot = htab_find_slot (visited.get (),
4346 per_cu->v.quick->file_names,
4347 INSERT);
4348
4349 *slot = per_cu->v.quick->file_names;
4350 }
4351 }
4352
4353 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4354 {
4355 int j;
4356 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4357 struct quick_file_names *file_data;
4358 void **slot;
4359
4360 /* We only need to look at symtabs not already expanded. */
4361 if (per_cu->v.quick->compunit_symtab)
4362 continue;
4363
4364 file_data = dw2_get_file_names (per_cu);
4365 if (file_data == NULL)
4366 continue;
4367
4368 slot = htab_find_slot (visited.get (), file_data, INSERT);
4369 if (*slot)
4370 {
4371 /* Already visited. */
4372 continue;
4373 }
4374 *slot = file_data;
4375
4376 for (int j = 0; j < file_data->num_file_names; ++j)
4377 {
4378 const char *filename = file_data->file_names[j];
4379 dwarf2_per_objfile->filenames_cache->seen (filename);
4380 }
4381 }
4382 }
4383
4384 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4385 {
4386 gdb::unique_xmalloc_ptr<char> this_real_name;
4387
4388 if (need_fullname)
4389 this_real_name = gdb_realpath (filename);
4390 (*fun) (filename, this_real_name.get (), data);
4391 });
4392 }
4393
4394 static int
4395 dw2_has_symbols (struct objfile *objfile)
4396 {
4397 return 1;
4398 }
4399
4400 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4401 {
4402 dw2_has_symbols,
4403 dw2_find_last_source_symtab,
4404 dw2_forget_cached_source_info,
4405 dw2_map_symtabs_matching_filename,
4406 dw2_lookup_symbol,
4407 dw2_print_stats,
4408 dw2_dump,
4409 dw2_relocate,
4410 dw2_expand_symtabs_for_function,
4411 dw2_expand_all_symtabs,
4412 dw2_expand_symtabs_with_fullname,
4413 dw2_map_matching_symbols,
4414 dw2_expand_symtabs_matching,
4415 dw2_find_pc_sect_compunit_symtab,
4416 dw2_map_symbol_filenames
4417 };
4418
4419 /* Initialize for reading DWARF for this objfile. Return 0 if this
4420 file will use psymtabs, or 1 if using the GNU index. */
4421
4422 int
4423 dwarf2_initialize_objfile (struct objfile *objfile)
4424 {
4425 /* If we're about to read full symbols, don't bother with the
4426 indices. In this case we also don't care if some other debug
4427 format is making psymtabs, because they are all about to be
4428 expanded anyway. */
4429 if ((objfile->flags & OBJF_READNOW))
4430 {
4431 int i;
4432
4433 dwarf2_per_objfile->using_index = 1;
4434 create_all_comp_units (objfile);
4435 create_all_type_units (objfile);
4436 dwarf2_per_objfile->quick_file_names_table =
4437 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4438
4439 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4440 + dwarf2_per_objfile->n_type_units); ++i)
4441 {
4442 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4443
4444 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4445 struct dwarf2_per_cu_quick_data);
4446 }
4447
4448 /* Return 1 so that gdb sees the "quick" functions. However,
4449 these functions will be no-ops because we will have expanded
4450 all symtabs. */
4451 return 1;
4452 }
4453
4454 if (dwarf2_read_index (objfile))
4455 return 1;
4456
4457 return 0;
4458 }
4459
4460 \f
4461
4462 /* Build a partial symbol table. */
4463
4464 void
4465 dwarf2_build_psymtabs (struct objfile *objfile)
4466 {
4467
4468 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4469 {
4470 init_psymbol_list (objfile, 1024);
4471 }
4472
4473 TRY
4474 {
4475 /* This isn't really ideal: all the data we allocate on the
4476 objfile's obstack is still uselessly kept around. However,
4477 freeing it seems unsafe. */
4478 psymtab_discarder psymtabs (objfile);
4479 dwarf2_build_psymtabs_hard (objfile);
4480 psymtabs.keep ();
4481 }
4482 CATCH (except, RETURN_MASK_ERROR)
4483 {
4484 exception_print (gdb_stderr, except);
4485 }
4486 END_CATCH
4487 }
4488
4489 /* Return the total length of the CU described by HEADER. */
4490
4491 static unsigned int
4492 get_cu_length (const struct comp_unit_head *header)
4493 {
4494 return header->initial_length_size + header->length;
4495 }
4496
4497 /* Return TRUE if SECT_OFF is within CU_HEADER. */
4498
4499 static inline bool
4500 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
4501 {
4502 sect_offset bottom = cu_header->sect_off;
4503 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
4504
4505 return sect_off >= bottom && sect_off < top;
4506 }
4507
4508 /* Find the base address of the compilation unit for range lists and
4509 location lists. It will normally be specified by DW_AT_low_pc.
4510 In DWARF-3 draft 4, the base address could be overridden by
4511 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4512 compilation units with discontinuous ranges. */
4513
4514 static void
4515 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4516 {
4517 struct attribute *attr;
4518
4519 cu->base_known = 0;
4520 cu->base_address = 0;
4521
4522 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4523 if (attr)
4524 {
4525 cu->base_address = attr_value_as_address (attr);
4526 cu->base_known = 1;
4527 }
4528 else
4529 {
4530 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4531 if (attr)
4532 {
4533 cu->base_address = attr_value_as_address (attr);
4534 cu->base_known = 1;
4535 }
4536 }
4537 }
4538
4539 /* Read in the comp unit header information from the debug_info at info_ptr.
4540 Use rcuh_kind::COMPILE as the default type if not known by the caller.
4541 NOTE: This leaves members offset, first_die_offset to be filled in
4542 by the caller. */
4543
4544 static const gdb_byte *
4545 read_comp_unit_head (struct comp_unit_head *cu_header,
4546 const gdb_byte *info_ptr,
4547 struct dwarf2_section_info *section,
4548 rcuh_kind section_kind)
4549 {
4550 int signed_addr;
4551 unsigned int bytes_read;
4552 const char *filename = get_section_file_name (section);
4553 bfd *abfd = get_section_bfd_owner (section);
4554
4555 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4556 cu_header->initial_length_size = bytes_read;
4557 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4558 info_ptr += bytes_read;
4559 cu_header->version = read_2_bytes (abfd, info_ptr);
4560 info_ptr += 2;
4561 if (cu_header->version < 5)
4562 switch (section_kind)
4563 {
4564 case rcuh_kind::COMPILE:
4565 cu_header->unit_type = DW_UT_compile;
4566 break;
4567 case rcuh_kind::TYPE:
4568 cu_header->unit_type = DW_UT_type;
4569 break;
4570 default:
4571 internal_error (__FILE__, __LINE__,
4572 _("read_comp_unit_head: invalid section_kind"));
4573 }
4574 else
4575 {
4576 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4577 (read_1_byte (abfd, info_ptr));
4578 info_ptr += 1;
4579 switch (cu_header->unit_type)
4580 {
4581 case DW_UT_compile:
4582 if (section_kind != rcuh_kind::COMPILE)
4583 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4584 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4585 filename);
4586 break;
4587 case DW_UT_type:
4588 section_kind = rcuh_kind::TYPE;
4589 break;
4590 default:
4591 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4592 "(is %d, should be %d or %d) [in module %s]"),
4593 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4594 }
4595
4596 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4597 info_ptr += 1;
4598 }
4599 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
4600 cu_header,
4601 &bytes_read);
4602 info_ptr += bytes_read;
4603 if (cu_header->version < 5)
4604 {
4605 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4606 info_ptr += 1;
4607 }
4608 signed_addr = bfd_get_sign_extend_vma (abfd);
4609 if (signed_addr < 0)
4610 internal_error (__FILE__, __LINE__,
4611 _("read_comp_unit_head: dwarf from non elf file"));
4612 cu_header->signed_addr_p = signed_addr;
4613
4614 if (section_kind == rcuh_kind::TYPE)
4615 {
4616 LONGEST type_offset;
4617
4618 cu_header->signature = read_8_bytes (abfd, info_ptr);
4619 info_ptr += 8;
4620
4621 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4622 info_ptr += bytes_read;
4623 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
4624 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
4625 error (_("Dwarf Error: Too big type_offset in compilation unit "
4626 "header (is %s) [in module %s]"), plongest (type_offset),
4627 filename);
4628 }
4629
4630 return info_ptr;
4631 }
4632
4633 /* Helper function that returns the proper abbrev section for
4634 THIS_CU. */
4635
4636 static struct dwarf2_section_info *
4637 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4638 {
4639 struct dwarf2_section_info *abbrev;
4640
4641 if (this_cu->is_dwz)
4642 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4643 else
4644 abbrev = &dwarf2_per_objfile->abbrev;
4645
4646 return abbrev;
4647 }
4648
4649 /* Subroutine of read_and_check_comp_unit_head and
4650 read_and_check_type_unit_head to simplify them.
4651 Perform various error checking on the header. */
4652
4653 static void
4654 error_check_comp_unit_head (struct comp_unit_head *header,
4655 struct dwarf2_section_info *section,
4656 struct dwarf2_section_info *abbrev_section)
4657 {
4658 const char *filename = get_section_file_name (section);
4659
4660 if (header->version < 2 || header->version > 5)
4661 error (_("Dwarf Error: wrong version in compilation unit header "
4662 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
4663 filename);
4664
4665 if (to_underlying (header->abbrev_sect_off)
4666 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4667 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
4668 "(offset 0x%x + 6) [in module %s]"),
4669 to_underlying (header->abbrev_sect_off),
4670 to_underlying (header->sect_off),
4671 filename);
4672
4673 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
4674 avoid potential 32-bit overflow. */
4675 if (((ULONGEST) header->sect_off + get_cu_length (header))
4676 > section->size)
4677 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
4678 "(offset 0x%x + 0) [in module %s]"),
4679 header->length, to_underlying (header->sect_off),
4680 filename);
4681 }
4682
4683 /* Read in a CU/TU header and perform some basic error checking.
4684 The contents of the header are stored in HEADER.
4685 The result is a pointer to the start of the first DIE. */
4686
4687 static const gdb_byte *
4688 read_and_check_comp_unit_head (struct comp_unit_head *header,
4689 struct dwarf2_section_info *section,
4690 struct dwarf2_section_info *abbrev_section,
4691 const gdb_byte *info_ptr,
4692 rcuh_kind section_kind)
4693 {
4694 const gdb_byte *beg_of_comp_unit = info_ptr;
4695 bfd *abfd = get_section_bfd_owner (section);
4696
4697 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
4698
4699 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
4700
4701 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
4702
4703 error_check_comp_unit_head (header, section, abbrev_section);
4704
4705 return info_ptr;
4706 }
4707
4708 /* Fetch the abbreviation table offset from a comp or type unit header. */
4709
4710 static sect_offset
4711 read_abbrev_offset (struct dwarf2_section_info *section,
4712 sect_offset sect_off)
4713 {
4714 bfd *abfd = get_section_bfd_owner (section);
4715 const gdb_byte *info_ptr;
4716 unsigned int initial_length_size, offset_size;
4717 uint16_t version;
4718
4719 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4720 info_ptr = section->buffer + to_underlying (sect_off);
4721 read_initial_length (abfd, info_ptr, &initial_length_size);
4722 offset_size = initial_length_size == 4 ? 4 : 8;
4723 info_ptr += initial_length_size;
4724
4725 version = read_2_bytes (abfd, info_ptr);
4726 info_ptr += 2;
4727 if (version >= 5)
4728 {
4729 /* Skip unit type and address size. */
4730 info_ptr += 2;
4731 }
4732
4733 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
4734 }
4735
4736 /* Allocate a new partial symtab for file named NAME and mark this new
4737 partial symtab as being an include of PST. */
4738
4739 static void
4740 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4741 struct objfile *objfile)
4742 {
4743 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4744
4745 if (!IS_ABSOLUTE_PATH (subpst->filename))
4746 {
4747 /* It shares objfile->objfile_obstack. */
4748 subpst->dirname = pst->dirname;
4749 }
4750
4751 subpst->textlow = 0;
4752 subpst->texthigh = 0;
4753
4754 subpst->dependencies
4755 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4756 subpst->dependencies[0] = pst;
4757 subpst->number_of_dependencies = 1;
4758
4759 subpst->globals_offset = 0;
4760 subpst->n_global_syms = 0;
4761 subpst->statics_offset = 0;
4762 subpst->n_static_syms = 0;
4763 subpst->compunit_symtab = NULL;
4764 subpst->read_symtab = pst->read_symtab;
4765 subpst->readin = 0;
4766
4767 /* No private part is necessary for include psymtabs. This property
4768 can be used to differentiate between such include psymtabs and
4769 the regular ones. */
4770 subpst->read_symtab_private = NULL;
4771 }
4772
4773 /* Read the Line Number Program data and extract the list of files
4774 included by the source file represented by PST. Build an include
4775 partial symtab for each of these included files. */
4776
4777 static void
4778 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4779 struct die_info *die,
4780 struct partial_symtab *pst)
4781 {
4782 line_header_up lh;
4783 struct attribute *attr;
4784
4785 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4786 if (attr)
4787 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
4788 if (lh == NULL)
4789 return; /* No linetable, so no includes. */
4790
4791 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4792 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
4793 }
4794
4795 static hashval_t
4796 hash_signatured_type (const void *item)
4797 {
4798 const struct signatured_type *sig_type
4799 = (const struct signatured_type *) item;
4800
4801 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4802 return sig_type->signature;
4803 }
4804
4805 static int
4806 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4807 {
4808 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4809 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4810
4811 return lhs->signature == rhs->signature;
4812 }
4813
4814 /* Allocate a hash table for signatured types. */
4815
4816 static htab_t
4817 allocate_signatured_type_table (struct objfile *objfile)
4818 {
4819 return htab_create_alloc_ex (41,
4820 hash_signatured_type,
4821 eq_signatured_type,
4822 NULL,
4823 &objfile->objfile_obstack,
4824 hashtab_obstack_allocate,
4825 dummy_obstack_deallocate);
4826 }
4827
4828 /* A helper function to add a signatured type CU to a table. */
4829
4830 static int
4831 add_signatured_type_cu_to_table (void **slot, void *datum)
4832 {
4833 struct signatured_type *sigt = (struct signatured_type *) *slot;
4834 struct signatured_type ***datap = (struct signatured_type ***) datum;
4835
4836 **datap = sigt;
4837 ++*datap;
4838
4839 return 1;
4840 }
4841
4842 /* A helper for create_debug_types_hash_table. Read types from SECTION
4843 and fill them into TYPES_HTAB. It will process only type units,
4844 therefore DW_UT_type. */
4845
4846 static void
4847 create_debug_type_hash_table (struct dwo_file *dwo_file,
4848 dwarf2_section_info *section, htab_t &types_htab,
4849 rcuh_kind section_kind)
4850 {
4851 struct objfile *objfile = dwarf2_per_objfile->objfile;
4852 struct dwarf2_section_info *abbrev_section;
4853 bfd *abfd;
4854 const gdb_byte *info_ptr, *end_ptr;
4855
4856 abbrev_section = (dwo_file != NULL
4857 ? &dwo_file->sections.abbrev
4858 : &dwarf2_per_objfile->abbrev);
4859
4860 if (dwarf_read_debug)
4861 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4862 get_section_name (section),
4863 get_section_file_name (abbrev_section));
4864
4865 dwarf2_read_section (objfile, section);
4866 info_ptr = section->buffer;
4867
4868 if (info_ptr == NULL)
4869 return;
4870
4871 /* We can't set abfd until now because the section may be empty or
4872 not present, in which case the bfd is unknown. */
4873 abfd = get_section_bfd_owner (section);
4874
4875 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4876 because we don't need to read any dies: the signature is in the
4877 header. */
4878
4879 end_ptr = info_ptr + section->size;
4880 while (info_ptr < end_ptr)
4881 {
4882 struct signatured_type *sig_type;
4883 struct dwo_unit *dwo_tu;
4884 void **slot;
4885 const gdb_byte *ptr = info_ptr;
4886 struct comp_unit_head header;
4887 unsigned int length;
4888
4889 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
4890
4891 /* Initialize it due to a false compiler warning. */
4892 header.signature = -1;
4893 header.type_cu_offset_in_tu = (cu_offset) -1;
4894
4895 /* We need to read the type's signature in order to build the hash
4896 table, but we don't need anything else just yet. */
4897
4898 ptr = read_and_check_comp_unit_head (&header, section,
4899 abbrev_section, ptr, section_kind);
4900
4901 length = get_cu_length (&header);
4902
4903 /* Skip dummy type units. */
4904 if (ptr >= info_ptr + length
4905 || peek_abbrev_code (abfd, ptr) == 0
4906 || header.unit_type != DW_UT_type)
4907 {
4908 info_ptr += length;
4909 continue;
4910 }
4911
4912 if (types_htab == NULL)
4913 {
4914 if (dwo_file)
4915 types_htab = allocate_dwo_unit_table (objfile);
4916 else
4917 types_htab = allocate_signatured_type_table (objfile);
4918 }
4919
4920 if (dwo_file)
4921 {
4922 sig_type = NULL;
4923 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4924 struct dwo_unit);
4925 dwo_tu->dwo_file = dwo_file;
4926 dwo_tu->signature = header.signature;
4927 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
4928 dwo_tu->section = section;
4929 dwo_tu->sect_off = sect_off;
4930 dwo_tu->length = length;
4931 }
4932 else
4933 {
4934 /* N.B.: type_offset is not usable if this type uses a DWO file.
4935 The real type_offset is in the DWO file. */
4936 dwo_tu = NULL;
4937 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4938 struct signatured_type);
4939 sig_type->signature = header.signature;
4940 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
4941 sig_type->per_cu.objfile = objfile;
4942 sig_type->per_cu.is_debug_types = 1;
4943 sig_type->per_cu.section = section;
4944 sig_type->per_cu.sect_off = sect_off;
4945 sig_type->per_cu.length = length;
4946 }
4947
4948 slot = htab_find_slot (types_htab,
4949 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4950 INSERT);
4951 gdb_assert (slot != NULL);
4952 if (*slot != NULL)
4953 {
4954 sect_offset dup_sect_off;
4955
4956 if (dwo_file)
4957 {
4958 const struct dwo_unit *dup_tu
4959 = (const struct dwo_unit *) *slot;
4960
4961 dup_sect_off = dup_tu->sect_off;
4962 }
4963 else
4964 {
4965 const struct signatured_type *dup_tu
4966 = (const struct signatured_type *) *slot;
4967
4968 dup_sect_off = dup_tu->per_cu.sect_off;
4969 }
4970
4971 complaint (&symfile_complaints,
4972 _("debug type entry at offset 0x%x is duplicate to"
4973 " the entry at offset 0x%x, signature %s"),
4974 to_underlying (sect_off), to_underlying (dup_sect_off),
4975 hex_string (header.signature));
4976 }
4977 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4978
4979 if (dwarf_read_debug > 1)
4980 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4981 to_underlying (sect_off),
4982 hex_string (header.signature));
4983
4984 info_ptr += length;
4985 }
4986 }
4987
4988 /* Create the hash table of all entries in the .debug_types
4989 (or .debug_types.dwo) section(s).
4990 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4991 otherwise it is NULL.
4992
4993 The result is a pointer to the hash table or NULL if there are no types.
4994
4995 Note: This function processes DWO files only, not DWP files. */
4996
4997 static void
4998 create_debug_types_hash_table (struct dwo_file *dwo_file,
4999 VEC (dwarf2_section_info_def) *types,
5000 htab_t &types_htab)
5001 {
5002 int ix;
5003 struct dwarf2_section_info *section;
5004
5005 if (VEC_empty (dwarf2_section_info_def, types))
5006 return;
5007
5008 for (ix = 0;
5009 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5010 ++ix)
5011 create_debug_type_hash_table (dwo_file, section, types_htab,
5012 rcuh_kind::TYPE);
5013 }
5014
5015 /* Create the hash table of all entries in the .debug_types section,
5016 and initialize all_type_units.
5017 The result is zero if there is an error (e.g. missing .debug_types section),
5018 otherwise non-zero. */
5019
5020 static int
5021 create_all_type_units (struct objfile *objfile)
5022 {
5023 htab_t types_htab = NULL;
5024 struct signatured_type **iter;
5025
5026 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5027 rcuh_kind::COMPILE);
5028 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
5029 if (types_htab == NULL)
5030 {
5031 dwarf2_per_objfile->signatured_types = NULL;
5032 return 0;
5033 }
5034
5035 dwarf2_per_objfile->signatured_types = types_htab;
5036
5037 dwarf2_per_objfile->n_type_units
5038 = dwarf2_per_objfile->n_allocated_type_units
5039 = htab_elements (types_htab);
5040 dwarf2_per_objfile->all_type_units =
5041 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
5042 iter = &dwarf2_per_objfile->all_type_units[0];
5043 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5044 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5045 == dwarf2_per_objfile->n_type_units);
5046
5047 return 1;
5048 }
5049
5050 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5051 If SLOT is non-NULL, it is the entry to use in the hash table.
5052 Otherwise we find one. */
5053
5054 static struct signatured_type *
5055 add_type_unit (ULONGEST sig, void **slot)
5056 {
5057 struct objfile *objfile = dwarf2_per_objfile->objfile;
5058 int n_type_units = dwarf2_per_objfile->n_type_units;
5059 struct signatured_type *sig_type;
5060
5061 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5062 ++n_type_units;
5063 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5064 {
5065 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5066 dwarf2_per_objfile->n_allocated_type_units = 1;
5067 dwarf2_per_objfile->n_allocated_type_units *= 2;
5068 dwarf2_per_objfile->all_type_units
5069 = XRESIZEVEC (struct signatured_type *,
5070 dwarf2_per_objfile->all_type_units,
5071 dwarf2_per_objfile->n_allocated_type_units);
5072 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5073 }
5074 dwarf2_per_objfile->n_type_units = n_type_units;
5075
5076 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5077 struct signatured_type);
5078 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5079 sig_type->signature = sig;
5080 sig_type->per_cu.is_debug_types = 1;
5081 if (dwarf2_per_objfile->using_index)
5082 {
5083 sig_type->per_cu.v.quick =
5084 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5085 struct dwarf2_per_cu_quick_data);
5086 }
5087
5088 if (slot == NULL)
5089 {
5090 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5091 sig_type, INSERT);
5092 }
5093 gdb_assert (*slot == NULL);
5094 *slot = sig_type;
5095 /* The rest of sig_type must be filled in by the caller. */
5096 return sig_type;
5097 }
5098
5099 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5100 Fill in SIG_ENTRY with DWO_ENTRY. */
5101
5102 static void
5103 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5104 struct signatured_type *sig_entry,
5105 struct dwo_unit *dwo_entry)
5106 {
5107 /* Make sure we're not clobbering something we don't expect to. */
5108 gdb_assert (! sig_entry->per_cu.queued);
5109 gdb_assert (sig_entry->per_cu.cu == NULL);
5110 if (dwarf2_per_objfile->using_index)
5111 {
5112 gdb_assert (sig_entry->per_cu.v.quick != NULL);
5113 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
5114 }
5115 else
5116 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
5117 gdb_assert (sig_entry->signature == dwo_entry->signature);
5118 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
5119 gdb_assert (sig_entry->type_unit_group == NULL);
5120 gdb_assert (sig_entry->dwo_unit == NULL);
5121
5122 sig_entry->per_cu.section = dwo_entry->section;
5123 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
5124 sig_entry->per_cu.length = dwo_entry->length;
5125 sig_entry->per_cu.reading_dwo_directly = 1;
5126 sig_entry->per_cu.objfile = objfile;
5127 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5128 sig_entry->dwo_unit = dwo_entry;
5129 }
5130
5131 /* Subroutine of lookup_signatured_type.
5132 If we haven't read the TU yet, create the signatured_type data structure
5133 for a TU to be read in directly from a DWO file, bypassing the stub.
5134 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5135 using .gdb_index, then when reading a CU we want to stay in the DWO file
5136 containing that CU. Otherwise we could end up reading several other DWO
5137 files (due to comdat folding) to process the transitive closure of all the
5138 mentioned TUs, and that can be slow. The current DWO file will have every
5139 type signature that it needs.
5140 We only do this for .gdb_index because in the psymtab case we already have
5141 to read all the DWOs to build the type unit groups. */
5142
5143 static struct signatured_type *
5144 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5145 {
5146 struct objfile *objfile = dwarf2_per_objfile->objfile;
5147 struct dwo_file *dwo_file;
5148 struct dwo_unit find_dwo_entry, *dwo_entry;
5149 struct signatured_type find_sig_entry, *sig_entry;
5150 void **slot;
5151
5152 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5153
5154 /* If TU skeletons have been removed then we may not have read in any
5155 TUs yet. */
5156 if (dwarf2_per_objfile->signatured_types == NULL)
5157 {
5158 dwarf2_per_objfile->signatured_types
5159 = allocate_signatured_type_table (objfile);
5160 }
5161
5162 /* We only ever need to read in one copy of a signatured type.
5163 Use the global signatured_types array to do our own comdat-folding
5164 of types. If this is the first time we're reading this TU, and
5165 the TU has an entry in .gdb_index, replace the recorded data from
5166 .gdb_index with this TU. */
5167
5168 find_sig_entry.signature = sig;
5169 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5170 &find_sig_entry, INSERT);
5171 sig_entry = (struct signatured_type *) *slot;
5172
5173 /* We can get here with the TU already read, *or* in the process of being
5174 read. Don't reassign the global entry to point to this DWO if that's
5175 the case. Also note that if the TU is already being read, it may not
5176 have come from a DWO, the program may be a mix of Fission-compiled
5177 code and non-Fission-compiled code. */
5178
5179 /* Have we already tried to read this TU?
5180 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5181 needn't exist in the global table yet). */
5182 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
5183 return sig_entry;
5184
5185 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5186 dwo_unit of the TU itself. */
5187 dwo_file = cu->dwo_unit->dwo_file;
5188
5189 /* Ok, this is the first time we're reading this TU. */
5190 if (dwo_file->tus == NULL)
5191 return NULL;
5192 find_dwo_entry.signature = sig;
5193 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
5194 if (dwo_entry == NULL)
5195 return NULL;
5196
5197 /* If the global table doesn't have an entry for this TU, add one. */
5198 if (sig_entry == NULL)
5199 sig_entry = add_type_unit (sig, slot);
5200
5201 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5202 sig_entry->per_cu.tu_read = 1;
5203 return sig_entry;
5204 }
5205
5206 /* Subroutine of lookup_signatured_type.
5207 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
5208 then try the DWP file. If the TU stub (skeleton) has been removed then
5209 it won't be in .gdb_index. */
5210
5211 static struct signatured_type *
5212 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5213 {
5214 struct objfile *objfile = dwarf2_per_objfile->objfile;
5215 struct dwp_file *dwp_file = get_dwp_file ();
5216 struct dwo_unit *dwo_entry;
5217 struct signatured_type find_sig_entry, *sig_entry;
5218 void **slot;
5219
5220 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5221 gdb_assert (dwp_file != NULL);
5222
5223 /* If TU skeletons have been removed then we may not have read in any
5224 TUs yet. */
5225 if (dwarf2_per_objfile->signatured_types == NULL)
5226 {
5227 dwarf2_per_objfile->signatured_types
5228 = allocate_signatured_type_table (objfile);
5229 }
5230
5231 find_sig_entry.signature = sig;
5232 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5233 &find_sig_entry, INSERT);
5234 sig_entry = (struct signatured_type *) *slot;
5235
5236 /* Have we already tried to read this TU?
5237 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5238 needn't exist in the global table yet). */
5239 if (sig_entry != NULL)
5240 return sig_entry;
5241
5242 if (dwp_file->tus == NULL)
5243 return NULL;
5244 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5245 sig, 1 /* is_debug_types */);
5246 if (dwo_entry == NULL)
5247 return NULL;
5248
5249 sig_entry = add_type_unit (sig, slot);
5250 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5251
5252 return sig_entry;
5253 }
5254
5255 /* Lookup a signature based type for DW_FORM_ref_sig8.
5256 Returns NULL if signature SIG is not present in the table.
5257 It is up to the caller to complain about this. */
5258
5259 static struct signatured_type *
5260 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5261 {
5262 if (cu->dwo_unit
5263 && dwarf2_per_objfile->using_index)
5264 {
5265 /* We're in a DWO/DWP file, and we're using .gdb_index.
5266 These cases require special processing. */
5267 if (get_dwp_file () == NULL)
5268 return lookup_dwo_signatured_type (cu, sig);
5269 else
5270 return lookup_dwp_signatured_type (cu, sig);
5271 }
5272 else
5273 {
5274 struct signatured_type find_entry, *entry;
5275
5276 if (dwarf2_per_objfile->signatured_types == NULL)
5277 return NULL;
5278 find_entry.signature = sig;
5279 entry = ((struct signatured_type *)
5280 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5281 return entry;
5282 }
5283 }
5284 \f
5285 /* Low level DIE reading support. */
5286
5287 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5288
5289 static void
5290 init_cu_die_reader (struct die_reader_specs *reader,
5291 struct dwarf2_cu *cu,
5292 struct dwarf2_section_info *section,
5293 struct dwo_file *dwo_file)
5294 {
5295 gdb_assert (section->readin && section->buffer != NULL);
5296 reader->abfd = get_section_bfd_owner (section);
5297 reader->cu = cu;
5298 reader->dwo_file = dwo_file;
5299 reader->die_section = section;
5300 reader->buffer = section->buffer;
5301 reader->buffer_end = section->buffer + section->size;
5302 reader->comp_dir = NULL;
5303 }
5304
5305 /* Subroutine of init_cutu_and_read_dies to simplify it.
5306 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5307 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5308 already.
5309
5310 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5311 from it to the DIE in the DWO. If NULL we are skipping the stub.
5312 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5313 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5314 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5315 STUB_COMP_DIR may be non-NULL.
5316 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5317 are filled in with the info of the DIE from the DWO file.
5318 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5319 provided an abbrev table to use.
5320 The result is non-zero if a valid (non-dummy) DIE was found. */
5321
5322 static int
5323 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5324 struct dwo_unit *dwo_unit,
5325 int abbrev_table_provided,
5326 struct die_info *stub_comp_unit_die,
5327 const char *stub_comp_dir,
5328 struct die_reader_specs *result_reader,
5329 const gdb_byte **result_info_ptr,
5330 struct die_info **result_comp_unit_die,
5331 int *result_has_children)
5332 {
5333 struct objfile *objfile = dwarf2_per_objfile->objfile;
5334 struct dwarf2_cu *cu = this_cu->cu;
5335 struct dwarf2_section_info *section;
5336 bfd *abfd;
5337 const gdb_byte *begin_info_ptr, *info_ptr;
5338 ULONGEST signature; /* Or dwo_id. */
5339 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5340 int i,num_extra_attrs;
5341 struct dwarf2_section_info *dwo_abbrev_section;
5342 struct attribute *attr;
5343 struct die_info *comp_unit_die;
5344
5345 /* At most one of these may be provided. */
5346 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5347
5348 /* These attributes aren't processed until later:
5349 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5350 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5351 referenced later. However, these attributes are found in the stub
5352 which we won't have later. In order to not impose this complication
5353 on the rest of the code, we read them here and copy them to the
5354 DWO CU/TU die. */
5355
5356 stmt_list = NULL;
5357 low_pc = NULL;
5358 high_pc = NULL;
5359 ranges = NULL;
5360 comp_dir = NULL;
5361
5362 if (stub_comp_unit_die != NULL)
5363 {
5364 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5365 DWO file. */
5366 if (! this_cu->is_debug_types)
5367 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5368 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5369 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5370 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5371 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5372
5373 /* There should be a DW_AT_addr_base attribute here (if needed).
5374 We need the value before we can process DW_FORM_GNU_addr_index. */
5375 cu->addr_base = 0;
5376 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5377 if (attr)
5378 cu->addr_base = DW_UNSND (attr);
5379
5380 /* There should be a DW_AT_ranges_base attribute here (if needed).
5381 We need the value before we can process DW_AT_ranges. */
5382 cu->ranges_base = 0;
5383 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5384 if (attr)
5385 cu->ranges_base = DW_UNSND (attr);
5386 }
5387 else if (stub_comp_dir != NULL)
5388 {
5389 /* Reconstruct the comp_dir attribute to simplify the code below. */
5390 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5391 comp_dir->name = DW_AT_comp_dir;
5392 comp_dir->form = DW_FORM_string;
5393 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5394 DW_STRING (comp_dir) = stub_comp_dir;
5395 }
5396
5397 /* Set up for reading the DWO CU/TU. */
5398 cu->dwo_unit = dwo_unit;
5399 section = dwo_unit->section;
5400 dwarf2_read_section (objfile, section);
5401 abfd = get_section_bfd_owner (section);
5402 begin_info_ptr = info_ptr = (section->buffer
5403 + to_underlying (dwo_unit->sect_off));
5404 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5405 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5406
5407 if (this_cu->is_debug_types)
5408 {
5409 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5410
5411 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5412 dwo_abbrev_section,
5413 info_ptr, rcuh_kind::TYPE);
5414 /* This is not an assert because it can be caused by bad debug info. */
5415 if (sig_type->signature != cu->header.signature)
5416 {
5417 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5418 " TU at offset 0x%x [in module %s]"),
5419 hex_string (sig_type->signature),
5420 hex_string (cu->header.signature),
5421 to_underlying (dwo_unit->sect_off),
5422 bfd_get_filename (abfd));
5423 }
5424 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5425 /* For DWOs coming from DWP files, we don't know the CU length
5426 nor the type's offset in the TU until now. */
5427 dwo_unit->length = get_cu_length (&cu->header);
5428 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
5429
5430 /* Establish the type offset that can be used to lookup the type.
5431 For DWO files, we don't know it until now. */
5432 sig_type->type_offset_in_section
5433 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
5434 }
5435 else
5436 {
5437 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5438 dwo_abbrev_section,
5439 info_ptr, rcuh_kind::COMPILE);
5440 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5441 /* For DWOs coming from DWP files, we don't know the CU length
5442 until now. */
5443 dwo_unit->length = get_cu_length (&cu->header);
5444 }
5445
5446 /* Replace the CU's original abbrev table with the DWO's.
5447 Reminder: We can't read the abbrev table until we've read the header. */
5448 if (abbrev_table_provided)
5449 {
5450 /* Don't free the provided abbrev table, the caller of
5451 init_cutu_and_read_dies owns it. */
5452 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5453 /* Ensure the DWO abbrev table gets freed. */
5454 make_cleanup (dwarf2_free_abbrev_table, cu);
5455 }
5456 else
5457 {
5458 dwarf2_free_abbrev_table (cu);
5459 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5460 /* Leave any existing abbrev table cleanup as is. */
5461 }
5462
5463 /* Read in the die, but leave space to copy over the attributes
5464 from the stub. This has the benefit of simplifying the rest of
5465 the code - all the work to maintain the illusion of a single
5466 DW_TAG_{compile,type}_unit DIE is done here. */
5467 num_extra_attrs = ((stmt_list != NULL)
5468 + (low_pc != NULL)
5469 + (high_pc != NULL)
5470 + (ranges != NULL)
5471 + (comp_dir != NULL));
5472 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5473 result_has_children, num_extra_attrs);
5474
5475 /* Copy over the attributes from the stub to the DIE we just read in. */
5476 comp_unit_die = *result_comp_unit_die;
5477 i = comp_unit_die->num_attrs;
5478 if (stmt_list != NULL)
5479 comp_unit_die->attrs[i++] = *stmt_list;
5480 if (low_pc != NULL)
5481 comp_unit_die->attrs[i++] = *low_pc;
5482 if (high_pc != NULL)
5483 comp_unit_die->attrs[i++] = *high_pc;
5484 if (ranges != NULL)
5485 comp_unit_die->attrs[i++] = *ranges;
5486 if (comp_dir != NULL)
5487 comp_unit_die->attrs[i++] = *comp_dir;
5488 comp_unit_die->num_attrs += num_extra_attrs;
5489
5490 if (dwarf_die_debug)
5491 {
5492 fprintf_unfiltered (gdb_stdlog,
5493 "Read die from %s@0x%x of %s:\n",
5494 get_section_name (section),
5495 (unsigned) (begin_info_ptr - section->buffer),
5496 bfd_get_filename (abfd));
5497 dump_die (comp_unit_die, dwarf_die_debug);
5498 }
5499
5500 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5501 TUs by skipping the stub and going directly to the entry in the DWO file.
5502 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5503 to get it via circuitous means. Blech. */
5504 if (comp_dir != NULL)
5505 result_reader->comp_dir = DW_STRING (comp_dir);
5506
5507 /* Skip dummy compilation units. */
5508 if (info_ptr >= begin_info_ptr + dwo_unit->length
5509 || peek_abbrev_code (abfd, info_ptr) == 0)
5510 return 0;
5511
5512 *result_info_ptr = info_ptr;
5513 return 1;
5514 }
5515
5516 /* Subroutine of init_cutu_and_read_dies to simplify it.
5517 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5518 Returns NULL if the specified DWO unit cannot be found. */
5519
5520 static struct dwo_unit *
5521 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5522 struct die_info *comp_unit_die)
5523 {
5524 struct dwarf2_cu *cu = this_cu->cu;
5525 struct attribute *attr;
5526 ULONGEST signature;
5527 struct dwo_unit *dwo_unit;
5528 const char *comp_dir, *dwo_name;
5529
5530 gdb_assert (cu != NULL);
5531
5532 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5533 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5534 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5535
5536 if (this_cu->is_debug_types)
5537 {
5538 struct signatured_type *sig_type;
5539
5540 /* Since this_cu is the first member of struct signatured_type,
5541 we can go from a pointer to one to a pointer to the other. */
5542 sig_type = (struct signatured_type *) this_cu;
5543 signature = sig_type->signature;
5544 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5545 }
5546 else
5547 {
5548 struct attribute *attr;
5549
5550 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5551 if (! attr)
5552 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5553 " [in module %s]"),
5554 dwo_name, objfile_name (this_cu->objfile));
5555 signature = DW_UNSND (attr);
5556 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5557 signature);
5558 }
5559
5560 return dwo_unit;
5561 }
5562
5563 /* Subroutine of init_cutu_and_read_dies to simplify it.
5564 See it for a description of the parameters.
5565 Read a TU directly from a DWO file, bypassing the stub.
5566
5567 Note: This function could be a little bit simpler if we shared cleanups
5568 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5569 to do, so we keep this function self-contained. Or we could move this
5570 into our caller, but it's complex enough already. */
5571
5572 static void
5573 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5574 int use_existing_cu, int keep,
5575 die_reader_func_ftype *die_reader_func,
5576 void *data)
5577 {
5578 struct dwarf2_cu *cu;
5579 struct signatured_type *sig_type;
5580 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5581 struct die_reader_specs reader;
5582 const gdb_byte *info_ptr;
5583 struct die_info *comp_unit_die;
5584 int has_children;
5585
5586 /* Verify we can do the following downcast, and that we have the
5587 data we need. */
5588 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5589 sig_type = (struct signatured_type *) this_cu;
5590 gdb_assert (sig_type->dwo_unit != NULL);
5591
5592 cleanups = make_cleanup (null_cleanup, NULL);
5593
5594 if (use_existing_cu && this_cu->cu != NULL)
5595 {
5596 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5597 cu = this_cu->cu;
5598 /* There's no need to do the rereading_dwo_cu handling that
5599 init_cutu_and_read_dies does since we don't read the stub. */
5600 }
5601 else
5602 {
5603 /* If !use_existing_cu, this_cu->cu must be NULL. */
5604 gdb_assert (this_cu->cu == NULL);
5605 cu = XNEW (struct dwarf2_cu);
5606 init_one_comp_unit (cu, this_cu);
5607 /* If an error occurs while loading, release our storage. */
5608 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5609 }
5610
5611 /* A future optimization, if needed, would be to use an existing
5612 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5613 could share abbrev tables. */
5614
5615 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5616 0 /* abbrev_table_provided */,
5617 NULL /* stub_comp_unit_die */,
5618 sig_type->dwo_unit->dwo_file->comp_dir,
5619 &reader, &info_ptr,
5620 &comp_unit_die, &has_children) == 0)
5621 {
5622 /* Dummy die. */
5623 do_cleanups (cleanups);
5624 return;
5625 }
5626
5627 /* All the "real" work is done here. */
5628 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5629
5630 /* This duplicates the code in init_cutu_and_read_dies,
5631 but the alternative is making the latter more complex.
5632 This function is only for the special case of using DWO files directly:
5633 no point in overly complicating the general case just to handle this. */
5634 if (free_cu_cleanup != NULL)
5635 {
5636 if (keep)
5637 {
5638 /* We've successfully allocated this compilation unit. Let our
5639 caller clean it up when finished with it. */
5640 discard_cleanups (free_cu_cleanup);
5641
5642 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5643 So we have to manually free the abbrev table. */
5644 dwarf2_free_abbrev_table (cu);
5645
5646 /* Link this CU into read_in_chain. */
5647 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5648 dwarf2_per_objfile->read_in_chain = this_cu;
5649 }
5650 else
5651 do_cleanups (free_cu_cleanup);
5652 }
5653
5654 do_cleanups (cleanups);
5655 }
5656
5657 /* Initialize a CU (or TU) and read its DIEs.
5658 If the CU defers to a DWO file, read the DWO file as well.
5659
5660 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5661 Otherwise the table specified in the comp unit header is read in and used.
5662 This is an optimization for when we already have the abbrev table.
5663
5664 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5665 Otherwise, a new CU is allocated with xmalloc.
5666
5667 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5668 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5669
5670 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5671 linker) then DIE_READER_FUNC will not get called. */
5672
5673 static void
5674 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5675 struct abbrev_table *abbrev_table,
5676 int use_existing_cu, int keep,
5677 die_reader_func_ftype *die_reader_func,
5678 void *data)
5679 {
5680 struct objfile *objfile = dwarf2_per_objfile->objfile;
5681 struct dwarf2_section_info *section = this_cu->section;
5682 bfd *abfd = get_section_bfd_owner (section);
5683 struct dwarf2_cu *cu;
5684 const gdb_byte *begin_info_ptr, *info_ptr;
5685 struct die_reader_specs reader;
5686 struct die_info *comp_unit_die;
5687 int has_children;
5688 struct attribute *attr;
5689 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5690 struct signatured_type *sig_type = NULL;
5691 struct dwarf2_section_info *abbrev_section;
5692 /* Non-zero if CU currently points to a DWO file and we need to
5693 reread it. When this happens we need to reread the skeleton die
5694 before we can reread the DWO file (this only applies to CUs, not TUs). */
5695 int rereading_dwo_cu = 0;
5696
5697 if (dwarf_die_debug)
5698 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5699 this_cu->is_debug_types ? "type" : "comp",
5700 to_underlying (this_cu->sect_off));
5701
5702 if (use_existing_cu)
5703 gdb_assert (keep);
5704
5705 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5706 file (instead of going through the stub), short-circuit all of this. */
5707 if (this_cu->reading_dwo_directly)
5708 {
5709 /* Narrow down the scope of possibilities to have to understand. */
5710 gdb_assert (this_cu->is_debug_types);
5711 gdb_assert (abbrev_table == NULL);
5712 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5713 die_reader_func, data);
5714 return;
5715 }
5716
5717 cleanups = make_cleanup (null_cleanup, NULL);
5718
5719 /* This is cheap if the section is already read in. */
5720 dwarf2_read_section (objfile, section);
5721
5722 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5723
5724 abbrev_section = get_abbrev_section_for_cu (this_cu);
5725
5726 if (use_existing_cu && this_cu->cu != NULL)
5727 {
5728 cu = this_cu->cu;
5729 /* If this CU is from a DWO file we need to start over, we need to
5730 refetch the attributes from the skeleton CU.
5731 This could be optimized by retrieving those attributes from when we
5732 were here the first time: the previous comp_unit_die was stored in
5733 comp_unit_obstack. But there's no data yet that we need this
5734 optimization. */
5735 if (cu->dwo_unit != NULL)
5736 rereading_dwo_cu = 1;
5737 }
5738 else
5739 {
5740 /* If !use_existing_cu, this_cu->cu must be NULL. */
5741 gdb_assert (this_cu->cu == NULL);
5742 cu = XNEW (struct dwarf2_cu);
5743 init_one_comp_unit (cu, this_cu);
5744 /* If an error occurs while loading, release our storage. */
5745 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5746 }
5747
5748 /* Get the header. */
5749 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
5750 {
5751 /* We already have the header, there's no need to read it in again. */
5752 info_ptr += to_underlying (cu->header.first_die_cu_offset);
5753 }
5754 else
5755 {
5756 if (this_cu->is_debug_types)
5757 {
5758 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5759 abbrev_section, info_ptr,
5760 rcuh_kind::TYPE);
5761
5762 /* Since per_cu is the first member of struct signatured_type,
5763 we can go from a pointer to one to a pointer to the other. */
5764 sig_type = (struct signatured_type *) this_cu;
5765 gdb_assert (sig_type->signature == cu->header.signature);
5766 gdb_assert (sig_type->type_offset_in_tu
5767 == cu->header.type_cu_offset_in_tu);
5768 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5769
5770 /* LENGTH has not been set yet for type units if we're
5771 using .gdb_index. */
5772 this_cu->length = get_cu_length (&cu->header);
5773
5774 /* Establish the type offset that can be used to lookup the type. */
5775 sig_type->type_offset_in_section =
5776 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
5777
5778 this_cu->dwarf_version = cu->header.version;
5779 }
5780 else
5781 {
5782 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5783 abbrev_section,
5784 info_ptr,
5785 rcuh_kind::COMPILE);
5786
5787 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5788 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5789 this_cu->dwarf_version = cu->header.version;
5790 }
5791 }
5792
5793 /* Skip dummy compilation units. */
5794 if (info_ptr >= begin_info_ptr + this_cu->length
5795 || peek_abbrev_code (abfd, info_ptr) == 0)
5796 {
5797 do_cleanups (cleanups);
5798 return;
5799 }
5800
5801 /* If we don't have them yet, read the abbrevs for this compilation unit.
5802 And if we need to read them now, make sure they're freed when we're
5803 done. Note that it's important that if the CU had an abbrev table
5804 on entry we don't free it when we're done: Somewhere up the call stack
5805 it may be in use. */
5806 if (abbrev_table != NULL)
5807 {
5808 gdb_assert (cu->abbrev_table == NULL);
5809 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
5810 cu->abbrev_table = abbrev_table;
5811 }
5812 else if (cu->abbrev_table == NULL)
5813 {
5814 dwarf2_read_abbrevs (cu, abbrev_section);
5815 make_cleanup (dwarf2_free_abbrev_table, cu);
5816 }
5817 else if (rereading_dwo_cu)
5818 {
5819 dwarf2_free_abbrev_table (cu);
5820 dwarf2_read_abbrevs (cu, abbrev_section);
5821 }
5822
5823 /* Read the top level CU/TU die. */
5824 init_cu_die_reader (&reader, cu, section, NULL);
5825 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5826
5827 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5828 from the DWO file.
5829 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5830 DWO CU, that this test will fail (the attribute will not be present). */
5831 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5832 if (attr)
5833 {
5834 struct dwo_unit *dwo_unit;
5835 struct die_info *dwo_comp_unit_die;
5836
5837 if (has_children)
5838 {
5839 complaint (&symfile_complaints,
5840 _("compilation unit with DW_AT_GNU_dwo_name"
5841 " has children (offset 0x%x) [in module %s]"),
5842 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
5843 }
5844 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5845 if (dwo_unit != NULL)
5846 {
5847 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5848 abbrev_table != NULL,
5849 comp_unit_die, NULL,
5850 &reader, &info_ptr,
5851 &dwo_comp_unit_die, &has_children) == 0)
5852 {
5853 /* Dummy die. */
5854 do_cleanups (cleanups);
5855 return;
5856 }
5857 comp_unit_die = dwo_comp_unit_die;
5858 }
5859 else
5860 {
5861 /* Yikes, we couldn't find the rest of the DIE, we only have
5862 the stub. A complaint has already been logged. There's
5863 not much more we can do except pass on the stub DIE to
5864 die_reader_func. We don't want to throw an error on bad
5865 debug info. */
5866 }
5867 }
5868
5869 /* All of the above is setup for this call. Yikes. */
5870 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5871
5872 /* Done, clean up. */
5873 if (free_cu_cleanup != NULL)
5874 {
5875 if (keep)
5876 {
5877 /* We've successfully allocated this compilation unit. Let our
5878 caller clean it up when finished with it. */
5879 discard_cleanups (free_cu_cleanup);
5880
5881 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5882 So we have to manually free the abbrev table. */
5883 dwarf2_free_abbrev_table (cu);
5884
5885 /* Link this CU into read_in_chain. */
5886 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5887 dwarf2_per_objfile->read_in_chain = this_cu;
5888 }
5889 else
5890 do_cleanups (free_cu_cleanup);
5891 }
5892
5893 do_cleanups (cleanups);
5894 }
5895
5896 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5897 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5898 to have already done the lookup to find the DWO file).
5899
5900 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5901 THIS_CU->is_debug_types, but nothing else.
5902
5903 We fill in THIS_CU->length.
5904
5905 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5906 linker) then DIE_READER_FUNC will not get called.
5907
5908 THIS_CU->cu is always freed when done.
5909 This is done in order to not leave THIS_CU->cu in a state where we have
5910 to care whether it refers to the "main" CU or the DWO CU. */
5911
5912 static void
5913 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5914 struct dwo_file *dwo_file,
5915 die_reader_func_ftype *die_reader_func,
5916 void *data)
5917 {
5918 struct objfile *objfile = dwarf2_per_objfile->objfile;
5919 struct dwarf2_section_info *section = this_cu->section;
5920 bfd *abfd = get_section_bfd_owner (section);
5921 struct dwarf2_section_info *abbrev_section;
5922 struct dwarf2_cu cu;
5923 const gdb_byte *begin_info_ptr, *info_ptr;
5924 struct die_reader_specs reader;
5925 struct cleanup *cleanups;
5926 struct die_info *comp_unit_die;
5927 int has_children;
5928
5929 if (dwarf_die_debug)
5930 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5931 this_cu->is_debug_types ? "type" : "comp",
5932 to_underlying (this_cu->sect_off));
5933
5934 gdb_assert (this_cu->cu == NULL);
5935
5936 abbrev_section = (dwo_file != NULL
5937 ? &dwo_file->sections.abbrev
5938 : get_abbrev_section_for_cu (this_cu));
5939
5940 /* This is cheap if the section is already read in. */
5941 dwarf2_read_section (objfile, section);
5942
5943 init_one_comp_unit (&cu, this_cu);
5944
5945 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5946
5947 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5948 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5949 abbrev_section, info_ptr,
5950 (this_cu->is_debug_types
5951 ? rcuh_kind::TYPE
5952 : rcuh_kind::COMPILE));
5953
5954 this_cu->length = get_cu_length (&cu.header);
5955
5956 /* Skip dummy compilation units. */
5957 if (info_ptr >= begin_info_ptr + this_cu->length
5958 || peek_abbrev_code (abfd, info_ptr) == 0)
5959 {
5960 do_cleanups (cleanups);
5961 return;
5962 }
5963
5964 dwarf2_read_abbrevs (&cu, abbrev_section);
5965 make_cleanup (dwarf2_free_abbrev_table, &cu);
5966
5967 init_cu_die_reader (&reader, &cu, section, dwo_file);
5968 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5969
5970 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5971
5972 do_cleanups (cleanups);
5973 }
5974
5975 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5976 does not lookup the specified DWO file.
5977 This cannot be used to read DWO files.
5978
5979 THIS_CU->cu is always freed when done.
5980 This is done in order to not leave THIS_CU->cu in a state where we have
5981 to care whether it refers to the "main" CU or the DWO CU.
5982 We can revisit this if the data shows there's a performance issue. */
5983
5984 static void
5985 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5986 die_reader_func_ftype *die_reader_func,
5987 void *data)
5988 {
5989 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5990 }
5991 \f
5992 /* Type Unit Groups.
5993
5994 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5995 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5996 so that all types coming from the same compilation (.o file) are grouped
5997 together. A future step could be to put the types in the same symtab as
5998 the CU the types ultimately came from. */
5999
6000 static hashval_t
6001 hash_type_unit_group (const void *item)
6002 {
6003 const struct type_unit_group *tu_group
6004 = (const struct type_unit_group *) item;
6005
6006 return hash_stmt_list_entry (&tu_group->hash);
6007 }
6008
6009 static int
6010 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
6011 {
6012 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6013 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
6014
6015 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
6016 }
6017
6018 /* Allocate a hash table for type unit groups. */
6019
6020 static htab_t
6021 allocate_type_unit_groups_table (void)
6022 {
6023 return htab_create_alloc_ex (3,
6024 hash_type_unit_group,
6025 eq_type_unit_group,
6026 NULL,
6027 &dwarf2_per_objfile->objfile->objfile_obstack,
6028 hashtab_obstack_allocate,
6029 dummy_obstack_deallocate);
6030 }
6031
6032 /* Type units that don't have DW_AT_stmt_list are grouped into their own
6033 partial symtabs. We combine several TUs per psymtab to not let the size
6034 of any one psymtab grow too big. */
6035 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6036 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
6037
6038 /* Helper routine for get_type_unit_group.
6039 Create the type_unit_group object used to hold one or more TUs. */
6040
6041 static struct type_unit_group *
6042 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
6043 {
6044 struct objfile *objfile = dwarf2_per_objfile->objfile;
6045 struct dwarf2_per_cu_data *per_cu;
6046 struct type_unit_group *tu_group;
6047
6048 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6049 struct type_unit_group);
6050 per_cu = &tu_group->per_cu;
6051 per_cu->objfile = objfile;
6052
6053 if (dwarf2_per_objfile->using_index)
6054 {
6055 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6056 struct dwarf2_per_cu_quick_data);
6057 }
6058 else
6059 {
6060 unsigned int line_offset = to_underlying (line_offset_struct);
6061 struct partial_symtab *pst;
6062 char *name;
6063
6064 /* Give the symtab a useful name for debug purposes. */
6065 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6066 name = xstrprintf ("<type_units_%d>",
6067 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6068 else
6069 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6070
6071 pst = create_partial_symtab (per_cu, name);
6072 pst->anonymous = 1;
6073
6074 xfree (name);
6075 }
6076
6077 tu_group->hash.dwo_unit = cu->dwo_unit;
6078 tu_group->hash.line_sect_off = line_offset_struct;
6079
6080 return tu_group;
6081 }
6082
6083 /* Look up the type_unit_group for type unit CU, and create it if necessary.
6084 STMT_LIST is a DW_AT_stmt_list attribute. */
6085
6086 static struct type_unit_group *
6087 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
6088 {
6089 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6090 struct type_unit_group *tu_group;
6091 void **slot;
6092 unsigned int line_offset;
6093 struct type_unit_group type_unit_group_for_lookup;
6094
6095 if (dwarf2_per_objfile->type_unit_groups == NULL)
6096 {
6097 dwarf2_per_objfile->type_unit_groups =
6098 allocate_type_unit_groups_table ();
6099 }
6100
6101 /* Do we need to create a new group, or can we use an existing one? */
6102
6103 if (stmt_list)
6104 {
6105 line_offset = DW_UNSND (stmt_list);
6106 ++tu_stats->nr_symtab_sharers;
6107 }
6108 else
6109 {
6110 /* Ugh, no stmt_list. Rare, but we have to handle it.
6111 We can do various things here like create one group per TU or
6112 spread them over multiple groups to split up the expansion work.
6113 To avoid worst case scenarios (too many groups or too large groups)
6114 we, umm, group them in bunches. */
6115 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6116 | (tu_stats->nr_stmt_less_type_units
6117 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6118 ++tu_stats->nr_stmt_less_type_units;
6119 }
6120
6121 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
6122 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
6123 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6124 &type_unit_group_for_lookup, INSERT);
6125 if (*slot != NULL)
6126 {
6127 tu_group = (struct type_unit_group *) *slot;
6128 gdb_assert (tu_group != NULL);
6129 }
6130 else
6131 {
6132 sect_offset line_offset_struct = (sect_offset) line_offset;
6133 tu_group = create_type_unit_group (cu, line_offset_struct);
6134 *slot = tu_group;
6135 ++tu_stats->nr_symtabs;
6136 }
6137
6138 return tu_group;
6139 }
6140 \f
6141 /* Partial symbol tables. */
6142
6143 /* Create a psymtab named NAME and assign it to PER_CU.
6144
6145 The caller must fill in the following details:
6146 dirname, textlow, texthigh. */
6147
6148 static struct partial_symtab *
6149 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6150 {
6151 struct objfile *objfile = per_cu->objfile;
6152 struct partial_symtab *pst;
6153
6154 pst = start_psymtab_common (objfile, name, 0,
6155 objfile->global_psymbols.next,
6156 objfile->static_psymbols.next);
6157
6158 pst->psymtabs_addrmap_supported = 1;
6159
6160 /* This is the glue that links PST into GDB's symbol API. */
6161 pst->read_symtab_private = per_cu;
6162 pst->read_symtab = dwarf2_read_symtab;
6163 per_cu->v.psymtab = pst;
6164
6165 return pst;
6166 }
6167
6168 /* The DATA object passed to process_psymtab_comp_unit_reader has this
6169 type. */
6170
6171 struct process_psymtab_comp_unit_data
6172 {
6173 /* True if we are reading a DW_TAG_partial_unit. */
6174
6175 int want_partial_unit;
6176
6177 /* The "pretend" language that is used if the CU doesn't declare a
6178 language. */
6179
6180 enum language pretend_language;
6181 };
6182
6183 /* die_reader_func for process_psymtab_comp_unit. */
6184
6185 static void
6186 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6187 const gdb_byte *info_ptr,
6188 struct die_info *comp_unit_die,
6189 int has_children,
6190 void *data)
6191 {
6192 struct dwarf2_cu *cu = reader->cu;
6193 struct objfile *objfile = cu->objfile;
6194 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6195 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6196 CORE_ADDR baseaddr;
6197 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6198 struct partial_symtab *pst;
6199 enum pc_bounds_kind cu_bounds_kind;
6200 const char *filename;
6201 struct process_psymtab_comp_unit_data *info
6202 = (struct process_psymtab_comp_unit_data *) data;
6203
6204 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6205 return;
6206
6207 gdb_assert (! per_cu->is_debug_types);
6208
6209 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6210
6211 cu->list_in_scope = &file_symbols;
6212
6213 /* Allocate a new partial symbol table structure. */
6214 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6215 if (filename == NULL)
6216 filename = "";
6217
6218 pst = create_partial_symtab (per_cu, filename);
6219
6220 /* This must be done before calling dwarf2_build_include_psymtabs. */
6221 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6222
6223 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6224
6225 dwarf2_find_base_address (comp_unit_die, cu);
6226
6227 /* Possibly set the default values of LOWPC and HIGHPC from
6228 `DW_AT_ranges'. */
6229 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6230 &best_highpc, cu, pst);
6231 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6232 /* Store the contiguous range if it is not empty; it can be empty for
6233 CUs with no code. */
6234 addrmap_set_empty (objfile->psymtabs_addrmap,
6235 gdbarch_adjust_dwarf2_addr (gdbarch,
6236 best_lowpc + baseaddr),
6237 gdbarch_adjust_dwarf2_addr (gdbarch,
6238 best_highpc + baseaddr) - 1,
6239 pst);
6240
6241 /* Check if comp unit has_children.
6242 If so, read the rest of the partial symbols from this comp unit.
6243 If not, there's no more debug_info for this comp unit. */
6244 if (has_children)
6245 {
6246 struct partial_die_info *first_die;
6247 CORE_ADDR lowpc, highpc;
6248
6249 lowpc = ((CORE_ADDR) -1);
6250 highpc = ((CORE_ADDR) 0);
6251
6252 first_die = load_partial_dies (reader, info_ptr, 1);
6253
6254 scan_partial_symbols (first_die, &lowpc, &highpc,
6255 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6256
6257 /* If we didn't find a lowpc, set it to highpc to avoid
6258 complaints from `maint check'. */
6259 if (lowpc == ((CORE_ADDR) -1))
6260 lowpc = highpc;
6261
6262 /* If the compilation unit didn't have an explicit address range,
6263 then use the information extracted from its child dies. */
6264 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6265 {
6266 best_lowpc = lowpc;
6267 best_highpc = highpc;
6268 }
6269 }
6270 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6271 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6272
6273 end_psymtab_common (objfile, pst);
6274
6275 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6276 {
6277 int i;
6278 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6279 struct dwarf2_per_cu_data *iter;
6280
6281 /* Fill in 'dependencies' here; we fill in 'users' in a
6282 post-pass. */
6283 pst->number_of_dependencies = len;
6284 pst->dependencies =
6285 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6286 for (i = 0;
6287 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6288 i, iter);
6289 ++i)
6290 pst->dependencies[i] = iter->v.psymtab;
6291
6292 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6293 }
6294
6295 /* Get the list of files included in the current compilation unit,
6296 and build a psymtab for each of them. */
6297 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6298
6299 if (dwarf_read_debug)
6300 {
6301 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6302
6303 fprintf_unfiltered (gdb_stdlog,
6304 "Psymtab for %s unit @0x%x: %s - %s"
6305 ", %d global, %d static syms\n",
6306 per_cu->is_debug_types ? "type" : "comp",
6307 to_underlying (per_cu->sect_off),
6308 paddress (gdbarch, pst->textlow),
6309 paddress (gdbarch, pst->texthigh),
6310 pst->n_global_syms, pst->n_static_syms);
6311 }
6312 }
6313
6314 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6315 Process compilation unit THIS_CU for a psymtab. */
6316
6317 static void
6318 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6319 int want_partial_unit,
6320 enum language pretend_language)
6321 {
6322 /* If this compilation unit was already read in, free the
6323 cached copy in order to read it in again. This is
6324 necessary because we skipped some symbols when we first
6325 read in the compilation unit (see load_partial_dies).
6326 This problem could be avoided, but the benefit is unclear. */
6327 if (this_cu->cu != NULL)
6328 free_one_cached_comp_unit (this_cu);
6329
6330 if (this_cu->is_debug_types)
6331 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
6332 NULL);
6333 else
6334 {
6335 process_psymtab_comp_unit_data info;
6336 info.want_partial_unit = want_partial_unit;
6337 info.pretend_language = pretend_language;
6338 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6339 process_psymtab_comp_unit_reader, &info);
6340 }
6341
6342 /* Age out any secondary CUs. */
6343 age_cached_comp_units ();
6344 }
6345
6346 /* Reader function for build_type_psymtabs. */
6347
6348 static void
6349 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6350 const gdb_byte *info_ptr,
6351 struct die_info *type_unit_die,
6352 int has_children,
6353 void *data)
6354 {
6355 struct objfile *objfile = dwarf2_per_objfile->objfile;
6356 struct dwarf2_cu *cu = reader->cu;
6357 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6358 struct signatured_type *sig_type;
6359 struct type_unit_group *tu_group;
6360 struct attribute *attr;
6361 struct partial_die_info *first_die;
6362 CORE_ADDR lowpc, highpc;
6363 struct partial_symtab *pst;
6364
6365 gdb_assert (data == NULL);
6366 gdb_assert (per_cu->is_debug_types);
6367 sig_type = (struct signatured_type *) per_cu;
6368
6369 if (! has_children)
6370 return;
6371
6372 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6373 tu_group = get_type_unit_group (cu, attr);
6374
6375 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6376
6377 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6378 cu->list_in_scope = &file_symbols;
6379 pst = create_partial_symtab (per_cu, "");
6380 pst->anonymous = 1;
6381
6382 first_die = load_partial_dies (reader, info_ptr, 1);
6383
6384 lowpc = (CORE_ADDR) -1;
6385 highpc = (CORE_ADDR) 0;
6386 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6387
6388 end_psymtab_common (objfile, pst);
6389 }
6390
6391 /* Struct used to sort TUs by their abbreviation table offset. */
6392
6393 struct tu_abbrev_offset
6394 {
6395 struct signatured_type *sig_type;
6396 sect_offset abbrev_offset;
6397 };
6398
6399 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6400
6401 static int
6402 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6403 {
6404 const struct tu_abbrev_offset * const *a
6405 = (const struct tu_abbrev_offset * const*) ap;
6406 const struct tu_abbrev_offset * const *b
6407 = (const struct tu_abbrev_offset * const*) bp;
6408 sect_offset aoff = (*a)->abbrev_offset;
6409 sect_offset boff = (*b)->abbrev_offset;
6410
6411 return (aoff > boff) - (aoff < boff);
6412 }
6413
6414 /* Efficiently read all the type units.
6415 This does the bulk of the work for build_type_psymtabs.
6416
6417 The efficiency is because we sort TUs by the abbrev table they use and
6418 only read each abbrev table once. In one program there are 200K TUs
6419 sharing 8K abbrev tables.
6420
6421 The main purpose of this function is to support building the
6422 dwarf2_per_objfile->type_unit_groups table.
6423 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6424 can collapse the search space by grouping them by stmt_list.
6425 The savings can be significant, in the same program from above the 200K TUs
6426 share 8K stmt_list tables.
6427
6428 FUNC is expected to call get_type_unit_group, which will create the
6429 struct type_unit_group if necessary and add it to
6430 dwarf2_per_objfile->type_unit_groups. */
6431
6432 static void
6433 build_type_psymtabs_1 (void)
6434 {
6435 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6436 struct cleanup *cleanups;
6437 struct abbrev_table *abbrev_table;
6438 sect_offset abbrev_offset;
6439 struct tu_abbrev_offset *sorted_by_abbrev;
6440 int i;
6441
6442 /* It's up to the caller to not call us multiple times. */
6443 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6444
6445 if (dwarf2_per_objfile->n_type_units == 0)
6446 return;
6447
6448 /* TUs typically share abbrev tables, and there can be way more TUs than
6449 abbrev tables. Sort by abbrev table to reduce the number of times we
6450 read each abbrev table in.
6451 Alternatives are to punt or to maintain a cache of abbrev tables.
6452 This is simpler and efficient enough for now.
6453
6454 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6455 symtab to use). Typically TUs with the same abbrev offset have the same
6456 stmt_list value too so in practice this should work well.
6457
6458 The basic algorithm here is:
6459
6460 sort TUs by abbrev table
6461 for each TU with same abbrev table:
6462 read abbrev table if first user
6463 read TU top level DIE
6464 [IWBN if DWO skeletons had DW_AT_stmt_list]
6465 call FUNC */
6466
6467 if (dwarf_read_debug)
6468 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6469
6470 /* Sort in a separate table to maintain the order of all_type_units
6471 for .gdb_index: TU indices directly index all_type_units. */
6472 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6473 dwarf2_per_objfile->n_type_units);
6474 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6475 {
6476 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6477
6478 sorted_by_abbrev[i].sig_type = sig_type;
6479 sorted_by_abbrev[i].abbrev_offset =
6480 read_abbrev_offset (sig_type->per_cu.section,
6481 sig_type->per_cu.sect_off);
6482 }
6483 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6484 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6485 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6486
6487 abbrev_offset = (sect_offset) ~(unsigned) 0;
6488 abbrev_table = NULL;
6489 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6490
6491 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6492 {
6493 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6494
6495 /* Switch to the next abbrev table if necessary. */
6496 if (abbrev_table == NULL
6497 || tu->abbrev_offset != abbrev_offset)
6498 {
6499 if (abbrev_table != NULL)
6500 {
6501 abbrev_table_free (abbrev_table);
6502 /* Reset to NULL in case abbrev_table_read_table throws
6503 an error: abbrev_table_free_cleanup will get called. */
6504 abbrev_table = NULL;
6505 }
6506 abbrev_offset = tu->abbrev_offset;
6507 abbrev_table =
6508 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6509 abbrev_offset);
6510 ++tu_stats->nr_uniq_abbrev_tables;
6511 }
6512
6513 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6514 build_type_psymtabs_reader, NULL);
6515 }
6516
6517 do_cleanups (cleanups);
6518 }
6519
6520 /* Print collected type unit statistics. */
6521
6522 static void
6523 print_tu_stats (void)
6524 {
6525 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6526
6527 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6528 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6529 dwarf2_per_objfile->n_type_units);
6530 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6531 tu_stats->nr_uniq_abbrev_tables);
6532 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6533 tu_stats->nr_symtabs);
6534 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6535 tu_stats->nr_symtab_sharers);
6536 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6537 tu_stats->nr_stmt_less_type_units);
6538 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6539 tu_stats->nr_all_type_units_reallocs);
6540 }
6541
6542 /* Traversal function for build_type_psymtabs. */
6543
6544 static int
6545 build_type_psymtab_dependencies (void **slot, void *info)
6546 {
6547 struct objfile *objfile = dwarf2_per_objfile->objfile;
6548 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6549 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6550 struct partial_symtab *pst = per_cu->v.psymtab;
6551 int len = VEC_length (sig_type_ptr, tu_group->tus);
6552 struct signatured_type *iter;
6553 int i;
6554
6555 gdb_assert (len > 0);
6556 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6557
6558 pst->number_of_dependencies = len;
6559 pst->dependencies =
6560 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6561 for (i = 0;
6562 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6563 ++i)
6564 {
6565 gdb_assert (iter->per_cu.is_debug_types);
6566 pst->dependencies[i] = iter->per_cu.v.psymtab;
6567 iter->type_unit_group = tu_group;
6568 }
6569
6570 VEC_free (sig_type_ptr, tu_group->tus);
6571
6572 return 1;
6573 }
6574
6575 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6576 Build partial symbol tables for the .debug_types comp-units. */
6577
6578 static void
6579 build_type_psymtabs (struct objfile *objfile)
6580 {
6581 if (! create_all_type_units (objfile))
6582 return;
6583
6584 build_type_psymtabs_1 ();
6585 }
6586
6587 /* Traversal function for process_skeletonless_type_unit.
6588 Read a TU in a DWO file and build partial symbols for it. */
6589
6590 static int
6591 process_skeletonless_type_unit (void **slot, void *info)
6592 {
6593 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6594 struct objfile *objfile = (struct objfile *) info;
6595 struct signatured_type find_entry, *entry;
6596
6597 /* If this TU doesn't exist in the global table, add it and read it in. */
6598
6599 if (dwarf2_per_objfile->signatured_types == NULL)
6600 {
6601 dwarf2_per_objfile->signatured_types
6602 = allocate_signatured_type_table (objfile);
6603 }
6604
6605 find_entry.signature = dwo_unit->signature;
6606 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6607 INSERT);
6608 /* If we've already seen this type there's nothing to do. What's happening
6609 is we're doing our own version of comdat-folding here. */
6610 if (*slot != NULL)
6611 return 1;
6612
6613 /* This does the job that create_all_type_units would have done for
6614 this TU. */
6615 entry = add_type_unit (dwo_unit->signature, slot);
6616 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6617 *slot = entry;
6618
6619 /* This does the job that build_type_psymtabs_1 would have done. */
6620 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6621 build_type_psymtabs_reader, NULL);
6622
6623 return 1;
6624 }
6625
6626 /* Traversal function for process_skeletonless_type_units. */
6627
6628 static int
6629 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6630 {
6631 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6632
6633 if (dwo_file->tus != NULL)
6634 {
6635 htab_traverse_noresize (dwo_file->tus,
6636 process_skeletonless_type_unit, info);
6637 }
6638
6639 return 1;
6640 }
6641
6642 /* Scan all TUs of DWO files, verifying we've processed them.
6643 This is needed in case a TU was emitted without its skeleton.
6644 Note: This can't be done until we know what all the DWO files are. */
6645
6646 static void
6647 process_skeletonless_type_units (struct objfile *objfile)
6648 {
6649 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6650 if (get_dwp_file () == NULL
6651 && dwarf2_per_objfile->dwo_files != NULL)
6652 {
6653 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6654 process_dwo_file_for_skeletonless_type_units,
6655 objfile);
6656 }
6657 }
6658
6659 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6660
6661 static void
6662 psymtabs_addrmap_cleanup (void *o)
6663 {
6664 struct objfile *objfile = (struct objfile *) o;
6665
6666 objfile->psymtabs_addrmap = NULL;
6667 }
6668
6669 /* Compute the 'user' field for each psymtab in OBJFILE. */
6670
6671 static void
6672 set_partial_user (struct objfile *objfile)
6673 {
6674 int i;
6675
6676 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6677 {
6678 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6679 struct partial_symtab *pst = per_cu->v.psymtab;
6680 int j;
6681
6682 if (pst == NULL)
6683 continue;
6684
6685 for (j = 0; j < pst->number_of_dependencies; ++j)
6686 {
6687 /* Set the 'user' field only if it is not already set. */
6688 if (pst->dependencies[j]->user == NULL)
6689 pst->dependencies[j]->user = pst;
6690 }
6691 }
6692 }
6693
6694 /* Build the partial symbol table by doing a quick pass through the
6695 .debug_info and .debug_abbrev sections. */
6696
6697 static void
6698 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6699 {
6700 struct cleanup *back_to, *addrmap_cleanup;
6701 int i;
6702
6703 if (dwarf_read_debug)
6704 {
6705 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6706 objfile_name (objfile));
6707 }
6708
6709 dwarf2_per_objfile->reading_partial_symbols = 1;
6710
6711 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6712
6713 /* Any cached compilation units will be linked by the per-objfile
6714 read_in_chain. Make sure to free them when we're done. */
6715 back_to = make_cleanup (free_cached_comp_units, NULL);
6716
6717 build_type_psymtabs (objfile);
6718
6719 create_all_comp_units (objfile);
6720
6721 /* Create a temporary address map on a temporary obstack. We later
6722 copy this to the final obstack. */
6723 auto_obstack temp_obstack;
6724 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6725 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6726
6727 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6728 {
6729 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6730
6731 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6732 }
6733
6734 /* This has to wait until we read the CUs, we need the list of DWOs. */
6735 process_skeletonless_type_units (objfile);
6736
6737 /* Now that all TUs have been processed we can fill in the dependencies. */
6738 if (dwarf2_per_objfile->type_unit_groups != NULL)
6739 {
6740 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6741 build_type_psymtab_dependencies, NULL);
6742 }
6743
6744 if (dwarf_read_debug)
6745 print_tu_stats ();
6746
6747 set_partial_user (objfile);
6748
6749 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6750 &objfile->objfile_obstack);
6751 discard_cleanups (addrmap_cleanup);
6752
6753 do_cleanups (back_to);
6754
6755 if (dwarf_read_debug)
6756 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6757 objfile_name (objfile));
6758 }
6759
6760 /* die_reader_func for load_partial_comp_unit. */
6761
6762 static void
6763 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6764 const gdb_byte *info_ptr,
6765 struct die_info *comp_unit_die,
6766 int has_children,
6767 void *data)
6768 {
6769 struct dwarf2_cu *cu = reader->cu;
6770
6771 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6772
6773 /* Check if comp unit has_children.
6774 If so, read the rest of the partial symbols from this comp unit.
6775 If not, there's no more debug_info for this comp unit. */
6776 if (has_children)
6777 load_partial_dies (reader, info_ptr, 0);
6778 }
6779
6780 /* Load the partial DIEs for a secondary CU into memory.
6781 This is also used when rereading a primary CU with load_all_dies. */
6782
6783 static void
6784 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6785 {
6786 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6787 load_partial_comp_unit_reader, NULL);
6788 }
6789
6790 static void
6791 read_comp_units_from_section (struct objfile *objfile,
6792 struct dwarf2_section_info *section,
6793 struct dwarf2_section_info *abbrev_section,
6794 unsigned int is_dwz,
6795 int *n_allocated,
6796 int *n_comp_units,
6797 struct dwarf2_per_cu_data ***all_comp_units)
6798 {
6799 const gdb_byte *info_ptr;
6800 bfd *abfd = get_section_bfd_owner (section);
6801
6802 if (dwarf_read_debug)
6803 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6804 get_section_name (section),
6805 get_section_file_name (section));
6806
6807 dwarf2_read_section (objfile, section);
6808
6809 info_ptr = section->buffer;
6810
6811 while (info_ptr < section->buffer + section->size)
6812 {
6813 struct dwarf2_per_cu_data *this_cu;
6814
6815 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
6816
6817 comp_unit_head cu_header;
6818 read_and_check_comp_unit_head (&cu_header, section, abbrev_section,
6819 info_ptr, rcuh_kind::COMPILE);
6820
6821 /* Save the compilation unit for later lookup. */
6822 if (cu_header.unit_type != DW_UT_type)
6823 {
6824 this_cu = XOBNEW (&objfile->objfile_obstack,
6825 struct dwarf2_per_cu_data);
6826 memset (this_cu, 0, sizeof (*this_cu));
6827 }
6828 else
6829 {
6830 auto sig_type = XOBNEW (&objfile->objfile_obstack,
6831 struct signatured_type);
6832 memset (sig_type, 0, sizeof (*sig_type));
6833 sig_type->signature = cu_header.signature;
6834 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
6835 this_cu = &sig_type->per_cu;
6836 }
6837 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
6838 this_cu->sect_off = sect_off;
6839 this_cu->length = cu_header.length + cu_header.initial_length_size;
6840 this_cu->is_dwz = is_dwz;
6841 this_cu->objfile = objfile;
6842 this_cu->section = section;
6843
6844 if (*n_comp_units == *n_allocated)
6845 {
6846 *n_allocated *= 2;
6847 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6848 *all_comp_units, *n_allocated);
6849 }
6850 (*all_comp_units)[*n_comp_units] = this_cu;
6851 ++*n_comp_units;
6852
6853 info_ptr = info_ptr + this_cu->length;
6854 }
6855 }
6856
6857 /* Create a list of all compilation units in OBJFILE.
6858 This is only done for -readnow and building partial symtabs. */
6859
6860 static void
6861 create_all_comp_units (struct objfile *objfile)
6862 {
6863 int n_allocated;
6864 int n_comp_units;
6865 struct dwarf2_per_cu_data **all_comp_units;
6866 struct dwz_file *dwz;
6867
6868 n_comp_units = 0;
6869 n_allocated = 10;
6870 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6871
6872 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info,
6873 &dwarf2_per_objfile->abbrev, 0,
6874 &n_allocated, &n_comp_units, &all_comp_units);
6875
6876 dwz = dwarf2_get_dwz_file ();
6877 if (dwz != NULL)
6878 read_comp_units_from_section (objfile, &dwz->info, &dwz->abbrev, 1,
6879 &n_allocated, &n_comp_units,
6880 &all_comp_units);
6881
6882 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6883 struct dwarf2_per_cu_data *,
6884 n_comp_units);
6885 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6886 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6887 xfree (all_comp_units);
6888 dwarf2_per_objfile->n_comp_units = n_comp_units;
6889 }
6890
6891 /* Process all loaded DIEs for compilation unit CU, starting at
6892 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6893 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6894 DW_AT_ranges). See the comments of add_partial_subprogram on how
6895 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6896
6897 static void
6898 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6899 CORE_ADDR *highpc, int set_addrmap,
6900 struct dwarf2_cu *cu)
6901 {
6902 struct partial_die_info *pdi;
6903
6904 /* Now, march along the PDI's, descending into ones which have
6905 interesting children but skipping the children of the other ones,
6906 until we reach the end of the compilation unit. */
6907
6908 pdi = first_die;
6909
6910 while (pdi != NULL)
6911 {
6912 fixup_partial_die (pdi, cu);
6913
6914 /* Anonymous namespaces or modules have no name but have interesting
6915 children, so we need to look at them. Ditto for anonymous
6916 enums. */
6917
6918 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6919 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6920 || pdi->tag == DW_TAG_imported_unit)
6921 {
6922 switch (pdi->tag)
6923 {
6924 case DW_TAG_subprogram:
6925 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6926 break;
6927 case DW_TAG_constant:
6928 case DW_TAG_variable:
6929 case DW_TAG_typedef:
6930 case DW_TAG_union_type:
6931 if (!pdi->is_declaration)
6932 {
6933 add_partial_symbol (pdi, cu);
6934 }
6935 break;
6936 case DW_TAG_class_type:
6937 case DW_TAG_interface_type:
6938 case DW_TAG_structure_type:
6939 if (!pdi->is_declaration)
6940 {
6941 add_partial_symbol (pdi, cu);
6942 }
6943 if (cu->language == language_rust && pdi->has_children)
6944 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6945 set_addrmap, cu);
6946 break;
6947 case DW_TAG_enumeration_type:
6948 if (!pdi->is_declaration)
6949 add_partial_enumeration (pdi, cu);
6950 break;
6951 case DW_TAG_base_type:
6952 case DW_TAG_subrange_type:
6953 /* File scope base type definitions are added to the partial
6954 symbol table. */
6955 add_partial_symbol (pdi, cu);
6956 break;
6957 case DW_TAG_namespace:
6958 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6959 break;
6960 case DW_TAG_module:
6961 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6962 break;
6963 case DW_TAG_imported_unit:
6964 {
6965 struct dwarf2_per_cu_data *per_cu;
6966
6967 /* For now we don't handle imported units in type units. */
6968 if (cu->per_cu->is_debug_types)
6969 {
6970 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6971 " supported in type units [in module %s]"),
6972 objfile_name (cu->objfile));
6973 }
6974
6975 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
6976 pdi->is_dwz,
6977 cu->objfile);
6978
6979 /* Go read the partial unit, if needed. */
6980 if (per_cu->v.psymtab == NULL)
6981 process_psymtab_comp_unit (per_cu, 1, cu->language);
6982
6983 VEC_safe_push (dwarf2_per_cu_ptr,
6984 cu->per_cu->imported_symtabs, per_cu);
6985 }
6986 break;
6987 case DW_TAG_imported_declaration:
6988 add_partial_symbol (pdi, cu);
6989 break;
6990 default:
6991 break;
6992 }
6993 }
6994
6995 /* If the die has a sibling, skip to the sibling. */
6996
6997 pdi = pdi->die_sibling;
6998 }
6999 }
7000
7001 /* Functions used to compute the fully scoped name of a partial DIE.
7002
7003 Normally, this is simple. For C++, the parent DIE's fully scoped
7004 name is concatenated with "::" and the partial DIE's name.
7005 Enumerators are an exception; they use the scope of their parent
7006 enumeration type, i.e. the name of the enumeration type is not
7007 prepended to the enumerator.
7008
7009 There are two complexities. One is DW_AT_specification; in this
7010 case "parent" means the parent of the target of the specification,
7011 instead of the direct parent of the DIE. The other is compilers
7012 which do not emit DW_TAG_namespace; in this case we try to guess
7013 the fully qualified name of structure types from their members'
7014 linkage names. This must be done using the DIE's children rather
7015 than the children of any DW_AT_specification target. We only need
7016 to do this for structures at the top level, i.e. if the target of
7017 any DW_AT_specification (if any; otherwise the DIE itself) does not
7018 have a parent. */
7019
7020 /* Compute the scope prefix associated with PDI's parent, in
7021 compilation unit CU. The result will be allocated on CU's
7022 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7023 field. NULL is returned if no prefix is necessary. */
7024 static const char *
7025 partial_die_parent_scope (struct partial_die_info *pdi,
7026 struct dwarf2_cu *cu)
7027 {
7028 const char *grandparent_scope;
7029 struct partial_die_info *parent, *real_pdi;
7030
7031 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7032 then this means the parent of the specification DIE. */
7033
7034 real_pdi = pdi;
7035 while (real_pdi->has_specification)
7036 real_pdi = find_partial_die (real_pdi->spec_offset,
7037 real_pdi->spec_is_dwz, cu);
7038
7039 parent = real_pdi->die_parent;
7040 if (parent == NULL)
7041 return NULL;
7042
7043 if (parent->scope_set)
7044 return parent->scope;
7045
7046 fixup_partial_die (parent, cu);
7047
7048 grandparent_scope = partial_die_parent_scope (parent, cu);
7049
7050 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7051 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7052 Work around this problem here. */
7053 if (cu->language == language_cplus
7054 && parent->tag == DW_TAG_namespace
7055 && strcmp (parent->name, "::") == 0
7056 && grandparent_scope == NULL)
7057 {
7058 parent->scope = NULL;
7059 parent->scope_set = 1;
7060 return NULL;
7061 }
7062
7063 if (pdi->tag == DW_TAG_enumerator)
7064 /* Enumerators should not get the name of the enumeration as a prefix. */
7065 parent->scope = grandparent_scope;
7066 else if (parent->tag == DW_TAG_namespace
7067 || parent->tag == DW_TAG_module
7068 || parent->tag == DW_TAG_structure_type
7069 || parent->tag == DW_TAG_class_type
7070 || parent->tag == DW_TAG_interface_type
7071 || parent->tag == DW_TAG_union_type
7072 || parent->tag == DW_TAG_enumeration_type)
7073 {
7074 if (grandparent_scope == NULL)
7075 parent->scope = parent->name;
7076 else
7077 parent->scope = typename_concat (&cu->comp_unit_obstack,
7078 grandparent_scope,
7079 parent->name, 0, cu);
7080 }
7081 else
7082 {
7083 /* FIXME drow/2004-04-01: What should we be doing with
7084 function-local names? For partial symbols, we should probably be
7085 ignoring them. */
7086 complaint (&symfile_complaints,
7087 _("unhandled containing DIE tag %d for DIE at %d"),
7088 parent->tag, to_underlying (pdi->sect_off));
7089 parent->scope = grandparent_scope;
7090 }
7091
7092 parent->scope_set = 1;
7093 return parent->scope;
7094 }
7095
7096 /* Return the fully scoped name associated with PDI, from compilation unit
7097 CU. The result will be allocated with malloc. */
7098
7099 static char *
7100 partial_die_full_name (struct partial_die_info *pdi,
7101 struct dwarf2_cu *cu)
7102 {
7103 const char *parent_scope;
7104
7105 /* If this is a template instantiation, we can not work out the
7106 template arguments from partial DIEs. So, unfortunately, we have
7107 to go through the full DIEs. At least any work we do building
7108 types here will be reused if full symbols are loaded later. */
7109 if (pdi->has_template_arguments)
7110 {
7111 fixup_partial_die (pdi, cu);
7112
7113 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7114 {
7115 struct die_info *die;
7116 struct attribute attr;
7117 struct dwarf2_cu *ref_cu = cu;
7118
7119 /* DW_FORM_ref_addr is using section offset. */
7120 attr.name = (enum dwarf_attribute) 0;
7121 attr.form = DW_FORM_ref_addr;
7122 attr.u.unsnd = to_underlying (pdi->sect_off);
7123 die = follow_die_ref (NULL, &attr, &ref_cu);
7124
7125 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7126 }
7127 }
7128
7129 parent_scope = partial_die_parent_scope (pdi, cu);
7130 if (parent_scope == NULL)
7131 return NULL;
7132 else
7133 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
7134 }
7135
7136 static void
7137 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
7138 {
7139 struct objfile *objfile = cu->objfile;
7140 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7141 CORE_ADDR addr = 0;
7142 const char *actual_name = NULL;
7143 CORE_ADDR baseaddr;
7144 char *built_actual_name;
7145
7146 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7147
7148 built_actual_name = partial_die_full_name (pdi, cu);
7149 if (built_actual_name != NULL)
7150 actual_name = built_actual_name;
7151
7152 if (actual_name == NULL)
7153 actual_name = pdi->name;
7154
7155 switch (pdi->tag)
7156 {
7157 case DW_TAG_subprogram:
7158 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
7159 if (pdi->is_external || cu->language == language_ada)
7160 {
7161 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7162 of the global scope. But in Ada, we want to be able to access
7163 nested procedures globally. So all Ada subprograms are stored
7164 in the global scope. */
7165 add_psymbol_to_list (actual_name, strlen (actual_name),
7166 built_actual_name != NULL,
7167 VAR_DOMAIN, LOC_BLOCK,
7168 &objfile->global_psymbols,
7169 addr, cu->language, objfile);
7170 }
7171 else
7172 {
7173 add_psymbol_to_list (actual_name, strlen (actual_name),
7174 built_actual_name != NULL,
7175 VAR_DOMAIN, LOC_BLOCK,
7176 &objfile->static_psymbols,
7177 addr, cu->language, objfile);
7178 }
7179
7180 if (pdi->main_subprogram && actual_name != NULL)
7181 set_objfile_main_name (objfile, actual_name, cu->language);
7182 break;
7183 case DW_TAG_constant:
7184 {
7185 struct psymbol_allocation_list *list;
7186
7187 if (pdi->is_external)
7188 list = &objfile->global_psymbols;
7189 else
7190 list = &objfile->static_psymbols;
7191 add_psymbol_to_list (actual_name, strlen (actual_name),
7192 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
7193 list, 0, cu->language, objfile);
7194 }
7195 break;
7196 case DW_TAG_variable:
7197 if (pdi->d.locdesc)
7198 addr = decode_locdesc (pdi->d.locdesc, cu);
7199
7200 if (pdi->d.locdesc
7201 && addr == 0
7202 && !dwarf2_per_objfile->has_section_at_zero)
7203 {
7204 /* A global or static variable may also have been stripped
7205 out by the linker if unused, in which case its address
7206 will be nullified; do not add such variables into partial
7207 symbol table then. */
7208 }
7209 else if (pdi->is_external)
7210 {
7211 /* Global Variable.
7212 Don't enter into the minimal symbol tables as there is
7213 a minimal symbol table entry from the ELF symbols already.
7214 Enter into partial symbol table if it has a location
7215 descriptor or a type.
7216 If the location descriptor is missing, new_symbol will create
7217 a LOC_UNRESOLVED symbol, the address of the variable will then
7218 be determined from the minimal symbol table whenever the variable
7219 is referenced.
7220 The address for the partial symbol table entry is not
7221 used by GDB, but it comes in handy for debugging partial symbol
7222 table building. */
7223
7224 if (pdi->d.locdesc || pdi->has_type)
7225 add_psymbol_to_list (actual_name, strlen (actual_name),
7226 built_actual_name != NULL,
7227 VAR_DOMAIN, LOC_STATIC,
7228 &objfile->global_psymbols,
7229 addr + baseaddr,
7230 cu->language, objfile);
7231 }
7232 else
7233 {
7234 int has_loc = pdi->d.locdesc != NULL;
7235
7236 /* Static Variable. Skip symbols whose value we cannot know (those
7237 without location descriptors or constant values). */
7238 if (!has_loc && !pdi->has_const_value)
7239 {
7240 xfree (built_actual_name);
7241 return;
7242 }
7243
7244 add_psymbol_to_list (actual_name, strlen (actual_name),
7245 built_actual_name != NULL,
7246 VAR_DOMAIN, LOC_STATIC,
7247 &objfile->static_psymbols,
7248 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7249 cu->language, objfile);
7250 }
7251 break;
7252 case DW_TAG_typedef:
7253 case DW_TAG_base_type:
7254 case DW_TAG_subrange_type:
7255 add_psymbol_to_list (actual_name, strlen (actual_name),
7256 built_actual_name != NULL,
7257 VAR_DOMAIN, LOC_TYPEDEF,
7258 &objfile->static_psymbols,
7259 0, cu->language, objfile);
7260 break;
7261 case DW_TAG_imported_declaration:
7262 case DW_TAG_namespace:
7263 add_psymbol_to_list (actual_name, strlen (actual_name),
7264 built_actual_name != NULL,
7265 VAR_DOMAIN, LOC_TYPEDEF,
7266 &objfile->global_psymbols,
7267 0, cu->language, objfile);
7268 break;
7269 case DW_TAG_module:
7270 add_psymbol_to_list (actual_name, strlen (actual_name),
7271 built_actual_name != NULL,
7272 MODULE_DOMAIN, LOC_TYPEDEF,
7273 &objfile->global_psymbols,
7274 0, cu->language, objfile);
7275 break;
7276 case DW_TAG_class_type:
7277 case DW_TAG_interface_type:
7278 case DW_TAG_structure_type:
7279 case DW_TAG_union_type:
7280 case DW_TAG_enumeration_type:
7281 /* Skip external references. The DWARF standard says in the section
7282 about "Structure, Union, and Class Type Entries": "An incomplete
7283 structure, union or class type is represented by a structure,
7284 union or class entry that does not have a byte size attribute
7285 and that has a DW_AT_declaration attribute." */
7286 if (!pdi->has_byte_size && pdi->is_declaration)
7287 {
7288 xfree (built_actual_name);
7289 return;
7290 }
7291
7292 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7293 static vs. global. */
7294 add_psymbol_to_list (actual_name, strlen (actual_name),
7295 built_actual_name != NULL,
7296 STRUCT_DOMAIN, LOC_TYPEDEF,
7297 cu->language == language_cplus
7298 ? &objfile->global_psymbols
7299 : &objfile->static_psymbols,
7300 0, cu->language, objfile);
7301
7302 break;
7303 case DW_TAG_enumerator:
7304 add_psymbol_to_list (actual_name, strlen (actual_name),
7305 built_actual_name != NULL,
7306 VAR_DOMAIN, LOC_CONST,
7307 cu->language == language_cplus
7308 ? &objfile->global_psymbols
7309 : &objfile->static_psymbols,
7310 0, cu->language, objfile);
7311 break;
7312 default:
7313 break;
7314 }
7315
7316 xfree (built_actual_name);
7317 }
7318
7319 /* Read a partial die corresponding to a namespace; also, add a symbol
7320 corresponding to that namespace to the symbol table. NAMESPACE is
7321 the name of the enclosing namespace. */
7322
7323 static void
7324 add_partial_namespace (struct partial_die_info *pdi,
7325 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7326 int set_addrmap, struct dwarf2_cu *cu)
7327 {
7328 /* Add a symbol for the namespace. */
7329
7330 add_partial_symbol (pdi, cu);
7331
7332 /* Now scan partial symbols in that namespace. */
7333
7334 if (pdi->has_children)
7335 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7336 }
7337
7338 /* Read a partial die corresponding to a Fortran module. */
7339
7340 static void
7341 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7342 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7343 {
7344 /* Add a symbol for the namespace. */
7345
7346 add_partial_symbol (pdi, cu);
7347
7348 /* Now scan partial symbols in that module. */
7349
7350 if (pdi->has_children)
7351 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7352 }
7353
7354 /* Read a partial die corresponding to a subprogram and create a partial
7355 symbol for that subprogram. When the CU language allows it, this
7356 routine also defines a partial symbol for each nested subprogram
7357 that this subprogram contains. If SET_ADDRMAP is true, record the
7358 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7359 and highest PC values found in PDI.
7360
7361 PDI may also be a lexical block, in which case we simply search
7362 recursively for subprograms defined inside that lexical block.
7363 Again, this is only performed when the CU language allows this
7364 type of definitions. */
7365
7366 static void
7367 add_partial_subprogram (struct partial_die_info *pdi,
7368 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7369 int set_addrmap, struct dwarf2_cu *cu)
7370 {
7371 if (pdi->tag == DW_TAG_subprogram)
7372 {
7373 if (pdi->has_pc_info)
7374 {
7375 if (pdi->lowpc < *lowpc)
7376 *lowpc = pdi->lowpc;
7377 if (pdi->highpc > *highpc)
7378 *highpc = pdi->highpc;
7379 if (set_addrmap)
7380 {
7381 struct objfile *objfile = cu->objfile;
7382 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7383 CORE_ADDR baseaddr;
7384 CORE_ADDR highpc;
7385 CORE_ADDR lowpc;
7386
7387 baseaddr = ANOFFSET (objfile->section_offsets,
7388 SECT_OFF_TEXT (objfile));
7389 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7390 pdi->lowpc + baseaddr);
7391 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7392 pdi->highpc + baseaddr);
7393 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7394 cu->per_cu->v.psymtab);
7395 }
7396 }
7397
7398 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7399 {
7400 if (!pdi->is_declaration)
7401 /* Ignore subprogram DIEs that do not have a name, they are
7402 illegal. Do not emit a complaint at this point, we will
7403 do so when we convert this psymtab into a symtab. */
7404 if (pdi->name)
7405 add_partial_symbol (pdi, cu);
7406 }
7407 }
7408
7409 if (! pdi->has_children)
7410 return;
7411
7412 if (cu->language == language_ada)
7413 {
7414 pdi = pdi->die_child;
7415 while (pdi != NULL)
7416 {
7417 fixup_partial_die (pdi, cu);
7418 if (pdi->tag == DW_TAG_subprogram
7419 || pdi->tag == DW_TAG_lexical_block)
7420 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7421 pdi = pdi->die_sibling;
7422 }
7423 }
7424 }
7425
7426 /* Read a partial die corresponding to an enumeration type. */
7427
7428 static void
7429 add_partial_enumeration (struct partial_die_info *enum_pdi,
7430 struct dwarf2_cu *cu)
7431 {
7432 struct partial_die_info *pdi;
7433
7434 if (enum_pdi->name != NULL)
7435 add_partial_symbol (enum_pdi, cu);
7436
7437 pdi = enum_pdi->die_child;
7438 while (pdi)
7439 {
7440 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7441 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7442 else
7443 add_partial_symbol (pdi, cu);
7444 pdi = pdi->die_sibling;
7445 }
7446 }
7447
7448 /* Return the initial uleb128 in the die at INFO_PTR. */
7449
7450 static unsigned int
7451 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7452 {
7453 unsigned int bytes_read;
7454
7455 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7456 }
7457
7458 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7459 Return the corresponding abbrev, or NULL if the number is zero (indicating
7460 an empty DIE). In either case *BYTES_READ will be set to the length of
7461 the initial number. */
7462
7463 static struct abbrev_info *
7464 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7465 struct dwarf2_cu *cu)
7466 {
7467 bfd *abfd = cu->objfile->obfd;
7468 unsigned int abbrev_number;
7469 struct abbrev_info *abbrev;
7470
7471 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7472
7473 if (abbrev_number == 0)
7474 return NULL;
7475
7476 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7477 if (!abbrev)
7478 {
7479 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7480 " at offset 0x%x [in module %s]"),
7481 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7482 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
7483 }
7484
7485 return abbrev;
7486 }
7487
7488 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7489 Returns a pointer to the end of a series of DIEs, terminated by an empty
7490 DIE. Any children of the skipped DIEs will also be skipped. */
7491
7492 static const gdb_byte *
7493 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7494 {
7495 struct dwarf2_cu *cu = reader->cu;
7496 struct abbrev_info *abbrev;
7497 unsigned int bytes_read;
7498
7499 while (1)
7500 {
7501 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7502 if (abbrev == NULL)
7503 return info_ptr + bytes_read;
7504 else
7505 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7506 }
7507 }
7508
7509 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7510 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7511 abbrev corresponding to that skipped uleb128 should be passed in
7512 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7513 children. */
7514
7515 static const gdb_byte *
7516 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7517 struct abbrev_info *abbrev)
7518 {
7519 unsigned int bytes_read;
7520 struct attribute attr;
7521 bfd *abfd = reader->abfd;
7522 struct dwarf2_cu *cu = reader->cu;
7523 const gdb_byte *buffer = reader->buffer;
7524 const gdb_byte *buffer_end = reader->buffer_end;
7525 unsigned int form, i;
7526
7527 for (i = 0; i < abbrev->num_attrs; i++)
7528 {
7529 /* The only abbrev we care about is DW_AT_sibling. */
7530 if (abbrev->attrs[i].name == DW_AT_sibling)
7531 {
7532 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7533 if (attr.form == DW_FORM_ref_addr)
7534 complaint (&symfile_complaints,
7535 _("ignoring absolute DW_AT_sibling"));
7536 else
7537 {
7538 sect_offset off = dwarf2_get_ref_die_offset (&attr);
7539 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
7540
7541 if (sibling_ptr < info_ptr)
7542 complaint (&symfile_complaints,
7543 _("DW_AT_sibling points backwards"));
7544 else if (sibling_ptr > reader->buffer_end)
7545 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7546 else
7547 return sibling_ptr;
7548 }
7549 }
7550
7551 /* If it isn't DW_AT_sibling, skip this attribute. */
7552 form = abbrev->attrs[i].form;
7553 skip_attribute:
7554 switch (form)
7555 {
7556 case DW_FORM_ref_addr:
7557 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7558 and later it is offset sized. */
7559 if (cu->header.version == 2)
7560 info_ptr += cu->header.addr_size;
7561 else
7562 info_ptr += cu->header.offset_size;
7563 break;
7564 case DW_FORM_GNU_ref_alt:
7565 info_ptr += cu->header.offset_size;
7566 break;
7567 case DW_FORM_addr:
7568 info_ptr += cu->header.addr_size;
7569 break;
7570 case DW_FORM_data1:
7571 case DW_FORM_ref1:
7572 case DW_FORM_flag:
7573 info_ptr += 1;
7574 break;
7575 case DW_FORM_flag_present:
7576 case DW_FORM_implicit_const:
7577 break;
7578 case DW_FORM_data2:
7579 case DW_FORM_ref2:
7580 info_ptr += 2;
7581 break;
7582 case DW_FORM_data4:
7583 case DW_FORM_ref4:
7584 info_ptr += 4;
7585 break;
7586 case DW_FORM_data8:
7587 case DW_FORM_ref8:
7588 case DW_FORM_ref_sig8:
7589 info_ptr += 8;
7590 break;
7591 case DW_FORM_data16:
7592 info_ptr += 16;
7593 break;
7594 case DW_FORM_string:
7595 read_direct_string (abfd, info_ptr, &bytes_read);
7596 info_ptr += bytes_read;
7597 break;
7598 case DW_FORM_sec_offset:
7599 case DW_FORM_strp:
7600 case DW_FORM_GNU_strp_alt:
7601 info_ptr += cu->header.offset_size;
7602 break;
7603 case DW_FORM_exprloc:
7604 case DW_FORM_block:
7605 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7606 info_ptr += bytes_read;
7607 break;
7608 case DW_FORM_block1:
7609 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7610 break;
7611 case DW_FORM_block2:
7612 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7613 break;
7614 case DW_FORM_block4:
7615 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7616 break;
7617 case DW_FORM_sdata:
7618 case DW_FORM_udata:
7619 case DW_FORM_ref_udata:
7620 case DW_FORM_GNU_addr_index:
7621 case DW_FORM_GNU_str_index:
7622 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7623 break;
7624 case DW_FORM_indirect:
7625 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7626 info_ptr += bytes_read;
7627 /* We need to continue parsing from here, so just go back to
7628 the top. */
7629 goto skip_attribute;
7630
7631 default:
7632 error (_("Dwarf Error: Cannot handle %s "
7633 "in DWARF reader [in module %s]"),
7634 dwarf_form_name (form),
7635 bfd_get_filename (abfd));
7636 }
7637 }
7638
7639 if (abbrev->has_children)
7640 return skip_children (reader, info_ptr);
7641 else
7642 return info_ptr;
7643 }
7644
7645 /* Locate ORIG_PDI's sibling.
7646 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7647
7648 static const gdb_byte *
7649 locate_pdi_sibling (const struct die_reader_specs *reader,
7650 struct partial_die_info *orig_pdi,
7651 const gdb_byte *info_ptr)
7652 {
7653 /* Do we know the sibling already? */
7654
7655 if (orig_pdi->sibling)
7656 return orig_pdi->sibling;
7657
7658 /* Are there any children to deal with? */
7659
7660 if (!orig_pdi->has_children)
7661 return info_ptr;
7662
7663 /* Skip the children the long way. */
7664
7665 return skip_children (reader, info_ptr);
7666 }
7667
7668 /* Expand this partial symbol table into a full symbol table. SELF is
7669 not NULL. */
7670
7671 static void
7672 dwarf2_read_symtab (struct partial_symtab *self,
7673 struct objfile *objfile)
7674 {
7675 if (self->readin)
7676 {
7677 warning (_("bug: psymtab for %s is already read in."),
7678 self->filename);
7679 }
7680 else
7681 {
7682 if (info_verbose)
7683 {
7684 printf_filtered (_("Reading in symbols for %s..."),
7685 self->filename);
7686 gdb_flush (gdb_stdout);
7687 }
7688
7689 /* Restore our global data. */
7690 dwarf2_per_objfile
7691 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7692 dwarf2_objfile_data_key);
7693
7694 /* If this psymtab is constructed from a debug-only objfile, the
7695 has_section_at_zero flag will not necessarily be correct. We
7696 can get the correct value for this flag by looking at the data
7697 associated with the (presumably stripped) associated objfile. */
7698 if (objfile->separate_debug_objfile_backlink)
7699 {
7700 struct dwarf2_per_objfile *dpo_backlink
7701 = ((struct dwarf2_per_objfile *)
7702 objfile_data (objfile->separate_debug_objfile_backlink,
7703 dwarf2_objfile_data_key));
7704
7705 dwarf2_per_objfile->has_section_at_zero
7706 = dpo_backlink->has_section_at_zero;
7707 }
7708
7709 dwarf2_per_objfile->reading_partial_symbols = 0;
7710
7711 psymtab_to_symtab_1 (self);
7712
7713 /* Finish up the debug error message. */
7714 if (info_verbose)
7715 printf_filtered (_("done.\n"));
7716 }
7717
7718 process_cu_includes ();
7719 }
7720 \f
7721 /* Reading in full CUs. */
7722
7723 /* Add PER_CU to the queue. */
7724
7725 static void
7726 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7727 enum language pretend_language)
7728 {
7729 struct dwarf2_queue_item *item;
7730
7731 per_cu->queued = 1;
7732 item = XNEW (struct dwarf2_queue_item);
7733 item->per_cu = per_cu;
7734 item->pretend_language = pretend_language;
7735 item->next = NULL;
7736
7737 if (dwarf2_queue == NULL)
7738 dwarf2_queue = item;
7739 else
7740 dwarf2_queue_tail->next = item;
7741
7742 dwarf2_queue_tail = item;
7743 }
7744
7745 /* If PER_CU is not yet queued, add it to the queue.
7746 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7747 dependency.
7748 The result is non-zero if PER_CU was queued, otherwise the result is zero
7749 meaning either PER_CU is already queued or it is already loaded.
7750
7751 N.B. There is an invariant here that if a CU is queued then it is loaded.
7752 The caller is required to load PER_CU if we return non-zero. */
7753
7754 static int
7755 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7756 struct dwarf2_per_cu_data *per_cu,
7757 enum language pretend_language)
7758 {
7759 /* We may arrive here during partial symbol reading, if we need full
7760 DIEs to process an unusual case (e.g. template arguments). Do
7761 not queue PER_CU, just tell our caller to load its DIEs. */
7762 if (dwarf2_per_objfile->reading_partial_symbols)
7763 {
7764 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7765 return 1;
7766 return 0;
7767 }
7768
7769 /* Mark the dependence relation so that we don't flush PER_CU
7770 too early. */
7771 if (dependent_cu != NULL)
7772 dwarf2_add_dependence (dependent_cu, per_cu);
7773
7774 /* If it's already on the queue, we have nothing to do. */
7775 if (per_cu->queued)
7776 return 0;
7777
7778 /* If the compilation unit is already loaded, just mark it as
7779 used. */
7780 if (per_cu->cu != NULL)
7781 {
7782 per_cu->cu->last_used = 0;
7783 return 0;
7784 }
7785
7786 /* Add it to the queue. */
7787 queue_comp_unit (per_cu, pretend_language);
7788
7789 return 1;
7790 }
7791
7792 /* Process the queue. */
7793
7794 static void
7795 process_queue (void)
7796 {
7797 struct dwarf2_queue_item *item, *next_item;
7798
7799 if (dwarf_read_debug)
7800 {
7801 fprintf_unfiltered (gdb_stdlog,
7802 "Expanding one or more symtabs of objfile %s ...\n",
7803 objfile_name (dwarf2_per_objfile->objfile));
7804 }
7805
7806 /* The queue starts out with one item, but following a DIE reference
7807 may load a new CU, adding it to the end of the queue. */
7808 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7809 {
7810 if ((dwarf2_per_objfile->using_index
7811 ? !item->per_cu->v.quick->compunit_symtab
7812 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7813 /* Skip dummy CUs. */
7814 && item->per_cu->cu != NULL)
7815 {
7816 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7817 unsigned int debug_print_threshold;
7818 char buf[100];
7819
7820 if (per_cu->is_debug_types)
7821 {
7822 struct signatured_type *sig_type =
7823 (struct signatured_type *) per_cu;
7824
7825 sprintf (buf, "TU %s at offset 0x%x",
7826 hex_string (sig_type->signature),
7827 to_underlying (per_cu->sect_off));
7828 /* There can be 100s of TUs.
7829 Only print them in verbose mode. */
7830 debug_print_threshold = 2;
7831 }
7832 else
7833 {
7834 sprintf (buf, "CU at offset 0x%x",
7835 to_underlying (per_cu->sect_off));
7836 debug_print_threshold = 1;
7837 }
7838
7839 if (dwarf_read_debug >= debug_print_threshold)
7840 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7841
7842 if (per_cu->is_debug_types)
7843 process_full_type_unit (per_cu, item->pretend_language);
7844 else
7845 process_full_comp_unit (per_cu, item->pretend_language);
7846
7847 if (dwarf_read_debug >= debug_print_threshold)
7848 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7849 }
7850
7851 item->per_cu->queued = 0;
7852 next_item = item->next;
7853 xfree (item);
7854 }
7855
7856 dwarf2_queue_tail = NULL;
7857
7858 if (dwarf_read_debug)
7859 {
7860 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7861 objfile_name (dwarf2_per_objfile->objfile));
7862 }
7863 }
7864
7865 /* Free all allocated queue entries. This function only releases anything if
7866 an error was thrown; if the queue was processed then it would have been
7867 freed as we went along. */
7868
7869 static void
7870 dwarf2_release_queue (void *dummy)
7871 {
7872 struct dwarf2_queue_item *item, *last;
7873
7874 item = dwarf2_queue;
7875 while (item)
7876 {
7877 /* Anything still marked queued is likely to be in an
7878 inconsistent state, so discard it. */
7879 if (item->per_cu->queued)
7880 {
7881 if (item->per_cu->cu != NULL)
7882 free_one_cached_comp_unit (item->per_cu);
7883 item->per_cu->queued = 0;
7884 }
7885
7886 last = item;
7887 item = item->next;
7888 xfree (last);
7889 }
7890
7891 dwarf2_queue = dwarf2_queue_tail = NULL;
7892 }
7893
7894 /* Read in full symbols for PST, and anything it depends on. */
7895
7896 static void
7897 psymtab_to_symtab_1 (struct partial_symtab *pst)
7898 {
7899 struct dwarf2_per_cu_data *per_cu;
7900 int i;
7901
7902 if (pst->readin)
7903 return;
7904
7905 for (i = 0; i < pst->number_of_dependencies; i++)
7906 if (!pst->dependencies[i]->readin
7907 && pst->dependencies[i]->user == NULL)
7908 {
7909 /* Inform about additional files that need to be read in. */
7910 if (info_verbose)
7911 {
7912 /* FIXME: i18n: Need to make this a single string. */
7913 fputs_filtered (" ", gdb_stdout);
7914 wrap_here ("");
7915 fputs_filtered ("and ", gdb_stdout);
7916 wrap_here ("");
7917 printf_filtered ("%s...", pst->dependencies[i]->filename);
7918 wrap_here (""); /* Flush output. */
7919 gdb_flush (gdb_stdout);
7920 }
7921 psymtab_to_symtab_1 (pst->dependencies[i]);
7922 }
7923
7924 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7925
7926 if (per_cu == NULL)
7927 {
7928 /* It's an include file, no symbols to read for it.
7929 Everything is in the parent symtab. */
7930 pst->readin = 1;
7931 return;
7932 }
7933
7934 dw2_do_instantiate_symtab (per_cu);
7935 }
7936
7937 /* Trivial hash function for die_info: the hash value of a DIE
7938 is its offset in .debug_info for this objfile. */
7939
7940 static hashval_t
7941 die_hash (const void *item)
7942 {
7943 const struct die_info *die = (const struct die_info *) item;
7944
7945 return to_underlying (die->sect_off);
7946 }
7947
7948 /* Trivial comparison function for die_info structures: two DIEs
7949 are equal if they have the same offset. */
7950
7951 static int
7952 die_eq (const void *item_lhs, const void *item_rhs)
7953 {
7954 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7955 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7956
7957 return die_lhs->sect_off == die_rhs->sect_off;
7958 }
7959
7960 /* die_reader_func for load_full_comp_unit.
7961 This is identical to read_signatured_type_reader,
7962 but is kept separate for now. */
7963
7964 static void
7965 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7966 const gdb_byte *info_ptr,
7967 struct die_info *comp_unit_die,
7968 int has_children,
7969 void *data)
7970 {
7971 struct dwarf2_cu *cu = reader->cu;
7972 enum language *language_ptr = (enum language *) data;
7973
7974 gdb_assert (cu->die_hash == NULL);
7975 cu->die_hash =
7976 htab_create_alloc_ex (cu->header.length / 12,
7977 die_hash,
7978 die_eq,
7979 NULL,
7980 &cu->comp_unit_obstack,
7981 hashtab_obstack_allocate,
7982 dummy_obstack_deallocate);
7983
7984 if (has_children)
7985 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7986 &info_ptr, comp_unit_die);
7987 cu->dies = comp_unit_die;
7988 /* comp_unit_die is not stored in die_hash, no need. */
7989
7990 /* We try not to read any attributes in this function, because not
7991 all CUs needed for references have been loaded yet, and symbol
7992 table processing isn't initialized. But we have to set the CU language,
7993 or we won't be able to build types correctly.
7994 Similarly, if we do not read the producer, we can not apply
7995 producer-specific interpretation. */
7996 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7997 }
7998
7999 /* Load the DIEs associated with PER_CU into memory. */
8000
8001 static void
8002 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8003 enum language pretend_language)
8004 {
8005 gdb_assert (! this_cu->is_debug_types);
8006
8007 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8008 load_full_comp_unit_reader, &pretend_language);
8009 }
8010
8011 /* Add a DIE to the delayed physname list. */
8012
8013 static void
8014 add_to_method_list (struct type *type, int fnfield_index, int index,
8015 const char *name, struct die_info *die,
8016 struct dwarf2_cu *cu)
8017 {
8018 struct delayed_method_info mi;
8019 mi.type = type;
8020 mi.fnfield_index = fnfield_index;
8021 mi.index = index;
8022 mi.name = name;
8023 mi.die = die;
8024 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8025 }
8026
8027 /* A cleanup for freeing the delayed method list. */
8028
8029 static void
8030 free_delayed_list (void *ptr)
8031 {
8032 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8033 if (cu->method_list != NULL)
8034 {
8035 VEC_free (delayed_method_info, cu->method_list);
8036 cu->method_list = NULL;
8037 }
8038 }
8039
8040 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8041 "const" / "volatile". If so, decrements LEN by the length of the
8042 modifier and return true. Otherwise return false. */
8043
8044 template<size_t N>
8045 static bool
8046 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8047 {
8048 size_t mod_len = sizeof (mod) - 1;
8049 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8050 {
8051 len -= mod_len;
8052 return true;
8053 }
8054 return false;
8055 }
8056
8057 /* Compute the physnames of any methods on the CU's method list.
8058
8059 The computation of method physnames is delayed in order to avoid the
8060 (bad) condition that one of the method's formal parameters is of an as yet
8061 incomplete type. */
8062
8063 static void
8064 compute_delayed_physnames (struct dwarf2_cu *cu)
8065 {
8066 int i;
8067 struct delayed_method_info *mi;
8068
8069 /* Only C++ delays computing physnames. */
8070 if (VEC_empty (delayed_method_info, cu->method_list))
8071 return;
8072 gdb_assert (cu->language == language_cplus);
8073
8074 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8075 {
8076 const char *physname;
8077 struct fn_fieldlist *fn_flp
8078 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
8079 physname = dwarf2_physname (mi->name, mi->die, cu);
8080 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8081 = physname ? physname : "";
8082
8083 /* Since there's no tag to indicate whether a method is a
8084 const/volatile overload, extract that information out of the
8085 demangled name. */
8086 if (physname != NULL)
8087 {
8088 size_t len = strlen (physname);
8089
8090 while (1)
8091 {
8092 if (physname[len] == ')') /* shortcut */
8093 break;
8094 else if (check_modifier (physname, len, " const"))
8095 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi->index) = 1;
8096 else if (check_modifier (physname, len, " volatile"))
8097 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi->index) = 1;
8098 else
8099 break;
8100 }
8101 }
8102 }
8103 }
8104
8105 /* Go objects should be embedded in a DW_TAG_module DIE,
8106 and it's not clear if/how imported objects will appear.
8107 To keep Go support simple until that's worked out,
8108 go back through what we've read and create something usable.
8109 We could do this while processing each DIE, and feels kinda cleaner,
8110 but that way is more invasive.
8111 This is to, for example, allow the user to type "p var" or "b main"
8112 without having to specify the package name, and allow lookups
8113 of module.object to work in contexts that use the expression
8114 parser. */
8115
8116 static void
8117 fixup_go_packaging (struct dwarf2_cu *cu)
8118 {
8119 char *package_name = NULL;
8120 struct pending *list;
8121 int i;
8122
8123 for (list = global_symbols; list != NULL; list = list->next)
8124 {
8125 for (i = 0; i < list->nsyms; ++i)
8126 {
8127 struct symbol *sym = list->symbol[i];
8128
8129 if (SYMBOL_LANGUAGE (sym) == language_go
8130 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8131 {
8132 char *this_package_name = go_symbol_package_name (sym);
8133
8134 if (this_package_name == NULL)
8135 continue;
8136 if (package_name == NULL)
8137 package_name = this_package_name;
8138 else
8139 {
8140 if (strcmp (package_name, this_package_name) != 0)
8141 complaint (&symfile_complaints,
8142 _("Symtab %s has objects from two different Go packages: %s and %s"),
8143 (symbol_symtab (sym) != NULL
8144 ? symtab_to_filename_for_display
8145 (symbol_symtab (sym))
8146 : objfile_name (cu->objfile)),
8147 this_package_name, package_name);
8148 xfree (this_package_name);
8149 }
8150 }
8151 }
8152 }
8153
8154 if (package_name != NULL)
8155 {
8156 struct objfile *objfile = cu->objfile;
8157 const char *saved_package_name
8158 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8159 package_name,
8160 strlen (package_name));
8161 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8162 saved_package_name);
8163 struct symbol *sym;
8164
8165 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8166
8167 sym = allocate_symbol (objfile);
8168 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
8169 SYMBOL_SET_NAMES (sym, saved_package_name,
8170 strlen (saved_package_name), 0, objfile);
8171 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8172 e.g., "main" finds the "main" module and not C's main(). */
8173 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8174 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
8175 SYMBOL_TYPE (sym) = type;
8176
8177 add_symbol_to_list (sym, &global_symbols);
8178
8179 xfree (package_name);
8180 }
8181 }
8182
8183 /* Return the symtab for PER_CU. This works properly regardless of
8184 whether we're using the index or psymtabs. */
8185
8186 static struct compunit_symtab *
8187 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
8188 {
8189 return (dwarf2_per_objfile->using_index
8190 ? per_cu->v.quick->compunit_symtab
8191 : per_cu->v.psymtab->compunit_symtab);
8192 }
8193
8194 /* A helper function for computing the list of all symbol tables
8195 included by PER_CU. */
8196
8197 static void
8198 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
8199 htab_t all_children, htab_t all_type_symtabs,
8200 struct dwarf2_per_cu_data *per_cu,
8201 struct compunit_symtab *immediate_parent)
8202 {
8203 void **slot;
8204 int ix;
8205 struct compunit_symtab *cust;
8206 struct dwarf2_per_cu_data *iter;
8207
8208 slot = htab_find_slot (all_children, per_cu, INSERT);
8209 if (*slot != NULL)
8210 {
8211 /* This inclusion and its children have been processed. */
8212 return;
8213 }
8214
8215 *slot = per_cu;
8216 /* Only add a CU if it has a symbol table. */
8217 cust = get_compunit_symtab (per_cu);
8218 if (cust != NULL)
8219 {
8220 /* If this is a type unit only add its symbol table if we haven't
8221 seen it yet (type unit per_cu's can share symtabs). */
8222 if (per_cu->is_debug_types)
8223 {
8224 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
8225 if (*slot == NULL)
8226 {
8227 *slot = cust;
8228 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8229 if (cust->user == NULL)
8230 cust->user = immediate_parent;
8231 }
8232 }
8233 else
8234 {
8235 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8236 if (cust->user == NULL)
8237 cust->user = immediate_parent;
8238 }
8239 }
8240
8241 for (ix = 0;
8242 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
8243 ++ix)
8244 {
8245 recursively_compute_inclusions (result, all_children,
8246 all_type_symtabs, iter, cust);
8247 }
8248 }
8249
8250 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
8251 PER_CU. */
8252
8253 static void
8254 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
8255 {
8256 gdb_assert (! per_cu->is_debug_types);
8257
8258 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
8259 {
8260 int ix, len;
8261 struct dwarf2_per_cu_data *per_cu_iter;
8262 struct compunit_symtab *compunit_symtab_iter;
8263 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
8264 htab_t all_children, all_type_symtabs;
8265 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
8266
8267 /* If we don't have a symtab, we can just skip this case. */
8268 if (cust == NULL)
8269 return;
8270
8271 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8272 NULL, xcalloc, xfree);
8273 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8274 NULL, xcalloc, xfree);
8275
8276 for (ix = 0;
8277 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
8278 ix, per_cu_iter);
8279 ++ix)
8280 {
8281 recursively_compute_inclusions (&result_symtabs, all_children,
8282 all_type_symtabs, per_cu_iter,
8283 cust);
8284 }
8285
8286 /* Now we have a transitive closure of all the included symtabs. */
8287 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8288 cust->includes
8289 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8290 struct compunit_symtab *, len + 1);
8291 for (ix = 0;
8292 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8293 compunit_symtab_iter);
8294 ++ix)
8295 cust->includes[ix] = compunit_symtab_iter;
8296 cust->includes[len] = NULL;
8297
8298 VEC_free (compunit_symtab_ptr, result_symtabs);
8299 htab_delete (all_children);
8300 htab_delete (all_type_symtabs);
8301 }
8302 }
8303
8304 /* Compute the 'includes' field for the symtabs of all the CUs we just
8305 read. */
8306
8307 static void
8308 process_cu_includes (void)
8309 {
8310 int ix;
8311 struct dwarf2_per_cu_data *iter;
8312
8313 for (ix = 0;
8314 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8315 ix, iter);
8316 ++ix)
8317 {
8318 if (! iter->is_debug_types)
8319 compute_compunit_symtab_includes (iter);
8320 }
8321
8322 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8323 }
8324
8325 /* Generate full symbol information for PER_CU, whose DIEs have
8326 already been loaded into memory. */
8327
8328 static void
8329 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8330 enum language pretend_language)
8331 {
8332 struct dwarf2_cu *cu = per_cu->cu;
8333 struct objfile *objfile = per_cu->objfile;
8334 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8335 CORE_ADDR lowpc, highpc;
8336 struct compunit_symtab *cust;
8337 struct cleanup *back_to, *delayed_list_cleanup;
8338 CORE_ADDR baseaddr;
8339 struct block *static_block;
8340 CORE_ADDR addr;
8341
8342 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8343
8344 buildsym_init ();
8345 back_to = make_cleanup (really_free_pendings, NULL);
8346 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8347
8348 cu->list_in_scope = &file_symbols;
8349
8350 cu->language = pretend_language;
8351 cu->language_defn = language_def (cu->language);
8352
8353 /* Do line number decoding in read_file_scope () */
8354 process_die (cu->dies, cu);
8355
8356 /* For now fudge the Go package. */
8357 if (cu->language == language_go)
8358 fixup_go_packaging (cu);
8359
8360 /* Now that we have processed all the DIEs in the CU, all the types
8361 should be complete, and it should now be safe to compute all of the
8362 physnames. */
8363 compute_delayed_physnames (cu);
8364 do_cleanups (delayed_list_cleanup);
8365
8366 /* Some compilers don't define a DW_AT_high_pc attribute for the
8367 compilation unit. If the DW_AT_high_pc is missing, synthesize
8368 it, by scanning the DIE's below the compilation unit. */
8369 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8370
8371 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8372 static_block = end_symtab_get_static_block (addr, 0, 1);
8373
8374 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8375 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8376 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8377 addrmap to help ensure it has an accurate map of pc values belonging to
8378 this comp unit. */
8379 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8380
8381 cust = end_symtab_from_static_block (static_block,
8382 SECT_OFF_TEXT (objfile), 0);
8383
8384 if (cust != NULL)
8385 {
8386 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8387
8388 /* Set symtab language to language from DW_AT_language. If the
8389 compilation is from a C file generated by language preprocessors, do
8390 not set the language if it was already deduced by start_subfile. */
8391 if (!(cu->language == language_c
8392 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8393 COMPUNIT_FILETABS (cust)->language = cu->language;
8394
8395 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8396 produce DW_AT_location with location lists but it can be possibly
8397 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8398 there were bugs in prologue debug info, fixed later in GCC-4.5
8399 by "unwind info for epilogues" patch (which is not directly related).
8400
8401 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8402 needed, it would be wrong due to missing DW_AT_producer there.
8403
8404 Still one can confuse GDB by using non-standard GCC compilation
8405 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8406 */
8407 if (cu->has_loclist && gcc_4_minor >= 5)
8408 cust->locations_valid = 1;
8409
8410 if (gcc_4_minor >= 5)
8411 cust->epilogue_unwind_valid = 1;
8412
8413 cust->call_site_htab = cu->call_site_htab;
8414 }
8415
8416 if (dwarf2_per_objfile->using_index)
8417 per_cu->v.quick->compunit_symtab = cust;
8418 else
8419 {
8420 struct partial_symtab *pst = per_cu->v.psymtab;
8421 pst->compunit_symtab = cust;
8422 pst->readin = 1;
8423 }
8424
8425 /* Push it for inclusion processing later. */
8426 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8427
8428 do_cleanups (back_to);
8429 }
8430
8431 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8432 already been loaded into memory. */
8433
8434 static void
8435 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8436 enum language pretend_language)
8437 {
8438 struct dwarf2_cu *cu = per_cu->cu;
8439 struct objfile *objfile = per_cu->objfile;
8440 struct compunit_symtab *cust;
8441 struct cleanup *back_to, *delayed_list_cleanup;
8442 struct signatured_type *sig_type;
8443
8444 gdb_assert (per_cu->is_debug_types);
8445 sig_type = (struct signatured_type *) per_cu;
8446
8447 buildsym_init ();
8448 back_to = make_cleanup (really_free_pendings, NULL);
8449 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8450
8451 cu->list_in_scope = &file_symbols;
8452
8453 cu->language = pretend_language;
8454 cu->language_defn = language_def (cu->language);
8455
8456 /* The symbol tables are set up in read_type_unit_scope. */
8457 process_die (cu->dies, cu);
8458
8459 /* For now fudge the Go package. */
8460 if (cu->language == language_go)
8461 fixup_go_packaging (cu);
8462
8463 /* Now that we have processed all the DIEs in the CU, all the types
8464 should be complete, and it should now be safe to compute all of the
8465 physnames. */
8466 compute_delayed_physnames (cu);
8467 do_cleanups (delayed_list_cleanup);
8468
8469 /* TUs share symbol tables.
8470 If this is the first TU to use this symtab, complete the construction
8471 of it with end_expandable_symtab. Otherwise, complete the addition of
8472 this TU's symbols to the existing symtab. */
8473 if (sig_type->type_unit_group->compunit_symtab == NULL)
8474 {
8475 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8476 sig_type->type_unit_group->compunit_symtab = cust;
8477
8478 if (cust != NULL)
8479 {
8480 /* Set symtab language to language from DW_AT_language. If the
8481 compilation is from a C file generated by language preprocessors,
8482 do not set the language if it was already deduced by
8483 start_subfile. */
8484 if (!(cu->language == language_c
8485 && COMPUNIT_FILETABS (cust)->language != language_c))
8486 COMPUNIT_FILETABS (cust)->language = cu->language;
8487 }
8488 }
8489 else
8490 {
8491 augment_type_symtab ();
8492 cust = sig_type->type_unit_group->compunit_symtab;
8493 }
8494
8495 if (dwarf2_per_objfile->using_index)
8496 per_cu->v.quick->compunit_symtab = cust;
8497 else
8498 {
8499 struct partial_symtab *pst = per_cu->v.psymtab;
8500 pst->compunit_symtab = cust;
8501 pst->readin = 1;
8502 }
8503
8504 do_cleanups (back_to);
8505 }
8506
8507 /* Process an imported unit DIE. */
8508
8509 static void
8510 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8511 {
8512 struct attribute *attr;
8513
8514 /* For now we don't handle imported units in type units. */
8515 if (cu->per_cu->is_debug_types)
8516 {
8517 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8518 " supported in type units [in module %s]"),
8519 objfile_name (cu->objfile));
8520 }
8521
8522 attr = dwarf2_attr (die, DW_AT_import, cu);
8523 if (attr != NULL)
8524 {
8525 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
8526 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8527 dwarf2_per_cu_data *per_cu
8528 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
8529
8530 /* If necessary, add it to the queue and load its DIEs. */
8531 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8532 load_full_comp_unit (per_cu, cu->language);
8533
8534 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8535 per_cu);
8536 }
8537 }
8538
8539 /* RAII object that represents a process_die scope: i.e.,
8540 starts/finishes processing a DIE. */
8541 class process_die_scope
8542 {
8543 public:
8544 process_die_scope (die_info *die, dwarf2_cu *cu)
8545 : m_die (die), m_cu (cu)
8546 {
8547 /* We should only be processing DIEs not already in process. */
8548 gdb_assert (!m_die->in_process);
8549 m_die->in_process = true;
8550 }
8551
8552 ~process_die_scope ()
8553 {
8554 m_die->in_process = false;
8555
8556 /* If we're done processing the DIE for the CU that owns the line
8557 header, we don't need the line header anymore. */
8558 if (m_cu->line_header_die_owner == m_die)
8559 {
8560 delete m_cu->line_header;
8561 m_cu->line_header = NULL;
8562 m_cu->line_header_die_owner = NULL;
8563 }
8564 }
8565
8566 private:
8567 die_info *m_die;
8568 dwarf2_cu *m_cu;
8569 };
8570
8571 /* Process a die and its children. */
8572
8573 static void
8574 process_die (struct die_info *die, struct dwarf2_cu *cu)
8575 {
8576 process_die_scope scope (die, cu);
8577
8578 switch (die->tag)
8579 {
8580 case DW_TAG_padding:
8581 break;
8582 case DW_TAG_compile_unit:
8583 case DW_TAG_partial_unit:
8584 read_file_scope (die, cu);
8585 break;
8586 case DW_TAG_type_unit:
8587 read_type_unit_scope (die, cu);
8588 break;
8589 case DW_TAG_subprogram:
8590 case DW_TAG_inlined_subroutine:
8591 read_func_scope (die, cu);
8592 break;
8593 case DW_TAG_lexical_block:
8594 case DW_TAG_try_block:
8595 case DW_TAG_catch_block:
8596 read_lexical_block_scope (die, cu);
8597 break;
8598 case DW_TAG_call_site:
8599 case DW_TAG_GNU_call_site:
8600 read_call_site_scope (die, cu);
8601 break;
8602 case DW_TAG_class_type:
8603 case DW_TAG_interface_type:
8604 case DW_TAG_structure_type:
8605 case DW_TAG_union_type:
8606 process_structure_scope (die, cu);
8607 break;
8608 case DW_TAG_enumeration_type:
8609 process_enumeration_scope (die, cu);
8610 break;
8611
8612 /* These dies have a type, but processing them does not create
8613 a symbol or recurse to process the children. Therefore we can
8614 read them on-demand through read_type_die. */
8615 case DW_TAG_subroutine_type:
8616 case DW_TAG_set_type:
8617 case DW_TAG_array_type:
8618 case DW_TAG_pointer_type:
8619 case DW_TAG_ptr_to_member_type:
8620 case DW_TAG_reference_type:
8621 case DW_TAG_rvalue_reference_type:
8622 case DW_TAG_string_type:
8623 break;
8624
8625 case DW_TAG_base_type:
8626 case DW_TAG_subrange_type:
8627 case DW_TAG_typedef:
8628 /* Add a typedef symbol for the type definition, if it has a
8629 DW_AT_name. */
8630 new_symbol (die, read_type_die (die, cu), cu);
8631 break;
8632 case DW_TAG_common_block:
8633 read_common_block (die, cu);
8634 break;
8635 case DW_TAG_common_inclusion:
8636 break;
8637 case DW_TAG_namespace:
8638 cu->processing_has_namespace_info = 1;
8639 read_namespace (die, cu);
8640 break;
8641 case DW_TAG_module:
8642 cu->processing_has_namespace_info = 1;
8643 read_module (die, cu);
8644 break;
8645 case DW_TAG_imported_declaration:
8646 cu->processing_has_namespace_info = 1;
8647 if (read_namespace_alias (die, cu))
8648 break;
8649 /* The declaration is not a global namespace alias: fall through. */
8650 case DW_TAG_imported_module:
8651 cu->processing_has_namespace_info = 1;
8652 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8653 || cu->language != language_fortran))
8654 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8655 dwarf_tag_name (die->tag));
8656 read_import_statement (die, cu);
8657 break;
8658
8659 case DW_TAG_imported_unit:
8660 process_imported_unit_die (die, cu);
8661 break;
8662
8663 default:
8664 new_symbol (die, NULL, cu);
8665 break;
8666 }
8667 }
8668 \f
8669 /* DWARF name computation. */
8670
8671 /* A helper function for dwarf2_compute_name which determines whether DIE
8672 needs to have the name of the scope prepended to the name listed in the
8673 die. */
8674
8675 static int
8676 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8677 {
8678 struct attribute *attr;
8679
8680 switch (die->tag)
8681 {
8682 case DW_TAG_namespace:
8683 case DW_TAG_typedef:
8684 case DW_TAG_class_type:
8685 case DW_TAG_interface_type:
8686 case DW_TAG_structure_type:
8687 case DW_TAG_union_type:
8688 case DW_TAG_enumeration_type:
8689 case DW_TAG_enumerator:
8690 case DW_TAG_subprogram:
8691 case DW_TAG_inlined_subroutine:
8692 case DW_TAG_member:
8693 case DW_TAG_imported_declaration:
8694 return 1;
8695
8696 case DW_TAG_variable:
8697 case DW_TAG_constant:
8698 /* We only need to prefix "globally" visible variables. These include
8699 any variable marked with DW_AT_external or any variable that
8700 lives in a namespace. [Variables in anonymous namespaces
8701 require prefixing, but they are not DW_AT_external.] */
8702
8703 if (dwarf2_attr (die, DW_AT_specification, cu))
8704 {
8705 struct dwarf2_cu *spec_cu = cu;
8706
8707 return die_needs_namespace (die_specification (die, &spec_cu),
8708 spec_cu);
8709 }
8710
8711 attr = dwarf2_attr (die, DW_AT_external, cu);
8712 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8713 && die->parent->tag != DW_TAG_module)
8714 return 0;
8715 /* A variable in a lexical block of some kind does not need a
8716 namespace, even though in C++ such variables may be external
8717 and have a mangled name. */
8718 if (die->parent->tag == DW_TAG_lexical_block
8719 || die->parent->tag == DW_TAG_try_block
8720 || die->parent->tag == DW_TAG_catch_block
8721 || die->parent->tag == DW_TAG_subprogram)
8722 return 0;
8723 return 1;
8724
8725 default:
8726 return 0;
8727 }
8728 }
8729
8730 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
8731 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
8732 defined for the given DIE. */
8733
8734 static struct attribute *
8735 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
8736 {
8737 struct attribute *attr;
8738
8739 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8740 if (attr == NULL)
8741 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8742
8743 return attr;
8744 }
8745
8746 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
8747 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
8748 defined for the given DIE. */
8749
8750 static const char *
8751 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
8752 {
8753 const char *linkage_name;
8754
8755 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8756 if (linkage_name == NULL)
8757 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8758
8759 return linkage_name;
8760 }
8761
8762 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8763 compute the physname for the object, which include a method's:
8764 - formal parameters (C++),
8765 - receiver type (Go),
8766
8767 The term "physname" is a bit confusing.
8768 For C++, for example, it is the demangled name.
8769 For Go, for example, it's the mangled name.
8770
8771 For Ada, return the DIE's linkage name rather than the fully qualified
8772 name. PHYSNAME is ignored..
8773
8774 The result is allocated on the objfile_obstack and canonicalized. */
8775
8776 static const char *
8777 dwarf2_compute_name (const char *name,
8778 struct die_info *die, struct dwarf2_cu *cu,
8779 int physname)
8780 {
8781 struct objfile *objfile = cu->objfile;
8782
8783 if (name == NULL)
8784 name = dwarf2_name (die, cu);
8785
8786 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8787 but otherwise compute it by typename_concat inside GDB.
8788 FIXME: Actually this is not really true, or at least not always true.
8789 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8790 Fortran names because there is no mangling standard. So new_symbol_full
8791 will set the demangled name to the result of dwarf2_full_name, and it is
8792 the demangled name that GDB uses if it exists. */
8793 if (cu->language == language_ada
8794 || (cu->language == language_fortran && physname))
8795 {
8796 /* For Ada unit, we prefer the linkage name over the name, as
8797 the former contains the exported name, which the user expects
8798 to be able to reference. Ideally, we want the user to be able
8799 to reference this entity using either natural or linkage name,
8800 but we haven't started looking at this enhancement yet. */
8801 const char *linkage_name = dw2_linkage_name (die, cu);
8802
8803 if (linkage_name != NULL)
8804 return linkage_name;
8805 }
8806
8807 /* These are the only languages we know how to qualify names in. */
8808 if (name != NULL
8809 && (cu->language == language_cplus
8810 || cu->language == language_fortran || cu->language == language_d
8811 || cu->language == language_rust))
8812 {
8813 if (die_needs_namespace (die, cu))
8814 {
8815 long length;
8816 const char *prefix;
8817 const char *canonical_name = NULL;
8818
8819 string_file buf;
8820
8821 prefix = determine_prefix (die, cu);
8822 if (*prefix != '\0')
8823 {
8824 char *prefixed_name = typename_concat (NULL, prefix, name,
8825 physname, cu);
8826
8827 buf.puts (prefixed_name);
8828 xfree (prefixed_name);
8829 }
8830 else
8831 buf.puts (name);
8832
8833 /* Template parameters may be specified in the DIE's DW_AT_name, or
8834 as children with DW_TAG_template_type_param or
8835 DW_TAG_value_type_param. If the latter, add them to the name
8836 here. If the name already has template parameters, then
8837 skip this step; some versions of GCC emit both, and
8838 it is more efficient to use the pre-computed name.
8839
8840 Something to keep in mind about this process: it is very
8841 unlikely, or in some cases downright impossible, to produce
8842 something that will match the mangled name of a function.
8843 If the definition of the function has the same debug info,
8844 we should be able to match up with it anyway. But fallbacks
8845 using the minimal symbol, for instance to find a method
8846 implemented in a stripped copy of libstdc++, will not work.
8847 If we do not have debug info for the definition, we will have to
8848 match them up some other way.
8849
8850 When we do name matching there is a related problem with function
8851 templates; two instantiated function templates are allowed to
8852 differ only by their return types, which we do not add here. */
8853
8854 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8855 {
8856 struct attribute *attr;
8857 struct die_info *child;
8858 int first = 1;
8859
8860 die->building_fullname = 1;
8861
8862 for (child = die->child; child != NULL; child = child->sibling)
8863 {
8864 struct type *type;
8865 LONGEST value;
8866 const gdb_byte *bytes;
8867 struct dwarf2_locexpr_baton *baton;
8868 struct value *v;
8869
8870 if (child->tag != DW_TAG_template_type_param
8871 && child->tag != DW_TAG_template_value_param)
8872 continue;
8873
8874 if (first)
8875 {
8876 buf.puts ("<");
8877 first = 0;
8878 }
8879 else
8880 buf.puts (", ");
8881
8882 attr = dwarf2_attr (child, DW_AT_type, cu);
8883 if (attr == NULL)
8884 {
8885 complaint (&symfile_complaints,
8886 _("template parameter missing DW_AT_type"));
8887 buf.puts ("UNKNOWN_TYPE");
8888 continue;
8889 }
8890 type = die_type (child, cu);
8891
8892 if (child->tag == DW_TAG_template_type_param)
8893 {
8894 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
8895 continue;
8896 }
8897
8898 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8899 if (attr == NULL)
8900 {
8901 complaint (&symfile_complaints,
8902 _("template parameter missing "
8903 "DW_AT_const_value"));
8904 buf.puts ("UNKNOWN_VALUE");
8905 continue;
8906 }
8907
8908 dwarf2_const_value_attr (attr, type, name,
8909 &cu->comp_unit_obstack, cu,
8910 &value, &bytes, &baton);
8911
8912 if (TYPE_NOSIGN (type))
8913 /* GDB prints characters as NUMBER 'CHAR'. If that's
8914 changed, this can use value_print instead. */
8915 c_printchar (value, type, &buf);
8916 else
8917 {
8918 struct value_print_options opts;
8919
8920 if (baton != NULL)
8921 v = dwarf2_evaluate_loc_desc (type, NULL,
8922 baton->data,
8923 baton->size,
8924 baton->per_cu);
8925 else if (bytes != NULL)
8926 {
8927 v = allocate_value (type);
8928 memcpy (value_contents_writeable (v), bytes,
8929 TYPE_LENGTH (type));
8930 }
8931 else
8932 v = value_from_longest (type, value);
8933
8934 /* Specify decimal so that we do not depend on
8935 the radix. */
8936 get_formatted_print_options (&opts, 'd');
8937 opts.raw = 1;
8938 value_print (v, &buf, &opts);
8939 release_value (v);
8940 value_free (v);
8941 }
8942 }
8943
8944 die->building_fullname = 0;
8945
8946 if (!first)
8947 {
8948 /* Close the argument list, with a space if necessary
8949 (nested templates). */
8950 if (!buf.empty () && buf.string ().back () == '>')
8951 buf.puts (" >");
8952 else
8953 buf.puts (">");
8954 }
8955 }
8956
8957 /* For C++ methods, append formal parameter type
8958 information, if PHYSNAME. */
8959
8960 if (physname && die->tag == DW_TAG_subprogram
8961 && cu->language == language_cplus)
8962 {
8963 struct type *type = read_type_die (die, cu);
8964
8965 c_type_print_args (type, &buf, 1, cu->language,
8966 &type_print_raw_options);
8967
8968 if (cu->language == language_cplus)
8969 {
8970 /* Assume that an artificial first parameter is
8971 "this", but do not crash if it is not. RealView
8972 marks unnamed (and thus unused) parameters as
8973 artificial; there is no way to differentiate
8974 the two cases. */
8975 if (TYPE_NFIELDS (type) > 0
8976 && TYPE_FIELD_ARTIFICIAL (type, 0)
8977 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8978 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8979 0))))
8980 buf.puts (" const");
8981 }
8982 }
8983
8984 const std::string &intermediate_name = buf.string ();
8985
8986 if (cu->language == language_cplus)
8987 canonical_name
8988 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8989 &objfile->per_bfd->storage_obstack);
8990
8991 /* If we only computed INTERMEDIATE_NAME, or if
8992 INTERMEDIATE_NAME is already canonical, then we need to
8993 copy it to the appropriate obstack. */
8994 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8995 name = ((const char *)
8996 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8997 intermediate_name.c_str (),
8998 intermediate_name.length ()));
8999 else
9000 name = canonical_name;
9001 }
9002 }
9003
9004 return name;
9005 }
9006
9007 /* Return the fully qualified name of DIE, based on its DW_AT_name.
9008 If scope qualifiers are appropriate they will be added. The result
9009 will be allocated on the storage_obstack, or NULL if the DIE does
9010 not have a name. NAME may either be from a previous call to
9011 dwarf2_name or NULL.
9012
9013 The output string will be canonicalized (if C++). */
9014
9015 static const char *
9016 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9017 {
9018 return dwarf2_compute_name (name, die, cu, 0);
9019 }
9020
9021 /* Construct a physname for the given DIE in CU. NAME may either be
9022 from a previous call to dwarf2_name or NULL. The result will be
9023 allocated on the objfile_objstack or NULL if the DIE does not have a
9024 name.
9025
9026 The output string will be canonicalized (if C++). */
9027
9028 static const char *
9029 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9030 {
9031 struct objfile *objfile = cu->objfile;
9032 const char *retval, *mangled = NULL, *canon = NULL;
9033 struct cleanup *back_to;
9034 int need_copy = 1;
9035
9036 /* In this case dwarf2_compute_name is just a shortcut not building anything
9037 on its own. */
9038 if (!die_needs_namespace (die, cu))
9039 return dwarf2_compute_name (name, die, cu, 1);
9040
9041 back_to = make_cleanup (null_cleanup, NULL);
9042
9043 mangled = dw2_linkage_name (die, cu);
9044
9045 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
9046 See https://github.com/rust-lang/rust/issues/32925. */
9047 if (cu->language == language_rust && mangled != NULL
9048 && strchr (mangled, '{') != NULL)
9049 mangled = NULL;
9050
9051 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
9052 has computed. */
9053 if (mangled != NULL)
9054 {
9055 char *demangled;
9056
9057 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
9058 type. It is easier for GDB users to search for such functions as
9059 `name(params)' than `long name(params)'. In such case the minimal
9060 symbol names do not match the full symbol names but for template
9061 functions there is never a need to look up their definition from their
9062 declaration so the only disadvantage remains the minimal symbol
9063 variant `long name(params)' does not have the proper inferior type.
9064 */
9065
9066 if (cu->language == language_go)
9067 {
9068 /* This is a lie, but we already lie to the caller new_symbol_full.
9069 new_symbol_full assumes we return the mangled name.
9070 This just undoes that lie until things are cleaned up. */
9071 demangled = NULL;
9072 }
9073 else
9074 {
9075 demangled = gdb_demangle (mangled,
9076 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
9077 }
9078 if (demangled)
9079 {
9080 make_cleanup (xfree, demangled);
9081 canon = demangled;
9082 }
9083 else
9084 {
9085 canon = mangled;
9086 need_copy = 0;
9087 }
9088 }
9089
9090 if (canon == NULL || check_physname)
9091 {
9092 const char *physname = dwarf2_compute_name (name, die, cu, 1);
9093
9094 if (canon != NULL && strcmp (physname, canon) != 0)
9095 {
9096 /* It may not mean a bug in GDB. The compiler could also
9097 compute DW_AT_linkage_name incorrectly. But in such case
9098 GDB would need to be bug-to-bug compatible. */
9099
9100 complaint (&symfile_complaints,
9101 _("Computed physname <%s> does not match demangled <%s> "
9102 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
9103 physname, canon, mangled, to_underlying (die->sect_off),
9104 objfile_name (objfile));
9105
9106 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9107 is available here - over computed PHYSNAME. It is safer
9108 against both buggy GDB and buggy compilers. */
9109
9110 retval = canon;
9111 }
9112 else
9113 {
9114 retval = physname;
9115 need_copy = 0;
9116 }
9117 }
9118 else
9119 retval = canon;
9120
9121 if (need_copy)
9122 retval = ((const char *)
9123 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9124 retval, strlen (retval)));
9125
9126 do_cleanups (back_to);
9127 return retval;
9128 }
9129
9130 /* Inspect DIE in CU for a namespace alias. If one exists, record
9131 a new symbol for it.
9132
9133 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9134
9135 static int
9136 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9137 {
9138 struct attribute *attr;
9139
9140 /* If the die does not have a name, this is not a namespace
9141 alias. */
9142 attr = dwarf2_attr (die, DW_AT_name, cu);
9143 if (attr != NULL)
9144 {
9145 int num;
9146 struct die_info *d = die;
9147 struct dwarf2_cu *imported_cu = cu;
9148
9149 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9150 keep inspecting DIEs until we hit the underlying import. */
9151 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
9152 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9153 {
9154 attr = dwarf2_attr (d, DW_AT_import, cu);
9155 if (attr == NULL)
9156 break;
9157
9158 d = follow_die_ref (d, attr, &imported_cu);
9159 if (d->tag != DW_TAG_imported_declaration)
9160 break;
9161 }
9162
9163 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9164 {
9165 complaint (&symfile_complaints,
9166 _("DIE at 0x%x has too many recursively imported "
9167 "declarations"), to_underlying (d->sect_off));
9168 return 0;
9169 }
9170
9171 if (attr != NULL)
9172 {
9173 struct type *type;
9174 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9175
9176 type = get_die_type_at_offset (sect_off, cu->per_cu);
9177 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9178 {
9179 /* This declaration is a global namespace alias. Add
9180 a symbol for it whose type is the aliased namespace. */
9181 new_symbol (die, type, cu);
9182 return 1;
9183 }
9184 }
9185 }
9186
9187 return 0;
9188 }
9189
9190 /* Return the using directives repository (global or local?) to use in the
9191 current context for LANGUAGE.
9192
9193 For Ada, imported declarations can materialize renamings, which *may* be
9194 global. However it is impossible (for now?) in DWARF to distinguish
9195 "external" imported declarations and "static" ones. As all imported
9196 declarations seem to be static in all other languages, make them all CU-wide
9197 global only in Ada. */
9198
9199 static struct using_direct **
9200 using_directives (enum language language)
9201 {
9202 if (language == language_ada && context_stack_depth == 0)
9203 return &global_using_directives;
9204 else
9205 return &local_using_directives;
9206 }
9207
9208 /* Read the import statement specified by the given die and record it. */
9209
9210 static void
9211 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9212 {
9213 struct objfile *objfile = cu->objfile;
9214 struct attribute *import_attr;
9215 struct die_info *imported_die, *child_die;
9216 struct dwarf2_cu *imported_cu;
9217 const char *imported_name;
9218 const char *imported_name_prefix;
9219 const char *canonical_name;
9220 const char *import_alias;
9221 const char *imported_declaration = NULL;
9222 const char *import_prefix;
9223 std::vector<const char *> excludes;
9224
9225 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9226 if (import_attr == NULL)
9227 {
9228 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9229 dwarf_tag_name (die->tag));
9230 return;
9231 }
9232
9233 imported_cu = cu;
9234 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9235 imported_name = dwarf2_name (imported_die, imported_cu);
9236 if (imported_name == NULL)
9237 {
9238 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9239
9240 The import in the following code:
9241 namespace A
9242 {
9243 typedef int B;
9244 }
9245
9246 int main ()
9247 {
9248 using A::B;
9249 B b;
9250 return b;
9251 }
9252
9253 ...
9254 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9255 <52> DW_AT_decl_file : 1
9256 <53> DW_AT_decl_line : 6
9257 <54> DW_AT_import : <0x75>
9258 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9259 <59> DW_AT_name : B
9260 <5b> DW_AT_decl_file : 1
9261 <5c> DW_AT_decl_line : 2
9262 <5d> DW_AT_type : <0x6e>
9263 ...
9264 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9265 <76> DW_AT_byte_size : 4
9266 <77> DW_AT_encoding : 5 (signed)
9267
9268 imports the wrong die ( 0x75 instead of 0x58 ).
9269 This case will be ignored until the gcc bug is fixed. */
9270 return;
9271 }
9272
9273 /* Figure out the local name after import. */
9274 import_alias = dwarf2_name (die, cu);
9275
9276 /* Figure out where the statement is being imported to. */
9277 import_prefix = determine_prefix (die, cu);
9278
9279 /* Figure out what the scope of the imported die is and prepend it
9280 to the name of the imported die. */
9281 imported_name_prefix = determine_prefix (imported_die, imported_cu);
9282
9283 if (imported_die->tag != DW_TAG_namespace
9284 && imported_die->tag != DW_TAG_module)
9285 {
9286 imported_declaration = imported_name;
9287 canonical_name = imported_name_prefix;
9288 }
9289 else if (strlen (imported_name_prefix) > 0)
9290 canonical_name = obconcat (&objfile->objfile_obstack,
9291 imported_name_prefix,
9292 (cu->language == language_d ? "." : "::"),
9293 imported_name, (char *) NULL);
9294 else
9295 canonical_name = imported_name;
9296
9297 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9298 for (child_die = die->child; child_die && child_die->tag;
9299 child_die = sibling_die (child_die))
9300 {
9301 /* DWARF-4: A Fortran use statement with a “rename list” may be
9302 represented by an imported module entry with an import attribute
9303 referring to the module and owned entries corresponding to those
9304 entities that are renamed as part of being imported. */
9305
9306 if (child_die->tag != DW_TAG_imported_declaration)
9307 {
9308 complaint (&symfile_complaints,
9309 _("child DW_TAG_imported_declaration expected "
9310 "- DIE at 0x%x [in module %s]"),
9311 to_underlying (child_die->sect_off), objfile_name (objfile));
9312 continue;
9313 }
9314
9315 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9316 if (import_attr == NULL)
9317 {
9318 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9319 dwarf_tag_name (child_die->tag));
9320 continue;
9321 }
9322
9323 imported_cu = cu;
9324 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9325 &imported_cu);
9326 imported_name = dwarf2_name (imported_die, imported_cu);
9327 if (imported_name == NULL)
9328 {
9329 complaint (&symfile_complaints,
9330 _("child DW_TAG_imported_declaration has unknown "
9331 "imported name - DIE at 0x%x [in module %s]"),
9332 to_underlying (child_die->sect_off), objfile_name (objfile));
9333 continue;
9334 }
9335
9336 excludes.push_back (imported_name);
9337
9338 process_die (child_die, cu);
9339 }
9340
9341 add_using_directive (using_directives (cu->language),
9342 import_prefix,
9343 canonical_name,
9344 import_alias,
9345 imported_declaration,
9346 excludes,
9347 0,
9348 &objfile->objfile_obstack);
9349 }
9350
9351 /* ICC<14 does not output the required DW_AT_declaration on incomplete
9352 types, but gives them a size of zero. Starting with version 14,
9353 ICC is compatible with GCC. */
9354
9355 static int
9356 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
9357 {
9358 if (!cu->checked_producer)
9359 check_producer (cu);
9360
9361 return cu->producer_is_icc_lt_14;
9362 }
9363
9364 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9365 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9366 this, it was first present in GCC release 4.3.0. */
9367
9368 static int
9369 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9370 {
9371 if (!cu->checked_producer)
9372 check_producer (cu);
9373
9374 return cu->producer_is_gcc_lt_4_3;
9375 }
9376
9377 static file_and_directory
9378 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9379 {
9380 file_and_directory res;
9381
9382 /* Find the filename. Do not use dwarf2_name here, since the filename
9383 is not a source language identifier. */
9384 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9385 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9386
9387 if (res.comp_dir == NULL
9388 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9389 && IS_ABSOLUTE_PATH (res.name))
9390 {
9391 res.comp_dir_storage = ldirname (res.name);
9392 if (!res.comp_dir_storage.empty ())
9393 res.comp_dir = res.comp_dir_storage.c_str ();
9394 }
9395 if (res.comp_dir != NULL)
9396 {
9397 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9398 directory, get rid of it. */
9399 const char *cp = strchr (res.comp_dir, ':');
9400
9401 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9402 res.comp_dir = cp + 1;
9403 }
9404
9405 if (res.name == NULL)
9406 res.name = "<unknown>";
9407
9408 return res;
9409 }
9410
9411 /* Handle DW_AT_stmt_list for a compilation unit.
9412 DIE is the DW_TAG_compile_unit die for CU.
9413 COMP_DIR is the compilation directory. LOWPC is passed to
9414 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9415
9416 static void
9417 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9418 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9419 {
9420 struct objfile *objfile = dwarf2_per_objfile->objfile;
9421 struct attribute *attr;
9422 struct line_header line_header_local;
9423 hashval_t line_header_local_hash;
9424 unsigned u;
9425 void **slot;
9426 int decode_mapping;
9427
9428 gdb_assert (! cu->per_cu->is_debug_types);
9429
9430 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9431 if (attr == NULL)
9432 return;
9433
9434 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9435
9436 /* The line header hash table is only created if needed (it exists to
9437 prevent redundant reading of the line table for partial_units).
9438 If we're given a partial_unit, we'll need it. If we're given a
9439 compile_unit, then use the line header hash table if it's already
9440 created, but don't create one just yet. */
9441
9442 if (dwarf2_per_objfile->line_header_hash == NULL
9443 && die->tag == DW_TAG_partial_unit)
9444 {
9445 dwarf2_per_objfile->line_header_hash
9446 = htab_create_alloc_ex (127, line_header_hash_voidp,
9447 line_header_eq_voidp,
9448 free_line_header_voidp,
9449 &objfile->objfile_obstack,
9450 hashtab_obstack_allocate,
9451 dummy_obstack_deallocate);
9452 }
9453
9454 line_header_local.sect_off = line_offset;
9455 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9456 line_header_local_hash = line_header_hash (&line_header_local);
9457 if (dwarf2_per_objfile->line_header_hash != NULL)
9458 {
9459 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9460 &line_header_local,
9461 line_header_local_hash, NO_INSERT);
9462
9463 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9464 is not present in *SLOT (since if there is something in *SLOT then
9465 it will be for a partial_unit). */
9466 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9467 {
9468 gdb_assert (*slot != NULL);
9469 cu->line_header = (struct line_header *) *slot;
9470 return;
9471 }
9472 }
9473
9474 /* dwarf_decode_line_header does not yet provide sufficient information.
9475 We always have to call also dwarf_decode_lines for it. */
9476 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
9477 if (lh == NULL)
9478 return;
9479
9480 cu->line_header = lh.release ();
9481 cu->line_header_die_owner = die;
9482
9483 if (dwarf2_per_objfile->line_header_hash == NULL)
9484 slot = NULL;
9485 else
9486 {
9487 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9488 &line_header_local,
9489 line_header_local_hash, INSERT);
9490 gdb_assert (slot != NULL);
9491 }
9492 if (slot != NULL && *slot == NULL)
9493 {
9494 /* This newly decoded line number information unit will be owned
9495 by line_header_hash hash table. */
9496 *slot = cu->line_header;
9497 cu->line_header_die_owner = NULL;
9498 }
9499 else
9500 {
9501 /* We cannot free any current entry in (*slot) as that struct line_header
9502 may be already used by multiple CUs. Create only temporary decoded
9503 line_header for this CU - it may happen at most once for each line
9504 number information unit. And if we're not using line_header_hash
9505 then this is what we want as well. */
9506 gdb_assert (die->tag != DW_TAG_partial_unit);
9507 }
9508 decode_mapping = (die->tag != DW_TAG_partial_unit);
9509 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9510 decode_mapping);
9511
9512 }
9513
9514 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9515
9516 static void
9517 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9518 {
9519 struct objfile *objfile = dwarf2_per_objfile->objfile;
9520 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9521 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9522 CORE_ADDR highpc = ((CORE_ADDR) 0);
9523 struct attribute *attr;
9524 struct die_info *child_die;
9525 CORE_ADDR baseaddr;
9526
9527 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9528
9529 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9530
9531 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9532 from finish_block. */
9533 if (lowpc == ((CORE_ADDR) -1))
9534 lowpc = highpc;
9535 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9536
9537 file_and_directory fnd = find_file_and_directory (die, cu);
9538
9539 prepare_one_comp_unit (cu, die, cu->language);
9540
9541 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9542 standardised yet. As a workaround for the language detection we fall
9543 back to the DW_AT_producer string. */
9544 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9545 cu->language = language_opencl;
9546
9547 /* Similar hack for Go. */
9548 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9549 set_cu_language (DW_LANG_Go, cu);
9550
9551 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
9552
9553 /* Decode line number information if present. We do this before
9554 processing child DIEs, so that the line header table is available
9555 for DW_AT_decl_file. */
9556 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
9557
9558 /* Process all dies in compilation unit. */
9559 if (die->child != NULL)
9560 {
9561 child_die = die->child;
9562 while (child_die && child_die->tag)
9563 {
9564 process_die (child_die, cu);
9565 child_die = sibling_die (child_die);
9566 }
9567 }
9568
9569 /* Decode macro information, if present. Dwarf 2 macro information
9570 refers to information in the line number info statement program
9571 header, so we can only read it if we've read the header
9572 successfully. */
9573 attr = dwarf2_attr (die, DW_AT_macros, cu);
9574 if (attr == NULL)
9575 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9576 if (attr && cu->line_header)
9577 {
9578 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9579 complaint (&symfile_complaints,
9580 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
9581
9582 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9583 }
9584 else
9585 {
9586 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9587 if (attr && cu->line_header)
9588 {
9589 unsigned int macro_offset = DW_UNSND (attr);
9590
9591 dwarf_decode_macros (cu, macro_offset, 0);
9592 }
9593 }
9594 }
9595
9596 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9597 Create the set of symtabs used by this TU, or if this TU is sharing
9598 symtabs with another TU and the symtabs have already been created
9599 then restore those symtabs in the line header.
9600 We don't need the pc/line-number mapping for type units. */
9601
9602 static void
9603 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9604 {
9605 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9606 struct type_unit_group *tu_group;
9607 int first_time;
9608 struct attribute *attr;
9609 unsigned int i;
9610 struct signatured_type *sig_type;
9611
9612 gdb_assert (per_cu->is_debug_types);
9613 sig_type = (struct signatured_type *) per_cu;
9614
9615 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9616
9617 /* If we're using .gdb_index (includes -readnow) then
9618 per_cu->type_unit_group may not have been set up yet. */
9619 if (sig_type->type_unit_group == NULL)
9620 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9621 tu_group = sig_type->type_unit_group;
9622
9623 /* If we've already processed this stmt_list there's no real need to
9624 do it again, we could fake it and just recreate the part we need
9625 (file name,index -> symtab mapping). If data shows this optimization
9626 is useful we can do it then. */
9627 first_time = tu_group->compunit_symtab == NULL;
9628
9629 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9630 debug info. */
9631 line_header_up lh;
9632 if (attr != NULL)
9633 {
9634 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9635 lh = dwarf_decode_line_header (line_offset, cu);
9636 }
9637 if (lh == NULL)
9638 {
9639 if (first_time)
9640 dwarf2_start_symtab (cu, "", NULL, 0);
9641 else
9642 {
9643 gdb_assert (tu_group->symtabs == NULL);
9644 restart_symtab (tu_group->compunit_symtab, "", 0);
9645 }
9646 return;
9647 }
9648
9649 cu->line_header = lh.release ();
9650 cu->line_header_die_owner = die;
9651
9652 if (first_time)
9653 {
9654 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9655
9656 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9657 still initializing it, and our caller (a few levels up)
9658 process_full_type_unit still needs to know if this is the first
9659 time. */
9660
9661 tu_group->num_symtabs = cu->line_header->file_names.size ();
9662 tu_group->symtabs = XNEWVEC (struct symtab *,
9663 cu->line_header->file_names.size ());
9664
9665 for (i = 0; i < cu->line_header->file_names.size (); ++i)
9666 {
9667 file_entry &fe = cu->line_header->file_names[i];
9668
9669 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
9670
9671 if (current_subfile->symtab == NULL)
9672 {
9673 /* NOTE: start_subfile will recognize when it's been
9674 passed a file it has already seen. So we can't
9675 assume there's a simple mapping from
9676 cu->line_header->file_names to subfiles, plus
9677 cu->line_header->file_names may contain dups. */
9678 current_subfile->symtab
9679 = allocate_symtab (cust, current_subfile->name);
9680 }
9681
9682 fe.symtab = current_subfile->symtab;
9683 tu_group->symtabs[i] = fe.symtab;
9684 }
9685 }
9686 else
9687 {
9688 restart_symtab (tu_group->compunit_symtab, "", 0);
9689
9690 for (i = 0; i < cu->line_header->file_names.size (); ++i)
9691 {
9692 file_entry &fe = cu->line_header->file_names[i];
9693
9694 fe.symtab = tu_group->symtabs[i];
9695 }
9696 }
9697
9698 /* The main symtab is allocated last. Type units don't have DW_AT_name
9699 so they don't have a "real" (so to speak) symtab anyway.
9700 There is later code that will assign the main symtab to all symbols
9701 that don't have one. We need to handle the case of a symbol with a
9702 missing symtab (DW_AT_decl_file) anyway. */
9703 }
9704
9705 /* Process DW_TAG_type_unit.
9706 For TUs we want to skip the first top level sibling if it's not the
9707 actual type being defined by this TU. In this case the first top
9708 level sibling is there to provide context only. */
9709
9710 static void
9711 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9712 {
9713 struct die_info *child_die;
9714
9715 prepare_one_comp_unit (cu, die, language_minimal);
9716
9717 /* Initialize (or reinitialize) the machinery for building symtabs.
9718 We do this before processing child DIEs, so that the line header table
9719 is available for DW_AT_decl_file. */
9720 setup_type_unit_groups (die, cu);
9721
9722 if (die->child != NULL)
9723 {
9724 child_die = die->child;
9725 while (child_die && child_die->tag)
9726 {
9727 process_die (child_die, cu);
9728 child_die = sibling_die (child_die);
9729 }
9730 }
9731 }
9732 \f
9733 /* DWO/DWP files.
9734
9735 http://gcc.gnu.org/wiki/DebugFission
9736 http://gcc.gnu.org/wiki/DebugFissionDWP
9737
9738 To simplify handling of both DWO files ("object" files with the DWARF info)
9739 and DWP files (a file with the DWOs packaged up into one file), we treat
9740 DWP files as having a collection of virtual DWO files. */
9741
9742 static hashval_t
9743 hash_dwo_file (const void *item)
9744 {
9745 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9746 hashval_t hash;
9747
9748 hash = htab_hash_string (dwo_file->dwo_name);
9749 if (dwo_file->comp_dir != NULL)
9750 hash += htab_hash_string (dwo_file->comp_dir);
9751 return hash;
9752 }
9753
9754 static int
9755 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9756 {
9757 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9758 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9759
9760 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9761 return 0;
9762 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9763 return lhs->comp_dir == rhs->comp_dir;
9764 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9765 }
9766
9767 /* Allocate a hash table for DWO files. */
9768
9769 static htab_t
9770 allocate_dwo_file_hash_table (void)
9771 {
9772 struct objfile *objfile = dwarf2_per_objfile->objfile;
9773
9774 return htab_create_alloc_ex (41,
9775 hash_dwo_file,
9776 eq_dwo_file,
9777 NULL,
9778 &objfile->objfile_obstack,
9779 hashtab_obstack_allocate,
9780 dummy_obstack_deallocate);
9781 }
9782
9783 /* Lookup DWO file DWO_NAME. */
9784
9785 static void **
9786 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9787 {
9788 struct dwo_file find_entry;
9789 void **slot;
9790
9791 if (dwarf2_per_objfile->dwo_files == NULL)
9792 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9793
9794 memset (&find_entry, 0, sizeof (find_entry));
9795 find_entry.dwo_name = dwo_name;
9796 find_entry.comp_dir = comp_dir;
9797 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9798
9799 return slot;
9800 }
9801
9802 static hashval_t
9803 hash_dwo_unit (const void *item)
9804 {
9805 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9806
9807 /* This drops the top 32 bits of the id, but is ok for a hash. */
9808 return dwo_unit->signature;
9809 }
9810
9811 static int
9812 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9813 {
9814 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9815 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9816
9817 /* The signature is assumed to be unique within the DWO file.
9818 So while object file CU dwo_id's always have the value zero,
9819 that's OK, assuming each object file DWO file has only one CU,
9820 and that's the rule for now. */
9821 return lhs->signature == rhs->signature;
9822 }
9823
9824 /* Allocate a hash table for DWO CUs,TUs.
9825 There is one of these tables for each of CUs,TUs for each DWO file. */
9826
9827 static htab_t
9828 allocate_dwo_unit_table (struct objfile *objfile)
9829 {
9830 /* Start out with a pretty small number.
9831 Generally DWO files contain only one CU and maybe some TUs. */
9832 return htab_create_alloc_ex (3,
9833 hash_dwo_unit,
9834 eq_dwo_unit,
9835 NULL,
9836 &objfile->objfile_obstack,
9837 hashtab_obstack_allocate,
9838 dummy_obstack_deallocate);
9839 }
9840
9841 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9842
9843 struct create_dwo_cu_data
9844 {
9845 struct dwo_file *dwo_file;
9846 struct dwo_unit dwo_unit;
9847 };
9848
9849 /* die_reader_func for create_dwo_cu. */
9850
9851 static void
9852 create_dwo_cu_reader (const struct die_reader_specs *reader,
9853 const gdb_byte *info_ptr,
9854 struct die_info *comp_unit_die,
9855 int has_children,
9856 void *datap)
9857 {
9858 struct dwarf2_cu *cu = reader->cu;
9859 sect_offset sect_off = cu->per_cu->sect_off;
9860 struct dwarf2_section_info *section = cu->per_cu->section;
9861 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9862 struct dwo_file *dwo_file = data->dwo_file;
9863 struct dwo_unit *dwo_unit = &data->dwo_unit;
9864 struct attribute *attr;
9865
9866 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9867 if (attr == NULL)
9868 {
9869 complaint (&symfile_complaints,
9870 _("Dwarf Error: debug entry at offset 0x%x is missing"
9871 " its dwo_id [in module %s]"),
9872 to_underlying (sect_off), dwo_file->dwo_name);
9873 return;
9874 }
9875
9876 dwo_unit->dwo_file = dwo_file;
9877 dwo_unit->signature = DW_UNSND (attr);
9878 dwo_unit->section = section;
9879 dwo_unit->sect_off = sect_off;
9880 dwo_unit->length = cu->per_cu->length;
9881
9882 if (dwarf_read_debug)
9883 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9884 to_underlying (sect_off),
9885 hex_string (dwo_unit->signature));
9886 }
9887
9888 /* Create the dwo_units for the CUs in a DWO_FILE.
9889 Note: This function processes DWO files only, not DWP files. */
9890
9891 static void
9892 create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
9893 htab_t &cus_htab)
9894 {
9895 struct objfile *objfile = dwarf2_per_objfile->objfile;
9896 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
9897 const gdb_byte *info_ptr, *end_ptr;
9898
9899 dwarf2_read_section (objfile, &section);
9900 info_ptr = section.buffer;
9901
9902 if (info_ptr == NULL)
9903 return;
9904
9905 if (dwarf_read_debug)
9906 {
9907 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9908 get_section_name (&section),
9909 get_section_file_name (&section));
9910 }
9911
9912 end_ptr = info_ptr + section.size;
9913 while (info_ptr < end_ptr)
9914 {
9915 struct dwarf2_per_cu_data per_cu;
9916 struct create_dwo_cu_data create_dwo_cu_data;
9917 struct dwo_unit *dwo_unit;
9918 void **slot;
9919 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
9920
9921 memset (&create_dwo_cu_data.dwo_unit, 0,
9922 sizeof (create_dwo_cu_data.dwo_unit));
9923 memset (&per_cu, 0, sizeof (per_cu));
9924 per_cu.objfile = objfile;
9925 per_cu.is_debug_types = 0;
9926 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
9927 per_cu.section = &section;
9928 create_dwo_cu_data.dwo_file = &dwo_file;
9929
9930 init_cutu_and_read_dies_no_follow (
9931 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
9932 info_ptr += per_cu.length;
9933
9934 // If the unit could not be parsed, skip it.
9935 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
9936 continue;
9937
9938 if (cus_htab == NULL)
9939 cus_htab = allocate_dwo_unit_table (objfile);
9940
9941 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9942 *dwo_unit = create_dwo_cu_data.dwo_unit;
9943 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
9944 gdb_assert (slot != NULL);
9945 if (*slot != NULL)
9946 {
9947 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
9948 sect_offset dup_sect_off = dup_cu->sect_off;
9949
9950 complaint (&symfile_complaints,
9951 _("debug cu entry at offset 0x%x is duplicate to"
9952 " the entry at offset 0x%x, signature %s"),
9953 to_underlying (sect_off), to_underlying (dup_sect_off),
9954 hex_string (dwo_unit->signature));
9955 }
9956 *slot = (void *)dwo_unit;
9957 }
9958 }
9959
9960 /* DWP file .debug_{cu,tu}_index section format:
9961 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9962
9963 DWP Version 1:
9964
9965 Both index sections have the same format, and serve to map a 64-bit
9966 signature to a set of section numbers. Each section begins with a header,
9967 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9968 indexes, and a pool of 32-bit section numbers. The index sections will be
9969 aligned at 8-byte boundaries in the file.
9970
9971 The index section header consists of:
9972
9973 V, 32 bit version number
9974 -, 32 bits unused
9975 N, 32 bit number of compilation units or type units in the index
9976 M, 32 bit number of slots in the hash table
9977
9978 Numbers are recorded using the byte order of the application binary.
9979
9980 The hash table begins at offset 16 in the section, and consists of an array
9981 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9982 order of the application binary). Unused slots in the hash table are 0.
9983 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9984
9985 The parallel table begins immediately after the hash table
9986 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9987 array of 32-bit indexes (using the byte order of the application binary),
9988 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9989 table contains a 32-bit index into the pool of section numbers. For unused
9990 hash table slots, the corresponding entry in the parallel table will be 0.
9991
9992 The pool of section numbers begins immediately following the hash table
9993 (at offset 16 + 12 * M from the beginning of the section). The pool of
9994 section numbers consists of an array of 32-bit words (using the byte order
9995 of the application binary). Each item in the array is indexed starting
9996 from 0. The hash table entry provides the index of the first section
9997 number in the set. Additional section numbers in the set follow, and the
9998 set is terminated by a 0 entry (section number 0 is not used in ELF).
9999
10000 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
10001 section must be the first entry in the set, and the .debug_abbrev.dwo must
10002 be the second entry. Other members of the set may follow in any order.
10003
10004 ---
10005
10006 DWP Version 2:
10007
10008 DWP Version 2 combines all the .debug_info, etc. sections into one,
10009 and the entries in the index tables are now offsets into these sections.
10010 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
10011 section.
10012
10013 Index Section Contents:
10014 Header
10015 Hash Table of Signatures dwp_hash_table.hash_table
10016 Parallel Table of Indices dwp_hash_table.unit_table
10017 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
10018 Table of Section Sizes dwp_hash_table.v2.sizes
10019
10020 The index section header consists of:
10021
10022 V, 32 bit version number
10023 L, 32 bit number of columns in the table of section offsets
10024 N, 32 bit number of compilation units or type units in the index
10025 M, 32 bit number of slots in the hash table
10026
10027 Numbers are recorded using the byte order of the application binary.
10028
10029 The hash table has the same format as version 1.
10030 The parallel table of indices has the same format as version 1,
10031 except that the entries are origin-1 indices into the table of sections
10032 offsets and the table of section sizes.
10033
10034 The table of offsets begins immediately following the parallel table
10035 (at offset 16 + 12 * M from the beginning of the section). The table is
10036 a two-dimensional array of 32-bit words (using the byte order of the
10037 application binary), with L columns and N+1 rows, in row-major order.
10038 Each row in the array is indexed starting from 0. The first row provides
10039 a key to the remaining rows: each column in this row provides an identifier
10040 for a debug section, and the offsets in the same column of subsequent rows
10041 refer to that section. The section identifiers are:
10042
10043 DW_SECT_INFO 1 .debug_info.dwo
10044 DW_SECT_TYPES 2 .debug_types.dwo
10045 DW_SECT_ABBREV 3 .debug_abbrev.dwo
10046 DW_SECT_LINE 4 .debug_line.dwo
10047 DW_SECT_LOC 5 .debug_loc.dwo
10048 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
10049 DW_SECT_MACINFO 7 .debug_macinfo.dwo
10050 DW_SECT_MACRO 8 .debug_macro.dwo
10051
10052 The offsets provided by the CU and TU index sections are the base offsets
10053 for the contributions made by each CU or TU to the corresponding section
10054 in the package file. Each CU and TU header contains an abbrev_offset
10055 field, used to find the abbreviations table for that CU or TU within the
10056 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
10057 be interpreted as relative to the base offset given in the index section.
10058 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
10059 should be interpreted as relative to the base offset for .debug_line.dwo,
10060 and offsets into other debug sections obtained from DWARF attributes should
10061 also be interpreted as relative to the corresponding base offset.
10062
10063 The table of sizes begins immediately following the table of offsets.
10064 Like the table of offsets, it is a two-dimensional array of 32-bit words,
10065 with L columns and N rows, in row-major order. Each row in the array is
10066 indexed starting from 1 (row 0 is shared by the two tables).
10067
10068 ---
10069
10070 Hash table lookup is handled the same in version 1 and 2:
10071
10072 We assume that N and M will not exceed 2^32 - 1.
10073 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
10074
10075 Given a 64-bit compilation unit signature or a type signature S, an entry
10076 in the hash table is located as follows:
10077
10078 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
10079 the low-order k bits all set to 1.
10080
10081 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
10082
10083 3) If the hash table entry at index H matches the signature, use that
10084 entry. If the hash table entry at index H is unused (all zeroes),
10085 terminate the search: the signature is not present in the table.
10086
10087 4) Let H = (H + H') modulo M. Repeat at Step 3.
10088
10089 Because M > N and H' and M are relatively prime, the search is guaranteed
10090 to stop at an unused slot or find the match. */
10091
10092 /* Create a hash table to map DWO IDs to their CU/TU entry in
10093 .debug_{info,types}.dwo in DWP_FILE.
10094 Returns NULL if there isn't one.
10095 Note: This function processes DWP files only, not DWO files. */
10096
10097 static struct dwp_hash_table *
10098 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
10099 {
10100 struct objfile *objfile = dwarf2_per_objfile->objfile;
10101 bfd *dbfd = dwp_file->dbfd;
10102 const gdb_byte *index_ptr, *index_end;
10103 struct dwarf2_section_info *index;
10104 uint32_t version, nr_columns, nr_units, nr_slots;
10105 struct dwp_hash_table *htab;
10106
10107 if (is_debug_types)
10108 index = &dwp_file->sections.tu_index;
10109 else
10110 index = &dwp_file->sections.cu_index;
10111
10112 if (dwarf2_section_empty_p (index))
10113 return NULL;
10114 dwarf2_read_section (objfile, index);
10115
10116 index_ptr = index->buffer;
10117 index_end = index_ptr + index->size;
10118
10119 version = read_4_bytes (dbfd, index_ptr);
10120 index_ptr += 4;
10121 if (version == 2)
10122 nr_columns = read_4_bytes (dbfd, index_ptr);
10123 else
10124 nr_columns = 0;
10125 index_ptr += 4;
10126 nr_units = read_4_bytes (dbfd, index_ptr);
10127 index_ptr += 4;
10128 nr_slots = read_4_bytes (dbfd, index_ptr);
10129 index_ptr += 4;
10130
10131 if (version != 1 && version != 2)
10132 {
10133 error (_("Dwarf Error: unsupported DWP file version (%s)"
10134 " [in module %s]"),
10135 pulongest (version), dwp_file->name);
10136 }
10137 if (nr_slots != (nr_slots & -nr_slots))
10138 {
10139 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
10140 " is not power of 2 [in module %s]"),
10141 pulongest (nr_slots), dwp_file->name);
10142 }
10143
10144 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
10145 htab->version = version;
10146 htab->nr_columns = nr_columns;
10147 htab->nr_units = nr_units;
10148 htab->nr_slots = nr_slots;
10149 htab->hash_table = index_ptr;
10150 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
10151
10152 /* Exit early if the table is empty. */
10153 if (nr_slots == 0 || nr_units == 0
10154 || (version == 2 && nr_columns == 0))
10155 {
10156 /* All must be zero. */
10157 if (nr_slots != 0 || nr_units != 0
10158 || (version == 2 && nr_columns != 0))
10159 {
10160 complaint (&symfile_complaints,
10161 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10162 " all zero [in modules %s]"),
10163 dwp_file->name);
10164 }
10165 return htab;
10166 }
10167
10168 if (version == 1)
10169 {
10170 htab->section_pool.v1.indices =
10171 htab->unit_table + sizeof (uint32_t) * nr_slots;
10172 /* It's harder to decide whether the section is too small in v1.
10173 V1 is deprecated anyway so we punt. */
10174 }
10175 else
10176 {
10177 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10178 int *ids = htab->section_pool.v2.section_ids;
10179 /* Reverse map for error checking. */
10180 int ids_seen[DW_SECT_MAX + 1];
10181 int i;
10182
10183 if (nr_columns < 2)
10184 {
10185 error (_("Dwarf Error: bad DWP hash table, too few columns"
10186 " in section table [in module %s]"),
10187 dwp_file->name);
10188 }
10189 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10190 {
10191 error (_("Dwarf Error: bad DWP hash table, too many columns"
10192 " in section table [in module %s]"),
10193 dwp_file->name);
10194 }
10195 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10196 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10197 for (i = 0; i < nr_columns; ++i)
10198 {
10199 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10200
10201 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10202 {
10203 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10204 " in section table [in module %s]"),
10205 id, dwp_file->name);
10206 }
10207 if (ids_seen[id] != -1)
10208 {
10209 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10210 " id %d in section table [in module %s]"),
10211 id, dwp_file->name);
10212 }
10213 ids_seen[id] = i;
10214 ids[i] = id;
10215 }
10216 /* Must have exactly one info or types section. */
10217 if (((ids_seen[DW_SECT_INFO] != -1)
10218 + (ids_seen[DW_SECT_TYPES] != -1))
10219 != 1)
10220 {
10221 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10222 " DWO info/types section [in module %s]"),
10223 dwp_file->name);
10224 }
10225 /* Must have an abbrev section. */
10226 if (ids_seen[DW_SECT_ABBREV] == -1)
10227 {
10228 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10229 " section [in module %s]"),
10230 dwp_file->name);
10231 }
10232 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10233 htab->section_pool.v2.sizes =
10234 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10235 * nr_units * nr_columns);
10236 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10237 * nr_units * nr_columns))
10238 > index_end)
10239 {
10240 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10241 " [in module %s]"),
10242 dwp_file->name);
10243 }
10244 }
10245
10246 return htab;
10247 }
10248
10249 /* Update SECTIONS with the data from SECTP.
10250
10251 This function is like the other "locate" section routines that are
10252 passed to bfd_map_over_sections, but in this context the sections to
10253 read comes from the DWP V1 hash table, not the full ELF section table.
10254
10255 The result is non-zero for success, or zero if an error was found. */
10256
10257 static int
10258 locate_v1_virtual_dwo_sections (asection *sectp,
10259 struct virtual_v1_dwo_sections *sections)
10260 {
10261 const struct dwop_section_names *names = &dwop_section_names;
10262
10263 if (section_is_p (sectp->name, &names->abbrev_dwo))
10264 {
10265 /* There can be only one. */
10266 if (sections->abbrev.s.section != NULL)
10267 return 0;
10268 sections->abbrev.s.section = sectp;
10269 sections->abbrev.size = bfd_get_section_size (sectp);
10270 }
10271 else if (section_is_p (sectp->name, &names->info_dwo)
10272 || section_is_p (sectp->name, &names->types_dwo))
10273 {
10274 /* There can be only one. */
10275 if (sections->info_or_types.s.section != NULL)
10276 return 0;
10277 sections->info_or_types.s.section = sectp;
10278 sections->info_or_types.size = bfd_get_section_size (sectp);
10279 }
10280 else if (section_is_p (sectp->name, &names->line_dwo))
10281 {
10282 /* There can be only one. */
10283 if (sections->line.s.section != NULL)
10284 return 0;
10285 sections->line.s.section = sectp;
10286 sections->line.size = bfd_get_section_size (sectp);
10287 }
10288 else if (section_is_p (sectp->name, &names->loc_dwo))
10289 {
10290 /* There can be only one. */
10291 if (sections->loc.s.section != NULL)
10292 return 0;
10293 sections->loc.s.section = sectp;
10294 sections->loc.size = bfd_get_section_size (sectp);
10295 }
10296 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10297 {
10298 /* There can be only one. */
10299 if (sections->macinfo.s.section != NULL)
10300 return 0;
10301 sections->macinfo.s.section = sectp;
10302 sections->macinfo.size = bfd_get_section_size (sectp);
10303 }
10304 else if (section_is_p (sectp->name, &names->macro_dwo))
10305 {
10306 /* There can be only one. */
10307 if (sections->macro.s.section != NULL)
10308 return 0;
10309 sections->macro.s.section = sectp;
10310 sections->macro.size = bfd_get_section_size (sectp);
10311 }
10312 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10313 {
10314 /* There can be only one. */
10315 if (sections->str_offsets.s.section != NULL)
10316 return 0;
10317 sections->str_offsets.s.section = sectp;
10318 sections->str_offsets.size = bfd_get_section_size (sectp);
10319 }
10320 else
10321 {
10322 /* No other kind of section is valid. */
10323 return 0;
10324 }
10325
10326 return 1;
10327 }
10328
10329 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10330 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10331 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10332 This is for DWP version 1 files. */
10333
10334 static struct dwo_unit *
10335 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10336 uint32_t unit_index,
10337 const char *comp_dir,
10338 ULONGEST signature, int is_debug_types)
10339 {
10340 struct objfile *objfile = dwarf2_per_objfile->objfile;
10341 const struct dwp_hash_table *dwp_htab =
10342 is_debug_types ? dwp_file->tus : dwp_file->cus;
10343 bfd *dbfd = dwp_file->dbfd;
10344 const char *kind = is_debug_types ? "TU" : "CU";
10345 struct dwo_file *dwo_file;
10346 struct dwo_unit *dwo_unit;
10347 struct virtual_v1_dwo_sections sections;
10348 void **dwo_file_slot;
10349 char *virtual_dwo_name;
10350 struct cleanup *cleanups;
10351 int i;
10352
10353 gdb_assert (dwp_file->version == 1);
10354
10355 if (dwarf_read_debug)
10356 {
10357 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10358 kind,
10359 pulongest (unit_index), hex_string (signature),
10360 dwp_file->name);
10361 }
10362
10363 /* Fetch the sections of this DWO unit.
10364 Put a limit on the number of sections we look for so that bad data
10365 doesn't cause us to loop forever. */
10366
10367 #define MAX_NR_V1_DWO_SECTIONS \
10368 (1 /* .debug_info or .debug_types */ \
10369 + 1 /* .debug_abbrev */ \
10370 + 1 /* .debug_line */ \
10371 + 1 /* .debug_loc */ \
10372 + 1 /* .debug_str_offsets */ \
10373 + 1 /* .debug_macro or .debug_macinfo */ \
10374 + 1 /* trailing zero */)
10375
10376 memset (&sections, 0, sizeof (sections));
10377 cleanups = make_cleanup (null_cleanup, 0);
10378
10379 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10380 {
10381 asection *sectp;
10382 uint32_t section_nr =
10383 read_4_bytes (dbfd,
10384 dwp_htab->section_pool.v1.indices
10385 + (unit_index + i) * sizeof (uint32_t));
10386
10387 if (section_nr == 0)
10388 break;
10389 if (section_nr >= dwp_file->num_sections)
10390 {
10391 error (_("Dwarf Error: bad DWP hash table, section number too large"
10392 " [in module %s]"),
10393 dwp_file->name);
10394 }
10395
10396 sectp = dwp_file->elf_sections[section_nr];
10397 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10398 {
10399 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10400 " [in module %s]"),
10401 dwp_file->name);
10402 }
10403 }
10404
10405 if (i < 2
10406 || dwarf2_section_empty_p (&sections.info_or_types)
10407 || dwarf2_section_empty_p (&sections.abbrev))
10408 {
10409 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10410 " [in module %s]"),
10411 dwp_file->name);
10412 }
10413 if (i == MAX_NR_V1_DWO_SECTIONS)
10414 {
10415 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10416 " [in module %s]"),
10417 dwp_file->name);
10418 }
10419
10420 /* It's easier for the rest of the code if we fake a struct dwo_file and
10421 have dwo_unit "live" in that. At least for now.
10422
10423 The DWP file can be made up of a random collection of CUs and TUs.
10424 However, for each CU + set of TUs that came from the same original DWO
10425 file, we can combine them back into a virtual DWO file to save space
10426 (fewer struct dwo_file objects to allocate). Remember that for really
10427 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10428
10429 virtual_dwo_name =
10430 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10431 get_section_id (&sections.abbrev),
10432 get_section_id (&sections.line),
10433 get_section_id (&sections.loc),
10434 get_section_id (&sections.str_offsets));
10435 make_cleanup (xfree, virtual_dwo_name);
10436 /* Can we use an existing virtual DWO file? */
10437 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10438 /* Create one if necessary. */
10439 if (*dwo_file_slot == NULL)
10440 {
10441 if (dwarf_read_debug)
10442 {
10443 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10444 virtual_dwo_name);
10445 }
10446 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10447 dwo_file->dwo_name
10448 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10449 virtual_dwo_name,
10450 strlen (virtual_dwo_name));
10451 dwo_file->comp_dir = comp_dir;
10452 dwo_file->sections.abbrev = sections.abbrev;
10453 dwo_file->sections.line = sections.line;
10454 dwo_file->sections.loc = sections.loc;
10455 dwo_file->sections.macinfo = sections.macinfo;
10456 dwo_file->sections.macro = sections.macro;
10457 dwo_file->sections.str_offsets = sections.str_offsets;
10458 /* The "str" section is global to the entire DWP file. */
10459 dwo_file->sections.str = dwp_file->sections.str;
10460 /* The info or types section is assigned below to dwo_unit,
10461 there's no need to record it in dwo_file.
10462 Also, we can't simply record type sections in dwo_file because
10463 we record a pointer into the vector in dwo_unit. As we collect more
10464 types we'll grow the vector and eventually have to reallocate space
10465 for it, invalidating all copies of pointers into the previous
10466 contents. */
10467 *dwo_file_slot = dwo_file;
10468 }
10469 else
10470 {
10471 if (dwarf_read_debug)
10472 {
10473 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10474 virtual_dwo_name);
10475 }
10476 dwo_file = (struct dwo_file *) *dwo_file_slot;
10477 }
10478 do_cleanups (cleanups);
10479
10480 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10481 dwo_unit->dwo_file = dwo_file;
10482 dwo_unit->signature = signature;
10483 dwo_unit->section =
10484 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10485 *dwo_unit->section = sections.info_or_types;
10486 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10487
10488 return dwo_unit;
10489 }
10490
10491 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10492 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10493 piece within that section used by a TU/CU, return a virtual section
10494 of just that piece. */
10495
10496 static struct dwarf2_section_info
10497 create_dwp_v2_section (struct dwarf2_section_info *section,
10498 bfd_size_type offset, bfd_size_type size)
10499 {
10500 struct dwarf2_section_info result;
10501 asection *sectp;
10502
10503 gdb_assert (section != NULL);
10504 gdb_assert (!section->is_virtual);
10505
10506 memset (&result, 0, sizeof (result));
10507 result.s.containing_section = section;
10508 result.is_virtual = 1;
10509
10510 if (size == 0)
10511 return result;
10512
10513 sectp = get_section_bfd_section (section);
10514
10515 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10516 bounds of the real section. This is a pretty-rare event, so just
10517 flag an error (easier) instead of a warning and trying to cope. */
10518 if (sectp == NULL
10519 || offset + size > bfd_get_section_size (sectp))
10520 {
10521 bfd *abfd = sectp->owner;
10522
10523 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10524 " in section %s [in module %s]"),
10525 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10526 objfile_name (dwarf2_per_objfile->objfile));
10527 }
10528
10529 result.virtual_offset = offset;
10530 result.size = size;
10531 return result;
10532 }
10533
10534 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10535 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10536 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10537 This is for DWP version 2 files. */
10538
10539 static struct dwo_unit *
10540 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10541 uint32_t unit_index,
10542 const char *comp_dir,
10543 ULONGEST signature, int is_debug_types)
10544 {
10545 struct objfile *objfile = dwarf2_per_objfile->objfile;
10546 const struct dwp_hash_table *dwp_htab =
10547 is_debug_types ? dwp_file->tus : dwp_file->cus;
10548 bfd *dbfd = dwp_file->dbfd;
10549 const char *kind = is_debug_types ? "TU" : "CU";
10550 struct dwo_file *dwo_file;
10551 struct dwo_unit *dwo_unit;
10552 struct virtual_v2_dwo_sections sections;
10553 void **dwo_file_slot;
10554 char *virtual_dwo_name;
10555 struct cleanup *cleanups;
10556 int i;
10557
10558 gdb_assert (dwp_file->version == 2);
10559
10560 if (dwarf_read_debug)
10561 {
10562 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10563 kind,
10564 pulongest (unit_index), hex_string (signature),
10565 dwp_file->name);
10566 }
10567
10568 /* Fetch the section offsets of this DWO unit. */
10569
10570 memset (&sections, 0, sizeof (sections));
10571 cleanups = make_cleanup (null_cleanup, 0);
10572
10573 for (i = 0; i < dwp_htab->nr_columns; ++i)
10574 {
10575 uint32_t offset = read_4_bytes (dbfd,
10576 dwp_htab->section_pool.v2.offsets
10577 + (((unit_index - 1) * dwp_htab->nr_columns
10578 + i)
10579 * sizeof (uint32_t)));
10580 uint32_t size = read_4_bytes (dbfd,
10581 dwp_htab->section_pool.v2.sizes
10582 + (((unit_index - 1) * dwp_htab->nr_columns
10583 + i)
10584 * sizeof (uint32_t)));
10585
10586 switch (dwp_htab->section_pool.v2.section_ids[i])
10587 {
10588 case DW_SECT_INFO:
10589 case DW_SECT_TYPES:
10590 sections.info_or_types_offset = offset;
10591 sections.info_or_types_size = size;
10592 break;
10593 case DW_SECT_ABBREV:
10594 sections.abbrev_offset = offset;
10595 sections.abbrev_size = size;
10596 break;
10597 case DW_SECT_LINE:
10598 sections.line_offset = offset;
10599 sections.line_size = size;
10600 break;
10601 case DW_SECT_LOC:
10602 sections.loc_offset = offset;
10603 sections.loc_size = size;
10604 break;
10605 case DW_SECT_STR_OFFSETS:
10606 sections.str_offsets_offset = offset;
10607 sections.str_offsets_size = size;
10608 break;
10609 case DW_SECT_MACINFO:
10610 sections.macinfo_offset = offset;
10611 sections.macinfo_size = size;
10612 break;
10613 case DW_SECT_MACRO:
10614 sections.macro_offset = offset;
10615 sections.macro_size = size;
10616 break;
10617 }
10618 }
10619
10620 /* It's easier for the rest of the code if we fake a struct dwo_file and
10621 have dwo_unit "live" in that. At least for now.
10622
10623 The DWP file can be made up of a random collection of CUs and TUs.
10624 However, for each CU + set of TUs that came from the same original DWO
10625 file, we can combine them back into a virtual DWO file to save space
10626 (fewer struct dwo_file objects to allocate). Remember that for really
10627 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10628
10629 virtual_dwo_name =
10630 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10631 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10632 (long) (sections.line_size ? sections.line_offset : 0),
10633 (long) (sections.loc_size ? sections.loc_offset : 0),
10634 (long) (sections.str_offsets_size
10635 ? sections.str_offsets_offset : 0));
10636 make_cleanup (xfree, virtual_dwo_name);
10637 /* Can we use an existing virtual DWO file? */
10638 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10639 /* Create one if necessary. */
10640 if (*dwo_file_slot == NULL)
10641 {
10642 if (dwarf_read_debug)
10643 {
10644 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10645 virtual_dwo_name);
10646 }
10647 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10648 dwo_file->dwo_name
10649 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10650 virtual_dwo_name,
10651 strlen (virtual_dwo_name));
10652 dwo_file->comp_dir = comp_dir;
10653 dwo_file->sections.abbrev =
10654 create_dwp_v2_section (&dwp_file->sections.abbrev,
10655 sections.abbrev_offset, sections.abbrev_size);
10656 dwo_file->sections.line =
10657 create_dwp_v2_section (&dwp_file->sections.line,
10658 sections.line_offset, sections.line_size);
10659 dwo_file->sections.loc =
10660 create_dwp_v2_section (&dwp_file->sections.loc,
10661 sections.loc_offset, sections.loc_size);
10662 dwo_file->sections.macinfo =
10663 create_dwp_v2_section (&dwp_file->sections.macinfo,
10664 sections.macinfo_offset, sections.macinfo_size);
10665 dwo_file->sections.macro =
10666 create_dwp_v2_section (&dwp_file->sections.macro,
10667 sections.macro_offset, sections.macro_size);
10668 dwo_file->sections.str_offsets =
10669 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10670 sections.str_offsets_offset,
10671 sections.str_offsets_size);
10672 /* The "str" section is global to the entire DWP file. */
10673 dwo_file->sections.str = dwp_file->sections.str;
10674 /* The info or types section is assigned below to dwo_unit,
10675 there's no need to record it in dwo_file.
10676 Also, we can't simply record type sections in dwo_file because
10677 we record a pointer into the vector in dwo_unit. As we collect more
10678 types we'll grow the vector and eventually have to reallocate space
10679 for it, invalidating all copies of pointers into the previous
10680 contents. */
10681 *dwo_file_slot = dwo_file;
10682 }
10683 else
10684 {
10685 if (dwarf_read_debug)
10686 {
10687 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10688 virtual_dwo_name);
10689 }
10690 dwo_file = (struct dwo_file *) *dwo_file_slot;
10691 }
10692 do_cleanups (cleanups);
10693
10694 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10695 dwo_unit->dwo_file = dwo_file;
10696 dwo_unit->signature = signature;
10697 dwo_unit->section =
10698 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10699 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10700 ? &dwp_file->sections.types
10701 : &dwp_file->sections.info,
10702 sections.info_or_types_offset,
10703 sections.info_or_types_size);
10704 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10705
10706 return dwo_unit;
10707 }
10708
10709 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10710 Returns NULL if the signature isn't found. */
10711
10712 static struct dwo_unit *
10713 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10714 ULONGEST signature, int is_debug_types)
10715 {
10716 const struct dwp_hash_table *dwp_htab =
10717 is_debug_types ? dwp_file->tus : dwp_file->cus;
10718 bfd *dbfd = dwp_file->dbfd;
10719 uint32_t mask = dwp_htab->nr_slots - 1;
10720 uint32_t hash = signature & mask;
10721 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10722 unsigned int i;
10723 void **slot;
10724 struct dwo_unit find_dwo_cu;
10725
10726 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10727 find_dwo_cu.signature = signature;
10728 slot = htab_find_slot (is_debug_types
10729 ? dwp_file->loaded_tus
10730 : dwp_file->loaded_cus,
10731 &find_dwo_cu, INSERT);
10732
10733 if (*slot != NULL)
10734 return (struct dwo_unit *) *slot;
10735
10736 /* Use a for loop so that we don't loop forever on bad debug info. */
10737 for (i = 0; i < dwp_htab->nr_slots; ++i)
10738 {
10739 ULONGEST signature_in_table;
10740
10741 signature_in_table =
10742 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10743 if (signature_in_table == signature)
10744 {
10745 uint32_t unit_index =
10746 read_4_bytes (dbfd,
10747 dwp_htab->unit_table + hash * sizeof (uint32_t));
10748
10749 if (dwp_file->version == 1)
10750 {
10751 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10752 comp_dir, signature,
10753 is_debug_types);
10754 }
10755 else
10756 {
10757 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10758 comp_dir, signature,
10759 is_debug_types);
10760 }
10761 return (struct dwo_unit *) *slot;
10762 }
10763 if (signature_in_table == 0)
10764 return NULL;
10765 hash = (hash + hash2) & mask;
10766 }
10767
10768 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10769 " [in module %s]"),
10770 dwp_file->name);
10771 }
10772
10773 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10774 Open the file specified by FILE_NAME and hand it off to BFD for
10775 preliminary analysis. Return a newly initialized bfd *, which
10776 includes a canonicalized copy of FILE_NAME.
10777 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10778 SEARCH_CWD is true if the current directory is to be searched.
10779 It will be searched before debug-file-directory.
10780 If successful, the file is added to the bfd include table of the
10781 objfile's bfd (see gdb_bfd_record_inclusion).
10782 If unable to find/open the file, return NULL.
10783 NOTE: This function is derived from symfile_bfd_open. */
10784
10785 static gdb_bfd_ref_ptr
10786 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10787 {
10788 int desc, flags;
10789 char *absolute_name;
10790 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10791 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10792 to debug_file_directory. */
10793 char *search_path;
10794 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10795
10796 if (search_cwd)
10797 {
10798 if (*debug_file_directory != '\0')
10799 search_path = concat (".", dirname_separator_string,
10800 debug_file_directory, (char *) NULL);
10801 else
10802 search_path = xstrdup (".");
10803 }
10804 else
10805 search_path = xstrdup (debug_file_directory);
10806
10807 flags = OPF_RETURN_REALPATH;
10808 if (is_dwp)
10809 flags |= OPF_SEARCH_IN_PATH;
10810 desc = openp (search_path, flags, file_name,
10811 O_RDONLY | O_BINARY, &absolute_name);
10812 xfree (search_path);
10813 if (desc < 0)
10814 return NULL;
10815
10816 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
10817 xfree (absolute_name);
10818 if (sym_bfd == NULL)
10819 return NULL;
10820 bfd_set_cacheable (sym_bfd.get (), 1);
10821
10822 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10823 return NULL;
10824
10825 /* Success. Record the bfd as having been included by the objfile's bfd.
10826 This is important because things like demangled_names_hash lives in the
10827 objfile's per_bfd space and may have references to things like symbol
10828 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10829 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
10830
10831 return sym_bfd;
10832 }
10833
10834 /* Try to open DWO file FILE_NAME.
10835 COMP_DIR is the DW_AT_comp_dir attribute.
10836 The result is the bfd handle of the file.
10837 If there is a problem finding or opening the file, return NULL.
10838 Upon success, the canonicalized path of the file is stored in the bfd,
10839 same as symfile_bfd_open. */
10840
10841 static gdb_bfd_ref_ptr
10842 open_dwo_file (const char *file_name, const char *comp_dir)
10843 {
10844 if (IS_ABSOLUTE_PATH (file_name))
10845 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10846
10847 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10848
10849 if (comp_dir != NULL)
10850 {
10851 char *path_to_try = concat (comp_dir, SLASH_STRING,
10852 file_name, (char *) NULL);
10853
10854 /* NOTE: If comp_dir is a relative path, this will also try the
10855 search path, which seems useful. */
10856 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10857 1 /*search_cwd*/));
10858 xfree (path_to_try);
10859 if (abfd != NULL)
10860 return abfd;
10861 }
10862
10863 /* That didn't work, try debug-file-directory, which, despite its name,
10864 is a list of paths. */
10865
10866 if (*debug_file_directory == '\0')
10867 return NULL;
10868
10869 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10870 }
10871
10872 /* This function is mapped across the sections and remembers the offset and
10873 size of each of the DWO debugging sections we are interested in. */
10874
10875 static void
10876 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10877 {
10878 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10879 const struct dwop_section_names *names = &dwop_section_names;
10880
10881 if (section_is_p (sectp->name, &names->abbrev_dwo))
10882 {
10883 dwo_sections->abbrev.s.section = sectp;
10884 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10885 }
10886 else if (section_is_p (sectp->name, &names->info_dwo))
10887 {
10888 dwo_sections->info.s.section = sectp;
10889 dwo_sections->info.size = bfd_get_section_size (sectp);
10890 }
10891 else if (section_is_p (sectp->name, &names->line_dwo))
10892 {
10893 dwo_sections->line.s.section = sectp;
10894 dwo_sections->line.size = bfd_get_section_size (sectp);
10895 }
10896 else if (section_is_p (sectp->name, &names->loc_dwo))
10897 {
10898 dwo_sections->loc.s.section = sectp;
10899 dwo_sections->loc.size = bfd_get_section_size (sectp);
10900 }
10901 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10902 {
10903 dwo_sections->macinfo.s.section = sectp;
10904 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10905 }
10906 else if (section_is_p (sectp->name, &names->macro_dwo))
10907 {
10908 dwo_sections->macro.s.section = sectp;
10909 dwo_sections->macro.size = bfd_get_section_size (sectp);
10910 }
10911 else if (section_is_p (sectp->name, &names->str_dwo))
10912 {
10913 dwo_sections->str.s.section = sectp;
10914 dwo_sections->str.size = bfd_get_section_size (sectp);
10915 }
10916 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10917 {
10918 dwo_sections->str_offsets.s.section = sectp;
10919 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10920 }
10921 else if (section_is_p (sectp->name, &names->types_dwo))
10922 {
10923 struct dwarf2_section_info type_section;
10924
10925 memset (&type_section, 0, sizeof (type_section));
10926 type_section.s.section = sectp;
10927 type_section.size = bfd_get_section_size (sectp);
10928 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10929 &type_section);
10930 }
10931 }
10932
10933 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10934 by PER_CU. This is for the non-DWP case.
10935 The result is NULL if DWO_NAME can't be found. */
10936
10937 static struct dwo_file *
10938 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10939 const char *dwo_name, const char *comp_dir)
10940 {
10941 struct objfile *objfile = dwarf2_per_objfile->objfile;
10942 struct dwo_file *dwo_file;
10943 struct cleanup *cleanups;
10944
10945 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
10946 if (dbfd == NULL)
10947 {
10948 if (dwarf_read_debug)
10949 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10950 return NULL;
10951 }
10952 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10953 dwo_file->dwo_name = dwo_name;
10954 dwo_file->comp_dir = comp_dir;
10955 dwo_file->dbfd = dbfd.release ();
10956
10957 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10958
10959 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10960 &dwo_file->sections);
10961
10962 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
10963
10964 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10965 dwo_file->tus);
10966
10967 discard_cleanups (cleanups);
10968
10969 if (dwarf_read_debug)
10970 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10971
10972 return dwo_file;
10973 }
10974
10975 /* This function is mapped across the sections and remembers the offset and
10976 size of each of the DWP debugging sections common to version 1 and 2 that
10977 we are interested in. */
10978
10979 static void
10980 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10981 void *dwp_file_ptr)
10982 {
10983 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10984 const struct dwop_section_names *names = &dwop_section_names;
10985 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10986
10987 /* Record the ELF section number for later lookup: this is what the
10988 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10989 gdb_assert (elf_section_nr < dwp_file->num_sections);
10990 dwp_file->elf_sections[elf_section_nr] = sectp;
10991
10992 /* Look for specific sections that we need. */
10993 if (section_is_p (sectp->name, &names->str_dwo))
10994 {
10995 dwp_file->sections.str.s.section = sectp;
10996 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10997 }
10998 else if (section_is_p (sectp->name, &names->cu_index))
10999 {
11000 dwp_file->sections.cu_index.s.section = sectp;
11001 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
11002 }
11003 else if (section_is_p (sectp->name, &names->tu_index))
11004 {
11005 dwp_file->sections.tu_index.s.section = sectp;
11006 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
11007 }
11008 }
11009
11010 /* This function is mapped across the sections and remembers the offset and
11011 size of each of the DWP version 2 debugging sections that we are interested
11012 in. This is split into a separate function because we don't know if we
11013 have version 1 or 2 until we parse the cu_index/tu_index sections. */
11014
11015 static void
11016 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
11017 {
11018 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
11019 const struct dwop_section_names *names = &dwop_section_names;
11020 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
11021
11022 /* Record the ELF section number for later lookup: this is what the
11023 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
11024 gdb_assert (elf_section_nr < dwp_file->num_sections);
11025 dwp_file->elf_sections[elf_section_nr] = sectp;
11026
11027 /* Look for specific sections that we need. */
11028 if (section_is_p (sectp->name, &names->abbrev_dwo))
11029 {
11030 dwp_file->sections.abbrev.s.section = sectp;
11031 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
11032 }
11033 else if (section_is_p (sectp->name, &names->info_dwo))
11034 {
11035 dwp_file->sections.info.s.section = sectp;
11036 dwp_file->sections.info.size = bfd_get_section_size (sectp);
11037 }
11038 else if (section_is_p (sectp->name, &names->line_dwo))
11039 {
11040 dwp_file->sections.line.s.section = sectp;
11041 dwp_file->sections.line.size = bfd_get_section_size (sectp);
11042 }
11043 else if (section_is_p (sectp->name, &names->loc_dwo))
11044 {
11045 dwp_file->sections.loc.s.section = sectp;
11046 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
11047 }
11048 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11049 {
11050 dwp_file->sections.macinfo.s.section = sectp;
11051 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
11052 }
11053 else if (section_is_p (sectp->name, &names->macro_dwo))
11054 {
11055 dwp_file->sections.macro.s.section = sectp;
11056 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
11057 }
11058 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11059 {
11060 dwp_file->sections.str_offsets.s.section = sectp;
11061 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
11062 }
11063 else if (section_is_p (sectp->name, &names->types_dwo))
11064 {
11065 dwp_file->sections.types.s.section = sectp;
11066 dwp_file->sections.types.size = bfd_get_section_size (sectp);
11067 }
11068 }
11069
11070 /* Hash function for dwp_file loaded CUs/TUs. */
11071
11072 static hashval_t
11073 hash_dwp_loaded_cutus (const void *item)
11074 {
11075 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11076
11077 /* This drops the top 32 bits of the signature, but is ok for a hash. */
11078 return dwo_unit->signature;
11079 }
11080
11081 /* Equality function for dwp_file loaded CUs/TUs. */
11082
11083 static int
11084 eq_dwp_loaded_cutus (const void *a, const void *b)
11085 {
11086 const struct dwo_unit *dua = (const struct dwo_unit *) a;
11087 const struct dwo_unit *dub = (const struct dwo_unit *) b;
11088
11089 return dua->signature == dub->signature;
11090 }
11091
11092 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
11093
11094 static htab_t
11095 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
11096 {
11097 return htab_create_alloc_ex (3,
11098 hash_dwp_loaded_cutus,
11099 eq_dwp_loaded_cutus,
11100 NULL,
11101 &objfile->objfile_obstack,
11102 hashtab_obstack_allocate,
11103 dummy_obstack_deallocate);
11104 }
11105
11106 /* Try to open DWP file FILE_NAME.
11107 The result is the bfd handle of the file.
11108 If there is a problem finding or opening the file, return NULL.
11109 Upon success, the canonicalized path of the file is stored in the bfd,
11110 same as symfile_bfd_open. */
11111
11112 static gdb_bfd_ref_ptr
11113 open_dwp_file (const char *file_name)
11114 {
11115 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
11116 1 /*search_cwd*/));
11117 if (abfd != NULL)
11118 return abfd;
11119
11120 /* Work around upstream bug 15652.
11121 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11122 [Whether that's a "bug" is debatable, but it is getting in our way.]
11123 We have no real idea where the dwp file is, because gdb's realpath-ing
11124 of the executable's path may have discarded the needed info.
11125 [IWBN if the dwp file name was recorded in the executable, akin to
11126 .gnu_debuglink, but that doesn't exist yet.]
11127 Strip the directory from FILE_NAME and search again. */
11128 if (*debug_file_directory != '\0')
11129 {
11130 /* Don't implicitly search the current directory here.
11131 If the user wants to search "." to handle this case,
11132 it must be added to debug-file-directory. */
11133 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11134 0 /*search_cwd*/);
11135 }
11136
11137 return NULL;
11138 }
11139
11140 /* Initialize the use of the DWP file for the current objfile.
11141 By convention the name of the DWP file is ${objfile}.dwp.
11142 The result is NULL if it can't be found. */
11143
11144 static struct dwp_file *
11145 open_and_init_dwp_file (void)
11146 {
11147 struct objfile *objfile = dwarf2_per_objfile->objfile;
11148 struct dwp_file *dwp_file;
11149
11150 /* Try to find first .dwp for the binary file before any symbolic links
11151 resolving. */
11152
11153 /* If the objfile is a debug file, find the name of the real binary
11154 file and get the name of dwp file from there. */
11155 std::string dwp_name;
11156 if (objfile->separate_debug_objfile_backlink != NULL)
11157 {
11158 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11159 const char *backlink_basename = lbasename (backlink->original_name);
11160
11161 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
11162 }
11163 else
11164 dwp_name = objfile->original_name;
11165
11166 dwp_name += ".dwp";
11167
11168 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
11169 if (dbfd == NULL
11170 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11171 {
11172 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
11173 dwp_name = objfile_name (objfile);
11174 dwp_name += ".dwp";
11175 dbfd = open_dwp_file (dwp_name.c_str ());
11176 }
11177
11178 if (dbfd == NULL)
11179 {
11180 if (dwarf_read_debug)
11181 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
11182 return NULL;
11183 }
11184 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
11185 dwp_file->name = bfd_get_filename (dbfd.get ());
11186 dwp_file->dbfd = dbfd.release ();
11187
11188 /* +1: section 0 is unused */
11189 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
11190 dwp_file->elf_sections =
11191 OBSTACK_CALLOC (&objfile->objfile_obstack,
11192 dwp_file->num_sections, asection *);
11193
11194 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11195 dwp_file);
11196
11197 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11198
11199 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11200
11201 /* The DWP file version is stored in the hash table. Oh well. */
11202 if (dwp_file->cus->version != dwp_file->tus->version)
11203 {
11204 /* Technically speaking, we should try to limp along, but this is
11205 pretty bizarre. We use pulongest here because that's the established
11206 portability solution (e.g, we cannot use %u for uint32_t). */
11207 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11208 " TU version %s [in DWP file %s]"),
11209 pulongest (dwp_file->cus->version),
11210 pulongest (dwp_file->tus->version), dwp_name.c_str ());
11211 }
11212 dwp_file->version = dwp_file->cus->version;
11213
11214 if (dwp_file->version == 2)
11215 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11216 dwp_file);
11217
11218 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11219 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
11220
11221 if (dwarf_read_debug)
11222 {
11223 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11224 fprintf_unfiltered (gdb_stdlog,
11225 " %s CUs, %s TUs\n",
11226 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11227 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
11228 }
11229
11230 return dwp_file;
11231 }
11232
11233 /* Wrapper around open_and_init_dwp_file, only open it once. */
11234
11235 static struct dwp_file *
11236 get_dwp_file (void)
11237 {
11238 if (! dwarf2_per_objfile->dwp_checked)
11239 {
11240 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11241 dwarf2_per_objfile->dwp_checked = 1;
11242 }
11243 return dwarf2_per_objfile->dwp_file;
11244 }
11245
11246 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11247 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11248 or in the DWP file for the objfile, referenced by THIS_UNIT.
11249 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
11250 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11251
11252 This is called, for example, when wanting to read a variable with a
11253 complex location. Therefore we don't want to do file i/o for every call.
11254 Therefore we don't want to look for a DWO file on every call.
11255 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11256 then we check if we've already seen DWO_NAME, and only THEN do we check
11257 for a DWO file.
11258
11259 The result is a pointer to the dwo_unit object or NULL if we didn't find it
11260 (dwo_id mismatch or couldn't find the DWO/DWP file). */
11261
11262 static struct dwo_unit *
11263 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11264 const char *dwo_name, const char *comp_dir,
11265 ULONGEST signature, int is_debug_types)
11266 {
11267 struct objfile *objfile = dwarf2_per_objfile->objfile;
11268 const char *kind = is_debug_types ? "TU" : "CU";
11269 void **dwo_file_slot;
11270 struct dwo_file *dwo_file;
11271 struct dwp_file *dwp_file;
11272
11273 /* First see if there's a DWP file.
11274 If we have a DWP file but didn't find the DWO inside it, don't
11275 look for the original DWO file. It makes gdb behave differently
11276 depending on whether one is debugging in the build tree. */
11277
11278 dwp_file = get_dwp_file ();
11279 if (dwp_file != NULL)
11280 {
11281 const struct dwp_hash_table *dwp_htab =
11282 is_debug_types ? dwp_file->tus : dwp_file->cus;
11283
11284 if (dwp_htab != NULL)
11285 {
11286 struct dwo_unit *dwo_cutu =
11287 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11288 signature, is_debug_types);
11289
11290 if (dwo_cutu != NULL)
11291 {
11292 if (dwarf_read_debug)
11293 {
11294 fprintf_unfiltered (gdb_stdlog,
11295 "Virtual DWO %s %s found: @%s\n",
11296 kind, hex_string (signature),
11297 host_address_to_string (dwo_cutu));
11298 }
11299 return dwo_cutu;
11300 }
11301 }
11302 }
11303 else
11304 {
11305 /* No DWP file, look for the DWO file. */
11306
11307 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11308 if (*dwo_file_slot == NULL)
11309 {
11310 /* Read in the file and build a table of the CUs/TUs it contains. */
11311 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11312 }
11313 /* NOTE: This will be NULL if unable to open the file. */
11314 dwo_file = (struct dwo_file *) *dwo_file_slot;
11315
11316 if (dwo_file != NULL)
11317 {
11318 struct dwo_unit *dwo_cutu = NULL;
11319
11320 if (is_debug_types && dwo_file->tus)
11321 {
11322 struct dwo_unit find_dwo_cutu;
11323
11324 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11325 find_dwo_cutu.signature = signature;
11326 dwo_cutu
11327 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11328 }
11329 else if (!is_debug_types && dwo_file->cus)
11330 {
11331 struct dwo_unit find_dwo_cutu;
11332
11333 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11334 find_dwo_cutu.signature = signature;
11335 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11336 &find_dwo_cutu);
11337 }
11338
11339 if (dwo_cutu != NULL)
11340 {
11341 if (dwarf_read_debug)
11342 {
11343 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11344 kind, dwo_name, hex_string (signature),
11345 host_address_to_string (dwo_cutu));
11346 }
11347 return dwo_cutu;
11348 }
11349 }
11350 }
11351
11352 /* We didn't find it. This could mean a dwo_id mismatch, or
11353 someone deleted the DWO/DWP file, or the search path isn't set up
11354 correctly to find the file. */
11355
11356 if (dwarf_read_debug)
11357 {
11358 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11359 kind, dwo_name, hex_string (signature));
11360 }
11361
11362 /* This is a warning and not a complaint because it can be caused by
11363 pilot error (e.g., user accidentally deleting the DWO). */
11364 {
11365 /* Print the name of the DWP file if we looked there, helps the user
11366 better diagnose the problem. */
11367 char *dwp_text = NULL;
11368 struct cleanup *cleanups;
11369
11370 if (dwp_file != NULL)
11371 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11372 cleanups = make_cleanup (xfree, dwp_text);
11373
11374 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11375 " [in module %s]"),
11376 kind, dwo_name, hex_string (signature),
11377 dwp_text != NULL ? dwp_text : "",
11378 this_unit->is_debug_types ? "TU" : "CU",
11379 to_underlying (this_unit->sect_off), objfile_name (objfile));
11380
11381 do_cleanups (cleanups);
11382 }
11383 return NULL;
11384 }
11385
11386 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11387 See lookup_dwo_cutu_unit for details. */
11388
11389 static struct dwo_unit *
11390 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11391 const char *dwo_name, const char *comp_dir,
11392 ULONGEST signature)
11393 {
11394 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11395 }
11396
11397 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11398 See lookup_dwo_cutu_unit for details. */
11399
11400 static struct dwo_unit *
11401 lookup_dwo_type_unit (struct signatured_type *this_tu,
11402 const char *dwo_name, const char *comp_dir)
11403 {
11404 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11405 }
11406
11407 /* Traversal function for queue_and_load_all_dwo_tus. */
11408
11409 static int
11410 queue_and_load_dwo_tu (void **slot, void *info)
11411 {
11412 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11413 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11414 ULONGEST signature = dwo_unit->signature;
11415 struct signatured_type *sig_type =
11416 lookup_dwo_signatured_type (per_cu->cu, signature);
11417
11418 if (sig_type != NULL)
11419 {
11420 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11421
11422 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11423 a real dependency of PER_CU on SIG_TYPE. That is detected later
11424 while processing PER_CU. */
11425 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11426 load_full_type_unit (sig_cu);
11427 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11428 }
11429
11430 return 1;
11431 }
11432
11433 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11434 The DWO may have the only definition of the type, though it may not be
11435 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11436 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11437
11438 static void
11439 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11440 {
11441 struct dwo_unit *dwo_unit;
11442 struct dwo_file *dwo_file;
11443
11444 gdb_assert (!per_cu->is_debug_types);
11445 gdb_assert (get_dwp_file () == NULL);
11446 gdb_assert (per_cu->cu != NULL);
11447
11448 dwo_unit = per_cu->cu->dwo_unit;
11449 gdb_assert (dwo_unit != NULL);
11450
11451 dwo_file = dwo_unit->dwo_file;
11452 if (dwo_file->tus != NULL)
11453 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11454 }
11455
11456 /* Free all resources associated with DWO_FILE.
11457 Close the DWO file and munmap the sections.
11458 All memory should be on the objfile obstack. */
11459
11460 static void
11461 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11462 {
11463
11464 /* Note: dbfd is NULL for virtual DWO files. */
11465 gdb_bfd_unref (dwo_file->dbfd);
11466
11467 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11468 }
11469
11470 /* Wrapper for free_dwo_file for use in cleanups. */
11471
11472 static void
11473 free_dwo_file_cleanup (void *arg)
11474 {
11475 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11476 struct objfile *objfile = dwarf2_per_objfile->objfile;
11477
11478 free_dwo_file (dwo_file, objfile);
11479 }
11480
11481 /* Traversal function for free_dwo_files. */
11482
11483 static int
11484 free_dwo_file_from_slot (void **slot, void *info)
11485 {
11486 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11487 struct objfile *objfile = (struct objfile *) info;
11488
11489 free_dwo_file (dwo_file, objfile);
11490
11491 return 1;
11492 }
11493
11494 /* Free all resources associated with DWO_FILES. */
11495
11496 static void
11497 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11498 {
11499 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11500 }
11501 \f
11502 /* Read in various DIEs. */
11503
11504 /* qsort helper for inherit_abstract_dies. */
11505
11506 static int
11507 unsigned_int_compar (const void *ap, const void *bp)
11508 {
11509 unsigned int a = *(unsigned int *) ap;
11510 unsigned int b = *(unsigned int *) bp;
11511
11512 return (a > b) - (b > a);
11513 }
11514
11515 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11516 Inherit only the children of the DW_AT_abstract_origin DIE not being
11517 already referenced by DW_AT_abstract_origin from the children of the
11518 current DIE. */
11519
11520 static void
11521 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11522 {
11523 struct die_info *child_die;
11524 unsigned die_children_count;
11525 /* CU offsets which were referenced by children of the current DIE. */
11526 sect_offset *offsets;
11527 sect_offset *offsets_end, *offsetp;
11528 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11529 struct die_info *origin_die;
11530 /* Iterator of the ORIGIN_DIE children. */
11531 struct die_info *origin_child_die;
11532 struct cleanup *cleanups;
11533 struct attribute *attr;
11534 struct dwarf2_cu *origin_cu;
11535 struct pending **origin_previous_list_in_scope;
11536
11537 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11538 if (!attr)
11539 return;
11540
11541 /* Note that following die references may follow to a die in a
11542 different cu. */
11543
11544 origin_cu = cu;
11545 origin_die = follow_die_ref (die, attr, &origin_cu);
11546
11547 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11548 symbols in. */
11549 origin_previous_list_in_scope = origin_cu->list_in_scope;
11550 origin_cu->list_in_scope = cu->list_in_scope;
11551
11552 if (die->tag != origin_die->tag
11553 && !(die->tag == DW_TAG_inlined_subroutine
11554 && origin_die->tag == DW_TAG_subprogram))
11555 complaint (&symfile_complaints,
11556 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11557 to_underlying (die->sect_off),
11558 to_underlying (origin_die->sect_off));
11559
11560 child_die = die->child;
11561 die_children_count = 0;
11562 while (child_die && child_die->tag)
11563 {
11564 child_die = sibling_die (child_die);
11565 die_children_count++;
11566 }
11567 offsets = XNEWVEC (sect_offset, die_children_count);
11568 cleanups = make_cleanup (xfree, offsets);
11569
11570 offsets_end = offsets;
11571 for (child_die = die->child;
11572 child_die && child_die->tag;
11573 child_die = sibling_die (child_die))
11574 {
11575 struct die_info *child_origin_die;
11576 struct dwarf2_cu *child_origin_cu;
11577
11578 /* We are trying to process concrete instance entries:
11579 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11580 it's not relevant to our analysis here. i.e. detecting DIEs that are
11581 present in the abstract instance but not referenced in the concrete
11582 one. */
11583 if (child_die->tag == DW_TAG_call_site
11584 || child_die->tag == DW_TAG_GNU_call_site)
11585 continue;
11586
11587 /* For each CHILD_DIE, find the corresponding child of
11588 ORIGIN_DIE. If there is more than one layer of
11589 DW_AT_abstract_origin, follow them all; there shouldn't be,
11590 but GCC versions at least through 4.4 generate this (GCC PR
11591 40573). */
11592 child_origin_die = child_die;
11593 child_origin_cu = cu;
11594 while (1)
11595 {
11596 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11597 child_origin_cu);
11598 if (attr == NULL)
11599 break;
11600 child_origin_die = follow_die_ref (child_origin_die, attr,
11601 &child_origin_cu);
11602 }
11603
11604 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11605 counterpart may exist. */
11606 if (child_origin_die != child_die)
11607 {
11608 if (child_die->tag != child_origin_die->tag
11609 && !(child_die->tag == DW_TAG_inlined_subroutine
11610 && child_origin_die->tag == DW_TAG_subprogram))
11611 complaint (&symfile_complaints,
11612 _("Child DIE 0x%x and its abstract origin 0x%x have "
11613 "different tags"),
11614 to_underlying (child_die->sect_off),
11615 to_underlying (child_origin_die->sect_off));
11616 if (child_origin_die->parent != origin_die)
11617 complaint (&symfile_complaints,
11618 _("Child DIE 0x%x and its abstract origin 0x%x have "
11619 "different parents"),
11620 to_underlying (child_die->sect_off),
11621 to_underlying (child_origin_die->sect_off));
11622 else
11623 *offsets_end++ = child_origin_die->sect_off;
11624 }
11625 }
11626 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11627 unsigned_int_compar);
11628 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11629 if (offsetp[-1] == *offsetp)
11630 complaint (&symfile_complaints,
11631 _("Multiple children of DIE 0x%x refer "
11632 "to DIE 0x%x as their abstract origin"),
11633 to_underlying (die->sect_off), to_underlying (*offsetp));
11634
11635 offsetp = offsets;
11636 origin_child_die = origin_die->child;
11637 while (origin_child_die && origin_child_die->tag)
11638 {
11639 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11640 while (offsetp < offsets_end
11641 && *offsetp < origin_child_die->sect_off)
11642 offsetp++;
11643 if (offsetp >= offsets_end
11644 || *offsetp > origin_child_die->sect_off)
11645 {
11646 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11647 Check whether we're already processing ORIGIN_CHILD_DIE.
11648 This can happen with mutually referenced abstract_origins.
11649 PR 16581. */
11650 if (!origin_child_die->in_process)
11651 process_die (origin_child_die, origin_cu);
11652 }
11653 origin_child_die = sibling_die (origin_child_die);
11654 }
11655 origin_cu->list_in_scope = origin_previous_list_in_scope;
11656
11657 do_cleanups (cleanups);
11658 }
11659
11660 static void
11661 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11662 {
11663 struct objfile *objfile = cu->objfile;
11664 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11665 struct context_stack *newobj;
11666 CORE_ADDR lowpc;
11667 CORE_ADDR highpc;
11668 struct die_info *child_die;
11669 struct attribute *attr, *call_line, *call_file;
11670 const char *name;
11671 CORE_ADDR baseaddr;
11672 struct block *block;
11673 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11674 VEC (symbolp) *template_args = NULL;
11675 struct template_symbol *templ_func = NULL;
11676
11677 if (inlined_func)
11678 {
11679 /* If we do not have call site information, we can't show the
11680 caller of this inlined function. That's too confusing, so
11681 only use the scope for local variables. */
11682 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11683 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11684 if (call_line == NULL || call_file == NULL)
11685 {
11686 read_lexical_block_scope (die, cu);
11687 return;
11688 }
11689 }
11690
11691 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11692
11693 name = dwarf2_name (die, cu);
11694
11695 /* Ignore functions with missing or empty names. These are actually
11696 illegal according to the DWARF standard. */
11697 if (name == NULL)
11698 {
11699 complaint (&symfile_complaints,
11700 _("missing name for subprogram DIE at %d"),
11701 to_underlying (die->sect_off));
11702 return;
11703 }
11704
11705 /* Ignore functions with missing or invalid low and high pc attributes. */
11706 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11707 <= PC_BOUNDS_INVALID)
11708 {
11709 attr = dwarf2_attr (die, DW_AT_external, cu);
11710 if (!attr || !DW_UNSND (attr))
11711 complaint (&symfile_complaints,
11712 _("cannot get low and high bounds "
11713 "for subprogram DIE at %d"),
11714 to_underlying (die->sect_off));
11715 return;
11716 }
11717
11718 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11719 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11720
11721 /* If we have any template arguments, then we must allocate a
11722 different sort of symbol. */
11723 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11724 {
11725 if (child_die->tag == DW_TAG_template_type_param
11726 || child_die->tag == DW_TAG_template_value_param)
11727 {
11728 templ_func = allocate_template_symbol (objfile);
11729 templ_func->base.is_cplus_template_function = 1;
11730 break;
11731 }
11732 }
11733
11734 newobj = push_context (0, lowpc);
11735 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11736 (struct symbol *) templ_func);
11737
11738 /* If there is a location expression for DW_AT_frame_base, record
11739 it. */
11740 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11741 if (attr)
11742 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11743
11744 /* If there is a location for the static link, record it. */
11745 newobj->static_link = NULL;
11746 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11747 if (attr)
11748 {
11749 newobj->static_link
11750 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11751 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11752 }
11753
11754 cu->list_in_scope = &local_symbols;
11755
11756 if (die->child != NULL)
11757 {
11758 child_die = die->child;
11759 while (child_die && child_die->tag)
11760 {
11761 if (child_die->tag == DW_TAG_template_type_param
11762 || child_die->tag == DW_TAG_template_value_param)
11763 {
11764 struct symbol *arg = new_symbol (child_die, NULL, cu);
11765
11766 if (arg != NULL)
11767 VEC_safe_push (symbolp, template_args, arg);
11768 }
11769 else
11770 process_die (child_die, cu);
11771 child_die = sibling_die (child_die);
11772 }
11773 }
11774
11775 inherit_abstract_dies (die, cu);
11776
11777 /* If we have a DW_AT_specification, we might need to import using
11778 directives from the context of the specification DIE. See the
11779 comment in determine_prefix. */
11780 if (cu->language == language_cplus
11781 && dwarf2_attr (die, DW_AT_specification, cu))
11782 {
11783 struct dwarf2_cu *spec_cu = cu;
11784 struct die_info *spec_die = die_specification (die, &spec_cu);
11785
11786 while (spec_die)
11787 {
11788 child_die = spec_die->child;
11789 while (child_die && child_die->tag)
11790 {
11791 if (child_die->tag == DW_TAG_imported_module)
11792 process_die (child_die, spec_cu);
11793 child_die = sibling_die (child_die);
11794 }
11795
11796 /* In some cases, GCC generates specification DIEs that
11797 themselves contain DW_AT_specification attributes. */
11798 spec_die = die_specification (spec_die, &spec_cu);
11799 }
11800 }
11801
11802 newobj = pop_context ();
11803 /* Make a block for the local symbols within. */
11804 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11805 newobj->static_link, lowpc, highpc);
11806
11807 /* For C++, set the block's scope. */
11808 if ((cu->language == language_cplus
11809 || cu->language == language_fortran
11810 || cu->language == language_d
11811 || cu->language == language_rust)
11812 && cu->processing_has_namespace_info)
11813 block_set_scope (block, determine_prefix (die, cu),
11814 &objfile->objfile_obstack);
11815
11816 /* If we have address ranges, record them. */
11817 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11818
11819 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11820
11821 /* Attach template arguments to function. */
11822 if (! VEC_empty (symbolp, template_args))
11823 {
11824 gdb_assert (templ_func != NULL);
11825
11826 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11827 templ_func->template_arguments
11828 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11829 templ_func->n_template_arguments);
11830 memcpy (templ_func->template_arguments,
11831 VEC_address (symbolp, template_args),
11832 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11833 VEC_free (symbolp, template_args);
11834 }
11835
11836 /* In C++, we can have functions nested inside functions (e.g., when
11837 a function declares a class that has methods). This means that
11838 when we finish processing a function scope, we may need to go
11839 back to building a containing block's symbol lists. */
11840 local_symbols = newobj->locals;
11841 local_using_directives = newobj->local_using_directives;
11842
11843 /* If we've finished processing a top-level function, subsequent
11844 symbols go in the file symbol list. */
11845 if (outermost_context_p ())
11846 cu->list_in_scope = &file_symbols;
11847 }
11848
11849 /* Process all the DIES contained within a lexical block scope. Start
11850 a new scope, process the dies, and then close the scope. */
11851
11852 static void
11853 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11854 {
11855 struct objfile *objfile = cu->objfile;
11856 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11857 struct context_stack *newobj;
11858 CORE_ADDR lowpc, highpc;
11859 struct die_info *child_die;
11860 CORE_ADDR baseaddr;
11861
11862 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11863
11864 /* Ignore blocks with missing or invalid low and high pc attributes. */
11865 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11866 as multiple lexical blocks? Handling children in a sane way would
11867 be nasty. Might be easier to properly extend generic blocks to
11868 describe ranges. */
11869 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11870 {
11871 case PC_BOUNDS_NOT_PRESENT:
11872 /* DW_TAG_lexical_block has no attributes, process its children as if
11873 there was no wrapping by that DW_TAG_lexical_block.
11874 GCC does no longer produces such DWARF since GCC r224161. */
11875 for (child_die = die->child;
11876 child_die != NULL && child_die->tag;
11877 child_die = sibling_die (child_die))
11878 process_die (child_die, cu);
11879 return;
11880 case PC_BOUNDS_INVALID:
11881 return;
11882 }
11883 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11884 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11885
11886 push_context (0, lowpc);
11887 if (die->child != NULL)
11888 {
11889 child_die = die->child;
11890 while (child_die && child_die->tag)
11891 {
11892 process_die (child_die, cu);
11893 child_die = sibling_die (child_die);
11894 }
11895 }
11896 inherit_abstract_dies (die, cu);
11897 newobj = pop_context ();
11898
11899 if (local_symbols != NULL || local_using_directives != NULL)
11900 {
11901 struct block *block
11902 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11903 newobj->start_addr, highpc);
11904
11905 /* Note that recording ranges after traversing children, as we
11906 do here, means that recording a parent's ranges entails
11907 walking across all its children's ranges as they appear in
11908 the address map, which is quadratic behavior.
11909
11910 It would be nicer to record the parent's ranges before
11911 traversing its children, simply overriding whatever you find
11912 there. But since we don't even decide whether to create a
11913 block until after we've traversed its children, that's hard
11914 to do. */
11915 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11916 }
11917 local_symbols = newobj->locals;
11918 local_using_directives = newobj->local_using_directives;
11919 }
11920
11921 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
11922
11923 static void
11924 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11925 {
11926 struct objfile *objfile = cu->objfile;
11927 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11928 CORE_ADDR pc, baseaddr;
11929 struct attribute *attr;
11930 struct call_site *call_site, call_site_local;
11931 void **slot;
11932 int nparams;
11933 struct die_info *child_die;
11934
11935 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11936
11937 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11938 if (attr == NULL)
11939 {
11940 /* This was a pre-DWARF-5 GNU extension alias
11941 for DW_AT_call_return_pc. */
11942 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11943 }
11944 if (!attr)
11945 {
11946 complaint (&symfile_complaints,
11947 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
11948 "DIE 0x%x [in module %s]"),
11949 to_underlying (die->sect_off), objfile_name (objfile));
11950 return;
11951 }
11952 pc = attr_value_as_address (attr) + baseaddr;
11953 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11954
11955 if (cu->call_site_htab == NULL)
11956 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11957 NULL, &objfile->objfile_obstack,
11958 hashtab_obstack_allocate, NULL);
11959 call_site_local.pc = pc;
11960 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11961 if (*slot != NULL)
11962 {
11963 complaint (&symfile_complaints,
11964 _("Duplicate PC %s for DW_TAG_call_site "
11965 "DIE 0x%x [in module %s]"),
11966 paddress (gdbarch, pc), to_underlying (die->sect_off),
11967 objfile_name (objfile));
11968 return;
11969 }
11970
11971 /* Count parameters at the caller. */
11972
11973 nparams = 0;
11974 for (child_die = die->child; child_die && child_die->tag;
11975 child_die = sibling_die (child_die))
11976 {
11977 if (child_die->tag != DW_TAG_call_site_parameter
11978 && child_die->tag != DW_TAG_GNU_call_site_parameter)
11979 {
11980 complaint (&symfile_complaints,
11981 _("Tag %d is not DW_TAG_call_site_parameter in "
11982 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11983 child_die->tag, to_underlying (child_die->sect_off),
11984 objfile_name (objfile));
11985 continue;
11986 }
11987
11988 nparams++;
11989 }
11990
11991 call_site
11992 = ((struct call_site *)
11993 obstack_alloc (&objfile->objfile_obstack,
11994 sizeof (*call_site)
11995 + (sizeof (*call_site->parameter) * (nparams - 1))));
11996 *slot = call_site;
11997 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11998 call_site->pc = pc;
11999
12000 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
12001 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
12002 {
12003 struct die_info *func_die;
12004
12005 /* Skip also over DW_TAG_inlined_subroutine. */
12006 for (func_die = die->parent;
12007 func_die && func_die->tag != DW_TAG_subprogram
12008 && func_die->tag != DW_TAG_subroutine_type;
12009 func_die = func_die->parent);
12010
12011 /* DW_AT_call_all_calls is a superset
12012 of DW_AT_call_all_tail_calls. */
12013 if (func_die
12014 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
12015 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
12016 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
12017 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
12018 {
12019 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
12020 not complete. But keep CALL_SITE for look ups via call_site_htab,
12021 both the initial caller containing the real return address PC and
12022 the final callee containing the current PC of a chain of tail
12023 calls do not need to have the tail call list complete. But any
12024 function candidate for a virtual tail call frame searched via
12025 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
12026 determined unambiguously. */
12027 }
12028 else
12029 {
12030 struct type *func_type = NULL;
12031
12032 if (func_die)
12033 func_type = get_die_type (func_die, cu);
12034 if (func_type != NULL)
12035 {
12036 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
12037
12038 /* Enlist this call site to the function. */
12039 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
12040 TYPE_TAIL_CALL_LIST (func_type) = call_site;
12041 }
12042 else
12043 complaint (&symfile_complaints,
12044 _("Cannot find function owning DW_TAG_call_site "
12045 "DIE 0x%x [in module %s]"),
12046 to_underlying (die->sect_off), objfile_name (objfile));
12047 }
12048 }
12049
12050 attr = dwarf2_attr (die, DW_AT_call_target, cu);
12051 if (attr == NULL)
12052 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
12053 if (attr == NULL)
12054 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
12055 if (attr == NULL)
12056 {
12057 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
12058 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12059 }
12060 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
12061 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
12062 /* Keep NULL DWARF_BLOCK. */;
12063 else if (attr_form_is_block (attr))
12064 {
12065 struct dwarf2_locexpr_baton *dlbaton;
12066
12067 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
12068 dlbaton->data = DW_BLOCK (attr)->data;
12069 dlbaton->size = DW_BLOCK (attr)->size;
12070 dlbaton->per_cu = cu->per_cu;
12071
12072 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
12073 }
12074 else if (attr_form_is_ref (attr))
12075 {
12076 struct dwarf2_cu *target_cu = cu;
12077 struct die_info *target_die;
12078
12079 target_die = follow_die_ref (die, attr, &target_cu);
12080 gdb_assert (target_cu->objfile == objfile);
12081 if (die_is_declaration (target_die, target_cu))
12082 {
12083 const char *target_physname;
12084
12085 /* Prefer the mangled name; otherwise compute the demangled one. */
12086 target_physname = dw2_linkage_name (target_die, target_cu);
12087 if (target_physname == NULL)
12088 target_physname = dwarf2_physname (NULL, target_die, target_cu);
12089 if (target_physname == NULL)
12090 complaint (&symfile_complaints,
12091 _("DW_AT_call_target target DIE has invalid "
12092 "physname, for referencing DIE 0x%x [in module %s]"),
12093 to_underlying (die->sect_off), objfile_name (objfile));
12094 else
12095 SET_FIELD_PHYSNAME (call_site->target, target_physname);
12096 }
12097 else
12098 {
12099 CORE_ADDR lowpc;
12100
12101 /* DW_AT_entry_pc should be preferred. */
12102 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
12103 <= PC_BOUNDS_INVALID)
12104 complaint (&symfile_complaints,
12105 _("DW_AT_call_target target DIE has invalid "
12106 "low pc, for referencing DIE 0x%x [in module %s]"),
12107 to_underlying (die->sect_off), objfile_name (objfile));
12108 else
12109 {
12110 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12111 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12112 }
12113 }
12114 }
12115 else
12116 complaint (&symfile_complaints,
12117 _("DW_TAG_call_site DW_AT_call_target is neither "
12118 "block nor reference, for DIE 0x%x [in module %s]"),
12119 to_underlying (die->sect_off), objfile_name (objfile));
12120
12121 call_site->per_cu = cu->per_cu;
12122
12123 for (child_die = die->child;
12124 child_die && child_die->tag;
12125 child_die = sibling_die (child_die))
12126 {
12127 struct call_site_parameter *parameter;
12128 struct attribute *loc, *origin;
12129
12130 if (child_die->tag != DW_TAG_call_site_parameter
12131 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12132 {
12133 /* Already printed the complaint above. */
12134 continue;
12135 }
12136
12137 gdb_assert (call_site->parameter_count < nparams);
12138 parameter = &call_site->parameter[call_site->parameter_count];
12139
12140 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12141 specifies DW_TAG_formal_parameter. Value of the data assumed for the
12142 register is contained in DW_AT_call_value. */
12143
12144 loc = dwarf2_attr (child_die, DW_AT_location, cu);
12145 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12146 if (origin == NULL)
12147 {
12148 /* This was a pre-DWARF-5 GNU extension alias
12149 for DW_AT_call_parameter. */
12150 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12151 }
12152 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
12153 {
12154 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
12155
12156 sect_offset sect_off
12157 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12158 if (!offset_in_cu_p (&cu->header, sect_off))
12159 {
12160 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12161 binding can be done only inside one CU. Such referenced DIE
12162 therefore cannot be even moved to DW_TAG_partial_unit. */
12163 complaint (&symfile_complaints,
12164 _("DW_AT_call_parameter offset is not in CU for "
12165 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12166 to_underlying (child_die->sect_off),
12167 objfile_name (objfile));
12168 continue;
12169 }
12170 parameter->u.param_cu_off
12171 = (cu_offset) (sect_off - cu->header.sect_off);
12172 }
12173 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
12174 {
12175 complaint (&symfile_complaints,
12176 _("No DW_FORM_block* DW_AT_location for "
12177 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12178 to_underlying (child_die->sect_off), objfile_name (objfile));
12179 continue;
12180 }
12181 else
12182 {
12183 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12184 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12185 if (parameter->u.dwarf_reg != -1)
12186 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12187 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12188 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12189 &parameter->u.fb_offset))
12190 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12191 else
12192 {
12193 complaint (&symfile_complaints,
12194 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12195 "for DW_FORM_block* DW_AT_location is supported for "
12196 "DW_TAG_call_site child DIE 0x%x "
12197 "[in module %s]"),
12198 to_underlying (child_die->sect_off),
12199 objfile_name (objfile));
12200 continue;
12201 }
12202 }
12203
12204 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12205 if (attr == NULL)
12206 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
12207 if (!attr_form_is_block (attr))
12208 {
12209 complaint (&symfile_complaints,
12210 _("No DW_FORM_block* DW_AT_call_value for "
12211 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12212 to_underlying (child_die->sect_off),
12213 objfile_name (objfile));
12214 continue;
12215 }
12216 parameter->value = DW_BLOCK (attr)->data;
12217 parameter->value_size = DW_BLOCK (attr)->size;
12218
12219 /* Parameters are not pre-cleared by memset above. */
12220 parameter->data_value = NULL;
12221 parameter->data_value_size = 0;
12222 call_site->parameter_count++;
12223
12224 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12225 if (attr == NULL)
12226 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
12227 if (attr)
12228 {
12229 if (!attr_form_is_block (attr))
12230 complaint (&symfile_complaints,
12231 _("No DW_FORM_block* DW_AT_call_data_value for "
12232 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12233 to_underlying (child_die->sect_off),
12234 objfile_name (objfile));
12235 else
12236 {
12237 parameter->data_value = DW_BLOCK (attr)->data;
12238 parameter->data_value_size = DW_BLOCK (attr)->size;
12239 }
12240 }
12241 }
12242 }
12243
12244 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12245 reading .debug_rnglists.
12246 Callback's type should be:
12247 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12248 Return true if the attributes are present and valid, otherwise,
12249 return false. */
12250
12251 template <typename Callback>
12252 static bool
12253 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12254 Callback &&callback)
12255 {
12256 struct objfile *objfile = cu->objfile;
12257 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12258 struct comp_unit_head *cu_header = &cu->header;
12259 bfd *obfd = objfile->obfd;
12260 unsigned int addr_size = cu_header->addr_size;
12261 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12262 /* Base address selection entry. */
12263 CORE_ADDR base;
12264 int found_base;
12265 unsigned int dummy;
12266 const gdb_byte *buffer;
12267 CORE_ADDR low = 0;
12268 CORE_ADDR high = 0;
12269 CORE_ADDR baseaddr;
12270 bool overflow = false;
12271
12272 found_base = cu->base_known;
12273 base = cu->base_address;
12274
12275 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12276 if (offset >= dwarf2_per_objfile->rnglists.size)
12277 {
12278 complaint (&symfile_complaints,
12279 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12280 offset);
12281 return false;
12282 }
12283 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12284
12285 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12286
12287 while (1)
12288 {
12289 /* Initialize it due to a false compiler warning. */
12290 CORE_ADDR range_beginning = 0, range_end = 0;
12291 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12292 + dwarf2_per_objfile->rnglists.size);
12293 unsigned int bytes_read;
12294
12295 if (buffer == buf_end)
12296 {
12297 overflow = true;
12298 break;
12299 }
12300 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12301 switch (rlet)
12302 {
12303 case DW_RLE_end_of_list:
12304 break;
12305 case DW_RLE_base_address:
12306 if (buffer + cu->header.addr_size > buf_end)
12307 {
12308 overflow = true;
12309 break;
12310 }
12311 base = read_address (obfd, buffer, cu, &bytes_read);
12312 found_base = 1;
12313 buffer += bytes_read;
12314 break;
12315 case DW_RLE_start_length:
12316 if (buffer + cu->header.addr_size > buf_end)
12317 {
12318 overflow = true;
12319 break;
12320 }
12321 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12322 buffer += bytes_read;
12323 range_end = (range_beginning
12324 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12325 buffer += bytes_read;
12326 if (buffer > buf_end)
12327 {
12328 overflow = true;
12329 break;
12330 }
12331 break;
12332 case DW_RLE_offset_pair:
12333 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12334 buffer += bytes_read;
12335 if (buffer > buf_end)
12336 {
12337 overflow = true;
12338 break;
12339 }
12340 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12341 buffer += bytes_read;
12342 if (buffer > buf_end)
12343 {
12344 overflow = true;
12345 break;
12346 }
12347 break;
12348 case DW_RLE_start_end:
12349 if (buffer + 2 * cu->header.addr_size > buf_end)
12350 {
12351 overflow = true;
12352 break;
12353 }
12354 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12355 buffer += bytes_read;
12356 range_end = read_address (obfd, buffer, cu, &bytes_read);
12357 buffer += bytes_read;
12358 break;
12359 default:
12360 complaint (&symfile_complaints,
12361 _("Invalid .debug_rnglists data (no base address)"));
12362 return false;
12363 }
12364 if (rlet == DW_RLE_end_of_list || overflow)
12365 break;
12366 if (rlet == DW_RLE_base_address)
12367 continue;
12368
12369 if (!found_base)
12370 {
12371 /* We have no valid base address for the ranges
12372 data. */
12373 complaint (&symfile_complaints,
12374 _("Invalid .debug_rnglists data (no base address)"));
12375 return false;
12376 }
12377
12378 if (range_beginning > range_end)
12379 {
12380 /* Inverted range entries are invalid. */
12381 complaint (&symfile_complaints,
12382 _("Invalid .debug_rnglists data (inverted range)"));
12383 return false;
12384 }
12385
12386 /* Empty range entries have no effect. */
12387 if (range_beginning == range_end)
12388 continue;
12389
12390 range_beginning += base;
12391 range_end += base;
12392
12393 /* A not-uncommon case of bad debug info.
12394 Don't pollute the addrmap with bad data. */
12395 if (range_beginning + baseaddr == 0
12396 && !dwarf2_per_objfile->has_section_at_zero)
12397 {
12398 complaint (&symfile_complaints,
12399 _(".debug_rnglists entry has start address of zero"
12400 " [in module %s]"), objfile_name (objfile));
12401 continue;
12402 }
12403
12404 callback (range_beginning, range_end);
12405 }
12406
12407 if (overflow)
12408 {
12409 complaint (&symfile_complaints,
12410 _("Offset %d is not terminated "
12411 "for DW_AT_ranges attribute"),
12412 offset);
12413 return false;
12414 }
12415
12416 return true;
12417 }
12418
12419 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12420 Callback's type should be:
12421 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12422 Return 1 if the attributes are present and valid, otherwise, return 0. */
12423
12424 template <typename Callback>
12425 static int
12426 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
12427 Callback &&callback)
12428 {
12429 struct objfile *objfile = cu->objfile;
12430 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12431 struct comp_unit_head *cu_header = &cu->header;
12432 bfd *obfd = objfile->obfd;
12433 unsigned int addr_size = cu_header->addr_size;
12434 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12435 /* Base address selection entry. */
12436 CORE_ADDR base;
12437 int found_base;
12438 unsigned int dummy;
12439 const gdb_byte *buffer;
12440 CORE_ADDR baseaddr;
12441
12442 if (cu_header->version >= 5)
12443 return dwarf2_rnglists_process (offset, cu, callback);
12444
12445 found_base = cu->base_known;
12446 base = cu->base_address;
12447
12448 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12449 if (offset >= dwarf2_per_objfile->ranges.size)
12450 {
12451 complaint (&symfile_complaints,
12452 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12453 offset);
12454 return 0;
12455 }
12456 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12457
12458 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12459
12460 while (1)
12461 {
12462 CORE_ADDR range_beginning, range_end;
12463
12464 range_beginning = read_address (obfd, buffer, cu, &dummy);
12465 buffer += addr_size;
12466 range_end = read_address (obfd, buffer, cu, &dummy);
12467 buffer += addr_size;
12468 offset += 2 * addr_size;
12469
12470 /* An end of list marker is a pair of zero addresses. */
12471 if (range_beginning == 0 && range_end == 0)
12472 /* Found the end of list entry. */
12473 break;
12474
12475 /* Each base address selection entry is a pair of 2 values.
12476 The first is the largest possible address, the second is
12477 the base address. Check for a base address here. */
12478 if ((range_beginning & mask) == mask)
12479 {
12480 /* If we found the largest possible address, then we already
12481 have the base address in range_end. */
12482 base = range_end;
12483 found_base = 1;
12484 continue;
12485 }
12486
12487 if (!found_base)
12488 {
12489 /* We have no valid base address for the ranges
12490 data. */
12491 complaint (&symfile_complaints,
12492 _("Invalid .debug_ranges data (no base address)"));
12493 return 0;
12494 }
12495
12496 if (range_beginning > range_end)
12497 {
12498 /* Inverted range entries are invalid. */
12499 complaint (&symfile_complaints,
12500 _("Invalid .debug_ranges data (inverted range)"));
12501 return 0;
12502 }
12503
12504 /* Empty range entries have no effect. */
12505 if (range_beginning == range_end)
12506 continue;
12507
12508 range_beginning += base;
12509 range_end += base;
12510
12511 /* A not-uncommon case of bad debug info.
12512 Don't pollute the addrmap with bad data. */
12513 if (range_beginning + baseaddr == 0
12514 && !dwarf2_per_objfile->has_section_at_zero)
12515 {
12516 complaint (&symfile_complaints,
12517 _(".debug_ranges entry has start address of zero"
12518 " [in module %s]"), objfile_name (objfile));
12519 continue;
12520 }
12521
12522 callback (range_beginning, range_end);
12523 }
12524
12525 return 1;
12526 }
12527
12528 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12529 Return 1 if the attributes are present and valid, otherwise, return 0.
12530 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12531
12532 static int
12533 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12534 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12535 struct partial_symtab *ranges_pst)
12536 {
12537 struct objfile *objfile = cu->objfile;
12538 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12539 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12540 SECT_OFF_TEXT (objfile));
12541 int low_set = 0;
12542 CORE_ADDR low = 0;
12543 CORE_ADDR high = 0;
12544 int retval;
12545
12546 retval = dwarf2_ranges_process (offset, cu,
12547 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12548 {
12549 if (ranges_pst != NULL)
12550 {
12551 CORE_ADDR lowpc;
12552 CORE_ADDR highpc;
12553
12554 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12555 range_beginning + baseaddr);
12556 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12557 range_end + baseaddr);
12558 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12559 ranges_pst);
12560 }
12561
12562 /* FIXME: This is recording everything as a low-high
12563 segment of consecutive addresses. We should have a
12564 data structure for discontiguous block ranges
12565 instead. */
12566 if (! low_set)
12567 {
12568 low = range_beginning;
12569 high = range_end;
12570 low_set = 1;
12571 }
12572 else
12573 {
12574 if (range_beginning < low)
12575 low = range_beginning;
12576 if (range_end > high)
12577 high = range_end;
12578 }
12579 });
12580 if (!retval)
12581 return 0;
12582
12583 if (! low_set)
12584 /* If the first entry is an end-of-list marker, the range
12585 describes an empty scope, i.e. no instructions. */
12586 return 0;
12587
12588 if (low_return)
12589 *low_return = low;
12590 if (high_return)
12591 *high_return = high;
12592 return 1;
12593 }
12594
12595 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12596 definition for the return value. *LOWPC and *HIGHPC are set iff
12597 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12598
12599 static enum pc_bounds_kind
12600 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12601 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12602 struct partial_symtab *pst)
12603 {
12604 struct attribute *attr;
12605 struct attribute *attr_high;
12606 CORE_ADDR low = 0;
12607 CORE_ADDR high = 0;
12608 enum pc_bounds_kind ret;
12609
12610 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12611 if (attr_high)
12612 {
12613 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12614 if (attr)
12615 {
12616 low = attr_value_as_address (attr);
12617 high = attr_value_as_address (attr_high);
12618 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12619 high += low;
12620 }
12621 else
12622 /* Found high w/o low attribute. */
12623 return PC_BOUNDS_INVALID;
12624
12625 /* Found consecutive range of addresses. */
12626 ret = PC_BOUNDS_HIGH_LOW;
12627 }
12628 else
12629 {
12630 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12631 if (attr != NULL)
12632 {
12633 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12634 We take advantage of the fact that DW_AT_ranges does not appear
12635 in DW_TAG_compile_unit of DWO files. */
12636 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12637 unsigned int ranges_offset = (DW_UNSND (attr)
12638 + (need_ranges_base
12639 ? cu->ranges_base
12640 : 0));
12641
12642 /* Value of the DW_AT_ranges attribute is the offset in the
12643 .debug_ranges section. */
12644 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12645 return PC_BOUNDS_INVALID;
12646 /* Found discontinuous range of addresses. */
12647 ret = PC_BOUNDS_RANGES;
12648 }
12649 else
12650 return PC_BOUNDS_NOT_PRESENT;
12651 }
12652
12653 /* read_partial_die has also the strict LOW < HIGH requirement. */
12654 if (high <= low)
12655 return PC_BOUNDS_INVALID;
12656
12657 /* When using the GNU linker, .gnu.linkonce. sections are used to
12658 eliminate duplicate copies of functions and vtables and such.
12659 The linker will arbitrarily choose one and discard the others.
12660 The AT_*_pc values for such functions refer to local labels in
12661 these sections. If the section from that file was discarded, the
12662 labels are not in the output, so the relocs get a value of 0.
12663 If this is a discarded function, mark the pc bounds as invalid,
12664 so that GDB will ignore it. */
12665 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12666 return PC_BOUNDS_INVALID;
12667
12668 *lowpc = low;
12669 if (highpc)
12670 *highpc = high;
12671 return ret;
12672 }
12673
12674 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12675 its low and high PC addresses. Do nothing if these addresses could not
12676 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12677 and HIGHPC to the high address if greater than HIGHPC. */
12678
12679 static void
12680 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12681 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12682 struct dwarf2_cu *cu)
12683 {
12684 CORE_ADDR low, high;
12685 struct die_info *child = die->child;
12686
12687 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12688 {
12689 *lowpc = std::min (*lowpc, low);
12690 *highpc = std::max (*highpc, high);
12691 }
12692
12693 /* If the language does not allow nested subprograms (either inside
12694 subprograms or lexical blocks), we're done. */
12695 if (cu->language != language_ada)
12696 return;
12697
12698 /* Check all the children of the given DIE. If it contains nested
12699 subprograms, then check their pc bounds. Likewise, we need to
12700 check lexical blocks as well, as they may also contain subprogram
12701 definitions. */
12702 while (child && child->tag)
12703 {
12704 if (child->tag == DW_TAG_subprogram
12705 || child->tag == DW_TAG_lexical_block)
12706 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12707 child = sibling_die (child);
12708 }
12709 }
12710
12711 /* Get the low and high pc's represented by the scope DIE, and store
12712 them in *LOWPC and *HIGHPC. If the correct values can't be
12713 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12714
12715 static void
12716 get_scope_pc_bounds (struct die_info *die,
12717 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12718 struct dwarf2_cu *cu)
12719 {
12720 CORE_ADDR best_low = (CORE_ADDR) -1;
12721 CORE_ADDR best_high = (CORE_ADDR) 0;
12722 CORE_ADDR current_low, current_high;
12723
12724 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12725 >= PC_BOUNDS_RANGES)
12726 {
12727 best_low = current_low;
12728 best_high = current_high;
12729 }
12730 else
12731 {
12732 struct die_info *child = die->child;
12733
12734 while (child && child->tag)
12735 {
12736 switch (child->tag) {
12737 case DW_TAG_subprogram:
12738 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12739 break;
12740 case DW_TAG_namespace:
12741 case DW_TAG_module:
12742 /* FIXME: carlton/2004-01-16: Should we do this for
12743 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12744 that current GCC's always emit the DIEs corresponding
12745 to definitions of methods of classes as children of a
12746 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12747 the DIEs giving the declarations, which could be
12748 anywhere). But I don't see any reason why the
12749 standards says that they have to be there. */
12750 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12751
12752 if (current_low != ((CORE_ADDR) -1))
12753 {
12754 best_low = std::min (best_low, current_low);
12755 best_high = std::max (best_high, current_high);
12756 }
12757 break;
12758 default:
12759 /* Ignore. */
12760 break;
12761 }
12762
12763 child = sibling_die (child);
12764 }
12765 }
12766
12767 *lowpc = best_low;
12768 *highpc = best_high;
12769 }
12770
12771 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12772 in DIE. */
12773
12774 static void
12775 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12776 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12777 {
12778 struct objfile *objfile = cu->objfile;
12779 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12780 struct attribute *attr;
12781 struct attribute *attr_high;
12782
12783 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12784 if (attr_high)
12785 {
12786 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12787 if (attr)
12788 {
12789 CORE_ADDR low = attr_value_as_address (attr);
12790 CORE_ADDR high = attr_value_as_address (attr_high);
12791
12792 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12793 high += low;
12794
12795 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12796 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12797 record_block_range (block, low, high - 1);
12798 }
12799 }
12800
12801 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12802 if (attr)
12803 {
12804 bfd *obfd = objfile->obfd;
12805 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12806 We take advantage of the fact that DW_AT_ranges does not appear
12807 in DW_TAG_compile_unit of DWO files. */
12808 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12809
12810 /* The value of the DW_AT_ranges attribute is the offset of the
12811 address range list in the .debug_ranges section. */
12812 unsigned long offset = (DW_UNSND (attr)
12813 + (need_ranges_base ? cu->ranges_base : 0));
12814 const gdb_byte *buffer;
12815
12816 /* For some target architectures, but not others, the
12817 read_address function sign-extends the addresses it returns.
12818 To recognize base address selection entries, we need a
12819 mask. */
12820 unsigned int addr_size = cu->header.addr_size;
12821 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12822
12823 /* The base address, to which the next pair is relative. Note
12824 that this 'base' is a DWARF concept: most entries in a range
12825 list are relative, to reduce the number of relocs against the
12826 debugging information. This is separate from this function's
12827 'baseaddr' argument, which GDB uses to relocate debugging
12828 information from a shared library based on the address at
12829 which the library was loaded. */
12830 CORE_ADDR base = cu->base_address;
12831 int base_known = cu->base_known;
12832
12833 dwarf2_ranges_process (offset, cu,
12834 [&] (CORE_ADDR start, CORE_ADDR end)
12835 {
12836 start += baseaddr;
12837 end += baseaddr;
12838 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12839 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12840 record_block_range (block, start, end - 1);
12841 });
12842 }
12843 }
12844
12845 /* Check whether the producer field indicates either of GCC < 4.6, or the
12846 Intel C/C++ compiler, and cache the result in CU. */
12847
12848 static void
12849 check_producer (struct dwarf2_cu *cu)
12850 {
12851 int major, minor;
12852
12853 if (cu->producer == NULL)
12854 {
12855 /* For unknown compilers expect their behavior is DWARF version
12856 compliant.
12857
12858 GCC started to support .debug_types sections by -gdwarf-4 since
12859 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12860 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12861 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12862 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12863 }
12864 else if (producer_is_gcc (cu->producer, &major, &minor))
12865 {
12866 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12867 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12868 }
12869 else if (producer_is_icc (cu->producer, &major, &minor))
12870 cu->producer_is_icc_lt_14 = major < 14;
12871 else
12872 {
12873 /* For other non-GCC compilers, expect their behavior is DWARF version
12874 compliant. */
12875 }
12876
12877 cu->checked_producer = 1;
12878 }
12879
12880 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12881 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12882 during 4.6.0 experimental. */
12883
12884 static int
12885 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12886 {
12887 if (!cu->checked_producer)
12888 check_producer (cu);
12889
12890 return cu->producer_is_gxx_lt_4_6;
12891 }
12892
12893 /* Return the default accessibility type if it is not overriden by
12894 DW_AT_accessibility. */
12895
12896 static enum dwarf_access_attribute
12897 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12898 {
12899 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12900 {
12901 /* The default DWARF 2 accessibility for members is public, the default
12902 accessibility for inheritance is private. */
12903
12904 if (die->tag != DW_TAG_inheritance)
12905 return DW_ACCESS_public;
12906 else
12907 return DW_ACCESS_private;
12908 }
12909 else
12910 {
12911 /* DWARF 3+ defines the default accessibility a different way. The same
12912 rules apply now for DW_TAG_inheritance as for the members and it only
12913 depends on the container kind. */
12914
12915 if (die->parent->tag == DW_TAG_class_type)
12916 return DW_ACCESS_private;
12917 else
12918 return DW_ACCESS_public;
12919 }
12920 }
12921
12922 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12923 offset. If the attribute was not found return 0, otherwise return
12924 1. If it was found but could not properly be handled, set *OFFSET
12925 to 0. */
12926
12927 static int
12928 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12929 LONGEST *offset)
12930 {
12931 struct attribute *attr;
12932
12933 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12934 if (attr != NULL)
12935 {
12936 *offset = 0;
12937
12938 /* Note that we do not check for a section offset first here.
12939 This is because DW_AT_data_member_location is new in DWARF 4,
12940 so if we see it, we can assume that a constant form is really
12941 a constant and not a section offset. */
12942 if (attr_form_is_constant (attr))
12943 *offset = dwarf2_get_attr_constant_value (attr, 0);
12944 else if (attr_form_is_section_offset (attr))
12945 dwarf2_complex_location_expr_complaint ();
12946 else if (attr_form_is_block (attr))
12947 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12948 else
12949 dwarf2_complex_location_expr_complaint ();
12950
12951 return 1;
12952 }
12953
12954 return 0;
12955 }
12956
12957 /* Add an aggregate field to the field list. */
12958
12959 static void
12960 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12961 struct dwarf2_cu *cu)
12962 {
12963 struct objfile *objfile = cu->objfile;
12964 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12965 struct nextfield *new_field;
12966 struct attribute *attr;
12967 struct field *fp;
12968 const char *fieldname = "";
12969
12970 /* Allocate a new field list entry and link it in. */
12971 new_field = XNEW (struct nextfield);
12972 make_cleanup (xfree, new_field);
12973 memset (new_field, 0, sizeof (struct nextfield));
12974
12975 if (die->tag == DW_TAG_inheritance)
12976 {
12977 new_field->next = fip->baseclasses;
12978 fip->baseclasses = new_field;
12979 }
12980 else
12981 {
12982 new_field->next = fip->fields;
12983 fip->fields = new_field;
12984 }
12985 fip->nfields++;
12986
12987 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12988 if (attr)
12989 new_field->accessibility = DW_UNSND (attr);
12990 else
12991 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12992 if (new_field->accessibility != DW_ACCESS_public)
12993 fip->non_public_fields = 1;
12994
12995 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12996 if (attr)
12997 new_field->virtuality = DW_UNSND (attr);
12998 else
12999 new_field->virtuality = DW_VIRTUALITY_none;
13000
13001 fp = &new_field->field;
13002
13003 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
13004 {
13005 LONGEST offset;
13006
13007 /* Data member other than a C++ static data member. */
13008
13009 /* Get type of field. */
13010 fp->type = die_type (die, cu);
13011
13012 SET_FIELD_BITPOS (*fp, 0);
13013
13014 /* Get bit size of field (zero if none). */
13015 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
13016 if (attr)
13017 {
13018 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
13019 }
13020 else
13021 {
13022 FIELD_BITSIZE (*fp) = 0;
13023 }
13024
13025 /* Get bit offset of field. */
13026 if (handle_data_member_location (die, cu, &offset))
13027 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13028 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
13029 if (attr)
13030 {
13031 if (gdbarch_bits_big_endian (gdbarch))
13032 {
13033 /* For big endian bits, the DW_AT_bit_offset gives the
13034 additional bit offset from the MSB of the containing
13035 anonymous object to the MSB of the field. We don't
13036 have to do anything special since we don't need to
13037 know the size of the anonymous object. */
13038 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
13039 }
13040 else
13041 {
13042 /* For little endian bits, compute the bit offset to the
13043 MSB of the anonymous object, subtract off the number of
13044 bits from the MSB of the field to the MSB of the
13045 object, and then subtract off the number of bits of
13046 the field itself. The result is the bit offset of
13047 the LSB of the field. */
13048 int anonymous_size;
13049 int bit_offset = DW_UNSND (attr);
13050
13051 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13052 if (attr)
13053 {
13054 /* The size of the anonymous object containing
13055 the bit field is explicit, so use the
13056 indicated size (in bytes). */
13057 anonymous_size = DW_UNSND (attr);
13058 }
13059 else
13060 {
13061 /* The size of the anonymous object containing
13062 the bit field must be inferred from the type
13063 attribute of the data member containing the
13064 bit field. */
13065 anonymous_size = TYPE_LENGTH (fp->type);
13066 }
13067 SET_FIELD_BITPOS (*fp,
13068 (FIELD_BITPOS (*fp)
13069 + anonymous_size * bits_per_byte
13070 - bit_offset - FIELD_BITSIZE (*fp)));
13071 }
13072 }
13073 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
13074 if (attr != NULL)
13075 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
13076 + dwarf2_get_attr_constant_value (attr, 0)));
13077
13078 /* Get name of field. */
13079 fieldname = dwarf2_name (die, cu);
13080 if (fieldname == NULL)
13081 fieldname = "";
13082
13083 /* The name is already allocated along with this objfile, so we don't
13084 need to duplicate it for the type. */
13085 fp->name = fieldname;
13086
13087 /* Change accessibility for artificial fields (e.g. virtual table
13088 pointer or virtual base class pointer) to private. */
13089 if (dwarf2_attr (die, DW_AT_artificial, cu))
13090 {
13091 FIELD_ARTIFICIAL (*fp) = 1;
13092 new_field->accessibility = DW_ACCESS_private;
13093 fip->non_public_fields = 1;
13094 }
13095 }
13096 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
13097 {
13098 /* C++ static member. */
13099
13100 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
13101 is a declaration, but all versions of G++ as of this writing
13102 (so through at least 3.2.1) incorrectly generate
13103 DW_TAG_variable tags. */
13104
13105 const char *physname;
13106
13107 /* Get name of field. */
13108 fieldname = dwarf2_name (die, cu);
13109 if (fieldname == NULL)
13110 return;
13111
13112 attr = dwarf2_attr (die, DW_AT_const_value, cu);
13113 if (attr
13114 /* Only create a symbol if this is an external value.
13115 new_symbol checks this and puts the value in the global symbol
13116 table, which we want. If it is not external, new_symbol
13117 will try to put the value in cu->list_in_scope which is wrong. */
13118 && dwarf2_flag_true_p (die, DW_AT_external, cu))
13119 {
13120 /* A static const member, not much different than an enum as far as
13121 we're concerned, except that we can support more types. */
13122 new_symbol (die, NULL, cu);
13123 }
13124
13125 /* Get physical name. */
13126 physname = dwarf2_physname (fieldname, die, cu);
13127
13128 /* The name is already allocated along with this objfile, so we don't
13129 need to duplicate it for the type. */
13130 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
13131 FIELD_TYPE (*fp) = die_type (die, cu);
13132 FIELD_NAME (*fp) = fieldname;
13133 }
13134 else if (die->tag == DW_TAG_inheritance)
13135 {
13136 LONGEST offset;
13137
13138 /* C++ base class field. */
13139 if (handle_data_member_location (die, cu, &offset))
13140 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13141 FIELD_BITSIZE (*fp) = 0;
13142 FIELD_TYPE (*fp) = die_type (die, cu);
13143 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13144 fip->nbaseclasses++;
13145 }
13146 }
13147
13148 /* Add a typedef defined in the scope of the FIP's class. */
13149
13150 static void
13151 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13152 struct dwarf2_cu *cu)
13153 {
13154 struct typedef_field_list *new_field;
13155 struct typedef_field *fp;
13156
13157 /* Allocate a new field list entry and link it in. */
13158 new_field = XCNEW (struct typedef_field_list);
13159 make_cleanup (xfree, new_field);
13160
13161 gdb_assert (die->tag == DW_TAG_typedef);
13162
13163 fp = &new_field->field;
13164
13165 /* Get name of field. */
13166 fp->name = dwarf2_name (die, cu);
13167 if (fp->name == NULL)
13168 return;
13169
13170 fp->type = read_type_die (die, cu);
13171
13172 new_field->next = fip->typedef_field_list;
13173 fip->typedef_field_list = new_field;
13174 fip->typedef_field_list_count++;
13175 }
13176
13177 /* Create the vector of fields, and attach it to the type. */
13178
13179 static void
13180 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
13181 struct dwarf2_cu *cu)
13182 {
13183 int nfields = fip->nfields;
13184
13185 /* Record the field count, allocate space for the array of fields,
13186 and create blank accessibility bitfields if necessary. */
13187 TYPE_NFIELDS (type) = nfields;
13188 TYPE_FIELDS (type) = (struct field *)
13189 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13190 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13191
13192 if (fip->non_public_fields && cu->language != language_ada)
13193 {
13194 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13195
13196 TYPE_FIELD_PRIVATE_BITS (type) =
13197 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13198 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13199
13200 TYPE_FIELD_PROTECTED_BITS (type) =
13201 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13202 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13203
13204 TYPE_FIELD_IGNORE_BITS (type) =
13205 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13206 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
13207 }
13208
13209 /* If the type has baseclasses, allocate and clear a bit vector for
13210 TYPE_FIELD_VIRTUAL_BITS. */
13211 if (fip->nbaseclasses && cu->language != language_ada)
13212 {
13213 int num_bytes = B_BYTES (fip->nbaseclasses);
13214 unsigned char *pointer;
13215
13216 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13217 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
13218 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
13219 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13220 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13221 }
13222
13223 /* Copy the saved-up fields into the field vector. Start from the head of
13224 the list, adding to the tail of the field array, so that they end up in
13225 the same order in the array in which they were added to the list. */
13226 while (nfields-- > 0)
13227 {
13228 struct nextfield *fieldp;
13229
13230 if (fip->fields)
13231 {
13232 fieldp = fip->fields;
13233 fip->fields = fieldp->next;
13234 }
13235 else
13236 {
13237 fieldp = fip->baseclasses;
13238 fip->baseclasses = fieldp->next;
13239 }
13240
13241 TYPE_FIELD (type, nfields) = fieldp->field;
13242 switch (fieldp->accessibility)
13243 {
13244 case DW_ACCESS_private:
13245 if (cu->language != language_ada)
13246 SET_TYPE_FIELD_PRIVATE (type, nfields);
13247 break;
13248
13249 case DW_ACCESS_protected:
13250 if (cu->language != language_ada)
13251 SET_TYPE_FIELD_PROTECTED (type, nfields);
13252 break;
13253
13254 case DW_ACCESS_public:
13255 break;
13256
13257 default:
13258 /* Unknown accessibility. Complain and treat it as public. */
13259 {
13260 complaint (&symfile_complaints, _("unsupported accessibility %d"),
13261 fieldp->accessibility);
13262 }
13263 break;
13264 }
13265 if (nfields < fip->nbaseclasses)
13266 {
13267 switch (fieldp->virtuality)
13268 {
13269 case DW_VIRTUALITY_virtual:
13270 case DW_VIRTUALITY_pure_virtual:
13271 if (cu->language == language_ada)
13272 error (_("unexpected virtuality in component of Ada type"));
13273 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13274 break;
13275 }
13276 }
13277 }
13278 }
13279
13280 /* Return true if this member function is a constructor, false
13281 otherwise. */
13282
13283 static int
13284 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13285 {
13286 const char *fieldname;
13287 const char *type_name;
13288 int len;
13289
13290 if (die->parent == NULL)
13291 return 0;
13292
13293 if (die->parent->tag != DW_TAG_structure_type
13294 && die->parent->tag != DW_TAG_union_type
13295 && die->parent->tag != DW_TAG_class_type)
13296 return 0;
13297
13298 fieldname = dwarf2_name (die, cu);
13299 type_name = dwarf2_name (die->parent, cu);
13300 if (fieldname == NULL || type_name == NULL)
13301 return 0;
13302
13303 len = strlen (fieldname);
13304 return (strncmp (fieldname, type_name, len) == 0
13305 && (type_name[len] == '\0' || type_name[len] == '<'));
13306 }
13307
13308 /* Add a member function to the proper fieldlist. */
13309
13310 static void
13311 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
13312 struct type *type, struct dwarf2_cu *cu)
13313 {
13314 struct objfile *objfile = cu->objfile;
13315 struct attribute *attr;
13316 struct fnfieldlist *flp;
13317 int i;
13318 struct fn_field *fnp;
13319 const char *fieldname;
13320 struct nextfnfield *new_fnfield;
13321 struct type *this_type;
13322 enum dwarf_access_attribute accessibility;
13323
13324 if (cu->language == language_ada)
13325 error (_("unexpected member function in Ada type"));
13326
13327 /* Get name of member function. */
13328 fieldname = dwarf2_name (die, cu);
13329 if (fieldname == NULL)
13330 return;
13331
13332 /* Look up member function name in fieldlist. */
13333 for (i = 0; i < fip->nfnfields; i++)
13334 {
13335 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
13336 break;
13337 }
13338
13339 /* Create new list element if necessary. */
13340 if (i < fip->nfnfields)
13341 flp = &fip->fnfieldlists[i];
13342 else
13343 {
13344 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13345 {
13346 fip->fnfieldlists = (struct fnfieldlist *)
13347 xrealloc (fip->fnfieldlists,
13348 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
13349 * sizeof (struct fnfieldlist));
13350 if (fip->nfnfields == 0)
13351 make_cleanup (free_current_contents, &fip->fnfieldlists);
13352 }
13353 flp = &fip->fnfieldlists[fip->nfnfields];
13354 flp->name = fieldname;
13355 flp->length = 0;
13356 flp->head = NULL;
13357 i = fip->nfnfields++;
13358 }
13359
13360 /* Create a new member function field and chain it to the field list
13361 entry. */
13362 new_fnfield = XNEW (struct nextfnfield);
13363 make_cleanup (xfree, new_fnfield);
13364 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13365 new_fnfield->next = flp->head;
13366 flp->head = new_fnfield;
13367 flp->length++;
13368
13369 /* Fill in the member function field info. */
13370 fnp = &new_fnfield->fnfield;
13371
13372 /* Delay processing of the physname until later. */
13373 if (cu->language == language_cplus)
13374 {
13375 add_to_method_list (type, i, flp->length - 1, fieldname,
13376 die, cu);
13377 }
13378 else
13379 {
13380 const char *physname = dwarf2_physname (fieldname, die, cu);
13381 fnp->physname = physname ? physname : "";
13382 }
13383
13384 fnp->type = alloc_type (objfile);
13385 this_type = read_type_die (die, cu);
13386 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
13387 {
13388 int nparams = TYPE_NFIELDS (this_type);
13389
13390 /* TYPE is the domain of this method, and THIS_TYPE is the type
13391 of the method itself (TYPE_CODE_METHOD). */
13392 smash_to_method_type (fnp->type, type,
13393 TYPE_TARGET_TYPE (this_type),
13394 TYPE_FIELDS (this_type),
13395 TYPE_NFIELDS (this_type),
13396 TYPE_VARARGS (this_type));
13397
13398 /* Handle static member functions.
13399 Dwarf2 has no clean way to discern C++ static and non-static
13400 member functions. G++ helps GDB by marking the first
13401 parameter for non-static member functions (which is the this
13402 pointer) as artificial. We obtain this information from
13403 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
13404 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
13405 fnp->voffset = VOFFSET_STATIC;
13406 }
13407 else
13408 complaint (&symfile_complaints, _("member function type missing for '%s'"),
13409 dwarf2_full_name (fieldname, die, cu));
13410
13411 /* Get fcontext from DW_AT_containing_type if present. */
13412 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13413 fnp->fcontext = die_containing_type (die, cu);
13414
13415 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13416 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
13417
13418 /* Get accessibility. */
13419 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13420 if (attr)
13421 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13422 else
13423 accessibility = dwarf2_default_access_attribute (die, cu);
13424 switch (accessibility)
13425 {
13426 case DW_ACCESS_private:
13427 fnp->is_private = 1;
13428 break;
13429 case DW_ACCESS_protected:
13430 fnp->is_protected = 1;
13431 break;
13432 }
13433
13434 /* Check for artificial methods. */
13435 attr = dwarf2_attr (die, DW_AT_artificial, cu);
13436 if (attr && DW_UNSND (attr) != 0)
13437 fnp->is_artificial = 1;
13438
13439 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13440
13441 /* Get index in virtual function table if it is a virtual member
13442 function. For older versions of GCC, this is an offset in the
13443 appropriate virtual table, as specified by DW_AT_containing_type.
13444 For everyone else, it is an expression to be evaluated relative
13445 to the object address. */
13446
13447 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
13448 if (attr)
13449 {
13450 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
13451 {
13452 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13453 {
13454 /* Old-style GCC. */
13455 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13456 }
13457 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13458 || (DW_BLOCK (attr)->size > 1
13459 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13460 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13461 {
13462 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13463 if ((fnp->voffset % cu->header.addr_size) != 0)
13464 dwarf2_complex_location_expr_complaint ();
13465 else
13466 fnp->voffset /= cu->header.addr_size;
13467 fnp->voffset += 2;
13468 }
13469 else
13470 dwarf2_complex_location_expr_complaint ();
13471
13472 if (!fnp->fcontext)
13473 {
13474 /* If there is no `this' field and no DW_AT_containing_type,
13475 we cannot actually find a base class context for the
13476 vtable! */
13477 if (TYPE_NFIELDS (this_type) == 0
13478 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13479 {
13480 complaint (&symfile_complaints,
13481 _("cannot determine context for virtual member "
13482 "function \"%s\" (offset %d)"),
13483 fieldname, to_underlying (die->sect_off));
13484 }
13485 else
13486 {
13487 fnp->fcontext
13488 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13489 }
13490 }
13491 }
13492 else if (attr_form_is_section_offset (attr))
13493 {
13494 dwarf2_complex_location_expr_complaint ();
13495 }
13496 else
13497 {
13498 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13499 fieldname);
13500 }
13501 }
13502 else
13503 {
13504 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13505 if (attr && DW_UNSND (attr))
13506 {
13507 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13508 complaint (&symfile_complaints,
13509 _("Member function \"%s\" (offset %d) is virtual "
13510 "but the vtable offset is not specified"),
13511 fieldname, to_underlying (die->sect_off));
13512 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13513 TYPE_CPLUS_DYNAMIC (type) = 1;
13514 }
13515 }
13516 }
13517
13518 /* Create the vector of member function fields, and attach it to the type. */
13519
13520 static void
13521 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13522 struct dwarf2_cu *cu)
13523 {
13524 struct fnfieldlist *flp;
13525 int i;
13526
13527 if (cu->language == language_ada)
13528 error (_("unexpected member functions in Ada type"));
13529
13530 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13531 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13532 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13533
13534 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13535 {
13536 struct nextfnfield *nfp = flp->head;
13537 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13538 int k;
13539
13540 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13541 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13542 fn_flp->fn_fields = (struct fn_field *)
13543 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13544 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13545 fn_flp->fn_fields[k] = nfp->fnfield;
13546 }
13547
13548 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13549 }
13550
13551 /* Returns non-zero if NAME is the name of a vtable member in CU's
13552 language, zero otherwise. */
13553 static int
13554 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13555 {
13556 static const char vptr[] = "_vptr";
13557 static const char vtable[] = "vtable";
13558
13559 /* Look for the C++ form of the vtable. */
13560 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13561 return 1;
13562
13563 return 0;
13564 }
13565
13566 /* GCC outputs unnamed structures that are really pointers to member
13567 functions, with the ABI-specified layout. If TYPE describes
13568 such a structure, smash it into a member function type.
13569
13570 GCC shouldn't do this; it should just output pointer to member DIEs.
13571 This is GCC PR debug/28767. */
13572
13573 static void
13574 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13575 {
13576 struct type *pfn_type, *self_type, *new_type;
13577
13578 /* Check for a structure with no name and two children. */
13579 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13580 return;
13581
13582 /* Check for __pfn and __delta members. */
13583 if (TYPE_FIELD_NAME (type, 0) == NULL
13584 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13585 || TYPE_FIELD_NAME (type, 1) == NULL
13586 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13587 return;
13588
13589 /* Find the type of the method. */
13590 pfn_type = TYPE_FIELD_TYPE (type, 0);
13591 if (pfn_type == NULL
13592 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13593 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13594 return;
13595
13596 /* Look for the "this" argument. */
13597 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13598 if (TYPE_NFIELDS (pfn_type) == 0
13599 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13600 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13601 return;
13602
13603 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13604 new_type = alloc_type (objfile);
13605 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13606 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13607 TYPE_VARARGS (pfn_type));
13608 smash_to_methodptr_type (type, new_type);
13609 }
13610
13611
13612 /* Called when we find the DIE that starts a structure or union scope
13613 (definition) to create a type for the structure or union. Fill in
13614 the type's name and general properties; the members will not be
13615 processed until process_structure_scope. A symbol table entry for
13616 the type will also not be done until process_structure_scope (assuming
13617 the type has a name).
13618
13619 NOTE: we need to call these functions regardless of whether or not the
13620 DIE has a DW_AT_name attribute, since it might be an anonymous
13621 structure or union. This gets the type entered into our set of
13622 user defined types. */
13623
13624 static struct type *
13625 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13626 {
13627 struct objfile *objfile = cu->objfile;
13628 struct type *type;
13629 struct attribute *attr;
13630 const char *name;
13631
13632 /* If the definition of this type lives in .debug_types, read that type.
13633 Don't follow DW_AT_specification though, that will take us back up
13634 the chain and we want to go down. */
13635 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13636 if (attr)
13637 {
13638 type = get_DW_AT_signature_type (die, attr, cu);
13639
13640 /* The type's CU may not be the same as CU.
13641 Ensure TYPE is recorded with CU in die_type_hash. */
13642 return set_die_type (die, type, cu);
13643 }
13644
13645 type = alloc_type (objfile);
13646 INIT_CPLUS_SPECIFIC (type);
13647
13648 name = dwarf2_name (die, cu);
13649 if (name != NULL)
13650 {
13651 if (cu->language == language_cplus
13652 || cu->language == language_d
13653 || cu->language == language_rust)
13654 {
13655 const char *full_name = dwarf2_full_name (name, die, cu);
13656
13657 /* dwarf2_full_name might have already finished building the DIE's
13658 type. If so, there is no need to continue. */
13659 if (get_die_type (die, cu) != NULL)
13660 return get_die_type (die, cu);
13661
13662 TYPE_TAG_NAME (type) = full_name;
13663 if (die->tag == DW_TAG_structure_type
13664 || die->tag == DW_TAG_class_type)
13665 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13666 }
13667 else
13668 {
13669 /* The name is already allocated along with this objfile, so
13670 we don't need to duplicate it for the type. */
13671 TYPE_TAG_NAME (type) = name;
13672 if (die->tag == DW_TAG_class_type)
13673 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13674 }
13675 }
13676
13677 if (die->tag == DW_TAG_structure_type)
13678 {
13679 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13680 }
13681 else if (die->tag == DW_TAG_union_type)
13682 {
13683 TYPE_CODE (type) = TYPE_CODE_UNION;
13684 }
13685 else
13686 {
13687 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13688 }
13689
13690 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13691 TYPE_DECLARED_CLASS (type) = 1;
13692
13693 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13694 if (attr)
13695 {
13696 if (attr_form_is_constant (attr))
13697 TYPE_LENGTH (type) = DW_UNSND (attr);
13698 else
13699 {
13700 /* For the moment, dynamic type sizes are not supported
13701 by GDB's struct type. The actual size is determined
13702 on-demand when resolving the type of a given object,
13703 so set the type's length to zero for now. Otherwise,
13704 we record an expression as the length, and that expression
13705 could lead to a very large value, which could eventually
13706 lead to us trying to allocate that much memory when creating
13707 a value of that type. */
13708 TYPE_LENGTH (type) = 0;
13709 }
13710 }
13711 else
13712 {
13713 TYPE_LENGTH (type) = 0;
13714 }
13715
13716 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
13717 {
13718 /* ICC<14 does not output the required DW_AT_declaration on
13719 incomplete types, but gives them a size of zero. */
13720 TYPE_STUB (type) = 1;
13721 }
13722 else
13723 TYPE_STUB_SUPPORTED (type) = 1;
13724
13725 if (die_is_declaration (die, cu))
13726 TYPE_STUB (type) = 1;
13727 else if (attr == NULL && die->child == NULL
13728 && producer_is_realview (cu->producer))
13729 /* RealView does not output the required DW_AT_declaration
13730 on incomplete types. */
13731 TYPE_STUB (type) = 1;
13732
13733 /* We need to add the type field to the die immediately so we don't
13734 infinitely recurse when dealing with pointers to the structure
13735 type within the structure itself. */
13736 set_die_type (die, type, cu);
13737
13738 /* set_die_type should be already done. */
13739 set_descriptive_type (type, die, cu);
13740
13741 return type;
13742 }
13743
13744 /* Finish creating a structure or union type, including filling in
13745 its members and creating a symbol for it. */
13746
13747 static void
13748 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13749 {
13750 struct objfile *objfile = cu->objfile;
13751 struct die_info *child_die;
13752 struct type *type;
13753
13754 type = get_die_type (die, cu);
13755 if (type == NULL)
13756 type = read_structure_type (die, cu);
13757
13758 if (die->child != NULL && ! die_is_declaration (die, cu))
13759 {
13760 struct field_info fi;
13761 VEC (symbolp) *template_args = NULL;
13762 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13763
13764 memset (&fi, 0, sizeof (struct field_info));
13765
13766 child_die = die->child;
13767
13768 while (child_die && child_die->tag)
13769 {
13770 if (child_die->tag == DW_TAG_member
13771 || child_die->tag == DW_TAG_variable)
13772 {
13773 /* NOTE: carlton/2002-11-05: A C++ static data member
13774 should be a DW_TAG_member that is a declaration, but
13775 all versions of G++ as of this writing (so through at
13776 least 3.2.1) incorrectly generate DW_TAG_variable
13777 tags for them instead. */
13778 dwarf2_add_field (&fi, child_die, cu);
13779 }
13780 else if (child_die->tag == DW_TAG_subprogram)
13781 {
13782 /* Rust doesn't have member functions in the C++ sense.
13783 However, it does emit ordinary functions as children
13784 of a struct DIE. */
13785 if (cu->language == language_rust)
13786 read_func_scope (child_die, cu);
13787 else
13788 {
13789 /* C++ member function. */
13790 dwarf2_add_member_fn (&fi, child_die, type, cu);
13791 }
13792 }
13793 else if (child_die->tag == DW_TAG_inheritance)
13794 {
13795 /* C++ base class field. */
13796 dwarf2_add_field (&fi, child_die, cu);
13797 }
13798 else if (child_die->tag == DW_TAG_typedef)
13799 dwarf2_add_typedef (&fi, child_die, cu);
13800 else if (child_die->tag == DW_TAG_template_type_param
13801 || child_die->tag == DW_TAG_template_value_param)
13802 {
13803 struct symbol *arg = new_symbol (child_die, NULL, cu);
13804
13805 if (arg != NULL)
13806 VEC_safe_push (symbolp, template_args, arg);
13807 }
13808
13809 child_die = sibling_die (child_die);
13810 }
13811
13812 /* Attach template arguments to type. */
13813 if (! VEC_empty (symbolp, template_args))
13814 {
13815 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13816 TYPE_N_TEMPLATE_ARGUMENTS (type)
13817 = VEC_length (symbolp, template_args);
13818 TYPE_TEMPLATE_ARGUMENTS (type)
13819 = XOBNEWVEC (&objfile->objfile_obstack,
13820 struct symbol *,
13821 TYPE_N_TEMPLATE_ARGUMENTS (type));
13822 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13823 VEC_address (symbolp, template_args),
13824 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13825 * sizeof (struct symbol *)));
13826 VEC_free (symbolp, template_args);
13827 }
13828
13829 /* Attach fields and member functions to the type. */
13830 if (fi.nfields)
13831 dwarf2_attach_fields_to_type (&fi, type, cu);
13832 if (fi.nfnfields)
13833 {
13834 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13835
13836 /* Get the type which refers to the base class (possibly this
13837 class itself) which contains the vtable pointer for the current
13838 class from the DW_AT_containing_type attribute. This use of
13839 DW_AT_containing_type is a GNU extension. */
13840
13841 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13842 {
13843 struct type *t = die_containing_type (die, cu);
13844
13845 set_type_vptr_basetype (type, t);
13846 if (type == t)
13847 {
13848 int i;
13849
13850 /* Our own class provides vtbl ptr. */
13851 for (i = TYPE_NFIELDS (t) - 1;
13852 i >= TYPE_N_BASECLASSES (t);
13853 --i)
13854 {
13855 const char *fieldname = TYPE_FIELD_NAME (t, i);
13856
13857 if (is_vtable_name (fieldname, cu))
13858 {
13859 set_type_vptr_fieldno (type, i);
13860 break;
13861 }
13862 }
13863
13864 /* Complain if virtual function table field not found. */
13865 if (i < TYPE_N_BASECLASSES (t))
13866 complaint (&symfile_complaints,
13867 _("virtual function table pointer "
13868 "not found when defining class '%s'"),
13869 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13870 "");
13871 }
13872 else
13873 {
13874 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13875 }
13876 }
13877 else if (cu->producer
13878 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13879 {
13880 /* The IBM XLC compiler does not provide direct indication
13881 of the containing type, but the vtable pointer is
13882 always named __vfp. */
13883
13884 int i;
13885
13886 for (i = TYPE_NFIELDS (type) - 1;
13887 i >= TYPE_N_BASECLASSES (type);
13888 --i)
13889 {
13890 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13891 {
13892 set_type_vptr_fieldno (type, i);
13893 set_type_vptr_basetype (type, type);
13894 break;
13895 }
13896 }
13897 }
13898 }
13899
13900 /* Copy fi.typedef_field_list linked list elements content into the
13901 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13902 if (fi.typedef_field_list)
13903 {
13904 int i = fi.typedef_field_list_count;
13905
13906 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13907 TYPE_TYPEDEF_FIELD_ARRAY (type)
13908 = ((struct typedef_field *)
13909 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13910 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13911
13912 /* Reverse the list order to keep the debug info elements order. */
13913 while (--i >= 0)
13914 {
13915 struct typedef_field *dest, *src;
13916
13917 dest = &TYPE_TYPEDEF_FIELD (type, i);
13918 src = &fi.typedef_field_list->field;
13919 fi.typedef_field_list = fi.typedef_field_list->next;
13920 *dest = *src;
13921 }
13922 }
13923
13924 do_cleanups (back_to);
13925 }
13926
13927 quirk_gcc_member_function_pointer (type, objfile);
13928
13929 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13930 snapshots) has been known to create a die giving a declaration
13931 for a class that has, as a child, a die giving a definition for a
13932 nested class. So we have to process our children even if the
13933 current die is a declaration. Normally, of course, a declaration
13934 won't have any children at all. */
13935
13936 child_die = die->child;
13937
13938 while (child_die != NULL && child_die->tag)
13939 {
13940 if (child_die->tag == DW_TAG_member
13941 || child_die->tag == DW_TAG_variable
13942 || child_die->tag == DW_TAG_inheritance
13943 || child_die->tag == DW_TAG_template_value_param
13944 || child_die->tag == DW_TAG_template_type_param)
13945 {
13946 /* Do nothing. */
13947 }
13948 else
13949 process_die (child_die, cu);
13950
13951 child_die = sibling_die (child_die);
13952 }
13953
13954 /* Do not consider external references. According to the DWARF standard,
13955 these DIEs are identified by the fact that they have no byte_size
13956 attribute, and a declaration attribute. */
13957 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13958 || !die_is_declaration (die, cu))
13959 new_symbol (die, type, cu);
13960 }
13961
13962 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13963 update TYPE using some information only available in DIE's children. */
13964
13965 static void
13966 update_enumeration_type_from_children (struct die_info *die,
13967 struct type *type,
13968 struct dwarf2_cu *cu)
13969 {
13970 struct die_info *child_die;
13971 int unsigned_enum = 1;
13972 int flag_enum = 1;
13973 ULONGEST mask = 0;
13974
13975 auto_obstack obstack;
13976
13977 for (child_die = die->child;
13978 child_die != NULL && child_die->tag;
13979 child_die = sibling_die (child_die))
13980 {
13981 struct attribute *attr;
13982 LONGEST value;
13983 const gdb_byte *bytes;
13984 struct dwarf2_locexpr_baton *baton;
13985 const char *name;
13986
13987 if (child_die->tag != DW_TAG_enumerator)
13988 continue;
13989
13990 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13991 if (attr == NULL)
13992 continue;
13993
13994 name = dwarf2_name (child_die, cu);
13995 if (name == NULL)
13996 name = "<anonymous enumerator>";
13997
13998 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13999 &value, &bytes, &baton);
14000 if (value < 0)
14001 {
14002 unsigned_enum = 0;
14003 flag_enum = 0;
14004 }
14005 else if ((mask & value) != 0)
14006 flag_enum = 0;
14007 else
14008 mask |= value;
14009
14010 /* If we already know that the enum type is neither unsigned, nor
14011 a flag type, no need to look at the rest of the enumerates. */
14012 if (!unsigned_enum && !flag_enum)
14013 break;
14014 }
14015
14016 if (unsigned_enum)
14017 TYPE_UNSIGNED (type) = 1;
14018 if (flag_enum)
14019 TYPE_FLAG_ENUM (type) = 1;
14020 }
14021
14022 /* Given a DW_AT_enumeration_type die, set its type. We do not
14023 complete the type's fields yet, or create any symbols. */
14024
14025 static struct type *
14026 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
14027 {
14028 struct objfile *objfile = cu->objfile;
14029 struct type *type;
14030 struct attribute *attr;
14031 const char *name;
14032
14033 /* If the definition of this type lives in .debug_types, read that type.
14034 Don't follow DW_AT_specification though, that will take us back up
14035 the chain and we want to go down. */
14036 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
14037 if (attr)
14038 {
14039 type = get_DW_AT_signature_type (die, attr, cu);
14040
14041 /* The type's CU may not be the same as CU.
14042 Ensure TYPE is recorded with CU in die_type_hash. */
14043 return set_die_type (die, type, cu);
14044 }
14045
14046 type = alloc_type (objfile);
14047
14048 TYPE_CODE (type) = TYPE_CODE_ENUM;
14049 name = dwarf2_full_name (NULL, die, cu);
14050 if (name != NULL)
14051 TYPE_TAG_NAME (type) = name;
14052
14053 attr = dwarf2_attr (die, DW_AT_type, cu);
14054 if (attr != NULL)
14055 {
14056 struct type *underlying_type = die_type (die, cu);
14057
14058 TYPE_TARGET_TYPE (type) = underlying_type;
14059 }
14060
14061 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14062 if (attr)
14063 {
14064 TYPE_LENGTH (type) = DW_UNSND (attr);
14065 }
14066 else
14067 {
14068 TYPE_LENGTH (type) = 0;
14069 }
14070
14071 /* The enumeration DIE can be incomplete. In Ada, any type can be
14072 declared as private in the package spec, and then defined only
14073 inside the package body. Such types are known as Taft Amendment
14074 Types. When another package uses such a type, an incomplete DIE
14075 may be generated by the compiler. */
14076 if (die_is_declaration (die, cu))
14077 TYPE_STUB (type) = 1;
14078
14079 /* Finish the creation of this type by using the enum's children.
14080 We must call this even when the underlying type has been provided
14081 so that we can determine if we're looking at a "flag" enum. */
14082 update_enumeration_type_from_children (die, type, cu);
14083
14084 /* If this type has an underlying type that is not a stub, then we
14085 may use its attributes. We always use the "unsigned" attribute
14086 in this situation, because ordinarily we guess whether the type
14087 is unsigned -- but the guess can be wrong and the underlying type
14088 can tell us the reality. However, we defer to a local size
14089 attribute if one exists, because this lets the compiler override
14090 the underlying type if needed. */
14091 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
14092 {
14093 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
14094 if (TYPE_LENGTH (type) == 0)
14095 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
14096 }
14097
14098 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
14099
14100 return set_die_type (die, type, cu);
14101 }
14102
14103 /* Given a pointer to a die which begins an enumeration, process all
14104 the dies that define the members of the enumeration, and create the
14105 symbol for the enumeration type.
14106
14107 NOTE: We reverse the order of the element list. */
14108
14109 static void
14110 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14111 {
14112 struct type *this_type;
14113
14114 this_type = get_die_type (die, cu);
14115 if (this_type == NULL)
14116 this_type = read_enumeration_type (die, cu);
14117
14118 if (die->child != NULL)
14119 {
14120 struct die_info *child_die;
14121 struct symbol *sym;
14122 struct field *fields = NULL;
14123 int num_fields = 0;
14124 const char *name;
14125
14126 child_die = die->child;
14127 while (child_die && child_die->tag)
14128 {
14129 if (child_die->tag != DW_TAG_enumerator)
14130 {
14131 process_die (child_die, cu);
14132 }
14133 else
14134 {
14135 name = dwarf2_name (child_die, cu);
14136 if (name)
14137 {
14138 sym = new_symbol (child_die, this_type, cu);
14139
14140 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14141 {
14142 fields = (struct field *)
14143 xrealloc (fields,
14144 (num_fields + DW_FIELD_ALLOC_CHUNK)
14145 * sizeof (struct field));
14146 }
14147
14148 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
14149 FIELD_TYPE (fields[num_fields]) = NULL;
14150 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
14151 FIELD_BITSIZE (fields[num_fields]) = 0;
14152
14153 num_fields++;
14154 }
14155 }
14156
14157 child_die = sibling_die (child_die);
14158 }
14159
14160 if (num_fields)
14161 {
14162 TYPE_NFIELDS (this_type) = num_fields;
14163 TYPE_FIELDS (this_type) = (struct field *)
14164 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14165 memcpy (TYPE_FIELDS (this_type), fields,
14166 sizeof (struct field) * num_fields);
14167 xfree (fields);
14168 }
14169 }
14170
14171 /* If we are reading an enum from a .debug_types unit, and the enum
14172 is a declaration, and the enum is not the signatured type in the
14173 unit, then we do not want to add a symbol for it. Adding a
14174 symbol would in some cases obscure the true definition of the
14175 enum, giving users an incomplete type when the definition is
14176 actually available. Note that we do not want to do this for all
14177 enums which are just declarations, because C++0x allows forward
14178 enum declarations. */
14179 if (cu->per_cu->is_debug_types
14180 && die_is_declaration (die, cu))
14181 {
14182 struct signatured_type *sig_type;
14183
14184 sig_type = (struct signatured_type *) cu->per_cu;
14185 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14186 if (sig_type->type_offset_in_section != die->sect_off)
14187 return;
14188 }
14189
14190 new_symbol (die, this_type, cu);
14191 }
14192
14193 /* Extract all information from a DW_TAG_array_type DIE and put it in
14194 the DIE's type field. For now, this only handles one dimensional
14195 arrays. */
14196
14197 static struct type *
14198 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
14199 {
14200 struct objfile *objfile = cu->objfile;
14201 struct die_info *child_die;
14202 struct type *type;
14203 struct type *element_type, *range_type, *index_type;
14204 struct type **range_types = NULL;
14205 struct attribute *attr;
14206 int ndim = 0;
14207 struct cleanup *back_to;
14208 const char *name;
14209 unsigned int bit_stride = 0;
14210
14211 element_type = die_type (die, cu);
14212
14213 /* The die_type call above may have already set the type for this DIE. */
14214 type = get_die_type (die, cu);
14215 if (type)
14216 return type;
14217
14218 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14219 if (attr != NULL)
14220 bit_stride = DW_UNSND (attr) * 8;
14221
14222 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14223 if (attr != NULL)
14224 bit_stride = DW_UNSND (attr);
14225
14226 /* Irix 6.2 native cc creates array types without children for
14227 arrays with unspecified length. */
14228 if (die->child == NULL)
14229 {
14230 index_type = objfile_type (objfile)->builtin_int;
14231 range_type = create_static_range_type (NULL, index_type, 0, -1);
14232 type = create_array_type_with_stride (NULL, element_type, range_type,
14233 bit_stride);
14234 return set_die_type (die, type, cu);
14235 }
14236
14237 back_to = make_cleanup (null_cleanup, NULL);
14238 child_die = die->child;
14239 while (child_die && child_die->tag)
14240 {
14241 if (child_die->tag == DW_TAG_subrange_type)
14242 {
14243 struct type *child_type = read_type_die (child_die, cu);
14244
14245 if (child_type != NULL)
14246 {
14247 /* The range type was succesfully read. Save it for the
14248 array type creation. */
14249 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
14250 {
14251 range_types = (struct type **)
14252 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
14253 * sizeof (struct type *));
14254 if (ndim == 0)
14255 make_cleanup (free_current_contents, &range_types);
14256 }
14257 range_types[ndim++] = child_type;
14258 }
14259 }
14260 child_die = sibling_die (child_die);
14261 }
14262
14263 /* Dwarf2 dimensions are output from left to right, create the
14264 necessary array types in backwards order. */
14265
14266 type = element_type;
14267
14268 if (read_array_order (die, cu) == DW_ORD_col_major)
14269 {
14270 int i = 0;
14271
14272 while (i < ndim)
14273 type = create_array_type_with_stride (NULL, type, range_types[i++],
14274 bit_stride);
14275 }
14276 else
14277 {
14278 while (ndim-- > 0)
14279 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14280 bit_stride);
14281 }
14282
14283 /* Understand Dwarf2 support for vector types (like they occur on
14284 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14285 array type. This is not part of the Dwarf2/3 standard yet, but a
14286 custom vendor extension. The main difference between a regular
14287 array and the vector variant is that vectors are passed by value
14288 to functions. */
14289 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
14290 if (attr)
14291 make_vector_type (type);
14292
14293 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14294 implementation may choose to implement triple vectors using this
14295 attribute. */
14296 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14297 if (attr)
14298 {
14299 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14300 TYPE_LENGTH (type) = DW_UNSND (attr);
14301 else
14302 complaint (&symfile_complaints,
14303 _("DW_AT_byte_size for array type smaller "
14304 "than the total size of elements"));
14305 }
14306
14307 name = dwarf2_name (die, cu);
14308 if (name)
14309 TYPE_NAME (type) = name;
14310
14311 /* Install the type in the die. */
14312 set_die_type (die, type, cu);
14313
14314 /* set_die_type should be already done. */
14315 set_descriptive_type (type, die, cu);
14316
14317 do_cleanups (back_to);
14318
14319 return type;
14320 }
14321
14322 static enum dwarf_array_dim_ordering
14323 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
14324 {
14325 struct attribute *attr;
14326
14327 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14328
14329 if (attr)
14330 return (enum dwarf_array_dim_ordering) DW_SND (attr);
14331
14332 /* GNU F77 is a special case, as at 08/2004 array type info is the
14333 opposite order to the dwarf2 specification, but data is still
14334 laid out as per normal fortran.
14335
14336 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14337 version checking. */
14338
14339 if (cu->language == language_fortran
14340 && cu->producer && strstr (cu->producer, "GNU F77"))
14341 {
14342 return DW_ORD_row_major;
14343 }
14344
14345 switch (cu->language_defn->la_array_ordering)
14346 {
14347 case array_column_major:
14348 return DW_ORD_col_major;
14349 case array_row_major:
14350 default:
14351 return DW_ORD_row_major;
14352 };
14353 }
14354
14355 /* Extract all information from a DW_TAG_set_type DIE and put it in
14356 the DIE's type field. */
14357
14358 static struct type *
14359 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14360 {
14361 struct type *domain_type, *set_type;
14362 struct attribute *attr;
14363
14364 domain_type = die_type (die, cu);
14365
14366 /* The die_type call above may have already set the type for this DIE. */
14367 set_type = get_die_type (die, cu);
14368 if (set_type)
14369 return set_type;
14370
14371 set_type = create_set_type (NULL, domain_type);
14372
14373 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14374 if (attr)
14375 TYPE_LENGTH (set_type) = DW_UNSND (attr);
14376
14377 return set_die_type (die, set_type, cu);
14378 }
14379
14380 /* A helper for read_common_block that creates a locexpr baton.
14381 SYM is the symbol which we are marking as computed.
14382 COMMON_DIE is the DIE for the common block.
14383 COMMON_LOC is the location expression attribute for the common
14384 block itself.
14385 MEMBER_LOC is the location expression attribute for the particular
14386 member of the common block that we are processing.
14387 CU is the CU from which the above come. */
14388
14389 static void
14390 mark_common_block_symbol_computed (struct symbol *sym,
14391 struct die_info *common_die,
14392 struct attribute *common_loc,
14393 struct attribute *member_loc,
14394 struct dwarf2_cu *cu)
14395 {
14396 struct objfile *objfile = dwarf2_per_objfile->objfile;
14397 struct dwarf2_locexpr_baton *baton;
14398 gdb_byte *ptr;
14399 unsigned int cu_off;
14400 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14401 LONGEST offset = 0;
14402
14403 gdb_assert (common_loc && member_loc);
14404 gdb_assert (attr_form_is_block (common_loc));
14405 gdb_assert (attr_form_is_block (member_loc)
14406 || attr_form_is_constant (member_loc));
14407
14408 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14409 baton->per_cu = cu->per_cu;
14410 gdb_assert (baton->per_cu);
14411
14412 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14413
14414 if (attr_form_is_constant (member_loc))
14415 {
14416 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14417 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14418 }
14419 else
14420 baton->size += DW_BLOCK (member_loc)->size;
14421
14422 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
14423 baton->data = ptr;
14424
14425 *ptr++ = DW_OP_call4;
14426 cu_off = common_die->sect_off - cu->per_cu->sect_off;
14427 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14428 ptr += 4;
14429
14430 if (attr_form_is_constant (member_loc))
14431 {
14432 *ptr++ = DW_OP_addr;
14433 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14434 ptr += cu->header.addr_size;
14435 }
14436 else
14437 {
14438 /* We have to copy the data here, because DW_OP_call4 will only
14439 use a DW_AT_location attribute. */
14440 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14441 ptr += DW_BLOCK (member_loc)->size;
14442 }
14443
14444 *ptr++ = DW_OP_plus;
14445 gdb_assert (ptr - baton->data == baton->size);
14446
14447 SYMBOL_LOCATION_BATON (sym) = baton;
14448 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
14449 }
14450
14451 /* Create appropriate locally-scoped variables for all the
14452 DW_TAG_common_block entries. Also create a struct common_block
14453 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14454 is used to sepate the common blocks name namespace from regular
14455 variable names. */
14456
14457 static void
14458 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
14459 {
14460 struct attribute *attr;
14461
14462 attr = dwarf2_attr (die, DW_AT_location, cu);
14463 if (attr)
14464 {
14465 /* Support the .debug_loc offsets. */
14466 if (attr_form_is_block (attr))
14467 {
14468 /* Ok. */
14469 }
14470 else if (attr_form_is_section_offset (attr))
14471 {
14472 dwarf2_complex_location_expr_complaint ();
14473 attr = NULL;
14474 }
14475 else
14476 {
14477 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14478 "common block member");
14479 attr = NULL;
14480 }
14481 }
14482
14483 if (die->child != NULL)
14484 {
14485 struct objfile *objfile = cu->objfile;
14486 struct die_info *child_die;
14487 size_t n_entries = 0, size;
14488 struct common_block *common_block;
14489 struct symbol *sym;
14490
14491 for (child_die = die->child;
14492 child_die && child_die->tag;
14493 child_die = sibling_die (child_die))
14494 ++n_entries;
14495
14496 size = (sizeof (struct common_block)
14497 + (n_entries - 1) * sizeof (struct symbol *));
14498 common_block
14499 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14500 size);
14501 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14502 common_block->n_entries = 0;
14503
14504 for (child_die = die->child;
14505 child_die && child_die->tag;
14506 child_die = sibling_die (child_die))
14507 {
14508 /* Create the symbol in the DW_TAG_common_block block in the current
14509 symbol scope. */
14510 sym = new_symbol (child_die, NULL, cu);
14511 if (sym != NULL)
14512 {
14513 struct attribute *member_loc;
14514
14515 common_block->contents[common_block->n_entries++] = sym;
14516
14517 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14518 cu);
14519 if (member_loc)
14520 {
14521 /* GDB has handled this for a long time, but it is
14522 not specified by DWARF. It seems to have been
14523 emitted by gfortran at least as recently as:
14524 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14525 complaint (&symfile_complaints,
14526 _("Variable in common block has "
14527 "DW_AT_data_member_location "
14528 "- DIE at 0x%x [in module %s]"),
14529 to_underlying (child_die->sect_off),
14530 objfile_name (cu->objfile));
14531
14532 if (attr_form_is_section_offset (member_loc))
14533 dwarf2_complex_location_expr_complaint ();
14534 else if (attr_form_is_constant (member_loc)
14535 || attr_form_is_block (member_loc))
14536 {
14537 if (attr)
14538 mark_common_block_symbol_computed (sym, die, attr,
14539 member_loc, cu);
14540 }
14541 else
14542 dwarf2_complex_location_expr_complaint ();
14543 }
14544 }
14545 }
14546
14547 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14548 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14549 }
14550 }
14551
14552 /* Create a type for a C++ namespace. */
14553
14554 static struct type *
14555 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14556 {
14557 struct objfile *objfile = cu->objfile;
14558 const char *previous_prefix, *name;
14559 int is_anonymous;
14560 struct type *type;
14561
14562 /* For extensions, reuse the type of the original namespace. */
14563 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14564 {
14565 struct die_info *ext_die;
14566 struct dwarf2_cu *ext_cu = cu;
14567
14568 ext_die = dwarf2_extension (die, &ext_cu);
14569 type = read_type_die (ext_die, ext_cu);
14570
14571 /* EXT_CU may not be the same as CU.
14572 Ensure TYPE is recorded with CU in die_type_hash. */
14573 return set_die_type (die, type, cu);
14574 }
14575
14576 name = namespace_name (die, &is_anonymous, cu);
14577
14578 /* Now build the name of the current namespace. */
14579
14580 previous_prefix = determine_prefix (die, cu);
14581 if (previous_prefix[0] != '\0')
14582 name = typename_concat (&objfile->objfile_obstack,
14583 previous_prefix, name, 0, cu);
14584
14585 /* Create the type. */
14586 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14587 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14588
14589 return set_die_type (die, type, cu);
14590 }
14591
14592 /* Read a namespace scope. */
14593
14594 static void
14595 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14596 {
14597 struct objfile *objfile = cu->objfile;
14598 int is_anonymous;
14599
14600 /* Add a symbol associated to this if we haven't seen the namespace
14601 before. Also, add a using directive if it's an anonymous
14602 namespace. */
14603
14604 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14605 {
14606 struct type *type;
14607
14608 type = read_type_die (die, cu);
14609 new_symbol (die, type, cu);
14610
14611 namespace_name (die, &is_anonymous, cu);
14612 if (is_anonymous)
14613 {
14614 const char *previous_prefix = determine_prefix (die, cu);
14615
14616 std::vector<const char *> excludes;
14617 add_using_directive (using_directives (cu->language),
14618 previous_prefix, TYPE_NAME (type), NULL,
14619 NULL, excludes, 0, &objfile->objfile_obstack);
14620 }
14621 }
14622
14623 if (die->child != NULL)
14624 {
14625 struct die_info *child_die = die->child;
14626
14627 while (child_die && child_die->tag)
14628 {
14629 process_die (child_die, cu);
14630 child_die = sibling_die (child_die);
14631 }
14632 }
14633 }
14634
14635 /* Read a Fortran module as type. This DIE can be only a declaration used for
14636 imported module. Still we need that type as local Fortran "use ... only"
14637 declaration imports depend on the created type in determine_prefix. */
14638
14639 static struct type *
14640 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14641 {
14642 struct objfile *objfile = cu->objfile;
14643 const char *module_name;
14644 struct type *type;
14645
14646 module_name = dwarf2_name (die, cu);
14647 if (!module_name)
14648 complaint (&symfile_complaints,
14649 _("DW_TAG_module has no name, offset 0x%x"),
14650 to_underlying (die->sect_off));
14651 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14652
14653 /* determine_prefix uses TYPE_TAG_NAME. */
14654 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14655
14656 return set_die_type (die, type, cu);
14657 }
14658
14659 /* Read a Fortran module. */
14660
14661 static void
14662 read_module (struct die_info *die, struct dwarf2_cu *cu)
14663 {
14664 struct die_info *child_die = die->child;
14665 struct type *type;
14666
14667 type = read_type_die (die, cu);
14668 new_symbol (die, type, cu);
14669
14670 while (child_die && child_die->tag)
14671 {
14672 process_die (child_die, cu);
14673 child_die = sibling_die (child_die);
14674 }
14675 }
14676
14677 /* Return the name of the namespace represented by DIE. Set
14678 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14679 namespace. */
14680
14681 static const char *
14682 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14683 {
14684 struct die_info *current_die;
14685 const char *name = NULL;
14686
14687 /* Loop through the extensions until we find a name. */
14688
14689 for (current_die = die;
14690 current_die != NULL;
14691 current_die = dwarf2_extension (die, &cu))
14692 {
14693 /* We don't use dwarf2_name here so that we can detect the absence
14694 of a name -> anonymous namespace. */
14695 name = dwarf2_string_attr (die, DW_AT_name, cu);
14696
14697 if (name != NULL)
14698 break;
14699 }
14700
14701 /* Is it an anonymous namespace? */
14702
14703 *is_anonymous = (name == NULL);
14704 if (*is_anonymous)
14705 name = CP_ANONYMOUS_NAMESPACE_STR;
14706
14707 return name;
14708 }
14709
14710 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14711 the user defined type vector. */
14712
14713 static struct type *
14714 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14715 {
14716 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14717 struct comp_unit_head *cu_header = &cu->header;
14718 struct type *type;
14719 struct attribute *attr_byte_size;
14720 struct attribute *attr_address_class;
14721 int byte_size, addr_class;
14722 struct type *target_type;
14723
14724 target_type = die_type (die, cu);
14725
14726 /* The die_type call above may have already set the type for this DIE. */
14727 type = get_die_type (die, cu);
14728 if (type)
14729 return type;
14730
14731 type = lookup_pointer_type (target_type);
14732
14733 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14734 if (attr_byte_size)
14735 byte_size = DW_UNSND (attr_byte_size);
14736 else
14737 byte_size = cu_header->addr_size;
14738
14739 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14740 if (attr_address_class)
14741 addr_class = DW_UNSND (attr_address_class);
14742 else
14743 addr_class = DW_ADDR_none;
14744
14745 /* If the pointer size or address class is different than the
14746 default, create a type variant marked as such and set the
14747 length accordingly. */
14748 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14749 {
14750 if (gdbarch_address_class_type_flags_p (gdbarch))
14751 {
14752 int type_flags;
14753
14754 type_flags = gdbarch_address_class_type_flags
14755 (gdbarch, byte_size, addr_class);
14756 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14757 == 0);
14758 type = make_type_with_address_space (type, type_flags);
14759 }
14760 else if (TYPE_LENGTH (type) != byte_size)
14761 {
14762 complaint (&symfile_complaints,
14763 _("invalid pointer size %d"), byte_size);
14764 }
14765 else
14766 {
14767 /* Should we also complain about unhandled address classes? */
14768 }
14769 }
14770
14771 TYPE_LENGTH (type) = byte_size;
14772 return set_die_type (die, type, cu);
14773 }
14774
14775 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14776 the user defined type vector. */
14777
14778 static struct type *
14779 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14780 {
14781 struct type *type;
14782 struct type *to_type;
14783 struct type *domain;
14784
14785 to_type = die_type (die, cu);
14786 domain = die_containing_type (die, cu);
14787
14788 /* The calls above may have already set the type for this DIE. */
14789 type = get_die_type (die, cu);
14790 if (type)
14791 return type;
14792
14793 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14794 type = lookup_methodptr_type (to_type);
14795 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14796 {
14797 struct type *new_type = alloc_type (cu->objfile);
14798
14799 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14800 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14801 TYPE_VARARGS (to_type));
14802 type = lookup_methodptr_type (new_type);
14803 }
14804 else
14805 type = lookup_memberptr_type (to_type, domain);
14806
14807 return set_die_type (die, type, cu);
14808 }
14809
14810 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
14811 the user defined type vector. */
14812
14813 static struct type *
14814 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
14815 enum type_code refcode)
14816 {
14817 struct comp_unit_head *cu_header = &cu->header;
14818 struct type *type, *target_type;
14819 struct attribute *attr;
14820
14821 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
14822
14823 target_type = die_type (die, cu);
14824
14825 /* The die_type call above may have already set the type for this DIE. */
14826 type = get_die_type (die, cu);
14827 if (type)
14828 return type;
14829
14830 type = lookup_reference_type (target_type, refcode);
14831 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14832 if (attr)
14833 {
14834 TYPE_LENGTH (type) = DW_UNSND (attr);
14835 }
14836 else
14837 {
14838 TYPE_LENGTH (type) = cu_header->addr_size;
14839 }
14840 return set_die_type (die, type, cu);
14841 }
14842
14843 /* Add the given cv-qualifiers to the element type of the array. GCC
14844 outputs DWARF type qualifiers that apply to an array, not the
14845 element type. But GDB relies on the array element type to carry
14846 the cv-qualifiers. This mimics section 6.7.3 of the C99
14847 specification. */
14848
14849 static struct type *
14850 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14851 struct type *base_type, int cnst, int voltl)
14852 {
14853 struct type *el_type, *inner_array;
14854
14855 base_type = copy_type (base_type);
14856 inner_array = base_type;
14857
14858 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14859 {
14860 TYPE_TARGET_TYPE (inner_array) =
14861 copy_type (TYPE_TARGET_TYPE (inner_array));
14862 inner_array = TYPE_TARGET_TYPE (inner_array);
14863 }
14864
14865 el_type = TYPE_TARGET_TYPE (inner_array);
14866 cnst |= TYPE_CONST (el_type);
14867 voltl |= TYPE_VOLATILE (el_type);
14868 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14869
14870 return set_die_type (die, base_type, cu);
14871 }
14872
14873 static struct type *
14874 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14875 {
14876 struct type *base_type, *cv_type;
14877
14878 base_type = die_type (die, cu);
14879
14880 /* The die_type call above may have already set the type for this DIE. */
14881 cv_type = get_die_type (die, cu);
14882 if (cv_type)
14883 return cv_type;
14884
14885 /* In case the const qualifier is applied to an array type, the element type
14886 is so qualified, not the array type (section 6.7.3 of C99). */
14887 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14888 return add_array_cv_type (die, cu, base_type, 1, 0);
14889
14890 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14891 return set_die_type (die, cv_type, cu);
14892 }
14893
14894 static struct type *
14895 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14896 {
14897 struct type *base_type, *cv_type;
14898
14899 base_type = die_type (die, cu);
14900
14901 /* The die_type call above may have already set the type for this DIE. */
14902 cv_type = get_die_type (die, cu);
14903 if (cv_type)
14904 return cv_type;
14905
14906 /* In case the volatile qualifier is applied to an array type, the
14907 element type is so qualified, not the array type (section 6.7.3
14908 of C99). */
14909 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14910 return add_array_cv_type (die, cu, base_type, 0, 1);
14911
14912 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14913 return set_die_type (die, cv_type, cu);
14914 }
14915
14916 /* Handle DW_TAG_restrict_type. */
14917
14918 static struct type *
14919 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14920 {
14921 struct type *base_type, *cv_type;
14922
14923 base_type = die_type (die, cu);
14924
14925 /* The die_type call above may have already set the type for this DIE. */
14926 cv_type = get_die_type (die, cu);
14927 if (cv_type)
14928 return cv_type;
14929
14930 cv_type = make_restrict_type (base_type);
14931 return set_die_type (die, cv_type, cu);
14932 }
14933
14934 /* Handle DW_TAG_atomic_type. */
14935
14936 static struct type *
14937 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14938 {
14939 struct type *base_type, *cv_type;
14940
14941 base_type = die_type (die, cu);
14942
14943 /* The die_type call above may have already set the type for this DIE. */
14944 cv_type = get_die_type (die, cu);
14945 if (cv_type)
14946 return cv_type;
14947
14948 cv_type = make_atomic_type (base_type);
14949 return set_die_type (die, cv_type, cu);
14950 }
14951
14952 /* Extract all information from a DW_TAG_string_type DIE and add to
14953 the user defined type vector. It isn't really a user defined type,
14954 but it behaves like one, with other DIE's using an AT_user_def_type
14955 attribute to reference it. */
14956
14957 static struct type *
14958 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14959 {
14960 struct objfile *objfile = cu->objfile;
14961 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14962 struct type *type, *range_type, *index_type, *char_type;
14963 struct attribute *attr;
14964 unsigned int length;
14965
14966 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14967 if (attr)
14968 {
14969 length = DW_UNSND (attr);
14970 }
14971 else
14972 {
14973 /* Check for the DW_AT_byte_size attribute. */
14974 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14975 if (attr)
14976 {
14977 length = DW_UNSND (attr);
14978 }
14979 else
14980 {
14981 length = 1;
14982 }
14983 }
14984
14985 index_type = objfile_type (objfile)->builtin_int;
14986 range_type = create_static_range_type (NULL, index_type, 1, length);
14987 char_type = language_string_char_type (cu->language_defn, gdbarch);
14988 type = create_string_type (NULL, char_type, range_type);
14989
14990 return set_die_type (die, type, cu);
14991 }
14992
14993 /* Assuming that DIE corresponds to a function, returns nonzero
14994 if the function is prototyped. */
14995
14996 static int
14997 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14998 {
14999 struct attribute *attr;
15000
15001 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
15002 if (attr && (DW_UNSND (attr) != 0))
15003 return 1;
15004
15005 /* The DWARF standard implies that the DW_AT_prototyped attribute
15006 is only meaninful for C, but the concept also extends to other
15007 languages that allow unprototyped functions (Eg: Objective C).
15008 For all other languages, assume that functions are always
15009 prototyped. */
15010 if (cu->language != language_c
15011 && cu->language != language_objc
15012 && cu->language != language_opencl)
15013 return 1;
15014
15015 /* RealView does not emit DW_AT_prototyped. We can not distinguish
15016 prototyped and unprototyped functions; default to prototyped,
15017 since that is more common in modern code (and RealView warns
15018 about unprototyped functions). */
15019 if (producer_is_realview (cu->producer))
15020 return 1;
15021
15022 return 0;
15023 }
15024
15025 /* Handle DIES due to C code like:
15026
15027 struct foo
15028 {
15029 int (*funcp)(int a, long l);
15030 int b;
15031 };
15032
15033 ('funcp' generates a DW_TAG_subroutine_type DIE). */
15034
15035 static struct type *
15036 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
15037 {
15038 struct objfile *objfile = cu->objfile;
15039 struct type *type; /* Type that this function returns. */
15040 struct type *ftype; /* Function that returns above type. */
15041 struct attribute *attr;
15042
15043 type = die_type (die, cu);
15044
15045 /* The die_type call above may have already set the type for this DIE. */
15046 ftype = get_die_type (die, cu);
15047 if (ftype)
15048 return ftype;
15049
15050 ftype = lookup_function_type (type);
15051
15052 if (prototyped_function_p (die, cu))
15053 TYPE_PROTOTYPED (ftype) = 1;
15054
15055 /* Store the calling convention in the type if it's available in
15056 the subroutine die. Otherwise set the calling convention to
15057 the default value DW_CC_normal. */
15058 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15059 if (attr)
15060 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
15061 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
15062 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
15063 else
15064 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
15065
15066 /* Record whether the function returns normally to its caller or not
15067 if the DWARF producer set that information. */
15068 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
15069 if (attr && (DW_UNSND (attr) != 0))
15070 TYPE_NO_RETURN (ftype) = 1;
15071
15072 /* We need to add the subroutine type to the die immediately so
15073 we don't infinitely recurse when dealing with parameters
15074 declared as the same subroutine type. */
15075 set_die_type (die, ftype, cu);
15076
15077 if (die->child != NULL)
15078 {
15079 struct type *void_type = objfile_type (objfile)->builtin_void;
15080 struct die_info *child_die;
15081 int nparams, iparams;
15082
15083 /* Count the number of parameters.
15084 FIXME: GDB currently ignores vararg functions, but knows about
15085 vararg member functions. */
15086 nparams = 0;
15087 child_die = die->child;
15088 while (child_die && child_die->tag)
15089 {
15090 if (child_die->tag == DW_TAG_formal_parameter)
15091 nparams++;
15092 else if (child_die->tag == DW_TAG_unspecified_parameters)
15093 TYPE_VARARGS (ftype) = 1;
15094 child_die = sibling_die (child_die);
15095 }
15096
15097 /* Allocate storage for parameters and fill them in. */
15098 TYPE_NFIELDS (ftype) = nparams;
15099 TYPE_FIELDS (ftype) = (struct field *)
15100 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
15101
15102 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15103 even if we error out during the parameters reading below. */
15104 for (iparams = 0; iparams < nparams; iparams++)
15105 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15106
15107 iparams = 0;
15108 child_die = die->child;
15109 while (child_die && child_die->tag)
15110 {
15111 if (child_die->tag == DW_TAG_formal_parameter)
15112 {
15113 struct type *arg_type;
15114
15115 /* DWARF version 2 has no clean way to discern C++
15116 static and non-static member functions. G++ helps
15117 GDB by marking the first parameter for non-static
15118 member functions (which is the this pointer) as
15119 artificial. We pass this information to
15120 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15121
15122 DWARF version 3 added DW_AT_object_pointer, which GCC
15123 4.5 does not yet generate. */
15124 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
15125 if (attr)
15126 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15127 else
15128 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
15129 arg_type = die_type (child_die, cu);
15130
15131 /* RealView does not mark THIS as const, which the testsuite
15132 expects. GCC marks THIS as const in method definitions,
15133 but not in the class specifications (GCC PR 43053). */
15134 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15135 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15136 {
15137 int is_this = 0;
15138 struct dwarf2_cu *arg_cu = cu;
15139 const char *name = dwarf2_name (child_die, cu);
15140
15141 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15142 if (attr)
15143 {
15144 /* If the compiler emits this, use it. */
15145 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15146 is_this = 1;
15147 }
15148 else if (name && strcmp (name, "this") == 0)
15149 /* Function definitions will have the argument names. */
15150 is_this = 1;
15151 else if (name == NULL && iparams == 0)
15152 /* Declarations may not have the names, so like
15153 elsewhere in GDB, assume an artificial first
15154 argument is "this". */
15155 is_this = 1;
15156
15157 if (is_this)
15158 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15159 arg_type, 0);
15160 }
15161
15162 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
15163 iparams++;
15164 }
15165 child_die = sibling_die (child_die);
15166 }
15167 }
15168
15169 return ftype;
15170 }
15171
15172 static struct type *
15173 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
15174 {
15175 struct objfile *objfile = cu->objfile;
15176 const char *name = NULL;
15177 struct type *this_type, *target_type;
15178
15179 name = dwarf2_full_name (NULL, die, cu);
15180 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15181 TYPE_TARGET_STUB (this_type) = 1;
15182 set_die_type (die, this_type, cu);
15183 target_type = die_type (die, cu);
15184 if (target_type != this_type)
15185 TYPE_TARGET_TYPE (this_type) = target_type;
15186 else
15187 {
15188 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15189 spec and cause infinite loops in GDB. */
15190 complaint (&symfile_complaints,
15191 _("Self-referential DW_TAG_typedef "
15192 "- DIE at 0x%x [in module %s]"),
15193 to_underlying (die->sect_off), objfile_name (objfile));
15194 TYPE_TARGET_TYPE (this_type) = NULL;
15195 }
15196 return this_type;
15197 }
15198
15199 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15200 (which may be different from NAME) to the architecture back-end to allow
15201 it to guess the correct format if necessary. */
15202
15203 static struct type *
15204 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15205 const char *name_hint)
15206 {
15207 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15208 const struct floatformat **format;
15209 struct type *type;
15210
15211 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15212 if (format)
15213 type = init_float_type (objfile, bits, name, format);
15214 else
15215 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
15216
15217 return type;
15218 }
15219
15220 /* Find a representation of a given base type and install
15221 it in the TYPE field of the die. */
15222
15223 static struct type *
15224 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
15225 {
15226 struct objfile *objfile = cu->objfile;
15227 struct type *type;
15228 struct attribute *attr;
15229 int encoding = 0, bits = 0;
15230 const char *name;
15231
15232 attr = dwarf2_attr (die, DW_AT_encoding, cu);
15233 if (attr)
15234 {
15235 encoding = DW_UNSND (attr);
15236 }
15237 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15238 if (attr)
15239 {
15240 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
15241 }
15242 name = dwarf2_name (die, cu);
15243 if (!name)
15244 {
15245 complaint (&symfile_complaints,
15246 _("DW_AT_name missing from DW_TAG_base_type"));
15247 }
15248
15249 switch (encoding)
15250 {
15251 case DW_ATE_address:
15252 /* Turn DW_ATE_address into a void * pointer. */
15253 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
15254 type = init_pointer_type (objfile, bits, name, type);
15255 break;
15256 case DW_ATE_boolean:
15257 type = init_boolean_type (objfile, bits, 1, name);
15258 break;
15259 case DW_ATE_complex_float:
15260 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
15261 type = init_complex_type (objfile, name, type);
15262 break;
15263 case DW_ATE_decimal_float:
15264 type = init_decfloat_type (objfile, bits, name);
15265 break;
15266 case DW_ATE_float:
15267 type = dwarf2_init_float_type (objfile, bits, name, name);
15268 break;
15269 case DW_ATE_signed:
15270 type = init_integer_type (objfile, bits, 0, name);
15271 break;
15272 case DW_ATE_unsigned:
15273 if (cu->language == language_fortran
15274 && name
15275 && startswith (name, "character("))
15276 type = init_character_type (objfile, bits, 1, name);
15277 else
15278 type = init_integer_type (objfile, bits, 1, name);
15279 break;
15280 case DW_ATE_signed_char:
15281 if (cu->language == language_ada || cu->language == language_m2
15282 || cu->language == language_pascal
15283 || cu->language == language_fortran)
15284 type = init_character_type (objfile, bits, 0, name);
15285 else
15286 type = init_integer_type (objfile, bits, 0, name);
15287 break;
15288 case DW_ATE_unsigned_char:
15289 if (cu->language == language_ada || cu->language == language_m2
15290 || cu->language == language_pascal
15291 || cu->language == language_fortran
15292 || cu->language == language_rust)
15293 type = init_character_type (objfile, bits, 1, name);
15294 else
15295 type = init_integer_type (objfile, bits, 1, name);
15296 break;
15297 case DW_ATE_UTF:
15298 {
15299 gdbarch *arch = get_objfile_arch (objfile);
15300
15301 if (bits == 16)
15302 type = builtin_type (arch)->builtin_char16;
15303 else if (bits == 32)
15304 type = builtin_type (arch)->builtin_char32;
15305 else
15306 {
15307 complaint (&symfile_complaints,
15308 _("unsupported DW_ATE_UTF bit size: '%d'"),
15309 bits);
15310 type = init_integer_type (objfile, bits, 1, name);
15311 }
15312 return set_die_type (die, type, cu);
15313 }
15314 break;
15315
15316 default:
15317 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15318 dwarf_type_encoding_name (encoding));
15319 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
15320 break;
15321 }
15322
15323 if (name && strcmp (name, "char") == 0)
15324 TYPE_NOSIGN (type) = 1;
15325
15326 return set_die_type (die, type, cu);
15327 }
15328
15329 /* Parse dwarf attribute if it's a block, reference or constant and put the
15330 resulting value of the attribute into struct bound_prop.
15331 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15332
15333 static int
15334 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15335 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15336 {
15337 struct dwarf2_property_baton *baton;
15338 struct obstack *obstack = &cu->objfile->objfile_obstack;
15339
15340 if (attr == NULL || prop == NULL)
15341 return 0;
15342
15343 if (attr_form_is_block (attr))
15344 {
15345 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15346 baton->referenced_type = NULL;
15347 baton->locexpr.per_cu = cu->per_cu;
15348 baton->locexpr.size = DW_BLOCK (attr)->size;
15349 baton->locexpr.data = DW_BLOCK (attr)->data;
15350 prop->data.baton = baton;
15351 prop->kind = PROP_LOCEXPR;
15352 gdb_assert (prop->data.baton != NULL);
15353 }
15354 else if (attr_form_is_ref (attr))
15355 {
15356 struct dwarf2_cu *target_cu = cu;
15357 struct die_info *target_die;
15358 struct attribute *target_attr;
15359
15360 target_die = follow_die_ref (die, attr, &target_cu);
15361 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
15362 if (target_attr == NULL)
15363 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15364 target_cu);
15365 if (target_attr == NULL)
15366 return 0;
15367
15368 switch (target_attr->name)
15369 {
15370 case DW_AT_location:
15371 if (attr_form_is_section_offset (target_attr))
15372 {
15373 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15374 baton->referenced_type = die_type (target_die, target_cu);
15375 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15376 prop->data.baton = baton;
15377 prop->kind = PROP_LOCLIST;
15378 gdb_assert (prop->data.baton != NULL);
15379 }
15380 else if (attr_form_is_block (target_attr))
15381 {
15382 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15383 baton->referenced_type = die_type (target_die, target_cu);
15384 baton->locexpr.per_cu = cu->per_cu;
15385 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15386 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15387 prop->data.baton = baton;
15388 prop->kind = PROP_LOCEXPR;
15389 gdb_assert (prop->data.baton != NULL);
15390 }
15391 else
15392 {
15393 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15394 "dynamic property");
15395 return 0;
15396 }
15397 break;
15398 case DW_AT_data_member_location:
15399 {
15400 LONGEST offset;
15401
15402 if (!handle_data_member_location (target_die, target_cu,
15403 &offset))
15404 return 0;
15405
15406 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15407 baton->referenced_type = read_type_die (target_die->parent,
15408 target_cu);
15409 baton->offset_info.offset = offset;
15410 baton->offset_info.type = die_type (target_die, target_cu);
15411 prop->data.baton = baton;
15412 prop->kind = PROP_ADDR_OFFSET;
15413 break;
15414 }
15415 }
15416 }
15417 else if (attr_form_is_constant (attr))
15418 {
15419 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15420 prop->kind = PROP_CONST;
15421 }
15422 else
15423 {
15424 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15425 dwarf2_name (die, cu));
15426 return 0;
15427 }
15428
15429 return 1;
15430 }
15431
15432 /* Read the given DW_AT_subrange DIE. */
15433
15434 static struct type *
15435 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15436 {
15437 struct type *base_type, *orig_base_type;
15438 struct type *range_type;
15439 struct attribute *attr;
15440 struct dynamic_prop low, high;
15441 int low_default_is_valid;
15442 int high_bound_is_count = 0;
15443 const char *name;
15444 LONGEST negative_mask;
15445
15446 orig_base_type = die_type (die, cu);
15447 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15448 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15449 creating the range type, but we use the result of check_typedef
15450 when examining properties of the type. */
15451 base_type = check_typedef (orig_base_type);
15452
15453 /* The die_type call above may have already set the type for this DIE. */
15454 range_type = get_die_type (die, cu);
15455 if (range_type)
15456 return range_type;
15457
15458 low.kind = PROP_CONST;
15459 high.kind = PROP_CONST;
15460 high.data.const_val = 0;
15461
15462 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15463 omitting DW_AT_lower_bound. */
15464 switch (cu->language)
15465 {
15466 case language_c:
15467 case language_cplus:
15468 low.data.const_val = 0;
15469 low_default_is_valid = 1;
15470 break;
15471 case language_fortran:
15472 low.data.const_val = 1;
15473 low_default_is_valid = 1;
15474 break;
15475 case language_d:
15476 case language_objc:
15477 case language_rust:
15478 low.data.const_val = 0;
15479 low_default_is_valid = (cu->header.version >= 4);
15480 break;
15481 case language_ada:
15482 case language_m2:
15483 case language_pascal:
15484 low.data.const_val = 1;
15485 low_default_is_valid = (cu->header.version >= 4);
15486 break;
15487 default:
15488 low.data.const_val = 0;
15489 low_default_is_valid = 0;
15490 break;
15491 }
15492
15493 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15494 if (attr)
15495 attr_to_dynamic_prop (attr, die, cu, &low);
15496 else if (!low_default_is_valid)
15497 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15498 "- DIE at 0x%x [in module %s]"),
15499 to_underlying (die->sect_off), objfile_name (cu->objfile));
15500
15501 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15502 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15503 {
15504 attr = dwarf2_attr (die, DW_AT_count, cu);
15505 if (attr_to_dynamic_prop (attr, die, cu, &high))
15506 {
15507 /* If bounds are constant do the final calculation here. */
15508 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15509 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15510 else
15511 high_bound_is_count = 1;
15512 }
15513 }
15514
15515 /* Dwarf-2 specifications explicitly allows to create subrange types
15516 without specifying a base type.
15517 In that case, the base type must be set to the type of
15518 the lower bound, upper bound or count, in that order, if any of these
15519 three attributes references an object that has a type.
15520 If no base type is found, the Dwarf-2 specifications say that
15521 a signed integer type of size equal to the size of an address should
15522 be used.
15523 For the following C code: `extern char gdb_int [];'
15524 GCC produces an empty range DIE.
15525 FIXME: muller/2010-05-28: Possible references to object for low bound,
15526 high bound or count are not yet handled by this code. */
15527 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15528 {
15529 struct objfile *objfile = cu->objfile;
15530 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15531 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15532 struct type *int_type = objfile_type (objfile)->builtin_int;
15533
15534 /* Test "int", "long int", and "long long int" objfile types,
15535 and select the first one having a size above or equal to the
15536 architecture address size. */
15537 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15538 base_type = int_type;
15539 else
15540 {
15541 int_type = objfile_type (objfile)->builtin_long;
15542 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15543 base_type = int_type;
15544 else
15545 {
15546 int_type = objfile_type (objfile)->builtin_long_long;
15547 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15548 base_type = int_type;
15549 }
15550 }
15551 }
15552
15553 /* Normally, the DWARF producers are expected to use a signed
15554 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15555 But this is unfortunately not always the case, as witnessed
15556 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15557 is used instead. To work around that ambiguity, we treat
15558 the bounds as signed, and thus sign-extend their values, when
15559 the base type is signed. */
15560 negative_mask =
15561 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15562 if (low.kind == PROP_CONST
15563 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15564 low.data.const_val |= negative_mask;
15565 if (high.kind == PROP_CONST
15566 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15567 high.data.const_val |= negative_mask;
15568
15569 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15570
15571 if (high_bound_is_count)
15572 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15573
15574 /* Ada expects an empty array on no boundary attributes. */
15575 if (attr == NULL && cu->language != language_ada)
15576 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15577
15578 name = dwarf2_name (die, cu);
15579 if (name)
15580 TYPE_NAME (range_type) = name;
15581
15582 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15583 if (attr)
15584 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15585
15586 set_die_type (die, range_type, cu);
15587
15588 /* set_die_type should be already done. */
15589 set_descriptive_type (range_type, die, cu);
15590
15591 return range_type;
15592 }
15593
15594 static struct type *
15595 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15596 {
15597 struct type *type;
15598
15599 /* For now, we only support the C meaning of an unspecified type: void. */
15600
15601 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15602 TYPE_NAME (type) = dwarf2_name (die, cu);
15603
15604 return set_die_type (die, type, cu);
15605 }
15606
15607 /* Read a single die and all its descendents. Set the die's sibling
15608 field to NULL; set other fields in the die correctly, and set all
15609 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15610 location of the info_ptr after reading all of those dies. PARENT
15611 is the parent of the die in question. */
15612
15613 static struct die_info *
15614 read_die_and_children (const struct die_reader_specs *reader,
15615 const gdb_byte *info_ptr,
15616 const gdb_byte **new_info_ptr,
15617 struct die_info *parent)
15618 {
15619 struct die_info *die;
15620 const gdb_byte *cur_ptr;
15621 int has_children;
15622
15623 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15624 if (die == NULL)
15625 {
15626 *new_info_ptr = cur_ptr;
15627 return NULL;
15628 }
15629 store_in_ref_table (die, reader->cu);
15630
15631 if (has_children)
15632 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15633 else
15634 {
15635 die->child = NULL;
15636 *new_info_ptr = cur_ptr;
15637 }
15638
15639 die->sibling = NULL;
15640 die->parent = parent;
15641 return die;
15642 }
15643
15644 /* Read a die, all of its descendents, and all of its siblings; set
15645 all of the fields of all of the dies correctly. Arguments are as
15646 in read_die_and_children. */
15647
15648 static struct die_info *
15649 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15650 const gdb_byte *info_ptr,
15651 const gdb_byte **new_info_ptr,
15652 struct die_info *parent)
15653 {
15654 struct die_info *first_die, *last_sibling;
15655 const gdb_byte *cur_ptr;
15656
15657 cur_ptr = info_ptr;
15658 first_die = last_sibling = NULL;
15659
15660 while (1)
15661 {
15662 struct die_info *die
15663 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15664
15665 if (die == NULL)
15666 {
15667 *new_info_ptr = cur_ptr;
15668 return first_die;
15669 }
15670
15671 if (!first_die)
15672 first_die = die;
15673 else
15674 last_sibling->sibling = die;
15675
15676 last_sibling = die;
15677 }
15678 }
15679
15680 /* Read a die, all of its descendents, and all of its siblings; set
15681 all of the fields of all of the dies correctly. Arguments are as
15682 in read_die_and_children.
15683 This the main entry point for reading a DIE and all its children. */
15684
15685 static struct die_info *
15686 read_die_and_siblings (const struct die_reader_specs *reader,
15687 const gdb_byte *info_ptr,
15688 const gdb_byte **new_info_ptr,
15689 struct die_info *parent)
15690 {
15691 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15692 new_info_ptr, parent);
15693
15694 if (dwarf_die_debug)
15695 {
15696 fprintf_unfiltered (gdb_stdlog,
15697 "Read die from %s@0x%x of %s:\n",
15698 get_section_name (reader->die_section),
15699 (unsigned) (info_ptr - reader->die_section->buffer),
15700 bfd_get_filename (reader->abfd));
15701 dump_die (die, dwarf_die_debug);
15702 }
15703
15704 return die;
15705 }
15706
15707 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15708 attributes.
15709 The caller is responsible for filling in the extra attributes
15710 and updating (*DIEP)->num_attrs.
15711 Set DIEP to point to a newly allocated die with its information,
15712 except for its child, sibling, and parent fields.
15713 Set HAS_CHILDREN to tell whether the die has children or not. */
15714
15715 static const gdb_byte *
15716 read_full_die_1 (const struct die_reader_specs *reader,
15717 struct die_info **diep, const gdb_byte *info_ptr,
15718 int *has_children, int num_extra_attrs)
15719 {
15720 unsigned int abbrev_number, bytes_read, i;
15721 struct abbrev_info *abbrev;
15722 struct die_info *die;
15723 struct dwarf2_cu *cu = reader->cu;
15724 bfd *abfd = reader->abfd;
15725
15726 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
15727 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15728 info_ptr += bytes_read;
15729 if (!abbrev_number)
15730 {
15731 *diep = NULL;
15732 *has_children = 0;
15733 return info_ptr;
15734 }
15735
15736 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15737 if (!abbrev)
15738 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15739 abbrev_number,
15740 bfd_get_filename (abfd));
15741
15742 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15743 die->sect_off = sect_off;
15744 die->tag = abbrev->tag;
15745 die->abbrev = abbrev_number;
15746
15747 /* Make the result usable.
15748 The caller needs to update num_attrs after adding the extra
15749 attributes. */
15750 die->num_attrs = abbrev->num_attrs;
15751
15752 for (i = 0; i < abbrev->num_attrs; ++i)
15753 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15754 info_ptr);
15755
15756 *diep = die;
15757 *has_children = abbrev->has_children;
15758 return info_ptr;
15759 }
15760
15761 /* Read a die and all its attributes.
15762 Set DIEP to point to a newly allocated die with its information,
15763 except for its child, sibling, and parent fields.
15764 Set HAS_CHILDREN to tell whether the die has children or not. */
15765
15766 static const gdb_byte *
15767 read_full_die (const struct die_reader_specs *reader,
15768 struct die_info **diep, const gdb_byte *info_ptr,
15769 int *has_children)
15770 {
15771 const gdb_byte *result;
15772
15773 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15774
15775 if (dwarf_die_debug)
15776 {
15777 fprintf_unfiltered (gdb_stdlog,
15778 "Read die from %s@0x%x of %s:\n",
15779 get_section_name (reader->die_section),
15780 (unsigned) (info_ptr - reader->die_section->buffer),
15781 bfd_get_filename (reader->abfd));
15782 dump_die (*diep, dwarf_die_debug);
15783 }
15784
15785 return result;
15786 }
15787 \f
15788 /* Abbreviation tables.
15789
15790 In DWARF version 2, the description of the debugging information is
15791 stored in a separate .debug_abbrev section. Before we read any
15792 dies from a section we read in all abbreviations and install them
15793 in a hash table. */
15794
15795 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15796
15797 static struct abbrev_info *
15798 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15799 {
15800 struct abbrev_info *abbrev;
15801
15802 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15803 memset (abbrev, 0, sizeof (struct abbrev_info));
15804
15805 return abbrev;
15806 }
15807
15808 /* Add an abbreviation to the table. */
15809
15810 static void
15811 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15812 unsigned int abbrev_number,
15813 struct abbrev_info *abbrev)
15814 {
15815 unsigned int hash_number;
15816
15817 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15818 abbrev->next = abbrev_table->abbrevs[hash_number];
15819 abbrev_table->abbrevs[hash_number] = abbrev;
15820 }
15821
15822 /* Look up an abbrev in the table.
15823 Returns NULL if the abbrev is not found. */
15824
15825 static struct abbrev_info *
15826 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15827 unsigned int abbrev_number)
15828 {
15829 unsigned int hash_number;
15830 struct abbrev_info *abbrev;
15831
15832 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15833 abbrev = abbrev_table->abbrevs[hash_number];
15834
15835 while (abbrev)
15836 {
15837 if (abbrev->number == abbrev_number)
15838 return abbrev;
15839 abbrev = abbrev->next;
15840 }
15841 return NULL;
15842 }
15843
15844 /* Read in an abbrev table. */
15845
15846 static struct abbrev_table *
15847 abbrev_table_read_table (struct dwarf2_section_info *section,
15848 sect_offset sect_off)
15849 {
15850 struct objfile *objfile = dwarf2_per_objfile->objfile;
15851 bfd *abfd = get_section_bfd_owner (section);
15852 struct abbrev_table *abbrev_table;
15853 const gdb_byte *abbrev_ptr;
15854 struct abbrev_info *cur_abbrev;
15855 unsigned int abbrev_number, bytes_read, abbrev_name;
15856 unsigned int abbrev_form;
15857 struct attr_abbrev *cur_attrs;
15858 unsigned int allocated_attrs;
15859
15860 abbrev_table = XNEW (struct abbrev_table);
15861 abbrev_table->sect_off = sect_off;
15862 obstack_init (&abbrev_table->abbrev_obstack);
15863 abbrev_table->abbrevs =
15864 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15865 ABBREV_HASH_SIZE);
15866 memset (abbrev_table->abbrevs, 0,
15867 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15868
15869 dwarf2_read_section (objfile, section);
15870 abbrev_ptr = section->buffer + to_underlying (sect_off);
15871 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15872 abbrev_ptr += bytes_read;
15873
15874 allocated_attrs = ATTR_ALLOC_CHUNK;
15875 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15876
15877 /* Loop until we reach an abbrev number of 0. */
15878 while (abbrev_number)
15879 {
15880 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15881
15882 /* read in abbrev header */
15883 cur_abbrev->number = abbrev_number;
15884 cur_abbrev->tag
15885 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15886 abbrev_ptr += bytes_read;
15887 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15888 abbrev_ptr += 1;
15889
15890 /* now read in declarations */
15891 for (;;)
15892 {
15893 LONGEST implicit_const;
15894
15895 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15896 abbrev_ptr += bytes_read;
15897 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15898 abbrev_ptr += bytes_read;
15899 if (abbrev_form == DW_FORM_implicit_const)
15900 {
15901 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15902 &bytes_read);
15903 abbrev_ptr += bytes_read;
15904 }
15905 else
15906 {
15907 /* Initialize it due to a false compiler warning. */
15908 implicit_const = -1;
15909 }
15910
15911 if (abbrev_name == 0)
15912 break;
15913
15914 if (cur_abbrev->num_attrs == allocated_attrs)
15915 {
15916 allocated_attrs += ATTR_ALLOC_CHUNK;
15917 cur_attrs
15918 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15919 }
15920
15921 cur_attrs[cur_abbrev->num_attrs].name
15922 = (enum dwarf_attribute) abbrev_name;
15923 cur_attrs[cur_abbrev->num_attrs].form
15924 = (enum dwarf_form) abbrev_form;
15925 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
15926 ++cur_abbrev->num_attrs;
15927 }
15928
15929 cur_abbrev->attrs =
15930 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15931 cur_abbrev->num_attrs);
15932 memcpy (cur_abbrev->attrs, cur_attrs,
15933 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15934
15935 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15936
15937 /* Get next abbreviation.
15938 Under Irix6 the abbreviations for a compilation unit are not
15939 always properly terminated with an abbrev number of 0.
15940 Exit loop if we encounter an abbreviation which we have
15941 already read (which means we are about to read the abbreviations
15942 for the next compile unit) or if the end of the abbreviation
15943 table is reached. */
15944 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15945 break;
15946 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15947 abbrev_ptr += bytes_read;
15948 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15949 break;
15950 }
15951
15952 xfree (cur_attrs);
15953 return abbrev_table;
15954 }
15955
15956 /* Free the resources held by ABBREV_TABLE. */
15957
15958 static void
15959 abbrev_table_free (struct abbrev_table *abbrev_table)
15960 {
15961 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15962 xfree (abbrev_table);
15963 }
15964
15965 /* Same as abbrev_table_free but as a cleanup.
15966 We pass in a pointer to the pointer to the table so that we can
15967 set the pointer to NULL when we're done. It also simplifies
15968 build_type_psymtabs_1. */
15969
15970 static void
15971 abbrev_table_free_cleanup (void *table_ptr)
15972 {
15973 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15974
15975 if (*abbrev_table_ptr != NULL)
15976 abbrev_table_free (*abbrev_table_ptr);
15977 *abbrev_table_ptr = NULL;
15978 }
15979
15980 /* Read the abbrev table for CU from ABBREV_SECTION. */
15981
15982 static void
15983 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15984 struct dwarf2_section_info *abbrev_section)
15985 {
15986 cu->abbrev_table =
15987 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
15988 }
15989
15990 /* Release the memory used by the abbrev table for a compilation unit. */
15991
15992 static void
15993 dwarf2_free_abbrev_table (void *ptr_to_cu)
15994 {
15995 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15996
15997 if (cu->abbrev_table != NULL)
15998 abbrev_table_free (cu->abbrev_table);
15999 /* Set this to NULL so that we SEGV if we try to read it later,
16000 and also because free_comp_unit verifies this is NULL. */
16001 cu->abbrev_table = NULL;
16002 }
16003 \f
16004 /* Returns nonzero if TAG represents a type that we might generate a partial
16005 symbol for. */
16006
16007 static int
16008 is_type_tag_for_partial (int tag)
16009 {
16010 switch (tag)
16011 {
16012 #if 0
16013 /* Some types that would be reasonable to generate partial symbols for,
16014 that we don't at present. */
16015 case DW_TAG_array_type:
16016 case DW_TAG_file_type:
16017 case DW_TAG_ptr_to_member_type:
16018 case DW_TAG_set_type:
16019 case DW_TAG_string_type:
16020 case DW_TAG_subroutine_type:
16021 #endif
16022 case DW_TAG_base_type:
16023 case DW_TAG_class_type:
16024 case DW_TAG_interface_type:
16025 case DW_TAG_enumeration_type:
16026 case DW_TAG_structure_type:
16027 case DW_TAG_subrange_type:
16028 case DW_TAG_typedef:
16029 case DW_TAG_union_type:
16030 return 1;
16031 default:
16032 return 0;
16033 }
16034 }
16035
16036 /* Load all DIEs that are interesting for partial symbols into memory. */
16037
16038 static struct partial_die_info *
16039 load_partial_dies (const struct die_reader_specs *reader,
16040 const gdb_byte *info_ptr, int building_psymtab)
16041 {
16042 struct dwarf2_cu *cu = reader->cu;
16043 struct objfile *objfile = cu->objfile;
16044 struct partial_die_info *part_die;
16045 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
16046 struct abbrev_info *abbrev;
16047 unsigned int bytes_read;
16048 unsigned int load_all = 0;
16049 int nesting_level = 1;
16050
16051 parent_die = NULL;
16052 last_die = NULL;
16053
16054 gdb_assert (cu->per_cu != NULL);
16055 if (cu->per_cu->load_all_dies)
16056 load_all = 1;
16057
16058 cu->partial_dies
16059 = htab_create_alloc_ex (cu->header.length / 12,
16060 partial_die_hash,
16061 partial_die_eq,
16062 NULL,
16063 &cu->comp_unit_obstack,
16064 hashtab_obstack_allocate,
16065 dummy_obstack_deallocate);
16066
16067 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16068
16069 while (1)
16070 {
16071 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
16072
16073 /* A NULL abbrev means the end of a series of children. */
16074 if (abbrev == NULL)
16075 {
16076 if (--nesting_level == 0)
16077 {
16078 /* PART_DIE was probably the last thing allocated on the
16079 comp_unit_obstack, so we could call obstack_free
16080 here. We don't do that because the waste is small,
16081 and will be cleaned up when we're done with this
16082 compilation unit. This way, we're also more robust
16083 against other users of the comp_unit_obstack. */
16084 return first_die;
16085 }
16086 info_ptr += bytes_read;
16087 last_die = parent_die;
16088 parent_die = parent_die->die_parent;
16089 continue;
16090 }
16091
16092 /* Check for template arguments. We never save these; if
16093 they're seen, we just mark the parent, and go on our way. */
16094 if (parent_die != NULL
16095 && cu->language == language_cplus
16096 && (abbrev->tag == DW_TAG_template_type_param
16097 || abbrev->tag == DW_TAG_template_value_param))
16098 {
16099 parent_die->has_template_arguments = 1;
16100
16101 if (!load_all)
16102 {
16103 /* We don't need a partial DIE for the template argument. */
16104 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16105 continue;
16106 }
16107 }
16108
16109 /* We only recurse into c++ subprograms looking for template arguments.
16110 Skip their other children. */
16111 if (!load_all
16112 && cu->language == language_cplus
16113 && parent_die != NULL
16114 && parent_die->tag == DW_TAG_subprogram)
16115 {
16116 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16117 continue;
16118 }
16119
16120 /* Check whether this DIE is interesting enough to save. Normally
16121 we would not be interested in members here, but there may be
16122 later variables referencing them via DW_AT_specification (for
16123 static members). */
16124 if (!load_all
16125 && !is_type_tag_for_partial (abbrev->tag)
16126 && abbrev->tag != DW_TAG_constant
16127 && abbrev->tag != DW_TAG_enumerator
16128 && abbrev->tag != DW_TAG_subprogram
16129 && abbrev->tag != DW_TAG_lexical_block
16130 && abbrev->tag != DW_TAG_variable
16131 && abbrev->tag != DW_TAG_namespace
16132 && abbrev->tag != DW_TAG_module
16133 && abbrev->tag != DW_TAG_member
16134 && abbrev->tag != DW_TAG_imported_unit
16135 && abbrev->tag != DW_TAG_imported_declaration)
16136 {
16137 /* Otherwise we skip to the next sibling, if any. */
16138 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16139 continue;
16140 }
16141
16142 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16143 info_ptr);
16144
16145 /* This two-pass algorithm for processing partial symbols has a
16146 high cost in cache pressure. Thus, handle some simple cases
16147 here which cover the majority of C partial symbols. DIEs
16148 which neither have specification tags in them, nor could have
16149 specification tags elsewhere pointing at them, can simply be
16150 processed and discarded.
16151
16152 This segment is also optional; scan_partial_symbols and
16153 add_partial_symbol will handle these DIEs if we chain
16154 them in normally. When compilers which do not emit large
16155 quantities of duplicate debug information are more common,
16156 this code can probably be removed. */
16157
16158 /* Any complete simple types at the top level (pretty much all
16159 of them, for a language without namespaces), can be processed
16160 directly. */
16161 if (parent_die == NULL
16162 && part_die->has_specification == 0
16163 && part_die->is_declaration == 0
16164 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
16165 || part_die->tag == DW_TAG_base_type
16166 || part_die->tag == DW_TAG_subrange_type))
16167 {
16168 if (building_psymtab && part_die->name != NULL)
16169 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16170 VAR_DOMAIN, LOC_TYPEDEF,
16171 &objfile->static_psymbols,
16172 0, cu->language, objfile);
16173 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16174 continue;
16175 }
16176
16177 /* The exception for DW_TAG_typedef with has_children above is
16178 a workaround of GCC PR debug/47510. In the case of this complaint
16179 type_name_no_tag_or_error will error on such types later.
16180
16181 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16182 it could not find the child DIEs referenced later, this is checked
16183 above. In correct DWARF DW_TAG_typedef should have no children. */
16184
16185 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16186 complaint (&symfile_complaints,
16187 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16188 "- DIE at 0x%x [in module %s]"),
16189 to_underlying (part_die->sect_off), objfile_name (objfile));
16190
16191 /* If we're at the second level, and we're an enumerator, and
16192 our parent has no specification (meaning possibly lives in a
16193 namespace elsewhere), then we can add the partial symbol now
16194 instead of queueing it. */
16195 if (part_die->tag == DW_TAG_enumerator
16196 && parent_die != NULL
16197 && parent_die->die_parent == NULL
16198 && parent_die->tag == DW_TAG_enumeration_type
16199 && parent_die->has_specification == 0)
16200 {
16201 if (part_die->name == NULL)
16202 complaint (&symfile_complaints,
16203 _("malformed enumerator DIE ignored"));
16204 else if (building_psymtab)
16205 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16206 VAR_DOMAIN, LOC_CONST,
16207 cu->language == language_cplus
16208 ? &objfile->global_psymbols
16209 : &objfile->static_psymbols,
16210 0, cu->language, objfile);
16211
16212 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16213 continue;
16214 }
16215
16216 /* We'll save this DIE so link it in. */
16217 part_die->die_parent = parent_die;
16218 part_die->die_sibling = NULL;
16219 part_die->die_child = NULL;
16220
16221 if (last_die && last_die == parent_die)
16222 last_die->die_child = part_die;
16223 else if (last_die)
16224 last_die->die_sibling = part_die;
16225
16226 last_die = part_die;
16227
16228 if (first_die == NULL)
16229 first_die = part_die;
16230
16231 /* Maybe add the DIE to the hash table. Not all DIEs that we
16232 find interesting need to be in the hash table, because we
16233 also have the parent/sibling/child chains; only those that we
16234 might refer to by offset later during partial symbol reading.
16235
16236 For now this means things that might have be the target of a
16237 DW_AT_specification, DW_AT_abstract_origin, or
16238 DW_AT_extension. DW_AT_extension will refer only to
16239 namespaces; DW_AT_abstract_origin refers to functions (and
16240 many things under the function DIE, but we do not recurse
16241 into function DIEs during partial symbol reading) and
16242 possibly variables as well; DW_AT_specification refers to
16243 declarations. Declarations ought to have the DW_AT_declaration
16244 flag. It happens that GCC forgets to put it in sometimes, but
16245 only for functions, not for types.
16246
16247 Adding more things than necessary to the hash table is harmless
16248 except for the performance cost. Adding too few will result in
16249 wasted time in find_partial_die, when we reread the compilation
16250 unit with load_all_dies set. */
16251
16252 if (load_all
16253 || abbrev->tag == DW_TAG_constant
16254 || abbrev->tag == DW_TAG_subprogram
16255 || abbrev->tag == DW_TAG_variable
16256 || abbrev->tag == DW_TAG_namespace
16257 || part_die->is_declaration)
16258 {
16259 void **slot;
16260
16261 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
16262 to_underlying (part_die->sect_off),
16263 INSERT);
16264 *slot = part_die;
16265 }
16266
16267 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16268
16269 /* For some DIEs we want to follow their children (if any). For C
16270 we have no reason to follow the children of structures; for other
16271 languages we have to, so that we can get at method physnames
16272 to infer fully qualified class names, for DW_AT_specification,
16273 and for C++ template arguments. For C++, we also look one level
16274 inside functions to find template arguments (if the name of the
16275 function does not already contain the template arguments).
16276
16277 For Ada, we need to scan the children of subprograms and lexical
16278 blocks as well because Ada allows the definition of nested
16279 entities that could be interesting for the debugger, such as
16280 nested subprograms for instance. */
16281 if (last_die->has_children
16282 && (load_all
16283 || last_die->tag == DW_TAG_namespace
16284 || last_die->tag == DW_TAG_module
16285 || last_die->tag == DW_TAG_enumeration_type
16286 || (cu->language == language_cplus
16287 && last_die->tag == DW_TAG_subprogram
16288 && (last_die->name == NULL
16289 || strchr (last_die->name, '<') == NULL))
16290 || (cu->language != language_c
16291 && (last_die->tag == DW_TAG_class_type
16292 || last_die->tag == DW_TAG_interface_type
16293 || last_die->tag == DW_TAG_structure_type
16294 || last_die->tag == DW_TAG_union_type))
16295 || (cu->language == language_ada
16296 && (last_die->tag == DW_TAG_subprogram
16297 || last_die->tag == DW_TAG_lexical_block))))
16298 {
16299 nesting_level++;
16300 parent_die = last_die;
16301 continue;
16302 }
16303
16304 /* Otherwise we skip to the next sibling, if any. */
16305 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
16306
16307 /* Back to the top, do it again. */
16308 }
16309 }
16310
16311 /* Read a minimal amount of information into the minimal die structure. */
16312
16313 static const gdb_byte *
16314 read_partial_die (const struct die_reader_specs *reader,
16315 struct partial_die_info *part_die,
16316 struct abbrev_info *abbrev, unsigned int abbrev_len,
16317 const gdb_byte *info_ptr)
16318 {
16319 struct dwarf2_cu *cu = reader->cu;
16320 struct objfile *objfile = cu->objfile;
16321 const gdb_byte *buffer = reader->buffer;
16322 unsigned int i;
16323 struct attribute attr;
16324 int has_low_pc_attr = 0;
16325 int has_high_pc_attr = 0;
16326 int high_pc_relative = 0;
16327
16328 memset (part_die, 0, sizeof (struct partial_die_info));
16329
16330 part_die->sect_off = (sect_offset) (info_ptr - buffer);
16331
16332 info_ptr += abbrev_len;
16333
16334 if (abbrev == NULL)
16335 return info_ptr;
16336
16337 part_die->tag = abbrev->tag;
16338 part_die->has_children = abbrev->has_children;
16339
16340 for (i = 0; i < abbrev->num_attrs; ++i)
16341 {
16342 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
16343
16344 /* Store the data if it is of an attribute we want to keep in a
16345 partial symbol table. */
16346 switch (attr.name)
16347 {
16348 case DW_AT_name:
16349 switch (part_die->tag)
16350 {
16351 case DW_TAG_compile_unit:
16352 case DW_TAG_partial_unit:
16353 case DW_TAG_type_unit:
16354 /* Compilation units have a DW_AT_name that is a filename, not
16355 a source language identifier. */
16356 case DW_TAG_enumeration_type:
16357 case DW_TAG_enumerator:
16358 /* These tags always have simple identifiers already; no need
16359 to canonicalize them. */
16360 part_die->name = DW_STRING (&attr);
16361 break;
16362 default:
16363 part_die->name
16364 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
16365 &objfile->per_bfd->storage_obstack);
16366 break;
16367 }
16368 break;
16369 case DW_AT_linkage_name:
16370 case DW_AT_MIPS_linkage_name:
16371 /* Note that both forms of linkage name might appear. We
16372 assume they will be the same, and we only store the last
16373 one we see. */
16374 if (cu->language == language_ada)
16375 part_die->name = DW_STRING (&attr);
16376 part_die->linkage_name = DW_STRING (&attr);
16377 break;
16378 case DW_AT_low_pc:
16379 has_low_pc_attr = 1;
16380 part_die->lowpc = attr_value_as_address (&attr);
16381 break;
16382 case DW_AT_high_pc:
16383 has_high_pc_attr = 1;
16384 part_die->highpc = attr_value_as_address (&attr);
16385 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16386 high_pc_relative = 1;
16387 break;
16388 case DW_AT_location:
16389 /* Support the .debug_loc offsets. */
16390 if (attr_form_is_block (&attr))
16391 {
16392 part_die->d.locdesc = DW_BLOCK (&attr);
16393 }
16394 else if (attr_form_is_section_offset (&attr))
16395 {
16396 dwarf2_complex_location_expr_complaint ();
16397 }
16398 else
16399 {
16400 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16401 "partial symbol information");
16402 }
16403 break;
16404 case DW_AT_external:
16405 part_die->is_external = DW_UNSND (&attr);
16406 break;
16407 case DW_AT_declaration:
16408 part_die->is_declaration = DW_UNSND (&attr);
16409 break;
16410 case DW_AT_type:
16411 part_die->has_type = 1;
16412 break;
16413 case DW_AT_abstract_origin:
16414 case DW_AT_specification:
16415 case DW_AT_extension:
16416 part_die->has_specification = 1;
16417 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
16418 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16419 || cu->per_cu->is_dwz);
16420 break;
16421 case DW_AT_sibling:
16422 /* Ignore absolute siblings, they might point outside of
16423 the current compile unit. */
16424 if (attr.form == DW_FORM_ref_addr)
16425 complaint (&symfile_complaints,
16426 _("ignoring absolute DW_AT_sibling"));
16427 else
16428 {
16429 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16430 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
16431
16432 if (sibling_ptr < info_ptr)
16433 complaint (&symfile_complaints,
16434 _("DW_AT_sibling points backwards"));
16435 else if (sibling_ptr > reader->buffer_end)
16436 dwarf2_section_buffer_overflow_complaint (reader->die_section);
16437 else
16438 part_die->sibling = sibling_ptr;
16439 }
16440 break;
16441 case DW_AT_byte_size:
16442 part_die->has_byte_size = 1;
16443 break;
16444 case DW_AT_const_value:
16445 part_die->has_const_value = 1;
16446 break;
16447 case DW_AT_calling_convention:
16448 /* DWARF doesn't provide a way to identify a program's source-level
16449 entry point. DW_AT_calling_convention attributes are only meant
16450 to describe functions' calling conventions.
16451
16452 However, because it's a necessary piece of information in
16453 Fortran, and before DWARF 4 DW_CC_program was the only
16454 piece of debugging information whose definition refers to
16455 a 'main program' at all, several compilers marked Fortran
16456 main programs with DW_CC_program --- even when those
16457 functions use the standard calling conventions.
16458
16459 Although DWARF now specifies a way to provide this
16460 information, we support this practice for backward
16461 compatibility. */
16462 if (DW_UNSND (&attr) == DW_CC_program
16463 && cu->language == language_fortran)
16464 part_die->main_subprogram = 1;
16465 break;
16466 case DW_AT_inline:
16467 if (DW_UNSND (&attr) == DW_INL_inlined
16468 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16469 part_die->may_be_inlined = 1;
16470 break;
16471
16472 case DW_AT_import:
16473 if (part_die->tag == DW_TAG_imported_unit)
16474 {
16475 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
16476 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16477 || cu->per_cu->is_dwz);
16478 }
16479 break;
16480
16481 case DW_AT_main_subprogram:
16482 part_die->main_subprogram = DW_UNSND (&attr);
16483 break;
16484
16485 default:
16486 break;
16487 }
16488 }
16489
16490 if (high_pc_relative)
16491 part_die->highpc += part_die->lowpc;
16492
16493 if (has_low_pc_attr && has_high_pc_attr)
16494 {
16495 /* When using the GNU linker, .gnu.linkonce. sections are used to
16496 eliminate duplicate copies of functions and vtables and such.
16497 The linker will arbitrarily choose one and discard the others.
16498 The AT_*_pc values for such functions refer to local labels in
16499 these sections. If the section from that file was discarded, the
16500 labels are not in the output, so the relocs get a value of 0.
16501 If this is a discarded function, mark the pc bounds as invalid,
16502 so that GDB will ignore it. */
16503 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16504 {
16505 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16506
16507 complaint (&symfile_complaints,
16508 _("DW_AT_low_pc %s is zero "
16509 "for DIE at 0x%x [in module %s]"),
16510 paddress (gdbarch, part_die->lowpc),
16511 to_underlying (part_die->sect_off), objfile_name (objfile));
16512 }
16513 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16514 else if (part_die->lowpc >= part_die->highpc)
16515 {
16516 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16517
16518 complaint (&symfile_complaints,
16519 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16520 "for DIE at 0x%x [in module %s]"),
16521 paddress (gdbarch, part_die->lowpc),
16522 paddress (gdbarch, part_die->highpc),
16523 to_underlying (part_die->sect_off),
16524 objfile_name (objfile));
16525 }
16526 else
16527 part_die->has_pc_info = 1;
16528 }
16529
16530 return info_ptr;
16531 }
16532
16533 /* Find a cached partial DIE at OFFSET in CU. */
16534
16535 static struct partial_die_info *
16536 find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
16537 {
16538 struct partial_die_info *lookup_die = NULL;
16539 struct partial_die_info part_die;
16540
16541 part_die.sect_off = sect_off;
16542 lookup_die = ((struct partial_die_info *)
16543 htab_find_with_hash (cu->partial_dies, &part_die,
16544 to_underlying (sect_off)));
16545
16546 return lookup_die;
16547 }
16548
16549 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16550 except in the case of .debug_types DIEs which do not reference
16551 outside their CU (they do however referencing other types via
16552 DW_FORM_ref_sig8). */
16553
16554 static struct partial_die_info *
16555 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
16556 {
16557 struct objfile *objfile = cu->objfile;
16558 struct dwarf2_per_cu_data *per_cu = NULL;
16559 struct partial_die_info *pd = NULL;
16560
16561 if (offset_in_dwz == cu->per_cu->is_dwz
16562 && offset_in_cu_p (&cu->header, sect_off))
16563 {
16564 pd = find_partial_die_in_comp_unit (sect_off, cu);
16565 if (pd != NULL)
16566 return pd;
16567 /* We missed recording what we needed.
16568 Load all dies and try again. */
16569 per_cu = cu->per_cu;
16570 }
16571 else
16572 {
16573 /* TUs don't reference other CUs/TUs (except via type signatures). */
16574 if (cu->per_cu->is_debug_types)
16575 {
16576 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
16577 " external reference to offset 0x%x [in module %s].\n"),
16578 to_underlying (cu->header.sect_off), to_underlying (sect_off),
16579 bfd_get_filename (objfile->obfd));
16580 }
16581 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
16582 objfile);
16583
16584 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16585 load_partial_comp_unit (per_cu);
16586
16587 per_cu->cu->last_used = 0;
16588 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16589 }
16590
16591 /* If we didn't find it, and not all dies have been loaded,
16592 load them all and try again. */
16593
16594 if (pd == NULL && per_cu->load_all_dies == 0)
16595 {
16596 per_cu->load_all_dies = 1;
16597
16598 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16599 THIS_CU->cu may already be in use. So we can't just free it and
16600 replace its DIEs with the ones we read in. Instead, we leave those
16601 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16602 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16603 set. */
16604 load_partial_comp_unit (per_cu);
16605
16606 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16607 }
16608
16609 if (pd == NULL)
16610 internal_error (__FILE__, __LINE__,
16611 _("could not find partial DIE 0x%x "
16612 "in cache [from module %s]\n"),
16613 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
16614 return pd;
16615 }
16616
16617 /* See if we can figure out if the class lives in a namespace. We do
16618 this by looking for a member function; its demangled name will
16619 contain namespace info, if there is any. */
16620
16621 static void
16622 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16623 struct dwarf2_cu *cu)
16624 {
16625 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16626 what template types look like, because the demangler
16627 frequently doesn't give the same name as the debug info. We
16628 could fix this by only using the demangled name to get the
16629 prefix (but see comment in read_structure_type). */
16630
16631 struct partial_die_info *real_pdi;
16632 struct partial_die_info *child_pdi;
16633
16634 /* If this DIE (this DIE's specification, if any) has a parent, then
16635 we should not do this. We'll prepend the parent's fully qualified
16636 name when we create the partial symbol. */
16637
16638 real_pdi = struct_pdi;
16639 while (real_pdi->has_specification)
16640 real_pdi = find_partial_die (real_pdi->spec_offset,
16641 real_pdi->spec_is_dwz, cu);
16642
16643 if (real_pdi->die_parent != NULL)
16644 return;
16645
16646 for (child_pdi = struct_pdi->die_child;
16647 child_pdi != NULL;
16648 child_pdi = child_pdi->die_sibling)
16649 {
16650 if (child_pdi->tag == DW_TAG_subprogram
16651 && child_pdi->linkage_name != NULL)
16652 {
16653 char *actual_class_name
16654 = language_class_name_from_physname (cu->language_defn,
16655 child_pdi->linkage_name);
16656 if (actual_class_name != NULL)
16657 {
16658 struct_pdi->name
16659 = ((const char *)
16660 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16661 actual_class_name,
16662 strlen (actual_class_name)));
16663 xfree (actual_class_name);
16664 }
16665 break;
16666 }
16667 }
16668 }
16669
16670 /* Adjust PART_DIE before generating a symbol for it. This function
16671 may set the is_external flag or change the DIE's name. */
16672
16673 static void
16674 fixup_partial_die (struct partial_die_info *part_die,
16675 struct dwarf2_cu *cu)
16676 {
16677 /* Once we've fixed up a die, there's no point in doing so again.
16678 This also avoids a memory leak if we were to call
16679 guess_partial_die_structure_name multiple times. */
16680 if (part_die->fixup_called)
16681 return;
16682
16683 /* If we found a reference attribute and the DIE has no name, try
16684 to find a name in the referred to DIE. */
16685
16686 if (part_die->name == NULL && part_die->has_specification)
16687 {
16688 struct partial_die_info *spec_die;
16689
16690 spec_die = find_partial_die (part_die->spec_offset,
16691 part_die->spec_is_dwz, cu);
16692
16693 fixup_partial_die (spec_die, cu);
16694
16695 if (spec_die->name)
16696 {
16697 part_die->name = spec_die->name;
16698
16699 /* Copy DW_AT_external attribute if it is set. */
16700 if (spec_die->is_external)
16701 part_die->is_external = spec_die->is_external;
16702 }
16703 }
16704
16705 /* Set default names for some unnamed DIEs. */
16706
16707 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16708 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16709
16710 /* If there is no parent die to provide a namespace, and there are
16711 children, see if we can determine the namespace from their linkage
16712 name. */
16713 if (cu->language == language_cplus
16714 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16715 && part_die->die_parent == NULL
16716 && part_die->has_children
16717 && (part_die->tag == DW_TAG_class_type
16718 || part_die->tag == DW_TAG_structure_type
16719 || part_die->tag == DW_TAG_union_type))
16720 guess_partial_die_structure_name (part_die, cu);
16721
16722 /* GCC might emit a nameless struct or union that has a linkage
16723 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16724 if (part_die->name == NULL
16725 && (part_die->tag == DW_TAG_class_type
16726 || part_die->tag == DW_TAG_interface_type
16727 || part_die->tag == DW_TAG_structure_type
16728 || part_die->tag == DW_TAG_union_type)
16729 && part_die->linkage_name != NULL)
16730 {
16731 char *demangled;
16732
16733 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16734 if (demangled)
16735 {
16736 const char *base;
16737
16738 /* Strip any leading namespaces/classes, keep only the base name.
16739 DW_AT_name for named DIEs does not contain the prefixes. */
16740 base = strrchr (demangled, ':');
16741 if (base && base > demangled && base[-1] == ':')
16742 base++;
16743 else
16744 base = demangled;
16745
16746 part_die->name
16747 = ((const char *)
16748 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16749 base, strlen (base)));
16750 xfree (demangled);
16751 }
16752 }
16753
16754 part_die->fixup_called = 1;
16755 }
16756
16757 /* Read an attribute value described by an attribute form. */
16758
16759 static const gdb_byte *
16760 read_attribute_value (const struct die_reader_specs *reader,
16761 struct attribute *attr, unsigned form,
16762 LONGEST implicit_const, const gdb_byte *info_ptr)
16763 {
16764 struct dwarf2_cu *cu = reader->cu;
16765 struct objfile *objfile = cu->objfile;
16766 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16767 bfd *abfd = reader->abfd;
16768 struct comp_unit_head *cu_header = &cu->header;
16769 unsigned int bytes_read;
16770 struct dwarf_block *blk;
16771
16772 attr->form = (enum dwarf_form) form;
16773 switch (form)
16774 {
16775 case DW_FORM_ref_addr:
16776 if (cu->header.version == 2)
16777 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16778 else
16779 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16780 &cu->header, &bytes_read);
16781 info_ptr += bytes_read;
16782 break;
16783 case DW_FORM_GNU_ref_alt:
16784 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16785 info_ptr += bytes_read;
16786 break;
16787 case DW_FORM_addr:
16788 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16789 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16790 info_ptr += bytes_read;
16791 break;
16792 case DW_FORM_block2:
16793 blk = dwarf_alloc_block (cu);
16794 blk->size = read_2_bytes (abfd, info_ptr);
16795 info_ptr += 2;
16796 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16797 info_ptr += blk->size;
16798 DW_BLOCK (attr) = blk;
16799 break;
16800 case DW_FORM_block4:
16801 blk = dwarf_alloc_block (cu);
16802 blk->size = read_4_bytes (abfd, info_ptr);
16803 info_ptr += 4;
16804 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16805 info_ptr += blk->size;
16806 DW_BLOCK (attr) = blk;
16807 break;
16808 case DW_FORM_data2:
16809 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16810 info_ptr += 2;
16811 break;
16812 case DW_FORM_data4:
16813 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16814 info_ptr += 4;
16815 break;
16816 case DW_FORM_data8:
16817 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16818 info_ptr += 8;
16819 break;
16820 case DW_FORM_data16:
16821 blk = dwarf_alloc_block (cu);
16822 blk->size = 16;
16823 blk->data = read_n_bytes (abfd, info_ptr, 16);
16824 info_ptr += 16;
16825 DW_BLOCK (attr) = blk;
16826 break;
16827 case DW_FORM_sec_offset:
16828 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16829 info_ptr += bytes_read;
16830 break;
16831 case DW_FORM_string:
16832 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16833 DW_STRING_IS_CANONICAL (attr) = 0;
16834 info_ptr += bytes_read;
16835 break;
16836 case DW_FORM_strp:
16837 if (!cu->per_cu->is_dwz)
16838 {
16839 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16840 &bytes_read);
16841 DW_STRING_IS_CANONICAL (attr) = 0;
16842 info_ptr += bytes_read;
16843 break;
16844 }
16845 /* FALLTHROUGH */
16846 case DW_FORM_line_strp:
16847 if (!cu->per_cu->is_dwz)
16848 {
16849 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16850 cu_header, &bytes_read);
16851 DW_STRING_IS_CANONICAL (attr) = 0;
16852 info_ptr += bytes_read;
16853 break;
16854 }
16855 /* FALLTHROUGH */
16856 case DW_FORM_GNU_strp_alt:
16857 {
16858 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16859 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16860 &bytes_read);
16861
16862 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16863 DW_STRING_IS_CANONICAL (attr) = 0;
16864 info_ptr += bytes_read;
16865 }
16866 break;
16867 case DW_FORM_exprloc:
16868 case DW_FORM_block:
16869 blk = dwarf_alloc_block (cu);
16870 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16871 info_ptr += bytes_read;
16872 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16873 info_ptr += blk->size;
16874 DW_BLOCK (attr) = blk;
16875 break;
16876 case DW_FORM_block1:
16877 blk = dwarf_alloc_block (cu);
16878 blk->size = read_1_byte (abfd, info_ptr);
16879 info_ptr += 1;
16880 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16881 info_ptr += blk->size;
16882 DW_BLOCK (attr) = blk;
16883 break;
16884 case DW_FORM_data1:
16885 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16886 info_ptr += 1;
16887 break;
16888 case DW_FORM_flag:
16889 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16890 info_ptr += 1;
16891 break;
16892 case DW_FORM_flag_present:
16893 DW_UNSND (attr) = 1;
16894 break;
16895 case DW_FORM_sdata:
16896 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16897 info_ptr += bytes_read;
16898 break;
16899 case DW_FORM_udata:
16900 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16901 info_ptr += bytes_read;
16902 break;
16903 case DW_FORM_ref1:
16904 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16905 + read_1_byte (abfd, info_ptr));
16906 info_ptr += 1;
16907 break;
16908 case DW_FORM_ref2:
16909 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16910 + read_2_bytes (abfd, info_ptr));
16911 info_ptr += 2;
16912 break;
16913 case DW_FORM_ref4:
16914 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16915 + read_4_bytes (abfd, info_ptr));
16916 info_ptr += 4;
16917 break;
16918 case DW_FORM_ref8:
16919 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16920 + read_8_bytes (abfd, info_ptr));
16921 info_ptr += 8;
16922 break;
16923 case DW_FORM_ref_sig8:
16924 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16925 info_ptr += 8;
16926 break;
16927 case DW_FORM_ref_udata:
16928 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16929 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16930 info_ptr += bytes_read;
16931 break;
16932 case DW_FORM_indirect:
16933 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16934 info_ptr += bytes_read;
16935 if (form == DW_FORM_implicit_const)
16936 {
16937 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16938 info_ptr += bytes_read;
16939 }
16940 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16941 info_ptr);
16942 break;
16943 case DW_FORM_implicit_const:
16944 DW_SND (attr) = implicit_const;
16945 break;
16946 case DW_FORM_GNU_addr_index:
16947 if (reader->dwo_file == NULL)
16948 {
16949 /* For now flag a hard error.
16950 Later we can turn this into a complaint. */
16951 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16952 dwarf_form_name (form),
16953 bfd_get_filename (abfd));
16954 }
16955 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16956 info_ptr += bytes_read;
16957 break;
16958 case DW_FORM_GNU_str_index:
16959 if (reader->dwo_file == NULL)
16960 {
16961 /* For now flag a hard error.
16962 Later we can turn this into a complaint if warranted. */
16963 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16964 dwarf_form_name (form),
16965 bfd_get_filename (abfd));
16966 }
16967 {
16968 ULONGEST str_index =
16969 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16970
16971 DW_STRING (attr) = read_str_index (reader, str_index);
16972 DW_STRING_IS_CANONICAL (attr) = 0;
16973 info_ptr += bytes_read;
16974 }
16975 break;
16976 default:
16977 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16978 dwarf_form_name (form),
16979 bfd_get_filename (abfd));
16980 }
16981
16982 /* Super hack. */
16983 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16984 attr->form = DW_FORM_GNU_ref_alt;
16985
16986 /* We have seen instances where the compiler tried to emit a byte
16987 size attribute of -1 which ended up being encoded as an unsigned
16988 0xffffffff. Although 0xffffffff is technically a valid size value,
16989 an object of this size seems pretty unlikely so we can relatively
16990 safely treat these cases as if the size attribute was invalid and
16991 treat them as zero by default. */
16992 if (attr->name == DW_AT_byte_size
16993 && form == DW_FORM_data4
16994 && DW_UNSND (attr) >= 0xffffffff)
16995 {
16996 complaint
16997 (&symfile_complaints,
16998 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16999 hex_string (DW_UNSND (attr)));
17000 DW_UNSND (attr) = 0;
17001 }
17002
17003 return info_ptr;
17004 }
17005
17006 /* Read an attribute described by an abbreviated attribute. */
17007
17008 static const gdb_byte *
17009 read_attribute (const struct die_reader_specs *reader,
17010 struct attribute *attr, struct attr_abbrev *abbrev,
17011 const gdb_byte *info_ptr)
17012 {
17013 attr->name = abbrev->name;
17014 return read_attribute_value (reader, attr, abbrev->form,
17015 abbrev->implicit_const, info_ptr);
17016 }
17017
17018 /* Read dwarf information from a buffer. */
17019
17020 static unsigned int
17021 read_1_byte (bfd *abfd, const gdb_byte *buf)
17022 {
17023 return bfd_get_8 (abfd, buf);
17024 }
17025
17026 static int
17027 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
17028 {
17029 return bfd_get_signed_8 (abfd, buf);
17030 }
17031
17032 static unsigned int
17033 read_2_bytes (bfd *abfd, const gdb_byte *buf)
17034 {
17035 return bfd_get_16 (abfd, buf);
17036 }
17037
17038 static int
17039 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
17040 {
17041 return bfd_get_signed_16 (abfd, buf);
17042 }
17043
17044 static unsigned int
17045 read_4_bytes (bfd *abfd, const gdb_byte *buf)
17046 {
17047 return bfd_get_32 (abfd, buf);
17048 }
17049
17050 static int
17051 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
17052 {
17053 return bfd_get_signed_32 (abfd, buf);
17054 }
17055
17056 static ULONGEST
17057 read_8_bytes (bfd *abfd, const gdb_byte *buf)
17058 {
17059 return bfd_get_64 (abfd, buf);
17060 }
17061
17062 static CORE_ADDR
17063 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
17064 unsigned int *bytes_read)
17065 {
17066 struct comp_unit_head *cu_header = &cu->header;
17067 CORE_ADDR retval = 0;
17068
17069 if (cu_header->signed_addr_p)
17070 {
17071 switch (cu_header->addr_size)
17072 {
17073 case 2:
17074 retval = bfd_get_signed_16 (abfd, buf);
17075 break;
17076 case 4:
17077 retval = bfd_get_signed_32 (abfd, buf);
17078 break;
17079 case 8:
17080 retval = bfd_get_signed_64 (abfd, buf);
17081 break;
17082 default:
17083 internal_error (__FILE__, __LINE__,
17084 _("read_address: bad switch, signed [in module %s]"),
17085 bfd_get_filename (abfd));
17086 }
17087 }
17088 else
17089 {
17090 switch (cu_header->addr_size)
17091 {
17092 case 2:
17093 retval = bfd_get_16 (abfd, buf);
17094 break;
17095 case 4:
17096 retval = bfd_get_32 (abfd, buf);
17097 break;
17098 case 8:
17099 retval = bfd_get_64 (abfd, buf);
17100 break;
17101 default:
17102 internal_error (__FILE__, __LINE__,
17103 _("read_address: bad switch, "
17104 "unsigned [in module %s]"),
17105 bfd_get_filename (abfd));
17106 }
17107 }
17108
17109 *bytes_read = cu_header->addr_size;
17110 return retval;
17111 }
17112
17113 /* Read the initial length from a section. The (draft) DWARF 3
17114 specification allows the initial length to take up either 4 bytes
17115 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17116 bytes describe the length and all offsets will be 8 bytes in length
17117 instead of 4.
17118
17119 An older, non-standard 64-bit format is also handled by this
17120 function. The older format in question stores the initial length
17121 as an 8-byte quantity without an escape value. Lengths greater
17122 than 2^32 aren't very common which means that the initial 4 bytes
17123 is almost always zero. Since a length value of zero doesn't make
17124 sense for the 32-bit format, this initial zero can be considered to
17125 be an escape value which indicates the presence of the older 64-bit
17126 format. As written, the code can't detect (old format) lengths
17127 greater than 4GB. If it becomes necessary to handle lengths
17128 somewhat larger than 4GB, we could allow other small values (such
17129 as the non-sensical values of 1, 2, and 3) to also be used as
17130 escape values indicating the presence of the old format.
17131
17132 The value returned via bytes_read should be used to increment the
17133 relevant pointer after calling read_initial_length().
17134
17135 [ Note: read_initial_length() and read_offset() are based on the
17136 document entitled "DWARF Debugging Information Format", revision
17137 3, draft 8, dated November 19, 2001. This document was obtained
17138 from:
17139
17140 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
17141
17142 This document is only a draft and is subject to change. (So beware.)
17143
17144 Details regarding the older, non-standard 64-bit format were
17145 determined empirically by examining 64-bit ELF files produced by
17146 the SGI toolchain on an IRIX 6.5 machine.
17147
17148 - Kevin, July 16, 2002
17149 ] */
17150
17151 static LONGEST
17152 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
17153 {
17154 LONGEST length = bfd_get_32 (abfd, buf);
17155
17156 if (length == 0xffffffff)
17157 {
17158 length = bfd_get_64 (abfd, buf + 4);
17159 *bytes_read = 12;
17160 }
17161 else if (length == 0)
17162 {
17163 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
17164 length = bfd_get_64 (abfd, buf);
17165 *bytes_read = 8;
17166 }
17167 else
17168 {
17169 *bytes_read = 4;
17170 }
17171
17172 return length;
17173 }
17174
17175 /* Cover function for read_initial_length.
17176 Returns the length of the object at BUF, and stores the size of the
17177 initial length in *BYTES_READ and stores the size that offsets will be in
17178 *OFFSET_SIZE.
17179 If the initial length size is not equivalent to that specified in
17180 CU_HEADER then issue a complaint.
17181 This is useful when reading non-comp-unit headers. */
17182
17183 static LONGEST
17184 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
17185 const struct comp_unit_head *cu_header,
17186 unsigned int *bytes_read,
17187 unsigned int *offset_size)
17188 {
17189 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17190
17191 gdb_assert (cu_header->initial_length_size == 4
17192 || cu_header->initial_length_size == 8
17193 || cu_header->initial_length_size == 12);
17194
17195 if (cu_header->initial_length_size != *bytes_read)
17196 complaint (&symfile_complaints,
17197 _("intermixed 32-bit and 64-bit DWARF sections"));
17198
17199 *offset_size = (*bytes_read == 4) ? 4 : 8;
17200 return length;
17201 }
17202
17203 /* Read an offset from the data stream. The size of the offset is
17204 given by cu_header->offset_size. */
17205
17206 static LONGEST
17207 read_offset (bfd *abfd, const gdb_byte *buf,
17208 const struct comp_unit_head *cu_header,
17209 unsigned int *bytes_read)
17210 {
17211 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
17212
17213 *bytes_read = cu_header->offset_size;
17214 return offset;
17215 }
17216
17217 /* Read an offset from the data stream. */
17218
17219 static LONGEST
17220 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
17221 {
17222 LONGEST retval = 0;
17223
17224 switch (offset_size)
17225 {
17226 case 4:
17227 retval = bfd_get_32 (abfd, buf);
17228 break;
17229 case 8:
17230 retval = bfd_get_64 (abfd, buf);
17231 break;
17232 default:
17233 internal_error (__FILE__, __LINE__,
17234 _("read_offset_1: bad switch [in module %s]"),
17235 bfd_get_filename (abfd));
17236 }
17237
17238 return retval;
17239 }
17240
17241 static const gdb_byte *
17242 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
17243 {
17244 /* If the size of a host char is 8 bits, we can return a pointer
17245 to the buffer, otherwise we have to copy the data to a buffer
17246 allocated on the temporary obstack. */
17247 gdb_assert (HOST_CHAR_BIT == 8);
17248 return buf;
17249 }
17250
17251 static const char *
17252 read_direct_string (bfd *abfd, const gdb_byte *buf,
17253 unsigned int *bytes_read_ptr)
17254 {
17255 /* If the size of a host char is 8 bits, we can return a pointer
17256 to the string, otherwise we have to copy the string to a buffer
17257 allocated on the temporary obstack. */
17258 gdb_assert (HOST_CHAR_BIT == 8);
17259 if (*buf == '\0')
17260 {
17261 *bytes_read_ptr = 1;
17262 return NULL;
17263 }
17264 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17265 return (const char *) buf;
17266 }
17267
17268 /* Return pointer to string at section SECT offset STR_OFFSET with error
17269 reporting strings FORM_NAME and SECT_NAME. */
17270
17271 static const char *
17272 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17273 struct dwarf2_section_info *sect,
17274 const char *form_name,
17275 const char *sect_name)
17276 {
17277 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17278 if (sect->buffer == NULL)
17279 error (_("%s used without %s section [in module %s]"),
17280 form_name, sect_name, bfd_get_filename (abfd));
17281 if (str_offset >= sect->size)
17282 error (_("%s pointing outside of %s section [in module %s]"),
17283 form_name, sect_name, bfd_get_filename (abfd));
17284 gdb_assert (HOST_CHAR_BIT == 8);
17285 if (sect->buffer[str_offset] == '\0')
17286 return NULL;
17287 return (const char *) (sect->buffer + str_offset);
17288 }
17289
17290 /* Return pointer to string at .debug_str offset STR_OFFSET. */
17291
17292 static const char *
17293 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17294 {
17295 return read_indirect_string_at_offset_from (abfd, str_offset,
17296 &dwarf2_per_objfile->str,
17297 "DW_FORM_strp", ".debug_str");
17298 }
17299
17300 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17301
17302 static const char *
17303 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17304 {
17305 return read_indirect_string_at_offset_from (abfd, str_offset,
17306 &dwarf2_per_objfile->line_str,
17307 "DW_FORM_line_strp",
17308 ".debug_line_str");
17309 }
17310
17311 /* Read a string at offset STR_OFFSET in the .debug_str section from
17312 the .dwz file DWZ. Throw an error if the offset is too large. If
17313 the string consists of a single NUL byte, return NULL; otherwise
17314 return a pointer to the string. */
17315
17316 static const char *
17317 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17318 {
17319 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17320
17321 if (dwz->str.buffer == NULL)
17322 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17323 "section [in module %s]"),
17324 bfd_get_filename (dwz->dwz_bfd));
17325 if (str_offset >= dwz->str.size)
17326 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17327 ".debug_str section [in module %s]"),
17328 bfd_get_filename (dwz->dwz_bfd));
17329 gdb_assert (HOST_CHAR_BIT == 8);
17330 if (dwz->str.buffer[str_offset] == '\0')
17331 return NULL;
17332 return (const char *) (dwz->str.buffer + str_offset);
17333 }
17334
17335 /* Return pointer to string at .debug_str offset as read from BUF.
17336 BUF is assumed to be in a compilation unit described by CU_HEADER.
17337 Return *BYTES_READ_PTR count of bytes read from BUF. */
17338
17339 static const char *
17340 read_indirect_string (bfd *abfd, const gdb_byte *buf,
17341 const struct comp_unit_head *cu_header,
17342 unsigned int *bytes_read_ptr)
17343 {
17344 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17345
17346 return read_indirect_string_at_offset (abfd, str_offset);
17347 }
17348
17349 /* Return pointer to string at .debug_line_str offset as read from BUF.
17350 BUF is assumed to be in a compilation unit described by CU_HEADER.
17351 Return *BYTES_READ_PTR count of bytes read from BUF. */
17352
17353 static const char *
17354 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17355 const struct comp_unit_head *cu_header,
17356 unsigned int *bytes_read_ptr)
17357 {
17358 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17359
17360 return read_indirect_line_string_at_offset (abfd, str_offset);
17361 }
17362
17363 ULONGEST
17364 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
17365 unsigned int *bytes_read_ptr)
17366 {
17367 ULONGEST result;
17368 unsigned int num_read;
17369 int shift;
17370 unsigned char byte;
17371
17372 result = 0;
17373 shift = 0;
17374 num_read = 0;
17375 while (1)
17376 {
17377 byte = bfd_get_8 (abfd, buf);
17378 buf++;
17379 num_read++;
17380 result |= ((ULONGEST) (byte & 127) << shift);
17381 if ((byte & 128) == 0)
17382 {
17383 break;
17384 }
17385 shift += 7;
17386 }
17387 *bytes_read_ptr = num_read;
17388 return result;
17389 }
17390
17391 static LONGEST
17392 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17393 unsigned int *bytes_read_ptr)
17394 {
17395 LONGEST result;
17396 int shift, num_read;
17397 unsigned char byte;
17398
17399 result = 0;
17400 shift = 0;
17401 num_read = 0;
17402 while (1)
17403 {
17404 byte = bfd_get_8 (abfd, buf);
17405 buf++;
17406 num_read++;
17407 result |= ((LONGEST) (byte & 127) << shift);
17408 shift += 7;
17409 if ((byte & 128) == 0)
17410 {
17411 break;
17412 }
17413 }
17414 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
17415 result |= -(((LONGEST) 1) << shift);
17416 *bytes_read_ptr = num_read;
17417 return result;
17418 }
17419
17420 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
17421 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17422 ADDR_SIZE is the size of addresses from the CU header. */
17423
17424 static CORE_ADDR
17425 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17426 {
17427 struct objfile *objfile = dwarf2_per_objfile->objfile;
17428 bfd *abfd = objfile->obfd;
17429 const gdb_byte *info_ptr;
17430
17431 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17432 if (dwarf2_per_objfile->addr.buffer == NULL)
17433 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
17434 objfile_name (objfile));
17435 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17436 error (_("DW_FORM_addr_index pointing outside of "
17437 ".debug_addr section [in module %s]"),
17438 objfile_name (objfile));
17439 info_ptr = (dwarf2_per_objfile->addr.buffer
17440 + addr_base + addr_index * addr_size);
17441 if (addr_size == 4)
17442 return bfd_get_32 (abfd, info_ptr);
17443 else
17444 return bfd_get_64 (abfd, info_ptr);
17445 }
17446
17447 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17448
17449 static CORE_ADDR
17450 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17451 {
17452 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17453 }
17454
17455 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17456
17457 static CORE_ADDR
17458 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
17459 unsigned int *bytes_read)
17460 {
17461 bfd *abfd = cu->objfile->obfd;
17462 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17463
17464 return read_addr_index (cu, addr_index);
17465 }
17466
17467 /* Data structure to pass results from dwarf2_read_addr_index_reader
17468 back to dwarf2_read_addr_index. */
17469
17470 struct dwarf2_read_addr_index_data
17471 {
17472 ULONGEST addr_base;
17473 int addr_size;
17474 };
17475
17476 /* die_reader_func for dwarf2_read_addr_index. */
17477
17478 static void
17479 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
17480 const gdb_byte *info_ptr,
17481 struct die_info *comp_unit_die,
17482 int has_children,
17483 void *data)
17484 {
17485 struct dwarf2_cu *cu = reader->cu;
17486 struct dwarf2_read_addr_index_data *aidata =
17487 (struct dwarf2_read_addr_index_data *) data;
17488
17489 aidata->addr_base = cu->addr_base;
17490 aidata->addr_size = cu->header.addr_size;
17491 }
17492
17493 /* Given an index in .debug_addr, fetch the value.
17494 NOTE: This can be called during dwarf expression evaluation,
17495 long after the debug information has been read, and thus per_cu->cu
17496 may no longer exist. */
17497
17498 CORE_ADDR
17499 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17500 unsigned int addr_index)
17501 {
17502 struct objfile *objfile = per_cu->objfile;
17503 struct dwarf2_cu *cu = per_cu->cu;
17504 ULONGEST addr_base;
17505 int addr_size;
17506
17507 /* This is intended to be called from outside this file. */
17508 dw2_setup (objfile);
17509
17510 /* We need addr_base and addr_size.
17511 If we don't have PER_CU->cu, we have to get it.
17512 Nasty, but the alternative is storing the needed info in PER_CU,
17513 which at this point doesn't seem justified: it's not clear how frequently
17514 it would get used and it would increase the size of every PER_CU.
17515 Entry points like dwarf2_per_cu_addr_size do a similar thing
17516 so we're not in uncharted territory here.
17517 Alas we need to be a bit more complicated as addr_base is contained
17518 in the DIE.
17519
17520 We don't need to read the entire CU(/TU).
17521 We just need the header and top level die.
17522
17523 IWBN to use the aging mechanism to let us lazily later discard the CU.
17524 For now we skip this optimization. */
17525
17526 if (cu != NULL)
17527 {
17528 addr_base = cu->addr_base;
17529 addr_size = cu->header.addr_size;
17530 }
17531 else
17532 {
17533 struct dwarf2_read_addr_index_data aidata;
17534
17535 /* Note: We can't use init_cutu_and_read_dies_simple here,
17536 we need addr_base. */
17537 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17538 dwarf2_read_addr_index_reader, &aidata);
17539 addr_base = aidata.addr_base;
17540 addr_size = aidata.addr_size;
17541 }
17542
17543 return read_addr_index_1 (addr_index, addr_base, addr_size);
17544 }
17545
17546 /* Given a DW_FORM_GNU_str_index, fetch the string.
17547 This is only used by the Fission support. */
17548
17549 static const char *
17550 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
17551 {
17552 struct objfile *objfile = dwarf2_per_objfile->objfile;
17553 const char *objf_name = objfile_name (objfile);
17554 bfd *abfd = objfile->obfd;
17555 struct dwarf2_cu *cu = reader->cu;
17556 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17557 struct dwarf2_section_info *str_offsets_section =
17558 &reader->dwo_file->sections.str_offsets;
17559 const gdb_byte *info_ptr;
17560 ULONGEST str_offset;
17561 static const char form_name[] = "DW_FORM_GNU_str_index";
17562
17563 dwarf2_read_section (objfile, str_section);
17564 dwarf2_read_section (objfile, str_offsets_section);
17565 if (str_section->buffer == NULL)
17566 error (_("%s used without .debug_str.dwo section"
17567 " in CU at offset 0x%x [in module %s]"),
17568 form_name, to_underlying (cu->header.sect_off), objf_name);
17569 if (str_offsets_section->buffer == NULL)
17570 error (_("%s used without .debug_str_offsets.dwo section"
17571 " in CU at offset 0x%x [in module %s]"),
17572 form_name, to_underlying (cu->header.sect_off), objf_name);
17573 if (str_index * cu->header.offset_size >= str_offsets_section->size)
17574 error (_("%s pointing outside of .debug_str_offsets.dwo"
17575 " section in CU at offset 0x%x [in module %s]"),
17576 form_name, to_underlying (cu->header.sect_off), objf_name);
17577 info_ptr = (str_offsets_section->buffer
17578 + str_index * cu->header.offset_size);
17579 if (cu->header.offset_size == 4)
17580 str_offset = bfd_get_32 (abfd, info_ptr);
17581 else
17582 str_offset = bfd_get_64 (abfd, info_ptr);
17583 if (str_offset >= str_section->size)
17584 error (_("Offset from %s pointing outside of"
17585 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
17586 form_name, to_underlying (cu->header.sect_off), objf_name);
17587 return (const char *) (str_section->buffer + str_offset);
17588 }
17589
17590 /* Return the length of an LEB128 number in BUF. */
17591
17592 static int
17593 leb128_size (const gdb_byte *buf)
17594 {
17595 const gdb_byte *begin = buf;
17596 gdb_byte byte;
17597
17598 while (1)
17599 {
17600 byte = *buf++;
17601 if ((byte & 128) == 0)
17602 return buf - begin;
17603 }
17604 }
17605
17606 static void
17607 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17608 {
17609 switch (lang)
17610 {
17611 case DW_LANG_C89:
17612 case DW_LANG_C99:
17613 case DW_LANG_C11:
17614 case DW_LANG_C:
17615 case DW_LANG_UPC:
17616 cu->language = language_c;
17617 break;
17618 case DW_LANG_Java:
17619 case DW_LANG_C_plus_plus:
17620 case DW_LANG_C_plus_plus_11:
17621 case DW_LANG_C_plus_plus_14:
17622 cu->language = language_cplus;
17623 break;
17624 case DW_LANG_D:
17625 cu->language = language_d;
17626 break;
17627 case DW_LANG_Fortran77:
17628 case DW_LANG_Fortran90:
17629 case DW_LANG_Fortran95:
17630 case DW_LANG_Fortran03:
17631 case DW_LANG_Fortran08:
17632 cu->language = language_fortran;
17633 break;
17634 case DW_LANG_Go:
17635 cu->language = language_go;
17636 break;
17637 case DW_LANG_Mips_Assembler:
17638 cu->language = language_asm;
17639 break;
17640 case DW_LANG_Ada83:
17641 case DW_LANG_Ada95:
17642 cu->language = language_ada;
17643 break;
17644 case DW_LANG_Modula2:
17645 cu->language = language_m2;
17646 break;
17647 case DW_LANG_Pascal83:
17648 cu->language = language_pascal;
17649 break;
17650 case DW_LANG_ObjC:
17651 cu->language = language_objc;
17652 break;
17653 case DW_LANG_Rust:
17654 case DW_LANG_Rust_old:
17655 cu->language = language_rust;
17656 break;
17657 case DW_LANG_Cobol74:
17658 case DW_LANG_Cobol85:
17659 default:
17660 cu->language = language_minimal;
17661 break;
17662 }
17663 cu->language_defn = language_def (cu->language);
17664 }
17665
17666 /* Return the named attribute or NULL if not there. */
17667
17668 static struct attribute *
17669 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17670 {
17671 for (;;)
17672 {
17673 unsigned int i;
17674 struct attribute *spec = NULL;
17675
17676 for (i = 0; i < die->num_attrs; ++i)
17677 {
17678 if (die->attrs[i].name == name)
17679 return &die->attrs[i];
17680 if (die->attrs[i].name == DW_AT_specification
17681 || die->attrs[i].name == DW_AT_abstract_origin)
17682 spec = &die->attrs[i];
17683 }
17684
17685 if (!spec)
17686 break;
17687
17688 die = follow_die_ref (die, spec, &cu);
17689 }
17690
17691 return NULL;
17692 }
17693
17694 /* Return the named attribute or NULL if not there,
17695 but do not follow DW_AT_specification, etc.
17696 This is for use in contexts where we're reading .debug_types dies.
17697 Following DW_AT_specification, DW_AT_abstract_origin will take us
17698 back up the chain, and we want to go down. */
17699
17700 static struct attribute *
17701 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17702 {
17703 unsigned int i;
17704
17705 for (i = 0; i < die->num_attrs; ++i)
17706 if (die->attrs[i].name == name)
17707 return &die->attrs[i];
17708
17709 return NULL;
17710 }
17711
17712 /* Return the string associated with a string-typed attribute, or NULL if it
17713 is either not found or is of an incorrect type. */
17714
17715 static const char *
17716 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17717 {
17718 struct attribute *attr;
17719 const char *str = NULL;
17720
17721 attr = dwarf2_attr (die, name, cu);
17722
17723 if (attr != NULL)
17724 {
17725 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
17726 || attr->form == DW_FORM_string
17727 || attr->form == DW_FORM_GNU_str_index
17728 || attr->form == DW_FORM_GNU_strp_alt)
17729 str = DW_STRING (attr);
17730 else
17731 complaint (&symfile_complaints,
17732 _("string type expected for attribute %s for "
17733 "DIE at 0x%x in module %s"),
17734 dwarf_attr_name (name), to_underlying (die->sect_off),
17735 objfile_name (cu->objfile));
17736 }
17737
17738 return str;
17739 }
17740
17741 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17742 and holds a non-zero value. This function should only be used for
17743 DW_FORM_flag or DW_FORM_flag_present attributes. */
17744
17745 static int
17746 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17747 {
17748 struct attribute *attr = dwarf2_attr (die, name, cu);
17749
17750 return (attr && DW_UNSND (attr));
17751 }
17752
17753 static int
17754 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17755 {
17756 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17757 which value is non-zero. However, we have to be careful with
17758 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17759 (via dwarf2_flag_true_p) follows this attribute. So we may
17760 end up accidently finding a declaration attribute that belongs
17761 to a different DIE referenced by the specification attribute,
17762 even though the given DIE does not have a declaration attribute. */
17763 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17764 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17765 }
17766
17767 /* Return the die giving the specification for DIE, if there is
17768 one. *SPEC_CU is the CU containing DIE on input, and the CU
17769 containing the return value on output. If there is no
17770 specification, but there is an abstract origin, that is
17771 returned. */
17772
17773 static struct die_info *
17774 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17775 {
17776 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17777 *spec_cu);
17778
17779 if (spec_attr == NULL)
17780 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17781
17782 if (spec_attr == NULL)
17783 return NULL;
17784 else
17785 return follow_die_ref (die, spec_attr, spec_cu);
17786 }
17787
17788 /* Stub for free_line_header to match void * callback types. */
17789
17790 static void
17791 free_line_header_voidp (void *arg)
17792 {
17793 struct line_header *lh = (struct line_header *) arg;
17794
17795 delete lh;
17796 }
17797
17798 void
17799 line_header::add_include_dir (const char *include_dir)
17800 {
17801 if (dwarf_line_debug >= 2)
17802 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
17803 include_dirs.size () + 1, include_dir);
17804
17805 include_dirs.push_back (include_dir);
17806 }
17807
17808 void
17809 line_header::add_file_name (const char *name,
17810 dir_index d_index,
17811 unsigned int mod_time,
17812 unsigned int length)
17813 {
17814 if (dwarf_line_debug >= 2)
17815 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17816 (unsigned) file_names.size () + 1, name);
17817
17818 file_names.emplace_back (name, d_index, mod_time, length);
17819 }
17820
17821 /* A convenience function to find the proper .debug_line section for a CU. */
17822
17823 static struct dwarf2_section_info *
17824 get_debug_line_section (struct dwarf2_cu *cu)
17825 {
17826 struct dwarf2_section_info *section;
17827
17828 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17829 DWO file. */
17830 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17831 section = &cu->dwo_unit->dwo_file->sections.line;
17832 else if (cu->per_cu->is_dwz)
17833 {
17834 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17835
17836 section = &dwz->line;
17837 }
17838 else
17839 section = &dwarf2_per_objfile->line;
17840
17841 return section;
17842 }
17843
17844 /* Read directory or file name entry format, starting with byte of
17845 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17846 entries count and the entries themselves in the described entry
17847 format. */
17848
17849 static void
17850 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17851 struct line_header *lh,
17852 const struct comp_unit_head *cu_header,
17853 void (*callback) (struct line_header *lh,
17854 const char *name,
17855 dir_index d_index,
17856 unsigned int mod_time,
17857 unsigned int length))
17858 {
17859 gdb_byte format_count, formati;
17860 ULONGEST data_count, datai;
17861 const gdb_byte *buf = *bufp;
17862 const gdb_byte *format_header_data;
17863 int i;
17864 unsigned int bytes_read;
17865
17866 format_count = read_1_byte (abfd, buf);
17867 buf += 1;
17868 format_header_data = buf;
17869 for (formati = 0; formati < format_count; formati++)
17870 {
17871 read_unsigned_leb128 (abfd, buf, &bytes_read);
17872 buf += bytes_read;
17873 read_unsigned_leb128 (abfd, buf, &bytes_read);
17874 buf += bytes_read;
17875 }
17876
17877 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17878 buf += bytes_read;
17879 for (datai = 0; datai < data_count; datai++)
17880 {
17881 const gdb_byte *format = format_header_data;
17882 struct file_entry fe;
17883
17884 for (formati = 0; formati < format_count; formati++)
17885 {
17886 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
17887 format += bytes_read;
17888
17889 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
17890 format += bytes_read;
17891
17892 gdb::optional<const char *> string;
17893 gdb::optional<unsigned int> uint;
17894
17895 switch (form)
17896 {
17897 case DW_FORM_string:
17898 string.emplace (read_direct_string (abfd, buf, &bytes_read));
17899 buf += bytes_read;
17900 break;
17901
17902 case DW_FORM_line_strp:
17903 string.emplace (read_indirect_line_string (abfd, buf,
17904 cu_header,
17905 &bytes_read));
17906 buf += bytes_read;
17907 break;
17908
17909 case DW_FORM_data1:
17910 uint.emplace (read_1_byte (abfd, buf));
17911 buf += 1;
17912 break;
17913
17914 case DW_FORM_data2:
17915 uint.emplace (read_2_bytes (abfd, buf));
17916 buf += 2;
17917 break;
17918
17919 case DW_FORM_data4:
17920 uint.emplace (read_4_bytes (abfd, buf));
17921 buf += 4;
17922 break;
17923
17924 case DW_FORM_data8:
17925 uint.emplace (read_8_bytes (abfd, buf));
17926 buf += 8;
17927 break;
17928
17929 case DW_FORM_udata:
17930 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
17931 buf += bytes_read;
17932 break;
17933
17934 case DW_FORM_block:
17935 /* It is valid only for DW_LNCT_timestamp which is ignored by
17936 current GDB. */
17937 break;
17938 }
17939
17940 switch (content_type)
17941 {
17942 case DW_LNCT_path:
17943 if (string.has_value ())
17944 fe.name = *string;
17945 break;
17946 case DW_LNCT_directory_index:
17947 if (uint.has_value ())
17948 fe.d_index = (dir_index) *uint;
17949 break;
17950 case DW_LNCT_timestamp:
17951 if (uint.has_value ())
17952 fe.mod_time = *uint;
17953 break;
17954 case DW_LNCT_size:
17955 if (uint.has_value ())
17956 fe.length = *uint;
17957 break;
17958 case DW_LNCT_MD5:
17959 break;
17960 default:
17961 complaint (&symfile_complaints,
17962 _("Unknown format content type %s"),
17963 pulongest (content_type));
17964 }
17965 }
17966
17967 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
17968 }
17969
17970 *bufp = buf;
17971 }
17972
17973 /* Read the statement program header starting at OFFSET in
17974 .debug_line, or .debug_line.dwo. Return a pointer
17975 to a struct line_header, allocated using xmalloc.
17976 Returns NULL if there is a problem reading the header, e.g., if it
17977 has a version we don't understand.
17978
17979 NOTE: the strings in the include directory and file name tables of
17980 the returned object point into the dwarf line section buffer,
17981 and must not be freed. */
17982
17983 static line_header_up
17984 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
17985 {
17986 const gdb_byte *line_ptr;
17987 unsigned int bytes_read, offset_size;
17988 int i;
17989 const char *cur_dir, *cur_file;
17990 struct dwarf2_section_info *section;
17991 bfd *abfd;
17992
17993 section = get_debug_line_section (cu);
17994 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17995 if (section->buffer == NULL)
17996 {
17997 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17998 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17999 else
18000 complaint (&symfile_complaints, _("missing .debug_line section"));
18001 return 0;
18002 }
18003
18004 /* We can't do this until we know the section is non-empty.
18005 Only then do we know we have such a section. */
18006 abfd = get_section_bfd_owner (section);
18007
18008 /* Make sure that at least there's room for the total_length field.
18009 That could be 12 bytes long, but we're just going to fudge that. */
18010 if (to_underlying (sect_off) + 4 >= section->size)
18011 {
18012 dwarf2_statement_list_fits_in_line_number_section_complaint ();
18013 return 0;
18014 }
18015
18016 line_header_up lh (new line_header ());
18017
18018 lh->sect_off = sect_off;
18019 lh->offset_in_dwz = cu->per_cu->is_dwz;
18020
18021 line_ptr = section->buffer + to_underlying (sect_off);
18022
18023 /* Read in the header. */
18024 lh->total_length =
18025 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
18026 &bytes_read, &offset_size);
18027 line_ptr += bytes_read;
18028 if (line_ptr + lh->total_length > (section->buffer + section->size))
18029 {
18030 dwarf2_statement_list_fits_in_line_number_section_complaint ();
18031 return 0;
18032 }
18033 lh->statement_program_end = line_ptr + lh->total_length;
18034 lh->version = read_2_bytes (abfd, line_ptr);
18035 line_ptr += 2;
18036 if (lh->version > 5)
18037 {
18038 /* This is a version we don't understand. The format could have
18039 changed in ways we don't handle properly so just punt. */
18040 complaint (&symfile_complaints,
18041 _("unsupported version in .debug_line section"));
18042 return NULL;
18043 }
18044 if (lh->version >= 5)
18045 {
18046 gdb_byte segment_selector_size;
18047
18048 /* Skip address size. */
18049 read_1_byte (abfd, line_ptr);
18050 line_ptr += 1;
18051
18052 segment_selector_size = read_1_byte (abfd, line_ptr);
18053 line_ptr += 1;
18054 if (segment_selector_size != 0)
18055 {
18056 complaint (&symfile_complaints,
18057 _("unsupported segment selector size %u "
18058 "in .debug_line section"),
18059 segment_selector_size);
18060 return NULL;
18061 }
18062 }
18063 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
18064 line_ptr += offset_size;
18065 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
18066 line_ptr += 1;
18067 if (lh->version >= 4)
18068 {
18069 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
18070 line_ptr += 1;
18071 }
18072 else
18073 lh->maximum_ops_per_instruction = 1;
18074
18075 if (lh->maximum_ops_per_instruction == 0)
18076 {
18077 lh->maximum_ops_per_instruction = 1;
18078 complaint (&symfile_complaints,
18079 _("invalid maximum_ops_per_instruction "
18080 "in `.debug_line' section"));
18081 }
18082
18083 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
18084 line_ptr += 1;
18085 lh->line_base = read_1_signed_byte (abfd, line_ptr);
18086 line_ptr += 1;
18087 lh->line_range = read_1_byte (abfd, line_ptr);
18088 line_ptr += 1;
18089 lh->opcode_base = read_1_byte (abfd, line_ptr);
18090 line_ptr += 1;
18091 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
18092
18093 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
18094 for (i = 1; i < lh->opcode_base; ++i)
18095 {
18096 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
18097 line_ptr += 1;
18098 }
18099
18100 if (lh->version >= 5)
18101 {
18102 /* Read directory table. */
18103 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18104 [] (struct line_header *lh, const char *name,
18105 dir_index d_index, unsigned int mod_time,
18106 unsigned int length)
18107 {
18108 lh->add_include_dir (name);
18109 });
18110
18111 /* Read file name table. */
18112 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18113 [] (struct line_header *lh, const char *name,
18114 dir_index d_index, unsigned int mod_time,
18115 unsigned int length)
18116 {
18117 lh->add_file_name (name, d_index, mod_time, length);
18118 });
18119 }
18120 else
18121 {
18122 /* Read directory table. */
18123 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18124 {
18125 line_ptr += bytes_read;
18126 lh->add_include_dir (cur_dir);
18127 }
18128 line_ptr += bytes_read;
18129
18130 /* Read file name table. */
18131 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18132 {
18133 unsigned int mod_time, length;
18134 dir_index d_index;
18135
18136 line_ptr += bytes_read;
18137 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18138 line_ptr += bytes_read;
18139 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18140 line_ptr += bytes_read;
18141 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18142 line_ptr += bytes_read;
18143
18144 lh->add_file_name (cur_file, d_index, mod_time, length);
18145 }
18146 line_ptr += bytes_read;
18147 }
18148 lh->statement_program_start = line_ptr;
18149
18150 if (line_ptr > (section->buffer + section->size))
18151 complaint (&symfile_complaints,
18152 _("line number info header doesn't "
18153 "fit in `.debug_line' section"));
18154
18155 return lh;
18156 }
18157
18158 /* Subroutine of dwarf_decode_lines to simplify it.
18159 Return the file name of the psymtab for included file FILE_INDEX
18160 in line header LH of PST.
18161 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18162 If space for the result is malloc'd, it will be freed by a cleanup.
18163 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18164
18165 The function creates dangling cleanup registration. */
18166
18167 static const char *
18168 psymtab_include_file_name (const struct line_header *lh, int file_index,
18169 const struct partial_symtab *pst,
18170 const char *comp_dir)
18171 {
18172 const file_entry &fe = lh->file_names[file_index];
18173 const char *include_name = fe.name;
18174 const char *include_name_to_compare = include_name;
18175 const char *pst_filename;
18176 char *copied_name = NULL;
18177 int file_is_pst;
18178
18179 const char *dir_name = fe.include_dir (lh);
18180
18181 if (!IS_ABSOLUTE_PATH (include_name)
18182 && (dir_name != NULL || comp_dir != NULL))
18183 {
18184 /* Avoid creating a duplicate psymtab for PST.
18185 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18186 Before we do the comparison, however, we need to account
18187 for DIR_NAME and COMP_DIR.
18188 First prepend dir_name (if non-NULL). If we still don't
18189 have an absolute path prepend comp_dir (if non-NULL).
18190 However, the directory we record in the include-file's
18191 psymtab does not contain COMP_DIR (to match the
18192 corresponding symtab(s)).
18193
18194 Example:
18195
18196 bash$ cd /tmp
18197 bash$ gcc -g ./hello.c
18198 include_name = "hello.c"
18199 dir_name = "."
18200 DW_AT_comp_dir = comp_dir = "/tmp"
18201 DW_AT_name = "./hello.c"
18202
18203 */
18204
18205 if (dir_name != NULL)
18206 {
18207 char *tem = concat (dir_name, SLASH_STRING,
18208 include_name, (char *)NULL);
18209
18210 make_cleanup (xfree, tem);
18211 include_name = tem;
18212 include_name_to_compare = include_name;
18213 }
18214 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18215 {
18216 char *tem = concat (comp_dir, SLASH_STRING,
18217 include_name, (char *)NULL);
18218
18219 make_cleanup (xfree, tem);
18220 include_name_to_compare = tem;
18221 }
18222 }
18223
18224 pst_filename = pst->filename;
18225 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18226 {
18227 copied_name = concat (pst->dirname, SLASH_STRING,
18228 pst_filename, (char *)NULL);
18229 pst_filename = copied_name;
18230 }
18231
18232 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
18233
18234 if (copied_name != NULL)
18235 xfree (copied_name);
18236
18237 if (file_is_pst)
18238 return NULL;
18239 return include_name;
18240 }
18241
18242 /* State machine to track the state of the line number program. */
18243
18244 class lnp_state_machine
18245 {
18246 public:
18247 /* Initialize a machine state for the start of a line number
18248 program. */
18249 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18250
18251 file_entry *current_file ()
18252 {
18253 /* lh->file_names is 0-based, but the file name numbers in the
18254 statement program are 1-based. */
18255 return m_line_header->file_name_at (m_file);
18256 }
18257
18258 /* Record the line in the state machine. END_SEQUENCE is true if
18259 we're processing the end of a sequence. */
18260 void record_line (bool end_sequence);
18261
18262 /* Check address and if invalid nop-out the rest of the lines in this
18263 sequence. */
18264 void check_line_address (struct dwarf2_cu *cu,
18265 const gdb_byte *line_ptr,
18266 CORE_ADDR lowpc, CORE_ADDR address);
18267
18268 void handle_set_discriminator (unsigned int discriminator)
18269 {
18270 m_discriminator = discriminator;
18271 m_line_has_non_zero_discriminator |= discriminator != 0;
18272 }
18273
18274 /* Handle DW_LNE_set_address. */
18275 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18276 {
18277 m_op_index = 0;
18278 address += baseaddr;
18279 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18280 }
18281
18282 /* Handle DW_LNS_advance_pc. */
18283 void handle_advance_pc (CORE_ADDR adjust);
18284
18285 /* Handle a special opcode. */
18286 void handle_special_opcode (unsigned char op_code);
18287
18288 /* Handle DW_LNS_advance_line. */
18289 void handle_advance_line (int line_delta)
18290 {
18291 advance_line (line_delta);
18292 }
18293
18294 /* Handle DW_LNS_set_file. */
18295 void handle_set_file (file_name_index file);
18296
18297 /* Handle DW_LNS_negate_stmt. */
18298 void handle_negate_stmt ()
18299 {
18300 m_is_stmt = !m_is_stmt;
18301 }
18302
18303 /* Handle DW_LNS_const_add_pc. */
18304 void handle_const_add_pc ();
18305
18306 /* Handle DW_LNS_fixed_advance_pc. */
18307 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18308 {
18309 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18310 m_op_index = 0;
18311 }
18312
18313 /* Handle DW_LNS_copy. */
18314 void handle_copy ()
18315 {
18316 record_line (false);
18317 m_discriminator = 0;
18318 }
18319
18320 /* Handle DW_LNE_end_sequence. */
18321 void handle_end_sequence ()
18322 {
18323 m_record_line_callback = ::record_line;
18324 }
18325
18326 private:
18327 /* Advance the line by LINE_DELTA. */
18328 void advance_line (int line_delta)
18329 {
18330 m_line += line_delta;
18331
18332 if (line_delta != 0)
18333 m_line_has_non_zero_discriminator = m_discriminator != 0;
18334 }
18335
18336 gdbarch *m_gdbarch;
18337
18338 /* True if we're recording lines.
18339 Otherwise we're building partial symtabs and are just interested in
18340 finding include files mentioned by the line number program. */
18341 bool m_record_lines_p;
18342
18343 /* The line number header. */
18344 line_header *m_line_header;
18345
18346 /* These are part of the standard DWARF line number state machine,
18347 and initialized according to the DWARF spec. */
18348
18349 unsigned char m_op_index = 0;
18350 /* The line table index (1-based) of the current file. */
18351 file_name_index m_file = (file_name_index) 1;
18352 unsigned int m_line = 1;
18353
18354 /* These are initialized in the constructor. */
18355
18356 CORE_ADDR m_address;
18357 bool m_is_stmt;
18358 unsigned int m_discriminator;
18359
18360 /* Additional bits of state we need to track. */
18361
18362 /* The last file that we called dwarf2_start_subfile for.
18363 This is only used for TLLs. */
18364 unsigned int m_last_file = 0;
18365 /* The last file a line number was recorded for. */
18366 struct subfile *m_last_subfile = NULL;
18367
18368 /* The function to call to record a line. */
18369 record_line_ftype *m_record_line_callback = NULL;
18370
18371 /* The last line number that was recorded, used to coalesce
18372 consecutive entries for the same line. This can happen, for
18373 example, when discriminators are present. PR 17276. */
18374 unsigned int m_last_line = 0;
18375 bool m_line_has_non_zero_discriminator = false;
18376 };
18377
18378 void
18379 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18380 {
18381 CORE_ADDR addr_adj = (((m_op_index + adjust)
18382 / m_line_header->maximum_ops_per_instruction)
18383 * m_line_header->minimum_instruction_length);
18384 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18385 m_op_index = ((m_op_index + adjust)
18386 % m_line_header->maximum_ops_per_instruction);
18387 }
18388
18389 void
18390 lnp_state_machine::handle_special_opcode (unsigned char op_code)
18391 {
18392 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18393 CORE_ADDR addr_adj = (((m_op_index
18394 + (adj_opcode / m_line_header->line_range))
18395 / m_line_header->maximum_ops_per_instruction)
18396 * m_line_header->minimum_instruction_length);
18397 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18398 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18399 % m_line_header->maximum_ops_per_instruction);
18400
18401 int line_delta = (m_line_header->line_base
18402 + (adj_opcode % m_line_header->line_range));
18403 advance_line (line_delta);
18404 record_line (false);
18405 m_discriminator = 0;
18406 }
18407
18408 void
18409 lnp_state_machine::handle_set_file (file_name_index file)
18410 {
18411 m_file = file;
18412
18413 const file_entry *fe = current_file ();
18414 if (fe == NULL)
18415 dwarf2_debug_line_missing_file_complaint ();
18416 else if (m_record_lines_p)
18417 {
18418 const char *dir = fe->include_dir (m_line_header);
18419
18420 m_last_subfile = current_subfile;
18421 m_line_has_non_zero_discriminator = m_discriminator != 0;
18422 dwarf2_start_subfile (fe->name, dir);
18423 }
18424 }
18425
18426 void
18427 lnp_state_machine::handle_const_add_pc ()
18428 {
18429 CORE_ADDR adjust
18430 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18431
18432 CORE_ADDR addr_adj
18433 = (((m_op_index + adjust)
18434 / m_line_header->maximum_ops_per_instruction)
18435 * m_line_header->minimum_instruction_length);
18436
18437 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18438 m_op_index = ((m_op_index + adjust)
18439 % m_line_header->maximum_ops_per_instruction);
18440 }
18441
18442 /* Ignore this record_line request. */
18443
18444 static void
18445 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18446 {
18447 return;
18448 }
18449
18450 /* Return non-zero if we should add LINE to the line number table.
18451 LINE is the line to add, LAST_LINE is the last line that was added,
18452 LAST_SUBFILE is the subfile for LAST_LINE.
18453 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18454 had a non-zero discriminator.
18455
18456 We have to be careful in the presence of discriminators.
18457 E.g., for this line:
18458
18459 for (i = 0; i < 100000; i++);
18460
18461 clang can emit four line number entries for that one line,
18462 each with a different discriminator.
18463 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18464
18465 However, we want gdb to coalesce all four entries into one.
18466 Otherwise the user could stepi into the middle of the line and
18467 gdb would get confused about whether the pc really was in the
18468 middle of the line.
18469
18470 Things are further complicated by the fact that two consecutive
18471 line number entries for the same line is a heuristic used by gcc
18472 to denote the end of the prologue. So we can't just discard duplicate
18473 entries, we have to be selective about it. The heuristic we use is
18474 that we only collapse consecutive entries for the same line if at least
18475 one of those entries has a non-zero discriminator. PR 17276.
18476
18477 Note: Addresses in the line number state machine can never go backwards
18478 within one sequence, thus this coalescing is ok. */
18479
18480 static int
18481 dwarf_record_line_p (unsigned int line, unsigned int last_line,
18482 int line_has_non_zero_discriminator,
18483 struct subfile *last_subfile)
18484 {
18485 if (current_subfile != last_subfile)
18486 return 1;
18487 if (line != last_line)
18488 return 1;
18489 /* Same line for the same file that we've seen already.
18490 As a last check, for pr 17276, only record the line if the line
18491 has never had a non-zero discriminator. */
18492 if (!line_has_non_zero_discriminator)
18493 return 1;
18494 return 0;
18495 }
18496
18497 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18498 in the line table of subfile SUBFILE. */
18499
18500 static void
18501 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18502 unsigned int line, CORE_ADDR address,
18503 record_line_ftype p_record_line)
18504 {
18505 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18506
18507 if (dwarf_line_debug)
18508 {
18509 fprintf_unfiltered (gdb_stdlog,
18510 "Recording line %u, file %s, address %s\n",
18511 line, lbasename (subfile->name),
18512 paddress (gdbarch, address));
18513 }
18514
18515 (*p_record_line) (subfile, line, addr);
18516 }
18517
18518 /* Subroutine of dwarf_decode_lines_1 to simplify it.
18519 Mark the end of a set of line number records.
18520 The arguments are the same as for dwarf_record_line_1.
18521 If SUBFILE is NULL the request is ignored. */
18522
18523 static void
18524 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18525 CORE_ADDR address, record_line_ftype p_record_line)
18526 {
18527 if (subfile == NULL)
18528 return;
18529
18530 if (dwarf_line_debug)
18531 {
18532 fprintf_unfiltered (gdb_stdlog,
18533 "Finishing current line, file %s, address %s\n",
18534 lbasename (subfile->name),
18535 paddress (gdbarch, address));
18536 }
18537
18538 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18539 }
18540
18541 void
18542 lnp_state_machine::record_line (bool end_sequence)
18543 {
18544 if (dwarf_line_debug)
18545 {
18546 fprintf_unfiltered (gdb_stdlog,
18547 "Processing actual line %u: file %u,"
18548 " address %s, is_stmt %u, discrim %u\n",
18549 m_line, to_underlying (m_file),
18550 paddress (m_gdbarch, m_address),
18551 m_is_stmt, m_discriminator);
18552 }
18553
18554 file_entry *fe = current_file ();
18555
18556 if (fe == NULL)
18557 dwarf2_debug_line_missing_file_complaint ();
18558 /* For now we ignore lines not starting on an instruction boundary.
18559 But not when processing end_sequence for compatibility with the
18560 previous version of the code. */
18561 else if (m_op_index == 0 || end_sequence)
18562 {
18563 fe->included_p = 1;
18564 if (m_record_lines_p && m_is_stmt)
18565 {
18566 if (m_last_subfile != current_subfile || end_sequence)
18567 {
18568 dwarf_finish_line (m_gdbarch, m_last_subfile,
18569 m_address, m_record_line_callback);
18570 }
18571
18572 if (!end_sequence)
18573 {
18574 if (dwarf_record_line_p (m_line, m_last_line,
18575 m_line_has_non_zero_discriminator,
18576 m_last_subfile))
18577 {
18578 dwarf_record_line_1 (m_gdbarch, current_subfile,
18579 m_line, m_address,
18580 m_record_line_callback);
18581 }
18582 m_last_subfile = current_subfile;
18583 m_last_line = m_line;
18584 }
18585 }
18586 }
18587 }
18588
18589 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
18590 bool record_lines_p)
18591 {
18592 m_gdbarch = arch;
18593 m_record_lines_p = record_lines_p;
18594 m_line_header = lh;
18595
18596 m_record_line_callback = ::record_line;
18597
18598 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18599 was a line entry for it so that the backend has a chance to adjust it
18600 and also record it in case it needs it. This is currently used by MIPS
18601 code, cf. `mips_adjust_dwarf2_line'. */
18602 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
18603 m_is_stmt = lh->default_is_stmt;
18604 m_discriminator = 0;
18605 }
18606
18607 void
18608 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
18609 const gdb_byte *line_ptr,
18610 CORE_ADDR lowpc, CORE_ADDR address)
18611 {
18612 /* If address < lowpc then it's not a usable value, it's outside the
18613 pc range of the CU. However, we restrict the test to only address
18614 values of zero to preserve GDB's previous behaviour which is to
18615 handle the specific case of a function being GC'd by the linker. */
18616
18617 if (address == 0 && address < lowpc)
18618 {
18619 /* This line table is for a function which has been
18620 GCd by the linker. Ignore it. PR gdb/12528 */
18621
18622 struct objfile *objfile = cu->objfile;
18623 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18624
18625 complaint (&symfile_complaints,
18626 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18627 line_offset, objfile_name (objfile));
18628 m_record_line_callback = noop_record_line;
18629 /* Note: record_line_callback is left as noop_record_line until
18630 we see DW_LNE_end_sequence. */
18631 }
18632 }
18633
18634 /* Subroutine of dwarf_decode_lines to simplify it.
18635 Process the line number information in LH.
18636 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18637 program in order to set included_p for every referenced header. */
18638
18639 static void
18640 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18641 const int decode_for_pst_p, CORE_ADDR lowpc)
18642 {
18643 const gdb_byte *line_ptr, *extended_end;
18644 const gdb_byte *line_end;
18645 unsigned int bytes_read, extended_len;
18646 unsigned char op_code, extended_op;
18647 CORE_ADDR baseaddr;
18648 struct objfile *objfile = cu->objfile;
18649 bfd *abfd = objfile->obfd;
18650 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18651 /* True if we're recording line info (as opposed to building partial
18652 symtabs and just interested in finding include files mentioned by
18653 the line number program). */
18654 bool record_lines_p = !decode_for_pst_p;
18655
18656 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18657
18658 line_ptr = lh->statement_program_start;
18659 line_end = lh->statement_program_end;
18660
18661 /* Read the statement sequences until there's nothing left. */
18662 while (line_ptr < line_end)
18663 {
18664 /* The DWARF line number program state machine. Reset the state
18665 machine at the start of each sequence. */
18666 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
18667 bool end_sequence = false;
18668
18669 if (record_lines_p)
18670 {
18671 /* Start a subfile for the current file of the state
18672 machine. */
18673 const file_entry *fe = state_machine.current_file ();
18674
18675 if (fe != NULL)
18676 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
18677 }
18678
18679 /* Decode the table. */
18680 while (line_ptr < line_end && !end_sequence)
18681 {
18682 op_code = read_1_byte (abfd, line_ptr);
18683 line_ptr += 1;
18684
18685 if (op_code >= lh->opcode_base)
18686 {
18687 /* Special opcode. */
18688 state_machine.handle_special_opcode (op_code);
18689 }
18690 else switch (op_code)
18691 {
18692 case DW_LNS_extended_op:
18693 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18694 &bytes_read);
18695 line_ptr += bytes_read;
18696 extended_end = line_ptr + extended_len;
18697 extended_op = read_1_byte (abfd, line_ptr);
18698 line_ptr += 1;
18699 switch (extended_op)
18700 {
18701 case DW_LNE_end_sequence:
18702 state_machine.handle_end_sequence ();
18703 end_sequence = true;
18704 break;
18705 case DW_LNE_set_address:
18706 {
18707 CORE_ADDR address
18708 = read_address (abfd, line_ptr, cu, &bytes_read);
18709 line_ptr += bytes_read;
18710
18711 state_machine.check_line_address (cu, line_ptr,
18712 lowpc, address);
18713 state_machine.handle_set_address (baseaddr, address);
18714 }
18715 break;
18716 case DW_LNE_define_file:
18717 {
18718 const char *cur_file;
18719 unsigned int mod_time, length;
18720 dir_index dindex;
18721
18722 cur_file = read_direct_string (abfd, line_ptr,
18723 &bytes_read);
18724 line_ptr += bytes_read;
18725 dindex = (dir_index)
18726 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18727 line_ptr += bytes_read;
18728 mod_time =
18729 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18730 line_ptr += bytes_read;
18731 length =
18732 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18733 line_ptr += bytes_read;
18734 lh->add_file_name (cur_file, dindex, mod_time, length);
18735 }
18736 break;
18737 case DW_LNE_set_discriminator:
18738 {
18739 /* The discriminator is not interesting to the
18740 debugger; just ignore it. We still need to
18741 check its value though:
18742 if there are consecutive entries for the same
18743 (non-prologue) line we want to coalesce them.
18744 PR 17276. */
18745 unsigned int discr
18746 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18747 line_ptr += bytes_read;
18748
18749 state_machine.handle_set_discriminator (discr);
18750 }
18751 break;
18752 default:
18753 complaint (&symfile_complaints,
18754 _("mangled .debug_line section"));
18755 return;
18756 }
18757 /* Make sure that we parsed the extended op correctly. If e.g.
18758 we expected a different address size than the producer used,
18759 we may have read the wrong number of bytes. */
18760 if (line_ptr != extended_end)
18761 {
18762 complaint (&symfile_complaints,
18763 _("mangled .debug_line section"));
18764 return;
18765 }
18766 break;
18767 case DW_LNS_copy:
18768 state_machine.handle_copy ();
18769 break;
18770 case DW_LNS_advance_pc:
18771 {
18772 CORE_ADDR adjust
18773 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18774 line_ptr += bytes_read;
18775
18776 state_machine.handle_advance_pc (adjust);
18777 }
18778 break;
18779 case DW_LNS_advance_line:
18780 {
18781 int line_delta
18782 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18783 line_ptr += bytes_read;
18784
18785 state_machine.handle_advance_line (line_delta);
18786 }
18787 break;
18788 case DW_LNS_set_file:
18789 {
18790 file_name_index file
18791 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
18792 &bytes_read);
18793 line_ptr += bytes_read;
18794
18795 state_machine.handle_set_file (file);
18796 }
18797 break;
18798 case DW_LNS_set_column:
18799 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18800 line_ptr += bytes_read;
18801 break;
18802 case DW_LNS_negate_stmt:
18803 state_machine.handle_negate_stmt ();
18804 break;
18805 case DW_LNS_set_basic_block:
18806 break;
18807 /* Add to the address register of the state machine the
18808 address increment value corresponding to special opcode
18809 255. I.e., this value is scaled by the minimum
18810 instruction length since special opcode 255 would have
18811 scaled the increment. */
18812 case DW_LNS_const_add_pc:
18813 state_machine.handle_const_add_pc ();
18814 break;
18815 case DW_LNS_fixed_advance_pc:
18816 {
18817 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
18818 line_ptr += 2;
18819
18820 state_machine.handle_fixed_advance_pc (addr_adj);
18821 }
18822 break;
18823 default:
18824 {
18825 /* Unknown standard opcode, ignore it. */
18826 int i;
18827
18828 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18829 {
18830 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18831 line_ptr += bytes_read;
18832 }
18833 }
18834 }
18835 }
18836
18837 if (!end_sequence)
18838 dwarf2_debug_line_missing_end_sequence_complaint ();
18839
18840 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18841 in which case we still finish recording the last line). */
18842 state_machine.record_line (true);
18843 }
18844 }
18845
18846 /* Decode the Line Number Program (LNP) for the given line_header
18847 structure and CU. The actual information extracted and the type
18848 of structures created from the LNP depends on the value of PST.
18849
18850 1. If PST is NULL, then this procedure uses the data from the program
18851 to create all necessary symbol tables, and their linetables.
18852
18853 2. If PST is not NULL, this procedure reads the program to determine
18854 the list of files included by the unit represented by PST, and
18855 builds all the associated partial symbol tables.
18856
18857 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18858 It is used for relative paths in the line table.
18859 NOTE: When processing partial symtabs (pst != NULL),
18860 comp_dir == pst->dirname.
18861
18862 NOTE: It is important that psymtabs have the same file name (via strcmp)
18863 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18864 symtab we don't use it in the name of the psymtabs we create.
18865 E.g. expand_line_sal requires this when finding psymtabs to expand.
18866 A good testcase for this is mb-inline.exp.
18867
18868 LOWPC is the lowest address in CU (or 0 if not known).
18869
18870 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18871 for its PC<->lines mapping information. Otherwise only the filename
18872 table is read in. */
18873
18874 static void
18875 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18876 struct dwarf2_cu *cu, struct partial_symtab *pst,
18877 CORE_ADDR lowpc, int decode_mapping)
18878 {
18879 struct objfile *objfile = cu->objfile;
18880 const int decode_for_pst_p = (pst != NULL);
18881
18882 if (decode_mapping)
18883 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18884
18885 if (decode_for_pst_p)
18886 {
18887 int file_index;
18888
18889 /* Now that we're done scanning the Line Header Program, we can
18890 create the psymtab of each included file. */
18891 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
18892 if (lh->file_names[file_index].included_p == 1)
18893 {
18894 const char *include_name =
18895 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18896 if (include_name != NULL)
18897 dwarf2_create_include_psymtab (include_name, pst, objfile);
18898 }
18899 }
18900 else
18901 {
18902 /* Make sure a symtab is created for every file, even files
18903 which contain only variables (i.e. no code with associated
18904 line numbers). */
18905 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18906 int i;
18907
18908 for (i = 0; i < lh->file_names.size (); i++)
18909 {
18910 file_entry &fe = lh->file_names[i];
18911
18912 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
18913
18914 if (current_subfile->symtab == NULL)
18915 {
18916 current_subfile->symtab
18917 = allocate_symtab (cust, current_subfile->name);
18918 }
18919 fe.symtab = current_subfile->symtab;
18920 }
18921 }
18922 }
18923
18924 /* Start a subfile for DWARF. FILENAME is the name of the file and
18925 DIRNAME the name of the source directory which contains FILENAME
18926 or NULL if not known.
18927 This routine tries to keep line numbers from identical absolute and
18928 relative file names in a common subfile.
18929
18930 Using the `list' example from the GDB testsuite, which resides in
18931 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18932 of /srcdir/list0.c yields the following debugging information for list0.c:
18933
18934 DW_AT_name: /srcdir/list0.c
18935 DW_AT_comp_dir: /compdir
18936 files.files[0].name: list0.h
18937 files.files[0].dir: /srcdir
18938 files.files[1].name: list0.c
18939 files.files[1].dir: /srcdir
18940
18941 The line number information for list0.c has to end up in a single
18942 subfile, so that `break /srcdir/list0.c:1' works as expected.
18943 start_subfile will ensure that this happens provided that we pass the
18944 concatenation of files.files[1].dir and files.files[1].name as the
18945 subfile's name. */
18946
18947 static void
18948 dwarf2_start_subfile (const char *filename, const char *dirname)
18949 {
18950 char *copy = NULL;
18951
18952 /* In order not to lose the line information directory,
18953 we concatenate it to the filename when it makes sense.
18954 Note that the Dwarf3 standard says (speaking of filenames in line
18955 information): ``The directory index is ignored for file names
18956 that represent full path names''. Thus ignoring dirname in the
18957 `else' branch below isn't an issue. */
18958
18959 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18960 {
18961 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18962 filename = copy;
18963 }
18964
18965 start_subfile (filename);
18966
18967 if (copy != NULL)
18968 xfree (copy);
18969 }
18970
18971 /* Start a symtab for DWARF.
18972 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18973
18974 static struct compunit_symtab *
18975 dwarf2_start_symtab (struct dwarf2_cu *cu,
18976 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18977 {
18978 struct compunit_symtab *cust
18979 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18980
18981 record_debugformat ("DWARF 2");
18982 record_producer (cu->producer);
18983
18984 /* We assume that we're processing GCC output. */
18985 processing_gcc_compilation = 2;
18986
18987 cu->processing_has_namespace_info = 0;
18988
18989 return cust;
18990 }
18991
18992 static void
18993 var_decode_location (struct attribute *attr, struct symbol *sym,
18994 struct dwarf2_cu *cu)
18995 {
18996 struct objfile *objfile = cu->objfile;
18997 struct comp_unit_head *cu_header = &cu->header;
18998
18999 /* NOTE drow/2003-01-30: There used to be a comment and some special
19000 code here to turn a symbol with DW_AT_external and a
19001 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
19002 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
19003 with some versions of binutils) where shared libraries could have
19004 relocations against symbols in their debug information - the
19005 minimal symbol would have the right address, but the debug info
19006 would not. It's no longer necessary, because we will explicitly
19007 apply relocations when we read in the debug information now. */
19008
19009 /* A DW_AT_location attribute with no contents indicates that a
19010 variable has been optimized away. */
19011 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
19012 {
19013 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19014 return;
19015 }
19016
19017 /* Handle one degenerate form of location expression specially, to
19018 preserve GDB's previous behavior when section offsets are
19019 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
19020 then mark this symbol as LOC_STATIC. */
19021
19022 if (attr_form_is_block (attr)
19023 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
19024 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
19025 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
19026 && (DW_BLOCK (attr)->size
19027 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
19028 {
19029 unsigned int dummy;
19030
19031 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
19032 SYMBOL_VALUE_ADDRESS (sym) =
19033 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
19034 else
19035 SYMBOL_VALUE_ADDRESS (sym) =
19036 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
19037 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
19038 fixup_symbol_section (sym, objfile);
19039 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
19040 SYMBOL_SECTION (sym));
19041 return;
19042 }
19043
19044 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
19045 expression evaluator, and use LOC_COMPUTED only when necessary
19046 (i.e. when the value of a register or memory location is
19047 referenced, or a thread-local block, etc.). Then again, it might
19048 not be worthwhile. I'm assuming that it isn't unless performance
19049 or memory numbers show me otherwise. */
19050
19051 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
19052
19053 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
19054 cu->has_loclist = 1;
19055 }
19056
19057 /* Given a pointer to a DWARF information entry, figure out if we need
19058 to make a symbol table entry for it, and if so, create a new entry
19059 and return a pointer to it.
19060 If TYPE is NULL, determine symbol type from the die, otherwise
19061 used the passed type.
19062 If SPACE is not NULL, use it to hold the new symbol. If it is
19063 NULL, allocate a new symbol on the objfile's obstack. */
19064
19065 static struct symbol *
19066 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
19067 struct symbol *space)
19068 {
19069 struct objfile *objfile = cu->objfile;
19070 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19071 struct symbol *sym = NULL;
19072 const char *name;
19073 struct attribute *attr = NULL;
19074 struct attribute *attr2 = NULL;
19075 CORE_ADDR baseaddr;
19076 struct pending **list_to_add = NULL;
19077
19078 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
19079
19080 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19081
19082 name = dwarf2_name (die, cu);
19083 if (name)
19084 {
19085 const char *linkagename;
19086 int suppress_add = 0;
19087
19088 if (space)
19089 sym = space;
19090 else
19091 sym = allocate_symbol (objfile);
19092 OBJSTAT (objfile, n_syms++);
19093
19094 /* Cache this symbol's name and the name's demangled form (if any). */
19095 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
19096 linkagename = dwarf2_physname (name, die, cu);
19097 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
19098
19099 /* Fortran does not have mangling standard and the mangling does differ
19100 between gfortran, iFort etc. */
19101 if (cu->language == language_fortran
19102 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
19103 symbol_set_demangled_name (&(sym->ginfo),
19104 dwarf2_full_name (name, die, cu),
19105 NULL);
19106
19107 /* Default assumptions.
19108 Use the passed type or decode it from the die. */
19109 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19110 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19111 if (type != NULL)
19112 SYMBOL_TYPE (sym) = type;
19113 else
19114 SYMBOL_TYPE (sym) = die_type (die, cu);
19115 attr = dwarf2_attr (die,
19116 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19117 cu);
19118 if (attr)
19119 {
19120 SYMBOL_LINE (sym) = DW_UNSND (attr);
19121 }
19122
19123 attr = dwarf2_attr (die,
19124 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19125 cu);
19126 if (attr)
19127 {
19128 file_name_index file_index = (file_name_index) DW_UNSND (attr);
19129 struct file_entry *fe;
19130
19131 if (cu->line_header != NULL)
19132 fe = cu->line_header->file_name_at (file_index);
19133 else
19134 fe = NULL;
19135
19136 if (fe == NULL)
19137 complaint (&symfile_complaints,
19138 _("file index out of range"));
19139 else
19140 symbol_set_symtab (sym, fe->symtab);
19141 }
19142
19143 switch (die->tag)
19144 {
19145 case DW_TAG_label:
19146 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
19147 if (attr)
19148 {
19149 CORE_ADDR addr;
19150
19151 addr = attr_value_as_address (attr);
19152 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19153 SYMBOL_VALUE_ADDRESS (sym) = addr;
19154 }
19155 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19156 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
19157 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
19158 add_symbol_to_list (sym, cu->list_in_scope);
19159 break;
19160 case DW_TAG_subprogram:
19161 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19162 finish_block. */
19163 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19164 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19165 if ((attr2 && (DW_UNSND (attr2) != 0))
19166 || cu->language == language_ada)
19167 {
19168 /* Subprograms marked external are stored as a global symbol.
19169 Ada subprograms, whether marked external or not, are always
19170 stored as a global symbol, because we want to be able to
19171 access them globally. For instance, we want to be able
19172 to break on a nested subprogram without having to
19173 specify the context. */
19174 list_to_add = &global_symbols;
19175 }
19176 else
19177 {
19178 list_to_add = cu->list_in_scope;
19179 }
19180 break;
19181 case DW_TAG_inlined_subroutine:
19182 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19183 finish_block. */
19184 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19185 SYMBOL_INLINED (sym) = 1;
19186 list_to_add = cu->list_in_scope;
19187 break;
19188 case DW_TAG_template_value_param:
19189 suppress_add = 1;
19190 /* Fall through. */
19191 case DW_TAG_constant:
19192 case DW_TAG_variable:
19193 case DW_TAG_member:
19194 /* Compilation with minimal debug info may result in
19195 variables with missing type entries. Change the
19196 misleading `void' type to something sensible. */
19197 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
19198 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
19199
19200 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19201 /* In the case of DW_TAG_member, we should only be called for
19202 static const members. */
19203 if (die->tag == DW_TAG_member)
19204 {
19205 /* dwarf2_add_field uses die_is_declaration,
19206 so we do the same. */
19207 gdb_assert (die_is_declaration (die, cu));
19208 gdb_assert (attr);
19209 }
19210 if (attr)
19211 {
19212 dwarf2_const_value (attr, sym, cu);
19213 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19214 if (!suppress_add)
19215 {
19216 if (attr2 && (DW_UNSND (attr2) != 0))
19217 list_to_add = &global_symbols;
19218 else
19219 list_to_add = cu->list_in_scope;
19220 }
19221 break;
19222 }
19223 attr = dwarf2_attr (die, DW_AT_location, cu);
19224 if (attr)
19225 {
19226 var_decode_location (attr, sym, cu);
19227 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19228
19229 /* Fortran explicitly imports any global symbols to the local
19230 scope by DW_TAG_common_block. */
19231 if (cu->language == language_fortran && die->parent
19232 && die->parent->tag == DW_TAG_common_block)
19233 attr2 = NULL;
19234
19235 if (SYMBOL_CLASS (sym) == LOC_STATIC
19236 && SYMBOL_VALUE_ADDRESS (sym) == 0
19237 && !dwarf2_per_objfile->has_section_at_zero)
19238 {
19239 /* When a static variable is eliminated by the linker,
19240 the corresponding debug information is not stripped
19241 out, but the variable address is set to null;
19242 do not add such variables into symbol table. */
19243 }
19244 else if (attr2 && (DW_UNSND (attr2) != 0))
19245 {
19246 /* Workaround gfortran PR debug/40040 - it uses
19247 DW_AT_location for variables in -fPIC libraries which may
19248 get overriden by other libraries/executable and get
19249 a different address. Resolve it by the minimal symbol
19250 which may come from inferior's executable using copy
19251 relocation. Make this workaround only for gfortran as for
19252 other compilers GDB cannot guess the minimal symbol
19253 Fortran mangling kind. */
19254 if (cu->language == language_fortran && die->parent
19255 && die->parent->tag == DW_TAG_module
19256 && cu->producer
19257 && startswith (cu->producer, "GNU Fortran"))
19258 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19259
19260 /* A variable with DW_AT_external is never static,
19261 but it may be block-scoped. */
19262 list_to_add = (cu->list_in_scope == &file_symbols
19263 ? &global_symbols : cu->list_in_scope);
19264 }
19265 else
19266 list_to_add = cu->list_in_scope;
19267 }
19268 else
19269 {
19270 /* We do not know the address of this symbol.
19271 If it is an external symbol and we have type information
19272 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19273 The address of the variable will then be determined from
19274 the minimal symbol table whenever the variable is
19275 referenced. */
19276 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19277
19278 /* Fortran explicitly imports any global symbols to the local
19279 scope by DW_TAG_common_block. */
19280 if (cu->language == language_fortran && die->parent
19281 && die->parent->tag == DW_TAG_common_block)
19282 {
19283 /* SYMBOL_CLASS doesn't matter here because
19284 read_common_block is going to reset it. */
19285 if (!suppress_add)
19286 list_to_add = cu->list_in_scope;
19287 }
19288 else if (attr2 && (DW_UNSND (attr2) != 0)
19289 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
19290 {
19291 /* A variable with DW_AT_external is never static, but it
19292 may be block-scoped. */
19293 list_to_add = (cu->list_in_scope == &file_symbols
19294 ? &global_symbols : cu->list_in_scope);
19295
19296 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19297 }
19298 else if (!die_is_declaration (die, cu))
19299 {
19300 /* Use the default LOC_OPTIMIZED_OUT class. */
19301 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
19302 if (!suppress_add)
19303 list_to_add = cu->list_in_scope;
19304 }
19305 }
19306 break;
19307 case DW_TAG_formal_parameter:
19308 /* If we are inside a function, mark this as an argument. If
19309 not, we might be looking at an argument to an inlined function
19310 when we do not have enough information to show inlined frames;
19311 pretend it's a local variable in that case so that the user can
19312 still see it. */
19313 if (context_stack_depth > 0
19314 && context_stack[context_stack_depth - 1].name != NULL)
19315 SYMBOL_IS_ARGUMENT (sym) = 1;
19316 attr = dwarf2_attr (die, DW_AT_location, cu);
19317 if (attr)
19318 {
19319 var_decode_location (attr, sym, cu);
19320 }
19321 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19322 if (attr)
19323 {
19324 dwarf2_const_value (attr, sym, cu);
19325 }
19326
19327 list_to_add = cu->list_in_scope;
19328 break;
19329 case DW_TAG_unspecified_parameters:
19330 /* From varargs functions; gdb doesn't seem to have any
19331 interest in this information, so just ignore it for now.
19332 (FIXME?) */
19333 break;
19334 case DW_TAG_template_type_param:
19335 suppress_add = 1;
19336 /* Fall through. */
19337 case DW_TAG_class_type:
19338 case DW_TAG_interface_type:
19339 case DW_TAG_structure_type:
19340 case DW_TAG_union_type:
19341 case DW_TAG_set_type:
19342 case DW_TAG_enumeration_type:
19343 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19344 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
19345
19346 {
19347 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
19348 really ever be static objects: otherwise, if you try
19349 to, say, break of a class's method and you're in a file
19350 which doesn't mention that class, it won't work unless
19351 the check for all static symbols in lookup_symbol_aux
19352 saves you. See the OtherFileClass tests in
19353 gdb.c++/namespace.exp. */
19354
19355 if (!suppress_add)
19356 {
19357 list_to_add = (cu->list_in_scope == &file_symbols
19358 && cu->language == language_cplus
19359 ? &global_symbols : cu->list_in_scope);
19360
19361 /* The semantics of C++ state that "struct foo {
19362 ... }" also defines a typedef for "foo". */
19363 if (cu->language == language_cplus
19364 || cu->language == language_ada
19365 || cu->language == language_d
19366 || cu->language == language_rust)
19367 {
19368 /* The symbol's name is already allocated along
19369 with this objfile, so we don't need to
19370 duplicate it for the type. */
19371 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19372 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19373 }
19374 }
19375 }
19376 break;
19377 case DW_TAG_typedef:
19378 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19379 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19380 list_to_add = cu->list_in_scope;
19381 break;
19382 case DW_TAG_base_type:
19383 case DW_TAG_subrange_type:
19384 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19385 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19386 list_to_add = cu->list_in_scope;
19387 break;
19388 case DW_TAG_enumerator:
19389 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19390 if (attr)
19391 {
19392 dwarf2_const_value (attr, sym, cu);
19393 }
19394 {
19395 /* NOTE: carlton/2003-11-10: See comment above in the
19396 DW_TAG_class_type, etc. block. */
19397
19398 list_to_add = (cu->list_in_scope == &file_symbols
19399 && cu->language == language_cplus
19400 ? &global_symbols : cu->list_in_scope);
19401 }
19402 break;
19403 case DW_TAG_imported_declaration:
19404 case DW_TAG_namespace:
19405 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19406 list_to_add = &global_symbols;
19407 break;
19408 case DW_TAG_module:
19409 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19410 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19411 list_to_add = &global_symbols;
19412 break;
19413 case DW_TAG_common_block:
19414 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
19415 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19416 add_symbol_to_list (sym, cu->list_in_scope);
19417 break;
19418 default:
19419 /* Not a tag we recognize. Hopefully we aren't processing
19420 trash data, but since we must specifically ignore things
19421 we don't recognize, there is nothing else we should do at
19422 this point. */
19423 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
19424 dwarf_tag_name (die->tag));
19425 break;
19426 }
19427
19428 if (suppress_add)
19429 {
19430 sym->hash_next = objfile->template_symbols;
19431 objfile->template_symbols = sym;
19432 list_to_add = NULL;
19433 }
19434
19435 if (list_to_add != NULL)
19436 add_symbol_to_list (sym, list_to_add);
19437
19438 /* For the benefit of old versions of GCC, check for anonymous
19439 namespaces based on the demangled name. */
19440 if (!cu->processing_has_namespace_info
19441 && cu->language == language_cplus)
19442 cp_scan_for_anonymous_namespaces (sym, objfile);
19443 }
19444 return (sym);
19445 }
19446
19447 /* A wrapper for new_symbol_full that always allocates a new symbol. */
19448
19449 static struct symbol *
19450 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19451 {
19452 return new_symbol_full (die, type, cu, NULL);
19453 }
19454
19455 /* Given an attr with a DW_FORM_dataN value in host byte order,
19456 zero-extend it as appropriate for the symbol's type. The DWARF
19457 standard (v4) is not entirely clear about the meaning of using
19458 DW_FORM_dataN for a constant with a signed type, where the type is
19459 wider than the data. The conclusion of a discussion on the DWARF
19460 list was that this is unspecified. We choose to always zero-extend
19461 because that is the interpretation long in use by GCC. */
19462
19463 static gdb_byte *
19464 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
19465 struct dwarf2_cu *cu, LONGEST *value, int bits)
19466 {
19467 struct objfile *objfile = cu->objfile;
19468 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19469 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
19470 LONGEST l = DW_UNSND (attr);
19471
19472 if (bits < sizeof (*value) * 8)
19473 {
19474 l &= ((LONGEST) 1 << bits) - 1;
19475 *value = l;
19476 }
19477 else if (bits == sizeof (*value) * 8)
19478 *value = l;
19479 else
19480 {
19481 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
19482 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19483 return bytes;
19484 }
19485
19486 return NULL;
19487 }
19488
19489 /* Read a constant value from an attribute. Either set *VALUE, or if
19490 the value does not fit in *VALUE, set *BYTES - either already
19491 allocated on the objfile obstack, or newly allocated on OBSTACK,
19492 or, set *BATON, if we translated the constant to a location
19493 expression. */
19494
19495 static void
19496 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
19497 const char *name, struct obstack *obstack,
19498 struct dwarf2_cu *cu,
19499 LONGEST *value, const gdb_byte **bytes,
19500 struct dwarf2_locexpr_baton **baton)
19501 {
19502 struct objfile *objfile = cu->objfile;
19503 struct comp_unit_head *cu_header = &cu->header;
19504 struct dwarf_block *blk;
19505 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19506 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19507
19508 *value = 0;
19509 *bytes = NULL;
19510 *baton = NULL;
19511
19512 switch (attr->form)
19513 {
19514 case DW_FORM_addr:
19515 case DW_FORM_GNU_addr_index:
19516 {
19517 gdb_byte *data;
19518
19519 if (TYPE_LENGTH (type) != cu_header->addr_size)
19520 dwarf2_const_value_length_mismatch_complaint (name,
19521 cu_header->addr_size,
19522 TYPE_LENGTH (type));
19523 /* Symbols of this form are reasonably rare, so we just
19524 piggyback on the existing location code rather than writing
19525 a new implementation of symbol_computed_ops. */
19526 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
19527 (*baton)->per_cu = cu->per_cu;
19528 gdb_assert ((*baton)->per_cu);
19529
19530 (*baton)->size = 2 + cu_header->addr_size;
19531 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
19532 (*baton)->data = data;
19533
19534 data[0] = DW_OP_addr;
19535 store_unsigned_integer (&data[1], cu_header->addr_size,
19536 byte_order, DW_ADDR (attr));
19537 data[cu_header->addr_size + 1] = DW_OP_stack_value;
19538 }
19539 break;
19540 case DW_FORM_string:
19541 case DW_FORM_strp:
19542 case DW_FORM_GNU_str_index:
19543 case DW_FORM_GNU_strp_alt:
19544 /* DW_STRING is already allocated on the objfile obstack, point
19545 directly to it. */
19546 *bytes = (const gdb_byte *) DW_STRING (attr);
19547 break;
19548 case DW_FORM_block1:
19549 case DW_FORM_block2:
19550 case DW_FORM_block4:
19551 case DW_FORM_block:
19552 case DW_FORM_exprloc:
19553 case DW_FORM_data16:
19554 blk = DW_BLOCK (attr);
19555 if (TYPE_LENGTH (type) != blk->size)
19556 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19557 TYPE_LENGTH (type));
19558 *bytes = blk->data;
19559 break;
19560
19561 /* The DW_AT_const_value attributes are supposed to carry the
19562 symbol's value "represented as it would be on the target
19563 architecture." By the time we get here, it's already been
19564 converted to host endianness, so we just need to sign- or
19565 zero-extend it as appropriate. */
19566 case DW_FORM_data1:
19567 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
19568 break;
19569 case DW_FORM_data2:
19570 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
19571 break;
19572 case DW_FORM_data4:
19573 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
19574 break;
19575 case DW_FORM_data8:
19576 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
19577 break;
19578
19579 case DW_FORM_sdata:
19580 case DW_FORM_implicit_const:
19581 *value = DW_SND (attr);
19582 break;
19583
19584 case DW_FORM_udata:
19585 *value = DW_UNSND (attr);
19586 break;
19587
19588 default:
19589 complaint (&symfile_complaints,
19590 _("unsupported const value attribute form: '%s'"),
19591 dwarf_form_name (attr->form));
19592 *value = 0;
19593 break;
19594 }
19595 }
19596
19597
19598 /* Copy constant value from an attribute to a symbol. */
19599
19600 static void
19601 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
19602 struct dwarf2_cu *cu)
19603 {
19604 struct objfile *objfile = cu->objfile;
19605 LONGEST value;
19606 const gdb_byte *bytes;
19607 struct dwarf2_locexpr_baton *baton;
19608
19609 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19610 SYMBOL_PRINT_NAME (sym),
19611 &objfile->objfile_obstack, cu,
19612 &value, &bytes, &baton);
19613
19614 if (baton != NULL)
19615 {
19616 SYMBOL_LOCATION_BATON (sym) = baton;
19617 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
19618 }
19619 else if (bytes != NULL)
19620 {
19621 SYMBOL_VALUE_BYTES (sym) = bytes;
19622 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
19623 }
19624 else
19625 {
19626 SYMBOL_VALUE (sym) = value;
19627 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
19628 }
19629 }
19630
19631 /* Return the type of the die in question using its DW_AT_type attribute. */
19632
19633 static struct type *
19634 die_type (struct die_info *die, struct dwarf2_cu *cu)
19635 {
19636 struct attribute *type_attr;
19637
19638 type_attr = dwarf2_attr (die, DW_AT_type, cu);
19639 if (!type_attr)
19640 {
19641 /* A missing DW_AT_type represents a void type. */
19642 return objfile_type (cu->objfile)->builtin_void;
19643 }
19644
19645 return lookup_die_type (die, type_attr, cu);
19646 }
19647
19648 /* True iff CU's producer generates GNAT Ada auxiliary information
19649 that allows to find parallel types through that information instead
19650 of having to do expensive parallel lookups by type name. */
19651
19652 static int
19653 need_gnat_info (struct dwarf2_cu *cu)
19654 {
19655 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19656 of GNAT produces this auxiliary information, without any indication
19657 that it is produced. Part of enhancing the FSF version of GNAT
19658 to produce that information will be to put in place an indicator
19659 that we can use in order to determine whether the descriptive type
19660 info is available or not. One suggestion that has been made is
19661 to use a new attribute, attached to the CU die. For now, assume
19662 that the descriptive type info is not available. */
19663 return 0;
19664 }
19665
19666 /* Return the auxiliary type of the die in question using its
19667 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19668 attribute is not present. */
19669
19670 static struct type *
19671 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19672 {
19673 struct attribute *type_attr;
19674
19675 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19676 if (!type_attr)
19677 return NULL;
19678
19679 return lookup_die_type (die, type_attr, cu);
19680 }
19681
19682 /* If DIE has a descriptive_type attribute, then set the TYPE's
19683 descriptive type accordingly. */
19684
19685 static void
19686 set_descriptive_type (struct type *type, struct die_info *die,
19687 struct dwarf2_cu *cu)
19688 {
19689 struct type *descriptive_type = die_descriptive_type (die, cu);
19690
19691 if (descriptive_type)
19692 {
19693 ALLOCATE_GNAT_AUX_TYPE (type);
19694 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19695 }
19696 }
19697
19698 /* Return the containing type of the die in question using its
19699 DW_AT_containing_type attribute. */
19700
19701 static struct type *
19702 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
19703 {
19704 struct attribute *type_attr;
19705
19706 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
19707 if (!type_attr)
19708 error (_("Dwarf Error: Problem turning containing type into gdb type "
19709 "[in module %s]"), objfile_name (cu->objfile));
19710
19711 return lookup_die_type (die, type_attr, cu);
19712 }
19713
19714 /* Return an error marker type to use for the ill formed type in DIE/CU. */
19715
19716 static struct type *
19717 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19718 {
19719 struct objfile *objfile = dwarf2_per_objfile->objfile;
19720 char *message, *saved;
19721
19722 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
19723 objfile_name (objfile),
19724 to_underlying (cu->header.sect_off),
19725 to_underlying (die->sect_off));
19726 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19727 message, strlen (message));
19728 xfree (message);
19729
19730 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19731 }
19732
19733 /* Look up the type of DIE in CU using its type attribute ATTR.
19734 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19735 DW_AT_containing_type.
19736 If there is no type substitute an error marker. */
19737
19738 static struct type *
19739 lookup_die_type (struct die_info *die, const struct attribute *attr,
19740 struct dwarf2_cu *cu)
19741 {
19742 struct objfile *objfile = cu->objfile;
19743 struct type *this_type;
19744
19745 gdb_assert (attr->name == DW_AT_type
19746 || attr->name == DW_AT_GNAT_descriptive_type
19747 || attr->name == DW_AT_containing_type);
19748
19749 /* First see if we have it cached. */
19750
19751 if (attr->form == DW_FORM_GNU_ref_alt)
19752 {
19753 struct dwarf2_per_cu_data *per_cu;
19754 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19755
19756 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
19757 this_type = get_die_type_at_offset (sect_off, per_cu);
19758 }
19759 else if (attr_form_is_ref (attr))
19760 {
19761 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19762
19763 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
19764 }
19765 else if (attr->form == DW_FORM_ref_sig8)
19766 {
19767 ULONGEST signature = DW_SIGNATURE (attr);
19768
19769 return get_signatured_type (die, signature, cu);
19770 }
19771 else
19772 {
19773 complaint (&symfile_complaints,
19774 _("Dwarf Error: Bad type attribute %s in DIE"
19775 " at 0x%x [in module %s]"),
19776 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
19777 objfile_name (objfile));
19778 return build_error_marker_type (cu, die);
19779 }
19780
19781 /* If not cached we need to read it in. */
19782
19783 if (this_type == NULL)
19784 {
19785 struct die_info *type_die = NULL;
19786 struct dwarf2_cu *type_cu = cu;
19787
19788 if (attr_form_is_ref (attr))
19789 type_die = follow_die_ref (die, attr, &type_cu);
19790 if (type_die == NULL)
19791 return build_error_marker_type (cu, die);
19792 /* If we find the type now, it's probably because the type came
19793 from an inter-CU reference and the type's CU got expanded before
19794 ours. */
19795 this_type = read_type_die (type_die, type_cu);
19796 }
19797
19798 /* If we still don't have a type use an error marker. */
19799
19800 if (this_type == NULL)
19801 return build_error_marker_type (cu, die);
19802
19803 return this_type;
19804 }
19805
19806 /* Return the type in DIE, CU.
19807 Returns NULL for invalid types.
19808
19809 This first does a lookup in die_type_hash,
19810 and only reads the die in if necessary.
19811
19812 NOTE: This can be called when reading in partial or full symbols. */
19813
19814 static struct type *
19815 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19816 {
19817 struct type *this_type;
19818
19819 this_type = get_die_type (die, cu);
19820 if (this_type)
19821 return this_type;
19822
19823 return read_type_die_1 (die, cu);
19824 }
19825
19826 /* Read the type in DIE, CU.
19827 Returns NULL for invalid types. */
19828
19829 static struct type *
19830 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19831 {
19832 struct type *this_type = NULL;
19833
19834 switch (die->tag)
19835 {
19836 case DW_TAG_class_type:
19837 case DW_TAG_interface_type:
19838 case DW_TAG_structure_type:
19839 case DW_TAG_union_type:
19840 this_type = read_structure_type (die, cu);
19841 break;
19842 case DW_TAG_enumeration_type:
19843 this_type = read_enumeration_type (die, cu);
19844 break;
19845 case DW_TAG_subprogram:
19846 case DW_TAG_subroutine_type:
19847 case DW_TAG_inlined_subroutine:
19848 this_type = read_subroutine_type (die, cu);
19849 break;
19850 case DW_TAG_array_type:
19851 this_type = read_array_type (die, cu);
19852 break;
19853 case DW_TAG_set_type:
19854 this_type = read_set_type (die, cu);
19855 break;
19856 case DW_TAG_pointer_type:
19857 this_type = read_tag_pointer_type (die, cu);
19858 break;
19859 case DW_TAG_ptr_to_member_type:
19860 this_type = read_tag_ptr_to_member_type (die, cu);
19861 break;
19862 case DW_TAG_reference_type:
19863 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
19864 break;
19865 case DW_TAG_rvalue_reference_type:
19866 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
19867 break;
19868 case DW_TAG_const_type:
19869 this_type = read_tag_const_type (die, cu);
19870 break;
19871 case DW_TAG_volatile_type:
19872 this_type = read_tag_volatile_type (die, cu);
19873 break;
19874 case DW_TAG_restrict_type:
19875 this_type = read_tag_restrict_type (die, cu);
19876 break;
19877 case DW_TAG_string_type:
19878 this_type = read_tag_string_type (die, cu);
19879 break;
19880 case DW_TAG_typedef:
19881 this_type = read_typedef (die, cu);
19882 break;
19883 case DW_TAG_subrange_type:
19884 this_type = read_subrange_type (die, cu);
19885 break;
19886 case DW_TAG_base_type:
19887 this_type = read_base_type (die, cu);
19888 break;
19889 case DW_TAG_unspecified_type:
19890 this_type = read_unspecified_type (die, cu);
19891 break;
19892 case DW_TAG_namespace:
19893 this_type = read_namespace_type (die, cu);
19894 break;
19895 case DW_TAG_module:
19896 this_type = read_module_type (die, cu);
19897 break;
19898 case DW_TAG_atomic_type:
19899 this_type = read_tag_atomic_type (die, cu);
19900 break;
19901 default:
19902 complaint (&symfile_complaints,
19903 _("unexpected tag in read_type_die: '%s'"),
19904 dwarf_tag_name (die->tag));
19905 break;
19906 }
19907
19908 return this_type;
19909 }
19910
19911 /* See if we can figure out if the class lives in a namespace. We do
19912 this by looking for a member function; its demangled name will
19913 contain namespace info, if there is any.
19914 Return the computed name or NULL.
19915 Space for the result is allocated on the objfile's obstack.
19916 This is the full-die version of guess_partial_die_structure_name.
19917 In this case we know DIE has no useful parent. */
19918
19919 static char *
19920 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19921 {
19922 struct die_info *spec_die;
19923 struct dwarf2_cu *spec_cu;
19924 struct die_info *child;
19925
19926 spec_cu = cu;
19927 spec_die = die_specification (die, &spec_cu);
19928 if (spec_die != NULL)
19929 {
19930 die = spec_die;
19931 cu = spec_cu;
19932 }
19933
19934 for (child = die->child;
19935 child != NULL;
19936 child = child->sibling)
19937 {
19938 if (child->tag == DW_TAG_subprogram)
19939 {
19940 const char *linkage_name = dw2_linkage_name (child, cu);
19941
19942 if (linkage_name != NULL)
19943 {
19944 char *actual_name
19945 = language_class_name_from_physname (cu->language_defn,
19946 linkage_name);
19947 char *name = NULL;
19948
19949 if (actual_name != NULL)
19950 {
19951 const char *die_name = dwarf2_name (die, cu);
19952
19953 if (die_name != NULL
19954 && strcmp (die_name, actual_name) != 0)
19955 {
19956 /* Strip off the class name from the full name.
19957 We want the prefix. */
19958 int die_name_len = strlen (die_name);
19959 int actual_name_len = strlen (actual_name);
19960
19961 /* Test for '::' as a sanity check. */
19962 if (actual_name_len > die_name_len + 2
19963 && actual_name[actual_name_len
19964 - die_name_len - 1] == ':')
19965 name = (char *) obstack_copy0 (
19966 &cu->objfile->per_bfd->storage_obstack,
19967 actual_name, actual_name_len - die_name_len - 2);
19968 }
19969 }
19970 xfree (actual_name);
19971 return name;
19972 }
19973 }
19974 }
19975
19976 return NULL;
19977 }
19978
19979 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19980 prefix part in such case. See
19981 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19982
19983 static const char *
19984 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19985 {
19986 struct attribute *attr;
19987 const char *base;
19988
19989 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19990 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19991 return NULL;
19992
19993 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19994 return NULL;
19995
19996 attr = dw2_linkage_name_attr (die, cu);
19997 if (attr == NULL || DW_STRING (attr) == NULL)
19998 return NULL;
19999
20000 /* dwarf2_name had to be already called. */
20001 gdb_assert (DW_STRING_IS_CANONICAL (attr));
20002
20003 /* Strip the base name, keep any leading namespaces/classes. */
20004 base = strrchr (DW_STRING (attr), ':');
20005 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
20006 return "";
20007
20008 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20009 DW_STRING (attr),
20010 &base[-1] - DW_STRING (attr));
20011 }
20012
20013 /* Return the name of the namespace/class that DIE is defined within,
20014 or "" if we can't tell. The caller should not xfree the result.
20015
20016 For example, if we're within the method foo() in the following
20017 code:
20018
20019 namespace N {
20020 class C {
20021 void foo () {
20022 }
20023 };
20024 }
20025
20026 then determine_prefix on foo's die will return "N::C". */
20027
20028 static const char *
20029 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
20030 {
20031 struct die_info *parent, *spec_die;
20032 struct dwarf2_cu *spec_cu;
20033 struct type *parent_type;
20034 const char *retval;
20035
20036 if (cu->language != language_cplus
20037 && cu->language != language_fortran && cu->language != language_d
20038 && cu->language != language_rust)
20039 return "";
20040
20041 retval = anonymous_struct_prefix (die, cu);
20042 if (retval)
20043 return retval;
20044
20045 /* We have to be careful in the presence of DW_AT_specification.
20046 For example, with GCC 3.4, given the code
20047
20048 namespace N {
20049 void foo() {
20050 // Definition of N::foo.
20051 }
20052 }
20053
20054 then we'll have a tree of DIEs like this:
20055
20056 1: DW_TAG_compile_unit
20057 2: DW_TAG_namespace // N
20058 3: DW_TAG_subprogram // declaration of N::foo
20059 4: DW_TAG_subprogram // definition of N::foo
20060 DW_AT_specification // refers to die #3
20061
20062 Thus, when processing die #4, we have to pretend that we're in
20063 the context of its DW_AT_specification, namely the contex of die
20064 #3. */
20065 spec_cu = cu;
20066 spec_die = die_specification (die, &spec_cu);
20067 if (spec_die == NULL)
20068 parent = die->parent;
20069 else
20070 {
20071 parent = spec_die->parent;
20072 cu = spec_cu;
20073 }
20074
20075 if (parent == NULL)
20076 return "";
20077 else if (parent->building_fullname)
20078 {
20079 const char *name;
20080 const char *parent_name;
20081
20082 /* It has been seen on RealView 2.2 built binaries,
20083 DW_TAG_template_type_param types actually _defined_ as
20084 children of the parent class:
20085
20086 enum E {};
20087 template class <class Enum> Class{};
20088 Class<enum E> class_e;
20089
20090 1: DW_TAG_class_type (Class)
20091 2: DW_TAG_enumeration_type (E)
20092 3: DW_TAG_enumerator (enum1:0)
20093 3: DW_TAG_enumerator (enum2:1)
20094 ...
20095 2: DW_TAG_template_type_param
20096 DW_AT_type DW_FORM_ref_udata (E)
20097
20098 Besides being broken debug info, it can put GDB into an
20099 infinite loop. Consider:
20100
20101 When we're building the full name for Class<E>, we'll start
20102 at Class, and go look over its template type parameters,
20103 finding E. We'll then try to build the full name of E, and
20104 reach here. We're now trying to build the full name of E,
20105 and look over the parent DIE for containing scope. In the
20106 broken case, if we followed the parent DIE of E, we'd again
20107 find Class, and once again go look at its template type
20108 arguments, etc., etc. Simply don't consider such parent die
20109 as source-level parent of this die (it can't be, the language
20110 doesn't allow it), and break the loop here. */
20111 name = dwarf2_name (die, cu);
20112 parent_name = dwarf2_name (parent, cu);
20113 complaint (&symfile_complaints,
20114 _("template param type '%s' defined within parent '%s'"),
20115 name ? name : "<unknown>",
20116 parent_name ? parent_name : "<unknown>");
20117 return "";
20118 }
20119 else
20120 switch (parent->tag)
20121 {
20122 case DW_TAG_namespace:
20123 parent_type = read_type_die (parent, cu);
20124 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20125 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20126 Work around this problem here. */
20127 if (cu->language == language_cplus
20128 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20129 return "";
20130 /* We give a name to even anonymous namespaces. */
20131 return TYPE_TAG_NAME (parent_type);
20132 case DW_TAG_class_type:
20133 case DW_TAG_interface_type:
20134 case DW_TAG_structure_type:
20135 case DW_TAG_union_type:
20136 case DW_TAG_module:
20137 parent_type = read_type_die (parent, cu);
20138 if (TYPE_TAG_NAME (parent_type) != NULL)
20139 return TYPE_TAG_NAME (parent_type);
20140 else
20141 /* An anonymous structure is only allowed non-static data
20142 members; no typedefs, no member functions, et cetera.
20143 So it does not need a prefix. */
20144 return "";
20145 case DW_TAG_compile_unit:
20146 case DW_TAG_partial_unit:
20147 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20148 if (cu->language == language_cplus
20149 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
20150 && die->child != NULL
20151 && (die->tag == DW_TAG_class_type
20152 || die->tag == DW_TAG_structure_type
20153 || die->tag == DW_TAG_union_type))
20154 {
20155 char *name = guess_full_die_structure_name (die, cu);
20156 if (name != NULL)
20157 return name;
20158 }
20159 return "";
20160 case DW_TAG_enumeration_type:
20161 parent_type = read_type_die (parent, cu);
20162 if (TYPE_DECLARED_CLASS (parent_type))
20163 {
20164 if (TYPE_TAG_NAME (parent_type) != NULL)
20165 return TYPE_TAG_NAME (parent_type);
20166 return "";
20167 }
20168 /* Fall through. */
20169 default:
20170 return determine_prefix (parent, cu);
20171 }
20172 }
20173
20174 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20175 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20176 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20177 an obconcat, otherwise allocate storage for the result. The CU argument is
20178 used to determine the language and hence, the appropriate separator. */
20179
20180 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
20181
20182 static char *
20183 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20184 int physname, struct dwarf2_cu *cu)
20185 {
20186 const char *lead = "";
20187 const char *sep;
20188
20189 if (suffix == NULL || suffix[0] == '\0'
20190 || prefix == NULL || prefix[0] == '\0')
20191 sep = "";
20192 else if (cu->language == language_d)
20193 {
20194 /* For D, the 'main' function could be defined in any module, but it
20195 should never be prefixed. */
20196 if (strcmp (suffix, "D main") == 0)
20197 {
20198 prefix = "";
20199 sep = "";
20200 }
20201 else
20202 sep = ".";
20203 }
20204 else if (cu->language == language_fortran && physname)
20205 {
20206 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20207 DW_AT_MIPS_linkage_name is preferred and used instead. */
20208
20209 lead = "__";
20210 sep = "_MOD_";
20211 }
20212 else
20213 sep = "::";
20214
20215 if (prefix == NULL)
20216 prefix = "";
20217 if (suffix == NULL)
20218 suffix = "";
20219
20220 if (obs == NULL)
20221 {
20222 char *retval
20223 = ((char *)
20224 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
20225
20226 strcpy (retval, lead);
20227 strcat (retval, prefix);
20228 strcat (retval, sep);
20229 strcat (retval, suffix);
20230 return retval;
20231 }
20232 else
20233 {
20234 /* We have an obstack. */
20235 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
20236 }
20237 }
20238
20239 /* Return sibling of die, NULL if no sibling. */
20240
20241 static struct die_info *
20242 sibling_die (struct die_info *die)
20243 {
20244 return die->sibling;
20245 }
20246
20247 /* Get name of a die, return NULL if not found. */
20248
20249 static const char *
20250 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
20251 struct obstack *obstack)
20252 {
20253 if (name && cu->language == language_cplus)
20254 {
20255 std::string canon_name = cp_canonicalize_string (name);
20256
20257 if (!canon_name.empty ())
20258 {
20259 if (canon_name != name)
20260 name = (const char *) obstack_copy0 (obstack,
20261 canon_name.c_str (),
20262 canon_name.length ());
20263 }
20264 }
20265
20266 return name;
20267 }
20268
20269 /* Get name of a die, return NULL if not found.
20270 Anonymous namespaces are converted to their magic string. */
20271
20272 static const char *
20273 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
20274 {
20275 struct attribute *attr;
20276
20277 attr = dwarf2_attr (die, DW_AT_name, cu);
20278 if ((!attr || !DW_STRING (attr))
20279 && die->tag != DW_TAG_namespace
20280 && die->tag != DW_TAG_class_type
20281 && die->tag != DW_TAG_interface_type
20282 && die->tag != DW_TAG_structure_type
20283 && die->tag != DW_TAG_union_type)
20284 return NULL;
20285
20286 switch (die->tag)
20287 {
20288 case DW_TAG_compile_unit:
20289 case DW_TAG_partial_unit:
20290 /* Compilation units have a DW_AT_name that is a filename, not
20291 a source language identifier. */
20292 case DW_TAG_enumeration_type:
20293 case DW_TAG_enumerator:
20294 /* These tags always have simple identifiers already; no need
20295 to canonicalize them. */
20296 return DW_STRING (attr);
20297
20298 case DW_TAG_namespace:
20299 if (attr != NULL && DW_STRING (attr) != NULL)
20300 return DW_STRING (attr);
20301 return CP_ANONYMOUS_NAMESPACE_STR;
20302
20303 case DW_TAG_class_type:
20304 case DW_TAG_interface_type:
20305 case DW_TAG_structure_type:
20306 case DW_TAG_union_type:
20307 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20308 structures or unions. These were of the form "._%d" in GCC 4.1,
20309 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20310 and GCC 4.4. We work around this problem by ignoring these. */
20311 if (attr && DW_STRING (attr)
20312 && (startswith (DW_STRING (attr), "._")
20313 || startswith (DW_STRING (attr), "<anonymous")))
20314 return NULL;
20315
20316 /* GCC might emit a nameless typedef that has a linkage name. See
20317 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20318 if (!attr || DW_STRING (attr) == NULL)
20319 {
20320 char *demangled = NULL;
20321
20322 attr = dw2_linkage_name_attr (die, cu);
20323 if (attr == NULL || DW_STRING (attr) == NULL)
20324 return NULL;
20325
20326 /* Avoid demangling DW_STRING (attr) the second time on a second
20327 call for the same DIE. */
20328 if (!DW_STRING_IS_CANONICAL (attr))
20329 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
20330
20331 if (demangled)
20332 {
20333 const char *base;
20334
20335 /* FIXME: we already did this for the partial symbol... */
20336 DW_STRING (attr)
20337 = ((const char *)
20338 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20339 demangled, strlen (demangled)));
20340 DW_STRING_IS_CANONICAL (attr) = 1;
20341 xfree (demangled);
20342
20343 /* Strip any leading namespaces/classes, keep only the base name.
20344 DW_AT_name for named DIEs does not contain the prefixes. */
20345 base = strrchr (DW_STRING (attr), ':');
20346 if (base && base > DW_STRING (attr) && base[-1] == ':')
20347 return &base[1];
20348 else
20349 return DW_STRING (attr);
20350 }
20351 }
20352 break;
20353
20354 default:
20355 break;
20356 }
20357
20358 if (!DW_STRING_IS_CANONICAL (attr))
20359 {
20360 DW_STRING (attr)
20361 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
20362 &cu->objfile->per_bfd->storage_obstack);
20363 DW_STRING_IS_CANONICAL (attr) = 1;
20364 }
20365 return DW_STRING (attr);
20366 }
20367
20368 /* Return the die that this die in an extension of, or NULL if there
20369 is none. *EXT_CU is the CU containing DIE on input, and the CU
20370 containing the return value on output. */
20371
20372 static struct die_info *
20373 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
20374 {
20375 struct attribute *attr;
20376
20377 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
20378 if (attr == NULL)
20379 return NULL;
20380
20381 return follow_die_ref (die, attr, ext_cu);
20382 }
20383
20384 /* Convert a DIE tag into its string name. */
20385
20386 static const char *
20387 dwarf_tag_name (unsigned tag)
20388 {
20389 const char *name = get_DW_TAG_name (tag);
20390
20391 if (name == NULL)
20392 return "DW_TAG_<unknown>";
20393
20394 return name;
20395 }
20396
20397 /* Convert a DWARF attribute code into its string name. */
20398
20399 static const char *
20400 dwarf_attr_name (unsigned attr)
20401 {
20402 const char *name;
20403
20404 #ifdef MIPS /* collides with DW_AT_HP_block_index */
20405 if (attr == DW_AT_MIPS_fde)
20406 return "DW_AT_MIPS_fde";
20407 #else
20408 if (attr == DW_AT_HP_block_index)
20409 return "DW_AT_HP_block_index";
20410 #endif
20411
20412 name = get_DW_AT_name (attr);
20413
20414 if (name == NULL)
20415 return "DW_AT_<unknown>";
20416
20417 return name;
20418 }
20419
20420 /* Convert a DWARF value form code into its string name. */
20421
20422 static const char *
20423 dwarf_form_name (unsigned form)
20424 {
20425 const char *name = get_DW_FORM_name (form);
20426
20427 if (name == NULL)
20428 return "DW_FORM_<unknown>";
20429
20430 return name;
20431 }
20432
20433 static const char *
20434 dwarf_bool_name (unsigned mybool)
20435 {
20436 if (mybool)
20437 return "TRUE";
20438 else
20439 return "FALSE";
20440 }
20441
20442 /* Convert a DWARF type code into its string name. */
20443
20444 static const char *
20445 dwarf_type_encoding_name (unsigned enc)
20446 {
20447 const char *name = get_DW_ATE_name (enc);
20448
20449 if (name == NULL)
20450 return "DW_ATE_<unknown>";
20451
20452 return name;
20453 }
20454
20455 static void
20456 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
20457 {
20458 unsigned int i;
20459
20460 print_spaces (indent, f);
20461 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
20462 dwarf_tag_name (die->tag), die->abbrev,
20463 to_underlying (die->sect_off));
20464
20465 if (die->parent != NULL)
20466 {
20467 print_spaces (indent, f);
20468 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
20469 to_underlying (die->parent->sect_off));
20470 }
20471
20472 print_spaces (indent, f);
20473 fprintf_unfiltered (f, " has children: %s\n",
20474 dwarf_bool_name (die->child != NULL));
20475
20476 print_spaces (indent, f);
20477 fprintf_unfiltered (f, " attributes:\n");
20478
20479 for (i = 0; i < die->num_attrs; ++i)
20480 {
20481 print_spaces (indent, f);
20482 fprintf_unfiltered (f, " %s (%s) ",
20483 dwarf_attr_name (die->attrs[i].name),
20484 dwarf_form_name (die->attrs[i].form));
20485
20486 switch (die->attrs[i].form)
20487 {
20488 case DW_FORM_addr:
20489 case DW_FORM_GNU_addr_index:
20490 fprintf_unfiltered (f, "address: ");
20491 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
20492 break;
20493 case DW_FORM_block2:
20494 case DW_FORM_block4:
20495 case DW_FORM_block:
20496 case DW_FORM_block1:
20497 fprintf_unfiltered (f, "block: size %s",
20498 pulongest (DW_BLOCK (&die->attrs[i])->size));
20499 break;
20500 case DW_FORM_exprloc:
20501 fprintf_unfiltered (f, "expression: size %s",
20502 pulongest (DW_BLOCK (&die->attrs[i])->size));
20503 break;
20504 case DW_FORM_data16:
20505 fprintf_unfiltered (f, "constant of 16 bytes");
20506 break;
20507 case DW_FORM_ref_addr:
20508 fprintf_unfiltered (f, "ref address: ");
20509 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20510 break;
20511 case DW_FORM_GNU_ref_alt:
20512 fprintf_unfiltered (f, "alt ref address: ");
20513 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20514 break;
20515 case DW_FORM_ref1:
20516 case DW_FORM_ref2:
20517 case DW_FORM_ref4:
20518 case DW_FORM_ref8:
20519 case DW_FORM_ref_udata:
20520 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
20521 (long) (DW_UNSND (&die->attrs[i])));
20522 break;
20523 case DW_FORM_data1:
20524 case DW_FORM_data2:
20525 case DW_FORM_data4:
20526 case DW_FORM_data8:
20527 case DW_FORM_udata:
20528 case DW_FORM_sdata:
20529 fprintf_unfiltered (f, "constant: %s",
20530 pulongest (DW_UNSND (&die->attrs[i])));
20531 break;
20532 case DW_FORM_sec_offset:
20533 fprintf_unfiltered (f, "section offset: %s",
20534 pulongest (DW_UNSND (&die->attrs[i])));
20535 break;
20536 case DW_FORM_ref_sig8:
20537 fprintf_unfiltered (f, "signature: %s",
20538 hex_string (DW_SIGNATURE (&die->attrs[i])));
20539 break;
20540 case DW_FORM_string:
20541 case DW_FORM_strp:
20542 case DW_FORM_line_strp:
20543 case DW_FORM_GNU_str_index:
20544 case DW_FORM_GNU_strp_alt:
20545 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
20546 DW_STRING (&die->attrs[i])
20547 ? DW_STRING (&die->attrs[i]) : "",
20548 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
20549 break;
20550 case DW_FORM_flag:
20551 if (DW_UNSND (&die->attrs[i]))
20552 fprintf_unfiltered (f, "flag: TRUE");
20553 else
20554 fprintf_unfiltered (f, "flag: FALSE");
20555 break;
20556 case DW_FORM_flag_present:
20557 fprintf_unfiltered (f, "flag: TRUE");
20558 break;
20559 case DW_FORM_indirect:
20560 /* The reader will have reduced the indirect form to
20561 the "base form" so this form should not occur. */
20562 fprintf_unfiltered (f,
20563 "unexpected attribute form: DW_FORM_indirect");
20564 break;
20565 case DW_FORM_implicit_const:
20566 fprintf_unfiltered (f, "constant: %s",
20567 plongest (DW_SND (&die->attrs[i])));
20568 break;
20569 default:
20570 fprintf_unfiltered (f, "unsupported attribute form: %d.",
20571 die->attrs[i].form);
20572 break;
20573 }
20574 fprintf_unfiltered (f, "\n");
20575 }
20576 }
20577
20578 static void
20579 dump_die_for_error (struct die_info *die)
20580 {
20581 dump_die_shallow (gdb_stderr, 0, die);
20582 }
20583
20584 static void
20585 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20586 {
20587 int indent = level * 4;
20588
20589 gdb_assert (die != NULL);
20590
20591 if (level >= max_level)
20592 return;
20593
20594 dump_die_shallow (f, indent, die);
20595
20596 if (die->child != NULL)
20597 {
20598 print_spaces (indent, f);
20599 fprintf_unfiltered (f, " Children:");
20600 if (level + 1 < max_level)
20601 {
20602 fprintf_unfiltered (f, "\n");
20603 dump_die_1 (f, level + 1, max_level, die->child);
20604 }
20605 else
20606 {
20607 fprintf_unfiltered (f,
20608 " [not printed, max nesting level reached]\n");
20609 }
20610 }
20611
20612 if (die->sibling != NULL && level > 0)
20613 {
20614 dump_die_1 (f, level, max_level, die->sibling);
20615 }
20616 }
20617
20618 /* This is called from the pdie macro in gdbinit.in.
20619 It's not static so gcc will keep a copy callable from gdb. */
20620
20621 void
20622 dump_die (struct die_info *die, int max_level)
20623 {
20624 dump_die_1 (gdb_stdlog, 0, max_level, die);
20625 }
20626
20627 static void
20628 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
20629 {
20630 void **slot;
20631
20632 slot = htab_find_slot_with_hash (cu->die_hash, die,
20633 to_underlying (die->sect_off),
20634 INSERT);
20635
20636 *slot = die;
20637 }
20638
20639 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20640 required kind. */
20641
20642 static sect_offset
20643 dwarf2_get_ref_die_offset (const struct attribute *attr)
20644 {
20645 if (attr_form_is_ref (attr))
20646 return (sect_offset) DW_UNSND (attr);
20647
20648 complaint (&symfile_complaints,
20649 _("unsupported die ref attribute form: '%s'"),
20650 dwarf_form_name (attr->form));
20651 return {};
20652 }
20653
20654 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20655 * the value held by the attribute is not constant. */
20656
20657 static LONGEST
20658 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
20659 {
20660 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
20661 return DW_SND (attr);
20662 else if (attr->form == DW_FORM_udata
20663 || attr->form == DW_FORM_data1
20664 || attr->form == DW_FORM_data2
20665 || attr->form == DW_FORM_data4
20666 || attr->form == DW_FORM_data8)
20667 return DW_UNSND (attr);
20668 else
20669 {
20670 /* For DW_FORM_data16 see attr_form_is_constant. */
20671 complaint (&symfile_complaints,
20672 _("Attribute value is not a constant (%s)"),
20673 dwarf_form_name (attr->form));
20674 return default_value;
20675 }
20676 }
20677
20678 /* Follow reference or signature attribute ATTR of SRC_DIE.
20679 On entry *REF_CU is the CU of SRC_DIE.
20680 On exit *REF_CU is the CU of the result. */
20681
20682 static struct die_info *
20683 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
20684 struct dwarf2_cu **ref_cu)
20685 {
20686 struct die_info *die;
20687
20688 if (attr_form_is_ref (attr))
20689 die = follow_die_ref (src_die, attr, ref_cu);
20690 else if (attr->form == DW_FORM_ref_sig8)
20691 die = follow_die_sig (src_die, attr, ref_cu);
20692 else
20693 {
20694 dump_die_for_error (src_die);
20695 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
20696 objfile_name ((*ref_cu)->objfile));
20697 }
20698
20699 return die;
20700 }
20701
20702 /* Follow reference OFFSET.
20703 On entry *REF_CU is the CU of the source die referencing OFFSET.
20704 On exit *REF_CU is the CU of the result.
20705 Returns NULL if OFFSET is invalid. */
20706
20707 static struct die_info *
20708 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
20709 struct dwarf2_cu **ref_cu)
20710 {
20711 struct die_info temp_die;
20712 struct dwarf2_cu *target_cu, *cu = *ref_cu;
20713
20714 gdb_assert (cu->per_cu != NULL);
20715
20716 target_cu = cu;
20717
20718 if (cu->per_cu->is_debug_types)
20719 {
20720 /* .debug_types CUs cannot reference anything outside their CU.
20721 If they need to, they have to reference a signatured type via
20722 DW_FORM_ref_sig8. */
20723 if (!offset_in_cu_p (&cu->header, sect_off))
20724 return NULL;
20725 }
20726 else if (offset_in_dwz != cu->per_cu->is_dwz
20727 || !offset_in_cu_p (&cu->header, sect_off))
20728 {
20729 struct dwarf2_per_cu_data *per_cu;
20730
20731 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
20732 cu->objfile);
20733
20734 /* If necessary, add it to the queue and load its DIEs. */
20735 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20736 load_full_comp_unit (per_cu, cu->language);
20737
20738 target_cu = per_cu->cu;
20739 }
20740 else if (cu->dies == NULL)
20741 {
20742 /* We're loading full DIEs during partial symbol reading. */
20743 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20744 load_full_comp_unit (cu->per_cu, language_minimal);
20745 }
20746
20747 *ref_cu = target_cu;
20748 temp_die.sect_off = sect_off;
20749 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20750 &temp_die,
20751 to_underlying (sect_off));
20752 }
20753
20754 /* Follow reference attribute ATTR of SRC_DIE.
20755 On entry *REF_CU is the CU of SRC_DIE.
20756 On exit *REF_CU is the CU of the result. */
20757
20758 static struct die_info *
20759 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20760 struct dwarf2_cu **ref_cu)
20761 {
20762 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20763 struct dwarf2_cu *cu = *ref_cu;
20764 struct die_info *die;
20765
20766 die = follow_die_offset (sect_off,
20767 (attr->form == DW_FORM_GNU_ref_alt
20768 || cu->per_cu->is_dwz),
20769 ref_cu);
20770 if (!die)
20771 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20772 "at 0x%x [in module %s]"),
20773 to_underlying (sect_off), to_underlying (src_die->sect_off),
20774 objfile_name (cu->objfile));
20775
20776 return die;
20777 }
20778
20779 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
20780 Returned value is intended for DW_OP_call*. Returned
20781 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20782
20783 struct dwarf2_locexpr_baton
20784 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
20785 struct dwarf2_per_cu_data *per_cu,
20786 CORE_ADDR (*get_frame_pc) (void *baton),
20787 void *baton)
20788 {
20789 struct dwarf2_cu *cu;
20790 struct die_info *die;
20791 struct attribute *attr;
20792 struct dwarf2_locexpr_baton retval;
20793
20794 dw2_setup (per_cu->objfile);
20795
20796 if (per_cu->cu == NULL)
20797 load_cu (per_cu);
20798 cu = per_cu->cu;
20799 if (cu == NULL)
20800 {
20801 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20802 Instead just throw an error, not much else we can do. */
20803 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20804 to_underlying (sect_off), objfile_name (per_cu->objfile));
20805 }
20806
20807 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20808 if (!die)
20809 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20810 to_underlying (sect_off), objfile_name (per_cu->objfile));
20811
20812 attr = dwarf2_attr (die, DW_AT_location, cu);
20813 if (!attr)
20814 {
20815 /* DWARF: "If there is no such attribute, then there is no effect.".
20816 DATA is ignored if SIZE is 0. */
20817
20818 retval.data = NULL;
20819 retval.size = 0;
20820 }
20821 else if (attr_form_is_section_offset (attr))
20822 {
20823 struct dwarf2_loclist_baton loclist_baton;
20824 CORE_ADDR pc = (*get_frame_pc) (baton);
20825 size_t size;
20826
20827 fill_in_loclist_baton (cu, &loclist_baton, attr);
20828
20829 retval.data = dwarf2_find_location_expression (&loclist_baton,
20830 &size, pc);
20831 retval.size = size;
20832 }
20833 else
20834 {
20835 if (!attr_form_is_block (attr))
20836 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20837 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20838 to_underlying (sect_off), objfile_name (per_cu->objfile));
20839
20840 retval.data = DW_BLOCK (attr)->data;
20841 retval.size = DW_BLOCK (attr)->size;
20842 }
20843 retval.per_cu = cu->per_cu;
20844
20845 age_cached_comp_units ();
20846
20847 return retval;
20848 }
20849
20850 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20851 offset. */
20852
20853 struct dwarf2_locexpr_baton
20854 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20855 struct dwarf2_per_cu_data *per_cu,
20856 CORE_ADDR (*get_frame_pc) (void *baton),
20857 void *baton)
20858 {
20859 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
20860
20861 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
20862 }
20863
20864 /* Write a constant of a given type as target-ordered bytes into
20865 OBSTACK. */
20866
20867 static const gdb_byte *
20868 write_constant_as_bytes (struct obstack *obstack,
20869 enum bfd_endian byte_order,
20870 struct type *type,
20871 ULONGEST value,
20872 LONGEST *len)
20873 {
20874 gdb_byte *result;
20875
20876 *len = TYPE_LENGTH (type);
20877 result = (gdb_byte *) obstack_alloc (obstack, *len);
20878 store_unsigned_integer (result, *len, byte_order, value);
20879
20880 return result;
20881 }
20882
20883 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20884 pointer to the constant bytes and set LEN to the length of the
20885 data. If memory is needed, allocate it on OBSTACK. If the DIE
20886 does not have a DW_AT_const_value, return NULL. */
20887
20888 const gdb_byte *
20889 dwarf2_fetch_constant_bytes (sect_offset sect_off,
20890 struct dwarf2_per_cu_data *per_cu,
20891 struct obstack *obstack,
20892 LONGEST *len)
20893 {
20894 struct dwarf2_cu *cu;
20895 struct die_info *die;
20896 struct attribute *attr;
20897 const gdb_byte *result = NULL;
20898 struct type *type;
20899 LONGEST value;
20900 enum bfd_endian byte_order;
20901
20902 dw2_setup (per_cu->objfile);
20903
20904 if (per_cu->cu == NULL)
20905 load_cu (per_cu);
20906 cu = per_cu->cu;
20907 if (cu == NULL)
20908 {
20909 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20910 Instead just throw an error, not much else we can do. */
20911 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20912 to_underlying (sect_off), objfile_name (per_cu->objfile));
20913 }
20914
20915 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20916 if (!die)
20917 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20918 to_underlying (sect_off), objfile_name (per_cu->objfile));
20919
20920
20921 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20922 if (attr == NULL)
20923 return NULL;
20924
20925 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20926 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20927
20928 switch (attr->form)
20929 {
20930 case DW_FORM_addr:
20931 case DW_FORM_GNU_addr_index:
20932 {
20933 gdb_byte *tem;
20934
20935 *len = cu->header.addr_size;
20936 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20937 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20938 result = tem;
20939 }
20940 break;
20941 case DW_FORM_string:
20942 case DW_FORM_strp:
20943 case DW_FORM_GNU_str_index:
20944 case DW_FORM_GNU_strp_alt:
20945 /* DW_STRING is already allocated on the objfile obstack, point
20946 directly to it. */
20947 result = (const gdb_byte *) DW_STRING (attr);
20948 *len = strlen (DW_STRING (attr));
20949 break;
20950 case DW_FORM_block1:
20951 case DW_FORM_block2:
20952 case DW_FORM_block4:
20953 case DW_FORM_block:
20954 case DW_FORM_exprloc:
20955 case DW_FORM_data16:
20956 result = DW_BLOCK (attr)->data;
20957 *len = DW_BLOCK (attr)->size;
20958 break;
20959
20960 /* The DW_AT_const_value attributes are supposed to carry the
20961 symbol's value "represented as it would be on the target
20962 architecture." By the time we get here, it's already been
20963 converted to host endianness, so we just need to sign- or
20964 zero-extend it as appropriate. */
20965 case DW_FORM_data1:
20966 type = die_type (die, cu);
20967 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20968 if (result == NULL)
20969 result = write_constant_as_bytes (obstack, byte_order,
20970 type, value, len);
20971 break;
20972 case DW_FORM_data2:
20973 type = die_type (die, cu);
20974 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20975 if (result == NULL)
20976 result = write_constant_as_bytes (obstack, byte_order,
20977 type, value, len);
20978 break;
20979 case DW_FORM_data4:
20980 type = die_type (die, cu);
20981 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20982 if (result == NULL)
20983 result = write_constant_as_bytes (obstack, byte_order,
20984 type, value, len);
20985 break;
20986 case DW_FORM_data8:
20987 type = die_type (die, cu);
20988 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20989 if (result == NULL)
20990 result = write_constant_as_bytes (obstack, byte_order,
20991 type, value, len);
20992 break;
20993
20994 case DW_FORM_sdata:
20995 case DW_FORM_implicit_const:
20996 type = die_type (die, cu);
20997 result = write_constant_as_bytes (obstack, byte_order,
20998 type, DW_SND (attr), len);
20999 break;
21000
21001 case DW_FORM_udata:
21002 type = die_type (die, cu);
21003 result = write_constant_as_bytes (obstack, byte_order,
21004 type, DW_UNSND (attr), len);
21005 break;
21006
21007 default:
21008 complaint (&symfile_complaints,
21009 _("unsupported const value attribute form: '%s'"),
21010 dwarf_form_name (attr->form));
21011 break;
21012 }
21013
21014 return result;
21015 }
21016
21017 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
21018 valid type for this die is found. */
21019
21020 struct type *
21021 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
21022 struct dwarf2_per_cu_data *per_cu)
21023 {
21024 struct dwarf2_cu *cu;
21025 struct die_info *die;
21026
21027 dw2_setup (per_cu->objfile);
21028
21029 if (per_cu->cu == NULL)
21030 load_cu (per_cu);
21031 cu = per_cu->cu;
21032 if (!cu)
21033 return NULL;
21034
21035 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21036 if (!die)
21037 return NULL;
21038
21039 return die_type (die, cu);
21040 }
21041
21042 /* Return the type of the DIE at DIE_OFFSET in the CU named by
21043 PER_CU. */
21044
21045 struct type *
21046 dwarf2_get_die_type (cu_offset die_offset,
21047 struct dwarf2_per_cu_data *per_cu)
21048 {
21049 dw2_setup (per_cu->objfile);
21050
21051 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
21052 return get_die_type_at_offset (die_offset_sect, per_cu);
21053 }
21054
21055 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
21056 On entry *REF_CU is the CU of SRC_DIE.
21057 On exit *REF_CU is the CU of the result.
21058 Returns NULL if the referenced DIE isn't found. */
21059
21060 static struct die_info *
21061 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
21062 struct dwarf2_cu **ref_cu)
21063 {
21064 struct die_info temp_die;
21065 struct dwarf2_cu *sig_cu;
21066 struct die_info *die;
21067
21068 /* While it might be nice to assert sig_type->type == NULL here,
21069 we can get here for DW_AT_imported_declaration where we need
21070 the DIE not the type. */
21071
21072 /* If necessary, add it to the queue and load its DIEs. */
21073
21074 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
21075 read_signatured_type (sig_type);
21076
21077 sig_cu = sig_type->per_cu.cu;
21078 gdb_assert (sig_cu != NULL);
21079 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
21080 temp_die.sect_off = sig_type->type_offset_in_section;
21081 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
21082 to_underlying (temp_die.sect_off));
21083 if (die)
21084 {
21085 /* For .gdb_index version 7 keep track of included TUs.
21086 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
21087 if (dwarf2_per_objfile->index_table != NULL
21088 && dwarf2_per_objfile->index_table->version <= 7)
21089 {
21090 VEC_safe_push (dwarf2_per_cu_ptr,
21091 (*ref_cu)->per_cu->imported_symtabs,
21092 sig_cu->per_cu);
21093 }
21094
21095 *ref_cu = sig_cu;
21096 return die;
21097 }
21098
21099 return NULL;
21100 }
21101
21102 /* Follow signatured type referenced by ATTR in SRC_DIE.
21103 On entry *REF_CU is the CU of SRC_DIE.
21104 On exit *REF_CU is the CU of the result.
21105 The result is the DIE of the type.
21106 If the referenced type cannot be found an error is thrown. */
21107
21108 static struct die_info *
21109 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
21110 struct dwarf2_cu **ref_cu)
21111 {
21112 ULONGEST signature = DW_SIGNATURE (attr);
21113 struct signatured_type *sig_type;
21114 struct die_info *die;
21115
21116 gdb_assert (attr->form == DW_FORM_ref_sig8);
21117
21118 sig_type = lookup_signatured_type (*ref_cu, signature);
21119 /* sig_type will be NULL if the signatured type is missing from
21120 the debug info. */
21121 if (sig_type == NULL)
21122 {
21123 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21124 " from DIE at 0x%x [in module %s]"),
21125 hex_string (signature), to_underlying (src_die->sect_off),
21126 objfile_name ((*ref_cu)->objfile));
21127 }
21128
21129 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21130 if (die == NULL)
21131 {
21132 dump_die_for_error (src_die);
21133 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21134 " from DIE at 0x%x [in module %s]"),
21135 hex_string (signature), to_underlying (src_die->sect_off),
21136 objfile_name ((*ref_cu)->objfile));
21137 }
21138
21139 return die;
21140 }
21141
21142 /* Get the type specified by SIGNATURE referenced in DIE/CU,
21143 reading in and processing the type unit if necessary. */
21144
21145 static struct type *
21146 get_signatured_type (struct die_info *die, ULONGEST signature,
21147 struct dwarf2_cu *cu)
21148 {
21149 struct signatured_type *sig_type;
21150 struct dwarf2_cu *type_cu;
21151 struct die_info *type_die;
21152 struct type *type;
21153
21154 sig_type = lookup_signatured_type (cu, signature);
21155 /* sig_type will be NULL if the signatured type is missing from
21156 the debug info. */
21157 if (sig_type == NULL)
21158 {
21159 complaint (&symfile_complaints,
21160 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21161 " from DIE at 0x%x [in module %s]"),
21162 hex_string (signature), to_underlying (die->sect_off),
21163 objfile_name (dwarf2_per_objfile->objfile));
21164 return build_error_marker_type (cu, die);
21165 }
21166
21167 /* If we already know the type we're done. */
21168 if (sig_type->type != NULL)
21169 return sig_type->type;
21170
21171 type_cu = cu;
21172 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21173 if (type_die != NULL)
21174 {
21175 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21176 is created. This is important, for example, because for c++ classes
21177 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21178 type = read_type_die (type_die, type_cu);
21179 if (type == NULL)
21180 {
21181 complaint (&symfile_complaints,
21182 _("Dwarf Error: Cannot build signatured type %s"
21183 " referenced from DIE at 0x%x [in module %s]"),
21184 hex_string (signature), to_underlying (die->sect_off),
21185 objfile_name (dwarf2_per_objfile->objfile));
21186 type = build_error_marker_type (cu, die);
21187 }
21188 }
21189 else
21190 {
21191 complaint (&symfile_complaints,
21192 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21193 " from DIE at 0x%x [in module %s]"),
21194 hex_string (signature), to_underlying (die->sect_off),
21195 objfile_name (dwarf2_per_objfile->objfile));
21196 type = build_error_marker_type (cu, die);
21197 }
21198 sig_type->type = type;
21199
21200 return type;
21201 }
21202
21203 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21204 reading in and processing the type unit if necessary. */
21205
21206 static struct type *
21207 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
21208 struct dwarf2_cu *cu) /* ARI: editCase function */
21209 {
21210 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
21211 if (attr_form_is_ref (attr))
21212 {
21213 struct dwarf2_cu *type_cu = cu;
21214 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21215
21216 return read_type_die (type_die, type_cu);
21217 }
21218 else if (attr->form == DW_FORM_ref_sig8)
21219 {
21220 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21221 }
21222 else
21223 {
21224 complaint (&symfile_complaints,
21225 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21226 " at 0x%x [in module %s]"),
21227 dwarf_form_name (attr->form), to_underlying (die->sect_off),
21228 objfile_name (dwarf2_per_objfile->objfile));
21229 return build_error_marker_type (cu, die);
21230 }
21231 }
21232
21233 /* Load the DIEs associated with type unit PER_CU into memory. */
21234
21235 static void
21236 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
21237 {
21238 struct signatured_type *sig_type;
21239
21240 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21241 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21242
21243 /* We have the per_cu, but we need the signatured_type.
21244 Fortunately this is an easy translation. */
21245 gdb_assert (per_cu->is_debug_types);
21246 sig_type = (struct signatured_type *) per_cu;
21247
21248 gdb_assert (per_cu->cu == NULL);
21249
21250 read_signatured_type (sig_type);
21251
21252 gdb_assert (per_cu->cu != NULL);
21253 }
21254
21255 /* die_reader_func for read_signatured_type.
21256 This is identical to load_full_comp_unit_reader,
21257 but is kept separate for now. */
21258
21259 static void
21260 read_signatured_type_reader (const struct die_reader_specs *reader,
21261 const gdb_byte *info_ptr,
21262 struct die_info *comp_unit_die,
21263 int has_children,
21264 void *data)
21265 {
21266 struct dwarf2_cu *cu = reader->cu;
21267
21268 gdb_assert (cu->die_hash == NULL);
21269 cu->die_hash =
21270 htab_create_alloc_ex (cu->header.length / 12,
21271 die_hash,
21272 die_eq,
21273 NULL,
21274 &cu->comp_unit_obstack,
21275 hashtab_obstack_allocate,
21276 dummy_obstack_deallocate);
21277
21278 if (has_children)
21279 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21280 &info_ptr, comp_unit_die);
21281 cu->dies = comp_unit_die;
21282 /* comp_unit_die is not stored in die_hash, no need. */
21283
21284 /* We try not to read any attributes in this function, because not
21285 all CUs needed for references have been loaded yet, and symbol
21286 table processing isn't initialized. But we have to set the CU language,
21287 or we won't be able to build types correctly.
21288 Similarly, if we do not read the producer, we can not apply
21289 producer-specific interpretation. */
21290 prepare_one_comp_unit (cu, cu->dies, language_minimal);
21291 }
21292
21293 /* Read in a signatured type and build its CU and DIEs.
21294 If the type is a stub for the real type in a DWO file,
21295 read in the real type from the DWO file as well. */
21296
21297 static void
21298 read_signatured_type (struct signatured_type *sig_type)
21299 {
21300 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
21301
21302 gdb_assert (per_cu->is_debug_types);
21303 gdb_assert (per_cu->cu == NULL);
21304
21305 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21306 read_signatured_type_reader, NULL);
21307 sig_type->per_cu.tu_read = 1;
21308 }
21309
21310 /* Decode simple location descriptions.
21311 Given a pointer to a dwarf block that defines a location, compute
21312 the location and return the value.
21313
21314 NOTE drow/2003-11-18: This function is called in two situations
21315 now: for the address of static or global variables (partial symbols
21316 only) and for offsets into structures which are expected to be
21317 (more or less) constant. The partial symbol case should go away,
21318 and only the constant case should remain. That will let this
21319 function complain more accurately. A few special modes are allowed
21320 without complaint for global variables (for instance, global
21321 register values and thread-local values).
21322
21323 A location description containing no operations indicates that the
21324 object is optimized out. The return value is 0 for that case.
21325 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21326 callers will only want a very basic result and this can become a
21327 complaint.
21328
21329 Note that stack[0] is unused except as a default error return. */
21330
21331 static CORE_ADDR
21332 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
21333 {
21334 struct objfile *objfile = cu->objfile;
21335 size_t i;
21336 size_t size = blk->size;
21337 const gdb_byte *data = blk->data;
21338 CORE_ADDR stack[64];
21339 int stacki;
21340 unsigned int bytes_read, unsnd;
21341 gdb_byte op;
21342
21343 i = 0;
21344 stacki = 0;
21345 stack[stacki] = 0;
21346 stack[++stacki] = 0;
21347
21348 while (i < size)
21349 {
21350 op = data[i++];
21351 switch (op)
21352 {
21353 case DW_OP_lit0:
21354 case DW_OP_lit1:
21355 case DW_OP_lit2:
21356 case DW_OP_lit3:
21357 case DW_OP_lit4:
21358 case DW_OP_lit5:
21359 case DW_OP_lit6:
21360 case DW_OP_lit7:
21361 case DW_OP_lit8:
21362 case DW_OP_lit9:
21363 case DW_OP_lit10:
21364 case DW_OP_lit11:
21365 case DW_OP_lit12:
21366 case DW_OP_lit13:
21367 case DW_OP_lit14:
21368 case DW_OP_lit15:
21369 case DW_OP_lit16:
21370 case DW_OP_lit17:
21371 case DW_OP_lit18:
21372 case DW_OP_lit19:
21373 case DW_OP_lit20:
21374 case DW_OP_lit21:
21375 case DW_OP_lit22:
21376 case DW_OP_lit23:
21377 case DW_OP_lit24:
21378 case DW_OP_lit25:
21379 case DW_OP_lit26:
21380 case DW_OP_lit27:
21381 case DW_OP_lit28:
21382 case DW_OP_lit29:
21383 case DW_OP_lit30:
21384 case DW_OP_lit31:
21385 stack[++stacki] = op - DW_OP_lit0;
21386 break;
21387
21388 case DW_OP_reg0:
21389 case DW_OP_reg1:
21390 case DW_OP_reg2:
21391 case DW_OP_reg3:
21392 case DW_OP_reg4:
21393 case DW_OP_reg5:
21394 case DW_OP_reg6:
21395 case DW_OP_reg7:
21396 case DW_OP_reg8:
21397 case DW_OP_reg9:
21398 case DW_OP_reg10:
21399 case DW_OP_reg11:
21400 case DW_OP_reg12:
21401 case DW_OP_reg13:
21402 case DW_OP_reg14:
21403 case DW_OP_reg15:
21404 case DW_OP_reg16:
21405 case DW_OP_reg17:
21406 case DW_OP_reg18:
21407 case DW_OP_reg19:
21408 case DW_OP_reg20:
21409 case DW_OP_reg21:
21410 case DW_OP_reg22:
21411 case DW_OP_reg23:
21412 case DW_OP_reg24:
21413 case DW_OP_reg25:
21414 case DW_OP_reg26:
21415 case DW_OP_reg27:
21416 case DW_OP_reg28:
21417 case DW_OP_reg29:
21418 case DW_OP_reg30:
21419 case DW_OP_reg31:
21420 stack[++stacki] = op - DW_OP_reg0;
21421 if (i < size)
21422 dwarf2_complex_location_expr_complaint ();
21423 break;
21424
21425 case DW_OP_regx:
21426 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21427 i += bytes_read;
21428 stack[++stacki] = unsnd;
21429 if (i < size)
21430 dwarf2_complex_location_expr_complaint ();
21431 break;
21432
21433 case DW_OP_addr:
21434 stack[++stacki] = read_address (objfile->obfd, &data[i],
21435 cu, &bytes_read);
21436 i += bytes_read;
21437 break;
21438
21439 case DW_OP_const1u:
21440 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21441 i += 1;
21442 break;
21443
21444 case DW_OP_const1s:
21445 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21446 i += 1;
21447 break;
21448
21449 case DW_OP_const2u:
21450 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21451 i += 2;
21452 break;
21453
21454 case DW_OP_const2s:
21455 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21456 i += 2;
21457 break;
21458
21459 case DW_OP_const4u:
21460 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21461 i += 4;
21462 break;
21463
21464 case DW_OP_const4s:
21465 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21466 i += 4;
21467 break;
21468
21469 case DW_OP_const8u:
21470 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21471 i += 8;
21472 break;
21473
21474 case DW_OP_constu:
21475 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21476 &bytes_read);
21477 i += bytes_read;
21478 break;
21479
21480 case DW_OP_consts:
21481 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21482 i += bytes_read;
21483 break;
21484
21485 case DW_OP_dup:
21486 stack[stacki + 1] = stack[stacki];
21487 stacki++;
21488 break;
21489
21490 case DW_OP_plus:
21491 stack[stacki - 1] += stack[stacki];
21492 stacki--;
21493 break;
21494
21495 case DW_OP_plus_uconst:
21496 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21497 &bytes_read);
21498 i += bytes_read;
21499 break;
21500
21501 case DW_OP_minus:
21502 stack[stacki - 1] -= stack[stacki];
21503 stacki--;
21504 break;
21505
21506 case DW_OP_deref:
21507 /* If we're not the last op, then we definitely can't encode
21508 this using GDB's address_class enum. This is valid for partial
21509 global symbols, although the variable's address will be bogus
21510 in the psymtab. */
21511 if (i < size)
21512 dwarf2_complex_location_expr_complaint ();
21513 break;
21514
21515 case DW_OP_GNU_push_tls_address:
21516 case DW_OP_form_tls_address:
21517 /* The top of the stack has the offset from the beginning
21518 of the thread control block at which the variable is located. */
21519 /* Nothing should follow this operator, so the top of stack would
21520 be returned. */
21521 /* This is valid for partial global symbols, but the variable's
21522 address will be bogus in the psymtab. Make it always at least
21523 non-zero to not look as a variable garbage collected by linker
21524 which have DW_OP_addr 0. */
21525 if (i < size)
21526 dwarf2_complex_location_expr_complaint ();
21527 stack[stacki]++;
21528 break;
21529
21530 case DW_OP_GNU_uninit:
21531 break;
21532
21533 case DW_OP_GNU_addr_index:
21534 case DW_OP_GNU_const_index:
21535 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21536 &bytes_read);
21537 i += bytes_read;
21538 break;
21539
21540 default:
21541 {
21542 const char *name = get_DW_OP_name (op);
21543
21544 if (name)
21545 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21546 name);
21547 else
21548 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21549 op);
21550 }
21551
21552 return (stack[stacki]);
21553 }
21554
21555 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21556 outside of the allocated space. Also enforce minimum>0. */
21557 if (stacki >= ARRAY_SIZE (stack) - 1)
21558 {
21559 complaint (&symfile_complaints,
21560 _("location description stack overflow"));
21561 return 0;
21562 }
21563
21564 if (stacki <= 0)
21565 {
21566 complaint (&symfile_complaints,
21567 _("location description stack underflow"));
21568 return 0;
21569 }
21570 }
21571 return (stack[stacki]);
21572 }
21573
21574 /* memory allocation interface */
21575
21576 static struct dwarf_block *
21577 dwarf_alloc_block (struct dwarf2_cu *cu)
21578 {
21579 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
21580 }
21581
21582 static struct die_info *
21583 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
21584 {
21585 struct die_info *die;
21586 size_t size = sizeof (struct die_info);
21587
21588 if (num_attrs > 1)
21589 size += (num_attrs - 1) * sizeof (struct attribute);
21590
21591 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
21592 memset (die, 0, sizeof (struct die_info));
21593 return (die);
21594 }
21595
21596 \f
21597 /* Macro support. */
21598
21599 /* Return file name relative to the compilation directory of file number I in
21600 *LH's file name table. The result is allocated using xmalloc; the caller is
21601 responsible for freeing it. */
21602
21603 static char *
21604 file_file_name (int file, struct line_header *lh)
21605 {
21606 /* Is the file number a valid index into the line header's file name
21607 table? Remember that file numbers start with one, not zero. */
21608 if (1 <= file && file <= lh->file_names.size ())
21609 {
21610 const file_entry &fe = lh->file_names[file - 1];
21611
21612 if (!IS_ABSOLUTE_PATH (fe.name))
21613 {
21614 const char *dir = fe.include_dir (lh);
21615 if (dir != NULL)
21616 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
21617 }
21618 return xstrdup (fe.name);
21619 }
21620 else
21621 {
21622 /* The compiler produced a bogus file number. We can at least
21623 record the macro definitions made in the file, even if we
21624 won't be able to find the file by name. */
21625 char fake_name[80];
21626
21627 xsnprintf (fake_name, sizeof (fake_name),
21628 "<bad macro file number %d>", file);
21629
21630 complaint (&symfile_complaints,
21631 _("bad file number in macro information (%d)"),
21632 file);
21633
21634 return xstrdup (fake_name);
21635 }
21636 }
21637
21638 /* Return the full name of file number I in *LH's file name table.
21639 Use COMP_DIR as the name of the current directory of the
21640 compilation. The result is allocated using xmalloc; the caller is
21641 responsible for freeing it. */
21642 static char *
21643 file_full_name (int file, struct line_header *lh, const char *comp_dir)
21644 {
21645 /* Is the file number a valid index into the line header's file name
21646 table? Remember that file numbers start with one, not zero. */
21647 if (1 <= file && file <= lh->file_names.size ())
21648 {
21649 char *relative = file_file_name (file, lh);
21650
21651 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21652 return relative;
21653 return reconcat (relative, comp_dir, SLASH_STRING,
21654 relative, (char *) NULL);
21655 }
21656 else
21657 return file_file_name (file, lh);
21658 }
21659
21660
21661 static struct macro_source_file *
21662 macro_start_file (int file, int line,
21663 struct macro_source_file *current_file,
21664 struct line_header *lh)
21665 {
21666 /* File name relative to the compilation directory of this source file. */
21667 char *file_name = file_file_name (file, lh);
21668
21669 if (! current_file)
21670 {
21671 /* Note: We don't create a macro table for this compilation unit
21672 at all until we actually get a filename. */
21673 struct macro_table *macro_table = get_macro_table ();
21674
21675 /* If we have no current file, then this must be the start_file
21676 directive for the compilation unit's main source file. */
21677 current_file = macro_set_main (macro_table, file_name);
21678 macro_define_special (macro_table);
21679 }
21680 else
21681 current_file = macro_include (current_file, line, file_name);
21682
21683 xfree (file_name);
21684
21685 return current_file;
21686 }
21687
21688 static const char *
21689 consume_improper_spaces (const char *p, const char *body)
21690 {
21691 if (*p == ' ')
21692 {
21693 complaint (&symfile_complaints,
21694 _("macro definition contains spaces "
21695 "in formal argument list:\n`%s'"),
21696 body);
21697
21698 while (*p == ' ')
21699 p++;
21700 }
21701
21702 return p;
21703 }
21704
21705
21706 static void
21707 parse_macro_definition (struct macro_source_file *file, int line,
21708 const char *body)
21709 {
21710 const char *p;
21711
21712 /* The body string takes one of two forms. For object-like macro
21713 definitions, it should be:
21714
21715 <macro name> " " <definition>
21716
21717 For function-like macro definitions, it should be:
21718
21719 <macro name> "() " <definition>
21720 or
21721 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21722
21723 Spaces may appear only where explicitly indicated, and in the
21724 <definition>.
21725
21726 The Dwarf 2 spec says that an object-like macro's name is always
21727 followed by a space, but versions of GCC around March 2002 omit
21728 the space when the macro's definition is the empty string.
21729
21730 The Dwarf 2 spec says that there should be no spaces between the
21731 formal arguments in a function-like macro's formal argument list,
21732 but versions of GCC around March 2002 include spaces after the
21733 commas. */
21734
21735
21736 /* Find the extent of the macro name. The macro name is terminated
21737 by either a space or null character (for an object-like macro) or
21738 an opening paren (for a function-like macro). */
21739 for (p = body; *p; p++)
21740 if (*p == ' ' || *p == '(')
21741 break;
21742
21743 if (*p == ' ' || *p == '\0')
21744 {
21745 /* It's an object-like macro. */
21746 int name_len = p - body;
21747 char *name = savestring (body, name_len);
21748 const char *replacement;
21749
21750 if (*p == ' ')
21751 replacement = body + name_len + 1;
21752 else
21753 {
21754 dwarf2_macro_malformed_definition_complaint (body);
21755 replacement = body + name_len;
21756 }
21757
21758 macro_define_object (file, line, name, replacement);
21759
21760 xfree (name);
21761 }
21762 else if (*p == '(')
21763 {
21764 /* It's a function-like macro. */
21765 char *name = savestring (body, p - body);
21766 int argc = 0;
21767 int argv_size = 1;
21768 char **argv = XNEWVEC (char *, argv_size);
21769
21770 p++;
21771
21772 p = consume_improper_spaces (p, body);
21773
21774 /* Parse the formal argument list. */
21775 while (*p && *p != ')')
21776 {
21777 /* Find the extent of the current argument name. */
21778 const char *arg_start = p;
21779
21780 while (*p && *p != ',' && *p != ')' && *p != ' ')
21781 p++;
21782
21783 if (! *p || p == arg_start)
21784 dwarf2_macro_malformed_definition_complaint (body);
21785 else
21786 {
21787 /* Make sure argv has room for the new argument. */
21788 if (argc >= argv_size)
21789 {
21790 argv_size *= 2;
21791 argv = XRESIZEVEC (char *, argv, argv_size);
21792 }
21793
21794 argv[argc++] = savestring (arg_start, p - arg_start);
21795 }
21796
21797 p = consume_improper_spaces (p, body);
21798
21799 /* Consume the comma, if present. */
21800 if (*p == ',')
21801 {
21802 p++;
21803
21804 p = consume_improper_spaces (p, body);
21805 }
21806 }
21807
21808 if (*p == ')')
21809 {
21810 p++;
21811
21812 if (*p == ' ')
21813 /* Perfectly formed definition, no complaints. */
21814 macro_define_function (file, line, name,
21815 argc, (const char **) argv,
21816 p + 1);
21817 else if (*p == '\0')
21818 {
21819 /* Complain, but do define it. */
21820 dwarf2_macro_malformed_definition_complaint (body);
21821 macro_define_function (file, line, name,
21822 argc, (const char **) argv,
21823 p);
21824 }
21825 else
21826 /* Just complain. */
21827 dwarf2_macro_malformed_definition_complaint (body);
21828 }
21829 else
21830 /* Just complain. */
21831 dwarf2_macro_malformed_definition_complaint (body);
21832
21833 xfree (name);
21834 {
21835 int i;
21836
21837 for (i = 0; i < argc; i++)
21838 xfree (argv[i]);
21839 }
21840 xfree (argv);
21841 }
21842 else
21843 dwarf2_macro_malformed_definition_complaint (body);
21844 }
21845
21846 /* Skip some bytes from BYTES according to the form given in FORM.
21847 Returns the new pointer. */
21848
21849 static const gdb_byte *
21850 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21851 enum dwarf_form form,
21852 unsigned int offset_size,
21853 struct dwarf2_section_info *section)
21854 {
21855 unsigned int bytes_read;
21856
21857 switch (form)
21858 {
21859 case DW_FORM_data1:
21860 case DW_FORM_flag:
21861 ++bytes;
21862 break;
21863
21864 case DW_FORM_data2:
21865 bytes += 2;
21866 break;
21867
21868 case DW_FORM_data4:
21869 bytes += 4;
21870 break;
21871
21872 case DW_FORM_data8:
21873 bytes += 8;
21874 break;
21875
21876 case DW_FORM_data16:
21877 bytes += 16;
21878 break;
21879
21880 case DW_FORM_string:
21881 read_direct_string (abfd, bytes, &bytes_read);
21882 bytes += bytes_read;
21883 break;
21884
21885 case DW_FORM_sec_offset:
21886 case DW_FORM_strp:
21887 case DW_FORM_GNU_strp_alt:
21888 bytes += offset_size;
21889 break;
21890
21891 case DW_FORM_block:
21892 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21893 bytes += bytes_read;
21894 break;
21895
21896 case DW_FORM_block1:
21897 bytes += 1 + read_1_byte (abfd, bytes);
21898 break;
21899 case DW_FORM_block2:
21900 bytes += 2 + read_2_bytes (abfd, bytes);
21901 break;
21902 case DW_FORM_block4:
21903 bytes += 4 + read_4_bytes (abfd, bytes);
21904 break;
21905
21906 case DW_FORM_sdata:
21907 case DW_FORM_udata:
21908 case DW_FORM_GNU_addr_index:
21909 case DW_FORM_GNU_str_index:
21910 bytes = gdb_skip_leb128 (bytes, buffer_end);
21911 if (bytes == NULL)
21912 {
21913 dwarf2_section_buffer_overflow_complaint (section);
21914 return NULL;
21915 }
21916 break;
21917
21918 case DW_FORM_implicit_const:
21919 break;
21920
21921 default:
21922 {
21923 complain:
21924 complaint (&symfile_complaints,
21925 _("invalid form 0x%x in `%s'"),
21926 form, get_section_name (section));
21927 return NULL;
21928 }
21929 }
21930
21931 return bytes;
21932 }
21933
21934 /* A helper for dwarf_decode_macros that handles skipping an unknown
21935 opcode. Returns an updated pointer to the macro data buffer; or,
21936 on error, issues a complaint and returns NULL. */
21937
21938 static const gdb_byte *
21939 skip_unknown_opcode (unsigned int opcode,
21940 const gdb_byte **opcode_definitions,
21941 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21942 bfd *abfd,
21943 unsigned int offset_size,
21944 struct dwarf2_section_info *section)
21945 {
21946 unsigned int bytes_read, i;
21947 unsigned long arg;
21948 const gdb_byte *defn;
21949
21950 if (opcode_definitions[opcode] == NULL)
21951 {
21952 complaint (&symfile_complaints,
21953 _("unrecognized DW_MACFINO opcode 0x%x"),
21954 opcode);
21955 return NULL;
21956 }
21957
21958 defn = opcode_definitions[opcode];
21959 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21960 defn += bytes_read;
21961
21962 for (i = 0; i < arg; ++i)
21963 {
21964 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21965 (enum dwarf_form) defn[i], offset_size,
21966 section);
21967 if (mac_ptr == NULL)
21968 {
21969 /* skip_form_bytes already issued the complaint. */
21970 return NULL;
21971 }
21972 }
21973
21974 return mac_ptr;
21975 }
21976
21977 /* A helper function which parses the header of a macro section.
21978 If the macro section is the extended (for now called "GNU") type,
21979 then this updates *OFFSET_SIZE. Returns a pointer to just after
21980 the header, or issues a complaint and returns NULL on error. */
21981
21982 static const gdb_byte *
21983 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21984 bfd *abfd,
21985 const gdb_byte *mac_ptr,
21986 unsigned int *offset_size,
21987 int section_is_gnu)
21988 {
21989 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21990
21991 if (section_is_gnu)
21992 {
21993 unsigned int version, flags;
21994
21995 version = read_2_bytes (abfd, mac_ptr);
21996 if (version != 4 && version != 5)
21997 {
21998 complaint (&symfile_complaints,
21999 _("unrecognized version `%d' in .debug_macro section"),
22000 version);
22001 return NULL;
22002 }
22003 mac_ptr += 2;
22004
22005 flags = read_1_byte (abfd, mac_ptr);
22006 ++mac_ptr;
22007 *offset_size = (flags & 1) ? 8 : 4;
22008
22009 if ((flags & 2) != 0)
22010 /* We don't need the line table offset. */
22011 mac_ptr += *offset_size;
22012
22013 /* Vendor opcode descriptions. */
22014 if ((flags & 4) != 0)
22015 {
22016 unsigned int i, count;
22017
22018 count = read_1_byte (abfd, mac_ptr);
22019 ++mac_ptr;
22020 for (i = 0; i < count; ++i)
22021 {
22022 unsigned int opcode, bytes_read;
22023 unsigned long arg;
22024
22025 opcode = read_1_byte (abfd, mac_ptr);
22026 ++mac_ptr;
22027 opcode_definitions[opcode] = mac_ptr;
22028 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22029 mac_ptr += bytes_read;
22030 mac_ptr += arg;
22031 }
22032 }
22033 }
22034
22035 return mac_ptr;
22036 }
22037
22038 /* A helper for dwarf_decode_macros that handles the GNU extensions,
22039 including DW_MACRO_import. */
22040
22041 static void
22042 dwarf_decode_macro_bytes (bfd *abfd,
22043 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
22044 struct macro_source_file *current_file,
22045 struct line_header *lh,
22046 struct dwarf2_section_info *section,
22047 int section_is_gnu, int section_is_dwz,
22048 unsigned int offset_size,
22049 htab_t include_hash)
22050 {
22051 struct objfile *objfile = dwarf2_per_objfile->objfile;
22052 enum dwarf_macro_record_type macinfo_type;
22053 int at_commandline;
22054 const gdb_byte *opcode_definitions[256];
22055
22056 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22057 &offset_size, section_is_gnu);
22058 if (mac_ptr == NULL)
22059 {
22060 /* We already issued a complaint. */
22061 return;
22062 }
22063
22064 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
22065 GDB is still reading the definitions from command line. First
22066 DW_MACINFO_start_file will need to be ignored as it was already executed
22067 to create CURRENT_FILE for the main source holding also the command line
22068 definitions. On first met DW_MACINFO_start_file this flag is reset to
22069 normally execute all the remaining DW_MACINFO_start_file macinfos. */
22070
22071 at_commandline = 1;
22072
22073 do
22074 {
22075 /* Do we at least have room for a macinfo type byte? */
22076 if (mac_ptr >= mac_end)
22077 {
22078 dwarf2_section_buffer_overflow_complaint (section);
22079 break;
22080 }
22081
22082 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22083 mac_ptr++;
22084
22085 /* Note that we rely on the fact that the corresponding GNU and
22086 DWARF constants are the same. */
22087 switch (macinfo_type)
22088 {
22089 /* A zero macinfo type indicates the end of the macro
22090 information. */
22091 case 0:
22092 break;
22093
22094 case DW_MACRO_define:
22095 case DW_MACRO_undef:
22096 case DW_MACRO_define_strp:
22097 case DW_MACRO_undef_strp:
22098 case DW_MACRO_define_sup:
22099 case DW_MACRO_undef_sup:
22100 {
22101 unsigned int bytes_read;
22102 int line;
22103 const char *body;
22104 int is_define;
22105
22106 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22107 mac_ptr += bytes_read;
22108
22109 if (macinfo_type == DW_MACRO_define
22110 || macinfo_type == DW_MACRO_undef)
22111 {
22112 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22113 mac_ptr += bytes_read;
22114 }
22115 else
22116 {
22117 LONGEST str_offset;
22118
22119 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22120 mac_ptr += offset_size;
22121
22122 if (macinfo_type == DW_MACRO_define_sup
22123 || macinfo_type == DW_MACRO_undef_sup
22124 || section_is_dwz)
22125 {
22126 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22127
22128 body = read_indirect_string_from_dwz (dwz, str_offset);
22129 }
22130 else
22131 body = read_indirect_string_at_offset (abfd, str_offset);
22132 }
22133
22134 is_define = (macinfo_type == DW_MACRO_define
22135 || macinfo_type == DW_MACRO_define_strp
22136 || macinfo_type == DW_MACRO_define_sup);
22137 if (! current_file)
22138 {
22139 /* DWARF violation as no main source is present. */
22140 complaint (&symfile_complaints,
22141 _("debug info with no main source gives macro %s "
22142 "on line %d: %s"),
22143 is_define ? _("definition") : _("undefinition"),
22144 line, body);
22145 break;
22146 }
22147 if ((line == 0 && !at_commandline)
22148 || (line != 0 && at_commandline))
22149 complaint (&symfile_complaints,
22150 _("debug info gives %s macro %s with %s line %d: %s"),
22151 at_commandline ? _("command-line") : _("in-file"),
22152 is_define ? _("definition") : _("undefinition"),
22153 line == 0 ? _("zero") : _("non-zero"), line, body);
22154
22155 if (is_define)
22156 parse_macro_definition (current_file, line, body);
22157 else
22158 {
22159 gdb_assert (macinfo_type == DW_MACRO_undef
22160 || macinfo_type == DW_MACRO_undef_strp
22161 || macinfo_type == DW_MACRO_undef_sup);
22162 macro_undef (current_file, line, body);
22163 }
22164 }
22165 break;
22166
22167 case DW_MACRO_start_file:
22168 {
22169 unsigned int bytes_read;
22170 int line, file;
22171
22172 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22173 mac_ptr += bytes_read;
22174 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22175 mac_ptr += bytes_read;
22176
22177 if ((line == 0 && !at_commandline)
22178 || (line != 0 && at_commandline))
22179 complaint (&symfile_complaints,
22180 _("debug info gives source %d included "
22181 "from %s at %s line %d"),
22182 file, at_commandline ? _("command-line") : _("file"),
22183 line == 0 ? _("zero") : _("non-zero"), line);
22184
22185 if (at_commandline)
22186 {
22187 /* This DW_MACRO_start_file was executed in the
22188 pass one. */
22189 at_commandline = 0;
22190 }
22191 else
22192 current_file = macro_start_file (file, line, current_file, lh);
22193 }
22194 break;
22195
22196 case DW_MACRO_end_file:
22197 if (! current_file)
22198 complaint (&symfile_complaints,
22199 _("macro debug info has an unmatched "
22200 "`close_file' directive"));
22201 else
22202 {
22203 current_file = current_file->included_by;
22204 if (! current_file)
22205 {
22206 enum dwarf_macro_record_type next_type;
22207
22208 /* GCC circa March 2002 doesn't produce the zero
22209 type byte marking the end of the compilation
22210 unit. Complain if it's not there, but exit no
22211 matter what. */
22212
22213 /* Do we at least have room for a macinfo type byte? */
22214 if (mac_ptr >= mac_end)
22215 {
22216 dwarf2_section_buffer_overflow_complaint (section);
22217 return;
22218 }
22219
22220 /* We don't increment mac_ptr here, so this is just
22221 a look-ahead. */
22222 next_type
22223 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22224 mac_ptr);
22225 if (next_type != 0)
22226 complaint (&symfile_complaints,
22227 _("no terminating 0-type entry for "
22228 "macros in `.debug_macinfo' section"));
22229
22230 return;
22231 }
22232 }
22233 break;
22234
22235 case DW_MACRO_import:
22236 case DW_MACRO_import_sup:
22237 {
22238 LONGEST offset;
22239 void **slot;
22240 bfd *include_bfd = abfd;
22241 struct dwarf2_section_info *include_section = section;
22242 const gdb_byte *include_mac_end = mac_end;
22243 int is_dwz = section_is_dwz;
22244 const gdb_byte *new_mac_ptr;
22245
22246 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22247 mac_ptr += offset_size;
22248
22249 if (macinfo_type == DW_MACRO_import_sup)
22250 {
22251 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22252
22253 dwarf2_read_section (objfile, &dwz->macro);
22254
22255 include_section = &dwz->macro;
22256 include_bfd = get_section_bfd_owner (include_section);
22257 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22258 is_dwz = 1;
22259 }
22260
22261 new_mac_ptr = include_section->buffer + offset;
22262 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22263
22264 if (*slot != NULL)
22265 {
22266 /* This has actually happened; see
22267 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22268 complaint (&symfile_complaints,
22269 _("recursive DW_MACRO_import in "
22270 ".debug_macro section"));
22271 }
22272 else
22273 {
22274 *slot = (void *) new_mac_ptr;
22275
22276 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
22277 include_mac_end, current_file, lh,
22278 section, section_is_gnu, is_dwz,
22279 offset_size, include_hash);
22280
22281 htab_remove_elt (include_hash, (void *) new_mac_ptr);
22282 }
22283 }
22284 break;
22285
22286 case DW_MACINFO_vendor_ext:
22287 if (!section_is_gnu)
22288 {
22289 unsigned int bytes_read;
22290
22291 /* This reads the constant, but since we don't recognize
22292 any vendor extensions, we ignore it. */
22293 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22294 mac_ptr += bytes_read;
22295 read_direct_string (abfd, mac_ptr, &bytes_read);
22296 mac_ptr += bytes_read;
22297
22298 /* We don't recognize any vendor extensions. */
22299 break;
22300 }
22301 /* FALLTHROUGH */
22302
22303 default:
22304 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22305 mac_ptr, mac_end, abfd, offset_size,
22306 section);
22307 if (mac_ptr == NULL)
22308 return;
22309 break;
22310 }
22311 } while (macinfo_type != 0);
22312 }
22313
22314 static void
22315 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22316 int section_is_gnu)
22317 {
22318 struct objfile *objfile = dwarf2_per_objfile->objfile;
22319 struct line_header *lh = cu->line_header;
22320 bfd *abfd;
22321 const gdb_byte *mac_ptr, *mac_end;
22322 struct macro_source_file *current_file = 0;
22323 enum dwarf_macro_record_type macinfo_type;
22324 unsigned int offset_size = cu->header.offset_size;
22325 const gdb_byte *opcode_definitions[256];
22326 struct cleanup *cleanup;
22327 void **slot;
22328 struct dwarf2_section_info *section;
22329 const char *section_name;
22330
22331 if (cu->dwo_unit != NULL)
22332 {
22333 if (section_is_gnu)
22334 {
22335 section = &cu->dwo_unit->dwo_file->sections.macro;
22336 section_name = ".debug_macro.dwo";
22337 }
22338 else
22339 {
22340 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22341 section_name = ".debug_macinfo.dwo";
22342 }
22343 }
22344 else
22345 {
22346 if (section_is_gnu)
22347 {
22348 section = &dwarf2_per_objfile->macro;
22349 section_name = ".debug_macro";
22350 }
22351 else
22352 {
22353 section = &dwarf2_per_objfile->macinfo;
22354 section_name = ".debug_macinfo";
22355 }
22356 }
22357
22358 dwarf2_read_section (objfile, section);
22359 if (section->buffer == NULL)
22360 {
22361 complaint (&symfile_complaints, _("missing %s section"), section_name);
22362 return;
22363 }
22364 abfd = get_section_bfd_owner (section);
22365
22366 /* First pass: Find the name of the base filename.
22367 This filename is needed in order to process all macros whose definition
22368 (or undefinition) comes from the command line. These macros are defined
22369 before the first DW_MACINFO_start_file entry, and yet still need to be
22370 associated to the base file.
22371
22372 To determine the base file name, we scan the macro definitions until we
22373 reach the first DW_MACINFO_start_file entry. We then initialize
22374 CURRENT_FILE accordingly so that any macro definition found before the
22375 first DW_MACINFO_start_file can still be associated to the base file. */
22376
22377 mac_ptr = section->buffer + offset;
22378 mac_end = section->buffer + section->size;
22379
22380 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22381 &offset_size, section_is_gnu);
22382 if (mac_ptr == NULL)
22383 {
22384 /* We already issued a complaint. */
22385 return;
22386 }
22387
22388 do
22389 {
22390 /* Do we at least have room for a macinfo type byte? */
22391 if (mac_ptr >= mac_end)
22392 {
22393 /* Complaint is printed during the second pass as GDB will probably
22394 stop the first pass earlier upon finding
22395 DW_MACINFO_start_file. */
22396 break;
22397 }
22398
22399 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22400 mac_ptr++;
22401
22402 /* Note that we rely on the fact that the corresponding GNU and
22403 DWARF constants are the same. */
22404 switch (macinfo_type)
22405 {
22406 /* A zero macinfo type indicates the end of the macro
22407 information. */
22408 case 0:
22409 break;
22410
22411 case DW_MACRO_define:
22412 case DW_MACRO_undef:
22413 /* Only skip the data by MAC_PTR. */
22414 {
22415 unsigned int bytes_read;
22416
22417 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22418 mac_ptr += bytes_read;
22419 read_direct_string (abfd, mac_ptr, &bytes_read);
22420 mac_ptr += bytes_read;
22421 }
22422 break;
22423
22424 case DW_MACRO_start_file:
22425 {
22426 unsigned int bytes_read;
22427 int line, file;
22428
22429 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22430 mac_ptr += bytes_read;
22431 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22432 mac_ptr += bytes_read;
22433
22434 current_file = macro_start_file (file, line, current_file, lh);
22435 }
22436 break;
22437
22438 case DW_MACRO_end_file:
22439 /* No data to skip by MAC_PTR. */
22440 break;
22441
22442 case DW_MACRO_define_strp:
22443 case DW_MACRO_undef_strp:
22444 case DW_MACRO_define_sup:
22445 case DW_MACRO_undef_sup:
22446 {
22447 unsigned int bytes_read;
22448
22449 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22450 mac_ptr += bytes_read;
22451 mac_ptr += offset_size;
22452 }
22453 break;
22454
22455 case DW_MACRO_import:
22456 case DW_MACRO_import_sup:
22457 /* Note that, according to the spec, a transparent include
22458 chain cannot call DW_MACRO_start_file. So, we can just
22459 skip this opcode. */
22460 mac_ptr += offset_size;
22461 break;
22462
22463 case DW_MACINFO_vendor_ext:
22464 /* Only skip the data by MAC_PTR. */
22465 if (!section_is_gnu)
22466 {
22467 unsigned int bytes_read;
22468
22469 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22470 mac_ptr += bytes_read;
22471 read_direct_string (abfd, mac_ptr, &bytes_read);
22472 mac_ptr += bytes_read;
22473 }
22474 /* FALLTHROUGH */
22475
22476 default:
22477 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22478 mac_ptr, mac_end, abfd, offset_size,
22479 section);
22480 if (mac_ptr == NULL)
22481 return;
22482 break;
22483 }
22484 } while (macinfo_type != 0 && current_file == NULL);
22485
22486 /* Second pass: Process all entries.
22487
22488 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22489 command-line macro definitions/undefinitions. This flag is unset when we
22490 reach the first DW_MACINFO_start_file entry. */
22491
22492 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22493 htab_eq_pointer,
22494 NULL, xcalloc, xfree));
22495 mac_ptr = section->buffer + offset;
22496 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
22497 *slot = (void *) mac_ptr;
22498 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
22499 current_file, lh, section,
22500 section_is_gnu, 0, offset_size,
22501 include_hash.get ());
22502 }
22503
22504 /* Check if the attribute's form is a DW_FORM_block*
22505 if so return true else false. */
22506
22507 static int
22508 attr_form_is_block (const struct attribute *attr)
22509 {
22510 return (attr == NULL ? 0 :
22511 attr->form == DW_FORM_block1
22512 || attr->form == DW_FORM_block2
22513 || attr->form == DW_FORM_block4
22514 || attr->form == DW_FORM_block
22515 || attr->form == DW_FORM_exprloc);
22516 }
22517
22518 /* Return non-zero if ATTR's value is a section offset --- classes
22519 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22520 You may use DW_UNSND (attr) to retrieve such offsets.
22521
22522 Section 7.5.4, "Attribute Encodings", explains that no attribute
22523 may have a value that belongs to more than one of these classes; it
22524 would be ambiguous if we did, because we use the same forms for all
22525 of them. */
22526
22527 static int
22528 attr_form_is_section_offset (const struct attribute *attr)
22529 {
22530 return (attr->form == DW_FORM_data4
22531 || attr->form == DW_FORM_data8
22532 || attr->form == DW_FORM_sec_offset);
22533 }
22534
22535 /* Return non-zero if ATTR's value falls in the 'constant' class, or
22536 zero otherwise. When this function returns true, you can apply
22537 dwarf2_get_attr_constant_value to it.
22538
22539 However, note that for some attributes you must check
22540 attr_form_is_section_offset before using this test. DW_FORM_data4
22541 and DW_FORM_data8 are members of both the constant class, and of
22542 the classes that contain offsets into other debug sections
22543 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22544 that, if an attribute's can be either a constant or one of the
22545 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
22546 taken as section offsets, not constants.
22547
22548 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22549 cannot handle that. */
22550
22551 static int
22552 attr_form_is_constant (const struct attribute *attr)
22553 {
22554 switch (attr->form)
22555 {
22556 case DW_FORM_sdata:
22557 case DW_FORM_udata:
22558 case DW_FORM_data1:
22559 case DW_FORM_data2:
22560 case DW_FORM_data4:
22561 case DW_FORM_data8:
22562 case DW_FORM_implicit_const:
22563 return 1;
22564 default:
22565 return 0;
22566 }
22567 }
22568
22569
22570 /* DW_ADDR is always stored already as sect_offset; despite for the forms
22571 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22572
22573 static int
22574 attr_form_is_ref (const struct attribute *attr)
22575 {
22576 switch (attr->form)
22577 {
22578 case DW_FORM_ref_addr:
22579 case DW_FORM_ref1:
22580 case DW_FORM_ref2:
22581 case DW_FORM_ref4:
22582 case DW_FORM_ref8:
22583 case DW_FORM_ref_udata:
22584 case DW_FORM_GNU_ref_alt:
22585 return 1;
22586 default:
22587 return 0;
22588 }
22589 }
22590
22591 /* Return the .debug_loc section to use for CU.
22592 For DWO files use .debug_loc.dwo. */
22593
22594 static struct dwarf2_section_info *
22595 cu_debug_loc_section (struct dwarf2_cu *cu)
22596 {
22597 if (cu->dwo_unit)
22598 {
22599 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22600
22601 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22602 }
22603 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22604 : &dwarf2_per_objfile->loc);
22605 }
22606
22607 /* A helper function that fills in a dwarf2_loclist_baton. */
22608
22609 static void
22610 fill_in_loclist_baton (struct dwarf2_cu *cu,
22611 struct dwarf2_loclist_baton *baton,
22612 const struct attribute *attr)
22613 {
22614 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22615
22616 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
22617
22618 baton->per_cu = cu->per_cu;
22619 gdb_assert (baton->per_cu);
22620 /* We don't know how long the location list is, but make sure we
22621 don't run off the edge of the section. */
22622 baton->size = section->size - DW_UNSND (attr);
22623 baton->data = section->buffer + DW_UNSND (attr);
22624 baton->base_address = cu->base_address;
22625 baton->from_dwo = cu->dwo_unit != NULL;
22626 }
22627
22628 static void
22629 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
22630 struct dwarf2_cu *cu, int is_block)
22631 {
22632 struct objfile *objfile = dwarf2_per_objfile->objfile;
22633 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22634
22635 if (attr_form_is_section_offset (attr)
22636 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
22637 the section. If so, fall through to the complaint in the
22638 other branch. */
22639 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
22640 {
22641 struct dwarf2_loclist_baton *baton;
22642
22643 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
22644
22645 fill_in_loclist_baton (cu, baton, attr);
22646
22647 if (cu->base_known == 0)
22648 complaint (&symfile_complaints,
22649 _("Location list used without "
22650 "specifying the CU base address."));
22651
22652 SYMBOL_ACLASS_INDEX (sym) = (is_block
22653 ? dwarf2_loclist_block_index
22654 : dwarf2_loclist_index);
22655 SYMBOL_LOCATION_BATON (sym) = baton;
22656 }
22657 else
22658 {
22659 struct dwarf2_locexpr_baton *baton;
22660
22661 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
22662 baton->per_cu = cu->per_cu;
22663 gdb_assert (baton->per_cu);
22664
22665 if (attr_form_is_block (attr))
22666 {
22667 /* Note that we're just copying the block's data pointer
22668 here, not the actual data. We're still pointing into the
22669 info_buffer for SYM's objfile; right now we never release
22670 that buffer, but when we do clean up properly this may
22671 need to change. */
22672 baton->size = DW_BLOCK (attr)->size;
22673 baton->data = DW_BLOCK (attr)->data;
22674 }
22675 else
22676 {
22677 dwarf2_invalid_attrib_class_complaint ("location description",
22678 SYMBOL_NATURAL_NAME (sym));
22679 baton->size = 0;
22680 }
22681
22682 SYMBOL_ACLASS_INDEX (sym) = (is_block
22683 ? dwarf2_locexpr_block_index
22684 : dwarf2_locexpr_index);
22685 SYMBOL_LOCATION_BATON (sym) = baton;
22686 }
22687 }
22688
22689 /* Return the OBJFILE associated with the compilation unit CU. If CU
22690 came from a separate debuginfo file, then the master objfile is
22691 returned. */
22692
22693 struct objfile *
22694 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22695 {
22696 struct objfile *objfile = per_cu->objfile;
22697
22698 /* Return the master objfile, so that we can report and look up the
22699 correct file containing this variable. */
22700 if (objfile->separate_debug_objfile_backlink)
22701 objfile = objfile->separate_debug_objfile_backlink;
22702
22703 return objfile;
22704 }
22705
22706 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22707 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22708 CU_HEADERP first. */
22709
22710 static const struct comp_unit_head *
22711 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22712 struct dwarf2_per_cu_data *per_cu)
22713 {
22714 const gdb_byte *info_ptr;
22715
22716 if (per_cu->cu)
22717 return &per_cu->cu->header;
22718
22719 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
22720
22721 memset (cu_headerp, 0, sizeof (*cu_headerp));
22722 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22723 rcuh_kind::COMPILE);
22724
22725 return cu_headerp;
22726 }
22727
22728 /* Return the address size given in the compilation unit header for CU. */
22729
22730 int
22731 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22732 {
22733 struct comp_unit_head cu_header_local;
22734 const struct comp_unit_head *cu_headerp;
22735
22736 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22737
22738 return cu_headerp->addr_size;
22739 }
22740
22741 /* Return the offset size given in the compilation unit header for CU. */
22742
22743 int
22744 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22745 {
22746 struct comp_unit_head cu_header_local;
22747 const struct comp_unit_head *cu_headerp;
22748
22749 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22750
22751 return cu_headerp->offset_size;
22752 }
22753
22754 /* See its dwarf2loc.h declaration. */
22755
22756 int
22757 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22758 {
22759 struct comp_unit_head cu_header_local;
22760 const struct comp_unit_head *cu_headerp;
22761
22762 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22763
22764 if (cu_headerp->version == 2)
22765 return cu_headerp->addr_size;
22766 else
22767 return cu_headerp->offset_size;
22768 }
22769
22770 /* Return the text offset of the CU. The returned offset comes from
22771 this CU's objfile. If this objfile came from a separate debuginfo
22772 file, then the offset may be different from the corresponding
22773 offset in the parent objfile. */
22774
22775 CORE_ADDR
22776 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22777 {
22778 struct objfile *objfile = per_cu->objfile;
22779
22780 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22781 }
22782
22783 /* Return DWARF version number of PER_CU. */
22784
22785 short
22786 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22787 {
22788 return per_cu->dwarf_version;
22789 }
22790
22791 /* Locate the .debug_info compilation unit from CU's objfile which contains
22792 the DIE at OFFSET. Raises an error on failure. */
22793
22794 static struct dwarf2_per_cu_data *
22795 dwarf2_find_containing_comp_unit (sect_offset sect_off,
22796 unsigned int offset_in_dwz,
22797 struct objfile *objfile)
22798 {
22799 struct dwarf2_per_cu_data *this_cu;
22800 int low, high;
22801 const sect_offset *cu_off;
22802
22803 low = 0;
22804 high = dwarf2_per_objfile->n_comp_units - 1;
22805 while (high > low)
22806 {
22807 struct dwarf2_per_cu_data *mid_cu;
22808 int mid = low + (high - low) / 2;
22809
22810 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22811 cu_off = &mid_cu->sect_off;
22812 if (mid_cu->is_dwz > offset_in_dwz
22813 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
22814 high = mid;
22815 else
22816 low = mid + 1;
22817 }
22818 gdb_assert (low == high);
22819 this_cu = dwarf2_per_objfile->all_comp_units[low];
22820 cu_off = &this_cu->sect_off;
22821 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
22822 {
22823 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22824 error (_("Dwarf Error: could not find partial DIE containing "
22825 "offset 0x%x [in module %s]"),
22826 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
22827
22828 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
22829 <= sect_off);
22830 return dwarf2_per_objfile->all_comp_units[low-1];
22831 }
22832 else
22833 {
22834 this_cu = dwarf2_per_objfile->all_comp_units[low];
22835 if (low == dwarf2_per_objfile->n_comp_units - 1
22836 && sect_off >= this_cu->sect_off + this_cu->length)
22837 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
22838 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
22839 return this_cu;
22840 }
22841 }
22842
22843 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22844
22845 static void
22846 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22847 {
22848 memset (cu, 0, sizeof (*cu));
22849 per_cu->cu = cu;
22850 cu->per_cu = per_cu;
22851 cu->objfile = per_cu->objfile;
22852 obstack_init (&cu->comp_unit_obstack);
22853 }
22854
22855 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22856
22857 static void
22858 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22859 enum language pretend_language)
22860 {
22861 struct attribute *attr;
22862
22863 /* Set the language we're debugging. */
22864 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22865 if (attr)
22866 set_cu_language (DW_UNSND (attr), cu);
22867 else
22868 {
22869 cu->language = pretend_language;
22870 cu->language_defn = language_def (cu->language);
22871 }
22872
22873 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22874 }
22875
22876 /* Release one cached compilation unit, CU. We unlink it from the tree
22877 of compilation units, but we don't remove it from the read_in_chain;
22878 the caller is responsible for that.
22879 NOTE: DATA is a void * because this function is also used as a
22880 cleanup routine. */
22881
22882 static void
22883 free_heap_comp_unit (void *data)
22884 {
22885 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22886
22887 gdb_assert (cu->per_cu != NULL);
22888 cu->per_cu->cu = NULL;
22889 cu->per_cu = NULL;
22890
22891 obstack_free (&cu->comp_unit_obstack, NULL);
22892
22893 xfree (cu);
22894 }
22895
22896 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22897 when we're finished with it. We can't free the pointer itself, but be
22898 sure to unlink it from the cache. Also release any associated storage. */
22899
22900 static void
22901 free_stack_comp_unit (void *data)
22902 {
22903 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22904
22905 gdb_assert (cu->per_cu != NULL);
22906 cu->per_cu->cu = NULL;
22907 cu->per_cu = NULL;
22908
22909 obstack_free (&cu->comp_unit_obstack, NULL);
22910 cu->partial_dies = NULL;
22911 }
22912
22913 /* Free all cached compilation units. */
22914
22915 static void
22916 free_cached_comp_units (void *data)
22917 {
22918 dwarf2_per_objfile->free_cached_comp_units ();
22919 }
22920
22921 /* Increase the age counter on each cached compilation unit, and free
22922 any that are too old. */
22923
22924 static void
22925 age_cached_comp_units (void)
22926 {
22927 struct dwarf2_per_cu_data *per_cu, **last_chain;
22928
22929 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22930 per_cu = dwarf2_per_objfile->read_in_chain;
22931 while (per_cu != NULL)
22932 {
22933 per_cu->cu->last_used ++;
22934 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22935 dwarf2_mark (per_cu->cu);
22936 per_cu = per_cu->cu->read_in_chain;
22937 }
22938
22939 per_cu = dwarf2_per_objfile->read_in_chain;
22940 last_chain = &dwarf2_per_objfile->read_in_chain;
22941 while (per_cu != NULL)
22942 {
22943 struct dwarf2_per_cu_data *next_cu;
22944
22945 next_cu = per_cu->cu->read_in_chain;
22946
22947 if (!per_cu->cu->mark)
22948 {
22949 free_heap_comp_unit (per_cu->cu);
22950 *last_chain = next_cu;
22951 }
22952 else
22953 last_chain = &per_cu->cu->read_in_chain;
22954
22955 per_cu = next_cu;
22956 }
22957 }
22958
22959 /* Remove a single compilation unit from the cache. */
22960
22961 static void
22962 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22963 {
22964 struct dwarf2_per_cu_data *per_cu, **last_chain;
22965
22966 per_cu = dwarf2_per_objfile->read_in_chain;
22967 last_chain = &dwarf2_per_objfile->read_in_chain;
22968 while (per_cu != NULL)
22969 {
22970 struct dwarf2_per_cu_data *next_cu;
22971
22972 next_cu = per_cu->cu->read_in_chain;
22973
22974 if (per_cu == target_per_cu)
22975 {
22976 free_heap_comp_unit (per_cu->cu);
22977 per_cu->cu = NULL;
22978 *last_chain = next_cu;
22979 break;
22980 }
22981 else
22982 last_chain = &per_cu->cu->read_in_chain;
22983
22984 per_cu = next_cu;
22985 }
22986 }
22987
22988 /* Release all extra memory associated with OBJFILE. */
22989
22990 void
22991 dwarf2_free_objfile (struct objfile *objfile)
22992 {
22993 dwarf2_per_objfile
22994 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22995 dwarf2_objfile_data_key);
22996
22997 if (dwarf2_per_objfile == NULL)
22998 return;
22999
23000 dwarf2_per_objfile->~dwarf2_per_objfile ();
23001 }
23002
23003 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23004 We store these in a hash table separate from the DIEs, and preserve them
23005 when the DIEs are flushed out of cache.
23006
23007 The CU "per_cu" pointer is needed because offset alone is not enough to
23008 uniquely identify the type. A file may have multiple .debug_types sections,
23009 or the type may come from a DWO file. Furthermore, while it's more logical
23010 to use per_cu->section+offset, with Fission the section with the data is in
23011 the DWO file but we don't know that section at the point we need it.
23012 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23013 because we can enter the lookup routine, get_die_type_at_offset, from
23014 outside this file, and thus won't necessarily have PER_CU->cu.
23015 Fortunately, PER_CU is stable for the life of the objfile. */
23016
23017 struct dwarf2_per_cu_offset_and_type
23018 {
23019 const struct dwarf2_per_cu_data *per_cu;
23020 sect_offset sect_off;
23021 struct type *type;
23022 };
23023
23024 /* Hash function for a dwarf2_per_cu_offset_and_type. */
23025
23026 static hashval_t
23027 per_cu_offset_and_type_hash (const void *item)
23028 {
23029 const struct dwarf2_per_cu_offset_and_type *ofs
23030 = (const struct dwarf2_per_cu_offset_and_type *) item;
23031
23032 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
23033 }
23034
23035 /* Equality function for a dwarf2_per_cu_offset_and_type. */
23036
23037 static int
23038 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
23039 {
23040 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23041 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23042 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23043 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
23044
23045 return (ofs_lhs->per_cu == ofs_rhs->per_cu
23046 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23047 }
23048
23049 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23050 table if necessary. For convenience, return TYPE.
23051
23052 The DIEs reading must have careful ordering to:
23053 * Not cause infite loops trying to read in DIEs as a prerequisite for
23054 reading current DIE.
23055 * Not trying to dereference contents of still incompletely read in types
23056 while reading in other DIEs.
23057 * Enable referencing still incompletely read in types just by a pointer to
23058 the type without accessing its fields.
23059
23060 Therefore caller should follow these rules:
23061 * Try to fetch any prerequisite types we may need to build this DIE type
23062 before building the type and calling set_die_type.
23063 * After building type call set_die_type for current DIE as soon as
23064 possible before fetching more types to complete the current type.
23065 * Make the type as complete as possible before fetching more types. */
23066
23067 static struct type *
23068 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23069 {
23070 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23071 struct objfile *objfile = cu->objfile;
23072 struct attribute *attr;
23073 struct dynamic_prop prop;
23074
23075 /* For Ada types, make sure that the gnat-specific data is always
23076 initialized (if not already set). There are a few types where
23077 we should not be doing so, because the type-specific area is
23078 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23079 where the type-specific area is used to store the floatformat).
23080 But this is not a problem, because the gnat-specific information
23081 is actually not needed for these types. */
23082 if (need_gnat_info (cu)
23083 && TYPE_CODE (type) != TYPE_CODE_FUNC
23084 && TYPE_CODE (type) != TYPE_CODE_FLT
23085 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23086 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23087 && TYPE_CODE (type) != TYPE_CODE_METHOD
23088 && !HAVE_GNAT_AUX_INFO (type))
23089 INIT_GNAT_SPECIFIC (type);
23090
23091 /* Read DW_AT_allocated and set in type. */
23092 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23093 if (attr_form_is_block (attr))
23094 {
23095 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23096 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23097 }
23098 else if (attr != NULL)
23099 {
23100 complaint (&symfile_complaints,
23101 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23102 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23103 to_underlying (die->sect_off));
23104 }
23105
23106 /* Read DW_AT_associated and set in type. */
23107 attr = dwarf2_attr (die, DW_AT_associated, cu);
23108 if (attr_form_is_block (attr))
23109 {
23110 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23111 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23112 }
23113 else if (attr != NULL)
23114 {
23115 complaint (&symfile_complaints,
23116 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23117 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23118 to_underlying (die->sect_off));
23119 }
23120
23121 /* Read DW_AT_data_location and set in type. */
23122 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23123 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23124 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
23125
23126 if (dwarf2_per_objfile->die_type_hash == NULL)
23127 {
23128 dwarf2_per_objfile->die_type_hash =
23129 htab_create_alloc_ex (127,
23130 per_cu_offset_and_type_hash,
23131 per_cu_offset_and_type_eq,
23132 NULL,
23133 &objfile->objfile_obstack,
23134 hashtab_obstack_allocate,
23135 dummy_obstack_deallocate);
23136 }
23137
23138 ofs.per_cu = cu->per_cu;
23139 ofs.sect_off = die->sect_off;
23140 ofs.type = type;
23141 slot = (struct dwarf2_per_cu_offset_and_type **)
23142 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
23143 if (*slot)
23144 complaint (&symfile_complaints,
23145 _("A problem internal to GDB: DIE 0x%x has type already set"),
23146 to_underlying (die->sect_off));
23147 *slot = XOBNEW (&objfile->objfile_obstack,
23148 struct dwarf2_per_cu_offset_and_type);
23149 **slot = ofs;
23150 return type;
23151 }
23152
23153 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23154 or return NULL if the die does not have a saved type. */
23155
23156 static struct type *
23157 get_die_type_at_offset (sect_offset sect_off,
23158 struct dwarf2_per_cu_data *per_cu)
23159 {
23160 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23161
23162 if (dwarf2_per_objfile->die_type_hash == NULL)
23163 return NULL;
23164
23165 ofs.per_cu = per_cu;
23166 ofs.sect_off = sect_off;
23167 slot = ((struct dwarf2_per_cu_offset_and_type *)
23168 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
23169 if (slot)
23170 return slot->type;
23171 else
23172 return NULL;
23173 }
23174
23175 /* Look up the type for DIE in CU in die_type_hash,
23176 or return NULL if DIE does not have a saved type. */
23177
23178 static struct type *
23179 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23180 {
23181 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23182 }
23183
23184 /* Add a dependence relationship from CU to REF_PER_CU. */
23185
23186 static void
23187 dwarf2_add_dependence (struct dwarf2_cu *cu,
23188 struct dwarf2_per_cu_data *ref_per_cu)
23189 {
23190 void **slot;
23191
23192 if (cu->dependencies == NULL)
23193 cu->dependencies
23194 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23195 NULL, &cu->comp_unit_obstack,
23196 hashtab_obstack_allocate,
23197 dummy_obstack_deallocate);
23198
23199 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23200 if (*slot == NULL)
23201 *slot = ref_per_cu;
23202 }
23203
23204 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23205 Set the mark field in every compilation unit in the
23206 cache that we must keep because we are keeping CU. */
23207
23208 static int
23209 dwarf2_mark_helper (void **slot, void *data)
23210 {
23211 struct dwarf2_per_cu_data *per_cu;
23212
23213 per_cu = (struct dwarf2_per_cu_data *) *slot;
23214
23215 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23216 reading of the chain. As such dependencies remain valid it is not much
23217 useful to track and undo them during QUIT cleanups. */
23218 if (per_cu->cu == NULL)
23219 return 1;
23220
23221 if (per_cu->cu->mark)
23222 return 1;
23223 per_cu->cu->mark = 1;
23224
23225 if (per_cu->cu->dependencies != NULL)
23226 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23227
23228 return 1;
23229 }
23230
23231 /* Set the mark field in CU and in every other compilation unit in the
23232 cache that we must keep because we are keeping CU. */
23233
23234 static void
23235 dwarf2_mark (struct dwarf2_cu *cu)
23236 {
23237 if (cu->mark)
23238 return;
23239 cu->mark = 1;
23240 if (cu->dependencies != NULL)
23241 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23242 }
23243
23244 static void
23245 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23246 {
23247 while (per_cu)
23248 {
23249 per_cu->cu->mark = 0;
23250 per_cu = per_cu->cu->read_in_chain;
23251 }
23252 }
23253
23254 /* Trivial hash function for partial_die_info: the hash value of a DIE
23255 is its offset in .debug_info for this objfile. */
23256
23257 static hashval_t
23258 partial_die_hash (const void *item)
23259 {
23260 const struct partial_die_info *part_die
23261 = (const struct partial_die_info *) item;
23262
23263 return to_underlying (part_die->sect_off);
23264 }
23265
23266 /* Trivial comparison function for partial_die_info structures: two DIEs
23267 are equal if they have the same offset. */
23268
23269 static int
23270 partial_die_eq (const void *item_lhs, const void *item_rhs)
23271 {
23272 const struct partial_die_info *part_die_lhs
23273 = (const struct partial_die_info *) item_lhs;
23274 const struct partial_die_info *part_die_rhs
23275 = (const struct partial_die_info *) item_rhs;
23276
23277 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23278 }
23279
23280 static struct cmd_list_element *set_dwarf_cmdlist;
23281 static struct cmd_list_element *show_dwarf_cmdlist;
23282
23283 static void
23284 set_dwarf_cmd (char *args, int from_tty)
23285 {
23286 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
23287 gdb_stdout);
23288 }
23289
23290 static void
23291 show_dwarf_cmd (char *args, int from_tty)
23292 {
23293 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
23294 }
23295
23296 /* Free data associated with OBJFILE, if necessary. */
23297
23298 static void
23299 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
23300 {
23301 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
23302 int ix;
23303
23304 /* Make sure we don't accidentally use dwarf2_per_objfile while
23305 cleaning up. */
23306 dwarf2_per_objfile = NULL;
23307
23308 for (ix = 0; ix < data->n_comp_units; ++ix)
23309 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
23310
23311 for (ix = 0; ix < data->n_type_units; ++ix)
23312 VEC_free (dwarf2_per_cu_ptr,
23313 data->all_type_units[ix]->per_cu.imported_symtabs);
23314 xfree (data->all_type_units);
23315
23316 VEC_free (dwarf2_section_info_def, data->types);
23317
23318 if (data->dwo_files)
23319 free_dwo_files (data->dwo_files, objfile);
23320 if (data->dwp_file)
23321 gdb_bfd_unref (data->dwp_file->dbfd);
23322
23323 if (data->dwz_file && data->dwz_file->dwz_bfd)
23324 gdb_bfd_unref (data->dwz_file->dwz_bfd);
23325 }
23326
23327 \f
23328 /* The "save gdb-index" command. */
23329
23330 /* In-memory buffer to prepare data to be written later to a file. */
23331 class data_buf
23332 {
23333 public:
23334 /* Copy DATA to the end of the buffer. */
23335 template<typename T>
23336 void append_data (const T &data)
23337 {
23338 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23339 reinterpret_cast<const gdb_byte *> (&data + 1),
23340 grow (sizeof (data)));
23341 }
23342
23343 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23344 terminating zero is appended too. */
23345 void append_cstr0 (const char *cstr)
23346 {
23347 const size_t size = strlen (cstr) + 1;
23348 std::copy (cstr, cstr + size, grow (size));
23349 }
23350
23351 /* Accept a host-format integer in VAL and append it to the buffer
23352 as a target-format integer which is LEN bytes long. */
23353 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23354 {
23355 ::store_unsigned_integer (grow (len), len, byte_order, val);
23356 }
23357
23358 /* Return the size of the buffer. */
23359 size_t size () const
23360 {
23361 return m_vec.size ();
23362 }
23363
23364 /* Write the buffer to FILE. */
23365 void file_write (FILE *file) const
23366 {
23367 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23368 error (_("couldn't write data to file"));
23369 }
23370
23371 private:
23372 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23373 the start of the new block. */
23374 gdb_byte *grow (size_t size)
23375 {
23376 m_vec.resize (m_vec.size () + size);
23377 return &*m_vec.end () - size;
23378 }
23379
23380 gdb::byte_vector m_vec;
23381 };
23382
23383 /* An entry in the symbol table. */
23384 struct symtab_index_entry
23385 {
23386 /* The name of the symbol. */
23387 const char *name;
23388 /* The offset of the name in the constant pool. */
23389 offset_type index_offset;
23390 /* A sorted vector of the indices of all the CUs that hold an object
23391 of this name. */
23392 std::vector<offset_type> cu_indices;
23393 };
23394
23395 /* The symbol table. This is a power-of-2-sized hash table. */
23396 struct mapped_symtab
23397 {
23398 mapped_symtab ()
23399 {
23400 data.resize (1024);
23401 }
23402
23403 offset_type n_elements = 0;
23404 std::vector<symtab_index_entry> data;
23405 };
23406
23407 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
23408 the slot.
23409
23410 Function is used only during write_hash_table so no index format backward
23411 compatibility is needed. */
23412
23413 static symtab_index_entry &
23414 find_slot (struct mapped_symtab *symtab, const char *name)
23415 {
23416 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
23417
23418 index = hash & (symtab->data.size () - 1);
23419 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
23420
23421 for (;;)
23422 {
23423 if (symtab->data[index].name == NULL
23424 || strcmp (name, symtab->data[index].name) == 0)
23425 return symtab->data[index];
23426 index = (index + step) & (symtab->data.size () - 1);
23427 }
23428 }
23429
23430 /* Expand SYMTAB's hash table. */
23431
23432 static void
23433 hash_expand (struct mapped_symtab *symtab)
23434 {
23435 auto old_entries = std::move (symtab->data);
23436
23437 symtab->data.clear ();
23438 symtab->data.resize (old_entries.size () * 2);
23439
23440 for (auto &it : old_entries)
23441 if (it.name != NULL)
23442 {
23443 auto &ref = find_slot (symtab, it.name);
23444 ref = std::move (it);
23445 }
23446 }
23447
23448 /* Add an entry to SYMTAB. NAME is the name of the symbol.
23449 CU_INDEX is the index of the CU in which the symbol appears.
23450 IS_STATIC is one if the symbol is static, otherwise zero (global). */
23451
23452 static void
23453 add_index_entry (struct mapped_symtab *symtab, const char *name,
23454 int is_static, gdb_index_symbol_kind kind,
23455 offset_type cu_index)
23456 {
23457 offset_type cu_index_and_attrs;
23458
23459 ++symtab->n_elements;
23460 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
23461 hash_expand (symtab);
23462
23463 symtab_index_entry &slot = find_slot (symtab, name);
23464 if (slot.name == NULL)
23465 {
23466 slot.name = name;
23467 /* index_offset is set later. */
23468 }
23469
23470 cu_index_and_attrs = 0;
23471 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23472 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23473 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23474
23475 /* We don't want to record an index value twice as we want to avoid the
23476 duplication.
23477 We process all global symbols and then all static symbols
23478 (which would allow us to avoid the duplication by only having to check
23479 the last entry pushed), but a symbol could have multiple kinds in one CU.
23480 To keep things simple we don't worry about the duplication here and
23481 sort and uniqufy the list after we've processed all symbols. */
23482 slot.cu_indices.push_back (cu_index_and_attrs);
23483 }
23484
23485 /* Sort and remove duplicates of all symbols' cu_indices lists. */
23486
23487 static void
23488 uniquify_cu_indices (struct mapped_symtab *symtab)
23489 {
23490 for (auto &entry : symtab->data)
23491 {
23492 if (entry.name != NULL && !entry.cu_indices.empty ())
23493 {
23494 auto &cu_indices = entry.cu_indices;
23495 std::sort (cu_indices.begin (), cu_indices.end ());
23496 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
23497 cu_indices.erase (from, cu_indices.end ());
23498 }
23499 }
23500 }
23501
23502 /* A form of 'const char *' suitable for container keys. Only the
23503 pointer is stored. The strings themselves are compared, not the
23504 pointers. */
23505 class c_str_view
23506 {
23507 public:
23508 c_str_view (const char *cstr)
23509 : m_cstr (cstr)
23510 {}
23511
23512 bool operator== (const c_str_view &other) const
23513 {
23514 return strcmp (m_cstr, other.m_cstr) == 0;
23515 }
23516
23517 private:
23518 friend class c_str_view_hasher;
23519 const char *const m_cstr;
23520 };
23521
23522 /* A std::unordered_map::hasher for c_str_view that uses the right
23523 hash function for strings in a mapped index. */
23524 class c_str_view_hasher
23525 {
23526 public:
23527 size_t operator () (const c_str_view &x) const
23528 {
23529 return mapped_index_string_hash (INT_MAX, x.m_cstr);
23530 }
23531 };
23532
23533 /* A std::unordered_map::hasher for std::vector<>. */
23534 template<typename T>
23535 class vector_hasher
23536 {
23537 public:
23538 size_t operator () (const std::vector<T> &key) const
23539 {
23540 return iterative_hash (key.data (),
23541 sizeof (key.front ()) * key.size (), 0);
23542 }
23543 };
23544
23545 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
23546 constant pool entries going into the data buffer CPOOL. */
23547
23548 static void
23549 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
23550 {
23551 {
23552 /* Elements are sorted vectors of the indices of all the CUs that
23553 hold an object of this name. */
23554 std::unordered_map<std::vector<offset_type>, offset_type,
23555 vector_hasher<offset_type>>
23556 symbol_hash_table;
23557
23558 /* We add all the index vectors to the constant pool first, to
23559 ensure alignment is ok. */
23560 for (symtab_index_entry &entry : symtab->data)
23561 {
23562 if (entry.name == NULL)
23563 continue;
23564 gdb_assert (entry.index_offset == 0);
23565
23566 /* Finding before inserting is faster than always trying to
23567 insert, because inserting always allocates a node, does the
23568 lookup, and then destroys the new node if another node
23569 already had the same key. C++17 try_emplace will avoid
23570 this. */
23571 const auto found
23572 = symbol_hash_table.find (entry.cu_indices);
23573 if (found != symbol_hash_table.end ())
23574 {
23575 entry.index_offset = found->second;
23576 continue;
23577 }
23578
23579 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
23580 entry.index_offset = cpool.size ();
23581 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
23582 for (const auto index : entry.cu_indices)
23583 cpool.append_data (MAYBE_SWAP (index));
23584 }
23585 }
23586
23587 /* Now write out the hash table. */
23588 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
23589 for (const auto &entry : symtab->data)
23590 {
23591 offset_type str_off, vec_off;
23592
23593 if (entry.name != NULL)
23594 {
23595 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
23596 if (insertpair.second)
23597 cpool.append_cstr0 (entry.name);
23598 str_off = insertpair.first->second;
23599 vec_off = entry.index_offset;
23600 }
23601 else
23602 {
23603 /* While 0 is a valid constant pool index, it is not valid
23604 to have 0 for both offsets. */
23605 str_off = 0;
23606 vec_off = 0;
23607 }
23608
23609 output.append_data (MAYBE_SWAP (str_off));
23610 output.append_data (MAYBE_SWAP (vec_off));
23611 }
23612 }
23613
23614 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
23615
23616 /* Helper struct for building the address table. */
23617 struct addrmap_index_data
23618 {
23619 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
23620 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
23621 {}
23622
23623 struct objfile *objfile;
23624 data_buf &addr_vec;
23625 psym_index_map &cu_index_htab;
23626
23627 /* Non-zero if the previous_* fields are valid.
23628 We can't write an entry until we see the next entry (since it is only then
23629 that we know the end of the entry). */
23630 int previous_valid;
23631 /* Index of the CU in the table of all CUs in the index file. */
23632 unsigned int previous_cu_index;
23633 /* Start address of the CU. */
23634 CORE_ADDR previous_cu_start;
23635 };
23636
23637 /* Write an address entry to ADDR_VEC. */
23638
23639 static void
23640 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
23641 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23642 {
23643 CORE_ADDR baseaddr;
23644
23645 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23646
23647 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
23648 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
23649 addr_vec.append_data (MAYBE_SWAP (cu_index));
23650 }
23651
23652 /* Worker function for traversing an addrmap to build the address table. */
23653
23654 static int
23655 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23656 {
23657 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23658 struct partial_symtab *pst = (struct partial_symtab *) obj;
23659
23660 if (data->previous_valid)
23661 add_address_entry (data->objfile, data->addr_vec,
23662 data->previous_cu_start, start_addr,
23663 data->previous_cu_index);
23664
23665 data->previous_cu_start = start_addr;
23666 if (pst != NULL)
23667 {
23668 const auto it = data->cu_index_htab.find (pst);
23669 gdb_assert (it != data->cu_index_htab.cend ());
23670 data->previous_cu_index = it->second;
23671 data->previous_valid = 1;
23672 }
23673 else
23674 data->previous_valid = 0;
23675
23676 return 0;
23677 }
23678
23679 /* Write OBJFILE's address map to ADDR_VEC.
23680 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23681 in the index file. */
23682
23683 static void
23684 write_address_map (struct objfile *objfile, data_buf &addr_vec,
23685 psym_index_map &cu_index_htab)
23686 {
23687 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
23688
23689 /* When writing the address table, we have to cope with the fact that
23690 the addrmap iterator only provides the start of a region; we have to
23691 wait until the next invocation to get the start of the next region. */
23692
23693 addrmap_index_data.objfile = objfile;
23694 addrmap_index_data.previous_valid = 0;
23695
23696 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23697 &addrmap_index_data);
23698
23699 /* It's highly unlikely the last entry (end address = 0xff...ff)
23700 is valid, but we should still handle it.
23701 The end address is recorded as the start of the next region, but that
23702 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23703 anyway. */
23704 if (addrmap_index_data.previous_valid)
23705 add_address_entry (objfile, addr_vec,
23706 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23707 addrmap_index_data.previous_cu_index);
23708 }
23709
23710 /* Return the symbol kind of PSYM. */
23711
23712 static gdb_index_symbol_kind
23713 symbol_kind (struct partial_symbol *psym)
23714 {
23715 domain_enum domain = PSYMBOL_DOMAIN (psym);
23716 enum address_class aclass = PSYMBOL_CLASS (psym);
23717
23718 switch (domain)
23719 {
23720 case VAR_DOMAIN:
23721 switch (aclass)
23722 {
23723 case LOC_BLOCK:
23724 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23725 case LOC_TYPEDEF:
23726 return GDB_INDEX_SYMBOL_KIND_TYPE;
23727 case LOC_COMPUTED:
23728 case LOC_CONST_BYTES:
23729 case LOC_OPTIMIZED_OUT:
23730 case LOC_STATIC:
23731 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23732 case LOC_CONST:
23733 /* Note: It's currently impossible to recognize psyms as enum values
23734 short of reading the type info. For now punt. */
23735 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23736 default:
23737 /* There are other LOC_FOO values that one might want to classify
23738 as variables, but dwarf2read.c doesn't currently use them. */
23739 return GDB_INDEX_SYMBOL_KIND_OTHER;
23740 }
23741 case STRUCT_DOMAIN:
23742 return GDB_INDEX_SYMBOL_KIND_TYPE;
23743 default:
23744 return GDB_INDEX_SYMBOL_KIND_OTHER;
23745 }
23746 }
23747
23748 /* Add a list of partial symbols to SYMTAB. */
23749
23750 static void
23751 write_psymbols (struct mapped_symtab *symtab,
23752 std::unordered_set<partial_symbol *> &psyms_seen,
23753 struct partial_symbol **psymp,
23754 int count,
23755 offset_type cu_index,
23756 int is_static)
23757 {
23758 for (; count-- > 0; ++psymp)
23759 {
23760 struct partial_symbol *psym = *psymp;
23761
23762 if (SYMBOL_LANGUAGE (psym) == language_ada)
23763 error (_("Ada is not currently supported by the index"));
23764
23765 /* Only add a given psymbol once. */
23766 if (psyms_seen.insert (psym).second)
23767 {
23768 gdb_index_symbol_kind kind = symbol_kind (psym);
23769
23770 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23771 is_static, kind, cu_index);
23772 }
23773 }
23774 }
23775
23776 /* A helper struct used when iterating over debug_types. */
23777 struct signatured_type_index_data
23778 {
23779 signatured_type_index_data (data_buf &types_list_,
23780 std::unordered_set<partial_symbol *> &psyms_seen_)
23781 : types_list (types_list_), psyms_seen (psyms_seen_)
23782 {}
23783
23784 struct objfile *objfile;
23785 struct mapped_symtab *symtab;
23786 data_buf &types_list;
23787 std::unordered_set<partial_symbol *> &psyms_seen;
23788 int cu_index;
23789 };
23790
23791 /* A helper function that writes a single signatured_type to an
23792 obstack. */
23793
23794 static int
23795 write_one_signatured_type (void **slot, void *d)
23796 {
23797 struct signatured_type_index_data *info
23798 = (struct signatured_type_index_data *) d;
23799 struct signatured_type *entry = (struct signatured_type *) *slot;
23800 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23801
23802 write_psymbols (info->symtab,
23803 info->psyms_seen,
23804 info->objfile->global_psymbols.list
23805 + psymtab->globals_offset,
23806 psymtab->n_global_syms, info->cu_index,
23807 0);
23808 write_psymbols (info->symtab,
23809 info->psyms_seen,
23810 info->objfile->static_psymbols.list
23811 + psymtab->statics_offset,
23812 psymtab->n_static_syms, info->cu_index,
23813 1);
23814
23815 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23816 to_underlying (entry->per_cu.sect_off));
23817 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23818 to_underlying (entry->type_offset_in_tu));
23819 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
23820
23821 ++info->cu_index;
23822
23823 return 1;
23824 }
23825
23826 /* Recurse into all "included" dependencies and count their symbols as
23827 if they appeared in this psymtab. */
23828
23829 static void
23830 recursively_count_psymbols (struct partial_symtab *psymtab,
23831 size_t &psyms_seen)
23832 {
23833 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
23834 if (psymtab->dependencies[i]->user != NULL)
23835 recursively_count_psymbols (psymtab->dependencies[i],
23836 psyms_seen);
23837
23838 psyms_seen += psymtab->n_global_syms;
23839 psyms_seen += psymtab->n_static_syms;
23840 }
23841
23842 /* Recurse into all "included" dependencies and write their symbols as
23843 if they appeared in this psymtab. */
23844
23845 static void
23846 recursively_write_psymbols (struct objfile *objfile,
23847 struct partial_symtab *psymtab,
23848 struct mapped_symtab *symtab,
23849 std::unordered_set<partial_symbol *> &psyms_seen,
23850 offset_type cu_index)
23851 {
23852 int i;
23853
23854 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23855 if (psymtab->dependencies[i]->user != NULL)
23856 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23857 symtab, psyms_seen, cu_index);
23858
23859 write_psymbols (symtab,
23860 psyms_seen,
23861 objfile->global_psymbols.list + psymtab->globals_offset,
23862 psymtab->n_global_syms, cu_index,
23863 0);
23864 write_psymbols (symtab,
23865 psyms_seen,
23866 objfile->static_psymbols.list + psymtab->statics_offset,
23867 psymtab->n_static_syms, cu_index,
23868 1);
23869 }
23870
23871 /* Create an index file for OBJFILE in the directory DIR. */
23872
23873 static void
23874 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23875 {
23876 if (dwarf2_per_objfile->using_index)
23877 error (_("Cannot use an index to create the index"));
23878
23879 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23880 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23881
23882 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23883 return;
23884
23885 struct stat st;
23886 if (stat (objfile_name (objfile), &st) < 0)
23887 perror_with_name (objfile_name (objfile));
23888
23889 std::string filename (std::string (dir) + SLASH_STRING
23890 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
23891
23892 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
23893 if (!out_file)
23894 error (_("Can't open `%s' for writing"), filename.c_str ());
23895
23896 /* Order matters here; we want FILE to be closed before FILENAME is
23897 unlinked, because on MS-Windows one cannot delete a file that is
23898 still open. (Don't call anything here that might throw until
23899 file_closer is created.) */
23900 gdb::unlinker unlink_file (filename.c_str ());
23901 gdb_file_up close_out_file (out_file);
23902
23903 mapped_symtab symtab;
23904 data_buf cu_list;
23905
23906 /* While we're scanning CU's create a table that maps a psymtab pointer
23907 (which is what addrmap records) to its index (which is what is recorded
23908 in the index file). This will later be needed to write the address
23909 table. */
23910 psym_index_map cu_index_htab;
23911 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
23912
23913 /* The CU list is already sorted, so we don't need to do additional
23914 work here. Also, the debug_types entries do not appear in
23915 all_comp_units, but only in their own hash table. */
23916
23917 /* The psyms_seen set is potentially going to be largish (~40k
23918 elements when indexing a -g3 build of GDB itself). Estimate the
23919 number of elements in order to avoid too many rehashes, which
23920 require rebuilding buckets and thus many trips to
23921 malloc/free. */
23922 size_t psyms_count = 0;
23923 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23924 {
23925 struct dwarf2_per_cu_data *per_cu
23926 = dwarf2_per_objfile->all_comp_units[i];
23927 struct partial_symtab *psymtab = per_cu->v.psymtab;
23928
23929 if (psymtab != NULL && psymtab->user == NULL)
23930 recursively_count_psymbols (psymtab, psyms_count);
23931 }
23932 /* Generating an index for gdb itself shows a ratio of
23933 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
23934 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
23935 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23936 {
23937 struct dwarf2_per_cu_data *per_cu
23938 = dwarf2_per_objfile->all_comp_units[i];
23939 struct partial_symtab *psymtab = per_cu->v.psymtab;
23940
23941 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23942 It may be referenced from a local scope but in such case it does not
23943 need to be present in .gdb_index. */
23944 if (psymtab == NULL)
23945 continue;
23946
23947 if (psymtab->user == NULL)
23948 recursively_write_psymbols (objfile, psymtab, &symtab,
23949 psyms_seen, i);
23950
23951 const auto insertpair = cu_index_htab.emplace (psymtab, i);
23952 gdb_assert (insertpair.second);
23953
23954 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
23955 to_underlying (per_cu->sect_off));
23956 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
23957 }
23958
23959 /* Dump the address map. */
23960 data_buf addr_vec;
23961 write_address_map (objfile, addr_vec, cu_index_htab);
23962
23963 /* Write out the .debug_type entries, if any. */
23964 data_buf types_cu_list;
23965 if (dwarf2_per_objfile->signatured_types)
23966 {
23967 signatured_type_index_data sig_data (types_cu_list,
23968 psyms_seen);
23969
23970 sig_data.objfile = objfile;
23971 sig_data.symtab = &symtab;
23972 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23973 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23974 write_one_signatured_type, &sig_data);
23975 }
23976
23977 /* Now that we've processed all symbols we can shrink their cu_indices
23978 lists. */
23979 uniquify_cu_indices (&symtab);
23980
23981 data_buf symtab_vec, constant_pool;
23982 write_hash_table (&symtab, symtab_vec, constant_pool);
23983
23984 data_buf contents;
23985 const offset_type size_of_contents = 6 * sizeof (offset_type);
23986 offset_type total_len = size_of_contents;
23987
23988 /* The version number. */
23989 contents.append_data (MAYBE_SWAP (8));
23990
23991 /* The offset of the CU list from the start of the file. */
23992 contents.append_data (MAYBE_SWAP (total_len));
23993 total_len += cu_list.size ();
23994
23995 /* The offset of the types CU list from the start of the file. */
23996 contents.append_data (MAYBE_SWAP (total_len));
23997 total_len += types_cu_list.size ();
23998
23999 /* The offset of the address table from the start of the file. */
24000 contents.append_data (MAYBE_SWAP (total_len));
24001 total_len += addr_vec.size ();
24002
24003 /* The offset of the symbol table from the start of the file. */
24004 contents.append_data (MAYBE_SWAP (total_len));
24005 total_len += symtab_vec.size ();
24006
24007 /* The offset of the constant pool from the start of the file. */
24008 contents.append_data (MAYBE_SWAP (total_len));
24009 total_len += constant_pool.size ();
24010
24011 gdb_assert (contents.size () == size_of_contents);
24012
24013 contents.file_write (out_file);
24014 cu_list.file_write (out_file);
24015 types_cu_list.file_write (out_file);
24016 addr_vec.file_write (out_file);
24017 symtab_vec.file_write (out_file);
24018 constant_pool.file_write (out_file);
24019
24020 /* We want to keep the file. */
24021 unlink_file.keep ();
24022 }
24023
24024 /* Implementation of the `save gdb-index' command.
24025
24026 Note that the file format used by this command is documented in the
24027 GDB manual. Any changes here must be documented there. */
24028
24029 static void
24030 save_gdb_index_command (const char *arg, int from_tty)
24031 {
24032 struct objfile *objfile;
24033
24034 if (!arg || !*arg)
24035 error (_("usage: save gdb-index DIRECTORY"));
24036
24037 ALL_OBJFILES (objfile)
24038 {
24039 struct stat st;
24040
24041 /* If the objfile does not correspond to an actual file, skip it. */
24042 if (stat (objfile_name (objfile), &st) < 0)
24043 continue;
24044
24045 dwarf2_per_objfile
24046 = (struct dwarf2_per_objfile *) objfile_data (objfile,
24047 dwarf2_objfile_data_key);
24048 if (dwarf2_per_objfile)
24049 {
24050
24051 TRY
24052 {
24053 write_psymtabs_to_index (objfile, arg);
24054 }
24055 CATCH (except, RETURN_MASK_ERROR)
24056 {
24057 exception_fprintf (gdb_stderr, except,
24058 _("Error while writing index for `%s': "),
24059 objfile_name (objfile));
24060 }
24061 END_CATCH
24062 }
24063 }
24064 }
24065
24066 \f
24067
24068 int dwarf_always_disassemble;
24069
24070 static void
24071 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
24072 struct cmd_list_element *c, const char *value)
24073 {
24074 fprintf_filtered (file,
24075 _("Whether to always disassemble "
24076 "DWARF expressions is %s.\n"),
24077 value);
24078 }
24079
24080 static void
24081 show_check_physname (struct ui_file *file, int from_tty,
24082 struct cmd_list_element *c, const char *value)
24083 {
24084 fprintf_filtered (file,
24085 _("Whether to check \"physname\" is %s.\n"),
24086 value);
24087 }
24088
24089 void
24090 _initialize_dwarf2_read (void)
24091 {
24092 struct cmd_list_element *c;
24093
24094 dwarf2_objfile_data_key
24095 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
24096
24097 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24098 Set DWARF specific variables.\n\
24099 Configure DWARF variables such as the cache size"),
24100 &set_dwarf_cmdlist, "maintenance set dwarf ",
24101 0/*allow-unknown*/, &maintenance_set_cmdlist);
24102
24103 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24104 Show DWARF specific variables\n\
24105 Show DWARF variables such as the cache size"),
24106 &show_dwarf_cmdlist, "maintenance show dwarf ",
24107 0/*allow-unknown*/, &maintenance_show_cmdlist);
24108
24109 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24110 &dwarf_max_cache_age, _("\
24111 Set the upper bound on the age of cached DWARF compilation units."), _("\
24112 Show the upper bound on the age of cached DWARF compilation units."), _("\
24113 A higher limit means that cached compilation units will be stored\n\
24114 in memory longer, and more total memory will be used. Zero disables\n\
24115 caching, which can slow down startup."),
24116 NULL,
24117 show_dwarf_max_cache_age,
24118 &set_dwarf_cmdlist,
24119 &show_dwarf_cmdlist);
24120
24121 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
24122 &dwarf_always_disassemble, _("\
24123 Set whether `info address' always disassembles DWARF expressions."), _("\
24124 Show whether `info address' always disassembles DWARF expressions."), _("\
24125 When enabled, DWARF expressions are always printed in an assembly-like\n\
24126 syntax. When disabled, expressions will be printed in a more\n\
24127 conversational style, when possible."),
24128 NULL,
24129 show_dwarf_always_disassemble,
24130 &set_dwarf_cmdlist,
24131 &show_dwarf_cmdlist);
24132
24133 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24134 Set debugging of the DWARF reader."), _("\
24135 Show debugging of the DWARF reader."), _("\
24136 When enabled (non-zero), debugging messages are printed during DWARF\n\
24137 reading and symtab expansion. A value of 1 (one) provides basic\n\
24138 information. A value greater than 1 provides more verbose information."),
24139 NULL,
24140 NULL,
24141 &setdebuglist, &showdebuglist);
24142
24143 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24144 Set debugging of the DWARF DIE reader."), _("\
24145 Show debugging of the DWARF DIE reader."), _("\
24146 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24147 The value is the maximum depth to print."),
24148 NULL,
24149 NULL,
24150 &setdebuglist, &showdebuglist);
24151
24152 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24153 Set debugging of the dwarf line reader."), _("\
24154 Show debugging of the dwarf line reader."), _("\
24155 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24156 A value of 1 (one) provides basic information.\n\
24157 A value greater than 1 provides more verbose information."),
24158 NULL,
24159 NULL,
24160 &setdebuglist, &showdebuglist);
24161
24162 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24163 Set cross-checking of \"physname\" code against demangler."), _("\
24164 Show cross-checking of \"physname\" code against demangler."), _("\
24165 When enabled, GDB's internal \"physname\" code is checked against\n\
24166 the demangler."),
24167 NULL, show_check_physname,
24168 &setdebuglist, &showdebuglist);
24169
24170 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24171 no_class, &use_deprecated_index_sections, _("\
24172 Set whether to use deprecated gdb_index sections."), _("\
24173 Show whether to use deprecated gdb_index sections."), _("\
24174 When enabled, deprecated .gdb_index sections are used anyway.\n\
24175 Normally they are ignored either because of a missing feature or\n\
24176 performance issue.\n\
24177 Warning: This option must be enabled before gdb reads the file."),
24178 NULL,
24179 NULL,
24180 &setlist, &showlist);
24181
24182 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
24183 _("\
24184 Save a gdb-index file.\n\
24185 Usage: save gdb-index DIRECTORY"),
24186 &save_cmdlist);
24187 set_cmd_completer (c, filename_completer);
24188
24189 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24190 &dwarf2_locexpr_funcs);
24191 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24192 &dwarf2_loclist_funcs);
24193
24194 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24195 &dwarf2_block_frame_base_locexpr_funcs);
24196 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24197 &dwarf2_block_frame_base_loclist_funcs);
24198 }