Code cleanup: Split create_debug_types_hash_table
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73
74 #include <fcntl.h>
75 #include <sys/types.h>
76 #include <algorithm>
77
78 typedef struct symbol *symbolp;
79 DEF_VEC_P (symbolp);
80
81 /* When == 1, print basic high level tracing messages.
82 When > 1, be more verbose.
83 This is in contrast to the low level DIE reading of dwarf_die_debug. */
84 static unsigned int dwarf_read_debug = 0;
85
86 /* When non-zero, dump DIEs after they are read in. */
87 static unsigned int dwarf_die_debug = 0;
88
89 /* When non-zero, dump line number entries as they are read in. */
90 static unsigned int dwarf_line_debug = 0;
91
92 /* When non-zero, cross-check physname against demangler. */
93 static int check_physname = 0;
94
95 /* When non-zero, do not reject deprecated .gdb_index sections. */
96 static int use_deprecated_index_sections = 0;
97
98 static const struct objfile_data *dwarf2_objfile_data_key;
99
100 /* The "aclass" indices for various kinds of computed DWARF symbols. */
101
102 static int dwarf2_locexpr_index;
103 static int dwarf2_loclist_index;
104 static int dwarf2_locexpr_block_index;
105 static int dwarf2_loclist_block_index;
106
107 /* A descriptor for dwarf sections.
108
109 S.ASECTION, SIZE are typically initialized when the objfile is first
110 scanned. BUFFER, READIN are filled in later when the section is read.
111 If the section contained compressed data then SIZE is updated to record
112 the uncompressed size of the section.
113
114 DWP file format V2 introduces a wrinkle that is easiest to handle by
115 creating the concept of virtual sections contained within a real section.
116 In DWP V2 the sections of the input DWO files are concatenated together
117 into one section, but section offsets are kept relative to the original
118 input section.
119 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
120 the real section this "virtual" section is contained in, and BUFFER,SIZE
121 describe the virtual section. */
122
123 struct dwarf2_section_info
124 {
125 union
126 {
127 /* If this is a real section, the bfd section. */
128 asection *section;
129 /* If this is a virtual section, pointer to the containing ("real")
130 section. */
131 struct dwarf2_section_info *containing_section;
132 } s;
133 /* Pointer to section data, only valid if readin. */
134 const gdb_byte *buffer;
135 /* The size of the section, real or virtual. */
136 bfd_size_type size;
137 /* If this is a virtual section, the offset in the real section.
138 Only valid if is_virtual. */
139 bfd_size_type virtual_offset;
140 /* True if we have tried to read this section. */
141 char readin;
142 /* True if this is a virtual section, False otherwise.
143 This specifies which of s.section and s.containing_section to use. */
144 char is_virtual;
145 };
146
147 typedef struct dwarf2_section_info dwarf2_section_info_def;
148 DEF_VEC_O (dwarf2_section_info_def);
149
150 /* All offsets in the index are of this type. It must be
151 architecture-independent. */
152 typedef uint32_t offset_type;
153
154 DEF_VEC_I (offset_type);
155
156 /* Ensure only legit values are used. */
157 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
158 do { \
159 gdb_assert ((unsigned int) (value) <= 1); \
160 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
161 } while (0)
162
163 /* Ensure only legit values are used. */
164 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
165 do { \
166 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
167 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
168 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
169 } while (0)
170
171 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
172 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
173 do { \
174 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
175 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
176 } while (0)
177
178 /* A description of the mapped index. The file format is described in
179 a comment by the code that writes the index. */
180 struct mapped_index
181 {
182 /* Index data format version. */
183 int version;
184
185 /* The total length of the buffer. */
186 off_t total_size;
187
188 /* A pointer to the address table data. */
189 const gdb_byte *address_table;
190
191 /* Size of the address table data in bytes. */
192 offset_type address_table_size;
193
194 /* The symbol table, implemented as a hash table. */
195 const offset_type *symbol_table;
196
197 /* Size in slots, each slot is 2 offset_types. */
198 offset_type symbol_table_slots;
199
200 /* A pointer to the constant pool. */
201 const char *constant_pool;
202 };
203
204 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
205 DEF_VEC_P (dwarf2_per_cu_ptr);
206
207 struct tu_stats
208 {
209 int nr_uniq_abbrev_tables;
210 int nr_symtabs;
211 int nr_symtab_sharers;
212 int nr_stmt_less_type_units;
213 int nr_all_type_units_reallocs;
214 };
215
216 /* Collection of data recorded per objfile.
217 This hangs off of dwarf2_objfile_data_key. */
218
219 struct dwarf2_per_objfile
220 {
221 struct dwarf2_section_info info;
222 struct dwarf2_section_info abbrev;
223 struct dwarf2_section_info line;
224 struct dwarf2_section_info loc;
225 struct dwarf2_section_info macinfo;
226 struct dwarf2_section_info macro;
227 struct dwarf2_section_info str;
228 struct dwarf2_section_info ranges;
229 struct dwarf2_section_info addr;
230 struct dwarf2_section_info frame;
231 struct dwarf2_section_info eh_frame;
232 struct dwarf2_section_info gdb_index;
233
234 VEC (dwarf2_section_info_def) *types;
235
236 /* Back link. */
237 struct objfile *objfile;
238
239 /* Table of all the compilation units. This is used to locate
240 the target compilation unit of a particular reference. */
241 struct dwarf2_per_cu_data **all_comp_units;
242
243 /* The number of compilation units in ALL_COMP_UNITS. */
244 int n_comp_units;
245
246 /* The number of .debug_types-related CUs. */
247 int n_type_units;
248
249 /* The number of elements allocated in all_type_units.
250 If there are skeleton-less TUs, we add them to all_type_units lazily. */
251 int n_allocated_type_units;
252
253 /* The .debug_types-related CUs (TUs).
254 This is stored in malloc space because we may realloc it. */
255 struct signatured_type **all_type_units;
256
257 /* Table of struct type_unit_group objects.
258 The hash key is the DW_AT_stmt_list value. */
259 htab_t type_unit_groups;
260
261 /* A table mapping .debug_types signatures to its signatured_type entry.
262 This is NULL if the .debug_types section hasn't been read in yet. */
263 htab_t signatured_types;
264
265 /* Type unit statistics, to see how well the scaling improvements
266 are doing. */
267 struct tu_stats tu_stats;
268
269 /* A chain of compilation units that are currently read in, so that
270 they can be freed later. */
271 struct dwarf2_per_cu_data *read_in_chain;
272
273 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
274 This is NULL if the table hasn't been allocated yet. */
275 htab_t dwo_files;
276
277 /* Non-zero if we've check for whether there is a DWP file. */
278 int dwp_checked;
279
280 /* The DWP file if there is one, or NULL. */
281 struct dwp_file *dwp_file;
282
283 /* The shared '.dwz' file, if one exists. This is used when the
284 original data was compressed using 'dwz -m'. */
285 struct dwz_file *dwz_file;
286
287 /* A flag indicating wether this objfile has a section loaded at a
288 VMA of 0. */
289 int has_section_at_zero;
290
291 /* True if we are using the mapped index,
292 or we are faking it for OBJF_READNOW's sake. */
293 unsigned char using_index;
294
295 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
296 struct mapped_index *index_table;
297
298 /* When using index_table, this keeps track of all quick_file_names entries.
299 TUs typically share line table entries with a CU, so we maintain a
300 separate table of all line table entries to support the sharing.
301 Note that while there can be way more TUs than CUs, we've already
302 sorted all the TUs into "type unit groups", grouped by their
303 DW_AT_stmt_list value. Therefore the only sharing done here is with a
304 CU and its associated TU group if there is one. */
305 htab_t quick_file_names_table;
306
307 /* Set during partial symbol reading, to prevent queueing of full
308 symbols. */
309 int reading_partial_symbols;
310
311 /* Table mapping type DIEs to their struct type *.
312 This is NULL if not allocated yet.
313 The mapping is done via (CU/TU + DIE offset) -> type. */
314 htab_t die_type_hash;
315
316 /* The CUs we recently read. */
317 VEC (dwarf2_per_cu_ptr) *just_read_cus;
318
319 /* Table containing line_header indexed by offset and offset_in_dwz. */
320 htab_t line_header_hash;
321 };
322
323 static struct dwarf2_per_objfile *dwarf2_per_objfile;
324
325 /* Default names of the debugging sections. */
326
327 /* Note that if the debugging section has been compressed, it might
328 have a name like .zdebug_info. */
329
330 static const struct dwarf2_debug_sections dwarf2_elf_names =
331 {
332 { ".debug_info", ".zdebug_info" },
333 { ".debug_abbrev", ".zdebug_abbrev" },
334 { ".debug_line", ".zdebug_line" },
335 { ".debug_loc", ".zdebug_loc" },
336 { ".debug_macinfo", ".zdebug_macinfo" },
337 { ".debug_macro", ".zdebug_macro" },
338 { ".debug_str", ".zdebug_str" },
339 { ".debug_ranges", ".zdebug_ranges" },
340 { ".debug_types", ".zdebug_types" },
341 { ".debug_addr", ".zdebug_addr" },
342 { ".debug_frame", ".zdebug_frame" },
343 { ".eh_frame", NULL },
344 { ".gdb_index", ".zgdb_index" },
345 23
346 };
347
348 /* List of DWO/DWP sections. */
349
350 static const struct dwop_section_names
351 {
352 struct dwarf2_section_names abbrev_dwo;
353 struct dwarf2_section_names info_dwo;
354 struct dwarf2_section_names line_dwo;
355 struct dwarf2_section_names loc_dwo;
356 struct dwarf2_section_names macinfo_dwo;
357 struct dwarf2_section_names macro_dwo;
358 struct dwarf2_section_names str_dwo;
359 struct dwarf2_section_names str_offsets_dwo;
360 struct dwarf2_section_names types_dwo;
361 struct dwarf2_section_names cu_index;
362 struct dwarf2_section_names tu_index;
363 }
364 dwop_section_names =
365 {
366 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
367 { ".debug_info.dwo", ".zdebug_info.dwo" },
368 { ".debug_line.dwo", ".zdebug_line.dwo" },
369 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
370 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
371 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
372 { ".debug_str.dwo", ".zdebug_str.dwo" },
373 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
374 { ".debug_types.dwo", ".zdebug_types.dwo" },
375 { ".debug_cu_index", ".zdebug_cu_index" },
376 { ".debug_tu_index", ".zdebug_tu_index" },
377 };
378
379 /* local data types */
380
381 /* The data in a compilation unit header, after target2host
382 translation, looks like this. */
383 struct comp_unit_head
384 {
385 unsigned int length;
386 short version;
387 unsigned char addr_size;
388 unsigned char signed_addr_p;
389 sect_offset abbrev_offset;
390
391 /* Size of file offsets; either 4 or 8. */
392 unsigned int offset_size;
393
394 /* Size of the length field; either 4 or 12. */
395 unsigned int initial_length_size;
396
397 /* Offset to the first byte of this compilation unit header in the
398 .debug_info section, for resolving relative reference dies. */
399 sect_offset offset;
400
401 /* Offset to first die in this cu from the start of the cu.
402 This will be the first byte following the compilation unit header. */
403 cu_offset first_die_offset;
404 };
405
406 /* Type used for delaying computation of method physnames.
407 See comments for compute_delayed_physnames. */
408 struct delayed_method_info
409 {
410 /* The type to which the method is attached, i.e., its parent class. */
411 struct type *type;
412
413 /* The index of the method in the type's function fieldlists. */
414 int fnfield_index;
415
416 /* The index of the method in the fieldlist. */
417 int index;
418
419 /* The name of the DIE. */
420 const char *name;
421
422 /* The DIE associated with this method. */
423 struct die_info *die;
424 };
425
426 typedef struct delayed_method_info delayed_method_info;
427 DEF_VEC_O (delayed_method_info);
428
429 /* Internal state when decoding a particular compilation unit. */
430 struct dwarf2_cu
431 {
432 /* The objfile containing this compilation unit. */
433 struct objfile *objfile;
434
435 /* The header of the compilation unit. */
436 struct comp_unit_head header;
437
438 /* Base address of this compilation unit. */
439 CORE_ADDR base_address;
440
441 /* Non-zero if base_address has been set. */
442 int base_known;
443
444 /* The language we are debugging. */
445 enum language language;
446 const struct language_defn *language_defn;
447
448 const char *producer;
449
450 /* The generic symbol table building routines have separate lists for
451 file scope symbols and all all other scopes (local scopes). So
452 we need to select the right one to pass to add_symbol_to_list().
453 We do it by keeping a pointer to the correct list in list_in_scope.
454
455 FIXME: The original dwarf code just treated the file scope as the
456 first local scope, and all other local scopes as nested local
457 scopes, and worked fine. Check to see if we really need to
458 distinguish these in buildsym.c. */
459 struct pending **list_in_scope;
460
461 /* The abbrev table for this CU.
462 Normally this points to the abbrev table in the objfile.
463 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
464 struct abbrev_table *abbrev_table;
465
466 /* Hash table holding all the loaded partial DIEs
467 with partial_die->offset.SECT_OFF as hash. */
468 htab_t partial_dies;
469
470 /* Storage for things with the same lifetime as this read-in compilation
471 unit, including partial DIEs. */
472 struct obstack comp_unit_obstack;
473
474 /* When multiple dwarf2_cu structures are living in memory, this field
475 chains them all together, so that they can be released efficiently.
476 We will probably also want a generation counter so that most-recently-used
477 compilation units are cached... */
478 struct dwarf2_per_cu_data *read_in_chain;
479
480 /* Backlink to our per_cu entry. */
481 struct dwarf2_per_cu_data *per_cu;
482
483 /* How many compilation units ago was this CU last referenced? */
484 int last_used;
485
486 /* A hash table of DIE cu_offset for following references with
487 die_info->offset.sect_off as hash. */
488 htab_t die_hash;
489
490 /* Full DIEs if read in. */
491 struct die_info *dies;
492
493 /* A set of pointers to dwarf2_per_cu_data objects for compilation
494 units referenced by this one. Only set during full symbol processing;
495 partial symbol tables do not have dependencies. */
496 htab_t dependencies;
497
498 /* Header data from the line table, during full symbol processing. */
499 struct line_header *line_header;
500
501 /* A list of methods which need to have physnames computed
502 after all type information has been read. */
503 VEC (delayed_method_info) *method_list;
504
505 /* To be copied to symtab->call_site_htab. */
506 htab_t call_site_htab;
507
508 /* Non-NULL if this CU came from a DWO file.
509 There is an invariant here that is important to remember:
510 Except for attributes copied from the top level DIE in the "main"
511 (or "stub") file in preparation for reading the DWO file
512 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
513 Either there isn't a DWO file (in which case this is NULL and the point
514 is moot), or there is and either we're not going to read it (in which
515 case this is NULL) or there is and we are reading it (in which case this
516 is non-NULL). */
517 struct dwo_unit *dwo_unit;
518
519 /* The DW_AT_addr_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE. */
522 ULONGEST addr_base;
523
524 /* The DW_AT_ranges_base attribute if present, zero otherwise
525 (zero is a valid value though).
526 Note this value comes from the Fission stub CU/TU's DIE.
527 Also note that the value is zero in the non-DWO case so this value can
528 be used without needing to know whether DWO files are in use or not.
529 N.B. This does not apply to DW_AT_ranges appearing in
530 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
531 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
532 DW_AT_ranges_base *would* have to be applied, and we'd have to care
533 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
534 ULONGEST ranges_base;
535
536 /* Mark used when releasing cached dies. */
537 unsigned int mark : 1;
538
539 /* This CU references .debug_loc. See the symtab->locations_valid field.
540 This test is imperfect as there may exist optimized debug code not using
541 any location list and still facing inlining issues if handled as
542 unoptimized code. For a future better test see GCC PR other/32998. */
543 unsigned int has_loclist : 1;
544
545 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
546 if all the producer_is_* fields are valid. This information is cached
547 because profiling CU expansion showed excessive time spent in
548 producer_is_gxx_lt_4_6. */
549 unsigned int checked_producer : 1;
550 unsigned int producer_is_gxx_lt_4_6 : 1;
551 unsigned int producer_is_gcc_lt_4_3 : 1;
552 unsigned int producer_is_icc : 1;
553
554 /* When set, the file that we're processing is known to have
555 debugging info for C++ namespaces. GCC 3.3.x did not produce
556 this information, but later versions do. */
557
558 unsigned int processing_has_namespace_info : 1;
559 };
560
561 /* Persistent data held for a compilation unit, even when not
562 processing it. We put a pointer to this structure in the
563 read_symtab_private field of the psymtab. */
564
565 struct dwarf2_per_cu_data
566 {
567 /* The start offset and length of this compilation unit.
568 NOTE: Unlike comp_unit_head.length, this length includes
569 initial_length_size.
570 If the DIE refers to a DWO file, this is always of the original die,
571 not the DWO file. */
572 sect_offset offset;
573 unsigned int length;
574
575 /* Flag indicating this compilation unit will be read in before
576 any of the current compilation units are processed. */
577 unsigned int queued : 1;
578
579 /* This flag will be set when reading partial DIEs if we need to load
580 absolutely all DIEs for this compilation unit, instead of just the ones
581 we think are interesting. It gets set if we look for a DIE in the
582 hash table and don't find it. */
583 unsigned int load_all_dies : 1;
584
585 /* Non-zero if this CU is from .debug_types.
586 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
587 this is non-zero. */
588 unsigned int is_debug_types : 1;
589
590 /* Non-zero if this CU is from the .dwz file. */
591 unsigned int is_dwz : 1;
592
593 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
594 This flag is only valid if is_debug_types is true.
595 We can't read a CU directly from a DWO file: There are required
596 attributes in the stub. */
597 unsigned int reading_dwo_directly : 1;
598
599 /* Non-zero if the TU has been read.
600 This is used to assist the "Stay in DWO Optimization" for Fission:
601 When reading a DWO, it's faster to read TUs from the DWO instead of
602 fetching them from random other DWOs (due to comdat folding).
603 If the TU has already been read, the optimization is unnecessary
604 (and unwise - we don't want to change where gdb thinks the TU lives
605 "midflight").
606 This flag is only valid if is_debug_types is true. */
607 unsigned int tu_read : 1;
608
609 /* The section this CU/TU lives in.
610 If the DIE refers to a DWO file, this is always the original die,
611 not the DWO file. */
612 struct dwarf2_section_info *section;
613
614 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
615 of the CU cache it gets reset to NULL again. This is left as NULL for
616 dummy CUs (a CU header, but nothing else). */
617 struct dwarf2_cu *cu;
618
619 /* The corresponding objfile.
620 Normally we can get the objfile from dwarf2_per_objfile.
621 However we can enter this file with just a "per_cu" handle. */
622 struct objfile *objfile;
623
624 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
625 is active. Otherwise, the 'psymtab' field is active. */
626 union
627 {
628 /* The partial symbol table associated with this compilation unit,
629 or NULL for unread partial units. */
630 struct partial_symtab *psymtab;
631
632 /* Data needed by the "quick" functions. */
633 struct dwarf2_per_cu_quick_data *quick;
634 } v;
635
636 /* The CUs we import using DW_TAG_imported_unit. This is filled in
637 while reading psymtabs, used to compute the psymtab dependencies,
638 and then cleared. Then it is filled in again while reading full
639 symbols, and only deleted when the objfile is destroyed.
640
641 This is also used to work around a difference between the way gold
642 generates .gdb_index version <=7 and the way gdb does. Arguably this
643 is a gold bug. For symbols coming from TUs, gold records in the index
644 the CU that includes the TU instead of the TU itself. This breaks
645 dw2_lookup_symbol: It assumes that if the index says symbol X lives
646 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
647 will find X. Alas TUs live in their own symtab, so after expanding CU Y
648 we need to look in TU Z to find X. Fortunately, this is akin to
649 DW_TAG_imported_unit, so we just use the same mechanism: For
650 .gdb_index version <=7 this also records the TUs that the CU referred
651 to. Concurrently with this change gdb was modified to emit version 8
652 indices so we only pay a price for gold generated indices.
653 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
654 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
655 };
656
657 /* Entry in the signatured_types hash table. */
658
659 struct signatured_type
660 {
661 /* The "per_cu" object of this type.
662 This struct is used iff per_cu.is_debug_types.
663 N.B.: This is the first member so that it's easy to convert pointers
664 between them. */
665 struct dwarf2_per_cu_data per_cu;
666
667 /* The type's signature. */
668 ULONGEST signature;
669
670 /* Offset in the TU of the type's DIE, as read from the TU header.
671 If this TU is a DWO stub and the definition lives in a DWO file
672 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
673 cu_offset type_offset_in_tu;
674
675 /* Offset in the section of the type's DIE.
676 If the definition lives in a DWO file, this is the offset in the
677 .debug_types.dwo section.
678 The value is zero until the actual value is known.
679 Zero is otherwise not a valid section offset. */
680 sect_offset type_offset_in_section;
681
682 /* Type units are grouped by their DW_AT_stmt_list entry so that they
683 can share them. This points to the containing symtab. */
684 struct type_unit_group *type_unit_group;
685
686 /* The type.
687 The first time we encounter this type we fully read it in and install it
688 in the symbol tables. Subsequent times we only need the type. */
689 struct type *type;
690
691 /* Containing DWO unit.
692 This field is valid iff per_cu.reading_dwo_directly. */
693 struct dwo_unit *dwo_unit;
694 };
695
696 typedef struct signatured_type *sig_type_ptr;
697 DEF_VEC_P (sig_type_ptr);
698
699 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
700 This includes type_unit_group and quick_file_names. */
701
702 struct stmt_list_hash
703 {
704 /* The DWO unit this table is from or NULL if there is none. */
705 struct dwo_unit *dwo_unit;
706
707 /* Offset in .debug_line or .debug_line.dwo. */
708 sect_offset line_offset;
709 };
710
711 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
712 an object of this type. */
713
714 struct type_unit_group
715 {
716 /* dwarf2read.c's main "handle" on a TU symtab.
717 To simplify things we create an artificial CU that "includes" all the
718 type units using this stmt_list so that the rest of the code still has
719 a "per_cu" handle on the symtab.
720 This PER_CU is recognized by having no section. */
721 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
722 struct dwarf2_per_cu_data per_cu;
723
724 /* The TUs that share this DW_AT_stmt_list entry.
725 This is added to while parsing type units to build partial symtabs,
726 and is deleted afterwards and not used again. */
727 VEC (sig_type_ptr) *tus;
728
729 /* The compunit symtab.
730 Type units in a group needn't all be defined in the same source file,
731 so we create an essentially anonymous symtab as the compunit symtab. */
732 struct compunit_symtab *compunit_symtab;
733
734 /* The data used to construct the hash key. */
735 struct stmt_list_hash hash;
736
737 /* The number of symtabs from the line header.
738 The value here must match line_header.num_file_names. */
739 unsigned int num_symtabs;
740
741 /* The symbol tables for this TU (obtained from the files listed in
742 DW_AT_stmt_list).
743 WARNING: The order of entries here must match the order of entries
744 in the line header. After the first TU using this type_unit_group, the
745 line header for the subsequent TUs is recreated from this. This is done
746 because we need to use the same symtabs for each TU using the same
747 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
748 there's no guarantee the line header doesn't have duplicate entries. */
749 struct symtab **symtabs;
750 };
751
752 /* These sections are what may appear in a (real or virtual) DWO file. */
753
754 struct dwo_sections
755 {
756 struct dwarf2_section_info abbrev;
757 struct dwarf2_section_info line;
758 struct dwarf2_section_info loc;
759 struct dwarf2_section_info macinfo;
760 struct dwarf2_section_info macro;
761 struct dwarf2_section_info str;
762 struct dwarf2_section_info str_offsets;
763 /* In the case of a virtual DWO file, these two are unused. */
764 struct dwarf2_section_info info;
765 VEC (dwarf2_section_info_def) *types;
766 };
767
768 /* CUs/TUs in DWP/DWO files. */
769
770 struct dwo_unit
771 {
772 /* Backlink to the containing struct dwo_file. */
773 struct dwo_file *dwo_file;
774
775 /* The "id" that distinguishes this CU/TU.
776 .debug_info calls this "dwo_id", .debug_types calls this "signature".
777 Since signatures came first, we stick with it for consistency. */
778 ULONGEST signature;
779
780 /* The section this CU/TU lives in, in the DWO file. */
781 struct dwarf2_section_info *section;
782
783 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
784 sect_offset offset;
785 unsigned int length;
786
787 /* For types, offset in the type's DIE of the type defined by this TU. */
788 cu_offset type_offset_in_tu;
789 };
790
791 /* include/dwarf2.h defines the DWP section codes.
792 It defines a max value but it doesn't define a min value, which we
793 use for error checking, so provide one. */
794
795 enum dwp_v2_section_ids
796 {
797 DW_SECT_MIN = 1
798 };
799
800 /* Data for one DWO file.
801
802 This includes virtual DWO files (a virtual DWO file is a DWO file as it
803 appears in a DWP file). DWP files don't really have DWO files per se -
804 comdat folding of types "loses" the DWO file they came from, and from
805 a high level view DWP files appear to contain a mass of random types.
806 However, to maintain consistency with the non-DWP case we pretend DWP
807 files contain virtual DWO files, and we assign each TU with one virtual
808 DWO file (generally based on the line and abbrev section offsets -
809 a heuristic that seems to work in practice). */
810
811 struct dwo_file
812 {
813 /* The DW_AT_GNU_dwo_name attribute.
814 For virtual DWO files the name is constructed from the section offsets
815 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
816 from related CU+TUs. */
817 const char *dwo_name;
818
819 /* The DW_AT_comp_dir attribute. */
820 const char *comp_dir;
821
822 /* The bfd, when the file is open. Otherwise this is NULL.
823 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
824 bfd *dbfd;
825
826 /* The sections that make up this DWO file.
827 Remember that for virtual DWO files in DWP V2, these are virtual
828 sections (for lack of a better name). */
829 struct dwo_sections sections;
830
831 /* The CU in the file.
832 We only support one because having more than one requires hacking the
833 dwo_name of each to match, which is highly unlikely to happen.
834 Doing this means all TUs can share comp_dir: We also assume that
835 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
836 struct dwo_unit *cu;
837
838 /* Table of TUs in the file.
839 Each element is a struct dwo_unit. */
840 htab_t tus;
841 };
842
843 /* These sections are what may appear in a DWP file. */
844
845 struct dwp_sections
846 {
847 /* These are used by both DWP version 1 and 2. */
848 struct dwarf2_section_info str;
849 struct dwarf2_section_info cu_index;
850 struct dwarf2_section_info tu_index;
851
852 /* These are only used by DWP version 2 files.
853 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
854 sections are referenced by section number, and are not recorded here.
855 In DWP version 2 there is at most one copy of all these sections, each
856 section being (effectively) comprised of the concatenation of all of the
857 individual sections that exist in the version 1 format.
858 To keep the code simple we treat each of these concatenated pieces as a
859 section itself (a virtual section?). */
860 struct dwarf2_section_info abbrev;
861 struct dwarf2_section_info info;
862 struct dwarf2_section_info line;
863 struct dwarf2_section_info loc;
864 struct dwarf2_section_info macinfo;
865 struct dwarf2_section_info macro;
866 struct dwarf2_section_info str_offsets;
867 struct dwarf2_section_info types;
868 };
869
870 /* These sections are what may appear in a virtual DWO file in DWP version 1.
871 A virtual DWO file is a DWO file as it appears in a DWP file. */
872
873 struct virtual_v1_dwo_sections
874 {
875 struct dwarf2_section_info abbrev;
876 struct dwarf2_section_info line;
877 struct dwarf2_section_info loc;
878 struct dwarf2_section_info macinfo;
879 struct dwarf2_section_info macro;
880 struct dwarf2_section_info str_offsets;
881 /* Each DWP hash table entry records one CU or one TU.
882 That is recorded here, and copied to dwo_unit.section. */
883 struct dwarf2_section_info info_or_types;
884 };
885
886 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
887 In version 2, the sections of the DWO files are concatenated together
888 and stored in one section of that name. Thus each ELF section contains
889 several "virtual" sections. */
890
891 struct virtual_v2_dwo_sections
892 {
893 bfd_size_type abbrev_offset;
894 bfd_size_type abbrev_size;
895
896 bfd_size_type line_offset;
897 bfd_size_type line_size;
898
899 bfd_size_type loc_offset;
900 bfd_size_type loc_size;
901
902 bfd_size_type macinfo_offset;
903 bfd_size_type macinfo_size;
904
905 bfd_size_type macro_offset;
906 bfd_size_type macro_size;
907
908 bfd_size_type str_offsets_offset;
909 bfd_size_type str_offsets_size;
910
911 /* Each DWP hash table entry records one CU or one TU.
912 That is recorded here, and copied to dwo_unit.section. */
913 bfd_size_type info_or_types_offset;
914 bfd_size_type info_or_types_size;
915 };
916
917 /* Contents of DWP hash tables. */
918
919 struct dwp_hash_table
920 {
921 uint32_t version, nr_columns;
922 uint32_t nr_units, nr_slots;
923 const gdb_byte *hash_table, *unit_table;
924 union
925 {
926 struct
927 {
928 const gdb_byte *indices;
929 } v1;
930 struct
931 {
932 /* This is indexed by column number and gives the id of the section
933 in that column. */
934 #define MAX_NR_V2_DWO_SECTIONS \
935 (1 /* .debug_info or .debug_types */ \
936 + 1 /* .debug_abbrev */ \
937 + 1 /* .debug_line */ \
938 + 1 /* .debug_loc */ \
939 + 1 /* .debug_str_offsets */ \
940 + 1 /* .debug_macro or .debug_macinfo */)
941 int section_ids[MAX_NR_V2_DWO_SECTIONS];
942 const gdb_byte *offsets;
943 const gdb_byte *sizes;
944 } v2;
945 } section_pool;
946 };
947
948 /* Data for one DWP file. */
949
950 struct dwp_file
951 {
952 /* Name of the file. */
953 const char *name;
954
955 /* File format version. */
956 int version;
957
958 /* The bfd. */
959 bfd *dbfd;
960
961 /* Section info for this file. */
962 struct dwp_sections sections;
963
964 /* Table of CUs in the file. */
965 const struct dwp_hash_table *cus;
966
967 /* Table of TUs in the file. */
968 const struct dwp_hash_table *tus;
969
970 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
971 htab_t loaded_cus;
972 htab_t loaded_tus;
973
974 /* Table to map ELF section numbers to their sections.
975 This is only needed for the DWP V1 file format. */
976 unsigned int num_sections;
977 asection **elf_sections;
978 };
979
980 /* This represents a '.dwz' file. */
981
982 struct dwz_file
983 {
984 /* A dwz file can only contain a few sections. */
985 struct dwarf2_section_info abbrev;
986 struct dwarf2_section_info info;
987 struct dwarf2_section_info str;
988 struct dwarf2_section_info line;
989 struct dwarf2_section_info macro;
990 struct dwarf2_section_info gdb_index;
991
992 /* The dwz's BFD. */
993 bfd *dwz_bfd;
994 };
995
996 /* Struct used to pass misc. parameters to read_die_and_children, et
997 al. which are used for both .debug_info and .debug_types dies.
998 All parameters here are unchanging for the life of the call. This
999 struct exists to abstract away the constant parameters of die reading. */
1000
1001 struct die_reader_specs
1002 {
1003 /* The bfd of die_section. */
1004 bfd* abfd;
1005
1006 /* The CU of the DIE we are parsing. */
1007 struct dwarf2_cu *cu;
1008
1009 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1010 struct dwo_file *dwo_file;
1011
1012 /* The section the die comes from.
1013 This is either .debug_info or .debug_types, or the .dwo variants. */
1014 struct dwarf2_section_info *die_section;
1015
1016 /* die_section->buffer. */
1017 const gdb_byte *buffer;
1018
1019 /* The end of the buffer. */
1020 const gdb_byte *buffer_end;
1021
1022 /* The value of the DW_AT_comp_dir attribute. */
1023 const char *comp_dir;
1024 };
1025
1026 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1027 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1028 const gdb_byte *info_ptr,
1029 struct die_info *comp_unit_die,
1030 int has_children,
1031 void *data);
1032
1033 struct file_entry
1034 {
1035 const char *name;
1036 unsigned int dir_index;
1037 unsigned int mod_time;
1038 unsigned int length;
1039 /* Non-zero if referenced by the Line Number Program. */
1040 int included_p;
1041 /* The associated symbol table, if any. */
1042 struct symtab *symtab;
1043 };
1044
1045 /* The line number information for a compilation unit (found in the
1046 .debug_line section) begins with a "statement program header",
1047 which contains the following information. */
1048 struct line_header
1049 {
1050 /* Offset of line number information in .debug_line section. */
1051 sect_offset offset;
1052
1053 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1054 unsigned offset_in_dwz : 1;
1055
1056 unsigned int total_length;
1057 unsigned short version;
1058 unsigned int header_length;
1059 unsigned char minimum_instruction_length;
1060 unsigned char maximum_ops_per_instruction;
1061 unsigned char default_is_stmt;
1062 int line_base;
1063 unsigned char line_range;
1064 unsigned char opcode_base;
1065
1066 /* standard_opcode_lengths[i] is the number of operands for the
1067 standard opcode whose value is i. This means that
1068 standard_opcode_lengths[0] is unused, and the last meaningful
1069 element is standard_opcode_lengths[opcode_base - 1]. */
1070 unsigned char *standard_opcode_lengths;
1071
1072 /* The include_directories table. NOTE! These strings are not
1073 allocated with xmalloc; instead, they are pointers into
1074 debug_line_buffer. If you try to free them, `free' will get
1075 indigestion. */
1076 unsigned int num_include_dirs, include_dirs_size;
1077 const char **include_dirs;
1078
1079 /* The file_names table. NOTE! These strings are not allocated
1080 with xmalloc; instead, they are pointers into debug_line_buffer.
1081 Don't try to free them directly. */
1082 unsigned int num_file_names, file_names_size;
1083 struct file_entry *file_names;
1084
1085 /* The start and end of the statement program following this
1086 header. These point into dwarf2_per_objfile->line_buffer. */
1087 const gdb_byte *statement_program_start, *statement_program_end;
1088 };
1089
1090 /* When we construct a partial symbol table entry we only
1091 need this much information. */
1092 struct partial_die_info
1093 {
1094 /* Offset of this DIE. */
1095 sect_offset offset;
1096
1097 /* DWARF-2 tag for this DIE. */
1098 ENUM_BITFIELD(dwarf_tag) tag : 16;
1099
1100 /* Assorted flags describing the data found in this DIE. */
1101 unsigned int has_children : 1;
1102 unsigned int is_external : 1;
1103 unsigned int is_declaration : 1;
1104 unsigned int has_type : 1;
1105 unsigned int has_specification : 1;
1106 unsigned int has_pc_info : 1;
1107 unsigned int may_be_inlined : 1;
1108
1109 /* This DIE has been marked DW_AT_main_subprogram. */
1110 unsigned int main_subprogram : 1;
1111
1112 /* Flag set if the SCOPE field of this structure has been
1113 computed. */
1114 unsigned int scope_set : 1;
1115
1116 /* Flag set if the DIE has a byte_size attribute. */
1117 unsigned int has_byte_size : 1;
1118
1119 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1120 unsigned int has_const_value : 1;
1121
1122 /* Flag set if any of the DIE's children are template arguments. */
1123 unsigned int has_template_arguments : 1;
1124
1125 /* Flag set if fixup_partial_die has been called on this die. */
1126 unsigned int fixup_called : 1;
1127
1128 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1129 unsigned int is_dwz : 1;
1130
1131 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1132 unsigned int spec_is_dwz : 1;
1133
1134 /* The name of this DIE. Normally the value of DW_AT_name, but
1135 sometimes a default name for unnamed DIEs. */
1136 const char *name;
1137
1138 /* The linkage name, if present. */
1139 const char *linkage_name;
1140
1141 /* The scope to prepend to our children. This is generally
1142 allocated on the comp_unit_obstack, so will disappear
1143 when this compilation unit leaves the cache. */
1144 const char *scope;
1145
1146 /* Some data associated with the partial DIE. The tag determines
1147 which field is live. */
1148 union
1149 {
1150 /* The location description associated with this DIE, if any. */
1151 struct dwarf_block *locdesc;
1152 /* The offset of an import, for DW_TAG_imported_unit. */
1153 sect_offset offset;
1154 } d;
1155
1156 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1157 CORE_ADDR lowpc;
1158 CORE_ADDR highpc;
1159
1160 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1161 DW_AT_sibling, if any. */
1162 /* NOTE: This member isn't strictly necessary, read_partial_die could
1163 return DW_AT_sibling values to its caller load_partial_dies. */
1164 const gdb_byte *sibling;
1165
1166 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1167 DW_AT_specification (or DW_AT_abstract_origin or
1168 DW_AT_extension). */
1169 sect_offset spec_offset;
1170
1171 /* Pointers to this DIE's parent, first child, and next sibling,
1172 if any. */
1173 struct partial_die_info *die_parent, *die_child, *die_sibling;
1174 };
1175
1176 /* This data structure holds the information of an abbrev. */
1177 struct abbrev_info
1178 {
1179 unsigned int number; /* number identifying abbrev */
1180 enum dwarf_tag tag; /* dwarf tag */
1181 unsigned short has_children; /* boolean */
1182 unsigned short num_attrs; /* number of attributes */
1183 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1184 struct abbrev_info *next; /* next in chain */
1185 };
1186
1187 struct attr_abbrev
1188 {
1189 ENUM_BITFIELD(dwarf_attribute) name : 16;
1190 ENUM_BITFIELD(dwarf_form) form : 16;
1191 };
1192
1193 /* Size of abbrev_table.abbrev_hash_table. */
1194 #define ABBREV_HASH_SIZE 121
1195
1196 /* Top level data structure to contain an abbreviation table. */
1197
1198 struct abbrev_table
1199 {
1200 /* Where the abbrev table came from.
1201 This is used as a sanity check when the table is used. */
1202 sect_offset offset;
1203
1204 /* Storage for the abbrev table. */
1205 struct obstack abbrev_obstack;
1206
1207 /* Hash table of abbrevs.
1208 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1209 It could be statically allocated, but the previous code didn't so we
1210 don't either. */
1211 struct abbrev_info **abbrevs;
1212 };
1213
1214 /* Attributes have a name and a value. */
1215 struct attribute
1216 {
1217 ENUM_BITFIELD(dwarf_attribute) name : 16;
1218 ENUM_BITFIELD(dwarf_form) form : 15;
1219
1220 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1221 field should be in u.str (existing only for DW_STRING) but it is kept
1222 here for better struct attribute alignment. */
1223 unsigned int string_is_canonical : 1;
1224
1225 union
1226 {
1227 const char *str;
1228 struct dwarf_block *blk;
1229 ULONGEST unsnd;
1230 LONGEST snd;
1231 CORE_ADDR addr;
1232 ULONGEST signature;
1233 }
1234 u;
1235 };
1236
1237 /* This data structure holds a complete die structure. */
1238 struct die_info
1239 {
1240 /* DWARF-2 tag for this DIE. */
1241 ENUM_BITFIELD(dwarf_tag) tag : 16;
1242
1243 /* Number of attributes */
1244 unsigned char num_attrs;
1245
1246 /* True if we're presently building the full type name for the
1247 type derived from this DIE. */
1248 unsigned char building_fullname : 1;
1249
1250 /* True if this die is in process. PR 16581. */
1251 unsigned char in_process : 1;
1252
1253 /* Abbrev number */
1254 unsigned int abbrev;
1255
1256 /* Offset in .debug_info or .debug_types section. */
1257 sect_offset offset;
1258
1259 /* The dies in a compilation unit form an n-ary tree. PARENT
1260 points to this die's parent; CHILD points to the first child of
1261 this node; and all the children of a given node are chained
1262 together via their SIBLING fields. */
1263 struct die_info *child; /* Its first child, if any. */
1264 struct die_info *sibling; /* Its next sibling, if any. */
1265 struct die_info *parent; /* Its parent, if any. */
1266
1267 /* An array of attributes, with NUM_ATTRS elements. There may be
1268 zero, but it's not common and zero-sized arrays are not
1269 sufficiently portable C. */
1270 struct attribute attrs[1];
1271 };
1272
1273 /* Get at parts of an attribute structure. */
1274
1275 #define DW_STRING(attr) ((attr)->u.str)
1276 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1277 #define DW_UNSND(attr) ((attr)->u.unsnd)
1278 #define DW_BLOCK(attr) ((attr)->u.blk)
1279 #define DW_SND(attr) ((attr)->u.snd)
1280 #define DW_ADDR(attr) ((attr)->u.addr)
1281 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1282
1283 /* Blocks are a bunch of untyped bytes. */
1284 struct dwarf_block
1285 {
1286 size_t size;
1287
1288 /* Valid only if SIZE is not zero. */
1289 const gdb_byte *data;
1290 };
1291
1292 #ifndef ATTR_ALLOC_CHUNK
1293 #define ATTR_ALLOC_CHUNK 4
1294 #endif
1295
1296 /* Allocate fields for structs, unions and enums in this size. */
1297 #ifndef DW_FIELD_ALLOC_CHUNK
1298 #define DW_FIELD_ALLOC_CHUNK 4
1299 #endif
1300
1301 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1302 but this would require a corresponding change in unpack_field_as_long
1303 and friends. */
1304 static int bits_per_byte = 8;
1305
1306 struct nextfield
1307 {
1308 struct nextfield *next;
1309 int accessibility;
1310 int virtuality;
1311 struct field field;
1312 };
1313
1314 struct nextfnfield
1315 {
1316 struct nextfnfield *next;
1317 struct fn_field fnfield;
1318 };
1319
1320 struct fnfieldlist
1321 {
1322 const char *name;
1323 int length;
1324 struct nextfnfield *head;
1325 };
1326
1327 struct typedef_field_list
1328 {
1329 struct typedef_field field;
1330 struct typedef_field_list *next;
1331 };
1332
1333 /* The routines that read and process dies for a C struct or C++ class
1334 pass lists of data member fields and lists of member function fields
1335 in an instance of a field_info structure, as defined below. */
1336 struct field_info
1337 {
1338 /* List of data member and baseclasses fields. */
1339 struct nextfield *fields, *baseclasses;
1340
1341 /* Number of fields (including baseclasses). */
1342 int nfields;
1343
1344 /* Number of baseclasses. */
1345 int nbaseclasses;
1346
1347 /* Set if the accesibility of one of the fields is not public. */
1348 int non_public_fields;
1349
1350 /* Member function fields array, entries are allocated in the order they
1351 are encountered in the object file. */
1352 struct nextfnfield *fnfields;
1353
1354 /* Member function fieldlist array, contains name of possibly overloaded
1355 member function, number of overloaded member functions and a pointer
1356 to the head of the member function field chain. */
1357 struct fnfieldlist *fnfieldlists;
1358
1359 /* Number of entries in the fnfieldlists array. */
1360 int nfnfields;
1361
1362 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1363 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1364 struct typedef_field_list *typedef_field_list;
1365 unsigned typedef_field_list_count;
1366 };
1367
1368 /* One item on the queue of compilation units to read in full symbols
1369 for. */
1370 struct dwarf2_queue_item
1371 {
1372 struct dwarf2_per_cu_data *per_cu;
1373 enum language pretend_language;
1374 struct dwarf2_queue_item *next;
1375 };
1376
1377 /* The current queue. */
1378 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1379
1380 /* Loaded secondary compilation units are kept in memory until they
1381 have not been referenced for the processing of this many
1382 compilation units. Set this to zero to disable caching. Cache
1383 sizes of up to at least twenty will improve startup time for
1384 typical inter-CU-reference binaries, at an obvious memory cost. */
1385 static int dwarf_max_cache_age = 5;
1386 static void
1387 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1388 struct cmd_list_element *c, const char *value)
1389 {
1390 fprintf_filtered (file, _("The upper bound on the age of cached "
1391 "DWARF compilation units is %s.\n"),
1392 value);
1393 }
1394 \f
1395 /* local function prototypes */
1396
1397 static const char *get_section_name (const struct dwarf2_section_info *);
1398
1399 static const char *get_section_file_name (const struct dwarf2_section_info *);
1400
1401 static void dwarf2_locate_sections (bfd *, asection *, void *);
1402
1403 static void dwarf2_find_base_address (struct die_info *die,
1404 struct dwarf2_cu *cu);
1405
1406 static struct partial_symtab *create_partial_symtab
1407 (struct dwarf2_per_cu_data *per_cu, const char *name);
1408
1409 static void dwarf2_build_psymtabs_hard (struct objfile *);
1410
1411 static void scan_partial_symbols (struct partial_die_info *,
1412 CORE_ADDR *, CORE_ADDR *,
1413 int, struct dwarf2_cu *);
1414
1415 static void add_partial_symbol (struct partial_die_info *,
1416 struct dwarf2_cu *);
1417
1418 static void add_partial_namespace (struct partial_die_info *pdi,
1419 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1420 int set_addrmap, struct dwarf2_cu *cu);
1421
1422 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1423 CORE_ADDR *highpc, int set_addrmap,
1424 struct dwarf2_cu *cu);
1425
1426 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1427 struct dwarf2_cu *cu);
1428
1429 static void add_partial_subprogram (struct partial_die_info *pdi,
1430 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1431 int need_pc, struct dwarf2_cu *cu);
1432
1433 static void dwarf2_read_symtab (struct partial_symtab *,
1434 struct objfile *);
1435
1436 static void psymtab_to_symtab_1 (struct partial_symtab *);
1437
1438 static struct abbrev_info *abbrev_table_lookup_abbrev
1439 (const struct abbrev_table *, unsigned int);
1440
1441 static struct abbrev_table *abbrev_table_read_table
1442 (struct dwarf2_section_info *, sect_offset);
1443
1444 static void abbrev_table_free (struct abbrev_table *);
1445
1446 static void abbrev_table_free_cleanup (void *);
1447
1448 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1449 struct dwarf2_section_info *);
1450
1451 static void dwarf2_free_abbrev_table (void *);
1452
1453 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1454
1455 static struct partial_die_info *load_partial_dies
1456 (const struct die_reader_specs *, const gdb_byte *, int);
1457
1458 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1459 struct partial_die_info *,
1460 struct abbrev_info *,
1461 unsigned int,
1462 const gdb_byte *);
1463
1464 static struct partial_die_info *find_partial_die (sect_offset, int,
1465 struct dwarf2_cu *);
1466
1467 static void fixup_partial_die (struct partial_die_info *,
1468 struct dwarf2_cu *);
1469
1470 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1471 struct attribute *, struct attr_abbrev *,
1472 const gdb_byte *);
1473
1474 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1475
1476 static int read_1_signed_byte (bfd *, const gdb_byte *);
1477
1478 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1479
1480 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1481
1482 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1483
1484 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1485 unsigned int *);
1486
1487 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1488
1489 static LONGEST read_checked_initial_length_and_offset
1490 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1491 unsigned int *, unsigned int *);
1492
1493 static LONGEST read_offset (bfd *, const gdb_byte *,
1494 const struct comp_unit_head *,
1495 unsigned int *);
1496
1497 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1498
1499 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1500 sect_offset);
1501
1502 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1503
1504 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1505
1506 static const char *read_indirect_string (bfd *, const gdb_byte *,
1507 const struct comp_unit_head *,
1508 unsigned int *);
1509
1510 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1511
1512 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1513
1514 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1515
1516 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1517 const gdb_byte *,
1518 unsigned int *);
1519
1520 static const char *read_str_index (const struct die_reader_specs *reader,
1521 ULONGEST str_index);
1522
1523 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1524
1525 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1526 struct dwarf2_cu *);
1527
1528 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1529 unsigned int);
1530
1531 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1532 struct dwarf2_cu *cu);
1533
1534 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1535 struct dwarf2_cu *cu);
1536
1537 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1538
1539 static struct die_info *die_specification (struct die_info *die,
1540 struct dwarf2_cu **);
1541
1542 static void free_line_header (struct line_header *lh);
1543
1544 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1545 struct dwarf2_cu *cu);
1546
1547 static void dwarf_decode_lines (struct line_header *, const char *,
1548 struct dwarf2_cu *, struct partial_symtab *,
1549 CORE_ADDR, int decode_mapping);
1550
1551 static void dwarf2_start_subfile (const char *, const char *);
1552
1553 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1554 const char *, const char *,
1555 CORE_ADDR);
1556
1557 static struct symbol *new_symbol (struct die_info *, struct type *,
1558 struct dwarf2_cu *);
1559
1560 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1561 struct dwarf2_cu *, struct symbol *);
1562
1563 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1564 struct dwarf2_cu *);
1565
1566 static void dwarf2_const_value_attr (const struct attribute *attr,
1567 struct type *type,
1568 const char *name,
1569 struct obstack *obstack,
1570 struct dwarf2_cu *cu, LONGEST *value,
1571 const gdb_byte **bytes,
1572 struct dwarf2_locexpr_baton **baton);
1573
1574 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1575
1576 static int need_gnat_info (struct dwarf2_cu *);
1577
1578 static struct type *die_descriptive_type (struct die_info *,
1579 struct dwarf2_cu *);
1580
1581 static void set_descriptive_type (struct type *, struct die_info *,
1582 struct dwarf2_cu *);
1583
1584 static struct type *die_containing_type (struct die_info *,
1585 struct dwarf2_cu *);
1586
1587 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1588 struct dwarf2_cu *);
1589
1590 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1591
1592 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1593
1594 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1595
1596 static char *typename_concat (struct obstack *obs, const char *prefix,
1597 const char *suffix, int physname,
1598 struct dwarf2_cu *cu);
1599
1600 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1601
1602 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1603
1604 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1605
1606 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1607
1608 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1609
1610 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1611 struct dwarf2_cu *, struct partial_symtab *);
1612
1613 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1614 values. Keep the items ordered with increasing constraints compliance. */
1615 enum pc_bounds_kind
1616 {
1617 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1618 PC_BOUNDS_NOT_PRESENT,
1619
1620 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1621 were present but they do not form a valid range of PC addresses. */
1622 PC_BOUNDS_INVALID,
1623
1624 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1625 PC_BOUNDS_RANGES,
1626
1627 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1628 PC_BOUNDS_HIGH_LOW,
1629 };
1630
1631 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1632 CORE_ADDR *, CORE_ADDR *,
1633 struct dwarf2_cu *,
1634 struct partial_symtab *);
1635
1636 static void get_scope_pc_bounds (struct die_info *,
1637 CORE_ADDR *, CORE_ADDR *,
1638 struct dwarf2_cu *);
1639
1640 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1641 CORE_ADDR, struct dwarf2_cu *);
1642
1643 static void dwarf2_add_field (struct field_info *, struct die_info *,
1644 struct dwarf2_cu *);
1645
1646 static void dwarf2_attach_fields_to_type (struct field_info *,
1647 struct type *, struct dwarf2_cu *);
1648
1649 static void dwarf2_add_member_fn (struct field_info *,
1650 struct die_info *, struct type *,
1651 struct dwarf2_cu *);
1652
1653 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1654 struct type *,
1655 struct dwarf2_cu *);
1656
1657 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1658
1659 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1660
1661 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1662
1663 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1664
1665 static struct using_direct **using_directives (enum language);
1666
1667 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1668
1669 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1670
1671 static struct type *read_module_type (struct die_info *die,
1672 struct dwarf2_cu *cu);
1673
1674 static const char *namespace_name (struct die_info *die,
1675 int *is_anonymous, struct dwarf2_cu *);
1676
1677 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1678
1679 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1680
1681 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1682 struct dwarf2_cu *);
1683
1684 static struct die_info *read_die_and_siblings_1
1685 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1686 struct die_info *);
1687
1688 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1689 const gdb_byte *info_ptr,
1690 const gdb_byte **new_info_ptr,
1691 struct die_info *parent);
1692
1693 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1694 struct die_info **, const gdb_byte *,
1695 int *, int);
1696
1697 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1698 struct die_info **, const gdb_byte *,
1699 int *);
1700
1701 static void process_die (struct die_info *, struct dwarf2_cu *);
1702
1703 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1704 struct obstack *);
1705
1706 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1707
1708 static const char *dwarf2_full_name (const char *name,
1709 struct die_info *die,
1710 struct dwarf2_cu *cu);
1711
1712 static const char *dwarf2_physname (const char *name, struct die_info *die,
1713 struct dwarf2_cu *cu);
1714
1715 static struct die_info *dwarf2_extension (struct die_info *die,
1716 struct dwarf2_cu **);
1717
1718 static const char *dwarf_tag_name (unsigned int);
1719
1720 static const char *dwarf_attr_name (unsigned int);
1721
1722 static const char *dwarf_form_name (unsigned int);
1723
1724 static char *dwarf_bool_name (unsigned int);
1725
1726 static const char *dwarf_type_encoding_name (unsigned int);
1727
1728 static struct die_info *sibling_die (struct die_info *);
1729
1730 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1731
1732 static void dump_die_for_error (struct die_info *);
1733
1734 static void dump_die_1 (struct ui_file *, int level, int max_level,
1735 struct die_info *);
1736
1737 /*static*/ void dump_die (struct die_info *, int max_level);
1738
1739 static void store_in_ref_table (struct die_info *,
1740 struct dwarf2_cu *);
1741
1742 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1743
1744 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1745
1746 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1747 const struct attribute *,
1748 struct dwarf2_cu **);
1749
1750 static struct die_info *follow_die_ref (struct die_info *,
1751 const struct attribute *,
1752 struct dwarf2_cu **);
1753
1754 static struct die_info *follow_die_sig (struct die_info *,
1755 const struct attribute *,
1756 struct dwarf2_cu **);
1757
1758 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1759 struct dwarf2_cu *);
1760
1761 static struct type *get_DW_AT_signature_type (struct die_info *,
1762 const struct attribute *,
1763 struct dwarf2_cu *);
1764
1765 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1766
1767 static void read_signatured_type (struct signatured_type *);
1768
1769 static int attr_to_dynamic_prop (const struct attribute *attr,
1770 struct die_info *die, struct dwarf2_cu *cu,
1771 struct dynamic_prop *prop);
1772
1773 /* memory allocation interface */
1774
1775 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1776
1777 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1778
1779 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1780
1781 static int attr_form_is_block (const struct attribute *);
1782
1783 static int attr_form_is_section_offset (const struct attribute *);
1784
1785 static int attr_form_is_constant (const struct attribute *);
1786
1787 static int attr_form_is_ref (const struct attribute *);
1788
1789 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1790 struct dwarf2_loclist_baton *baton,
1791 const struct attribute *attr);
1792
1793 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1794 struct symbol *sym,
1795 struct dwarf2_cu *cu,
1796 int is_block);
1797
1798 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1799 const gdb_byte *info_ptr,
1800 struct abbrev_info *abbrev);
1801
1802 static void free_stack_comp_unit (void *);
1803
1804 static hashval_t partial_die_hash (const void *item);
1805
1806 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1807
1808 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1809 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1810
1811 static void init_one_comp_unit (struct dwarf2_cu *cu,
1812 struct dwarf2_per_cu_data *per_cu);
1813
1814 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1815 struct die_info *comp_unit_die,
1816 enum language pretend_language);
1817
1818 static void free_heap_comp_unit (void *);
1819
1820 static void free_cached_comp_units (void *);
1821
1822 static void age_cached_comp_units (void);
1823
1824 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1825
1826 static struct type *set_die_type (struct die_info *, struct type *,
1827 struct dwarf2_cu *);
1828
1829 static void create_all_comp_units (struct objfile *);
1830
1831 static int create_all_type_units (struct objfile *);
1832
1833 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1834 enum language);
1835
1836 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1837 enum language);
1838
1839 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1840 enum language);
1841
1842 static void dwarf2_add_dependence (struct dwarf2_cu *,
1843 struct dwarf2_per_cu_data *);
1844
1845 static void dwarf2_mark (struct dwarf2_cu *);
1846
1847 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1848
1849 static struct type *get_die_type_at_offset (sect_offset,
1850 struct dwarf2_per_cu_data *);
1851
1852 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1853
1854 static void dwarf2_release_queue (void *dummy);
1855
1856 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1857 enum language pretend_language);
1858
1859 static void process_queue (void);
1860
1861 static void find_file_and_directory (struct die_info *die,
1862 struct dwarf2_cu *cu,
1863 const char **name, const char **comp_dir);
1864
1865 static char *file_full_name (int file, struct line_header *lh,
1866 const char *comp_dir);
1867
1868 static const gdb_byte *read_and_check_comp_unit_head
1869 (struct comp_unit_head *header,
1870 struct dwarf2_section_info *section,
1871 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1872 int is_debug_types_section);
1873
1874 static void init_cutu_and_read_dies
1875 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1876 int use_existing_cu, int keep,
1877 die_reader_func_ftype *die_reader_func, void *data);
1878
1879 static void init_cutu_and_read_dies_simple
1880 (struct dwarf2_per_cu_data *this_cu,
1881 die_reader_func_ftype *die_reader_func, void *data);
1882
1883 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1884
1885 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1886
1887 static struct dwo_unit *lookup_dwo_unit_in_dwp
1888 (struct dwp_file *dwp_file, const char *comp_dir,
1889 ULONGEST signature, int is_debug_types);
1890
1891 static struct dwp_file *get_dwp_file (void);
1892
1893 static struct dwo_unit *lookup_dwo_comp_unit
1894 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1895
1896 static struct dwo_unit *lookup_dwo_type_unit
1897 (struct signatured_type *, const char *, const char *);
1898
1899 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1900
1901 static void free_dwo_file_cleanup (void *);
1902
1903 static void process_cu_includes (void);
1904
1905 static void check_producer (struct dwarf2_cu *cu);
1906
1907 static void free_line_header_voidp (void *arg);
1908 \f
1909 /* Various complaints about symbol reading that don't abort the process. */
1910
1911 static void
1912 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1913 {
1914 complaint (&symfile_complaints,
1915 _("statement list doesn't fit in .debug_line section"));
1916 }
1917
1918 static void
1919 dwarf2_debug_line_missing_file_complaint (void)
1920 {
1921 complaint (&symfile_complaints,
1922 _(".debug_line section has line data without a file"));
1923 }
1924
1925 static void
1926 dwarf2_debug_line_missing_end_sequence_complaint (void)
1927 {
1928 complaint (&symfile_complaints,
1929 _(".debug_line section has line "
1930 "program sequence without an end"));
1931 }
1932
1933 static void
1934 dwarf2_complex_location_expr_complaint (void)
1935 {
1936 complaint (&symfile_complaints, _("location expression too complex"));
1937 }
1938
1939 static void
1940 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1941 int arg3)
1942 {
1943 complaint (&symfile_complaints,
1944 _("const value length mismatch for '%s', got %d, expected %d"),
1945 arg1, arg2, arg3);
1946 }
1947
1948 static void
1949 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1950 {
1951 complaint (&symfile_complaints,
1952 _("debug info runs off end of %s section"
1953 " [in module %s]"),
1954 get_section_name (section),
1955 get_section_file_name (section));
1956 }
1957
1958 static void
1959 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1960 {
1961 complaint (&symfile_complaints,
1962 _("macro debug info contains a "
1963 "malformed macro definition:\n`%s'"),
1964 arg1);
1965 }
1966
1967 static void
1968 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1969 {
1970 complaint (&symfile_complaints,
1971 _("invalid attribute class or form for '%s' in '%s'"),
1972 arg1, arg2);
1973 }
1974
1975 /* Hash function for line_header_hash. */
1976
1977 static hashval_t
1978 line_header_hash (const struct line_header *ofs)
1979 {
1980 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1981 }
1982
1983 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1984
1985 static hashval_t
1986 line_header_hash_voidp (const void *item)
1987 {
1988 const struct line_header *ofs = (const struct line_header *) item;
1989
1990 return line_header_hash (ofs);
1991 }
1992
1993 /* Equality function for line_header_hash. */
1994
1995 static int
1996 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1997 {
1998 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1999 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2000
2001 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
2002 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2003 }
2004
2005 \f
2006 #if WORDS_BIGENDIAN
2007
2008 /* Convert VALUE between big- and little-endian. */
2009 static offset_type
2010 byte_swap (offset_type value)
2011 {
2012 offset_type result;
2013
2014 result = (value & 0xff) << 24;
2015 result |= (value & 0xff00) << 8;
2016 result |= (value & 0xff0000) >> 8;
2017 result |= (value & 0xff000000) >> 24;
2018 return result;
2019 }
2020
2021 #define MAYBE_SWAP(V) byte_swap (V)
2022
2023 #else
2024 #define MAYBE_SWAP(V) (V)
2025 #endif /* WORDS_BIGENDIAN */
2026
2027 /* Read the given attribute value as an address, taking the attribute's
2028 form into account. */
2029
2030 static CORE_ADDR
2031 attr_value_as_address (struct attribute *attr)
2032 {
2033 CORE_ADDR addr;
2034
2035 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2036 {
2037 /* Aside from a few clearly defined exceptions, attributes that
2038 contain an address must always be in DW_FORM_addr form.
2039 Unfortunately, some compilers happen to be violating this
2040 requirement by encoding addresses using other forms, such
2041 as DW_FORM_data4 for example. For those broken compilers,
2042 we try to do our best, without any guarantee of success,
2043 to interpret the address correctly. It would also be nice
2044 to generate a complaint, but that would require us to maintain
2045 a list of legitimate cases where a non-address form is allowed,
2046 as well as update callers to pass in at least the CU's DWARF
2047 version. This is more overhead than what we're willing to
2048 expand for a pretty rare case. */
2049 addr = DW_UNSND (attr);
2050 }
2051 else
2052 addr = DW_ADDR (attr);
2053
2054 return addr;
2055 }
2056
2057 /* The suffix for an index file. */
2058 #define INDEX_SUFFIX ".gdb-index"
2059
2060 /* Try to locate the sections we need for DWARF 2 debugging
2061 information and return true if we have enough to do something.
2062 NAMES points to the dwarf2 section names, or is NULL if the standard
2063 ELF names are used. */
2064
2065 int
2066 dwarf2_has_info (struct objfile *objfile,
2067 const struct dwarf2_debug_sections *names)
2068 {
2069 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2070 objfile_data (objfile, dwarf2_objfile_data_key));
2071 if (!dwarf2_per_objfile)
2072 {
2073 /* Initialize per-objfile state. */
2074 struct dwarf2_per_objfile *data
2075 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2076
2077 memset (data, 0, sizeof (*data));
2078 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2079 dwarf2_per_objfile = data;
2080
2081 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2082 (void *) names);
2083 dwarf2_per_objfile->objfile = objfile;
2084 }
2085 return (!dwarf2_per_objfile->info.is_virtual
2086 && dwarf2_per_objfile->info.s.section != NULL
2087 && !dwarf2_per_objfile->abbrev.is_virtual
2088 && dwarf2_per_objfile->abbrev.s.section != NULL);
2089 }
2090
2091 /* Return the containing section of virtual section SECTION. */
2092
2093 static struct dwarf2_section_info *
2094 get_containing_section (const struct dwarf2_section_info *section)
2095 {
2096 gdb_assert (section->is_virtual);
2097 return section->s.containing_section;
2098 }
2099
2100 /* Return the bfd owner of SECTION. */
2101
2102 static struct bfd *
2103 get_section_bfd_owner (const struct dwarf2_section_info *section)
2104 {
2105 if (section->is_virtual)
2106 {
2107 section = get_containing_section (section);
2108 gdb_assert (!section->is_virtual);
2109 }
2110 return section->s.section->owner;
2111 }
2112
2113 /* Return the bfd section of SECTION.
2114 Returns NULL if the section is not present. */
2115
2116 static asection *
2117 get_section_bfd_section (const struct dwarf2_section_info *section)
2118 {
2119 if (section->is_virtual)
2120 {
2121 section = get_containing_section (section);
2122 gdb_assert (!section->is_virtual);
2123 }
2124 return section->s.section;
2125 }
2126
2127 /* Return the name of SECTION. */
2128
2129 static const char *
2130 get_section_name (const struct dwarf2_section_info *section)
2131 {
2132 asection *sectp = get_section_bfd_section (section);
2133
2134 gdb_assert (sectp != NULL);
2135 return bfd_section_name (get_section_bfd_owner (section), sectp);
2136 }
2137
2138 /* Return the name of the file SECTION is in. */
2139
2140 static const char *
2141 get_section_file_name (const struct dwarf2_section_info *section)
2142 {
2143 bfd *abfd = get_section_bfd_owner (section);
2144
2145 return bfd_get_filename (abfd);
2146 }
2147
2148 /* Return the id of SECTION.
2149 Returns 0 if SECTION doesn't exist. */
2150
2151 static int
2152 get_section_id (const struct dwarf2_section_info *section)
2153 {
2154 asection *sectp = get_section_bfd_section (section);
2155
2156 if (sectp == NULL)
2157 return 0;
2158 return sectp->id;
2159 }
2160
2161 /* Return the flags of SECTION.
2162 SECTION (or containing section if this is a virtual section) must exist. */
2163
2164 static int
2165 get_section_flags (const struct dwarf2_section_info *section)
2166 {
2167 asection *sectp = get_section_bfd_section (section);
2168
2169 gdb_assert (sectp != NULL);
2170 return bfd_get_section_flags (sectp->owner, sectp);
2171 }
2172
2173 /* When loading sections, we look either for uncompressed section or for
2174 compressed section names. */
2175
2176 static int
2177 section_is_p (const char *section_name,
2178 const struct dwarf2_section_names *names)
2179 {
2180 if (names->normal != NULL
2181 && strcmp (section_name, names->normal) == 0)
2182 return 1;
2183 if (names->compressed != NULL
2184 && strcmp (section_name, names->compressed) == 0)
2185 return 1;
2186 return 0;
2187 }
2188
2189 /* This function is mapped across the sections and remembers the
2190 offset and size of each of the debugging sections we are interested
2191 in. */
2192
2193 static void
2194 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2195 {
2196 const struct dwarf2_debug_sections *names;
2197 flagword aflag = bfd_get_section_flags (abfd, sectp);
2198
2199 if (vnames == NULL)
2200 names = &dwarf2_elf_names;
2201 else
2202 names = (const struct dwarf2_debug_sections *) vnames;
2203
2204 if ((aflag & SEC_HAS_CONTENTS) == 0)
2205 {
2206 }
2207 else if (section_is_p (sectp->name, &names->info))
2208 {
2209 dwarf2_per_objfile->info.s.section = sectp;
2210 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2211 }
2212 else if (section_is_p (sectp->name, &names->abbrev))
2213 {
2214 dwarf2_per_objfile->abbrev.s.section = sectp;
2215 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2216 }
2217 else if (section_is_p (sectp->name, &names->line))
2218 {
2219 dwarf2_per_objfile->line.s.section = sectp;
2220 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2221 }
2222 else if (section_is_p (sectp->name, &names->loc))
2223 {
2224 dwarf2_per_objfile->loc.s.section = sectp;
2225 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2226 }
2227 else if (section_is_p (sectp->name, &names->macinfo))
2228 {
2229 dwarf2_per_objfile->macinfo.s.section = sectp;
2230 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2231 }
2232 else if (section_is_p (sectp->name, &names->macro))
2233 {
2234 dwarf2_per_objfile->macro.s.section = sectp;
2235 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2236 }
2237 else if (section_is_p (sectp->name, &names->str))
2238 {
2239 dwarf2_per_objfile->str.s.section = sectp;
2240 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2241 }
2242 else if (section_is_p (sectp->name, &names->addr))
2243 {
2244 dwarf2_per_objfile->addr.s.section = sectp;
2245 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2246 }
2247 else if (section_is_p (sectp->name, &names->frame))
2248 {
2249 dwarf2_per_objfile->frame.s.section = sectp;
2250 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2251 }
2252 else if (section_is_p (sectp->name, &names->eh_frame))
2253 {
2254 dwarf2_per_objfile->eh_frame.s.section = sectp;
2255 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2256 }
2257 else if (section_is_p (sectp->name, &names->ranges))
2258 {
2259 dwarf2_per_objfile->ranges.s.section = sectp;
2260 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2261 }
2262 else if (section_is_p (sectp->name, &names->types))
2263 {
2264 struct dwarf2_section_info type_section;
2265
2266 memset (&type_section, 0, sizeof (type_section));
2267 type_section.s.section = sectp;
2268 type_section.size = bfd_get_section_size (sectp);
2269
2270 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2271 &type_section);
2272 }
2273 else if (section_is_p (sectp->name, &names->gdb_index))
2274 {
2275 dwarf2_per_objfile->gdb_index.s.section = sectp;
2276 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2277 }
2278
2279 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2280 && bfd_section_vma (abfd, sectp) == 0)
2281 dwarf2_per_objfile->has_section_at_zero = 1;
2282 }
2283
2284 /* A helper function that decides whether a section is empty,
2285 or not present. */
2286
2287 static int
2288 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2289 {
2290 if (section->is_virtual)
2291 return section->size == 0;
2292 return section->s.section == NULL || section->size == 0;
2293 }
2294
2295 /* Read the contents of the section INFO.
2296 OBJFILE is the main object file, but not necessarily the file where
2297 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2298 of the DWO file.
2299 If the section is compressed, uncompress it before returning. */
2300
2301 static void
2302 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2303 {
2304 asection *sectp;
2305 bfd *abfd;
2306 gdb_byte *buf, *retbuf;
2307
2308 if (info->readin)
2309 return;
2310 info->buffer = NULL;
2311 info->readin = 1;
2312
2313 if (dwarf2_section_empty_p (info))
2314 return;
2315
2316 sectp = get_section_bfd_section (info);
2317
2318 /* If this is a virtual section we need to read in the real one first. */
2319 if (info->is_virtual)
2320 {
2321 struct dwarf2_section_info *containing_section =
2322 get_containing_section (info);
2323
2324 gdb_assert (sectp != NULL);
2325 if ((sectp->flags & SEC_RELOC) != 0)
2326 {
2327 error (_("Dwarf Error: DWP format V2 with relocations is not"
2328 " supported in section %s [in module %s]"),
2329 get_section_name (info), get_section_file_name (info));
2330 }
2331 dwarf2_read_section (objfile, containing_section);
2332 /* Other code should have already caught virtual sections that don't
2333 fit. */
2334 gdb_assert (info->virtual_offset + info->size
2335 <= containing_section->size);
2336 /* If the real section is empty or there was a problem reading the
2337 section we shouldn't get here. */
2338 gdb_assert (containing_section->buffer != NULL);
2339 info->buffer = containing_section->buffer + info->virtual_offset;
2340 return;
2341 }
2342
2343 /* If the section has relocations, we must read it ourselves.
2344 Otherwise we attach it to the BFD. */
2345 if ((sectp->flags & SEC_RELOC) == 0)
2346 {
2347 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2348 return;
2349 }
2350
2351 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2352 info->buffer = buf;
2353
2354 /* When debugging .o files, we may need to apply relocations; see
2355 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2356 We never compress sections in .o files, so we only need to
2357 try this when the section is not compressed. */
2358 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2359 if (retbuf != NULL)
2360 {
2361 info->buffer = retbuf;
2362 return;
2363 }
2364
2365 abfd = get_section_bfd_owner (info);
2366 gdb_assert (abfd != NULL);
2367
2368 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2369 || bfd_bread (buf, info->size, abfd) != info->size)
2370 {
2371 error (_("Dwarf Error: Can't read DWARF data"
2372 " in section %s [in module %s]"),
2373 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2374 }
2375 }
2376
2377 /* A helper function that returns the size of a section in a safe way.
2378 If you are positive that the section has been read before using the
2379 size, then it is safe to refer to the dwarf2_section_info object's
2380 "size" field directly. In other cases, you must call this
2381 function, because for compressed sections the size field is not set
2382 correctly until the section has been read. */
2383
2384 static bfd_size_type
2385 dwarf2_section_size (struct objfile *objfile,
2386 struct dwarf2_section_info *info)
2387 {
2388 if (!info->readin)
2389 dwarf2_read_section (objfile, info);
2390 return info->size;
2391 }
2392
2393 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2394 SECTION_NAME. */
2395
2396 void
2397 dwarf2_get_section_info (struct objfile *objfile,
2398 enum dwarf2_section_enum sect,
2399 asection **sectp, const gdb_byte **bufp,
2400 bfd_size_type *sizep)
2401 {
2402 struct dwarf2_per_objfile *data
2403 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2404 dwarf2_objfile_data_key);
2405 struct dwarf2_section_info *info;
2406
2407 /* We may see an objfile without any DWARF, in which case we just
2408 return nothing. */
2409 if (data == NULL)
2410 {
2411 *sectp = NULL;
2412 *bufp = NULL;
2413 *sizep = 0;
2414 return;
2415 }
2416 switch (sect)
2417 {
2418 case DWARF2_DEBUG_FRAME:
2419 info = &data->frame;
2420 break;
2421 case DWARF2_EH_FRAME:
2422 info = &data->eh_frame;
2423 break;
2424 default:
2425 gdb_assert_not_reached ("unexpected section");
2426 }
2427
2428 dwarf2_read_section (objfile, info);
2429
2430 *sectp = get_section_bfd_section (info);
2431 *bufp = info->buffer;
2432 *sizep = info->size;
2433 }
2434
2435 /* A helper function to find the sections for a .dwz file. */
2436
2437 static void
2438 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2439 {
2440 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2441
2442 /* Note that we only support the standard ELF names, because .dwz
2443 is ELF-only (at the time of writing). */
2444 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2445 {
2446 dwz_file->abbrev.s.section = sectp;
2447 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2448 }
2449 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2450 {
2451 dwz_file->info.s.section = sectp;
2452 dwz_file->info.size = bfd_get_section_size (sectp);
2453 }
2454 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2455 {
2456 dwz_file->str.s.section = sectp;
2457 dwz_file->str.size = bfd_get_section_size (sectp);
2458 }
2459 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2460 {
2461 dwz_file->line.s.section = sectp;
2462 dwz_file->line.size = bfd_get_section_size (sectp);
2463 }
2464 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2465 {
2466 dwz_file->macro.s.section = sectp;
2467 dwz_file->macro.size = bfd_get_section_size (sectp);
2468 }
2469 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2470 {
2471 dwz_file->gdb_index.s.section = sectp;
2472 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2473 }
2474 }
2475
2476 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2477 there is no .gnu_debugaltlink section in the file. Error if there
2478 is such a section but the file cannot be found. */
2479
2480 static struct dwz_file *
2481 dwarf2_get_dwz_file (void)
2482 {
2483 char *data;
2484 struct cleanup *cleanup;
2485 const char *filename;
2486 struct dwz_file *result;
2487 bfd_size_type buildid_len_arg;
2488 size_t buildid_len;
2489 bfd_byte *buildid;
2490
2491 if (dwarf2_per_objfile->dwz_file != NULL)
2492 return dwarf2_per_objfile->dwz_file;
2493
2494 bfd_set_error (bfd_error_no_error);
2495 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2496 &buildid_len_arg, &buildid);
2497 if (data == NULL)
2498 {
2499 if (bfd_get_error () == bfd_error_no_error)
2500 return NULL;
2501 error (_("could not read '.gnu_debugaltlink' section: %s"),
2502 bfd_errmsg (bfd_get_error ()));
2503 }
2504 cleanup = make_cleanup (xfree, data);
2505 make_cleanup (xfree, buildid);
2506
2507 buildid_len = (size_t) buildid_len_arg;
2508
2509 filename = (const char *) data;
2510 if (!IS_ABSOLUTE_PATH (filename))
2511 {
2512 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2513 char *rel;
2514
2515 make_cleanup (xfree, abs);
2516 abs = ldirname (abs);
2517 make_cleanup (xfree, abs);
2518
2519 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2520 make_cleanup (xfree, rel);
2521 filename = rel;
2522 }
2523
2524 /* First try the file name given in the section. If that doesn't
2525 work, try to use the build-id instead. */
2526 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2527 if (dwz_bfd != NULL)
2528 {
2529 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2530 dwz_bfd.release ();
2531 }
2532
2533 if (dwz_bfd == NULL)
2534 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2535
2536 if (dwz_bfd == NULL)
2537 error (_("could not find '.gnu_debugaltlink' file for %s"),
2538 objfile_name (dwarf2_per_objfile->objfile));
2539
2540 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2541 struct dwz_file);
2542 result->dwz_bfd = dwz_bfd.release ();
2543
2544 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2545
2546 do_cleanups (cleanup);
2547
2548 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2549 dwarf2_per_objfile->dwz_file = result;
2550 return result;
2551 }
2552 \f
2553 /* DWARF quick_symbols_functions support. */
2554
2555 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2556 unique line tables, so we maintain a separate table of all .debug_line
2557 derived entries to support the sharing.
2558 All the quick functions need is the list of file names. We discard the
2559 line_header when we're done and don't need to record it here. */
2560 struct quick_file_names
2561 {
2562 /* The data used to construct the hash key. */
2563 struct stmt_list_hash hash;
2564
2565 /* The number of entries in file_names, real_names. */
2566 unsigned int num_file_names;
2567
2568 /* The file names from the line table, after being run through
2569 file_full_name. */
2570 const char **file_names;
2571
2572 /* The file names from the line table after being run through
2573 gdb_realpath. These are computed lazily. */
2574 const char **real_names;
2575 };
2576
2577 /* When using the index (and thus not using psymtabs), each CU has an
2578 object of this type. This is used to hold information needed by
2579 the various "quick" methods. */
2580 struct dwarf2_per_cu_quick_data
2581 {
2582 /* The file table. This can be NULL if there was no file table
2583 or it's currently not read in.
2584 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2585 struct quick_file_names *file_names;
2586
2587 /* The corresponding symbol table. This is NULL if symbols for this
2588 CU have not yet been read. */
2589 struct compunit_symtab *compunit_symtab;
2590
2591 /* A temporary mark bit used when iterating over all CUs in
2592 expand_symtabs_matching. */
2593 unsigned int mark : 1;
2594
2595 /* True if we've tried to read the file table and found there isn't one.
2596 There will be no point in trying to read it again next time. */
2597 unsigned int no_file_data : 1;
2598 };
2599
2600 /* Utility hash function for a stmt_list_hash. */
2601
2602 static hashval_t
2603 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2604 {
2605 hashval_t v = 0;
2606
2607 if (stmt_list_hash->dwo_unit != NULL)
2608 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2609 v += stmt_list_hash->line_offset.sect_off;
2610 return v;
2611 }
2612
2613 /* Utility equality function for a stmt_list_hash. */
2614
2615 static int
2616 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2617 const struct stmt_list_hash *rhs)
2618 {
2619 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2620 return 0;
2621 if (lhs->dwo_unit != NULL
2622 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2623 return 0;
2624
2625 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2626 }
2627
2628 /* Hash function for a quick_file_names. */
2629
2630 static hashval_t
2631 hash_file_name_entry (const void *e)
2632 {
2633 const struct quick_file_names *file_data
2634 = (const struct quick_file_names *) e;
2635
2636 return hash_stmt_list_entry (&file_data->hash);
2637 }
2638
2639 /* Equality function for a quick_file_names. */
2640
2641 static int
2642 eq_file_name_entry (const void *a, const void *b)
2643 {
2644 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2645 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2646
2647 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2648 }
2649
2650 /* Delete function for a quick_file_names. */
2651
2652 static void
2653 delete_file_name_entry (void *e)
2654 {
2655 struct quick_file_names *file_data = (struct quick_file_names *) e;
2656 int i;
2657
2658 for (i = 0; i < file_data->num_file_names; ++i)
2659 {
2660 xfree ((void*) file_data->file_names[i]);
2661 if (file_data->real_names)
2662 xfree ((void*) file_data->real_names[i]);
2663 }
2664
2665 /* The space for the struct itself lives on objfile_obstack,
2666 so we don't free it here. */
2667 }
2668
2669 /* Create a quick_file_names hash table. */
2670
2671 static htab_t
2672 create_quick_file_names_table (unsigned int nr_initial_entries)
2673 {
2674 return htab_create_alloc (nr_initial_entries,
2675 hash_file_name_entry, eq_file_name_entry,
2676 delete_file_name_entry, xcalloc, xfree);
2677 }
2678
2679 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2680 have to be created afterwards. You should call age_cached_comp_units after
2681 processing PER_CU->CU. dw2_setup must have been already called. */
2682
2683 static void
2684 load_cu (struct dwarf2_per_cu_data *per_cu)
2685 {
2686 if (per_cu->is_debug_types)
2687 load_full_type_unit (per_cu);
2688 else
2689 load_full_comp_unit (per_cu, language_minimal);
2690
2691 if (per_cu->cu == NULL)
2692 return; /* Dummy CU. */
2693
2694 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2695 }
2696
2697 /* Read in the symbols for PER_CU. */
2698
2699 static void
2700 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2701 {
2702 struct cleanup *back_to;
2703
2704 /* Skip type_unit_groups, reading the type units they contain
2705 is handled elsewhere. */
2706 if (IS_TYPE_UNIT_GROUP (per_cu))
2707 return;
2708
2709 back_to = make_cleanup (dwarf2_release_queue, NULL);
2710
2711 if (dwarf2_per_objfile->using_index
2712 ? per_cu->v.quick->compunit_symtab == NULL
2713 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2714 {
2715 queue_comp_unit (per_cu, language_minimal);
2716 load_cu (per_cu);
2717
2718 /* If we just loaded a CU from a DWO, and we're working with an index
2719 that may badly handle TUs, load all the TUs in that DWO as well.
2720 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2721 if (!per_cu->is_debug_types
2722 && per_cu->cu != NULL
2723 && per_cu->cu->dwo_unit != NULL
2724 && dwarf2_per_objfile->index_table != NULL
2725 && dwarf2_per_objfile->index_table->version <= 7
2726 /* DWP files aren't supported yet. */
2727 && get_dwp_file () == NULL)
2728 queue_and_load_all_dwo_tus (per_cu);
2729 }
2730
2731 process_queue ();
2732
2733 /* Age the cache, releasing compilation units that have not
2734 been used recently. */
2735 age_cached_comp_units ();
2736
2737 do_cleanups (back_to);
2738 }
2739
2740 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2741 the objfile from which this CU came. Returns the resulting symbol
2742 table. */
2743
2744 static struct compunit_symtab *
2745 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2746 {
2747 gdb_assert (dwarf2_per_objfile->using_index);
2748 if (!per_cu->v.quick->compunit_symtab)
2749 {
2750 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2751 increment_reading_symtab ();
2752 dw2_do_instantiate_symtab (per_cu);
2753 process_cu_includes ();
2754 do_cleanups (back_to);
2755 }
2756
2757 return per_cu->v.quick->compunit_symtab;
2758 }
2759
2760 /* Return the CU/TU given its index.
2761
2762 This is intended for loops like:
2763
2764 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2765 + dwarf2_per_objfile->n_type_units); ++i)
2766 {
2767 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2768
2769 ...;
2770 }
2771 */
2772
2773 static struct dwarf2_per_cu_data *
2774 dw2_get_cutu (int index)
2775 {
2776 if (index >= dwarf2_per_objfile->n_comp_units)
2777 {
2778 index -= dwarf2_per_objfile->n_comp_units;
2779 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2780 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2781 }
2782
2783 return dwarf2_per_objfile->all_comp_units[index];
2784 }
2785
2786 /* Return the CU given its index.
2787 This differs from dw2_get_cutu in that it's for when you know INDEX
2788 refers to a CU. */
2789
2790 static struct dwarf2_per_cu_data *
2791 dw2_get_cu (int index)
2792 {
2793 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2794
2795 return dwarf2_per_objfile->all_comp_units[index];
2796 }
2797
2798 /* A helper for create_cus_from_index that handles a given list of
2799 CUs. */
2800
2801 static void
2802 create_cus_from_index_list (struct objfile *objfile,
2803 const gdb_byte *cu_list, offset_type n_elements,
2804 struct dwarf2_section_info *section,
2805 int is_dwz,
2806 int base_offset)
2807 {
2808 offset_type i;
2809
2810 for (i = 0; i < n_elements; i += 2)
2811 {
2812 struct dwarf2_per_cu_data *the_cu;
2813 ULONGEST offset, length;
2814
2815 gdb_static_assert (sizeof (ULONGEST) >= 8);
2816 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2817 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2818 cu_list += 2 * 8;
2819
2820 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2821 struct dwarf2_per_cu_data);
2822 the_cu->offset.sect_off = offset;
2823 the_cu->length = length;
2824 the_cu->objfile = objfile;
2825 the_cu->section = section;
2826 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2827 struct dwarf2_per_cu_quick_data);
2828 the_cu->is_dwz = is_dwz;
2829 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2830 }
2831 }
2832
2833 /* Read the CU list from the mapped index, and use it to create all
2834 the CU objects for this objfile. */
2835
2836 static void
2837 create_cus_from_index (struct objfile *objfile,
2838 const gdb_byte *cu_list, offset_type cu_list_elements,
2839 const gdb_byte *dwz_list, offset_type dwz_elements)
2840 {
2841 struct dwz_file *dwz;
2842
2843 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2844 dwarf2_per_objfile->all_comp_units =
2845 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2846 dwarf2_per_objfile->n_comp_units);
2847
2848 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2849 &dwarf2_per_objfile->info, 0, 0);
2850
2851 if (dwz_elements == 0)
2852 return;
2853
2854 dwz = dwarf2_get_dwz_file ();
2855 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2856 cu_list_elements / 2);
2857 }
2858
2859 /* Create the signatured type hash table from the index. */
2860
2861 static void
2862 create_signatured_type_table_from_index (struct objfile *objfile,
2863 struct dwarf2_section_info *section,
2864 const gdb_byte *bytes,
2865 offset_type elements)
2866 {
2867 offset_type i;
2868 htab_t sig_types_hash;
2869
2870 dwarf2_per_objfile->n_type_units
2871 = dwarf2_per_objfile->n_allocated_type_units
2872 = elements / 3;
2873 dwarf2_per_objfile->all_type_units =
2874 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2875
2876 sig_types_hash = allocate_signatured_type_table (objfile);
2877
2878 for (i = 0; i < elements; i += 3)
2879 {
2880 struct signatured_type *sig_type;
2881 ULONGEST offset, type_offset_in_tu, signature;
2882 void **slot;
2883
2884 gdb_static_assert (sizeof (ULONGEST) >= 8);
2885 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2886 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2887 BFD_ENDIAN_LITTLE);
2888 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2889 bytes += 3 * 8;
2890
2891 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2892 struct signatured_type);
2893 sig_type->signature = signature;
2894 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2895 sig_type->per_cu.is_debug_types = 1;
2896 sig_type->per_cu.section = section;
2897 sig_type->per_cu.offset.sect_off = offset;
2898 sig_type->per_cu.objfile = objfile;
2899 sig_type->per_cu.v.quick
2900 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2901 struct dwarf2_per_cu_quick_data);
2902
2903 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2904 *slot = sig_type;
2905
2906 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2907 }
2908
2909 dwarf2_per_objfile->signatured_types = sig_types_hash;
2910 }
2911
2912 /* Read the address map data from the mapped index, and use it to
2913 populate the objfile's psymtabs_addrmap. */
2914
2915 static void
2916 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2917 {
2918 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2919 const gdb_byte *iter, *end;
2920 struct obstack temp_obstack;
2921 struct addrmap *mutable_map;
2922 struct cleanup *cleanup;
2923 CORE_ADDR baseaddr;
2924
2925 obstack_init (&temp_obstack);
2926 cleanup = make_cleanup_obstack_free (&temp_obstack);
2927 mutable_map = addrmap_create_mutable (&temp_obstack);
2928
2929 iter = index->address_table;
2930 end = iter + index->address_table_size;
2931
2932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2933
2934 while (iter < end)
2935 {
2936 ULONGEST hi, lo, cu_index;
2937 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2938 iter += 8;
2939 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2940 iter += 8;
2941 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2942 iter += 4;
2943
2944 if (lo > hi)
2945 {
2946 complaint (&symfile_complaints,
2947 _(".gdb_index address table has invalid range (%s - %s)"),
2948 hex_string (lo), hex_string (hi));
2949 continue;
2950 }
2951
2952 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2953 {
2954 complaint (&symfile_complaints,
2955 _(".gdb_index address table has invalid CU number %u"),
2956 (unsigned) cu_index);
2957 continue;
2958 }
2959
2960 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2961 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2962 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2963 }
2964
2965 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2966 &objfile->objfile_obstack);
2967 do_cleanups (cleanup);
2968 }
2969
2970 /* The hash function for strings in the mapped index. This is the same as
2971 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2972 implementation. This is necessary because the hash function is tied to the
2973 format of the mapped index file. The hash values do not have to match with
2974 SYMBOL_HASH_NEXT.
2975
2976 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2977
2978 static hashval_t
2979 mapped_index_string_hash (int index_version, const void *p)
2980 {
2981 const unsigned char *str = (const unsigned char *) p;
2982 hashval_t r = 0;
2983 unsigned char c;
2984
2985 while ((c = *str++) != 0)
2986 {
2987 if (index_version >= 5)
2988 c = tolower (c);
2989 r = r * 67 + c - 113;
2990 }
2991
2992 return r;
2993 }
2994
2995 /* Find a slot in the mapped index INDEX for the object named NAME.
2996 If NAME is found, set *VEC_OUT to point to the CU vector in the
2997 constant pool and return 1. If NAME cannot be found, return 0. */
2998
2999 static int
3000 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3001 offset_type **vec_out)
3002 {
3003 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3004 offset_type hash;
3005 offset_type slot, step;
3006 int (*cmp) (const char *, const char *);
3007
3008 if (current_language->la_language == language_cplus
3009 || current_language->la_language == language_fortran
3010 || current_language->la_language == language_d)
3011 {
3012 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3013 not contain any. */
3014
3015 if (strchr (name, '(') != NULL)
3016 {
3017 char *without_params = cp_remove_params (name);
3018
3019 if (without_params != NULL)
3020 {
3021 make_cleanup (xfree, without_params);
3022 name = without_params;
3023 }
3024 }
3025 }
3026
3027 /* Index version 4 did not support case insensitive searches. But the
3028 indices for case insensitive languages are built in lowercase, therefore
3029 simulate our NAME being searched is also lowercased. */
3030 hash = mapped_index_string_hash ((index->version == 4
3031 && case_sensitivity == case_sensitive_off
3032 ? 5 : index->version),
3033 name);
3034
3035 slot = hash & (index->symbol_table_slots - 1);
3036 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3037 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3038
3039 for (;;)
3040 {
3041 /* Convert a slot number to an offset into the table. */
3042 offset_type i = 2 * slot;
3043 const char *str;
3044 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3045 {
3046 do_cleanups (back_to);
3047 return 0;
3048 }
3049
3050 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3051 if (!cmp (name, str))
3052 {
3053 *vec_out = (offset_type *) (index->constant_pool
3054 + MAYBE_SWAP (index->symbol_table[i + 1]));
3055 do_cleanups (back_to);
3056 return 1;
3057 }
3058
3059 slot = (slot + step) & (index->symbol_table_slots - 1);
3060 }
3061 }
3062
3063 /* A helper function that reads the .gdb_index from SECTION and fills
3064 in MAP. FILENAME is the name of the file containing the section;
3065 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3066 ok to use deprecated sections.
3067
3068 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3069 out parameters that are filled in with information about the CU and
3070 TU lists in the section.
3071
3072 Returns 1 if all went well, 0 otherwise. */
3073
3074 static int
3075 read_index_from_section (struct objfile *objfile,
3076 const char *filename,
3077 int deprecated_ok,
3078 struct dwarf2_section_info *section,
3079 struct mapped_index *map,
3080 const gdb_byte **cu_list,
3081 offset_type *cu_list_elements,
3082 const gdb_byte **types_list,
3083 offset_type *types_list_elements)
3084 {
3085 const gdb_byte *addr;
3086 offset_type version;
3087 offset_type *metadata;
3088 int i;
3089
3090 if (dwarf2_section_empty_p (section))
3091 return 0;
3092
3093 /* Older elfutils strip versions could keep the section in the main
3094 executable while splitting it for the separate debug info file. */
3095 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3096 return 0;
3097
3098 dwarf2_read_section (objfile, section);
3099
3100 addr = section->buffer;
3101 /* Version check. */
3102 version = MAYBE_SWAP (*(offset_type *) addr);
3103 /* Versions earlier than 3 emitted every copy of a psymbol. This
3104 causes the index to behave very poorly for certain requests. Version 3
3105 contained incomplete addrmap. So, it seems better to just ignore such
3106 indices. */
3107 if (version < 4)
3108 {
3109 static int warning_printed = 0;
3110 if (!warning_printed)
3111 {
3112 warning (_("Skipping obsolete .gdb_index section in %s."),
3113 filename);
3114 warning_printed = 1;
3115 }
3116 return 0;
3117 }
3118 /* Index version 4 uses a different hash function than index version
3119 5 and later.
3120
3121 Versions earlier than 6 did not emit psymbols for inlined
3122 functions. Using these files will cause GDB not to be able to
3123 set breakpoints on inlined functions by name, so we ignore these
3124 indices unless the user has done
3125 "set use-deprecated-index-sections on". */
3126 if (version < 6 && !deprecated_ok)
3127 {
3128 static int warning_printed = 0;
3129 if (!warning_printed)
3130 {
3131 warning (_("\
3132 Skipping deprecated .gdb_index section in %s.\n\
3133 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3134 to use the section anyway."),
3135 filename);
3136 warning_printed = 1;
3137 }
3138 return 0;
3139 }
3140 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3141 of the TU (for symbols coming from TUs),
3142 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3143 Plus gold-generated indices can have duplicate entries for global symbols,
3144 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3145 These are just performance bugs, and we can't distinguish gdb-generated
3146 indices from gold-generated ones, so issue no warning here. */
3147
3148 /* Indexes with higher version than the one supported by GDB may be no
3149 longer backward compatible. */
3150 if (version > 8)
3151 return 0;
3152
3153 map->version = version;
3154 map->total_size = section->size;
3155
3156 metadata = (offset_type *) (addr + sizeof (offset_type));
3157
3158 i = 0;
3159 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3160 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3161 / 8);
3162 ++i;
3163
3164 *types_list = addr + MAYBE_SWAP (metadata[i]);
3165 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3166 - MAYBE_SWAP (metadata[i]))
3167 / 8);
3168 ++i;
3169
3170 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3171 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3172 - MAYBE_SWAP (metadata[i]));
3173 ++i;
3174
3175 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3176 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3177 - MAYBE_SWAP (metadata[i]))
3178 / (2 * sizeof (offset_type)));
3179 ++i;
3180
3181 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3182
3183 return 1;
3184 }
3185
3186
3187 /* Read the index file. If everything went ok, initialize the "quick"
3188 elements of all the CUs and return 1. Otherwise, return 0. */
3189
3190 static int
3191 dwarf2_read_index (struct objfile *objfile)
3192 {
3193 struct mapped_index local_map, *map;
3194 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3195 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3196 struct dwz_file *dwz;
3197
3198 if (!read_index_from_section (objfile, objfile_name (objfile),
3199 use_deprecated_index_sections,
3200 &dwarf2_per_objfile->gdb_index, &local_map,
3201 &cu_list, &cu_list_elements,
3202 &types_list, &types_list_elements))
3203 return 0;
3204
3205 /* Don't use the index if it's empty. */
3206 if (local_map.symbol_table_slots == 0)
3207 return 0;
3208
3209 /* If there is a .dwz file, read it so we can get its CU list as
3210 well. */
3211 dwz = dwarf2_get_dwz_file ();
3212 if (dwz != NULL)
3213 {
3214 struct mapped_index dwz_map;
3215 const gdb_byte *dwz_types_ignore;
3216 offset_type dwz_types_elements_ignore;
3217
3218 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3219 1,
3220 &dwz->gdb_index, &dwz_map,
3221 &dwz_list, &dwz_list_elements,
3222 &dwz_types_ignore,
3223 &dwz_types_elements_ignore))
3224 {
3225 warning (_("could not read '.gdb_index' section from %s; skipping"),
3226 bfd_get_filename (dwz->dwz_bfd));
3227 return 0;
3228 }
3229 }
3230
3231 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3232 dwz_list_elements);
3233
3234 if (types_list_elements)
3235 {
3236 struct dwarf2_section_info *section;
3237
3238 /* We can only handle a single .debug_types when we have an
3239 index. */
3240 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3241 return 0;
3242
3243 section = VEC_index (dwarf2_section_info_def,
3244 dwarf2_per_objfile->types, 0);
3245
3246 create_signatured_type_table_from_index (objfile, section, types_list,
3247 types_list_elements);
3248 }
3249
3250 create_addrmap_from_index (objfile, &local_map);
3251
3252 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3253 *map = local_map;
3254
3255 dwarf2_per_objfile->index_table = map;
3256 dwarf2_per_objfile->using_index = 1;
3257 dwarf2_per_objfile->quick_file_names_table =
3258 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3259
3260 return 1;
3261 }
3262
3263 /* A helper for the "quick" functions which sets the global
3264 dwarf2_per_objfile according to OBJFILE. */
3265
3266 static void
3267 dw2_setup (struct objfile *objfile)
3268 {
3269 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3270 objfile_data (objfile, dwarf2_objfile_data_key));
3271 gdb_assert (dwarf2_per_objfile);
3272 }
3273
3274 /* die_reader_func for dw2_get_file_names. */
3275
3276 static void
3277 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3278 const gdb_byte *info_ptr,
3279 struct die_info *comp_unit_die,
3280 int has_children,
3281 void *data)
3282 {
3283 struct dwarf2_cu *cu = reader->cu;
3284 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3285 struct objfile *objfile = dwarf2_per_objfile->objfile;
3286 struct dwarf2_per_cu_data *lh_cu;
3287 struct line_header *lh;
3288 struct attribute *attr;
3289 int i;
3290 const char *name, *comp_dir;
3291 void **slot;
3292 struct quick_file_names *qfn;
3293 unsigned int line_offset;
3294
3295 gdb_assert (! this_cu->is_debug_types);
3296
3297 /* Our callers never want to match partial units -- instead they
3298 will match the enclosing full CU. */
3299 if (comp_unit_die->tag == DW_TAG_partial_unit)
3300 {
3301 this_cu->v.quick->no_file_data = 1;
3302 return;
3303 }
3304
3305 lh_cu = this_cu;
3306 lh = NULL;
3307 slot = NULL;
3308 line_offset = 0;
3309
3310 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3311 if (attr)
3312 {
3313 struct quick_file_names find_entry;
3314
3315 line_offset = DW_UNSND (attr);
3316
3317 /* We may have already read in this line header (TU line header sharing).
3318 If we have we're done. */
3319 find_entry.hash.dwo_unit = cu->dwo_unit;
3320 find_entry.hash.line_offset.sect_off = line_offset;
3321 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3322 &find_entry, INSERT);
3323 if (*slot != NULL)
3324 {
3325 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3326 return;
3327 }
3328
3329 lh = dwarf_decode_line_header (line_offset, cu);
3330 }
3331 if (lh == NULL)
3332 {
3333 lh_cu->v.quick->no_file_data = 1;
3334 return;
3335 }
3336
3337 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3338 qfn->hash.dwo_unit = cu->dwo_unit;
3339 qfn->hash.line_offset.sect_off = line_offset;
3340 gdb_assert (slot != NULL);
3341 *slot = qfn;
3342
3343 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3344
3345 qfn->num_file_names = lh->num_file_names;
3346 qfn->file_names =
3347 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3348 for (i = 0; i < lh->num_file_names; ++i)
3349 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3350 qfn->real_names = NULL;
3351
3352 free_line_header (lh);
3353
3354 lh_cu->v.quick->file_names = qfn;
3355 }
3356
3357 /* A helper for the "quick" functions which attempts to read the line
3358 table for THIS_CU. */
3359
3360 static struct quick_file_names *
3361 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3362 {
3363 /* This should never be called for TUs. */
3364 gdb_assert (! this_cu->is_debug_types);
3365 /* Nor type unit groups. */
3366 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3367
3368 if (this_cu->v.quick->file_names != NULL)
3369 return this_cu->v.quick->file_names;
3370 /* If we know there is no line data, no point in looking again. */
3371 if (this_cu->v.quick->no_file_data)
3372 return NULL;
3373
3374 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3375
3376 if (this_cu->v.quick->no_file_data)
3377 return NULL;
3378 return this_cu->v.quick->file_names;
3379 }
3380
3381 /* A helper for the "quick" functions which computes and caches the
3382 real path for a given file name from the line table. */
3383
3384 static const char *
3385 dw2_get_real_path (struct objfile *objfile,
3386 struct quick_file_names *qfn, int index)
3387 {
3388 if (qfn->real_names == NULL)
3389 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3390 qfn->num_file_names, const char *);
3391
3392 if (qfn->real_names[index] == NULL)
3393 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3394
3395 return qfn->real_names[index];
3396 }
3397
3398 static struct symtab *
3399 dw2_find_last_source_symtab (struct objfile *objfile)
3400 {
3401 struct compunit_symtab *cust;
3402 int index;
3403
3404 dw2_setup (objfile);
3405 index = dwarf2_per_objfile->n_comp_units - 1;
3406 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3407 if (cust == NULL)
3408 return NULL;
3409 return compunit_primary_filetab (cust);
3410 }
3411
3412 /* Traversal function for dw2_forget_cached_source_info. */
3413
3414 static int
3415 dw2_free_cached_file_names (void **slot, void *info)
3416 {
3417 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3418
3419 if (file_data->real_names)
3420 {
3421 int i;
3422
3423 for (i = 0; i < file_data->num_file_names; ++i)
3424 {
3425 xfree ((void*) file_data->real_names[i]);
3426 file_data->real_names[i] = NULL;
3427 }
3428 }
3429
3430 return 1;
3431 }
3432
3433 static void
3434 dw2_forget_cached_source_info (struct objfile *objfile)
3435 {
3436 dw2_setup (objfile);
3437
3438 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3439 dw2_free_cached_file_names, NULL);
3440 }
3441
3442 /* Helper function for dw2_map_symtabs_matching_filename that expands
3443 the symtabs and calls the iterator. */
3444
3445 static int
3446 dw2_map_expand_apply (struct objfile *objfile,
3447 struct dwarf2_per_cu_data *per_cu,
3448 const char *name, const char *real_path,
3449 int (*callback) (struct symtab *, void *),
3450 void *data)
3451 {
3452 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3453
3454 /* Don't visit already-expanded CUs. */
3455 if (per_cu->v.quick->compunit_symtab)
3456 return 0;
3457
3458 /* This may expand more than one symtab, and we want to iterate over
3459 all of them. */
3460 dw2_instantiate_symtab (per_cu);
3461
3462 return iterate_over_some_symtabs (name, real_path, callback, data,
3463 objfile->compunit_symtabs, last_made);
3464 }
3465
3466 /* Implementation of the map_symtabs_matching_filename method. */
3467
3468 static int
3469 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3470 const char *real_path,
3471 int (*callback) (struct symtab *, void *),
3472 void *data)
3473 {
3474 int i;
3475 const char *name_basename = lbasename (name);
3476
3477 dw2_setup (objfile);
3478
3479 /* The rule is CUs specify all the files, including those used by
3480 any TU, so there's no need to scan TUs here. */
3481
3482 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3483 {
3484 int j;
3485 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3486 struct quick_file_names *file_data;
3487
3488 /* We only need to look at symtabs not already expanded. */
3489 if (per_cu->v.quick->compunit_symtab)
3490 continue;
3491
3492 file_data = dw2_get_file_names (per_cu);
3493 if (file_data == NULL)
3494 continue;
3495
3496 for (j = 0; j < file_data->num_file_names; ++j)
3497 {
3498 const char *this_name = file_data->file_names[j];
3499 const char *this_real_name;
3500
3501 if (compare_filenames_for_search (this_name, name))
3502 {
3503 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3504 callback, data))
3505 return 1;
3506 continue;
3507 }
3508
3509 /* Before we invoke realpath, which can get expensive when many
3510 files are involved, do a quick comparison of the basenames. */
3511 if (! basenames_may_differ
3512 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3513 continue;
3514
3515 this_real_name = dw2_get_real_path (objfile, file_data, j);
3516 if (compare_filenames_for_search (this_real_name, name))
3517 {
3518 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3519 callback, data))
3520 return 1;
3521 continue;
3522 }
3523
3524 if (real_path != NULL)
3525 {
3526 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3527 gdb_assert (IS_ABSOLUTE_PATH (name));
3528 if (this_real_name != NULL
3529 && FILENAME_CMP (real_path, this_real_name) == 0)
3530 {
3531 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3532 callback, data))
3533 return 1;
3534 continue;
3535 }
3536 }
3537 }
3538 }
3539
3540 return 0;
3541 }
3542
3543 /* Struct used to manage iterating over all CUs looking for a symbol. */
3544
3545 struct dw2_symtab_iterator
3546 {
3547 /* The internalized form of .gdb_index. */
3548 struct mapped_index *index;
3549 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3550 int want_specific_block;
3551 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3552 Unused if !WANT_SPECIFIC_BLOCK. */
3553 int block_index;
3554 /* The kind of symbol we're looking for. */
3555 domain_enum domain;
3556 /* The list of CUs from the index entry of the symbol,
3557 or NULL if not found. */
3558 offset_type *vec;
3559 /* The next element in VEC to look at. */
3560 int next;
3561 /* The number of elements in VEC, or zero if there is no match. */
3562 int length;
3563 /* Have we seen a global version of the symbol?
3564 If so we can ignore all further global instances.
3565 This is to work around gold/15646, inefficient gold-generated
3566 indices. */
3567 int global_seen;
3568 };
3569
3570 /* Initialize the index symtab iterator ITER.
3571 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3572 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3573
3574 static void
3575 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3576 struct mapped_index *index,
3577 int want_specific_block,
3578 int block_index,
3579 domain_enum domain,
3580 const char *name)
3581 {
3582 iter->index = index;
3583 iter->want_specific_block = want_specific_block;
3584 iter->block_index = block_index;
3585 iter->domain = domain;
3586 iter->next = 0;
3587 iter->global_seen = 0;
3588
3589 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3590 iter->length = MAYBE_SWAP (*iter->vec);
3591 else
3592 {
3593 iter->vec = NULL;
3594 iter->length = 0;
3595 }
3596 }
3597
3598 /* Return the next matching CU or NULL if there are no more. */
3599
3600 static struct dwarf2_per_cu_data *
3601 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3602 {
3603 for ( ; iter->next < iter->length; ++iter->next)
3604 {
3605 offset_type cu_index_and_attrs =
3606 MAYBE_SWAP (iter->vec[iter->next + 1]);
3607 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3608 struct dwarf2_per_cu_data *per_cu;
3609 int want_static = iter->block_index != GLOBAL_BLOCK;
3610 /* This value is only valid for index versions >= 7. */
3611 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3612 gdb_index_symbol_kind symbol_kind =
3613 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3614 /* Only check the symbol attributes if they're present.
3615 Indices prior to version 7 don't record them,
3616 and indices >= 7 may elide them for certain symbols
3617 (gold does this). */
3618 int attrs_valid =
3619 (iter->index->version >= 7
3620 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3621
3622 /* Don't crash on bad data. */
3623 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3624 + dwarf2_per_objfile->n_type_units))
3625 {
3626 complaint (&symfile_complaints,
3627 _(".gdb_index entry has bad CU index"
3628 " [in module %s]"),
3629 objfile_name (dwarf2_per_objfile->objfile));
3630 continue;
3631 }
3632
3633 per_cu = dw2_get_cutu (cu_index);
3634
3635 /* Skip if already read in. */
3636 if (per_cu->v.quick->compunit_symtab)
3637 continue;
3638
3639 /* Check static vs global. */
3640 if (attrs_valid)
3641 {
3642 if (iter->want_specific_block
3643 && want_static != is_static)
3644 continue;
3645 /* Work around gold/15646. */
3646 if (!is_static && iter->global_seen)
3647 continue;
3648 if (!is_static)
3649 iter->global_seen = 1;
3650 }
3651
3652 /* Only check the symbol's kind if it has one. */
3653 if (attrs_valid)
3654 {
3655 switch (iter->domain)
3656 {
3657 case VAR_DOMAIN:
3658 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3659 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3660 /* Some types are also in VAR_DOMAIN. */
3661 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3662 continue;
3663 break;
3664 case STRUCT_DOMAIN:
3665 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3666 continue;
3667 break;
3668 case LABEL_DOMAIN:
3669 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3670 continue;
3671 break;
3672 default:
3673 break;
3674 }
3675 }
3676
3677 ++iter->next;
3678 return per_cu;
3679 }
3680
3681 return NULL;
3682 }
3683
3684 static struct compunit_symtab *
3685 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3686 const char *name, domain_enum domain)
3687 {
3688 struct compunit_symtab *stab_best = NULL;
3689 struct mapped_index *index;
3690
3691 dw2_setup (objfile);
3692
3693 index = dwarf2_per_objfile->index_table;
3694
3695 /* index is NULL if OBJF_READNOW. */
3696 if (index)
3697 {
3698 struct dw2_symtab_iterator iter;
3699 struct dwarf2_per_cu_data *per_cu;
3700
3701 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3702
3703 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3704 {
3705 struct symbol *sym, *with_opaque = NULL;
3706 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3707 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3708 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3709
3710 sym = block_find_symbol (block, name, domain,
3711 block_find_non_opaque_type_preferred,
3712 &with_opaque);
3713
3714 /* Some caution must be observed with overloaded functions
3715 and methods, since the index will not contain any overload
3716 information (but NAME might contain it). */
3717
3718 if (sym != NULL
3719 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3720 return stab;
3721 if (with_opaque != NULL
3722 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3723 stab_best = stab;
3724
3725 /* Keep looking through other CUs. */
3726 }
3727 }
3728
3729 return stab_best;
3730 }
3731
3732 static void
3733 dw2_print_stats (struct objfile *objfile)
3734 {
3735 int i, total, count;
3736
3737 dw2_setup (objfile);
3738 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3739 count = 0;
3740 for (i = 0; i < total; ++i)
3741 {
3742 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3743
3744 if (!per_cu->v.quick->compunit_symtab)
3745 ++count;
3746 }
3747 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3748 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3749 }
3750
3751 /* This dumps minimal information about the index.
3752 It is called via "mt print objfiles".
3753 One use is to verify .gdb_index has been loaded by the
3754 gdb.dwarf2/gdb-index.exp testcase. */
3755
3756 static void
3757 dw2_dump (struct objfile *objfile)
3758 {
3759 dw2_setup (objfile);
3760 gdb_assert (dwarf2_per_objfile->using_index);
3761 printf_filtered (".gdb_index:");
3762 if (dwarf2_per_objfile->index_table != NULL)
3763 {
3764 printf_filtered (" version %d\n",
3765 dwarf2_per_objfile->index_table->version);
3766 }
3767 else
3768 printf_filtered (" faked for \"readnow\"\n");
3769 printf_filtered ("\n");
3770 }
3771
3772 static void
3773 dw2_relocate (struct objfile *objfile,
3774 const struct section_offsets *new_offsets,
3775 const struct section_offsets *delta)
3776 {
3777 /* There's nothing to relocate here. */
3778 }
3779
3780 static void
3781 dw2_expand_symtabs_for_function (struct objfile *objfile,
3782 const char *func_name)
3783 {
3784 struct mapped_index *index;
3785
3786 dw2_setup (objfile);
3787
3788 index = dwarf2_per_objfile->index_table;
3789
3790 /* index is NULL if OBJF_READNOW. */
3791 if (index)
3792 {
3793 struct dw2_symtab_iterator iter;
3794 struct dwarf2_per_cu_data *per_cu;
3795
3796 /* Note: It doesn't matter what we pass for block_index here. */
3797 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3798 func_name);
3799
3800 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3801 dw2_instantiate_symtab (per_cu);
3802 }
3803 }
3804
3805 static void
3806 dw2_expand_all_symtabs (struct objfile *objfile)
3807 {
3808 int i;
3809
3810 dw2_setup (objfile);
3811
3812 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3813 + dwarf2_per_objfile->n_type_units); ++i)
3814 {
3815 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3816
3817 dw2_instantiate_symtab (per_cu);
3818 }
3819 }
3820
3821 static void
3822 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3823 const char *fullname)
3824 {
3825 int i;
3826
3827 dw2_setup (objfile);
3828
3829 /* We don't need to consider type units here.
3830 This is only called for examining code, e.g. expand_line_sal.
3831 There can be an order of magnitude (or more) more type units
3832 than comp units, and we avoid them if we can. */
3833
3834 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3835 {
3836 int j;
3837 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3838 struct quick_file_names *file_data;
3839
3840 /* We only need to look at symtabs not already expanded. */
3841 if (per_cu->v.quick->compunit_symtab)
3842 continue;
3843
3844 file_data = dw2_get_file_names (per_cu);
3845 if (file_data == NULL)
3846 continue;
3847
3848 for (j = 0; j < file_data->num_file_names; ++j)
3849 {
3850 const char *this_fullname = file_data->file_names[j];
3851
3852 if (filename_cmp (this_fullname, fullname) == 0)
3853 {
3854 dw2_instantiate_symtab (per_cu);
3855 break;
3856 }
3857 }
3858 }
3859 }
3860
3861 static void
3862 dw2_map_matching_symbols (struct objfile *objfile,
3863 const char * name, domain_enum domain,
3864 int global,
3865 int (*callback) (struct block *,
3866 struct symbol *, void *),
3867 void *data, symbol_compare_ftype *match,
3868 symbol_compare_ftype *ordered_compare)
3869 {
3870 /* Currently unimplemented; used for Ada. The function can be called if the
3871 current language is Ada for a non-Ada objfile using GNU index. As Ada
3872 does not look for non-Ada symbols this function should just return. */
3873 }
3874
3875 static void
3876 dw2_expand_symtabs_matching
3877 (struct objfile *objfile,
3878 expand_symtabs_file_matcher_ftype *file_matcher,
3879 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3880 expand_symtabs_exp_notify_ftype *expansion_notify,
3881 enum search_domain kind,
3882 void *data)
3883 {
3884 int i;
3885 offset_type iter;
3886 struct mapped_index *index;
3887
3888 dw2_setup (objfile);
3889
3890 /* index_table is NULL if OBJF_READNOW. */
3891 if (!dwarf2_per_objfile->index_table)
3892 return;
3893 index = dwarf2_per_objfile->index_table;
3894
3895 if (file_matcher != NULL)
3896 {
3897 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
3898 htab_eq_pointer,
3899 NULL, xcalloc, xfree));
3900 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
3901 htab_eq_pointer,
3902 NULL, xcalloc, xfree));
3903
3904 /* The rule is CUs specify all the files, including those used by
3905 any TU, so there's no need to scan TUs here. */
3906
3907 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3908 {
3909 int j;
3910 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3911 struct quick_file_names *file_data;
3912 void **slot;
3913
3914 QUIT;
3915
3916 per_cu->v.quick->mark = 0;
3917
3918 /* We only need to look at symtabs not already expanded. */
3919 if (per_cu->v.quick->compunit_symtab)
3920 continue;
3921
3922 file_data = dw2_get_file_names (per_cu);
3923 if (file_data == NULL)
3924 continue;
3925
3926 if (htab_find (visited_not_found.get (), file_data) != NULL)
3927 continue;
3928 else if (htab_find (visited_found.get (), file_data) != NULL)
3929 {
3930 per_cu->v.quick->mark = 1;
3931 continue;
3932 }
3933
3934 for (j = 0; j < file_data->num_file_names; ++j)
3935 {
3936 const char *this_real_name;
3937
3938 if (file_matcher (file_data->file_names[j], data, 0))
3939 {
3940 per_cu->v.quick->mark = 1;
3941 break;
3942 }
3943
3944 /* Before we invoke realpath, which can get expensive when many
3945 files are involved, do a quick comparison of the basenames. */
3946 if (!basenames_may_differ
3947 && !file_matcher (lbasename (file_data->file_names[j]),
3948 data, 1))
3949 continue;
3950
3951 this_real_name = dw2_get_real_path (objfile, file_data, j);
3952 if (file_matcher (this_real_name, data, 0))
3953 {
3954 per_cu->v.quick->mark = 1;
3955 break;
3956 }
3957 }
3958
3959 slot = htab_find_slot (per_cu->v.quick->mark
3960 ? visited_found.get ()
3961 : visited_not_found.get (),
3962 file_data, INSERT);
3963 *slot = file_data;
3964 }
3965 }
3966
3967 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3968 {
3969 offset_type idx = 2 * iter;
3970 const char *name;
3971 offset_type *vec, vec_len, vec_idx;
3972 int global_seen = 0;
3973
3974 QUIT;
3975
3976 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3977 continue;
3978
3979 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3980
3981 if (! (*symbol_matcher) (name, data))
3982 continue;
3983
3984 /* The name was matched, now expand corresponding CUs that were
3985 marked. */
3986 vec = (offset_type *) (index->constant_pool
3987 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3988 vec_len = MAYBE_SWAP (vec[0]);
3989 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3990 {
3991 struct dwarf2_per_cu_data *per_cu;
3992 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3993 /* This value is only valid for index versions >= 7. */
3994 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3995 gdb_index_symbol_kind symbol_kind =
3996 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3997 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3998 /* Only check the symbol attributes if they're present.
3999 Indices prior to version 7 don't record them,
4000 and indices >= 7 may elide them for certain symbols
4001 (gold does this). */
4002 int attrs_valid =
4003 (index->version >= 7
4004 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4005
4006 /* Work around gold/15646. */
4007 if (attrs_valid)
4008 {
4009 if (!is_static && global_seen)
4010 continue;
4011 if (!is_static)
4012 global_seen = 1;
4013 }
4014
4015 /* Only check the symbol's kind if it has one. */
4016 if (attrs_valid)
4017 {
4018 switch (kind)
4019 {
4020 case VARIABLES_DOMAIN:
4021 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4022 continue;
4023 break;
4024 case FUNCTIONS_DOMAIN:
4025 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4026 continue;
4027 break;
4028 case TYPES_DOMAIN:
4029 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4030 continue;
4031 break;
4032 default:
4033 break;
4034 }
4035 }
4036
4037 /* Don't crash on bad data. */
4038 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4039 + dwarf2_per_objfile->n_type_units))
4040 {
4041 complaint (&symfile_complaints,
4042 _(".gdb_index entry has bad CU index"
4043 " [in module %s]"), objfile_name (objfile));
4044 continue;
4045 }
4046
4047 per_cu = dw2_get_cutu (cu_index);
4048 if (file_matcher == NULL || per_cu->v.quick->mark)
4049 {
4050 int symtab_was_null =
4051 (per_cu->v.quick->compunit_symtab == NULL);
4052
4053 dw2_instantiate_symtab (per_cu);
4054
4055 if (expansion_notify != NULL
4056 && symtab_was_null
4057 && per_cu->v.quick->compunit_symtab != NULL)
4058 {
4059 expansion_notify (per_cu->v.quick->compunit_symtab,
4060 data);
4061 }
4062 }
4063 }
4064 }
4065 }
4066
4067 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4068 symtab. */
4069
4070 static struct compunit_symtab *
4071 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4072 CORE_ADDR pc)
4073 {
4074 int i;
4075
4076 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4077 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4078 return cust;
4079
4080 if (cust->includes == NULL)
4081 return NULL;
4082
4083 for (i = 0; cust->includes[i]; ++i)
4084 {
4085 struct compunit_symtab *s = cust->includes[i];
4086
4087 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4088 if (s != NULL)
4089 return s;
4090 }
4091
4092 return NULL;
4093 }
4094
4095 static struct compunit_symtab *
4096 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4097 struct bound_minimal_symbol msymbol,
4098 CORE_ADDR pc,
4099 struct obj_section *section,
4100 int warn_if_readin)
4101 {
4102 struct dwarf2_per_cu_data *data;
4103 struct compunit_symtab *result;
4104
4105 dw2_setup (objfile);
4106
4107 if (!objfile->psymtabs_addrmap)
4108 return NULL;
4109
4110 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4111 pc);
4112 if (!data)
4113 return NULL;
4114
4115 if (warn_if_readin && data->v.quick->compunit_symtab)
4116 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4117 paddress (get_objfile_arch (objfile), pc));
4118
4119 result
4120 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4121 pc);
4122 gdb_assert (result != NULL);
4123 return result;
4124 }
4125
4126 static void
4127 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4128 void *data, int need_fullname)
4129 {
4130 int i;
4131 htab_up visited (htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4132 NULL, xcalloc, xfree));
4133
4134 dw2_setup (objfile);
4135
4136 /* The rule is CUs specify all the files, including those used by
4137 any TU, so there's no need to scan TUs here.
4138 We can ignore file names coming from already-expanded CUs. */
4139
4140 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4141 {
4142 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4143
4144 if (per_cu->v.quick->compunit_symtab)
4145 {
4146 void **slot = htab_find_slot (visited.get (),
4147 per_cu->v.quick->file_names,
4148 INSERT);
4149
4150 *slot = per_cu->v.quick->file_names;
4151 }
4152 }
4153
4154 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4155 {
4156 int j;
4157 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4158 struct quick_file_names *file_data;
4159 void **slot;
4160
4161 /* We only need to look at symtabs not already expanded. */
4162 if (per_cu->v.quick->compunit_symtab)
4163 continue;
4164
4165 file_data = dw2_get_file_names (per_cu);
4166 if (file_data == NULL)
4167 continue;
4168
4169 slot = htab_find_slot (visited.get (), file_data, INSERT);
4170 if (*slot)
4171 {
4172 /* Already visited. */
4173 continue;
4174 }
4175 *slot = file_data;
4176
4177 for (j = 0; j < file_data->num_file_names; ++j)
4178 {
4179 const char *this_real_name;
4180
4181 if (need_fullname)
4182 this_real_name = dw2_get_real_path (objfile, file_data, j);
4183 else
4184 this_real_name = NULL;
4185 (*fun) (file_data->file_names[j], this_real_name, data);
4186 }
4187 }
4188 }
4189
4190 static int
4191 dw2_has_symbols (struct objfile *objfile)
4192 {
4193 return 1;
4194 }
4195
4196 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4197 {
4198 dw2_has_symbols,
4199 dw2_find_last_source_symtab,
4200 dw2_forget_cached_source_info,
4201 dw2_map_symtabs_matching_filename,
4202 dw2_lookup_symbol,
4203 dw2_print_stats,
4204 dw2_dump,
4205 dw2_relocate,
4206 dw2_expand_symtabs_for_function,
4207 dw2_expand_all_symtabs,
4208 dw2_expand_symtabs_with_fullname,
4209 dw2_map_matching_symbols,
4210 dw2_expand_symtabs_matching,
4211 dw2_find_pc_sect_compunit_symtab,
4212 dw2_map_symbol_filenames
4213 };
4214
4215 /* Initialize for reading DWARF for this objfile. Return 0 if this
4216 file will use psymtabs, or 1 if using the GNU index. */
4217
4218 int
4219 dwarf2_initialize_objfile (struct objfile *objfile)
4220 {
4221 /* If we're about to read full symbols, don't bother with the
4222 indices. In this case we also don't care if some other debug
4223 format is making psymtabs, because they are all about to be
4224 expanded anyway. */
4225 if ((objfile->flags & OBJF_READNOW))
4226 {
4227 int i;
4228
4229 dwarf2_per_objfile->using_index = 1;
4230 create_all_comp_units (objfile);
4231 create_all_type_units (objfile);
4232 dwarf2_per_objfile->quick_file_names_table =
4233 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4234
4235 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4236 + dwarf2_per_objfile->n_type_units); ++i)
4237 {
4238 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4239
4240 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4241 struct dwarf2_per_cu_quick_data);
4242 }
4243
4244 /* Return 1 so that gdb sees the "quick" functions. However,
4245 these functions will be no-ops because we will have expanded
4246 all symtabs. */
4247 return 1;
4248 }
4249
4250 if (dwarf2_read_index (objfile))
4251 return 1;
4252
4253 return 0;
4254 }
4255
4256 \f
4257
4258 /* Build a partial symbol table. */
4259
4260 void
4261 dwarf2_build_psymtabs (struct objfile *objfile)
4262 {
4263
4264 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4265 {
4266 init_psymbol_list (objfile, 1024);
4267 }
4268
4269 TRY
4270 {
4271 /* This isn't really ideal: all the data we allocate on the
4272 objfile's obstack is still uselessly kept around. However,
4273 freeing it seems unsafe. */
4274 psymtab_discarder psymtabs (objfile);
4275 dwarf2_build_psymtabs_hard (objfile);
4276 psymtabs.keep ();
4277 }
4278 CATCH (except, RETURN_MASK_ERROR)
4279 {
4280 exception_print (gdb_stderr, except);
4281 }
4282 END_CATCH
4283 }
4284
4285 /* Return the total length of the CU described by HEADER. */
4286
4287 static unsigned int
4288 get_cu_length (const struct comp_unit_head *header)
4289 {
4290 return header->initial_length_size + header->length;
4291 }
4292
4293 /* Return TRUE if OFFSET is within CU_HEADER. */
4294
4295 static inline int
4296 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4297 {
4298 sect_offset bottom = { cu_header->offset.sect_off };
4299 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4300
4301 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4302 }
4303
4304 /* Find the base address of the compilation unit for range lists and
4305 location lists. It will normally be specified by DW_AT_low_pc.
4306 In DWARF-3 draft 4, the base address could be overridden by
4307 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4308 compilation units with discontinuous ranges. */
4309
4310 static void
4311 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4312 {
4313 struct attribute *attr;
4314
4315 cu->base_known = 0;
4316 cu->base_address = 0;
4317
4318 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4319 if (attr)
4320 {
4321 cu->base_address = attr_value_as_address (attr);
4322 cu->base_known = 1;
4323 }
4324 else
4325 {
4326 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4327 if (attr)
4328 {
4329 cu->base_address = attr_value_as_address (attr);
4330 cu->base_known = 1;
4331 }
4332 }
4333 }
4334
4335 /* Read in the comp unit header information from the debug_info at info_ptr.
4336 NOTE: This leaves members offset, first_die_offset to be filled in
4337 by the caller. */
4338
4339 static const gdb_byte *
4340 read_comp_unit_head (struct comp_unit_head *cu_header,
4341 const gdb_byte *info_ptr, bfd *abfd)
4342 {
4343 int signed_addr;
4344 unsigned int bytes_read;
4345
4346 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4347 cu_header->initial_length_size = bytes_read;
4348 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4349 info_ptr += bytes_read;
4350 cu_header->version = read_2_bytes (abfd, info_ptr);
4351 info_ptr += 2;
4352 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4353 &bytes_read);
4354 info_ptr += bytes_read;
4355 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4356 info_ptr += 1;
4357 signed_addr = bfd_get_sign_extend_vma (abfd);
4358 if (signed_addr < 0)
4359 internal_error (__FILE__, __LINE__,
4360 _("read_comp_unit_head: dwarf from non elf file"));
4361 cu_header->signed_addr_p = signed_addr;
4362
4363 return info_ptr;
4364 }
4365
4366 /* Helper function that returns the proper abbrev section for
4367 THIS_CU. */
4368
4369 static struct dwarf2_section_info *
4370 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4371 {
4372 struct dwarf2_section_info *abbrev;
4373
4374 if (this_cu->is_dwz)
4375 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4376 else
4377 abbrev = &dwarf2_per_objfile->abbrev;
4378
4379 return abbrev;
4380 }
4381
4382 /* Subroutine of read_and_check_comp_unit_head and
4383 read_and_check_type_unit_head to simplify them.
4384 Perform various error checking on the header. */
4385
4386 static void
4387 error_check_comp_unit_head (struct comp_unit_head *header,
4388 struct dwarf2_section_info *section,
4389 struct dwarf2_section_info *abbrev_section)
4390 {
4391 const char *filename = get_section_file_name (section);
4392
4393 if (header->version != 2 && header->version != 3 && header->version != 4)
4394 error (_("Dwarf Error: wrong version in compilation unit header "
4395 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4396 filename);
4397
4398 if (header->abbrev_offset.sect_off
4399 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4400 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4401 "(offset 0x%lx + 6) [in module %s]"),
4402 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4403 filename);
4404
4405 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4406 avoid potential 32-bit overflow. */
4407 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4408 > section->size)
4409 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4410 "(offset 0x%lx + 0) [in module %s]"),
4411 (long) header->length, (long) header->offset.sect_off,
4412 filename);
4413 }
4414
4415 /* Read in a CU/TU header and perform some basic error checking.
4416 The contents of the header are stored in HEADER.
4417 The result is a pointer to the start of the first DIE. */
4418
4419 static const gdb_byte *
4420 read_and_check_comp_unit_head (struct comp_unit_head *header,
4421 struct dwarf2_section_info *section,
4422 struct dwarf2_section_info *abbrev_section,
4423 const gdb_byte *info_ptr,
4424 int is_debug_types_section)
4425 {
4426 const gdb_byte *beg_of_comp_unit = info_ptr;
4427 bfd *abfd = get_section_bfd_owner (section);
4428
4429 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4430
4431 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4432
4433 /* If we're reading a type unit, skip over the signature and
4434 type_offset fields. */
4435 if (is_debug_types_section)
4436 info_ptr += 8 /*signature*/ + header->offset_size;
4437
4438 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4439
4440 error_check_comp_unit_head (header, section, abbrev_section);
4441
4442 return info_ptr;
4443 }
4444
4445 /* Read in the types comp unit header information from .debug_types entry at
4446 types_ptr. The result is a pointer to one past the end of the header. */
4447
4448 static const gdb_byte *
4449 read_and_check_type_unit_head (struct comp_unit_head *header,
4450 struct dwarf2_section_info *section,
4451 struct dwarf2_section_info *abbrev_section,
4452 const gdb_byte *info_ptr,
4453 ULONGEST *signature,
4454 cu_offset *type_offset_in_tu)
4455 {
4456 const gdb_byte *beg_of_comp_unit = info_ptr;
4457 bfd *abfd = get_section_bfd_owner (section);
4458
4459 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4460
4461 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4462
4463 /* If we're reading a type unit, skip over the signature and
4464 type_offset fields. */
4465 if (signature != NULL)
4466 *signature = read_8_bytes (abfd, info_ptr);
4467 info_ptr += 8;
4468 if (type_offset_in_tu != NULL)
4469 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4470 header->offset_size);
4471 info_ptr += header->offset_size;
4472
4473 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4474
4475 error_check_comp_unit_head (header, section, abbrev_section);
4476
4477 return info_ptr;
4478 }
4479
4480 /* Fetch the abbreviation table offset from a comp or type unit header. */
4481
4482 static sect_offset
4483 read_abbrev_offset (struct dwarf2_section_info *section,
4484 sect_offset offset)
4485 {
4486 bfd *abfd = get_section_bfd_owner (section);
4487 const gdb_byte *info_ptr;
4488 unsigned int initial_length_size, offset_size;
4489 sect_offset abbrev_offset;
4490
4491 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4492 info_ptr = section->buffer + offset.sect_off;
4493 read_initial_length (abfd, info_ptr, &initial_length_size);
4494 offset_size = initial_length_size == 4 ? 4 : 8;
4495 info_ptr += initial_length_size + 2 /*version*/;
4496 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4497 return abbrev_offset;
4498 }
4499
4500 /* Allocate a new partial symtab for file named NAME and mark this new
4501 partial symtab as being an include of PST. */
4502
4503 static void
4504 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4505 struct objfile *objfile)
4506 {
4507 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4508
4509 if (!IS_ABSOLUTE_PATH (subpst->filename))
4510 {
4511 /* It shares objfile->objfile_obstack. */
4512 subpst->dirname = pst->dirname;
4513 }
4514
4515 subpst->textlow = 0;
4516 subpst->texthigh = 0;
4517
4518 subpst->dependencies
4519 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4520 subpst->dependencies[0] = pst;
4521 subpst->number_of_dependencies = 1;
4522
4523 subpst->globals_offset = 0;
4524 subpst->n_global_syms = 0;
4525 subpst->statics_offset = 0;
4526 subpst->n_static_syms = 0;
4527 subpst->compunit_symtab = NULL;
4528 subpst->read_symtab = pst->read_symtab;
4529 subpst->readin = 0;
4530
4531 /* No private part is necessary for include psymtabs. This property
4532 can be used to differentiate between such include psymtabs and
4533 the regular ones. */
4534 subpst->read_symtab_private = NULL;
4535 }
4536
4537 /* Read the Line Number Program data and extract the list of files
4538 included by the source file represented by PST. Build an include
4539 partial symtab for each of these included files. */
4540
4541 static void
4542 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4543 struct die_info *die,
4544 struct partial_symtab *pst)
4545 {
4546 struct line_header *lh = NULL;
4547 struct attribute *attr;
4548
4549 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4550 if (attr)
4551 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4552 if (lh == NULL)
4553 return; /* No linetable, so no includes. */
4554
4555 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4556 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4557
4558 free_line_header (lh);
4559 }
4560
4561 static hashval_t
4562 hash_signatured_type (const void *item)
4563 {
4564 const struct signatured_type *sig_type
4565 = (const struct signatured_type *) item;
4566
4567 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4568 return sig_type->signature;
4569 }
4570
4571 static int
4572 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4573 {
4574 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4575 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4576
4577 return lhs->signature == rhs->signature;
4578 }
4579
4580 /* Allocate a hash table for signatured types. */
4581
4582 static htab_t
4583 allocate_signatured_type_table (struct objfile *objfile)
4584 {
4585 return htab_create_alloc_ex (41,
4586 hash_signatured_type,
4587 eq_signatured_type,
4588 NULL,
4589 &objfile->objfile_obstack,
4590 hashtab_obstack_allocate,
4591 dummy_obstack_deallocate);
4592 }
4593
4594 /* A helper function to add a signatured type CU to a table. */
4595
4596 static int
4597 add_signatured_type_cu_to_table (void **slot, void *datum)
4598 {
4599 struct signatured_type *sigt = (struct signatured_type *) *slot;
4600 struct signatured_type ***datap = (struct signatured_type ***) datum;
4601
4602 **datap = sigt;
4603 ++*datap;
4604
4605 return 1;
4606 }
4607
4608 /* A helper for create_debug_types_hash_table. Read types from SECTION
4609 and fill them into TYPES_HTAB. */
4610
4611 static void
4612 create_debug_type_hash_table (struct dwo_file *dwo_file,
4613 dwarf2_section_info *section, htab_t &types_htab)
4614 {
4615 struct objfile *objfile = dwarf2_per_objfile->objfile;
4616 struct dwarf2_section_info *abbrev_section;
4617 bfd *abfd;
4618 const gdb_byte *info_ptr, *end_ptr;
4619
4620 abbrev_section = (dwo_file != NULL
4621 ? &dwo_file->sections.abbrev
4622 : &dwarf2_per_objfile->abbrev);
4623
4624 if (dwarf_read_debug)
4625 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4626 dwo_file ? ".dwo" : "",
4627 get_section_file_name (abbrev_section));
4628
4629 dwarf2_read_section (objfile, section);
4630 info_ptr = section->buffer;
4631
4632 if (info_ptr == NULL)
4633 return;
4634
4635 /* We can't set abfd until now because the section may be empty or
4636 not present, in which case the bfd is unknown. */
4637 abfd = get_section_bfd_owner (section);
4638
4639 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4640 because we don't need to read any dies: the signature is in the
4641 header. */
4642
4643 end_ptr = info_ptr + section->size;
4644 while (info_ptr < end_ptr)
4645 {
4646 sect_offset offset;
4647 cu_offset type_offset_in_tu;
4648 ULONGEST signature;
4649 struct signatured_type *sig_type;
4650 struct dwo_unit *dwo_tu;
4651 void **slot;
4652 const gdb_byte *ptr = info_ptr;
4653 struct comp_unit_head header;
4654 unsigned int length;
4655
4656 offset.sect_off = ptr - section->buffer;
4657
4658 /* We need to read the type's signature in order to build the hash
4659 table, but we don't need anything else just yet. */
4660
4661 ptr = read_and_check_type_unit_head (&header, section,
4662 abbrev_section, ptr,
4663 &signature, &type_offset_in_tu);
4664
4665 length = get_cu_length (&header);
4666
4667 /* Skip dummy type units. */
4668 if (ptr >= info_ptr + length
4669 || peek_abbrev_code (abfd, ptr) == 0)
4670 {
4671 info_ptr += length;
4672 continue;
4673 }
4674
4675 if (types_htab == NULL)
4676 {
4677 if (dwo_file)
4678 types_htab = allocate_dwo_unit_table (objfile);
4679 else
4680 types_htab = allocate_signatured_type_table (objfile);
4681 }
4682
4683 if (dwo_file)
4684 {
4685 sig_type = NULL;
4686 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4687 struct dwo_unit);
4688 dwo_tu->dwo_file = dwo_file;
4689 dwo_tu->signature = signature;
4690 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4691 dwo_tu->section = section;
4692 dwo_tu->offset = offset;
4693 dwo_tu->length = length;
4694 }
4695 else
4696 {
4697 /* N.B.: type_offset is not usable if this type uses a DWO file.
4698 The real type_offset is in the DWO file. */
4699 dwo_tu = NULL;
4700 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4701 struct signatured_type);
4702 sig_type->signature = signature;
4703 sig_type->type_offset_in_tu = type_offset_in_tu;
4704 sig_type->per_cu.objfile = objfile;
4705 sig_type->per_cu.is_debug_types = 1;
4706 sig_type->per_cu.section = section;
4707 sig_type->per_cu.offset = offset;
4708 sig_type->per_cu.length = length;
4709 }
4710
4711 slot = htab_find_slot (types_htab,
4712 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4713 INSERT);
4714 gdb_assert (slot != NULL);
4715 if (*slot != NULL)
4716 {
4717 sect_offset dup_offset;
4718
4719 if (dwo_file)
4720 {
4721 const struct dwo_unit *dup_tu
4722 = (const struct dwo_unit *) *slot;
4723
4724 dup_offset = dup_tu->offset;
4725 }
4726 else
4727 {
4728 const struct signatured_type *dup_tu
4729 = (const struct signatured_type *) *slot;
4730
4731 dup_offset = dup_tu->per_cu.offset;
4732 }
4733
4734 complaint (&symfile_complaints,
4735 _("debug type entry at offset 0x%x is duplicate to"
4736 " the entry at offset 0x%x, signature %s"),
4737 offset.sect_off, dup_offset.sect_off,
4738 hex_string (signature));
4739 }
4740 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4741
4742 if (dwarf_read_debug > 1)
4743 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4744 offset.sect_off,
4745 hex_string (signature));
4746
4747 info_ptr += length;
4748 }
4749 }
4750
4751 /* Create the hash table of all entries in the .debug_types
4752 (or .debug_types.dwo) section(s).
4753 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4754 otherwise it is NULL.
4755
4756 The result is a pointer to the hash table or NULL if there are no types.
4757
4758 Note: This function processes DWO files only, not DWP files. */
4759
4760 static void
4761 create_debug_types_hash_table (struct dwo_file *dwo_file,
4762 VEC (dwarf2_section_info_def) *types,
4763 htab_t &types_htab)
4764 {
4765 int ix;
4766 struct dwarf2_section_info *section;
4767
4768 if (VEC_empty (dwarf2_section_info_def, types))
4769 return;
4770
4771 for (ix = 0;
4772 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4773 ++ix)
4774 create_debug_type_hash_table (dwo_file, section, types_htab);
4775 }
4776
4777 /* Create the hash table of all entries in the .debug_types section,
4778 and initialize all_type_units.
4779 The result is zero if there is an error (e.g. missing .debug_types section),
4780 otherwise non-zero. */
4781
4782 static int
4783 create_all_type_units (struct objfile *objfile)
4784 {
4785 htab_t types_htab = NULL;
4786 struct signatured_type **iter;
4787
4788 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
4789 if (types_htab == NULL)
4790 {
4791 dwarf2_per_objfile->signatured_types = NULL;
4792 return 0;
4793 }
4794
4795 dwarf2_per_objfile->signatured_types = types_htab;
4796
4797 dwarf2_per_objfile->n_type_units
4798 = dwarf2_per_objfile->n_allocated_type_units
4799 = htab_elements (types_htab);
4800 dwarf2_per_objfile->all_type_units =
4801 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4802 iter = &dwarf2_per_objfile->all_type_units[0];
4803 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4804 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4805 == dwarf2_per_objfile->n_type_units);
4806
4807 return 1;
4808 }
4809
4810 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4811 If SLOT is non-NULL, it is the entry to use in the hash table.
4812 Otherwise we find one. */
4813
4814 static struct signatured_type *
4815 add_type_unit (ULONGEST sig, void **slot)
4816 {
4817 struct objfile *objfile = dwarf2_per_objfile->objfile;
4818 int n_type_units = dwarf2_per_objfile->n_type_units;
4819 struct signatured_type *sig_type;
4820
4821 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4822 ++n_type_units;
4823 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4824 {
4825 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4826 dwarf2_per_objfile->n_allocated_type_units = 1;
4827 dwarf2_per_objfile->n_allocated_type_units *= 2;
4828 dwarf2_per_objfile->all_type_units
4829 = XRESIZEVEC (struct signatured_type *,
4830 dwarf2_per_objfile->all_type_units,
4831 dwarf2_per_objfile->n_allocated_type_units);
4832 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4833 }
4834 dwarf2_per_objfile->n_type_units = n_type_units;
4835
4836 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4837 struct signatured_type);
4838 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4839 sig_type->signature = sig;
4840 sig_type->per_cu.is_debug_types = 1;
4841 if (dwarf2_per_objfile->using_index)
4842 {
4843 sig_type->per_cu.v.quick =
4844 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4845 struct dwarf2_per_cu_quick_data);
4846 }
4847
4848 if (slot == NULL)
4849 {
4850 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4851 sig_type, INSERT);
4852 }
4853 gdb_assert (*slot == NULL);
4854 *slot = sig_type;
4855 /* The rest of sig_type must be filled in by the caller. */
4856 return sig_type;
4857 }
4858
4859 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4860 Fill in SIG_ENTRY with DWO_ENTRY. */
4861
4862 static void
4863 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4864 struct signatured_type *sig_entry,
4865 struct dwo_unit *dwo_entry)
4866 {
4867 /* Make sure we're not clobbering something we don't expect to. */
4868 gdb_assert (! sig_entry->per_cu.queued);
4869 gdb_assert (sig_entry->per_cu.cu == NULL);
4870 if (dwarf2_per_objfile->using_index)
4871 {
4872 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4873 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4874 }
4875 else
4876 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4877 gdb_assert (sig_entry->signature == dwo_entry->signature);
4878 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4879 gdb_assert (sig_entry->type_unit_group == NULL);
4880 gdb_assert (sig_entry->dwo_unit == NULL);
4881
4882 sig_entry->per_cu.section = dwo_entry->section;
4883 sig_entry->per_cu.offset = dwo_entry->offset;
4884 sig_entry->per_cu.length = dwo_entry->length;
4885 sig_entry->per_cu.reading_dwo_directly = 1;
4886 sig_entry->per_cu.objfile = objfile;
4887 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4888 sig_entry->dwo_unit = dwo_entry;
4889 }
4890
4891 /* Subroutine of lookup_signatured_type.
4892 If we haven't read the TU yet, create the signatured_type data structure
4893 for a TU to be read in directly from a DWO file, bypassing the stub.
4894 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4895 using .gdb_index, then when reading a CU we want to stay in the DWO file
4896 containing that CU. Otherwise we could end up reading several other DWO
4897 files (due to comdat folding) to process the transitive closure of all the
4898 mentioned TUs, and that can be slow. The current DWO file will have every
4899 type signature that it needs.
4900 We only do this for .gdb_index because in the psymtab case we already have
4901 to read all the DWOs to build the type unit groups. */
4902
4903 static struct signatured_type *
4904 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4905 {
4906 struct objfile *objfile = dwarf2_per_objfile->objfile;
4907 struct dwo_file *dwo_file;
4908 struct dwo_unit find_dwo_entry, *dwo_entry;
4909 struct signatured_type find_sig_entry, *sig_entry;
4910 void **slot;
4911
4912 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4913
4914 /* If TU skeletons have been removed then we may not have read in any
4915 TUs yet. */
4916 if (dwarf2_per_objfile->signatured_types == NULL)
4917 {
4918 dwarf2_per_objfile->signatured_types
4919 = allocate_signatured_type_table (objfile);
4920 }
4921
4922 /* We only ever need to read in one copy of a signatured type.
4923 Use the global signatured_types array to do our own comdat-folding
4924 of types. If this is the first time we're reading this TU, and
4925 the TU has an entry in .gdb_index, replace the recorded data from
4926 .gdb_index with this TU. */
4927
4928 find_sig_entry.signature = sig;
4929 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4930 &find_sig_entry, INSERT);
4931 sig_entry = (struct signatured_type *) *slot;
4932
4933 /* We can get here with the TU already read, *or* in the process of being
4934 read. Don't reassign the global entry to point to this DWO if that's
4935 the case. Also note that if the TU is already being read, it may not
4936 have come from a DWO, the program may be a mix of Fission-compiled
4937 code and non-Fission-compiled code. */
4938
4939 /* Have we already tried to read this TU?
4940 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4941 needn't exist in the global table yet). */
4942 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4943 return sig_entry;
4944
4945 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4946 dwo_unit of the TU itself. */
4947 dwo_file = cu->dwo_unit->dwo_file;
4948
4949 /* Ok, this is the first time we're reading this TU. */
4950 if (dwo_file->tus == NULL)
4951 return NULL;
4952 find_dwo_entry.signature = sig;
4953 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
4954 if (dwo_entry == NULL)
4955 return NULL;
4956
4957 /* If the global table doesn't have an entry for this TU, add one. */
4958 if (sig_entry == NULL)
4959 sig_entry = add_type_unit (sig, slot);
4960
4961 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4962 sig_entry->per_cu.tu_read = 1;
4963 return sig_entry;
4964 }
4965
4966 /* Subroutine of lookup_signatured_type.
4967 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4968 then try the DWP file. If the TU stub (skeleton) has been removed then
4969 it won't be in .gdb_index. */
4970
4971 static struct signatured_type *
4972 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4973 {
4974 struct objfile *objfile = dwarf2_per_objfile->objfile;
4975 struct dwp_file *dwp_file = get_dwp_file ();
4976 struct dwo_unit *dwo_entry;
4977 struct signatured_type find_sig_entry, *sig_entry;
4978 void **slot;
4979
4980 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4981 gdb_assert (dwp_file != NULL);
4982
4983 /* If TU skeletons have been removed then we may not have read in any
4984 TUs yet. */
4985 if (dwarf2_per_objfile->signatured_types == NULL)
4986 {
4987 dwarf2_per_objfile->signatured_types
4988 = allocate_signatured_type_table (objfile);
4989 }
4990
4991 find_sig_entry.signature = sig;
4992 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4993 &find_sig_entry, INSERT);
4994 sig_entry = (struct signatured_type *) *slot;
4995
4996 /* Have we already tried to read this TU?
4997 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4998 needn't exist in the global table yet). */
4999 if (sig_entry != NULL)
5000 return sig_entry;
5001
5002 if (dwp_file->tus == NULL)
5003 return NULL;
5004 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5005 sig, 1 /* is_debug_types */);
5006 if (dwo_entry == NULL)
5007 return NULL;
5008
5009 sig_entry = add_type_unit (sig, slot);
5010 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5011
5012 return sig_entry;
5013 }
5014
5015 /* Lookup a signature based type for DW_FORM_ref_sig8.
5016 Returns NULL if signature SIG is not present in the table.
5017 It is up to the caller to complain about this. */
5018
5019 static struct signatured_type *
5020 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5021 {
5022 if (cu->dwo_unit
5023 && dwarf2_per_objfile->using_index)
5024 {
5025 /* We're in a DWO/DWP file, and we're using .gdb_index.
5026 These cases require special processing. */
5027 if (get_dwp_file () == NULL)
5028 return lookup_dwo_signatured_type (cu, sig);
5029 else
5030 return lookup_dwp_signatured_type (cu, sig);
5031 }
5032 else
5033 {
5034 struct signatured_type find_entry, *entry;
5035
5036 if (dwarf2_per_objfile->signatured_types == NULL)
5037 return NULL;
5038 find_entry.signature = sig;
5039 entry = ((struct signatured_type *)
5040 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5041 return entry;
5042 }
5043 }
5044 \f
5045 /* Low level DIE reading support. */
5046
5047 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5048
5049 static void
5050 init_cu_die_reader (struct die_reader_specs *reader,
5051 struct dwarf2_cu *cu,
5052 struct dwarf2_section_info *section,
5053 struct dwo_file *dwo_file)
5054 {
5055 gdb_assert (section->readin && section->buffer != NULL);
5056 reader->abfd = get_section_bfd_owner (section);
5057 reader->cu = cu;
5058 reader->dwo_file = dwo_file;
5059 reader->die_section = section;
5060 reader->buffer = section->buffer;
5061 reader->buffer_end = section->buffer + section->size;
5062 reader->comp_dir = NULL;
5063 }
5064
5065 /* Subroutine of init_cutu_and_read_dies to simplify it.
5066 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5067 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5068 already.
5069
5070 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5071 from it to the DIE in the DWO. If NULL we are skipping the stub.
5072 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5073 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5074 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5075 STUB_COMP_DIR may be non-NULL.
5076 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5077 are filled in with the info of the DIE from the DWO file.
5078 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5079 provided an abbrev table to use.
5080 The result is non-zero if a valid (non-dummy) DIE was found. */
5081
5082 static int
5083 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5084 struct dwo_unit *dwo_unit,
5085 int abbrev_table_provided,
5086 struct die_info *stub_comp_unit_die,
5087 const char *stub_comp_dir,
5088 struct die_reader_specs *result_reader,
5089 const gdb_byte **result_info_ptr,
5090 struct die_info **result_comp_unit_die,
5091 int *result_has_children)
5092 {
5093 struct objfile *objfile = dwarf2_per_objfile->objfile;
5094 struct dwarf2_cu *cu = this_cu->cu;
5095 struct dwarf2_section_info *section;
5096 bfd *abfd;
5097 const gdb_byte *begin_info_ptr, *info_ptr;
5098 ULONGEST signature; /* Or dwo_id. */
5099 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5100 int i,num_extra_attrs;
5101 struct dwarf2_section_info *dwo_abbrev_section;
5102 struct attribute *attr;
5103 struct die_info *comp_unit_die;
5104
5105 /* At most one of these may be provided. */
5106 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5107
5108 /* These attributes aren't processed until later:
5109 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5110 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5111 referenced later. However, these attributes are found in the stub
5112 which we won't have later. In order to not impose this complication
5113 on the rest of the code, we read them here and copy them to the
5114 DWO CU/TU die. */
5115
5116 stmt_list = NULL;
5117 low_pc = NULL;
5118 high_pc = NULL;
5119 ranges = NULL;
5120 comp_dir = NULL;
5121
5122 if (stub_comp_unit_die != NULL)
5123 {
5124 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5125 DWO file. */
5126 if (! this_cu->is_debug_types)
5127 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5128 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5129 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5130 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5131 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5132
5133 /* There should be a DW_AT_addr_base attribute here (if needed).
5134 We need the value before we can process DW_FORM_GNU_addr_index. */
5135 cu->addr_base = 0;
5136 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5137 if (attr)
5138 cu->addr_base = DW_UNSND (attr);
5139
5140 /* There should be a DW_AT_ranges_base attribute here (if needed).
5141 We need the value before we can process DW_AT_ranges. */
5142 cu->ranges_base = 0;
5143 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5144 if (attr)
5145 cu->ranges_base = DW_UNSND (attr);
5146 }
5147 else if (stub_comp_dir != NULL)
5148 {
5149 /* Reconstruct the comp_dir attribute to simplify the code below. */
5150 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5151 comp_dir->name = DW_AT_comp_dir;
5152 comp_dir->form = DW_FORM_string;
5153 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5154 DW_STRING (comp_dir) = stub_comp_dir;
5155 }
5156
5157 /* Set up for reading the DWO CU/TU. */
5158 cu->dwo_unit = dwo_unit;
5159 section = dwo_unit->section;
5160 dwarf2_read_section (objfile, section);
5161 abfd = get_section_bfd_owner (section);
5162 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5163 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5164 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5165
5166 if (this_cu->is_debug_types)
5167 {
5168 ULONGEST header_signature;
5169 cu_offset type_offset_in_tu;
5170 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5171
5172 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5173 dwo_abbrev_section,
5174 info_ptr,
5175 &header_signature,
5176 &type_offset_in_tu);
5177 /* This is not an assert because it can be caused by bad debug info. */
5178 if (sig_type->signature != header_signature)
5179 {
5180 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5181 " TU at offset 0x%x [in module %s]"),
5182 hex_string (sig_type->signature),
5183 hex_string (header_signature),
5184 dwo_unit->offset.sect_off,
5185 bfd_get_filename (abfd));
5186 }
5187 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5188 /* For DWOs coming from DWP files, we don't know the CU length
5189 nor the type's offset in the TU until now. */
5190 dwo_unit->length = get_cu_length (&cu->header);
5191 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5192
5193 /* Establish the type offset that can be used to lookup the type.
5194 For DWO files, we don't know it until now. */
5195 sig_type->type_offset_in_section.sect_off =
5196 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5197 }
5198 else
5199 {
5200 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5201 dwo_abbrev_section,
5202 info_ptr, 0);
5203 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5204 /* For DWOs coming from DWP files, we don't know the CU length
5205 until now. */
5206 dwo_unit->length = get_cu_length (&cu->header);
5207 }
5208
5209 /* Replace the CU's original abbrev table with the DWO's.
5210 Reminder: We can't read the abbrev table until we've read the header. */
5211 if (abbrev_table_provided)
5212 {
5213 /* Don't free the provided abbrev table, the caller of
5214 init_cutu_and_read_dies owns it. */
5215 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5216 /* Ensure the DWO abbrev table gets freed. */
5217 make_cleanup (dwarf2_free_abbrev_table, cu);
5218 }
5219 else
5220 {
5221 dwarf2_free_abbrev_table (cu);
5222 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5223 /* Leave any existing abbrev table cleanup as is. */
5224 }
5225
5226 /* Read in the die, but leave space to copy over the attributes
5227 from the stub. This has the benefit of simplifying the rest of
5228 the code - all the work to maintain the illusion of a single
5229 DW_TAG_{compile,type}_unit DIE is done here. */
5230 num_extra_attrs = ((stmt_list != NULL)
5231 + (low_pc != NULL)
5232 + (high_pc != NULL)
5233 + (ranges != NULL)
5234 + (comp_dir != NULL));
5235 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5236 result_has_children, num_extra_attrs);
5237
5238 /* Copy over the attributes from the stub to the DIE we just read in. */
5239 comp_unit_die = *result_comp_unit_die;
5240 i = comp_unit_die->num_attrs;
5241 if (stmt_list != NULL)
5242 comp_unit_die->attrs[i++] = *stmt_list;
5243 if (low_pc != NULL)
5244 comp_unit_die->attrs[i++] = *low_pc;
5245 if (high_pc != NULL)
5246 comp_unit_die->attrs[i++] = *high_pc;
5247 if (ranges != NULL)
5248 comp_unit_die->attrs[i++] = *ranges;
5249 if (comp_dir != NULL)
5250 comp_unit_die->attrs[i++] = *comp_dir;
5251 comp_unit_die->num_attrs += num_extra_attrs;
5252
5253 if (dwarf_die_debug)
5254 {
5255 fprintf_unfiltered (gdb_stdlog,
5256 "Read die from %s@0x%x of %s:\n",
5257 get_section_name (section),
5258 (unsigned) (begin_info_ptr - section->buffer),
5259 bfd_get_filename (abfd));
5260 dump_die (comp_unit_die, dwarf_die_debug);
5261 }
5262
5263 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5264 TUs by skipping the stub and going directly to the entry in the DWO file.
5265 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5266 to get it via circuitous means. Blech. */
5267 if (comp_dir != NULL)
5268 result_reader->comp_dir = DW_STRING (comp_dir);
5269
5270 /* Skip dummy compilation units. */
5271 if (info_ptr >= begin_info_ptr + dwo_unit->length
5272 || peek_abbrev_code (abfd, info_ptr) == 0)
5273 return 0;
5274
5275 *result_info_ptr = info_ptr;
5276 return 1;
5277 }
5278
5279 /* Subroutine of init_cutu_and_read_dies to simplify it.
5280 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5281 Returns NULL if the specified DWO unit cannot be found. */
5282
5283 static struct dwo_unit *
5284 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5285 struct die_info *comp_unit_die)
5286 {
5287 struct dwarf2_cu *cu = this_cu->cu;
5288 struct attribute *attr;
5289 ULONGEST signature;
5290 struct dwo_unit *dwo_unit;
5291 const char *comp_dir, *dwo_name;
5292
5293 gdb_assert (cu != NULL);
5294
5295 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5296 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5297 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5298
5299 if (this_cu->is_debug_types)
5300 {
5301 struct signatured_type *sig_type;
5302
5303 /* Since this_cu is the first member of struct signatured_type,
5304 we can go from a pointer to one to a pointer to the other. */
5305 sig_type = (struct signatured_type *) this_cu;
5306 signature = sig_type->signature;
5307 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5308 }
5309 else
5310 {
5311 struct attribute *attr;
5312
5313 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5314 if (! attr)
5315 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5316 " [in module %s]"),
5317 dwo_name, objfile_name (this_cu->objfile));
5318 signature = DW_UNSND (attr);
5319 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5320 signature);
5321 }
5322
5323 return dwo_unit;
5324 }
5325
5326 /* Subroutine of init_cutu_and_read_dies to simplify it.
5327 See it for a description of the parameters.
5328 Read a TU directly from a DWO file, bypassing the stub.
5329
5330 Note: This function could be a little bit simpler if we shared cleanups
5331 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5332 to do, so we keep this function self-contained. Or we could move this
5333 into our caller, but it's complex enough already. */
5334
5335 static void
5336 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5337 int use_existing_cu, int keep,
5338 die_reader_func_ftype *die_reader_func,
5339 void *data)
5340 {
5341 struct dwarf2_cu *cu;
5342 struct signatured_type *sig_type;
5343 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5344 struct die_reader_specs reader;
5345 const gdb_byte *info_ptr;
5346 struct die_info *comp_unit_die;
5347 int has_children;
5348
5349 /* Verify we can do the following downcast, and that we have the
5350 data we need. */
5351 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5352 sig_type = (struct signatured_type *) this_cu;
5353 gdb_assert (sig_type->dwo_unit != NULL);
5354
5355 cleanups = make_cleanup (null_cleanup, NULL);
5356
5357 if (use_existing_cu && this_cu->cu != NULL)
5358 {
5359 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5360 cu = this_cu->cu;
5361 /* There's no need to do the rereading_dwo_cu handling that
5362 init_cutu_and_read_dies does since we don't read the stub. */
5363 }
5364 else
5365 {
5366 /* If !use_existing_cu, this_cu->cu must be NULL. */
5367 gdb_assert (this_cu->cu == NULL);
5368 cu = XNEW (struct dwarf2_cu);
5369 init_one_comp_unit (cu, this_cu);
5370 /* If an error occurs while loading, release our storage. */
5371 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5372 }
5373
5374 /* A future optimization, if needed, would be to use an existing
5375 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5376 could share abbrev tables. */
5377
5378 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5379 0 /* abbrev_table_provided */,
5380 NULL /* stub_comp_unit_die */,
5381 sig_type->dwo_unit->dwo_file->comp_dir,
5382 &reader, &info_ptr,
5383 &comp_unit_die, &has_children) == 0)
5384 {
5385 /* Dummy die. */
5386 do_cleanups (cleanups);
5387 return;
5388 }
5389
5390 /* All the "real" work is done here. */
5391 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5392
5393 /* This duplicates the code in init_cutu_and_read_dies,
5394 but the alternative is making the latter more complex.
5395 This function is only for the special case of using DWO files directly:
5396 no point in overly complicating the general case just to handle this. */
5397 if (free_cu_cleanup != NULL)
5398 {
5399 if (keep)
5400 {
5401 /* We've successfully allocated this compilation unit. Let our
5402 caller clean it up when finished with it. */
5403 discard_cleanups (free_cu_cleanup);
5404
5405 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5406 So we have to manually free the abbrev table. */
5407 dwarf2_free_abbrev_table (cu);
5408
5409 /* Link this CU into read_in_chain. */
5410 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5411 dwarf2_per_objfile->read_in_chain = this_cu;
5412 }
5413 else
5414 do_cleanups (free_cu_cleanup);
5415 }
5416
5417 do_cleanups (cleanups);
5418 }
5419
5420 /* Initialize a CU (or TU) and read its DIEs.
5421 If the CU defers to a DWO file, read the DWO file as well.
5422
5423 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5424 Otherwise the table specified in the comp unit header is read in and used.
5425 This is an optimization for when we already have the abbrev table.
5426
5427 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5428 Otherwise, a new CU is allocated with xmalloc.
5429
5430 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5431 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5432
5433 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5434 linker) then DIE_READER_FUNC will not get called. */
5435
5436 static void
5437 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5438 struct abbrev_table *abbrev_table,
5439 int use_existing_cu, int keep,
5440 die_reader_func_ftype *die_reader_func,
5441 void *data)
5442 {
5443 struct objfile *objfile = dwarf2_per_objfile->objfile;
5444 struct dwarf2_section_info *section = this_cu->section;
5445 bfd *abfd = get_section_bfd_owner (section);
5446 struct dwarf2_cu *cu;
5447 const gdb_byte *begin_info_ptr, *info_ptr;
5448 struct die_reader_specs reader;
5449 struct die_info *comp_unit_die;
5450 int has_children;
5451 struct attribute *attr;
5452 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5453 struct signatured_type *sig_type = NULL;
5454 struct dwarf2_section_info *abbrev_section;
5455 /* Non-zero if CU currently points to a DWO file and we need to
5456 reread it. When this happens we need to reread the skeleton die
5457 before we can reread the DWO file (this only applies to CUs, not TUs). */
5458 int rereading_dwo_cu = 0;
5459
5460 if (dwarf_die_debug)
5461 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5462 this_cu->is_debug_types ? "type" : "comp",
5463 this_cu->offset.sect_off);
5464
5465 if (use_existing_cu)
5466 gdb_assert (keep);
5467
5468 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5469 file (instead of going through the stub), short-circuit all of this. */
5470 if (this_cu->reading_dwo_directly)
5471 {
5472 /* Narrow down the scope of possibilities to have to understand. */
5473 gdb_assert (this_cu->is_debug_types);
5474 gdb_assert (abbrev_table == NULL);
5475 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5476 die_reader_func, data);
5477 return;
5478 }
5479
5480 cleanups = make_cleanup (null_cleanup, NULL);
5481
5482 /* This is cheap if the section is already read in. */
5483 dwarf2_read_section (objfile, section);
5484
5485 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5486
5487 abbrev_section = get_abbrev_section_for_cu (this_cu);
5488
5489 if (use_existing_cu && this_cu->cu != NULL)
5490 {
5491 cu = this_cu->cu;
5492 /* If this CU is from a DWO file we need to start over, we need to
5493 refetch the attributes from the skeleton CU.
5494 This could be optimized by retrieving those attributes from when we
5495 were here the first time: the previous comp_unit_die was stored in
5496 comp_unit_obstack. But there's no data yet that we need this
5497 optimization. */
5498 if (cu->dwo_unit != NULL)
5499 rereading_dwo_cu = 1;
5500 }
5501 else
5502 {
5503 /* If !use_existing_cu, this_cu->cu must be NULL. */
5504 gdb_assert (this_cu->cu == NULL);
5505 cu = XNEW (struct dwarf2_cu);
5506 init_one_comp_unit (cu, this_cu);
5507 /* If an error occurs while loading, release our storage. */
5508 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5509 }
5510
5511 /* Get the header. */
5512 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5513 {
5514 /* We already have the header, there's no need to read it in again. */
5515 info_ptr += cu->header.first_die_offset.cu_off;
5516 }
5517 else
5518 {
5519 if (this_cu->is_debug_types)
5520 {
5521 ULONGEST signature;
5522 cu_offset type_offset_in_tu;
5523
5524 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5525 abbrev_section, info_ptr,
5526 &signature,
5527 &type_offset_in_tu);
5528
5529 /* Since per_cu is the first member of struct signatured_type,
5530 we can go from a pointer to one to a pointer to the other. */
5531 sig_type = (struct signatured_type *) this_cu;
5532 gdb_assert (sig_type->signature == signature);
5533 gdb_assert (sig_type->type_offset_in_tu.cu_off
5534 == type_offset_in_tu.cu_off);
5535 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5536
5537 /* LENGTH has not been set yet for type units if we're
5538 using .gdb_index. */
5539 this_cu->length = get_cu_length (&cu->header);
5540
5541 /* Establish the type offset that can be used to lookup the type. */
5542 sig_type->type_offset_in_section.sect_off =
5543 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5544 }
5545 else
5546 {
5547 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5548 abbrev_section,
5549 info_ptr, 0);
5550
5551 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5552 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5553 }
5554 }
5555
5556 /* Skip dummy compilation units. */
5557 if (info_ptr >= begin_info_ptr + this_cu->length
5558 || peek_abbrev_code (abfd, info_ptr) == 0)
5559 {
5560 do_cleanups (cleanups);
5561 return;
5562 }
5563
5564 /* If we don't have them yet, read the abbrevs for this compilation unit.
5565 And if we need to read them now, make sure they're freed when we're
5566 done. Note that it's important that if the CU had an abbrev table
5567 on entry we don't free it when we're done: Somewhere up the call stack
5568 it may be in use. */
5569 if (abbrev_table != NULL)
5570 {
5571 gdb_assert (cu->abbrev_table == NULL);
5572 gdb_assert (cu->header.abbrev_offset.sect_off
5573 == abbrev_table->offset.sect_off);
5574 cu->abbrev_table = abbrev_table;
5575 }
5576 else if (cu->abbrev_table == NULL)
5577 {
5578 dwarf2_read_abbrevs (cu, abbrev_section);
5579 make_cleanup (dwarf2_free_abbrev_table, cu);
5580 }
5581 else if (rereading_dwo_cu)
5582 {
5583 dwarf2_free_abbrev_table (cu);
5584 dwarf2_read_abbrevs (cu, abbrev_section);
5585 }
5586
5587 /* Read the top level CU/TU die. */
5588 init_cu_die_reader (&reader, cu, section, NULL);
5589 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5590
5591 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5592 from the DWO file.
5593 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5594 DWO CU, that this test will fail (the attribute will not be present). */
5595 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5596 if (attr)
5597 {
5598 struct dwo_unit *dwo_unit;
5599 struct die_info *dwo_comp_unit_die;
5600
5601 if (has_children)
5602 {
5603 complaint (&symfile_complaints,
5604 _("compilation unit with DW_AT_GNU_dwo_name"
5605 " has children (offset 0x%x) [in module %s]"),
5606 this_cu->offset.sect_off, bfd_get_filename (abfd));
5607 }
5608 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5609 if (dwo_unit != NULL)
5610 {
5611 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5612 abbrev_table != NULL,
5613 comp_unit_die, NULL,
5614 &reader, &info_ptr,
5615 &dwo_comp_unit_die, &has_children) == 0)
5616 {
5617 /* Dummy die. */
5618 do_cleanups (cleanups);
5619 return;
5620 }
5621 comp_unit_die = dwo_comp_unit_die;
5622 }
5623 else
5624 {
5625 /* Yikes, we couldn't find the rest of the DIE, we only have
5626 the stub. A complaint has already been logged. There's
5627 not much more we can do except pass on the stub DIE to
5628 die_reader_func. We don't want to throw an error on bad
5629 debug info. */
5630 }
5631 }
5632
5633 /* All of the above is setup for this call. Yikes. */
5634 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5635
5636 /* Done, clean up. */
5637 if (free_cu_cleanup != NULL)
5638 {
5639 if (keep)
5640 {
5641 /* We've successfully allocated this compilation unit. Let our
5642 caller clean it up when finished with it. */
5643 discard_cleanups (free_cu_cleanup);
5644
5645 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5646 So we have to manually free the abbrev table. */
5647 dwarf2_free_abbrev_table (cu);
5648
5649 /* Link this CU into read_in_chain. */
5650 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5651 dwarf2_per_objfile->read_in_chain = this_cu;
5652 }
5653 else
5654 do_cleanups (free_cu_cleanup);
5655 }
5656
5657 do_cleanups (cleanups);
5658 }
5659
5660 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5661 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5662 to have already done the lookup to find the DWO file).
5663
5664 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5665 THIS_CU->is_debug_types, but nothing else.
5666
5667 We fill in THIS_CU->length.
5668
5669 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5670 linker) then DIE_READER_FUNC will not get called.
5671
5672 THIS_CU->cu is always freed when done.
5673 This is done in order to not leave THIS_CU->cu in a state where we have
5674 to care whether it refers to the "main" CU or the DWO CU. */
5675
5676 static void
5677 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5678 struct dwo_file *dwo_file,
5679 die_reader_func_ftype *die_reader_func,
5680 void *data)
5681 {
5682 struct objfile *objfile = dwarf2_per_objfile->objfile;
5683 struct dwarf2_section_info *section = this_cu->section;
5684 bfd *abfd = get_section_bfd_owner (section);
5685 struct dwarf2_section_info *abbrev_section;
5686 struct dwarf2_cu cu;
5687 const gdb_byte *begin_info_ptr, *info_ptr;
5688 struct die_reader_specs reader;
5689 struct cleanup *cleanups;
5690 struct die_info *comp_unit_die;
5691 int has_children;
5692
5693 if (dwarf_die_debug)
5694 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5695 this_cu->is_debug_types ? "type" : "comp",
5696 this_cu->offset.sect_off);
5697
5698 gdb_assert (this_cu->cu == NULL);
5699
5700 abbrev_section = (dwo_file != NULL
5701 ? &dwo_file->sections.abbrev
5702 : get_abbrev_section_for_cu (this_cu));
5703
5704 /* This is cheap if the section is already read in. */
5705 dwarf2_read_section (objfile, section);
5706
5707 init_one_comp_unit (&cu, this_cu);
5708
5709 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5710
5711 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5712 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5713 abbrev_section, info_ptr,
5714 this_cu->is_debug_types);
5715
5716 this_cu->length = get_cu_length (&cu.header);
5717
5718 /* Skip dummy compilation units. */
5719 if (info_ptr >= begin_info_ptr + this_cu->length
5720 || peek_abbrev_code (abfd, info_ptr) == 0)
5721 {
5722 do_cleanups (cleanups);
5723 return;
5724 }
5725
5726 dwarf2_read_abbrevs (&cu, abbrev_section);
5727 make_cleanup (dwarf2_free_abbrev_table, &cu);
5728
5729 init_cu_die_reader (&reader, &cu, section, dwo_file);
5730 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5731
5732 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5733
5734 do_cleanups (cleanups);
5735 }
5736
5737 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5738 does not lookup the specified DWO file.
5739 This cannot be used to read DWO files.
5740
5741 THIS_CU->cu is always freed when done.
5742 This is done in order to not leave THIS_CU->cu in a state where we have
5743 to care whether it refers to the "main" CU or the DWO CU.
5744 We can revisit this if the data shows there's a performance issue. */
5745
5746 static void
5747 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5748 die_reader_func_ftype *die_reader_func,
5749 void *data)
5750 {
5751 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5752 }
5753 \f
5754 /* Type Unit Groups.
5755
5756 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5757 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5758 so that all types coming from the same compilation (.o file) are grouped
5759 together. A future step could be to put the types in the same symtab as
5760 the CU the types ultimately came from. */
5761
5762 static hashval_t
5763 hash_type_unit_group (const void *item)
5764 {
5765 const struct type_unit_group *tu_group
5766 = (const struct type_unit_group *) item;
5767
5768 return hash_stmt_list_entry (&tu_group->hash);
5769 }
5770
5771 static int
5772 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5773 {
5774 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5775 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5776
5777 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5778 }
5779
5780 /* Allocate a hash table for type unit groups. */
5781
5782 static htab_t
5783 allocate_type_unit_groups_table (void)
5784 {
5785 return htab_create_alloc_ex (3,
5786 hash_type_unit_group,
5787 eq_type_unit_group,
5788 NULL,
5789 &dwarf2_per_objfile->objfile->objfile_obstack,
5790 hashtab_obstack_allocate,
5791 dummy_obstack_deallocate);
5792 }
5793
5794 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5795 partial symtabs. We combine several TUs per psymtab to not let the size
5796 of any one psymtab grow too big. */
5797 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5798 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5799
5800 /* Helper routine for get_type_unit_group.
5801 Create the type_unit_group object used to hold one or more TUs. */
5802
5803 static struct type_unit_group *
5804 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5805 {
5806 struct objfile *objfile = dwarf2_per_objfile->objfile;
5807 struct dwarf2_per_cu_data *per_cu;
5808 struct type_unit_group *tu_group;
5809
5810 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5811 struct type_unit_group);
5812 per_cu = &tu_group->per_cu;
5813 per_cu->objfile = objfile;
5814
5815 if (dwarf2_per_objfile->using_index)
5816 {
5817 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5818 struct dwarf2_per_cu_quick_data);
5819 }
5820 else
5821 {
5822 unsigned int line_offset = line_offset_struct.sect_off;
5823 struct partial_symtab *pst;
5824 char *name;
5825
5826 /* Give the symtab a useful name for debug purposes. */
5827 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5828 name = xstrprintf ("<type_units_%d>",
5829 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5830 else
5831 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5832
5833 pst = create_partial_symtab (per_cu, name);
5834 pst->anonymous = 1;
5835
5836 xfree (name);
5837 }
5838
5839 tu_group->hash.dwo_unit = cu->dwo_unit;
5840 tu_group->hash.line_offset = line_offset_struct;
5841
5842 return tu_group;
5843 }
5844
5845 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5846 STMT_LIST is a DW_AT_stmt_list attribute. */
5847
5848 static struct type_unit_group *
5849 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5850 {
5851 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5852 struct type_unit_group *tu_group;
5853 void **slot;
5854 unsigned int line_offset;
5855 struct type_unit_group type_unit_group_for_lookup;
5856
5857 if (dwarf2_per_objfile->type_unit_groups == NULL)
5858 {
5859 dwarf2_per_objfile->type_unit_groups =
5860 allocate_type_unit_groups_table ();
5861 }
5862
5863 /* Do we need to create a new group, or can we use an existing one? */
5864
5865 if (stmt_list)
5866 {
5867 line_offset = DW_UNSND (stmt_list);
5868 ++tu_stats->nr_symtab_sharers;
5869 }
5870 else
5871 {
5872 /* Ugh, no stmt_list. Rare, but we have to handle it.
5873 We can do various things here like create one group per TU or
5874 spread them over multiple groups to split up the expansion work.
5875 To avoid worst case scenarios (too many groups or too large groups)
5876 we, umm, group them in bunches. */
5877 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5878 | (tu_stats->nr_stmt_less_type_units
5879 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5880 ++tu_stats->nr_stmt_less_type_units;
5881 }
5882
5883 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5884 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5885 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5886 &type_unit_group_for_lookup, INSERT);
5887 if (*slot != NULL)
5888 {
5889 tu_group = (struct type_unit_group *) *slot;
5890 gdb_assert (tu_group != NULL);
5891 }
5892 else
5893 {
5894 sect_offset line_offset_struct;
5895
5896 line_offset_struct.sect_off = line_offset;
5897 tu_group = create_type_unit_group (cu, line_offset_struct);
5898 *slot = tu_group;
5899 ++tu_stats->nr_symtabs;
5900 }
5901
5902 return tu_group;
5903 }
5904 \f
5905 /* Partial symbol tables. */
5906
5907 /* Create a psymtab named NAME and assign it to PER_CU.
5908
5909 The caller must fill in the following details:
5910 dirname, textlow, texthigh. */
5911
5912 static struct partial_symtab *
5913 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5914 {
5915 struct objfile *objfile = per_cu->objfile;
5916 struct partial_symtab *pst;
5917
5918 pst = start_psymtab_common (objfile, name, 0,
5919 objfile->global_psymbols.next,
5920 objfile->static_psymbols.next);
5921
5922 pst->psymtabs_addrmap_supported = 1;
5923
5924 /* This is the glue that links PST into GDB's symbol API. */
5925 pst->read_symtab_private = per_cu;
5926 pst->read_symtab = dwarf2_read_symtab;
5927 per_cu->v.psymtab = pst;
5928
5929 return pst;
5930 }
5931
5932 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5933 type. */
5934
5935 struct process_psymtab_comp_unit_data
5936 {
5937 /* True if we are reading a DW_TAG_partial_unit. */
5938
5939 int want_partial_unit;
5940
5941 /* The "pretend" language that is used if the CU doesn't declare a
5942 language. */
5943
5944 enum language pretend_language;
5945 };
5946
5947 /* die_reader_func for process_psymtab_comp_unit. */
5948
5949 static void
5950 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5951 const gdb_byte *info_ptr,
5952 struct die_info *comp_unit_die,
5953 int has_children,
5954 void *data)
5955 {
5956 struct dwarf2_cu *cu = reader->cu;
5957 struct objfile *objfile = cu->objfile;
5958 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5959 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5960 CORE_ADDR baseaddr;
5961 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5962 struct partial_symtab *pst;
5963 enum pc_bounds_kind cu_bounds_kind;
5964 const char *filename;
5965 struct process_psymtab_comp_unit_data *info
5966 = (struct process_psymtab_comp_unit_data *) data;
5967
5968 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5969 return;
5970
5971 gdb_assert (! per_cu->is_debug_types);
5972
5973 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5974
5975 cu->list_in_scope = &file_symbols;
5976
5977 /* Allocate a new partial symbol table structure. */
5978 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5979 if (filename == NULL)
5980 filename = "";
5981
5982 pst = create_partial_symtab (per_cu, filename);
5983
5984 /* This must be done before calling dwarf2_build_include_psymtabs. */
5985 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5986
5987 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5988
5989 dwarf2_find_base_address (comp_unit_die, cu);
5990
5991 /* Possibly set the default values of LOWPC and HIGHPC from
5992 `DW_AT_ranges'. */
5993 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5994 &best_highpc, cu, pst);
5995 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
5996 /* Store the contiguous range if it is not empty; it can be empty for
5997 CUs with no code. */
5998 addrmap_set_empty (objfile->psymtabs_addrmap,
5999 gdbarch_adjust_dwarf2_addr (gdbarch,
6000 best_lowpc + baseaddr),
6001 gdbarch_adjust_dwarf2_addr (gdbarch,
6002 best_highpc + baseaddr) - 1,
6003 pst);
6004
6005 /* Check if comp unit has_children.
6006 If so, read the rest of the partial symbols from this comp unit.
6007 If not, there's no more debug_info for this comp unit. */
6008 if (has_children)
6009 {
6010 struct partial_die_info *first_die;
6011 CORE_ADDR lowpc, highpc;
6012
6013 lowpc = ((CORE_ADDR) -1);
6014 highpc = ((CORE_ADDR) 0);
6015
6016 first_die = load_partial_dies (reader, info_ptr, 1);
6017
6018 scan_partial_symbols (first_die, &lowpc, &highpc,
6019 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6020
6021 /* If we didn't find a lowpc, set it to highpc to avoid
6022 complaints from `maint check'. */
6023 if (lowpc == ((CORE_ADDR) -1))
6024 lowpc = highpc;
6025
6026 /* If the compilation unit didn't have an explicit address range,
6027 then use the information extracted from its child dies. */
6028 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6029 {
6030 best_lowpc = lowpc;
6031 best_highpc = highpc;
6032 }
6033 }
6034 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6035 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6036
6037 end_psymtab_common (objfile, pst);
6038
6039 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6040 {
6041 int i;
6042 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6043 struct dwarf2_per_cu_data *iter;
6044
6045 /* Fill in 'dependencies' here; we fill in 'users' in a
6046 post-pass. */
6047 pst->number_of_dependencies = len;
6048 pst->dependencies =
6049 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6050 for (i = 0;
6051 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6052 i, iter);
6053 ++i)
6054 pst->dependencies[i] = iter->v.psymtab;
6055
6056 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6057 }
6058
6059 /* Get the list of files included in the current compilation unit,
6060 and build a psymtab for each of them. */
6061 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6062
6063 if (dwarf_read_debug)
6064 {
6065 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6066
6067 fprintf_unfiltered (gdb_stdlog,
6068 "Psymtab for %s unit @0x%x: %s - %s"
6069 ", %d global, %d static syms\n",
6070 per_cu->is_debug_types ? "type" : "comp",
6071 per_cu->offset.sect_off,
6072 paddress (gdbarch, pst->textlow),
6073 paddress (gdbarch, pst->texthigh),
6074 pst->n_global_syms, pst->n_static_syms);
6075 }
6076 }
6077
6078 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6079 Process compilation unit THIS_CU for a psymtab. */
6080
6081 static void
6082 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6083 int want_partial_unit,
6084 enum language pretend_language)
6085 {
6086 struct process_psymtab_comp_unit_data info;
6087
6088 /* If this compilation unit was already read in, free the
6089 cached copy in order to read it in again. This is
6090 necessary because we skipped some symbols when we first
6091 read in the compilation unit (see load_partial_dies).
6092 This problem could be avoided, but the benefit is unclear. */
6093 if (this_cu->cu != NULL)
6094 free_one_cached_comp_unit (this_cu);
6095
6096 gdb_assert (! this_cu->is_debug_types);
6097 info.want_partial_unit = want_partial_unit;
6098 info.pretend_language = pretend_language;
6099 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6100 process_psymtab_comp_unit_reader,
6101 &info);
6102
6103 /* Age out any secondary CUs. */
6104 age_cached_comp_units ();
6105 }
6106
6107 /* Reader function for build_type_psymtabs. */
6108
6109 static void
6110 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6111 const gdb_byte *info_ptr,
6112 struct die_info *type_unit_die,
6113 int has_children,
6114 void *data)
6115 {
6116 struct objfile *objfile = dwarf2_per_objfile->objfile;
6117 struct dwarf2_cu *cu = reader->cu;
6118 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6119 struct signatured_type *sig_type;
6120 struct type_unit_group *tu_group;
6121 struct attribute *attr;
6122 struct partial_die_info *first_die;
6123 CORE_ADDR lowpc, highpc;
6124 struct partial_symtab *pst;
6125
6126 gdb_assert (data == NULL);
6127 gdb_assert (per_cu->is_debug_types);
6128 sig_type = (struct signatured_type *) per_cu;
6129
6130 if (! has_children)
6131 return;
6132
6133 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6134 tu_group = get_type_unit_group (cu, attr);
6135
6136 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6137
6138 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6139 cu->list_in_scope = &file_symbols;
6140 pst = create_partial_symtab (per_cu, "");
6141 pst->anonymous = 1;
6142
6143 first_die = load_partial_dies (reader, info_ptr, 1);
6144
6145 lowpc = (CORE_ADDR) -1;
6146 highpc = (CORE_ADDR) 0;
6147 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6148
6149 end_psymtab_common (objfile, pst);
6150 }
6151
6152 /* Struct used to sort TUs by their abbreviation table offset. */
6153
6154 struct tu_abbrev_offset
6155 {
6156 struct signatured_type *sig_type;
6157 sect_offset abbrev_offset;
6158 };
6159
6160 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6161
6162 static int
6163 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6164 {
6165 const struct tu_abbrev_offset * const *a
6166 = (const struct tu_abbrev_offset * const*) ap;
6167 const struct tu_abbrev_offset * const *b
6168 = (const struct tu_abbrev_offset * const*) bp;
6169 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6170 unsigned int boff = (*b)->abbrev_offset.sect_off;
6171
6172 return (aoff > boff) - (aoff < boff);
6173 }
6174
6175 /* Efficiently read all the type units.
6176 This does the bulk of the work for build_type_psymtabs.
6177
6178 The efficiency is because we sort TUs by the abbrev table they use and
6179 only read each abbrev table once. In one program there are 200K TUs
6180 sharing 8K abbrev tables.
6181
6182 The main purpose of this function is to support building the
6183 dwarf2_per_objfile->type_unit_groups table.
6184 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6185 can collapse the search space by grouping them by stmt_list.
6186 The savings can be significant, in the same program from above the 200K TUs
6187 share 8K stmt_list tables.
6188
6189 FUNC is expected to call get_type_unit_group, which will create the
6190 struct type_unit_group if necessary and add it to
6191 dwarf2_per_objfile->type_unit_groups. */
6192
6193 static void
6194 build_type_psymtabs_1 (void)
6195 {
6196 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6197 struct cleanup *cleanups;
6198 struct abbrev_table *abbrev_table;
6199 sect_offset abbrev_offset;
6200 struct tu_abbrev_offset *sorted_by_abbrev;
6201 int i;
6202
6203 /* It's up to the caller to not call us multiple times. */
6204 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6205
6206 if (dwarf2_per_objfile->n_type_units == 0)
6207 return;
6208
6209 /* TUs typically share abbrev tables, and there can be way more TUs than
6210 abbrev tables. Sort by abbrev table to reduce the number of times we
6211 read each abbrev table in.
6212 Alternatives are to punt or to maintain a cache of abbrev tables.
6213 This is simpler and efficient enough for now.
6214
6215 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6216 symtab to use). Typically TUs with the same abbrev offset have the same
6217 stmt_list value too so in practice this should work well.
6218
6219 The basic algorithm here is:
6220
6221 sort TUs by abbrev table
6222 for each TU with same abbrev table:
6223 read abbrev table if first user
6224 read TU top level DIE
6225 [IWBN if DWO skeletons had DW_AT_stmt_list]
6226 call FUNC */
6227
6228 if (dwarf_read_debug)
6229 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6230
6231 /* Sort in a separate table to maintain the order of all_type_units
6232 for .gdb_index: TU indices directly index all_type_units. */
6233 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6234 dwarf2_per_objfile->n_type_units);
6235 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6236 {
6237 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6238
6239 sorted_by_abbrev[i].sig_type = sig_type;
6240 sorted_by_abbrev[i].abbrev_offset =
6241 read_abbrev_offset (sig_type->per_cu.section,
6242 sig_type->per_cu.offset);
6243 }
6244 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6245 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6246 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6247
6248 abbrev_offset.sect_off = ~(unsigned) 0;
6249 abbrev_table = NULL;
6250 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6251
6252 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6253 {
6254 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6255
6256 /* Switch to the next abbrev table if necessary. */
6257 if (abbrev_table == NULL
6258 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6259 {
6260 if (abbrev_table != NULL)
6261 {
6262 abbrev_table_free (abbrev_table);
6263 /* Reset to NULL in case abbrev_table_read_table throws
6264 an error: abbrev_table_free_cleanup will get called. */
6265 abbrev_table = NULL;
6266 }
6267 abbrev_offset = tu->abbrev_offset;
6268 abbrev_table =
6269 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6270 abbrev_offset);
6271 ++tu_stats->nr_uniq_abbrev_tables;
6272 }
6273
6274 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6275 build_type_psymtabs_reader, NULL);
6276 }
6277
6278 do_cleanups (cleanups);
6279 }
6280
6281 /* Print collected type unit statistics. */
6282
6283 static void
6284 print_tu_stats (void)
6285 {
6286 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6287
6288 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6289 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6290 dwarf2_per_objfile->n_type_units);
6291 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6292 tu_stats->nr_uniq_abbrev_tables);
6293 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6294 tu_stats->nr_symtabs);
6295 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6296 tu_stats->nr_symtab_sharers);
6297 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6298 tu_stats->nr_stmt_less_type_units);
6299 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6300 tu_stats->nr_all_type_units_reallocs);
6301 }
6302
6303 /* Traversal function for build_type_psymtabs. */
6304
6305 static int
6306 build_type_psymtab_dependencies (void **slot, void *info)
6307 {
6308 struct objfile *objfile = dwarf2_per_objfile->objfile;
6309 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6310 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6311 struct partial_symtab *pst = per_cu->v.psymtab;
6312 int len = VEC_length (sig_type_ptr, tu_group->tus);
6313 struct signatured_type *iter;
6314 int i;
6315
6316 gdb_assert (len > 0);
6317 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6318
6319 pst->number_of_dependencies = len;
6320 pst->dependencies =
6321 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6322 for (i = 0;
6323 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6324 ++i)
6325 {
6326 gdb_assert (iter->per_cu.is_debug_types);
6327 pst->dependencies[i] = iter->per_cu.v.psymtab;
6328 iter->type_unit_group = tu_group;
6329 }
6330
6331 VEC_free (sig_type_ptr, tu_group->tus);
6332
6333 return 1;
6334 }
6335
6336 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6337 Build partial symbol tables for the .debug_types comp-units. */
6338
6339 static void
6340 build_type_psymtabs (struct objfile *objfile)
6341 {
6342 if (! create_all_type_units (objfile))
6343 return;
6344
6345 build_type_psymtabs_1 ();
6346 }
6347
6348 /* Traversal function for process_skeletonless_type_unit.
6349 Read a TU in a DWO file and build partial symbols for it. */
6350
6351 static int
6352 process_skeletonless_type_unit (void **slot, void *info)
6353 {
6354 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6355 struct objfile *objfile = (struct objfile *) info;
6356 struct signatured_type find_entry, *entry;
6357
6358 /* If this TU doesn't exist in the global table, add it and read it in. */
6359
6360 if (dwarf2_per_objfile->signatured_types == NULL)
6361 {
6362 dwarf2_per_objfile->signatured_types
6363 = allocate_signatured_type_table (objfile);
6364 }
6365
6366 find_entry.signature = dwo_unit->signature;
6367 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6368 INSERT);
6369 /* If we've already seen this type there's nothing to do. What's happening
6370 is we're doing our own version of comdat-folding here. */
6371 if (*slot != NULL)
6372 return 1;
6373
6374 /* This does the job that create_all_type_units would have done for
6375 this TU. */
6376 entry = add_type_unit (dwo_unit->signature, slot);
6377 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6378 *slot = entry;
6379
6380 /* This does the job that build_type_psymtabs_1 would have done. */
6381 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6382 build_type_psymtabs_reader, NULL);
6383
6384 return 1;
6385 }
6386
6387 /* Traversal function for process_skeletonless_type_units. */
6388
6389 static int
6390 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6391 {
6392 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6393
6394 if (dwo_file->tus != NULL)
6395 {
6396 htab_traverse_noresize (dwo_file->tus,
6397 process_skeletonless_type_unit, info);
6398 }
6399
6400 return 1;
6401 }
6402
6403 /* Scan all TUs of DWO files, verifying we've processed them.
6404 This is needed in case a TU was emitted without its skeleton.
6405 Note: This can't be done until we know what all the DWO files are. */
6406
6407 static void
6408 process_skeletonless_type_units (struct objfile *objfile)
6409 {
6410 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6411 if (get_dwp_file () == NULL
6412 && dwarf2_per_objfile->dwo_files != NULL)
6413 {
6414 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6415 process_dwo_file_for_skeletonless_type_units,
6416 objfile);
6417 }
6418 }
6419
6420 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6421
6422 static void
6423 psymtabs_addrmap_cleanup (void *o)
6424 {
6425 struct objfile *objfile = (struct objfile *) o;
6426
6427 objfile->psymtabs_addrmap = NULL;
6428 }
6429
6430 /* Compute the 'user' field for each psymtab in OBJFILE. */
6431
6432 static void
6433 set_partial_user (struct objfile *objfile)
6434 {
6435 int i;
6436
6437 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6438 {
6439 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6440 struct partial_symtab *pst = per_cu->v.psymtab;
6441 int j;
6442
6443 if (pst == NULL)
6444 continue;
6445
6446 for (j = 0; j < pst->number_of_dependencies; ++j)
6447 {
6448 /* Set the 'user' field only if it is not already set. */
6449 if (pst->dependencies[j]->user == NULL)
6450 pst->dependencies[j]->user = pst;
6451 }
6452 }
6453 }
6454
6455 /* Build the partial symbol table by doing a quick pass through the
6456 .debug_info and .debug_abbrev sections. */
6457
6458 static void
6459 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6460 {
6461 struct cleanup *back_to, *addrmap_cleanup;
6462 struct obstack temp_obstack;
6463 int i;
6464
6465 if (dwarf_read_debug)
6466 {
6467 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6468 objfile_name (objfile));
6469 }
6470
6471 dwarf2_per_objfile->reading_partial_symbols = 1;
6472
6473 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6474
6475 /* Any cached compilation units will be linked by the per-objfile
6476 read_in_chain. Make sure to free them when we're done. */
6477 back_to = make_cleanup (free_cached_comp_units, NULL);
6478
6479 build_type_psymtabs (objfile);
6480
6481 create_all_comp_units (objfile);
6482
6483 /* Create a temporary address map on a temporary obstack. We later
6484 copy this to the final obstack. */
6485 obstack_init (&temp_obstack);
6486 make_cleanup_obstack_free (&temp_obstack);
6487 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6488 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6489
6490 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6491 {
6492 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6493
6494 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6495 }
6496
6497 /* This has to wait until we read the CUs, we need the list of DWOs. */
6498 process_skeletonless_type_units (objfile);
6499
6500 /* Now that all TUs have been processed we can fill in the dependencies. */
6501 if (dwarf2_per_objfile->type_unit_groups != NULL)
6502 {
6503 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6504 build_type_psymtab_dependencies, NULL);
6505 }
6506
6507 if (dwarf_read_debug)
6508 print_tu_stats ();
6509
6510 set_partial_user (objfile);
6511
6512 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6513 &objfile->objfile_obstack);
6514 discard_cleanups (addrmap_cleanup);
6515
6516 do_cleanups (back_to);
6517
6518 if (dwarf_read_debug)
6519 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6520 objfile_name (objfile));
6521 }
6522
6523 /* die_reader_func for load_partial_comp_unit. */
6524
6525 static void
6526 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6527 const gdb_byte *info_ptr,
6528 struct die_info *comp_unit_die,
6529 int has_children,
6530 void *data)
6531 {
6532 struct dwarf2_cu *cu = reader->cu;
6533
6534 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6535
6536 /* Check if comp unit has_children.
6537 If so, read the rest of the partial symbols from this comp unit.
6538 If not, there's no more debug_info for this comp unit. */
6539 if (has_children)
6540 load_partial_dies (reader, info_ptr, 0);
6541 }
6542
6543 /* Load the partial DIEs for a secondary CU into memory.
6544 This is also used when rereading a primary CU with load_all_dies. */
6545
6546 static void
6547 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6548 {
6549 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6550 load_partial_comp_unit_reader, NULL);
6551 }
6552
6553 static void
6554 read_comp_units_from_section (struct objfile *objfile,
6555 struct dwarf2_section_info *section,
6556 unsigned int is_dwz,
6557 int *n_allocated,
6558 int *n_comp_units,
6559 struct dwarf2_per_cu_data ***all_comp_units)
6560 {
6561 const gdb_byte *info_ptr;
6562 bfd *abfd = get_section_bfd_owner (section);
6563
6564 if (dwarf_read_debug)
6565 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6566 get_section_name (section),
6567 get_section_file_name (section));
6568
6569 dwarf2_read_section (objfile, section);
6570
6571 info_ptr = section->buffer;
6572
6573 while (info_ptr < section->buffer + section->size)
6574 {
6575 unsigned int length, initial_length_size;
6576 struct dwarf2_per_cu_data *this_cu;
6577 sect_offset offset;
6578
6579 offset.sect_off = info_ptr - section->buffer;
6580
6581 /* Read just enough information to find out where the next
6582 compilation unit is. */
6583 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6584
6585 /* Save the compilation unit for later lookup. */
6586 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6587 memset (this_cu, 0, sizeof (*this_cu));
6588 this_cu->offset = offset;
6589 this_cu->length = length + initial_length_size;
6590 this_cu->is_dwz = is_dwz;
6591 this_cu->objfile = objfile;
6592 this_cu->section = section;
6593
6594 if (*n_comp_units == *n_allocated)
6595 {
6596 *n_allocated *= 2;
6597 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6598 *all_comp_units, *n_allocated);
6599 }
6600 (*all_comp_units)[*n_comp_units] = this_cu;
6601 ++*n_comp_units;
6602
6603 info_ptr = info_ptr + this_cu->length;
6604 }
6605 }
6606
6607 /* Create a list of all compilation units in OBJFILE.
6608 This is only done for -readnow and building partial symtabs. */
6609
6610 static void
6611 create_all_comp_units (struct objfile *objfile)
6612 {
6613 int n_allocated;
6614 int n_comp_units;
6615 struct dwarf2_per_cu_data **all_comp_units;
6616 struct dwz_file *dwz;
6617
6618 n_comp_units = 0;
6619 n_allocated = 10;
6620 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6621
6622 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6623 &n_allocated, &n_comp_units, &all_comp_units);
6624
6625 dwz = dwarf2_get_dwz_file ();
6626 if (dwz != NULL)
6627 read_comp_units_from_section (objfile, &dwz->info, 1,
6628 &n_allocated, &n_comp_units,
6629 &all_comp_units);
6630
6631 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6632 struct dwarf2_per_cu_data *,
6633 n_comp_units);
6634 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6635 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6636 xfree (all_comp_units);
6637 dwarf2_per_objfile->n_comp_units = n_comp_units;
6638 }
6639
6640 /* Process all loaded DIEs for compilation unit CU, starting at
6641 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6642 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6643 DW_AT_ranges). See the comments of add_partial_subprogram on how
6644 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6645
6646 static void
6647 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6648 CORE_ADDR *highpc, int set_addrmap,
6649 struct dwarf2_cu *cu)
6650 {
6651 struct partial_die_info *pdi;
6652
6653 /* Now, march along the PDI's, descending into ones which have
6654 interesting children but skipping the children of the other ones,
6655 until we reach the end of the compilation unit. */
6656
6657 pdi = first_die;
6658
6659 while (pdi != NULL)
6660 {
6661 fixup_partial_die (pdi, cu);
6662
6663 /* Anonymous namespaces or modules have no name but have interesting
6664 children, so we need to look at them. Ditto for anonymous
6665 enums. */
6666
6667 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6668 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6669 || pdi->tag == DW_TAG_imported_unit)
6670 {
6671 switch (pdi->tag)
6672 {
6673 case DW_TAG_subprogram:
6674 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6675 break;
6676 case DW_TAG_constant:
6677 case DW_TAG_variable:
6678 case DW_TAG_typedef:
6679 case DW_TAG_union_type:
6680 if (!pdi->is_declaration)
6681 {
6682 add_partial_symbol (pdi, cu);
6683 }
6684 break;
6685 case DW_TAG_class_type:
6686 case DW_TAG_interface_type:
6687 case DW_TAG_structure_type:
6688 if (!pdi->is_declaration)
6689 {
6690 add_partial_symbol (pdi, cu);
6691 }
6692 if (cu->language == language_rust && pdi->has_children)
6693 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6694 set_addrmap, cu);
6695 break;
6696 case DW_TAG_enumeration_type:
6697 if (!pdi->is_declaration)
6698 add_partial_enumeration (pdi, cu);
6699 break;
6700 case DW_TAG_base_type:
6701 case DW_TAG_subrange_type:
6702 /* File scope base type definitions are added to the partial
6703 symbol table. */
6704 add_partial_symbol (pdi, cu);
6705 break;
6706 case DW_TAG_namespace:
6707 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6708 break;
6709 case DW_TAG_module:
6710 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6711 break;
6712 case DW_TAG_imported_unit:
6713 {
6714 struct dwarf2_per_cu_data *per_cu;
6715
6716 /* For now we don't handle imported units in type units. */
6717 if (cu->per_cu->is_debug_types)
6718 {
6719 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6720 " supported in type units [in module %s]"),
6721 objfile_name (cu->objfile));
6722 }
6723
6724 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6725 pdi->is_dwz,
6726 cu->objfile);
6727
6728 /* Go read the partial unit, if needed. */
6729 if (per_cu->v.psymtab == NULL)
6730 process_psymtab_comp_unit (per_cu, 1, cu->language);
6731
6732 VEC_safe_push (dwarf2_per_cu_ptr,
6733 cu->per_cu->imported_symtabs, per_cu);
6734 }
6735 break;
6736 case DW_TAG_imported_declaration:
6737 add_partial_symbol (pdi, cu);
6738 break;
6739 default:
6740 break;
6741 }
6742 }
6743
6744 /* If the die has a sibling, skip to the sibling. */
6745
6746 pdi = pdi->die_sibling;
6747 }
6748 }
6749
6750 /* Functions used to compute the fully scoped name of a partial DIE.
6751
6752 Normally, this is simple. For C++, the parent DIE's fully scoped
6753 name is concatenated with "::" and the partial DIE's name.
6754 Enumerators are an exception; they use the scope of their parent
6755 enumeration type, i.e. the name of the enumeration type is not
6756 prepended to the enumerator.
6757
6758 There are two complexities. One is DW_AT_specification; in this
6759 case "parent" means the parent of the target of the specification,
6760 instead of the direct parent of the DIE. The other is compilers
6761 which do not emit DW_TAG_namespace; in this case we try to guess
6762 the fully qualified name of structure types from their members'
6763 linkage names. This must be done using the DIE's children rather
6764 than the children of any DW_AT_specification target. We only need
6765 to do this for structures at the top level, i.e. if the target of
6766 any DW_AT_specification (if any; otherwise the DIE itself) does not
6767 have a parent. */
6768
6769 /* Compute the scope prefix associated with PDI's parent, in
6770 compilation unit CU. The result will be allocated on CU's
6771 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6772 field. NULL is returned if no prefix is necessary. */
6773 static const char *
6774 partial_die_parent_scope (struct partial_die_info *pdi,
6775 struct dwarf2_cu *cu)
6776 {
6777 const char *grandparent_scope;
6778 struct partial_die_info *parent, *real_pdi;
6779
6780 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6781 then this means the parent of the specification DIE. */
6782
6783 real_pdi = pdi;
6784 while (real_pdi->has_specification)
6785 real_pdi = find_partial_die (real_pdi->spec_offset,
6786 real_pdi->spec_is_dwz, cu);
6787
6788 parent = real_pdi->die_parent;
6789 if (parent == NULL)
6790 return NULL;
6791
6792 if (parent->scope_set)
6793 return parent->scope;
6794
6795 fixup_partial_die (parent, cu);
6796
6797 grandparent_scope = partial_die_parent_scope (parent, cu);
6798
6799 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6800 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6801 Work around this problem here. */
6802 if (cu->language == language_cplus
6803 && parent->tag == DW_TAG_namespace
6804 && strcmp (parent->name, "::") == 0
6805 && grandparent_scope == NULL)
6806 {
6807 parent->scope = NULL;
6808 parent->scope_set = 1;
6809 return NULL;
6810 }
6811
6812 if (pdi->tag == DW_TAG_enumerator)
6813 /* Enumerators should not get the name of the enumeration as a prefix. */
6814 parent->scope = grandparent_scope;
6815 else if (parent->tag == DW_TAG_namespace
6816 || parent->tag == DW_TAG_module
6817 || parent->tag == DW_TAG_structure_type
6818 || parent->tag == DW_TAG_class_type
6819 || parent->tag == DW_TAG_interface_type
6820 || parent->tag == DW_TAG_union_type
6821 || parent->tag == DW_TAG_enumeration_type)
6822 {
6823 if (grandparent_scope == NULL)
6824 parent->scope = parent->name;
6825 else
6826 parent->scope = typename_concat (&cu->comp_unit_obstack,
6827 grandparent_scope,
6828 parent->name, 0, cu);
6829 }
6830 else
6831 {
6832 /* FIXME drow/2004-04-01: What should we be doing with
6833 function-local names? For partial symbols, we should probably be
6834 ignoring them. */
6835 complaint (&symfile_complaints,
6836 _("unhandled containing DIE tag %d for DIE at %d"),
6837 parent->tag, pdi->offset.sect_off);
6838 parent->scope = grandparent_scope;
6839 }
6840
6841 parent->scope_set = 1;
6842 return parent->scope;
6843 }
6844
6845 /* Return the fully scoped name associated with PDI, from compilation unit
6846 CU. The result will be allocated with malloc. */
6847
6848 static char *
6849 partial_die_full_name (struct partial_die_info *pdi,
6850 struct dwarf2_cu *cu)
6851 {
6852 const char *parent_scope;
6853
6854 /* If this is a template instantiation, we can not work out the
6855 template arguments from partial DIEs. So, unfortunately, we have
6856 to go through the full DIEs. At least any work we do building
6857 types here will be reused if full symbols are loaded later. */
6858 if (pdi->has_template_arguments)
6859 {
6860 fixup_partial_die (pdi, cu);
6861
6862 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6863 {
6864 struct die_info *die;
6865 struct attribute attr;
6866 struct dwarf2_cu *ref_cu = cu;
6867
6868 /* DW_FORM_ref_addr is using section offset. */
6869 attr.name = (enum dwarf_attribute) 0;
6870 attr.form = DW_FORM_ref_addr;
6871 attr.u.unsnd = pdi->offset.sect_off;
6872 die = follow_die_ref (NULL, &attr, &ref_cu);
6873
6874 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6875 }
6876 }
6877
6878 parent_scope = partial_die_parent_scope (pdi, cu);
6879 if (parent_scope == NULL)
6880 return NULL;
6881 else
6882 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6883 }
6884
6885 static void
6886 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6887 {
6888 struct objfile *objfile = cu->objfile;
6889 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6890 CORE_ADDR addr = 0;
6891 const char *actual_name = NULL;
6892 CORE_ADDR baseaddr;
6893 char *built_actual_name;
6894
6895 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6896
6897 built_actual_name = partial_die_full_name (pdi, cu);
6898 if (built_actual_name != NULL)
6899 actual_name = built_actual_name;
6900
6901 if (actual_name == NULL)
6902 actual_name = pdi->name;
6903
6904 switch (pdi->tag)
6905 {
6906 case DW_TAG_subprogram:
6907 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6908 if (pdi->is_external || cu->language == language_ada)
6909 {
6910 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6911 of the global scope. But in Ada, we want to be able to access
6912 nested procedures globally. So all Ada subprograms are stored
6913 in the global scope. */
6914 add_psymbol_to_list (actual_name, strlen (actual_name),
6915 built_actual_name != NULL,
6916 VAR_DOMAIN, LOC_BLOCK,
6917 &objfile->global_psymbols,
6918 addr, cu->language, objfile);
6919 }
6920 else
6921 {
6922 add_psymbol_to_list (actual_name, strlen (actual_name),
6923 built_actual_name != NULL,
6924 VAR_DOMAIN, LOC_BLOCK,
6925 &objfile->static_psymbols,
6926 addr, cu->language, objfile);
6927 }
6928
6929 if (pdi->main_subprogram && actual_name != NULL)
6930 set_objfile_main_name (objfile, actual_name, cu->language);
6931 break;
6932 case DW_TAG_constant:
6933 {
6934 struct psymbol_allocation_list *list;
6935
6936 if (pdi->is_external)
6937 list = &objfile->global_psymbols;
6938 else
6939 list = &objfile->static_psymbols;
6940 add_psymbol_to_list (actual_name, strlen (actual_name),
6941 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6942 list, 0, cu->language, objfile);
6943 }
6944 break;
6945 case DW_TAG_variable:
6946 if (pdi->d.locdesc)
6947 addr = decode_locdesc (pdi->d.locdesc, cu);
6948
6949 if (pdi->d.locdesc
6950 && addr == 0
6951 && !dwarf2_per_objfile->has_section_at_zero)
6952 {
6953 /* A global or static variable may also have been stripped
6954 out by the linker if unused, in which case its address
6955 will be nullified; do not add such variables into partial
6956 symbol table then. */
6957 }
6958 else if (pdi->is_external)
6959 {
6960 /* Global Variable.
6961 Don't enter into the minimal symbol tables as there is
6962 a minimal symbol table entry from the ELF symbols already.
6963 Enter into partial symbol table if it has a location
6964 descriptor or a type.
6965 If the location descriptor is missing, new_symbol will create
6966 a LOC_UNRESOLVED symbol, the address of the variable will then
6967 be determined from the minimal symbol table whenever the variable
6968 is referenced.
6969 The address for the partial symbol table entry is not
6970 used by GDB, but it comes in handy for debugging partial symbol
6971 table building. */
6972
6973 if (pdi->d.locdesc || pdi->has_type)
6974 add_psymbol_to_list (actual_name, strlen (actual_name),
6975 built_actual_name != NULL,
6976 VAR_DOMAIN, LOC_STATIC,
6977 &objfile->global_psymbols,
6978 addr + baseaddr,
6979 cu->language, objfile);
6980 }
6981 else
6982 {
6983 int has_loc = pdi->d.locdesc != NULL;
6984
6985 /* Static Variable. Skip symbols whose value we cannot know (those
6986 without location descriptors or constant values). */
6987 if (!has_loc && !pdi->has_const_value)
6988 {
6989 xfree (built_actual_name);
6990 return;
6991 }
6992
6993 add_psymbol_to_list (actual_name, strlen (actual_name),
6994 built_actual_name != NULL,
6995 VAR_DOMAIN, LOC_STATIC,
6996 &objfile->static_psymbols,
6997 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6998 cu->language, objfile);
6999 }
7000 break;
7001 case DW_TAG_typedef:
7002 case DW_TAG_base_type:
7003 case DW_TAG_subrange_type:
7004 add_psymbol_to_list (actual_name, strlen (actual_name),
7005 built_actual_name != NULL,
7006 VAR_DOMAIN, LOC_TYPEDEF,
7007 &objfile->static_psymbols,
7008 0, cu->language, objfile);
7009 break;
7010 case DW_TAG_imported_declaration:
7011 case DW_TAG_namespace:
7012 add_psymbol_to_list (actual_name, strlen (actual_name),
7013 built_actual_name != NULL,
7014 VAR_DOMAIN, LOC_TYPEDEF,
7015 &objfile->global_psymbols,
7016 0, cu->language, objfile);
7017 break;
7018 case DW_TAG_module:
7019 add_psymbol_to_list (actual_name, strlen (actual_name),
7020 built_actual_name != NULL,
7021 MODULE_DOMAIN, LOC_TYPEDEF,
7022 &objfile->global_psymbols,
7023 0, cu->language, objfile);
7024 break;
7025 case DW_TAG_class_type:
7026 case DW_TAG_interface_type:
7027 case DW_TAG_structure_type:
7028 case DW_TAG_union_type:
7029 case DW_TAG_enumeration_type:
7030 /* Skip external references. The DWARF standard says in the section
7031 about "Structure, Union, and Class Type Entries": "An incomplete
7032 structure, union or class type is represented by a structure,
7033 union or class entry that does not have a byte size attribute
7034 and that has a DW_AT_declaration attribute." */
7035 if (!pdi->has_byte_size && pdi->is_declaration)
7036 {
7037 xfree (built_actual_name);
7038 return;
7039 }
7040
7041 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7042 static vs. global. */
7043 add_psymbol_to_list (actual_name, strlen (actual_name),
7044 built_actual_name != NULL,
7045 STRUCT_DOMAIN, LOC_TYPEDEF,
7046 cu->language == language_cplus
7047 ? &objfile->global_psymbols
7048 : &objfile->static_psymbols,
7049 0, cu->language, objfile);
7050
7051 break;
7052 case DW_TAG_enumerator:
7053 add_psymbol_to_list (actual_name, strlen (actual_name),
7054 built_actual_name != NULL,
7055 VAR_DOMAIN, LOC_CONST,
7056 cu->language == language_cplus
7057 ? &objfile->global_psymbols
7058 : &objfile->static_psymbols,
7059 0, cu->language, objfile);
7060 break;
7061 default:
7062 break;
7063 }
7064
7065 xfree (built_actual_name);
7066 }
7067
7068 /* Read a partial die corresponding to a namespace; also, add a symbol
7069 corresponding to that namespace to the symbol table. NAMESPACE is
7070 the name of the enclosing namespace. */
7071
7072 static void
7073 add_partial_namespace (struct partial_die_info *pdi,
7074 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7075 int set_addrmap, struct dwarf2_cu *cu)
7076 {
7077 /* Add a symbol for the namespace. */
7078
7079 add_partial_symbol (pdi, cu);
7080
7081 /* Now scan partial symbols in that namespace. */
7082
7083 if (pdi->has_children)
7084 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7085 }
7086
7087 /* Read a partial die corresponding to a Fortran module. */
7088
7089 static void
7090 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7091 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7092 {
7093 /* Add a symbol for the namespace. */
7094
7095 add_partial_symbol (pdi, cu);
7096
7097 /* Now scan partial symbols in that module. */
7098
7099 if (pdi->has_children)
7100 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7101 }
7102
7103 /* Read a partial die corresponding to a subprogram and create a partial
7104 symbol for that subprogram. When the CU language allows it, this
7105 routine also defines a partial symbol for each nested subprogram
7106 that this subprogram contains. If SET_ADDRMAP is true, record the
7107 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7108 and highest PC values found in PDI.
7109
7110 PDI may also be a lexical block, in which case we simply search
7111 recursively for subprograms defined inside that lexical block.
7112 Again, this is only performed when the CU language allows this
7113 type of definitions. */
7114
7115 static void
7116 add_partial_subprogram (struct partial_die_info *pdi,
7117 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7118 int set_addrmap, struct dwarf2_cu *cu)
7119 {
7120 if (pdi->tag == DW_TAG_subprogram)
7121 {
7122 if (pdi->has_pc_info)
7123 {
7124 if (pdi->lowpc < *lowpc)
7125 *lowpc = pdi->lowpc;
7126 if (pdi->highpc > *highpc)
7127 *highpc = pdi->highpc;
7128 if (set_addrmap)
7129 {
7130 struct objfile *objfile = cu->objfile;
7131 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7132 CORE_ADDR baseaddr;
7133 CORE_ADDR highpc;
7134 CORE_ADDR lowpc;
7135
7136 baseaddr = ANOFFSET (objfile->section_offsets,
7137 SECT_OFF_TEXT (objfile));
7138 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7139 pdi->lowpc + baseaddr);
7140 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7141 pdi->highpc + baseaddr);
7142 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7143 cu->per_cu->v.psymtab);
7144 }
7145 }
7146
7147 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7148 {
7149 if (!pdi->is_declaration)
7150 /* Ignore subprogram DIEs that do not have a name, they are
7151 illegal. Do not emit a complaint at this point, we will
7152 do so when we convert this psymtab into a symtab. */
7153 if (pdi->name)
7154 add_partial_symbol (pdi, cu);
7155 }
7156 }
7157
7158 if (! pdi->has_children)
7159 return;
7160
7161 if (cu->language == language_ada)
7162 {
7163 pdi = pdi->die_child;
7164 while (pdi != NULL)
7165 {
7166 fixup_partial_die (pdi, cu);
7167 if (pdi->tag == DW_TAG_subprogram
7168 || pdi->tag == DW_TAG_lexical_block)
7169 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7170 pdi = pdi->die_sibling;
7171 }
7172 }
7173 }
7174
7175 /* Read a partial die corresponding to an enumeration type. */
7176
7177 static void
7178 add_partial_enumeration (struct partial_die_info *enum_pdi,
7179 struct dwarf2_cu *cu)
7180 {
7181 struct partial_die_info *pdi;
7182
7183 if (enum_pdi->name != NULL)
7184 add_partial_symbol (enum_pdi, cu);
7185
7186 pdi = enum_pdi->die_child;
7187 while (pdi)
7188 {
7189 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7190 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7191 else
7192 add_partial_symbol (pdi, cu);
7193 pdi = pdi->die_sibling;
7194 }
7195 }
7196
7197 /* Return the initial uleb128 in the die at INFO_PTR. */
7198
7199 static unsigned int
7200 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7201 {
7202 unsigned int bytes_read;
7203
7204 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7205 }
7206
7207 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7208 Return the corresponding abbrev, or NULL if the number is zero (indicating
7209 an empty DIE). In either case *BYTES_READ will be set to the length of
7210 the initial number. */
7211
7212 static struct abbrev_info *
7213 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7214 struct dwarf2_cu *cu)
7215 {
7216 bfd *abfd = cu->objfile->obfd;
7217 unsigned int abbrev_number;
7218 struct abbrev_info *abbrev;
7219
7220 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7221
7222 if (abbrev_number == 0)
7223 return NULL;
7224
7225 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7226 if (!abbrev)
7227 {
7228 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7229 " at offset 0x%x [in module %s]"),
7230 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7231 cu->header.offset.sect_off, bfd_get_filename (abfd));
7232 }
7233
7234 return abbrev;
7235 }
7236
7237 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7238 Returns a pointer to the end of a series of DIEs, terminated by an empty
7239 DIE. Any children of the skipped DIEs will also be skipped. */
7240
7241 static const gdb_byte *
7242 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7243 {
7244 struct dwarf2_cu *cu = reader->cu;
7245 struct abbrev_info *abbrev;
7246 unsigned int bytes_read;
7247
7248 while (1)
7249 {
7250 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7251 if (abbrev == NULL)
7252 return info_ptr + bytes_read;
7253 else
7254 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7255 }
7256 }
7257
7258 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7259 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7260 abbrev corresponding to that skipped uleb128 should be passed in
7261 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7262 children. */
7263
7264 static const gdb_byte *
7265 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7266 struct abbrev_info *abbrev)
7267 {
7268 unsigned int bytes_read;
7269 struct attribute attr;
7270 bfd *abfd = reader->abfd;
7271 struct dwarf2_cu *cu = reader->cu;
7272 const gdb_byte *buffer = reader->buffer;
7273 const gdb_byte *buffer_end = reader->buffer_end;
7274 unsigned int form, i;
7275
7276 for (i = 0; i < abbrev->num_attrs; i++)
7277 {
7278 /* The only abbrev we care about is DW_AT_sibling. */
7279 if (abbrev->attrs[i].name == DW_AT_sibling)
7280 {
7281 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7282 if (attr.form == DW_FORM_ref_addr)
7283 complaint (&symfile_complaints,
7284 _("ignoring absolute DW_AT_sibling"));
7285 else
7286 {
7287 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7288 const gdb_byte *sibling_ptr = buffer + off;
7289
7290 if (sibling_ptr < info_ptr)
7291 complaint (&symfile_complaints,
7292 _("DW_AT_sibling points backwards"));
7293 else if (sibling_ptr > reader->buffer_end)
7294 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7295 else
7296 return sibling_ptr;
7297 }
7298 }
7299
7300 /* If it isn't DW_AT_sibling, skip this attribute. */
7301 form = abbrev->attrs[i].form;
7302 skip_attribute:
7303 switch (form)
7304 {
7305 case DW_FORM_ref_addr:
7306 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7307 and later it is offset sized. */
7308 if (cu->header.version == 2)
7309 info_ptr += cu->header.addr_size;
7310 else
7311 info_ptr += cu->header.offset_size;
7312 break;
7313 case DW_FORM_GNU_ref_alt:
7314 info_ptr += cu->header.offset_size;
7315 break;
7316 case DW_FORM_addr:
7317 info_ptr += cu->header.addr_size;
7318 break;
7319 case DW_FORM_data1:
7320 case DW_FORM_ref1:
7321 case DW_FORM_flag:
7322 info_ptr += 1;
7323 break;
7324 case DW_FORM_flag_present:
7325 break;
7326 case DW_FORM_data2:
7327 case DW_FORM_ref2:
7328 info_ptr += 2;
7329 break;
7330 case DW_FORM_data4:
7331 case DW_FORM_ref4:
7332 info_ptr += 4;
7333 break;
7334 case DW_FORM_data8:
7335 case DW_FORM_ref8:
7336 case DW_FORM_ref_sig8:
7337 info_ptr += 8;
7338 break;
7339 case DW_FORM_string:
7340 read_direct_string (abfd, info_ptr, &bytes_read);
7341 info_ptr += bytes_read;
7342 break;
7343 case DW_FORM_sec_offset:
7344 case DW_FORM_strp:
7345 case DW_FORM_GNU_strp_alt:
7346 info_ptr += cu->header.offset_size;
7347 break;
7348 case DW_FORM_exprloc:
7349 case DW_FORM_block:
7350 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7351 info_ptr += bytes_read;
7352 break;
7353 case DW_FORM_block1:
7354 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7355 break;
7356 case DW_FORM_block2:
7357 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7358 break;
7359 case DW_FORM_block4:
7360 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7361 break;
7362 case DW_FORM_sdata:
7363 case DW_FORM_udata:
7364 case DW_FORM_ref_udata:
7365 case DW_FORM_GNU_addr_index:
7366 case DW_FORM_GNU_str_index:
7367 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7368 break;
7369 case DW_FORM_indirect:
7370 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7371 info_ptr += bytes_read;
7372 /* We need to continue parsing from here, so just go back to
7373 the top. */
7374 goto skip_attribute;
7375
7376 default:
7377 error (_("Dwarf Error: Cannot handle %s "
7378 "in DWARF reader [in module %s]"),
7379 dwarf_form_name (form),
7380 bfd_get_filename (abfd));
7381 }
7382 }
7383
7384 if (abbrev->has_children)
7385 return skip_children (reader, info_ptr);
7386 else
7387 return info_ptr;
7388 }
7389
7390 /* Locate ORIG_PDI's sibling.
7391 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7392
7393 static const gdb_byte *
7394 locate_pdi_sibling (const struct die_reader_specs *reader,
7395 struct partial_die_info *orig_pdi,
7396 const gdb_byte *info_ptr)
7397 {
7398 /* Do we know the sibling already? */
7399
7400 if (orig_pdi->sibling)
7401 return orig_pdi->sibling;
7402
7403 /* Are there any children to deal with? */
7404
7405 if (!orig_pdi->has_children)
7406 return info_ptr;
7407
7408 /* Skip the children the long way. */
7409
7410 return skip_children (reader, info_ptr);
7411 }
7412
7413 /* Expand this partial symbol table into a full symbol table. SELF is
7414 not NULL. */
7415
7416 static void
7417 dwarf2_read_symtab (struct partial_symtab *self,
7418 struct objfile *objfile)
7419 {
7420 if (self->readin)
7421 {
7422 warning (_("bug: psymtab for %s is already read in."),
7423 self->filename);
7424 }
7425 else
7426 {
7427 if (info_verbose)
7428 {
7429 printf_filtered (_("Reading in symbols for %s..."),
7430 self->filename);
7431 gdb_flush (gdb_stdout);
7432 }
7433
7434 /* Restore our global data. */
7435 dwarf2_per_objfile
7436 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7437 dwarf2_objfile_data_key);
7438
7439 /* If this psymtab is constructed from a debug-only objfile, the
7440 has_section_at_zero flag will not necessarily be correct. We
7441 can get the correct value for this flag by looking at the data
7442 associated with the (presumably stripped) associated objfile. */
7443 if (objfile->separate_debug_objfile_backlink)
7444 {
7445 struct dwarf2_per_objfile *dpo_backlink
7446 = ((struct dwarf2_per_objfile *)
7447 objfile_data (objfile->separate_debug_objfile_backlink,
7448 dwarf2_objfile_data_key));
7449
7450 dwarf2_per_objfile->has_section_at_zero
7451 = dpo_backlink->has_section_at_zero;
7452 }
7453
7454 dwarf2_per_objfile->reading_partial_symbols = 0;
7455
7456 psymtab_to_symtab_1 (self);
7457
7458 /* Finish up the debug error message. */
7459 if (info_verbose)
7460 printf_filtered (_("done.\n"));
7461 }
7462
7463 process_cu_includes ();
7464 }
7465 \f
7466 /* Reading in full CUs. */
7467
7468 /* Add PER_CU to the queue. */
7469
7470 static void
7471 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7472 enum language pretend_language)
7473 {
7474 struct dwarf2_queue_item *item;
7475
7476 per_cu->queued = 1;
7477 item = XNEW (struct dwarf2_queue_item);
7478 item->per_cu = per_cu;
7479 item->pretend_language = pretend_language;
7480 item->next = NULL;
7481
7482 if (dwarf2_queue == NULL)
7483 dwarf2_queue = item;
7484 else
7485 dwarf2_queue_tail->next = item;
7486
7487 dwarf2_queue_tail = item;
7488 }
7489
7490 /* If PER_CU is not yet queued, add it to the queue.
7491 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7492 dependency.
7493 The result is non-zero if PER_CU was queued, otherwise the result is zero
7494 meaning either PER_CU is already queued or it is already loaded.
7495
7496 N.B. There is an invariant here that if a CU is queued then it is loaded.
7497 The caller is required to load PER_CU if we return non-zero. */
7498
7499 static int
7500 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7501 struct dwarf2_per_cu_data *per_cu,
7502 enum language pretend_language)
7503 {
7504 /* We may arrive here during partial symbol reading, if we need full
7505 DIEs to process an unusual case (e.g. template arguments). Do
7506 not queue PER_CU, just tell our caller to load its DIEs. */
7507 if (dwarf2_per_objfile->reading_partial_symbols)
7508 {
7509 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7510 return 1;
7511 return 0;
7512 }
7513
7514 /* Mark the dependence relation so that we don't flush PER_CU
7515 too early. */
7516 if (dependent_cu != NULL)
7517 dwarf2_add_dependence (dependent_cu, per_cu);
7518
7519 /* If it's already on the queue, we have nothing to do. */
7520 if (per_cu->queued)
7521 return 0;
7522
7523 /* If the compilation unit is already loaded, just mark it as
7524 used. */
7525 if (per_cu->cu != NULL)
7526 {
7527 per_cu->cu->last_used = 0;
7528 return 0;
7529 }
7530
7531 /* Add it to the queue. */
7532 queue_comp_unit (per_cu, pretend_language);
7533
7534 return 1;
7535 }
7536
7537 /* Process the queue. */
7538
7539 static void
7540 process_queue (void)
7541 {
7542 struct dwarf2_queue_item *item, *next_item;
7543
7544 if (dwarf_read_debug)
7545 {
7546 fprintf_unfiltered (gdb_stdlog,
7547 "Expanding one or more symtabs of objfile %s ...\n",
7548 objfile_name (dwarf2_per_objfile->objfile));
7549 }
7550
7551 /* The queue starts out with one item, but following a DIE reference
7552 may load a new CU, adding it to the end of the queue. */
7553 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7554 {
7555 if ((dwarf2_per_objfile->using_index
7556 ? !item->per_cu->v.quick->compunit_symtab
7557 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7558 /* Skip dummy CUs. */
7559 && item->per_cu->cu != NULL)
7560 {
7561 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7562 unsigned int debug_print_threshold;
7563 char buf[100];
7564
7565 if (per_cu->is_debug_types)
7566 {
7567 struct signatured_type *sig_type =
7568 (struct signatured_type *) per_cu;
7569
7570 sprintf (buf, "TU %s at offset 0x%x",
7571 hex_string (sig_type->signature),
7572 per_cu->offset.sect_off);
7573 /* There can be 100s of TUs.
7574 Only print them in verbose mode. */
7575 debug_print_threshold = 2;
7576 }
7577 else
7578 {
7579 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7580 debug_print_threshold = 1;
7581 }
7582
7583 if (dwarf_read_debug >= debug_print_threshold)
7584 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7585
7586 if (per_cu->is_debug_types)
7587 process_full_type_unit (per_cu, item->pretend_language);
7588 else
7589 process_full_comp_unit (per_cu, item->pretend_language);
7590
7591 if (dwarf_read_debug >= debug_print_threshold)
7592 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7593 }
7594
7595 item->per_cu->queued = 0;
7596 next_item = item->next;
7597 xfree (item);
7598 }
7599
7600 dwarf2_queue_tail = NULL;
7601
7602 if (dwarf_read_debug)
7603 {
7604 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7605 objfile_name (dwarf2_per_objfile->objfile));
7606 }
7607 }
7608
7609 /* Free all allocated queue entries. This function only releases anything if
7610 an error was thrown; if the queue was processed then it would have been
7611 freed as we went along. */
7612
7613 static void
7614 dwarf2_release_queue (void *dummy)
7615 {
7616 struct dwarf2_queue_item *item, *last;
7617
7618 item = dwarf2_queue;
7619 while (item)
7620 {
7621 /* Anything still marked queued is likely to be in an
7622 inconsistent state, so discard it. */
7623 if (item->per_cu->queued)
7624 {
7625 if (item->per_cu->cu != NULL)
7626 free_one_cached_comp_unit (item->per_cu);
7627 item->per_cu->queued = 0;
7628 }
7629
7630 last = item;
7631 item = item->next;
7632 xfree (last);
7633 }
7634
7635 dwarf2_queue = dwarf2_queue_tail = NULL;
7636 }
7637
7638 /* Read in full symbols for PST, and anything it depends on. */
7639
7640 static void
7641 psymtab_to_symtab_1 (struct partial_symtab *pst)
7642 {
7643 struct dwarf2_per_cu_data *per_cu;
7644 int i;
7645
7646 if (pst->readin)
7647 return;
7648
7649 for (i = 0; i < pst->number_of_dependencies; i++)
7650 if (!pst->dependencies[i]->readin
7651 && pst->dependencies[i]->user == NULL)
7652 {
7653 /* Inform about additional files that need to be read in. */
7654 if (info_verbose)
7655 {
7656 /* FIXME: i18n: Need to make this a single string. */
7657 fputs_filtered (" ", gdb_stdout);
7658 wrap_here ("");
7659 fputs_filtered ("and ", gdb_stdout);
7660 wrap_here ("");
7661 printf_filtered ("%s...", pst->dependencies[i]->filename);
7662 wrap_here (""); /* Flush output. */
7663 gdb_flush (gdb_stdout);
7664 }
7665 psymtab_to_symtab_1 (pst->dependencies[i]);
7666 }
7667
7668 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7669
7670 if (per_cu == NULL)
7671 {
7672 /* It's an include file, no symbols to read for it.
7673 Everything is in the parent symtab. */
7674 pst->readin = 1;
7675 return;
7676 }
7677
7678 dw2_do_instantiate_symtab (per_cu);
7679 }
7680
7681 /* Trivial hash function for die_info: the hash value of a DIE
7682 is its offset in .debug_info for this objfile. */
7683
7684 static hashval_t
7685 die_hash (const void *item)
7686 {
7687 const struct die_info *die = (const struct die_info *) item;
7688
7689 return die->offset.sect_off;
7690 }
7691
7692 /* Trivial comparison function for die_info structures: two DIEs
7693 are equal if they have the same offset. */
7694
7695 static int
7696 die_eq (const void *item_lhs, const void *item_rhs)
7697 {
7698 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7699 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7700
7701 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7702 }
7703
7704 /* die_reader_func for load_full_comp_unit.
7705 This is identical to read_signatured_type_reader,
7706 but is kept separate for now. */
7707
7708 static void
7709 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7710 const gdb_byte *info_ptr,
7711 struct die_info *comp_unit_die,
7712 int has_children,
7713 void *data)
7714 {
7715 struct dwarf2_cu *cu = reader->cu;
7716 enum language *language_ptr = (enum language *) data;
7717
7718 gdb_assert (cu->die_hash == NULL);
7719 cu->die_hash =
7720 htab_create_alloc_ex (cu->header.length / 12,
7721 die_hash,
7722 die_eq,
7723 NULL,
7724 &cu->comp_unit_obstack,
7725 hashtab_obstack_allocate,
7726 dummy_obstack_deallocate);
7727
7728 if (has_children)
7729 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7730 &info_ptr, comp_unit_die);
7731 cu->dies = comp_unit_die;
7732 /* comp_unit_die is not stored in die_hash, no need. */
7733
7734 /* We try not to read any attributes in this function, because not
7735 all CUs needed for references have been loaded yet, and symbol
7736 table processing isn't initialized. But we have to set the CU language,
7737 or we won't be able to build types correctly.
7738 Similarly, if we do not read the producer, we can not apply
7739 producer-specific interpretation. */
7740 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7741 }
7742
7743 /* Load the DIEs associated with PER_CU into memory. */
7744
7745 static void
7746 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7747 enum language pretend_language)
7748 {
7749 gdb_assert (! this_cu->is_debug_types);
7750
7751 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7752 load_full_comp_unit_reader, &pretend_language);
7753 }
7754
7755 /* Add a DIE to the delayed physname list. */
7756
7757 static void
7758 add_to_method_list (struct type *type, int fnfield_index, int index,
7759 const char *name, struct die_info *die,
7760 struct dwarf2_cu *cu)
7761 {
7762 struct delayed_method_info mi;
7763 mi.type = type;
7764 mi.fnfield_index = fnfield_index;
7765 mi.index = index;
7766 mi.name = name;
7767 mi.die = die;
7768 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7769 }
7770
7771 /* A cleanup for freeing the delayed method list. */
7772
7773 static void
7774 free_delayed_list (void *ptr)
7775 {
7776 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7777 if (cu->method_list != NULL)
7778 {
7779 VEC_free (delayed_method_info, cu->method_list);
7780 cu->method_list = NULL;
7781 }
7782 }
7783
7784 /* Compute the physnames of any methods on the CU's method list.
7785
7786 The computation of method physnames is delayed in order to avoid the
7787 (bad) condition that one of the method's formal parameters is of an as yet
7788 incomplete type. */
7789
7790 static void
7791 compute_delayed_physnames (struct dwarf2_cu *cu)
7792 {
7793 int i;
7794 struct delayed_method_info *mi;
7795 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7796 {
7797 const char *physname;
7798 struct fn_fieldlist *fn_flp
7799 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7800 physname = dwarf2_physname (mi->name, mi->die, cu);
7801 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7802 = physname ? physname : "";
7803 }
7804 }
7805
7806 /* Go objects should be embedded in a DW_TAG_module DIE,
7807 and it's not clear if/how imported objects will appear.
7808 To keep Go support simple until that's worked out,
7809 go back through what we've read and create something usable.
7810 We could do this while processing each DIE, and feels kinda cleaner,
7811 but that way is more invasive.
7812 This is to, for example, allow the user to type "p var" or "b main"
7813 without having to specify the package name, and allow lookups
7814 of module.object to work in contexts that use the expression
7815 parser. */
7816
7817 static void
7818 fixup_go_packaging (struct dwarf2_cu *cu)
7819 {
7820 char *package_name = NULL;
7821 struct pending *list;
7822 int i;
7823
7824 for (list = global_symbols; list != NULL; list = list->next)
7825 {
7826 for (i = 0; i < list->nsyms; ++i)
7827 {
7828 struct symbol *sym = list->symbol[i];
7829
7830 if (SYMBOL_LANGUAGE (sym) == language_go
7831 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7832 {
7833 char *this_package_name = go_symbol_package_name (sym);
7834
7835 if (this_package_name == NULL)
7836 continue;
7837 if (package_name == NULL)
7838 package_name = this_package_name;
7839 else
7840 {
7841 if (strcmp (package_name, this_package_name) != 0)
7842 complaint (&symfile_complaints,
7843 _("Symtab %s has objects from two different Go packages: %s and %s"),
7844 (symbol_symtab (sym) != NULL
7845 ? symtab_to_filename_for_display
7846 (symbol_symtab (sym))
7847 : objfile_name (cu->objfile)),
7848 this_package_name, package_name);
7849 xfree (this_package_name);
7850 }
7851 }
7852 }
7853 }
7854
7855 if (package_name != NULL)
7856 {
7857 struct objfile *objfile = cu->objfile;
7858 const char *saved_package_name
7859 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7860 package_name,
7861 strlen (package_name));
7862 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
7863 saved_package_name);
7864 struct symbol *sym;
7865
7866 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7867
7868 sym = allocate_symbol (objfile);
7869 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7870 SYMBOL_SET_NAMES (sym, saved_package_name,
7871 strlen (saved_package_name), 0, objfile);
7872 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7873 e.g., "main" finds the "main" module and not C's main(). */
7874 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7875 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7876 SYMBOL_TYPE (sym) = type;
7877
7878 add_symbol_to_list (sym, &global_symbols);
7879
7880 xfree (package_name);
7881 }
7882 }
7883
7884 /* Return the symtab for PER_CU. This works properly regardless of
7885 whether we're using the index or psymtabs. */
7886
7887 static struct compunit_symtab *
7888 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7889 {
7890 return (dwarf2_per_objfile->using_index
7891 ? per_cu->v.quick->compunit_symtab
7892 : per_cu->v.psymtab->compunit_symtab);
7893 }
7894
7895 /* A helper function for computing the list of all symbol tables
7896 included by PER_CU. */
7897
7898 static void
7899 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7900 htab_t all_children, htab_t all_type_symtabs,
7901 struct dwarf2_per_cu_data *per_cu,
7902 struct compunit_symtab *immediate_parent)
7903 {
7904 void **slot;
7905 int ix;
7906 struct compunit_symtab *cust;
7907 struct dwarf2_per_cu_data *iter;
7908
7909 slot = htab_find_slot (all_children, per_cu, INSERT);
7910 if (*slot != NULL)
7911 {
7912 /* This inclusion and its children have been processed. */
7913 return;
7914 }
7915
7916 *slot = per_cu;
7917 /* Only add a CU if it has a symbol table. */
7918 cust = get_compunit_symtab (per_cu);
7919 if (cust != NULL)
7920 {
7921 /* If this is a type unit only add its symbol table if we haven't
7922 seen it yet (type unit per_cu's can share symtabs). */
7923 if (per_cu->is_debug_types)
7924 {
7925 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7926 if (*slot == NULL)
7927 {
7928 *slot = cust;
7929 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7930 if (cust->user == NULL)
7931 cust->user = immediate_parent;
7932 }
7933 }
7934 else
7935 {
7936 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7937 if (cust->user == NULL)
7938 cust->user = immediate_parent;
7939 }
7940 }
7941
7942 for (ix = 0;
7943 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7944 ++ix)
7945 {
7946 recursively_compute_inclusions (result, all_children,
7947 all_type_symtabs, iter, cust);
7948 }
7949 }
7950
7951 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7952 PER_CU. */
7953
7954 static void
7955 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7956 {
7957 gdb_assert (! per_cu->is_debug_types);
7958
7959 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7960 {
7961 int ix, len;
7962 struct dwarf2_per_cu_data *per_cu_iter;
7963 struct compunit_symtab *compunit_symtab_iter;
7964 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7965 htab_t all_children, all_type_symtabs;
7966 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7967
7968 /* If we don't have a symtab, we can just skip this case. */
7969 if (cust == NULL)
7970 return;
7971
7972 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7973 NULL, xcalloc, xfree);
7974 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7975 NULL, xcalloc, xfree);
7976
7977 for (ix = 0;
7978 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7979 ix, per_cu_iter);
7980 ++ix)
7981 {
7982 recursively_compute_inclusions (&result_symtabs, all_children,
7983 all_type_symtabs, per_cu_iter,
7984 cust);
7985 }
7986
7987 /* Now we have a transitive closure of all the included symtabs. */
7988 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7989 cust->includes
7990 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7991 struct compunit_symtab *, len + 1);
7992 for (ix = 0;
7993 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7994 compunit_symtab_iter);
7995 ++ix)
7996 cust->includes[ix] = compunit_symtab_iter;
7997 cust->includes[len] = NULL;
7998
7999 VEC_free (compunit_symtab_ptr, result_symtabs);
8000 htab_delete (all_children);
8001 htab_delete (all_type_symtabs);
8002 }
8003 }
8004
8005 /* Compute the 'includes' field for the symtabs of all the CUs we just
8006 read. */
8007
8008 static void
8009 process_cu_includes (void)
8010 {
8011 int ix;
8012 struct dwarf2_per_cu_data *iter;
8013
8014 for (ix = 0;
8015 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8016 ix, iter);
8017 ++ix)
8018 {
8019 if (! iter->is_debug_types)
8020 compute_compunit_symtab_includes (iter);
8021 }
8022
8023 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8024 }
8025
8026 /* Generate full symbol information for PER_CU, whose DIEs have
8027 already been loaded into memory. */
8028
8029 static void
8030 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8031 enum language pretend_language)
8032 {
8033 struct dwarf2_cu *cu = per_cu->cu;
8034 struct objfile *objfile = per_cu->objfile;
8035 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8036 CORE_ADDR lowpc, highpc;
8037 struct compunit_symtab *cust;
8038 struct cleanup *back_to, *delayed_list_cleanup;
8039 CORE_ADDR baseaddr;
8040 struct block *static_block;
8041 CORE_ADDR addr;
8042
8043 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8044
8045 buildsym_init ();
8046 back_to = make_cleanup (really_free_pendings, NULL);
8047 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8048
8049 cu->list_in_scope = &file_symbols;
8050
8051 cu->language = pretend_language;
8052 cu->language_defn = language_def (cu->language);
8053
8054 /* Do line number decoding in read_file_scope () */
8055 process_die (cu->dies, cu);
8056
8057 /* For now fudge the Go package. */
8058 if (cu->language == language_go)
8059 fixup_go_packaging (cu);
8060
8061 /* Now that we have processed all the DIEs in the CU, all the types
8062 should be complete, and it should now be safe to compute all of the
8063 physnames. */
8064 compute_delayed_physnames (cu);
8065 do_cleanups (delayed_list_cleanup);
8066
8067 /* Some compilers don't define a DW_AT_high_pc attribute for the
8068 compilation unit. If the DW_AT_high_pc is missing, synthesize
8069 it, by scanning the DIE's below the compilation unit. */
8070 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8071
8072 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8073 static_block = end_symtab_get_static_block (addr, 0, 1);
8074
8075 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8076 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8077 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8078 addrmap to help ensure it has an accurate map of pc values belonging to
8079 this comp unit. */
8080 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8081
8082 cust = end_symtab_from_static_block (static_block,
8083 SECT_OFF_TEXT (objfile), 0);
8084
8085 if (cust != NULL)
8086 {
8087 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8088
8089 /* Set symtab language to language from DW_AT_language. If the
8090 compilation is from a C file generated by language preprocessors, do
8091 not set the language if it was already deduced by start_subfile. */
8092 if (!(cu->language == language_c
8093 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8094 COMPUNIT_FILETABS (cust)->language = cu->language;
8095
8096 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8097 produce DW_AT_location with location lists but it can be possibly
8098 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8099 there were bugs in prologue debug info, fixed later in GCC-4.5
8100 by "unwind info for epilogues" patch (which is not directly related).
8101
8102 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8103 needed, it would be wrong due to missing DW_AT_producer there.
8104
8105 Still one can confuse GDB by using non-standard GCC compilation
8106 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8107 */
8108 if (cu->has_loclist && gcc_4_minor >= 5)
8109 cust->locations_valid = 1;
8110
8111 if (gcc_4_minor >= 5)
8112 cust->epilogue_unwind_valid = 1;
8113
8114 cust->call_site_htab = cu->call_site_htab;
8115 }
8116
8117 if (dwarf2_per_objfile->using_index)
8118 per_cu->v.quick->compunit_symtab = cust;
8119 else
8120 {
8121 struct partial_symtab *pst = per_cu->v.psymtab;
8122 pst->compunit_symtab = cust;
8123 pst->readin = 1;
8124 }
8125
8126 /* Push it for inclusion processing later. */
8127 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8128
8129 do_cleanups (back_to);
8130 }
8131
8132 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8133 already been loaded into memory. */
8134
8135 static void
8136 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8137 enum language pretend_language)
8138 {
8139 struct dwarf2_cu *cu = per_cu->cu;
8140 struct objfile *objfile = per_cu->objfile;
8141 struct compunit_symtab *cust;
8142 struct cleanup *back_to, *delayed_list_cleanup;
8143 struct signatured_type *sig_type;
8144
8145 gdb_assert (per_cu->is_debug_types);
8146 sig_type = (struct signatured_type *) per_cu;
8147
8148 buildsym_init ();
8149 back_to = make_cleanup (really_free_pendings, NULL);
8150 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8151
8152 cu->list_in_scope = &file_symbols;
8153
8154 cu->language = pretend_language;
8155 cu->language_defn = language_def (cu->language);
8156
8157 /* The symbol tables are set up in read_type_unit_scope. */
8158 process_die (cu->dies, cu);
8159
8160 /* For now fudge the Go package. */
8161 if (cu->language == language_go)
8162 fixup_go_packaging (cu);
8163
8164 /* Now that we have processed all the DIEs in the CU, all the types
8165 should be complete, and it should now be safe to compute all of the
8166 physnames. */
8167 compute_delayed_physnames (cu);
8168 do_cleanups (delayed_list_cleanup);
8169
8170 /* TUs share symbol tables.
8171 If this is the first TU to use this symtab, complete the construction
8172 of it with end_expandable_symtab. Otherwise, complete the addition of
8173 this TU's symbols to the existing symtab. */
8174 if (sig_type->type_unit_group->compunit_symtab == NULL)
8175 {
8176 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8177 sig_type->type_unit_group->compunit_symtab = cust;
8178
8179 if (cust != NULL)
8180 {
8181 /* Set symtab language to language from DW_AT_language. If the
8182 compilation is from a C file generated by language preprocessors,
8183 do not set the language if it was already deduced by
8184 start_subfile. */
8185 if (!(cu->language == language_c
8186 && COMPUNIT_FILETABS (cust)->language != language_c))
8187 COMPUNIT_FILETABS (cust)->language = cu->language;
8188 }
8189 }
8190 else
8191 {
8192 augment_type_symtab ();
8193 cust = sig_type->type_unit_group->compunit_symtab;
8194 }
8195
8196 if (dwarf2_per_objfile->using_index)
8197 per_cu->v.quick->compunit_symtab = cust;
8198 else
8199 {
8200 struct partial_symtab *pst = per_cu->v.psymtab;
8201 pst->compunit_symtab = cust;
8202 pst->readin = 1;
8203 }
8204
8205 do_cleanups (back_to);
8206 }
8207
8208 /* Process an imported unit DIE. */
8209
8210 static void
8211 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8212 {
8213 struct attribute *attr;
8214
8215 /* For now we don't handle imported units in type units. */
8216 if (cu->per_cu->is_debug_types)
8217 {
8218 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8219 " supported in type units [in module %s]"),
8220 objfile_name (cu->objfile));
8221 }
8222
8223 attr = dwarf2_attr (die, DW_AT_import, cu);
8224 if (attr != NULL)
8225 {
8226 struct dwarf2_per_cu_data *per_cu;
8227 sect_offset offset;
8228 int is_dwz;
8229
8230 offset = dwarf2_get_ref_die_offset (attr);
8231 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8232 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8233
8234 /* If necessary, add it to the queue and load its DIEs. */
8235 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8236 load_full_comp_unit (per_cu, cu->language);
8237
8238 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8239 per_cu);
8240 }
8241 }
8242
8243 /* Reset the in_process bit of a die. */
8244
8245 static void
8246 reset_die_in_process (void *arg)
8247 {
8248 struct die_info *die = (struct die_info *) arg;
8249
8250 die->in_process = 0;
8251 }
8252
8253 /* Process a die and its children. */
8254
8255 static void
8256 process_die (struct die_info *die, struct dwarf2_cu *cu)
8257 {
8258 struct cleanup *in_process;
8259
8260 /* We should only be processing those not already in process. */
8261 gdb_assert (!die->in_process);
8262
8263 die->in_process = 1;
8264 in_process = make_cleanup (reset_die_in_process,die);
8265
8266 switch (die->tag)
8267 {
8268 case DW_TAG_padding:
8269 break;
8270 case DW_TAG_compile_unit:
8271 case DW_TAG_partial_unit:
8272 read_file_scope (die, cu);
8273 break;
8274 case DW_TAG_type_unit:
8275 read_type_unit_scope (die, cu);
8276 break;
8277 case DW_TAG_subprogram:
8278 case DW_TAG_inlined_subroutine:
8279 read_func_scope (die, cu);
8280 break;
8281 case DW_TAG_lexical_block:
8282 case DW_TAG_try_block:
8283 case DW_TAG_catch_block:
8284 read_lexical_block_scope (die, cu);
8285 break;
8286 case DW_TAG_GNU_call_site:
8287 read_call_site_scope (die, cu);
8288 break;
8289 case DW_TAG_class_type:
8290 case DW_TAG_interface_type:
8291 case DW_TAG_structure_type:
8292 case DW_TAG_union_type:
8293 process_structure_scope (die, cu);
8294 break;
8295 case DW_TAG_enumeration_type:
8296 process_enumeration_scope (die, cu);
8297 break;
8298
8299 /* These dies have a type, but processing them does not create
8300 a symbol or recurse to process the children. Therefore we can
8301 read them on-demand through read_type_die. */
8302 case DW_TAG_subroutine_type:
8303 case DW_TAG_set_type:
8304 case DW_TAG_array_type:
8305 case DW_TAG_pointer_type:
8306 case DW_TAG_ptr_to_member_type:
8307 case DW_TAG_reference_type:
8308 case DW_TAG_string_type:
8309 break;
8310
8311 case DW_TAG_base_type:
8312 case DW_TAG_subrange_type:
8313 case DW_TAG_typedef:
8314 /* Add a typedef symbol for the type definition, if it has a
8315 DW_AT_name. */
8316 new_symbol (die, read_type_die (die, cu), cu);
8317 break;
8318 case DW_TAG_common_block:
8319 read_common_block (die, cu);
8320 break;
8321 case DW_TAG_common_inclusion:
8322 break;
8323 case DW_TAG_namespace:
8324 cu->processing_has_namespace_info = 1;
8325 read_namespace (die, cu);
8326 break;
8327 case DW_TAG_module:
8328 cu->processing_has_namespace_info = 1;
8329 read_module (die, cu);
8330 break;
8331 case DW_TAG_imported_declaration:
8332 cu->processing_has_namespace_info = 1;
8333 if (read_namespace_alias (die, cu))
8334 break;
8335 /* The declaration is not a global namespace alias: fall through. */
8336 case DW_TAG_imported_module:
8337 cu->processing_has_namespace_info = 1;
8338 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8339 || cu->language != language_fortran))
8340 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8341 dwarf_tag_name (die->tag));
8342 read_import_statement (die, cu);
8343 break;
8344
8345 case DW_TAG_imported_unit:
8346 process_imported_unit_die (die, cu);
8347 break;
8348
8349 default:
8350 new_symbol (die, NULL, cu);
8351 break;
8352 }
8353
8354 do_cleanups (in_process);
8355 }
8356 \f
8357 /* DWARF name computation. */
8358
8359 /* A helper function for dwarf2_compute_name which determines whether DIE
8360 needs to have the name of the scope prepended to the name listed in the
8361 die. */
8362
8363 static int
8364 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8365 {
8366 struct attribute *attr;
8367
8368 switch (die->tag)
8369 {
8370 case DW_TAG_namespace:
8371 case DW_TAG_typedef:
8372 case DW_TAG_class_type:
8373 case DW_TAG_interface_type:
8374 case DW_TAG_structure_type:
8375 case DW_TAG_union_type:
8376 case DW_TAG_enumeration_type:
8377 case DW_TAG_enumerator:
8378 case DW_TAG_subprogram:
8379 case DW_TAG_inlined_subroutine:
8380 case DW_TAG_member:
8381 case DW_TAG_imported_declaration:
8382 return 1;
8383
8384 case DW_TAG_variable:
8385 case DW_TAG_constant:
8386 /* We only need to prefix "globally" visible variables. These include
8387 any variable marked with DW_AT_external or any variable that
8388 lives in a namespace. [Variables in anonymous namespaces
8389 require prefixing, but they are not DW_AT_external.] */
8390
8391 if (dwarf2_attr (die, DW_AT_specification, cu))
8392 {
8393 struct dwarf2_cu *spec_cu = cu;
8394
8395 return die_needs_namespace (die_specification (die, &spec_cu),
8396 spec_cu);
8397 }
8398
8399 attr = dwarf2_attr (die, DW_AT_external, cu);
8400 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8401 && die->parent->tag != DW_TAG_module)
8402 return 0;
8403 /* A variable in a lexical block of some kind does not need a
8404 namespace, even though in C++ such variables may be external
8405 and have a mangled name. */
8406 if (die->parent->tag == DW_TAG_lexical_block
8407 || die->parent->tag == DW_TAG_try_block
8408 || die->parent->tag == DW_TAG_catch_block
8409 || die->parent->tag == DW_TAG_subprogram)
8410 return 0;
8411 return 1;
8412
8413 default:
8414 return 0;
8415 }
8416 }
8417
8418 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8419 compute the physname for the object, which include a method's:
8420 - formal parameters (C++),
8421 - receiver type (Go),
8422
8423 The term "physname" is a bit confusing.
8424 For C++, for example, it is the demangled name.
8425 For Go, for example, it's the mangled name.
8426
8427 For Ada, return the DIE's linkage name rather than the fully qualified
8428 name. PHYSNAME is ignored..
8429
8430 The result is allocated on the objfile_obstack and canonicalized. */
8431
8432 static const char *
8433 dwarf2_compute_name (const char *name,
8434 struct die_info *die, struct dwarf2_cu *cu,
8435 int physname)
8436 {
8437 struct objfile *objfile = cu->objfile;
8438
8439 if (name == NULL)
8440 name = dwarf2_name (die, cu);
8441
8442 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8443 but otherwise compute it by typename_concat inside GDB.
8444 FIXME: Actually this is not really true, or at least not always true.
8445 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8446 Fortran names because there is no mangling standard. So new_symbol_full
8447 will set the demangled name to the result of dwarf2_full_name, and it is
8448 the demangled name that GDB uses if it exists. */
8449 if (cu->language == language_ada
8450 || (cu->language == language_fortran && physname))
8451 {
8452 /* For Ada unit, we prefer the linkage name over the name, as
8453 the former contains the exported name, which the user expects
8454 to be able to reference. Ideally, we want the user to be able
8455 to reference this entity using either natural or linkage name,
8456 but we haven't started looking at this enhancement yet. */
8457 const char *linkage_name;
8458
8459 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8460 if (linkage_name == NULL)
8461 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8462 if (linkage_name != NULL)
8463 return linkage_name;
8464 }
8465
8466 /* These are the only languages we know how to qualify names in. */
8467 if (name != NULL
8468 && (cu->language == language_cplus
8469 || cu->language == language_fortran || cu->language == language_d
8470 || cu->language == language_rust))
8471 {
8472 if (die_needs_namespace (die, cu))
8473 {
8474 long length;
8475 const char *prefix;
8476 const char *canonical_name = NULL;
8477
8478 string_file buf;
8479
8480 prefix = determine_prefix (die, cu);
8481 if (*prefix != '\0')
8482 {
8483 char *prefixed_name = typename_concat (NULL, prefix, name,
8484 physname, cu);
8485
8486 buf.puts (prefixed_name);
8487 xfree (prefixed_name);
8488 }
8489 else
8490 buf.puts (name);
8491
8492 /* Template parameters may be specified in the DIE's DW_AT_name, or
8493 as children with DW_TAG_template_type_param or
8494 DW_TAG_value_type_param. If the latter, add them to the name
8495 here. If the name already has template parameters, then
8496 skip this step; some versions of GCC emit both, and
8497 it is more efficient to use the pre-computed name.
8498
8499 Something to keep in mind about this process: it is very
8500 unlikely, or in some cases downright impossible, to produce
8501 something that will match the mangled name of a function.
8502 If the definition of the function has the same debug info,
8503 we should be able to match up with it anyway. But fallbacks
8504 using the minimal symbol, for instance to find a method
8505 implemented in a stripped copy of libstdc++, will not work.
8506 If we do not have debug info for the definition, we will have to
8507 match them up some other way.
8508
8509 When we do name matching there is a related problem with function
8510 templates; two instantiated function templates are allowed to
8511 differ only by their return types, which we do not add here. */
8512
8513 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8514 {
8515 struct attribute *attr;
8516 struct die_info *child;
8517 int first = 1;
8518
8519 die->building_fullname = 1;
8520
8521 for (child = die->child; child != NULL; child = child->sibling)
8522 {
8523 struct type *type;
8524 LONGEST value;
8525 const gdb_byte *bytes;
8526 struct dwarf2_locexpr_baton *baton;
8527 struct value *v;
8528
8529 if (child->tag != DW_TAG_template_type_param
8530 && child->tag != DW_TAG_template_value_param)
8531 continue;
8532
8533 if (first)
8534 {
8535 buf.puts ("<");
8536 first = 0;
8537 }
8538 else
8539 buf.puts (", ");
8540
8541 attr = dwarf2_attr (child, DW_AT_type, cu);
8542 if (attr == NULL)
8543 {
8544 complaint (&symfile_complaints,
8545 _("template parameter missing DW_AT_type"));
8546 buf.puts ("UNKNOWN_TYPE");
8547 continue;
8548 }
8549 type = die_type (child, cu);
8550
8551 if (child->tag == DW_TAG_template_type_param)
8552 {
8553 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
8554 continue;
8555 }
8556
8557 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8558 if (attr == NULL)
8559 {
8560 complaint (&symfile_complaints,
8561 _("template parameter missing "
8562 "DW_AT_const_value"));
8563 buf.puts ("UNKNOWN_VALUE");
8564 continue;
8565 }
8566
8567 dwarf2_const_value_attr (attr, type, name,
8568 &cu->comp_unit_obstack, cu,
8569 &value, &bytes, &baton);
8570
8571 if (TYPE_NOSIGN (type))
8572 /* GDB prints characters as NUMBER 'CHAR'. If that's
8573 changed, this can use value_print instead. */
8574 c_printchar (value, type, &buf);
8575 else
8576 {
8577 struct value_print_options opts;
8578
8579 if (baton != NULL)
8580 v = dwarf2_evaluate_loc_desc (type, NULL,
8581 baton->data,
8582 baton->size,
8583 baton->per_cu);
8584 else if (bytes != NULL)
8585 {
8586 v = allocate_value (type);
8587 memcpy (value_contents_writeable (v), bytes,
8588 TYPE_LENGTH (type));
8589 }
8590 else
8591 v = value_from_longest (type, value);
8592
8593 /* Specify decimal so that we do not depend on
8594 the radix. */
8595 get_formatted_print_options (&opts, 'd');
8596 opts.raw = 1;
8597 value_print (v, &buf, &opts);
8598 release_value (v);
8599 value_free (v);
8600 }
8601 }
8602
8603 die->building_fullname = 0;
8604
8605 if (!first)
8606 {
8607 /* Close the argument list, with a space if necessary
8608 (nested templates). */
8609 if (!buf.empty () && buf.string ().back () == '>')
8610 buf.puts (" >");
8611 else
8612 buf.puts (">");
8613 }
8614 }
8615
8616 /* For C++ methods, append formal parameter type
8617 information, if PHYSNAME. */
8618
8619 if (physname && die->tag == DW_TAG_subprogram
8620 && cu->language == language_cplus)
8621 {
8622 struct type *type = read_type_die (die, cu);
8623
8624 c_type_print_args (type, &buf, 1, cu->language,
8625 &type_print_raw_options);
8626
8627 if (cu->language == language_cplus)
8628 {
8629 /* Assume that an artificial first parameter is
8630 "this", but do not crash if it is not. RealView
8631 marks unnamed (and thus unused) parameters as
8632 artificial; there is no way to differentiate
8633 the two cases. */
8634 if (TYPE_NFIELDS (type) > 0
8635 && TYPE_FIELD_ARTIFICIAL (type, 0)
8636 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8637 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8638 0))))
8639 buf.puts (" const");
8640 }
8641 }
8642
8643 const std::string &intermediate_name = buf.string ();
8644
8645 if (cu->language == language_cplus)
8646 canonical_name
8647 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8648 &objfile->per_bfd->storage_obstack);
8649
8650 /* If we only computed INTERMEDIATE_NAME, or if
8651 INTERMEDIATE_NAME is already canonical, then we need to
8652 copy it to the appropriate obstack. */
8653 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8654 name = ((const char *)
8655 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8656 intermediate_name.c_str (),
8657 intermediate_name.length ()));
8658 else
8659 name = canonical_name;
8660 }
8661 }
8662
8663 return name;
8664 }
8665
8666 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8667 If scope qualifiers are appropriate they will be added. The result
8668 will be allocated on the storage_obstack, or NULL if the DIE does
8669 not have a name. NAME may either be from a previous call to
8670 dwarf2_name or NULL.
8671
8672 The output string will be canonicalized (if C++). */
8673
8674 static const char *
8675 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8676 {
8677 return dwarf2_compute_name (name, die, cu, 0);
8678 }
8679
8680 /* Construct a physname for the given DIE in CU. NAME may either be
8681 from a previous call to dwarf2_name or NULL. The result will be
8682 allocated on the objfile_objstack or NULL if the DIE does not have a
8683 name.
8684
8685 The output string will be canonicalized (if C++). */
8686
8687 static const char *
8688 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8689 {
8690 struct objfile *objfile = cu->objfile;
8691 const char *retval, *mangled = NULL, *canon = NULL;
8692 struct cleanup *back_to;
8693 int need_copy = 1;
8694
8695 /* In this case dwarf2_compute_name is just a shortcut not building anything
8696 on its own. */
8697 if (!die_needs_namespace (die, cu))
8698 return dwarf2_compute_name (name, die, cu, 1);
8699
8700 back_to = make_cleanup (null_cleanup, NULL);
8701
8702 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8703 if (mangled == NULL)
8704 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8705
8706 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8707 See https://github.com/rust-lang/rust/issues/32925. */
8708 if (cu->language == language_rust && mangled != NULL
8709 && strchr (mangled, '{') != NULL)
8710 mangled = NULL;
8711
8712 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8713 has computed. */
8714 if (mangled != NULL)
8715 {
8716 char *demangled;
8717
8718 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8719 type. It is easier for GDB users to search for such functions as
8720 `name(params)' than `long name(params)'. In such case the minimal
8721 symbol names do not match the full symbol names but for template
8722 functions there is never a need to look up their definition from their
8723 declaration so the only disadvantage remains the minimal symbol
8724 variant `long name(params)' does not have the proper inferior type.
8725 */
8726
8727 if (cu->language == language_go)
8728 {
8729 /* This is a lie, but we already lie to the caller new_symbol_full.
8730 new_symbol_full assumes we return the mangled name.
8731 This just undoes that lie until things are cleaned up. */
8732 demangled = NULL;
8733 }
8734 else
8735 {
8736 demangled = gdb_demangle (mangled,
8737 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
8738 }
8739 if (demangled)
8740 {
8741 make_cleanup (xfree, demangled);
8742 canon = demangled;
8743 }
8744 else
8745 {
8746 canon = mangled;
8747 need_copy = 0;
8748 }
8749 }
8750
8751 if (canon == NULL || check_physname)
8752 {
8753 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8754
8755 if (canon != NULL && strcmp (physname, canon) != 0)
8756 {
8757 /* It may not mean a bug in GDB. The compiler could also
8758 compute DW_AT_linkage_name incorrectly. But in such case
8759 GDB would need to be bug-to-bug compatible. */
8760
8761 complaint (&symfile_complaints,
8762 _("Computed physname <%s> does not match demangled <%s> "
8763 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8764 physname, canon, mangled, die->offset.sect_off,
8765 objfile_name (objfile));
8766
8767 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8768 is available here - over computed PHYSNAME. It is safer
8769 against both buggy GDB and buggy compilers. */
8770
8771 retval = canon;
8772 }
8773 else
8774 {
8775 retval = physname;
8776 need_copy = 0;
8777 }
8778 }
8779 else
8780 retval = canon;
8781
8782 if (need_copy)
8783 retval = ((const char *)
8784 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8785 retval, strlen (retval)));
8786
8787 do_cleanups (back_to);
8788 return retval;
8789 }
8790
8791 /* Inspect DIE in CU for a namespace alias. If one exists, record
8792 a new symbol for it.
8793
8794 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8795
8796 static int
8797 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8798 {
8799 struct attribute *attr;
8800
8801 /* If the die does not have a name, this is not a namespace
8802 alias. */
8803 attr = dwarf2_attr (die, DW_AT_name, cu);
8804 if (attr != NULL)
8805 {
8806 int num;
8807 struct die_info *d = die;
8808 struct dwarf2_cu *imported_cu = cu;
8809
8810 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8811 keep inspecting DIEs until we hit the underlying import. */
8812 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8813 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8814 {
8815 attr = dwarf2_attr (d, DW_AT_import, cu);
8816 if (attr == NULL)
8817 break;
8818
8819 d = follow_die_ref (d, attr, &imported_cu);
8820 if (d->tag != DW_TAG_imported_declaration)
8821 break;
8822 }
8823
8824 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8825 {
8826 complaint (&symfile_complaints,
8827 _("DIE at 0x%x has too many recursively imported "
8828 "declarations"), d->offset.sect_off);
8829 return 0;
8830 }
8831
8832 if (attr != NULL)
8833 {
8834 struct type *type;
8835 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8836
8837 type = get_die_type_at_offset (offset, cu->per_cu);
8838 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8839 {
8840 /* This declaration is a global namespace alias. Add
8841 a symbol for it whose type is the aliased namespace. */
8842 new_symbol (die, type, cu);
8843 return 1;
8844 }
8845 }
8846 }
8847
8848 return 0;
8849 }
8850
8851 /* Return the using directives repository (global or local?) to use in the
8852 current context for LANGUAGE.
8853
8854 For Ada, imported declarations can materialize renamings, which *may* be
8855 global. However it is impossible (for now?) in DWARF to distinguish
8856 "external" imported declarations and "static" ones. As all imported
8857 declarations seem to be static in all other languages, make them all CU-wide
8858 global only in Ada. */
8859
8860 static struct using_direct **
8861 using_directives (enum language language)
8862 {
8863 if (language == language_ada && context_stack_depth == 0)
8864 return &global_using_directives;
8865 else
8866 return &local_using_directives;
8867 }
8868
8869 /* Read the import statement specified by the given die and record it. */
8870
8871 static void
8872 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8873 {
8874 struct objfile *objfile = cu->objfile;
8875 struct attribute *import_attr;
8876 struct die_info *imported_die, *child_die;
8877 struct dwarf2_cu *imported_cu;
8878 const char *imported_name;
8879 const char *imported_name_prefix;
8880 const char *canonical_name;
8881 const char *import_alias;
8882 const char *imported_declaration = NULL;
8883 const char *import_prefix;
8884 VEC (const_char_ptr) *excludes = NULL;
8885 struct cleanup *cleanups;
8886
8887 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8888 if (import_attr == NULL)
8889 {
8890 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8891 dwarf_tag_name (die->tag));
8892 return;
8893 }
8894
8895 imported_cu = cu;
8896 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8897 imported_name = dwarf2_name (imported_die, imported_cu);
8898 if (imported_name == NULL)
8899 {
8900 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8901
8902 The import in the following code:
8903 namespace A
8904 {
8905 typedef int B;
8906 }
8907
8908 int main ()
8909 {
8910 using A::B;
8911 B b;
8912 return b;
8913 }
8914
8915 ...
8916 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8917 <52> DW_AT_decl_file : 1
8918 <53> DW_AT_decl_line : 6
8919 <54> DW_AT_import : <0x75>
8920 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8921 <59> DW_AT_name : B
8922 <5b> DW_AT_decl_file : 1
8923 <5c> DW_AT_decl_line : 2
8924 <5d> DW_AT_type : <0x6e>
8925 ...
8926 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8927 <76> DW_AT_byte_size : 4
8928 <77> DW_AT_encoding : 5 (signed)
8929
8930 imports the wrong die ( 0x75 instead of 0x58 ).
8931 This case will be ignored until the gcc bug is fixed. */
8932 return;
8933 }
8934
8935 /* Figure out the local name after import. */
8936 import_alias = dwarf2_name (die, cu);
8937
8938 /* Figure out where the statement is being imported to. */
8939 import_prefix = determine_prefix (die, cu);
8940
8941 /* Figure out what the scope of the imported die is and prepend it
8942 to the name of the imported die. */
8943 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8944
8945 if (imported_die->tag != DW_TAG_namespace
8946 && imported_die->tag != DW_TAG_module)
8947 {
8948 imported_declaration = imported_name;
8949 canonical_name = imported_name_prefix;
8950 }
8951 else if (strlen (imported_name_prefix) > 0)
8952 canonical_name = obconcat (&objfile->objfile_obstack,
8953 imported_name_prefix,
8954 (cu->language == language_d ? "." : "::"),
8955 imported_name, (char *) NULL);
8956 else
8957 canonical_name = imported_name;
8958
8959 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8960
8961 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8962 for (child_die = die->child; child_die && child_die->tag;
8963 child_die = sibling_die (child_die))
8964 {
8965 /* DWARF-4: A Fortran use statement with a “rename list” may be
8966 represented by an imported module entry with an import attribute
8967 referring to the module and owned entries corresponding to those
8968 entities that are renamed as part of being imported. */
8969
8970 if (child_die->tag != DW_TAG_imported_declaration)
8971 {
8972 complaint (&symfile_complaints,
8973 _("child DW_TAG_imported_declaration expected "
8974 "- DIE at 0x%x [in module %s]"),
8975 child_die->offset.sect_off, objfile_name (objfile));
8976 continue;
8977 }
8978
8979 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8980 if (import_attr == NULL)
8981 {
8982 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8983 dwarf_tag_name (child_die->tag));
8984 continue;
8985 }
8986
8987 imported_cu = cu;
8988 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8989 &imported_cu);
8990 imported_name = dwarf2_name (imported_die, imported_cu);
8991 if (imported_name == NULL)
8992 {
8993 complaint (&symfile_complaints,
8994 _("child DW_TAG_imported_declaration has unknown "
8995 "imported name - DIE at 0x%x [in module %s]"),
8996 child_die->offset.sect_off, objfile_name (objfile));
8997 continue;
8998 }
8999
9000 VEC_safe_push (const_char_ptr, excludes, imported_name);
9001
9002 process_die (child_die, cu);
9003 }
9004
9005 add_using_directive (using_directives (cu->language),
9006 import_prefix,
9007 canonical_name,
9008 import_alias,
9009 imported_declaration,
9010 excludes,
9011 0,
9012 &objfile->objfile_obstack);
9013
9014 do_cleanups (cleanups);
9015 }
9016
9017 /* Cleanup function for handle_DW_AT_stmt_list. */
9018
9019 static void
9020 free_cu_line_header (void *arg)
9021 {
9022 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
9023
9024 free_line_header (cu->line_header);
9025 cu->line_header = NULL;
9026 }
9027
9028 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9029 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9030 this, it was first present in GCC release 4.3.0. */
9031
9032 static int
9033 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9034 {
9035 if (!cu->checked_producer)
9036 check_producer (cu);
9037
9038 return cu->producer_is_gcc_lt_4_3;
9039 }
9040
9041 static void
9042 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9043 const char **name, const char **comp_dir)
9044 {
9045 /* Find the filename. Do not use dwarf2_name here, since the filename
9046 is not a source language identifier. */
9047 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9048 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9049
9050 if (*comp_dir == NULL
9051 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9052 && IS_ABSOLUTE_PATH (*name))
9053 {
9054 char *d = ldirname (*name);
9055
9056 *comp_dir = d;
9057 if (d != NULL)
9058 make_cleanup (xfree, d);
9059 }
9060 if (*comp_dir != NULL)
9061 {
9062 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9063 directory, get rid of it. */
9064 const char *cp = strchr (*comp_dir, ':');
9065
9066 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9067 *comp_dir = cp + 1;
9068 }
9069
9070 if (*name == NULL)
9071 *name = "<unknown>";
9072 }
9073
9074 /* Handle DW_AT_stmt_list for a compilation unit.
9075 DIE is the DW_TAG_compile_unit die for CU.
9076 COMP_DIR is the compilation directory. LOWPC is passed to
9077 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9078
9079 static void
9080 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9081 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9082 {
9083 struct objfile *objfile = dwarf2_per_objfile->objfile;
9084 struct attribute *attr;
9085 unsigned int line_offset;
9086 struct line_header line_header_local;
9087 hashval_t line_header_local_hash;
9088 unsigned u;
9089 void **slot;
9090 int decode_mapping;
9091
9092 gdb_assert (! cu->per_cu->is_debug_types);
9093
9094 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9095 if (attr == NULL)
9096 return;
9097
9098 line_offset = DW_UNSND (attr);
9099
9100 /* The line header hash table is only created if needed (it exists to
9101 prevent redundant reading of the line table for partial_units).
9102 If we're given a partial_unit, we'll need it. If we're given a
9103 compile_unit, then use the line header hash table if it's already
9104 created, but don't create one just yet. */
9105
9106 if (dwarf2_per_objfile->line_header_hash == NULL
9107 && die->tag == DW_TAG_partial_unit)
9108 {
9109 dwarf2_per_objfile->line_header_hash
9110 = htab_create_alloc_ex (127, line_header_hash_voidp,
9111 line_header_eq_voidp,
9112 free_line_header_voidp,
9113 &objfile->objfile_obstack,
9114 hashtab_obstack_allocate,
9115 dummy_obstack_deallocate);
9116 }
9117
9118 line_header_local.offset.sect_off = line_offset;
9119 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9120 line_header_local_hash = line_header_hash (&line_header_local);
9121 if (dwarf2_per_objfile->line_header_hash != NULL)
9122 {
9123 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9124 &line_header_local,
9125 line_header_local_hash, NO_INSERT);
9126
9127 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9128 is not present in *SLOT (since if there is something in *SLOT then
9129 it will be for a partial_unit). */
9130 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9131 {
9132 gdb_assert (*slot != NULL);
9133 cu->line_header = (struct line_header *) *slot;
9134 return;
9135 }
9136 }
9137
9138 /* dwarf_decode_line_header does not yet provide sufficient information.
9139 We always have to call also dwarf_decode_lines for it. */
9140 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9141 if (cu->line_header == NULL)
9142 return;
9143
9144 if (dwarf2_per_objfile->line_header_hash == NULL)
9145 slot = NULL;
9146 else
9147 {
9148 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9149 &line_header_local,
9150 line_header_local_hash, INSERT);
9151 gdb_assert (slot != NULL);
9152 }
9153 if (slot != NULL && *slot == NULL)
9154 {
9155 /* This newly decoded line number information unit will be owned
9156 by line_header_hash hash table. */
9157 *slot = cu->line_header;
9158 }
9159 else
9160 {
9161 /* We cannot free any current entry in (*slot) as that struct line_header
9162 may be already used by multiple CUs. Create only temporary decoded
9163 line_header for this CU - it may happen at most once for each line
9164 number information unit. And if we're not using line_header_hash
9165 then this is what we want as well. */
9166 gdb_assert (die->tag != DW_TAG_partial_unit);
9167 make_cleanup (free_cu_line_header, cu);
9168 }
9169 decode_mapping = (die->tag != DW_TAG_partial_unit);
9170 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9171 decode_mapping);
9172 }
9173
9174 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9175
9176 static void
9177 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9178 {
9179 struct objfile *objfile = dwarf2_per_objfile->objfile;
9180 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9181 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9182 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9183 CORE_ADDR highpc = ((CORE_ADDR) 0);
9184 struct attribute *attr;
9185 const char *name = NULL;
9186 const char *comp_dir = NULL;
9187 struct die_info *child_die;
9188 CORE_ADDR baseaddr;
9189
9190 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9191
9192 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9193
9194 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9195 from finish_block. */
9196 if (lowpc == ((CORE_ADDR) -1))
9197 lowpc = highpc;
9198 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9199
9200 find_file_and_directory (die, cu, &name, &comp_dir);
9201
9202 prepare_one_comp_unit (cu, die, cu->language);
9203
9204 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9205 standardised yet. As a workaround for the language detection we fall
9206 back to the DW_AT_producer string. */
9207 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9208 cu->language = language_opencl;
9209
9210 /* Similar hack for Go. */
9211 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9212 set_cu_language (DW_LANG_Go, cu);
9213
9214 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9215
9216 /* Decode line number information if present. We do this before
9217 processing child DIEs, so that the line header table is available
9218 for DW_AT_decl_file. */
9219 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9220
9221 /* Process all dies in compilation unit. */
9222 if (die->child != NULL)
9223 {
9224 child_die = die->child;
9225 while (child_die && child_die->tag)
9226 {
9227 process_die (child_die, cu);
9228 child_die = sibling_die (child_die);
9229 }
9230 }
9231
9232 /* Decode macro information, if present. Dwarf 2 macro information
9233 refers to information in the line number info statement program
9234 header, so we can only read it if we've read the header
9235 successfully. */
9236 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9237 if (attr && cu->line_header)
9238 {
9239 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9240 complaint (&symfile_complaints,
9241 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9242
9243 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9244 }
9245 else
9246 {
9247 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9248 if (attr && cu->line_header)
9249 {
9250 unsigned int macro_offset = DW_UNSND (attr);
9251
9252 dwarf_decode_macros (cu, macro_offset, 0);
9253 }
9254 }
9255
9256 do_cleanups (back_to);
9257 }
9258
9259 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9260 Create the set of symtabs used by this TU, or if this TU is sharing
9261 symtabs with another TU and the symtabs have already been created
9262 then restore those symtabs in the line header.
9263 We don't need the pc/line-number mapping for type units. */
9264
9265 static void
9266 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9267 {
9268 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9269 struct type_unit_group *tu_group;
9270 int first_time;
9271 struct line_header *lh;
9272 struct attribute *attr;
9273 unsigned int i, line_offset;
9274 struct signatured_type *sig_type;
9275
9276 gdb_assert (per_cu->is_debug_types);
9277 sig_type = (struct signatured_type *) per_cu;
9278
9279 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9280
9281 /* If we're using .gdb_index (includes -readnow) then
9282 per_cu->type_unit_group may not have been set up yet. */
9283 if (sig_type->type_unit_group == NULL)
9284 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9285 tu_group = sig_type->type_unit_group;
9286
9287 /* If we've already processed this stmt_list there's no real need to
9288 do it again, we could fake it and just recreate the part we need
9289 (file name,index -> symtab mapping). If data shows this optimization
9290 is useful we can do it then. */
9291 first_time = tu_group->compunit_symtab == NULL;
9292
9293 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9294 debug info. */
9295 lh = NULL;
9296 if (attr != NULL)
9297 {
9298 line_offset = DW_UNSND (attr);
9299 lh = dwarf_decode_line_header (line_offset, cu);
9300 }
9301 if (lh == NULL)
9302 {
9303 if (first_time)
9304 dwarf2_start_symtab (cu, "", NULL, 0);
9305 else
9306 {
9307 gdb_assert (tu_group->symtabs == NULL);
9308 restart_symtab (tu_group->compunit_symtab, "", 0);
9309 }
9310 return;
9311 }
9312
9313 cu->line_header = lh;
9314 make_cleanup (free_cu_line_header, cu);
9315
9316 if (first_time)
9317 {
9318 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9319
9320 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9321 still initializing it, and our caller (a few levels up)
9322 process_full_type_unit still needs to know if this is the first
9323 time. */
9324
9325 tu_group->num_symtabs = lh->num_file_names;
9326 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9327
9328 for (i = 0; i < lh->num_file_names; ++i)
9329 {
9330 const char *dir = NULL;
9331 struct file_entry *fe = &lh->file_names[i];
9332
9333 if (fe->dir_index && lh->include_dirs != NULL)
9334 dir = lh->include_dirs[fe->dir_index - 1];
9335 dwarf2_start_subfile (fe->name, dir);
9336
9337 if (current_subfile->symtab == NULL)
9338 {
9339 /* NOTE: start_subfile will recognize when it's been passed
9340 a file it has already seen. So we can't assume there's a
9341 simple mapping from lh->file_names to subfiles, plus
9342 lh->file_names may contain dups. */
9343 current_subfile->symtab
9344 = allocate_symtab (cust, current_subfile->name);
9345 }
9346
9347 fe->symtab = current_subfile->symtab;
9348 tu_group->symtabs[i] = fe->symtab;
9349 }
9350 }
9351 else
9352 {
9353 restart_symtab (tu_group->compunit_symtab, "", 0);
9354
9355 for (i = 0; i < lh->num_file_names; ++i)
9356 {
9357 struct file_entry *fe = &lh->file_names[i];
9358
9359 fe->symtab = tu_group->symtabs[i];
9360 }
9361 }
9362
9363 /* The main symtab is allocated last. Type units don't have DW_AT_name
9364 so they don't have a "real" (so to speak) symtab anyway.
9365 There is later code that will assign the main symtab to all symbols
9366 that don't have one. We need to handle the case of a symbol with a
9367 missing symtab (DW_AT_decl_file) anyway. */
9368 }
9369
9370 /* Process DW_TAG_type_unit.
9371 For TUs we want to skip the first top level sibling if it's not the
9372 actual type being defined by this TU. In this case the first top
9373 level sibling is there to provide context only. */
9374
9375 static void
9376 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9377 {
9378 struct die_info *child_die;
9379
9380 prepare_one_comp_unit (cu, die, language_minimal);
9381
9382 /* Initialize (or reinitialize) the machinery for building symtabs.
9383 We do this before processing child DIEs, so that the line header table
9384 is available for DW_AT_decl_file. */
9385 setup_type_unit_groups (die, cu);
9386
9387 if (die->child != NULL)
9388 {
9389 child_die = die->child;
9390 while (child_die && child_die->tag)
9391 {
9392 process_die (child_die, cu);
9393 child_die = sibling_die (child_die);
9394 }
9395 }
9396 }
9397 \f
9398 /* DWO/DWP files.
9399
9400 http://gcc.gnu.org/wiki/DebugFission
9401 http://gcc.gnu.org/wiki/DebugFissionDWP
9402
9403 To simplify handling of both DWO files ("object" files with the DWARF info)
9404 and DWP files (a file with the DWOs packaged up into one file), we treat
9405 DWP files as having a collection of virtual DWO files. */
9406
9407 static hashval_t
9408 hash_dwo_file (const void *item)
9409 {
9410 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9411 hashval_t hash;
9412
9413 hash = htab_hash_string (dwo_file->dwo_name);
9414 if (dwo_file->comp_dir != NULL)
9415 hash += htab_hash_string (dwo_file->comp_dir);
9416 return hash;
9417 }
9418
9419 static int
9420 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9421 {
9422 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9423 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9424
9425 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9426 return 0;
9427 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9428 return lhs->comp_dir == rhs->comp_dir;
9429 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9430 }
9431
9432 /* Allocate a hash table for DWO files. */
9433
9434 static htab_t
9435 allocate_dwo_file_hash_table (void)
9436 {
9437 struct objfile *objfile = dwarf2_per_objfile->objfile;
9438
9439 return htab_create_alloc_ex (41,
9440 hash_dwo_file,
9441 eq_dwo_file,
9442 NULL,
9443 &objfile->objfile_obstack,
9444 hashtab_obstack_allocate,
9445 dummy_obstack_deallocate);
9446 }
9447
9448 /* Lookup DWO file DWO_NAME. */
9449
9450 static void **
9451 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9452 {
9453 struct dwo_file find_entry;
9454 void **slot;
9455
9456 if (dwarf2_per_objfile->dwo_files == NULL)
9457 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9458
9459 memset (&find_entry, 0, sizeof (find_entry));
9460 find_entry.dwo_name = dwo_name;
9461 find_entry.comp_dir = comp_dir;
9462 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9463
9464 return slot;
9465 }
9466
9467 static hashval_t
9468 hash_dwo_unit (const void *item)
9469 {
9470 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9471
9472 /* This drops the top 32 bits of the id, but is ok for a hash. */
9473 return dwo_unit->signature;
9474 }
9475
9476 static int
9477 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9478 {
9479 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9480 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9481
9482 /* The signature is assumed to be unique within the DWO file.
9483 So while object file CU dwo_id's always have the value zero,
9484 that's OK, assuming each object file DWO file has only one CU,
9485 and that's the rule for now. */
9486 return lhs->signature == rhs->signature;
9487 }
9488
9489 /* Allocate a hash table for DWO CUs,TUs.
9490 There is one of these tables for each of CUs,TUs for each DWO file. */
9491
9492 static htab_t
9493 allocate_dwo_unit_table (struct objfile *objfile)
9494 {
9495 /* Start out with a pretty small number.
9496 Generally DWO files contain only one CU and maybe some TUs. */
9497 return htab_create_alloc_ex (3,
9498 hash_dwo_unit,
9499 eq_dwo_unit,
9500 NULL,
9501 &objfile->objfile_obstack,
9502 hashtab_obstack_allocate,
9503 dummy_obstack_deallocate);
9504 }
9505
9506 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9507
9508 struct create_dwo_cu_data
9509 {
9510 struct dwo_file *dwo_file;
9511 struct dwo_unit dwo_unit;
9512 };
9513
9514 /* die_reader_func for create_dwo_cu. */
9515
9516 static void
9517 create_dwo_cu_reader (const struct die_reader_specs *reader,
9518 const gdb_byte *info_ptr,
9519 struct die_info *comp_unit_die,
9520 int has_children,
9521 void *datap)
9522 {
9523 struct dwarf2_cu *cu = reader->cu;
9524 sect_offset offset = cu->per_cu->offset;
9525 struct dwarf2_section_info *section = cu->per_cu->section;
9526 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9527 struct dwo_file *dwo_file = data->dwo_file;
9528 struct dwo_unit *dwo_unit = &data->dwo_unit;
9529 struct attribute *attr;
9530
9531 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9532 if (attr == NULL)
9533 {
9534 complaint (&symfile_complaints,
9535 _("Dwarf Error: debug entry at offset 0x%x is missing"
9536 " its dwo_id [in module %s]"),
9537 offset.sect_off, dwo_file->dwo_name);
9538 return;
9539 }
9540
9541 dwo_unit->dwo_file = dwo_file;
9542 dwo_unit->signature = DW_UNSND (attr);
9543 dwo_unit->section = section;
9544 dwo_unit->offset = offset;
9545 dwo_unit->length = cu->per_cu->length;
9546
9547 if (dwarf_read_debug)
9548 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9549 offset.sect_off, hex_string (dwo_unit->signature));
9550 }
9551
9552 /* Create the dwo_unit for the lone CU in DWO_FILE.
9553 Note: This function processes DWO files only, not DWP files. */
9554
9555 static struct dwo_unit *
9556 create_dwo_cu (struct dwo_file *dwo_file)
9557 {
9558 struct objfile *objfile = dwarf2_per_objfile->objfile;
9559 struct dwarf2_section_info *section = &dwo_file->sections.info;
9560 const gdb_byte *info_ptr, *end_ptr;
9561 struct create_dwo_cu_data create_dwo_cu_data;
9562 struct dwo_unit *dwo_unit;
9563
9564 dwarf2_read_section (objfile, section);
9565 info_ptr = section->buffer;
9566
9567 if (info_ptr == NULL)
9568 return NULL;
9569
9570 if (dwarf_read_debug)
9571 {
9572 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9573 get_section_name (section),
9574 get_section_file_name (section));
9575 }
9576
9577 create_dwo_cu_data.dwo_file = dwo_file;
9578 dwo_unit = NULL;
9579
9580 end_ptr = info_ptr + section->size;
9581 while (info_ptr < end_ptr)
9582 {
9583 struct dwarf2_per_cu_data per_cu;
9584
9585 memset (&create_dwo_cu_data.dwo_unit, 0,
9586 sizeof (create_dwo_cu_data.dwo_unit));
9587 memset (&per_cu, 0, sizeof (per_cu));
9588 per_cu.objfile = objfile;
9589 per_cu.is_debug_types = 0;
9590 per_cu.offset.sect_off = info_ptr - section->buffer;
9591 per_cu.section = section;
9592
9593 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9594 create_dwo_cu_reader,
9595 &create_dwo_cu_data);
9596
9597 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9598 {
9599 /* If we've already found one, complain. We only support one
9600 because having more than one requires hacking the dwo_name of
9601 each to match, which is highly unlikely to happen. */
9602 if (dwo_unit != NULL)
9603 {
9604 complaint (&symfile_complaints,
9605 _("Multiple CUs in DWO file %s [in module %s]"),
9606 dwo_file->dwo_name, objfile_name (objfile));
9607 break;
9608 }
9609
9610 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9611 *dwo_unit = create_dwo_cu_data.dwo_unit;
9612 }
9613
9614 info_ptr += per_cu.length;
9615 }
9616
9617 return dwo_unit;
9618 }
9619
9620 /* DWP file .debug_{cu,tu}_index section format:
9621 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9622
9623 DWP Version 1:
9624
9625 Both index sections have the same format, and serve to map a 64-bit
9626 signature to a set of section numbers. Each section begins with a header,
9627 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9628 indexes, and a pool of 32-bit section numbers. The index sections will be
9629 aligned at 8-byte boundaries in the file.
9630
9631 The index section header consists of:
9632
9633 V, 32 bit version number
9634 -, 32 bits unused
9635 N, 32 bit number of compilation units or type units in the index
9636 M, 32 bit number of slots in the hash table
9637
9638 Numbers are recorded using the byte order of the application binary.
9639
9640 The hash table begins at offset 16 in the section, and consists of an array
9641 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9642 order of the application binary). Unused slots in the hash table are 0.
9643 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9644
9645 The parallel table begins immediately after the hash table
9646 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9647 array of 32-bit indexes (using the byte order of the application binary),
9648 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9649 table contains a 32-bit index into the pool of section numbers. For unused
9650 hash table slots, the corresponding entry in the parallel table will be 0.
9651
9652 The pool of section numbers begins immediately following the hash table
9653 (at offset 16 + 12 * M from the beginning of the section). The pool of
9654 section numbers consists of an array of 32-bit words (using the byte order
9655 of the application binary). Each item in the array is indexed starting
9656 from 0. The hash table entry provides the index of the first section
9657 number in the set. Additional section numbers in the set follow, and the
9658 set is terminated by a 0 entry (section number 0 is not used in ELF).
9659
9660 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9661 section must be the first entry in the set, and the .debug_abbrev.dwo must
9662 be the second entry. Other members of the set may follow in any order.
9663
9664 ---
9665
9666 DWP Version 2:
9667
9668 DWP Version 2 combines all the .debug_info, etc. sections into one,
9669 and the entries in the index tables are now offsets into these sections.
9670 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9671 section.
9672
9673 Index Section Contents:
9674 Header
9675 Hash Table of Signatures dwp_hash_table.hash_table
9676 Parallel Table of Indices dwp_hash_table.unit_table
9677 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9678 Table of Section Sizes dwp_hash_table.v2.sizes
9679
9680 The index section header consists of:
9681
9682 V, 32 bit version number
9683 L, 32 bit number of columns in the table of section offsets
9684 N, 32 bit number of compilation units or type units in the index
9685 M, 32 bit number of slots in the hash table
9686
9687 Numbers are recorded using the byte order of the application binary.
9688
9689 The hash table has the same format as version 1.
9690 The parallel table of indices has the same format as version 1,
9691 except that the entries are origin-1 indices into the table of sections
9692 offsets and the table of section sizes.
9693
9694 The table of offsets begins immediately following the parallel table
9695 (at offset 16 + 12 * M from the beginning of the section). The table is
9696 a two-dimensional array of 32-bit words (using the byte order of the
9697 application binary), with L columns and N+1 rows, in row-major order.
9698 Each row in the array is indexed starting from 0. The first row provides
9699 a key to the remaining rows: each column in this row provides an identifier
9700 for a debug section, and the offsets in the same column of subsequent rows
9701 refer to that section. The section identifiers are:
9702
9703 DW_SECT_INFO 1 .debug_info.dwo
9704 DW_SECT_TYPES 2 .debug_types.dwo
9705 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9706 DW_SECT_LINE 4 .debug_line.dwo
9707 DW_SECT_LOC 5 .debug_loc.dwo
9708 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9709 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9710 DW_SECT_MACRO 8 .debug_macro.dwo
9711
9712 The offsets provided by the CU and TU index sections are the base offsets
9713 for the contributions made by each CU or TU to the corresponding section
9714 in the package file. Each CU and TU header contains an abbrev_offset
9715 field, used to find the abbreviations table for that CU or TU within the
9716 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9717 be interpreted as relative to the base offset given in the index section.
9718 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9719 should be interpreted as relative to the base offset for .debug_line.dwo,
9720 and offsets into other debug sections obtained from DWARF attributes should
9721 also be interpreted as relative to the corresponding base offset.
9722
9723 The table of sizes begins immediately following the table of offsets.
9724 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9725 with L columns and N rows, in row-major order. Each row in the array is
9726 indexed starting from 1 (row 0 is shared by the two tables).
9727
9728 ---
9729
9730 Hash table lookup is handled the same in version 1 and 2:
9731
9732 We assume that N and M will not exceed 2^32 - 1.
9733 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9734
9735 Given a 64-bit compilation unit signature or a type signature S, an entry
9736 in the hash table is located as follows:
9737
9738 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9739 the low-order k bits all set to 1.
9740
9741 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9742
9743 3) If the hash table entry at index H matches the signature, use that
9744 entry. If the hash table entry at index H is unused (all zeroes),
9745 terminate the search: the signature is not present in the table.
9746
9747 4) Let H = (H + H') modulo M. Repeat at Step 3.
9748
9749 Because M > N and H' and M are relatively prime, the search is guaranteed
9750 to stop at an unused slot or find the match. */
9751
9752 /* Create a hash table to map DWO IDs to their CU/TU entry in
9753 .debug_{info,types}.dwo in DWP_FILE.
9754 Returns NULL if there isn't one.
9755 Note: This function processes DWP files only, not DWO files. */
9756
9757 static struct dwp_hash_table *
9758 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9759 {
9760 struct objfile *objfile = dwarf2_per_objfile->objfile;
9761 bfd *dbfd = dwp_file->dbfd;
9762 const gdb_byte *index_ptr, *index_end;
9763 struct dwarf2_section_info *index;
9764 uint32_t version, nr_columns, nr_units, nr_slots;
9765 struct dwp_hash_table *htab;
9766
9767 if (is_debug_types)
9768 index = &dwp_file->sections.tu_index;
9769 else
9770 index = &dwp_file->sections.cu_index;
9771
9772 if (dwarf2_section_empty_p (index))
9773 return NULL;
9774 dwarf2_read_section (objfile, index);
9775
9776 index_ptr = index->buffer;
9777 index_end = index_ptr + index->size;
9778
9779 version = read_4_bytes (dbfd, index_ptr);
9780 index_ptr += 4;
9781 if (version == 2)
9782 nr_columns = read_4_bytes (dbfd, index_ptr);
9783 else
9784 nr_columns = 0;
9785 index_ptr += 4;
9786 nr_units = read_4_bytes (dbfd, index_ptr);
9787 index_ptr += 4;
9788 nr_slots = read_4_bytes (dbfd, index_ptr);
9789 index_ptr += 4;
9790
9791 if (version != 1 && version != 2)
9792 {
9793 error (_("Dwarf Error: unsupported DWP file version (%s)"
9794 " [in module %s]"),
9795 pulongest (version), dwp_file->name);
9796 }
9797 if (nr_slots != (nr_slots & -nr_slots))
9798 {
9799 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9800 " is not power of 2 [in module %s]"),
9801 pulongest (nr_slots), dwp_file->name);
9802 }
9803
9804 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9805 htab->version = version;
9806 htab->nr_columns = nr_columns;
9807 htab->nr_units = nr_units;
9808 htab->nr_slots = nr_slots;
9809 htab->hash_table = index_ptr;
9810 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9811
9812 /* Exit early if the table is empty. */
9813 if (nr_slots == 0 || nr_units == 0
9814 || (version == 2 && nr_columns == 0))
9815 {
9816 /* All must be zero. */
9817 if (nr_slots != 0 || nr_units != 0
9818 || (version == 2 && nr_columns != 0))
9819 {
9820 complaint (&symfile_complaints,
9821 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9822 " all zero [in modules %s]"),
9823 dwp_file->name);
9824 }
9825 return htab;
9826 }
9827
9828 if (version == 1)
9829 {
9830 htab->section_pool.v1.indices =
9831 htab->unit_table + sizeof (uint32_t) * nr_slots;
9832 /* It's harder to decide whether the section is too small in v1.
9833 V1 is deprecated anyway so we punt. */
9834 }
9835 else
9836 {
9837 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9838 int *ids = htab->section_pool.v2.section_ids;
9839 /* Reverse map for error checking. */
9840 int ids_seen[DW_SECT_MAX + 1];
9841 int i;
9842
9843 if (nr_columns < 2)
9844 {
9845 error (_("Dwarf Error: bad DWP hash table, too few columns"
9846 " in section table [in module %s]"),
9847 dwp_file->name);
9848 }
9849 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9850 {
9851 error (_("Dwarf Error: bad DWP hash table, too many columns"
9852 " in section table [in module %s]"),
9853 dwp_file->name);
9854 }
9855 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9856 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9857 for (i = 0; i < nr_columns; ++i)
9858 {
9859 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9860
9861 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9862 {
9863 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9864 " in section table [in module %s]"),
9865 id, dwp_file->name);
9866 }
9867 if (ids_seen[id] != -1)
9868 {
9869 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9870 " id %d in section table [in module %s]"),
9871 id, dwp_file->name);
9872 }
9873 ids_seen[id] = i;
9874 ids[i] = id;
9875 }
9876 /* Must have exactly one info or types section. */
9877 if (((ids_seen[DW_SECT_INFO] != -1)
9878 + (ids_seen[DW_SECT_TYPES] != -1))
9879 != 1)
9880 {
9881 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9882 " DWO info/types section [in module %s]"),
9883 dwp_file->name);
9884 }
9885 /* Must have an abbrev section. */
9886 if (ids_seen[DW_SECT_ABBREV] == -1)
9887 {
9888 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9889 " section [in module %s]"),
9890 dwp_file->name);
9891 }
9892 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9893 htab->section_pool.v2.sizes =
9894 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9895 * nr_units * nr_columns);
9896 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9897 * nr_units * nr_columns))
9898 > index_end)
9899 {
9900 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9901 " [in module %s]"),
9902 dwp_file->name);
9903 }
9904 }
9905
9906 return htab;
9907 }
9908
9909 /* Update SECTIONS with the data from SECTP.
9910
9911 This function is like the other "locate" section routines that are
9912 passed to bfd_map_over_sections, but in this context the sections to
9913 read comes from the DWP V1 hash table, not the full ELF section table.
9914
9915 The result is non-zero for success, or zero if an error was found. */
9916
9917 static int
9918 locate_v1_virtual_dwo_sections (asection *sectp,
9919 struct virtual_v1_dwo_sections *sections)
9920 {
9921 const struct dwop_section_names *names = &dwop_section_names;
9922
9923 if (section_is_p (sectp->name, &names->abbrev_dwo))
9924 {
9925 /* There can be only one. */
9926 if (sections->abbrev.s.section != NULL)
9927 return 0;
9928 sections->abbrev.s.section = sectp;
9929 sections->abbrev.size = bfd_get_section_size (sectp);
9930 }
9931 else if (section_is_p (sectp->name, &names->info_dwo)
9932 || section_is_p (sectp->name, &names->types_dwo))
9933 {
9934 /* There can be only one. */
9935 if (sections->info_or_types.s.section != NULL)
9936 return 0;
9937 sections->info_or_types.s.section = sectp;
9938 sections->info_or_types.size = bfd_get_section_size (sectp);
9939 }
9940 else if (section_is_p (sectp->name, &names->line_dwo))
9941 {
9942 /* There can be only one. */
9943 if (sections->line.s.section != NULL)
9944 return 0;
9945 sections->line.s.section = sectp;
9946 sections->line.size = bfd_get_section_size (sectp);
9947 }
9948 else if (section_is_p (sectp->name, &names->loc_dwo))
9949 {
9950 /* There can be only one. */
9951 if (sections->loc.s.section != NULL)
9952 return 0;
9953 sections->loc.s.section = sectp;
9954 sections->loc.size = bfd_get_section_size (sectp);
9955 }
9956 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9957 {
9958 /* There can be only one. */
9959 if (sections->macinfo.s.section != NULL)
9960 return 0;
9961 sections->macinfo.s.section = sectp;
9962 sections->macinfo.size = bfd_get_section_size (sectp);
9963 }
9964 else if (section_is_p (sectp->name, &names->macro_dwo))
9965 {
9966 /* There can be only one. */
9967 if (sections->macro.s.section != NULL)
9968 return 0;
9969 sections->macro.s.section = sectp;
9970 sections->macro.size = bfd_get_section_size (sectp);
9971 }
9972 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9973 {
9974 /* There can be only one. */
9975 if (sections->str_offsets.s.section != NULL)
9976 return 0;
9977 sections->str_offsets.s.section = sectp;
9978 sections->str_offsets.size = bfd_get_section_size (sectp);
9979 }
9980 else
9981 {
9982 /* No other kind of section is valid. */
9983 return 0;
9984 }
9985
9986 return 1;
9987 }
9988
9989 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9990 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9991 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9992 This is for DWP version 1 files. */
9993
9994 static struct dwo_unit *
9995 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9996 uint32_t unit_index,
9997 const char *comp_dir,
9998 ULONGEST signature, int is_debug_types)
9999 {
10000 struct objfile *objfile = dwarf2_per_objfile->objfile;
10001 const struct dwp_hash_table *dwp_htab =
10002 is_debug_types ? dwp_file->tus : dwp_file->cus;
10003 bfd *dbfd = dwp_file->dbfd;
10004 const char *kind = is_debug_types ? "TU" : "CU";
10005 struct dwo_file *dwo_file;
10006 struct dwo_unit *dwo_unit;
10007 struct virtual_v1_dwo_sections sections;
10008 void **dwo_file_slot;
10009 char *virtual_dwo_name;
10010 struct cleanup *cleanups;
10011 int i;
10012
10013 gdb_assert (dwp_file->version == 1);
10014
10015 if (dwarf_read_debug)
10016 {
10017 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10018 kind,
10019 pulongest (unit_index), hex_string (signature),
10020 dwp_file->name);
10021 }
10022
10023 /* Fetch the sections of this DWO unit.
10024 Put a limit on the number of sections we look for so that bad data
10025 doesn't cause us to loop forever. */
10026
10027 #define MAX_NR_V1_DWO_SECTIONS \
10028 (1 /* .debug_info or .debug_types */ \
10029 + 1 /* .debug_abbrev */ \
10030 + 1 /* .debug_line */ \
10031 + 1 /* .debug_loc */ \
10032 + 1 /* .debug_str_offsets */ \
10033 + 1 /* .debug_macro or .debug_macinfo */ \
10034 + 1 /* trailing zero */)
10035
10036 memset (&sections, 0, sizeof (sections));
10037 cleanups = make_cleanup (null_cleanup, 0);
10038
10039 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10040 {
10041 asection *sectp;
10042 uint32_t section_nr =
10043 read_4_bytes (dbfd,
10044 dwp_htab->section_pool.v1.indices
10045 + (unit_index + i) * sizeof (uint32_t));
10046
10047 if (section_nr == 0)
10048 break;
10049 if (section_nr >= dwp_file->num_sections)
10050 {
10051 error (_("Dwarf Error: bad DWP hash table, section number too large"
10052 " [in module %s]"),
10053 dwp_file->name);
10054 }
10055
10056 sectp = dwp_file->elf_sections[section_nr];
10057 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10058 {
10059 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10060 " [in module %s]"),
10061 dwp_file->name);
10062 }
10063 }
10064
10065 if (i < 2
10066 || dwarf2_section_empty_p (&sections.info_or_types)
10067 || dwarf2_section_empty_p (&sections.abbrev))
10068 {
10069 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10070 " [in module %s]"),
10071 dwp_file->name);
10072 }
10073 if (i == MAX_NR_V1_DWO_SECTIONS)
10074 {
10075 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10076 " [in module %s]"),
10077 dwp_file->name);
10078 }
10079
10080 /* It's easier for the rest of the code if we fake a struct dwo_file and
10081 have dwo_unit "live" in that. At least for now.
10082
10083 The DWP file can be made up of a random collection of CUs and TUs.
10084 However, for each CU + set of TUs that came from the same original DWO
10085 file, we can combine them back into a virtual DWO file to save space
10086 (fewer struct dwo_file objects to allocate). Remember that for really
10087 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10088
10089 virtual_dwo_name =
10090 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10091 get_section_id (&sections.abbrev),
10092 get_section_id (&sections.line),
10093 get_section_id (&sections.loc),
10094 get_section_id (&sections.str_offsets));
10095 make_cleanup (xfree, virtual_dwo_name);
10096 /* Can we use an existing virtual DWO file? */
10097 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10098 /* Create one if necessary. */
10099 if (*dwo_file_slot == NULL)
10100 {
10101 if (dwarf_read_debug)
10102 {
10103 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10104 virtual_dwo_name);
10105 }
10106 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10107 dwo_file->dwo_name
10108 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10109 virtual_dwo_name,
10110 strlen (virtual_dwo_name));
10111 dwo_file->comp_dir = comp_dir;
10112 dwo_file->sections.abbrev = sections.abbrev;
10113 dwo_file->sections.line = sections.line;
10114 dwo_file->sections.loc = sections.loc;
10115 dwo_file->sections.macinfo = sections.macinfo;
10116 dwo_file->sections.macro = sections.macro;
10117 dwo_file->sections.str_offsets = sections.str_offsets;
10118 /* The "str" section is global to the entire DWP file. */
10119 dwo_file->sections.str = dwp_file->sections.str;
10120 /* The info or types section is assigned below to dwo_unit,
10121 there's no need to record it in dwo_file.
10122 Also, we can't simply record type sections in dwo_file because
10123 we record a pointer into the vector in dwo_unit. As we collect more
10124 types we'll grow the vector and eventually have to reallocate space
10125 for it, invalidating all copies of pointers into the previous
10126 contents. */
10127 *dwo_file_slot = dwo_file;
10128 }
10129 else
10130 {
10131 if (dwarf_read_debug)
10132 {
10133 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10134 virtual_dwo_name);
10135 }
10136 dwo_file = (struct dwo_file *) *dwo_file_slot;
10137 }
10138 do_cleanups (cleanups);
10139
10140 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10141 dwo_unit->dwo_file = dwo_file;
10142 dwo_unit->signature = signature;
10143 dwo_unit->section =
10144 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10145 *dwo_unit->section = sections.info_or_types;
10146 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10147
10148 return dwo_unit;
10149 }
10150
10151 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10152 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10153 piece within that section used by a TU/CU, return a virtual section
10154 of just that piece. */
10155
10156 static struct dwarf2_section_info
10157 create_dwp_v2_section (struct dwarf2_section_info *section,
10158 bfd_size_type offset, bfd_size_type size)
10159 {
10160 struct dwarf2_section_info result;
10161 asection *sectp;
10162
10163 gdb_assert (section != NULL);
10164 gdb_assert (!section->is_virtual);
10165
10166 memset (&result, 0, sizeof (result));
10167 result.s.containing_section = section;
10168 result.is_virtual = 1;
10169
10170 if (size == 0)
10171 return result;
10172
10173 sectp = get_section_bfd_section (section);
10174
10175 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10176 bounds of the real section. This is a pretty-rare event, so just
10177 flag an error (easier) instead of a warning and trying to cope. */
10178 if (sectp == NULL
10179 || offset + size > bfd_get_section_size (sectp))
10180 {
10181 bfd *abfd = sectp->owner;
10182
10183 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10184 " in section %s [in module %s]"),
10185 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10186 objfile_name (dwarf2_per_objfile->objfile));
10187 }
10188
10189 result.virtual_offset = offset;
10190 result.size = size;
10191 return result;
10192 }
10193
10194 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10195 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10196 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10197 This is for DWP version 2 files. */
10198
10199 static struct dwo_unit *
10200 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10201 uint32_t unit_index,
10202 const char *comp_dir,
10203 ULONGEST signature, int is_debug_types)
10204 {
10205 struct objfile *objfile = dwarf2_per_objfile->objfile;
10206 const struct dwp_hash_table *dwp_htab =
10207 is_debug_types ? dwp_file->tus : dwp_file->cus;
10208 bfd *dbfd = dwp_file->dbfd;
10209 const char *kind = is_debug_types ? "TU" : "CU";
10210 struct dwo_file *dwo_file;
10211 struct dwo_unit *dwo_unit;
10212 struct virtual_v2_dwo_sections sections;
10213 void **dwo_file_slot;
10214 char *virtual_dwo_name;
10215 struct cleanup *cleanups;
10216 int i;
10217
10218 gdb_assert (dwp_file->version == 2);
10219
10220 if (dwarf_read_debug)
10221 {
10222 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10223 kind,
10224 pulongest (unit_index), hex_string (signature),
10225 dwp_file->name);
10226 }
10227
10228 /* Fetch the section offsets of this DWO unit. */
10229
10230 memset (&sections, 0, sizeof (sections));
10231 cleanups = make_cleanup (null_cleanup, 0);
10232
10233 for (i = 0; i < dwp_htab->nr_columns; ++i)
10234 {
10235 uint32_t offset = read_4_bytes (dbfd,
10236 dwp_htab->section_pool.v2.offsets
10237 + (((unit_index - 1) * dwp_htab->nr_columns
10238 + i)
10239 * sizeof (uint32_t)));
10240 uint32_t size = read_4_bytes (dbfd,
10241 dwp_htab->section_pool.v2.sizes
10242 + (((unit_index - 1) * dwp_htab->nr_columns
10243 + i)
10244 * sizeof (uint32_t)));
10245
10246 switch (dwp_htab->section_pool.v2.section_ids[i])
10247 {
10248 case DW_SECT_INFO:
10249 case DW_SECT_TYPES:
10250 sections.info_or_types_offset = offset;
10251 sections.info_or_types_size = size;
10252 break;
10253 case DW_SECT_ABBREV:
10254 sections.abbrev_offset = offset;
10255 sections.abbrev_size = size;
10256 break;
10257 case DW_SECT_LINE:
10258 sections.line_offset = offset;
10259 sections.line_size = size;
10260 break;
10261 case DW_SECT_LOC:
10262 sections.loc_offset = offset;
10263 sections.loc_size = size;
10264 break;
10265 case DW_SECT_STR_OFFSETS:
10266 sections.str_offsets_offset = offset;
10267 sections.str_offsets_size = size;
10268 break;
10269 case DW_SECT_MACINFO:
10270 sections.macinfo_offset = offset;
10271 sections.macinfo_size = size;
10272 break;
10273 case DW_SECT_MACRO:
10274 sections.macro_offset = offset;
10275 sections.macro_size = size;
10276 break;
10277 }
10278 }
10279
10280 /* It's easier for the rest of the code if we fake a struct dwo_file and
10281 have dwo_unit "live" in that. At least for now.
10282
10283 The DWP file can be made up of a random collection of CUs and TUs.
10284 However, for each CU + set of TUs that came from the same original DWO
10285 file, we can combine them back into a virtual DWO file to save space
10286 (fewer struct dwo_file objects to allocate). Remember that for really
10287 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10288
10289 virtual_dwo_name =
10290 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10291 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10292 (long) (sections.line_size ? sections.line_offset : 0),
10293 (long) (sections.loc_size ? sections.loc_offset : 0),
10294 (long) (sections.str_offsets_size
10295 ? sections.str_offsets_offset : 0));
10296 make_cleanup (xfree, virtual_dwo_name);
10297 /* Can we use an existing virtual DWO file? */
10298 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10299 /* Create one if necessary. */
10300 if (*dwo_file_slot == NULL)
10301 {
10302 if (dwarf_read_debug)
10303 {
10304 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10305 virtual_dwo_name);
10306 }
10307 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10308 dwo_file->dwo_name
10309 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10310 virtual_dwo_name,
10311 strlen (virtual_dwo_name));
10312 dwo_file->comp_dir = comp_dir;
10313 dwo_file->sections.abbrev =
10314 create_dwp_v2_section (&dwp_file->sections.abbrev,
10315 sections.abbrev_offset, sections.abbrev_size);
10316 dwo_file->sections.line =
10317 create_dwp_v2_section (&dwp_file->sections.line,
10318 sections.line_offset, sections.line_size);
10319 dwo_file->sections.loc =
10320 create_dwp_v2_section (&dwp_file->sections.loc,
10321 sections.loc_offset, sections.loc_size);
10322 dwo_file->sections.macinfo =
10323 create_dwp_v2_section (&dwp_file->sections.macinfo,
10324 sections.macinfo_offset, sections.macinfo_size);
10325 dwo_file->sections.macro =
10326 create_dwp_v2_section (&dwp_file->sections.macro,
10327 sections.macro_offset, sections.macro_size);
10328 dwo_file->sections.str_offsets =
10329 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10330 sections.str_offsets_offset,
10331 sections.str_offsets_size);
10332 /* The "str" section is global to the entire DWP file. */
10333 dwo_file->sections.str = dwp_file->sections.str;
10334 /* The info or types section is assigned below to dwo_unit,
10335 there's no need to record it in dwo_file.
10336 Also, we can't simply record type sections in dwo_file because
10337 we record a pointer into the vector in dwo_unit. As we collect more
10338 types we'll grow the vector and eventually have to reallocate space
10339 for it, invalidating all copies of pointers into the previous
10340 contents. */
10341 *dwo_file_slot = dwo_file;
10342 }
10343 else
10344 {
10345 if (dwarf_read_debug)
10346 {
10347 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10348 virtual_dwo_name);
10349 }
10350 dwo_file = (struct dwo_file *) *dwo_file_slot;
10351 }
10352 do_cleanups (cleanups);
10353
10354 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10355 dwo_unit->dwo_file = dwo_file;
10356 dwo_unit->signature = signature;
10357 dwo_unit->section =
10358 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10359 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10360 ? &dwp_file->sections.types
10361 : &dwp_file->sections.info,
10362 sections.info_or_types_offset,
10363 sections.info_or_types_size);
10364 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10365
10366 return dwo_unit;
10367 }
10368
10369 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10370 Returns NULL if the signature isn't found. */
10371
10372 static struct dwo_unit *
10373 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10374 ULONGEST signature, int is_debug_types)
10375 {
10376 const struct dwp_hash_table *dwp_htab =
10377 is_debug_types ? dwp_file->tus : dwp_file->cus;
10378 bfd *dbfd = dwp_file->dbfd;
10379 uint32_t mask = dwp_htab->nr_slots - 1;
10380 uint32_t hash = signature & mask;
10381 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10382 unsigned int i;
10383 void **slot;
10384 struct dwo_unit find_dwo_cu;
10385
10386 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10387 find_dwo_cu.signature = signature;
10388 slot = htab_find_slot (is_debug_types
10389 ? dwp_file->loaded_tus
10390 : dwp_file->loaded_cus,
10391 &find_dwo_cu, INSERT);
10392
10393 if (*slot != NULL)
10394 return (struct dwo_unit *) *slot;
10395
10396 /* Use a for loop so that we don't loop forever on bad debug info. */
10397 for (i = 0; i < dwp_htab->nr_slots; ++i)
10398 {
10399 ULONGEST signature_in_table;
10400
10401 signature_in_table =
10402 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10403 if (signature_in_table == signature)
10404 {
10405 uint32_t unit_index =
10406 read_4_bytes (dbfd,
10407 dwp_htab->unit_table + hash * sizeof (uint32_t));
10408
10409 if (dwp_file->version == 1)
10410 {
10411 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10412 comp_dir, signature,
10413 is_debug_types);
10414 }
10415 else
10416 {
10417 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10418 comp_dir, signature,
10419 is_debug_types);
10420 }
10421 return (struct dwo_unit *) *slot;
10422 }
10423 if (signature_in_table == 0)
10424 return NULL;
10425 hash = (hash + hash2) & mask;
10426 }
10427
10428 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10429 " [in module %s]"),
10430 dwp_file->name);
10431 }
10432
10433 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10434 Open the file specified by FILE_NAME and hand it off to BFD for
10435 preliminary analysis. Return a newly initialized bfd *, which
10436 includes a canonicalized copy of FILE_NAME.
10437 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10438 SEARCH_CWD is true if the current directory is to be searched.
10439 It will be searched before debug-file-directory.
10440 If successful, the file is added to the bfd include table of the
10441 objfile's bfd (see gdb_bfd_record_inclusion).
10442 If unable to find/open the file, return NULL.
10443 NOTE: This function is derived from symfile_bfd_open. */
10444
10445 static gdb_bfd_ref_ptr
10446 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10447 {
10448 int desc, flags;
10449 char *absolute_name;
10450 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10451 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10452 to debug_file_directory. */
10453 char *search_path;
10454 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10455
10456 if (search_cwd)
10457 {
10458 if (*debug_file_directory != '\0')
10459 search_path = concat (".", dirname_separator_string,
10460 debug_file_directory, (char *) NULL);
10461 else
10462 search_path = xstrdup (".");
10463 }
10464 else
10465 search_path = xstrdup (debug_file_directory);
10466
10467 flags = OPF_RETURN_REALPATH;
10468 if (is_dwp)
10469 flags |= OPF_SEARCH_IN_PATH;
10470 desc = openp (search_path, flags, file_name,
10471 O_RDONLY | O_BINARY, &absolute_name);
10472 xfree (search_path);
10473 if (desc < 0)
10474 return NULL;
10475
10476 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
10477 xfree (absolute_name);
10478 if (sym_bfd == NULL)
10479 return NULL;
10480 bfd_set_cacheable (sym_bfd.get (), 1);
10481
10482 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10483 return NULL;
10484
10485 /* Success. Record the bfd as having been included by the objfile's bfd.
10486 This is important because things like demangled_names_hash lives in the
10487 objfile's per_bfd space and may have references to things like symbol
10488 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10489 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
10490
10491 return sym_bfd;
10492 }
10493
10494 /* Try to open DWO file FILE_NAME.
10495 COMP_DIR is the DW_AT_comp_dir attribute.
10496 The result is the bfd handle of the file.
10497 If there is a problem finding or opening the file, return NULL.
10498 Upon success, the canonicalized path of the file is stored in the bfd,
10499 same as symfile_bfd_open. */
10500
10501 static gdb_bfd_ref_ptr
10502 open_dwo_file (const char *file_name, const char *comp_dir)
10503 {
10504 if (IS_ABSOLUTE_PATH (file_name))
10505 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10506
10507 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10508
10509 if (comp_dir != NULL)
10510 {
10511 char *path_to_try = concat (comp_dir, SLASH_STRING,
10512 file_name, (char *) NULL);
10513
10514 /* NOTE: If comp_dir is a relative path, this will also try the
10515 search path, which seems useful. */
10516 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10517 1 /*search_cwd*/));
10518 xfree (path_to_try);
10519 if (abfd != NULL)
10520 return abfd;
10521 }
10522
10523 /* That didn't work, try debug-file-directory, which, despite its name,
10524 is a list of paths. */
10525
10526 if (*debug_file_directory == '\0')
10527 return NULL;
10528
10529 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10530 }
10531
10532 /* This function is mapped across the sections and remembers the offset and
10533 size of each of the DWO debugging sections we are interested in. */
10534
10535 static void
10536 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10537 {
10538 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10539 const struct dwop_section_names *names = &dwop_section_names;
10540
10541 if (section_is_p (sectp->name, &names->abbrev_dwo))
10542 {
10543 dwo_sections->abbrev.s.section = sectp;
10544 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10545 }
10546 else if (section_is_p (sectp->name, &names->info_dwo))
10547 {
10548 dwo_sections->info.s.section = sectp;
10549 dwo_sections->info.size = bfd_get_section_size (sectp);
10550 }
10551 else if (section_is_p (sectp->name, &names->line_dwo))
10552 {
10553 dwo_sections->line.s.section = sectp;
10554 dwo_sections->line.size = bfd_get_section_size (sectp);
10555 }
10556 else if (section_is_p (sectp->name, &names->loc_dwo))
10557 {
10558 dwo_sections->loc.s.section = sectp;
10559 dwo_sections->loc.size = bfd_get_section_size (sectp);
10560 }
10561 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10562 {
10563 dwo_sections->macinfo.s.section = sectp;
10564 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10565 }
10566 else if (section_is_p (sectp->name, &names->macro_dwo))
10567 {
10568 dwo_sections->macro.s.section = sectp;
10569 dwo_sections->macro.size = bfd_get_section_size (sectp);
10570 }
10571 else if (section_is_p (sectp->name, &names->str_dwo))
10572 {
10573 dwo_sections->str.s.section = sectp;
10574 dwo_sections->str.size = bfd_get_section_size (sectp);
10575 }
10576 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10577 {
10578 dwo_sections->str_offsets.s.section = sectp;
10579 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10580 }
10581 else if (section_is_p (sectp->name, &names->types_dwo))
10582 {
10583 struct dwarf2_section_info type_section;
10584
10585 memset (&type_section, 0, sizeof (type_section));
10586 type_section.s.section = sectp;
10587 type_section.size = bfd_get_section_size (sectp);
10588 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10589 &type_section);
10590 }
10591 }
10592
10593 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10594 by PER_CU. This is for the non-DWP case.
10595 The result is NULL if DWO_NAME can't be found. */
10596
10597 static struct dwo_file *
10598 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10599 const char *dwo_name, const char *comp_dir)
10600 {
10601 struct objfile *objfile = dwarf2_per_objfile->objfile;
10602 struct dwo_file *dwo_file;
10603 struct cleanup *cleanups;
10604
10605 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
10606 if (dbfd == NULL)
10607 {
10608 if (dwarf_read_debug)
10609 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10610 return NULL;
10611 }
10612 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10613 dwo_file->dwo_name = dwo_name;
10614 dwo_file->comp_dir = comp_dir;
10615 dwo_file->dbfd = dbfd.release ();
10616
10617 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10618
10619 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10620 &dwo_file->sections);
10621
10622 dwo_file->cu = create_dwo_cu (dwo_file);
10623
10624 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10625 dwo_file->tus);
10626
10627 discard_cleanups (cleanups);
10628
10629 if (dwarf_read_debug)
10630 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10631
10632 return dwo_file;
10633 }
10634
10635 /* This function is mapped across the sections and remembers the offset and
10636 size of each of the DWP debugging sections common to version 1 and 2 that
10637 we are interested in. */
10638
10639 static void
10640 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10641 void *dwp_file_ptr)
10642 {
10643 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10644 const struct dwop_section_names *names = &dwop_section_names;
10645 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10646
10647 /* Record the ELF section number for later lookup: this is what the
10648 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10649 gdb_assert (elf_section_nr < dwp_file->num_sections);
10650 dwp_file->elf_sections[elf_section_nr] = sectp;
10651
10652 /* Look for specific sections that we need. */
10653 if (section_is_p (sectp->name, &names->str_dwo))
10654 {
10655 dwp_file->sections.str.s.section = sectp;
10656 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10657 }
10658 else if (section_is_p (sectp->name, &names->cu_index))
10659 {
10660 dwp_file->sections.cu_index.s.section = sectp;
10661 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10662 }
10663 else if (section_is_p (sectp->name, &names->tu_index))
10664 {
10665 dwp_file->sections.tu_index.s.section = sectp;
10666 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10667 }
10668 }
10669
10670 /* This function is mapped across the sections and remembers the offset and
10671 size of each of the DWP version 2 debugging sections that we are interested
10672 in. This is split into a separate function because we don't know if we
10673 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10674
10675 static void
10676 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10677 {
10678 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10679 const struct dwop_section_names *names = &dwop_section_names;
10680 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10681
10682 /* Record the ELF section number for later lookup: this is what the
10683 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10684 gdb_assert (elf_section_nr < dwp_file->num_sections);
10685 dwp_file->elf_sections[elf_section_nr] = sectp;
10686
10687 /* Look for specific sections that we need. */
10688 if (section_is_p (sectp->name, &names->abbrev_dwo))
10689 {
10690 dwp_file->sections.abbrev.s.section = sectp;
10691 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10692 }
10693 else if (section_is_p (sectp->name, &names->info_dwo))
10694 {
10695 dwp_file->sections.info.s.section = sectp;
10696 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10697 }
10698 else if (section_is_p (sectp->name, &names->line_dwo))
10699 {
10700 dwp_file->sections.line.s.section = sectp;
10701 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10702 }
10703 else if (section_is_p (sectp->name, &names->loc_dwo))
10704 {
10705 dwp_file->sections.loc.s.section = sectp;
10706 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10707 }
10708 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10709 {
10710 dwp_file->sections.macinfo.s.section = sectp;
10711 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10712 }
10713 else if (section_is_p (sectp->name, &names->macro_dwo))
10714 {
10715 dwp_file->sections.macro.s.section = sectp;
10716 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10717 }
10718 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10719 {
10720 dwp_file->sections.str_offsets.s.section = sectp;
10721 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10722 }
10723 else if (section_is_p (sectp->name, &names->types_dwo))
10724 {
10725 dwp_file->sections.types.s.section = sectp;
10726 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10727 }
10728 }
10729
10730 /* Hash function for dwp_file loaded CUs/TUs. */
10731
10732 static hashval_t
10733 hash_dwp_loaded_cutus (const void *item)
10734 {
10735 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10736
10737 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10738 return dwo_unit->signature;
10739 }
10740
10741 /* Equality function for dwp_file loaded CUs/TUs. */
10742
10743 static int
10744 eq_dwp_loaded_cutus (const void *a, const void *b)
10745 {
10746 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10747 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10748
10749 return dua->signature == dub->signature;
10750 }
10751
10752 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10753
10754 static htab_t
10755 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10756 {
10757 return htab_create_alloc_ex (3,
10758 hash_dwp_loaded_cutus,
10759 eq_dwp_loaded_cutus,
10760 NULL,
10761 &objfile->objfile_obstack,
10762 hashtab_obstack_allocate,
10763 dummy_obstack_deallocate);
10764 }
10765
10766 /* Try to open DWP file FILE_NAME.
10767 The result is the bfd handle of the file.
10768 If there is a problem finding or opening the file, return NULL.
10769 Upon success, the canonicalized path of the file is stored in the bfd,
10770 same as symfile_bfd_open. */
10771
10772 static gdb_bfd_ref_ptr
10773 open_dwp_file (const char *file_name)
10774 {
10775 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
10776 1 /*search_cwd*/));
10777 if (abfd != NULL)
10778 return abfd;
10779
10780 /* Work around upstream bug 15652.
10781 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10782 [Whether that's a "bug" is debatable, but it is getting in our way.]
10783 We have no real idea where the dwp file is, because gdb's realpath-ing
10784 of the executable's path may have discarded the needed info.
10785 [IWBN if the dwp file name was recorded in the executable, akin to
10786 .gnu_debuglink, but that doesn't exist yet.]
10787 Strip the directory from FILE_NAME and search again. */
10788 if (*debug_file_directory != '\0')
10789 {
10790 /* Don't implicitly search the current directory here.
10791 If the user wants to search "." to handle this case,
10792 it must be added to debug-file-directory. */
10793 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10794 0 /*search_cwd*/);
10795 }
10796
10797 return NULL;
10798 }
10799
10800 /* Initialize the use of the DWP file for the current objfile.
10801 By convention the name of the DWP file is ${objfile}.dwp.
10802 The result is NULL if it can't be found. */
10803
10804 static struct dwp_file *
10805 open_and_init_dwp_file (void)
10806 {
10807 struct objfile *objfile = dwarf2_per_objfile->objfile;
10808 struct dwp_file *dwp_file;
10809 char *dwp_name;
10810 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
10811
10812 /* Try to find first .dwp for the binary file before any symbolic links
10813 resolving. */
10814
10815 /* If the objfile is a debug file, find the name of the real binary
10816 file and get the name of dwp file from there. */
10817 if (objfile->separate_debug_objfile_backlink != NULL)
10818 {
10819 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10820 const char *backlink_basename = lbasename (backlink->original_name);
10821 char *debug_dirname = ldirname (objfile->original_name);
10822
10823 make_cleanup (xfree, debug_dirname);
10824 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10825 SLASH_STRING, backlink_basename);
10826 }
10827 else
10828 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10829 make_cleanup (xfree, dwp_name);
10830
10831 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name));
10832 if (dbfd == NULL
10833 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10834 {
10835 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10836 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10837 make_cleanup (xfree, dwp_name);
10838 dbfd = open_dwp_file (dwp_name);
10839 }
10840
10841 if (dbfd == NULL)
10842 {
10843 if (dwarf_read_debug)
10844 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10845 do_cleanups (cleanups);
10846 return NULL;
10847 }
10848 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10849 dwp_file->name = bfd_get_filename (dbfd.get ());
10850 dwp_file->dbfd = dbfd.release ();
10851 do_cleanups (cleanups);
10852
10853 /* +1: section 0 is unused */
10854 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
10855 dwp_file->elf_sections =
10856 OBSTACK_CALLOC (&objfile->objfile_obstack,
10857 dwp_file->num_sections, asection *);
10858
10859 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
10860 dwp_file);
10861
10862 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10863
10864 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10865
10866 /* The DWP file version is stored in the hash table. Oh well. */
10867 if (dwp_file->cus->version != dwp_file->tus->version)
10868 {
10869 /* Technically speaking, we should try to limp along, but this is
10870 pretty bizarre. We use pulongest here because that's the established
10871 portability solution (e.g, we cannot use %u for uint32_t). */
10872 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10873 " TU version %s [in DWP file %s]"),
10874 pulongest (dwp_file->cus->version),
10875 pulongest (dwp_file->tus->version), dwp_name);
10876 }
10877 dwp_file->version = dwp_file->cus->version;
10878
10879 if (dwp_file->version == 2)
10880 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
10881 dwp_file);
10882
10883 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10884 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10885
10886 if (dwarf_read_debug)
10887 {
10888 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10889 fprintf_unfiltered (gdb_stdlog,
10890 " %s CUs, %s TUs\n",
10891 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10892 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10893 }
10894
10895 return dwp_file;
10896 }
10897
10898 /* Wrapper around open_and_init_dwp_file, only open it once. */
10899
10900 static struct dwp_file *
10901 get_dwp_file (void)
10902 {
10903 if (! dwarf2_per_objfile->dwp_checked)
10904 {
10905 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10906 dwarf2_per_objfile->dwp_checked = 1;
10907 }
10908 return dwarf2_per_objfile->dwp_file;
10909 }
10910
10911 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10912 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10913 or in the DWP file for the objfile, referenced by THIS_UNIT.
10914 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10915 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10916
10917 This is called, for example, when wanting to read a variable with a
10918 complex location. Therefore we don't want to do file i/o for every call.
10919 Therefore we don't want to look for a DWO file on every call.
10920 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10921 then we check if we've already seen DWO_NAME, and only THEN do we check
10922 for a DWO file.
10923
10924 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10925 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10926
10927 static struct dwo_unit *
10928 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10929 const char *dwo_name, const char *comp_dir,
10930 ULONGEST signature, int is_debug_types)
10931 {
10932 struct objfile *objfile = dwarf2_per_objfile->objfile;
10933 const char *kind = is_debug_types ? "TU" : "CU";
10934 void **dwo_file_slot;
10935 struct dwo_file *dwo_file;
10936 struct dwp_file *dwp_file;
10937
10938 /* First see if there's a DWP file.
10939 If we have a DWP file but didn't find the DWO inside it, don't
10940 look for the original DWO file. It makes gdb behave differently
10941 depending on whether one is debugging in the build tree. */
10942
10943 dwp_file = get_dwp_file ();
10944 if (dwp_file != NULL)
10945 {
10946 const struct dwp_hash_table *dwp_htab =
10947 is_debug_types ? dwp_file->tus : dwp_file->cus;
10948
10949 if (dwp_htab != NULL)
10950 {
10951 struct dwo_unit *dwo_cutu =
10952 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10953 signature, is_debug_types);
10954
10955 if (dwo_cutu != NULL)
10956 {
10957 if (dwarf_read_debug)
10958 {
10959 fprintf_unfiltered (gdb_stdlog,
10960 "Virtual DWO %s %s found: @%s\n",
10961 kind, hex_string (signature),
10962 host_address_to_string (dwo_cutu));
10963 }
10964 return dwo_cutu;
10965 }
10966 }
10967 }
10968 else
10969 {
10970 /* No DWP file, look for the DWO file. */
10971
10972 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10973 if (*dwo_file_slot == NULL)
10974 {
10975 /* Read in the file and build a table of the CUs/TUs it contains. */
10976 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10977 }
10978 /* NOTE: This will be NULL if unable to open the file. */
10979 dwo_file = (struct dwo_file *) *dwo_file_slot;
10980
10981 if (dwo_file != NULL)
10982 {
10983 struct dwo_unit *dwo_cutu = NULL;
10984
10985 if (is_debug_types && dwo_file->tus)
10986 {
10987 struct dwo_unit find_dwo_cutu;
10988
10989 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10990 find_dwo_cutu.signature = signature;
10991 dwo_cutu
10992 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
10993 }
10994 else if (!is_debug_types && dwo_file->cu)
10995 {
10996 if (signature == dwo_file->cu->signature)
10997 dwo_cutu = dwo_file->cu;
10998 }
10999
11000 if (dwo_cutu != NULL)
11001 {
11002 if (dwarf_read_debug)
11003 {
11004 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11005 kind, dwo_name, hex_string (signature),
11006 host_address_to_string (dwo_cutu));
11007 }
11008 return dwo_cutu;
11009 }
11010 }
11011 }
11012
11013 /* We didn't find it. This could mean a dwo_id mismatch, or
11014 someone deleted the DWO/DWP file, or the search path isn't set up
11015 correctly to find the file. */
11016
11017 if (dwarf_read_debug)
11018 {
11019 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11020 kind, dwo_name, hex_string (signature));
11021 }
11022
11023 /* This is a warning and not a complaint because it can be caused by
11024 pilot error (e.g., user accidentally deleting the DWO). */
11025 {
11026 /* Print the name of the DWP file if we looked there, helps the user
11027 better diagnose the problem. */
11028 char *dwp_text = NULL;
11029 struct cleanup *cleanups;
11030
11031 if (dwp_file != NULL)
11032 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11033 cleanups = make_cleanup (xfree, dwp_text);
11034
11035 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11036 " [in module %s]"),
11037 kind, dwo_name, hex_string (signature),
11038 dwp_text != NULL ? dwp_text : "",
11039 this_unit->is_debug_types ? "TU" : "CU",
11040 this_unit->offset.sect_off, objfile_name (objfile));
11041
11042 do_cleanups (cleanups);
11043 }
11044 return NULL;
11045 }
11046
11047 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11048 See lookup_dwo_cutu_unit for details. */
11049
11050 static struct dwo_unit *
11051 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11052 const char *dwo_name, const char *comp_dir,
11053 ULONGEST signature)
11054 {
11055 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11056 }
11057
11058 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11059 See lookup_dwo_cutu_unit for details. */
11060
11061 static struct dwo_unit *
11062 lookup_dwo_type_unit (struct signatured_type *this_tu,
11063 const char *dwo_name, const char *comp_dir)
11064 {
11065 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11066 }
11067
11068 /* Traversal function for queue_and_load_all_dwo_tus. */
11069
11070 static int
11071 queue_and_load_dwo_tu (void **slot, void *info)
11072 {
11073 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11074 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11075 ULONGEST signature = dwo_unit->signature;
11076 struct signatured_type *sig_type =
11077 lookup_dwo_signatured_type (per_cu->cu, signature);
11078
11079 if (sig_type != NULL)
11080 {
11081 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11082
11083 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11084 a real dependency of PER_CU on SIG_TYPE. That is detected later
11085 while processing PER_CU. */
11086 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11087 load_full_type_unit (sig_cu);
11088 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11089 }
11090
11091 return 1;
11092 }
11093
11094 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11095 The DWO may have the only definition of the type, though it may not be
11096 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11097 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11098
11099 static void
11100 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11101 {
11102 struct dwo_unit *dwo_unit;
11103 struct dwo_file *dwo_file;
11104
11105 gdb_assert (!per_cu->is_debug_types);
11106 gdb_assert (get_dwp_file () == NULL);
11107 gdb_assert (per_cu->cu != NULL);
11108
11109 dwo_unit = per_cu->cu->dwo_unit;
11110 gdb_assert (dwo_unit != NULL);
11111
11112 dwo_file = dwo_unit->dwo_file;
11113 if (dwo_file->tus != NULL)
11114 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11115 }
11116
11117 /* Free all resources associated with DWO_FILE.
11118 Close the DWO file and munmap the sections.
11119 All memory should be on the objfile obstack. */
11120
11121 static void
11122 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11123 {
11124
11125 /* Note: dbfd is NULL for virtual DWO files. */
11126 gdb_bfd_unref (dwo_file->dbfd);
11127
11128 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11129 }
11130
11131 /* Wrapper for free_dwo_file for use in cleanups. */
11132
11133 static void
11134 free_dwo_file_cleanup (void *arg)
11135 {
11136 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11137 struct objfile *objfile = dwarf2_per_objfile->objfile;
11138
11139 free_dwo_file (dwo_file, objfile);
11140 }
11141
11142 /* Traversal function for free_dwo_files. */
11143
11144 static int
11145 free_dwo_file_from_slot (void **slot, void *info)
11146 {
11147 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11148 struct objfile *objfile = (struct objfile *) info;
11149
11150 free_dwo_file (dwo_file, objfile);
11151
11152 return 1;
11153 }
11154
11155 /* Free all resources associated with DWO_FILES. */
11156
11157 static void
11158 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11159 {
11160 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11161 }
11162 \f
11163 /* Read in various DIEs. */
11164
11165 /* qsort helper for inherit_abstract_dies. */
11166
11167 static int
11168 unsigned_int_compar (const void *ap, const void *bp)
11169 {
11170 unsigned int a = *(unsigned int *) ap;
11171 unsigned int b = *(unsigned int *) bp;
11172
11173 return (a > b) - (b > a);
11174 }
11175
11176 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11177 Inherit only the children of the DW_AT_abstract_origin DIE not being
11178 already referenced by DW_AT_abstract_origin from the children of the
11179 current DIE. */
11180
11181 static void
11182 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11183 {
11184 struct die_info *child_die;
11185 unsigned die_children_count;
11186 /* CU offsets which were referenced by children of the current DIE. */
11187 sect_offset *offsets;
11188 sect_offset *offsets_end, *offsetp;
11189 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11190 struct die_info *origin_die;
11191 /* Iterator of the ORIGIN_DIE children. */
11192 struct die_info *origin_child_die;
11193 struct cleanup *cleanups;
11194 struct attribute *attr;
11195 struct dwarf2_cu *origin_cu;
11196 struct pending **origin_previous_list_in_scope;
11197
11198 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11199 if (!attr)
11200 return;
11201
11202 /* Note that following die references may follow to a die in a
11203 different cu. */
11204
11205 origin_cu = cu;
11206 origin_die = follow_die_ref (die, attr, &origin_cu);
11207
11208 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11209 symbols in. */
11210 origin_previous_list_in_scope = origin_cu->list_in_scope;
11211 origin_cu->list_in_scope = cu->list_in_scope;
11212
11213 if (die->tag != origin_die->tag
11214 && !(die->tag == DW_TAG_inlined_subroutine
11215 && origin_die->tag == DW_TAG_subprogram))
11216 complaint (&symfile_complaints,
11217 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11218 die->offset.sect_off, origin_die->offset.sect_off);
11219
11220 child_die = die->child;
11221 die_children_count = 0;
11222 while (child_die && child_die->tag)
11223 {
11224 child_die = sibling_die (child_die);
11225 die_children_count++;
11226 }
11227 offsets = XNEWVEC (sect_offset, die_children_count);
11228 cleanups = make_cleanup (xfree, offsets);
11229
11230 offsets_end = offsets;
11231 for (child_die = die->child;
11232 child_die && child_die->tag;
11233 child_die = sibling_die (child_die))
11234 {
11235 struct die_info *child_origin_die;
11236 struct dwarf2_cu *child_origin_cu;
11237
11238 /* We are trying to process concrete instance entries:
11239 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11240 it's not relevant to our analysis here. i.e. detecting DIEs that are
11241 present in the abstract instance but not referenced in the concrete
11242 one. */
11243 if (child_die->tag == DW_TAG_GNU_call_site)
11244 continue;
11245
11246 /* For each CHILD_DIE, find the corresponding child of
11247 ORIGIN_DIE. If there is more than one layer of
11248 DW_AT_abstract_origin, follow them all; there shouldn't be,
11249 but GCC versions at least through 4.4 generate this (GCC PR
11250 40573). */
11251 child_origin_die = child_die;
11252 child_origin_cu = cu;
11253 while (1)
11254 {
11255 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11256 child_origin_cu);
11257 if (attr == NULL)
11258 break;
11259 child_origin_die = follow_die_ref (child_origin_die, attr,
11260 &child_origin_cu);
11261 }
11262
11263 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11264 counterpart may exist. */
11265 if (child_origin_die != child_die)
11266 {
11267 if (child_die->tag != child_origin_die->tag
11268 && !(child_die->tag == DW_TAG_inlined_subroutine
11269 && child_origin_die->tag == DW_TAG_subprogram))
11270 complaint (&symfile_complaints,
11271 _("Child DIE 0x%x and its abstract origin 0x%x have "
11272 "different tags"), child_die->offset.sect_off,
11273 child_origin_die->offset.sect_off);
11274 if (child_origin_die->parent != origin_die)
11275 complaint (&symfile_complaints,
11276 _("Child DIE 0x%x and its abstract origin 0x%x have "
11277 "different parents"), child_die->offset.sect_off,
11278 child_origin_die->offset.sect_off);
11279 else
11280 *offsets_end++ = child_origin_die->offset;
11281 }
11282 }
11283 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11284 unsigned_int_compar);
11285 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11286 if (offsetp[-1].sect_off == offsetp->sect_off)
11287 complaint (&symfile_complaints,
11288 _("Multiple children of DIE 0x%x refer "
11289 "to DIE 0x%x as their abstract origin"),
11290 die->offset.sect_off, offsetp->sect_off);
11291
11292 offsetp = offsets;
11293 origin_child_die = origin_die->child;
11294 while (origin_child_die && origin_child_die->tag)
11295 {
11296 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11297 while (offsetp < offsets_end
11298 && offsetp->sect_off < origin_child_die->offset.sect_off)
11299 offsetp++;
11300 if (offsetp >= offsets_end
11301 || offsetp->sect_off > origin_child_die->offset.sect_off)
11302 {
11303 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11304 Check whether we're already processing ORIGIN_CHILD_DIE.
11305 This can happen with mutually referenced abstract_origins.
11306 PR 16581. */
11307 if (!origin_child_die->in_process)
11308 process_die (origin_child_die, origin_cu);
11309 }
11310 origin_child_die = sibling_die (origin_child_die);
11311 }
11312 origin_cu->list_in_scope = origin_previous_list_in_scope;
11313
11314 do_cleanups (cleanups);
11315 }
11316
11317 static void
11318 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11319 {
11320 struct objfile *objfile = cu->objfile;
11321 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11322 struct context_stack *newobj;
11323 CORE_ADDR lowpc;
11324 CORE_ADDR highpc;
11325 struct die_info *child_die;
11326 struct attribute *attr, *call_line, *call_file;
11327 const char *name;
11328 CORE_ADDR baseaddr;
11329 struct block *block;
11330 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11331 VEC (symbolp) *template_args = NULL;
11332 struct template_symbol *templ_func = NULL;
11333
11334 if (inlined_func)
11335 {
11336 /* If we do not have call site information, we can't show the
11337 caller of this inlined function. That's too confusing, so
11338 only use the scope for local variables. */
11339 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11340 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11341 if (call_line == NULL || call_file == NULL)
11342 {
11343 read_lexical_block_scope (die, cu);
11344 return;
11345 }
11346 }
11347
11348 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11349
11350 name = dwarf2_name (die, cu);
11351
11352 /* Ignore functions with missing or empty names. These are actually
11353 illegal according to the DWARF standard. */
11354 if (name == NULL)
11355 {
11356 complaint (&symfile_complaints,
11357 _("missing name for subprogram DIE at %d"),
11358 die->offset.sect_off);
11359 return;
11360 }
11361
11362 /* Ignore functions with missing or invalid low and high pc attributes. */
11363 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11364 <= PC_BOUNDS_INVALID)
11365 {
11366 attr = dwarf2_attr (die, DW_AT_external, cu);
11367 if (!attr || !DW_UNSND (attr))
11368 complaint (&symfile_complaints,
11369 _("cannot get low and high bounds "
11370 "for subprogram DIE at %d"),
11371 die->offset.sect_off);
11372 return;
11373 }
11374
11375 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11376 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11377
11378 /* If we have any template arguments, then we must allocate a
11379 different sort of symbol. */
11380 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11381 {
11382 if (child_die->tag == DW_TAG_template_type_param
11383 || child_die->tag == DW_TAG_template_value_param)
11384 {
11385 templ_func = allocate_template_symbol (objfile);
11386 templ_func->base.is_cplus_template_function = 1;
11387 break;
11388 }
11389 }
11390
11391 newobj = push_context (0, lowpc);
11392 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11393 (struct symbol *) templ_func);
11394
11395 /* If there is a location expression for DW_AT_frame_base, record
11396 it. */
11397 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11398 if (attr)
11399 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11400
11401 /* If there is a location for the static link, record it. */
11402 newobj->static_link = NULL;
11403 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11404 if (attr)
11405 {
11406 newobj->static_link
11407 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11408 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11409 }
11410
11411 cu->list_in_scope = &local_symbols;
11412
11413 if (die->child != NULL)
11414 {
11415 child_die = die->child;
11416 while (child_die && child_die->tag)
11417 {
11418 if (child_die->tag == DW_TAG_template_type_param
11419 || child_die->tag == DW_TAG_template_value_param)
11420 {
11421 struct symbol *arg = new_symbol (child_die, NULL, cu);
11422
11423 if (arg != NULL)
11424 VEC_safe_push (symbolp, template_args, arg);
11425 }
11426 else
11427 process_die (child_die, cu);
11428 child_die = sibling_die (child_die);
11429 }
11430 }
11431
11432 inherit_abstract_dies (die, cu);
11433
11434 /* If we have a DW_AT_specification, we might need to import using
11435 directives from the context of the specification DIE. See the
11436 comment in determine_prefix. */
11437 if (cu->language == language_cplus
11438 && dwarf2_attr (die, DW_AT_specification, cu))
11439 {
11440 struct dwarf2_cu *spec_cu = cu;
11441 struct die_info *spec_die = die_specification (die, &spec_cu);
11442
11443 while (spec_die)
11444 {
11445 child_die = spec_die->child;
11446 while (child_die && child_die->tag)
11447 {
11448 if (child_die->tag == DW_TAG_imported_module)
11449 process_die (child_die, spec_cu);
11450 child_die = sibling_die (child_die);
11451 }
11452
11453 /* In some cases, GCC generates specification DIEs that
11454 themselves contain DW_AT_specification attributes. */
11455 spec_die = die_specification (spec_die, &spec_cu);
11456 }
11457 }
11458
11459 newobj = pop_context ();
11460 /* Make a block for the local symbols within. */
11461 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11462 newobj->static_link, lowpc, highpc);
11463
11464 /* For C++, set the block's scope. */
11465 if ((cu->language == language_cplus
11466 || cu->language == language_fortran
11467 || cu->language == language_d
11468 || cu->language == language_rust)
11469 && cu->processing_has_namespace_info)
11470 block_set_scope (block, determine_prefix (die, cu),
11471 &objfile->objfile_obstack);
11472
11473 /* If we have address ranges, record them. */
11474 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11475
11476 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11477
11478 /* Attach template arguments to function. */
11479 if (! VEC_empty (symbolp, template_args))
11480 {
11481 gdb_assert (templ_func != NULL);
11482
11483 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11484 templ_func->template_arguments
11485 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11486 templ_func->n_template_arguments);
11487 memcpy (templ_func->template_arguments,
11488 VEC_address (symbolp, template_args),
11489 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11490 VEC_free (symbolp, template_args);
11491 }
11492
11493 /* In C++, we can have functions nested inside functions (e.g., when
11494 a function declares a class that has methods). This means that
11495 when we finish processing a function scope, we may need to go
11496 back to building a containing block's symbol lists. */
11497 local_symbols = newobj->locals;
11498 local_using_directives = newobj->local_using_directives;
11499
11500 /* If we've finished processing a top-level function, subsequent
11501 symbols go in the file symbol list. */
11502 if (outermost_context_p ())
11503 cu->list_in_scope = &file_symbols;
11504 }
11505
11506 /* Process all the DIES contained within a lexical block scope. Start
11507 a new scope, process the dies, and then close the scope. */
11508
11509 static void
11510 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11511 {
11512 struct objfile *objfile = cu->objfile;
11513 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11514 struct context_stack *newobj;
11515 CORE_ADDR lowpc, highpc;
11516 struct die_info *child_die;
11517 CORE_ADDR baseaddr;
11518
11519 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11520
11521 /* Ignore blocks with missing or invalid low and high pc attributes. */
11522 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11523 as multiple lexical blocks? Handling children in a sane way would
11524 be nasty. Might be easier to properly extend generic blocks to
11525 describe ranges. */
11526 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11527 {
11528 case PC_BOUNDS_NOT_PRESENT:
11529 /* DW_TAG_lexical_block has no attributes, process its children as if
11530 there was no wrapping by that DW_TAG_lexical_block.
11531 GCC does no longer produces such DWARF since GCC r224161. */
11532 for (child_die = die->child;
11533 child_die != NULL && child_die->tag;
11534 child_die = sibling_die (child_die))
11535 process_die (child_die, cu);
11536 return;
11537 case PC_BOUNDS_INVALID:
11538 return;
11539 }
11540 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11541 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11542
11543 push_context (0, lowpc);
11544 if (die->child != NULL)
11545 {
11546 child_die = die->child;
11547 while (child_die && child_die->tag)
11548 {
11549 process_die (child_die, cu);
11550 child_die = sibling_die (child_die);
11551 }
11552 }
11553 inherit_abstract_dies (die, cu);
11554 newobj = pop_context ();
11555
11556 if (local_symbols != NULL || local_using_directives != NULL)
11557 {
11558 struct block *block
11559 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11560 newobj->start_addr, highpc);
11561
11562 /* Note that recording ranges after traversing children, as we
11563 do here, means that recording a parent's ranges entails
11564 walking across all its children's ranges as they appear in
11565 the address map, which is quadratic behavior.
11566
11567 It would be nicer to record the parent's ranges before
11568 traversing its children, simply overriding whatever you find
11569 there. But since we don't even decide whether to create a
11570 block until after we've traversed its children, that's hard
11571 to do. */
11572 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11573 }
11574 local_symbols = newobj->locals;
11575 local_using_directives = newobj->local_using_directives;
11576 }
11577
11578 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11579
11580 static void
11581 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11582 {
11583 struct objfile *objfile = cu->objfile;
11584 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11585 CORE_ADDR pc, baseaddr;
11586 struct attribute *attr;
11587 struct call_site *call_site, call_site_local;
11588 void **slot;
11589 int nparams;
11590 struct die_info *child_die;
11591
11592 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11593
11594 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11595 if (!attr)
11596 {
11597 complaint (&symfile_complaints,
11598 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11599 "DIE 0x%x [in module %s]"),
11600 die->offset.sect_off, objfile_name (objfile));
11601 return;
11602 }
11603 pc = attr_value_as_address (attr) + baseaddr;
11604 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11605
11606 if (cu->call_site_htab == NULL)
11607 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11608 NULL, &objfile->objfile_obstack,
11609 hashtab_obstack_allocate, NULL);
11610 call_site_local.pc = pc;
11611 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11612 if (*slot != NULL)
11613 {
11614 complaint (&symfile_complaints,
11615 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11616 "DIE 0x%x [in module %s]"),
11617 paddress (gdbarch, pc), die->offset.sect_off,
11618 objfile_name (objfile));
11619 return;
11620 }
11621
11622 /* Count parameters at the caller. */
11623
11624 nparams = 0;
11625 for (child_die = die->child; child_die && child_die->tag;
11626 child_die = sibling_die (child_die))
11627 {
11628 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11629 {
11630 complaint (&symfile_complaints,
11631 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11632 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11633 child_die->tag, child_die->offset.sect_off,
11634 objfile_name (objfile));
11635 continue;
11636 }
11637
11638 nparams++;
11639 }
11640
11641 call_site
11642 = ((struct call_site *)
11643 obstack_alloc (&objfile->objfile_obstack,
11644 sizeof (*call_site)
11645 + (sizeof (*call_site->parameter) * (nparams - 1))));
11646 *slot = call_site;
11647 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11648 call_site->pc = pc;
11649
11650 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11651 {
11652 struct die_info *func_die;
11653
11654 /* Skip also over DW_TAG_inlined_subroutine. */
11655 for (func_die = die->parent;
11656 func_die && func_die->tag != DW_TAG_subprogram
11657 && func_die->tag != DW_TAG_subroutine_type;
11658 func_die = func_die->parent);
11659
11660 /* DW_AT_GNU_all_call_sites is a superset
11661 of DW_AT_GNU_all_tail_call_sites. */
11662 if (func_die
11663 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11664 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11665 {
11666 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11667 not complete. But keep CALL_SITE for look ups via call_site_htab,
11668 both the initial caller containing the real return address PC and
11669 the final callee containing the current PC of a chain of tail
11670 calls do not need to have the tail call list complete. But any
11671 function candidate for a virtual tail call frame searched via
11672 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11673 determined unambiguously. */
11674 }
11675 else
11676 {
11677 struct type *func_type = NULL;
11678
11679 if (func_die)
11680 func_type = get_die_type (func_die, cu);
11681 if (func_type != NULL)
11682 {
11683 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11684
11685 /* Enlist this call site to the function. */
11686 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11687 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11688 }
11689 else
11690 complaint (&symfile_complaints,
11691 _("Cannot find function owning DW_TAG_GNU_call_site "
11692 "DIE 0x%x [in module %s]"),
11693 die->offset.sect_off, objfile_name (objfile));
11694 }
11695 }
11696
11697 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11698 if (attr == NULL)
11699 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11700 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11701 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11702 /* Keep NULL DWARF_BLOCK. */;
11703 else if (attr_form_is_block (attr))
11704 {
11705 struct dwarf2_locexpr_baton *dlbaton;
11706
11707 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11708 dlbaton->data = DW_BLOCK (attr)->data;
11709 dlbaton->size = DW_BLOCK (attr)->size;
11710 dlbaton->per_cu = cu->per_cu;
11711
11712 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11713 }
11714 else if (attr_form_is_ref (attr))
11715 {
11716 struct dwarf2_cu *target_cu = cu;
11717 struct die_info *target_die;
11718
11719 target_die = follow_die_ref (die, attr, &target_cu);
11720 gdb_assert (target_cu->objfile == objfile);
11721 if (die_is_declaration (target_die, target_cu))
11722 {
11723 const char *target_physname;
11724
11725 /* Prefer the mangled name; otherwise compute the demangled one. */
11726 target_physname = dwarf2_string_attr (target_die,
11727 DW_AT_linkage_name,
11728 target_cu);
11729 if (target_physname == NULL)
11730 target_physname = dwarf2_string_attr (target_die,
11731 DW_AT_MIPS_linkage_name,
11732 target_cu);
11733 if (target_physname == NULL)
11734 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11735 if (target_physname == NULL)
11736 complaint (&symfile_complaints,
11737 _("DW_AT_GNU_call_site_target target DIE has invalid "
11738 "physname, for referencing DIE 0x%x [in module %s]"),
11739 die->offset.sect_off, objfile_name (objfile));
11740 else
11741 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11742 }
11743 else
11744 {
11745 CORE_ADDR lowpc;
11746
11747 /* DW_AT_entry_pc should be preferred. */
11748 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
11749 <= PC_BOUNDS_INVALID)
11750 complaint (&symfile_complaints,
11751 _("DW_AT_GNU_call_site_target target DIE has invalid "
11752 "low pc, for referencing DIE 0x%x [in module %s]"),
11753 die->offset.sect_off, objfile_name (objfile));
11754 else
11755 {
11756 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11757 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11758 }
11759 }
11760 }
11761 else
11762 complaint (&symfile_complaints,
11763 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11764 "block nor reference, for DIE 0x%x [in module %s]"),
11765 die->offset.sect_off, objfile_name (objfile));
11766
11767 call_site->per_cu = cu->per_cu;
11768
11769 for (child_die = die->child;
11770 child_die && child_die->tag;
11771 child_die = sibling_die (child_die))
11772 {
11773 struct call_site_parameter *parameter;
11774 struct attribute *loc, *origin;
11775
11776 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11777 {
11778 /* Already printed the complaint above. */
11779 continue;
11780 }
11781
11782 gdb_assert (call_site->parameter_count < nparams);
11783 parameter = &call_site->parameter[call_site->parameter_count];
11784
11785 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11786 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11787 register is contained in DW_AT_GNU_call_site_value. */
11788
11789 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11790 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11791 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11792 {
11793 sect_offset offset;
11794
11795 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11796 offset = dwarf2_get_ref_die_offset (origin);
11797 if (!offset_in_cu_p (&cu->header, offset))
11798 {
11799 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11800 binding can be done only inside one CU. Such referenced DIE
11801 therefore cannot be even moved to DW_TAG_partial_unit. */
11802 complaint (&symfile_complaints,
11803 _("DW_AT_abstract_origin offset is not in CU for "
11804 "DW_TAG_GNU_call_site child DIE 0x%x "
11805 "[in module %s]"),
11806 child_die->offset.sect_off, objfile_name (objfile));
11807 continue;
11808 }
11809 parameter->u.param_offset.cu_off = (offset.sect_off
11810 - cu->header.offset.sect_off);
11811 }
11812 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11813 {
11814 complaint (&symfile_complaints,
11815 _("No DW_FORM_block* DW_AT_location for "
11816 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11817 child_die->offset.sect_off, objfile_name (objfile));
11818 continue;
11819 }
11820 else
11821 {
11822 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11823 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11824 if (parameter->u.dwarf_reg != -1)
11825 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11826 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11827 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11828 &parameter->u.fb_offset))
11829 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11830 else
11831 {
11832 complaint (&symfile_complaints,
11833 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11834 "for DW_FORM_block* DW_AT_location is supported for "
11835 "DW_TAG_GNU_call_site child DIE 0x%x "
11836 "[in module %s]"),
11837 child_die->offset.sect_off, objfile_name (objfile));
11838 continue;
11839 }
11840 }
11841
11842 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11843 if (!attr_form_is_block (attr))
11844 {
11845 complaint (&symfile_complaints,
11846 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11847 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11848 child_die->offset.sect_off, objfile_name (objfile));
11849 continue;
11850 }
11851 parameter->value = DW_BLOCK (attr)->data;
11852 parameter->value_size = DW_BLOCK (attr)->size;
11853
11854 /* Parameters are not pre-cleared by memset above. */
11855 parameter->data_value = NULL;
11856 parameter->data_value_size = 0;
11857 call_site->parameter_count++;
11858
11859 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11860 if (attr)
11861 {
11862 if (!attr_form_is_block (attr))
11863 complaint (&symfile_complaints,
11864 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11865 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11866 child_die->offset.sect_off, objfile_name (objfile));
11867 else
11868 {
11869 parameter->data_value = DW_BLOCK (attr)->data;
11870 parameter->data_value_size = DW_BLOCK (attr)->size;
11871 }
11872 }
11873 }
11874 }
11875
11876 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11877 Return 1 if the attributes are present and valid, otherwise, return 0.
11878 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11879
11880 static int
11881 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11882 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11883 struct partial_symtab *ranges_pst)
11884 {
11885 struct objfile *objfile = cu->objfile;
11886 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11887 struct comp_unit_head *cu_header = &cu->header;
11888 bfd *obfd = objfile->obfd;
11889 unsigned int addr_size = cu_header->addr_size;
11890 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11891 /* Base address selection entry. */
11892 CORE_ADDR base;
11893 int found_base;
11894 unsigned int dummy;
11895 const gdb_byte *buffer;
11896 int low_set;
11897 CORE_ADDR low = 0;
11898 CORE_ADDR high = 0;
11899 CORE_ADDR baseaddr;
11900
11901 found_base = cu->base_known;
11902 base = cu->base_address;
11903
11904 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11905 if (offset >= dwarf2_per_objfile->ranges.size)
11906 {
11907 complaint (&symfile_complaints,
11908 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11909 offset);
11910 return 0;
11911 }
11912 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11913
11914 low_set = 0;
11915
11916 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11917
11918 while (1)
11919 {
11920 CORE_ADDR range_beginning, range_end;
11921
11922 range_beginning = read_address (obfd, buffer, cu, &dummy);
11923 buffer += addr_size;
11924 range_end = read_address (obfd, buffer, cu, &dummy);
11925 buffer += addr_size;
11926 offset += 2 * addr_size;
11927
11928 /* An end of list marker is a pair of zero addresses. */
11929 if (range_beginning == 0 && range_end == 0)
11930 /* Found the end of list entry. */
11931 break;
11932
11933 /* Each base address selection entry is a pair of 2 values.
11934 The first is the largest possible address, the second is
11935 the base address. Check for a base address here. */
11936 if ((range_beginning & mask) == mask)
11937 {
11938 /* If we found the largest possible address, then we already
11939 have the base address in range_end. */
11940 base = range_end;
11941 found_base = 1;
11942 continue;
11943 }
11944
11945 if (!found_base)
11946 {
11947 /* We have no valid base address for the ranges
11948 data. */
11949 complaint (&symfile_complaints,
11950 _("Invalid .debug_ranges data (no base address)"));
11951 return 0;
11952 }
11953
11954 if (range_beginning > range_end)
11955 {
11956 /* Inverted range entries are invalid. */
11957 complaint (&symfile_complaints,
11958 _("Invalid .debug_ranges data (inverted range)"));
11959 return 0;
11960 }
11961
11962 /* Empty range entries have no effect. */
11963 if (range_beginning == range_end)
11964 continue;
11965
11966 range_beginning += base;
11967 range_end += base;
11968
11969 /* A not-uncommon case of bad debug info.
11970 Don't pollute the addrmap with bad data. */
11971 if (range_beginning + baseaddr == 0
11972 && !dwarf2_per_objfile->has_section_at_zero)
11973 {
11974 complaint (&symfile_complaints,
11975 _(".debug_ranges entry has start address of zero"
11976 " [in module %s]"), objfile_name (objfile));
11977 continue;
11978 }
11979
11980 if (ranges_pst != NULL)
11981 {
11982 CORE_ADDR lowpc;
11983 CORE_ADDR highpc;
11984
11985 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11986 range_beginning + baseaddr);
11987 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11988 range_end + baseaddr);
11989 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11990 ranges_pst);
11991 }
11992
11993 /* FIXME: This is recording everything as a low-high
11994 segment of consecutive addresses. We should have a
11995 data structure for discontiguous block ranges
11996 instead. */
11997 if (! low_set)
11998 {
11999 low = range_beginning;
12000 high = range_end;
12001 low_set = 1;
12002 }
12003 else
12004 {
12005 if (range_beginning < low)
12006 low = range_beginning;
12007 if (range_end > high)
12008 high = range_end;
12009 }
12010 }
12011
12012 if (! low_set)
12013 /* If the first entry is an end-of-list marker, the range
12014 describes an empty scope, i.e. no instructions. */
12015 return 0;
12016
12017 if (low_return)
12018 *low_return = low;
12019 if (high_return)
12020 *high_return = high;
12021 return 1;
12022 }
12023
12024 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12025 definition for the return value. *LOWPC and *HIGHPC are set iff
12026 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12027
12028 static enum pc_bounds_kind
12029 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12030 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12031 struct partial_symtab *pst)
12032 {
12033 struct attribute *attr;
12034 struct attribute *attr_high;
12035 CORE_ADDR low = 0;
12036 CORE_ADDR high = 0;
12037 enum pc_bounds_kind ret;
12038
12039 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12040 if (attr_high)
12041 {
12042 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12043 if (attr)
12044 {
12045 low = attr_value_as_address (attr);
12046 high = attr_value_as_address (attr_high);
12047 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12048 high += low;
12049 }
12050 else
12051 /* Found high w/o low attribute. */
12052 return PC_BOUNDS_INVALID;
12053
12054 /* Found consecutive range of addresses. */
12055 ret = PC_BOUNDS_HIGH_LOW;
12056 }
12057 else
12058 {
12059 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12060 if (attr != NULL)
12061 {
12062 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12063 We take advantage of the fact that DW_AT_ranges does not appear
12064 in DW_TAG_compile_unit of DWO files. */
12065 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12066 unsigned int ranges_offset = (DW_UNSND (attr)
12067 + (need_ranges_base
12068 ? cu->ranges_base
12069 : 0));
12070
12071 /* Value of the DW_AT_ranges attribute is the offset in the
12072 .debug_ranges section. */
12073 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12074 return PC_BOUNDS_INVALID;
12075 /* Found discontinuous range of addresses. */
12076 ret = PC_BOUNDS_RANGES;
12077 }
12078 else
12079 return PC_BOUNDS_NOT_PRESENT;
12080 }
12081
12082 /* read_partial_die has also the strict LOW < HIGH requirement. */
12083 if (high <= low)
12084 return PC_BOUNDS_INVALID;
12085
12086 /* When using the GNU linker, .gnu.linkonce. sections are used to
12087 eliminate duplicate copies of functions and vtables and such.
12088 The linker will arbitrarily choose one and discard the others.
12089 The AT_*_pc values for such functions refer to local labels in
12090 these sections. If the section from that file was discarded, the
12091 labels are not in the output, so the relocs get a value of 0.
12092 If this is a discarded function, mark the pc bounds as invalid,
12093 so that GDB will ignore it. */
12094 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12095 return PC_BOUNDS_INVALID;
12096
12097 *lowpc = low;
12098 if (highpc)
12099 *highpc = high;
12100 return ret;
12101 }
12102
12103 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12104 its low and high PC addresses. Do nothing if these addresses could not
12105 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12106 and HIGHPC to the high address if greater than HIGHPC. */
12107
12108 static void
12109 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12110 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12111 struct dwarf2_cu *cu)
12112 {
12113 CORE_ADDR low, high;
12114 struct die_info *child = die->child;
12115
12116 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12117 {
12118 *lowpc = std::min (*lowpc, low);
12119 *highpc = std::max (*highpc, high);
12120 }
12121
12122 /* If the language does not allow nested subprograms (either inside
12123 subprograms or lexical blocks), we're done. */
12124 if (cu->language != language_ada)
12125 return;
12126
12127 /* Check all the children of the given DIE. If it contains nested
12128 subprograms, then check their pc bounds. Likewise, we need to
12129 check lexical blocks as well, as they may also contain subprogram
12130 definitions. */
12131 while (child && child->tag)
12132 {
12133 if (child->tag == DW_TAG_subprogram
12134 || child->tag == DW_TAG_lexical_block)
12135 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12136 child = sibling_die (child);
12137 }
12138 }
12139
12140 /* Get the low and high pc's represented by the scope DIE, and store
12141 them in *LOWPC and *HIGHPC. If the correct values can't be
12142 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12143
12144 static void
12145 get_scope_pc_bounds (struct die_info *die,
12146 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12147 struct dwarf2_cu *cu)
12148 {
12149 CORE_ADDR best_low = (CORE_ADDR) -1;
12150 CORE_ADDR best_high = (CORE_ADDR) 0;
12151 CORE_ADDR current_low, current_high;
12152
12153 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12154 >= PC_BOUNDS_RANGES)
12155 {
12156 best_low = current_low;
12157 best_high = current_high;
12158 }
12159 else
12160 {
12161 struct die_info *child = die->child;
12162
12163 while (child && child->tag)
12164 {
12165 switch (child->tag) {
12166 case DW_TAG_subprogram:
12167 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12168 break;
12169 case DW_TAG_namespace:
12170 case DW_TAG_module:
12171 /* FIXME: carlton/2004-01-16: Should we do this for
12172 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12173 that current GCC's always emit the DIEs corresponding
12174 to definitions of methods of classes as children of a
12175 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12176 the DIEs giving the declarations, which could be
12177 anywhere). But I don't see any reason why the
12178 standards says that they have to be there. */
12179 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12180
12181 if (current_low != ((CORE_ADDR) -1))
12182 {
12183 best_low = std::min (best_low, current_low);
12184 best_high = std::max (best_high, current_high);
12185 }
12186 break;
12187 default:
12188 /* Ignore. */
12189 break;
12190 }
12191
12192 child = sibling_die (child);
12193 }
12194 }
12195
12196 *lowpc = best_low;
12197 *highpc = best_high;
12198 }
12199
12200 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12201 in DIE. */
12202
12203 static void
12204 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12205 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12206 {
12207 struct objfile *objfile = cu->objfile;
12208 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12209 struct attribute *attr;
12210 struct attribute *attr_high;
12211
12212 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12213 if (attr_high)
12214 {
12215 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12216 if (attr)
12217 {
12218 CORE_ADDR low = attr_value_as_address (attr);
12219 CORE_ADDR high = attr_value_as_address (attr_high);
12220
12221 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12222 high += low;
12223
12224 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12225 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12226 record_block_range (block, low, high - 1);
12227 }
12228 }
12229
12230 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12231 if (attr)
12232 {
12233 bfd *obfd = objfile->obfd;
12234 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12235 We take advantage of the fact that DW_AT_ranges does not appear
12236 in DW_TAG_compile_unit of DWO files. */
12237 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12238
12239 /* The value of the DW_AT_ranges attribute is the offset of the
12240 address range list in the .debug_ranges section. */
12241 unsigned long offset = (DW_UNSND (attr)
12242 + (need_ranges_base ? cu->ranges_base : 0));
12243 const gdb_byte *buffer;
12244
12245 /* For some target architectures, but not others, the
12246 read_address function sign-extends the addresses it returns.
12247 To recognize base address selection entries, we need a
12248 mask. */
12249 unsigned int addr_size = cu->header.addr_size;
12250 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12251
12252 /* The base address, to which the next pair is relative. Note
12253 that this 'base' is a DWARF concept: most entries in a range
12254 list are relative, to reduce the number of relocs against the
12255 debugging information. This is separate from this function's
12256 'baseaddr' argument, which GDB uses to relocate debugging
12257 information from a shared library based on the address at
12258 which the library was loaded. */
12259 CORE_ADDR base = cu->base_address;
12260 int base_known = cu->base_known;
12261
12262 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12263 if (offset >= dwarf2_per_objfile->ranges.size)
12264 {
12265 complaint (&symfile_complaints,
12266 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12267 offset);
12268 return;
12269 }
12270 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12271
12272 for (;;)
12273 {
12274 unsigned int bytes_read;
12275 CORE_ADDR start, end;
12276
12277 start = read_address (obfd, buffer, cu, &bytes_read);
12278 buffer += bytes_read;
12279 end = read_address (obfd, buffer, cu, &bytes_read);
12280 buffer += bytes_read;
12281
12282 /* Did we find the end of the range list? */
12283 if (start == 0 && end == 0)
12284 break;
12285
12286 /* Did we find a base address selection entry? */
12287 else if ((start & base_select_mask) == base_select_mask)
12288 {
12289 base = end;
12290 base_known = 1;
12291 }
12292
12293 /* We found an ordinary address range. */
12294 else
12295 {
12296 if (!base_known)
12297 {
12298 complaint (&symfile_complaints,
12299 _("Invalid .debug_ranges data "
12300 "(no base address)"));
12301 return;
12302 }
12303
12304 if (start > end)
12305 {
12306 /* Inverted range entries are invalid. */
12307 complaint (&symfile_complaints,
12308 _("Invalid .debug_ranges data "
12309 "(inverted range)"));
12310 return;
12311 }
12312
12313 /* Empty range entries have no effect. */
12314 if (start == end)
12315 continue;
12316
12317 start += base + baseaddr;
12318 end += base + baseaddr;
12319
12320 /* A not-uncommon case of bad debug info.
12321 Don't pollute the addrmap with bad data. */
12322 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12323 {
12324 complaint (&symfile_complaints,
12325 _(".debug_ranges entry has start address of zero"
12326 " [in module %s]"), objfile_name (objfile));
12327 continue;
12328 }
12329
12330 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12331 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12332 record_block_range (block, start, end - 1);
12333 }
12334 }
12335 }
12336 }
12337
12338 /* Check whether the producer field indicates either of GCC < 4.6, or the
12339 Intel C/C++ compiler, and cache the result in CU. */
12340
12341 static void
12342 check_producer (struct dwarf2_cu *cu)
12343 {
12344 int major, minor;
12345
12346 if (cu->producer == NULL)
12347 {
12348 /* For unknown compilers expect their behavior is DWARF version
12349 compliant.
12350
12351 GCC started to support .debug_types sections by -gdwarf-4 since
12352 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12353 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12354 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12355 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12356 }
12357 else if (producer_is_gcc (cu->producer, &major, &minor))
12358 {
12359 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12360 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12361 }
12362 else if (startswith (cu->producer, "Intel(R) C"))
12363 cu->producer_is_icc = 1;
12364 else
12365 {
12366 /* For other non-GCC compilers, expect their behavior is DWARF version
12367 compliant. */
12368 }
12369
12370 cu->checked_producer = 1;
12371 }
12372
12373 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12374 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12375 during 4.6.0 experimental. */
12376
12377 static int
12378 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12379 {
12380 if (!cu->checked_producer)
12381 check_producer (cu);
12382
12383 return cu->producer_is_gxx_lt_4_6;
12384 }
12385
12386 /* Return the default accessibility type if it is not overriden by
12387 DW_AT_accessibility. */
12388
12389 static enum dwarf_access_attribute
12390 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12391 {
12392 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12393 {
12394 /* The default DWARF 2 accessibility for members is public, the default
12395 accessibility for inheritance is private. */
12396
12397 if (die->tag != DW_TAG_inheritance)
12398 return DW_ACCESS_public;
12399 else
12400 return DW_ACCESS_private;
12401 }
12402 else
12403 {
12404 /* DWARF 3+ defines the default accessibility a different way. The same
12405 rules apply now for DW_TAG_inheritance as for the members and it only
12406 depends on the container kind. */
12407
12408 if (die->parent->tag == DW_TAG_class_type)
12409 return DW_ACCESS_private;
12410 else
12411 return DW_ACCESS_public;
12412 }
12413 }
12414
12415 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12416 offset. If the attribute was not found return 0, otherwise return
12417 1. If it was found but could not properly be handled, set *OFFSET
12418 to 0. */
12419
12420 static int
12421 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12422 LONGEST *offset)
12423 {
12424 struct attribute *attr;
12425
12426 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12427 if (attr != NULL)
12428 {
12429 *offset = 0;
12430
12431 /* Note that we do not check for a section offset first here.
12432 This is because DW_AT_data_member_location is new in DWARF 4,
12433 so if we see it, we can assume that a constant form is really
12434 a constant and not a section offset. */
12435 if (attr_form_is_constant (attr))
12436 *offset = dwarf2_get_attr_constant_value (attr, 0);
12437 else if (attr_form_is_section_offset (attr))
12438 dwarf2_complex_location_expr_complaint ();
12439 else if (attr_form_is_block (attr))
12440 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12441 else
12442 dwarf2_complex_location_expr_complaint ();
12443
12444 return 1;
12445 }
12446
12447 return 0;
12448 }
12449
12450 /* Add an aggregate field to the field list. */
12451
12452 static void
12453 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12454 struct dwarf2_cu *cu)
12455 {
12456 struct objfile *objfile = cu->objfile;
12457 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12458 struct nextfield *new_field;
12459 struct attribute *attr;
12460 struct field *fp;
12461 const char *fieldname = "";
12462
12463 /* Allocate a new field list entry and link it in. */
12464 new_field = XNEW (struct nextfield);
12465 make_cleanup (xfree, new_field);
12466 memset (new_field, 0, sizeof (struct nextfield));
12467
12468 if (die->tag == DW_TAG_inheritance)
12469 {
12470 new_field->next = fip->baseclasses;
12471 fip->baseclasses = new_field;
12472 }
12473 else
12474 {
12475 new_field->next = fip->fields;
12476 fip->fields = new_field;
12477 }
12478 fip->nfields++;
12479
12480 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12481 if (attr)
12482 new_field->accessibility = DW_UNSND (attr);
12483 else
12484 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12485 if (new_field->accessibility != DW_ACCESS_public)
12486 fip->non_public_fields = 1;
12487
12488 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12489 if (attr)
12490 new_field->virtuality = DW_UNSND (attr);
12491 else
12492 new_field->virtuality = DW_VIRTUALITY_none;
12493
12494 fp = &new_field->field;
12495
12496 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12497 {
12498 LONGEST offset;
12499
12500 /* Data member other than a C++ static data member. */
12501
12502 /* Get type of field. */
12503 fp->type = die_type (die, cu);
12504
12505 SET_FIELD_BITPOS (*fp, 0);
12506
12507 /* Get bit size of field (zero if none). */
12508 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12509 if (attr)
12510 {
12511 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12512 }
12513 else
12514 {
12515 FIELD_BITSIZE (*fp) = 0;
12516 }
12517
12518 /* Get bit offset of field. */
12519 if (handle_data_member_location (die, cu, &offset))
12520 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12521 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12522 if (attr)
12523 {
12524 if (gdbarch_bits_big_endian (gdbarch))
12525 {
12526 /* For big endian bits, the DW_AT_bit_offset gives the
12527 additional bit offset from the MSB of the containing
12528 anonymous object to the MSB of the field. We don't
12529 have to do anything special since we don't need to
12530 know the size of the anonymous object. */
12531 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12532 }
12533 else
12534 {
12535 /* For little endian bits, compute the bit offset to the
12536 MSB of the anonymous object, subtract off the number of
12537 bits from the MSB of the field to the MSB of the
12538 object, and then subtract off the number of bits of
12539 the field itself. The result is the bit offset of
12540 the LSB of the field. */
12541 int anonymous_size;
12542 int bit_offset = DW_UNSND (attr);
12543
12544 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12545 if (attr)
12546 {
12547 /* The size of the anonymous object containing
12548 the bit field is explicit, so use the
12549 indicated size (in bytes). */
12550 anonymous_size = DW_UNSND (attr);
12551 }
12552 else
12553 {
12554 /* The size of the anonymous object containing
12555 the bit field must be inferred from the type
12556 attribute of the data member containing the
12557 bit field. */
12558 anonymous_size = TYPE_LENGTH (fp->type);
12559 }
12560 SET_FIELD_BITPOS (*fp,
12561 (FIELD_BITPOS (*fp)
12562 + anonymous_size * bits_per_byte
12563 - bit_offset - FIELD_BITSIZE (*fp)));
12564 }
12565 }
12566 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
12567 if (attr != NULL)
12568 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
12569 + dwarf2_get_attr_constant_value (attr, 0)));
12570
12571 /* Get name of field. */
12572 fieldname = dwarf2_name (die, cu);
12573 if (fieldname == NULL)
12574 fieldname = "";
12575
12576 /* The name is already allocated along with this objfile, so we don't
12577 need to duplicate it for the type. */
12578 fp->name = fieldname;
12579
12580 /* Change accessibility for artificial fields (e.g. virtual table
12581 pointer or virtual base class pointer) to private. */
12582 if (dwarf2_attr (die, DW_AT_artificial, cu))
12583 {
12584 FIELD_ARTIFICIAL (*fp) = 1;
12585 new_field->accessibility = DW_ACCESS_private;
12586 fip->non_public_fields = 1;
12587 }
12588 }
12589 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12590 {
12591 /* C++ static member. */
12592
12593 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12594 is a declaration, but all versions of G++ as of this writing
12595 (so through at least 3.2.1) incorrectly generate
12596 DW_TAG_variable tags. */
12597
12598 const char *physname;
12599
12600 /* Get name of field. */
12601 fieldname = dwarf2_name (die, cu);
12602 if (fieldname == NULL)
12603 return;
12604
12605 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12606 if (attr
12607 /* Only create a symbol if this is an external value.
12608 new_symbol checks this and puts the value in the global symbol
12609 table, which we want. If it is not external, new_symbol
12610 will try to put the value in cu->list_in_scope which is wrong. */
12611 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12612 {
12613 /* A static const member, not much different than an enum as far as
12614 we're concerned, except that we can support more types. */
12615 new_symbol (die, NULL, cu);
12616 }
12617
12618 /* Get physical name. */
12619 physname = dwarf2_physname (fieldname, die, cu);
12620
12621 /* The name is already allocated along with this objfile, so we don't
12622 need to duplicate it for the type. */
12623 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12624 FIELD_TYPE (*fp) = die_type (die, cu);
12625 FIELD_NAME (*fp) = fieldname;
12626 }
12627 else if (die->tag == DW_TAG_inheritance)
12628 {
12629 LONGEST offset;
12630
12631 /* C++ base class field. */
12632 if (handle_data_member_location (die, cu, &offset))
12633 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12634 FIELD_BITSIZE (*fp) = 0;
12635 FIELD_TYPE (*fp) = die_type (die, cu);
12636 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12637 fip->nbaseclasses++;
12638 }
12639 }
12640
12641 /* Add a typedef defined in the scope of the FIP's class. */
12642
12643 static void
12644 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12645 struct dwarf2_cu *cu)
12646 {
12647 struct typedef_field_list *new_field;
12648 struct typedef_field *fp;
12649
12650 /* Allocate a new field list entry and link it in. */
12651 new_field = XCNEW (struct typedef_field_list);
12652 make_cleanup (xfree, new_field);
12653
12654 gdb_assert (die->tag == DW_TAG_typedef);
12655
12656 fp = &new_field->field;
12657
12658 /* Get name of field. */
12659 fp->name = dwarf2_name (die, cu);
12660 if (fp->name == NULL)
12661 return;
12662
12663 fp->type = read_type_die (die, cu);
12664
12665 new_field->next = fip->typedef_field_list;
12666 fip->typedef_field_list = new_field;
12667 fip->typedef_field_list_count++;
12668 }
12669
12670 /* Create the vector of fields, and attach it to the type. */
12671
12672 static void
12673 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12674 struct dwarf2_cu *cu)
12675 {
12676 int nfields = fip->nfields;
12677
12678 /* Record the field count, allocate space for the array of fields,
12679 and create blank accessibility bitfields if necessary. */
12680 TYPE_NFIELDS (type) = nfields;
12681 TYPE_FIELDS (type) = (struct field *)
12682 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12683 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12684
12685 if (fip->non_public_fields && cu->language != language_ada)
12686 {
12687 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12688
12689 TYPE_FIELD_PRIVATE_BITS (type) =
12690 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12691 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12692
12693 TYPE_FIELD_PROTECTED_BITS (type) =
12694 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12695 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12696
12697 TYPE_FIELD_IGNORE_BITS (type) =
12698 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12699 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12700 }
12701
12702 /* If the type has baseclasses, allocate and clear a bit vector for
12703 TYPE_FIELD_VIRTUAL_BITS. */
12704 if (fip->nbaseclasses && cu->language != language_ada)
12705 {
12706 int num_bytes = B_BYTES (fip->nbaseclasses);
12707 unsigned char *pointer;
12708
12709 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12710 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
12711 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12712 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12713 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12714 }
12715
12716 /* Copy the saved-up fields into the field vector. Start from the head of
12717 the list, adding to the tail of the field array, so that they end up in
12718 the same order in the array in which they were added to the list. */
12719 while (nfields-- > 0)
12720 {
12721 struct nextfield *fieldp;
12722
12723 if (fip->fields)
12724 {
12725 fieldp = fip->fields;
12726 fip->fields = fieldp->next;
12727 }
12728 else
12729 {
12730 fieldp = fip->baseclasses;
12731 fip->baseclasses = fieldp->next;
12732 }
12733
12734 TYPE_FIELD (type, nfields) = fieldp->field;
12735 switch (fieldp->accessibility)
12736 {
12737 case DW_ACCESS_private:
12738 if (cu->language != language_ada)
12739 SET_TYPE_FIELD_PRIVATE (type, nfields);
12740 break;
12741
12742 case DW_ACCESS_protected:
12743 if (cu->language != language_ada)
12744 SET_TYPE_FIELD_PROTECTED (type, nfields);
12745 break;
12746
12747 case DW_ACCESS_public:
12748 break;
12749
12750 default:
12751 /* Unknown accessibility. Complain and treat it as public. */
12752 {
12753 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12754 fieldp->accessibility);
12755 }
12756 break;
12757 }
12758 if (nfields < fip->nbaseclasses)
12759 {
12760 switch (fieldp->virtuality)
12761 {
12762 case DW_VIRTUALITY_virtual:
12763 case DW_VIRTUALITY_pure_virtual:
12764 if (cu->language == language_ada)
12765 error (_("unexpected virtuality in component of Ada type"));
12766 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12767 break;
12768 }
12769 }
12770 }
12771 }
12772
12773 /* Return true if this member function is a constructor, false
12774 otherwise. */
12775
12776 static int
12777 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12778 {
12779 const char *fieldname;
12780 const char *type_name;
12781 int len;
12782
12783 if (die->parent == NULL)
12784 return 0;
12785
12786 if (die->parent->tag != DW_TAG_structure_type
12787 && die->parent->tag != DW_TAG_union_type
12788 && die->parent->tag != DW_TAG_class_type)
12789 return 0;
12790
12791 fieldname = dwarf2_name (die, cu);
12792 type_name = dwarf2_name (die->parent, cu);
12793 if (fieldname == NULL || type_name == NULL)
12794 return 0;
12795
12796 len = strlen (fieldname);
12797 return (strncmp (fieldname, type_name, len) == 0
12798 && (type_name[len] == '\0' || type_name[len] == '<'));
12799 }
12800
12801 /* Add a member function to the proper fieldlist. */
12802
12803 static void
12804 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12805 struct type *type, struct dwarf2_cu *cu)
12806 {
12807 struct objfile *objfile = cu->objfile;
12808 struct attribute *attr;
12809 struct fnfieldlist *flp;
12810 int i;
12811 struct fn_field *fnp;
12812 const char *fieldname;
12813 struct nextfnfield *new_fnfield;
12814 struct type *this_type;
12815 enum dwarf_access_attribute accessibility;
12816
12817 if (cu->language == language_ada)
12818 error (_("unexpected member function in Ada type"));
12819
12820 /* Get name of member function. */
12821 fieldname = dwarf2_name (die, cu);
12822 if (fieldname == NULL)
12823 return;
12824
12825 /* Look up member function name in fieldlist. */
12826 for (i = 0; i < fip->nfnfields; i++)
12827 {
12828 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12829 break;
12830 }
12831
12832 /* Create new list element if necessary. */
12833 if (i < fip->nfnfields)
12834 flp = &fip->fnfieldlists[i];
12835 else
12836 {
12837 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12838 {
12839 fip->fnfieldlists = (struct fnfieldlist *)
12840 xrealloc (fip->fnfieldlists,
12841 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12842 * sizeof (struct fnfieldlist));
12843 if (fip->nfnfields == 0)
12844 make_cleanup (free_current_contents, &fip->fnfieldlists);
12845 }
12846 flp = &fip->fnfieldlists[fip->nfnfields];
12847 flp->name = fieldname;
12848 flp->length = 0;
12849 flp->head = NULL;
12850 i = fip->nfnfields++;
12851 }
12852
12853 /* Create a new member function field and chain it to the field list
12854 entry. */
12855 new_fnfield = XNEW (struct nextfnfield);
12856 make_cleanup (xfree, new_fnfield);
12857 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12858 new_fnfield->next = flp->head;
12859 flp->head = new_fnfield;
12860 flp->length++;
12861
12862 /* Fill in the member function field info. */
12863 fnp = &new_fnfield->fnfield;
12864
12865 /* Delay processing of the physname until later. */
12866 if (cu->language == language_cplus)
12867 {
12868 add_to_method_list (type, i, flp->length - 1, fieldname,
12869 die, cu);
12870 }
12871 else
12872 {
12873 const char *physname = dwarf2_physname (fieldname, die, cu);
12874 fnp->physname = physname ? physname : "";
12875 }
12876
12877 fnp->type = alloc_type (objfile);
12878 this_type = read_type_die (die, cu);
12879 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12880 {
12881 int nparams = TYPE_NFIELDS (this_type);
12882
12883 /* TYPE is the domain of this method, and THIS_TYPE is the type
12884 of the method itself (TYPE_CODE_METHOD). */
12885 smash_to_method_type (fnp->type, type,
12886 TYPE_TARGET_TYPE (this_type),
12887 TYPE_FIELDS (this_type),
12888 TYPE_NFIELDS (this_type),
12889 TYPE_VARARGS (this_type));
12890
12891 /* Handle static member functions.
12892 Dwarf2 has no clean way to discern C++ static and non-static
12893 member functions. G++ helps GDB by marking the first
12894 parameter for non-static member functions (which is the this
12895 pointer) as artificial. We obtain this information from
12896 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12897 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12898 fnp->voffset = VOFFSET_STATIC;
12899 }
12900 else
12901 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12902 dwarf2_full_name (fieldname, die, cu));
12903
12904 /* Get fcontext from DW_AT_containing_type if present. */
12905 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12906 fnp->fcontext = die_containing_type (die, cu);
12907
12908 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12909 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12910
12911 /* Get accessibility. */
12912 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12913 if (attr)
12914 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12915 else
12916 accessibility = dwarf2_default_access_attribute (die, cu);
12917 switch (accessibility)
12918 {
12919 case DW_ACCESS_private:
12920 fnp->is_private = 1;
12921 break;
12922 case DW_ACCESS_protected:
12923 fnp->is_protected = 1;
12924 break;
12925 }
12926
12927 /* Check for artificial methods. */
12928 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12929 if (attr && DW_UNSND (attr) != 0)
12930 fnp->is_artificial = 1;
12931
12932 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12933
12934 /* Get index in virtual function table if it is a virtual member
12935 function. For older versions of GCC, this is an offset in the
12936 appropriate virtual table, as specified by DW_AT_containing_type.
12937 For everyone else, it is an expression to be evaluated relative
12938 to the object address. */
12939
12940 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12941 if (attr)
12942 {
12943 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12944 {
12945 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12946 {
12947 /* Old-style GCC. */
12948 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12949 }
12950 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12951 || (DW_BLOCK (attr)->size > 1
12952 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12953 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12954 {
12955 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12956 if ((fnp->voffset % cu->header.addr_size) != 0)
12957 dwarf2_complex_location_expr_complaint ();
12958 else
12959 fnp->voffset /= cu->header.addr_size;
12960 fnp->voffset += 2;
12961 }
12962 else
12963 dwarf2_complex_location_expr_complaint ();
12964
12965 if (!fnp->fcontext)
12966 {
12967 /* If there is no `this' field and no DW_AT_containing_type,
12968 we cannot actually find a base class context for the
12969 vtable! */
12970 if (TYPE_NFIELDS (this_type) == 0
12971 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12972 {
12973 complaint (&symfile_complaints,
12974 _("cannot determine context for virtual member "
12975 "function \"%s\" (offset %d)"),
12976 fieldname, die->offset.sect_off);
12977 }
12978 else
12979 {
12980 fnp->fcontext
12981 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12982 }
12983 }
12984 }
12985 else if (attr_form_is_section_offset (attr))
12986 {
12987 dwarf2_complex_location_expr_complaint ();
12988 }
12989 else
12990 {
12991 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12992 fieldname);
12993 }
12994 }
12995 else
12996 {
12997 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12998 if (attr && DW_UNSND (attr))
12999 {
13000 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13001 complaint (&symfile_complaints,
13002 _("Member function \"%s\" (offset %d) is virtual "
13003 "but the vtable offset is not specified"),
13004 fieldname, die->offset.sect_off);
13005 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13006 TYPE_CPLUS_DYNAMIC (type) = 1;
13007 }
13008 }
13009 }
13010
13011 /* Create the vector of member function fields, and attach it to the type. */
13012
13013 static void
13014 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13015 struct dwarf2_cu *cu)
13016 {
13017 struct fnfieldlist *flp;
13018 int i;
13019
13020 if (cu->language == language_ada)
13021 error (_("unexpected member functions in Ada type"));
13022
13023 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13024 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13025 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13026
13027 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13028 {
13029 struct nextfnfield *nfp = flp->head;
13030 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13031 int k;
13032
13033 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13034 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13035 fn_flp->fn_fields = (struct fn_field *)
13036 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13037 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13038 fn_flp->fn_fields[k] = nfp->fnfield;
13039 }
13040
13041 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13042 }
13043
13044 /* Returns non-zero if NAME is the name of a vtable member in CU's
13045 language, zero otherwise. */
13046 static int
13047 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13048 {
13049 static const char vptr[] = "_vptr";
13050 static const char vtable[] = "vtable";
13051
13052 /* Look for the C++ form of the vtable. */
13053 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13054 return 1;
13055
13056 return 0;
13057 }
13058
13059 /* GCC outputs unnamed structures that are really pointers to member
13060 functions, with the ABI-specified layout. If TYPE describes
13061 such a structure, smash it into a member function type.
13062
13063 GCC shouldn't do this; it should just output pointer to member DIEs.
13064 This is GCC PR debug/28767. */
13065
13066 static void
13067 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13068 {
13069 struct type *pfn_type, *self_type, *new_type;
13070
13071 /* Check for a structure with no name and two children. */
13072 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13073 return;
13074
13075 /* Check for __pfn and __delta members. */
13076 if (TYPE_FIELD_NAME (type, 0) == NULL
13077 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13078 || TYPE_FIELD_NAME (type, 1) == NULL
13079 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13080 return;
13081
13082 /* Find the type of the method. */
13083 pfn_type = TYPE_FIELD_TYPE (type, 0);
13084 if (pfn_type == NULL
13085 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13086 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13087 return;
13088
13089 /* Look for the "this" argument. */
13090 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13091 if (TYPE_NFIELDS (pfn_type) == 0
13092 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13093 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13094 return;
13095
13096 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13097 new_type = alloc_type (objfile);
13098 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13099 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13100 TYPE_VARARGS (pfn_type));
13101 smash_to_methodptr_type (type, new_type);
13102 }
13103
13104 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13105 (icc). */
13106
13107 static int
13108 producer_is_icc (struct dwarf2_cu *cu)
13109 {
13110 if (!cu->checked_producer)
13111 check_producer (cu);
13112
13113 return cu->producer_is_icc;
13114 }
13115
13116 /* Called when we find the DIE that starts a structure or union scope
13117 (definition) to create a type for the structure or union. Fill in
13118 the type's name and general properties; the members will not be
13119 processed until process_structure_scope. A symbol table entry for
13120 the type will also not be done until process_structure_scope (assuming
13121 the type has a name).
13122
13123 NOTE: we need to call these functions regardless of whether or not the
13124 DIE has a DW_AT_name attribute, since it might be an anonymous
13125 structure or union. This gets the type entered into our set of
13126 user defined types. */
13127
13128 static struct type *
13129 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13130 {
13131 struct objfile *objfile = cu->objfile;
13132 struct type *type;
13133 struct attribute *attr;
13134 const char *name;
13135
13136 /* If the definition of this type lives in .debug_types, read that type.
13137 Don't follow DW_AT_specification though, that will take us back up
13138 the chain and we want to go down. */
13139 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13140 if (attr)
13141 {
13142 type = get_DW_AT_signature_type (die, attr, cu);
13143
13144 /* The type's CU may not be the same as CU.
13145 Ensure TYPE is recorded with CU in die_type_hash. */
13146 return set_die_type (die, type, cu);
13147 }
13148
13149 type = alloc_type (objfile);
13150 INIT_CPLUS_SPECIFIC (type);
13151
13152 name = dwarf2_name (die, cu);
13153 if (name != NULL)
13154 {
13155 if (cu->language == language_cplus
13156 || cu->language == language_d
13157 || cu->language == language_rust)
13158 {
13159 const char *full_name = dwarf2_full_name (name, die, cu);
13160
13161 /* dwarf2_full_name might have already finished building the DIE's
13162 type. If so, there is no need to continue. */
13163 if (get_die_type (die, cu) != NULL)
13164 return get_die_type (die, cu);
13165
13166 TYPE_TAG_NAME (type) = full_name;
13167 if (die->tag == DW_TAG_structure_type
13168 || die->tag == DW_TAG_class_type)
13169 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13170 }
13171 else
13172 {
13173 /* The name is already allocated along with this objfile, so
13174 we don't need to duplicate it for the type. */
13175 TYPE_TAG_NAME (type) = name;
13176 if (die->tag == DW_TAG_class_type)
13177 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13178 }
13179 }
13180
13181 if (die->tag == DW_TAG_structure_type)
13182 {
13183 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13184 }
13185 else if (die->tag == DW_TAG_union_type)
13186 {
13187 TYPE_CODE (type) = TYPE_CODE_UNION;
13188 }
13189 else
13190 {
13191 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13192 }
13193
13194 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13195 TYPE_DECLARED_CLASS (type) = 1;
13196
13197 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13198 if (attr)
13199 {
13200 if (attr_form_is_constant (attr))
13201 TYPE_LENGTH (type) = DW_UNSND (attr);
13202 else
13203 {
13204 /* For the moment, dynamic type sizes are not supported
13205 by GDB's struct type. The actual size is determined
13206 on-demand when resolving the type of a given object,
13207 so set the type's length to zero for now. Otherwise,
13208 we record an expression as the length, and that expression
13209 could lead to a very large value, which could eventually
13210 lead to us trying to allocate that much memory when creating
13211 a value of that type. */
13212 TYPE_LENGTH (type) = 0;
13213 }
13214 }
13215 else
13216 {
13217 TYPE_LENGTH (type) = 0;
13218 }
13219
13220 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13221 {
13222 /* ICC does not output the required DW_AT_declaration
13223 on incomplete types, but gives them a size of zero. */
13224 TYPE_STUB (type) = 1;
13225 }
13226 else
13227 TYPE_STUB_SUPPORTED (type) = 1;
13228
13229 if (die_is_declaration (die, cu))
13230 TYPE_STUB (type) = 1;
13231 else if (attr == NULL && die->child == NULL
13232 && producer_is_realview (cu->producer))
13233 /* RealView does not output the required DW_AT_declaration
13234 on incomplete types. */
13235 TYPE_STUB (type) = 1;
13236
13237 /* We need to add the type field to the die immediately so we don't
13238 infinitely recurse when dealing with pointers to the structure
13239 type within the structure itself. */
13240 set_die_type (die, type, cu);
13241
13242 /* set_die_type should be already done. */
13243 set_descriptive_type (type, die, cu);
13244
13245 return type;
13246 }
13247
13248 /* Finish creating a structure or union type, including filling in
13249 its members and creating a symbol for it. */
13250
13251 static void
13252 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13253 {
13254 struct objfile *objfile = cu->objfile;
13255 struct die_info *child_die;
13256 struct type *type;
13257
13258 type = get_die_type (die, cu);
13259 if (type == NULL)
13260 type = read_structure_type (die, cu);
13261
13262 if (die->child != NULL && ! die_is_declaration (die, cu))
13263 {
13264 struct field_info fi;
13265 VEC (symbolp) *template_args = NULL;
13266 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13267
13268 memset (&fi, 0, sizeof (struct field_info));
13269
13270 child_die = die->child;
13271
13272 while (child_die && child_die->tag)
13273 {
13274 if (child_die->tag == DW_TAG_member
13275 || child_die->tag == DW_TAG_variable)
13276 {
13277 /* NOTE: carlton/2002-11-05: A C++ static data member
13278 should be a DW_TAG_member that is a declaration, but
13279 all versions of G++ as of this writing (so through at
13280 least 3.2.1) incorrectly generate DW_TAG_variable
13281 tags for them instead. */
13282 dwarf2_add_field (&fi, child_die, cu);
13283 }
13284 else if (child_die->tag == DW_TAG_subprogram)
13285 {
13286 /* Rust doesn't have member functions in the C++ sense.
13287 However, it does emit ordinary functions as children
13288 of a struct DIE. */
13289 if (cu->language == language_rust)
13290 read_func_scope (child_die, cu);
13291 else
13292 {
13293 /* C++ member function. */
13294 dwarf2_add_member_fn (&fi, child_die, type, cu);
13295 }
13296 }
13297 else if (child_die->tag == DW_TAG_inheritance)
13298 {
13299 /* C++ base class field. */
13300 dwarf2_add_field (&fi, child_die, cu);
13301 }
13302 else if (child_die->tag == DW_TAG_typedef)
13303 dwarf2_add_typedef (&fi, child_die, cu);
13304 else if (child_die->tag == DW_TAG_template_type_param
13305 || child_die->tag == DW_TAG_template_value_param)
13306 {
13307 struct symbol *arg = new_symbol (child_die, NULL, cu);
13308
13309 if (arg != NULL)
13310 VEC_safe_push (symbolp, template_args, arg);
13311 }
13312
13313 child_die = sibling_die (child_die);
13314 }
13315
13316 /* Attach template arguments to type. */
13317 if (! VEC_empty (symbolp, template_args))
13318 {
13319 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13320 TYPE_N_TEMPLATE_ARGUMENTS (type)
13321 = VEC_length (symbolp, template_args);
13322 TYPE_TEMPLATE_ARGUMENTS (type)
13323 = XOBNEWVEC (&objfile->objfile_obstack,
13324 struct symbol *,
13325 TYPE_N_TEMPLATE_ARGUMENTS (type));
13326 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13327 VEC_address (symbolp, template_args),
13328 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13329 * sizeof (struct symbol *)));
13330 VEC_free (symbolp, template_args);
13331 }
13332
13333 /* Attach fields and member functions to the type. */
13334 if (fi.nfields)
13335 dwarf2_attach_fields_to_type (&fi, type, cu);
13336 if (fi.nfnfields)
13337 {
13338 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13339
13340 /* Get the type which refers to the base class (possibly this
13341 class itself) which contains the vtable pointer for the current
13342 class from the DW_AT_containing_type attribute. This use of
13343 DW_AT_containing_type is a GNU extension. */
13344
13345 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13346 {
13347 struct type *t = die_containing_type (die, cu);
13348
13349 set_type_vptr_basetype (type, t);
13350 if (type == t)
13351 {
13352 int i;
13353
13354 /* Our own class provides vtbl ptr. */
13355 for (i = TYPE_NFIELDS (t) - 1;
13356 i >= TYPE_N_BASECLASSES (t);
13357 --i)
13358 {
13359 const char *fieldname = TYPE_FIELD_NAME (t, i);
13360
13361 if (is_vtable_name (fieldname, cu))
13362 {
13363 set_type_vptr_fieldno (type, i);
13364 break;
13365 }
13366 }
13367
13368 /* Complain if virtual function table field not found. */
13369 if (i < TYPE_N_BASECLASSES (t))
13370 complaint (&symfile_complaints,
13371 _("virtual function table pointer "
13372 "not found when defining class '%s'"),
13373 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13374 "");
13375 }
13376 else
13377 {
13378 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13379 }
13380 }
13381 else if (cu->producer
13382 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13383 {
13384 /* The IBM XLC compiler does not provide direct indication
13385 of the containing type, but the vtable pointer is
13386 always named __vfp. */
13387
13388 int i;
13389
13390 for (i = TYPE_NFIELDS (type) - 1;
13391 i >= TYPE_N_BASECLASSES (type);
13392 --i)
13393 {
13394 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13395 {
13396 set_type_vptr_fieldno (type, i);
13397 set_type_vptr_basetype (type, type);
13398 break;
13399 }
13400 }
13401 }
13402 }
13403
13404 /* Copy fi.typedef_field_list linked list elements content into the
13405 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13406 if (fi.typedef_field_list)
13407 {
13408 int i = fi.typedef_field_list_count;
13409
13410 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13411 TYPE_TYPEDEF_FIELD_ARRAY (type)
13412 = ((struct typedef_field *)
13413 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13414 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13415
13416 /* Reverse the list order to keep the debug info elements order. */
13417 while (--i >= 0)
13418 {
13419 struct typedef_field *dest, *src;
13420
13421 dest = &TYPE_TYPEDEF_FIELD (type, i);
13422 src = &fi.typedef_field_list->field;
13423 fi.typedef_field_list = fi.typedef_field_list->next;
13424 *dest = *src;
13425 }
13426 }
13427
13428 do_cleanups (back_to);
13429 }
13430
13431 quirk_gcc_member_function_pointer (type, objfile);
13432
13433 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13434 snapshots) has been known to create a die giving a declaration
13435 for a class that has, as a child, a die giving a definition for a
13436 nested class. So we have to process our children even if the
13437 current die is a declaration. Normally, of course, a declaration
13438 won't have any children at all. */
13439
13440 child_die = die->child;
13441
13442 while (child_die != NULL && child_die->tag)
13443 {
13444 if (child_die->tag == DW_TAG_member
13445 || child_die->tag == DW_TAG_variable
13446 || child_die->tag == DW_TAG_inheritance
13447 || child_die->tag == DW_TAG_template_value_param
13448 || child_die->tag == DW_TAG_template_type_param)
13449 {
13450 /* Do nothing. */
13451 }
13452 else
13453 process_die (child_die, cu);
13454
13455 child_die = sibling_die (child_die);
13456 }
13457
13458 /* Do not consider external references. According to the DWARF standard,
13459 these DIEs are identified by the fact that they have no byte_size
13460 attribute, and a declaration attribute. */
13461 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13462 || !die_is_declaration (die, cu))
13463 new_symbol (die, type, cu);
13464 }
13465
13466 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13467 update TYPE using some information only available in DIE's children. */
13468
13469 static void
13470 update_enumeration_type_from_children (struct die_info *die,
13471 struct type *type,
13472 struct dwarf2_cu *cu)
13473 {
13474 struct obstack obstack;
13475 struct die_info *child_die;
13476 int unsigned_enum = 1;
13477 int flag_enum = 1;
13478 ULONGEST mask = 0;
13479 struct cleanup *old_chain;
13480
13481 obstack_init (&obstack);
13482 old_chain = make_cleanup_obstack_free (&obstack);
13483
13484 for (child_die = die->child;
13485 child_die != NULL && child_die->tag;
13486 child_die = sibling_die (child_die))
13487 {
13488 struct attribute *attr;
13489 LONGEST value;
13490 const gdb_byte *bytes;
13491 struct dwarf2_locexpr_baton *baton;
13492 const char *name;
13493
13494 if (child_die->tag != DW_TAG_enumerator)
13495 continue;
13496
13497 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13498 if (attr == NULL)
13499 continue;
13500
13501 name = dwarf2_name (child_die, cu);
13502 if (name == NULL)
13503 name = "<anonymous enumerator>";
13504
13505 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13506 &value, &bytes, &baton);
13507 if (value < 0)
13508 {
13509 unsigned_enum = 0;
13510 flag_enum = 0;
13511 }
13512 else if ((mask & value) != 0)
13513 flag_enum = 0;
13514 else
13515 mask |= value;
13516
13517 /* If we already know that the enum type is neither unsigned, nor
13518 a flag type, no need to look at the rest of the enumerates. */
13519 if (!unsigned_enum && !flag_enum)
13520 break;
13521 }
13522
13523 if (unsigned_enum)
13524 TYPE_UNSIGNED (type) = 1;
13525 if (flag_enum)
13526 TYPE_FLAG_ENUM (type) = 1;
13527
13528 do_cleanups (old_chain);
13529 }
13530
13531 /* Given a DW_AT_enumeration_type die, set its type. We do not
13532 complete the type's fields yet, or create any symbols. */
13533
13534 static struct type *
13535 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13536 {
13537 struct objfile *objfile = cu->objfile;
13538 struct type *type;
13539 struct attribute *attr;
13540 const char *name;
13541
13542 /* If the definition of this type lives in .debug_types, read that type.
13543 Don't follow DW_AT_specification though, that will take us back up
13544 the chain and we want to go down. */
13545 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13546 if (attr)
13547 {
13548 type = get_DW_AT_signature_type (die, attr, cu);
13549
13550 /* The type's CU may not be the same as CU.
13551 Ensure TYPE is recorded with CU in die_type_hash. */
13552 return set_die_type (die, type, cu);
13553 }
13554
13555 type = alloc_type (objfile);
13556
13557 TYPE_CODE (type) = TYPE_CODE_ENUM;
13558 name = dwarf2_full_name (NULL, die, cu);
13559 if (name != NULL)
13560 TYPE_TAG_NAME (type) = name;
13561
13562 attr = dwarf2_attr (die, DW_AT_type, cu);
13563 if (attr != NULL)
13564 {
13565 struct type *underlying_type = die_type (die, cu);
13566
13567 TYPE_TARGET_TYPE (type) = underlying_type;
13568 }
13569
13570 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13571 if (attr)
13572 {
13573 TYPE_LENGTH (type) = DW_UNSND (attr);
13574 }
13575 else
13576 {
13577 TYPE_LENGTH (type) = 0;
13578 }
13579
13580 /* The enumeration DIE can be incomplete. In Ada, any type can be
13581 declared as private in the package spec, and then defined only
13582 inside the package body. Such types are known as Taft Amendment
13583 Types. When another package uses such a type, an incomplete DIE
13584 may be generated by the compiler. */
13585 if (die_is_declaration (die, cu))
13586 TYPE_STUB (type) = 1;
13587
13588 /* Finish the creation of this type by using the enum's children.
13589 We must call this even when the underlying type has been provided
13590 so that we can determine if we're looking at a "flag" enum. */
13591 update_enumeration_type_from_children (die, type, cu);
13592
13593 /* If this type has an underlying type that is not a stub, then we
13594 may use its attributes. We always use the "unsigned" attribute
13595 in this situation, because ordinarily we guess whether the type
13596 is unsigned -- but the guess can be wrong and the underlying type
13597 can tell us the reality. However, we defer to a local size
13598 attribute if one exists, because this lets the compiler override
13599 the underlying type if needed. */
13600 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13601 {
13602 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13603 if (TYPE_LENGTH (type) == 0)
13604 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13605 }
13606
13607 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13608
13609 return set_die_type (die, type, cu);
13610 }
13611
13612 /* Given a pointer to a die which begins an enumeration, process all
13613 the dies that define the members of the enumeration, and create the
13614 symbol for the enumeration type.
13615
13616 NOTE: We reverse the order of the element list. */
13617
13618 static void
13619 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13620 {
13621 struct type *this_type;
13622
13623 this_type = get_die_type (die, cu);
13624 if (this_type == NULL)
13625 this_type = read_enumeration_type (die, cu);
13626
13627 if (die->child != NULL)
13628 {
13629 struct die_info *child_die;
13630 struct symbol *sym;
13631 struct field *fields = NULL;
13632 int num_fields = 0;
13633 const char *name;
13634
13635 child_die = die->child;
13636 while (child_die && child_die->tag)
13637 {
13638 if (child_die->tag != DW_TAG_enumerator)
13639 {
13640 process_die (child_die, cu);
13641 }
13642 else
13643 {
13644 name = dwarf2_name (child_die, cu);
13645 if (name)
13646 {
13647 sym = new_symbol (child_die, this_type, cu);
13648
13649 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13650 {
13651 fields = (struct field *)
13652 xrealloc (fields,
13653 (num_fields + DW_FIELD_ALLOC_CHUNK)
13654 * sizeof (struct field));
13655 }
13656
13657 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13658 FIELD_TYPE (fields[num_fields]) = NULL;
13659 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13660 FIELD_BITSIZE (fields[num_fields]) = 0;
13661
13662 num_fields++;
13663 }
13664 }
13665
13666 child_die = sibling_die (child_die);
13667 }
13668
13669 if (num_fields)
13670 {
13671 TYPE_NFIELDS (this_type) = num_fields;
13672 TYPE_FIELDS (this_type) = (struct field *)
13673 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13674 memcpy (TYPE_FIELDS (this_type), fields,
13675 sizeof (struct field) * num_fields);
13676 xfree (fields);
13677 }
13678 }
13679
13680 /* If we are reading an enum from a .debug_types unit, and the enum
13681 is a declaration, and the enum is not the signatured type in the
13682 unit, then we do not want to add a symbol for it. Adding a
13683 symbol would in some cases obscure the true definition of the
13684 enum, giving users an incomplete type when the definition is
13685 actually available. Note that we do not want to do this for all
13686 enums which are just declarations, because C++0x allows forward
13687 enum declarations. */
13688 if (cu->per_cu->is_debug_types
13689 && die_is_declaration (die, cu))
13690 {
13691 struct signatured_type *sig_type;
13692
13693 sig_type = (struct signatured_type *) cu->per_cu;
13694 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13695 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13696 return;
13697 }
13698
13699 new_symbol (die, this_type, cu);
13700 }
13701
13702 /* Extract all information from a DW_TAG_array_type DIE and put it in
13703 the DIE's type field. For now, this only handles one dimensional
13704 arrays. */
13705
13706 static struct type *
13707 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13708 {
13709 struct objfile *objfile = cu->objfile;
13710 struct die_info *child_die;
13711 struct type *type;
13712 struct type *element_type, *range_type, *index_type;
13713 struct type **range_types = NULL;
13714 struct attribute *attr;
13715 int ndim = 0;
13716 struct cleanup *back_to;
13717 const char *name;
13718 unsigned int bit_stride = 0;
13719
13720 element_type = die_type (die, cu);
13721
13722 /* The die_type call above may have already set the type for this DIE. */
13723 type = get_die_type (die, cu);
13724 if (type)
13725 return type;
13726
13727 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13728 if (attr != NULL)
13729 bit_stride = DW_UNSND (attr) * 8;
13730
13731 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13732 if (attr != NULL)
13733 bit_stride = DW_UNSND (attr);
13734
13735 /* Irix 6.2 native cc creates array types without children for
13736 arrays with unspecified length. */
13737 if (die->child == NULL)
13738 {
13739 index_type = objfile_type (objfile)->builtin_int;
13740 range_type = create_static_range_type (NULL, index_type, 0, -1);
13741 type = create_array_type_with_stride (NULL, element_type, range_type,
13742 bit_stride);
13743 return set_die_type (die, type, cu);
13744 }
13745
13746 back_to = make_cleanup (null_cleanup, NULL);
13747 child_die = die->child;
13748 while (child_die && child_die->tag)
13749 {
13750 if (child_die->tag == DW_TAG_subrange_type)
13751 {
13752 struct type *child_type = read_type_die (child_die, cu);
13753
13754 if (child_type != NULL)
13755 {
13756 /* The range type was succesfully read. Save it for the
13757 array type creation. */
13758 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13759 {
13760 range_types = (struct type **)
13761 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13762 * sizeof (struct type *));
13763 if (ndim == 0)
13764 make_cleanup (free_current_contents, &range_types);
13765 }
13766 range_types[ndim++] = child_type;
13767 }
13768 }
13769 child_die = sibling_die (child_die);
13770 }
13771
13772 /* Dwarf2 dimensions are output from left to right, create the
13773 necessary array types in backwards order. */
13774
13775 type = element_type;
13776
13777 if (read_array_order (die, cu) == DW_ORD_col_major)
13778 {
13779 int i = 0;
13780
13781 while (i < ndim)
13782 type = create_array_type_with_stride (NULL, type, range_types[i++],
13783 bit_stride);
13784 }
13785 else
13786 {
13787 while (ndim-- > 0)
13788 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13789 bit_stride);
13790 }
13791
13792 /* Understand Dwarf2 support for vector types (like they occur on
13793 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13794 array type. This is not part of the Dwarf2/3 standard yet, but a
13795 custom vendor extension. The main difference between a regular
13796 array and the vector variant is that vectors are passed by value
13797 to functions. */
13798 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13799 if (attr)
13800 make_vector_type (type);
13801
13802 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13803 implementation may choose to implement triple vectors using this
13804 attribute. */
13805 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13806 if (attr)
13807 {
13808 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13809 TYPE_LENGTH (type) = DW_UNSND (attr);
13810 else
13811 complaint (&symfile_complaints,
13812 _("DW_AT_byte_size for array type smaller "
13813 "than the total size of elements"));
13814 }
13815
13816 name = dwarf2_name (die, cu);
13817 if (name)
13818 TYPE_NAME (type) = name;
13819
13820 /* Install the type in the die. */
13821 set_die_type (die, type, cu);
13822
13823 /* set_die_type should be already done. */
13824 set_descriptive_type (type, die, cu);
13825
13826 do_cleanups (back_to);
13827
13828 return type;
13829 }
13830
13831 static enum dwarf_array_dim_ordering
13832 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13833 {
13834 struct attribute *attr;
13835
13836 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13837
13838 if (attr)
13839 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13840
13841 /* GNU F77 is a special case, as at 08/2004 array type info is the
13842 opposite order to the dwarf2 specification, but data is still
13843 laid out as per normal fortran.
13844
13845 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13846 version checking. */
13847
13848 if (cu->language == language_fortran
13849 && cu->producer && strstr (cu->producer, "GNU F77"))
13850 {
13851 return DW_ORD_row_major;
13852 }
13853
13854 switch (cu->language_defn->la_array_ordering)
13855 {
13856 case array_column_major:
13857 return DW_ORD_col_major;
13858 case array_row_major:
13859 default:
13860 return DW_ORD_row_major;
13861 };
13862 }
13863
13864 /* Extract all information from a DW_TAG_set_type DIE and put it in
13865 the DIE's type field. */
13866
13867 static struct type *
13868 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13869 {
13870 struct type *domain_type, *set_type;
13871 struct attribute *attr;
13872
13873 domain_type = die_type (die, cu);
13874
13875 /* The die_type call above may have already set the type for this DIE. */
13876 set_type = get_die_type (die, cu);
13877 if (set_type)
13878 return set_type;
13879
13880 set_type = create_set_type (NULL, domain_type);
13881
13882 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13883 if (attr)
13884 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13885
13886 return set_die_type (die, set_type, cu);
13887 }
13888
13889 /* A helper for read_common_block that creates a locexpr baton.
13890 SYM is the symbol which we are marking as computed.
13891 COMMON_DIE is the DIE for the common block.
13892 COMMON_LOC is the location expression attribute for the common
13893 block itself.
13894 MEMBER_LOC is the location expression attribute for the particular
13895 member of the common block that we are processing.
13896 CU is the CU from which the above come. */
13897
13898 static void
13899 mark_common_block_symbol_computed (struct symbol *sym,
13900 struct die_info *common_die,
13901 struct attribute *common_loc,
13902 struct attribute *member_loc,
13903 struct dwarf2_cu *cu)
13904 {
13905 struct objfile *objfile = dwarf2_per_objfile->objfile;
13906 struct dwarf2_locexpr_baton *baton;
13907 gdb_byte *ptr;
13908 unsigned int cu_off;
13909 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13910 LONGEST offset = 0;
13911
13912 gdb_assert (common_loc && member_loc);
13913 gdb_assert (attr_form_is_block (common_loc));
13914 gdb_assert (attr_form_is_block (member_loc)
13915 || attr_form_is_constant (member_loc));
13916
13917 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13918 baton->per_cu = cu->per_cu;
13919 gdb_assert (baton->per_cu);
13920
13921 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13922
13923 if (attr_form_is_constant (member_loc))
13924 {
13925 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13926 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13927 }
13928 else
13929 baton->size += DW_BLOCK (member_loc)->size;
13930
13931 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
13932 baton->data = ptr;
13933
13934 *ptr++ = DW_OP_call4;
13935 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13936 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13937 ptr += 4;
13938
13939 if (attr_form_is_constant (member_loc))
13940 {
13941 *ptr++ = DW_OP_addr;
13942 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13943 ptr += cu->header.addr_size;
13944 }
13945 else
13946 {
13947 /* We have to copy the data here, because DW_OP_call4 will only
13948 use a DW_AT_location attribute. */
13949 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13950 ptr += DW_BLOCK (member_loc)->size;
13951 }
13952
13953 *ptr++ = DW_OP_plus;
13954 gdb_assert (ptr - baton->data == baton->size);
13955
13956 SYMBOL_LOCATION_BATON (sym) = baton;
13957 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13958 }
13959
13960 /* Create appropriate locally-scoped variables for all the
13961 DW_TAG_common_block entries. Also create a struct common_block
13962 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13963 is used to sepate the common blocks name namespace from regular
13964 variable names. */
13965
13966 static void
13967 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13968 {
13969 struct attribute *attr;
13970
13971 attr = dwarf2_attr (die, DW_AT_location, cu);
13972 if (attr)
13973 {
13974 /* Support the .debug_loc offsets. */
13975 if (attr_form_is_block (attr))
13976 {
13977 /* Ok. */
13978 }
13979 else if (attr_form_is_section_offset (attr))
13980 {
13981 dwarf2_complex_location_expr_complaint ();
13982 attr = NULL;
13983 }
13984 else
13985 {
13986 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13987 "common block member");
13988 attr = NULL;
13989 }
13990 }
13991
13992 if (die->child != NULL)
13993 {
13994 struct objfile *objfile = cu->objfile;
13995 struct die_info *child_die;
13996 size_t n_entries = 0, size;
13997 struct common_block *common_block;
13998 struct symbol *sym;
13999
14000 for (child_die = die->child;
14001 child_die && child_die->tag;
14002 child_die = sibling_die (child_die))
14003 ++n_entries;
14004
14005 size = (sizeof (struct common_block)
14006 + (n_entries - 1) * sizeof (struct symbol *));
14007 common_block
14008 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14009 size);
14010 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14011 common_block->n_entries = 0;
14012
14013 for (child_die = die->child;
14014 child_die && child_die->tag;
14015 child_die = sibling_die (child_die))
14016 {
14017 /* Create the symbol in the DW_TAG_common_block block in the current
14018 symbol scope. */
14019 sym = new_symbol (child_die, NULL, cu);
14020 if (sym != NULL)
14021 {
14022 struct attribute *member_loc;
14023
14024 common_block->contents[common_block->n_entries++] = sym;
14025
14026 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14027 cu);
14028 if (member_loc)
14029 {
14030 /* GDB has handled this for a long time, but it is
14031 not specified by DWARF. It seems to have been
14032 emitted by gfortran at least as recently as:
14033 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14034 complaint (&symfile_complaints,
14035 _("Variable in common block has "
14036 "DW_AT_data_member_location "
14037 "- DIE at 0x%x [in module %s]"),
14038 child_die->offset.sect_off,
14039 objfile_name (cu->objfile));
14040
14041 if (attr_form_is_section_offset (member_loc))
14042 dwarf2_complex_location_expr_complaint ();
14043 else if (attr_form_is_constant (member_loc)
14044 || attr_form_is_block (member_loc))
14045 {
14046 if (attr)
14047 mark_common_block_symbol_computed (sym, die, attr,
14048 member_loc, cu);
14049 }
14050 else
14051 dwarf2_complex_location_expr_complaint ();
14052 }
14053 }
14054 }
14055
14056 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14057 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14058 }
14059 }
14060
14061 /* Create a type for a C++ namespace. */
14062
14063 static struct type *
14064 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14065 {
14066 struct objfile *objfile = cu->objfile;
14067 const char *previous_prefix, *name;
14068 int is_anonymous;
14069 struct type *type;
14070
14071 /* For extensions, reuse the type of the original namespace. */
14072 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14073 {
14074 struct die_info *ext_die;
14075 struct dwarf2_cu *ext_cu = cu;
14076
14077 ext_die = dwarf2_extension (die, &ext_cu);
14078 type = read_type_die (ext_die, ext_cu);
14079
14080 /* EXT_CU may not be the same as CU.
14081 Ensure TYPE is recorded with CU in die_type_hash. */
14082 return set_die_type (die, type, cu);
14083 }
14084
14085 name = namespace_name (die, &is_anonymous, cu);
14086
14087 /* Now build the name of the current namespace. */
14088
14089 previous_prefix = determine_prefix (die, cu);
14090 if (previous_prefix[0] != '\0')
14091 name = typename_concat (&objfile->objfile_obstack,
14092 previous_prefix, name, 0, cu);
14093
14094 /* Create the type. */
14095 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14096 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14097
14098 return set_die_type (die, type, cu);
14099 }
14100
14101 /* Read a namespace scope. */
14102
14103 static void
14104 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14105 {
14106 struct objfile *objfile = cu->objfile;
14107 int is_anonymous;
14108
14109 /* Add a symbol associated to this if we haven't seen the namespace
14110 before. Also, add a using directive if it's an anonymous
14111 namespace. */
14112
14113 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14114 {
14115 struct type *type;
14116
14117 type = read_type_die (die, cu);
14118 new_symbol (die, type, cu);
14119
14120 namespace_name (die, &is_anonymous, cu);
14121 if (is_anonymous)
14122 {
14123 const char *previous_prefix = determine_prefix (die, cu);
14124
14125 add_using_directive (using_directives (cu->language),
14126 previous_prefix, TYPE_NAME (type), NULL,
14127 NULL, NULL, 0, &objfile->objfile_obstack);
14128 }
14129 }
14130
14131 if (die->child != NULL)
14132 {
14133 struct die_info *child_die = die->child;
14134
14135 while (child_die && child_die->tag)
14136 {
14137 process_die (child_die, cu);
14138 child_die = sibling_die (child_die);
14139 }
14140 }
14141 }
14142
14143 /* Read a Fortran module as type. This DIE can be only a declaration used for
14144 imported module. Still we need that type as local Fortran "use ... only"
14145 declaration imports depend on the created type in determine_prefix. */
14146
14147 static struct type *
14148 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14149 {
14150 struct objfile *objfile = cu->objfile;
14151 const char *module_name;
14152 struct type *type;
14153
14154 module_name = dwarf2_name (die, cu);
14155 if (!module_name)
14156 complaint (&symfile_complaints,
14157 _("DW_TAG_module has no name, offset 0x%x"),
14158 die->offset.sect_off);
14159 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14160
14161 /* determine_prefix uses TYPE_TAG_NAME. */
14162 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14163
14164 return set_die_type (die, type, cu);
14165 }
14166
14167 /* Read a Fortran module. */
14168
14169 static void
14170 read_module (struct die_info *die, struct dwarf2_cu *cu)
14171 {
14172 struct die_info *child_die = die->child;
14173 struct type *type;
14174
14175 type = read_type_die (die, cu);
14176 new_symbol (die, type, cu);
14177
14178 while (child_die && child_die->tag)
14179 {
14180 process_die (child_die, cu);
14181 child_die = sibling_die (child_die);
14182 }
14183 }
14184
14185 /* Return the name of the namespace represented by DIE. Set
14186 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14187 namespace. */
14188
14189 static const char *
14190 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14191 {
14192 struct die_info *current_die;
14193 const char *name = NULL;
14194
14195 /* Loop through the extensions until we find a name. */
14196
14197 for (current_die = die;
14198 current_die != NULL;
14199 current_die = dwarf2_extension (die, &cu))
14200 {
14201 /* We don't use dwarf2_name here so that we can detect the absence
14202 of a name -> anonymous namespace. */
14203 name = dwarf2_string_attr (die, DW_AT_name, cu);
14204
14205 if (name != NULL)
14206 break;
14207 }
14208
14209 /* Is it an anonymous namespace? */
14210
14211 *is_anonymous = (name == NULL);
14212 if (*is_anonymous)
14213 name = CP_ANONYMOUS_NAMESPACE_STR;
14214
14215 return name;
14216 }
14217
14218 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14219 the user defined type vector. */
14220
14221 static struct type *
14222 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14223 {
14224 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14225 struct comp_unit_head *cu_header = &cu->header;
14226 struct type *type;
14227 struct attribute *attr_byte_size;
14228 struct attribute *attr_address_class;
14229 int byte_size, addr_class;
14230 struct type *target_type;
14231
14232 target_type = die_type (die, cu);
14233
14234 /* The die_type call above may have already set the type for this DIE. */
14235 type = get_die_type (die, cu);
14236 if (type)
14237 return type;
14238
14239 type = lookup_pointer_type (target_type);
14240
14241 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14242 if (attr_byte_size)
14243 byte_size = DW_UNSND (attr_byte_size);
14244 else
14245 byte_size = cu_header->addr_size;
14246
14247 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14248 if (attr_address_class)
14249 addr_class = DW_UNSND (attr_address_class);
14250 else
14251 addr_class = DW_ADDR_none;
14252
14253 /* If the pointer size or address class is different than the
14254 default, create a type variant marked as such and set the
14255 length accordingly. */
14256 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14257 {
14258 if (gdbarch_address_class_type_flags_p (gdbarch))
14259 {
14260 int type_flags;
14261
14262 type_flags = gdbarch_address_class_type_flags
14263 (gdbarch, byte_size, addr_class);
14264 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14265 == 0);
14266 type = make_type_with_address_space (type, type_flags);
14267 }
14268 else if (TYPE_LENGTH (type) != byte_size)
14269 {
14270 complaint (&symfile_complaints,
14271 _("invalid pointer size %d"), byte_size);
14272 }
14273 else
14274 {
14275 /* Should we also complain about unhandled address classes? */
14276 }
14277 }
14278
14279 TYPE_LENGTH (type) = byte_size;
14280 return set_die_type (die, type, cu);
14281 }
14282
14283 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14284 the user defined type vector. */
14285
14286 static struct type *
14287 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14288 {
14289 struct type *type;
14290 struct type *to_type;
14291 struct type *domain;
14292
14293 to_type = die_type (die, cu);
14294 domain = die_containing_type (die, cu);
14295
14296 /* The calls above may have already set the type for this DIE. */
14297 type = get_die_type (die, cu);
14298 if (type)
14299 return type;
14300
14301 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14302 type = lookup_methodptr_type (to_type);
14303 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14304 {
14305 struct type *new_type = alloc_type (cu->objfile);
14306
14307 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14308 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14309 TYPE_VARARGS (to_type));
14310 type = lookup_methodptr_type (new_type);
14311 }
14312 else
14313 type = lookup_memberptr_type (to_type, domain);
14314
14315 return set_die_type (die, type, cu);
14316 }
14317
14318 /* Extract all information from a DW_TAG_reference_type DIE and add to
14319 the user defined type vector. */
14320
14321 static struct type *
14322 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14323 {
14324 struct comp_unit_head *cu_header = &cu->header;
14325 struct type *type, *target_type;
14326 struct attribute *attr;
14327
14328 target_type = die_type (die, cu);
14329
14330 /* The die_type call above may have already set the type for this DIE. */
14331 type = get_die_type (die, cu);
14332 if (type)
14333 return type;
14334
14335 type = lookup_reference_type (target_type);
14336 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14337 if (attr)
14338 {
14339 TYPE_LENGTH (type) = DW_UNSND (attr);
14340 }
14341 else
14342 {
14343 TYPE_LENGTH (type) = cu_header->addr_size;
14344 }
14345 return set_die_type (die, type, cu);
14346 }
14347
14348 /* Add the given cv-qualifiers to the element type of the array. GCC
14349 outputs DWARF type qualifiers that apply to an array, not the
14350 element type. But GDB relies on the array element type to carry
14351 the cv-qualifiers. This mimics section 6.7.3 of the C99
14352 specification. */
14353
14354 static struct type *
14355 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14356 struct type *base_type, int cnst, int voltl)
14357 {
14358 struct type *el_type, *inner_array;
14359
14360 base_type = copy_type (base_type);
14361 inner_array = base_type;
14362
14363 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14364 {
14365 TYPE_TARGET_TYPE (inner_array) =
14366 copy_type (TYPE_TARGET_TYPE (inner_array));
14367 inner_array = TYPE_TARGET_TYPE (inner_array);
14368 }
14369
14370 el_type = TYPE_TARGET_TYPE (inner_array);
14371 cnst |= TYPE_CONST (el_type);
14372 voltl |= TYPE_VOLATILE (el_type);
14373 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14374
14375 return set_die_type (die, base_type, cu);
14376 }
14377
14378 static struct type *
14379 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14380 {
14381 struct type *base_type, *cv_type;
14382
14383 base_type = die_type (die, cu);
14384
14385 /* The die_type call above may have already set the type for this DIE. */
14386 cv_type = get_die_type (die, cu);
14387 if (cv_type)
14388 return cv_type;
14389
14390 /* In case the const qualifier is applied to an array type, the element type
14391 is so qualified, not the array type (section 6.7.3 of C99). */
14392 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14393 return add_array_cv_type (die, cu, base_type, 1, 0);
14394
14395 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14396 return set_die_type (die, cv_type, cu);
14397 }
14398
14399 static struct type *
14400 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14401 {
14402 struct type *base_type, *cv_type;
14403
14404 base_type = die_type (die, cu);
14405
14406 /* The die_type call above may have already set the type for this DIE. */
14407 cv_type = get_die_type (die, cu);
14408 if (cv_type)
14409 return cv_type;
14410
14411 /* In case the volatile qualifier is applied to an array type, the
14412 element type is so qualified, not the array type (section 6.7.3
14413 of C99). */
14414 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14415 return add_array_cv_type (die, cu, base_type, 0, 1);
14416
14417 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14418 return set_die_type (die, cv_type, cu);
14419 }
14420
14421 /* Handle DW_TAG_restrict_type. */
14422
14423 static struct type *
14424 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14425 {
14426 struct type *base_type, *cv_type;
14427
14428 base_type = die_type (die, cu);
14429
14430 /* The die_type call above may have already set the type for this DIE. */
14431 cv_type = get_die_type (die, cu);
14432 if (cv_type)
14433 return cv_type;
14434
14435 cv_type = make_restrict_type (base_type);
14436 return set_die_type (die, cv_type, cu);
14437 }
14438
14439 /* Handle DW_TAG_atomic_type. */
14440
14441 static struct type *
14442 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14443 {
14444 struct type *base_type, *cv_type;
14445
14446 base_type = die_type (die, cu);
14447
14448 /* The die_type call above may have already set the type for this DIE. */
14449 cv_type = get_die_type (die, cu);
14450 if (cv_type)
14451 return cv_type;
14452
14453 cv_type = make_atomic_type (base_type);
14454 return set_die_type (die, cv_type, cu);
14455 }
14456
14457 /* Extract all information from a DW_TAG_string_type DIE and add to
14458 the user defined type vector. It isn't really a user defined type,
14459 but it behaves like one, with other DIE's using an AT_user_def_type
14460 attribute to reference it. */
14461
14462 static struct type *
14463 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14464 {
14465 struct objfile *objfile = cu->objfile;
14466 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14467 struct type *type, *range_type, *index_type, *char_type;
14468 struct attribute *attr;
14469 unsigned int length;
14470
14471 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14472 if (attr)
14473 {
14474 length = DW_UNSND (attr);
14475 }
14476 else
14477 {
14478 /* Check for the DW_AT_byte_size attribute. */
14479 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14480 if (attr)
14481 {
14482 length = DW_UNSND (attr);
14483 }
14484 else
14485 {
14486 length = 1;
14487 }
14488 }
14489
14490 index_type = objfile_type (objfile)->builtin_int;
14491 range_type = create_static_range_type (NULL, index_type, 1, length);
14492 char_type = language_string_char_type (cu->language_defn, gdbarch);
14493 type = create_string_type (NULL, char_type, range_type);
14494
14495 return set_die_type (die, type, cu);
14496 }
14497
14498 /* Assuming that DIE corresponds to a function, returns nonzero
14499 if the function is prototyped. */
14500
14501 static int
14502 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14503 {
14504 struct attribute *attr;
14505
14506 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14507 if (attr && (DW_UNSND (attr) != 0))
14508 return 1;
14509
14510 /* The DWARF standard implies that the DW_AT_prototyped attribute
14511 is only meaninful for C, but the concept also extends to other
14512 languages that allow unprototyped functions (Eg: Objective C).
14513 For all other languages, assume that functions are always
14514 prototyped. */
14515 if (cu->language != language_c
14516 && cu->language != language_objc
14517 && cu->language != language_opencl)
14518 return 1;
14519
14520 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14521 prototyped and unprototyped functions; default to prototyped,
14522 since that is more common in modern code (and RealView warns
14523 about unprototyped functions). */
14524 if (producer_is_realview (cu->producer))
14525 return 1;
14526
14527 return 0;
14528 }
14529
14530 /* Handle DIES due to C code like:
14531
14532 struct foo
14533 {
14534 int (*funcp)(int a, long l);
14535 int b;
14536 };
14537
14538 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14539
14540 static struct type *
14541 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14542 {
14543 struct objfile *objfile = cu->objfile;
14544 struct type *type; /* Type that this function returns. */
14545 struct type *ftype; /* Function that returns above type. */
14546 struct attribute *attr;
14547
14548 type = die_type (die, cu);
14549
14550 /* The die_type call above may have already set the type for this DIE. */
14551 ftype = get_die_type (die, cu);
14552 if (ftype)
14553 return ftype;
14554
14555 ftype = lookup_function_type (type);
14556
14557 if (prototyped_function_p (die, cu))
14558 TYPE_PROTOTYPED (ftype) = 1;
14559
14560 /* Store the calling convention in the type if it's available in
14561 the subroutine die. Otherwise set the calling convention to
14562 the default value DW_CC_normal. */
14563 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14564 if (attr)
14565 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14566 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14567 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14568 else
14569 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14570
14571 /* Record whether the function returns normally to its caller or not
14572 if the DWARF producer set that information. */
14573 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14574 if (attr && (DW_UNSND (attr) != 0))
14575 TYPE_NO_RETURN (ftype) = 1;
14576
14577 /* We need to add the subroutine type to the die immediately so
14578 we don't infinitely recurse when dealing with parameters
14579 declared as the same subroutine type. */
14580 set_die_type (die, ftype, cu);
14581
14582 if (die->child != NULL)
14583 {
14584 struct type *void_type = objfile_type (objfile)->builtin_void;
14585 struct die_info *child_die;
14586 int nparams, iparams;
14587
14588 /* Count the number of parameters.
14589 FIXME: GDB currently ignores vararg functions, but knows about
14590 vararg member functions. */
14591 nparams = 0;
14592 child_die = die->child;
14593 while (child_die && child_die->tag)
14594 {
14595 if (child_die->tag == DW_TAG_formal_parameter)
14596 nparams++;
14597 else if (child_die->tag == DW_TAG_unspecified_parameters)
14598 TYPE_VARARGS (ftype) = 1;
14599 child_die = sibling_die (child_die);
14600 }
14601
14602 /* Allocate storage for parameters and fill them in. */
14603 TYPE_NFIELDS (ftype) = nparams;
14604 TYPE_FIELDS (ftype) = (struct field *)
14605 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14606
14607 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14608 even if we error out during the parameters reading below. */
14609 for (iparams = 0; iparams < nparams; iparams++)
14610 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14611
14612 iparams = 0;
14613 child_die = die->child;
14614 while (child_die && child_die->tag)
14615 {
14616 if (child_die->tag == DW_TAG_formal_parameter)
14617 {
14618 struct type *arg_type;
14619
14620 /* DWARF version 2 has no clean way to discern C++
14621 static and non-static member functions. G++ helps
14622 GDB by marking the first parameter for non-static
14623 member functions (which is the this pointer) as
14624 artificial. We pass this information to
14625 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14626
14627 DWARF version 3 added DW_AT_object_pointer, which GCC
14628 4.5 does not yet generate. */
14629 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14630 if (attr)
14631 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14632 else
14633 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14634 arg_type = die_type (child_die, cu);
14635
14636 /* RealView does not mark THIS as const, which the testsuite
14637 expects. GCC marks THIS as const in method definitions,
14638 but not in the class specifications (GCC PR 43053). */
14639 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14640 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14641 {
14642 int is_this = 0;
14643 struct dwarf2_cu *arg_cu = cu;
14644 const char *name = dwarf2_name (child_die, cu);
14645
14646 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14647 if (attr)
14648 {
14649 /* If the compiler emits this, use it. */
14650 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14651 is_this = 1;
14652 }
14653 else if (name && strcmp (name, "this") == 0)
14654 /* Function definitions will have the argument names. */
14655 is_this = 1;
14656 else if (name == NULL && iparams == 0)
14657 /* Declarations may not have the names, so like
14658 elsewhere in GDB, assume an artificial first
14659 argument is "this". */
14660 is_this = 1;
14661
14662 if (is_this)
14663 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14664 arg_type, 0);
14665 }
14666
14667 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14668 iparams++;
14669 }
14670 child_die = sibling_die (child_die);
14671 }
14672 }
14673
14674 return ftype;
14675 }
14676
14677 static struct type *
14678 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14679 {
14680 struct objfile *objfile = cu->objfile;
14681 const char *name = NULL;
14682 struct type *this_type, *target_type;
14683
14684 name = dwarf2_full_name (NULL, die, cu);
14685 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
14686 TYPE_TARGET_STUB (this_type) = 1;
14687 set_die_type (die, this_type, cu);
14688 target_type = die_type (die, cu);
14689 if (target_type != this_type)
14690 TYPE_TARGET_TYPE (this_type) = target_type;
14691 else
14692 {
14693 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14694 spec and cause infinite loops in GDB. */
14695 complaint (&symfile_complaints,
14696 _("Self-referential DW_TAG_typedef "
14697 "- DIE at 0x%x [in module %s]"),
14698 die->offset.sect_off, objfile_name (objfile));
14699 TYPE_TARGET_TYPE (this_type) = NULL;
14700 }
14701 return this_type;
14702 }
14703
14704 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
14705 (which may be different from NAME) to the architecture back-end to allow
14706 it to guess the correct format if necessary. */
14707
14708 static struct type *
14709 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
14710 const char *name_hint)
14711 {
14712 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14713 const struct floatformat **format;
14714 struct type *type;
14715
14716 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
14717 if (format)
14718 type = init_float_type (objfile, bits, name, format);
14719 else
14720 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
14721
14722 return type;
14723 }
14724
14725 /* Find a representation of a given base type and install
14726 it in the TYPE field of the die. */
14727
14728 static struct type *
14729 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14730 {
14731 struct objfile *objfile = cu->objfile;
14732 struct type *type;
14733 struct attribute *attr;
14734 int encoding = 0, bits = 0;
14735 const char *name;
14736
14737 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14738 if (attr)
14739 {
14740 encoding = DW_UNSND (attr);
14741 }
14742 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14743 if (attr)
14744 {
14745 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
14746 }
14747 name = dwarf2_name (die, cu);
14748 if (!name)
14749 {
14750 complaint (&symfile_complaints,
14751 _("DW_AT_name missing from DW_TAG_base_type"));
14752 }
14753
14754 switch (encoding)
14755 {
14756 case DW_ATE_address:
14757 /* Turn DW_ATE_address into a void * pointer. */
14758 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
14759 type = init_pointer_type (objfile, bits, name, type);
14760 break;
14761 case DW_ATE_boolean:
14762 type = init_boolean_type (objfile, bits, 1, name);
14763 break;
14764 case DW_ATE_complex_float:
14765 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
14766 type = init_complex_type (objfile, name, type);
14767 break;
14768 case DW_ATE_decimal_float:
14769 type = init_decfloat_type (objfile, bits, name);
14770 break;
14771 case DW_ATE_float:
14772 type = dwarf2_init_float_type (objfile, bits, name, name);
14773 break;
14774 case DW_ATE_signed:
14775 type = init_integer_type (objfile, bits, 0, name);
14776 break;
14777 case DW_ATE_unsigned:
14778 if (cu->language == language_fortran
14779 && name
14780 && startswith (name, "character("))
14781 type = init_character_type (objfile, bits, 1, name);
14782 else
14783 type = init_integer_type (objfile, bits, 1, name);
14784 break;
14785 case DW_ATE_signed_char:
14786 if (cu->language == language_ada || cu->language == language_m2
14787 || cu->language == language_pascal
14788 || cu->language == language_fortran)
14789 type = init_character_type (objfile, bits, 0, name);
14790 else
14791 type = init_integer_type (objfile, bits, 0, name);
14792 break;
14793 case DW_ATE_unsigned_char:
14794 if (cu->language == language_ada || cu->language == language_m2
14795 || cu->language == language_pascal
14796 || cu->language == language_fortran
14797 || cu->language == language_rust)
14798 type = init_character_type (objfile, bits, 1, name);
14799 else
14800 type = init_integer_type (objfile, bits, 1, name);
14801 break;
14802 case DW_ATE_UTF:
14803 /* We just treat this as an integer and then recognize the
14804 type by name elsewhere. */
14805 type = init_integer_type (objfile, bits, 0, name);
14806 break;
14807
14808 default:
14809 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14810 dwarf_type_encoding_name (encoding));
14811 type = init_type (objfile, TYPE_CODE_ERROR,
14812 bits / TARGET_CHAR_BIT, name);
14813 break;
14814 }
14815
14816 if (name && strcmp (name, "char") == 0)
14817 TYPE_NOSIGN (type) = 1;
14818
14819 return set_die_type (die, type, cu);
14820 }
14821
14822 /* Parse dwarf attribute if it's a block, reference or constant and put the
14823 resulting value of the attribute into struct bound_prop.
14824 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14825
14826 static int
14827 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14828 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14829 {
14830 struct dwarf2_property_baton *baton;
14831 struct obstack *obstack = &cu->objfile->objfile_obstack;
14832
14833 if (attr == NULL || prop == NULL)
14834 return 0;
14835
14836 if (attr_form_is_block (attr))
14837 {
14838 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14839 baton->referenced_type = NULL;
14840 baton->locexpr.per_cu = cu->per_cu;
14841 baton->locexpr.size = DW_BLOCK (attr)->size;
14842 baton->locexpr.data = DW_BLOCK (attr)->data;
14843 prop->data.baton = baton;
14844 prop->kind = PROP_LOCEXPR;
14845 gdb_assert (prop->data.baton != NULL);
14846 }
14847 else if (attr_form_is_ref (attr))
14848 {
14849 struct dwarf2_cu *target_cu = cu;
14850 struct die_info *target_die;
14851 struct attribute *target_attr;
14852
14853 target_die = follow_die_ref (die, attr, &target_cu);
14854 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14855 if (target_attr == NULL)
14856 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14857 target_cu);
14858 if (target_attr == NULL)
14859 return 0;
14860
14861 switch (target_attr->name)
14862 {
14863 case DW_AT_location:
14864 if (attr_form_is_section_offset (target_attr))
14865 {
14866 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14867 baton->referenced_type = die_type (target_die, target_cu);
14868 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14869 prop->data.baton = baton;
14870 prop->kind = PROP_LOCLIST;
14871 gdb_assert (prop->data.baton != NULL);
14872 }
14873 else if (attr_form_is_block (target_attr))
14874 {
14875 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14876 baton->referenced_type = die_type (target_die, target_cu);
14877 baton->locexpr.per_cu = cu->per_cu;
14878 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14879 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14880 prop->data.baton = baton;
14881 prop->kind = PROP_LOCEXPR;
14882 gdb_assert (prop->data.baton != NULL);
14883 }
14884 else
14885 {
14886 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14887 "dynamic property");
14888 return 0;
14889 }
14890 break;
14891 case DW_AT_data_member_location:
14892 {
14893 LONGEST offset;
14894
14895 if (!handle_data_member_location (target_die, target_cu,
14896 &offset))
14897 return 0;
14898
14899 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14900 baton->referenced_type = read_type_die (target_die->parent,
14901 target_cu);
14902 baton->offset_info.offset = offset;
14903 baton->offset_info.type = die_type (target_die, target_cu);
14904 prop->data.baton = baton;
14905 prop->kind = PROP_ADDR_OFFSET;
14906 break;
14907 }
14908 }
14909 }
14910 else if (attr_form_is_constant (attr))
14911 {
14912 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14913 prop->kind = PROP_CONST;
14914 }
14915 else
14916 {
14917 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14918 dwarf2_name (die, cu));
14919 return 0;
14920 }
14921
14922 return 1;
14923 }
14924
14925 /* Read the given DW_AT_subrange DIE. */
14926
14927 static struct type *
14928 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14929 {
14930 struct type *base_type, *orig_base_type;
14931 struct type *range_type;
14932 struct attribute *attr;
14933 struct dynamic_prop low, high;
14934 int low_default_is_valid;
14935 int high_bound_is_count = 0;
14936 const char *name;
14937 LONGEST negative_mask;
14938
14939 orig_base_type = die_type (die, cu);
14940 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14941 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14942 creating the range type, but we use the result of check_typedef
14943 when examining properties of the type. */
14944 base_type = check_typedef (orig_base_type);
14945
14946 /* The die_type call above may have already set the type for this DIE. */
14947 range_type = get_die_type (die, cu);
14948 if (range_type)
14949 return range_type;
14950
14951 low.kind = PROP_CONST;
14952 high.kind = PROP_CONST;
14953 high.data.const_val = 0;
14954
14955 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14956 omitting DW_AT_lower_bound. */
14957 switch (cu->language)
14958 {
14959 case language_c:
14960 case language_cplus:
14961 low.data.const_val = 0;
14962 low_default_is_valid = 1;
14963 break;
14964 case language_fortran:
14965 low.data.const_val = 1;
14966 low_default_is_valid = 1;
14967 break;
14968 case language_d:
14969 case language_objc:
14970 case language_rust:
14971 low.data.const_val = 0;
14972 low_default_is_valid = (cu->header.version >= 4);
14973 break;
14974 case language_ada:
14975 case language_m2:
14976 case language_pascal:
14977 low.data.const_val = 1;
14978 low_default_is_valid = (cu->header.version >= 4);
14979 break;
14980 default:
14981 low.data.const_val = 0;
14982 low_default_is_valid = 0;
14983 break;
14984 }
14985
14986 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14987 if (attr)
14988 attr_to_dynamic_prop (attr, die, cu, &low);
14989 else if (!low_default_is_valid)
14990 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14991 "- DIE at 0x%x [in module %s]"),
14992 die->offset.sect_off, objfile_name (cu->objfile));
14993
14994 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14995 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14996 {
14997 attr = dwarf2_attr (die, DW_AT_count, cu);
14998 if (attr_to_dynamic_prop (attr, die, cu, &high))
14999 {
15000 /* If bounds are constant do the final calculation here. */
15001 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15002 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15003 else
15004 high_bound_is_count = 1;
15005 }
15006 }
15007
15008 /* Dwarf-2 specifications explicitly allows to create subrange types
15009 without specifying a base type.
15010 In that case, the base type must be set to the type of
15011 the lower bound, upper bound or count, in that order, if any of these
15012 three attributes references an object that has a type.
15013 If no base type is found, the Dwarf-2 specifications say that
15014 a signed integer type of size equal to the size of an address should
15015 be used.
15016 For the following C code: `extern char gdb_int [];'
15017 GCC produces an empty range DIE.
15018 FIXME: muller/2010-05-28: Possible references to object for low bound,
15019 high bound or count are not yet handled by this code. */
15020 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15021 {
15022 struct objfile *objfile = cu->objfile;
15023 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15024 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15025 struct type *int_type = objfile_type (objfile)->builtin_int;
15026
15027 /* Test "int", "long int", and "long long int" objfile types,
15028 and select the first one having a size above or equal to the
15029 architecture address size. */
15030 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15031 base_type = int_type;
15032 else
15033 {
15034 int_type = objfile_type (objfile)->builtin_long;
15035 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15036 base_type = int_type;
15037 else
15038 {
15039 int_type = objfile_type (objfile)->builtin_long_long;
15040 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15041 base_type = int_type;
15042 }
15043 }
15044 }
15045
15046 /* Normally, the DWARF producers are expected to use a signed
15047 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15048 But this is unfortunately not always the case, as witnessed
15049 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15050 is used instead. To work around that ambiguity, we treat
15051 the bounds as signed, and thus sign-extend their values, when
15052 the base type is signed. */
15053 negative_mask =
15054 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15055 if (low.kind == PROP_CONST
15056 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15057 low.data.const_val |= negative_mask;
15058 if (high.kind == PROP_CONST
15059 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15060 high.data.const_val |= negative_mask;
15061
15062 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15063
15064 if (high_bound_is_count)
15065 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15066
15067 /* Ada expects an empty array on no boundary attributes. */
15068 if (attr == NULL && cu->language != language_ada)
15069 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15070
15071 name = dwarf2_name (die, cu);
15072 if (name)
15073 TYPE_NAME (range_type) = name;
15074
15075 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15076 if (attr)
15077 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15078
15079 set_die_type (die, range_type, cu);
15080
15081 /* set_die_type should be already done. */
15082 set_descriptive_type (range_type, die, cu);
15083
15084 return range_type;
15085 }
15086
15087 static struct type *
15088 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15089 {
15090 struct type *type;
15091
15092 /* For now, we only support the C meaning of an unspecified type: void. */
15093
15094 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15095 TYPE_NAME (type) = dwarf2_name (die, cu);
15096
15097 return set_die_type (die, type, cu);
15098 }
15099
15100 /* Read a single die and all its descendents. Set the die's sibling
15101 field to NULL; set other fields in the die correctly, and set all
15102 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15103 location of the info_ptr after reading all of those dies. PARENT
15104 is the parent of the die in question. */
15105
15106 static struct die_info *
15107 read_die_and_children (const struct die_reader_specs *reader,
15108 const gdb_byte *info_ptr,
15109 const gdb_byte **new_info_ptr,
15110 struct die_info *parent)
15111 {
15112 struct die_info *die;
15113 const gdb_byte *cur_ptr;
15114 int has_children;
15115
15116 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15117 if (die == NULL)
15118 {
15119 *new_info_ptr = cur_ptr;
15120 return NULL;
15121 }
15122 store_in_ref_table (die, reader->cu);
15123
15124 if (has_children)
15125 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15126 else
15127 {
15128 die->child = NULL;
15129 *new_info_ptr = cur_ptr;
15130 }
15131
15132 die->sibling = NULL;
15133 die->parent = parent;
15134 return die;
15135 }
15136
15137 /* Read a die, all of its descendents, and all of its siblings; set
15138 all of the fields of all of the dies correctly. Arguments are as
15139 in read_die_and_children. */
15140
15141 static struct die_info *
15142 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15143 const gdb_byte *info_ptr,
15144 const gdb_byte **new_info_ptr,
15145 struct die_info *parent)
15146 {
15147 struct die_info *first_die, *last_sibling;
15148 const gdb_byte *cur_ptr;
15149
15150 cur_ptr = info_ptr;
15151 first_die = last_sibling = NULL;
15152
15153 while (1)
15154 {
15155 struct die_info *die
15156 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15157
15158 if (die == NULL)
15159 {
15160 *new_info_ptr = cur_ptr;
15161 return first_die;
15162 }
15163
15164 if (!first_die)
15165 first_die = die;
15166 else
15167 last_sibling->sibling = die;
15168
15169 last_sibling = die;
15170 }
15171 }
15172
15173 /* Read a die, all of its descendents, and all of its siblings; set
15174 all of the fields of all of the dies correctly. Arguments are as
15175 in read_die_and_children.
15176 This the main entry point for reading a DIE and all its children. */
15177
15178 static struct die_info *
15179 read_die_and_siblings (const struct die_reader_specs *reader,
15180 const gdb_byte *info_ptr,
15181 const gdb_byte **new_info_ptr,
15182 struct die_info *parent)
15183 {
15184 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15185 new_info_ptr, parent);
15186
15187 if (dwarf_die_debug)
15188 {
15189 fprintf_unfiltered (gdb_stdlog,
15190 "Read die from %s@0x%x of %s:\n",
15191 get_section_name (reader->die_section),
15192 (unsigned) (info_ptr - reader->die_section->buffer),
15193 bfd_get_filename (reader->abfd));
15194 dump_die (die, dwarf_die_debug);
15195 }
15196
15197 return die;
15198 }
15199
15200 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15201 attributes.
15202 The caller is responsible for filling in the extra attributes
15203 and updating (*DIEP)->num_attrs.
15204 Set DIEP to point to a newly allocated die with its information,
15205 except for its child, sibling, and parent fields.
15206 Set HAS_CHILDREN to tell whether the die has children or not. */
15207
15208 static const gdb_byte *
15209 read_full_die_1 (const struct die_reader_specs *reader,
15210 struct die_info **diep, const gdb_byte *info_ptr,
15211 int *has_children, int num_extra_attrs)
15212 {
15213 unsigned int abbrev_number, bytes_read, i;
15214 sect_offset offset;
15215 struct abbrev_info *abbrev;
15216 struct die_info *die;
15217 struct dwarf2_cu *cu = reader->cu;
15218 bfd *abfd = reader->abfd;
15219
15220 offset.sect_off = info_ptr - reader->buffer;
15221 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15222 info_ptr += bytes_read;
15223 if (!abbrev_number)
15224 {
15225 *diep = NULL;
15226 *has_children = 0;
15227 return info_ptr;
15228 }
15229
15230 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15231 if (!abbrev)
15232 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15233 abbrev_number,
15234 bfd_get_filename (abfd));
15235
15236 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15237 die->offset = offset;
15238 die->tag = abbrev->tag;
15239 die->abbrev = abbrev_number;
15240
15241 /* Make the result usable.
15242 The caller needs to update num_attrs after adding the extra
15243 attributes. */
15244 die->num_attrs = abbrev->num_attrs;
15245
15246 for (i = 0; i < abbrev->num_attrs; ++i)
15247 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15248 info_ptr);
15249
15250 *diep = die;
15251 *has_children = abbrev->has_children;
15252 return info_ptr;
15253 }
15254
15255 /* Read a die and all its attributes.
15256 Set DIEP to point to a newly allocated die with its information,
15257 except for its child, sibling, and parent fields.
15258 Set HAS_CHILDREN to tell whether the die has children or not. */
15259
15260 static const gdb_byte *
15261 read_full_die (const struct die_reader_specs *reader,
15262 struct die_info **diep, const gdb_byte *info_ptr,
15263 int *has_children)
15264 {
15265 const gdb_byte *result;
15266
15267 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15268
15269 if (dwarf_die_debug)
15270 {
15271 fprintf_unfiltered (gdb_stdlog,
15272 "Read die from %s@0x%x of %s:\n",
15273 get_section_name (reader->die_section),
15274 (unsigned) (info_ptr - reader->die_section->buffer),
15275 bfd_get_filename (reader->abfd));
15276 dump_die (*diep, dwarf_die_debug);
15277 }
15278
15279 return result;
15280 }
15281 \f
15282 /* Abbreviation tables.
15283
15284 In DWARF version 2, the description of the debugging information is
15285 stored in a separate .debug_abbrev section. Before we read any
15286 dies from a section we read in all abbreviations and install them
15287 in a hash table. */
15288
15289 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15290
15291 static struct abbrev_info *
15292 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15293 {
15294 struct abbrev_info *abbrev;
15295
15296 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15297 memset (abbrev, 0, sizeof (struct abbrev_info));
15298
15299 return abbrev;
15300 }
15301
15302 /* Add an abbreviation to the table. */
15303
15304 static void
15305 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15306 unsigned int abbrev_number,
15307 struct abbrev_info *abbrev)
15308 {
15309 unsigned int hash_number;
15310
15311 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15312 abbrev->next = abbrev_table->abbrevs[hash_number];
15313 abbrev_table->abbrevs[hash_number] = abbrev;
15314 }
15315
15316 /* Look up an abbrev in the table.
15317 Returns NULL if the abbrev is not found. */
15318
15319 static struct abbrev_info *
15320 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15321 unsigned int abbrev_number)
15322 {
15323 unsigned int hash_number;
15324 struct abbrev_info *abbrev;
15325
15326 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15327 abbrev = abbrev_table->abbrevs[hash_number];
15328
15329 while (abbrev)
15330 {
15331 if (abbrev->number == abbrev_number)
15332 return abbrev;
15333 abbrev = abbrev->next;
15334 }
15335 return NULL;
15336 }
15337
15338 /* Read in an abbrev table. */
15339
15340 static struct abbrev_table *
15341 abbrev_table_read_table (struct dwarf2_section_info *section,
15342 sect_offset offset)
15343 {
15344 struct objfile *objfile = dwarf2_per_objfile->objfile;
15345 bfd *abfd = get_section_bfd_owner (section);
15346 struct abbrev_table *abbrev_table;
15347 const gdb_byte *abbrev_ptr;
15348 struct abbrev_info *cur_abbrev;
15349 unsigned int abbrev_number, bytes_read, abbrev_name;
15350 unsigned int abbrev_form;
15351 struct attr_abbrev *cur_attrs;
15352 unsigned int allocated_attrs;
15353
15354 abbrev_table = XNEW (struct abbrev_table);
15355 abbrev_table->offset = offset;
15356 obstack_init (&abbrev_table->abbrev_obstack);
15357 abbrev_table->abbrevs =
15358 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15359 ABBREV_HASH_SIZE);
15360 memset (abbrev_table->abbrevs, 0,
15361 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15362
15363 dwarf2_read_section (objfile, section);
15364 abbrev_ptr = section->buffer + offset.sect_off;
15365 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15366 abbrev_ptr += bytes_read;
15367
15368 allocated_attrs = ATTR_ALLOC_CHUNK;
15369 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15370
15371 /* Loop until we reach an abbrev number of 0. */
15372 while (abbrev_number)
15373 {
15374 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15375
15376 /* read in abbrev header */
15377 cur_abbrev->number = abbrev_number;
15378 cur_abbrev->tag
15379 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15380 abbrev_ptr += bytes_read;
15381 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15382 abbrev_ptr += 1;
15383
15384 /* now read in declarations */
15385 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15386 abbrev_ptr += bytes_read;
15387 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15388 abbrev_ptr += bytes_read;
15389 while (abbrev_name)
15390 {
15391 if (cur_abbrev->num_attrs == allocated_attrs)
15392 {
15393 allocated_attrs += ATTR_ALLOC_CHUNK;
15394 cur_attrs
15395 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15396 }
15397
15398 cur_attrs[cur_abbrev->num_attrs].name
15399 = (enum dwarf_attribute) abbrev_name;
15400 cur_attrs[cur_abbrev->num_attrs++].form
15401 = (enum dwarf_form) abbrev_form;
15402 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15403 abbrev_ptr += bytes_read;
15404 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15405 abbrev_ptr += bytes_read;
15406 }
15407
15408 cur_abbrev->attrs =
15409 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15410 cur_abbrev->num_attrs);
15411 memcpy (cur_abbrev->attrs, cur_attrs,
15412 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15413
15414 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15415
15416 /* Get next abbreviation.
15417 Under Irix6 the abbreviations for a compilation unit are not
15418 always properly terminated with an abbrev number of 0.
15419 Exit loop if we encounter an abbreviation which we have
15420 already read (which means we are about to read the abbreviations
15421 for the next compile unit) or if the end of the abbreviation
15422 table is reached. */
15423 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15424 break;
15425 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15426 abbrev_ptr += bytes_read;
15427 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15428 break;
15429 }
15430
15431 xfree (cur_attrs);
15432 return abbrev_table;
15433 }
15434
15435 /* Free the resources held by ABBREV_TABLE. */
15436
15437 static void
15438 abbrev_table_free (struct abbrev_table *abbrev_table)
15439 {
15440 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15441 xfree (abbrev_table);
15442 }
15443
15444 /* Same as abbrev_table_free but as a cleanup.
15445 We pass in a pointer to the pointer to the table so that we can
15446 set the pointer to NULL when we're done. It also simplifies
15447 build_type_psymtabs_1. */
15448
15449 static void
15450 abbrev_table_free_cleanup (void *table_ptr)
15451 {
15452 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15453
15454 if (*abbrev_table_ptr != NULL)
15455 abbrev_table_free (*abbrev_table_ptr);
15456 *abbrev_table_ptr = NULL;
15457 }
15458
15459 /* Read the abbrev table for CU from ABBREV_SECTION. */
15460
15461 static void
15462 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15463 struct dwarf2_section_info *abbrev_section)
15464 {
15465 cu->abbrev_table =
15466 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15467 }
15468
15469 /* Release the memory used by the abbrev table for a compilation unit. */
15470
15471 static void
15472 dwarf2_free_abbrev_table (void *ptr_to_cu)
15473 {
15474 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15475
15476 if (cu->abbrev_table != NULL)
15477 abbrev_table_free (cu->abbrev_table);
15478 /* Set this to NULL so that we SEGV if we try to read it later,
15479 and also because free_comp_unit verifies this is NULL. */
15480 cu->abbrev_table = NULL;
15481 }
15482 \f
15483 /* Returns nonzero if TAG represents a type that we might generate a partial
15484 symbol for. */
15485
15486 static int
15487 is_type_tag_for_partial (int tag)
15488 {
15489 switch (tag)
15490 {
15491 #if 0
15492 /* Some types that would be reasonable to generate partial symbols for,
15493 that we don't at present. */
15494 case DW_TAG_array_type:
15495 case DW_TAG_file_type:
15496 case DW_TAG_ptr_to_member_type:
15497 case DW_TAG_set_type:
15498 case DW_TAG_string_type:
15499 case DW_TAG_subroutine_type:
15500 #endif
15501 case DW_TAG_base_type:
15502 case DW_TAG_class_type:
15503 case DW_TAG_interface_type:
15504 case DW_TAG_enumeration_type:
15505 case DW_TAG_structure_type:
15506 case DW_TAG_subrange_type:
15507 case DW_TAG_typedef:
15508 case DW_TAG_union_type:
15509 return 1;
15510 default:
15511 return 0;
15512 }
15513 }
15514
15515 /* Load all DIEs that are interesting for partial symbols into memory. */
15516
15517 static struct partial_die_info *
15518 load_partial_dies (const struct die_reader_specs *reader,
15519 const gdb_byte *info_ptr, int building_psymtab)
15520 {
15521 struct dwarf2_cu *cu = reader->cu;
15522 struct objfile *objfile = cu->objfile;
15523 struct partial_die_info *part_die;
15524 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15525 struct abbrev_info *abbrev;
15526 unsigned int bytes_read;
15527 unsigned int load_all = 0;
15528 int nesting_level = 1;
15529
15530 parent_die = NULL;
15531 last_die = NULL;
15532
15533 gdb_assert (cu->per_cu != NULL);
15534 if (cu->per_cu->load_all_dies)
15535 load_all = 1;
15536
15537 cu->partial_dies
15538 = htab_create_alloc_ex (cu->header.length / 12,
15539 partial_die_hash,
15540 partial_die_eq,
15541 NULL,
15542 &cu->comp_unit_obstack,
15543 hashtab_obstack_allocate,
15544 dummy_obstack_deallocate);
15545
15546 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15547
15548 while (1)
15549 {
15550 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15551
15552 /* A NULL abbrev means the end of a series of children. */
15553 if (abbrev == NULL)
15554 {
15555 if (--nesting_level == 0)
15556 {
15557 /* PART_DIE was probably the last thing allocated on the
15558 comp_unit_obstack, so we could call obstack_free
15559 here. We don't do that because the waste is small,
15560 and will be cleaned up when we're done with this
15561 compilation unit. This way, we're also more robust
15562 against other users of the comp_unit_obstack. */
15563 return first_die;
15564 }
15565 info_ptr += bytes_read;
15566 last_die = parent_die;
15567 parent_die = parent_die->die_parent;
15568 continue;
15569 }
15570
15571 /* Check for template arguments. We never save these; if
15572 they're seen, we just mark the parent, and go on our way. */
15573 if (parent_die != NULL
15574 && cu->language == language_cplus
15575 && (abbrev->tag == DW_TAG_template_type_param
15576 || abbrev->tag == DW_TAG_template_value_param))
15577 {
15578 parent_die->has_template_arguments = 1;
15579
15580 if (!load_all)
15581 {
15582 /* We don't need a partial DIE for the template argument. */
15583 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15584 continue;
15585 }
15586 }
15587
15588 /* We only recurse into c++ subprograms looking for template arguments.
15589 Skip their other children. */
15590 if (!load_all
15591 && cu->language == language_cplus
15592 && parent_die != NULL
15593 && parent_die->tag == DW_TAG_subprogram)
15594 {
15595 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15596 continue;
15597 }
15598
15599 /* Check whether this DIE is interesting enough to save. Normally
15600 we would not be interested in members here, but there may be
15601 later variables referencing them via DW_AT_specification (for
15602 static members). */
15603 if (!load_all
15604 && !is_type_tag_for_partial (abbrev->tag)
15605 && abbrev->tag != DW_TAG_constant
15606 && abbrev->tag != DW_TAG_enumerator
15607 && abbrev->tag != DW_TAG_subprogram
15608 && abbrev->tag != DW_TAG_lexical_block
15609 && abbrev->tag != DW_TAG_variable
15610 && abbrev->tag != DW_TAG_namespace
15611 && abbrev->tag != DW_TAG_module
15612 && abbrev->tag != DW_TAG_member
15613 && abbrev->tag != DW_TAG_imported_unit
15614 && abbrev->tag != DW_TAG_imported_declaration)
15615 {
15616 /* Otherwise we skip to the next sibling, if any. */
15617 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15618 continue;
15619 }
15620
15621 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15622 info_ptr);
15623
15624 /* This two-pass algorithm for processing partial symbols has a
15625 high cost in cache pressure. Thus, handle some simple cases
15626 here which cover the majority of C partial symbols. DIEs
15627 which neither have specification tags in them, nor could have
15628 specification tags elsewhere pointing at them, can simply be
15629 processed and discarded.
15630
15631 This segment is also optional; scan_partial_symbols and
15632 add_partial_symbol will handle these DIEs if we chain
15633 them in normally. When compilers which do not emit large
15634 quantities of duplicate debug information are more common,
15635 this code can probably be removed. */
15636
15637 /* Any complete simple types at the top level (pretty much all
15638 of them, for a language without namespaces), can be processed
15639 directly. */
15640 if (parent_die == NULL
15641 && part_die->has_specification == 0
15642 && part_die->is_declaration == 0
15643 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15644 || part_die->tag == DW_TAG_base_type
15645 || part_die->tag == DW_TAG_subrange_type))
15646 {
15647 if (building_psymtab && part_die->name != NULL)
15648 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15649 VAR_DOMAIN, LOC_TYPEDEF,
15650 &objfile->static_psymbols,
15651 0, cu->language, objfile);
15652 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15653 continue;
15654 }
15655
15656 /* The exception for DW_TAG_typedef with has_children above is
15657 a workaround of GCC PR debug/47510. In the case of this complaint
15658 type_name_no_tag_or_error will error on such types later.
15659
15660 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15661 it could not find the child DIEs referenced later, this is checked
15662 above. In correct DWARF DW_TAG_typedef should have no children. */
15663
15664 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15665 complaint (&symfile_complaints,
15666 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15667 "- DIE at 0x%x [in module %s]"),
15668 part_die->offset.sect_off, objfile_name (objfile));
15669
15670 /* If we're at the second level, and we're an enumerator, and
15671 our parent has no specification (meaning possibly lives in a
15672 namespace elsewhere), then we can add the partial symbol now
15673 instead of queueing it. */
15674 if (part_die->tag == DW_TAG_enumerator
15675 && parent_die != NULL
15676 && parent_die->die_parent == NULL
15677 && parent_die->tag == DW_TAG_enumeration_type
15678 && parent_die->has_specification == 0)
15679 {
15680 if (part_die->name == NULL)
15681 complaint (&symfile_complaints,
15682 _("malformed enumerator DIE ignored"));
15683 else if (building_psymtab)
15684 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15685 VAR_DOMAIN, LOC_CONST,
15686 cu->language == language_cplus
15687 ? &objfile->global_psymbols
15688 : &objfile->static_psymbols,
15689 0, cu->language, objfile);
15690
15691 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15692 continue;
15693 }
15694
15695 /* We'll save this DIE so link it in. */
15696 part_die->die_parent = parent_die;
15697 part_die->die_sibling = NULL;
15698 part_die->die_child = NULL;
15699
15700 if (last_die && last_die == parent_die)
15701 last_die->die_child = part_die;
15702 else if (last_die)
15703 last_die->die_sibling = part_die;
15704
15705 last_die = part_die;
15706
15707 if (first_die == NULL)
15708 first_die = part_die;
15709
15710 /* Maybe add the DIE to the hash table. Not all DIEs that we
15711 find interesting need to be in the hash table, because we
15712 also have the parent/sibling/child chains; only those that we
15713 might refer to by offset later during partial symbol reading.
15714
15715 For now this means things that might have be the target of a
15716 DW_AT_specification, DW_AT_abstract_origin, or
15717 DW_AT_extension. DW_AT_extension will refer only to
15718 namespaces; DW_AT_abstract_origin refers to functions (and
15719 many things under the function DIE, but we do not recurse
15720 into function DIEs during partial symbol reading) and
15721 possibly variables as well; DW_AT_specification refers to
15722 declarations. Declarations ought to have the DW_AT_declaration
15723 flag. It happens that GCC forgets to put it in sometimes, but
15724 only for functions, not for types.
15725
15726 Adding more things than necessary to the hash table is harmless
15727 except for the performance cost. Adding too few will result in
15728 wasted time in find_partial_die, when we reread the compilation
15729 unit with load_all_dies set. */
15730
15731 if (load_all
15732 || abbrev->tag == DW_TAG_constant
15733 || abbrev->tag == DW_TAG_subprogram
15734 || abbrev->tag == DW_TAG_variable
15735 || abbrev->tag == DW_TAG_namespace
15736 || part_die->is_declaration)
15737 {
15738 void **slot;
15739
15740 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15741 part_die->offset.sect_off, INSERT);
15742 *slot = part_die;
15743 }
15744
15745 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15746
15747 /* For some DIEs we want to follow their children (if any). For C
15748 we have no reason to follow the children of structures; for other
15749 languages we have to, so that we can get at method physnames
15750 to infer fully qualified class names, for DW_AT_specification,
15751 and for C++ template arguments. For C++, we also look one level
15752 inside functions to find template arguments (if the name of the
15753 function does not already contain the template arguments).
15754
15755 For Ada, we need to scan the children of subprograms and lexical
15756 blocks as well because Ada allows the definition of nested
15757 entities that could be interesting for the debugger, such as
15758 nested subprograms for instance. */
15759 if (last_die->has_children
15760 && (load_all
15761 || last_die->tag == DW_TAG_namespace
15762 || last_die->tag == DW_TAG_module
15763 || last_die->tag == DW_TAG_enumeration_type
15764 || (cu->language == language_cplus
15765 && last_die->tag == DW_TAG_subprogram
15766 && (last_die->name == NULL
15767 || strchr (last_die->name, '<') == NULL))
15768 || (cu->language != language_c
15769 && (last_die->tag == DW_TAG_class_type
15770 || last_die->tag == DW_TAG_interface_type
15771 || last_die->tag == DW_TAG_structure_type
15772 || last_die->tag == DW_TAG_union_type))
15773 || (cu->language == language_ada
15774 && (last_die->tag == DW_TAG_subprogram
15775 || last_die->tag == DW_TAG_lexical_block))))
15776 {
15777 nesting_level++;
15778 parent_die = last_die;
15779 continue;
15780 }
15781
15782 /* Otherwise we skip to the next sibling, if any. */
15783 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15784
15785 /* Back to the top, do it again. */
15786 }
15787 }
15788
15789 /* Read a minimal amount of information into the minimal die structure. */
15790
15791 static const gdb_byte *
15792 read_partial_die (const struct die_reader_specs *reader,
15793 struct partial_die_info *part_die,
15794 struct abbrev_info *abbrev, unsigned int abbrev_len,
15795 const gdb_byte *info_ptr)
15796 {
15797 struct dwarf2_cu *cu = reader->cu;
15798 struct objfile *objfile = cu->objfile;
15799 const gdb_byte *buffer = reader->buffer;
15800 unsigned int i;
15801 struct attribute attr;
15802 int has_low_pc_attr = 0;
15803 int has_high_pc_attr = 0;
15804 int high_pc_relative = 0;
15805
15806 memset (part_die, 0, sizeof (struct partial_die_info));
15807
15808 part_die->offset.sect_off = info_ptr - buffer;
15809
15810 info_ptr += abbrev_len;
15811
15812 if (abbrev == NULL)
15813 return info_ptr;
15814
15815 part_die->tag = abbrev->tag;
15816 part_die->has_children = abbrev->has_children;
15817
15818 for (i = 0; i < abbrev->num_attrs; ++i)
15819 {
15820 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15821
15822 /* Store the data if it is of an attribute we want to keep in a
15823 partial symbol table. */
15824 switch (attr.name)
15825 {
15826 case DW_AT_name:
15827 switch (part_die->tag)
15828 {
15829 case DW_TAG_compile_unit:
15830 case DW_TAG_partial_unit:
15831 case DW_TAG_type_unit:
15832 /* Compilation units have a DW_AT_name that is a filename, not
15833 a source language identifier. */
15834 case DW_TAG_enumeration_type:
15835 case DW_TAG_enumerator:
15836 /* These tags always have simple identifiers already; no need
15837 to canonicalize them. */
15838 part_die->name = DW_STRING (&attr);
15839 break;
15840 default:
15841 part_die->name
15842 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15843 &objfile->per_bfd->storage_obstack);
15844 break;
15845 }
15846 break;
15847 case DW_AT_linkage_name:
15848 case DW_AT_MIPS_linkage_name:
15849 /* Note that both forms of linkage name might appear. We
15850 assume they will be the same, and we only store the last
15851 one we see. */
15852 if (cu->language == language_ada)
15853 part_die->name = DW_STRING (&attr);
15854 part_die->linkage_name = DW_STRING (&attr);
15855 break;
15856 case DW_AT_low_pc:
15857 has_low_pc_attr = 1;
15858 part_die->lowpc = attr_value_as_address (&attr);
15859 break;
15860 case DW_AT_high_pc:
15861 has_high_pc_attr = 1;
15862 part_die->highpc = attr_value_as_address (&attr);
15863 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15864 high_pc_relative = 1;
15865 break;
15866 case DW_AT_location:
15867 /* Support the .debug_loc offsets. */
15868 if (attr_form_is_block (&attr))
15869 {
15870 part_die->d.locdesc = DW_BLOCK (&attr);
15871 }
15872 else if (attr_form_is_section_offset (&attr))
15873 {
15874 dwarf2_complex_location_expr_complaint ();
15875 }
15876 else
15877 {
15878 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15879 "partial symbol information");
15880 }
15881 break;
15882 case DW_AT_external:
15883 part_die->is_external = DW_UNSND (&attr);
15884 break;
15885 case DW_AT_declaration:
15886 part_die->is_declaration = DW_UNSND (&attr);
15887 break;
15888 case DW_AT_type:
15889 part_die->has_type = 1;
15890 break;
15891 case DW_AT_abstract_origin:
15892 case DW_AT_specification:
15893 case DW_AT_extension:
15894 part_die->has_specification = 1;
15895 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15896 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15897 || cu->per_cu->is_dwz);
15898 break;
15899 case DW_AT_sibling:
15900 /* Ignore absolute siblings, they might point outside of
15901 the current compile unit. */
15902 if (attr.form == DW_FORM_ref_addr)
15903 complaint (&symfile_complaints,
15904 _("ignoring absolute DW_AT_sibling"));
15905 else
15906 {
15907 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15908 const gdb_byte *sibling_ptr = buffer + off;
15909
15910 if (sibling_ptr < info_ptr)
15911 complaint (&symfile_complaints,
15912 _("DW_AT_sibling points backwards"));
15913 else if (sibling_ptr > reader->buffer_end)
15914 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15915 else
15916 part_die->sibling = sibling_ptr;
15917 }
15918 break;
15919 case DW_AT_byte_size:
15920 part_die->has_byte_size = 1;
15921 break;
15922 case DW_AT_const_value:
15923 part_die->has_const_value = 1;
15924 break;
15925 case DW_AT_calling_convention:
15926 /* DWARF doesn't provide a way to identify a program's source-level
15927 entry point. DW_AT_calling_convention attributes are only meant
15928 to describe functions' calling conventions.
15929
15930 However, because it's a necessary piece of information in
15931 Fortran, and before DWARF 4 DW_CC_program was the only
15932 piece of debugging information whose definition refers to
15933 a 'main program' at all, several compilers marked Fortran
15934 main programs with DW_CC_program --- even when those
15935 functions use the standard calling conventions.
15936
15937 Although DWARF now specifies a way to provide this
15938 information, we support this practice for backward
15939 compatibility. */
15940 if (DW_UNSND (&attr) == DW_CC_program
15941 && cu->language == language_fortran)
15942 part_die->main_subprogram = 1;
15943 break;
15944 case DW_AT_inline:
15945 if (DW_UNSND (&attr) == DW_INL_inlined
15946 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15947 part_die->may_be_inlined = 1;
15948 break;
15949
15950 case DW_AT_import:
15951 if (part_die->tag == DW_TAG_imported_unit)
15952 {
15953 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15954 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15955 || cu->per_cu->is_dwz);
15956 }
15957 break;
15958
15959 case DW_AT_main_subprogram:
15960 part_die->main_subprogram = DW_UNSND (&attr);
15961 break;
15962
15963 default:
15964 break;
15965 }
15966 }
15967
15968 if (high_pc_relative)
15969 part_die->highpc += part_die->lowpc;
15970
15971 if (has_low_pc_attr && has_high_pc_attr)
15972 {
15973 /* When using the GNU linker, .gnu.linkonce. sections are used to
15974 eliminate duplicate copies of functions and vtables and such.
15975 The linker will arbitrarily choose one and discard the others.
15976 The AT_*_pc values for such functions refer to local labels in
15977 these sections. If the section from that file was discarded, the
15978 labels are not in the output, so the relocs get a value of 0.
15979 If this is a discarded function, mark the pc bounds as invalid,
15980 so that GDB will ignore it. */
15981 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15982 {
15983 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15984
15985 complaint (&symfile_complaints,
15986 _("DW_AT_low_pc %s is zero "
15987 "for DIE at 0x%x [in module %s]"),
15988 paddress (gdbarch, part_die->lowpc),
15989 part_die->offset.sect_off, objfile_name (objfile));
15990 }
15991 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15992 else if (part_die->lowpc >= part_die->highpc)
15993 {
15994 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15995
15996 complaint (&symfile_complaints,
15997 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15998 "for DIE at 0x%x [in module %s]"),
15999 paddress (gdbarch, part_die->lowpc),
16000 paddress (gdbarch, part_die->highpc),
16001 part_die->offset.sect_off, objfile_name (objfile));
16002 }
16003 else
16004 part_die->has_pc_info = 1;
16005 }
16006
16007 return info_ptr;
16008 }
16009
16010 /* Find a cached partial DIE at OFFSET in CU. */
16011
16012 static struct partial_die_info *
16013 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
16014 {
16015 struct partial_die_info *lookup_die = NULL;
16016 struct partial_die_info part_die;
16017
16018 part_die.offset = offset;
16019 lookup_die = ((struct partial_die_info *)
16020 htab_find_with_hash (cu->partial_dies, &part_die,
16021 offset.sect_off));
16022
16023 return lookup_die;
16024 }
16025
16026 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16027 except in the case of .debug_types DIEs which do not reference
16028 outside their CU (they do however referencing other types via
16029 DW_FORM_ref_sig8). */
16030
16031 static struct partial_die_info *
16032 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16033 {
16034 struct objfile *objfile = cu->objfile;
16035 struct dwarf2_per_cu_data *per_cu = NULL;
16036 struct partial_die_info *pd = NULL;
16037
16038 if (offset_in_dwz == cu->per_cu->is_dwz
16039 && offset_in_cu_p (&cu->header, offset))
16040 {
16041 pd = find_partial_die_in_comp_unit (offset, cu);
16042 if (pd != NULL)
16043 return pd;
16044 /* We missed recording what we needed.
16045 Load all dies and try again. */
16046 per_cu = cu->per_cu;
16047 }
16048 else
16049 {
16050 /* TUs don't reference other CUs/TUs (except via type signatures). */
16051 if (cu->per_cu->is_debug_types)
16052 {
16053 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16054 " external reference to offset 0x%lx [in module %s].\n"),
16055 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16056 bfd_get_filename (objfile->obfd));
16057 }
16058 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16059 objfile);
16060
16061 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16062 load_partial_comp_unit (per_cu);
16063
16064 per_cu->cu->last_used = 0;
16065 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16066 }
16067
16068 /* If we didn't find it, and not all dies have been loaded,
16069 load them all and try again. */
16070
16071 if (pd == NULL && per_cu->load_all_dies == 0)
16072 {
16073 per_cu->load_all_dies = 1;
16074
16075 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16076 THIS_CU->cu may already be in use. So we can't just free it and
16077 replace its DIEs with the ones we read in. Instead, we leave those
16078 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16079 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16080 set. */
16081 load_partial_comp_unit (per_cu);
16082
16083 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16084 }
16085
16086 if (pd == NULL)
16087 internal_error (__FILE__, __LINE__,
16088 _("could not find partial DIE 0x%x "
16089 "in cache [from module %s]\n"),
16090 offset.sect_off, bfd_get_filename (objfile->obfd));
16091 return pd;
16092 }
16093
16094 /* See if we can figure out if the class lives in a namespace. We do
16095 this by looking for a member function; its demangled name will
16096 contain namespace info, if there is any. */
16097
16098 static void
16099 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16100 struct dwarf2_cu *cu)
16101 {
16102 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16103 what template types look like, because the demangler
16104 frequently doesn't give the same name as the debug info. We
16105 could fix this by only using the demangled name to get the
16106 prefix (but see comment in read_structure_type). */
16107
16108 struct partial_die_info *real_pdi;
16109 struct partial_die_info *child_pdi;
16110
16111 /* If this DIE (this DIE's specification, if any) has a parent, then
16112 we should not do this. We'll prepend the parent's fully qualified
16113 name when we create the partial symbol. */
16114
16115 real_pdi = struct_pdi;
16116 while (real_pdi->has_specification)
16117 real_pdi = find_partial_die (real_pdi->spec_offset,
16118 real_pdi->spec_is_dwz, cu);
16119
16120 if (real_pdi->die_parent != NULL)
16121 return;
16122
16123 for (child_pdi = struct_pdi->die_child;
16124 child_pdi != NULL;
16125 child_pdi = child_pdi->die_sibling)
16126 {
16127 if (child_pdi->tag == DW_TAG_subprogram
16128 && child_pdi->linkage_name != NULL)
16129 {
16130 char *actual_class_name
16131 = language_class_name_from_physname (cu->language_defn,
16132 child_pdi->linkage_name);
16133 if (actual_class_name != NULL)
16134 {
16135 struct_pdi->name
16136 = ((const char *)
16137 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16138 actual_class_name,
16139 strlen (actual_class_name)));
16140 xfree (actual_class_name);
16141 }
16142 break;
16143 }
16144 }
16145 }
16146
16147 /* Adjust PART_DIE before generating a symbol for it. This function
16148 may set the is_external flag or change the DIE's name. */
16149
16150 static void
16151 fixup_partial_die (struct partial_die_info *part_die,
16152 struct dwarf2_cu *cu)
16153 {
16154 /* Once we've fixed up a die, there's no point in doing so again.
16155 This also avoids a memory leak if we were to call
16156 guess_partial_die_structure_name multiple times. */
16157 if (part_die->fixup_called)
16158 return;
16159
16160 /* If we found a reference attribute and the DIE has no name, try
16161 to find a name in the referred to DIE. */
16162
16163 if (part_die->name == NULL && part_die->has_specification)
16164 {
16165 struct partial_die_info *spec_die;
16166
16167 spec_die = find_partial_die (part_die->spec_offset,
16168 part_die->spec_is_dwz, cu);
16169
16170 fixup_partial_die (spec_die, cu);
16171
16172 if (spec_die->name)
16173 {
16174 part_die->name = spec_die->name;
16175
16176 /* Copy DW_AT_external attribute if it is set. */
16177 if (spec_die->is_external)
16178 part_die->is_external = spec_die->is_external;
16179 }
16180 }
16181
16182 /* Set default names for some unnamed DIEs. */
16183
16184 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16185 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16186
16187 /* If there is no parent die to provide a namespace, and there are
16188 children, see if we can determine the namespace from their linkage
16189 name. */
16190 if (cu->language == language_cplus
16191 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16192 && part_die->die_parent == NULL
16193 && part_die->has_children
16194 && (part_die->tag == DW_TAG_class_type
16195 || part_die->tag == DW_TAG_structure_type
16196 || part_die->tag == DW_TAG_union_type))
16197 guess_partial_die_structure_name (part_die, cu);
16198
16199 /* GCC might emit a nameless struct or union that has a linkage
16200 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16201 if (part_die->name == NULL
16202 && (part_die->tag == DW_TAG_class_type
16203 || part_die->tag == DW_TAG_interface_type
16204 || part_die->tag == DW_TAG_structure_type
16205 || part_die->tag == DW_TAG_union_type)
16206 && part_die->linkage_name != NULL)
16207 {
16208 char *demangled;
16209
16210 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16211 if (demangled)
16212 {
16213 const char *base;
16214
16215 /* Strip any leading namespaces/classes, keep only the base name.
16216 DW_AT_name for named DIEs does not contain the prefixes. */
16217 base = strrchr (demangled, ':');
16218 if (base && base > demangled && base[-1] == ':')
16219 base++;
16220 else
16221 base = demangled;
16222
16223 part_die->name
16224 = ((const char *)
16225 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16226 base, strlen (base)));
16227 xfree (demangled);
16228 }
16229 }
16230
16231 part_die->fixup_called = 1;
16232 }
16233
16234 /* Read an attribute value described by an attribute form. */
16235
16236 static const gdb_byte *
16237 read_attribute_value (const struct die_reader_specs *reader,
16238 struct attribute *attr, unsigned form,
16239 const gdb_byte *info_ptr)
16240 {
16241 struct dwarf2_cu *cu = reader->cu;
16242 struct objfile *objfile = cu->objfile;
16243 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16244 bfd *abfd = reader->abfd;
16245 struct comp_unit_head *cu_header = &cu->header;
16246 unsigned int bytes_read;
16247 struct dwarf_block *blk;
16248
16249 attr->form = (enum dwarf_form) form;
16250 switch (form)
16251 {
16252 case DW_FORM_ref_addr:
16253 if (cu->header.version == 2)
16254 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16255 else
16256 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16257 &cu->header, &bytes_read);
16258 info_ptr += bytes_read;
16259 break;
16260 case DW_FORM_GNU_ref_alt:
16261 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16262 info_ptr += bytes_read;
16263 break;
16264 case DW_FORM_addr:
16265 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16266 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16267 info_ptr += bytes_read;
16268 break;
16269 case DW_FORM_block2:
16270 blk = dwarf_alloc_block (cu);
16271 blk->size = read_2_bytes (abfd, info_ptr);
16272 info_ptr += 2;
16273 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16274 info_ptr += blk->size;
16275 DW_BLOCK (attr) = blk;
16276 break;
16277 case DW_FORM_block4:
16278 blk = dwarf_alloc_block (cu);
16279 blk->size = read_4_bytes (abfd, info_ptr);
16280 info_ptr += 4;
16281 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16282 info_ptr += blk->size;
16283 DW_BLOCK (attr) = blk;
16284 break;
16285 case DW_FORM_data2:
16286 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16287 info_ptr += 2;
16288 break;
16289 case DW_FORM_data4:
16290 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16291 info_ptr += 4;
16292 break;
16293 case DW_FORM_data8:
16294 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16295 info_ptr += 8;
16296 break;
16297 case DW_FORM_sec_offset:
16298 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16299 info_ptr += bytes_read;
16300 break;
16301 case DW_FORM_string:
16302 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16303 DW_STRING_IS_CANONICAL (attr) = 0;
16304 info_ptr += bytes_read;
16305 break;
16306 case DW_FORM_strp:
16307 if (!cu->per_cu->is_dwz)
16308 {
16309 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16310 &bytes_read);
16311 DW_STRING_IS_CANONICAL (attr) = 0;
16312 info_ptr += bytes_read;
16313 break;
16314 }
16315 /* FALLTHROUGH */
16316 case DW_FORM_GNU_strp_alt:
16317 {
16318 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16319 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16320 &bytes_read);
16321
16322 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16323 DW_STRING_IS_CANONICAL (attr) = 0;
16324 info_ptr += bytes_read;
16325 }
16326 break;
16327 case DW_FORM_exprloc:
16328 case DW_FORM_block:
16329 blk = dwarf_alloc_block (cu);
16330 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16331 info_ptr += bytes_read;
16332 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16333 info_ptr += blk->size;
16334 DW_BLOCK (attr) = blk;
16335 break;
16336 case DW_FORM_block1:
16337 blk = dwarf_alloc_block (cu);
16338 blk->size = read_1_byte (abfd, info_ptr);
16339 info_ptr += 1;
16340 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16341 info_ptr += blk->size;
16342 DW_BLOCK (attr) = blk;
16343 break;
16344 case DW_FORM_data1:
16345 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16346 info_ptr += 1;
16347 break;
16348 case DW_FORM_flag:
16349 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16350 info_ptr += 1;
16351 break;
16352 case DW_FORM_flag_present:
16353 DW_UNSND (attr) = 1;
16354 break;
16355 case DW_FORM_sdata:
16356 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16357 info_ptr += bytes_read;
16358 break;
16359 case DW_FORM_udata:
16360 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16361 info_ptr += bytes_read;
16362 break;
16363 case DW_FORM_ref1:
16364 DW_UNSND (attr) = (cu->header.offset.sect_off
16365 + read_1_byte (abfd, info_ptr));
16366 info_ptr += 1;
16367 break;
16368 case DW_FORM_ref2:
16369 DW_UNSND (attr) = (cu->header.offset.sect_off
16370 + read_2_bytes (abfd, info_ptr));
16371 info_ptr += 2;
16372 break;
16373 case DW_FORM_ref4:
16374 DW_UNSND (attr) = (cu->header.offset.sect_off
16375 + read_4_bytes (abfd, info_ptr));
16376 info_ptr += 4;
16377 break;
16378 case DW_FORM_ref8:
16379 DW_UNSND (attr) = (cu->header.offset.sect_off
16380 + read_8_bytes (abfd, info_ptr));
16381 info_ptr += 8;
16382 break;
16383 case DW_FORM_ref_sig8:
16384 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16385 info_ptr += 8;
16386 break;
16387 case DW_FORM_ref_udata:
16388 DW_UNSND (attr) = (cu->header.offset.sect_off
16389 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16390 info_ptr += bytes_read;
16391 break;
16392 case DW_FORM_indirect:
16393 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16394 info_ptr += bytes_read;
16395 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16396 break;
16397 case DW_FORM_GNU_addr_index:
16398 if (reader->dwo_file == NULL)
16399 {
16400 /* For now flag a hard error.
16401 Later we can turn this into a complaint. */
16402 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16403 dwarf_form_name (form),
16404 bfd_get_filename (abfd));
16405 }
16406 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16407 info_ptr += bytes_read;
16408 break;
16409 case DW_FORM_GNU_str_index:
16410 if (reader->dwo_file == NULL)
16411 {
16412 /* For now flag a hard error.
16413 Later we can turn this into a complaint if warranted. */
16414 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16415 dwarf_form_name (form),
16416 bfd_get_filename (abfd));
16417 }
16418 {
16419 ULONGEST str_index =
16420 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16421
16422 DW_STRING (attr) = read_str_index (reader, str_index);
16423 DW_STRING_IS_CANONICAL (attr) = 0;
16424 info_ptr += bytes_read;
16425 }
16426 break;
16427 default:
16428 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16429 dwarf_form_name (form),
16430 bfd_get_filename (abfd));
16431 }
16432
16433 /* Super hack. */
16434 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16435 attr->form = DW_FORM_GNU_ref_alt;
16436
16437 /* We have seen instances where the compiler tried to emit a byte
16438 size attribute of -1 which ended up being encoded as an unsigned
16439 0xffffffff. Although 0xffffffff is technically a valid size value,
16440 an object of this size seems pretty unlikely so we can relatively
16441 safely treat these cases as if the size attribute was invalid and
16442 treat them as zero by default. */
16443 if (attr->name == DW_AT_byte_size
16444 && form == DW_FORM_data4
16445 && DW_UNSND (attr) >= 0xffffffff)
16446 {
16447 complaint
16448 (&symfile_complaints,
16449 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16450 hex_string (DW_UNSND (attr)));
16451 DW_UNSND (attr) = 0;
16452 }
16453
16454 return info_ptr;
16455 }
16456
16457 /* Read an attribute described by an abbreviated attribute. */
16458
16459 static const gdb_byte *
16460 read_attribute (const struct die_reader_specs *reader,
16461 struct attribute *attr, struct attr_abbrev *abbrev,
16462 const gdb_byte *info_ptr)
16463 {
16464 attr->name = abbrev->name;
16465 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16466 }
16467
16468 /* Read dwarf information from a buffer. */
16469
16470 static unsigned int
16471 read_1_byte (bfd *abfd, const gdb_byte *buf)
16472 {
16473 return bfd_get_8 (abfd, buf);
16474 }
16475
16476 static int
16477 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16478 {
16479 return bfd_get_signed_8 (abfd, buf);
16480 }
16481
16482 static unsigned int
16483 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16484 {
16485 return bfd_get_16 (abfd, buf);
16486 }
16487
16488 static int
16489 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16490 {
16491 return bfd_get_signed_16 (abfd, buf);
16492 }
16493
16494 static unsigned int
16495 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16496 {
16497 return bfd_get_32 (abfd, buf);
16498 }
16499
16500 static int
16501 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16502 {
16503 return bfd_get_signed_32 (abfd, buf);
16504 }
16505
16506 static ULONGEST
16507 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16508 {
16509 return bfd_get_64 (abfd, buf);
16510 }
16511
16512 static CORE_ADDR
16513 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16514 unsigned int *bytes_read)
16515 {
16516 struct comp_unit_head *cu_header = &cu->header;
16517 CORE_ADDR retval = 0;
16518
16519 if (cu_header->signed_addr_p)
16520 {
16521 switch (cu_header->addr_size)
16522 {
16523 case 2:
16524 retval = bfd_get_signed_16 (abfd, buf);
16525 break;
16526 case 4:
16527 retval = bfd_get_signed_32 (abfd, buf);
16528 break;
16529 case 8:
16530 retval = bfd_get_signed_64 (abfd, buf);
16531 break;
16532 default:
16533 internal_error (__FILE__, __LINE__,
16534 _("read_address: bad switch, signed [in module %s]"),
16535 bfd_get_filename (abfd));
16536 }
16537 }
16538 else
16539 {
16540 switch (cu_header->addr_size)
16541 {
16542 case 2:
16543 retval = bfd_get_16 (abfd, buf);
16544 break;
16545 case 4:
16546 retval = bfd_get_32 (abfd, buf);
16547 break;
16548 case 8:
16549 retval = bfd_get_64 (abfd, buf);
16550 break;
16551 default:
16552 internal_error (__FILE__, __LINE__,
16553 _("read_address: bad switch, "
16554 "unsigned [in module %s]"),
16555 bfd_get_filename (abfd));
16556 }
16557 }
16558
16559 *bytes_read = cu_header->addr_size;
16560 return retval;
16561 }
16562
16563 /* Read the initial length from a section. The (draft) DWARF 3
16564 specification allows the initial length to take up either 4 bytes
16565 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16566 bytes describe the length and all offsets will be 8 bytes in length
16567 instead of 4.
16568
16569 An older, non-standard 64-bit format is also handled by this
16570 function. The older format in question stores the initial length
16571 as an 8-byte quantity without an escape value. Lengths greater
16572 than 2^32 aren't very common which means that the initial 4 bytes
16573 is almost always zero. Since a length value of zero doesn't make
16574 sense for the 32-bit format, this initial zero can be considered to
16575 be an escape value which indicates the presence of the older 64-bit
16576 format. As written, the code can't detect (old format) lengths
16577 greater than 4GB. If it becomes necessary to handle lengths
16578 somewhat larger than 4GB, we could allow other small values (such
16579 as the non-sensical values of 1, 2, and 3) to also be used as
16580 escape values indicating the presence of the old format.
16581
16582 The value returned via bytes_read should be used to increment the
16583 relevant pointer after calling read_initial_length().
16584
16585 [ Note: read_initial_length() and read_offset() are based on the
16586 document entitled "DWARF Debugging Information Format", revision
16587 3, draft 8, dated November 19, 2001. This document was obtained
16588 from:
16589
16590 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16591
16592 This document is only a draft and is subject to change. (So beware.)
16593
16594 Details regarding the older, non-standard 64-bit format were
16595 determined empirically by examining 64-bit ELF files produced by
16596 the SGI toolchain on an IRIX 6.5 machine.
16597
16598 - Kevin, July 16, 2002
16599 ] */
16600
16601 static LONGEST
16602 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16603 {
16604 LONGEST length = bfd_get_32 (abfd, buf);
16605
16606 if (length == 0xffffffff)
16607 {
16608 length = bfd_get_64 (abfd, buf + 4);
16609 *bytes_read = 12;
16610 }
16611 else if (length == 0)
16612 {
16613 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16614 length = bfd_get_64 (abfd, buf);
16615 *bytes_read = 8;
16616 }
16617 else
16618 {
16619 *bytes_read = 4;
16620 }
16621
16622 return length;
16623 }
16624
16625 /* Cover function for read_initial_length.
16626 Returns the length of the object at BUF, and stores the size of the
16627 initial length in *BYTES_READ and stores the size that offsets will be in
16628 *OFFSET_SIZE.
16629 If the initial length size is not equivalent to that specified in
16630 CU_HEADER then issue a complaint.
16631 This is useful when reading non-comp-unit headers. */
16632
16633 static LONGEST
16634 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16635 const struct comp_unit_head *cu_header,
16636 unsigned int *bytes_read,
16637 unsigned int *offset_size)
16638 {
16639 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16640
16641 gdb_assert (cu_header->initial_length_size == 4
16642 || cu_header->initial_length_size == 8
16643 || cu_header->initial_length_size == 12);
16644
16645 if (cu_header->initial_length_size != *bytes_read)
16646 complaint (&symfile_complaints,
16647 _("intermixed 32-bit and 64-bit DWARF sections"));
16648
16649 *offset_size = (*bytes_read == 4) ? 4 : 8;
16650 return length;
16651 }
16652
16653 /* Read an offset from the data stream. The size of the offset is
16654 given by cu_header->offset_size. */
16655
16656 static LONGEST
16657 read_offset (bfd *abfd, const gdb_byte *buf,
16658 const struct comp_unit_head *cu_header,
16659 unsigned int *bytes_read)
16660 {
16661 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16662
16663 *bytes_read = cu_header->offset_size;
16664 return offset;
16665 }
16666
16667 /* Read an offset from the data stream. */
16668
16669 static LONGEST
16670 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16671 {
16672 LONGEST retval = 0;
16673
16674 switch (offset_size)
16675 {
16676 case 4:
16677 retval = bfd_get_32 (abfd, buf);
16678 break;
16679 case 8:
16680 retval = bfd_get_64 (abfd, buf);
16681 break;
16682 default:
16683 internal_error (__FILE__, __LINE__,
16684 _("read_offset_1: bad switch [in module %s]"),
16685 bfd_get_filename (abfd));
16686 }
16687
16688 return retval;
16689 }
16690
16691 static const gdb_byte *
16692 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16693 {
16694 /* If the size of a host char is 8 bits, we can return a pointer
16695 to the buffer, otherwise we have to copy the data to a buffer
16696 allocated on the temporary obstack. */
16697 gdb_assert (HOST_CHAR_BIT == 8);
16698 return buf;
16699 }
16700
16701 static const char *
16702 read_direct_string (bfd *abfd, const gdb_byte *buf,
16703 unsigned int *bytes_read_ptr)
16704 {
16705 /* If the size of a host char is 8 bits, we can return a pointer
16706 to the string, otherwise we have to copy the string to a buffer
16707 allocated on the temporary obstack. */
16708 gdb_assert (HOST_CHAR_BIT == 8);
16709 if (*buf == '\0')
16710 {
16711 *bytes_read_ptr = 1;
16712 return NULL;
16713 }
16714 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16715 return (const char *) buf;
16716 }
16717
16718 static const char *
16719 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16720 {
16721 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16722 if (dwarf2_per_objfile->str.buffer == NULL)
16723 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16724 bfd_get_filename (abfd));
16725 if (str_offset >= dwarf2_per_objfile->str.size)
16726 error (_("DW_FORM_strp pointing outside of "
16727 ".debug_str section [in module %s]"),
16728 bfd_get_filename (abfd));
16729 gdb_assert (HOST_CHAR_BIT == 8);
16730 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16731 return NULL;
16732 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16733 }
16734
16735 /* Read a string at offset STR_OFFSET in the .debug_str section from
16736 the .dwz file DWZ. Throw an error if the offset is too large. If
16737 the string consists of a single NUL byte, return NULL; otherwise
16738 return a pointer to the string. */
16739
16740 static const char *
16741 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16742 {
16743 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16744
16745 if (dwz->str.buffer == NULL)
16746 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16747 "section [in module %s]"),
16748 bfd_get_filename (dwz->dwz_bfd));
16749 if (str_offset >= dwz->str.size)
16750 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16751 ".debug_str section [in module %s]"),
16752 bfd_get_filename (dwz->dwz_bfd));
16753 gdb_assert (HOST_CHAR_BIT == 8);
16754 if (dwz->str.buffer[str_offset] == '\0')
16755 return NULL;
16756 return (const char *) (dwz->str.buffer + str_offset);
16757 }
16758
16759 static const char *
16760 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16761 const struct comp_unit_head *cu_header,
16762 unsigned int *bytes_read_ptr)
16763 {
16764 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16765
16766 return read_indirect_string_at_offset (abfd, str_offset);
16767 }
16768
16769 static ULONGEST
16770 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16771 unsigned int *bytes_read_ptr)
16772 {
16773 ULONGEST result;
16774 unsigned int num_read;
16775 int shift;
16776 unsigned char byte;
16777
16778 result = 0;
16779 shift = 0;
16780 num_read = 0;
16781 while (1)
16782 {
16783 byte = bfd_get_8 (abfd, buf);
16784 buf++;
16785 num_read++;
16786 result |= ((ULONGEST) (byte & 127) << shift);
16787 if ((byte & 128) == 0)
16788 {
16789 break;
16790 }
16791 shift += 7;
16792 }
16793 *bytes_read_ptr = num_read;
16794 return result;
16795 }
16796
16797 static LONGEST
16798 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16799 unsigned int *bytes_read_ptr)
16800 {
16801 LONGEST result;
16802 int shift, num_read;
16803 unsigned char byte;
16804
16805 result = 0;
16806 shift = 0;
16807 num_read = 0;
16808 while (1)
16809 {
16810 byte = bfd_get_8 (abfd, buf);
16811 buf++;
16812 num_read++;
16813 result |= ((LONGEST) (byte & 127) << shift);
16814 shift += 7;
16815 if ((byte & 128) == 0)
16816 {
16817 break;
16818 }
16819 }
16820 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16821 result |= -(((LONGEST) 1) << shift);
16822 *bytes_read_ptr = num_read;
16823 return result;
16824 }
16825
16826 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16827 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16828 ADDR_SIZE is the size of addresses from the CU header. */
16829
16830 static CORE_ADDR
16831 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16832 {
16833 struct objfile *objfile = dwarf2_per_objfile->objfile;
16834 bfd *abfd = objfile->obfd;
16835 const gdb_byte *info_ptr;
16836
16837 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16838 if (dwarf2_per_objfile->addr.buffer == NULL)
16839 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16840 objfile_name (objfile));
16841 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16842 error (_("DW_FORM_addr_index pointing outside of "
16843 ".debug_addr section [in module %s]"),
16844 objfile_name (objfile));
16845 info_ptr = (dwarf2_per_objfile->addr.buffer
16846 + addr_base + addr_index * addr_size);
16847 if (addr_size == 4)
16848 return bfd_get_32 (abfd, info_ptr);
16849 else
16850 return bfd_get_64 (abfd, info_ptr);
16851 }
16852
16853 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16854
16855 static CORE_ADDR
16856 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16857 {
16858 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16859 }
16860
16861 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16862
16863 static CORE_ADDR
16864 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16865 unsigned int *bytes_read)
16866 {
16867 bfd *abfd = cu->objfile->obfd;
16868 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16869
16870 return read_addr_index (cu, addr_index);
16871 }
16872
16873 /* Data structure to pass results from dwarf2_read_addr_index_reader
16874 back to dwarf2_read_addr_index. */
16875
16876 struct dwarf2_read_addr_index_data
16877 {
16878 ULONGEST addr_base;
16879 int addr_size;
16880 };
16881
16882 /* die_reader_func for dwarf2_read_addr_index. */
16883
16884 static void
16885 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16886 const gdb_byte *info_ptr,
16887 struct die_info *comp_unit_die,
16888 int has_children,
16889 void *data)
16890 {
16891 struct dwarf2_cu *cu = reader->cu;
16892 struct dwarf2_read_addr_index_data *aidata =
16893 (struct dwarf2_read_addr_index_data *) data;
16894
16895 aidata->addr_base = cu->addr_base;
16896 aidata->addr_size = cu->header.addr_size;
16897 }
16898
16899 /* Given an index in .debug_addr, fetch the value.
16900 NOTE: This can be called during dwarf expression evaluation,
16901 long after the debug information has been read, and thus per_cu->cu
16902 may no longer exist. */
16903
16904 CORE_ADDR
16905 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16906 unsigned int addr_index)
16907 {
16908 struct objfile *objfile = per_cu->objfile;
16909 struct dwarf2_cu *cu = per_cu->cu;
16910 ULONGEST addr_base;
16911 int addr_size;
16912
16913 /* This is intended to be called from outside this file. */
16914 dw2_setup (objfile);
16915
16916 /* We need addr_base and addr_size.
16917 If we don't have PER_CU->cu, we have to get it.
16918 Nasty, but the alternative is storing the needed info in PER_CU,
16919 which at this point doesn't seem justified: it's not clear how frequently
16920 it would get used and it would increase the size of every PER_CU.
16921 Entry points like dwarf2_per_cu_addr_size do a similar thing
16922 so we're not in uncharted territory here.
16923 Alas we need to be a bit more complicated as addr_base is contained
16924 in the DIE.
16925
16926 We don't need to read the entire CU(/TU).
16927 We just need the header and top level die.
16928
16929 IWBN to use the aging mechanism to let us lazily later discard the CU.
16930 For now we skip this optimization. */
16931
16932 if (cu != NULL)
16933 {
16934 addr_base = cu->addr_base;
16935 addr_size = cu->header.addr_size;
16936 }
16937 else
16938 {
16939 struct dwarf2_read_addr_index_data aidata;
16940
16941 /* Note: We can't use init_cutu_and_read_dies_simple here,
16942 we need addr_base. */
16943 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16944 dwarf2_read_addr_index_reader, &aidata);
16945 addr_base = aidata.addr_base;
16946 addr_size = aidata.addr_size;
16947 }
16948
16949 return read_addr_index_1 (addr_index, addr_base, addr_size);
16950 }
16951
16952 /* Given a DW_FORM_GNU_str_index, fetch the string.
16953 This is only used by the Fission support. */
16954
16955 static const char *
16956 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16957 {
16958 struct objfile *objfile = dwarf2_per_objfile->objfile;
16959 const char *objf_name = objfile_name (objfile);
16960 bfd *abfd = objfile->obfd;
16961 struct dwarf2_cu *cu = reader->cu;
16962 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16963 struct dwarf2_section_info *str_offsets_section =
16964 &reader->dwo_file->sections.str_offsets;
16965 const gdb_byte *info_ptr;
16966 ULONGEST str_offset;
16967 static const char form_name[] = "DW_FORM_GNU_str_index";
16968
16969 dwarf2_read_section (objfile, str_section);
16970 dwarf2_read_section (objfile, str_offsets_section);
16971 if (str_section->buffer == NULL)
16972 error (_("%s used without .debug_str.dwo section"
16973 " in CU at offset 0x%lx [in module %s]"),
16974 form_name, (long) cu->header.offset.sect_off, objf_name);
16975 if (str_offsets_section->buffer == NULL)
16976 error (_("%s used without .debug_str_offsets.dwo section"
16977 " in CU at offset 0x%lx [in module %s]"),
16978 form_name, (long) cu->header.offset.sect_off, objf_name);
16979 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16980 error (_("%s pointing outside of .debug_str_offsets.dwo"
16981 " section in CU at offset 0x%lx [in module %s]"),
16982 form_name, (long) cu->header.offset.sect_off, objf_name);
16983 info_ptr = (str_offsets_section->buffer
16984 + str_index * cu->header.offset_size);
16985 if (cu->header.offset_size == 4)
16986 str_offset = bfd_get_32 (abfd, info_ptr);
16987 else
16988 str_offset = bfd_get_64 (abfd, info_ptr);
16989 if (str_offset >= str_section->size)
16990 error (_("Offset from %s pointing outside of"
16991 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16992 form_name, (long) cu->header.offset.sect_off, objf_name);
16993 return (const char *) (str_section->buffer + str_offset);
16994 }
16995
16996 /* Return the length of an LEB128 number in BUF. */
16997
16998 static int
16999 leb128_size (const gdb_byte *buf)
17000 {
17001 const gdb_byte *begin = buf;
17002 gdb_byte byte;
17003
17004 while (1)
17005 {
17006 byte = *buf++;
17007 if ((byte & 128) == 0)
17008 return buf - begin;
17009 }
17010 }
17011
17012 static void
17013 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17014 {
17015 switch (lang)
17016 {
17017 case DW_LANG_C89:
17018 case DW_LANG_C99:
17019 case DW_LANG_C11:
17020 case DW_LANG_C:
17021 case DW_LANG_UPC:
17022 cu->language = language_c;
17023 break;
17024 case DW_LANG_Java:
17025 case DW_LANG_C_plus_plus:
17026 case DW_LANG_C_plus_plus_11:
17027 case DW_LANG_C_plus_plus_14:
17028 cu->language = language_cplus;
17029 break;
17030 case DW_LANG_D:
17031 cu->language = language_d;
17032 break;
17033 case DW_LANG_Fortran77:
17034 case DW_LANG_Fortran90:
17035 case DW_LANG_Fortran95:
17036 case DW_LANG_Fortran03:
17037 case DW_LANG_Fortran08:
17038 cu->language = language_fortran;
17039 break;
17040 case DW_LANG_Go:
17041 cu->language = language_go;
17042 break;
17043 case DW_LANG_Mips_Assembler:
17044 cu->language = language_asm;
17045 break;
17046 case DW_LANG_Ada83:
17047 case DW_LANG_Ada95:
17048 cu->language = language_ada;
17049 break;
17050 case DW_LANG_Modula2:
17051 cu->language = language_m2;
17052 break;
17053 case DW_LANG_Pascal83:
17054 cu->language = language_pascal;
17055 break;
17056 case DW_LANG_ObjC:
17057 cu->language = language_objc;
17058 break;
17059 case DW_LANG_Rust:
17060 case DW_LANG_Rust_old:
17061 cu->language = language_rust;
17062 break;
17063 case DW_LANG_Cobol74:
17064 case DW_LANG_Cobol85:
17065 default:
17066 cu->language = language_minimal;
17067 break;
17068 }
17069 cu->language_defn = language_def (cu->language);
17070 }
17071
17072 /* Return the named attribute or NULL if not there. */
17073
17074 static struct attribute *
17075 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17076 {
17077 for (;;)
17078 {
17079 unsigned int i;
17080 struct attribute *spec = NULL;
17081
17082 for (i = 0; i < die->num_attrs; ++i)
17083 {
17084 if (die->attrs[i].name == name)
17085 return &die->attrs[i];
17086 if (die->attrs[i].name == DW_AT_specification
17087 || die->attrs[i].name == DW_AT_abstract_origin)
17088 spec = &die->attrs[i];
17089 }
17090
17091 if (!spec)
17092 break;
17093
17094 die = follow_die_ref (die, spec, &cu);
17095 }
17096
17097 return NULL;
17098 }
17099
17100 /* Return the named attribute or NULL if not there,
17101 but do not follow DW_AT_specification, etc.
17102 This is for use in contexts where we're reading .debug_types dies.
17103 Following DW_AT_specification, DW_AT_abstract_origin will take us
17104 back up the chain, and we want to go down. */
17105
17106 static struct attribute *
17107 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17108 {
17109 unsigned int i;
17110
17111 for (i = 0; i < die->num_attrs; ++i)
17112 if (die->attrs[i].name == name)
17113 return &die->attrs[i];
17114
17115 return NULL;
17116 }
17117
17118 /* Return the string associated with a string-typed attribute, or NULL if it
17119 is either not found or is of an incorrect type. */
17120
17121 static const char *
17122 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17123 {
17124 struct attribute *attr;
17125 const char *str = NULL;
17126
17127 attr = dwarf2_attr (die, name, cu);
17128
17129 if (attr != NULL)
17130 {
17131 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17132 || attr->form == DW_FORM_GNU_strp_alt)
17133 str = DW_STRING (attr);
17134 else
17135 complaint (&symfile_complaints,
17136 _("string type expected for attribute %s for "
17137 "DIE at 0x%x in module %s"),
17138 dwarf_attr_name (name), die->offset.sect_off,
17139 objfile_name (cu->objfile));
17140 }
17141
17142 return str;
17143 }
17144
17145 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17146 and holds a non-zero value. This function should only be used for
17147 DW_FORM_flag or DW_FORM_flag_present attributes. */
17148
17149 static int
17150 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17151 {
17152 struct attribute *attr = dwarf2_attr (die, name, cu);
17153
17154 return (attr && DW_UNSND (attr));
17155 }
17156
17157 static int
17158 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17159 {
17160 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17161 which value is non-zero. However, we have to be careful with
17162 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17163 (via dwarf2_flag_true_p) follows this attribute. So we may
17164 end up accidently finding a declaration attribute that belongs
17165 to a different DIE referenced by the specification attribute,
17166 even though the given DIE does not have a declaration attribute. */
17167 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17168 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17169 }
17170
17171 /* Return the die giving the specification for DIE, if there is
17172 one. *SPEC_CU is the CU containing DIE on input, and the CU
17173 containing the return value on output. If there is no
17174 specification, but there is an abstract origin, that is
17175 returned. */
17176
17177 static struct die_info *
17178 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17179 {
17180 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17181 *spec_cu);
17182
17183 if (spec_attr == NULL)
17184 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17185
17186 if (spec_attr == NULL)
17187 return NULL;
17188 else
17189 return follow_die_ref (die, spec_attr, spec_cu);
17190 }
17191
17192 /* Free the line_header structure *LH, and any arrays and strings it
17193 refers to.
17194 NOTE: This is also used as a "cleanup" function. */
17195
17196 static void
17197 free_line_header (struct line_header *lh)
17198 {
17199 if (lh->standard_opcode_lengths)
17200 xfree (lh->standard_opcode_lengths);
17201
17202 /* Remember that all the lh->file_names[i].name pointers are
17203 pointers into debug_line_buffer, and don't need to be freed. */
17204 if (lh->file_names)
17205 xfree (lh->file_names);
17206
17207 /* Similarly for the include directory names. */
17208 if (lh->include_dirs)
17209 xfree (lh->include_dirs);
17210
17211 xfree (lh);
17212 }
17213
17214 /* Stub for free_line_header to match void * callback types. */
17215
17216 static void
17217 free_line_header_voidp (void *arg)
17218 {
17219 struct line_header *lh = (struct line_header *) arg;
17220
17221 free_line_header (lh);
17222 }
17223
17224 /* Add an entry to LH's include directory table. */
17225
17226 static void
17227 add_include_dir (struct line_header *lh, const char *include_dir)
17228 {
17229 if (dwarf_line_debug >= 2)
17230 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17231 lh->num_include_dirs + 1, include_dir);
17232
17233 /* Grow the array if necessary. */
17234 if (lh->include_dirs_size == 0)
17235 {
17236 lh->include_dirs_size = 1; /* for testing */
17237 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17238 }
17239 else if (lh->num_include_dirs >= lh->include_dirs_size)
17240 {
17241 lh->include_dirs_size *= 2;
17242 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17243 lh->include_dirs_size);
17244 }
17245
17246 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17247 }
17248
17249 /* Add an entry to LH's file name table. */
17250
17251 static void
17252 add_file_name (struct line_header *lh,
17253 const char *name,
17254 unsigned int dir_index,
17255 unsigned int mod_time,
17256 unsigned int length)
17257 {
17258 struct file_entry *fe;
17259
17260 if (dwarf_line_debug >= 2)
17261 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17262 lh->num_file_names + 1, name);
17263
17264 /* Grow the array if necessary. */
17265 if (lh->file_names_size == 0)
17266 {
17267 lh->file_names_size = 1; /* for testing */
17268 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17269 }
17270 else if (lh->num_file_names >= lh->file_names_size)
17271 {
17272 lh->file_names_size *= 2;
17273 lh->file_names
17274 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
17275 }
17276
17277 fe = &lh->file_names[lh->num_file_names++];
17278 fe->name = name;
17279 fe->dir_index = dir_index;
17280 fe->mod_time = mod_time;
17281 fe->length = length;
17282 fe->included_p = 0;
17283 fe->symtab = NULL;
17284 }
17285
17286 /* A convenience function to find the proper .debug_line section for a CU. */
17287
17288 static struct dwarf2_section_info *
17289 get_debug_line_section (struct dwarf2_cu *cu)
17290 {
17291 struct dwarf2_section_info *section;
17292
17293 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17294 DWO file. */
17295 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17296 section = &cu->dwo_unit->dwo_file->sections.line;
17297 else if (cu->per_cu->is_dwz)
17298 {
17299 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17300
17301 section = &dwz->line;
17302 }
17303 else
17304 section = &dwarf2_per_objfile->line;
17305
17306 return section;
17307 }
17308
17309 /* Read the statement program header starting at OFFSET in
17310 .debug_line, or .debug_line.dwo. Return a pointer
17311 to a struct line_header, allocated using xmalloc.
17312 Returns NULL if there is a problem reading the header, e.g., if it
17313 has a version we don't understand.
17314
17315 NOTE: the strings in the include directory and file name tables of
17316 the returned object point into the dwarf line section buffer,
17317 and must not be freed. */
17318
17319 static struct line_header *
17320 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17321 {
17322 struct cleanup *back_to;
17323 struct line_header *lh;
17324 const gdb_byte *line_ptr;
17325 unsigned int bytes_read, offset_size;
17326 int i;
17327 const char *cur_dir, *cur_file;
17328 struct dwarf2_section_info *section;
17329 bfd *abfd;
17330
17331 section = get_debug_line_section (cu);
17332 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17333 if (section->buffer == NULL)
17334 {
17335 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17336 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17337 else
17338 complaint (&symfile_complaints, _("missing .debug_line section"));
17339 return 0;
17340 }
17341
17342 /* We can't do this until we know the section is non-empty.
17343 Only then do we know we have such a section. */
17344 abfd = get_section_bfd_owner (section);
17345
17346 /* Make sure that at least there's room for the total_length field.
17347 That could be 12 bytes long, but we're just going to fudge that. */
17348 if (offset + 4 >= section->size)
17349 {
17350 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17351 return 0;
17352 }
17353
17354 lh = XNEW (struct line_header);
17355 memset (lh, 0, sizeof (*lh));
17356 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17357 (void *) lh);
17358
17359 lh->offset.sect_off = offset;
17360 lh->offset_in_dwz = cu->per_cu->is_dwz;
17361
17362 line_ptr = section->buffer + offset;
17363
17364 /* Read in the header. */
17365 lh->total_length =
17366 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17367 &bytes_read, &offset_size);
17368 line_ptr += bytes_read;
17369 if (line_ptr + lh->total_length > (section->buffer + section->size))
17370 {
17371 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17372 do_cleanups (back_to);
17373 return 0;
17374 }
17375 lh->statement_program_end = line_ptr + lh->total_length;
17376 lh->version = read_2_bytes (abfd, line_ptr);
17377 line_ptr += 2;
17378 if (lh->version > 4)
17379 {
17380 /* This is a version we don't understand. The format could have
17381 changed in ways we don't handle properly so just punt. */
17382 complaint (&symfile_complaints,
17383 _("unsupported version in .debug_line section"));
17384 return NULL;
17385 }
17386 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17387 line_ptr += offset_size;
17388 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17389 line_ptr += 1;
17390 if (lh->version >= 4)
17391 {
17392 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17393 line_ptr += 1;
17394 }
17395 else
17396 lh->maximum_ops_per_instruction = 1;
17397
17398 if (lh->maximum_ops_per_instruction == 0)
17399 {
17400 lh->maximum_ops_per_instruction = 1;
17401 complaint (&symfile_complaints,
17402 _("invalid maximum_ops_per_instruction "
17403 "in `.debug_line' section"));
17404 }
17405
17406 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17407 line_ptr += 1;
17408 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17409 line_ptr += 1;
17410 lh->line_range = read_1_byte (abfd, line_ptr);
17411 line_ptr += 1;
17412 lh->opcode_base = read_1_byte (abfd, line_ptr);
17413 line_ptr += 1;
17414 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17415
17416 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17417 for (i = 1; i < lh->opcode_base; ++i)
17418 {
17419 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17420 line_ptr += 1;
17421 }
17422
17423 /* Read directory table. */
17424 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17425 {
17426 line_ptr += bytes_read;
17427 add_include_dir (lh, cur_dir);
17428 }
17429 line_ptr += bytes_read;
17430
17431 /* Read file name table. */
17432 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17433 {
17434 unsigned int dir_index, mod_time, length;
17435
17436 line_ptr += bytes_read;
17437 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17438 line_ptr += bytes_read;
17439 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17440 line_ptr += bytes_read;
17441 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17442 line_ptr += bytes_read;
17443
17444 add_file_name (lh, cur_file, dir_index, mod_time, length);
17445 }
17446 line_ptr += bytes_read;
17447 lh->statement_program_start = line_ptr;
17448
17449 if (line_ptr > (section->buffer + section->size))
17450 complaint (&symfile_complaints,
17451 _("line number info header doesn't "
17452 "fit in `.debug_line' section"));
17453
17454 discard_cleanups (back_to);
17455 return lh;
17456 }
17457
17458 /* Subroutine of dwarf_decode_lines to simplify it.
17459 Return the file name of the psymtab for included file FILE_INDEX
17460 in line header LH of PST.
17461 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17462 If space for the result is malloc'd, it will be freed by a cleanup.
17463 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17464
17465 The function creates dangling cleanup registration. */
17466
17467 static const char *
17468 psymtab_include_file_name (const struct line_header *lh, int file_index,
17469 const struct partial_symtab *pst,
17470 const char *comp_dir)
17471 {
17472 const struct file_entry fe = lh->file_names [file_index];
17473 const char *include_name = fe.name;
17474 const char *include_name_to_compare = include_name;
17475 const char *dir_name = NULL;
17476 const char *pst_filename;
17477 char *copied_name = NULL;
17478 int file_is_pst;
17479
17480 if (fe.dir_index && lh->include_dirs != NULL)
17481 dir_name = lh->include_dirs[fe.dir_index - 1];
17482
17483 if (!IS_ABSOLUTE_PATH (include_name)
17484 && (dir_name != NULL || comp_dir != NULL))
17485 {
17486 /* Avoid creating a duplicate psymtab for PST.
17487 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17488 Before we do the comparison, however, we need to account
17489 for DIR_NAME and COMP_DIR.
17490 First prepend dir_name (if non-NULL). If we still don't
17491 have an absolute path prepend comp_dir (if non-NULL).
17492 However, the directory we record in the include-file's
17493 psymtab does not contain COMP_DIR (to match the
17494 corresponding symtab(s)).
17495
17496 Example:
17497
17498 bash$ cd /tmp
17499 bash$ gcc -g ./hello.c
17500 include_name = "hello.c"
17501 dir_name = "."
17502 DW_AT_comp_dir = comp_dir = "/tmp"
17503 DW_AT_name = "./hello.c"
17504
17505 */
17506
17507 if (dir_name != NULL)
17508 {
17509 char *tem = concat (dir_name, SLASH_STRING,
17510 include_name, (char *)NULL);
17511
17512 make_cleanup (xfree, tem);
17513 include_name = tem;
17514 include_name_to_compare = include_name;
17515 }
17516 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17517 {
17518 char *tem = concat (comp_dir, SLASH_STRING,
17519 include_name, (char *)NULL);
17520
17521 make_cleanup (xfree, tem);
17522 include_name_to_compare = tem;
17523 }
17524 }
17525
17526 pst_filename = pst->filename;
17527 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17528 {
17529 copied_name = concat (pst->dirname, SLASH_STRING,
17530 pst_filename, (char *)NULL);
17531 pst_filename = copied_name;
17532 }
17533
17534 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17535
17536 if (copied_name != NULL)
17537 xfree (copied_name);
17538
17539 if (file_is_pst)
17540 return NULL;
17541 return include_name;
17542 }
17543
17544 /* State machine to track the state of the line number program. */
17545
17546 typedef struct
17547 {
17548 /* These are part of the standard DWARF line number state machine. */
17549
17550 unsigned char op_index;
17551 unsigned int file;
17552 unsigned int line;
17553 CORE_ADDR address;
17554 int is_stmt;
17555 unsigned int discriminator;
17556
17557 /* Additional bits of state we need to track. */
17558
17559 /* The last file that we called dwarf2_start_subfile for.
17560 This is only used for TLLs. */
17561 unsigned int last_file;
17562 /* The last file a line number was recorded for. */
17563 struct subfile *last_subfile;
17564
17565 /* The function to call to record a line. */
17566 record_line_ftype *record_line;
17567
17568 /* The last line number that was recorded, used to coalesce
17569 consecutive entries for the same line. This can happen, for
17570 example, when discriminators are present. PR 17276. */
17571 unsigned int last_line;
17572 int line_has_non_zero_discriminator;
17573 } lnp_state_machine;
17574
17575 /* There's a lot of static state to pass to dwarf_record_line.
17576 This keeps it all together. */
17577
17578 typedef struct
17579 {
17580 /* The gdbarch. */
17581 struct gdbarch *gdbarch;
17582
17583 /* The line number header. */
17584 struct line_header *line_header;
17585
17586 /* Non-zero if we're recording lines.
17587 Otherwise we're building partial symtabs and are just interested in
17588 finding include files mentioned by the line number program. */
17589 int record_lines_p;
17590 } lnp_reader_state;
17591
17592 /* Ignore this record_line request. */
17593
17594 static void
17595 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17596 {
17597 return;
17598 }
17599
17600 /* Return non-zero if we should add LINE to the line number table.
17601 LINE is the line to add, LAST_LINE is the last line that was added,
17602 LAST_SUBFILE is the subfile for LAST_LINE.
17603 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17604 had a non-zero discriminator.
17605
17606 We have to be careful in the presence of discriminators.
17607 E.g., for this line:
17608
17609 for (i = 0; i < 100000; i++);
17610
17611 clang can emit four line number entries for that one line,
17612 each with a different discriminator.
17613 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17614
17615 However, we want gdb to coalesce all four entries into one.
17616 Otherwise the user could stepi into the middle of the line and
17617 gdb would get confused about whether the pc really was in the
17618 middle of the line.
17619
17620 Things are further complicated by the fact that two consecutive
17621 line number entries for the same line is a heuristic used by gcc
17622 to denote the end of the prologue. So we can't just discard duplicate
17623 entries, we have to be selective about it. The heuristic we use is
17624 that we only collapse consecutive entries for the same line if at least
17625 one of those entries has a non-zero discriminator. PR 17276.
17626
17627 Note: Addresses in the line number state machine can never go backwards
17628 within one sequence, thus this coalescing is ok. */
17629
17630 static int
17631 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17632 int line_has_non_zero_discriminator,
17633 struct subfile *last_subfile)
17634 {
17635 if (current_subfile != last_subfile)
17636 return 1;
17637 if (line != last_line)
17638 return 1;
17639 /* Same line for the same file that we've seen already.
17640 As a last check, for pr 17276, only record the line if the line
17641 has never had a non-zero discriminator. */
17642 if (!line_has_non_zero_discriminator)
17643 return 1;
17644 return 0;
17645 }
17646
17647 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17648 in the line table of subfile SUBFILE. */
17649
17650 static void
17651 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17652 unsigned int line, CORE_ADDR address,
17653 record_line_ftype p_record_line)
17654 {
17655 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17656
17657 if (dwarf_line_debug)
17658 {
17659 fprintf_unfiltered (gdb_stdlog,
17660 "Recording line %u, file %s, address %s\n",
17661 line, lbasename (subfile->name),
17662 paddress (gdbarch, address));
17663 }
17664
17665 (*p_record_line) (subfile, line, addr);
17666 }
17667
17668 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17669 Mark the end of a set of line number records.
17670 The arguments are the same as for dwarf_record_line_1.
17671 If SUBFILE is NULL the request is ignored. */
17672
17673 static void
17674 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17675 CORE_ADDR address, record_line_ftype p_record_line)
17676 {
17677 if (subfile == NULL)
17678 return;
17679
17680 if (dwarf_line_debug)
17681 {
17682 fprintf_unfiltered (gdb_stdlog,
17683 "Finishing current line, file %s, address %s\n",
17684 lbasename (subfile->name),
17685 paddress (gdbarch, address));
17686 }
17687
17688 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17689 }
17690
17691 /* Record the line in STATE.
17692 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17693
17694 static void
17695 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17696 int end_sequence)
17697 {
17698 const struct line_header *lh = reader->line_header;
17699 unsigned int file, line, discriminator;
17700 int is_stmt;
17701
17702 file = state->file;
17703 line = state->line;
17704 is_stmt = state->is_stmt;
17705 discriminator = state->discriminator;
17706
17707 if (dwarf_line_debug)
17708 {
17709 fprintf_unfiltered (gdb_stdlog,
17710 "Processing actual line %u: file %u,"
17711 " address %s, is_stmt %u, discrim %u\n",
17712 line, file,
17713 paddress (reader->gdbarch, state->address),
17714 is_stmt, discriminator);
17715 }
17716
17717 if (file == 0 || file - 1 >= lh->num_file_names)
17718 dwarf2_debug_line_missing_file_complaint ();
17719 /* For now we ignore lines not starting on an instruction boundary.
17720 But not when processing end_sequence for compatibility with the
17721 previous version of the code. */
17722 else if (state->op_index == 0 || end_sequence)
17723 {
17724 lh->file_names[file - 1].included_p = 1;
17725 if (reader->record_lines_p && is_stmt)
17726 {
17727 if (state->last_subfile != current_subfile || end_sequence)
17728 {
17729 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17730 state->address, state->record_line);
17731 }
17732
17733 if (!end_sequence)
17734 {
17735 if (dwarf_record_line_p (line, state->last_line,
17736 state->line_has_non_zero_discriminator,
17737 state->last_subfile))
17738 {
17739 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17740 line, state->address,
17741 state->record_line);
17742 }
17743 state->last_subfile = current_subfile;
17744 state->last_line = line;
17745 }
17746 }
17747 }
17748 }
17749
17750 /* Initialize STATE for the start of a line number program. */
17751
17752 static void
17753 init_lnp_state_machine (lnp_state_machine *state,
17754 const lnp_reader_state *reader)
17755 {
17756 memset (state, 0, sizeof (*state));
17757
17758 /* Just starting, there is no "last file". */
17759 state->last_file = 0;
17760 state->last_subfile = NULL;
17761
17762 state->record_line = record_line;
17763
17764 state->last_line = 0;
17765 state->line_has_non_zero_discriminator = 0;
17766
17767 /* Initialize these according to the DWARF spec. */
17768 state->op_index = 0;
17769 state->file = 1;
17770 state->line = 1;
17771 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17772 was a line entry for it so that the backend has a chance to adjust it
17773 and also record it in case it needs it. This is currently used by MIPS
17774 code, cf. `mips_adjust_dwarf2_line'. */
17775 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17776 state->is_stmt = reader->line_header->default_is_stmt;
17777 state->discriminator = 0;
17778 }
17779
17780 /* Check address and if invalid nop-out the rest of the lines in this
17781 sequence. */
17782
17783 static void
17784 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17785 const gdb_byte *line_ptr,
17786 CORE_ADDR lowpc, CORE_ADDR address)
17787 {
17788 /* If address < lowpc then it's not a usable value, it's outside the
17789 pc range of the CU. However, we restrict the test to only address
17790 values of zero to preserve GDB's previous behaviour which is to
17791 handle the specific case of a function being GC'd by the linker. */
17792
17793 if (address == 0 && address < lowpc)
17794 {
17795 /* This line table is for a function which has been
17796 GCd by the linker. Ignore it. PR gdb/12528 */
17797
17798 struct objfile *objfile = cu->objfile;
17799 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17800
17801 complaint (&symfile_complaints,
17802 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17803 line_offset, objfile_name (objfile));
17804 state->record_line = noop_record_line;
17805 /* Note: sm.record_line is left as noop_record_line
17806 until we see DW_LNE_end_sequence. */
17807 }
17808 }
17809
17810 /* Subroutine of dwarf_decode_lines to simplify it.
17811 Process the line number information in LH.
17812 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17813 program in order to set included_p for every referenced header. */
17814
17815 static void
17816 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17817 const int decode_for_pst_p, CORE_ADDR lowpc)
17818 {
17819 const gdb_byte *line_ptr, *extended_end;
17820 const gdb_byte *line_end;
17821 unsigned int bytes_read, extended_len;
17822 unsigned char op_code, extended_op;
17823 CORE_ADDR baseaddr;
17824 struct objfile *objfile = cu->objfile;
17825 bfd *abfd = objfile->obfd;
17826 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17827 /* Non-zero if we're recording line info (as opposed to building partial
17828 symtabs). */
17829 int record_lines_p = !decode_for_pst_p;
17830 /* A collection of things we need to pass to dwarf_record_line. */
17831 lnp_reader_state reader_state;
17832
17833 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17834
17835 line_ptr = lh->statement_program_start;
17836 line_end = lh->statement_program_end;
17837
17838 reader_state.gdbarch = gdbarch;
17839 reader_state.line_header = lh;
17840 reader_state.record_lines_p = record_lines_p;
17841
17842 /* Read the statement sequences until there's nothing left. */
17843 while (line_ptr < line_end)
17844 {
17845 /* The DWARF line number program state machine. */
17846 lnp_state_machine state_machine;
17847 int end_sequence = 0;
17848
17849 /* Reset the state machine at the start of each sequence. */
17850 init_lnp_state_machine (&state_machine, &reader_state);
17851
17852 if (record_lines_p && lh->num_file_names >= state_machine.file)
17853 {
17854 /* Start a subfile for the current file of the state machine. */
17855 /* lh->include_dirs and lh->file_names are 0-based, but the
17856 directory and file name numbers in the statement program
17857 are 1-based. */
17858 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17859 const char *dir = NULL;
17860
17861 if (fe->dir_index && lh->include_dirs != NULL)
17862 dir = lh->include_dirs[fe->dir_index - 1];
17863
17864 dwarf2_start_subfile (fe->name, dir);
17865 }
17866
17867 /* Decode the table. */
17868 while (line_ptr < line_end && !end_sequence)
17869 {
17870 op_code = read_1_byte (abfd, line_ptr);
17871 line_ptr += 1;
17872
17873 if (op_code >= lh->opcode_base)
17874 {
17875 /* Special opcode. */
17876 unsigned char adj_opcode;
17877 CORE_ADDR addr_adj;
17878 int line_delta;
17879
17880 adj_opcode = op_code - lh->opcode_base;
17881 addr_adj = (((state_machine.op_index
17882 + (adj_opcode / lh->line_range))
17883 / lh->maximum_ops_per_instruction)
17884 * lh->minimum_instruction_length);
17885 state_machine.address
17886 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17887 state_machine.op_index = ((state_machine.op_index
17888 + (adj_opcode / lh->line_range))
17889 % lh->maximum_ops_per_instruction);
17890 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17891 state_machine.line += line_delta;
17892 if (line_delta != 0)
17893 state_machine.line_has_non_zero_discriminator
17894 = state_machine.discriminator != 0;
17895
17896 dwarf_record_line (&reader_state, &state_machine, 0);
17897 state_machine.discriminator = 0;
17898 }
17899 else switch (op_code)
17900 {
17901 case DW_LNS_extended_op:
17902 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17903 &bytes_read);
17904 line_ptr += bytes_read;
17905 extended_end = line_ptr + extended_len;
17906 extended_op = read_1_byte (abfd, line_ptr);
17907 line_ptr += 1;
17908 switch (extended_op)
17909 {
17910 case DW_LNE_end_sequence:
17911 state_machine.record_line = record_line;
17912 end_sequence = 1;
17913 break;
17914 case DW_LNE_set_address:
17915 {
17916 CORE_ADDR address
17917 = read_address (abfd, line_ptr, cu, &bytes_read);
17918
17919 line_ptr += bytes_read;
17920 check_line_address (cu, &state_machine, line_ptr,
17921 lowpc, address);
17922 state_machine.op_index = 0;
17923 address += baseaddr;
17924 state_machine.address
17925 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17926 }
17927 break;
17928 case DW_LNE_define_file:
17929 {
17930 const char *cur_file;
17931 unsigned int dir_index, mod_time, length;
17932
17933 cur_file = read_direct_string (abfd, line_ptr,
17934 &bytes_read);
17935 line_ptr += bytes_read;
17936 dir_index =
17937 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17938 line_ptr += bytes_read;
17939 mod_time =
17940 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17941 line_ptr += bytes_read;
17942 length =
17943 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17944 line_ptr += bytes_read;
17945 add_file_name (lh, cur_file, dir_index, mod_time, length);
17946 }
17947 break;
17948 case DW_LNE_set_discriminator:
17949 /* The discriminator is not interesting to the debugger;
17950 just ignore it. We still need to check its value though:
17951 if there are consecutive entries for the same
17952 (non-prologue) line we want to coalesce them.
17953 PR 17276. */
17954 state_machine.discriminator
17955 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17956 state_machine.line_has_non_zero_discriminator
17957 |= state_machine.discriminator != 0;
17958 line_ptr += bytes_read;
17959 break;
17960 default:
17961 complaint (&symfile_complaints,
17962 _("mangled .debug_line section"));
17963 return;
17964 }
17965 /* Make sure that we parsed the extended op correctly. If e.g.
17966 we expected a different address size than the producer used,
17967 we may have read the wrong number of bytes. */
17968 if (line_ptr != extended_end)
17969 {
17970 complaint (&symfile_complaints,
17971 _("mangled .debug_line section"));
17972 return;
17973 }
17974 break;
17975 case DW_LNS_copy:
17976 dwarf_record_line (&reader_state, &state_machine, 0);
17977 state_machine.discriminator = 0;
17978 break;
17979 case DW_LNS_advance_pc:
17980 {
17981 CORE_ADDR adjust
17982 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17983 CORE_ADDR addr_adj;
17984
17985 addr_adj = (((state_machine.op_index + adjust)
17986 / lh->maximum_ops_per_instruction)
17987 * lh->minimum_instruction_length);
17988 state_machine.address
17989 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17990 state_machine.op_index = ((state_machine.op_index + adjust)
17991 % lh->maximum_ops_per_instruction);
17992 line_ptr += bytes_read;
17993 }
17994 break;
17995 case DW_LNS_advance_line:
17996 {
17997 int line_delta
17998 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17999
18000 state_machine.line += line_delta;
18001 if (line_delta != 0)
18002 state_machine.line_has_non_zero_discriminator
18003 = state_machine.discriminator != 0;
18004 line_ptr += bytes_read;
18005 }
18006 break;
18007 case DW_LNS_set_file:
18008 {
18009 /* The arrays lh->include_dirs and lh->file_names are
18010 0-based, but the directory and file name numbers in
18011 the statement program are 1-based. */
18012 struct file_entry *fe;
18013 const char *dir = NULL;
18014
18015 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18016 &bytes_read);
18017 line_ptr += bytes_read;
18018 if (state_machine.file == 0
18019 || state_machine.file - 1 >= lh->num_file_names)
18020 dwarf2_debug_line_missing_file_complaint ();
18021 else
18022 {
18023 fe = &lh->file_names[state_machine.file - 1];
18024 if (fe->dir_index && lh->include_dirs != NULL)
18025 dir = lh->include_dirs[fe->dir_index - 1];
18026 if (record_lines_p)
18027 {
18028 state_machine.last_subfile = current_subfile;
18029 state_machine.line_has_non_zero_discriminator
18030 = state_machine.discriminator != 0;
18031 dwarf2_start_subfile (fe->name, dir);
18032 }
18033 }
18034 }
18035 break;
18036 case DW_LNS_set_column:
18037 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18038 line_ptr += bytes_read;
18039 break;
18040 case DW_LNS_negate_stmt:
18041 state_machine.is_stmt = (!state_machine.is_stmt);
18042 break;
18043 case DW_LNS_set_basic_block:
18044 break;
18045 /* Add to the address register of the state machine the
18046 address increment value corresponding to special opcode
18047 255. I.e., this value is scaled by the minimum
18048 instruction length since special opcode 255 would have
18049 scaled the increment. */
18050 case DW_LNS_const_add_pc:
18051 {
18052 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18053 CORE_ADDR addr_adj;
18054
18055 addr_adj = (((state_machine.op_index + adjust)
18056 / lh->maximum_ops_per_instruction)
18057 * lh->minimum_instruction_length);
18058 state_machine.address
18059 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18060 state_machine.op_index = ((state_machine.op_index + adjust)
18061 % lh->maximum_ops_per_instruction);
18062 }
18063 break;
18064 case DW_LNS_fixed_advance_pc:
18065 {
18066 CORE_ADDR addr_adj;
18067
18068 addr_adj = read_2_bytes (abfd, line_ptr);
18069 state_machine.address
18070 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18071 state_machine.op_index = 0;
18072 line_ptr += 2;
18073 }
18074 break;
18075 default:
18076 {
18077 /* Unknown standard opcode, ignore it. */
18078 int i;
18079
18080 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18081 {
18082 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18083 line_ptr += bytes_read;
18084 }
18085 }
18086 }
18087 }
18088
18089 if (!end_sequence)
18090 dwarf2_debug_line_missing_end_sequence_complaint ();
18091
18092 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18093 in which case we still finish recording the last line). */
18094 dwarf_record_line (&reader_state, &state_machine, 1);
18095 }
18096 }
18097
18098 /* Decode the Line Number Program (LNP) for the given line_header
18099 structure and CU. The actual information extracted and the type
18100 of structures created from the LNP depends on the value of PST.
18101
18102 1. If PST is NULL, then this procedure uses the data from the program
18103 to create all necessary symbol tables, and their linetables.
18104
18105 2. If PST is not NULL, this procedure reads the program to determine
18106 the list of files included by the unit represented by PST, and
18107 builds all the associated partial symbol tables.
18108
18109 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18110 It is used for relative paths in the line table.
18111 NOTE: When processing partial symtabs (pst != NULL),
18112 comp_dir == pst->dirname.
18113
18114 NOTE: It is important that psymtabs have the same file name (via strcmp)
18115 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18116 symtab we don't use it in the name of the psymtabs we create.
18117 E.g. expand_line_sal requires this when finding psymtabs to expand.
18118 A good testcase for this is mb-inline.exp.
18119
18120 LOWPC is the lowest address in CU (or 0 if not known).
18121
18122 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18123 for its PC<->lines mapping information. Otherwise only the filename
18124 table is read in. */
18125
18126 static void
18127 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18128 struct dwarf2_cu *cu, struct partial_symtab *pst,
18129 CORE_ADDR lowpc, int decode_mapping)
18130 {
18131 struct objfile *objfile = cu->objfile;
18132 const int decode_for_pst_p = (pst != NULL);
18133
18134 if (decode_mapping)
18135 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18136
18137 if (decode_for_pst_p)
18138 {
18139 int file_index;
18140
18141 /* Now that we're done scanning the Line Header Program, we can
18142 create the psymtab of each included file. */
18143 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18144 if (lh->file_names[file_index].included_p == 1)
18145 {
18146 const char *include_name =
18147 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18148 if (include_name != NULL)
18149 dwarf2_create_include_psymtab (include_name, pst, objfile);
18150 }
18151 }
18152 else
18153 {
18154 /* Make sure a symtab is created for every file, even files
18155 which contain only variables (i.e. no code with associated
18156 line numbers). */
18157 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18158 int i;
18159
18160 for (i = 0; i < lh->num_file_names; i++)
18161 {
18162 const char *dir = NULL;
18163 struct file_entry *fe;
18164
18165 fe = &lh->file_names[i];
18166 if (fe->dir_index && lh->include_dirs != NULL)
18167 dir = lh->include_dirs[fe->dir_index - 1];
18168 dwarf2_start_subfile (fe->name, dir);
18169
18170 if (current_subfile->symtab == NULL)
18171 {
18172 current_subfile->symtab
18173 = allocate_symtab (cust, current_subfile->name);
18174 }
18175 fe->symtab = current_subfile->symtab;
18176 }
18177 }
18178 }
18179
18180 /* Start a subfile for DWARF. FILENAME is the name of the file and
18181 DIRNAME the name of the source directory which contains FILENAME
18182 or NULL if not known.
18183 This routine tries to keep line numbers from identical absolute and
18184 relative file names in a common subfile.
18185
18186 Using the `list' example from the GDB testsuite, which resides in
18187 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18188 of /srcdir/list0.c yields the following debugging information for list0.c:
18189
18190 DW_AT_name: /srcdir/list0.c
18191 DW_AT_comp_dir: /compdir
18192 files.files[0].name: list0.h
18193 files.files[0].dir: /srcdir
18194 files.files[1].name: list0.c
18195 files.files[1].dir: /srcdir
18196
18197 The line number information for list0.c has to end up in a single
18198 subfile, so that `break /srcdir/list0.c:1' works as expected.
18199 start_subfile will ensure that this happens provided that we pass the
18200 concatenation of files.files[1].dir and files.files[1].name as the
18201 subfile's name. */
18202
18203 static void
18204 dwarf2_start_subfile (const char *filename, const char *dirname)
18205 {
18206 char *copy = NULL;
18207
18208 /* In order not to lose the line information directory,
18209 we concatenate it to the filename when it makes sense.
18210 Note that the Dwarf3 standard says (speaking of filenames in line
18211 information): ``The directory index is ignored for file names
18212 that represent full path names''. Thus ignoring dirname in the
18213 `else' branch below isn't an issue. */
18214
18215 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18216 {
18217 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18218 filename = copy;
18219 }
18220
18221 start_subfile (filename);
18222
18223 if (copy != NULL)
18224 xfree (copy);
18225 }
18226
18227 /* Start a symtab for DWARF.
18228 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18229
18230 static struct compunit_symtab *
18231 dwarf2_start_symtab (struct dwarf2_cu *cu,
18232 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18233 {
18234 struct compunit_symtab *cust
18235 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18236
18237 record_debugformat ("DWARF 2");
18238 record_producer (cu->producer);
18239
18240 /* We assume that we're processing GCC output. */
18241 processing_gcc_compilation = 2;
18242
18243 cu->processing_has_namespace_info = 0;
18244
18245 return cust;
18246 }
18247
18248 static void
18249 var_decode_location (struct attribute *attr, struct symbol *sym,
18250 struct dwarf2_cu *cu)
18251 {
18252 struct objfile *objfile = cu->objfile;
18253 struct comp_unit_head *cu_header = &cu->header;
18254
18255 /* NOTE drow/2003-01-30: There used to be a comment and some special
18256 code here to turn a symbol with DW_AT_external and a
18257 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18258 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18259 with some versions of binutils) where shared libraries could have
18260 relocations against symbols in their debug information - the
18261 minimal symbol would have the right address, but the debug info
18262 would not. It's no longer necessary, because we will explicitly
18263 apply relocations when we read in the debug information now. */
18264
18265 /* A DW_AT_location attribute with no contents indicates that a
18266 variable has been optimized away. */
18267 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18268 {
18269 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18270 return;
18271 }
18272
18273 /* Handle one degenerate form of location expression specially, to
18274 preserve GDB's previous behavior when section offsets are
18275 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18276 then mark this symbol as LOC_STATIC. */
18277
18278 if (attr_form_is_block (attr)
18279 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18280 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18281 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18282 && (DW_BLOCK (attr)->size
18283 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18284 {
18285 unsigned int dummy;
18286
18287 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18288 SYMBOL_VALUE_ADDRESS (sym) =
18289 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18290 else
18291 SYMBOL_VALUE_ADDRESS (sym) =
18292 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18293 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18294 fixup_symbol_section (sym, objfile);
18295 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18296 SYMBOL_SECTION (sym));
18297 return;
18298 }
18299
18300 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18301 expression evaluator, and use LOC_COMPUTED only when necessary
18302 (i.e. when the value of a register or memory location is
18303 referenced, or a thread-local block, etc.). Then again, it might
18304 not be worthwhile. I'm assuming that it isn't unless performance
18305 or memory numbers show me otherwise. */
18306
18307 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18308
18309 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18310 cu->has_loclist = 1;
18311 }
18312
18313 /* Given a pointer to a DWARF information entry, figure out if we need
18314 to make a symbol table entry for it, and if so, create a new entry
18315 and return a pointer to it.
18316 If TYPE is NULL, determine symbol type from the die, otherwise
18317 used the passed type.
18318 If SPACE is not NULL, use it to hold the new symbol. If it is
18319 NULL, allocate a new symbol on the objfile's obstack. */
18320
18321 static struct symbol *
18322 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18323 struct symbol *space)
18324 {
18325 struct objfile *objfile = cu->objfile;
18326 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18327 struct symbol *sym = NULL;
18328 const char *name;
18329 struct attribute *attr = NULL;
18330 struct attribute *attr2 = NULL;
18331 CORE_ADDR baseaddr;
18332 struct pending **list_to_add = NULL;
18333
18334 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18335
18336 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18337
18338 name = dwarf2_name (die, cu);
18339 if (name)
18340 {
18341 const char *linkagename;
18342 int suppress_add = 0;
18343
18344 if (space)
18345 sym = space;
18346 else
18347 sym = allocate_symbol (objfile);
18348 OBJSTAT (objfile, n_syms++);
18349
18350 /* Cache this symbol's name and the name's demangled form (if any). */
18351 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18352 linkagename = dwarf2_physname (name, die, cu);
18353 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18354
18355 /* Fortran does not have mangling standard and the mangling does differ
18356 between gfortran, iFort etc. */
18357 if (cu->language == language_fortran
18358 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18359 symbol_set_demangled_name (&(sym->ginfo),
18360 dwarf2_full_name (name, die, cu),
18361 NULL);
18362
18363 /* Default assumptions.
18364 Use the passed type or decode it from the die. */
18365 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18366 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18367 if (type != NULL)
18368 SYMBOL_TYPE (sym) = type;
18369 else
18370 SYMBOL_TYPE (sym) = die_type (die, cu);
18371 attr = dwarf2_attr (die,
18372 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18373 cu);
18374 if (attr)
18375 {
18376 SYMBOL_LINE (sym) = DW_UNSND (attr);
18377 }
18378
18379 attr = dwarf2_attr (die,
18380 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18381 cu);
18382 if (attr)
18383 {
18384 int file_index = DW_UNSND (attr);
18385
18386 if (cu->line_header == NULL
18387 || file_index > cu->line_header->num_file_names)
18388 complaint (&symfile_complaints,
18389 _("file index out of range"));
18390 else if (file_index > 0)
18391 {
18392 struct file_entry *fe;
18393
18394 fe = &cu->line_header->file_names[file_index - 1];
18395 symbol_set_symtab (sym, fe->symtab);
18396 }
18397 }
18398
18399 switch (die->tag)
18400 {
18401 case DW_TAG_label:
18402 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18403 if (attr)
18404 {
18405 CORE_ADDR addr;
18406
18407 addr = attr_value_as_address (attr);
18408 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18409 SYMBOL_VALUE_ADDRESS (sym) = addr;
18410 }
18411 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18412 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18413 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18414 add_symbol_to_list (sym, cu->list_in_scope);
18415 break;
18416 case DW_TAG_subprogram:
18417 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18418 finish_block. */
18419 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18420 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18421 if ((attr2 && (DW_UNSND (attr2) != 0))
18422 || cu->language == language_ada)
18423 {
18424 /* Subprograms marked external are stored as a global symbol.
18425 Ada subprograms, whether marked external or not, are always
18426 stored as a global symbol, because we want to be able to
18427 access them globally. For instance, we want to be able
18428 to break on a nested subprogram without having to
18429 specify the context. */
18430 list_to_add = &global_symbols;
18431 }
18432 else
18433 {
18434 list_to_add = cu->list_in_scope;
18435 }
18436 break;
18437 case DW_TAG_inlined_subroutine:
18438 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18439 finish_block. */
18440 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18441 SYMBOL_INLINED (sym) = 1;
18442 list_to_add = cu->list_in_scope;
18443 break;
18444 case DW_TAG_template_value_param:
18445 suppress_add = 1;
18446 /* Fall through. */
18447 case DW_TAG_constant:
18448 case DW_TAG_variable:
18449 case DW_TAG_member:
18450 /* Compilation with minimal debug info may result in
18451 variables with missing type entries. Change the
18452 misleading `void' type to something sensible. */
18453 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18454 SYMBOL_TYPE (sym)
18455 = objfile_type (objfile)->nodebug_data_symbol;
18456
18457 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18458 /* In the case of DW_TAG_member, we should only be called for
18459 static const members. */
18460 if (die->tag == DW_TAG_member)
18461 {
18462 /* dwarf2_add_field uses die_is_declaration,
18463 so we do the same. */
18464 gdb_assert (die_is_declaration (die, cu));
18465 gdb_assert (attr);
18466 }
18467 if (attr)
18468 {
18469 dwarf2_const_value (attr, sym, cu);
18470 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18471 if (!suppress_add)
18472 {
18473 if (attr2 && (DW_UNSND (attr2) != 0))
18474 list_to_add = &global_symbols;
18475 else
18476 list_to_add = cu->list_in_scope;
18477 }
18478 break;
18479 }
18480 attr = dwarf2_attr (die, DW_AT_location, cu);
18481 if (attr)
18482 {
18483 var_decode_location (attr, sym, cu);
18484 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18485
18486 /* Fortran explicitly imports any global symbols to the local
18487 scope by DW_TAG_common_block. */
18488 if (cu->language == language_fortran && die->parent
18489 && die->parent->tag == DW_TAG_common_block)
18490 attr2 = NULL;
18491
18492 if (SYMBOL_CLASS (sym) == LOC_STATIC
18493 && SYMBOL_VALUE_ADDRESS (sym) == 0
18494 && !dwarf2_per_objfile->has_section_at_zero)
18495 {
18496 /* When a static variable is eliminated by the linker,
18497 the corresponding debug information is not stripped
18498 out, but the variable address is set to null;
18499 do not add such variables into symbol table. */
18500 }
18501 else if (attr2 && (DW_UNSND (attr2) != 0))
18502 {
18503 /* Workaround gfortran PR debug/40040 - it uses
18504 DW_AT_location for variables in -fPIC libraries which may
18505 get overriden by other libraries/executable and get
18506 a different address. Resolve it by the minimal symbol
18507 which may come from inferior's executable using copy
18508 relocation. Make this workaround only for gfortran as for
18509 other compilers GDB cannot guess the minimal symbol
18510 Fortran mangling kind. */
18511 if (cu->language == language_fortran && die->parent
18512 && die->parent->tag == DW_TAG_module
18513 && cu->producer
18514 && startswith (cu->producer, "GNU Fortran"))
18515 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18516
18517 /* A variable with DW_AT_external is never static,
18518 but it may be block-scoped. */
18519 list_to_add = (cu->list_in_scope == &file_symbols
18520 ? &global_symbols : cu->list_in_scope);
18521 }
18522 else
18523 list_to_add = cu->list_in_scope;
18524 }
18525 else
18526 {
18527 /* We do not know the address of this symbol.
18528 If it is an external symbol and we have type information
18529 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18530 The address of the variable will then be determined from
18531 the minimal symbol table whenever the variable is
18532 referenced. */
18533 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18534
18535 /* Fortran explicitly imports any global symbols to the local
18536 scope by DW_TAG_common_block. */
18537 if (cu->language == language_fortran && die->parent
18538 && die->parent->tag == DW_TAG_common_block)
18539 {
18540 /* SYMBOL_CLASS doesn't matter here because
18541 read_common_block is going to reset it. */
18542 if (!suppress_add)
18543 list_to_add = cu->list_in_scope;
18544 }
18545 else if (attr2 && (DW_UNSND (attr2) != 0)
18546 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18547 {
18548 /* A variable with DW_AT_external is never static, but it
18549 may be block-scoped. */
18550 list_to_add = (cu->list_in_scope == &file_symbols
18551 ? &global_symbols : cu->list_in_scope);
18552
18553 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18554 }
18555 else if (!die_is_declaration (die, cu))
18556 {
18557 /* Use the default LOC_OPTIMIZED_OUT class. */
18558 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18559 if (!suppress_add)
18560 list_to_add = cu->list_in_scope;
18561 }
18562 }
18563 break;
18564 case DW_TAG_formal_parameter:
18565 /* If we are inside a function, mark this as an argument. If
18566 not, we might be looking at an argument to an inlined function
18567 when we do not have enough information to show inlined frames;
18568 pretend it's a local variable in that case so that the user can
18569 still see it. */
18570 if (context_stack_depth > 0
18571 && context_stack[context_stack_depth - 1].name != NULL)
18572 SYMBOL_IS_ARGUMENT (sym) = 1;
18573 attr = dwarf2_attr (die, DW_AT_location, cu);
18574 if (attr)
18575 {
18576 var_decode_location (attr, sym, cu);
18577 }
18578 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18579 if (attr)
18580 {
18581 dwarf2_const_value (attr, sym, cu);
18582 }
18583
18584 list_to_add = cu->list_in_scope;
18585 break;
18586 case DW_TAG_unspecified_parameters:
18587 /* From varargs functions; gdb doesn't seem to have any
18588 interest in this information, so just ignore it for now.
18589 (FIXME?) */
18590 break;
18591 case DW_TAG_template_type_param:
18592 suppress_add = 1;
18593 /* Fall through. */
18594 case DW_TAG_class_type:
18595 case DW_TAG_interface_type:
18596 case DW_TAG_structure_type:
18597 case DW_TAG_union_type:
18598 case DW_TAG_set_type:
18599 case DW_TAG_enumeration_type:
18600 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18601 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18602
18603 {
18604 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
18605 really ever be static objects: otherwise, if you try
18606 to, say, break of a class's method and you're in a file
18607 which doesn't mention that class, it won't work unless
18608 the check for all static symbols in lookup_symbol_aux
18609 saves you. See the OtherFileClass tests in
18610 gdb.c++/namespace.exp. */
18611
18612 if (!suppress_add)
18613 {
18614 list_to_add = (cu->list_in_scope == &file_symbols
18615 && cu->language == language_cplus
18616 ? &global_symbols : cu->list_in_scope);
18617
18618 /* The semantics of C++ state that "struct foo {
18619 ... }" also defines a typedef for "foo". */
18620 if (cu->language == language_cplus
18621 || cu->language == language_ada
18622 || cu->language == language_d
18623 || cu->language == language_rust)
18624 {
18625 /* The symbol's name is already allocated along
18626 with this objfile, so we don't need to
18627 duplicate it for the type. */
18628 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18629 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18630 }
18631 }
18632 }
18633 break;
18634 case DW_TAG_typedef:
18635 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18636 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18637 list_to_add = cu->list_in_scope;
18638 break;
18639 case DW_TAG_base_type:
18640 case DW_TAG_subrange_type:
18641 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18642 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18643 list_to_add = cu->list_in_scope;
18644 break;
18645 case DW_TAG_enumerator:
18646 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18647 if (attr)
18648 {
18649 dwarf2_const_value (attr, sym, cu);
18650 }
18651 {
18652 /* NOTE: carlton/2003-11-10: See comment above in the
18653 DW_TAG_class_type, etc. block. */
18654
18655 list_to_add = (cu->list_in_scope == &file_symbols
18656 && cu->language == language_cplus
18657 ? &global_symbols : cu->list_in_scope);
18658 }
18659 break;
18660 case DW_TAG_imported_declaration:
18661 case DW_TAG_namespace:
18662 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18663 list_to_add = &global_symbols;
18664 break;
18665 case DW_TAG_module:
18666 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18667 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18668 list_to_add = &global_symbols;
18669 break;
18670 case DW_TAG_common_block:
18671 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18672 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18673 add_symbol_to_list (sym, cu->list_in_scope);
18674 break;
18675 default:
18676 /* Not a tag we recognize. Hopefully we aren't processing
18677 trash data, but since we must specifically ignore things
18678 we don't recognize, there is nothing else we should do at
18679 this point. */
18680 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18681 dwarf_tag_name (die->tag));
18682 break;
18683 }
18684
18685 if (suppress_add)
18686 {
18687 sym->hash_next = objfile->template_symbols;
18688 objfile->template_symbols = sym;
18689 list_to_add = NULL;
18690 }
18691
18692 if (list_to_add != NULL)
18693 add_symbol_to_list (sym, list_to_add);
18694
18695 /* For the benefit of old versions of GCC, check for anonymous
18696 namespaces based on the demangled name. */
18697 if (!cu->processing_has_namespace_info
18698 && cu->language == language_cplus)
18699 cp_scan_for_anonymous_namespaces (sym, objfile);
18700 }
18701 return (sym);
18702 }
18703
18704 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18705
18706 static struct symbol *
18707 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18708 {
18709 return new_symbol_full (die, type, cu, NULL);
18710 }
18711
18712 /* Given an attr with a DW_FORM_dataN value in host byte order,
18713 zero-extend it as appropriate for the symbol's type. The DWARF
18714 standard (v4) is not entirely clear about the meaning of using
18715 DW_FORM_dataN for a constant with a signed type, where the type is
18716 wider than the data. The conclusion of a discussion on the DWARF
18717 list was that this is unspecified. We choose to always zero-extend
18718 because that is the interpretation long in use by GCC. */
18719
18720 static gdb_byte *
18721 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18722 struct dwarf2_cu *cu, LONGEST *value, int bits)
18723 {
18724 struct objfile *objfile = cu->objfile;
18725 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18726 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18727 LONGEST l = DW_UNSND (attr);
18728
18729 if (bits < sizeof (*value) * 8)
18730 {
18731 l &= ((LONGEST) 1 << bits) - 1;
18732 *value = l;
18733 }
18734 else if (bits == sizeof (*value) * 8)
18735 *value = l;
18736 else
18737 {
18738 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
18739 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18740 return bytes;
18741 }
18742
18743 return NULL;
18744 }
18745
18746 /* Read a constant value from an attribute. Either set *VALUE, or if
18747 the value does not fit in *VALUE, set *BYTES - either already
18748 allocated on the objfile obstack, or newly allocated on OBSTACK,
18749 or, set *BATON, if we translated the constant to a location
18750 expression. */
18751
18752 static void
18753 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18754 const char *name, struct obstack *obstack,
18755 struct dwarf2_cu *cu,
18756 LONGEST *value, const gdb_byte **bytes,
18757 struct dwarf2_locexpr_baton **baton)
18758 {
18759 struct objfile *objfile = cu->objfile;
18760 struct comp_unit_head *cu_header = &cu->header;
18761 struct dwarf_block *blk;
18762 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18763 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18764
18765 *value = 0;
18766 *bytes = NULL;
18767 *baton = NULL;
18768
18769 switch (attr->form)
18770 {
18771 case DW_FORM_addr:
18772 case DW_FORM_GNU_addr_index:
18773 {
18774 gdb_byte *data;
18775
18776 if (TYPE_LENGTH (type) != cu_header->addr_size)
18777 dwarf2_const_value_length_mismatch_complaint (name,
18778 cu_header->addr_size,
18779 TYPE_LENGTH (type));
18780 /* Symbols of this form are reasonably rare, so we just
18781 piggyback on the existing location code rather than writing
18782 a new implementation of symbol_computed_ops. */
18783 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
18784 (*baton)->per_cu = cu->per_cu;
18785 gdb_assert ((*baton)->per_cu);
18786
18787 (*baton)->size = 2 + cu_header->addr_size;
18788 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
18789 (*baton)->data = data;
18790
18791 data[0] = DW_OP_addr;
18792 store_unsigned_integer (&data[1], cu_header->addr_size,
18793 byte_order, DW_ADDR (attr));
18794 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18795 }
18796 break;
18797 case DW_FORM_string:
18798 case DW_FORM_strp:
18799 case DW_FORM_GNU_str_index:
18800 case DW_FORM_GNU_strp_alt:
18801 /* DW_STRING is already allocated on the objfile obstack, point
18802 directly to it. */
18803 *bytes = (const gdb_byte *) DW_STRING (attr);
18804 break;
18805 case DW_FORM_block1:
18806 case DW_FORM_block2:
18807 case DW_FORM_block4:
18808 case DW_FORM_block:
18809 case DW_FORM_exprloc:
18810 blk = DW_BLOCK (attr);
18811 if (TYPE_LENGTH (type) != blk->size)
18812 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18813 TYPE_LENGTH (type));
18814 *bytes = blk->data;
18815 break;
18816
18817 /* The DW_AT_const_value attributes are supposed to carry the
18818 symbol's value "represented as it would be on the target
18819 architecture." By the time we get here, it's already been
18820 converted to host endianness, so we just need to sign- or
18821 zero-extend it as appropriate. */
18822 case DW_FORM_data1:
18823 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18824 break;
18825 case DW_FORM_data2:
18826 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18827 break;
18828 case DW_FORM_data4:
18829 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18830 break;
18831 case DW_FORM_data8:
18832 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18833 break;
18834
18835 case DW_FORM_sdata:
18836 *value = DW_SND (attr);
18837 break;
18838
18839 case DW_FORM_udata:
18840 *value = DW_UNSND (attr);
18841 break;
18842
18843 default:
18844 complaint (&symfile_complaints,
18845 _("unsupported const value attribute form: '%s'"),
18846 dwarf_form_name (attr->form));
18847 *value = 0;
18848 break;
18849 }
18850 }
18851
18852
18853 /* Copy constant value from an attribute to a symbol. */
18854
18855 static void
18856 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18857 struct dwarf2_cu *cu)
18858 {
18859 struct objfile *objfile = cu->objfile;
18860 LONGEST value;
18861 const gdb_byte *bytes;
18862 struct dwarf2_locexpr_baton *baton;
18863
18864 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18865 SYMBOL_PRINT_NAME (sym),
18866 &objfile->objfile_obstack, cu,
18867 &value, &bytes, &baton);
18868
18869 if (baton != NULL)
18870 {
18871 SYMBOL_LOCATION_BATON (sym) = baton;
18872 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18873 }
18874 else if (bytes != NULL)
18875 {
18876 SYMBOL_VALUE_BYTES (sym) = bytes;
18877 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18878 }
18879 else
18880 {
18881 SYMBOL_VALUE (sym) = value;
18882 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18883 }
18884 }
18885
18886 /* Return the type of the die in question using its DW_AT_type attribute. */
18887
18888 static struct type *
18889 die_type (struct die_info *die, struct dwarf2_cu *cu)
18890 {
18891 struct attribute *type_attr;
18892
18893 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18894 if (!type_attr)
18895 {
18896 /* A missing DW_AT_type represents a void type. */
18897 return objfile_type (cu->objfile)->builtin_void;
18898 }
18899
18900 return lookup_die_type (die, type_attr, cu);
18901 }
18902
18903 /* True iff CU's producer generates GNAT Ada auxiliary information
18904 that allows to find parallel types through that information instead
18905 of having to do expensive parallel lookups by type name. */
18906
18907 static int
18908 need_gnat_info (struct dwarf2_cu *cu)
18909 {
18910 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18911 of GNAT produces this auxiliary information, without any indication
18912 that it is produced. Part of enhancing the FSF version of GNAT
18913 to produce that information will be to put in place an indicator
18914 that we can use in order to determine whether the descriptive type
18915 info is available or not. One suggestion that has been made is
18916 to use a new attribute, attached to the CU die. For now, assume
18917 that the descriptive type info is not available. */
18918 return 0;
18919 }
18920
18921 /* Return the auxiliary type of the die in question using its
18922 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18923 attribute is not present. */
18924
18925 static struct type *
18926 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18927 {
18928 struct attribute *type_attr;
18929
18930 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18931 if (!type_attr)
18932 return NULL;
18933
18934 return lookup_die_type (die, type_attr, cu);
18935 }
18936
18937 /* If DIE has a descriptive_type attribute, then set the TYPE's
18938 descriptive type accordingly. */
18939
18940 static void
18941 set_descriptive_type (struct type *type, struct die_info *die,
18942 struct dwarf2_cu *cu)
18943 {
18944 struct type *descriptive_type = die_descriptive_type (die, cu);
18945
18946 if (descriptive_type)
18947 {
18948 ALLOCATE_GNAT_AUX_TYPE (type);
18949 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18950 }
18951 }
18952
18953 /* Return the containing type of the die in question using its
18954 DW_AT_containing_type attribute. */
18955
18956 static struct type *
18957 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18958 {
18959 struct attribute *type_attr;
18960
18961 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18962 if (!type_attr)
18963 error (_("Dwarf Error: Problem turning containing type into gdb type "
18964 "[in module %s]"), objfile_name (cu->objfile));
18965
18966 return lookup_die_type (die, type_attr, cu);
18967 }
18968
18969 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18970
18971 static struct type *
18972 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18973 {
18974 struct objfile *objfile = dwarf2_per_objfile->objfile;
18975 char *message, *saved;
18976
18977 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18978 objfile_name (objfile),
18979 cu->header.offset.sect_off,
18980 die->offset.sect_off);
18981 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
18982 message, strlen (message));
18983 xfree (message);
18984
18985 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
18986 }
18987
18988 /* Look up the type of DIE in CU using its type attribute ATTR.
18989 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18990 DW_AT_containing_type.
18991 If there is no type substitute an error marker. */
18992
18993 static struct type *
18994 lookup_die_type (struct die_info *die, const struct attribute *attr,
18995 struct dwarf2_cu *cu)
18996 {
18997 struct objfile *objfile = cu->objfile;
18998 struct type *this_type;
18999
19000 gdb_assert (attr->name == DW_AT_type
19001 || attr->name == DW_AT_GNAT_descriptive_type
19002 || attr->name == DW_AT_containing_type);
19003
19004 /* First see if we have it cached. */
19005
19006 if (attr->form == DW_FORM_GNU_ref_alt)
19007 {
19008 struct dwarf2_per_cu_data *per_cu;
19009 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19010
19011 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19012 this_type = get_die_type_at_offset (offset, per_cu);
19013 }
19014 else if (attr_form_is_ref (attr))
19015 {
19016 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19017
19018 this_type = get_die_type_at_offset (offset, cu->per_cu);
19019 }
19020 else if (attr->form == DW_FORM_ref_sig8)
19021 {
19022 ULONGEST signature = DW_SIGNATURE (attr);
19023
19024 return get_signatured_type (die, signature, cu);
19025 }
19026 else
19027 {
19028 complaint (&symfile_complaints,
19029 _("Dwarf Error: Bad type attribute %s in DIE"
19030 " at 0x%x [in module %s]"),
19031 dwarf_attr_name (attr->name), die->offset.sect_off,
19032 objfile_name (objfile));
19033 return build_error_marker_type (cu, die);
19034 }
19035
19036 /* If not cached we need to read it in. */
19037
19038 if (this_type == NULL)
19039 {
19040 struct die_info *type_die = NULL;
19041 struct dwarf2_cu *type_cu = cu;
19042
19043 if (attr_form_is_ref (attr))
19044 type_die = follow_die_ref (die, attr, &type_cu);
19045 if (type_die == NULL)
19046 return build_error_marker_type (cu, die);
19047 /* If we find the type now, it's probably because the type came
19048 from an inter-CU reference and the type's CU got expanded before
19049 ours. */
19050 this_type = read_type_die (type_die, type_cu);
19051 }
19052
19053 /* If we still don't have a type use an error marker. */
19054
19055 if (this_type == NULL)
19056 return build_error_marker_type (cu, die);
19057
19058 return this_type;
19059 }
19060
19061 /* Return the type in DIE, CU.
19062 Returns NULL for invalid types.
19063
19064 This first does a lookup in die_type_hash,
19065 and only reads the die in if necessary.
19066
19067 NOTE: This can be called when reading in partial or full symbols. */
19068
19069 static struct type *
19070 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19071 {
19072 struct type *this_type;
19073
19074 this_type = get_die_type (die, cu);
19075 if (this_type)
19076 return this_type;
19077
19078 return read_type_die_1 (die, cu);
19079 }
19080
19081 /* Read the type in DIE, CU.
19082 Returns NULL for invalid types. */
19083
19084 static struct type *
19085 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19086 {
19087 struct type *this_type = NULL;
19088
19089 switch (die->tag)
19090 {
19091 case DW_TAG_class_type:
19092 case DW_TAG_interface_type:
19093 case DW_TAG_structure_type:
19094 case DW_TAG_union_type:
19095 this_type = read_structure_type (die, cu);
19096 break;
19097 case DW_TAG_enumeration_type:
19098 this_type = read_enumeration_type (die, cu);
19099 break;
19100 case DW_TAG_subprogram:
19101 case DW_TAG_subroutine_type:
19102 case DW_TAG_inlined_subroutine:
19103 this_type = read_subroutine_type (die, cu);
19104 break;
19105 case DW_TAG_array_type:
19106 this_type = read_array_type (die, cu);
19107 break;
19108 case DW_TAG_set_type:
19109 this_type = read_set_type (die, cu);
19110 break;
19111 case DW_TAG_pointer_type:
19112 this_type = read_tag_pointer_type (die, cu);
19113 break;
19114 case DW_TAG_ptr_to_member_type:
19115 this_type = read_tag_ptr_to_member_type (die, cu);
19116 break;
19117 case DW_TAG_reference_type:
19118 this_type = read_tag_reference_type (die, cu);
19119 break;
19120 case DW_TAG_const_type:
19121 this_type = read_tag_const_type (die, cu);
19122 break;
19123 case DW_TAG_volatile_type:
19124 this_type = read_tag_volatile_type (die, cu);
19125 break;
19126 case DW_TAG_restrict_type:
19127 this_type = read_tag_restrict_type (die, cu);
19128 break;
19129 case DW_TAG_string_type:
19130 this_type = read_tag_string_type (die, cu);
19131 break;
19132 case DW_TAG_typedef:
19133 this_type = read_typedef (die, cu);
19134 break;
19135 case DW_TAG_subrange_type:
19136 this_type = read_subrange_type (die, cu);
19137 break;
19138 case DW_TAG_base_type:
19139 this_type = read_base_type (die, cu);
19140 break;
19141 case DW_TAG_unspecified_type:
19142 this_type = read_unspecified_type (die, cu);
19143 break;
19144 case DW_TAG_namespace:
19145 this_type = read_namespace_type (die, cu);
19146 break;
19147 case DW_TAG_module:
19148 this_type = read_module_type (die, cu);
19149 break;
19150 case DW_TAG_atomic_type:
19151 this_type = read_tag_atomic_type (die, cu);
19152 break;
19153 default:
19154 complaint (&symfile_complaints,
19155 _("unexpected tag in read_type_die: '%s'"),
19156 dwarf_tag_name (die->tag));
19157 break;
19158 }
19159
19160 return this_type;
19161 }
19162
19163 /* See if we can figure out if the class lives in a namespace. We do
19164 this by looking for a member function; its demangled name will
19165 contain namespace info, if there is any.
19166 Return the computed name or NULL.
19167 Space for the result is allocated on the objfile's obstack.
19168 This is the full-die version of guess_partial_die_structure_name.
19169 In this case we know DIE has no useful parent. */
19170
19171 static char *
19172 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19173 {
19174 struct die_info *spec_die;
19175 struct dwarf2_cu *spec_cu;
19176 struct die_info *child;
19177
19178 spec_cu = cu;
19179 spec_die = die_specification (die, &spec_cu);
19180 if (spec_die != NULL)
19181 {
19182 die = spec_die;
19183 cu = spec_cu;
19184 }
19185
19186 for (child = die->child;
19187 child != NULL;
19188 child = child->sibling)
19189 {
19190 if (child->tag == DW_TAG_subprogram)
19191 {
19192 const char *linkage_name;
19193
19194 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19195 if (linkage_name == NULL)
19196 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19197 cu);
19198 if (linkage_name != NULL)
19199 {
19200 char *actual_name
19201 = language_class_name_from_physname (cu->language_defn,
19202 linkage_name);
19203 char *name = NULL;
19204
19205 if (actual_name != NULL)
19206 {
19207 const char *die_name = dwarf2_name (die, cu);
19208
19209 if (die_name != NULL
19210 && strcmp (die_name, actual_name) != 0)
19211 {
19212 /* Strip off the class name from the full name.
19213 We want the prefix. */
19214 int die_name_len = strlen (die_name);
19215 int actual_name_len = strlen (actual_name);
19216
19217 /* Test for '::' as a sanity check. */
19218 if (actual_name_len > die_name_len + 2
19219 && actual_name[actual_name_len
19220 - die_name_len - 1] == ':')
19221 name = (char *) obstack_copy0 (
19222 &cu->objfile->per_bfd->storage_obstack,
19223 actual_name, actual_name_len - die_name_len - 2);
19224 }
19225 }
19226 xfree (actual_name);
19227 return name;
19228 }
19229 }
19230 }
19231
19232 return NULL;
19233 }
19234
19235 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19236 prefix part in such case. See
19237 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19238
19239 static char *
19240 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19241 {
19242 struct attribute *attr;
19243 const char *base;
19244
19245 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19246 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19247 return NULL;
19248
19249 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19250 return NULL;
19251
19252 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19253 if (attr == NULL)
19254 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19255 if (attr == NULL || DW_STRING (attr) == NULL)
19256 return NULL;
19257
19258 /* dwarf2_name had to be already called. */
19259 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19260
19261 /* Strip the base name, keep any leading namespaces/classes. */
19262 base = strrchr (DW_STRING (attr), ':');
19263 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19264 return "";
19265
19266 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19267 DW_STRING (attr),
19268 &base[-1] - DW_STRING (attr));
19269 }
19270
19271 /* Return the name of the namespace/class that DIE is defined within,
19272 or "" if we can't tell. The caller should not xfree the result.
19273
19274 For example, if we're within the method foo() in the following
19275 code:
19276
19277 namespace N {
19278 class C {
19279 void foo () {
19280 }
19281 };
19282 }
19283
19284 then determine_prefix on foo's die will return "N::C". */
19285
19286 static const char *
19287 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19288 {
19289 struct die_info *parent, *spec_die;
19290 struct dwarf2_cu *spec_cu;
19291 struct type *parent_type;
19292 char *retval;
19293
19294 if (cu->language != language_cplus
19295 && cu->language != language_fortran && cu->language != language_d
19296 && cu->language != language_rust)
19297 return "";
19298
19299 retval = anonymous_struct_prefix (die, cu);
19300 if (retval)
19301 return retval;
19302
19303 /* We have to be careful in the presence of DW_AT_specification.
19304 For example, with GCC 3.4, given the code
19305
19306 namespace N {
19307 void foo() {
19308 // Definition of N::foo.
19309 }
19310 }
19311
19312 then we'll have a tree of DIEs like this:
19313
19314 1: DW_TAG_compile_unit
19315 2: DW_TAG_namespace // N
19316 3: DW_TAG_subprogram // declaration of N::foo
19317 4: DW_TAG_subprogram // definition of N::foo
19318 DW_AT_specification // refers to die #3
19319
19320 Thus, when processing die #4, we have to pretend that we're in
19321 the context of its DW_AT_specification, namely the contex of die
19322 #3. */
19323 spec_cu = cu;
19324 spec_die = die_specification (die, &spec_cu);
19325 if (spec_die == NULL)
19326 parent = die->parent;
19327 else
19328 {
19329 parent = spec_die->parent;
19330 cu = spec_cu;
19331 }
19332
19333 if (parent == NULL)
19334 return "";
19335 else if (parent->building_fullname)
19336 {
19337 const char *name;
19338 const char *parent_name;
19339
19340 /* It has been seen on RealView 2.2 built binaries,
19341 DW_TAG_template_type_param types actually _defined_ as
19342 children of the parent class:
19343
19344 enum E {};
19345 template class <class Enum> Class{};
19346 Class<enum E> class_e;
19347
19348 1: DW_TAG_class_type (Class)
19349 2: DW_TAG_enumeration_type (E)
19350 3: DW_TAG_enumerator (enum1:0)
19351 3: DW_TAG_enumerator (enum2:1)
19352 ...
19353 2: DW_TAG_template_type_param
19354 DW_AT_type DW_FORM_ref_udata (E)
19355
19356 Besides being broken debug info, it can put GDB into an
19357 infinite loop. Consider:
19358
19359 When we're building the full name for Class<E>, we'll start
19360 at Class, and go look over its template type parameters,
19361 finding E. We'll then try to build the full name of E, and
19362 reach here. We're now trying to build the full name of E,
19363 and look over the parent DIE for containing scope. In the
19364 broken case, if we followed the parent DIE of E, we'd again
19365 find Class, and once again go look at its template type
19366 arguments, etc., etc. Simply don't consider such parent die
19367 as source-level parent of this die (it can't be, the language
19368 doesn't allow it), and break the loop here. */
19369 name = dwarf2_name (die, cu);
19370 parent_name = dwarf2_name (parent, cu);
19371 complaint (&symfile_complaints,
19372 _("template param type '%s' defined within parent '%s'"),
19373 name ? name : "<unknown>",
19374 parent_name ? parent_name : "<unknown>");
19375 return "";
19376 }
19377 else
19378 switch (parent->tag)
19379 {
19380 case DW_TAG_namespace:
19381 parent_type = read_type_die (parent, cu);
19382 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19383 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19384 Work around this problem here. */
19385 if (cu->language == language_cplus
19386 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19387 return "";
19388 /* We give a name to even anonymous namespaces. */
19389 return TYPE_TAG_NAME (parent_type);
19390 case DW_TAG_class_type:
19391 case DW_TAG_interface_type:
19392 case DW_TAG_structure_type:
19393 case DW_TAG_union_type:
19394 case DW_TAG_module:
19395 parent_type = read_type_die (parent, cu);
19396 if (TYPE_TAG_NAME (parent_type) != NULL)
19397 return TYPE_TAG_NAME (parent_type);
19398 else
19399 /* An anonymous structure is only allowed non-static data
19400 members; no typedefs, no member functions, et cetera.
19401 So it does not need a prefix. */
19402 return "";
19403 case DW_TAG_compile_unit:
19404 case DW_TAG_partial_unit:
19405 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19406 if (cu->language == language_cplus
19407 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19408 && die->child != NULL
19409 && (die->tag == DW_TAG_class_type
19410 || die->tag == DW_TAG_structure_type
19411 || die->tag == DW_TAG_union_type))
19412 {
19413 char *name = guess_full_die_structure_name (die, cu);
19414 if (name != NULL)
19415 return name;
19416 }
19417 return "";
19418 case DW_TAG_enumeration_type:
19419 parent_type = read_type_die (parent, cu);
19420 if (TYPE_DECLARED_CLASS (parent_type))
19421 {
19422 if (TYPE_TAG_NAME (parent_type) != NULL)
19423 return TYPE_TAG_NAME (parent_type);
19424 return "";
19425 }
19426 /* Fall through. */
19427 default:
19428 return determine_prefix (parent, cu);
19429 }
19430 }
19431
19432 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19433 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19434 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19435 an obconcat, otherwise allocate storage for the result. The CU argument is
19436 used to determine the language and hence, the appropriate separator. */
19437
19438 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19439
19440 static char *
19441 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19442 int physname, struct dwarf2_cu *cu)
19443 {
19444 const char *lead = "";
19445 const char *sep;
19446
19447 if (suffix == NULL || suffix[0] == '\0'
19448 || prefix == NULL || prefix[0] == '\0')
19449 sep = "";
19450 else if (cu->language == language_d)
19451 {
19452 /* For D, the 'main' function could be defined in any module, but it
19453 should never be prefixed. */
19454 if (strcmp (suffix, "D main") == 0)
19455 {
19456 prefix = "";
19457 sep = "";
19458 }
19459 else
19460 sep = ".";
19461 }
19462 else if (cu->language == language_fortran && physname)
19463 {
19464 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19465 DW_AT_MIPS_linkage_name is preferred and used instead. */
19466
19467 lead = "__";
19468 sep = "_MOD_";
19469 }
19470 else
19471 sep = "::";
19472
19473 if (prefix == NULL)
19474 prefix = "";
19475 if (suffix == NULL)
19476 suffix = "";
19477
19478 if (obs == NULL)
19479 {
19480 char *retval
19481 = ((char *)
19482 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
19483
19484 strcpy (retval, lead);
19485 strcat (retval, prefix);
19486 strcat (retval, sep);
19487 strcat (retval, suffix);
19488 return retval;
19489 }
19490 else
19491 {
19492 /* We have an obstack. */
19493 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19494 }
19495 }
19496
19497 /* Return sibling of die, NULL if no sibling. */
19498
19499 static struct die_info *
19500 sibling_die (struct die_info *die)
19501 {
19502 return die->sibling;
19503 }
19504
19505 /* Get name of a die, return NULL if not found. */
19506
19507 static const char *
19508 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19509 struct obstack *obstack)
19510 {
19511 if (name && cu->language == language_cplus)
19512 {
19513 std::string canon_name = cp_canonicalize_string (name);
19514
19515 if (!canon_name.empty ())
19516 {
19517 if (canon_name != name)
19518 name = (const char *) obstack_copy0 (obstack,
19519 canon_name.c_str (),
19520 canon_name.length ());
19521 }
19522 }
19523
19524 return name;
19525 }
19526
19527 /* Get name of a die, return NULL if not found.
19528 Anonymous namespaces are converted to their magic string. */
19529
19530 static const char *
19531 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19532 {
19533 struct attribute *attr;
19534
19535 attr = dwarf2_attr (die, DW_AT_name, cu);
19536 if ((!attr || !DW_STRING (attr))
19537 && die->tag != DW_TAG_namespace
19538 && die->tag != DW_TAG_class_type
19539 && die->tag != DW_TAG_interface_type
19540 && die->tag != DW_TAG_structure_type
19541 && die->tag != DW_TAG_union_type)
19542 return NULL;
19543
19544 switch (die->tag)
19545 {
19546 case DW_TAG_compile_unit:
19547 case DW_TAG_partial_unit:
19548 /* Compilation units have a DW_AT_name that is a filename, not
19549 a source language identifier. */
19550 case DW_TAG_enumeration_type:
19551 case DW_TAG_enumerator:
19552 /* These tags always have simple identifiers already; no need
19553 to canonicalize them. */
19554 return DW_STRING (attr);
19555
19556 case DW_TAG_namespace:
19557 if (attr != NULL && DW_STRING (attr) != NULL)
19558 return DW_STRING (attr);
19559 return CP_ANONYMOUS_NAMESPACE_STR;
19560
19561 case DW_TAG_class_type:
19562 case DW_TAG_interface_type:
19563 case DW_TAG_structure_type:
19564 case DW_TAG_union_type:
19565 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19566 structures or unions. These were of the form "._%d" in GCC 4.1,
19567 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19568 and GCC 4.4. We work around this problem by ignoring these. */
19569 if (attr && DW_STRING (attr)
19570 && (startswith (DW_STRING (attr), "._")
19571 || startswith (DW_STRING (attr), "<anonymous")))
19572 return NULL;
19573
19574 /* GCC might emit a nameless typedef that has a linkage name. See
19575 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19576 if (!attr || DW_STRING (attr) == NULL)
19577 {
19578 char *demangled = NULL;
19579
19580 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19581 if (attr == NULL)
19582 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19583
19584 if (attr == NULL || DW_STRING (attr) == NULL)
19585 return NULL;
19586
19587 /* Avoid demangling DW_STRING (attr) the second time on a second
19588 call for the same DIE. */
19589 if (!DW_STRING_IS_CANONICAL (attr))
19590 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19591
19592 if (demangled)
19593 {
19594 const char *base;
19595
19596 /* FIXME: we already did this for the partial symbol... */
19597 DW_STRING (attr)
19598 = ((const char *)
19599 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19600 demangled, strlen (demangled)));
19601 DW_STRING_IS_CANONICAL (attr) = 1;
19602 xfree (demangled);
19603
19604 /* Strip any leading namespaces/classes, keep only the base name.
19605 DW_AT_name for named DIEs does not contain the prefixes. */
19606 base = strrchr (DW_STRING (attr), ':');
19607 if (base && base > DW_STRING (attr) && base[-1] == ':')
19608 return &base[1];
19609 else
19610 return DW_STRING (attr);
19611 }
19612 }
19613 break;
19614
19615 default:
19616 break;
19617 }
19618
19619 if (!DW_STRING_IS_CANONICAL (attr))
19620 {
19621 DW_STRING (attr)
19622 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19623 &cu->objfile->per_bfd->storage_obstack);
19624 DW_STRING_IS_CANONICAL (attr) = 1;
19625 }
19626 return DW_STRING (attr);
19627 }
19628
19629 /* Return the die that this die in an extension of, or NULL if there
19630 is none. *EXT_CU is the CU containing DIE on input, and the CU
19631 containing the return value on output. */
19632
19633 static struct die_info *
19634 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19635 {
19636 struct attribute *attr;
19637
19638 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19639 if (attr == NULL)
19640 return NULL;
19641
19642 return follow_die_ref (die, attr, ext_cu);
19643 }
19644
19645 /* Convert a DIE tag into its string name. */
19646
19647 static const char *
19648 dwarf_tag_name (unsigned tag)
19649 {
19650 const char *name = get_DW_TAG_name (tag);
19651
19652 if (name == NULL)
19653 return "DW_TAG_<unknown>";
19654
19655 return name;
19656 }
19657
19658 /* Convert a DWARF attribute code into its string name. */
19659
19660 static const char *
19661 dwarf_attr_name (unsigned attr)
19662 {
19663 const char *name;
19664
19665 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19666 if (attr == DW_AT_MIPS_fde)
19667 return "DW_AT_MIPS_fde";
19668 #else
19669 if (attr == DW_AT_HP_block_index)
19670 return "DW_AT_HP_block_index";
19671 #endif
19672
19673 name = get_DW_AT_name (attr);
19674
19675 if (name == NULL)
19676 return "DW_AT_<unknown>";
19677
19678 return name;
19679 }
19680
19681 /* Convert a DWARF value form code into its string name. */
19682
19683 static const char *
19684 dwarf_form_name (unsigned form)
19685 {
19686 const char *name = get_DW_FORM_name (form);
19687
19688 if (name == NULL)
19689 return "DW_FORM_<unknown>";
19690
19691 return name;
19692 }
19693
19694 static char *
19695 dwarf_bool_name (unsigned mybool)
19696 {
19697 if (mybool)
19698 return "TRUE";
19699 else
19700 return "FALSE";
19701 }
19702
19703 /* Convert a DWARF type code into its string name. */
19704
19705 static const char *
19706 dwarf_type_encoding_name (unsigned enc)
19707 {
19708 const char *name = get_DW_ATE_name (enc);
19709
19710 if (name == NULL)
19711 return "DW_ATE_<unknown>";
19712
19713 return name;
19714 }
19715
19716 static void
19717 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19718 {
19719 unsigned int i;
19720
19721 print_spaces (indent, f);
19722 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19723 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19724
19725 if (die->parent != NULL)
19726 {
19727 print_spaces (indent, f);
19728 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19729 die->parent->offset.sect_off);
19730 }
19731
19732 print_spaces (indent, f);
19733 fprintf_unfiltered (f, " has children: %s\n",
19734 dwarf_bool_name (die->child != NULL));
19735
19736 print_spaces (indent, f);
19737 fprintf_unfiltered (f, " attributes:\n");
19738
19739 for (i = 0; i < die->num_attrs; ++i)
19740 {
19741 print_spaces (indent, f);
19742 fprintf_unfiltered (f, " %s (%s) ",
19743 dwarf_attr_name (die->attrs[i].name),
19744 dwarf_form_name (die->attrs[i].form));
19745
19746 switch (die->attrs[i].form)
19747 {
19748 case DW_FORM_addr:
19749 case DW_FORM_GNU_addr_index:
19750 fprintf_unfiltered (f, "address: ");
19751 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19752 break;
19753 case DW_FORM_block2:
19754 case DW_FORM_block4:
19755 case DW_FORM_block:
19756 case DW_FORM_block1:
19757 fprintf_unfiltered (f, "block: size %s",
19758 pulongest (DW_BLOCK (&die->attrs[i])->size));
19759 break;
19760 case DW_FORM_exprloc:
19761 fprintf_unfiltered (f, "expression: size %s",
19762 pulongest (DW_BLOCK (&die->attrs[i])->size));
19763 break;
19764 case DW_FORM_ref_addr:
19765 fprintf_unfiltered (f, "ref address: ");
19766 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19767 break;
19768 case DW_FORM_GNU_ref_alt:
19769 fprintf_unfiltered (f, "alt ref address: ");
19770 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19771 break;
19772 case DW_FORM_ref1:
19773 case DW_FORM_ref2:
19774 case DW_FORM_ref4:
19775 case DW_FORM_ref8:
19776 case DW_FORM_ref_udata:
19777 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19778 (long) (DW_UNSND (&die->attrs[i])));
19779 break;
19780 case DW_FORM_data1:
19781 case DW_FORM_data2:
19782 case DW_FORM_data4:
19783 case DW_FORM_data8:
19784 case DW_FORM_udata:
19785 case DW_FORM_sdata:
19786 fprintf_unfiltered (f, "constant: %s",
19787 pulongest (DW_UNSND (&die->attrs[i])));
19788 break;
19789 case DW_FORM_sec_offset:
19790 fprintf_unfiltered (f, "section offset: %s",
19791 pulongest (DW_UNSND (&die->attrs[i])));
19792 break;
19793 case DW_FORM_ref_sig8:
19794 fprintf_unfiltered (f, "signature: %s",
19795 hex_string (DW_SIGNATURE (&die->attrs[i])));
19796 break;
19797 case DW_FORM_string:
19798 case DW_FORM_strp:
19799 case DW_FORM_GNU_str_index:
19800 case DW_FORM_GNU_strp_alt:
19801 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19802 DW_STRING (&die->attrs[i])
19803 ? DW_STRING (&die->attrs[i]) : "",
19804 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19805 break;
19806 case DW_FORM_flag:
19807 if (DW_UNSND (&die->attrs[i]))
19808 fprintf_unfiltered (f, "flag: TRUE");
19809 else
19810 fprintf_unfiltered (f, "flag: FALSE");
19811 break;
19812 case DW_FORM_flag_present:
19813 fprintf_unfiltered (f, "flag: TRUE");
19814 break;
19815 case DW_FORM_indirect:
19816 /* The reader will have reduced the indirect form to
19817 the "base form" so this form should not occur. */
19818 fprintf_unfiltered (f,
19819 "unexpected attribute form: DW_FORM_indirect");
19820 break;
19821 default:
19822 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19823 die->attrs[i].form);
19824 break;
19825 }
19826 fprintf_unfiltered (f, "\n");
19827 }
19828 }
19829
19830 static void
19831 dump_die_for_error (struct die_info *die)
19832 {
19833 dump_die_shallow (gdb_stderr, 0, die);
19834 }
19835
19836 static void
19837 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19838 {
19839 int indent = level * 4;
19840
19841 gdb_assert (die != NULL);
19842
19843 if (level >= max_level)
19844 return;
19845
19846 dump_die_shallow (f, indent, die);
19847
19848 if (die->child != NULL)
19849 {
19850 print_spaces (indent, f);
19851 fprintf_unfiltered (f, " Children:");
19852 if (level + 1 < max_level)
19853 {
19854 fprintf_unfiltered (f, "\n");
19855 dump_die_1 (f, level + 1, max_level, die->child);
19856 }
19857 else
19858 {
19859 fprintf_unfiltered (f,
19860 " [not printed, max nesting level reached]\n");
19861 }
19862 }
19863
19864 if (die->sibling != NULL && level > 0)
19865 {
19866 dump_die_1 (f, level, max_level, die->sibling);
19867 }
19868 }
19869
19870 /* This is called from the pdie macro in gdbinit.in.
19871 It's not static so gcc will keep a copy callable from gdb. */
19872
19873 void
19874 dump_die (struct die_info *die, int max_level)
19875 {
19876 dump_die_1 (gdb_stdlog, 0, max_level, die);
19877 }
19878
19879 static void
19880 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19881 {
19882 void **slot;
19883
19884 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19885 INSERT);
19886
19887 *slot = die;
19888 }
19889
19890 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19891 required kind. */
19892
19893 static sect_offset
19894 dwarf2_get_ref_die_offset (const struct attribute *attr)
19895 {
19896 sect_offset retval = { DW_UNSND (attr) };
19897
19898 if (attr_form_is_ref (attr))
19899 return retval;
19900
19901 retval.sect_off = 0;
19902 complaint (&symfile_complaints,
19903 _("unsupported die ref attribute form: '%s'"),
19904 dwarf_form_name (attr->form));
19905 return retval;
19906 }
19907
19908 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19909 * the value held by the attribute is not constant. */
19910
19911 static LONGEST
19912 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19913 {
19914 if (attr->form == DW_FORM_sdata)
19915 return DW_SND (attr);
19916 else if (attr->form == DW_FORM_udata
19917 || attr->form == DW_FORM_data1
19918 || attr->form == DW_FORM_data2
19919 || attr->form == DW_FORM_data4
19920 || attr->form == DW_FORM_data8)
19921 return DW_UNSND (attr);
19922 else
19923 {
19924 complaint (&symfile_complaints,
19925 _("Attribute value is not a constant (%s)"),
19926 dwarf_form_name (attr->form));
19927 return default_value;
19928 }
19929 }
19930
19931 /* Follow reference or signature attribute ATTR of SRC_DIE.
19932 On entry *REF_CU is the CU of SRC_DIE.
19933 On exit *REF_CU is the CU of the result. */
19934
19935 static struct die_info *
19936 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19937 struct dwarf2_cu **ref_cu)
19938 {
19939 struct die_info *die;
19940
19941 if (attr_form_is_ref (attr))
19942 die = follow_die_ref (src_die, attr, ref_cu);
19943 else if (attr->form == DW_FORM_ref_sig8)
19944 die = follow_die_sig (src_die, attr, ref_cu);
19945 else
19946 {
19947 dump_die_for_error (src_die);
19948 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19949 objfile_name ((*ref_cu)->objfile));
19950 }
19951
19952 return die;
19953 }
19954
19955 /* Follow reference OFFSET.
19956 On entry *REF_CU is the CU of the source die referencing OFFSET.
19957 On exit *REF_CU is the CU of the result.
19958 Returns NULL if OFFSET is invalid. */
19959
19960 static struct die_info *
19961 follow_die_offset (sect_offset offset, int offset_in_dwz,
19962 struct dwarf2_cu **ref_cu)
19963 {
19964 struct die_info temp_die;
19965 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19966
19967 gdb_assert (cu->per_cu != NULL);
19968
19969 target_cu = cu;
19970
19971 if (cu->per_cu->is_debug_types)
19972 {
19973 /* .debug_types CUs cannot reference anything outside their CU.
19974 If they need to, they have to reference a signatured type via
19975 DW_FORM_ref_sig8. */
19976 if (! offset_in_cu_p (&cu->header, offset))
19977 return NULL;
19978 }
19979 else if (offset_in_dwz != cu->per_cu->is_dwz
19980 || ! offset_in_cu_p (&cu->header, offset))
19981 {
19982 struct dwarf2_per_cu_data *per_cu;
19983
19984 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19985 cu->objfile);
19986
19987 /* If necessary, add it to the queue and load its DIEs. */
19988 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19989 load_full_comp_unit (per_cu, cu->language);
19990
19991 target_cu = per_cu->cu;
19992 }
19993 else if (cu->dies == NULL)
19994 {
19995 /* We're loading full DIEs during partial symbol reading. */
19996 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19997 load_full_comp_unit (cu->per_cu, language_minimal);
19998 }
19999
20000 *ref_cu = target_cu;
20001 temp_die.offset = offset;
20002 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20003 &temp_die, offset.sect_off);
20004 }
20005
20006 /* Follow reference attribute ATTR of SRC_DIE.
20007 On entry *REF_CU is the CU of SRC_DIE.
20008 On exit *REF_CU is the CU of the result. */
20009
20010 static struct die_info *
20011 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20012 struct dwarf2_cu **ref_cu)
20013 {
20014 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20015 struct dwarf2_cu *cu = *ref_cu;
20016 struct die_info *die;
20017
20018 die = follow_die_offset (offset,
20019 (attr->form == DW_FORM_GNU_ref_alt
20020 || cu->per_cu->is_dwz),
20021 ref_cu);
20022 if (!die)
20023 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20024 "at 0x%x [in module %s]"),
20025 offset.sect_off, src_die->offset.sect_off,
20026 objfile_name (cu->objfile));
20027
20028 return die;
20029 }
20030
20031 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20032 Returned value is intended for DW_OP_call*. Returned
20033 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20034
20035 struct dwarf2_locexpr_baton
20036 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20037 struct dwarf2_per_cu_data *per_cu,
20038 CORE_ADDR (*get_frame_pc) (void *baton),
20039 void *baton)
20040 {
20041 struct dwarf2_cu *cu;
20042 struct die_info *die;
20043 struct attribute *attr;
20044 struct dwarf2_locexpr_baton retval;
20045
20046 dw2_setup (per_cu->objfile);
20047
20048 if (per_cu->cu == NULL)
20049 load_cu (per_cu);
20050 cu = per_cu->cu;
20051 if (cu == NULL)
20052 {
20053 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20054 Instead just throw an error, not much else we can do. */
20055 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20056 offset.sect_off, objfile_name (per_cu->objfile));
20057 }
20058
20059 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20060 if (!die)
20061 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20062 offset.sect_off, objfile_name (per_cu->objfile));
20063
20064 attr = dwarf2_attr (die, DW_AT_location, cu);
20065 if (!attr)
20066 {
20067 /* DWARF: "If there is no such attribute, then there is no effect.".
20068 DATA is ignored if SIZE is 0. */
20069
20070 retval.data = NULL;
20071 retval.size = 0;
20072 }
20073 else if (attr_form_is_section_offset (attr))
20074 {
20075 struct dwarf2_loclist_baton loclist_baton;
20076 CORE_ADDR pc = (*get_frame_pc) (baton);
20077 size_t size;
20078
20079 fill_in_loclist_baton (cu, &loclist_baton, attr);
20080
20081 retval.data = dwarf2_find_location_expression (&loclist_baton,
20082 &size, pc);
20083 retval.size = size;
20084 }
20085 else
20086 {
20087 if (!attr_form_is_block (attr))
20088 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20089 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20090 offset.sect_off, objfile_name (per_cu->objfile));
20091
20092 retval.data = DW_BLOCK (attr)->data;
20093 retval.size = DW_BLOCK (attr)->size;
20094 }
20095 retval.per_cu = cu->per_cu;
20096
20097 age_cached_comp_units ();
20098
20099 return retval;
20100 }
20101
20102 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20103 offset. */
20104
20105 struct dwarf2_locexpr_baton
20106 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20107 struct dwarf2_per_cu_data *per_cu,
20108 CORE_ADDR (*get_frame_pc) (void *baton),
20109 void *baton)
20110 {
20111 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20112
20113 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20114 }
20115
20116 /* Write a constant of a given type as target-ordered bytes into
20117 OBSTACK. */
20118
20119 static const gdb_byte *
20120 write_constant_as_bytes (struct obstack *obstack,
20121 enum bfd_endian byte_order,
20122 struct type *type,
20123 ULONGEST value,
20124 LONGEST *len)
20125 {
20126 gdb_byte *result;
20127
20128 *len = TYPE_LENGTH (type);
20129 result = (gdb_byte *) obstack_alloc (obstack, *len);
20130 store_unsigned_integer (result, *len, byte_order, value);
20131
20132 return result;
20133 }
20134
20135 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20136 pointer to the constant bytes and set LEN to the length of the
20137 data. If memory is needed, allocate it on OBSTACK. If the DIE
20138 does not have a DW_AT_const_value, return NULL. */
20139
20140 const gdb_byte *
20141 dwarf2_fetch_constant_bytes (sect_offset offset,
20142 struct dwarf2_per_cu_data *per_cu,
20143 struct obstack *obstack,
20144 LONGEST *len)
20145 {
20146 struct dwarf2_cu *cu;
20147 struct die_info *die;
20148 struct attribute *attr;
20149 const gdb_byte *result = NULL;
20150 struct type *type;
20151 LONGEST value;
20152 enum bfd_endian byte_order;
20153
20154 dw2_setup (per_cu->objfile);
20155
20156 if (per_cu->cu == NULL)
20157 load_cu (per_cu);
20158 cu = per_cu->cu;
20159 if (cu == NULL)
20160 {
20161 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20162 Instead just throw an error, not much else we can do. */
20163 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20164 offset.sect_off, objfile_name (per_cu->objfile));
20165 }
20166
20167 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20168 if (!die)
20169 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20170 offset.sect_off, objfile_name (per_cu->objfile));
20171
20172
20173 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20174 if (attr == NULL)
20175 return NULL;
20176
20177 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20178 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20179
20180 switch (attr->form)
20181 {
20182 case DW_FORM_addr:
20183 case DW_FORM_GNU_addr_index:
20184 {
20185 gdb_byte *tem;
20186
20187 *len = cu->header.addr_size;
20188 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20189 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20190 result = tem;
20191 }
20192 break;
20193 case DW_FORM_string:
20194 case DW_FORM_strp:
20195 case DW_FORM_GNU_str_index:
20196 case DW_FORM_GNU_strp_alt:
20197 /* DW_STRING is already allocated on the objfile obstack, point
20198 directly to it. */
20199 result = (const gdb_byte *) DW_STRING (attr);
20200 *len = strlen (DW_STRING (attr));
20201 break;
20202 case DW_FORM_block1:
20203 case DW_FORM_block2:
20204 case DW_FORM_block4:
20205 case DW_FORM_block:
20206 case DW_FORM_exprloc:
20207 result = DW_BLOCK (attr)->data;
20208 *len = DW_BLOCK (attr)->size;
20209 break;
20210
20211 /* The DW_AT_const_value attributes are supposed to carry the
20212 symbol's value "represented as it would be on the target
20213 architecture." By the time we get here, it's already been
20214 converted to host endianness, so we just need to sign- or
20215 zero-extend it as appropriate. */
20216 case DW_FORM_data1:
20217 type = die_type (die, cu);
20218 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20219 if (result == NULL)
20220 result = write_constant_as_bytes (obstack, byte_order,
20221 type, value, len);
20222 break;
20223 case DW_FORM_data2:
20224 type = die_type (die, cu);
20225 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20226 if (result == NULL)
20227 result = write_constant_as_bytes (obstack, byte_order,
20228 type, value, len);
20229 break;
20230 case DW_FORM_data4:
20231 type = die_type (die, cu);
20232 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20233 if (result == NULL)
20234 result = write_constant_as_bytes (obstack, byte_order,
20235 type, value, len);
20236 break;
20237 case DW_FORM_data8:
20238 type = die_type (die, cu);
20239 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20240 if (result == NULL)
20241 result = write_constant_as_bytes (obstack, byte_order,
20242 type, value, len);
20243 break;
20244
20245 case DW_FORM_sdata:
20246 type = die_type (die, cu);
20247 result = write_constant_as_bytes (obstack, byte_order,
20248 type, DW_SND (attr), len);
20249 break;
20250
20251 case DW_FORM_udata:
20252 type = die_type (die, cu);
20253 result = write_constant_as_bytes (obstack, byte_order,
20254 type, DW_UNSND (attr), len);
20255 break;
20256
20257 default:
20258 complaint (&symfile_complaints,
20259 _("unsupported const value attribute form: '%s'"),
20260 dwarf_form_name (attr->form));
20261 break;
20262 }
20263
20264 return result;
20265 }
20266
20267 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20268 PER_CU. */
20269
20270 struct type *
20271 dwarf2_get_die_type (cu_offset die_offset,
20272 struct dwarf2_per_cu_data *per_cu)
20273 {
20274 sect_offset die_offset_sect;
20275
20276 dw2_setup (per_cu->objfile);
20277
20278 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20279 return get_die_type_at_offset (die_offset_sect, per_cu);
20280 }
20281
20282 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20283 On entry *REF_CU is the CU of SRC_DIE.
20284 On exit *REF_CU is the CU of the result.
20285 Returns NULL if the referenced DIE isn't found. */
20286
20287 static struct die_info *
20288 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20289 struct dwarf2_cu **ref_cu)
20290 {
20291 struct die_info temp_die;
20292 struct dwarf2_cu *sig_cu;
20293 struct die_info *die;
20294
20295 /* While it might be nice to assert sig_type->type == NULL here,
20296 we can get here for DW_AT_imported_declaration where we need
20297 the DIE not the type. */
20298
20299 /* If necessary, add it to the queue and load its DIEs. */
20300
20301 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20302 read_signatured_type (sig_type);
20303
20304 sig_cu = sig_type->per_cu.cu;
20305 gdb_assert (sig_cu != NULL);
20306 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20307 temp_die.offset = sig_type->type_offset_in_section;
20308 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20309 temp_die.offset.sect_off);
20310 if (die)
20311 {
20312 /* For .gdb_index version 7 keep track of included TUs.
20313 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20314 if (dwarf2_per_objfile->index_table != NULL
20315 && dwarf2_per_objfile->index_table->version <= 7)
20316 {
20317 VEC_safe_push (dwarf2_per_cu_ptr,
20318 (*ref_cu)->per_cu->imported_symtabs,
20319 sig_cu->per_cu);
20320 }
20321
20322 *ref_cu = sig_cu;
20323 return die;
20324 }
20325
20326 return NULL;
20327 }
20328
20329 /* Follow signatured type referenced by ATTR in SRC_DIE.
20330 On entry *REF_CU is the CU of SRC_DIE.
20331 On exit *REF_CU is the CU of the result.
20332 The result is the DIE of the type.
20333 If the referenced type cannot be found an error is thrown. */
20334
20335 static struct die_info *
20336 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20337 struct dwarf2_cu **ref_cu)
20338 {
20339 ULONGEST signature = DW_SIGNATURE (attr);
20340 struct signatured_type *sig_type;
20341 struct die_info *die;
20342
20343 gdb_assert (attr->form == DW_FORM_ref_sig8);
20344
20345 sig_type = lookup_signatured_type (*ref_cu, signature);
20346 /* sig_type will be NULL if the signatured type is missing from
20347 the debug info. */
20348 if (sig_type == NULL)
20349 {
20350 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20351 " from DIE at 0x%x [in module %s]"),
20352 hex_string (signature), src_die->offset.sect_off,
20353 objfile_name ((*ref_cu)->objfile));
20354 }
20355
20356 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20357 if (die == NULL)
20358 {
20359 dump_die_for_error (src_die);
20360 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20361 " from DIE at 0x%x [in module %s]"),
20362 hex_string (signature), src_die->offset.sect_off,
20363 objfile_name ((*ref_cu)->objfile));
20364 }
20365
20366 return die;
20367 }
20368
20369 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20370 reading in and processing the type unit if necessary. */
20371
20372 static struct type *
20373 get_signatured_type (struct die_info *die, ULONGEST signature,
20374 struct dwarf2_cu *cu)
20375 {
20376 struct signatured_type *sig_type;
20377 struct dwarf2_cu *type_cu;
20378 struct die_info *type_die;
20379 struct type *type;
20380
20381 sig_type = lookup_signatured_type (cu, signature);
20382 /* sig_type will be NULL if the signatured type is missing from
20383 the debug info. */
20384 if (sig_type == NULL)
20385 {
20386 complaint (&symfile_complaints,
20387 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20388 " from DIE at 0x%x [in module %s]"),
20389 hex_string (signature), die->offset.sect_off,
20390 objfile_name (dwarf2_per_objfile->objfile));
20391 return build_error_marker_type (cu, die);
20392 }
20393
20394 /* If we already know the type we're done. */
20395 if (sig_type->type != NULL)
20396 return sig_type->type;
20397
20398 type_cu = cu;
20399 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20400 if (type_die != NULL)
20401 {
20402 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20403 is created. This is important, for example, because for c++ classes
20404 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20405 type = read_type_die (type_die, type_cu);
20406 if (type == NULL)
20407 {
20408 complaint (&symfile_complaints,
20409 _("Dwarf Error: Cannot build signatured type %s"
20410 " referenced from DIE at 0x%x [in module %s]"),
20411 hex_string (signature), die->offset.sect_off,
20412 objfile_name (dwarf2_per_objfile->objfile));
20413 type = build_error_marker_type (cu, die);
20414 }
20415 }
20416 else
20417 {
20418 complaint (&symfile_complaints,
20419 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20420 " from DIE at 0x%x [in module %s]"),
20421 hex_string (signature), die->offset.sect_off,
20422 objfile_name (dwarf2_per_objfile->objfile));
20423 type = build_error_marker_type (cu, die);
20424 }
20425 sig_type->type = type;
20426
20427 return type;
20428 }
20429
20430 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20431 reading in and processing the type unit if necessary. */
20432
20433 static struct type *
20434 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20435 struct dwarf2_cu *cu) /* ARI: editCase function */
20436 {
20437 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20438 if (attr_form_is_ref (attr))
20439 {
20440 struct dwarf2_cu *type_cu = cu;
20441 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20442
20443 return read_type_die (type_die, type_cu);
20444 }
20445 else if (attr->form == DW_FORM_ref_sig8)
20446 {
20447 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20448 }
20449 else
20450 {
20451 complaint (&symfile_complaints,
20452 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20453 " at 0x%x [in module %s]"),
20454 dwarf_form_name (attr->form), die->offset.sect_off,
20455 objfile_name (dwarf2_per_objfile->objfile));
20456 return build_error_marker_type (cu, die);
20457 }
20458 }
20459
20460 /* Load the DIEs associated with type unit PER_CU into memory. */
20461
20462 static void
20463 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20464 {
20465 struct signatured_type *sig_type;
20466
20467 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20468 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20469
20470 /* We have the per_cu, but we need the signatured_type.
20471 Fortunately this is an easy translation. */
20472 gdb_assert (per_cu->is_debug_types);
20473 sig_type = (struct signatured_type *) per_cu;
20474
20475 gdb_assert (per_cu->cu == NULL);
20476
20477 read_signatured_type (sig_type);
20478
20479 gdb_assert (per_cu->cu != NULL);
20480 }
20481
20482 /* die_reader_func for read_signatured_type.
20483 This is identical to load_full_comp_unit_reader,
20484 but is kept separate for now. */
20485
20486 static void
20487 read_signatured_type_reader (const struct die_reader_specs *reader,
20488 const gdb_byte *info_ptr,
20489 struct die_info *comp_unit_die,
20490 int has_children,
20491 void *data)
20492 {
20493 struct dwarf2_cu *cu = reader->cu;
20494
20495 gdb_assert (cu->die_hash == NULL);
20496 cu->die_hash =
20497 htab_create_alloc_ex (cu->header.length / 12,
20498 die_hash,
20499 die_eq,
20500 NULL,
20501 &cu->comp_unit_obstack,
20502 hashtab_obstack_allocate,
20503 dummy_obstack_deallocate);
20504
20505 if (has_children)
20506 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20507 &info_ptr, comp_unit_die);
20508 cu->dies = comp_unit_die;
20509 /* comp_unit_die is not stored in die_hash, no need. */
20510
20511 /* We try not to read any attributes in this function, because not
20512 all CUs needed for references have been loaded yet, and symbol
20513 table processing isn't initialized. But we have to set the CU language,
20514 or we won't be able to build types correctly.
20515 Similarly, if we do not read the producer, we can not apply
20516 producer-specific interpretation. */
20517 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20518 }
20519
20520 /* Read in a signatured type and build its CU and DIEs.
20521 If the type is a stub for the real type in a DWO file,
20522 read in the real type from the DWO file as well. */
20523
20524 static void
20525 read_signatured_type (struct signatured_type *sig_type)
20526 {
20527 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20528
20529 gdb_assert (per_cu->is_debug_types);
20530 gdb_assert (per_cu->cu == NULL);
20531
20532 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20533 read_signatured_type_reader, NULL);
20534 sig_type->per_cu.tu_read = 1;
20535 }
20536
20537 /* Decode simple location descriptions.
20538 Given a pointer to a dwarf block that defines a location, compute
20539 the location and return the value.
20540
20541 NOTE drow/2003-11-18: This function is called in two situations
20542 now: for the address of static or global variables (partial symbols
20543 only) and for offsets into structures which are expected to be
20544 (more or less) constant. The partial symbol case should go away,
20545 and only the constant case should remain. That will let this
20546 function complain more accurately. A few special modes are allowed
20547 without complaint for global variables (for instance, global
20548 register values and thread-local values).
20549
20550 A location description containing no operations indicates that the
20551 object is optimized out. The return value is 0 for that case.
20552 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20553 callers will only want a very basic result and this can become a
20554 complaint.
20555
20556 Note that stack[0] is unused except as a default error return. */
20557
20558 static CORE_ADDR
20559 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20560 {
20561 struct objfile *objfile = cu->objfile;
20562 size_t i;
20563 size_t size = blk->size;
20564 const gdb_byte *data = blk->data;
20565 CORE_ADDR stack[64];
20566 int stacki;
20567 unsigned int bytes_read, unsnd;
20568 gdb_byte op;
20569
20570 i = 0;
20571 stacki = 0;
20572 stack[stacki] = 0;
20573 stack[++stacki] = 0;
20574
20575 while (i < size)
20576 {
20577 op = data[i++];
20578 switch (op)
20579 {
20580 case DW_OP_lit0:
20581 case DW_OP_lit1:
20582 case DW_OP_lit2:
20583 case DW_OP_lit3:
20584 case DW_OP_lit4:
20585 case DW_OP_lit5:
20586 case DW_OP_lit6:
20587 case DW_OP_lit7:
20588 case DW_OP_lit8:
20589 case DW_OP_lit9:
20590 case DW_OP_lit10:
20591 case DW_OP_lit11:
20592 case DW_OP_lit12:
20593 case DW_OP_lit13:
20594 case DW_OP_lit14:
20595 case DW_OP_lit15:
20596 case DW_OP_lit16:
20597 case DW_OP_lit17:
20598 case DW_OP_lit18:
20599 case DW_OP_lit19:
20600 case DW_OP_lit20:
20601 case DW_OP_lit21:
20602 case DW_OP_lit22:
20603 case DW_OP_lit23:
20604 case DW_OP_lit24:
20605 case DW_OP_lit25:
20606 case DW_OP_lit26:
20607 case DW_OP_lit27:
20608 case DW_OP_lit28:
20609 case DW_OP_lit29:
20610 case DW_OP_lit30:
20611 case DW_OP_lit31:
20612 stack[++stacki] = op - DW_OP_lit0;
20613 break;
20614
20615 case DW_OP_reg0:
20616 case DW_OP_reg1:
20617 case DW_OP_reg2:
20618 case DW_OP_reg3:
20619 case DW_OP_reg4:
20620 case DW_OP_reg5:
20621 case DW_OP_reg6:
20622 case DW_OP_reg7:
20623 case DW_OP_reg8:
20624 case DW_OP_reg9:
20625 case DW_OP_reg10:
20626 case DW_OP_reg11:
20627 case DW_OP_reg12:
20628 case DW_OP_reg13:
20629 case DW_OP_reg14:
20630 case DW_OP_reg15:
20631 case DW_OP_reg16:
20632 case DW_OP_reg17:
20633 case DW_OP_reg18:
20634 case DW_OP_reg19:
20635 case DW_OP_reg20:
20636 case DW_OP_reg21:
20637 case DW_OP_reg22:
20638 case DW_OP_reg23:
20639 case DW_OP_reg24:
20640 case DW_OP_reg25:
20641 case DW_OP_reg26:
20642 case DW_OP_reg27:
20643 case DW_OP_reg28:
20644 case DW_OP_reg29:
20645 case DW_OP_reg30:
20646 case DW_OP_reg31:
20647 stack[++stacki] = op - DW_OP_reg0;
20648 if (i < size)
20649 dwarf2_complex_location_expr_complaint ();
20650 break;
20651
20652 case DW_OP_regx:
20653 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20654 i += bytes_read;
20655 stack[++stacki] = unsnd;
20656 if (i < size)
20657 dwarf2_complex_location_expr_complaint ();
20658 break;
20659
20660 case DW_OP_addr:
20661 stack[++stacki] = read_address (objfile->obfd, &data[i],
20662 cu, &bytes_read);
20663 i += bytes_read;
20664 break;
20665
20666 case DW_OP_const1u:
20667 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20668 i += 1;
20669 break;
20670
20671 case DW_OP_const1s:
20672 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20673 i += 1;
20674 break;
20675
20676 case DW_OP_const2u:
20677 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20678 i += 2;
20679 break;
20680
20681 case DW_OP_const2s:
20682 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20683 i += 2;
20684 break;
20685
20686 case DW_OP_const4u:
20687 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20688 i += 4;
20689 break;
20690
20691 case DW_OP_const4s:
20692 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20693 i += 4;
20694 break;
20695
20696 case DW_OP_const8u:
20697 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20698 i += 8;
20699 break;
20700
20701 case DW_OP_constu:
20702 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20703 &bytes_read);
20704 i += bytes_read;
20705 break;
20706
20707 case DW_OP_consts:
20708 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20709 i += bytes_read;
20710 break;
20711
20712 case DW_OP_dup:
20713 stack[stacki + 1] = stack[stacki];
20714 stacki++;
20715 break;
20716
20717 case DW_OP_plus:
20718 stack[stacki - 1] += stack[stacki];
20719 stacki--;
20720 break;
20721
20722 case DW_OP_plus_uconst:
20723 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20724 &bytes_read);
20725 i += bytes_read;
20726 break;
20727
20728 case DW_OP_minus:
20729 stack[stacki - 1] -= stack[stacki];
20730 stacki--;
20731 break;
20732
20733 case DW_OP_deref:
20734 /* If we're not the last op, then we definitely can't encode
20735 this using GDB's address_class enum. This is valid for partial
20736 global symbols, although the variable's address will be bogus
20737 in the psymtab. */
20738 if (i < size)
20739 dwarf2_complex_location_expr_complaint ();
20740 break;
20741
20742 case DW_OP_GNU_push_tls_address:
20743 case DW_OP_form_tls_address:
20744 /* The top of the stack has the offset from the beginning
20745 of the thread control block at which the variable is located. */
20746 /* Nothing should follow this operator, so the top of stack would
20747 be returned. */
20748 /* This is valid for partial global symbols, but the variable's
20749 address will be bogus in the psymtab. Make it always at least
20750 non-zero to not look as a variable garbage collected by linker
20751 which have DW_OP_addr 0. */
20752 if (i < size)
20753 dwarf2_complex_location_expr_complaint ();
20754 stack[stacki]++;
20755 break;
20756
20757 case DW_OP_GNU_uninit:
20758 break;
20759
20760 case DW_OP_GNU_addr_index:
20761 case DW_OP_GNU_const_index:
20762 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20763 &bytes_read);
20764 i += bytes_read;
20765 break;
20766
20767 default:
20768 {
20769 const char *name = get_DW_OP_name (op);
20770
20771 if (name)
20772 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20773 name);
20774 else
20775 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20776 op);
20777 }
20778
20779 return (stack[stacki]);
20780 }
20781
20782 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20783 outside of the allocated space. Also enforce minimum>0. */
20784 if (stacki >= ARRAY_SIZE (stack) - 1)
20785 {
20786 complaint (&symfile_complaints,
20787 _("location description stack overflow"));
20788 return 0;
20789 }
20790
20791 if (stacki <= 0)
20792 {
20793 complaint (&symfile_complaints,
20794 _("location description stack underflow"));
20795 return 0;
20796 }
20797 }
20798 return (stack[stacki]);
20799 }
20800
20801 /* memory allocation interface */
20802
20803 static struct dwarf_block *
20804 dwarf_alloc_block (struct dwarf2_cu *cu)
20805 {
20806 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
20807 }
20808
20809 static struct die_info *
20810 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20811 {
20812 struct die_info *die;
20813 size_t size = sizeof (struct die_info);
20814
20815 if (num_attrs > 1)
20816 size += (num_attrs - 1) * sizeof (struct attribute);
20817
20818 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20819 memset (die, 0, sizeof (struct die_info));
20820 return (die);
20821 }
20822
20823 \f
20824 /* Macro support. */
20825
20826 /* Return file name relative to the compilation directory of file number I in
20827 *LH's file name table. The result is allocated using xmalloc; the caller is
20828 responsible for freeing it. */
20829
20830 static char *
20831 file_file_name (int file, struct line_header *lh)
20832 {
20833 /* Is the file number a valid index into the line header's file name
20834 table? Remember that file numbers start with one, not zero. */
20835 if (1 <= file && file <= lh->num_file_names)
20836 {
20837 struct file_entry *fe = &lh->file_names[file - 1];
20838
20839 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20840 || lh->include_dirs == NULL)
20841 return xstrdup (fe->name);
20842 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20843 fe->name, (char *) NULL);
20844 }
20845 else
20846 {
20847 /* The compiler produced a bogus file number. We can at least
20848 record the macro definitions made in the file, even if we
20849 won't be able to find the file by name. */
20850 char fake_name[80];
20851
20852 xsnprintf (fake_name, sizeof (fake_name),
20853 "<bad macro file number %d>", file);
20854
20855 complaint (&symfile_complaints,
20856 _("bad file number in macro information (%d)"),
20857 file);
20858
20859 return xstrdup (fake_name);
20860 }
20861 }
20862
20863 /* Return the full name of file number I in *LH's file name table.
20864 Use COMP_DIR as the name of the current directory of the
20865 compilation. The result is allocated using xmalloc; the caller is
20866 responsible for freeing it. */
20867 static char *
20868 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20869 {
20870 /* Is the file number a valid index into the line header's file name
20871 table? Remember that file numbers start with one, not zero. */
20872 if (1 <= file && file <= lh->num_file_names)
20873 {
20874 char *relative = file_file_name (file, lh);
20875
20876 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20877 return relative;
20878 return reconcat (relative, comp_dir, SLASH_STRING,
20879 relative, (char *) NULL);
20880 }
20881 else
20882 return file_file_name (file, lh);
20883 }
20884
20885
20886 static struct macro_source_file *
20887 macro_start_file (int file, int line,
20888 struct macro_source_file *current_file,
20889 struct line_header *lh)
20890 {
20891 /* File name relative to the compilation directory of this source file. */
20892 char *file_name = file_file_name (file, lh);
20893
20894 if (! current_file)
20895 {
20896 /* Note: We don't create a macro table for this compilation unit
20897 at all until we actually get a filename. */
20898 struct macro_table *macro_table = get_macro_table ();
20899
20900 /* If we have no current file, then this must be the start_file
20901 directive for the compilation unit's main source file. */
20902 current_file = macro_set_main (macro_table, file_name);
20903 macro_define_special (macro_table);
20904 }
20905 else
20906 current_file = macro_include (current_file, line, file_name);
20907
20908 xfree (file_name);
20909
20910 return current_file;
20911 }
20912
20913
20914 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20915 followed by a null byte. */
20916 static char *
20917 copy_string (const char *buf, int len)
20918 {
20919 char *s = (char *) xmalloc (len + 1);
20920
20921 memcpy (s, buf, len);
20922 s[len] = '\0';
20923 return s;
20924 }
20925
20926
20927 static const char *
20928 consume_improper_spaces (const char *p, const char *body)
20929 {
20930 if (*p == ' ')
20931 {
20932 complaint (&symfile_complaints,
20933 _("macro definition contains spaces "
20934 "in formal argument list:\n`%s'"),
20935 body);
20936
20937 while (*p == ' ')
20938 p++;
20939 }
20940
20941 return p;
20942 }
20943
20944
20945 static void
20946 parse_macro_definition (struct macro_source_file *file, int line,
20947 const char *body)
20948 {
20949 const char *p;
20950
20951 /* The body string takes one of two forms. For object-like macro
20952 definitions, it should be:
20953
20954 <macro name> " " <definition>
20955
20956 For function-like macro definitions, it should be:
20957
20958 <macro name> "() " <definition>
20959 or
20960 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20961
20962 Spaces may appear only where explicitly indicated, and in the
20963 <definition>.
20964
20965 The Dwarf 2 spec says that an object-like macro's name is always
20966 followed by a space, but versions of GCC around March 2002 omit
20967 the space when the macro's definition is the empty string.
20968
20969 The Dwarf 2 spec says that there should be no spaces between the
20970 formal arguments in a function-like macro's formal argument list,
20971 but versions of GCC around March 2002 include spaces after the
20972 commas. */
20973
20974
20975 /* Find the extent of the macro name. The macro name is terminated
20976 by either a space or null character (for an object-like macro) or
20977 an opening paren (for a function-like macro). */
20978 for (p = body; *p; p++)
20979 if (*p == ' ' || *p == '(')
20980 break;
20981
20982 if (*p == ' ' || *p == '\0')
20983 {
20984 /* It's an object-like macro. */
20985 int name_len = p - body;
20986 char *name = copy_string (body, name_len);
20987 const char *replacement;
20988
20989 if (*p == ' ')
20990 replacement = body + name_len + 1;
20991 else
20992 {
20993 dwarf2_macro_malformed_definition_complaint (body);
20994 replacement = body + name_len;
20995 }
20996
20997 macro_define_object (file, line, name, replacement);
20998
20999 xfree (name);
21000 }
21001 else if (*p == '(')
21002 {
21003 /* It's a function-like macro. */
21004 char *name = copy_string (body, p - body);
21005 int argc = 0;
21006 int argv_size = 1;
21007 char **argv = XNEWVEC (char *, argv_size);
21008
21009 p++;
21010
21011 p = consume_improper_spaces (p, body);
21012
21013 /* Parse the formal argument list. */
21014 while (*p && *p != ')')
21015 {
21016 /* Find the extent of the current argument name. */
21017 const char *arg_start = p;
21018
21019 while (*p && *p != ',' && *p != ')' && *p != ' ')
21020 p++;
21021
21022 if (! *p || p == arg_start)
21023 dwarf2_macro_malformed_definition_complaint (body);
21024 else
21025 {
21026 /* Make sure argv has room for the new argument. */
21027 if (argc >= argv_size)
21028 {
21029 argv_size *= 2;
21030 argv = XRESIZEVEC (char *, argv, argv_size);
21031 }
21032
21033 argv[argc++] = copy_string (arg_start, p - arg_start);
21034 }
21035
21036 p = consume_improper_spaces (p, body);
21037
21038 /* Consume the comma, if present. */
21039 if (*p == ',')
21040 {
21041 p++;
21042
21043 p = consume_improper_spaces (p, body);
21044 }
21045 }
21046
21047 if (*p == ')')
21048 {
21049 p++;
21050
21051 if (*p == ' ')
21052 /* Perfectly formed definition, no complaints. */
21053 macro_define_function (file, line, name,
21054 argc, (const char **) argv,
21055 p + 1);
21056 else if (*p == '\0')
21057 {
21058 /* Complain, but do define it. */
21059 dwarf2_macro_malformed_definition_complaint (body);
21060 macro_define_function (file, line, name,
21061 argc, (const char **) argv,
21062 p);
21063 }
21064 else
21065 /* Just complain. */
21066 dwarf2_macro_malformed_definition_complaint (body);
21067 }
21068 else
21069 /* Just complain. */
21070 dwarf2_macro_malformed_definition_complaint (body);
21071
21072 xfree (name);
21073 {
21074 int i;
21075
21076 for (i = 0; i < argc; i++)
21077 xfree (argv[i]);
21078 }
21079 xfree (argv);
21080 }
21081 else
21082 dwarf2_macro_malformed_definition_complaint (body);
21083 }
21084
21085 /* Skip some bytes from BYTES according to the form given in FORM.
21086 Returns the new pointer. */
21087
21088 static const gdb_byte *
21089 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21090 enum dwarf_form form,
21091 unsigned int offset_size,
21092 struct dwarf2_section_info *section)
21093 {
21094 unsigned int bytes_read;
21095
21096 switch (form)
21097 {
21098 case DW_FORM_data1:
21099 case DW_FORM_flag:
21100 ++bytes;
21101 break;
21102
21103 case DW_FORM_data2:
21104 bytes += 2;
21105 break;
21106
21107 case DW_FORM_data4:
21108 bytes += 4;
21109 break;
21110
21111 case DW_FORM_data8:
21112 bytes += 8;
21113 break;
21114
21115 case DW_FORM_string:
21116 read_direct_string (abfd, bytes, &bytes_read);
21117 bytes += bytes_read;
21118 break;
21119
21120 case DW_FORM_sec_offset:
21121 case DW_FORM_strp:
21122 case DW_FORM_GNU_strp_alt:
21123 bytes += offset_size;
21124 break;
21125
21126 case DW_FORM_block:
21127 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21128 bytes += bytes_read;
21129 break;
21130
21131 case DW_FORM_block1:
21132 bytes += 1 + read_1_byte (abfd, bytes);
21133 break;
21134 case DW_FORM_block2:
21135 bytes += 2 + read_2_bytes (abfd, bytes);
21136 break;
21137 case DW_FORM_block4:
21138 bytes += 4 + read_4_bytes (abfd, bytes);
21139 break;
21140
21141 case DW_FORM_sdata:
21142 case DW_FORM_udata:
21143 case DW_FORM_GNU_addr_index:
21144 case DW_FORM_GNU_str_index:
21145 bytes = gdb_skip_leb128 (bytes, buffer_end);
21146 if (bytes == NULL)
21147 {
21148 dwarf2_section_buffer_overflow_complaint (section);
21149 return NULL;
21150 }
21151 break;
21152
21153 default:
21154 {
21155 complain:
21156 complaint (&symfile_complaints,
21157 _("invalid form 0x%x in `%s'"),
21158 form, get_section_name (section));
21159 return NULL;
21160 }
21161 }
21162
21163 return bytes;
21164 }
21165
21166 /* A helper for dwarf_decode_macros that handles skipping an unknown
21167 opcode. Returns an updated pointer to the macro data buffer; or,
21168 on error, issues a complaint and returns NULL. */
21169
21170 static const gdb_byte *
21171 skip_unknown_opcode (unsigned int opcode,
21172 const gdb_byte **opcode_definitions,
21173 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21174 bfd *abfd,
21175 unsigned int offset_size,
21176 struct dwarf2_section_info *section)
21177 {
21178 unsigned int bytes_read, i;
21179 unsigned long arg;
21180 const gdb_byte *defn;
21181
21182 if (opcode_definitions[opcode] == NULL)
21183 {
21184 complaint (&symfile_complaints,
21185 _("unrecognized DW_MACFINO opcode 0x%x"),
21186 opcode);
21187 return NULL;
21188 }
21189
21190 defn = opcode_definitions[opcode];
21191 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21192 defn += bytes_read;
21193
21194 for (i = 0; i < arg; ++i)
21195 {
21196 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21197 (enum dwarf_form) defn[i], offset_size,
21198 section);
21199 if (mac_ptr == NULL)
21200 {
21201 /* skip_form_bytes already issued the complaint. */
21202 return NULL;
21203 }
21204 }
21205
21206 return mac_ptr;
21207 }
21208
21209 /* A helper function which parses the header of a macro section.
21210 If the macro section is the extended (for now called "GNU") type,
21211 then this updates *OFFSET_SIZE. Returns a pointer to just after
21212 the header, or issues a complaint and returns NULL on error. */
21213
21214 static const gdb_byte *
21215 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21216 bfd *abfd,
21217 const gdb_byte *mac_ptr,
21218 unsigned int *offset_size,
21219 int section_is_gnu)
21220 {
21221 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21222
21223 if (section_is_gnu)
21224 {
21225 unsigned int version, flags;
21226
21227 version = read_2_bytes (abfd, mac_ptr);
21228 if (version != 4)
21229 {
21230 complaint (&symfile_complaints,
21231 _("unrecognized version `%d' in .debug_macro section"),
21232 version);
21233 return NULL;
21234 }
21235 mac_ptr += 2;
21236
21237 flags = read_1_byte (abfd, mac_ptr);
21238 ++mac_ptr;
21239 *offset_size = (flags & 1) ? 8 : 4;
21240
21241 if ((flags & 2) != 0)
21242 /* We don't need the line table offset. */
21243 mac_ptr += *offset_size;
21244
21245 /* Vendor opcode descriptions. */
21246 if ((flags & 4) != 0)
21247 {
21248 unsigned int i, count;
21249
21250 count = read_1_byte (abfd, mac_ptr);
21251 ++mac_ptr;
21252 for (i = 0; i < count; ++i)
21253 {
21254 unsigned int opcode, bytes_read;
21255 unsigned long arg;
21256
21257 opcode = read_1_byte (abfd, mac_ptr);
21258 ++mac_ptr;
21259 opcode_definitions[opcode] = mac_ptr;
21260 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21261 mac_ptr += bytes_read;
21262 mac_ptr += arg;
21263 }
21264 }
21265 }
21266
21267 return mac_ptr;
21268 }
21269
21270 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21271 including DW_MACRO_GNU_transparent_include. */
21272
21273 static void
21274 dwarf_decode_macro_bytes (bfd *abfd,
21275 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21276 struct macro_source_file *current_file,
21277 struct line_header *lh,
21278 struct dwarf2_section_info *section,
21279 int section_is_gnu, int section_is_dwz,
21280 unsigned int offset_size,
21281 htab_t include_hash)
21282 {
21283 struct objfile *objfile = dwarf2_per_objfile->objfile;
21284 enum dwarf_macro_record_type macinfo_type;
21285 int at_commandline;
21286 const gdb_byte *opcode_definitions[256];
21287
21288 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21289 &offset_size, section_is_gnu);
21290 if (mac_ptr == NULL)
21291 {
21292 /* We already issued a complaint. */
21293 return;
21294 }
21295
21296 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21297 GDB is still reading the definitions from command line. First
21298 DW_MACINFO_start_file will need to be ignored as it was already executed
21299 to create CURRENT_FILE for the main source holding also the command line
21300 definitions. On first met DW_MACINFO_start_file this flag is reset to
21301 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21302
21303 at_commandline = 1;
21304
21305 do
21306 {
21307 /* Do we at least have room for a macinfo type byte? */
21308 if (mac_ptr >= mac_end)
21309 {
21310 dwarf2_section_buffer_overflow_complaint (section);
21311 break;
21312 }
21313
21314 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21315 mac_ptr++;
21316
21317 /* Note that we rely on the fact that the corresponding GNU and
21318 DWARF constants are the same. */
21319 switch (macinfo_type)
21320 {
21321 /* A zero macinfo type indicates the end of the macro
21322 information. */
21323 case 0:
21324 break;
21325
21326 case DW_MACRO_GNU_define:
21327 case DW_MACRO_GNU_undef:
21328 case DW_MACRO_GNU_define_indirect:
21329 case DW_MACRO_GNU_undef_indirect:
21330 case DW_MACRO_GNU_define_indirect_alt:
21331 case DW_MACRO_GNU_undef_indirect_alt:
21332 {
21333 unsigned int bytes_read;
21334 int line;
21335 const char *body;
21336 int is_define;
21337
21338 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21339 mac_ptr += bytes_read;
21340
21341 if (macinfo_type == DW_MACRO_GNU_define
21342 || macinfo_type == DW_MACRO_GNU_undef)
21343 {
21344 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21345 mac_ptr += bytes_read;
21346 }
21347 else
21348 {
21349 LONGEST str_offset;
21350
21351 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21352 mac_ptr += offset_size;
21353
21354 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21355 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21356 || section_is_dwz)
21357 {
21358 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21359
21360 body = read_indirect_string_from_dwz (dwz, str_offset);
21361 }
21362 else
21363 body = read_indirect_string_at_offset (abfd, str_offset);
21364 }
21365
21366 is_define = (macinfo_type == DW_MACRO_GNU_define
21367 || macinfo_type == DW_MACRO_GNU_define_indirect
21368 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21369 if (! current_file)
21370 {
21371 /* DWARF violation as no main source is present. */
21372 complaint (&symfile_complaints,
21373 _("debug info with no main source gives macro %s "
21374 "on line %d: %s"),
21375 is_define ? _("definition") : _("undefinition"),
21376 line, body);
21377 break;
21378 }
21379 if ((line == 0 && !at_commandline)
21380 || (line != 0 && at_commandline))
21381 complaint (&symfile_complaints,
21382 _("debug info gives %s macro %s with %s line %d: %s"),
21383 at_commandline ? _("command-line") : _("in-file"),
21384 is_define ? _("definition") : _("undefinition"),
21385 line == 0 ? _("zero") : _("non-zero"), line, body);
21386
21387 if (is_define)
21388 parse_macro_definition (current_file, line, body);
21389 else
21390 {
21391 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21392 || macinfo_type == DW_MACRO_GNU_undef_indirect
21393 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21394 macro_undef (current_file, line, body);
21395 }
21396 }
21397 break;
21398
21399 case DW_MACRO_GNU_start_file:
21400 {
21401 unsigned int bytes_read;
21402 int line, file;
21403
21404 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21405 mac_ptr += bytes_read;
21406 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21407 mac_ptr += bytes_read;
21408
21409 if ((line == 0 && !at_commandline)
21410 || (line != 0 && at_commandline))
21411 complaint (&symfile_complaints,
21412 _("debug info gives source %d included "
21413 "from %s at %s line %d"),
21414 file, at_commandline ? _("command-line") : _("file"),
21415 line == 0 ? _("zero") : _("non-zero"), line);
21416
21417 if (at_commandline)
21418 {
21419 /* This DW_MACRO_GNU_start_file was executed in the
21420 pass one. */
21421 at_commandline = 0;
21422 }
21423 else
21424 current_file = macro_start_file (file, line, current_file, lh);
21425 }
21426 break;
21427
21428 case DW_MACRO_GNU_end_file:
21429 if (! current_file)
21430 complaint (&symfile_complaints,
21431 _("macro debug info has an unmatched "
21432 "`close_file' directive"));
21433 else
21434 {
21435 current_file = current_file->included_by;
21436 if (! current_file)
21437 {
21438 enum dwarf_macro_record_type next_type;
21439
21440 /* GCC circa March 2002 doesn't produce the zero
21441 type byte marking the end of the compilation
21442 unit. Complain if it's not there, but exit no
21443 matter what. */
21444
21445 /* Do we at least have room for a macinfo type byte? */
21446 if (mac_ptr >= mac_end)
21447 {
21448 dwarf2_section_buffer_overflow_complaint (section);
21449 return;
21450 }
21451
21452 /* We don't increment mac_ptr here, so this is just
21453 a look-ahead. */
21454 next_type
21455 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21456 mac_ptr);
21457 if (next_type != 0)
21458 complaint (&symfile_complaints,
21459 _("no terminating 0-type entry for "
21460 "macros in `.debug_macinfo' section"));
21461
21462 return;
21463 }
21464 }
21465 break;
21466
21467 case DW_MACRO_GNU_transparent_include:
21468 case DW_MACRO_GNU_transparent_include_alt:
21469 {
21470 LONGEST offset;
21471 void **slot;
21472 bfd *include_bfd = abfd;
21473 struct dwarf2_section_info *include_section = section;
21474 const gdb_byte *include_mac_end = mac_end;
21475 int is_dwz = section_is_dwz;
21476 const gdb_byte *new_mac_ptr;
21477
21478 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21479 mac_ptr += offset_size;
21480
21481 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21482 {
21483 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21484
21485 dwarf2_read_section (objfile, &dwz->macro);
21486
21487 include_section = &dwz->macro;
21488 include_bfd = get_section_bfd_owner (include_section);
21489 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21490 is_dwz = 1;
21491 }
21492
21493 new_mac_ptr = include_section->buffer + offset;
21494 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21495
21496 if (*slot != NULL)
21497 {
21498 /* This has actually happened; see
21499 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21500 complaint (&symfile_complaints,
21501 _("recursive DW_MACRO_GNU_transparent_include in "
21502 ".debug_macro section"));
21503 }
21504 else
21505 {
21506 *slot = (void *) new_mac_ptr;
21507
21508 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21509 include_mac_end, current_file, lh,
21510 section, section_is_gnu, is_dwz,
21511 offset_size, include_hash);
21512
21513 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21514 }
21515 }
21516 break;
21517
21518 case DW_MACINFO_vendor_ext:
21519 if (!section_is_gnu)
21520 {
21521 unsigned int bytes_read;
21522
21523 /* This reads the constant, but since we don't recognize
21524 any vendor extensions, we ignore it. */
21525 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21526 mac_ptr += bytes_read;
21527 read_direct_string (abfd, mac_ptr, &bytes_read);
21528 mac_ptr += bytes_read;
21529
21530 /* We don't recognize any vendor extensions. */
21531 break;
21532 }
21533 /* FALLTHROUGH */
21534
21535 default:
21536 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21537 mac_ptr, mac_end, abfd, offset_size,
21538 section);
21539 if (mac_ptr == NULL)
21540 return;
21541 break;
21542 }
21543 } while (macinfo_type != 0);
21544 }
21545
21546 static void
21547 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21548 int section_is_gnu)
21549 {
21550 struct objfile *objfile = dwarf2_per_objfile->objfile;
21551 struct line_header *lh = cu->line_header;
21552 bfd *abfd;
21553 const gdb_byte *mac_ptr, *mac_end;
21554 struct macro_source_file *current_file = 0;
21555 enum dwarf_macro_record_type macinfo_type;
21556 unsigned int offset_size = cu->header.offset_size;
21557 const gdb_byte *opcode_definitions[256];
21558 struct cleanup *cleanup;
21559 void **slot;
21560 struct dwarf2_section_info *section;
21561 const char *section_name;
21562
21563 if (cu->dwo_unit != NULL)
21564 {
21565 if (section_is_gnu)
21566 {
21567 section = &cu->dwo_unit->dwo_file->sections.macro;
21568 section_name = ".debug_macro.dwo";
21569 }
21570 else
21571 {
21572 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21573 section_name = ".debug_macinfo.dwo";
21574 }
21575 }
21576 else
21577 {
21578 if (section_is_gnu)
21579 {
21580 section = &dwarf2_per_objfile->macro;
21581 section_name = ".debug_macro";
21582 }
21583 else
21584 {
21585 section = &dwarf2_per_objfile->macinfo;
21586 section_name = ".debug_macinfo";
21587 }
21588 }
21589
21590 dwarf2_read_section (objfile, section);
21591 if (section->buffer == NULL)
21592 {
21593 complaint (&symfile_complaints, _("missing %s section"), section_name);
21594 return;
21595 }
21596 abfd = get_section_bfd_owner (section);
21597
21598 /* First pass: Find the name of the base filename.
21599 This filename is needed in order to process all macros whose definition
21600 (or undefinition) comes from the command line. These macros are defined
21601 before the first DW_MACINFO_start_file entry, and yet still need to be
21602 associated to the base file.
21603
21604 To determine the base file name, we scan the macro definitions until we
21605 reach the first DW_MACINFO_start_file entry. We then initialize
21606 CURRENT_FILE accordingly so that any macro definition found before the
21607 first DW_MACINFO_start_file can still be associated to the base file. */
21608
21609 mac_ptr = section->buffer + offset;
21610 mac_end = section->buffer + section->size;
21611
21612 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21613 &offset_size, section_is_gnu);
21614 if (mac_ptr == NULL)
21615 {
21616 /* We already issued a complaint. */
21617 return;
21618 }
21619
21620 do
21621 {
21622 /* Do we at least have room for a macinfo type byte? */
21623 if (mac_ptr >= mac_end)
21624 {
21625 /* Complaint is printed during the second pass as GDB will probably
21626 stop the first pass earlier upon finding
21627 DW_MACINFO_start_file. */
21628 break;
21629 }
21630
21631 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21632 mac_ptr++;
21633
21634 /* Note that we rely on the fact that the corresponding GNU and
21635 DWARF constants are the same. */
21636 switch (macinfo_type)
21637 {
21638 /* A zero macinfo type indicates the end of the macro
21639 information. */
21640 case 0:
21641 break;
21642
21643 case DW_MACRO_GNU_define:
21644 case DW_MACRO_GNU_undef:
21645 /* Only skip the data by MAC_PTR. */
21646 {
21647 unsigned int bytes_read;
21648
21649 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21650 mac_ptr += bytes_read;
21651 read_direct_string (abfd, mac_ptr, &bytes_read);
21652 mac_ptr += bytes_read;
21653 }
21654 break;
21655
21656 case DW_MACRO_GNU_start_file:
21657 {
21658 unsigned int bytes_read;
21659 int line, file;
21660
21661 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21662 mac_ptr += bytes_read;
21663 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21664 mac_ptr += bytes_read;
21665
21666 current_file = macro_start_file (file, line, current_file, lh);
21667 }
21668 break;
21669
21670 case DW_MACRO_GNU_end_file:
21671 /* No data to skip by MAC_PTR. */
21672 break;
21673
21674 case DW_MACRO_GNU_define_indirect:
21675 case DW_MACRO_GNU_undef_indirect:
21676 case DW_MACRO_GNU_define_indirect_alt:
21677 case DW_MACRO_GNU_undef_indirect_alt:
21678 {
21679 unsigned int bytes_read;
21680
21681 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21682 mac_ptr += bytes_read;
21683 mac_ptr += offset_size;
21684 }
21685 break;
21686
21687 case DW_MACRO_GNU_transparent_include:
21688 case DW_MACRO_GNU_transparent_include_alt:
21689 /* Note that, according to the spec, a transparent include
21690 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21691 skip this opcode. */
21692 mac_ptr += offset_size;
21693 break;
21694
21695 case DW_MACINFO_vendor_ext:
21696 /* Only skip the data by MAC_PTR. */
21697 if (!section_is_gnu)
21698 {
21699 unsigned int bytes_read;
21700
21701 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21702 mac_ptr += bytes_read;
21703 read_direct_string (abfd, mac_ptr, &bytes_read);
21704 mac_ptr += bytes_read;
21705 }
21706 /* FALLTHROUGH */
21707
21708 default:
21709 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21710 mac_ptr, mac_end, abfd, offset_size,
21711 section);
21712 if (mac_ptr == NULL)
21713 return;
21714 break;
21715 }
21716 } while (macinfo_type != 0 && current_file == NULL);
21717
21718 /* Second pass: Process all entries.
21719
21720 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21721 command-line macro definitions/undefinitions. This flag is unset when we
21722 reach the first DW_MACINFO_start_file entry. */
21723
21724 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
21725 htab_eq_pointer,
21726 NULL, xcalloc, xfree));
21727 mac_ptr = section->buffer + offset;
21728 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
21729 *slot = (void *) mac_ptr;
21730 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21731 current_file, lh, section,
21732 section_is_gnu, 0, offset_size,
21733 include_hash.get ());
21734 }
21735
21736 /* Check if the attribute's form is a DW_FORM_block*
21737 if so return true else false. */
21738
21739 static int
21740 attr_form_is_block (const struct attribute *attr)
21741 {
21742 return (attr == NULL ? 0 :
21743 attr->form == DW_FORM_block1
21744 || attr->form == DW_FORM_block2
21745 || attr->form == DW_FORM_block4
21746 || attr->form == DW_FORM_block
21747 || attr->form == DW_FORM_exprloc);
21748 }
21749
21750 /* Return non-zero if ATTR's value is a section offset --- classes
21751 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21752 You may use DW_UNSND (attr) to retrieve such offsets.
21753
21754 Section 7.5.4, "Attribute Encodings", explains that no attribute
21755 may have a value that belongs to more than one of these classes; it
21756 would be ambiguous if we did, because we use the same forms for all
21757 of them. */
21758
21759 static int
21760 attr_form_is_section_offset (const struct attribute *attr)
21761 {
21762 return (attr->form == DW_FORM_data4
21763 || attr->form == DW_FORM_data8
21764 || attr->form == DW_FORM_sec_offset);
21765 }
21766
21767 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21768 zero otherwise. When this function returns true, you can apply
21769 dwarf2_get_attr_constant_value to it.
21770
21771 However, note that for some attributes you must check
21772 attr_form_is_section_offset before using this test. DW_FORM_data4
21773 and DW_FORM_data8 are members of both the constant class, and of
21774 the classes that contain offsets into other debug sections
21775 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21776 that, if an attribute's can be either a constant or one of the
21777 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21778 taken as section offsets, not constants. */
21779
21780 static int
21781 attr_form_is_constant (const struct attribute *attr)
21782 {
21783 switch (attr->form)
21784 {
21785 case DW_FORM_sdata:
21786 case DW_FORM_udata:
21787 case DW_FORM_data1:
21788 case DW_FORM_data2:
21789 case DW_FORM_data4:
21790 case DW_FORM_data8:
21791 return 1;
21792 default:
21793 return 0;
21794 }
21795 }
21796
21797
21798 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21799 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21800
21801 static int
21802 attr_form_is_ref (const struct attribute *attr)
21803 {
21804 switch (attr->form)
21805 {
21806 case DW_FORM_ref_addr:
21807 case DW_FORM_ref1:
21808 case DW_FORM_ref2:
21809 case DW_FORM_ref4:
21810 case DW_FORM_ref8:
21811 case DW_FORM_ref_udata:
21812 case DW_FORM_GNU_ref_alt:
21813 return 1;
21814 default:
21815 return 0;
21816 }
21817 }
21818
21819 /* Return the .debug_loc section to use for CU.
21820 For DWO files use .debug_loc.dwo. */
21821
21822 static struct dwarf2_section_info *
21823 cu_debug_loc_section (struct dwarf2_cu *cu)
21824 {
21825 if (cu->dwo_unit)
21826 return &cu->dwo_unit->dwo_file->sections.loc;
21827 return &dwarf2_per_objfile->loc;
21828 }
21829
21830 /* A helper function that fills in a dwarf2_loclist_baton. */
21831
21832 static void
21833 fill_in_loclist_baton (struct dwarf2_cu *cu,
21834 struct dwarf2_loclist_baton *baton,
21835 const struct attribute *attr)
21836 {
21837 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21838
21839 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21840
21841 baton->per_cu = cu->per_cu;
21842 gdb_assert (baton->per_cu);
21843 /* We don't know how long the location list is, but make sure we
21844 don't run off the edge of the section. */
21845 baton->size = section->size - DW_UNSND (attr);
21846 baton->data = section->buffer + DW_UNSND (attr);
21847 baton->base_address = cu->base_address;
21848 baton->from_dwo = cu->dwo_unit != NULL;
21849 }
21850
21851 static void
21852 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21853 struct dwarf2_cu *cu, int is_block)
21854 {
21855 struct objfile *objfile = dwarf2_per_objfile->objfile;
21856 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21857
21858 if (attr_form_is_section_offset (attr)
21859 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21860 the section. If so, fall through to the complaint in the
21861 other branch. */
21862 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21863 {
21864 struct dwarf2_loclist_baton *baton;
21865
21866 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
21867
21868 fill_in_loclist_baton (cu, baton, attr);
21869
21870 if (cu->base_known == 0)
21871 complaint (&symfile_complaints,
21872 _("Location list used without "
21873 "specifying the CU base address."));
21874
21875 SYMBOL_ACLASS_INDEX (sym) = (is_block
21876 ? dwarf2_loclist_block_index
21877 : dwarf2_loclist_index);
21878 SYMBOL_LOCATION_BATON (sym) = baton;
21879 }
21880 else
21881 {
21882 struct dwarf2_locexpr_baton *baton;
21883
21884 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
21885 baton->per_cu = cu->per_cu;
21886 gdb_assert (baton->per_cu);
21887
21888 if (attr_form_is_block (attr))
21889 {
21890 /* Note that we're just copying the block's data pointer
21891 here, not the actual data. We're still pointing into the
21892 info_buffer for SYM's objfile; right now we never release
21893 that buffer, but when we do clean up properly this may
21894 need to change. */
21895 baton->size = DW_BLOCK (attr)->size;
21896 baton->data = DW_BLOCK (attr)->data;
21897 }
21898 else
21899 {
21900 dwarf2_invalid_attrib_class_complaint ("location description",
21901 SYMBOL_NATURAL_NAME (sym));
21902 baton->size = 0;
21903 }
21904
21905 SYMBOL_ACLASS_INDEX (sym) = (is_block
21906 ? dwarf2_locexpr_block_index
21907 : dwarf2_locexpr_index);
21908 SYMBOL_LOCATION_BATON (sym) = baton;
21909 }
21910 }
21911
21912 /* Return the OBJFILE associated with the compilation unit CU. If CU
21913 came from a separate debuginfo file, then the master objfile is
21914 returned. */
21915
21916 struct objfile *
21917 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21918 {
21919 struct objfile *objfile = per_cu->objfile;
21920
21921 /* Return the master objfile, so that we can report and look up the
21922 correct file containing this variable. */
21923 if (objfile->separate_debug_objfile_backlink)
21924 objfile = objfile->separate_debug_objfile_backlink;
21925
21926 return objfile;
21927 }
21928
21929 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21930 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21931 CU_HEADERP first. */
21932
21933 static const struct comp_unit_head *
21934 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21935 struct dwarf2_per_cu_data *per_cu)
21936 {
21937 const gdb_byte *info_ptr;
21938
21939 if (per_cu->cu)
21940 return &per_cu->cu->header;
21941
21942 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21943
21944 memset (cu_headerp, 0, sizeof (*cu_headerp));
21945 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21946
21947 return cu_headerp;
21948 }
21949
21950 /* Return the address size given in the compilation unit header for CU. */
21951
21952 int
21953 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21954 {
21955 struct comp_unit_head cu_header_local;
21956 const struct comp_unit_head *cu_headerp;
21957
21958 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21959
21960 return cu_headerp->addr_size;
21961 }
21962
21963 /* Return the offset size given in the compilation unit header for CU. */
21964
21965 int
21966 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21967 {
21968 struct comp_unit_head cu_header_local;
21969 const struct comp_unit_head *cu_headerp;
21970
21971 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21972
21973 return cu_headerp->offset_size;
21974 }
21975
21976 /* See its dwarf2loc.h declaration. */
21977
21978 int
21979 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21980 {
21981 struct comp_unit_head cu_header_local;
21982 const struct comp_unit_head *cu_headerp;
21983
21984 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21985
21986 if (cu_headerp->version == 2)
21987 return cu_headerp->addr_size;
21988 else
21989 return cu_headerp->offset_size;
21990 }
21991
21992 /* Return the text offset of the CU. The returned offset comes from
21993 this CU's objfile. If this objfile came from a separate debuginfo
21994 file, then the offset may be different from the corresponding
21995 offset in the parent objfile. */
21996
21997 CORE_ADDR
21998 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21999 {
22000 struct objfile *objfile = per_cu->objfile;
22001
22002 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22003 }
22004
22005 /* Locate the .debug_info compilation unit from CU's objfile which contains
22006 the DIE at OFFSET. Raises an error on failure. */
22007
22008 static struct dwarf2_per_cu_data *
22009 dwarf2_find_containing_comp_unit (sect_offset offset,
22010 unsigned int offset_in_dwz,
22011 struct objfile *objfile)
22012 {
22013 struct dwarf2_per_cu_data *this_cu;
22014 int low, high;
22015 const sect_offset *cu_off;
22016
22017 low = 0;
22018 high = dwarf2_per_objfile->n_comp_units - 1;
22019 while (high > low)
22020 {
22021 struct dwarf2_per_cu_data *mid_cu;
22022 int mid = low + (high - low) / 2;
22023
22024 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22025 cu_off = &mid_cu->offset;
22026 if (mid_cu->is_dwz > offset_in_dwz
22027 || (mid_cu->is_dwz == offset_in_dwz
22028 && cu_off->sect_off >= offset.sect_off))
22029 high = mid;
22030 else
22031 low = mid + 1;
22032 }
22033 gdb_assert (low == high);
22034 this_cu = dwarf2_per_objfile->all_comp_units[low];
22035 cu_off = &this_cu->offset;
22036 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22037 {
22038 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22039 error (_("Dwarf Error: could not find partial DIE containing "
22040 "offset 0x%lx [in module %s]"),
22041 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22042
22043 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22044 <= offset.sect_off);
22045 return dwarf2_per_objfile->all_comp_units[low-1];
22046 }
22047 else
22048 {
22049 this_cu = dwarf2_per_objfile->all_comp_units[low];
22050 if (low == dwarf2_per_objfile->n_comp_units - 1
22051 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22052 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22053 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22054 return this_cu;
22055 }
22056 }
22057
22058 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22059
22060 static void
22061 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22062 {
22063 memset (cu, 0, sizeof (*cu));
22064 per_cu->cu = cu;
22065 cu->per_cu = per_cu;
22066 cu->objfile = per_cu->objfile;
22067 obstack_init (&cu->comp_unit_obstack);
22068 }
22069
22070 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22071
22072 static void
22073 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22074 enum language pretend_language)
22075 {
22076 struct attribute *attr;
22077
22078 /* Set the language we're debugging. */
22079 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22080 if (attr)
22081 set_cu_language (DW_UNSND (attr), cu);
22082 else
22083 {
22084 cu->language = pretend_language;
22085 cu->language_defn = language_def (cu->language);
22086 }
22087
22088 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22089 }
22090
22091 /* Release one cached compilation unit, CU. We unlink it from the tree
22092 of compilation units, but we don't remove it from the read_in_chain;
22093 the caller is responsible for that.
22094 NOTE: DATA is a void * because this function is also used as a
22095 cleanup routine. */
22096
22097 static void
22098 free_heap_comp_unit (void *data)
22099 {
22100 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22101
22102 gdb_assert (cu->per_cu != NULL);
22103 cu->per_cu->cu = NULL;
22104 cu->per_cu = NULL;
22105
22106 obstack_free (&cu->comp_unit_obstack, NULL);
22107
22108 xfree (cu);
22109 }
22110
22111 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22112 when we're finished with it. We can't free the pointer itself, but be
22113 sure to unlink it from the cache. Also release any associated storage. */
22114
22115 static void
22116 free_stack_comp_unit (void *data)
22117 {
22118 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22119
22120 gdb_assert (cu->per_cu != NULL);
22121 cu->per_cu->cu = NULL;
22122 cu->per_cu = NULL;
22123
22124 obstack_free (&cu->comp_unit_obstack, NULL);
22125 cu->partial_dies = NULL;
22126 }
22127
22128 /* Free all cached compilation units. */
22129
22130 static void
22131 free_cached_comp_units (void *data)
22132 {
22133 struct dwarf2_per_cu_data *per_cu, **last_chain;
22134
22135 per_cu = dwarf2_per_objfile->read_in_chain;
22136 last_chain = &dwarf2_per_objfile->read_in_chain;
22137 while (per_cu != NULL)
22138 {
22139 struct dwarf2_per_cu_data *next_cu;
22140
22141 next_cu = per_cu->cu->read_in_chain;
22142
22143 free_heap_comp_unit (per_cu->cu);
22144 *last_chain = next_cu;
22145
22146 per_cu = next_cu;
22147 }
22148 }
22149
22150 /* Increase the age counter on each cached compilation unit, and free
22151 any that are too old. */
22152
22153 static void
22154 age_cached_comp_units (void)
22155 {
22156 struct dwarf2_per_cu_data *per_cu, **last_chain;
22157
22158 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22159 per_cu = dwarf2_per_objfile->read_in_chain;
22160 while (per_cu != NULL)
22161 {
22162 per_cu->cu->last_used ++;
22163 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22164 dwarf2_mark (per_cu->cu);
22165 per_cu = per_cu->cu->read_in_chain;
22166 }
22167
22168 per_cu = dwarf2_per_objfile->read_in_chain;
22169 last_chain = &dwarf2_per_objfile->read_in_chain;
22170 while (per_cu != NULL)
22171 {
22172 struct dwarf2_per_cu_data *next_cu;
22173
22174 next_cu = per_cu->cu->read_in_chain;
22175
22176 if (!per_cu->cu->mark)
22177 {
22178 free_heap_comp_unit (per_cu->cu);
22179 *last_chain = next_cu;
22180 }
22181 else
22182 last_chain = &per_cu->cu->read_in_chain;
22183
22184 per_cu = next_cu;
22185 }
22186 }
22187
22188 /* Remove a single compilation unit from the cache. */
22189
22190 static void
22191 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22192 {
22193 struct dwarf2_per_cu_data *per_cu, **last_chain;
22194
22195 per_cu = dwarf2_per_objfile->read_in_chain;
22196 last_chain = &dwarf2_per_objfile->read_in_chain;
22197 while (per_cu != NULL)
22198 {
22199 struct dwarf2_per_cu_data *next_cu;
22200
22201 next_cu = per_cu->cu->read_in_chain;
22202
22203 if (per_cu == target_per_cu)
22204 {
22205 free_heap_comp_unit (per_cu->cu);
22206 per_cu->cu = NULL;
22207 *last_chain = next_cu;
22208 break;
22209 }
22210 else
22211 last_chain = &per_cu->cu->read_in_chain;
22212
22213 per_cu = next_cu;
22214 }
22215 }
22216
22217 /* Release all extra memory associated with OBJFILE. */
22218
22219 void
22220 dwarf2_free_objfile (struct objfile *objfile)
22221 {
22222 dwarf2_per_objfile
22223 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22224 dwarf2_objfile_data_key);
22225
22226 if (dwarf2_per_objfile == NULL)
22227 return;
22228
22229 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22230 free_cached_comp_units (NULL);
22231
22232 if (dwarf2_per_objfile->quick_file_names_table)
22233 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22234
22235 if (dwarf2_per_objfile->line_header_hash)
22236 htab_delete (dwarf2_per_objfile->line_header_hash);
22237
22238 /* Everything else should be on the objfile obstack. */
22239 }
22240
22241 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22242 We store these in a hash table separate from the DIEs, and preserve them
22243 when the DIEs are flushed out of cache.
22244
22245 The CU "per_cu" pointer is needed because offset alone is not enough to
22246 uniquely identify the type. A file may have multiple .debug_types sections,
22247 or the type may come from a DWO file. Furthermore, while it's more logical
22248 to use per_cu->section+offset, with Fission the section with the data is in
22249 the DWO file but we don't know that section at the point we need it.
22250 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22251 because we can enter the lookup routine, get_die_type_at_offset, from
22252 outside this file, and thus won't necessarily have PER_CU->cu.
22253 Fortunately, PER_CU is stable for the life of the objfile. */
22254
22255 struct dwarf2_per_cu_offset_and_type
22256 {
22257 const struct dwarf2_per_cu_data *per_cu;
22258 sect_offset offset;
22259 struct type *type;
22260 };
22261
22262 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22263
22264 static hashval_t
22265 per_cu_offset_and_type_hash (const void *item)
22266 {
22267 const struct dwarf2_per_cu_offset_and_type *ofs
22268 = (const struct dwarf2_per_cu_offset_and_type *) item;
22269
22270 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22271 }
22272
22273 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22274
22275 static int
22276 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22277 {
22278 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22279 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22280 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22281 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22282
22283 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22284 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22285 }
22286
22287 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22288 table if necessary. For convenience, return TYPE.
22289
22290 The DIEs reading must have careful ordering to:
22291 * Not cause infite loops trying to read in DIEs as a prerequisite for
22292 reading current DIE.
22293 * Not trying to dereference contents of still incompletely read in types
22294 while reading in other DIEs.
22295 * Enable referencing still incompletely read in types just by a pointer to
22296 the type without accessing its fields.
22297
22298 Therefore caller should follow these rules:
22299 * Try to fetch any prerequisite types we may need to build this DIE type
22300 before building the type and calling set_die_type.
22301 * After building type call set_die_type for current DIE as soon as
22302 possible before fetching more types to complete the current type.
22303 * Make the type as complete as possible before fetching more types. */
22304
22305 static struct type *
22306 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22307 {
22308 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22309 struct objfile *objfile = cu->objfile;
22310 struct attribute *attr;
22311 struct dynamic_prop prop;
22312
22313 /* For Ada types, make sure that the gnat-specific data is always
22314 initialized (if not already set). There are a few types where
22315 we should not be doing so, because the type-specific area is
22316 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22317 where the type-specific area is used to store the floatformat).
22318 But this is not a problem, because the gnat-specific information
22319 is actually not needed for these types. */
22320 if (need_gnat_info (cu)
22321 && TYPE_CODE (type) != TYPE_CODE_FUNC
22322 && TYPE_CODE (type) != TYPE_CODE_FLT
22323 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22324 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22325 && TYPE_CODE (type) != TYPE_CODE_METHOD
22326 && !HAVE_GNAT_AUX_INFO (type))
22327 INIT_GNAT_SPECIFIC (type);
22328
22329 /* Read DW_AT_allocated and set in type. */
22330 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22331 if (attr_form_is_block (attr))
22332 {
22333 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22334 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22335 }
22336 else if (attr != NULL)
22337 {
22338 complaint (&symfile_complaints,
22339 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22340 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22341 die->offset.sect_off);
22342 }
22343
22344 /* Read DW_AT_associated and set in type. */
22345 attr = dwarf2_attr (die, DW_AT_associated, cu);
22346 if (attr_form_is_block (attr))
22347 {
22348 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22349 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22350 }
22351 else if (attr != NULL)
22352 {
22353 complaint (&symfile_complaints,
22354 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22355 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22356 die->offset.sect_off);
22357 }
22358
22359 /* Read DW_AT_data_location and set in type. */
22360 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22361 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22362 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22363
22364 if (dwarf2_per_objfile->die_type_hash == NULL)
22365 {
22366 dwarf2_per_objfile->die_type_hash =
22367 htab_create_alloc_ex (127,
22368 per_cu_offset_and_type_hash,
22369 per_cu_offset_and_type_eq,
22370 NULL,
22371 &objfile->objfile_obstack,
22372 hashtab_obstack_allocate,
22373 dummy_obstack_deallocate);
22374 }
22375
22376 ofs.per_cu = cu->per_cu;
22377 ofs.offset = die->offset;
22378 ofs.type = type;
22379 slot = (struct dwarf2_per_cu_offset_and_type **)
22380 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22381 if (*slot)
22382 complaint (&symfile_complaints,
22383 _("A problem internal to GDB: DIE 0x%x has type already set"),
22384 die->offset.sect_off);
22385 *slot = XOBNEW (&objfile->objfile_obstack,
22386 struct dwarf2_per_cu_offset_and_type);
22387 **slot = ofs;
22388 return type;
22389 }
22390
22391 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22392 or return NULL if the die does not have a saved type. */
22393
22394 static struct type *
22395 get_die_type_at_offset (sect_offset offset,
22396 struct dwarf2_per_cu_data *per_cu)
22397 {
22398 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22399
22400 if (dwarf2_per_objfile->die_type_hash == NULL)
22401 return NULL;
22402
22403 ofs.per_cu = per_cu;
22404 ofs.offset = offset;
22405 slot = ((struct dwarf2_per_cu_offset_and_type *)
22406 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
22407 if (slot)
22408 return slot->type;
22409 else
22410 return NULL;
22411 }
22412
22413 /* Look up the type for DIE in CU in die_type_hash,
22414 or return NULL if DIE does not have a saved type. */
22415
22416 static struct type *
22417 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22418 {
22419 return get_die_type_at_offset (die->offset, cu->per_cu);
22420 }
22421
22422 /* Add a dependence relationship from CU to REF_PER_CU. */
22423
22424 static void
22425 dwarf2_add_dependence (struct dwarf2_cu *cu,
22426 struct dwarf2_per_cu_data *ref_per_cu)
22427 {
22428 void **slot;
22429
22430 if (cu->dependencies == NULL)
22431 cu->dependencies
22432 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22433 NULL, &cu->comp_unit_obstack,
22434 hashtab_obstack_allocate,
22435 dummy_obstack_deallocate);
22436
22437 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22438 if (*slot == NULL)
22439 *slot = ref_per_cu;
22440 }
22441
22442 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22443 Set the mark field in every compilation unit in the
22444 cache that we must keep because we are keeping CU. */
22445
22446 static int
22447 dwarf2_mark_helper (void **slot, void *data)
22448 {
22449 struct dwarf2_per_cu_data *per_cu;
22450
22451 per_cu = (struct dwarf2_per_cu_data *) *slot;
22452
22453 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22454 reading of the chain. As such dependencies remain valid it is not much
22455 useful to track and undo them during QUIT cleanups. */
22456 if (per_cu->cu == NULL)
22457 return 1;
22458
22459 if (per_cu->cu->mark)
22460 return 1;
22461 per_cu->cu->mark = 1;
22462
22463 if (per_cu->cu->dependencies != NULL)
22464 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22465
22466 return 1;
22467 }
22468
22469 /* Set the mark field in CU and in every other compilation unit in the
22470 cache that we must keep because we are keeping CU. */
22471
22472 static void
22473 dwarf2_mark (struct dwarf2_cu *cu)
22474 {
22475 if (cu->mark)
22476 return;
22477 cu->mark = 1;
22478 if (cu->dependencies != NULL)
22479 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22480 }
22481
22482 static void
22483 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22484 {
22485 while (per_cu)
22486 {
22487 per_cu->cu->mark = 0;
22488 per_cu = per_cu->cu->read_in_chain;
22489 }
22490 }
22491
22492 /* Trivial hash function for partial_die_info: the hash value of a DIE
22493 is its offset in .debug_info for this objfile. */
22494
22495 static hashval_t
22496 partial_die_hash (const void *item)
22497 {
22498 const struct partial_die_info *part_die
22499 = (const struct partial_die_info *) item;
22500
22501 return part_die->offset.sect_off;
22502 }
22503
22504 /* Trivial comparison function for partial_die_info structures: two DIEs
22505 are equal if they have the same offset. */
22506
22507 static int
22508 partial_die_eq (const void *item_lhs, const void *item_rhs)
22509 {
22510 const struct partial_die_info *part_die_lhs
22511 = (const struct partial_die_info *) item_lhs;
22512 const struct partial_die_info *part_die_rhs
22513 = (const struct partial_die_info *) item_rhs;
22514
22515 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22516 }
22517
22518 static struct cmd_list_element *set_dwarf_cmdlist;
22519 static struct cmd_list_element *show_dwarf_cmdlist;
22520
22521 static void
22522 set_dwarf_cmd (char *args, int from_tty)
22523 {
22524 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22525 gdb_stdout);
22526 }
22527
22528 static void
22529 show_dwarf_cmd (char *args, int from_tty)
22530 {
22531 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22532 }
22533
22534 /* Free data associated with OBJFILE, if necessary. */
22535
22536 static void
22537 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22538 {
22539 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
22540 int ix;
22541
22542 /* Make sure we don't accidentally use dwarf2_per_objfile while
22543 cleaning up. */
22544 dwarf2_per_objfile = NULL;
22545
22546 for (ix = 0; ix < data->n_comp_units; ++ix)
22547 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22548
22549 for (ix = 0; ix < data->n_type_units; ++ix)
22550 VEC_free (dwarf2_per_cu_ptr,
22551 data->all_type_units[ix]->per_cu.imported_symtabs);
22552 xfree (data->all_type_units);
22553
22554 VEC_free (dwarf2_section_info_def, data->types);
22555
22556 if (data->dwo_files)
22557 free_dwo_files (data->dwo_files, objfile);
22558 if (data->dwp_file)
22559 gdb_bfd_unref (data->dwp_file->dbfd);
22560
22561 if (data->dwz_file && data->dwz_file->dwz_bfd)
22562 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22563 }
22564
22565 \f
22566 /* The "save gdb-index" command. */
22567
22568 /* The contents of the hash table we create when building the string
22569 table. */
22570 struct strtab_entry
22571 {
22572 offset_type offset;
22573 const char *str;
22574 };
22575
22576 /* Hash function for a strtab_entry.
22577
22578 Function is used only during write_hash_table so no index format backward
22579 compatibility is needed. */
22580
22581 static hashval_t
22582 hash_strtab_entry (const void *e)
22583 {
22584 const struct strtab_entry *entry = (const struct strtab_entry *) e;
22585 return mapped_index_string_hash (INT_MAX, entry->str);
22586 }
22587
22588 /* Equality function for a strtab_entry. */
22589
22590 static int
22591 eq_strtab_entry (const void *a, const void *b)
22592 {
22593 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22594 const struct strtab_entry *eb = (const struct strtab_entry *) b;
22595 return !strcmp (ea->str, eb->str);
22596 }
22597
22598 /* Create a strtab_entry hash table. */
22599
22600 static htab_t
22601 create_strtab (void)
22602 {
22603 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22604 xfree, xcalloc, xfree);
22605 }
22606
22607 /* Add a string to the constant pool. Return the string's offset in
22608 host order. */
22609
22610 static offset_type
22611 add_string (htab_t table, struct obstack *cpool, const char *str)
22612 {
22613 void **slot;
22614 struct strtab_entry entry;
22615 struct strtab_entry *result;
22616
22617 entry.str = str;
22618 slot = htab_find_slot (table, &entry, INSERT);
22619 if (*slot)
22620 result = (struct strtab_entry *) *slot;
22621 else
22622 {
22623 result = XNEW (struct strtab_entry);
22624 result->offset = obstack_object_size (cpool);
22625 result->str = str;
22626 obstack_grow_str0 (cpool, str);
22627 *slot = result;
22628 }
22629 return result->offset;
22630 }
22631
22632 /* An entry in the symbol table. */
22633 struct symtab_index_entry
22634 {
22635 /* The name of the symbol. */
22636 const char *name;
22637 /* The offset of the name in the constant pool. */
22638 offset_type index_offset;
22639 /* A sorted vector of the indices of all the CUs that hold an object
22640 of this name. */
22641 VEC (offset_type) *cu_indices;
22642 };
22643
22644 /* The symbol table. This is a power-of-2-sized hash table. */
22645 struct mapped_symtab
22646 {
22647 offset_type n_elements;
22648 offset_type size;
22649 struct symtab_index_entry **data;
22650 };
22651
22652 /* Hash function for a symtab_index_entry. */
22653
22654 static hashval_t
22655 hash_symtab_entry (const void *e)
22656 {
22657 const struct symtab_index_entry *entry
22658 = (const struct symtab_index_entry *) e;
22659 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22660 sizeof (offset_type) * VEC_length (offset_type,
22661 entry->cu_indices),
22662 0);
22663 }
22664
22665 /* Equality function for a symtab_index_entry. */
22666
22667 static int
22668 eq_symtab_entry (const void *a, const void *b)
22669 {
22670 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22671 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
22672 int len = VEC_length (offset_type, ea->cu_indices);
22673 if (len != VEC_length (offset_type, eb->cu_indices))
22674 return 0;
22675 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22676 VEC_address (offset_type, eb->cu_indices),
22677 sizeof (offset_type) * len);
22678 }
22679
22680 /* Destroy a symtab_index_entry. */
22681
22682 static void
22683 delete_symtab_entry (void *p)
22684 {
22685 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
22686 VEC_free (offset_type, entry->cu_indices);
22687 xfree (entry);
22688 }
22689
22690 /* Create a hash table holding symtab_index_entry objects. */
22691
22692 static htab_t
22693 create_symbol_hash_table (void)
22694 {
22695 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22696 delete_symtab_entry, xcalloc, xfree);
22697 }
22698
22699 /* Create a new mapped symtab object. */
22700
22701 static struct mapped_symtab *
22702 create_mapped_symtab (void)
22703 {
22704 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22705 symtab->n_elements = 0;
22706 symtab->size = 1024;
22707 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22708 return symtab;
22709 }
22710
22711 /* Destroy a mapped_symtab. */
22712
22713 static void
22714 cleanup_mapped_symtab (void *p)
22715 {
22716 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
22717 /* The contents of the array are freed when the other hash table is
22718 destroyed. */
22719 xfree (symtab->data);
22720 xfree (symtab);
22721 }
22722
22723 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22724 the slot.
22725
22726 Function is used only during write_hash_table so no index format backward
22727 compatibility is needed. */
22728
22729 static struct symtab_index_entry **
22730 find_slot (struct mapped_symtab *symtab, const char *name)
22731 {
22732 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22733
22734 index = hash & (symtab->size - 1);
22735 step = ((hash * 17) & (symtab->size - 1)) | 1;
22736
22737 for (;;)
22738 {
22739 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22740 return &symtab->data[index];
22741 index = (index + step) & (symtab->size - 1);
22742 }
22743 }
22744
22745 /* Expand SYMTAB's hash table. */
22746
22747 static void
22748 hash_expand (struct mapped_symtab *symtab)
22749 {
22750 offset_type old_size = symtab->size;
22751 offset_type i;
22752 struct symtab_index_entry **old_entries = symtab->data;
22753
22754 symtab->size *= 2;
22755 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22756
22757 for (i = 0; i < old_size; ++i)
22758 {
22759 if (old_entries[i])
22760 {
22761 struct symtab_index_entry **slot = find_slot (symtab,
22762 old_entries[i]->name);
22763 *slot = old_entries[i];
22764 }
22765 }
22766
22767 xfree (old_entries);
22768 }
22769
22770 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22771 CU_INDEX is the index of the CU in which the symbol appears.
22772 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22773
22774 static void
22775 add_index_entry (struct mapped_symtab *symtab, const char *name,
22776 int is_static, gdb_index_symbol_kind kind,
22777 offset_type cu_index)
22778 {
22779 struct symtab_index_entry **slot;
22780 offset_type cu_index_and_attrs;
22781
22782 ++symtab->n_elements;
22783 if (4 * symtab->n_elements / 3 >= symtab->size)
22784 hash_expand (symtab);
22785
22786 slot = find_slot (symtab, name);
22787 if (!*slot)
22788 {
22789 *slot = XNEW (struct symtab_index_entry);
22790 (*slot)->name = name;
22791 /* index_offset is set later. */
22792 (*slot)->cu_indices = NULL;
22793 }
22794
22795 cu_index_and_attrs = 0;
22796 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22797 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22798 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22799
22800 /* We don't want to record an index value twice as we want to avoid the
22801 duplication.
22802 We process all global symbols and then all static symbols
22803 (which would allow us to avoid the duplication by only having to check
22804 the last entry pushed), but a symbol could have multiple kinds in one CU.
22805 To keep things simple we don't worry about the duplication here and
22806 sort and uniqufy the list after we've processed all symbols. */
22807 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22808 }
22809
22810 /* qsort helper routine for uniquify_cu_indices. */
22811
22812 static int
22813 offset_type_compare (const void *ap, const void *bp)
22814 {
22815 offset_type a = *(offset_type *) ap;
22816 offset_type b = *(offset_type *) bp;
22817
22818 return (a > b) - (b > a);
22819 }
22820
22821 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22822
22823 static void
22824 uniquify_cu_indices (struct mapped_symtab *symtab)
22825 {
22826 int i;
22827
22828 for (i = 0; i < symtab->size; ++i)
22829 {
22830 struct symtab_index_entry *entry = symtab->data[i];
22831
22832 if (entry
22833 && entry->cu_indices != NULL)
22834 {
22835 unsigned int next_to_insert, next_to_check;
22836 offset_type last_value;
22837
22838 qsort (VEC_address (offset_type, entry->cu_indices),
22839 VEC_length (offset_type, entry->cu_indices),
22840 sizeof (offset_type), offset_type_compare);
22841
22842 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22843 next_to_insert = 1;
22844 for (next_to_check = 1;
22845 next_to_check < VEC_length (offset_type, entry->cu_indices);
22846 ++next_to_check)
22847 {
22848 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22849 != last_value)
22850 {
22851 last_value = VEC_index (offset_type, entry->cu_indices,
22852 next_to_check);
22853 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22854 last_value);
22855 ++next_to_insert;
22856 }
22857 }
22858 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22859 }
22860 }
22861 }
22862
22863 /* Add a vector of indices to the constant pool. */
22864
22865 static offset_type
22866 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22867 struct symtab_index_entry *entry)
22868 {
22869 void **slot;
22870
22871 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22872 if (!*slot)
22873 {
22874 offset_type len = VEC_length (offset_type, entry->cu_indices);
22875 offset_type val = MAYBE_SWAP (len);
22876 offset_type iter;
22877 int i;
22878
22879 *slot = entry;
22880 entry->index_offset = obstack_object_size (cpool);
22881
22882 obstack_grow (cpool, &val, sizeof (val));
22883 for (i = 0;
22884 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22885 ++i)
22886 {
22887 val = MAYBE_SWAP (iter);
22888 obstack_grow (cpool, &val, sizeof (val));
22889 }
22890 }
22891 else
22892 {
22893 struct symtab_index_entry *old_entry
22894 = (struct symtab_index_entry *) *slot;
22895 entry->index_offset = old_entry->index_offset;
22896 entry = old_entry;
22897 }
22898 return entry->index_offset;
22899 }
22900
22901 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22902 constant pool entries going into the obstack CPOOL. */
22903
22904 static void
22905 write_hash_table (struct mapped_symtab *symtab,
22906 struct obstack *output, struct obstack *cpool)
22907 {
22908 offset_type i;
22909 htab_t symbol_hash_table;
22910 htab_t str_table;
22911
22912 symbol_hash_table = create_symbol_hash_table ();
22913 str_table = create_strtab ();
22914
22915 /* We add all the index vectors to the constant pool first, to
22916 ensure alignment is ok. */
22917 for (i = 0; i < symtab->size; ++i)
22918 {
22919 if (symtab->data[i])
22920 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22921 }
22922
22923 /* Now write out the hash table. */
22924 for (i = 0; i < symtab->size; ++i)
22925 {
22926 offset_type str_off, vec_off;
22927
22928 if (symtab->data[i])
22929 {
22930 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22931 vec_off = symtab->data[i]->index_offset;
22932 }
22933 else
22934 {
22935 /* While 0 is a valid constant pool index, it is not valid
22936 to have 0 for both offsets. */
22937 str_off = 0;
22938 vec_off = 0;
22939 }
22940
22941 str_off = MAYBE_SWAP (str_off);
22942 vec_off = MAYBE_SWAP (vec_off);
22943
22944 obstack_grow (output, &str_off, sizeof (str_off));
22945 obstack_grow (output, &vec_off, sizeof (vec_off));
22946 }
22947
22948 htab_delete (str_table);
22949 htab_delete (symbol_hash_table);
22950 }
22951
22952 /* Struct to map psymtab to CU index in the index file. */
22953 struct psymtab_cu_index_map
22954 {
22955 struct partial_symtab *psymtab;
22956 unsigned int cu_index;
22957 };
22958
22959 static hashval_t
22960 hash_psymtab_cu_index (const void *item)
22961 {
22962 const struct psymtab_cu_index_map *map
22963 = (const struct psymtab_cu_index_map *) item;
22964
22965 return htab_hash_pointer (map->psymtab);
22966 }
22967
22968 static int
22969 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22970 {
22971 const struct psymtab_cu_index_map *lhs
22972 = (const struct psymtab_cu_index_map *) item_lhs;
22973 const struct psymtab_cu_index_map *rhs
22974 = (const struct psymtab_cu_index_map *) item_rhs;
22975
22976 return lhs->psymtab == rhs->psymtab;
22977 }
22978
22979 /* Helper struct for building the address table. */
22980 struct addrmap_index_data
22981 {
22982 struct objfile *objfile;
22983 struct obstack *addr_obstack;
22984 htab_t cu_index_htab;
22985
22986 /* Non-zero if the previous_* fields are valid.
22987 We can't write an entry until we see the next entry (since it is only then
22988 that we know the end of the entry). */
22989 int previous_valid;
22990 /* Index of the CU in the table of all CUs in the index file. */
22991 unsigned int previous_cu_index;
22992 /* Start address of the CU. */
22993 CORE_ADDR previous_cu_start;
22994 };
22995
22996 /* Write an address entry to OBSTACK. */
22997
22998 static void
22999 add_address_entry (struct objfile *objfile, struct obstack *obstack,
23000 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23001 {
23002 offset_type cu_index_to_write;
23003 gdb_byte addr[8];
23004 CORE_ADDR baseaddr;
23005
23006 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23007
23008 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23009 obstack_grow (obstack, addr, 8);
23010 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23011 obstack_grow (obstack, addr, 8);
23012 cu_index_to_write = MAYBE_SWAP (cu_index);
23013 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23014 }
23015
23016 /* Worker function for traversing an addrmap to build the address table. */
23017
23018 static int
23019 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23020 {
23021 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23022 struct partial_symtab *pst = (struct partial_symtab *) obj;
23023
23024 if (data->previous_valid)
23025 add_address_entry (data->objfile, data->addr_obstack,
23026 data->previous_cu_start, start_addr,
23027 data->previous_cu_index);
23028
23029 data->previous_cu_start = start_addr;
23030 if (pst != NULL)
23031 {
23032 struct psymtab_cu_index_map find_map, *map;
23033 find_map.psymtab = pst;
23034 map = ((struct psymtab_cu_index_map *)
23035 htab_find (data->cu_index_htab, &find_map));
23036 gdb_assert (map != NULL);
23037 data->previous_cu_index = map->cu_index;
23038 data->previous_valid = 1;
23039 }
23040 else
23041 data->previous_valid = 0;
23042
23043 return 0;
23044 }
23045
23046 /* Write OBJFILE's address map to OBSTACK.
23047 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23048 in the index file. */
23049
23050 static void
23051 write_address_map (struct objfile *objfile, struct obstack *obstack,
23052 htab_t cu_index_htab)
23053 {
23054 struct addrmap_index_data addrmap_index_data;
23055
23056 /* When writing the address table, we have to cope with the fact that
23057 the addrmap iterator only provides the start of a region; we have to
23058 wait until the next invocation to get the start of the next region. */
23059
23060 addrmap_index_data.objfile = objfile;
23061 addrmap_index_data.addr_obstack = obstack;
23062 addrmap_index_data.cu_index_htab = cu_index_htab;
23063 addrmap_index_data.previous_valid = 0;
23064
23065 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23066 &addrmap_index_data);
23067
23068 /* It's highly unlikely the last entry (end address = 0xff...ff)
23069 is valid, but we should still handle it.
23070 The end address is recorded as the start of the next region, but that
23071 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23072 anyway. */
23073 if (addrmap_index_data.previous_valid)
23074 add_address_entry (objfile, obstack,
23075 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23076 addrmap_index_data.previous_cu_index);
23077 }
23078
23079 /* Return the symbol kind of PSYM. */
23080
23081 static gdb_index_symbol_kind
23082 symbol_kind (struct partial_symbol *psym)
23083 {
23084 domain_enum domain = PSYMBOL_DOMAIN (psym);
23085 enum address_class aclass = PSYMBOL_CLASS (psym);
23086
23087 switch (domain)
23088 {
23089 case VAR_DOMAIN:
23090 switch (aclass)
23091 {
23092 case LOC_BLOCK:
23093 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23094 case LOC_TYPEDEF:
23095 return GDB_INDEX_SYMBOL_KIND_TYPE;
23096 case LOC_COMPUTED:
23097 case LOC_CONST_BYTES:
23098 case LOC_OPTIMIZED_OUT:
23099 case LOC_STATIC:
23100 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23101 case LOC_CONST:
23102 /* Note: It's currently impossible to recognize psyms as enum values
23103 short of reading the type info. For now punt. */
23104 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23105 default:
23106 /* There are other LOC_FOO values that one might want to classify
23107 as variables, but dwarf2read.c doesn't currently use them. */
23108 return GDB_INDEX_SYMBOL_KIND_OTHER;
23109 }
23110 case STRUCT_DOMAIN:
23111 return GDB_INDEX_SYMBOL_KIND_TYPE;
23112 default:
23113 return GDB_INDEX_SYMBOL_KIND_OTHER;
23114 }
23115 }
23116
23117 /* Add a list of partial symbols to SYMTAB. */
23118
23119 static void
23120 write_psymbols (struct mapped_symtab *symtab,
23121 htab_t psyms_seen,
23122 struct partial_symbol **psymp,
23123 int count,
23124 offset_type cu_index,
23125 int is_static)
23126 {
23127 for (; count-- > 0; ++psymp)
23128 {
23129 struct partial_symbol *psym = *psymp;
23130 void **slot;
23131
23132 if (SYMBOL_LANGUAGE (psym) == language_ada)
23133 error (_("Ada is not currently supported by the index"));
23134
23135 /* Only add a given psymbol once. */
23136 slot = htab_find_slot (psyms_seen, psym, INSERT);
23137 if (!*slot)
23138 {
23139 gdb_index_symbol_kind kind = symbol_kind (psym);
23140
23141 *slot = psym;
23142 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23143 is_static, kind, cu_index);
23144 }
23145 }
23146 }
23147
23148 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23149 exception if there is an error. */
23150
23151 static void
23152 write_obstack (FILE *file, struct obstack *obstack)
23153 {
23154 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23155 file)
23156 != obstack_object_size (obstack))
23157 error (_("couldn't data write to file"));
23158 }
23159
23160 /* A helper struct used when iterating over debug_types. */
23161 struct signatured_type_index_data
23162 {
23163 struct objfile *objfile;
23164 struct mapped_symtab *symtab;
23165 struct obstack *types_list;
23166 htab_t psyms_seen;
23167 int cu_index;
23168 };
23169
23170 /* A helper function that writes a single signatured_type to an
23171 obstack. */
23172
23173 static int
23174 write_one_signatured_type (void **slot, void *d)
23175 {
23176 struct signatured_type_index_data *info
23177 = (struct signatured_type_index_data *) d;
23178 struct signatured_type *entry = (struct signatured_type *) *slot;
23179 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23180 gdb_byte val[8];
23181
23182 write_psymbols (info->symtab,
23183 info->psyms_seen,
23184 info->objfile->global_psymbols.list
23185 + psymtab->globals_offset,
23186 psymtab->n_global_syms, info->cu_index,
23187 0);
23188 write_psymbols (info->symtab,
23189 info->psyms_seen,
23190 info->objfile->static_psymbols.list
23191 + psymtab->statics_offset,
23192 psymtab->n_static_syms, info->cu_index,
23193 1);
23194
23195 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23196 entry->per_cu.offset.sect_off);
23197 obstack_grow (info->types_list, val, 8);
23198 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23199 entry->type_offset_in_tu.cu_off);
23200 obstack_grow (info->types_list, val, 8);
23201 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23202 obstack_grow (info->types_list, val, 8);
23203
23204 ++info->cu_index;
23205
23206 return 1;
23207 }
23208
23209 /* Recurse into all "included" dependencies and write their symbols as
23210 if they appeared in this psymtab. */
23211
23212 static void
23213 recursively_write_psymbols (struct objfile *objfile,
23214 struct partial_symtab *psymtab,
23215 struct mapped_symtab *symtab,
23216 htab_t psyms_seen,
23217 offset_type cu_index)
23218 {
23219 int i;
23220
23221 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23222 if (psymtab->dependencies[i]->user != NULL)
23223 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23224 symtab, psyms_seen, cu_index);
23225
23226 write_psymbols (symtab,
23227 psyms_seen,
23228 objfile->global_psymbols.list + psymtab->globals_offset,
23229 psymtab->n_global_syms, cu_index,
23230 0);
23231 write_psymbols (symtab,
23232 psyms_seen,
23233 objfile->static_psymbols.list + psymtab->statics_offset,
23234 psymtab->n_static_syms, cu_index,
23235 1);
23236 }
23237
23238 /* Create an index file for OBJFILE in the directory DIR. */
23239
23240 static void
23241 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23242 {
23243 struct cleanup *cleanup;
23244 char *filename;
23245 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23246 struct obstack cu_list, types_cu_list;
23247 int i;
23248 FILE *out_file;
23249 struct mapped_symtab *symtab;
23250 offset_type val, size_of_contents, total_len;
23251 struct stat st;
23252 struct psymtab_cu_index_map *psymtab_cu_index_map;
23253
23254 if (dwarf2_per_objfile->using_index)
23255 error (_("Cannot use an index to create the index"));
23256
23257 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23258 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23259
23260 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23261 return;
23262
23263 if (stat (objfile_name (objfile), &st) < 0)
23264 perror_with_name (objfile_name (objfile));
23265
23266 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23267 INDEX_SUFFIX, (char *) NULL);
23268 cleanup = make_cleanup (xfree, filename);
23269
23270 out_file = gdb_fopen_cloexec (filename, "wb");
23271 if (!out_file)
23272 error (_("Can't open `%s' for writing"), filename);
23273
23274 gdb::unlinker unlink_file (filename);
23275
23276 symtab = create_mapped_symtab ();
23277 make_cleanup (cleanup_mapped_symtab, symtab);
23278
23279 obstack_init (&addr_obstack);
23280 make_cleanup_obstack_free (&addr_obstack);
23281
23282 obstack_init (&cu_list);
23283 make_cleanup_obstack_free (&cu_list);
23284
23285 obstack_init (&types_cu_list);
23286 make_cleanup_obstack_free (&types_cu_list);
23287
23288 htab_up psyms_seen (htab_create_alloc (100, htab_hash_pointer,
23289 htab_eq_pointer,
23290 NULL, xcalloc, xfree));
23291
23292 /* While we're scanning CU's create a table that maps a psymtab pointer
23293 (which is what addrmap records) to its index (which is what is recorded
23294 in the index file). This will later be needed to write the address
23295 table. */
23296 htab_up cu_index_htab (htab_create_alloc (100,
23297 hash_psymtab_cu_index,
23298 eq_psymtab_cu_index,
23299 NULL, xcalloc, xfree));
23300 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23301 dwarf2_per_objfile->n_comp_units);
23302 make_cleanup (xfree, psymtab_cu_index_map);
23303
23304 /* The CU list is already sorted, so we don't need to do additional
23305 work here. Also, the debug_types entries do not appear in
23306 all_comp_units, but only in their own hash table. */
23307 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23308 {
23309 struct dwarf2_per_cu_data *per_cu
23310 = dwarf2_per_objfile->all_comp_units[i];
23311 struct partial_symtab *psymtab = per_cu->v.psymtab;
23312 gdb_byte val[8];
23313 struct psymtab_cu_index_map *map;
23314 void **slot;
23315
23316 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23317 It may be referenced from a local scope but in such case it does not
23318 need to be present in .gdb_index. */
23319 if (psymtab == NULL)
23320 continue;
23321
23322 if (psymtab->user == NULL)
23323 recursively_write_psymbols (objfile, psymtab, symtab,
23324 psyms_seen.get (), i);
23325
23326 map = &psymtab_cu_index_map[i];
23327 map->psymtab = psymtab;
23328 map->cu_index = i;
23329 slot = htab_find_slot (cu_index_htab.get (), map, INSERT);
23330 gdb_assert (slot != NULL);
23331 gdb_assert (*slot == NULL);
23332 *slot = map;
23333
23334 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23335 per_cu->offset.sect_off);
23336 obstack_grow (&cu_list, val, 8);
23337 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23338 obstack_grow (&cu_list, val, 8);
23339 }
23340
23341 /* Dump the address map. */
23342 write_address_map (objfile, &addr_obstack, cu_index_htab.get ());
23343
23344 /* Write out the .debug_type entries, if any. */
23345 if (dwarf2_per_objfile->signatured_types)
23346 {
23347 struct signatured_type_index_data sig_data;
23348
23349 sig_data.objfile = objfile;
23350 sig_data.symtab = symtab;
23351 sig_data.types_list = &types_cu_list;
23352 sig_data.psyms_seen = psyms_seen.get ();
23353 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23354 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23355 write_one_signatured_type, &sig_data);
23356 }
23357
23358 /* Now that we've processed all symbols we can shrink their cu_indices
23359 lists. */
23360 uniquify_cu_indices (symtab);
23361
23362 obstack_init (&constant_pool);
23363 make_cleanup_obstack_free (&constant_pool);
23364 obstack_init (&symtab_obstack);
23365 make_cleanup_obstack_free (&symtab_obstack);
23366 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23367
23368 obstack_init (&contents);
23369 make_cleanup_obstack_free (&contents);
23370 size_of_contents = 6 * sizeof (offset_type);
23371 total_len = size_of_contents;
23372
23373 /* The version number. */
23374 val = MAYBE_SWAP (8);
23375 obstack_grow (&contents, &val, sizeof (val));
23376
23377 /* The offset of the CU list from the start of the file. */
23378 val = MAYBE_SWAP (total_len);
23379 obstack_grow (&contents, &val, sizeof (val));
23380 total_len += obstack_object_size (&cu_list);
23381
23382 /* The offset of the types CU list from the start of the file. */
23383 val = MAYBE_SWAP (total_len);
23384 obstack_grow (&contents, &val, sizeof (val));
23385 total_len += obstack_object_size (&types_cu_list);
23386
23387 /* The offset of the address table from the start of the file. */
23388 val = MAYBE_SWAP (total_len);
23389 obstack_grow (&contents, &val, sizeof (val));
23390 total_len += obstack_object_size (&addr_obstack);
23391
23392 /* The offset of the symbol table from the start of the file. */
23393 val = MAYBE_SWAP (total_len);
23394 obstack_grow (&contents, &val, sizeof (val));
23395 total_len += obstack_object_size (&symtab_obstack);
23396
23397 /* The offset of the constant pool from the start of the file. */
23398 val = MAYBE_SWAP (total_len);
23399 obstack_grow (&contents, &val, sizeof (val));
23400 total_len += obstack_object_size (&constant_pool);
23401
23402 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23403
23404 write_obstack (out_file, &contents);
23405 write_obstack (out_file, &cu_list);
23406 write_obstack (out_file, &types_cu_list);
23407 write_obstack (out_file, &addr_obstack);
23408 write_obstack (out_file, &symtab_obstack);
23409 write_obstack (out_file, &constant_pool);
23410
23411 fclose (out_file);
23412
23413 /* We want to keep the file. */
23414 unlink_file.keep ();
23415
23416 do_cleanups (cleanup);
23417 }
23418
23419 /* Implementation of the `save gdb-index' command.
23420
23421 Note that the file format used by this command is documented in the
23422 GDB manual. Any changes here must be documented there. */
23423
23424 static void
23425 save_gdb_index_command (char *arg, int from_tty)
23426 {
23427 struct objfile *objfile;
23428
23429 if (!arg || !*arg)
23430 error (_("usage: save gdb-index DIRECTORY"));
23431
23432 ALL_OBJFILES (objfile)
23433 {
23434 struct stat st;
23435
23436 /* If the objfile does not correspond to an actual file, skip it. */
23437 if (stat (objfile_name (objfile), &st) < 0)
23438 continue;
23439
23440 dwarf2_per_objfile
23441 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23442 dwarf2_objfile_data_key);
23443 if (dwarf2_per_objfile)
23444 {
23445
23446 TRY
23447 {
23448 write_psymtabs_to_index (objfile, arg);
23449 }
23450 CATCH (except, RETURN_MASK_ERROR)
23451 {
23452 exception_fprintf (gdb_stderr, except,
23453 _("Error while writing index for `%s': "),
23454 objfile_name (objfile));
23455 }
23456 END_CATCH
23457 }
23458 }
23459 }
23460
23461 \f
23462
23463 int dwarf_always_disassemble;
23464
23465 static void
23466 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23467 struct cmd_list_element *c, const char *value)
23468 {
23469 fprintf_filtered (file,
23470 _("Whether to always disassemble "
23471 "DWARF expressions is %s.\n"),
23472 value);
23473 }
23474
23475 static void
23476 show_check_physname (struct ui_file *file, int from_tty,
23477 struct cmd_list_element *c, const char *value)
23478 {
23479 fprintf_filtered (file,
23480 _("Whether to check \"physname\" is %s.\n"),
23481 value);
23482 }
23483
23484 void _initialize_dwarf2_read (void);
23485
23486 void
23487 _initialize_dwarf2_read (void)
23488 {
23489 struct cmd_list_element *c;
23490
23491 dwarf2_objfile_data_key
23492 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23493
23494 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23495 Set DWARF specific variables.\n\
23496 Configure DWARF variables such as the cache size"),
23497 &set_dwarf_cmdlist, "maintenance set dwarf ",
23498 0/*allow-unknown*/, &maintenance_set_cmdlist);
23499
23500 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23501 Show DWARF specific variables\n\
23502 Show DWARF variables such as the cache size"),
23503 &show_dwarf_cmdlist, "maintenance show dwarf ",
23504 0/*allow-unknown*/, &maintenance_show_cmdlist);
23505
23506 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23507 &dwarf_max_cache_age, _("\
23508 Set the upper bound on the age of cached DWARF compilation units."), _("\
23509 Show the upper bound on the age of cached DWARF compilation units."), _("\
23510 A higher limit means that cached compilation units will be stored\n\
23511 in memory longer, and more total memory will be used. Zero disables\n\
23512 caching, which can slow down startup."),
23513 NULL,
23514 show_dwarf_max_cache_age,
23515 &set_dwarf_cmdlist,
23516 &show_dwarf_cmdlist);
23517
23518 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23519 &dwarf_always_disassemble, _("\
23520 Set whether `info address' always disassembles DWARF expressions."), _("\
23521 Show whether `info address' always disassembles DWARF expressions."), _("\
23522 When enabled, DWARF expressions are always printed in an assembly-like\n\
23523 syntax. When disabled, expressions will be printed in a more\n\
23524 conversational style, when possible."),
23525 NULL,
23526 show_dwarf_always_disassemble,
23527 &set_dwarf_cmdlist,
23528 &show_dwarf_cmdlist);
23529
23530 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23531 Set debugging of the DWARF reader."), _("\
23532 Show debugging of the DWARF reader."), _("\
23533 When enabled (non-zero), debugging messages are printed during DWARF\n\
23534 reading and symtab expansion. A value of 1 (one) provides basic\n\
23535 information. A value greater than 1 provides more verbose information."),
23536 NULL,
23537 NULL,
23538 &setdebuglist, &showdebuglist);
23539
23540 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23541 Set debugging of the DWARF DIE reader."), _("\
23542 Show debugging of the DWARF DIE reader."), _("\
23543 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23544 The value is the maximum depth to print."),
23545 NULL,
23546 NULL,
23547 &setdebuglist, &showdebuglist);
23548
23549 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23550 Set debugging of the dwarf line reader."), _("\
23551 Show debugging of the dwarf line reader."), _("\
23552 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23553 A value of 1 (one) provides basic information.\n\
23554 A value greater than 1 provides more verbose information."),
23555 NULL,
23556 NULL,
23557 &setdebuglist, &showdebuglist);
23558
23559 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23560 Set cross-checking of \"physname\" code against demangler."), _("\
23561 Show cross-checking of \"physname\" code against demangler."), _("\
23562 When enabled, GDB's internal \"physname\" code is checked against\n\
23563 the demangler."),
23564 NULL, show_check_physname,
23565 &setdebuglist, &showdebuglist);
23566
23567 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23568 no_class, &use_deprecated_index_sections, _("\
23569 Set whether to use deprecated gdb_index sections."), _("\
23570 Show whether to use deprecated gdb_index sections."), _("\
23571 When enabled, deprecated .gdb_index sections are used anyway.\n\
23572 Normally they are ignored either because of a missing feature or\n\
23573 performance issue.\n\
23574 Warning: This option must be enabled before gdb reads the file."),
23575 NULL,
23576 NULL,
23577 &setlist, &showlist);
23578
23579 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23580 _("\
23581 Save a gdb-index file.\n\
23582 Usage: save gdb-index DIRECTORY"),
23583 &save_cmdlist);
23584 set_cmd_completer (c, filename_completer);
23585
23586 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23587 &dwarf2_locexpr_funcs);
23588 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23589 &dwarf2_loclist_funcs);
23590
23591 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23592 &dwarf2_block_frame_base_locexpr_funcs);
23593 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23594 &dwarf2_block_frame_base_loclist_funcs);
23595 }