Constify save_gdb_index_command
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "filename-seen-cache.h"
78 #include "producer.h"
79 #include <fcntl.h>
80 #include <sys/types.h>
81 #include <algorithm>
82 #include <unordered_set>
83 #include <unordered_map>
84
85 typedef struct symbol *symbolp;
86 DEF_VEC_P (symbolp);
87
88 /* When == 1, print basic high level tracing messages.
89 When > 1, be more verbose.
90 This is in contrast to the low level DIE reading of dwarf_die_debug. */
91 static unsigned int dwarf_read_debug = 0;
92
93 /* When non-zero, dump DIEs after they are read in. */
94 static unsigned int dwarf_die_debug = 0;
95
96 /* When non-zero, dump line number entries as they are read in. */
97 static unsigned int dwarf_line_debug = 0;
98
99 /* When non-zero, cross-check physname against demangler. */
100 static int check_physname = 0;
101
102 /* When non-zero, do not reject deprecated .gdb_index sections. */
103 static int use_deprecated_index_sections = 0;
104
105 static const struct objfile_data *dwarf2_objfile_data_key;
106
107 /* The "aclass" indices for various kinds of computed DWARF symbols. */
108
109 static int dwarf2_locexpr_index;
110 static int dwarf2_loclist_index;
111 static int dwarf2_locexpr_block_index;
112 static int dwarf2_loclist_block_index;
113
114 /* A descriptor for dwarf sections.
115
116 S.ASECTION, SIZE are typically initialized when the objfile is first
117 scanned. BUFFER, READIN are filled in later when the section is read.
118 If the section contained compressed data then SIZE is updated to record
119 the uncompressed size of the section.
120
121 DWP file format V2 introduces a wrinkle that is easiest to handle by
122 creating the concept of virtual sections contained within a real section.
123 In DWP V2 the sections of the input DWO files are concatenated together
124 into one section, but section offsets are kept relative to the original
125 input section.
126 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
127 the real section this "virtual" section is contained in, and BUFFER,SIZE
128 describe the virtual section. */
129
130 struct dwarf2_section_info
131 {
132 union
133 {
134 /* If this is a real section, the bfd section. */
135 asection *section;
136 /* If this is a virtual section, pointer to the containing ("real")
137 section. */
138 struct dwarf2_section_info *containing_section;
139 } s;
140 /* Pointer to section data, only valid if readin. */
141 const gdb_byte *buffer;
142 /* The size of the section, real or virtual. */
143 bfd_size_type size;
144 /* If this is a virtual section, the offset in the real section.
145 Only valid if is_virtual. */
146 bfd_size_type virtual_offset;
147 /* True if we have tried to read this section. */
148 char readin;
149 /* True if this is a virtual section, False otherwise.
150 This specifies which of s.section and s.containing_section to use. */
151 char is_virtual;
152 };
153
154 typedef struct dwarf2_section_info dwarf2_section_info_def;
155 DEF_VEC_O (dwarf2_section_info_def);
156
157 /* All offsets in the index are of this type. It must be
158 architecture-independent. */
159 typedef uint32_t offset_type;
160
161 DEF_VEC_I (offset_type);
162
163 /* Ensure only legit values are used. */
164 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
165 do { \
166 gdb_assert ((unsigned int) (value) <= 1); \
167 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure only legit values are used. */
171 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
174 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
175 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
176 } while (0)
177
178 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
179 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
180 do { \
181 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
182 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
183 } while (0)
184
185 /* A description of the mapped index. The file format is described in
186 a comment by the code that writes the index. */
187 struct mapped_index
188 {
189 /* Index data format version. */
190 int version;
191
192 /* The total length of the buffer. */
193 off_t total_size;
194
195 /* A pointer to the address table data. */
196 const gdb_byte *address_table;
197
198 /* Size of the address table data in bytes. */
199 offset_type address_table_size;
200
201 /* The symbol table, implemented as a hash table. */
202 const offset_type *symbol_table;
203
204 /* Size in slots, each slot is 2 offset_types. */
205 offset_type symbol_table_slots;
206
207 /* A pointer to the constant pool. */
208 const char *constant_pool;
209 };
210
211 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
212 DEF_VEC_P (dwarf2_per_cu_ptr);
213
214 struct tu_stats
215 {
216 int nr_uniq_abbrev_tables;
217 int nr_symtabs;
218 int nr_symtab_sharers;
219 int nr_stmt_less_type_units;
220 int nr_all_type_units_reallocs;
221 };
222
223 /* Collection of data recorded per objfile.
224 This hangs off of dwarf2_objfile_data_key. */
225
226 struct dwarf2_per_objfile
227 {
228 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
229 dwarf2 section names, or is NULL if the standard ELF names are
230 used. */
231 dwarf2_per_objfile (struct objfile *objfile,
232 const dwarf2_debug_sections *names);
233
234 ~dwarf2_per_objfile ();
235
236 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
237
238 /* Free all cached compilation units. */
239 void free_cached_comp_units ();
240 private:
241 /* This function is mapped across the sections and remembers the
242 offset and size of each of the debugging sections we are
243 interested in. */
244 void locate_sections (bfd *abfd, asection *sectp,
245 const dwarf2_debug_sections &names);
246
247 public:
248 dwarf2_section_info info {};
249 dwarf2_section_info abbrev {};
250 dwarf2_section_info line {};
251 dwarf2_section_info loc {};
252 dwarf2_section_info loclists {};
253 dwarf2_section_info macinfo {};
254 dwarf2_section_info macro {};
255 dwarf2_section_info str {};
256 dwarf2_section_info line_str {};
257 dwarf2_section_info ranges {};
258 dwarf2_section_info rnglists {};
259 dwarf2_section_info addr {};
260 dwarf2_section_info frame {};
261 dwarf2_section_info eh_frame {};
262 dwarf2_section_info gdb_index {};
263
264 VEC (dwarf2_section_info_def) *types = NULL;
265
266 /* Back link. */
267 struct objfile *objfile = NULL;
268
269 /* Table of all the compilation units. This is used to locate
270 the target compilation unit of a particular reference. */
271 struct dwarf2_per_cu_data **all_comp_units = NULL;
272
273 /* The number of compilation units in ALL_COMP_UNITS. */
274 int n_comp_units = 0;
275
276 /* The number of .debug_types-related CUs. */
277 int n_type_units = 0;
278
279 /* The number of elements allocated in all_type_units.
280 If there are skeleton-less TUs, we add them to all_type_units lazily. */
281 int n_allocated_type_units = 0;
282
283 /* The .debug_types-related CUs (TUs).
284 This is stored in malloc space because we may realloc it. */
285 struct signatured_type **all_type_units = NULL;
286
287 /* Table of struct type_unit_group objects.
288 The hash key is the DW_AT_stmt_list value. */
289 htab_t type_unit_groups {};
290
291 /* A table mapping .debug_types signatures to its signatured_type entry.
292 This is NULL if the .debug_types section hasn't been read in yet. */
293 htab_t signatured_types {};
294
295 /* Type unit statistics, to see how well the scaling improvements
296 are doing. */
297 struct tu_stats tu_stats {};
298
299 /* A chain of compilation units that are currently read in, so that
300 they can be freed later. */
301 dwarf2_per_cu_data *read_in_chain = NULL;
302
303 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
304 This is NULL if the table hasn't been allocated yet. */
305 htab_t dwo_files {};
306
307 /* True if we've checked for whether there is a DWP file. */
308 bool dwp_checked = false;
309
310 /* The DWP file if there is one, or NULL. */
311 struct dwp_file *dwp_file = NULL;
312
313 /* The shared '.dwz' file, if one exists. This is used when the
314 original data was compressed using 'dwz -m'. */
315 struct dwz_file *dwz_file = NULL;
316
317 /* A flag indicating whether this objfile has a section loaded at a
318 VMA of 0. */
319 bool has_section_at_zero = false;
320
321 /* True if we are using the mapped index,
322 or we are faking it for OBJF_READNOW's sake. */
323 bool using_index = false;
324
325 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
326 mapped_index *index_table = NULL;
327
328 /* When using index_table, this keeps track of all quick_file_names entries.
329 TUs typically share line table entries with a CU, so we maintain a
330 separate table of all line table entries to support the sharing.
331 Note that while there can be way more TUs than CUs, we've already
332 sorted all the TUs into "type unit groups", grouped by their
333 DW_AT_stmt_list value. Therefore the only sharing done here is with a
334 CU and its associated TU group if there is one. */
335 htab_t quick_file_names_table {};
336
337 /* Set during partial symbol reading, to prevent queueing of full
338 symbols. */
339 bool reading_partial_symbols = false;
340
341 /* Table mapping type DIEs to their struct type *.
342 This is NULL if not allocated yet.
343 The mapping is done via (CU/TU + DIE offset) -> type. */
344 htab_t die_type_hash {};
345
346 /* The CUs we recently read. */
347 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
348
349 /* Table containing line_header indexed by offset and offset_in_dwz. */
350 htab_t line_header_hash {};
351
352 /* Table containing all filenames. This is an optional because the
353 table is lazily constructed on first access. */
354 gdb::optional<filename_seen_cache> filenames_cache;
355 };
356
357 static struct dwarf2_per_objfile *dwarf2_per_objfile;
358
359 /* Default names of the debugging sections. */
360
361 /* Note that if the debugging section has been compressed, it might
362 have a name like .zdebug_info. */
363
364 static const struct dwarf2_debug_sections dwarf2_elf_names =
365 {
366 { ".debug_info", ".zdebug_info" },
367 { ".debug_abbrev", ".zdebug_abbrev" },
368 { ".debug_line", ".zdebug_line" },
369 { ".debug_loc", ".zdebug_loc" },
370 { ".debug_loclists", ".zdebug_loclists" },
371 { ".debug_macinfo", ".zdebug_macinfo" },
372 { ".debug_macro", ".zdebug_macro" },
373 { ".debug_str", ".zdebug_str" },
374 { ".debug_line_str", ".zdebug_line_str" },
375 { ".debug_ranges", ".zdebug_ranges" },
376 { ".debug_rnglists", ".zdebug_rnglists" },
377 { ".debug_types", ".zdebug_types" },
378 { ".debug_addr", ".zdebug_addr" },
379 { ".debug_frame", ".zdebug_frame" },
380 { ".eh_frame", NULL },
381 { ".gdb_index", ".zgdb_index" },
382 23
383 };
384
385 /* List of DWO/DWP sections. */
386
387 static const struct dwop_section_names
388 {
389 struct dwarf2_section_names abbrev_dwo;
390 struct dwarf2_section_names info_dwo;
391 struct dwarf2_section_names line_dwo;
392 struct dwarf2_section_names loc_dwo;
393 struct dwarf2_section_names loclists_dwo;
394 struct dwarf2_section_names macinfo_dwo;
395 struct dwarf2_section_names macro_dwo;
396 struct dwarf2_section_names str_dwo;
397 struct dwarf2_section_names str_offsets_dwo;
398 struct dwarf2_section_names types_dwo;
399 struct dwarf2_section_names cu_index;
400 struct dwarf2_section_names tu_index;
401 }
402 dwop_section_names =
403 {
404 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
405 { ".debug_info.dwo", ".zdebug_info.dwo" },
406 { ".debug_line.dwo", ".zdebug_line.dwo" },
407 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
408 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
409 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
410 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
411 { ".debug_str.dwo", ".zdebug_str.dwo" },
412 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
413 { ".debug_types.dwo", ".zdebug_types.dwo" },
414 { ".debug_cu_index", ".zdebug_cu_index" },
415 { ".debug_tu_index", ".zdebug_tu_index" },
416 };
417
418 /* local data types */
419
420 /* The data in a compilation unit header, after target2host
421 translation, looks like this. */
422 struct comp_unit_head
423 {
424 unsigned int length;
425 short version;
426 unsigned char addr_size;
427 unsigned char signed_addr_p;
428 sect_offset abbrev_sect_off;
429
430 /* Size of file offsets; either 4 or 8. */
431 unsigned int offset_size;
432
433 /* Size of the length field; either 4 or 12. */
434 unsigned int initial_length_size;
435
436 enum dwarf_unit_type unit_type;
437
438 /* Offset to the first byte of this compilation unit header in the
439 .debug_info section, for resolving relative reference dies. */
440 sect_offset sect_off;
441
442 /* Offset to first die in this cu from the start of the cu.
443 This will be the first byte following the compilation unit header. */
444 cu_offset first_die_cu_offset;
445
446 /* 64-bit signature of this type unit - it is valid only for
447 UNIT_TYPE DW_UT_type. */
448 ULONGEST signature;
449
450 /* For types, offset in the type's DIE of the type defined by this TU. */
451 cu_offset type_cu_offset_in_tu;
452 };
453
454 /* Type used for delaying computation of method physnames.
455 See comments for compute_delayed_physnames. */
456 struct delayed_method_info
457 {
458 /* The type to which the method is attached, i.e., its parent class. */
459 struct type *type;
460
461 /* The index of the method in the type's function fieldlists. */
462 int fnfield_index;
463
464 /* The index of the method in the fieldlist. */
465 int index;
466
467 /* The name of the DIE. */
468 const char *name;
469
470 /* The DIE associated with this method. */
471 struct die_info *die;
472 };
473
474 typedef struct delayed_method_info delayed_method_info;
475 DEF_VEC_O (delayed_method_info);
476
477 /* Internal state when decoding a particular compilation unit. */
478 struct dwarf2_cu
479 {
480 /* The objfile containing this compilation unit. */
481 struct objfile *objfile;
482
483 /* The header of the compilation unit. */
484 struct comp_unit_head header;
485
486 /* Base address of this compilation unit. */
487 CORE_ADDR base_address;
488
489 /* Non-zero if base_address has been set. */
490 int base_known;
491
492 /* The language we are debugging. */
493 enum language language;
494 const struct language_defn *language_defn;
495
496 const char *producer;
497
498 /* The generic symbol table building routines have separate lists for
499 file scope symbols and all all other scopes (local scopes). So
500 we need to select the right one to pass to add_symbol_to_list().
501 We do it by keeping a pointer to the correct list in list_in_scope.
502
503 FIXME: The original dwarf code just treated the file scope as the
504 first local scope, and all other local scopes as nested local
505 scopes, and worked fine. Check to see if we really need to
506 distinguish these in buildsym.c. */
507 struct pending **list_in_scope;
508
509 /* The abbrev table for this CU.
510 Normally this points to the abbrev table in the objfile.
511 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
512 struct abbrev_table *abbrev_table;
513
514 /* Hash table holding all the loaded partial DIEs
515 with partial_die->offset.SECT_OFF as hash. */
516 htab_t partial_dies;
517
518 /* Storage for things with the same lifetime as this read-in compilation
519 unit, including partial DIEs. */
520 struct obstack comp_unit_obstack;
521
522 /* When multiple dwarf2_cu structures are living in memory, this field
523 chains them all together, so that they can be released efficiently.
524 We will probably also want a generation counter so that most-recently-used
525 compilation units are cached... */
526 struct dwarf2_per_cu_data *read_in_chain;
527
528 /* Backlink to our per_cu entry. */
529 struct dwarf2_per_cu_data *per_cu;
530
531 /* How many compilation units ago was this CU last referenced? */
532 int last_used;
533
534 /* A hash table of DIE cu_offset for following references with
535 die_info->offset.sect_off as hash. */
536 htab_t die_hash;
537
538 /* Full DIEs if read in. */
539 struct die_info *dies;
540
541 /* A set of pointers to dwarf2_per_cu_data objects for compilation
542 units referenced by this one. Only set during full symbol processing;
543 partial symbol tables do not have dependencies. */
544 htab_t dependencies;
545
546 /* Header data from the line table, during full symbol processing. */
547 struct line_header *line_header;
548 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
549 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
550 this is the DW_TAG_compile_unit die for this CU. We'll hold on
551 to the line header as long as this DIE is being processed. See
552 process_die_scope. */
553 die_info *line_header_die_owner;
554
555 /* A list of methods which need to have physnames computed
556 after all type information has been read. */
557 VEC (delayed_method_info) *method_list;
558
559 /* To be copied to symtab->call_site_htab. */
560 htab_t call_site_htab;
561
562 /* Non-NULL if this CU came from a DWO file.
563 There is an invariant here that is important to remember:
564 Except for attributes copied from the top level DIE in the "main"
565 (or "stub") file in preparation for reading the DWO file
566 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
567 Either there isn't a DWO file (in which case this is NULL and the point
568 is moot), or there is and either we're not going to read it (in which
569 case this is NULL) or there is and we are reading it (in which case this
570 is non-NULL). */
571 struct dwo_unit *dwo_unit;
572
573 /* The DW_AT_addr_base attribute if present, zero otherwise
574 (zero is a valid value though).
575 Note this value comes from the Fission stub CU/TU's DIE. */
576 ULONGEST addr_base;
577
578 /* The DW_AT_ranges_base attribute if present, zero otherwise
579 (zero is a valid value though).
580 Note this value comes from the Fission stub CU/TU's DIE.
581 Also note that the value is zero in the non-DWO case so this value can
582 be used without needing to know whether DWO files are in use or not.
583 N.B. This does not apply to DW_AT_ranges appearing in
584 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
585 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
586 DW_AT_ranges_base *would* have to be applied, and we'd have to care
587 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
588 ULONGEST ranges_base;
589
590 /* Mark used when releasing cached dies. */
591 unsigned int mark : 1;
592
593 /* This CU references .debug_loc. See the symtab->locations_valid field.
594 This test is imperfect as there may exist optimized debug code not using
595 any location list and still facing inlining issues if handled as
596 unoptimized code. For a future better test see GCC PR other/32998. */
597 unsigned int has_loclist : 1;
598
599 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
600 if all the producer_is_* fields are valid. This information is cached
601 because profiling CU expansion showed excessive time spent in
602 producer_is_gxx_lt_4_6. */
603 unsigned int checked_producer : 1;
604 unsigned int producer_is_gxx_lt_4_6 : 1;
605 unsigned int producer_is_gcc_lt_4_3 : 1;
606 unsigned int producer_is_icc_lt_14 : 1;
607
608 /* When set, the file that we're processing is known to have
609 debugging info for C++ namespaces. GCC 3.3.x did not produce
610 this information, but later versions do. */
611
612 unsigned int processing_has_namespace_info : 1;
613 };
614
615 /* Persistent data held for a compilation unit, even when not
616 processing it. We put a pointer to this structure in the
617 read_symtab_private field of the psymtab. */
618
619 struct dwarf2_per_cu_data
620 {
621 /* The start offset and length of this compilation unit.
622 NOTE: Unlike comp_unit_head.length, this length includes
623 initial_length_size.
624 If the DIE refers to a DWO file, this is always of the original die,
625 not the DWO file. */
626 sect_offset sect_off;
627 unsigned int length;
628
629 /* DWARF standard version this data has been read from (such as 4 or 5). */
630 short dwarf_version;
631
632 /* Flag indicating this compilation unit will be read in before
633 any of the current compilation units are processed. */
634 unsigned int queued : 1;
635
636 /* This flag will be set when reading partial DIEs if we need to load
637 absolutely all DIEs for this compilation unit, instead of just the ones
638 we think are interesting. It gets set if we look for a DIE in the
639 hash table and don't find it. */
640 unsigned int load_all_dies : 1;
641
642 /* Non-zero if this CU is from .debug_types.
643 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
644 this is non-zero. */
645 unsigned int is_debug_types : 1;
646
647 /* Non-zero if this CU is from the .dwz file. */
648 unsigned int is_dwz : 1;
649
650 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
651 This flag is only valid if is_debug_types is true.
652 We can't read a CU directly from a DWO file: There are required
653 attributes in the stub. */
654 unsigned int reading_dwo_directly : 1;
655
656 /* Non-zero if the TU has been read.
657 This is used to assist the "Stay in DWO Optimization" for Fission:
658 When reading a DWO, it's faster to read TUs from the DWO instead of
659 fetching them from random other DWOs (due to comdat folding).
660 If the TU has already been read, the optimization is unnecessary
661 (and unwise - we don't want to change where gdb thinks the TU lives
662 "midflight").
663 This flag is only valid if is_debug_types is true. */
664 unsigned int tu_read : 1;
665
666 /* The section this CU/TU lives in.
667 If the DIE refers to a DWO file, this is always the original die,
668 not the DWO file. */
669 struct dwarf2_section_info *section;
670
671 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
672 of the CU cache it gets reset to NULL again. This is left as NULL for
673 dummy CUs (a CU header, but nothing else). */
674 struct dwarf2_cu *cu;
675
676 /* The corresponding objfile.
677 Normally we can get the objfile from dwarf2_per_objfile.
678 However we can enter this file with just a "per_cu" handle. */
679 struct objfile *objfile;
680
681 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
682 is active. Otherwise, the 'psymtab' field is active. */
683 union
684 {
685 /* The partial symbol table associated with this compilation unit,
686 or NULL for unread partial units. */
687 struct partial_symtab *psymtab;
688
689 /* Data needed by the "quick" functions. */
690 struct dwarf2_per_cu_quick_data *quick;
691 } v;
692
693 /* The CUs we import using DW_TAG_imported_unit. This is filled in
694 while reading psymtabs, used to compute the psymtab dependencies,
695 and then cleared. Then it is filled in again while reading full
696 symbols, and only deleted when the objfile is destroyed.
697
698 This is also used to work around a difference between the way gold
699 generates .gdb_index version <=7 and the way gdb does. Arguably this
700 is a gold bug. For symbols coming from TUs, gold records in the index
701 the CU that includes the TU instead of the TU itself. This breaks
702 dw2_lookup_symbol: It assumes that if the index says symbol X lives
703 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
704 will find X. Alas TUs live in their own symtab, so after expanding CU Y
705 we need to look in TU Z to find X. Fortunately, this is akin to
706 DW_TAG_imported_unit, so we just use the same mechanism: For
707 .gdb_index version <=7 this also records the TUs that the CU referred
708 to. Concurrently with this change gdb was modified to emit version 8
709 indices so we only pay a price for gold generated indices.
710 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
711 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
712 };
713
714 /* Entry in the signatured_types hash table. */
715
716 struct signatured_type
717 {
718 /* The "per_cu" object of this type.
719 This struct is used iff per_cu.is_debug_types.
720 N.B.: This is the first member so that it's easy to convert pointers
721 between them. */
722 struct dwarf2_per_cu_data per_cu;
723
724 /* The type's signature. */
725 ULONGEST signature;
726
727 /* Offset in the TU of the type's DIE, as read from the TU header.
728 If this TU is a DWO stub and the definition lives in a DWO file
729 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
730 cu_offset type_offset_in_tu;
731
732 /* Offset in the section of the type's DIE.
733 If the definition lives in a DWO file, this is the offset in the
734 .debug_types.dwo section.
735 The value is zero until the actual value is known.
736 Zero is otherwise not a valid section offset. */
737 sect_offset type_offset_in_section;
738
739 /* Type units are grouped by their DW_AT_stmt_list entry so that they
740 can share them. This points to the containing symtab. */
741 struct type_unit_group *type_unit_group;
742
743 /* The type.
744 The first time we encounter this type we fully read it in and install it
745 in the symbol tables. Subsequent times we only need the type. */
746 struct type *type;
747
748 /* Containing DWO unit.
749 This field is valid iff per_cu.reading_dwo_directly. */
750 struct dwo_unit *dwo_unit;
751 };
752
753 typedef struct signatured_type *sig_type_ptr;
754 DEF_VEC_P (sig_type_ptr);
755
756 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
757 This includes type_unit_group and quick_file_names. */
758
759 struct stmt_list_hash
760 {
761 /* The DWO unit this table is from or NULL if there is none. */
762 struct dwo_unit *dwo_unit;
763
764 /* Offset in .debug_line or .debug_line.dwo. */
765 sect_offset line_sect_off;
766 };
767
768 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
769 an object of this type. */
770
771 struct type_unit_group
772 {
773 /* dwarf2read.c's main "handle" on a TU symtab.
774 To simplify things we create an artificial CU that "includes" all the
775 type units using this stmt_list so that the rest of the code still has
776 a "per_cu" handle on the symtab.
777 This PER_CU is recognized by having no section. */
778 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
779 struct dwarf2_per_cu_data per_cu;
780
781 /* The TUs that share this DW_AT_stmt_list entry.
782 This is added to while parsing type units to build partial symtabs,
783 and is deleted afterwards and not used again. */
784 VEC (sig_type_ptr) *tus;
785
786 /* The compunit symtab.
787 Type units in a group needn't all be defined in the same source file,
788 so we create an essentially anonymous symtab as the compunit symtab. */
789 struct compunit_symtab *compunit_symtab;
790
791 /* The data used to construct the hash key. */
792 struct stmt_list_hash hash;
793
794 /* The number of symtabs from the line header.
795 The value here must match line_header.num_file_names. */
796 unsigned int num_symtabs;
797
798 /* The symbol tables for this TU (obtained from the files listed in
799 DW_AT_stmt_list).
800 WARNING: The order of entries here must match the order of entries
801 in the line header. After the first TU using this type_unit_group, the
802 line header for the subsequent TUs is recreated from this. This is done
803 because we need to use the same symtabs for each TU using the same
804 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
805 there's no guarantee the line header doesn't have duplicate entries. */
806 struct symtab **symtabs;
807 };
808
809 /* These sections are what may appear in a (real or virtual) DWO file. */
810
811 struct dwo_sections
812 {
813 struct dwarf2_section_info abbrev;
814 struct dwarf2_section_info line;
815 struct dwarf2_section_info loc;
816 struct dwarf2_section_info loclists;
817 struct dwarf2_section_info macinfo;
818 struct dwarf2_section_info macro;
819 struct dwarf2_section_info str;
820 struct dwarf2_section_info str_offsets;
821 /* In the case of a virtual DWO file, these two are unused. */
822 struct dwarf2_section_info info;
823 VEC (dwarf2_section_info_def) *types;
824 };
825
826 /* CUs/TUs in DWP/DWO files. */
827
828 struct dwo_unit
829 {
830 /* Backlink to the containing struct dwo_file. */
831 struct dwo_file *dwo_file;
832
833 /* The "id" that distinguishes this CU/TU.
834 .debug_info calls this "dwo_id", .debug_types calls this "signature".
835 Since signatures came first, we stick with it for consistency. */
836 ULONGEST signature;
837
838 /* The section this CU/TU lives in, in the DWO file. */
839 struct dwarf2_section_info *section;
840
841 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
842 sect_offset sect_off;
843 unsigned int length;
844
845 /* For types, offset in the type's DIE of the type defined by this TU. */
846 cu_offset type_offset_in_tu;
847 };
848
849 /* include/dwarf2.h defines the DWP section codes.
850 It defines a max value but it doesn't define a min value, which we
851 use for error checking, so provide one. */
852
853 enum dwp_v2_section_ids
854 {
855 DW_SECT_MIN = 1
856 };
857
858 /* Data for one DWO file.
859
860 This includes virtual DWO files (a virtual DWO file is a DWO file as it
861 appears in a DWP file). DWP files don't really have DWO files per se -
862 comdat folding of types "loses" the DWO file they came from, and from
863 a high level view DWP files appear to contain a mass of random types.
864 However, to maintain consistency with the non-DWP case we pretend DWP
865 files contain virtual DWO files, and we assign each TU with one virtual
866 DWO file (generally based on the line and abbrev section offsets -
867 a heuristic that seems to work in practice). */
868
869 struct dwo_file
870 {
871 /* The DW_AT_GNU_dwo_name attribute.
872 For virtual DWO files the name is constructed from the section offsets
873 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
874 from related CU+TUs. */
875 const char *dwo_name;
876
877 /* The DW_AT_comp_dir attribute. */
878 const char *comp_dir;
879
880 /* The bfd, when the file is open. Otherwise this is NULL.
881 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
882 bfd *dbfd;
883
884 /* The sections that make up this DWO file.
885 Remember that for virtual DWO files in DWP V2, these are virtual
886 sections (for lack of a better name). */
887 struct dwo_sections sections;
888
889 /* The CUs in the file.
890 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
891 an extension to handle LLVM's Link Time Optimization output (where
892 multiple source files may be compiled into a single object/dwo pair). */
893 htab_t cus;
894
895 /* Table of TUs in the file.
896 Each element is a struct dwo_unit. */
897 htab_t tus;
898 };
899
900 /* These sections are what may appear in a DWP file. */
901
902 struct dwp_sections
903 {
904 /* These are used by both DWP version 1 and 2. */
905 struct dwarf2_section_info str;
906 struct dwarf2_section_info cu_index;
907 struct dwarf2_section_info tu_index;
908
909 /* These are only used by DWP version 2 files.
910 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
911 sections are referenced by section number, and are not recorded here.
912 In DWP version 2 there is at most one copy of all these sections, each
913 section being (effectively) comprised of the concatenation of all of the
914 individual sections that exist in the version 1 format.
915 To keep the code simple we treat each of these concatenated pieces as a
916 section itself (a virtual section?). */
917 struct dwarf2_section_info abbrev;
918 struct dwarf2_section_info info;
919 struct dwarf2_section_info line;
920 struct dwarf2_section_info loc;
921 struct dwarf2_section_info macinfo;
922 struct dwarf2_section_info macro;
923 struct dwarf2_section_info str_offsets;
924 struct dwarf2_section_info types;
925 };
926
927 /* These sections are what may appear in a virtual DWO file in DWP version 1.
928 A virtual DWO file is a DWO file as it appears in a DWP file. */
929
930 struct virtual_v1_dwo_sections
931 {
932 struct dwarf2_section_info abbrev;
933 struct dwarf2_section_info line;
934 struct dwarf2_section_info loc;
935 struct dwarf2_section_info macinfo;
936 struct dwarf2_section_info macro;
937 struct dwarf2_section_info str_offsets;
938 /* Each DWP hash table entry records one CU or one TU.
939 That is recorded here, and copied to dwo_unit.section. */
940 struct dwarf2_section_info info_or_types;
941 };
942
943 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
944 In version 2, the sections of the DWO files are concatenated together
945 and stored in one section of that name. Thus each ELF section contains
946 several "virtual" sections. */
947
948 struct virtual_v2_dwo_sections
949 {
950 bfd_size_type abbrev_offset;
951 bfd_size_type abbrev_size;
952
953 bfd_size_type line_offset;
954 bfd_size_type line_size;
955
956 bfd_size_type loc_offset;
957 bfd_size_type loc_size;
958
959 bfd_size_type macinfo_offset;
960 bfd_size_type macinfo_size;
961
962 bfd_size_type macro_offset;
963 bfd_size_type macro_size;
964
965 bfd_size_type str_offsets_offset;
966 bfd_size_type str_offsets_size;
967
968 /* Each DWP hash table entry records one CU or one TU.
969 That is recorded here, and copied to dwo_unit.section. */
970 bfd_size_type info_or_types_offset;
971 bfd_size_type info_or_types_size;
972 };
973
974 /* Contents of DWP hash tables. */
975
976 struct dwp_hash_table
977 {
978 uint32_t version, nr_columns;
979 uint32_t nr_units, nr_slots;
980 const gdb_byte *hash_table, *unit_table;
981 union
982 {
983 struct
984 {
985 const gdb_byte *indices;
986 } v1;
987 struct
988 {
989 /* This is indexed by column number and gives the id of the section
990 in that column. */
991 #define MAX_NR_V2_DWO_SECTIONS \
992 (1 /* .debug_info or .debug_types */ \
993 + 1 /* .debug_abbrev */ \
994 + 1 /* .debug_line */ \
995 + 1 /* .debug_loc */ \
996 + 1 /* .debug_str_offsets */ \
997 + 1 /* .debug_macro or .debug_macinfo */)
998 int section_ids[MAX_NR_V2_DWO_SECTIONS];
999 const gdb_byte *offsets;
1000 const gdb_byte *sizes;
1001 } v2;
1002 } section_pool;
1003 };
1004
1005 /* Data for one DWP file. */
1006
1007 struct dwp_file
1008 {
1009 /* Name of the file. */
1010 const char *name;
1011
1012 /* File format version. */
1013 int version;
1014
1015 /* The bfd. */
1016 bfd *dbfd;
1017
1018 /* Section info for this file. */
1019 struct dwp_sections sections;
1020
1021 /* Table of CUs in the file. */
1022 const struct dwp_hash_table *cus;
1023
1024 /* Table of TUs in the file. */
1025 const struct dwp_hash_table *tus;
1026
1027 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1028 htab_t loaded_cus;
1029 htab_t loaded_tus;
1030
1031 /* Table to map ELF section numbers to their sections.
1032 This is only needed for the DWP V1 file format. */
1033 unsigned int num_sections;
1034 asection **elf_sections;
1035 };
1036
1037 /* This represents a '.dwz' file. */
1038
1039 struct dwz_file
1040 {
1041 /* A dwz file can only contain a few sections. */
1042 struct dwarf2_section_info abbrev;
1043 struct dwarf2_section_info info;
1044 struct dwarf2_section_info str;
1045 struct dwarf2_section_info line;
1046 struct dwarf2_section_info macro;
1047 struct dwarf2_section_info gdb_index;
1048
1049 /* The dwz's BFD. */
1050 bfd *dwz_bfd;
1051 };
1052
1053 /* Struct used to pass misc. parameters to read_die_and_children, et
1054 al. which are used for both .debug_info and .debug_types dies.
1055 All parameters here are unchanging for the life of the call. This
1056 struct exists to abstract away the constant parameters of die reading. */
1057
1058 struct die_reader_specs
1059 {
1060 /* The bfd of die_section. */
1061 bfd* abfd;
1062
1063 /* The CU of the DIE we are parsing. */
1064 struct dwarf2_cu *cu;
1065
1066 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1067 struct dwo_file *dwo_file;
1068
1069 /* The section the die comes from.
1070 This is either .debug_info or .debug_types, or the .dwo variants. */
1071 struct dwarf2_section_info *die_section;
1072
1073 /* die_section->buffer. */
1074 const gdb_byte *buffer;
1075
1076 /* The end of the buffer. */
1077 const gdb_byte *buffer_end;
1078
1079 /* The value of the DW_AT_comp_dir attribute. */
1080 const char *comp_dir;
1081 };
1082
1083 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1084 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1085 const gdb_byte *info_ptr,
1086 struct die_info *comp_unit_die,
1087 int has_children,
1088 void *data);
1089
1090 /* A 1-based directory index. This is a strong typedef to prevent
1091 accidentally using a directory index as a 0-based index into an
1092 array/vector. */
1093 enum class dir_index : unsigned int {};
1094
1095 /* Likewise, a 1-based file name index. */
1096 enum class file_name_index : unsigned int {};
1097
1098 struct file_entry
1099 {
1100 file_entry () = default;
1101
1102 file_entry (const char *name_, dir_index d_index_,
1103 unsigned int mod_time_, unsigned int length_)
1104 : name (name_),
1105 d_index (d_index_),
1106 mod_time (mod_time_),
1107 length (length_)
1108 {}
1109
1110 /* Return the include directory at D_INDEX stored in LH. Returns
1111 NULL if D_INDEX is out of bounds. */
1112 const char *include_dir (const line_header *lh) const;
1113
1114 /* The file name. Note this is an observing pointer. The memory is
1115 owned by debug_line_buffer. */
1116 const char *name {};
1117
1118 /* The directory index (1-based). */
1119 dir_index d_index {};
1120
1121 unsigned int mod_time {};
1122
1123 unsigned int length {};
1124
1125 /* True if referenced by the Line Number Program. */
1126 bool included_p {};
1127
1128 /* The associated symbol table, if any. */
1129 struct symtab *symtab {};
1130 };
1131
1132 /* The line number information for a compilation unit (found in the
1133 .debug_line section) begins with a "statement program header",
1134 which contains the following information. */
1135 struct line_header
1136 {
1137 line_header ()
1138 : offset_in_dwz {}
1139 {}
1140
1141 /* Add an entry to the include directory table. */
1142 void add_include_dir (const char *include_dir);
1143
1144 /* Add an entry to the file name table. */
1145 void add_file_name (const char *name, dir_index d_index,
1146 unsigned int mod_time, unsigned int length);
1147
1148 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1149 is out of bounds. */
1150 const char *include_dir_at (dir_index index) const
1151 {
1152 /* Convert directory index number (1-based) to vector index
1153 (0-based). */
1154 size_t vec_index = to_underlying (index) - 1;
1155
1156 if (vec_index >= include_dirs.size ())
1157 return NULL;
1158 return include_dirs[vec_index];
1159 }
1160
1161 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1162 is out of bounds. */
1163 file_entry *file_name_at (file_name_index index)
1164 {
1165 /* Convert file name index number (1-based) to vector index
1166 (0-based). */
1167 size_t vec_index = to_underlying (index) - 1;
1168
1169 if (vec_index >= file_names.size ())
1170 return NULL;
1171 return &file_names[vec_index];
1172 }
1173
1174 /* Const version of the above. */
1175 const file_entry *file_name_at (unsigned int index) const
1176 {
1177 if (index >= file_names.size ())
1178 return NULL;
1179 return &file_names[index];
1180 }
1181
1182 /* Offset of line number information in .debug_line section. */
1183 sect_offset sect_off {};
1184
1185 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1186 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1187
1188 unsigned int total_length {};
1189 unsigned short version {};
1190 unsigned int header_length {};
1191 unsigned char minimum_instruction_length {};
1192 unsigned char maximum_ops_per_instruction {};
1193 unsigned char default_is_stmt {};
1194 int line_base {};
1195 unsigned char line_range {};
1196 unsigned char opcode_base {};
1197
1198 /* standard_opcode_lengths[i] is the number of operands for the
1199 standard opcode whose value is i. This means that
1200 standard_opcode_lengths[0] is unused, and the last meaningful
1201 element is standard_opcode_lengths[opcode_base - 1]. */
1202 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1203
1204 /* The include_directories table. Note these are observing
1205 pointers. The memory is owned by debug_line_buffer. */
1206 std::vector<const char *> include_dirs;
1207
1208 /* The file_names table. */
1209 std::vector<file_entry> file_names;
1210
1211 /* The start and end of the statement program following this
1212 header. These point into dwarf2_per_objfile->line_buffer. */
1213 const gdb_byte *statement_program_start {}, *statement_program_end {};
1214 };
1215
1216 typedef std::unique_ptr<line_header> line_header_up;
1217
1218 const char *
1219 file_entry::include_dir (const line_header *lh) const
1220 {
1221 return lh->include_dir_at (d_index);
1222 }
1223
1224 /* When we construct a partial symbol table entry we only
1225 need this much information. */
1226 struct partial_die_info
1227 {
1228 /* Offset of this DIE. */
1229 sect_offset sect_off;
1230
1231 /* DWARF-2 tag for this DIE. */
1232 ENUM_BITFIELD(dwarf_tag) tag : 16;
1233
1234 /* Assorted flags describing the data found in this DIE. */
1235 unsigned int has_children : 1;
1236 unsigned int is_external : 1;
1237 unsigned int is_declaration : 1;
1238 unsigned int has_type : 1;
1239 unsigned int has_specification : 1;
1240 unsigned int has_pc_info : 1;
1241 unsigned int may_be_inlined : 1;
1242
1243 /* This DIE has been marked DW_AT_main_subprogram. */
1244 unsigned int main_subprogram : 1;
1245
1246 /* Flag set if the SCOPE field of this structure has been
1247 computed. */
1248 unsigned int scope_set : 1;
1249
1250 /* Flag set if the DIE has a byte_size attribute. */
1251 unsigned int has_byte_size : 1;
1252
1253 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1254 unsigned int has_const_value : 1;
1255
1256 /* Flag set if any of the DIE's children are template arguments. */
1257 unsigned int has_template_arguments : 1;
1258
1259 /* Flag set if fixup_partial_die has been called on this die. */
1260 unsigned int fixup_called : 1;
1261
1262 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1263 unsigned int is_dwz : 1;
1264
1265 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1266 unsigned int spec_is_dwz : 1;
1267
1268 /* The name of this DIE. Normally the value of DW_AT_name, but
1269 sometimes a default name for unnamed DIEs. */
1270 const char *name;
1271
1272 /* The linkage name, if present. */
1273 const char *linkage_name;
1274
1275 /* The scope to prepend to our children. This is generally
1276 allocated on the comp_unit_obstack, so will disappear
1277 when this compilation unit leaves the cache. */
1278 const char *scope;
1279
1280 /* Some data associated with the partial DIE. The tag determines
1281 which field is live. */
1282 union
1283 {
1284 /* The location description associated with this DIE, if any. */
1285 struct dwarf_block *locdesc;
1286 /* The offset of an import, for DW_TAG_imported_unit. */
1287 sect_offset sect_off;
1288 } d;
1289
1290 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1291 CORE_ADDR lowpc;
1292 CORE_ADDR highpc;
1293
1294 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1295 DW_AT_sibling, if any. */
1296 /* NOTE: This member isn't strictly necessary, read_partial_die could
1297 return DW_AT_sibling values to its caller load_partial_dies. */
1298 const gdb_byte *sibling;
1299
1300 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1301 DW_AT_specification (or DW_AT_abstract_origin or
1302 DW_AT_extension). */
1303 sect_offset spec_offset;
1304
1305 /* Pointers to this DIE's parent, first child, and next sibling,
1306 if any. */
1307 struct partial_die_info *die_parent, *die_child, *die_sibling;
1308 };
1309
1310 /* This data structure holds the information of an abbrev. */
1311 struct abbrev_info
1312 {
1313 unsigned int number; /* number identifying abbrev */
1314 enum dwarf_tag tag; /* dwarf tag */
1315 unsigned short has_children; /* boolean */
1316 unsigned short num_attrs; /* number of attributes */
1317 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1318 struct abbrev_info *next; /* next in chain */
1319 };
1320
1321 struct attr_abbrev
1322 {
1323 ENUM_BITFIELD(dwarf_attribute) name : 16;
1324 ENUM_BITFIELD(dwarf_form) form : 16;
1325
1326 /* It is valid only if FORM is DW_FORM_implicit_const. */
1327 LONGEST implicit_const;
1328 };
1329
1330 /* Size of abbrev_table.abbrev_hash_table. */
1331 #define ABBREV_HASH_SIZE 121
1332
1333 /* Top level data structure to contain an abbreviation table. */
1334
1335 struct abbrev_table
1336 {
1337 /* Where the abbrev table came from.
1338 This is used as a sanity check when the table is used. */
1339 sect_offset sect_off;
1340
1341 /* Storage for the abbrev table. */
1342 struct obstack abbrev_obstack;
1343
1344 /* Hash table of abbrevs.
1345 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1346 It could be statically allocated, but the previous code didn't so we
1347 don't either. */
1348 struct abbrev_info **abbrevs;
1349 };
1350
1351 /* Attributes have a name and a value. */
1352 struct attribute
1353 {
1354 ENUM_BITFIELD(dwarf_attribute) name : 16;
1355 ENUM_BITFIELD(dwarf_form) form : 15;
1356
1357 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1358 field should be in u.str (existing only for DW_STRING) but it is kept
1359 here for better struct attribute alignment. */
1360 unsigned int string_is_canonical : 1;
1361
1362 union
1363 {
1364 const char *str;
1365 struct dwarf_block *blk;
1366 ULONGEST unsnd;
1367 LONGEST snd;
1368 CORE_ADDR addr;
1369 ULONGEST signature;
1370 }
1371 u;
1372 };
1373
1374 /* This data structure holds a complete die structure. */
1375 struct die_info
1376 {
1377 /* DWARF-2 tag for this DIE. */
1378 ENUM_BITFIELD(dwarf_tag) tag : 16;
1379
1380 /* Number of attributes */
1381 unsigned char num_attrs;
1382
1383 /* True if we're presently building the full type name for the
1384 type derived from this DIE. */
1385 unsigned char building_fullname : 1;
1386
1387 /* True if this die is in process. PR 16581. */
1388 unsigned char in_process : 1;
1389
1390 /* Abbrev number */
1391 unsigned int abbrev;
1392
1393 /* Offset in .debug_info or .debug_types section. */
1394 sect_offset sect_off;
1395
1396 /* The dies in a compilation unit form an n-ary tree. PARENT
1397 points to this die's parent; CHILD points to the first child of
1398 this node; and all the children of a given node are chained
1399 together via their SIBLING fields. */
1400 struct die_info *child; /* Its first child, if any. */
1401 struct die_info *sibling; /* Its next sibling, if any. */
1402 struct die_info *parent; /* Its parent, if any. */
1403
1404 /* An array of attributes, with NUM_ATTRS elements. There may be
1405 zero, but it's not common and zero-sized arrays are not
1406 sufficiently portable C. */
1407 struct attribute attrs[1];
1408 };
1409
1410 /* Get at parts of an attribute structure. */
1411
1412 #define DW_STRING(attr) ((attr)->u.str)
1413 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1414 #define DW_UNSND(attr) ((attr)->u.unsnd)
1415 #define DW_BLOCK(attr) ((attr)->u.blk)
1416 #define DW_SND(attr) ((attr)->u.snd)
1417 #define DW_ADDR(attr) ((attr)->u.addr)
1418 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1419
1420 /* Blocks are a bunch of untyped bytes. */
1421 struct dwarf_block
1422 {
1423 size_t size;
1424
1425 /* Valid only if SIZE is not zero. */
1426 const gdb_byte *data;
1427 };
1428
1429 #ifndef ATTR_ALLOC_CHUNK
1430 #define ATTR_ALLOC_CHUNK 4
1431 #endif
1432
1433 /* Allocate fields for structs, unions and enums in this size. */
1434 #ifndef DW_FIELD_ALLOC_CHUNK
1435 #define DW_FIELD_ALLOC_CHUNK 4
1436 #endif
1437
1438 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1439 but this would require a corresponding change in unpack_field_as_long
1440 and friends. */
1441 static int bits_per_byte = 8;
1442
1443 struct nextfield
1444 {
1445 struct nextfield *next;
1446 int accessibility;
1447 int virtuality;
1448 struct field field;
1449 };
1450
1451 struct nextfnfield
1452 {
1453 struct nextfnfield *next;
1454 struct fn_field fnfield;
1455 };
1456
1457 struct fnfieldlist
1458 {
1459 const char *name;
1460 int length;
1461 struct nextfnfield *head;
1462 };
1463
1464 struct typedef_field_list
1465 {
1466 struct typedef_field field;
1467 struct typedef_field_list *next;
1468 };
1469
1470 /* The routines that read and process dies for a C struct or C++ class
1471 pass lists of data member fields and lists of member function fields
1472 in an instance of a field_info structure, as defined below. */
1473 struct field_info
1474 {
1475 /* List of data member and baseclasses fields. */
1476 struct nextfield *fields, *baseclasses;
1477
1478 /* Number of fields (including baseclasses). */
1479 int nfields;
1480
1481 /* Number of baseclasses. */
1482 int nbaseclasses;
1483
1484 /* Set if the accesibility of one of the fields is not public. */
1485 int non_public_fields;
1486
1487 /* Member function fieldlist array, contains name of possibly overloaded
1488 member function, number of overloaded member functions and a pointer
1489 to the head of the member function field chain. */
1490 struct fnfieldlist *fnfieldlists;
1491
1492 /* Number of entries in the fnfieldlists array. */
1493 int nfnfields;
1494
1495 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1496 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1497 struct typedef_field_list *typedef_field_list;
1498 unsigned typedef_field_list_count;
1499 };
1500
1501 /* One item on the queue of compilation units to read in full symbols
1502 for. */
1503 struct dwarf2_queue_item
1504 {
1505 struct dwarf2_per_cu_data *per_cu;
1506 enum language pretend_language;
1507 struct dwarf2_queue_item *next;
1508 };
1509
1510 /* The current queue. */
1511 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1512
1513 /* Loaded secondary compilation units are kept in memory until they
1514 have not been referenced for the processing of this many
1515 compilation units. Set this to zero to disable caching. Cache
1516 sizes of up to at least twenty will improve startup time for
1517 typical inter-CU-reference binaries, at an obvious memory cost. */
1518 static int dwarf_max_cache_age = 5;
1519 static void
1520 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1521 struct cmd_list_element *c, const char *value)
1522 {
1523 fprintf_filtered (file, _("The upper bound on the age of cached "
1524 "DWARF compilation units is %s.\n"),
1525 value);
1526 }
1527 \f
1528 /* local function prototypes */
1529
1530 static const char *get_section_name (const struct dwarf2_section_info *);
1531
1532 static const char *get_section_file_name (const struct dwarf2_section_info *);
1533
1534 static void dwarf2_find_base_address (struct die_info *die,
1535 struct dwarf2_cu *cu);
1536
1537 static struct partial_symtab *create_partial_symtab
1538 (struct dwarf2_per_cu_data *per_cu, const char *name);
1539
1540 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1541 const gdb_byte *info_ptr,
1542 struct die_info *type_unit_die,
1543 int has_children, void *data);
1544
1545 static void dwarf2_build_psymtabs_hard (struct objfile *);
1546
1547 static void scan_partial_symbols (struct partial_die_info *,
1548 CORE_ADDR *, CORE_ADDR *,
1549 int, struct dwarf2_cu *);
1550
1551 static void add_partial_symbol (struct partial_die_info *,
1552 struct dwarf2_cu *);
1553
1554 static void add_partial_namespace (struct partial_die_info *pdi,
1555 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1556 int set_addrmap, struct dwarf2_cu *cu);
1557
1558 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1559 CORE_ADDR *highpc, int set_addrmap,
1560 struct dwarf2_cu *cu);
1561
1562 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1563 struct dwarf2_cu *cu);
1564
1565 static void add_partial_subprogram (struct partial_die_info *pdi,
1566 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1567 int need_pc, struct dwarf2_cu *cu);
1568
1569 static void dwarf2_read_symtab (struct partial_symtab *,
1570 struct objfile *);
1571
1572 static void psymtab_to_symtab_1 (struct partial_symtab *);
1573
1574 static struct abbrev_info *abbrev_table_lookup_abbrev
1575 (const struct abbrev_table *, unsigned int);
1576
1577 static struct abbrev_table *abbrev_table_read_table
1578 (struct dwarf2_section_info *, sect_offset);
1579
1580 static void abbrev_table_free (struct abbrev_table *);
1581
1582 static void abbrev_table_free_cleanup (void *);
1583
1584 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1585 struct dwarf2_section_info *);
1586
1587 static void dwarf2_free_abbrev_table (void *);
1588
1589 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1590
1591 static struct partial_die_info *load_partial_dies
1592 (const struct die_reader_specs *, const gdb_byte *, int);
1593
1594 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1595 struct partial_die_info *,
1596 struct abbrev_info *,
1597 unsigned int,
1598 const gdb_byte *);
1599
1600 static struct partial_die_info *find_partial_die (sect_offset, int,
1601 struct dwarf2_cu *);
1602
1603 static void fixup_partial_die (struct partial_die_info *,
1604 struct dwarf2_cu *);
1605
1606 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1607 struct attribute *, struct attr_abbrev *,
1608 const gdb_byte *);
1609
1610 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1611
1612 static int read_1_signed_byte (bfd *, const gdb_byte *);
1613
1614 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1615
1616 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1617
1618 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1619
1620 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1621 unsigned int *);
1622
1623 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1624
1625 static LONGEST read_checked_initial_length_and_offset
1626 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1627 unsigned int *, unsigned int *);
1628
1629 static LONGEST read_offset (bfd *, const gdb_byte *,
1630 const struct comp_unit_head *,
1631 unsigned int *);
1632
1633 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1634
1635 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1636 sect_offset);
1637
1638 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1639
1640 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1641
1642 static const char *read_indirect_string (bfd *, const gdb_byte *,
1643 const struct comp_unit_head *,
1644 unsigned int *);
1645
1646 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1647 const struct comp_unit_head *,
1648 unsigned int *);
1649
1650 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1651
1652 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1653
1654 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1655 const gdb_byte *,
1656 unsigned int *);
1657
1658 static const char *read_str_index (const struct die_reader_specs *reader,
1659 ULONGEST str_index);
1660
1661 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1662
1663 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1664 struct dwarf2_cu *);
1665
1666 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1667 unsigned int);
1668
1669 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1670 struct dwarf2_cu *cu);
1671
1672 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1673 struct dwarf2_cu *cu);
1674
1675 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1676
1677 static struct die_info *die_specification (struct die_info *die,
1678 struct dwarf2_cu **);
1679
1680 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1681 struct dwarf2_cu *cu);
1682
1683 static void dwarf_decode_lines (struct line_header *, const char *,
1684 struct dwarf2_cu *, struct partial_symtab *,
1685 CORE_ADDR, int decode_mapping);
1686
1687 static void dwarf2_start_subfile (const char *, const char *);
1688
1689 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1690 const char *, const char *,
1691 CORE_ADDR);
1692
1693 static struct symbol *new_symbol (struct die_info *, struct type *,
1694 struct dwarf2_cu *);
1695
1696 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1697 struct dwarf2_cu *, struct symbol *);
1698
1699 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1700 struct dwarf2_cu *);
1701
1702 static void dwarf2_const_value_attr (const struct attribute *attr,
1703 struct type *type,
1704 const char *name,
1705 struct obstack *obstack,
1706 struct dwarf2_cu *cu, LONGEST *value,
1707 const gdb_byte **bytes,
1708 struct dwarf2_locexpr_baton **baton);
1709
1710 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1711
1712 static int need_gnat_info (struct dwarf2_cu *);
1713
1714 static struct type *die_descriptive_type (struct die_info *,
1715 struct dwarf2_cu *);
1716
1717 static void set_descriptive_type (struct type *, struct die_info *,
1718 struct dwarf2_cu *);
1719
1720 static struct type *die_containing_type (struct die_info *,
1721 struct dwarf2_cu *);
1722
1723 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1724 struct dwarf2_cu *);
1725
1726 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1727
1728 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1729
1730 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1731
1732 static char *typename_concat (struct obstack *obs, const char *prefix,
1733 const char *suffix, int physname,
1734 struct dwarf2_cu *cu);
1735
1736 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1737
1738 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1739
1740 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1741
1742 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1743
1744 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1745
1746 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1747 struct dwarf2_cu *, struct partial_symtab *);
1748
1749 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1750 values. Keep the items ordered with increasing constraints compliance. */
1751 enum pc_bounds_kind
1752 {
1753 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1754 PC_BOUNDS_NOT_PRESENT,
1755
1756 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1757 were present but they do not form a valid range of PC addresses. */
1758 PC_BOUNDS_INVALID,
1759
1760 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1761 PC_BOUNDS_RANGES,
1762
1763 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1764 PC_BOUNDS_HIGH_LOW,
1765 };
1766
1767 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1768 CORE_ADDR *, CORE_ADDR *,
1769 struct dwarf2_cu *,
1770 struct partial_symtab *);
1771
1772 static void get_scope_pc_bounds (struct die_info *,
1773 CORE_ADDR *, CORE_ADDR *,
1774 struct dwarf2_cu *);
1775
1776 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1777 CORE_ADDR, struct dwarf2_cu *);
1778
1779 static void dwarf2_add_field (struct field_info *, struct die_info *,
1780 struct dwarf2_cu *);
1781
1782 static void dwarf2_attach_fields_to_type (struct field_info *,
1783 struct type *, struct dwarf2_cu *);
1784
1785 static void dwarf2_add_member_fn (struct field_info *,
1786 struct die_info *, struct type *,
1787 struct dwarf2_cu *);
1788
1789 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1790 struct type *,
1791 struct dwarf2_cu *);
1792
1793 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1794
1795 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1796
1797 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1798
1799 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1800
1801 static struct using_direct **using_directives (enum language);
1802
1803 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1804
1805 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1806
1807 static struct type *read_module_type (struct die_info *die,
1808 struct dwarf2_cu *cu);
1809
1810 static const char *namespace_name (struct die_info *die,
1811 int *is_anonymous, struct dwarf2_cu *);
1812
1813 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1814
1815 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1816
1817 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1818 struct dwarf2_cu *);
1819
1820 static struct die_info *read_die_and_siblings_1
1821 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1822 struct die_info *);
1823
1824 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1825 const gdb_byte *info_ptr,
1826 const gdb_byte **new_info_ptr,
1827 struct die_info *parent);
1828
1829 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1830 struct die_info **, const gdb_byte *,
1831 int *, int);
1832
1833 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1834 struct die_info **, const gdb_byte *,
1835 int *);
1836
1837 static void process_die (struct die_info *, struct dwarf2_cu *);
1838
1839 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1840 struct obstack *);
1841
1842 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1843
1844 static const char *dwarf2_full_name (const char *name,
1845 struct die_info *die,
1846 struct dwarf2_cu *cu);
1847
1848 static const char *dwarf2_physname (const char *name, struct die_info *die,
1849 struct dwarf2_cu *cu);
1850
1851 static struct die_info *dwarf2_extension (struct die_info *die,
1852 struct dwarf2_cu **);
1853
1854 static const char *dwarf_tag_name (unsigned int);
1855
1856 static const char *dwarf_attr_name (unsigned int);
1857
1858 static const char *dwarf_form_name (unsigned int);
1859
1860 static const char *dwarf_bool_name (unsigned int);
1861
1862 static const char *dwarf_type_encoding_name (unsigned int);
1863
1864 static struct die_info *sibling_die (struct die_info *);
1865
1866 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1867
1868 static void dump_die_for_error (struct die_info *);
1869
1870 static void dump_die_1 (struct ui_file *, int level, int max_level,
1871 struct die_info *);
1872
1873 /*static*/ void dump_die (struct die_info *, int max_level);
1874
1875 static void store_in_ref_table (struct die_info *,
1876 struct dwarf2_cu *);
1877
1878 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1879
1880 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1881
1882 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1883 const struct attribute *,
1884 struct dwarf2_cu **);
1885
1886 static struct die_info *follow_die_ref (struct die_info *,
1887 const struct attribute *,
1888 struct dwarf2_cu **);
1889
1890 static struct die_info *follow_die_sig (struct die_info *,
1891 const struct attribute *,
1892 struct dwarf2_cu **);
1893
1894 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1895 struct dwarf2_cu *);
1896
1897 static struct type *get_DW_AT_signature_type (struct die_info *,
1898 const struct attribute *,
1899 struct dwarf2_cu *);
1900
1901 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1902
1903 static void read_signatured_type (struct signatured_type *);
1904
1905 static int attr_to_dynamic_prop (const struct attribute *attr,
1906 struct die_info *die, struct dwarf2_cu *cu,
1907 struct dynamic_prop *prop);
1908
1909 /* memory allocation interface */
1910
1911 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1912
1913 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1914
1915 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1916
1917 static int attr_form_is_block (const struct attribute *);
1918
1919 static int attr_form_is_section_offset (const struct attribute *);
1920
1921 static int attr_form_is_constant (const struct attribute *);
1922
1923 static int attr_form_is_ref (const struct attribute *);
1924
1925 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1926 struct dwarf2_loclist_baton *baton,
1927 const struct attribute *attr);
1928
1929 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1930 struct symbol *sym,
1931 struct dwarf2_cu *cu,
1932 int is_block);
1933
1934 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1935 const gdb_byte *info_ptr,
1936 struct abbrev_info *abbrev);
1937
1938 static void free_stack_comp_unit (void *);
1939
1940 static hashval_t partial_die_hash (const void *item);
1941
1942 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1943
1944 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1945 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
1946
1947 static void init_one_comp_unit (struct dwarf2_cu *cu,
1948 struct dwarf2_per_cu_data *per_cu);
1949
1950 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1951 struct die_info *comp_unit_die,
1952 enum language pretend_language);
1953
1954 static void free_heap_comp_unit (void *);
1955
1956 static void free_cached_comp_units (void *);
1957
1958 static void age_cached_comp_units (void);
1959
1960 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1961
1962 static struct type *set_die_type (struct die_info *, struct type *,
1963 struct dwarf2_cu *);
1964
1965 static void create_all_comp_units (struct objfile *);
1966
1967 static int create_all_type_units (struct objfile *);
1968
1969 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1970 enum language);
1971
1972 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1973 enum language);
1974
1975 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1976 enum language);
1977
1978 static void dwarf2_add_dependence (struct dwarf2_cu *,
1979 struct dwarf2_per_cu_data *);
1980
1981 static void dwarf2_mark (struct dwarf2_cu *);
1982
1983 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1984
1985 static struct type *get_die_type_at_offset (sect_offset,
1986 struct dwarf2_per_cu_data *);
1987
1988 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1989
1990 static void dwarf2_release_queue (void *dummy);
1991
1992 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1993 enum language pretend_language);
1994
1995 static void process_queue (void);
1996
1997 /* The return type of find_file_and_directory. Note, the enclosed
1998 string pointers are only valid while this object is valid. */
1999
2000 struct file_and_directory
2001 {
2002 /* The filename. This is never NULL. */
2003 const char *name;
2004
2005 /* The compilation directory. NULL if not known. If we needed to
2006 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2007 points directly to the DW_AT_comp_dir string attribute owned by
2008 the obstack that owns the DIE. */
2009 const char *comp_dir;
2010
2011 /* If we needed to build a new string for comp_dir, this is what
2012 owns the storage. */
2013 std::string comp_dir_storage;
2014 };
2015
2016 static file_and_directory find_file_and_directory (struct die_info *die,
2017 struct dwarf2_cu *cu);
2018
2019 static char *file_full_name (int file, struct line_header *lh,
2020 const char *comp_dir);
2021
2022 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2023 enum class rcuh_kind { COMPILE, TYPE };
2024
2025 static const gdb_byte *read_and_check_comp_unit_head
2026 (struct comp_unit_head *header,
2027 struct dwarf2_section_info *section,
2028 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2029 rcuh_kind section_kind);
2030
2031 static void init_cutu_and_read_dies
2032 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2033 int use_existing_cu, int keep,
2034 die_reader_func_ftype *die_reader_func, void *data);
2035
2036 static void init_cutu_and_read_dies_simple
2037 (struct dwarf2_per_cu_data *this_cu,
2038 die_reader_func_ftype *die_reader_func, void *data);
2039
2040 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2041
2042 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2043
2044 static struct dwo_unit *lookup_dwo_unit_in_dwp
2045 (struct dwp_file *dwp_file, const char *comp_dir,
2046 ULONGEST signature, int is_debug_types);
2047
2048 static struct dwp_file *get_dwp_file (void);
2049
2050 static struct dwo_unit *lookup_dwo_comp_unit
2051 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2052
2053 static struct dwo_unit *lookup_dwo_type_unit
2054 (struct signatured_type *, const char *, const char *);
2055
2056 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2057
2058 static void free_dwo_file_cleanup (void *);
2059
2060 static void process_cu_includes (void);
2061
2062 static void check_producer (struct dwarf2_cu *cu);
2063
2064 static void free_line_header_voidp (void *arg);
2065 \f
2066 /* Various complaints about symbol reading that don't abort the process. */
2067
2068 static void
2069 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2070 {
2071 complaint (&symfile_complaints,
2072 _("statement list doesn't fit in .debug_line section"));
2073 }
2074
2075 static void
2076 dwarf2_debug_line_missing_file_complaint (void)
2077 {
2078 complaint (&symfile_complaints,
2079 _(".debug_line section has line data without a file"));
2080 }
2081
2082 static void
2083 dwarf2_debug_line_missing_end_sequence_complaint (void)
2084 {
2085 complaint (&symfile_complaints,
2086 _(".debug_line section has line "
2087 "program sequence without an end"));
2088 }
2089
2090 static void
2091 dwarf2_complex_location_expr_complaint (void)
2092 {
2093 complaint (&symfile_complaints, _("location expression too complex"));
2094 }
2095
2096 static void
2097 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2098 int arg3)
2099 {
2100 complaint (&symfile_complaints,
2101 _("const value length mismatch for '%s', got %d, expected %d"),
2102 arg1, arg2, arg3);
2103 }
2104
2105 static void
2106 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2107 {
2108 complaint (&symfile_complaints,
2109 _("debug info runs off end of %s section"
2110 " [in module %s]"),
2111 get_section_name (section),
2112 get_section_file_name (section));
2113 }
2114
2115 static void
2116 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2117 {
2118 complaint (&symfile_complaints,
2119 _("macro debug info contains a "
2120 "malformed macro definition:\n`%s'"),
2121 arg1);
2122 }
2123
2124 static void
2125 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2126 {
2127 complaint (&symfile_complaints,
2128 _("invalid attribute class or form for '%s' in '%s'"),
2129 arg1, arg2);
2130 }
2131
2132 /* Hash function for line_header_hash. */
2133
2134 static hashval_t
2135 line_header_hash (const struct line_header *ofs)
2136 {
2137 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2138 }
2139
2140 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2141
2142 static hashval_t
2143 line_header_hash_voidp (const void *item)
2144 {
2145 const struct line_header *ofs = (const struct line_header *) item;
2146
2147 return line_header_hash (ofs);
2148 }
2149
2150 /* Equality function for line_header_hash. */
2151
2152 static int
2153 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2154 {
2155 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2156 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2157
2158 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2159 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2160 }
2161
2162 \f
2163 #if WORDS_BIGENDIAN
2164
2165 /* Convert VALUE between big- and little-endian. */
2166 static offset_type
2167 byte_swap (offset_type value)
2168 {
2169 offset_type result;
2170
2171 result = (value & 0xff) << 24;
2172 result |= (value & 0xff00) << 8;
2173 result |= (value & 0xff0000) >> 8;
2174 result |= (value & 0xff000000) >> 24;
2175 return result;
2176 }
2177
2178 #define MAYBE_SWAP(V) byte_swap (V)
2179
2180 #else
2181 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
2182 #endif /* WORDS_BIGENDIAN */
2183
2184 /* Read the given attribute value as an address, taking the attribute's
2185 form into account. */
2186
2187 static CORE_ADDR
2188 attr_value_as_address (struct attribute *attr)
2189 {
2190 CORE_ADDR addr;
2191
2192 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2193 {
2194 /* Aside from a few clearly defined exceptions, attributes that
2195 contain an address must always be in DW_FORM_addr form.
2196 Unfortunately, some compilers happen to be violating this
2197 requirement by encoding addresses using other forms, such
2198 as DW_FORM_data4 for example. For those broken compilers,
2199 we try to do our best, without any guarantee of success,
2200 to interpret the address correctly. It would also be nice
2201 to generate a complaint, but that would require us to maintain
2202 a list of legitimate cases where a non-address form is allowed,
2203 as well as update callers to pass in at least the CU's DWARF
2204 version. This is more overhead than what we're willing to
2205 expand for a pretty rare case. */
2206 addr = DW_UNSND (attr);
2207 }
2208 else
2209 addr = DW_ADDR (attr);
2210
2211 return addr;
2212 }
2213
2214 /* The suffix for an index file. */
2215 #define INDEX_SUFFIX ".gdb-index"
2216
2217 /* See declaration. */
2218
2219 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2220 const dwarf2_debug_sections *names)
2221 : objfile (objfile_)
2222 {
2223 if (names == NULL)
2224 names = &dwarf2_elf_names;
2225
2226 bfd *obfd = objfile->obfd;
2227
2228 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2229 locate_sections (obfd, sec, *names);
2230 }
2231
2232 dwarf2_per_objfile::~dwarf2_per_objfile ()
2233 {
2234 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2235 free_cached_comp_units ();
2236
2237 if (quick_file_names_table)
2238 htab_delete (quick_file_names_table);
2239
2240 if (line_header_hash)
2241 htab_delete (line_header_hash);
2242
2243 /* Everything else should be on the objfile obstack. */
2244 }
2245
2246 /* See declaration. */
2247
2248 void
2249 dwarf2_per_objfile::free_cached_comp_units ()
2250 {
2251 dwarf2_per_cu_data *per_cu = read_in_chain;
2252 dwarf2_per_cu_data **last_chain = &read_in_chain;
2253 while (per_cu != NULL)
2254 {
2255 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2256
2257 free_heap_comp_unit (per_cu->cu);
2258 *last_chain = next_cu;
2259 per_cu = next_cu;
2260 }
2261 }
2262
2263 /* Try to locate the sections we need for DWARF 2 debugging
2264 information and return true if we have enough to do something.
2265 NAMES points to the dwarf2 section names, or is NULL if the standard
2266 ELF names are used. */
2267
2268 int
2269 dwarf2_has_info (struct objfile *objfile,
2270 const struct dwarf2_debug_sections *names)
2271 {
2272 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2273 objfile_data (objfile, dwarf2_objfile_data_key));
2274 if (!dwarf2_per_objfile)
2275 {
2276 /* Initialize per-objfile state. */
2277 struct dwarf2_per_objfile *data
2278 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2279
2280 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2281 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
2282 }
2283 return (!dwarf2_per_objfile->info.is_virtual
2284 && dwarf2_per_objfile->info.s.section != NULL
2285 && !dwarf2_per_objfile->abbrev.is_virtual
2286 && dwarf2_per_objfile->abbrev.s.section != NULL);
2287 }
2288
2289 /* Return the containing section of virtual section SECTION. */
2290
2291 static struct dwarf2_section_info *
2292 get_containing_section (const struct dwarf2_section_info *section)
2293 {
2294 gdb_assert (section->is_virtual);
2295 return section->s.containing_section;
2296 }
2297
2298 /* Return the bfd owner of SECTION. */
2299
2300 static struct bfd *
2301 get_section_bfd_owner (const struct dwarf2_section_info *section)
2302 {
2303 if (section->is_virtual)
2304 {
2305 section = get_containing_section (section);
2306 gdb_assert (!section->is_virtual);
2307 }
2308 return section->s.section->owner;
2309 }
2310
2311 /* Return the bfd section of SECTION.
2312 Returns NULL if the section is not present. */
2313
2314 static asection *
2315 get_section_bfd_section (const struct dwarf2_section_info *section)
2316 {
2317 if (section->is_virtual)
2318 {
2319 section = get_containing_section (section);
2320 gdb_assert (!section->is_virtual);
2321 }
2322 return section->s.section;
2323 }
2324
2325 /* Return the name of SECTION. */
2326
2327 static const char *
2328 get_section_name (const struct dwarf2_section_info *section)
2329 {
2330 asection *sectp = get_section_bfd_section (section);
2331
2332 gdb_assert (sectp != NULL);
2333 return bfd_section_name (get_section_bfd_owner (section), sectp);
2334 }
2335
2336 /* Return the name of the file SECTION is in. */
2337
2338 static const char *
2339 get_section_file_name (const struct dwarf2_section_info *section)
2340 {
2341 bfd *abfd = get_section_bfd_owner (section);
2342
2343 return bfd_get_filename (abfd);
2344 }
2345
2346 /* Return the id of SECTION.
2347 Returns 0 if SECTION doesn't exist. */
2348
2349 static int
2350 get_section_id (const struct dwarf2_section_info *section)
2351 {
2352 asection *sectp = get_section_bfd_section (section);
2353
2354 if (sectp == NULL)
2355 return 0;
2356 return sectp->id;
2357 }
2358
2359 /* Return the flags of SECTION.
2360 SECTION (or containing section if this is a virtual section) must exist. */
2361
2362 static int
2363 get_section_flags (const struct dwarf2_section_info *section)
2364 {
2365 asection *sectp = get_section_bfd_section (section);
2366
2367 gdb_assert (sectp != NULL);
2368 return bfd_get_section_flags (sectp->owner, sectp);
2369 }
2370
2371 /* When loading sections, we look either for uncompressed section or for
2372 compressed section names. */
2373
2374 static int
2375 section_is_p (const char *section_name,
2376 const struct dwarf2_section_names *names)
2377 {
2378 if (names->normal != NULL
2379 && strcmp (section_name, names->normal) == 0)
2380 return 1;
2381 if (names->compressed != NULL
2382 && strcmp (section_name, names->compressed) == 0)
2383 return 1;
2384 return 0;
2385 }
2386
2387 /* See declaration. */
2388
2389 void
2390 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2391 const dwarf2_debug_sections &names)
2392 {
2393 flagword aflag = bfd_get_section_flags (abfd, sectp);
2394
2395 if ((aflag & SEC_HAS_CONTENTS) == 0)
2396 {
2397 }
2398 else if (section_is_p (sectp->name, &names.info))
2399 {
2400 this->info.s.section = sectp;
2401 this->info.size = bfd_get_section_size (sectp);
2402 }
2403 else if (section_is_p (sectp->name, &names.abbrev))
2404 {
2405 this->abbrev.s.section = sectp;
2406 this->abbrev.size = bfd_get_section_size (sectp);
2407 }
2408 else if (section_is_p (sectp->name, &names.line))
2409 {
2410 this->line.s.section = sectp;
2411 this->line.size = bfd_get_section_size (sectp);
2412 }
2413 else if (section_is_p (sectp->name, &names.loc))
2414 {
2415 this->loc.s.section = sectp;
2416 this->loc.size = bfd_get_section_size (sectp);
2417 }
2418 else if (section_is_p (sectp->name, &names.loclists))
2419 {
2420 this->loclists.s.section = sectp;
2421 this->loclists.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &names.macinfo))
2424 {
2425 this->macinfo.s.section = sectp;
2426 this->macinfo.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.macro))
2429 {
2430 this->macro.s.section = sectp;
2431 this->macro.size = bfd_get_section_size (sectp);
2432 }
2433 else if (section_is_p (sectp->name, &names.str))
2434 {
2435 this->str.s.section = sectp;
2436 this->str.size = bfd_get_section_size (sectp);
2437 }
2438 else if (section_is_p (sectp->name, &names.line_str))
2439 {
2440 this->line_str.s.section = sectp;
2441 this->line_str.size = bfd_get_section_size (sectp);
2442 }
2443 else if (section_is_p (sectp->name, &names.addr))
2444 {
2445 this->addr.s.section = sectp;
2446 this->addr.size = bfd_get_section_size (sectp);
2447 }
2448 else if (section_is_p (sectp->name, &names.frame))
2449 {
2450 this->frame.s.section = sectp;
2451 this->frame.size = bfd_get_section_size (sectp);
2452 }
2453 else if (section_is_p (sectp->name, &names.eh_frame))
2454 {
2455 this->eh_frame.s.section = sectp;
2456 this->eh_frame.size = bfd_get_section_size (sectp);
2457 }
2458 else if (section_is_p (sectp->name, &names.ranges))
2459 {
2460 this->ranges.s.section = sectp;
2461 this->ranges.size = bfd_get_section_size (sectp);
2462 }
2463 else if (section_is_p (sectp->name, &names.rnglists))
2464 {
2465 this->rnglists.s.section = sectp;
2466 this->rnglists.size = bfd_get_section_size (sectp);
2467 }
2468 else if (section_is_p (sectp->name, &names.types))
2469 {
2470 struct dwarf2_section_info type_section;
2471
2472 memset (&type_section, 0, sizeof (type_section));
2473 type_section.s.section = sectp;
2474 type_section.size = bfd_get_section_size (sectp);
2475
2476 VEC_safe_push (dwarf2_section_info_def, this->types,
2477 &type_section);
2478 }
2479 else if (section_is_p (sectp->name, &names.gdb_index))
2480 {
2481 this->gdb_index.s.section = sectp;
2482 this->gdb_index.size = bfd_get_section_size (sectp);
2483 }
2484
2485 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2486 && bfd_section_vma (abfd, sectp) == 0)
2487 this->has_section_at_zero = true;
2488 }
2489
2490 /* A helper function that decides whether a section is empty,
2491 or not present. */
2492
2493 static int
2494 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2495 {
2496 if (section->is_virtual)
2497 return section->size == 0;
2498 return section->s.section == NULL || section->size == 0;
2499 }
2500
2501 /* Read the contents of the section INFO.
2502 OBJFILE is the main object file, but not necessarily the file where
2503 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2504 of the DWO file.
2505 If the section is compressed, uncompress it before returning. */
2506
2507 static void
2508 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2509 {
2510 asection *sectp;
2511 bfd *abfd;
2512 gdb_byte *buf, *retbuf;
2513
2514 if (info->readin)
2515 return;
2516 info->buffer = NULL;
2517 info->readin = 1;
2518
2519 if (dwarf2_section_empty_p (info))
2520 return;
2521
2522 sectp = get_section_bfd_section (info);
2523
2524 /* If this is a virtual section we need to read in the real one first. */
2525 if (info->is_virtual)
2526 {
2527 struct dwarf2_section_info *containing_section =
2528 get_containing_section (info);
2529
2530 gdb_assert (sectp != NULL);
2531 if ((sectp->flags & SEC_RELOC) != 0)
2532 {
2533 error (_("Dwarf Error: DWP format V2 with relocations is not"
2534 " supported in section %s [in module %s]"),
2535 get_section_name (info), get_section_file_name (info));
2536 }
2537 dwarf2_read_section (objfile, containing_section);
2538 /* Other code should have already caught virtual sections that don't
2539 fit. */
2540 gdb_assert (info->virtual_offset + info->size
2541 <= containing_section->size);
2542 /* If the real section is empty or there was a problem reading the
2543 section we shouldn't get here. */
2544 gdb_assert (containing_section->buffer != NULL);
2545 info->buffer = containing_section->buffer + info->virtual_offset;
2546 return;
2547 }
2548
2549 /* If the section has relocations, we must read it ourselves.
2550 Otherwise we attach it to the BFD. */
2551 if ((sectp->flags & SEC_RELOC) == 0)
2552 {
2553 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2554 return;
2555 }
2556
2557 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2558 info->buffer = buf;
2559
2560 /* When debugging .o files, we may need to apply relocations; see
2561 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2562 We never compress sections in .o files, so we only need to
2563 try this when the section is not compressed. */
2564 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2565 if (retbuf != NULL)
2566 {
2567 info->buffer = retbuf;
2568 return;
2569 }
2570
2571 abfd = get_section_bfd_owner (info);
2572 gdb_assert (abfd != NULL);
2573
2574 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2575 || bfd_bread (buf, info->size, abfd) != info->size)
2576 {
2577 error (_("Dwarf Error: Can't read DWARF data"
2578 " in section %s [in module %s]"),
2579 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2580 }
2581 }
2582
2583 /* A helper function that returns the size of a section in a safe way.
2584 If you are positive that the section has been read before using the
2585 size, then it is safe to refer to the dwarf2_section_info object's
2586 "size" field directly. In other cases, you must call this
2587 function, because for compressed sections the size field is not set
2588 correctly until the section has been read. */
2589
2590 static bfd_size_type
2591 dwarf2_section_size (struct objfile *objfile,
2592 struct dwarf2_section_info *info)
2593 {
2594 if (!info->readin)
2595 dwarf2_read_section (objfile, info);
2596 return info->size;
2597 }
2598
2599 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2600 SECTION_NAME. */
2601
2602 void
2603 dwarf2_get_section_info (struct objfile *objfile,
2604 enum dwarf2_section_enum sect,
2605 asection **sectp, const gdb_byte **bufp,
2606 bfd_size_type *sizep)
2607 {
2608 struct dwarf2_per_objfile *data
2609 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2610 dwarf2_objfile_data_key);
2611 struct dwarf2_section_info *info;
2612
2613 /* We may see an objfile without any DWARF, in which case we just
2614 return nothing. */
2615 if (data == NULL)
2616 {
2617 *sectp = NULL;
2618 *bufp = NULL;
2619 *sizep = 0;
2620 return;
2621 }
2622 switch (sect)
2623 {
2624 case DWARF2_DEBUG_FRAME:
2625 info = &data->frame;
2626 break;
2627 case DWARF2_EH_FRAME:
2628 info = &data->eh_frame;
2629 break;
2630 default:
2631 gdb_assert_not_reached ("unexpected section");
2632 }
2633
2634 dwarf2_read_section (objfile, info);
2635
2636 *sectp = get_section_bfd_section (info);
2637 *bufp = info->buffer;
2638 *sizep = info->size;
2639 }
2640
2641 /* A helper function to find the sections for a .dwz file. */
2642
2643 static void
2644 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2645 {
2646 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2647
2648 /* Note that we only support the standard ELF names, because .dwz
2649 is ELF-only (at the time of writing). */
2650 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2651 {
2652 dwz_file->abbrev.s.section = sectp;
2653 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2654 }
2655 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2656 {
2657 dwz_file->info.s.section = sectp;
2658 dwz_file->info.size = bfd_get_section_size (sectp);
2659 }
2660 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2661 {
2662 dwz_file->str.s.section = sectp;
2663 dwz_file->str.size = bfd_get_section_size (sectp);
2664 }
2665 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2666 {
2667 dwz_file->line.s.section = sectp;
2668 dwz_file->line.size = bfd_get_section_size (sectp);
2669 }
2670 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2671 {
2672 dwz_file->macro.s.section = sectp;
2673 dwz_file->macro.size = bfd_get_section_size (sectp);
2674 }
2675 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2676 {
2677 dwz_file->gdb_index.s.section = sectp;
2678 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2679 }
2680 }
2681
2682 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2683 there is no .gnu_debugaltlink section in the file. Error if there
2684 is such a section but the file cannot be found. */
2685
2686 static struct dwz_file *
2687 dwarf2_get_dwz_file (void)
2688 {
2689 char *data;
2690 struct cleanup *cleanup;
2691 const char *filename;
2692 struct dwz_file *result;
2693 bfd_size_type buildid_len_arg;
2694 size_t buildid_len;
2695 bfd_byte *buildid;
2696
2697 if (dwarf2_per_objfile->dwz_file != NULL)
2698 return dwarf2_per_objfile->dwz_file;
2699
2700 bfd_set_error (bfd_error_no_error);
2701 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2702 &buildid_len_arg, &buildid);
2703 if (data == NULL)
2704 {
2705 if (bfd_get_error () == bfd_error_no_error)
2706 return NULL;
2707 error (_("could not read '.gnu_debugaltlink' section: %s"),
2708 bfd_errmsg (bfd_get_error ()));
2709 }
2710 cleanup = make_cleanup (xfree, data);
2711 make_cleanup (xfree, buildid);
2712
2713 buildid_len = (size_t) buildid_len_arg;
2714
2715 filename = (const char *) data;
2716
2717 std::string abs_storage;
2718 if (!IS_ABSOLUTE_PATH (filename))
2719 {
2720 gdb::unique_xmalloc_ptr<char> abs
2721 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2722
2723 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2724 filename = abs_storage.c_str ();
2725 }
2726
2727 /* First try the file name given in the section. If that doesn't
2728 work, try to use the build-id instead. */
2729 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2730 if (dwz_bfd != NULL)
2731 {
2732 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2733 dwz_bfd.release ();
2734 }
2735
2736 if (dwz_bfd == NULL)
2737 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2738
2739 if (dwz_bfd == NULL)
2740 error (_("could not find '.gnu_debugaltlink' file for %s"),
2741 objfile_name (dwarf2_per_objfile->objfile));
2742
2743 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2744 struct dwz_file);
2745 result->dwz_bfd = dwz_bfd.release ();
2746
2747 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2748
2749 do_cleanups (cleanup);
2750
2751 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2752 dwarf2_per_objfile->dwz_file = result;
2753 return result;
2754 }
2755 \f
2756 /* DWARF quick_symbols_functions support. */
2757
2758 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2759 unique line tables, so we maintain a separate table of all .debug_line
2760 derived entries to support the sharing.
2761 All the quick functions need is the list of file names. We discard the
2762 line_header when we're done and don't need to record it here. */
2763 struct quick_file_names
2764 {
2765 /* The data used to construct the hash key. */
2766 struct stmt_list_hash hash;
2767
2768 /* The number of entries in file_names, real_names. */
2769 unsigned int num_file_names;
2770
2771 /* The file names from the line table, after being run through
2772 file_full_name. */
2773 const char **file_names;
2774
2775 /* The file names from the line table after being run through
2776 gdb_realpath. These are computed lazily. */
2777 const char **real_names;
2778 };
2779
2780 /* When using the index (and thus not using psymtabs), each CU has an
2781 object of this type. This is used to hold information needed by
2782 the various "quick" methods. */
2783 struct dwarf2_per_cu_quick_data
2784 {
2785 /* The file table. This can be NULL if there was no file table
2786 or it's currently not read in.
2787 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2788 struct quick_file_names *file_names;
2789
2790 /* The corresponding symbol table. This is NULL if symbols for this
2791 CU have not yet been read. */
2792 struct compunit_symtab *compunit_symtab;
2793
2794 /* A temporary mark bit used when iterating over all CUs in
2795 expand_symtabs_matching. */
2796 unsigned int mark : 1;
2797
2798 /* True if we've tried to read the file table and found there isn't one.
2799 There will be no point in trying to read it again next time. */
2800 unsigned int no_file_data : 1;
2801 };
2802
2803 /* Utility hash function for a stmt_list_hash. */
2804
2805 static hashval_t
2806 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2807 {
2808 hashval_t v = 0;
2809
2810 if (stmt_list_hash->dwo_unit != NULL)
2811 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2812 v += to_underlying (stmt_list_hash->line_sect_off);
2813 return v;
2814 }
2815
2816 /* Utility equality function for a stmt_list_hash. */
2817
2818 static int
2819 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2820 const struct stmt_list_hash *rhs)
2821 {
2822 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2823 return 0;
2824 if (lhs->dwo_unit != NULL
2825 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2826 return 0;
2827
2828 return lhs->line_sect_off == rhs->line_sect_off;
2829 }
2830
2831 /* Hash function for a quick_file_names. */
2832
2833 static hashval_t
2834 hash_file_name_entry (const void *e)
2835 {
2836 const struct quick_file_names *file_data
2837 = (const struct quick_file_names *) e;
2838
2839 return hash_stmt_list_entry (&file_data->hash);
2840 }
2841
2842 /* Equality function for a quick_file_names. */
2843
2844 static int
2845 eq_file_name_entry (const void *a, const void *b)
2846 {
2847 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2848 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2849
2850 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2851 }
2852
2853 /* Delete function for a quick_file_names. */
2854
2855 static void
2856 delete_file_name_entry (void *e)
2857 {
2858 struct quick_file_names *file_data = (struct quick_file_names *) e;
2859 int i;
2860
2861 for (i = 0; i < file_data->num_file_names; ++i)
2862 {
2863 xfree ((void*) file_data->file_names[i]);
2864 if (file_data->real_names)
2865 xfree ((void*) file_data->real_names[i]);
2866 }
2867
2868 /* The space for the struct itself lives on objfile_obstack,
2869 so we don't free it here. */
2870 }
2871
2872 /* Create a quick_file_names hash table. */
2873
2874 static htab_t
2875 create_quick_file_names_table (unsigned int nr_initial_entries)
2876 {
2877 return htab_create_alloc (nr_initial_entries,
2878 hash_file_name_entry, eq_file_name_entry,
2879 delete_file_name_entry, xcalloc, xfree);
2880 }
2881
2882 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2883 have to be created afterwards. You should call age_cached_comp_units after
2884 processing PER_CU->CU. dw2_setup must have been already called. */
2885
2886 static void
2887 load_cu (struct dwarf2_per_cu_data *per_cu)
2888 {
2889 if (per_cu->is_debug_types)
2890 load_full_type_unit (per_cu);
2891 else
2892 load_full_comp_unit (per_cu, language_minimal);
2893
2894 if (per_cu->cu == NULL)
2895 return; /* Dummy CU. */
2896
2897 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2898 }
2899
2900 /* Read in the symbols for PER_CU. */
2901
2902 static void
2903 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2904 {
2905 struct cleanup *back_to;
2906
2907 /* Skip type_unit_groups, reading the type units they contain
2908 is handled elsewhere. */
2909 if (IS_TYPE_UNIT_GROUP (per_cu))
2910 return;
2911
2912 back_to = make_cleanup (dwarf2_release_queue, NULL);
2913
2914 if (dwarf2_per_objfile->using_index
2915 ? per_cu->v.quick->compunit_symtab == NULL
2916 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2917 {
2918 queue_comp_unit (per_cu, language_minimal);
2919 load_cu (per_cu);
2920
2921 /* If we just loaded a CU from a DWO, and we're working with an index
2922 that may badly handle TUs, load all the TUs in that DWO as well.
2923 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2924 if (!per_cu->is_debug_types
2925 && per_cu->cu != NULL
2926 && per_cu->cu->dwo_unit != NULL
2927 && dwarf2_per_objfile->index_table != NULL
2928 && dwarf2_per_objfile->index_table->version <= 7
2929 /* DWP files aren't supported yet. */
2930 && get_dwp_file () == NULL)
2931 queue_and_load_all_dwo_tus (per_cu);
2932 }
2933
2934 process_queue ();
2935
2936 /* Age the cache, releasing compilation units that have not
2937 been used recently. */
2938 age_cached_comp_units ();
2939
2940 do_cleanups (back_to);
2941 }
2942
2943 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2944 the objfile from which this CU came. Returns the resulting symbol
2945 table. */
2946
2947 static struct compunit_symtab *
2948 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2949 {
2950 gdb_assert (dwarf2_per_objfile->using_index);
2951 if (!per_cu->v.quick->compunit_symtab)
2952 {
2953 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2954 scoped_restore decrementer = increment_reading_symtab ();
2955 dw2_do_instantiate_symtab (per_cu);
2956 process_cu_includes ();
2957 do_cleanups (back_to);
2958 }
2959
2960 return per_cu->v.quick->compunit_symtab;
2961 }
2962
2963 /* Return the CU/TU given its index.
2964
2965 This is intended for loops like:
2966
2967 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2968 + dwarf2_per_objfile->n_type_units); ++i)
2969 {
2970 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2971
2972 ...;
2973 }
2974 */
2975
2976 static struct dwarf2_per_cu_data *
2977 dw2_get_cutu (int index)
2978 {
2979 if (index >= dwarf2_per_objfile->n_comp_units)
2980 {
2981 index -= dwarf2_per_objfile->n_comp_units;
2982 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2983 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2984 }
2985
2986 return dwarf2_per_objfile->all_comp_units[index];
2987 }
2988
2989 /* Return the CU given its index.
2990 This differs from dw2_get_cutu in that it's for when you know INDEX
2991 refers to a CU. */
2992
2993 static struct dwarf2_per_cu_data *
2994 dw2_get_cu (int index)
2995 {
2996 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2997
2998 return dwarf2_per_objfile->all_comp_units[index];
2999 }
3000
3001 /* A helper for create_cus_from_index that handles a given list of
3002 CUs. */
3003
3004 static void
3005 create_cus_from_index_list (struct objfile *objfile,
3006 const gdb_byte *cu_list, offset_type n_elements,
3007 struct dwarf2_section_info *section,
3008 int is_dwz,
3009 int base_offset)
3010 {
3011 offset_type i;
3012
3013 for (i = 0; i < n_elements; i += 2)
3014 {
3015 gdb_static_assert (sizeof (ULONGEST) >= 8);
3016
3017 sect_offset sect_off
3018 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3019 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3020 cu_list += 2 * 8;
3021
3022 dwarf2_per_cu_data *the_cu
3023 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3024 struct dwarf2_per_cu_data);
3025 the_cu->sect_off = sect_off;
3026 the_cu->length = length;
3027 the_cu->objfile = objfile;
3028 the_cu->section = section;
3029 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3030 struct dwarf2_per_cu_quick_data);
3031 the_cu->is_dwz = is_dwz;
3032 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
3033 }
3034 }
3035
3036 /* Read the CU list from the mapped index, and use it to create all
3037 the CU objects for this objfile. */
3038
3039 static void
3040 create_cus_from_index (struct objfile *objfile,
3041 const gdb_byte *cu_list, offset_type cu_list_elements,
3042 const gdb_byte *dwz_list, offset_type dwz_elements)
3043 {
3044 struct dwz_file *dwz;
3045
3046 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3047 dwarf2_per_objfile->all_comp_units =
3048 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3049 dwarf2_per_objfile->n_comp_units);
3050
3051 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3052 &dwarf2_per_objfile->info, 0, 0);
3053
3054 if (dwz_elements == 0)
3055 return;
3056
3057 dwz = dwarf2_get_dwz_file ();
3058 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3059 cu_list_elements / 2);
3060 }
3061
3062 /* Create the signatured type hash table from the index. */
3063
3064 static void
3065 create_signatured_type_table_from_index (struct objfile *objfile,
3066 struct dwarf2_section_info *section,
3067 const gdb_byte *bytes,
3068 offset_type elements)
3069 {
3070 offset_type i;
3071 htab_t sig_types_hash;
3072
3073 dwarf2_per_objfile->n_type_units
3074 = dwarf2_per_objfile->n_allocated_type_units
3075 = elements / 3;
3076 dwarf2_per_objfile->all_type_units =
3077 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3078
3079 sig_types_hash = allocate_signatured_type_table (objfile);
3080
3081 for (i = 0; i < elements; i += 3)
3082 {
3083 struct signatured_type *sig_type;
3084 ULONGEST signature;
3085 void **slot;
3086 cu_offset type_offset_in_tu;
3087
3088 gdb_static_assert (sizeof (ULONGEST) >= 8);
3089 sect_offset sect_off
3090 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3091 type_offset_in_tu
3092 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3093 BFD_ENDIAN_LITTLE);
3094 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3095 bytes += 3 * 8;
3096
3097 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3098 struct signatured_type);
3099 sig_type->signature = signature;
3100 sig_type->type_offset_in_tu = type_offset_in_tu;
3101 sig_type->per_cu.is_debug_types = 1;
3102 sig_type->per_cu.section = section;
3103 sig_type->per_cu.sect_off = sect_off;
3104 sig_type->per_cu.objfile = objfile;
3105 sig_type->per_cu.v.quick
3106 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3107 struct dwarf2_per_cu_quick_data);
3108
3109 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3110 *slot = sig_type;
3111
3112 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3113 }
3114
3115 dwarf2_per_objfile->signatured_types = sig_types_hash;
3116 }
3117
3118 /* Read the address map data from the mapped index, and use it to
3119 populate the objfile's psymtabs_addrmap. */
3120
3121 static void
3122 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3123 {
3124 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3125 const gdb_byte *iter, *end;
3126 struct addrmap *mutable_map;
3127 CORE_ADDR baseaddr;
3128
3129 auto_obstack temp_obstack;
3130
3131 mutable_map = addrmap_create_mutable (&temp_obstack);
3132
3133 iter = index->address_table;
3134 end = iter + index->address_table_size;
3135
3136 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3137
3138 while (iter < end)
3139 {
3140 ULONGEST hi, lo, cu_index;
3141 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3142 iter += 8;
3143 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3144 iter += 8;
3145 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3146 iter += 4;
3147
3148 if (lo > hi)
3149 {
3150 complaint (&symfile_complaints,
3151 _(".gdb_index address table has invalid range (%s - %s)"),
3152 hex_string (lo), hex_string (hi));
3153 continue;
3154 }
3155
3156 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3157 {
3158 complaint (&symfile_complaints,
3159 _(".gdb_index address table has invalid CU number %u"),
3160 (unsigned) cu_index);
3161 continue;
3162 }
3163
3164 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3165 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3166 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3167 }
3168
3169 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3170 &objfile->objfile_obstack);
3171 }
3172
3173 /* The hash function for strings in the mapped index. This is the same as
3174 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3175 implementation. This is necessary because the hash function is tied to the
3176 format of the mapped index file. The hash values do not have to match with
3177 SYMBOL_HASH_NEXT.
3178
3179 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3180
3181 static hashval_t
3182 mapped_index_string_hash (int index_version, const void *p)
3183 {
3184 const unsigned char *str = (const unsigned char *) p;
3185 hashval_t r = 0;
3186 unsigned char c;
3187
3188 while ((c = *str++) != 0)
3189 {
3190 if (index_version >= 5)
3191 c = tolower (c);
3192 r = r * 67 + c - 113;
3193 }
3194
3195 return r;
3196 }
3197
3198 /* Find a slot in the mapped index INDEX for the object named NAME.
3199 If NAME is found, set *VEC_OUT to point to the CU vector in the
3200 constant pool and return 1. If NAME cannot be found, return 0. */
3201
3202 static int
3203 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3204 offset_type **vec_out)
3205 {
3206 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3207 offset_type hash;
3208 offset_type slot, step;
3209 int (*cmp) (const char *, const char *);
3210
3211 if (current_language->la_language == language_cplus
3212 || current_language->la_language == language_fortran
3213 || current_language->la_language == language_d)
3214 {
3215 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3216 not contain any. */
3217
3218 if (strchr (name, '(') != NULL)
3219 {
3220 char *without_params = cp_remove_params (name);
3221
3222 if (without_params != NULL)
3223 {
3224 make_cleanup (xfree, without_params);
3225 name = without_params;
3226 }
3227 }
3228 }
3229
3230 /* Index version 4 did not support case insensitive searches. But the
3231 indices for case insensitive languages are built in lowercase, therefore
3232 simulate our NAME being searched is also lowercased. */
3233 hash = mapped_index_string_hash ((index->version == 4
3234 && case_sensitivity == case_sensitive_off
3235 ? 5 : index->version),
3236 name);
3237
3238 slot = hash & (index->symbol_table_slots - 1);
3239 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3240 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3241
3242 for (;;)
3243 {
3244 /* Convert a slot number to an offset into the table. */
3245 offset_type i = 2 * slot;
3246 const char *str;
3247 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3248 {
3249 do_cleanups (back_to);
3250 return 0;
3251 }
3252
3253 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3254 if (!cmp (name, str))
3255 {
3256 *vec_out = (offset_type *) (index->constant_pool
3257 + MAYBE_SWAP (index->symbol_table[i + 1]));
3258 do_cleanups (back_to);
3259 return 1;
3260 }
3261
3262 slot = (slot + step) & (index->symbol_table_slots - 1);
3263 }
3264 }
3265
3266 /* A helper function that reads the .gdb_index from SECTION and fills
3267 in MAP. FILENAME is the name of the file containing the section;
3268 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3269 ok to use deprecated sections.
3270
3271 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3272 out parameters that are filled in with information about the CU and
3273 TU lists in the section.
3274
3275 Returns 1 if all went well, 0 otherwise. */
3276
3277 static int
3278 read_index_from_section (struct objfile *objfile,
3279 const char *filename,
3280 int deprecated_ok,
3281 struct dwarf2_section_info *section,
3282 struct mapped_index *map,
3283 const gdb_byte **cu_list,
3284 offset_type *cu_list_elements,
3285 const gdb_byte **types_list,
3286 offset_type *types_list_elements)
3287 {
3288 const gdb_byte *addr;
3289 offset_type version;
3290 offset_type *metadata;
3291 int i;
3292
3293 if (dwarf2_section_empty_p (section))
3294 return 0;
3295
3296 /* Older elfutils strip versions could keep the section in the main
3297 executable while splitting it for the separate debug info file. */
3298 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3299 return 0;
3300
3301 dwarf2_read_section (objfile, section);
3302
3303 addr = section->buffer;
3304 /* Version check. */
3305 version = MAYBE_SWAP (*(offset_type *) addr);
3306 /* Versions earlier than 3 emitted every copy of a psymbol. This
3307 causes the index to behave very poorly for certain requests. Version 3
3308 contained incomplete addrmap. So, it seems better to just ignore such
3309 indices. */
3310 if (version < 4)
3311 {
3312 static int warning_printed = 0;
3313 if (!warning_printed)
3314 {
3315 warning (_("Skipping obsolete .gdb_index section in %s."),
3316 filename);
3317 warning_printed = 1;
3318 }
3319 return 0;
3320 }
3321 /* Index version 4 uses a different hash function than index version
3322 5 and later.
3323
3324 Versions earlier than 6 did not emit psymbols for inlined
3325 functions. Using these files will cause GDB not to be able to
3326 set breakpoints on inlined functions by name, so we ignore these
3327 indices unless the user has done
3328 "set use-deprecated-index-sections on". */
3329 if (version < 6 && !deprecated_ok)
3330 {
3331 static int warning_printed = 0;
3332 if (!warning_printed)
3333 {
3334 warning (_("\
3335 Skipping deprecated .gdb_index section in %s.\n\
3336 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3337 to use the section anyway."),
3338 filename);
3339 warning_printed = 1;
3340 }
3341 return 0;
3342 }
3343 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3344 of the TU (for symbols coming from TUs),
3345 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3346 Plus gold-generated indices can have duplicate entries for global symbols,
3347 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3348 These are just performance bugs, and we can't distinguish gdb-generated
3349 indices from gold-generated ones, so issue no warning here. */
3350
3351 /* Indexes with higher version than the one supported by GDB may be no
3352 longer backward compatible. */
3353 if (version > 8)
3354 return 0;
3355
3356 map->version = version;
3357 map->total_size = section->size;
3358
3359 metadata = (offset_type *) (addr + sizeof (offset_type));
3360
3361 i = 0;
3362 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3363 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3364 / 8);
3365 ++i;
3366
3367 *types_list = addr + MAYBE_SWAP (metadata[i]);
3368 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3369 - MAYBE_SWAP (metadata[i]))
3370 / 8);
3371 ++i;
3372
3373 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3374 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3375 - MAYBE_SWAP (metadata[i]));
3376 ++i;
3377
3378 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3379 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3380 - MAYBE_SWAP (metadata[i]))
3381 / (2 * sizeof (offset_type)));
3382 ++i;
3383
3384 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3385
3386 return 1;
3387 }
3388
3389
3390 /* Read the index file. If everything went ok, initialize the "quick"
3391 elements of all the CUs and return 1. Otherwise, return 0. */
3392
3393 static int
3394 dwarf2_read_index (struct objfile *objfile)
3395 {
3396 struct mapped_index local_map, *map;
3397 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3398 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3399 struct dwz_file *dwz;
3400
3401 if (!read_index_from_section (objfile, objfile_name (objfile),
3402 use_deprecated_index_sections,
3403 &dwarf2_per_objfile->gdb_index, &local_map,
3404 &cu_list, &cu_list_elements,
3405 &types_list, &types_list_elements))
3406 return 0;
3407
3408 /* Don't use the index if it's empty. */
3409 if (local_map.symbol_table_slots == 0)
3410 return 0;
3411
3412 /* If there is a .dwz file, read it so we can get its CU list as
3413 well. */
3414 dwz = dwarf2_get_dwz_file ();
3415 if (dwz != NULL)
3416 {
3417 struct mapped_index dwz_map;
3418 const gdb_byte *dwz_types_ignore;
3419 offset_type dwz_types_elements_ignore;
3420
3421 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3422 1,
3423 &dwz->gdb_index, &dwz_map,
3424 &dwz_list, &dwz_list_elements,
3425 &dwz_types_ignore,
3426 &dwz_types_elements_ignore))
3427 {
3428 warning (_("could not read '.gdb_index' section from %s; skipping"),
3429 bfd_get_filename (dwz->dwz_bfd));
3430 return 0;
3431 }
3432 }
3433
3434 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3435 dwz_list_elements);
3436
3437 if (types_list_elements)
3438 {
3439 struct dwarf2_section_info *section;
3440
3441 /* We can only handle a single .debug_types when we have an
3442 index. */
3443 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3444 return 0;
3445
3446 section = VEC_index (dwarf2_section_info_def,
3447 dwarf2_per_objfile->types, 0);
3448
3449 create_signatured_type_table_from_index (objfile, section, types_list,
3450 types_list_elements);
3451 }
3452
3453 create_addrmap_from_index (objfile, &local_map);
3454
3455 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3456 *map = local_map;
3457
3458 dwarf2_per_objfile->index_table = map;
3459 dwarf2_per_objfile->using_index = 1;
3460 dwarf2_per_objfile->quick_file_names_table =
3461 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3462
3463 return 1;
3464 }
3465
3466 /* A helper for the "quick" functions which sets the global
3467 dwarf2_per_objfile according to OBJFILE. */
3468
3469 static void
3470 dw2_setup (struct objfile *objfile)
3471 {
3472 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3473 objfile_data (objfile, dwarf2_objfile_data_key));
3474 gdb_assert (dwarf2_per_objfile);
3475 }
3476
3477 /* die_reader_func for dw2_get_file_names. */
3478
3479 static void
3480 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3481 const gdb_byte *info_ptr,
3482 struct die_info *comp_unit_die,
3483 int has_children,
3484 void *data)
3485 {
3486 struct dwarf2_cu *cu = reader->cu;
3487 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3488 struct objfile *objfile = dwarf2_per_objfile->objfile;
3489 struct dwarf2_per_cu_data *lh_cu;
3490 struct attribute *attr;
3491 int i;
3492 void **slot;
3493 struct quick_file_names *qfn;
3494
3495 gdb_assert (! this_cu->is_debug_types);
3496
3497 /* Our callers never want to match partial units -- instead they
3498 will match the enclosing full CU. */
3499 if (comp_unit_die->tag == DW_TAG_partial_unit)
3500 {
3501 this_cu->v.quick->no_file_data = 1;
3502 return;
3503 }
3504
3505 lh_cu = this_cu;
3506 slot = NULL;
3507
3508 line_header_up lh;
3509 sect_offset line_offset {};
3510
3511 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3512 if (attr)
3513 {
3514 struct quick_file_names find_entry;
3515
3516 line_offset = (sect_offset) DW_UNSND (attr);
3517
3518 /* We may have already read in this line header (TU line header sharing).
3519 If we have we're done. */
3520 find_entry.hash.dwo_unit = cu->dwo_unit;
3521 find_entry.hash.line_sect_off = line_offset;
3522 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3523 &find_entry, INSERT);
3524 if (*slot != NULL)
3525 {
3526 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3527 return;
3528 }
3529
3530 lh = dwarf_decode_line_header (line_offset, cu);
3531 }
3532 if (lh == NULL)
3533 {
3534 lh_cu->v.quick->no_file_data = 1;
3535 return;
3536 }
3537
3538 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3539 qfn->hash.dwo_unit = cu->dwo_unit;
3540 qfn->hash.line_sect_off = line_offset;
3541 gdb_assert (slot != NULL);
3542 *slot = qfn;
3543
3544 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3545
3546 qfn->num_file_names = lh->file_names.size ();
3547 qfn->file_names =
3548 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3549 for (i = 0; i < lh->file_names.size (); ++i)
3550 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3551 qfn->real_names = NULL;
3552
3553 lh_cu->v.quick->file_names = qfn;
3554 }
3555
3556 /* A helper for the "quick" functions which attempts to read the line
3557 table for THIS_CU. */
3558
3559 static struct quick_file_names *
3560 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3561 {
3562 /* This should never be called for TUs. */
3563 gdb_assert (! this_cu->is_debug_types);
3564 /* Nor type unit groups. */
3565 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3566
3567 if (this_cu->v.quick->file_names != NULL)
3568 return this_cu->v.quick->file_names;
3569 /* If we know there is no line data, no point in looking again. */
3570 if (this_cu->v.quick->no_file_data)
3571 return NULL;
3572
3573 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3574
3575 if (this_cu->v.quick->no_file_data)
3576 return NULL;
3577 return this_cu->v.quick->file_names;
3578 }
3579
3580 /* A helper for the "quick" functions which computes and caches the
3581 real path for a given file name from the line table. */
3582
3583 static const char *
3584 dw2_get_real_path (struct objfile *objfile,
3585 struct quick_file_names *qfn, int index)
3586 {
3587 if (qfn->real_names == NULL)
3588 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3589 qfn->num_file_names, const char *);
3590
3591 if (qfn->real_names[index] == NULL)
3592 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3593
3594 return qfn->real_names[index];
3595 }
3596
3597 static struct symtab *
3598 dw2_find_last_source_symtab (struct objfile *objfile)
3599 {
3600 struct compunit_symtab *cust;
3601 int index;
3602
3603 dw2_setup (objfile);
3604 index = dwarf2_per_objfile->n_comp_units - 1;
3605 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3606 if (cust == NULL)
3607 return NULL;
3608 return compunit_primary_filetab (cust);
3609 }
3610
3611 /* Traversal function for dw2_forget_cached_source_info. */
3612
3613 static int
3614 dw2_free_cached_file_names (void **slot, void *info)
3615 {
3616 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3617
3618 if (file_data->real_names)
3619 {
3620 int i;
3621
3622 for (i = 0; i < file_data->num_file_names; ++i)
3623 {
3624 xfree ((void*) file_data->real_names[i]);
3625 file_data->real_names[i] = NULL;
3626 }
3627 }
3628
3629 return 1;
3630 }
3631
3632 static void
3633 dw2_forget_cached_source_info (struct objfile *objfile)
3634 {
3635 dw2_setup (objfile);
3636
3637 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3638 dw2_free_cached_file_names, NULL);
3639 }
3640
3641 /* Helper function for dw2_map_symtabs_matching_filename that expands
3642 the symtabs and calls the iterator. */
3643
3644 static int
3645 dw2_map_expand_apply (struct objfile *objfile,
3646 struct dwarf2_per_cu_data *per_cu,
3647 const char *name, const char *real_path,
3648 gdb::function_view<bool (symtab *)> callback)
3649 {
3650 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3651
3652 /* Don't visit already-expanded CUs. */
3653 if (per_cu->v.quick->compunit_symtab)
3654 return 0;
3655
3656 /* This may expand more than one symtab, and we want to iterate over
3657 all of them. */
3658 dw2_instantiate_symtab (per_cu);
3659
3660 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3661 last_made, callback);
3662 }
3663
3664 /* Implementation of the map_symtabs_matching_filename method. */
3665
3666 static bool
3667 dw2_map_symtabs_matching_filename
3668 (struct objfile *objfile, const char *name, const char *real_path,
3669 gdb::function_view<bool (symtab *)> callback)
3670 {
3671 int i;
3672 const char *name_basename = lbasename (name);
3673
3674 dw2_setup (objfile);
3675
3676 /* The rule is CUs specify all the files, including those used by
3677 any TU, so there's no need to scan TUs here. */
3678
3679 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3680 {
3681 int j;
3682 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3683 struct quick_file_names *file_data;
3684
3685 /* We only need to look at symtabs not already expanded. */
3686 if (per_cu->v.quick->compunit_symtab)
3687 continue;
3688
3689 file_data = dw2_get_file_names (per_cu);
3690 if (file_data == NULL)
3691 continue;
3692
3693 for (j = 0; j < file_data->num_file_names; ++j)
3694 {
3695 const char *this_name = file_data->file_names[j];
3696 const char *this_real_name;
3697
3698 if (compare_filenames_for_search (this_name, name))
3699 {
3700 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3701 callback))
3702 return true;
3703 continue;
3704 }
3705
3706 /* Before we invoke realpath, which can get expensive when many
3707 files are involved, do a quick comparison of the basenames. */
3708 if (! basenames_may_differ
3709 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3710 continue;
3711
3712 this_real_name = dw2_get_real_path (objfile, file_data, j);
3713 if (compare_filenames_for_search (this_real_name, name))
3714 {
3715 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3716 callback))
3717 return true;
3718 continue;
3719 }
3720
3721 if (real_path != NULL)
3722 {
3723 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3724 gdb_assert (IS_ABSOLUTE_PATH (name));
3725 if (this_real_name != NULL
3726 && FILENAME_CMP (real_path, this_real_name) == 0)
3727 {
3728 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3729 callback))
3730 return true;
3731 continue;
3732 }
3733 }
3734 }
3735 }
3736
3737 return false;
3738 }
3739
3740 /* Struct used to manage iterating over all CUs looking for a symbol. */
3741
3742 struct dw2_symtab_iterator
3743 {
3744 /* The internalized form of .gdb_index. */
3745 struct mapped_index *index;
3746 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3747 int want_specific_block;
3748 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3749 Unused if !WANT_SPECIFIC_BLOCK. */
3750 int block_index;
3751 /* The kind of symbol we're looking for. */
3752 domain_enum domain;
3753 /* The list of CUs from the index entry of the symbol,
3754 or NULL if not found. */
3755 offset_type *vec;
3756 /* The next element in VEC to look at. */
3757 int next;
3758 /* The number of elements in VEC, or zero if there is no match. */
3759 int length;
3760 /* Have we seen a global version of the symbol?
3761 If so we can ignore all further global instances.
3762 This is to work around gold/15646, inefficient gold-generated
3763 indices. */
3764 int global_seen;
3765 };
3766
3767 /* Initialize the index symtab iterator ITER.
3768 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3769 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3770
3771 static void
3772 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3773 struct mapped_index *index,
3774 int want_specific_block,
3775 int block_index,
3776 domain_enum domain,
3777 const char *name)
3778 {
3779 iter->index = index;
3780 iter->want_specific_block = want_specific_block;
3781 iter->block_index = block_index;
3782 iter->domain = domain;
3783 iter->next = 0;
3784 iter->global_seen = 0;
3785
3786 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3787 iter->length = MAYBE_SWAP (*iter->vec);
3788 else
3789 {
3790 iter->vec = NULL;
3791 iter->length = 0;
3792 }
3793 }
3794
3795 /* Return the next matching CU or NULL if there are no more. */
3796
3797 static struct dwarf2_per_cu_data *
3798 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3799 {
3800 for ( ; iter->next < iter->length; ++iter->next)
3801 {
3802 offset_type cu_index_and_attrs =
3803 MAYBE_SWAP (iter->vec[iter->next + 1]);
3804 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3805 struct dwarf2_per_cu_data *per_cu;
3806 int want_static = iter->block_index != GLOBAL_BLOCK;
3807 /* This value is only valid for index versions >= 7. */
3808 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3809 gdb_index_symbol_kind symbol_kind =
3810 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3811 /* Only check the symbol attributes if they're present.
3812 Indices prior to version 7 don't record them,
3813 and indices >= 7 may elide them for certain symbols
3814 (gold does this). */
3815 int attrs_valid =
3816 (iter->index->version >= 7
3817 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3818
3819 /* Don't crash on bad data. */
3820 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3821 + dwarf2_per_objfile->n_type_units))
3822 {
3823 complaint (&symfile_complaints,
3824 _(".gdb_index entry has bad CU index"
3825 " [in module %s]"),
3826 objfile_name (dwarf2_per_objfile->objfile));
3827 continue;
3828 }
3829
3830 per_cu = dw2_get_cutu (cu_index);
3831
3832 /* Skip if already read in. */
3833 if (per_cu->v.quick->compunit_symtab)
3834 continue;
3835
3836 /* Check static vs global. */
3837 if (attrs_valid)
3838 {
3839 if (iter->want_specific_block
3840 && want_static != is_static)
3841 continue;
3842 /* Work around gold/15646. */
3843 if (!is_static && iter->global_seen)
3844 continue;
3845 if (!is_static)
3846 iter->global_seen = 1;
3847 }
3848
3849 /* Only check the symbol's kind if it has one. */
3850 if (attrs_valid)
3851 {
3852 switch (iter->domain)
3853 {
3854 case VAR_DOMAIN:
3855 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3856 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3857 /* Some types are also in VAR_DOMAIN. */
3858 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3859 continue;
3860 break;
3861 case STRUCT_DOMAIN:
3862 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3863 continue;
3864 break;
3865 case LABEL_DOMAIN:
3866 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3867 continue;
3868 break;
3869 default:
3870 break;
3871 }
3872 }
3873
3874 ++iter->next;
3875 return per_cu;
3876 }
3877
3878 return NULL;
3879 }
3880
3881 static struct compunit_symtab *
3882 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3883 const char *name, domain_enum domain)
3884 {
3885 struct compunit_symtab *stab_best = NULL;
3886 struct mapped_index *index;
3887
3888 dw2_setup (objfile);
3889
3890 index = dwarf2_per_objfile->index_table;
3891
3892 /* index is NULL if OBJF_READNOW. */
3893 if (index)
3894 {
3895 struct dw2_symtab_iterator iter;
3896 struct dwarf2_per_cu_data *per_cu;
3897
3898 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3899
3900 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3901 {
3902 struct symbol *sym, *with_opaque = NULL;
3903 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3904 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3905 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3906
3907 sym = block_find_symbol (block, name, domain,
3908 block_find_non_opaque_type_preferred,
3909 &with_opaque);
3910
3911 /* Some caution must be observed with overloaded functions
3912 and methods, since the index will not contain any overload
3913 information (but NAME might contain it). */
3914
3915 if (sym != NULL
3916 && SYMBOL_MATCHES_SEARCH_NAME (sym, name))
3917 return stab;
3918 if (with_opaque != NULL
3919 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, name))
3920 stab_best = stab;
3921
3922 /* Keep looking through other CUs. */
3923 }
3924 }
3925
3926 return stab_best;
3927 }
3928
3929 static void
3930 dw2_print_stats (struct objfile *objfile)
3931 {
3932 int i, total, count;
3933
3934 dw2_setup (objfile);
3935 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3936 count = 0;
3937 for (i = 0; i < total; ++i)
3938 {
3939 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3940
3941 if (!per_cu->v.quick->compunit_symtab)
3942 ++count;
3943 }
3944 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3945 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3946 }
3947
3948 /* This dumps minimal information about the index.
3949 It is called via "mt print objfiles".
3950 One use is to verify .gdb_index has been loaded by the
3951 gdb.dwarf2/gdb-index.exp testcase. */
3952
3953 static void
3954 dw2_dump (struct objfile *objfile)
3955 {
3956 dw2_setup (objfile);
3957 gdb_assert (dwarf2_per_objfile->using_index);
3958 printf_filtered (".gdb_index:");
3959 if (dwarf2_per_objfile->index_table != NULL)
3960 {
3961 printf_filtered (" version %d\n",
3962 dwarf2_per_objfile->index_table->version);
3963 }
3964 else
3965 printf_filtered (" faked for \"readnow\"\n");
3966 printf_filtered ("\n");
3967 }
3968
3969 static void
3970 dw2_relocate (struct objfile *objfile,
3971 const struct section_offsets *new_offsets,
3972 const struct section_offsets *delta)
3973 {
3974 /* There's nothing to relocate here. */
3975 }
3976
3977 static void
3978 dw2_expand_symtabs_for_function (struct objfile *objfile,
3979 const char *func_name)
3980 {
3981 struct mapped_index *index;
3982
3983 dw2_setup (objfile);
3984
3985 index = dwarf2_per_objfile->index_table;
3986
3987 /* index is NULL if OBJF_READNOW. */
3988 if (index)
3989 {
3990 struct dw2_symtab_iterator iter;
3991 struct dwarf2_per_cu_data *per_cu;
3992
3993 /* Note: It doesn't matter what we pass for block_index here. */
3994 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3995 func_name);
3996
3997 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3998 dw2_instantiate_symtab (per_cu);
3999 }
4000 }
4001
4002 static void
4003 dw2_expand_all_symtabs (struct objfile *objfile)
4004 {
4005 int i;
4006
4007 dw2_setup (objfile);
4008
4009 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4010 + dwarf2_per_objfile->n_type_units); ++i)
4011 {
4012 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4013
4014 dw2_instantiate_symtab (per_cu);
4015 }
4016 }
4017
4018 static void
4019 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4020 const char *fullname)
4021 {
4022 int i;
4023
4024 dw2_setup (objfile);
4025
4026 /* We don't need to consider type units here.
4027 This is only called for examining code, e.g. expand_line_sal.
4028 There can be an order of magnitude (or more) more type units
4029 than comp units, and we avoid them if we can. */
4030
4031 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4032 {
4033 int j;
4034 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4035 struct quick_file_names *file_data;
4036
4037 /* We only need to look at symtabs not already expanded. */
4038 if (per_cu->v.quick->compunit_symtab)
4039 continue;
4040
4041 file_data = dw2_get_file_names (per_cu);
4042 if (file_data == NULL)
4043 continue;
4044
4045 for (j = 0; j < file_data->num_file_names; ++j)
4046 {
4047 const char *this_fullname = file_data->file_names[j];
4048
4049 if (filename_cmp (this_fullname, fullname) == 0)
4050 {
4051 dw2_instantiate_symtab (per_cu);
4052 break;
4053 }
4054 }
4055 }
4056 }
4057
4058 static void
4059 dw2_map_matching_symbols (struct objfile *objfile,
4060 const char * name, domain_enum domain,
4061 int global,
4062 int (*callback) (struct block *,
4063 struct symbol *, void *),
4064 void *data, symbol_compare_ftype *match,
4065 symbol_compare_ftype *ordered_compare)
4066 {
4067 /* Currently unimplemented; used for Ada. The function can be called if the
4068 current language is Ada for a non-Ada objfile using GNU index. As Ada
4069 does not look for non-Ada symbols this function should just return. */
4070 }
4071
4072 static void
4073 dw2_expand_symtabs_matching
4074 (struct objfile *objfile,
4075 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4076 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4077 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4078 enum search_domain kind)
4079 {
4080 int i;
4081 offset_type iter;
4082 struct mapped_index *index;
4083
4084 dw2_setup (objfile);
4085
4086 /* index_table is NULL if OBJF_READNOW. */
4087 if (!dwarf2_per_objfile->index_table)
4088 return;
4089 index = dwarf2_per_objfile->index_table;
4090
4091 if (file_matcher != NULL)
4092 {
4093 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4094 htab_eq_pointer,
4095 NULL, xcalloc, xfree));
4096 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4097 htab_eq_pointer,
4098 NULL, xcalloc, xfree));
4099
4100 /* The rule is CUs specify all the files, including those used by
4101 any TU, so there's no need to scan TUs here. */
4102
4103 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4104 {
4105 int j;
4106 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4107 struct quick_file_names *file_data;
4108 void **slot;
4109
4110 QUIT;
4111
4112 per_cu->v.quick->mark = 0;
4113
4114 /* We only need to look at symtabs not already expanded. */
4115 if (per_cu->v.quick->compunit_symtab)
4116 continue;
4117
4118 file_data = dw2_get_file_names (per_cu);
4119 if (file_data == NULL)
4120 continue;
4121
4122 if (htab_find (visited_not_found.get (), file_data) != NULL)
4123 continue;
4124 else if (htab_find (visited_found.get (), file_data) != NULL)
4125 {
4126 per_cu->v.quick->mark = 1;
4127 continue;
4128 }
4129
4130 for (j = 0; j < file_data->num_file_names; ++j)
4131 {
4132 const char *this_real_name;
4133
4134 if (file_matcher (file_data->file_names[j], false))
4135 {
4136 per_cu->v.quick->mark = 1;
4137 break;
4138 }
4139
4140 /* Before we invoke realpath, which can get expensive when many
4141 files are involved, do a quick comparison of the basenames. */
4142 if (!basenames_may_differ
4143 && !file_matcher (lbasename (file_data->file_names[j]),
4144 true))
4145 continue;
4146
4147 this_real_name = dw2_get_real_path (objfile, file_data, j);
4148 if (file_matcher (this_real_name, false))
4149 {
4150 per_cu->v.quick->mark = 1;
4151 break;
4152 }
4153 }
4154
4155 slot = htab_find_slot (per_cu->v.quick->mark
4156 ? visited_found.get ()
4157 : visited_not_found.get (),
4158 file_data, INSERT);
4159 *slot = file_data;
4160 }
4161 }
4162
4163 for (iter = 0; iter < index->symbol_table_slots; ++iter)
4164 {
4165 offset_type idx = 2 * iter;
4166 const char *name;
4167 offset_type *vec, vec_len, vec_idx;
4168 int global_seen = 0;
4169
4170 QUIT;
4171
4172 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
4173 continue;
4174
4175 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
4176
4177 if (!symbol_matcher (name))
4178 continue;
4179
4180 /* The name was matched, now expand corresponding CUs that were
4181 marked. */
4182 vec = (offset_type *) (index->constant_pool
4183 + MAYBE_SWAP (index->symbol_table[idx + 1]));
4184 vec_len = MAYBE_SWAP (vec[0]);
4185 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4186 {
4187 struct dwarf2_per_cu_data *per_cu;
4188 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4189 /* This value is only valid for index versions >= 7. */
4190 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4191 gdb_index_symbol_kind symbol_kind =
4192 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4193 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4194 /* Only check the symbol attributes if they're present.
4195 Indices prior to version 7 don't record them,
4196 and indices >= 7 may elide them for certain symbols
4197 (gold does this). */
4198 int attrs_valid =
4199 (index->version >= 7
4200 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4201
4202 /* Work around gold/15646. */
4203 if (attrs_valid)
4204 {
4205 if (!is_static && global_seen)
4206 continue;
4207 if (!is_static)
4208 global_seen = 1;
4209 }
4210
4211 /* Only check the symbol's kind if it has one. */
4212 if (attrs_valid)
4213 {
4214 switch (kind)
4215 {
4216 case VARIABLES_DOMAIN:
4217 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4218 continue;
4219 break;
4220 case FUNCTIONS_DOMAIN:
4221 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4222 continue;
4223 break;
4224 case TYPES_DOMAIN:
4225 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4226 continue;
4227 break;
4228 default:
4229 break;
4230 }
4231 }
4232
4233 /* Don't crash on bad data. */
4234 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4235 + dwarf2_per_objfile->n_type_units))
4236 {
4237 complaint (&symfile_complaints,
4238 _(".gdb_index entry has bad CU index"
4239 " [in module %s]"), objfile_name (objfile));
4240 continue;
4241 }
4242
4243 per_cu = dw2_get_cutu (cu_index);
4244 if (file_matcher == NULL || per_cu->v.quick->mark)
4245 {
4246 int symtab_was_null =
4247 (per_cu->v.quick->compunit_symtab == NULL);
4248
4249 dw2_instantiate_symtab (per_cu);
4250
4251 if (expansion_notify != NULL
4252 && symtab_was_null
4253 && per_cu->v.quick->compunit_symtab != NULL)
4254 {
4255 expansion_notify (per_cu->v.quick->compunit_symtab);
4256 }
4257 }
4258 }
4259 }
4260 }
4261
4262 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4263 symtab. */
4264
4265 static struct compunit_symtab *
4266 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4267 CORE_ADDR pc)
4268 {
4269 int i;
4270
4271 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4272 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4273 return cust;
4274
4275 if (cust->includes == NULL)
4276 return NULL;
4277
4278 for (i = 0; cust->includes[i]; ++i)
4279 {
4280 struct compunit_symtab *s = cust->includes[i];
4281
4282 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4283 if (s != NULL)
4284 return s;
4285 }
4286
4287 return NULL;
4288 }
4289
4290 static struct compunit_symtab *
4291 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4292 struct bound_minimal_symbol msymbol,
4293 CORE_ADDR pc,
4294 struct obj_section *section,
4295 int warn_if_readin)
4296 {
4297 struct dwarf2_per_cu_data *data;
4298 struct compunit_symtab *result;
4299
4300 dw2_setup (objfile);
4301
4302 if (!objfile->psymtabs_addrmap)
4303 return NULL;
4304
4305 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4306 pc);
4307 if (!data)
4308 return NULL;
4309
4310 if (warn_if_readin && data->v.quick->compunit_symtab)
4311 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4312 paddress (get_objfile_arch (objfile), pc));
4313
4314 result
4315 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4316 pc);
4317 gdb_assert (result != NULL);
4318 return result;
4319 }
4320
4321 static void
4322 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4323 void *data, int need_fullname)
4324 {
4325 dw2_setup (objfile);
4326
4327 if (!dwarf2_per_objfile->filenames_cache)
4328 {
4329 dwarf2_per_objfile->filenames_cache.emplace ();
4330
4331 htab_up visited (htab_create_alloc (10,
4332 htab_hash_pointer, htab_eq_pointer,
4333 NULL, xcalloc, xfree));
4334
4335 /* The rule is CUs specify all the files, including those used
4336 by any TU, so there's no need to scan TUs here. We can
4337 ignore file names coming from already-expanded CUs. */
4338
4339 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4340 {
4341 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4342
4343 if (per_cu->v.quick->compunit_symtab)
4344 {
4345 void **slot = htab_find_slot (visited.get (),
4346 per_cu->v.quick->file_names,
4347 INSERT);
4348
4349 *slot = per_cu->v.quick->file_names;
4350 }
4351 }
4352
4353 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4354 {
4355 int j;
4356 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4357 struct quick_file_names *file_data;
4358 void **slot;
4359
4360 /* We only need to look at symtabs not already expanded. */
4361 if (per_cu->v.quick->compunit_symtab)
4362 continue;
4363
4364 file_data = dw2_get_file_names (per_cu);
4365 if (file_data == NULL)
4366 continue;
4367
4368 slot = htab_find_slot (visited.get (), file_data, INSERT);
4369 if (*slot)
4370 {
4371 /* Already visited. */
4372 continue;
4373 }
4374 *slot = file_data;
4375
4376 for (int j = 0; j < file_data->num_file_names; ++j)
4377 {
4378 const char *filename = file_data->file_names[j];
4379 dwarf2_per_objfile->filenames_cache->seen (filename);
4380 }
4381 }
4382 }
4383
4384 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4385 {
4386 gdb::unique_xmalloc_ptr<char> this_real_name;
4387
4388 if (need_fullname)
4389 this_real_name = gdb_realpath (filename);
4390 (*fun) (filename, this_real_name.get (), data);
4391 });
4392 }
4393
4394 static int
4395 dw2_has_symbols (struct objfile *objfile)
4396 {
4397 return 1;
4398 }
4399
4400 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4401 {
4402 dw2_has_symbols,
4403 dw2_find_last_source_symtab,
4404 dw2_forget_cached_source_info,
4405 dw2_map_symtabs_matching_filename,
4406 dw2_lookup_symbol,
4407 dw2_print_stats,
4408 dw2_dump,
4409 dw2_relocate,
4410 dw2_expand_symtabs_for_function,
4411 dw2_expand_all_symtabs,
4412 dw2_expand_symtabs_with_fullname,
4413 dw2_map_matching_symbols,
4414 dw2_expand_symtabs_matching,
4415 dw2_find_pc_sect_compunit_symtab,
4416 dw2_map_symbol_filenames
4417 };
4418
4419 /* Initialize for reading DWARF for this objfile. Return 0 if this
4420 file will use psymtabs, or 1 if using the GNU index. */
4421
4422 int
4423 dwarf2_initialize_objfile (struct objfile *objfile)
4424 {
4425 /* If we're about to read full symbols, don't bother with the
4426 indices. In this case we also don't care if some other debug
4427 format is making psymtabs, because they are all about to be
4428 expanded anyway. */
4429 if ((objfile->flags & OBJF_READNOW))
4430 {
4431 int i;
4432
4433 dwarf2_per_objfile->using_index = 1;
4434 create_all_comp_units (objfile);
4435 create_all_type_units (objfile);
4436 dwarf2_per_objfile->quick_file_names_table =
4437 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4438
4439 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4440 + dwarf2_per_objfile->n_type_units); ++i)
4441 {
4442 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4443
4444 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4445 struct dwarf2_per_cu_quick_data);
4446 }
4447
4448 /* Return 1 so that gdb sees the "quick" functions. However,
4449 these functions will be no-ops because we will have expanded
4450 all symtabs. */
4451 return 1;
4452 }
4453
4454 if (dwarf2_read_index (objfile))
4455 return 1;
4456
4457 return 0;
4458 }
4459
4460 \f
4461
4462 /* Build a partial symbol table. */
4463
4464 void
4465 dwarf2_build_psymtabs (struct objfile *objfile)
4466 {
4467
4468 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4469 {
4470 init_psymbol_list (objfile, 1024);
4471 }
4472
4473 TRY
4474 {
4475 /* This isn't really ideal: all the data we allocate on the
4476 objfile's obstack is still uselessly kept around. However,
4477 freeing it seems unsafe. */
4478 psymtab_discarder psymtabs (objfile);
4479 dwarf2_build_psymtabs_hard (objfile);
4480 psymtabs.keep ();
4481 }
4482 CATCH (except, RETURN_MASK_ERROR)
4483 {
4484 exception_print (gdb_stderr, except);
4485 }
4486 END_CATCH
4487 }
4488
4489 /* Return the total length of the CU described by HEADER. */
4490
4491 static unsigned int
4492 get_cu_length (const struct comp_unit_head *header)
4493 {
4494 return header->initial_length_size + header->length;
4495 }
4496
4497 /* Return TRUE if SECT_OFF is within CU_HEADER. */
4498
4499 static inline bool
4500 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
4501 {
4502 sect_offset bottom = cu_header->sect_off;
4503 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
4504
4505 return sect_off >= bottom && sect_off < top;
4506 }
4507
4508 /* Find the base address of the compilation unit for range lists and
4509 location lists. It will normally be specified by DW_AT_low_pc.
4510 In DWARF-3 draft 4, the base address could be overridden by
4511 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4512 compilation units with discontinuous ranges. */
4513
4514 static void
4515 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4516 {
4517 struct attribute *attr;
4518
4519 cu->base_known = 0;
4520 cu->base_address = 0;
4521
4522 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4523 if (attr)
4524 {
4525 cu->base_address = attr_value_as_address (attr);
4526 cu->base_known = 1;
4527 }
4528 else
4529 {
4530 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4531 if (attr)
4532 {
4533 cu->base_address = attr_value_as_address (attr);
4534 cu->base_known = 1;
4535 }
4536 }
4537 }
4538
4539 /* Read in the comp unit header information from the debug_info at info_ptr.
4540 Use rcuh_kind::COMPILE as the default type if not known by the caller.
4541 NOTE: This leaves members offset, first_die_offset to be filled in
4542 by the caller. */
4543
4544 static const gdb_byte *
4545 read_comp_unit_head (struct comp_unit_head *cu_header,
4546 const gdb_byte *info_ptr,
4547 struct dwarf2_section_info *section,
4548 rcuh_kind section_kind)
4549 {
4550 int signed_addr;
4551 unsigned int bytes_read;
4552 const char *filename = get_section_file_name (section);
4553 bfd *abfd = get_section_bfd_owner (section);
4554
4555 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4556 cu_header->initial_length_size = bytes_read;
4557 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4558 info_ptr += bytes_read;
4559 cu_header->version = read_2_bytes (abfd, info_ptr);
4560 info_ptr += 2;
4561 if (cu_header->version < 5)
4562 switch (section_kind)
4563 {
4564 case rcuh_kind::COMPILE:
4565 cu_header->unit_type = DW_UT_compile;
4566 break;
4567 case rcuh_kind::TYPE:
4568 cu_header->unit_type = DW_UT_type;
4569 break;
4570 default:
4571 internal_error (__FILE__, __LINE__,
4572 _("read_comp_unit_head: invalid section_kind"));
4573 }
4574 else
4575 {
4576 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4577 (read_1_byte (abfd, info_ptr));
4578 info_ptr += 1;
4579 switch (cu_header->unit_type)
4580 {
4581 case DW_UT_compile:
4582 if (section_kind != rcuh_kind::COMPILE)
4583 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4584 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4585 filename);
4586 break;
4587 case DW_UT_type:
4588 section_kind = rcuh_kind::TYPE;
4589 break;
4590 default:
4591 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4592 "(is %d, should be %d or %d) [in module %s]"),
4593 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4594 }
4595
4596 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4597 info_ptr += 1;
4598 }
4599 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
4600 cu_header,
4601 &bytes_read);
4602 info_ptr += bytes_read;
4603 if (cu_header->version < 5)
4604 {
4605 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4606 info_ptr += 1;
4607 }
4608 signed_addr = bfd_get_sign_extend_vma (abfd);
4609 if (signed_addr < 0)
4610 internal_error (__FILE__, __LINE__,
4611 _("read_comp_unit_head: dwarf from non elf file"));
4612 cu_header->signed_addr_p = signed_addr;
4613
4614 if (section_kind == rcuh_kind::TYPE)
4615 {
4616 LONGEST type_offset;
4617
4618 cu_header->signature = read_8_bytes (abfd, info_ptr);
4619 info_ptr += 8;
4620
4621 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4622 info_ptr += bytes_read;
4623 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
4624 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
4625 error (_("Dwarf Error: Too big type_offset in compilation unit "
4626 "header (is %s) [in module %s]"), plongest (type_offset),
4627 filename);
4628 }
4629
4630 return info_ptr;
4631 }
4632
4633 /* Helper function that returns the proper abbrev section for
4634 THIS_CU. */
4635
4636 static struct dwarf2_section_info *
4637 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4638 {
4639 struct dwarf2_section_info *abbrev;
4640
4641 if (this_cu->is_dwz)
4642 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4643 else
4644 abbrev = &dwarf2_per_objfile->abbrev;
4645
4646 return abbrev;
4647 }
4648
4649 /* Subroutine of read_and_check_comp_unit_head and
4650 read_and_check_type_unit_head to simplify them.
4651 Perform various error checking on the header. */
4652
4653 static void
4654 error_check_comp_unit_head (struct comp_unit_head *header,
4655 struct dwarf2_section_info *section,
4656 struct dwarf2_section_info *abbrev_section)
4657 {
4658 const char *filename = get_section_file_name (section);
4659
4660 if (header->version < 2 || header->version > 5)
4661 error (_("Dwarf Error: wrong version in compilation unit header "
4662 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
4663 filename);
4664
4665 if (to_underlying (header->abbrev_sect_off)
4666 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4667 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
4668 "(offset 0x%x + 6) [in module %s]"),
4669 to_underlying (header->abbrev_sect_off),
4670 to_underlying (header->sect_off),
4671 filename);
4672
4673 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
4674 avoid potential 32-bit overflow. */
4675 if (((ULONGEST) header->sect_off + get_cu_length (header))
4676 > section->size)
4677 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
4678 "(offset 0x%x + 0) [in module %s]"),
4679 header->length, to_underlying (header->sect_off),
4680 filename);
4681 }
4682
4683 /* Read in a CU/TU header and perform some basic error checking.
4684 The contents of the header are stored in HEADER.
4685 The result is a pointer to the start of the first DIE. */
4686
4687 static const gdb_byte *
4688 read_and_check_comp_unit_head (struct comp_unit_head *header,
4689 struct dwarf2_section_info *section,
4690 struct dwarf2_section_info *abbrev_section,
4691 const gdb_byte *info_ptr,
4692 rcuh_kind section_kind)
4693 {
4694 const gdb_byte *beg_of_comp_unit = info_ptr;
4695 bfd *abfd = get_section_bfd_owner (section);
4696
4697 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
4698
4699 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
4700
4701 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
4702
4703 error_check_comp_unit_head (header, section, abbrev_section);
4704
4705 return info_ptr;
4706 }
4707
4708 /* Fetch the abbreviation table offset from a comp or type unit header. */
4709
4710 static sect_offset
4711 read_abbrev_offset (struct dwarf2_section_info *section,
4712 sect_offset sect_off)
4713 {
4714 bfd *abfd = get_section_bfd_owner (section);
4715 const gdb_byte *info_ptr;
4716 unsigned int initial_length_size, offset_size;
4717 uint16_t version;
4718
4719 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4720 info_ptr = section->buffer + to_underlying (sect_off);
4721 read_initial_length (abfd, info_ptr, &initial_length_size);
4722 offset_size = initial_length_size == 4 ? 4 : 8;
4723 info_ptr += initial_length_size;
4724
4725 version = read_2_bytes (abfd, info_ptr);
4726 info_ptr += 2;
4727 if (version >= 5)
4728 {
4729 /* Skip unit type and address size. */
4730 info_ptr += 2;
4731 }
4732
4733 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
4734 }
4735
4736 /* Allocate a new partial symtab for file named NAME and mark this new
4737 partial symtab as being an include of PST. */
4738
4739 static void
4740 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4741 struct objfile *objfile)
4742 {
4743 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4744
4745 if (!IS_ABSOLUTE_PATH (subpst->filename))
4746 {
4747 /* It shares objfile->objfile_obstack. */
4748 subpst->dirname = pst->dirname;
4749 }
4750
4751 subpst->textlow = 0;
4752 subpst->texthigh = 0;
4753
4754 subpst->dependencies
4755 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4756 subpst->dependencies[0] = pst;
4757 subpst->number_of_dependencies = 1;
4758
4759 subpst->globals_offset = 0;
4760 subpst->n_global_syms = 0;
4761 subpst->statics_offset = 0;
4762 subpst->n_static_syms = 0;
4763 subpst->compunit_symtab = NULL;
4764 subpst->read_symtab = pst->read_symtab;
4765 subpst->readin = 0;
4766
4767 /* No private part is necessary for include psymtabs. This property
4768 can be used to differentiate between such include psymtabs and
4769 the regular ones. */
4770 subpst->read_symtab_private = NULL;
4771 }
4772
4773 /* Read the Line Number Program data and extract the list of files
4774 included by the source file represented by PST. Build an include
4775 partial symtab for each of these included files. */
4776
4777 static void
4778 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4779 struct die_info *die,
4780 struct partial_symtab *pst)
4781 {
4782 line_header_up lh;
4783 struct attribute *attr;
4784
4785 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4786 if (attr)
4787 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
4788 if (lh == NULL)
4789 return; /* No linetable, so no includes. */
4790
4791 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4792 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
4793 }
4794
4795 static hashval_t
4796 hash_signatured_type (const void *item)
4797 {
4798 const struct signatured_type *sig_type
4799 = (const struct signatured_type *) item;
4800
4801 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4802 return sig_type->signature;
4803 }
4804
4805 static int
4806 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4807 {
4808 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4809 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4810
4811 return lhs->signature == rhs->signature;
4812 }
4813
4814 /* Allocate a hash table for signatured types. */
4815
4816 static htab_t
4817 allocate_signatured_type_table (struct objfile *objfile)
4818 {
4819 return htab_create_alloc_ex (41,
4820 hash_signatured_type,
4821 eq_signatured_type,
4822 NULL,
4823 &objfile->objfile_obstack,
4824 hashtab_obstack_allocate,
4825 dummy_obstack_deallocate);
4826 }
4827
4828 /* A helper function to add a signatured type CU to a table. */
4829
4830 static int
4831 add_signatured_type_cu_to_table (void **slot, void *datum)
4832 {
4833 struct signatured_type *sigt = (struct signatured_type *) *slot;
4834 struct signatured_type ***datap = (struct signatured_type ***) datum;
4835
4836 **datap = sigt;
4837 ++*datap;
4838
4839 return 1;
4840 }
4841
4842 /* A helper for create_debug_types_hash_table. Read types from SECTION
4843 and fill them into TYPES_HTAB. It will process only type units,
4844 therefore DW_UT_type. */
4845
4846 static void
4847 create_debug_type_hash_table (struct dwo_file *dwo_file,
4848 dwarf2_section_info *section, htab_t &types_htab,
4849 rcuh_kind section_kind)
4850 {
4851 struct objfile *objfile = dwarf2_per_objfile->objfile;
4852 struct dwarf2_section_info *abbrev_section;
4853 bfd *abfd;
4854 const gdb_byte *info_ptr, *end_ptr;
4855
4856 abbrev_section = (dwo_file != NULL
4857 ? &dwo_file->sections.abbrev
4858 : &dwarf2_per_objfile->abbrev);
4859
4860 if (dwarf_read_debug)
4861 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4862 get_section_name (section),
4863 get_section_file_name (abbrev_section));
4864
4865 dwarf2_read_section (objfile, section);
4866 info_ptr = section->buffer;
4867
4868 if (info_ptr == NULL)
4869 return;
4870
4871 /* We can't set abfd until now because the section may be empty or
4872 not present, in which case the bfd is unknown. */
4873 abfd = get_section_bfd_owner (section);
4874
4875 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4876 because we don't need to read any dies: the signature is in the
4877 header. */
4878
4879 end_ptr = info_ptr + section->size;
4880 while (info_ptr < end_ptr)
4881 {
4882 struct signatured_type *sig_type;
4883 struct dwo_unit *dwo_tu;
4884 void **slot;
4885 const gdb_byte *ptr = info_ptr;
4886 struct comp_unit_head header;
4887 unsigned int length;
4888
4889 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
4890
4891 /* Initialize it due to a false compiler warning. */
4892 header.signature = -1;
4893 header.type_cu_offset_in_tu = (cu_offset) -1;
4894
4895 /* We need to read the type's signature in order to build the hash
4896 table, but we don't need anything else just yet. */
4897
4898 ptr = read_and_check_comp_unit_head (&header, section,
4899 abbrev_section, ptr, section_kind);
4900
4901 length = get_cu_length (&header);
4902
4903 /* Skip dummy type units. */
4904 if (ptr >= info_ptr + length
4905 || peek_abbrev_code (abfd, ptr) == 0
4906 || header.unit_type != DW_UT_type)
4907 {
4908 info_ptr += length;
4909 continue;
4910 }
4911
4912 if (types_htab == NULL)
4913 {
4914 if (dwo_file)
4915 types_htab = allocate_dwo_unit_table (objfile);
4916 else
4917 types_htab = allocate_signatured_type_table (objfile);
4918 }
4919
4920 if (dwo_file)
4921 {
4922 sig_type = NULL;
4923 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4924 struct dwo_unit);
4925 dwo_tu->dwo_file = dwo_file;
4926 dwo_tu->signature = header.signature;
4927 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
4928 dwo_tu->section = section;
4929 dwo_tu->sect_off = sect_off;
4930 dwo_tu->length = length;
4931 }
4932 else
4933 {
4934 /* N.B.: type_offset is not usable if this type uses a DWO file.
4935 The real type_offset is in the DWO file. */
4936 dwo_tu = NULL;
4937 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4938 struct signatured_type);
4939 sig_type->signature = header.signature;
4940 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
4941 sig_type->per_cu.objfile = objfile;
4942 sig_type->per_cu.is_debug_types = 1;
4943 sig_type->per_cu.section = section;
4944 sig_type->per_cu.sect_off = sect_off;
4945 sig_type->per_cu.length = length;
4946 }
4947
4948 slot = htab_find_slot (types_htab,
4949 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4950 INSERT);
4951 gdb_assert (slot != NULL);
4952 if (*slot != NULL)
4953 {
4954 sect_offset dup_sect_off;
4955
4956 if (dwo_file)
4957 {
4958 const struct dwo_unit *dup_tu
4959 = (const struct dwo_unit *) *slot;
4960
4961 dup_sect_off = dup_tu->sect_off;
4962 }
4963 else
4964 {
4965 const struct signatured_type *dup_tu
4966 = (const struct signatured_type *) *slot;
4967
4968 dup_sect_off = dup_tu->per_cu.sect_off;
4969 }
4970
4971 complaint (&symfile_complaints,
4972 _("debug type entry at offset 0x%x is duplicate to"
4973 " the entry at offset 0x%x, signature %s"),
4974 to_underlying (sect_off), to_underlying (dup_sect_off),
4975 hex_string (header.signature));
4976 }
4977 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4978
4979 if (dwarf_read_debug > 1)
4980 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4981 to_underlying (sect_off),
4982 hex_string (header.signature));
4983
4984 info_ptr += length;
4985 }
4986 }
4987
4988 /* Create the hash table of all entries in the .debug_types
4989 (or .debug_types.dwo) section(s).
4990 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4991 otherwise it is NULL.
4992
4993 The result is a pointer to the hash table or NULL if there are no types.
4994
4995 Note: This function processes DWO files only, not DWP files. */
4996
4997 static void
4998 create_debug_types_hash_table (struct dwo_file *dwo_file,
4999 VEC (dwarf2_section_info_def) *types,
5000 htab_t &types_htab)
5001 {
5002 int ix;
5003 struct dwarf2_section_info *section;
5004
5005 if (VEC_empty (dwarf2_section_info_def, types))
5006 return;
5007
5008 for (ix = 0;
5009 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5010 ++ix)
5011 create_debug_type_hash_table (dwo_file, section, types_htab,
5012 rcuh_kind::TYPE);
5013 }
5014
5015 /* Create the hash table of all entries in the .debug_types section,
5016 and initialize all_type_units.
5017 The result is zero if there is an error (e.g. missing .debug_types section),
5018 otherwise non-zero. */
5019
5020 static int
5021 create_all_type_units (struct objfile *objfile)
5022 {
5023 htab_t types_htab = NULL;
5024 struct signatured_type **iter;
5025
5026 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5027 rcuh_kind::COMPILE);
5028 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
5029 if (types_htab == NULL)
5030 {
5031 dwarf2_per_objfile->signatured_types = NULL;
5032 return 0;
5033 }
5034
5035 dwarf2_per_objfile->signatured_types = types_htab;
5036
5037 dwarf2_per_objfile->n_type_units
5038 = dwarf2_per_objfile->n_allocated_type_units
5039 = htab_elements (types_htab);
5040 dwarf2_per_objfile->all_type_units =
5041 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
5042 iter = &dwarf2_per_objfile->all_type_units[0];
5043 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5044 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5045 == dwarf2_per_objfile->n_type_units);
5046
5047 return 1;
5048 }
5049
5050 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5051 If SLOT is non-NULL, it is the entry to use in the hash table.
5052 Otherwise we find one. */
5053
5054 static struct signatured_type *
5055 add_type_unit (ULONGEST sig, void **slot)
5056 {
5057 struct objfile *objfile = dwarf2_per_objfile->objfile;
5058 int n_type_units = dwarf2_per_objfile->n_type_units;
5059 struct signatured_type *sig_type;
5060
5061 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5062 ++n_type_units;
5063 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5064 {
5065 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5066 dwarf2_per_objfile->n_allocated_type_units = 1;
5067 dwarf2_per_objfile->n_allocated_type_units *= 2;
5068 dwarf2_per_objfile->all_type_units
5069 = XRESIZEVEC (struct signatured_type *,
5070 dwarf2_per_objfile->all_type_units,
5071 dwarf2_per_objfile->n_allocated_type_units);
5072 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5073 }
5074 dwarf2_per_objfile->n_type_units = n_type_units;
5075
5076 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5077 struct signatured_type);
5078 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5079 sig_type->signature = sig;
5080 sig_type->per_cu.is_debug_types = 1;
5081 if (dwarf2_per_objfile->using_index)
5082 {
5083 sig_type->per_cu.v.quick =
5084 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5085 struct dwarf2_per_cu_quick_data);
5086 }
5087
5088 if (slot == NULL)
5089 {
5090 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5091 sig_type, INSERT);
5092 }
5093 gdb_assert (*slot == NULL);
5094 *slot = sig_type;
5095 /* The rest of sig_type must be filled in by the caller. */
5096 return sig_type;
5097 }
5098
5099 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5100 Fill in SIG_ENTRY with DWO_ENTRY. */
5101
5102 static void
5103 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5104 struct signatured_type *sig_entry,
5105 struct dwo_unit *dwo_entry)
5106 {
5107 /* Make sure we're not clobbering something we don't expect to. */
5108 gdb_assert (! sig_entry->per_cu.queued);
5109 gdb_assert (sig_entry->per_cu.cu == NULL);
5110 if (dwarf2_per_objfile->using_index)
5111 {
5112 gdb_assert (sig_entry->per_cu.v.quick != NULL);
5113 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
5114 }
5115 else
5116 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
5117 gdb_assert (sig_entry->signature == dwo_entry->signature);
5118 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
5119 gdb_assert (sig_entry->type_unit_group == NULL);
5120 gdb_assert (sig_entry->dwo_unit == NULL);
5121
5122 sig_entry->per_cu.section = dwo_entry->section;
5123 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
5124 sig_entry->per_cu.length = dwo_entry->length;
5125 sig_entry->per_cu.reading_dwo_directly = 1;
5126 sig_entry->per_cu.objfile = objfile;
5127 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5128 sig_entry->dwo_unit = dwo_entry;
5129 }
5130
5131 /* Subroutine of lookup_signatured_type.
5132 If we haven't read the TU yet, create the signatured_type data structure
5133 for a TU to be read in directly from a DWO file, bypassing the stub.
5134 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5135 using .gdb_index, then when reading a CU we want to stay in the DWO file
5136 containing that CU. Otherwise we could end up reading several other DWO
5137 files (due to comdat folding) to process the transitive closure of all the
5138 mentioned TUs, and that can be slow. The current DWO file will have every
5139 type signature that it needs.
5140 We only do this for .gdb_index because in the psymtab case we already have
5141 to read all the DWOs to build the type unit groups. */
5142
5143 static struct signatured_type *
5144 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5145 {
5146 struct objfile *objfile = dwarf2_per_objfile->objfile;
5147 struct dwo_file *dwo_file;
5148 struct dwo_unit find_dwo_entry, *dwo_entry;
5149 struct signatured_type find_sig_entry, *sig_entry;
5150 void **slot;
5151
5152 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5153
5154 /* If TU skeletons have been removed then we may not have read in any
5155 TUs yet. */
5156 if (dwarf2_per_objfile->signatured_types == NULL)
5157 {
5158 dwarf2_per_objfile->signatured_types
5159 = allocate_signatured_type_table (objfile);
5160 }
5161
5162 /* We only ever need to read in one copy of a signatured type.
5163 Use the global signatured_types array to do our own comdat-folding
5164 of types. If this is the first time we're reading this TU, and
5165 the TU has an entry in .gdb_index, replace the recorded data from
5166 .gdb_index with this TU. */
5167
5168 find_sig_entry.signature = sig;
5169 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5170 &find_sig_entry, INSERT);
5171 sig_entry = (struct signatured_type *) *slot;
5172
5173 /* We can get here with the TU already read, *or* in the process of being
5174 read. Don't reassign the global entry to point to this DWO if that's
5175 the case. Also note that if the TU is already being read, it may not
5176 have come from a DWO, the program may be a mix of Fission-compiled
5177 code and non-Fission-compiled code. */
5178
5179 /* Have we already tried to read this TU?
5180 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5181 needn't exist in the global table yet). */
5182 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
5183 return sig_entry;
5184
5185 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5186 dwo_unit of the TU itself. */
5187 dwo_file = cu->dwo_unit->dwo_file;
5188
5189 /* Ok, this is the first time we're reading this TU. */
5190 if (dwo_file->tus == NULL)
5191 return NULL;
5192 find_dwo_entry.signature = sig;
5193 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
5194 if (dwo_entry == NULL)
5195 return NULL;
5196
5197 /* If the global table doesn't have an entry for this TU, add one. */
5198 if (sig_entry == NULL)
5199 sig_entry = add_type_unit (sig, slot);
5200
5201 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5202 sig_entry->per_cu.tu_read = 1;
5203 return sig_entry;
5204 }
5205
5206 /* Subroutine of lookup_signatured_type.
5207 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
5208 then try the DWP file. If the TU stub (skeleton) has been removed then
5209 it won't be in .gdb_index. */
5210
5211 static struct signatured_type *
5212 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5213 {
5214 struct objfile *objfile = dwarf2_per_objfile->objfile;
5215 struct dwp_file *dwp_file = get_dwp_file ();
5216 struct dwo_unit *dwo_entry;
5217 struct signatured_type find_sig_entry, *sig_entry;
5218 void **slot;
5219
5220 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5221 gdb_assert (dwp_file != NULL);
5222
5223 /* If TU skeletons have been removed then we may not have read in any
5224 TUs yet. */
5225 if (dwarf2_per_objfile->signatured_types == NULL)
5226 {
5227 dwarf2_per_objfile->signatured_types
5228 = allocate_signatured_type_table (objfile);
5229 }
5230
5231 find_sig_entry.signature = sig;
5232 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5233 &find_sig_entry, INSERT);
5234 sig_entry = (struct signatured_type *) *slot;
5235
5236 /* Have we already tried to read this TU?
5237 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5238 needn't exist in the global table yet). */
5239 if (sig_entry != NULL)
5240 return sig_entry;
5241
5242 if (dwp_file->tus == NULL)
5243 return NULL;
5244 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5245 sig, 1 /* is_debug_types */);
5246 if (dwo_entry == NULL)
5247 return NULL;
5248
5249 sig_entry = add_type_unit (sig, slot);
5250 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5251
5252 return sig_entry;
5253 }
5254
5255 /* Lookup a signature based type for DW_FORM_ref_sig8.
5256 Returns NULL if signature SIG is not present in the table.
5257 It is up to the caller to complain about this. */
5258
5259 static struct signatured_type *
5260 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5261 {
5262 if (cu->dwo_unit
5263 && dwarf2_per_objfile->using_index)
5264 {
5265 /* We're in a DWO/DWP file, and we're using .gdb_index.
5266 These cases require special processing. */
5267 if (get_dwp_file () == NULL)
5268 return lookup_dwo_signatured_type (cu, sig);
5269 else
5270 return lookup_dwp_signatured_type (cu, sig);
5271 }
5272 else
5273 {
5274 struct signatured_type find_entry, *entry;
5275
5276 if (dwarf2_per_objfile->signatured_types == NULL)
5277 return NULL;
5278 find_entry.signature = sig;
5279 entry = ((struct signatured_type *)
5280 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5281 return entry;
5282 }
5283 }
5284 \f
5285 /* Low level DIE reading support. */
5286
5287 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5288
5289 static void
5290 init_cu_die_reader (struct die_reader_specs *reader,
5291 struct dwarf2_cu *cu,
5292 struct dwarf2_section_info *section,
5293 struct dwo_file *dwo_file)
5294 {
5295 gdb_assert (section->readin && section->buffer != NULL);
5296 reader->abfd = get_section_bfd_owner (section);
5297 reader->cu = cu;
5298 reader->dwo_file = dwo_file;
5299 reader->die_section = section;
5300 reader->buffer = section->buffer;
5301 reader->buffer_end = section->buffer + section->size;
5302 reader->comp_dir = NULL;
5303 }
5304
5305 /* Subroutine of init_cutu_and_read_dies to simplify it.
5306 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5307 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5308 already.
5309
5310 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5311 from it to the DIE in the DWO. If NULL we are skipping the stub.
5312 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5313 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5314 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5315 STUB_COMP_DIR may be non-NULL.
5316 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5317 are filled in with the info of the DIE from the DWO file.
5318 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5319 provided an abbrev table to use.
5320 The result is non-zero if a valid (non-dummy) DIE was found. */
5321
5322 static int
5323 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5324 struct dwo_unit *dwo_unit,
5325 int abbrev_table_provided,
5326 struct die_info *stub_comp_unit_die,
5327 const char *stub_comp_dir,
5328 struct die_reader_specs *result_reader,
5329 const gdb_byte **result_info_ptr,
5330 struct die_info **result_comp_unit_die,
5331 int *result_has_children)
5332 {
5333 struct objfile *objfile = dwarf2_per_objfile->objfile;
5334 struct dwarf2_cu *cu = this_cu->cu;
5335 struct dwarf2_section_info *section;
5336 bfd *abfd;
5337 const gdb_byte *begin_info_ptr, *info_ptr;
5338 ULONGEST signature; /* Or dwo_id. */
5339 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5340 int i,num_extra_attrs;
5341 struct dwarf2_section_info *dwo_abbrev_section;
5342 struct attribute *attr;
5343 struct die_info *comp_unit_die;
5344
5345 /* At most one of these may be provided. */
5346 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5347
5348 /* These attributes aren't processed until later:
5349 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5350 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5351 referenced later. However, these attributes are found in the stub
5352 which we won't have later. In order to not impose this complication
5353 on the rest of the code, we read them here and copy them to the
5354 DWO CU/TU die. */
5355
5356 stmt_list = NULL;
5357 low_pc = NULL;
5358 high_pc = NULL;
5359 ranges = NULL;
5360 comp_dir = NULL;
5361
5362 if (stub_comp_unit_die != NULL)
5363 {
5364 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5365 DWO file. */
5366 if (! this_cu->is_debug_types)
5367 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5368 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5369 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5370 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5371 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5372
5373 /* There should be a DW_AT_addr_base attribute here (if needed).
5374 We need the value before we can process DW_FORM_GNU_addr_index. */
5375 cu->addr_base = 0;
5376 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5377 if (attr)
5378 cu->addr_base = DW_UNSND (attr);
5379
5380 /* There should be a DW_AT_ranges_base attribute here (if needed).
5381 We need the value before we can process DW_AT_ranges. */
5382 cu->ranges_base = 0;
5383 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5384 if (attr)
5385 cu->ranges_base = DW_UNSND (attr);
5386 }
5387 else if (stub_comp_dir != NULL)
5388 {
5389 /* Reconstruct the comp_dir attribute to simplify the code below. */
5390 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5391 comp_dir->name = DW_AT_comp_dir;
5392 comp_dir->form = DW_FORM_string;
5393 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5394 DW_STRING (comp_dir) = stub_comp_dir;
5395 }
5396
5397 /* Set up for reading the DWO CU/TU. */
5398 cu->dwo_unit = dwo_unit;
5399 section = dwo_unit->section;
5400 dwarf2_read_section (objfile, section);
5401 abfd = get_section_bfd_owner (section);
5402 begin_info_ptr = info_ptr = (section->buffer
5403 + to_underlying (dwo_unit->sect_off));
5404 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5405 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5406
5407 if (this_cu->is_debug_types)
5408 {
5409 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5410
5411 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5412 dwo_abbrev_section,
5413 info_ptr, rcuh_kind::TYPE);
5414 /* This is not an assert because it can be caused by bad debug info. */
5415 if (sig_type->signature != cu->header.signature)
5416 {
5417 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5418 " TU at offset 0x%x [in module %s]"),
5419 hex_string (sig_type->signature),
5420 hex_string (cu->header.signature),
5421 to_underlying (dwo_unit->sect_off),
5422 bfd_get_filename (abfd));
5423 }
5424 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5425 /* For DWOs coming from DWP files, we don't know the CU length
5426 nor the type's offset in the TU until now. */
5427 dwo_unit->length = get_cu_length (&cu->header);
5428 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
5429
5430 /* Establish the type offset that can be used to lookup the type.
5431 For DWO files, we don't know it until now. */
5432 sig_type->type_offset_in_section
5433 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
5434 }
5435 else
5436 {
5437 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5438 dwo_abbrev_section,
5439 info_ptr, rcuh_kind::COMPILE);
5440 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5441 /* For DWOs coming from DWP files, we don't know the CU length
5442 until now. */
5443 dwo_unit->length = get_cu_length (&cu->header);
5444 }
5445
5446 /* Replace the CU's original abbrev table with the DWO's.
5447 Reminder: We can't read the abbrev table until we've read the header. */
5448 if (abbrev_table_provided)
5449 {
5450 /* Don't free the provided abbrev table, the caller of
5451 init_cutu_and_read_dies owns it. */
5452 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5453 /* Ensure the DWO abbrev table gets freed. */
5454 make_cleanup (dwarf2_free_abbrev_table, cu);
5455 }
5456 else
5457 {
5458 dwarf2_free_abbrev_table (cu);
5459 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5460 /* Leave any existing abbrev table cleanup as is. */
5461 }
5462
5463 /* Read in the die, but leave space to copy over the attributes
5464 from the stub. This has the benefit of simplifying the rest of
5465 the code - all the work to maintain the illusion of a single
5466 DW_TAG_{compile,type}_unit DIE is done here. */
5467 num_extra_attrs = ((stmt_list != NULL)
5468 + (low_pc != NULL)
5469 + (high_pc != NULL)
5470 + (ranges != NULL)
5471 + (comp_dir != NULL));
5472 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5473 result_has_children, num_extra_attrs);
5474
5475 /* Copy over the attributes from the stub to the DIE we just read in. */
5476 comp_unit_die = *result_comp_unit_die;
5477 i = comp_unit_die->num_attrs;
5478 if (stmt_list != NULL)
5479 comp_unit_die->attrs[i++] = *stmt_list;
5480 if (low_pc != NULL)
5481 comp_unit_die->attrs[i++] = *low_pc;
5482 if (high_pc != NULL)
5483 comp_unit_die->attrs[i++] = *high_pc;
5484 if (ranges != NULL)
5485 comp_unit_die->attrs[i++] = *ranges;
5486 if (comp_dir != NULL)
5487 comp_unit_die->attrs[i++] = *comp_dir;
5488 comp_unit_die->num_attrs += num_extra_attrs;
5489
5490 if (dwarf_die_debug)
5491 {
5492 fprintf_unfiltered (gdb_stdlog,
5493 "Read die from %s@0x%x of %s:\n",
5494 get_section_name (section),
5495 (unsigned) (begin_info_ptr - section->buffer),
5496 bfd_get_filename (abfd));
5497 dump_die (comp_unit_die, dwarf_die_debug);
5498 }
5499
5500 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5501 TUs by skipping the stub and going directly to the entry in the DWO file.
5502 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5503 to get it via circuitous means. Blech. */
5504 if (comp_dir != NULL)
5505 result_reader->comp_dir = DW_STRING (comp_dir);
5506
5507 /* Skip dummy compilation units. */
5508 if (info_ptr >= begin_info_ptr + dwo_unit->length
5509 || peek_abbrev_code (abfd, info_ptr) == 0)
5510 return 0;
5511
5512 *result_info_ptr = info_ptr;
5513 return 1;
5514 }
5515
5516 /* Subroutine of init_cutu_and_read_dies to simplify it.
5517 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5518 Returns NULL if the specified DWO unit cannot be found. */
5519
5520 static struct dwo_unit *
5521 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5522 struct die_info *comp_unit_die)
5523 {
5524 struct dwarf2_cu *cu = this_cu->cu;
5525 struct attribute *attr;
5526 ULONGEST signature;
5527 struct dwo_unit *dwo_unit;
5528 const char *comp_dir, *dwo_name;
5529
5530 gdb_assert (cu != NULL);
5531
5532 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5533 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5534 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5535
5536 if (this_cu->is_debug_types)
5537 {
5538 struct signatured_type *sig_type;
5539
5540 /* Since this_cu is the first member of struct signatured_type,
5541 we can go from a pointer to one to a pointer to the other. */
5542 sig_type = (struct signatured_type *) this_cu;
5543 signature = sig_type->signature;
5544 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5545 }
5546 else
5547 {
5548 struct attribute *attr;
5549
5550 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5551 if (! attr)
5552 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5553 " [in module %s]"),
5554 dwo_name, objfile_name (this_cu->objfile));
5555 signature = DW_UNSND (attr);
5556 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5557 signature);
5558 }
5559
5560 return dwo_unit;
5561 }
5562
5563 /* Subroutine of init_cutu_and_read_dies to simplify it.
5564 See it for a description of the parameters.
5565 Read a TU directly from a DWO file, bypassing the stub.
5566
5567 Note: This function could be a little bit simpler if we shared cleanups
5568 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5569 to do, so we keep this function self-contained. Or we could move this
5570 into our caller, but it's complex enough already. */
5571
5572 static void
5573 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5574 int use_existing_cu, int keep,
5575 die_reader_func_ftype *die_reader_func,
5576 void *data)
5577 {
5578 struct dwarf2_cu *cu;
5579 struct signatured_type *sig_type;
5580 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5581 struct die_reader_specs reader;
5582 const gdb_byte *info_ptr;
5583 struct die_info *comp_unit_die;
5584 int has_children;
5585
5586 /* Verify we can do the following downcast, and that we have the
5587 data we need. */
5588 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5589 sig_type = (struct signatured_type *) this_cu;
5590 gdb_assert (sig_type->dwo_unit != NULL);
5591
5592 cleanups = make_cleanup (null_cleanup, NULL);
5593
5594 if (use_existing_cu && this_cu->cu != NULL)
5595 {
5596 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5597 cu = this_cu->cu;
5598 /* There's no need to do the rereading_dwo_cu handling that
5599 init_cutu_and_read_dies does since we don't read the stub. */
5600 }
5601 else
5602 {
5603 /* If !use_existing_cu, this_cu->cu must be NULL. */
5604 gdb_assert (this_cu->cu == NULL);
5605 cu = XNEW (struct dwarf2_cu);
5606 init_one_comp_unit (cu, this_cu);
5607 /* If an error occurs while loading, release our storage. */
5608 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5609 }
5610
5611 /* A future optimization, if needed, would be to use an existing
5612 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5613 could share abbrev tables. */
5614
5615 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5616 0 /* abbrev_table_provided */,
5617 NULL /* stub_comp_unit_die */,
5618 sig_type->dwo_unit->dwo_file->comp_dir,
5619 &reader, &info_ptr,
5620 &comp_unit_die, &has_children) == 0)
5621 {
5622 /* Dummy die. */
5623 do_cleanups (cleanups);
5624 return;
5625 }
5626
5627 /* All the "real" work is done here. */
5628 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5629
5630 /* This duplicates the code in init_cutu_and_read_dies,
5631 but the alternative is making the latter more complex.
5632 This function is only for the special case of using DWO files directly:
5633 no point in overly complicating the general case just to handle this. */
5634 if (free_cu_cleanup != NULL)
5635 {
5636 if (keep)
5637 {
5638 /* We've successfully allocated this compilation unit. Let our
5639 caller clean it up when finished with it. */
5640 discard_cleanups (free_cu_cleanup);
5641
5642 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5643 So we have to manually free the abbrev table. */
5644 dwarf2_free_abbrev_table (cu);
5645
5646 /* Link this CU into read_in_chain. */
5647 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5648 dwarf2_per_objfile->read_in_chain = this_cu;
5649 }
5650 else
5651 do_cleanups (free_cu_cleanup);
5652 }
5653
5654 do_cleanups (cleanups);
5655 }
5656
5657 /* Initialize a CU (or TU) and read its DIEs.
5658 If the CU defers to a DWO file, read the DWO file as well.
5659
5660 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5661 Otherwise the table specified in the comp unit header is read in and used.
5662 This is an optimization for when we already have the abbrev table.
5663
5664 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5665 Otherwise, a new CU is allocated with xmalloc.
5666
5667 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5668 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5669
5670 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5671 linker) then DIE_READER_FUNC will not get called. */
5672
5673 static void
5674 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5675 struct abbrev_table *abbrev_table,
5676 int use_existing_cu, int keep,
5677 die_reader_func_ftype *die_reader_func,
5678 void *data)
5679 {
5680 struct objfile *objfile = dwarf2_per_objfile->objfile;
5681 struct dwarf2_section_info *section = this_cu->section;
5682 bfd *abfd = get_section_bfd_owner (section);
5683 struct dwarf2_cu *cu;
5684 const gdb_byte *begin_info_ptr, *info_ptr;
5685 struct die_reader_specs reader;
5686 struct die_info *comp_unit_die;
5687 int has_children;
5688 struct attribute *attr;
5689 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5690 struct signatured_type *sig_type = NULL;
5691 struct dwarf2_section_info *abbrev_section;
5692 /* Non-zero if CU currently points to a DWO file and we need to
5693 reread it. When this happens we need to reread the skeleton die
5694 before we can reread the DWO file (this only applies to CUs, not TUs). */
5695 int rereading_dwo_cu = 0;
5696
5697 if (dwarf_die_debug)
5698 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5699 this_cu->is_debug_types ? "type" : "comp",
5700 to_underlying (this_cu->sect_off));
5701
5702 if (use_existing_cu)
5703 gdb_assert (keep);
5704
5705 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5706 file (instead of going through the stub), short-circuit all of this. */
5707 if (this_cu->reading_dwo_directly)
5708 {
5709 /* Narrow down the scope of possibilities to have to understand. */
5710 gdb_assert (this_cu->is_debug_types);
5711 gdb_assert (abbrev_table == NULL);
5712 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5713 die_reader_func, data);
5714 return;
5715 }
5716
5717 cleanups = make_cleanup (null_cleanup, NULL);
5718
5719 /* This is cheap if the section is already read in. */
5720 dwarf2_read_section (objfile, section);
5721
5722 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5723
5724 abbrev_section = get_abbrev_section_for_cu (this_cu);
5725
5726 if (use_existing_cu && this_cu->cu != NULL)
5727 {
5728 cu = this_cu->cu;
5729 /* If this CU is from a DWO file we need to start over, we need to
5730 refetch the attributes from the skeleton CU.
5731 This could be optimized by retrieving those attributes from when we
5732 were here the first time: the previous comp_unit_die was stored in
5733 comp_unit_obstack. But there's no data yet that we need this
5734 optimization. */
5735 if (cu->dwo_unit != NULL)
5736 rereading_dwo_cu = 1;
5737 }
5738 else
5739 {
5740 /* If !use_existing_cu, this_cu->cu must be NULL. */
5741 gdb_assert (this_cu->cu == NULL);
5742 cu = XNEW (struct dwarf2_cu);
5743 init_one_comp_unit (cu, this_cu);
5744 /* If an error occurs while loading, release our storage. */
5745 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5746 }
5747
5748 /* Get the header. */
5749 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
5750 {
5751 /* We already have the header, there's no need to read it in again. */
5752 info_ptr += to_underlying (cu->header.first_die_cu_offset);
5753 }
5754 else
5755 {
5756 if (this_cu->is_debug_types)
5757 {
5758 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5759 abbrev_section, info_ptr,
5760 rcuh_kind::TYPE);
5761
5762 /* Since per_cu is the first member of struct signatured_type,
5763 we can go from a pointer to one to a pointer to the other. */
5764 sig_type = (struct signatured_type *) this_cu;
5765 gdb_assert (sig_type->signature == cu->header.signature);
5766 gdb_assert (sig_type->type_offset_in_tu
5767 == cu->header.type_cu_offset_in_tu);
5768 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5769
5770 /* LENGTH has not been set yet for type units if we're
5771 using .gdb_index. */
5772 this_cu->length = get_cu_length (&cu->header);
5773
5774 /* Establish the type offset that can be used to lookup the type. */
5775 sig_type->type_offset_in_section =
5776 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
5777
5778 this_cu->dwarf_version = cu->header.version;
5779 }
5780 else
5781 {
5782 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5783 abbrev_section,
5784 info_ptr,
5785 rcuh_kind::COMPILE);
5786
5787 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5788 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5789 this_cu->dwarf_version = cu->header.version;
5790 }
5791 }
5792
5793 /* Skip dummy compilation units. */
5794 if (info_ptr >= begin_info_ptr + this_cu->length
5795 || peek_abbrev_code (abfd, info_ptr) == 0)
5796 {
5797 do_cleanups (cleanups);
5798 return;
5799 }
5800
5801 /* If we don't have them yet, read the abbrevs for this compilation unit.
5802 And if we need to read them now, make sure they're freed when we're
5803 done. Note that it's important that if the CU had an abbrev table
5804 on entry we don't free it when we're done: Somewhere up the call stack
5805 it may be in use. */
5806 if (abbrev_table != NULL)
5807 {
5808 gdb_assert (cu->abbrev_table == NULL);
5809 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
5810 cu->abbrev_table = abbrev_table;
5811 }
5812 else if (cu->abbrev_table == NULL)
5813 {
5814 dwarf2_read_abbrevs (cu, abbrev_section);
5815 make_cleanup (dwarf2_free_abbrev_table, cu);
5816 }
5817 else if (rereading_dwo_cu)
5818 {
5819 dwarf2_free_abbrev_table (cu);
5820 dwarf2_read_abbrevs (cu, abbrev_section);
5821 }
5822
5823 /* Read the top level CU/TU die. */
5824 init_cu_die_reader (&reader, cu, section, NULL);
5825 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5826
5827 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5828 from the DWO file.
5829 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5830 DWO CU, that this test will fail (the attribute will not be present). */
5831 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5832 if (attr)
5833 {
5834 struct dwo_unit *dwo_unit;
5835 struct die_info *dwo_comp_unit_die;
5836
5837 if (has_children)
5838 {
5839 complaint (&symfile_complaints,
5840 _("compilation unit with DW_AT_GNU_dwo_name"
5841 " has children (offset 0x%x) [in module %s]"),
5842 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
5843 }
5844 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5845 if (dwo_unit != NULL)
5846 {
5847 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5848 abbrev_table != NULL,
5849 comp_unit_die, NULL,
5850 &reader, &info_ptr,
5851 &dwo_comp_unit_die, &has_children) == 0)
5852 {
5853 /* Dummy die. */
5854 do_cleanups (cleanups);
5855 return;
5856 }
5857 comp_unit_die = dwo_comp_unit_die;
5858 }
5859 else
5860 {
5861 /* Yikes, we couldn't find the rest of the DIE, we only have
5862 the stub. A complaint has already been logged. There's
5863 not much more we can do except pass on the stub DIE to
5864 die_reader_func. We don't want to throw an error on bad
5865 debug info. */
5866 }
5867 }
5868
5869 /* All of the above is setup for this call. Yikes. */
5870 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5871
5872 /* Done, clean up. */
5873 if (free_cu_cleanup != NULL)
5874 {
5875 if (keep)
5876 {
5877 /* We've successfully allocated this compilation unit. Let our
5878 caller clean it up when finished with it. */
5879 discard_cleanups (free_cu_cleanup);
5880
5881 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5882 So we have to manually free the abbrev table. */
5883 dwarf2_free_abbrev_table (cu);
5884
5885 /* Link this CU into read_in_chain. */
5886 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5887 dwarf2_per_objfile->read_in_chain = this_cu;
5888 }
5889 else
5890 do_cleanups (free_cu_cleanup);
5891 }
5892
5893 do_cleanups (cleanups);
5894 }
5895
5896 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5897 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5898 to have already done the lookup to find the DWO file).
5899
5900 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5901 THIS_CU->is_debug_types, but nothing else.
5902
5903 We fill in THIS_CU->length.
5904
5905 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5906 linker) then DIE_READER_FUNC will not get called.
5907
5908 THIS_CU->cu is always freed when done.
5909 This is done in order to not leave THIS_CU->cu in a state where we have
5910 to care whether it refers to the "main" CU or the DWO CU. */
5911
5912 static void
5913 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5914 struct dwo_file *dwo_file,
5915 die_reader_func_ftype *die_reader_func,
5916 void *data)
5917 {
5918 struct objfile *objfile = dwarf2_per_objfile->objfile;
5919 struct dwarf2_section_info *section = this_cu->section;
5920 bfd *abfd = get_section_bfd_owner (section);
5921 struct dwarf2_section_info *abbrev_section;
5922 struct dwarf2_cu cu;
5923 const gdb_byte *begin_info_ptr, *info_ptr;
5924 struct die_reader_specs reader;
5925 struct cleanup *cleanups;
5926 struct die_info *comp_unit_die;
5927 int has_children;
5928
5929 if (dwarf_die_debug)
5930 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5931 this_cu->is_debug_types ? "type" : "comp",
5932 to_underlying (this_cu->sect_off));
5933
5934 gdb_assert (this_cu->cu == NULL);
5935
5936 abbrev_section = (dwo_file != NULL
5937 ? &dwo_file->sections.abbrev
5938 : get_abbrev_section_for_cu (this_cu));
5939
5940 /* This is cheap if the section is already read in. */
5941 dwarf2_read_section (objfile, section);
5942
5943 init_one_comp_unit (&cu, this_cu);
5944
5945 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5946
5947 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5948 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5949 abbrev_section, info_ptr,
5950 (this_cu->is_debug_types
5951 ? rcuh_kind::TYPE
5952 : rcuh_kind::COMPILE));
5953
5954 this_cu->length = get_cu_length (&cu.header);
5955
5956 /* Skip dummy compilation units. */
5957 if (info_ptr >= begin_info_ptr + this_cu->length
5958 || peek_abbrev_code (abfd, info_ptr) == 0)
5959 {
5960 do_cleanups (cleanups);
5961 return;
5962 }
5963
5964 dwarf2_read_abbrevs (&cu, abbrev_section);
5965 make_cleanup (dwarf2_free_abbrev_table, &cu);
5966
5967 init_cu_die_reader (&reader, &cu, section, dwo_file);
5968 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5969
5970 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5971
5972 do_cleanups (cleanups);
5973 }
5974
5975 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5976 does not lookup the specified DWO file.
5977 This cannot be used to read DWO files.
5978
5979 THIS_CU->cu is always freed when done.
5980 This is done in order to not leave THIS_CU->cu in a state where we have
5981 to care whether it refers to the "main" CU or the DWO CU.
5982 We can revisit this if the data shows there's a performance issue. */
5983
5984 static void
5985 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5986 die_reader_func_ftype *die_reader_func,
5987 void *data)
5988 {
5989 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5990 }
5991 \f
5992 /* Type Unit Groups.
5993
5994 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5995 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5996 so that all types coming from the same compilation (.o file) are grouped
5997 together. A future step could be to put the types in the same symtab as
5998 the CU the types ultimately came from. */
5999
6000 static hashval_t
6001 hash_type_unit_group (const void *item)
6002 {
6003 const struct type_unit_group *tu_group
6004 = (const struct type_unit_group *) item;
6005
6006 return hash_stmt_list_entry (&tu_group->hash);
6007 }
6008
6009 static int
6010 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
6011 {
6012 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6013 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
6014
6015 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
6016 }
6017
6018 /* Allocate a hash table for type unit groups. */
6019
6020 static htab_t
6021 allocate_type_unit_groups_table (void)
6022 {
6023 return htab_create_alloc_ex (3,
6024 hash_type_unit_group,
6025 eq_type_unit_group,
6026 NULL,
6027 &dwarf2_per_objfile->objfile->objfile_obstack,
6028 hashtab_obstack_allocate,
6029 dummy_obstack_deallocate);
6030 }
6031
6032 /* Type units that don't have DW_AT_stmt_list are grouped into their own
6033 partial symtabs. We combine several TUs per psymtab to not let the size
6034 of any one psymtab grow too big. */
6035 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6036 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
6037
6038 /* Helper routine for get_type_unit_group.
6039 Create the type_unit_group object used to hold one or more TUs. */
6040
6041 static struct type_unit_group *
6042 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
6043 {
6044 struct objfile *objfile = dwarf2_per_objfile->objfile;
6045 struct dwarf2_per_cu_data *per_cu;
6046 struct type_unit_group *tu_group;
6047
6048 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6049 struct type_unit_group);
6050 per_cu = &tu_group->per_cu;
6051 per_cu->objfile = objfile;
6052
6053 if (dwarf2_per_objfile->using_index)
6054 {
6055 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6056 struct dwarf2_per_cu_quick_data);
6057 }
6058 else
6059 {
6060 unsigned int line_offset = to_underlying (line_offset_struct);
6061 struct partial_symtab *pst;
6062 char *name;
6063
6064 /* Give the symtab a useful name for debug purposes. */
6065 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6066 name = xstrprintf ("<type_units_%d>",
6067 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6068 else
6069 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6070
6071 pst = create_partial_symtab (per_cu, name);
6072 pst->anonymous = 1;
6073
6074 xfree (name);
6075 }
6076
6077 tu_group->hash.dwo_unit = cu->dwo_unit;
6078 tu_group->hash.line_sect_off = line_offset_struct;
6079
6080 return tu_group;
6081 }
6082
6083 /* Look up the type_unit_group for type unit CU, and create it if necessary.
6084 STMT_LIST is a DW_AT_stmt_list attribute. */
6085
6086 static struct type_unit_group *
6087 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
6088 {
6089 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6090 struct type_unit_group *tu_group;
6091 void **slot;
6092 unsigned int line_offset;
6093 struct type_unit_group type_unit_group_for_lookup;
6094
6095 if (dwarf2_per_objfile->type_unit_groups == NULL)
6096 {
6097 dwarf2_per_objfile->type_unit_groups =
6098 allocate_type_unit_groups_table ();
6099 }
6100
6101 /* Do we need to create a new group, or can we use an existing one? */
6102
6103 if (stmt_list)
6104 {
6105 line_offset = DW_UNSND (stmt_list);
6106 ++tu_stats->nr_symtab_sharers;
6107 }
6108 else
6109 {
6110 /* Ugh, no stmt_list. Rare, but we have to handle it.
6111 We can do various things here like create one group per TU or
6112 spread them over multiple groups to split up the expansion work.
6113 To avoid worst case scenarios (too many groups or too large groups)
6114 we, umm, group them in bunches. */
6115 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6116 | (tu_stats->nr_stmt_less_type_units
6117 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6118 ++tu_stats->nr_stmt_less_type_units;
6119 }
6120
6121 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
6122 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
6123 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6124 &type_unit_group_for_lookup, INSERT);
6125 if (*slot != NULL)
6126 {
6127 tu_group = (struct type_unit_group *) *slot;
6128 gdb_assert (tu_group != NULL);
6129 }
6130 else
6131 {
6132 sect_offset line_offset_struct = (sect_offset) line_offset;
6133 tu_group = create_type_unit_group (cu, line_offset_struct);
6134 *slot = tu_group;
6135 ++tu_stats->nr_symtabs;
6136 }
6137
6138 return tu_group;
6139 }
6140 \f
6141 /* Partial symbol tables. */
6142
6143 /* Create a psymtab named NAME and assign it to PER_CU.
6144
6145 The caller must fill in the following details:
6146 dirname, textlow, texthigh. */
6147
6148 static struct partial_symtab *
6149 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6150 {
6151 struct objfile *objfile = per_cu->objfile;
6152 struct partial_symtab *pst;
6153
6154 pst = start_psymtab_common (objfile, name, 0,
6155 objfile->global_psymbols.next,
6156 objfile->static_psymbols.next);
6157
6158 pst->psymtabs_addrmap_supported = 1;
6159
6160 /* This is the glue that links PST into GDB's symbol API. */
6161 pst->read_symtab_private = per_cu;
6162 pst->read_symtab = dwarf2_read_symtab;
6163 per_cu->v.psymtab = pst;
6164
6165 return pst;
6166 }
6167
6168 /* The DATA object passed to process_psymtab_comp_unit_reader has this
6169 type. */
6170
6171 struct process_psymtab_comp_unit_data
6172 {
6173 /* True if we are reading a DW_TAG_partial_unit. */
6174
6175 int want_partial_unit;
6176
6177 /* The "pretend" language that is used if the CU doesn't declare a
6178 language. */
6179
6180 enum language pretend_language;
6181 };
6182
6183 /* die_reader_func for process_psymtab_comp_unit. */
6184
6185 static void
6186 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6187 const gdb_byte *info_ptr,
6188 struct die_info *comp_unit_die,
6189 int has_children,
6190 void *data)
6191 {
6192 struct dwarf2_cu *cu = reader->cu;
6193 struct objfile *objfile = cu->objfile;
6194 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6195 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6196 CORE_ADDR baseaddr;
6197 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6198 struct partial_symtab *pst;
6199 enum pc_bounds_kind cu_bounds_kind;
6200 const char *filename;
6201 struct process_psymtab_comp_unit_data *info
6202 = (struct process_psymtab_comp_unit_data *) data;
6203
6204 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6205 return;
6206
6207 gdb_assert (! per_cu->is_debug_types);
6208
6209 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6210
6211 cu->list_in_scope = &file_symbols;
6212
6213 /* Allocate a new partial symbol table structure. */
6214 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6215 if (filename == NULL)
6216 filename = "";
6217
6218 pst = create_partial_symtab (per_cu, filename);
6219
6220 /* This must be done before calling dwarf2_build_include_psymtabs. */
6221 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6222
6223 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6224
6225 dwarf2_find_base_address (comp_unit_die, cu);
6226
6227 /* Possibly set the default values of LOWPC and HIGHPC from
6228 `DW_AT_ranges'. */
6229 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6230 &best_highpc, cu, pst);
6231 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6232 /* Store the contiguous range if it is not empty; it can be empty for
6233 CUs with no code. */
6234 addrmap_set_empty (objfile->psymtabs_addrmap,
6235 gdbarch_adjust_dwarf2_addr (gdbarch,
6236 best_lowpc + baseaddr),
6237 gdbarch_adjust_dwarf2_addr (gdbarch,
6238 best_highpc + baseaddr) - 1,
6239 pst);
6240
6241 /* Check if comp unit has_children.
6242 If so, read the rest of the partial symbols from this comp unit.
6243 If not, there's no more debug_info for this comp unit. */
6244 if (has_children)
6245 {
6246 struct partial_die_info *first_die;
6247 CORE_ADDR lowpc, highpc;
6248
6249 lowpc = ((CORE_ADDR) -1);
6250 highpc = ((CORE_ADDR) 0);
6251
6252 first_die = load_partial_dies (reader, info_ptr, 1);
6253
6254 scan_partial_symbols (first_die, &lowpc, &highpc,
6255 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6256
6257 /* If we didn't find a lowpc, set it to highpc to avoid
6258 complaints from `maint check'. */
6259 if (lowpc == ((CORE_ADDR) -1))
6260 lowpc = highpc;
6261
6262 /* If the compilation unit didn't have an explicit address range,
6263 then use the information extracted from its child dies. */
6264 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6265 {
6266 best_lowpc = lowpc;
6267 best_highpc = highpc;
6268 }
6269 }
6270 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6271 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6272
6273 end_psymtab_common (objfile, pst);
6274
6275 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6276 {
6277 int i;
6278 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6279 struct dwarf2_per_cu_data *iter;
6280
6281 /* Fill in 'dependencies' here; we fill in 'users' in a
6282 post-pass. */
6283 pst->number_of_dependencies = len;
6284 pst->dependencies =
6285 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6286 for (i = 0;
6287 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6288 i, iter);
6289 ++i)
6290 pst->dependencies[i] = iter->v.psymtab;
6291
6292 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6293 }
6294
6295 /* Get the list of files included in the current compilation unit,
6296 and build a psymtab for each of them. */
6297 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6298
6299 if (dwarf_read_debug)
6300 {
6301 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6302
6303 fprintf_unfiltered (gdb_stdlog,
6304 "Psymtab for %s unit @0x%x: %s - %s"
6305 ", %d global, %d static syms\n",
6306 per_cu->is_debug_types ? "type" : "comp",
6307 to_underlying (per_cu->sect_off),
6308 paddress (gdbarch, pst->textlow),
6309 paddress (gdbarch, pst->texthigh),
6310 pst->n_global_syms, pst->n_static_syms);
6311 }
6312 }
6313
6314 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6315 Process compilation unit THIS_CU for a psymtab. */
6316
6317 static void
6318 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6319 int want_partial_unit,
6320 enum language pretend_language)
6321 {
6322 /* If this compilation unit was already read in, free the
6323 cached copy in order to read it in again. This is
6324 necessary because we skipped some symbols when we first
6325 read in the compilation unit (see load_partial_dies).
6326 This problem could be avoided, but the benefit is unclear. */
6327 if (this_cu->cu != NULL)
6328 free_one_cached_comp_unit (this_cu);
6329
6330 if (this_cu->is_debug_types)
6331 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
6332 NULL);
6333 else
6334 {
6335 process_psymtab_comp_unit_data info;
6336 info.want_partial_unit = want_partial_unit;
6337 info.pretend_language = pretend_language;
6338 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6339 process_psymtab_comp_unit_reader, &info);
6340 }
6341
6342 /* Age out any secondary CUs. */
6343 age_cached_comp_units ();
6344 }
6345
6346 /* Reader function for build_type_psymtabs. */
6347
6348 static void
6349 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6350 const gdb_byte *info_ptr,
6351 struct die_info *type_unit_die,
6352 int has_children,
6353 void *data)
6354 {
6355 struct objfile *objfile = dwarf2_per_objfile->objfile;
6356 struct dwarf2_cu *cu = reader->cu;
6357 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6358 struct signatured_type *sig_type;
6359 struct type_unit_group *tu_group;
6360 struct attribute *attr;
6361 struct partial_die_info *first_die;
6362 CORE_ADDR lowpc, highpc;
6363 struct partial_symtab *pst;
6364
6365 gdb_assert (data == NULL);
6366 gdb_assert (per_cu->is_debug_types);
6367 sig_type = (struct signatured_type *) per_cu;
6368
6369 if (! has_children)
6370 return;
6371
6372 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6373 tu_group = get_type_unit_group (cu, attr);
6374
6375 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6376
6377 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6378 cu->list_in_scope = &file_symbols;
6379 pst = create_partial_symtab (per_cu, "");
6380 pst->anonymous = 1;
6381
6382 first_die = load_partial_dies (reader, info_ptr, 1);
6383
6384 lowpc = (CORE_ADDR) -1;
6385 highpc = (CORE_ADDR) 0;
6386 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6387
6388 end_psymtab_common (objfile, pst);
6389 }
6390
6391 /* Struct used to sort TUs by their abbreviation table offset. */
6392
6393 struct tu_abbrev_offset
6394 {
6395 struct signatured_type *sig_type;
6396 sect_offset abbrev_offset;
6397 };
6398
6399 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6400
6401 static int
6402 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6403 {
6404 const struct tu_abbrev_offset * const *a
6405 = (const struct tu_abbrev_offset * const*) ap;
6406 const struct tu_abbrev_offset * const *b
6407 = (const struct tu_abbrev_offset * const*) bp;
6408 sect_offset aoff = (*a)->abbrev_offset;
6409 sect_offset boff = (*b)->abbrev_offset;
6410
6411 return (aoff > boff) - (aoff < boff);
6412 }
6413
6414 /* Efficiently read all the type units.
6415 This does the bulk of the work for build_type_psymtabs.
6416
6417 The efficiency is because we sort TUs by the abbrev table they use and
6418 only read each abbrev table once. In one program there are 200K TUs
6419 sharing 8K abbrev tables.
6420
6421 The main purpose of this function is to support building the
6422 dwarf2_per_objfile->type_unit_groups table.
6423 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6424 can collapse the search space by grouping them by stmt_list.
6425 The savings can be significant, in the same program from above the 200K TUs
6426 share 8K stmt_list tables.
6427
6428 FUNC is expected to call get_type_unit_group, which will create the
6429 struct type_unit_group if necessary and add it to
6430 dwarf2_per_objfile->type_unit_groups. */
6431
6432 static void
6433 build_type_psymtabs_1 (void)
6434 {
6435 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6436 struct cleanup *cleanups;
6437 struct abbrev_table *abbrev_table;
6438 sect_offset abbrev_offset;
6439 struct tu_abbrev_offset *sorted_by_abbrev;
6440 int i;
6441
6442 /* It's up to the caller to not call us multiple times. */
6443 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6444
6445 if (dwarf2_per_objfile->n_type_units == 0)
6446 return;
6447
6448 /* TUs typically share abbrev tables, and there can be way more TUs than
6449 abbrev tables. Sort by abbrev table to reduce the number of times we
6450 read each abbrev table in.
6451 Alternatives are to punt or to maintain a cache of abbrev tables.
6452 This is simpler and efficient enough for now.
6453
6454 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6455 symtab to use). Typically TUs with the same abbrev offset have the same
6456 stmt_list value too so in practice this should work well.
6457
6458 The basic algorithm here is:
6459
6460 sort TUs by abbrev table
6461 for each TU with same abbrev table:
6462 read abbrev table if first user
6463 read TU top level DIE
6464 [IWBN if DWO skeletons had DW_AT_stmt_list]
6465 call FUNC */
6466
6467 if (dwarf_read_debug)
6468 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6469
6470 /* Sort in a separate table to maintain the order of all_type_units
6471 for .gdb_index: TU indices directly index all_type_units. */
6472 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6473 dwarf2_per_objfile->n_type_units);
6474 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6475 {
6476 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6477
6478 sorted_by_abbrev[i].sig_type = sig_type;
6479 sorted_by_abbrev[i].abbrev_offset =
6480 read_abbrev_offset (sig_type->per_cu.section,
6481 sig_type->per_cu.sect_off);
6482 }
6483 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6484 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6485 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6486
6487 abbrev_offset = (sect_offset) ~(unsigned) 0;
6488 abbrev_table = NULL;
6489 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6490
6491 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6492 {
6493 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6494
6495 /* Switch to the next abbrev table if necessary. */
6496 if (abbrev_table == NULL
6497 || tu->abbrev_offset != abbrev_offset)
6498 {
6499 if (abbrev_table != NULL)
6500 {
6501 abbrev_table_free (abbrev_table);
6502 /* Reset to NULL in case abbrev_table_read_table throws
6503 an error: abbrev_table_free_cleanup will get called. */
6504 abbrev_table = NULL;
6505 }
6506 abbrev_offset = tu->abbrev_offset;
6507 abbrev_table =
6508 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6509 abbrev_offset);
6510 ++tu_stats->nr_uniq_abbrev_tables;
6511 }
6512
6513 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6514 build_type_psymtabs_reader, NULL);
6515 }
6516
6517 do_cleanups (cleanups);
6518 }
6519
6520 /* Print collected type unit statistics. */
6521
6522 static void
6523 print_tu_stats (void)
6524 {
6525 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6526
6527 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6528 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6529 dwarf2_per_objfile->n_type_units);
6530 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6531 tu_stats->nr_uniq_abbrev_tables);
6532 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6533 tu_stats->nr_symtabs);
6534 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6535 tu_stats->nr_symtab_sharers);
6536 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6537 tu_stats->nr_stmt_less_type_units);
6538 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6539 tu_stats->nr_all_type_units_reallocs);
6540 }
6541
6542 /* Traversal function for build_type_psymtabs. */
6543
6544 static int
6545 build_type_psymtab_dependencies (void **slot, void *info)
6546 {
6547 struct objfile *objfile = dwarf2_per_objfile->objfile;
6548 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6549 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6550 struct partial_symtab *pst = per_cu->v.psymtab;
6551 int len = VEC_length (sig_type_ptr, tu_group->tus);
6552 struct signatured_type *iter;
6553 int i;
6554
6555 gdb_assert (len > 0);
6556 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6557
6558 pst->number_of_dependencies = len;
6559 pst->dependencies =
6560 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6561 for (i = 0;
6562 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6563 ++i)
6564 {
6565 gdb_assert (iter->per_cu.is_debug_types);
6566 pst->dependencies[i] = iter->per_cu.v.psymtab;
6567 iter->type_unit_group = tu_group;
6568 }
6569
6570 VEC_free (sig_type_ptr, tu_group->tus);
6571
6572 return 1;
6573 }
6574
6575 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6576 Build partial symbol tables for the .debug_types comp-units. */
6577
6578 static void
6579 build_type_psymtabs (struct objfile *objfile)
6580 {
6581 if (! create_all_type_units (objfile))
6582 return;
6583
6584 build_type_psymtabs_1 ();
6585 }
6586
6587 /* Traversal function for process_skeletonless_type_unit.
6588 Read a TU in a DWO file and build partial symbols for it. */
6589
6590 static int
6591 process_skeletonless_type_unit (void **slot, void *info)
6592 {
6593 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6594 struct objfile *objfile = (struct objfile *) info;
6595 struct signatured_type find_entry, *entry;
6596
6597 /* If this TU doesn't exist in the global table, add it and read it in. */
6598
6599 if (dwarf2_per_objfile->signatured_types == NULL)
6600 {
6601 dwarf2_per_objfile->signatured_types
6602 = allocate_signatured_type_table (objfile);
6603 }
6604
6605 find_entry.signature = dwo_unit->signature;
6606 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6607 INSERT);
6608 /* If we've already seen this type there's nothing to do. What's happening
6609 is we're doing our own version of comdat-folding here. */
6610 if (*slot != NULL)
6611 return 1;
6612
6613 /* This does the job that create_all_type_units would have done for
6614 this TU. */
6615 entry = add_type_unit (dwo_unit->signature, slot);
6616 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6617 *slot = entry;
6618
6619 /* This does the job that build_type_psymtabs_1 would have done. */
6620 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6621 build_type_psymtabs_reader, NULL);
6622
6623 return 1;
6624 }
6625
6626 /* Traversal function for process_skeletonless_type_units. */
6627
6628 static int
6629 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6630 {
6631 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6632
6633 if (dwo_file->tus != NULL)
6634 {
6635 htab_traverse_noresize (dwo_file->tus,
6636 process_skeletonless_type_unit, info);
6637 }
6638
6639 return 1;
6640 }
6641
6642 /* Scan all TUs of DWO files, verifying we've processed them.
6643 This is needed in case a TU was emitted without its skeleton.
6644 Note: This can't be done until we know what all the DWO files are. */
6645
6646 static void
6647 process_skeletonless_type_units (struct objfile *objfile)
6648 {
6649 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6650 if (get_dwp_file () == NULL
6651 && dwarf2_per_objfile->dwo_files != NULL)
6652 {
6653 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6654 process_dwo_file_for_skeletonless_type_units,
6655 objfile);
6656 }
6657 }
6658
6659 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6660
6661 static void
6662 psymtabs_addrmap_cleanup (void *o)
6663 {
6664 struct objfile *objfile = (struct objfile *) o;
6665
6666 objfile->psymtabs_addrmap = NULL;
6667 }
6668
6669 /* Compute the 'user' field for each psymtab in OBJFILE. */
6670
6671 static void
6672 set_partial_user (struct objfile *objfile)
6673 {
6674 int i;
6675
6676 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6677 {
6678 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6679 struct partial_symtab *pst = per_cu->v.psymtab;
6680 int j;
6681
6682 if (pst == NULL)
6683 continue;
6684
6685 for (j = 0; j < pst->number_of_dependencies; ++j)
6686 {
6687 /* Set the 'user' field only if it is not already set. */
6688 if (pst->dependencies[j]->user == NULL)
6689 pst->dependencies[j]->user = pst;
6690 }
6691 }
6692 }
6693
6694 /* Build the partial symbol table by doing a quick pass through the
6695 .debug_info and .debug_abbrev sections. */
6696
6697 static void
6698 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6699 {
6700 struct cleanup *back_to, *addrmap_cleanup;
6701 int i;
6702
6703 if (dwarf_read_debug)
6704 {
6705 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6706 objfile_name (objfile));
6707 }
6708
6709 dwarf2_per_objfile->reading_partial_symbols = 1;
6710
6711 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6712
6713 /* Any cached compilation units will be linked by the per-objfile
6714 read_in_chain. Make sure to free them when we're done. */
6715 back_to = make_cleanup (free_cached_comp_units, NULL);
6716
6717 build_type_psymtabs (objfile);
6718
6719 create_all_comp_units (objfile);
6720
6721 /* Create a temporary address map on a temporary obstack. We later
6722 copy this to the final obstack. */
6723 auto_obstack temp_obstack;
6724 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6725 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6726
6727 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6728 {
6729 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6730
6731 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6732 }
6733
6734 /* This has to wait until we read the CUs, we need the list of DWOs. */
6735 process_skeletonless_type_units (objfile);
6736
6737 /* Now that all TUs have been processed we can fill in the dependencies. */
6738 if (dwarf2_per_objfile->type_unit_groups != NULL)
6739 {
6740 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6741 build_type_psymtab_dependencies, NULL);
6742 }
6743
6744 if (dwarf_read_debug)
6745 print_tu_stats ();
6746
6747 set_partial_user (objfile);
6748
6749 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6750 &objfile->objfile_obstack);
6751 discard_cleanups (addrmap_cleanup);
6752
6753 do_cleanups (back_to);
6754
6755 if (dwarf_read_debug)
6756 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6757 objfile_name (objfile));
6758 }
6759
6760 /* die_reader_func for load_partial_comp_unit. */
6761
6762 static void
6763 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6764 const gdb_byte *info_ptr,
6765 struct die_info *comp_unit_die,
6766 int has_children,
6767 void *data)
6768 {
6769 struct dwarf2_cu *cu = reader->cu;
6770
6771 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6772
6773 /* Check if comp unit has_children.
6774 If so, read the rest of the partial symbols from this comp unit.
6775 If not, there's no more debug_info for this comp unit. */
6776 if (has_children)
6777 load_partial_dies (reader, info_ptr, 0);
6778 }
6779
6780 /* Load the partial DIEs for a secondary CU into memory.
6781 This is also used when rereading a primary CU with load_all_dies. */
6782
6783 static void
6784 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6785 {
6786 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6787 load_partial_comp_unit_reader, NULL);
6788 }
6789
6790 static void
6791 read_comp_units_from_section (struct objfile *objfile,
6792 struct dwarf2_section_info *section,
6793 struct dwarf2_section_info *abbrev_section,
6794 unsigned int is_dwz,
6795 int *n_allocated,
6796 int *n_comp_units,
6797 struct dwarf2_per_cu_data ***all_comp_units)
6798 {
6799 const gdb_byte *info_ptr;
6800 bfd *abfd = get_section_bfd_owner (section);
6801
6802 if (dwarf_read_debug)
6803 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6804 get_section_name (section),
6805 get_section_file_name (section));
6806
6807 dwarf2_read_section (objfile, section);
6808
6809 info_ptr = section->buffer;
6810
6811 while (info_ptr < section->buffer + section->size)
6812 {
6813 struct dwarf2_per_cu_data *this_cu;
6814
6815 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
6816
6817 comp_unit_head cu_header;
6818 read_and_check_comp_unit_head (&cu_header, section, abbrev_section,
6819 info_ptr, rcuh_kind::COMPILE);
6820
6821 /* Save the compilation unit for later lookup. */
6822 if (cu_header.unit_type != DW_UT_type)
6823 {
6824 this_cu = XOBNEW (&objfile->objfile_obstack,
6825 struct dwarf2_per_cu_data);
6826 memset (this_cu, 0, sizeof (*this_cu));
6827 }
6828 else
6829 {
6830 auto sig_type = XOBNEW (&objfile->objfile_obstack,
6831 struct signatured_type);
6832 memset (sig_type, 0, sizeof (*sig_type));
6833 sig_type->signature = cu_header.signature;
6834 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
6835 this_cu = &sig_type->per_cu;
6836 }
6837 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
6838 this_cu->sect_off = sect_off;
6839 this_cu->length = cu_header.length + cu_header.initial_length_size;
6840 this_cu->is_dwz = is_dwz;
6841 this_cu->objfile = objfile;
6842 this_cu->section = section;
6843
6844 if (*n_comp_units == *n_allocated)
6845 {
6846 *n_allocated *= 2;
6847 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6848 *all_comp_units, *n_allocated);
6849 }
6850 (*all_comp_units)[*n_comp_units] = this_cu;
6851 ++*n_comp_units;
6852
6853 info_ptr = info_ptr + this_cu->length;
6854 }
6855 }
6856
6857 /* Create a list of all compilation units in OBJFILE.
6858 This is only done for -readnow and building partial symtabs. */
6859
6860 static void
6861 create_all_comp_units (struct objfile *objfile)
6862 {
6863 int n_allocated;
6864 int n_comp_units;
6865 struct dwarf2_per_cu_data **all_comp_units;
6866 struct dwz_file *dwz;
6867
6868 n_comp_units = 0;
6869 n_allocated = 10;
6870 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6871
6872 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info,
6873 &dwarf2_per_objfile->abbrev, 0,
6874 &n_allocated, &n_comp_units, &all_comp_units);
6875
6876 dwz = dwarf2_get_dwz_file ();
6877 if (dwz != NULL)
6878 read_comp_units_from_section (objfile, &dwz->info, &dwz->abbrev, 1,
6879 &n_allocated, &n_comp_units,
6880 &all_comp_units);
6881
6882 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6883 struct dwarf2_per_cu_data *,
6884 n_comp_units);
6885 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6886 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6887 xfree (all_comp_units);
6888 dwarf2_per_objfile->n_comp_units = n_comp_units;
6889 }
6890
6891 /* Process all loaded DIEs for compilation unit CU, starting at
6892 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6893 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6894 DW_AT_ranges). See the comments of add_partial_subprogram on how
6895 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6896
6897 static void
6898 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6899 CORE_ADDR *highpc, int set_addrmap,
6900 struct dwarf2_cu *cu)
6901 {
6902 struct partial_die_info *pdi;
6903
6904 /* Now, march along the PDI's, descending into ones which have
6905 interesting children but skipping the children of the other ones,
6906 until we reach the end of the compilation unit. */
6907
6908 pdi = first_die;
6909
6910 while (pdi != NULL)
6911 {
6912 fixup_partial_die (pdi, cu);
6913
6914 /* Anonymous namespaces or modules have no name but have interesting
6915 children, so we need to look at them. Ditto for anonymous
6916 enums. */
6917
6918 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6919 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6920 || pdi->tag == DW_TAG_imported_unit)
6921 {
6922 switch (pdi->tag)
6923 {
6924 case DW_TAG_subprogram:
6925 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6926 break;
6927 case DW_TAG_constant:
6928 case DW_TAG_variable:
6929 case DW_TAG_typedef:
6930 case DW_TAG_union_type:
6931 if (!pdi->is_declaration)
6932 {
6933 add_partial_symbol (pdi, cu);
6934 }
6935 break;
6936 case DW_TAG_class_type:
6937 case DW_TAG_interface_type:
6938 case DW_TAG_structure_type:
6939 if (!pdi->is_declaration)
6940 {
6941 add_partial_symbol (pdi, cu);
6942 }
6943 if (cu->language == language_rust && pdi->has_children)
6944 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6945 set_addrmap, cu);
6946 break;
6947 case DW_TAG_enumeration_type:
6948 if (!pdi->is_declaration)
6949 add_partial_enumeration (pdi, cu);
6950 break;
6951 case DW_TAG_base_type:
6952 case DW_TAG_subrange_type:
6953 /* File scope base type definitions are added to the partial
6954 symbol table. */
6955 add_partial_symbol (pdi, cu);
6956 break;
6957 case DW_TAG_namespace:
6958 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6959 break;
6960 case DW_TAG_module:
6961 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6962 break;
6963 case DW_TAG_imported_unit:
6964 {
6965 struct dwarf2_per_cu_data *per_cu;
6966
6967 /* For now we don't handle imported units in type units. */
6968 if (cu->per_cu->is_debug_types)
6969 {
6970 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6971 " supported in type units [in module %s]"),
6972 objfile_name (cu->objfile));
6973 }
6974
6975 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
6976 pdi->is_dwz,
6977 cu->objfile);
6978
6979 /* Go read the partial unit, if needed. */
6980 if (per_cu->v.psymtab == NULL)
6981 process_psymtab_comp_unit (per_cu, 1, cu->language);
6982
6983 VEC_safe_push (dwarf2_per_cu_ptr,
6984 cu->per_cu->imported_symtabs, per_cu);
6985 }
6986 break;
6987 case DW_TAG_imported_declaration:
6988 add_partial_symbol (pdi, cu);
6989 break;
6990 default:
6991 break;
6992 }
6993 }
6994
6995 /* If the die has a sibling, skip to the sibling. */
6996
6997 pdi = pdi->die_sibling;
6998 }
6999 }
7000
7001 /* Functions used to compute the fully scoped name of a partial DIE.
7002
7003 Normally, this is simple. For C++, the parent DIE's fully scoped
7004 name is concatenated with "::" and the partial DIE's name.
7005 Enumerators are an exception; they use the scope of their parent
7006 enumeration type, i.e. the name of the enumeration type is not
7007 prepended to the enumerator.
7008
7009 There are two complexities. One is DW_AT_specification; in this
7010 case "parent" means the parent of the target of the specification,
7011 instead of the direct parent of the DIE. The other is compilers
7012 which do not emit DW_TAG_namespace; in this case we try to guess
7013 the fully qualified name of structure types from their members'
7014 linkage names. This must be done using the DIE's children rather
7015 than the children of any DW_AT_specification target. We only need
7016 to do this for structures at the top level, i.e. if the target of
7017 any DW_AT_specification (if any; otherwise the DIE itself) does not
7018 have a parent. */
7019
7020 /* Compute the scope prefix associated with PDI's parent, in
7021 compilation unit CU. The result will be allocated on CU's
7022 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7023 field. NULL is returned if no prefix is necessary. */
7024 static const char *
7025 partial_die_parent_scope (struct partial_die_info *pdi,
7026 struct dwarf2_cu *cu)
7027 {
7028 const char *grandparent_scope;
7029 struct partial_die_info *parent, *real_pdi;
7030
7031 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7032 then this means the parent of the specification DIE. */
7033
7034 real_pdi = pdi;
7035 while (real_pdi->has_specification)
7036 real_pdi = find_partial_die (real_pdi->spec_offset,
7037 real_pdi->spec_is_dwz, cu);
7038
7039 parent = real_pdi->die_parent;
7040 if (parent == NULL)
7041 return NULL;
7042
7043 if (parent->scope_set)
7044 return parent->scope;
7045
7046 fixup_partial_die (parent, cu);
7047
7048 grandparent_scope = partial_die_parent_scope (parent, cu);
7049
7050 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7051 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7052 Work around this problem here. */
7053 if (cu->language == language_cplus
7054 && parent->tag == DW_TAG_namespace
7055 && strcmp (parent->name, "::") == 0
7056 && grandparent_scope == NULL)
7057 {
7058 parent->scope = NULL;
7059 parent->scope_set = 1;
7060 return NULL;
7061 }
7062
7063 if (pdi->tag == DW_TAG_enumerator)
7064 /* Enumerators should not get the name of the enumeration as a prefix. */
7065 parent->scope = grandparent_scope;
7066 else if (parent->tag == DW_TAG_namespace
7067 || parent->tag == DW_TAG_module
7068 || parent->tag == DW_TAG_structure_type
7069 || parent->tag == DW_TAG_class_type
7070 || parent->tag == DW_TAG_interface_type
7071 || parent->tag == DW_TAG_union_type
7072 || parent->tag == DW_TAG_enumeration_type)
7073 {
7074 if (grandparent_scope == NULL)
7075 parent->scope = parent->name;
7076 else
7077 parent->scope = typename_concat (&cu->comp_unit_obstack,
7078 grandparent_scope,
7079 parent->name, 0, cu);
7080 }
7081 else
7082 {
7083 /* FIXME drow/2004-04-01: What should we be doing with
7084 function-local names? For partial symbols, we should probably be
7085 ignoring them. */
7086 complaint (&symfile_complaints,
7087 _("unhandled containing DIE tag %d for DIE at %d"),
7088 parent->tag, to_underlying (pdi->sect_off));
7089 parent->scope = grandparent_scope;
7090 }
7091
7092 parent->scope_set = 1;
7093 return parent->scope;
7094 }
7095
7096 /* Return the fully scoped name associated with PDI, from compilation unit
7097 CU. The result will be allocated with malloc. */
7098
7099 static char *
7100 partial_die_full_name (struct partial_die_info *pdi,
7101 struct dwarf2_cu *cu)
7102 {
7103 const char *parent_scope;
7104
7105 /* If this is a template instantiation, we can not work out the
7106 template arguments from partial DIEs. So, unfortunately, we have
7107 to go through the full DIEs. At least any work we do building
7108 types here will be reused if full symbols are loaded later. */
7109 if (pdi->has_template_arguments)
7110 {
7111 fixup_partial_die (pdi, cu);
7112
7113 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7114 {
7115 struct die_info *die;
7116 struct attribute attr;
7117 struct dwarf2_cu *ref_cu = cu;
7118
7119 /* DW_FORM_ref_addr is using section offset. */
7120 attr.name = (enum dwarf_attribute) 0;
7121 attr.form = DW_FORM_ref_addr;
7122 attr.u.unsnd = to_underlying (pdi->sect_off);
7123 die = follow_die_ref (NULL, &attr, &ref_cu);
7124
7125 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7126 }
7127 }
7128
7129 parent_scope = partial_die_parent_scope (pdi, cu);
7130 if (parent_scope == NULL)
7131 return NULL;
7132 else
7133 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
7134 }
7135
7136 static void
7137 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
7138 {
7139 struct objfile *objfile = cu->objfile;
7140 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7141 CORE_ADDR addr = 0;
7142 const char *actual_name = NULL;
7143 CORE_ADDR baseaddr;
7144 char *built_actual_name;
7145
7146 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7147
7148 built_actual_name = partial_die_full_name (pdi, cu);
7149 if (built_actual_name != NULL)
7150 actual_name = built_actual_name;
7151
7152 if (actual_name == NULL)
7153 actual_name = pdi->name;
7154
7155 switch (pdi->tag)
7156 {
7157 case DW_TAG_subprogram:
7158 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
7159 if (pdi->is_external || cu->language == language_ada)
7160 {
7161 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7162 of the global scope. But in Ada, we want to be able to access
7163 nested procedures globally. So all Ada subprograms are stored
7164 in the global scope. */
7165 add_psymbol_to_list (actual_name, strlen (actual_name),
7166 built_actual_name != NULL,
7167 VAR_DOMAIN, LOC_BLOCK,
7168 &objfile->global_psymbols,
7169 addr, cu->language, objfile);
7170 }
7171 else
7172 {
7173 add_psymbol_to_list (actual_name, strlen (actual_name),
7174 built_actual_name != NULL,
7175 VAR_DOMAIN, LOC_BLOCK,
7176 &objfile->static_psymbols,
7177 addr, cu->language, objfile);
7178 }
7179
7180 if (pdi->main_subprogram && actual_name != NULL)
7181 set_objfile_main_name (objfile, actual_name, cu->language);
7182 break;
7183 case DW_TAG_constant:
7184 {
7185 struct psymbol_allocation_list *list;
7186
7187 if (pdi->is_external)
7188 list = &objfile->global_psymbols;
7189 else
7190 list = &objfile->static_psymbols;
7191 add_psymbol_to_list (actual_name, strlen (actual_name),
7192 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
7193 list, 0, cu->language, objfile);
7194 }
7195 break;
7196 case DW_TAG_variable:
7197 if (pdi->d.locdesc)
7198 addr = decode_locdesc (pdi->d.locdesc, cu);
7199
7200 if (pdi->d.locdesc
7201 && addr == 0
7202 && !dwarf2_per_objfile->has_section_at_zero)
7203 {
7204 /* A global or static variable may also have been stripped
7205 out by the linker if unused, in which case its address
7206 will be nullified; do not add such variables into partial
7207 symbol table then. */
7208 }
7209 else if (pdi->is_external)
7210 {
7211 /* Global Variable.
7212 Don't enter into the minimal symbol tables as there is
7213 a minimal symbol table entry from the ELF symbols already.
7214 Enter into partial symbol table if it has a location
7215 descriptor or a type.
7216 If the location descriptor is missing, new_symbol will create
7217 a LOC_UNRESOLVED symbol, the address of the variable will then
7218 be determined from the minimal symbol table whenever the variable
7219 is referenced.
7220 The address for the partial symbol table entry is not
7221 used by GDB, but it comes in handy for debugging partial symbol
7222 table building. */
7223
7224 if (pdi->d.locdesc || pdi->has_type)
7225 add_psymbol_to_list (actual_name, strlen (actual_name),
7226 built_actual_name != NULL,
7227 VAR_DOMAIN, LOC_STATIC,
7228 &objfile->global_psymbols,
7229 addr + baseaddr,
7230 cu->language, objfile);
7231 }
7232 else
7233 {
7234 int has_loc = pdi->d.locdesc != NULL;
7235
7236 /* Static Variable. Skip symbols whose value we cannot know (those
7237 without location descriptors or constant values). */
7238 if (!has_loc && !pdi->has_const_value)
7239 {
7240 xfree (built_actual_name);
7241 return;
7242 }
7243
7244 add_psymbol_to_list (actual_name, strlen (actual_name),
7245 built_actual_name != NULL,
7246 VAR_DOMAIN, LOC_STATIC,
7247 &objfile->static_psymbols,
7248 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7249 cu->language, objfile);
7250 }
7251 break;
7252 case DW_TAG_typedef:
7253 case DW_TAG_base_type:
7254 case DW_TAG_subrange_type:
7255 add_psymbol_to_list (actual_name, strlen (actual_name),
7256 built_actual_name != NULL,
7257 VAR_DOMAIN, LOC_TYPEDEF,
7258 &objfile->static_psymbols,
7259 0, cu->language, objfile);
7260 break;
7261 case DW_TAG_imported_declaration:
7262 case DW_TAG_namespace:
7263 add_psymbol_to_list (actual_name, strlen (actual_name),
7264 built_actual_name != NULL,
7265 VAR_DOMAIN, LOC_TYPEDEF,
7266 &objfile->global_psymbols,
7267 0, cu->language, objfile);
7268 break;
7269 case DW_TAG_module:
7270 add_psymbol_to_list (actual_name, strlen (actual_name),
7271 built_actual_name != NULL,
7272 MODULE_DOMAIN, LOC_TYPEDEF,
7273 &objfile->global_psymbols,
7274 0, cu->language, objfile);
7275 break;
7276 case DW_TAG_class_type:
7277 case DW_TAG_interface_type:
7278 case DW_TAG_structure_type:
7279 case DW_TAG_union_type:
7280 case DW_TAG_enumeration_type:
7281 /* Skip external references. The DWARF standard says in the section
7282 about "Structure, Union, and Class Type Entries": "An incomplete
7283 structure, union or class type is represented by a structure,
7284 union or class entry that does not have a byte size attribute
7285 and that has a DW_AT_declaration attribute." */
7286 if (!pdi->has_byte_size && pdi->is_declaration)
7287 {
7288 xfree (built_actual_name);
7289 return;
7290 }
7291
7292 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7293 static vs. global. */
7294 add_psymbol_to_list (actual_name, strlen (actual_name),
7295 built_actual_name != NULL,
7296 STRUCT_DOMAIN, LOC_TYPEDEF,
7297 cu->language == language_cplus
7298 ? &objfile->global_psymbols
7299 : &objfile->static_psymbols,
7300 0, cu->language, objfile);
7301
7302 break;
7303 case DW_TAG_enumerator:
7304 add_psymbol_to_list (actual_name, strlen (actual_name),
7305 built_actual_name != NULL,
7306 VAR_DOMAIN, LOC_CONST,
7307 cu->language == language_cplus
7308 ? &objfile->global_psymbols
7309 : &objfile->static_psymbols,
7310 0, cu->language, objfile);
7311 break;
7312 default:
7313 break;
7314 }
7315
7316 xfree (built_actual_name);
7317 }
7318
7319 /* Read a partial die corresponding to a namespace; also, add a symbol
7320 corresponding to that namespace to the symbol table. NAMESPACE is
7321 the name of the enclosing namespace. */
7322
7323 static void
7324 add_partial_namespace (struct partial_die_info *pdi,
7325 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7326 int set_addrmap, struct dwarf2_cu *cu)
7327 {
7328 /* Add a symbol for the namespace. */
7329
7330 add_partial_symbol (pdi, cu);
7331
7332 /* Now scan partial symbols in that namespace. */
7333
7334 if (pdi->has_children)
7335 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7336 }
7337
7338 /* Read a partial die corresponding to a Fortran module. */
7339
7340 static void
7341 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7342 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7343 {
7344 /* Add a symbol for the namespace. */
7345
7346 add_partial_symbol (pdi, cu);
7347
7348 /* Now scan partial symbols in that module. */
7349
7350 if (pdi->has_children)
7351 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7352 }
7353
7354 /* Read a partial die corresponding to a subprogram and create a partial
7355 symbol for that subprogram. When the CU language allows it, this
7356 routine also defines a partial symbol for each nested subprogram
7357 that this subprogram contains. If SET_ADDRMAP is true, record the
7358 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7359 and highest PC values found in PDI.
7360
7361 PDI may also be a lexical block, in which case we simply search
7362 recursively for subprograms defined inside that lexical block.
7363 Again, this is only performed when the CU language allows this
7364 type of definitions. */
7365
7366 static void
7367 add_partial_subprogram (struct partial_die_info *pdi,
7368 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7369 int set_addrmap, struct dwarf2_cu *cu)
7370 {
7371 if (pdi->tag == DW_TAG_subprogram)
7372 {
7373 if (pdi->has_pc_info)
7374 {
7375 if (pdi->lowpc < *lowpc)
7376 *lowpc = pdi->lowpc;
7377 if (pdi->highpc > *highpc)
7378 *highpc = pdi->highpc;
7379 if (set_addrmap)
7380 {
7381 struct objfile *objfile = cu->objfile;
7382 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7383 CORE_ADDR baseaddr;
7384 CORE_ADDR highpc;
7385 CORE_ADDR lowpc;
7386
7387 baseaddr = ANOFFSET (objfile->section_offsets,
7388 SECT_OFF_TEXT (objfile));
7389 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7390 pdi->lowpc + baseaddr);
7391 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7392 pdi->highpc + baseaddr);
7393 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7394 cu->per_cu->v.psymtab);
7395 }
7396 }
7397
7398 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7399 {
7400 if (!pdi->is_declaration)
7401 /* Ignore subprogram DIEs that do not have a name, they are
7402 illegal. Do not emit a complaint at this point, we will
7403 do so when we convert this psymtab into a symtab. */
7404 if (pdi->name)
7405 add_partial_symbol (pdi, cu);
7406 }
7407 }
7408
7409 if (! pdi->has_children)
7410 return;
7411
7412 if (cu->language == language_ada)
7413 {
7414 pdi = pdi->die_child;
7415 while (pdi != NULL)
7416 {
7417 fixup_partial_die (pdi, cu);
7418 if (pdi->tag == DW_TAG_subprogram
7419 || pdi->tag == DW_TAG_lexical_block)
7420 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7421 pdi = pdi->die_sibling;
7422 }
7423 }
7424 }
7425
7426 /* Read a partial die corresponding to an enumeration type. */
7427
7428 static void
7429 add_partial_enumeration (struct partial_die_info *enum_pdi,
7430 struct dwarf2_cu *cu)
7431 {
7432 struct partial_die_info *pdi;
7433
7434 if (enum_pdi->name != NULL)
7435 add_partial_symbol (enum_pdi, cu);
7436
7437 pdi = enum_pdi->die_child;
7438 while (pdi)
7439 {
7440 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7441 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7442 else
7443 add_partial_symbol (pdi, cu);
7444 pdi = pdi->die_sibling;
7445 }
7446 }
7447
7448 /* Return the initial uleb128 in the die at INFO_PTR. */
7449
7450 static unsigned int
7451 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7452 {
7453 unsigned int bytes_read;
7454
7455 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7456 }
7457
7458 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7459 Return the corresponding abbrev, or NULL if the number is zero (indicating
7460 an empty DIE). In either case *BYTES_READ will be set to the length of
7461 the initial number. */
7462
7463 static struct abbrev_info *
7464 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7465 struct dwarf2_cu *cu)
7466 {
7467 bfd *abfd = cu->objfile->obfd;
7468 unsigned int abbrev_number;
7469 struct abbrev_info *abbrev;
7470
7471 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7472
7473 if (abbrev_number == 0)
7474 return NULL;
7475
7476 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7477 if (!abbrev)
7478 {
7479 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7480 " at offset 0x%x [in module %s]"),
7481 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7482 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
7483 }
7484
7485 return abbrev;
7486 }
7487
7488 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7489 Returns a pointer to the end of a series of DIEs, terminated by an empty
7490 DIE. Any children of the skipped DIEs will also be skipped. */
7491
7492 static const gdb_byte *
7493 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7494 {
7495 struct dwarf2_cu *cu = reader->cu;
7496 struct abbrev_info *abbrev;
7497 unsigned int bytes_read;
7498
7499 while (1)
7500 {
7501 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7502 if (abbrev == NULL)
7503 return info_ptr + bytes_read;
7504 else
7505 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7506 }
7507 }
7508
7509 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7510 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7511 abbrev corresponding to that skipped uleb128 should be passed in
7512 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7513 children. */
7514
7515 static const gdb_byte *
7516 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7517 struct abbrev_info *abbrev)
7518 {
7519 unsigned int bytes_read;
7520 struct attribute attr;
7521 bfd *abfd = reader->abfd;
7522 struct dwarf2_cu *cu = reader->cu;
7523 const gdb_byte *buffer = reader->buffer;
7524 const gdb_byte *buffer_end = reader->buffer_end;
7525 unsigned int form, i;
7526
7527 for (i = 0; i < abbrev->num_attrs; i++)
7528 {
7529 /* The only abbrev we care about is DW_AT_sibling. */
7530 if (abbrev->attrs[i].name == DW_AT_sibling)
7531 {
7532 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7533 if (attr.form == DW_FORM_ref_addr)
7534 complaint (&symfile_complaints,
7535 _("ignoring absolute DW_AT_sibling"));
7536 else
7537 {
7538 sect_offset off = dwarf2_get_ref_die_offset (&attr);
7539 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
7540
7541 if (sibling_ptr < info_ptr)
7542 complaint (&symfile_complaints,
7543 _("DW_AT_sibling points backwards"));
7544 else if (sibling_ptr > reader->buffer_end)
7545 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7546 else
7547 return sibling_ptr;
7548 }
7549 }
7550
7551 /* If it isn't DW_AT_sibling, skip this attribute. */
7552 form = abbrev->attrs[i].form;
7553 skip_attribute:
7554 switch (form)
7555 {
7556 case DW_FORM_ref_addr:
7557 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7558 and later it is offset sized. */
7559 if (cu->header.version == 2)
7560 info_ptr += cu->header.addr_size;
7561 else
7562 info_ptr += cu->header.offset_size;
7563 break;
7564 case DW_FORM_GNU_ref_alt:
7565 info_ptr += cu->header.offset_size;
7566 break;
7567 case DW_FORM_addr:
7568 info_ptr += cu->header.addr_size;
7569 break;
7570 case DW_FORM_data1:
7571 case DW_FORM_ref1:
7572 case DW_FORM_flag:
7573 info_ptr += 1;
7574 break;
7575 case DW_FORM_flag_present:
7576 case DW_FORM_implicit_const:
7577 break;
7578 case DW_FORM_data2:
7579 case DW_FORM_ref2:
7580 info_ptr += 2;
7581 break;
7582 case DW_FORM_data4:
7583 case DW_FORM_ref4:
7584 info_ptr += 4;
7585 break;
7586 case DW_FORM_data8:
7587 case DW_FORM_ref8:
7588 case DW_FORM_ref_sig8:
7589 info_ptr += 8;
7590 break;
7591 case DW_FORM_data16:
7592 info_ptr += 16;
7593 break;
7594 case DW_FORM_string:
7595 read_direct_string (abfd, info_ptr, &bytes_read);
7596 info_ptr += bytes_read;
7597 break;
7598 case DW_FORM_sec_offset:
7599 case DW_FORM_strp:
7600 case DW_FORM_GNU_strp_alt:
7601 info_ptr += cu->header.offset_size;
7602 break;
7603 case DW_FORM_exprloc:
7604 case DW_FORM_block:
7605 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7606 info_ptr += bytes_read;
7607 break;
7608 case DW_FORM_block1:
7609 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7610 break;
7611 case DW_FORM_block2:
7612 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7613 break;
7614 case DW_FORM_block4:
7615 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7616 break;
7617 case DW_FORM_sdata:
7618 case DW_FORM_udata:
7619 case DW_FORM_ref_udata:
7620 case DW_FORM_GNU_addr_index:
7621 case DW_FORM_GNU_str_index:
7622 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7623 break;
7624 case DW_FORM_indirect:
7625 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7626 info_ptr += bytes_read;
7627 /* We need to continue parsing from here, so just go back to
7628 the top. */
7629 goto skip_attribute;
7630
7631 default:
7632 error (_("Dwarf Error: Cannot handle %s "
7633 "in DWARF reader [in module %s]"),
7634 dwarf_form_name (form),
7635 bfd_get_filename (abfd));
7636 }
7637 }
7638
7639 if (abbrev->has_children)
7640 return skip_children (reader, info_ptr);
7641 else
7642 return info_ptr;
7643 }
7644
7645 /* Locate ORIG_PDI's sibling.
7646 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7647
7648 static const gdb_byte *
7649 locate_pdi_sibling (const struct die_reader_specs *reader,
7650 struct partial_die_info *orig_pdi,
7651 const gdb_byte *info_ptr)
7652 {
7653 /* Do we know the sibling already? */
7654
7655 if (orig_pdi->sibling)
7656 return orig_pdi->sibling;
7657
7658 /* Are there any children to deal with? */
7659
7660 if (!orig_pdi->has_children)
7661 return info_ptr;
7662
7663 /* Skip the children the long way. */
7664
7665 return skip_children (reader, info_ptr);
7666 }
7667
7668 /* Expand this partial symbol table into a full symbol table. SELF is
7669 not NULL. */
7670
7671 static void
7672 dwarf2_read_symtab (struct partial_symtab *self,
7673 struct objfile *objfile)
7674 {
7675 if (self->readin)
7676 {
7677 warning (_("bug: psymtab for %s is already read in."),
7678 self->filename);
7679 }
7680 else
7681 {
7682 if (info_verbose)
7683 {
7684 printf_filtered (_("Reading in symbols for %s..."),
7685 self->filename);
7686 gdb_flush (gdb_stdout);
7687 }
7688
7689 /* Restore our global data. */
7690 dwarf2_per_objfile
7691 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7692 dwarf2_objfile_data_key);
7693
7694 /* If this psymtab is constructed from a debug-only objfile, the
7695 has_section_at_zero flag will not necessarily be correct. We
7696 can get the correct value for this flag by looking at the data
7697 associated with the (presumably stripped) associated objfile. */
7698 if (objfile->separate_debug_objfile_backlink)
7699 {
7700 struct dwarf2_per_objfile *dpo_backlink
7701 = ((struct dwarf2_per_objfile *)
7702 objfile_data (objfile->separate_debug_objfile_backlink,
7703 dwarf2_objfile_data_key));
7704
7705 dwarf2_per_objfile->has_section_at_zero
7706 = dpo_backlink->has_section_at_zero;
7707 }
7708
7709 dwarf2_per_objfile->reading_partial_symbols = 0;
7710
7711 psymtab_to_symtab_1 (self);
7712
7713 /* Finish up the debug error message. */
7714 if (info_verbose)
7715 printf_filtered (_("done.\n"));
7716 }
7717
7718 process_cu_includes ();
7719 }
7720 \f
7721 /* Reading in full CUs. */
7722
7723 /* Add PER_CU to the queue. */
7724
7725 static void
7726 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7727 enum language pretend_language)
7728 {
7729 struct dwarf2_queue_item *item;
7730
7731 per_cu->queued = 1;
7732 item = XNEW (struct dwarf2_queue_item);
7733 item->per_cu = per_cu;
7734 item->pretend_language = pretend_language;
7735 item->next = NULL;
7736
7737 if (dwarf2_queue == NULL)
7738 dwarf2_queue = item;
7739 else
7740 dwarf2_queue_tail->next = item;
7741
7742 dwarf2_queue_tail = item;
7743 }
7744
7745 /* If PER_CU is not yet queued, add it to the queue.
7746 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7747 dependency.
7748 The result is non-zero if PER_CU was queued, otherwise the result is zero
7749 meaning either PER_CU is already queued or it is already loaded.
7750
7751 N.B. There is an invariant here that if a CU is queued then it is loaded.
7752 The caller is required to load PER_CU if we return non-zero. */
7753
7754 static int
7755 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7756 struct dwarf2_per_cu_data *per_cu,
7757 enum language pretend_language)
7758 {
7759 /* We may arrive here during partial symbol reading, if we need full
7760 DIEs to process an unusual case (e.g. template arguments). Do
7761 not queue PER_CU, just tell our caller to load its DIEs. */
7762 if (dwarf2_per_objfile->reading_partial_symbols)
7763 {
7764 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7765 return 1;
7766 return 0;
7767 }
7768
7769 /* Mark the dependence relation so that we don't flush PER_CU
7770 too early. */
7771 if (dependent_cu != NULL)
7772 dwarf2_add_dependence (dependent_cu, per_cu);
7773
7774 /* If it's already on the queue, we have nothing to do. */
7775 if (per_cu->queued)
7776 return 0;
7777
7778 /* If the compilation unit is already loaded, just mark it as
7779 used. */
7780 if (per_cu->cu != NULL)
7781 {
7782 per_cu->cu->last_used = 0;
7783 return 0;
7784 }
7785
7786 /* Add it to the queue. */
7787 queue_comp_unit (per_cu, pretend_language);
7788
7789 return 1;
7790 }
7791
7792 /* Process the queue. */
7793
7794 static void
7795 process_queue (void)
7796 {
7797 struct dwarf2_queue_item *item, *next_item;
7798
7799 if (dwarf_read_debug)
7800 {
7801 fprintf_unfiltered (gdb_stdlog,
7802 "Expanding one or more symtabs of objfile %s ...\n",
7803 objfile_name (dwarf2_per_objfile->objfile));
7804 }
7805
7806 /* The queue starts out with one item, but following a DIE reference
7807 may load a new CU, adding it to the end of the queue. */
7808 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7809 {
7810 if ((dwarf2_per_objfile->using_index
7811 ? !item->per_cu->v.quick->compunit_symtab
7812 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7813 /* Skip dummy CUs. */
7814 && item->per_cu->cu != NULL)
7815 {
7816 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7817 unsigned int debug_print_threshold;
7818 char buf[100];
7819
7820 if (per_cu->is_debug_types)
7821 {
7822 struct signatured_type *sig_type =
7823 (struct signatured_type *) per_cu;
7824
7825 sprintf (buf, "TU %s at offset 0x%x",
7826 hex_string (sig_type->signature),
7827 to_underlying (per_cu->sect_off));
7828 /* There can be 100s of TUs.
7829 Only print them in verbose mode. */
7830 debug_print_threshold = 2;
7831 }
7832 else
7833 {
7834 sprintf (buf, "CU at offset 0x%x",
7835 to_underlying (per_cu->sect_off));
7836 debug_print_threshold = 1;
7837 }
7838
7839 if (dwarf_read_debug >= debug_print_threshold)
7840 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7841
7842 if (per_cu->is_debug_types)
7843 process_full_type_unit (per_cu, item->pretend_language);
7844 else
7845 process_full_comp_unit (per_cu, item->pretend_language);
7846
7847 if (dwarf_read_debug >= debug_print_threshold)
7848 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7849 }
7850
7851 item->per_cu->queued = 0;
7852 next_item = item->next;
7853 xfree (item);
7854 }
7855
7856 dwarf2_queue_tail = NULL;
7857
7858 if (dwarf_read_debug)
7859 {
7860 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7861 objfile_name (dwarf2_per_objfile->objfile));
7862 }
7863 }
7864
7865 /* Free all allocated queue entries. This function only releases anything if
7866 an error was thrown; if the queue was processed then it would have been
7867 freed as we went along. */
7868
7869 static void
7870 dwarf2_release_queue (void *dummy)
7871 {
7872 struct dwarf2_queue_item *item, *last;
7873
7874 item = dwarf2_queue;
7875 while (item)
7876 {
7877 /* Anything still marked queued is likely to be in an
7878 inconsistent state, so discard it. */
7879 if (item->per_cu->queued)
7880 {
7881 if (item->per_cu->cu != NULL)
7882 free_one_cached_comp_unit (item->per_cu);
7883 item->per_cu->queued = 0;
7884 }
7885
7886 last = item;
7887 item = item->next;
7888 xfree (last);
7889 }
7890
7891 dwarf2_queue = dwarf2_queue_tail = NULL;
7892 }
7893
7894 /* Read in full symbols for PST, and anything it depends on. */
7895
7896 static void
7897 psymtab_to_symtab_1 (struct partial_symtab *pst)
7898 {
7899 struct dwarf2_per_cu_data *per_cu;
7900 int i;
7901
7902 if (pst->readin)
7903 return;
7904
7905 for (i = 0; i < pst->number_of_dependencies; i++)
7906 if (!pst->dependencies[i]->readin
7907 && pst->dependencies[i]->user == NULL)
7908 {
7909 /* Inform about additional files that need to be read in. */
7910 if (info_verbose)
7911 {
7912 /* FIXME: i18n: Need to make this a single string. */
7913 fputs_filtered (" ", gdb_stdout);
7914 wrap_here ("");
7915 fputs_filtered ("and ", gdb_stdout);
7916 wrap_here ("");
7917 printf_filtered ("%s...", pst->dependencies[i]->filename);
7918 wrap_here (""); /* Flush output. */
7919 gdb_flush (gdb_stdout);
7920 }
7921 psymtab_to_symtab_1 (pst->dependencies[i]);
7922 }
7923
7924 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7925
7926 if (per_cu == NULL)
7927 {
7928 /* It's an include file, no symbols to read for it.
7929 Everything is in the parent symtab. */
7930 pst->readin = 1;
7931 return;
7932 }
7933
7934 dw2_do_instantiate_symtab (per_cu);
7935 }
7936
7937 /* Trivial hash function for die_info: the hash value of a DIE
7938 is its offset in .debug_info for this objfile. */
7939
7940 static hashval_t
7941 die_hash (const void *item)
7942 {
7943 const struct die_info *die = (const struct die_info *) item;
7944
7945 return to_underlying (die->sect_off);
7946 }
7947
7948 /* Trivial comparison function for die_info structures: two DIEs
7949 are equal if they have the same offset. */
7950
7951 static int
7952 die_eq (const void *item_lhs, const void *item_rhs)
7953 {
7954 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7955 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7956
7957 return die_lhs->sect_off == die_rhs->sect_off;
7958 }
7959
7960 /* die_reader_func for load_full_comp_unit.
7961 This is identical to read_signatured_type_reader,
7962 but is kept separate for now. */
7963
7964 static void
7965 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7966 const gdb_byte *info_ptr,
7967 struct die_info *comp_unit_die,
7968 int has_children,
7969 void *data)
7970 {
7971 struct dwarf2_cu *cu = reader->cu;
7972 enum language *language_ptr = (enum language *) data;
7973
7974 gdb_assert (cu->die_hash == NULL);
7975 cu->die_hash =
7976 htab_create_alloc_ex (cu->header.length / 12,
7977 die_hash,
7978 die_eq,
7979 NULL,
7980 &cu->comp_unit_obstack,
7981 hashtab_obstack_allocate,
7982 dummy_obstack_deallocate);
7983
7984 if (has_children)
7985 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7986 &info_ptr, comp_unit_die);
7987 cu->dies = comp_unit_die;
7988 /* comp_unit_die is not stored in die_hash, no need. */
7989
7990 /* We try not to read any attributes in this function, because not
7991 all CUs needed for references have been loaded yet, and symbol
7992 table processing isn't initialized. But we have to set the CU language,
7993 or we won't be able to build types correctly.
7994 Similarly, if we do not read the producer, we can not apply
7995 producer-specific interpretation. */
7996 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7997 }
7998
7999 /* Load the DIEs associated with PER_CU into memory. */
8000
8001 static void
8002 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8003 enum language pretend_language)
8004 {
8005 gdb_assert (! this_cu->is_debug_types);
8006
8007 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8008 load_full_comp_unit_reader, &pretend_language);
8009 }
8010
8011 /* Add a DIE to the delayed physname list. */
8012
8013 static void
8014 add_to_method_list (struct type *type, int fnfield_index, int index,
8015 const char *name, struct die_info *die,
8016 struct dwarf2_cu *cu)
8017 {
8018 struct delayed_method_info mi;
8019 mi.type = type;
8020 mi.fnfield_index = fnfield_index;
8021 mi.index = index;
8022 mi.name = name;
8023 mi.die = die;
8024 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8025 }
8026
8027 /* A cleanup for freeing the delayed method list. */
8028
8029 static void
8030 free_delayed_list (void *ptr)
8031 {
8032 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8033 if (cu->method_list != NULL)
8034 {
8035 VEC_free (delayed_method_info, cu->method_list);
8036 cu->method_list = NULL;
8037 }
8038 }
8039
8040 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8041 "const" / "volatile". If so, decrements LEN by the length of the
8042 modifier and return true. Otherwise return false. */
8043
8044 template<size_t N>
8045 static bool
8046 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8047 {
8048 size_t mod_len = sizeof (mod) - 1;
8049 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8050 {
8051 len -= mod_len;
8052 return true;
8053 }
8054 return false;
8055 }
8056
8057 /* Compute the physnames of any methods on the CU's method list.
8058
8059 The computation of method physnames is delayed in order to avoid the
8060 (bad) condition that one of the method's formal parameters is of an as yet
8061 incomplete type. */
8062
8063 static void
8064 compute_delayed_physnames (struct dwarf2_cu *cu)
8065 {
8066 int i;
8067 struct delayed_method_info *mi;
8068
8069 /* Only C++ delays computing physnames. */
8070 if (VEC_empty (delayed_method_info, cu->method_list))
8071 return;
8072 gdb_assert (cu->language == language_cplus);
8073
8074 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8075 {
8076 const char *physname;
8077 struct fn_fieldlist *fn_flp
8078 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
8079 physname = dwarf2_physname (mi->name, mi->die, cu);
8080 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8081 = physname ? physname : "";
8082
8083 /* Since there's no tag to indicate whether a method is a
8084 const/volatile overload, extract that information out of the
8085 demangled name. */
8086 if (physname != NULL)
8087 {
8088 size_t len = strlen (physname);
8089
8090 while (1)
8091 {
8092 if (physname[len] == ')') /* shortcut */
8093 break;
8094 else if (check_modifier (physname, len, " const"))
8095 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi->index) = 1;
8096 else if (check_modifier (physname, len, " volatile"))
8097 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi->index) = 1;
8098 else
8099 break;
8100 }
8101 }
8102 }
8103 }
8104
8105 /* Go objects should be embedded in a DW_TAG_module DIE,
8106 and it's not clear if/how imported objects will appear.
8107 To keep Go support simple until that's worked out,
8108 go back through what we've read and create something usable.
8109 We could do this while processing each DIE, and feels kinda cleaner,
8110 but that way is more invasive.
8111 This is to, for example, allow the user to type "p var" or "b main"
8112 without having to specify the package name, and allow lookups
8113 of module.object to work in contexts that use the expression
8114 parser. */
8115
8116 static void
8117 fixup_go_packaging (struct dwarf2_cu *cu)
8118 {
8119 char *package_name = NULL;
8120 struct pending *list;
8121 int i;
8122
8123 for (list = global_symbols; list != NULL; list = list->next)
8124 {
8125 for (i = 0; i < list->nsyms; ++i)
8126 {
8127 struct symbol *sym = list->symbol[i];
8128
8129 if (SYMBOL_LANGUAGE (sym) == language_go
8130 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8131 {
8132 char *this_package_name = go_symbol_package_name (sym);
8133
8134 if (this_package_name == NULL)
8135 continue;
8136 if (package_name == NULL)
8137 package_name = this_package_name;
8138 else
8139 {
8140 if (strcmp (package_name, this_package_name) != 0)
8141 complaint (&symfile_complaints,
8142 _("Symtab %s has objects from two different Go packages: %s and %s"),
8143 (symbol_symtab (sym) != NULL
8144 ? symtab_to_filename_for_display
8145 (symbol_symtab (sym))
8146 : objfile_name (cu->objfile)),
8147 this_package_name, package_name);
8148 xfree (this_package_name);
8149 }
8150 }
8151 }
8152 }
8153
8154 if (package_name != NULL)
8155 {
8156 struct objfile *objfile = cu->objfile;
8157 const char *saved_package_name
8158 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8159 package_name,
8160 strlen (package_name));
8161 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8162 saved_package_name);
8163 struct symbol *sym;
8164
8165 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8166
8167 sym = allocate_symbol (objfile);
8168 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
8169 SYMBOL_SET_NAMES (sym, saved_package_name,
8170 strlen (saved_package_name), 0, objfile);
8171 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8172 e.g., "main" finds the "main" module and not C's main(). */
8173 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8174 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
8175 SYMBOL_TYPE (sym) = type;
8176
8177 add_symbol_to_list (sym, &global_symbols);
8178
8179 xfree (package_name);
8180 }
8181 }
8182
8183 /* Return the symtab for PER_CU. This works properly regardless of
8184 whether we're using the index or psymtabs. */
8185
8186 static struct compunit_symtab *
8187 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
8188 {
8189 return (dwarf2_per_objfile->using_index
8190 ? per_cu->v.quick->compunit_symtab
8191 : per_cu->v.psymtab->compunit_symtab);
8192 }
8193
8194 /* A helper function for computing the list of all symbol tables
8195 included by PER_CU. */
8196
8197 static void
8198 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
8199 htab_t all_children, htab_t all_type_symtabs,
8200 struct dwarf2_per_cu_data *per_cu,
8201 struct compunit_symtab *immediate_parent)
8202 {
8203 void **slot;
8204 int ix;
8205 struct compunit_symtab *cust;
8206 struct dwarf2_per_cu_data *iter;
8207
8208 slot = htab_find_slot (all_children, per_cu, INSERT);
8209 if (*slot != NULL)
8210 {
8211 /* This inclusion and its children have been processed. */
8212 return;
8213 }
8214
8215 *slot = per_cu;
8216 /* Only add a CU if it has a symbol table. */
8217 cust = get_compunit_symtab (per_cu);
8218 if (cust != NULL)
8219 {
8220 /* If this is a type unit only add its symbol table if we haven't
8221 seen it yet (type unit per_cu's can share symtabs). */
8222 if (per_cu->is_debug_types)
8223 {
8224 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
8225 if (*slot == NULL)
8226 {
8227 *slot = cust;
8228 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8229 if (cust->user == NULL)
8230 cust->user = immediate_parent;
8231 }
8232 }
8233 else
8234 {
8235 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8236 if (cust->user == NULL)
8237 cust->user = immediate_parent;
8238 }
8239 }
8240
8241 for (ix = 0;
8242 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
8243 ++ix)
8244 {
8245 recursively_compute_inclusions (result, all_children,
8246 all_type_symtabs, iter, cust);
8247 }
8248 }
8249
8250 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
8251 PER_CU. */
8252
8253 static void
8254 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
8255 {
8256 gdb_assert (! per_cu->is_debug_types);
8257
8258 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
8259 {
8260 int ix, len;
8261 struct dwarf2_per_cu_data *per_cu_iter;
8262 struct compunit_symtab *compunit_symtab_iter;
8263 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
8264 htab_t all_children, all_type_symtabs;
8265 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
8266
8267 /* If we don't have a symtab, we can just skip this case. */
8268 if (cust == NULL)
8269 return;
8270
8271 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8272 NULL, xcalloc, xfree);
8273 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8274 NULL, xcalloc, xfree);
8275
8276 for (ix = 0;
8277 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
8278 ix, per_cu_iter);
8279 ++ix)
8280 {
8281 recursively_compute_inclusions (&result_symtabs, all_children,
8282 all_type_symtabs, per_cu_iter,
8283 cust);
8284 }
8285
8286 /* Now we have a transitive closure of all the included symtabs. */
8287 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8288 cust->includes
8289 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8290 struct compunit_symtab *, len + 1);
8291 for (ix = 0;
8292 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8293 compunit_symtab_iter);
8294 ++ix)
8295 cust->includes[ix] = compunit_symtab_iter;
8296 cust->includes[len] = NULL;
8297
8298 VEC_free (compunit_symtab_ptr, result_symtabs);
8299 htab_delete (all_children);
8300 htab_delete (all_type_symtabs);
8301 }
8302 }
8303
8304 /* Compute the 'includes' field for the symtabs of all the CUs we just
8305 read. */
8306
8307 static void
8308 process_cu_includes (void)
8309 {
8310 int ix;
8311 struct dwarf2_per_cu_data *iter;
8312
8313 for (ix = 0;
8314 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8315 ix, iter);
8316 ++ix)
8317 {
8318 if (! iter->is_debug_types)
8319 compute_compunit_symtab_includes (iter);
8320 }
8321
8322 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8323 }
8324
8325 /* Generate full symbol information for PER_CU, whose DIEs have
8326 already been loaded into memory. */
8327
8328 static void
8329 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8330 enum language pretend_language)
8331 {
8332 struct dwarf2_cu *cu = per_cu->cu;
8333 struct objfile *objfile = per_cu->objfile;
8334 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8335 CORE_ADDR lowpc, highpc;
8336 struct compunit_symtab *cust;
8337 struct cleanup *back_to, *delayed_list_cleanup;
8338 CORE_ADDR baseaddr;
8339 struct block *static_block;
8340 CORE_ADDR addr;
8341
8342 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8343
8344 buildsym_init ();
8345 back_to = make_cleanup (really_free_pendings, NULL);
8346 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8347
8348 cu->list_in_scope = &file_symbols;
8349
8350 cu->language = pretend_language;
8351 cu->language_defn = language_def (cu->language);
8352
8353 /* Do line number decoding in read_file_scope () */
8354 process_die (cu->dies, cu);
8355
8356 /* For now fudge the Go package. */
8357 if (cu->language == language_go)
8358 fixup_go_packaging (cu);
8359
8360 /* Now that we have processed all the DIEs in the CU, all the types
8361 should be complete, and it should now be safe to compute all of the
8362 physnames. */
8363 compute_delayed_physnames (cu);
8364 do_cleanups (delayed_list_cleanup);
8365
8366 /* Some compilers don't define a DW_AT_high_pc attribute for the
8367 compilation unit. If the DW_AT_high_pc is missing, synthesize
8368 it, by scanning the DIE's below the compilation unit. */
8369 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8370
8371 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8372 static_block = end_symtab_get_static_block (addr, 0, 1);
8373
8374 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8375 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8376 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8377 addrmap to help ensure it has an accurate map of pc values belonging to
8378 this comp unit. */
8379 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8380
8381 cust = end_symtab_from_static_block (static_block,
8382 SECT_OFF_TEXT (objfile), 0);
8383
8384 if (cust != NULL)
8385 {
8386 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8387
8388 /* Set symtab language to language from DW_AT_language. If the
8389 compilation is from a C file generated by language preprocessors, do
8390 not set the language if it was already deduced by start_subfile. */
8391 if (!(cu->language == language_c
8392 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8393 COMPUNIT_FILETABS (cust)->language = cu->language;
8394
8395 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8396 produce DW_AT_location with location lists but it can be possibly
8397 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8398 there were bugs in prologue debug info, fixed later in GCC-4.5
8399 by "unwind info for epilogues" patch (which is not directly related).
8400
8401 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8402 needed, it would be wrong due to missing DW_AT_producer there.
8403
8404 Still one can confuse GDB by using non-standard GCC compilation
8405 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8406 */
8407 if (cu->has_loclist && gcc_4_minor >= 5)
8408 cust->locations_valid = 1;
8409
8410 if (gcc_4_minor >= 5)
8411 cust->epilogue_unwind_valid = 1;
8412
8413 cust->call_site_htab = cu->call_site_htab;
8414 }
8415
8416 if (dwarf2_per_objfile->using_index)
8417 per_cu->v.quick->compunit_symtab = cust;
8418 else
8419 {
8420 struct partial_symtab *pst = per_cu->v.psymtab;
8421 pst->compunit_symtab = cust;
8422 pst->readin = 1;
8423 }
8424
8425 /* Push it for inclusion processing later. */
8426 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8427
8428 do_cleanups (back_to);
8429 }
8430
8431 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8432 already been loaded into memory. */
8433
8434 static void
8435 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8436 enum language pretend_language)
8437 {
8438 struct dwarf2_cu *cu = per_cu->cu;
8439 struct objfile *objfile = per_cu->objfile;
8440 struct compunit_symtab *cust;
8441 struct cleanup *back_to, *delayed_list_cleanup;
8442 struct signatured_type *sig_type;
8443
8444 gdb_assert (per_cu->is_debug_types);
8445 sig_type = (struct signatured_type *) per_cu;
8446
8447 buildsym_init ();
8448 back_to = make_cleanup (really_free_pendings, NULL);
8449 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8450
8451 cu->list_in_scope = &file_symbols;
8452
8453 cu->language = pretend_language;
8454 cu->language_defn = language_def (cu->language);
8455
8456 /* The symbol tables are set up in read_type_unit_scope. */
8457 process_die (cu->dies, cu);
8458
8459 /* For now fudge the Go package. */
8460 if (cu->language == language_go)
8461 fixup_go_packaging (cu);
8462
8463 /* Now that we have processed all the DIEs in the CU, all the types
8464 should be complete, and it should now be safe to compute all of the
8465 physnames. */
8466 compute_delayed_physnames (cu);
8467 do_cleanups (delayed_list_cleanup);
8468
8469 /* TUs share symbol tables.
8470 If this is the first TU to use this symtab, complete the construction
8471 of it with end_expandable_symtab. Otherwise, complete the addition of
8472 this TU's symbols to the existing symtab. */
8473 if (sig_type->type_unit_group->compunit_symtab == NULL)
8474 {
8475 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8476 sig_type->type_unit_group->compunit_symtab = cust;
8477
8478 if (cust != NULL)
8479 {
8480 /* Set symtab language to language from DW_AT_language. If the
8481 compilation is from a C file generated by language preprocessors,
8482 do not set the language if it was already deduced by
8483 start_subfile. */
8484 if (!(cu->language == language_c
8485 && COMPUNIT_FILETABS (cust)->language != language_c))
8486 COMPUNIT_FILETABS (cust)->language = cu->language;
8487 }
8488 }
8489 else
8490 {
8491 augment_type_symtab ();
8492 cust = sig_type->type_unit_group->compunit_symtab;
8493 }
8494
8495 if (dwarf2_per_objfile->using_index)
8496 per_cu->v.quick->compunit_symtab = cust;
8497 else
8498 {
8499 struct partial_symtab *pst = per_cu->v.psymtab;
8500 pst->compunit_symtab = cust;
8501 pst->readin = 1;
8502 }
8503
8504 do_cleanups (back_to);
8505 }
8506
8507 /* Process an imported unit DIE. */
8508
8509 static void
8510 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8511 {
8512 struct attribute *attr;
8513
8514 /* For now we don't handle imported units in type units. */
8515 if (cu->per_cu->is_debug_types)
8516 {
8517 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8518 " supported in type units [in module %s]"),
8519 objfile_name (cu->objfile));
8520 }
8521
8522 attr = dwarf2_attr (die, DW_AT_import, cu);
8523 if (attr != NULL)
8524 {
8525 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
8526 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8527 dwarf2_per_cu_data *per_cu
8528 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
8529
8530 /* If necessary, add it to the queue and load its DIEs. */
8531 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8532 load_full_comp_unit (per_cu, cu->language);
8533
8534 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8535 per_cu);
8536 }
8537 }
8538
8539 /* RAII object that represents a process_die scope: i.e.,
8540 starts/finishes processing a DIE. */
8541 class process_die_scope
8542 {
8543 public:
8544 process_die_scope (die_info *die, dwarf2_cu *cu)
8545 : m_die (die), m_cu (cu)
8546 {
8547 /* We should only be processing DIEs not already in process. */
8548 gdb_assert (!m_die->in_process);
8549 m_die->in_process = true;
8550 }
8551
8552 ~process_die_scope ()
8553 {
8554 m_die->in_process = false;
8555
8556 /* If we're done processing the DIE for the CU that owns the line
8557 header, we don't need the line header anymore. */
8558 if (m_cu->line_header_die_owner == m_die)
8559 {
8560 delete m_cu->line_header;
8561 m_cu->line_header = NULL;
8562 m_cu->line_header_die_owner = NULL;
8563 }
8564 }
8565
8566 private:
8567 die_info *m_die;
8568 dwarf2_cu *m_cu;
8569 };
8570
8571 /* Process a die and its children. */
8572
8573 static void
8574 process_die (struct die_info *die, struct dwarf2_cu *cu)
8575 {
8576 process_die_scope scope (die, cu);
8577
8578 switch (die->tag)
8579 {
8580 case DW_TAG_padding:
8581 break;
8582 case DW_TAG_compile_unit:
8583 case DW_TAG_partial_unit:
8584 read_file_scope (die, cu);
8585 break;
8586 case DW_TAG_type_unit:
8587 read_type_unit_scope (die, cu);
8588 break;
8589 case DW_TAG_subprogram:
8590 case DW_TAG_inlined_subroutine:
8591 read_func_scope (die, cu);
8592 break;
8593 case DW_TAG_lexical_block:
8594 case DW_TAG_try_block:
8595 case DW_TAG_catch_block:
8596 read_lexical_block_scope (die, cu);
8597 break;
8598 case DW_TAG_call_site:
8599 case DW_TAG_GNU_call_site:
8600 read_call_site_scope (die, cu);
8601 break;
8602 case DW_TAG_class_type:
8603 case DW_TAG_interface_type:
8604 case DW_TAG_structure_type:
8605 case DW_TAG_union_type:
8606 process_structure_scope (die, cu);
8607 break;
8608 case DW_TAG_enumeration_type:
8609 process_enumeration_scope (die, cu);
8610 break;
8611
8612 /* These dies have a type, but processing them does not create
8613 a symbol or recurse to process the children. Therefore we can
8614 read them on-demand through read_type_die. */
8615 case DW_TAG_subroutine_type:
8616 case DW_TAG_set_type:
8617 case DW_TAG_array_type:
8618 case DW_TAG_pointer_type:
8619 case DW_TAG_ptr_to_member_type:
8620 case DW_TAG_reference_type:
8621 case DW_TAG_rvalue_reference_type:
8622 case DW_TAG_string_type:
8623 break;
8624
8625 case DW_TAG_base_type:
8626 case DW_TAG_subrange_type:
8627 case DW_TAG_typedef:
8628 /* Add a typedef symbol for the type definition, if it has a
8629 DW_AT_name. */
8630 new_symbol (die, read_type_die (die, cu), cu);
8631 break;
8632 case DW_TAG_common_block:
8633 read_common_block (die, cu);
8634 break;
8635 case DW_TAG_common_inclusion:
8636 break;
8637 case DW_TAG_namespace:
8638 cu->processing_has_namespace_info = 1;
8639 read_namespace (die, cu);
8640 break;
8641 case DW_TAG_module:
8642 cu->processing_has_namespace_info = 1;
8643 read_module (die, cu);
8644 break;
8645 case DW_TAG_imported_declaration:
8646 cu->processing_has_namespace_info = 1;
8647 if (read_namespace_alias (die, cu))
8648 break;
8649 /* The declaration is not a global namespace alias: fall through. */
8650 case DW_TAG_imported_module:
8651 cu->processing_has_namespace_info = 1;
8652 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8653 || cu->language != language_fortran))
8654 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8655 dwarf_tag_name (die->tag));
8656 read_import_statement (die, cu);
8657 break;
8658
8659 case DW_TAG_imported_unit:
8660 process_imported_unit_die (die, cu);
8661 break;
8662
8663 default:
8664 new_symbol (die, NULL, cu);
8665 break;
8666 }
8667 }
8668 \f
8669 /* DWARF name computation. */
8670
8671 /* A helper function for dwarf2_compute_name which determines whether DIE
8672 needs to have the name of the scope prepended to the name listed in the
8673 die. */
8674
8675 static int
8676 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8677 {
8678 struct attribute *attr;
8679
8680 switch (die->tag)
8681 {
8682 case DW_TAG_namespace:
8683 case DW_TAG_typedef:
8684 case DW_TAG_class_type:
8685 case DW_TAG_interface_type:
8686 case DW_TAG_structure_type:
8687 case DW_TAG_union_type:
8688 case DW_TAG_enumeration_type:
8689 case DW_TAG_enumerator:
8690 case DW_TAG_subprogram:
8691 case DW_TAG_inlined_subroutine:
8692 case DW_TAG_member:
8693 case DW_TAG_imported_declaration:
8694 return 1;
8695
8696 case DW_TAG_variable:
8697 case DW_TAG_constant:
8698 /* We only need to prefix "globally" visible variables. These include
8699 any variable marked with DW_AT_external or any variable that
8700 lives in a namespace. [Variables in anonymous namespaces
8701 require prefixing, but they are not DW_AT_external.] */
8702
8703 if (dwarf2_attr (die, DW_AT_specification, cu))
8704 {
8705 struct dwarf2_cu *spec_cu = cu;
8706
8707 return die_needs_namespace (die_specification (die, &spec_cu),
8708 spec_cu);
8709 }
8710
8711 attr = dwarf2_attr (die, DW_AT_external, cu);
8712 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8713 && die->parent->tag != DW_TAG_module)
8714 return 0;
8715 /* A variable in a lexical block of some kind does not need a
8716 namespace, even though in C++ such variables may be external
8717 and have a mangled name. */
8718 if (die->parent->tag == DW_TAG_lexical_block
8719 || die->parent->tag == DW_TAG_try_block
8720 || die->parent->tag == DW_TAG_catch_block
8721 || die->parent->tag == DW_TAG_subprogram)
8722 return 0;
8723 return 1;
8724
8725 default:
8726 return 0;
8727 }
8728 }
8729
8730 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
8731 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
8732 defined for the given DIE. */
8733
8734 static struct attribute *
8735 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
8736 {
8737 struct attribute *attr;
8738
8739 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8740 if (attr == NULL)
8741 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8742
8743 return attr;
8744 }
8745
8746 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
8747 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
8748 defined for the given DIE. */
8749
8750 static const char *
8751 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
8752 {
8753 const char *linkage_name;
8754
8755 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8756 if (linkage_name == NULL)
8757 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8758
8759 return linkage_name;
8760 }
8761
8762 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8763 compute the physname for the object, which include a method's:
8764 - formal parameters (C++),
8765 - receiver type (Go),
8766
8767 The term "physname" is a bit confusing.
8768 For C++, for example, it is the demangled name.
8769 For Go, for example, it's the mangled name.
8770
8771 For Ada, return the DIE's linkage name rather than the fully qualified
8772 name. PHYSNAME is ignored..
8773
8774 The result is allocated on the objfile_obstack and canonicalized. */
8775
8776 static const char *
8777 dwarf2_compute_name (const char *name,
8778 struct die_info *die, struct dwarf2_cu *cu,
8779 int physname)
8780 {
8781 struct objfile *objfile = cu->objfile;
8782
8783 if (name == NULL)
8784 name = dwarf2_name (die, cu);
8785
8786 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8787 but otherwise compute it by typename_concat inside GDB.
8788 FIXME: Actually this is not really true, or at least not always true.
8789 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8790 Fortran names because there is no mangling standard. So new_symbol_full
8791 will set the demangled name to the result of dwarf2_full_name, and it is
8792 the demangled name that GDB uses if it exists. */
8793 if (cu->language == language_ada
8794 || (cu->language == language_fortran && physname))
8795 {
8796 /* For Ada unit, we prefer the linkage name over the name, as
8797 the former contains the exported name, which the user expects
8798 to be able to reference. Ideally, we want the user to be able
8799 to reference this entity using either natural or linkage name,
8800 but we haven't started looking at this enhancement yet. */
8801 const char *linkage_name = dw2_linkage_name (die, cu);
8802
8803 if (linkage_name != NULL)
8804 return linkage_name;
8805 }
8806
8807 /* These are the only languages we know how to qualify names in. */
8808 if (name != NULL
8809 && (cu->language == language_cplus
8810 || cu->language == language_fortran || cu->language == language_d
8811 || cu->language == language_rust))
8812 {
8813 if (die_needs_namespace (die, cu))
8814 {
8815 long length;
8816 const char *prefix;
8817 const char *canonical_name = NULL;
8818
8819 string_file buf;
8820
8821 prefix = determine_prefix (die, cu);
8822 if (*prefix != '\0')
8823 {
8824 char *prefixed_name = typename_concat (NULL, prefix, name,
8825 physname, cu);
8826
8827 buf.puts (prefixed_name);
8828 xfree (prefixed_name);
8829 }
8830 else
8831 buf.puts (name);
8832
8833 /* Template parameters may be specified in the DIE's DW_AT_name, or
8834 as children with DW_TAG_template_type_param or
8835 DW_TAG_value_type_param. If the latter, add them to the name
8836 here. If the name already has template parameters, then
8837 skip this step; some versions of GCC emit both, and
8838 it is more efficient to use the pre-computed name.
8839
8840 Something to keep in mind about this process: it is very
8841 unlikely, or in some cases downright impossible, to produce
8842 something that will match the mangled name of a function.
8843 If the definition of the function has the same debug info,
8844 we should be able to match up with it anyway. But fallbacks
8845 using the minimal symbol, for instance to find a method
8846 implemented in a stripped copy of libstdc++, will not work.
8847 If we do not have debug info for the definition, we will have to
8848 match them up some other way.
8849
8850 When we do name matching there is a related problem with function
8851 templates; two instantiated function templates are allowed to
8852 differ only by their return types, which we do not add here. */
8853
8854 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8855 {
8856 struct attribute *attr;
8857 struct die_info *child;
8858 int first = 1;
8859
8860 die->building_fullname = 1;
8861
8862 for (child = die->child; child != NULL; child = child->sibling)
8863 {
8864 struct type *type;
8865 LONGEST value;
8866 const gdb_byte *bytes;
8867 struct dwarf2_locexpr_baton *baton;
8868 struct value *v;
8869
8870 if (child->tag != DW_TAG_template_type_param
8871 && child->tag != DW_TAG_template_value_param)
8872 continue;
8873
8874 if (first)
8875 {
8876 buf.puts ("<");
8877 first = 0;
8878 }
8879 else
8880 buf.puts (", ");
8881
8882 attr = dwarf2_attr (child, DW_AT_type, cu);
8883 if (attr == NULL)
8884 {
8885 complaint (&symfile_complaints,
8886 _("template parameter missing DW_AT_type"));
8887 buf.puts ("UNKNOWN_TYPE");
8888 continue;
8889 }
8890 type = die_type (child, cu);
8891
8892 if (child->tag == DW_TAG_template_type_param)
8893 {
8894 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
8895 continue;
8896 }
8897
8898 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8899 if (attr == NULL)
8900 {
8901 complaint (&symfile_complaints,
8902 _("template parameter missing "
8903 "DW_AT_const_value"));
8904 buf.puts ("UNKNOWN_VALUE");
8905 continue;
8906 }
8907
8908 dwarf2_const_value_attr (attr, type, name,
8909 &cu->comp_unit_obstack, cu,
8910 &value, &bytes, &baton);
8911
8912 if (TYPE_NOSIGN (type))
8913 /* GDB prints characters as NUMBER 'CHAR'. If that's
8914 changed, this can use value_print instead. */
8915 c_printchar (value, type, &buf);
8916 else
8917 {
8918 struct value_print_options opts;
8919
8920 if (baton != NULL)
8921 v = dwarf2_evaluate_loc_desc (type, NULL,
8922 baton->data,
8923 baton->size,
8924 baton->per_cu);
8925 else if (bytes != NULL)
8926 {
8927 v = allocate_value (type);
8928 memcpy (value_contents_writeable (v), bytes,
8929 TYPE_LENGTH (type));
8930 }
8931 else
8932 v = value_from_longest (type, value);
8933
8934 /* Specify decimal so that we do not depend on
8935 the radix. */
8936 get_formatted_print_options (&opts, 'd');
8937 opts.raw = 1;
8938 value_print (v, &buf, &opts);
8939 release_value (v);
8940 value_free (v);
8941 }
8942 }
8943
8944 die->building_fullname = 0;
8945
8946 if (!first)
8947 {
8948 /* Close the argument list, with a space if necessary
8949 (nested templates). */
8950 if (!buf.empty () && buf.string ().back () == '>')
8951 buf.puts (" >");
8952 else
8953 buf.puts (">");
8954 }
8955 }
8956
8957 /* For C++ methods, append formal parameter type
8958 information, if PHYSNAME. */
8959
8960 if (physname && die->tag == DW_TAG_subprogram
8961 && cu->language == language_cplus)
8962 {
8963 struct type *type = read_type_die (die, cu);
8964
8965 c_type_print_args (type, &buf, 1, cu->language,
8966 &type_print_raw_options);
8967
8968 if (cu->language == language_cplus)
8969 {
8970 /* Assume that an artificial first parameter is
8971 "this", but do not crash if it is not. RealView
8972 marks unnamed (and thus unused) parameters as
8973 artificial; there is no way to differentiate
8974 the two cases. */
8975 if (TYPE_NFIELDS (type) > 0
8976 && TYPE_FIELD_ARTIFICIAL (type, 0)
8977 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8978 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8979 0))))
8980 buf.puts (" const");
8981 }
8982 }
8983
8984 const std::string &intermediate_name = buf.string ();
8985
8986 if (cu->language == language_cplus)
8987 canonical_name
8988 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8989 &objfile->per_bfd->storage_obstack);
8990
8991 /* If we only computed INTERMEDIATE_NAME, or if
8992 INTERMEDIATE_NAME is already canonical, then we need to
8993 copy it to the appropriate obstack. */
8994 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8995 name = ((const char *)
8996 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8997 intermediate_name.c_str (),
8998 intermediate_name.length ()));
8999 else
9000 name = canonical_name;
9001 }
9002 }
9003
9004 return name;
9005 }
9006
9007 /* Return the fully qualified name of DIE, based on its DW_AT_name.
9008 If scope qualifiers are appropriate they will be added. The result
9009 will be allocated on the storage_obstack, or NULL if the DIE does
9010 not have a name. NAME may either be from a previous call to
9011 dwarf2_name or NULL.
9012
9013 The output string will be canonicalized (if C++). */
9014
9015 static const char *
9016 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9017 {
9018 return dwarf2_compute_name (name, die, cu, 0);
9019 }
9020
9021 /* Construct a physname for the given DIE in CU. NAME may either be
9022 from a previous call to dwarf2_name or NULL. The result will be
9023 allocated on the objfile_objstack or NULL if the DIE does not have a
9024 name.
9025
9026 The output string will be canonicalized (if C++). */
9027
9028 static const char *
9029 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9030 {
9031 struct objfile *objfile = cu->objfile;
9032 const char *retval, *mangled = NULL, *canon = NULL;
9033 struct cleanup *back_to;
9034 int need_copy = 1;
9035
9036 /* In this case dwarf2_compute_name is just a shortcut not building anything
9037 on its own. */
9038 if (!die_needs_namespace (die, cu))
9039 return dwarf2_compute_name (name, die, cu, 1);
9040
9041 back_to = make_cleanup (null_cleanup, NULL);
9042
9043 mangled = dw2_linkage_name (die, cu);
9044
9045 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
9046 See https://github.com/rust-lang/rust/issues/32925. */
9047 if (cu->language == language_rust && mangled != NULL
9048 && strchr (mangled, '{') != NULL)
9049 mangled = NULL;
9050
9051 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
9052 has computed. */
9053 if (mangled != NULL)
9054 {
9055 char *demangled;
9056
9057 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
9058 type. It is easier for GDB users to search for such functions as
9059 `name(params)' than `long name(params)'. In such case the minimal
9060 symbol names do not match the full symbol names but for template
9061 functions there is never a need to look up their definition from their
9062 declaration so the only disadvantage remains the minimal symbol
9063 variant `long name(params)' does not have the proper inferior type.
9064 */
9065
9066 if (cu->language == language_go)
9067 {
9068 /* This is a lie, but we already lie to the caller new_symbol_full.
9069 new_symbol_full assumes we return the mangled name.
9070 This just undoes that lie until things are cleaned up. */
9071 demangled = NULL;
9072 }
9073 else
9074 {
9075 demangled = gdb_demangle (mangled,
9076 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
9077 }
9078 if (demangled)
9079 {
9080 make_cleanup (xfree, demangled);
9081 canon = demangled;
9082 }
9083 else
9084 {
9085 canon = mangled;
9086 need_copy = 0;
9087 }
9088 }
9089
9090 if (canon == NULL || check_physname)
9091 {
9092 const char *physname = dwarf2_compute_name (name, die, cu, 1);
9093
9094 if (canon != NULL && strcmp (physname, canon) != 0)
9095 {
9096 /* It may not mean a bug in GDB. The compiler could also
9097 compute DW_AT_linkage_name incorrectly. But in such case
9098 GDB would need to be bug-to-bug compatible. */
9099
9100 complaint (&symfile_complaints,
9101 _("Computed physname <%s> does not match demangled <%s> "
9102 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
9103 physname, canon, mangled, to_underlying (die->sect_off),
9104 objfile_name (objfile));
9105
9106 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9107 is available here - over computed PHYSNAME. It is safer
9108 against both buggy GDB and buggy compilers. */
9109
9110 retval = canon;
9111 }
9112 else
9113 {
9114 retval = physname;
9115 need_copy = 0;
9116 }
9117 }
9118 else
9119 retval = canon;
9120
9121 if (need_copy)
9122 retval = ((const char *)
9123 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9124 retval, strlen (retval)));
9125
9126 do_cleanups (back_to);
9127 return retval;
9128 }
9129
9130 /* Inspect DIE in CU for a namespace alias. If one exists, record
9131 a new symbol for it.
9132
9133 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9134
9135 static int
9136 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9137 {
9138 struct attribute *attr;
9139
9140 /* If the die does not have a name, this is not a namespace
9141 alias. */
9142 attr = dwarf2_attr (die, DW_AT_name, cu);
9143 if (attr != NULL)
9144 {
9145 int num;
9146 struct die_info *d = die;
9147 struct dwarf2_cu *imported_cu = cu;
9148
9149 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9150 keep inspecting DIEs until we hit the underlying import. */
9151 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
9152 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9153 {
9154 attr = dwarf2_attr (d, DW_AT_import, cu);
9155 if (attr == NULL)
9156 break;
9157
9158 d = follow_die_ref (d, attr, &imported_cu);
9159 if (d->tag != DW_TAG_imported_declaration)
9160 break;
9161 }
9162
9163 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9164 {
9165 complaint (&symfile_complaints,
9166 _("DIE at 0x%x has too many recursively imported "
9167 "declarations"), to_underlying (d->sect_off));
9168 return 0;
9169 }
9170
9171 if (attr != NULL)
9172 {
9173 struct type *type;
9174 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9175
9176 type = get_die_type_at_offset (sect_off, cu->per_cu);
9177 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9178 {
9179 /* This declaration is a global namespace alias. Add
9180 a symbol for it whose type is the aliased namespace. */
9181 new_symbol (die, type, cu);
9182 return 1;
9183 }
9184 }
9185 }
9186
9187 return 0;
9188 }
9189
9190 /* Return the using directives repository (global or local?) to use in the
9191 current context for LANGUAGE.
9192
9193 For Ada, imported declarations can materialize renamings, which *may* be
9194 global. However it is impossible (for now?) in DWARF to distinguish
9195 "external" imported declarations and "static" ones. As all imported
9196 declarations seem to be static in all other languages, make them all CU-wide
9197 global only in Ada. */
9198
9199 static struct using_direct **
9200 using_directives (enum language language)
9201 {
9202 if (language == language_ada && context_stack_depth == 0)
9203 return &global_using_directives;
9204 else
9205 return &local_using_directives;
9206 }
9207
9208 /* Read the import statement specified by the given die and record it. */
9209
9210 static void
9211 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9212 {
9213 struct objfile *objfile = cu->objfile;
9214 struct attribute *import_attr;
9215 struct die_info *imported_die, *child_die;
9216 struct dwarf2_cu *imported_cu;
9217 const char *imported_name;
9218 const char *imported_name_prefix;
9219 const char *canonical_name;
9220 const char *import_alias;
9221 const char *imported_declaration = NULL;
9222 const char *import_prefix;
9223 std::vector<const char *> excludes;
9224
9225 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9226 if (import_attr == NULL)
9227 {
9228 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9229 dwarf_tag_name (die->tag));
9230 return;
9231 }
9232
9233 imported_cu = cu;
9234 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9235 imported_name = dwarf2_name (imported_die, imported_cu);
9236 if (imported_name == NULL)
9237 {
9238 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9239
9240 The import in the following code:
9241 namespace A
9242 {
9243 typedef int B;
9244 }
9245
9246 int main ()
9247 {
9248 using A::B;
9249 B b;
9250 return b;
9251 }
9252
9253 ...
9254 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9255 <52> DW_AT_decl_file : 1
9256 <53> DW_AT_decl_line : 6
9257 <54> DW_AT_import : <0x75>
9258 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9259 <59> DW_AT_name : B
9260 <5b> DW_AT_decl_file : 1
9261 <5c> DW_AT_decl_line : 2
9262 <5d> DW_AT_type : <0x6e>
9263 ...
9264 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9265 <76> DW_AT_byte_size : 4
9266 <77> DW_AT_encoding : 5 (signed)
9267
9268 imports the wrong die ( 0x75 instead of 0x58 ).
9269 This case will be ignored until the gcc bug is fixed. */
9270 return;
9271 }
9272
9273 /* Figure out the local name after import. */
9274 import_alias = dwarf2_name (die, cu);
9275
9276 /* Figure out where the statement is being imported to. */
9277 import_prefix = determine_prefix (die, cu);
9278
9279 /* Figure out what the scope of the imported die is and prepend it
9280 to the name of the imported die. */
9281 imported_name_prefix = determine_prefix (imported_die, imported_cu);
9282
9283 if (imported_die->tag != DW_TAG_namespace
9284 && imported_die->tag != DW_TAG_module)
9285 {
9286 imported_declaration = imported_name;
9287 canonical_name = imported_name_prefix;
9288 }
9289 else if (strlen (imported_name_prefix) > 0)
9290 canonical_name = obconcat (&objfile->objfile_obstack,
9291 imported_name_prefix,
9292 (cu->language == language_d ? "." : "::"),
9293 imported_name, (char *) NULL);
9294 else
9295 canonical_name = imported_name;
9296
9297 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9298 for (child_die = die->child; child_die && child_die->tag;
9299 child_die = sibling_die (child_die))
9300 {
9301 /* DWARF-4: A Fortran use statement with a “rename list” may be
9302 represented by an imported module entry with an import attribute
9303 referring to the module and owned entries corresponding to those
9304 entities that are renamed as part of being imported. */
9305
9306 if (child_die->tag != DW_TAG_imported_declaration)
9307 {
9308 complaint (&symfile_complaints,
9309 _("child DW_TAG_imported_declaration expected "
9310 "- DIE at 0x%x [in module %s]"),
9311 to_underlying (child_die->sect_off), objfile_name (objfile));
9312 continue;
9313 }
9314
9315 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9316 if (import_attr == NULL)
9317 {
9318 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9319 dwarf_tag_name (child_die->tag));
9320 continue;
9321 }
9322
9323 imported_cu = cu;
9324 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9325 &imported_cu);
9326 imported_name = dwarf2_name (imported_die, imported_cu);
9327 if (imported_name == NULL)
9328 {
9329 complaint (&symfile_complaints,
9330 _("child DW_TAG_imported_declaration has unknown "
9331 "imported name - DIE at 0x%x [in module %s]"),
9332 to_underlying (child_die->sect_off), objfile_name (objfile));
9333 continue;
9334 }
9335
9336 excludes.push_back (imported_name);
9337
9338 process_die (child_die, cu);
9339 }
9340
9341 add_using_directive (using_directives (cu->language),
9342 import_prefix,
9343 canonical_name,
9344 import_alias,
9345 imported_declaration,
9346 excludes,
9347 0,
9348 &objfile->objfile_obstack);
9349 }
9350
9351 /* ICC<14 does not output the required DW_AT_declaration on incomplete
9352 types, but gives them a size of zero. Starting with version 14,
9353 ICC is compatible with GCC. */
9354
9355 static int
9356 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
9357 {
9358 if (!cu->checked_producer)
9359 check_producer (cu);
9360
9361 return cu->producer_is_icc_lt_14;
9362 }
9363
9364 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9365 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9366 this, it was first present in GCC release 4.3.0. */
9367
9368 static int
9369 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9370 {
9371 if (!cu->checked_producer)
9372 check_producer (cu);
9373
9374 return cu->producer_is_gcc_lt_4_3;
9375 }
9376
9377 static file_and_directory
9378 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9379 {
9380 file_and_directory res;
9381
9382 /* Find the filename. Do not use dwarf2_name here, since the filename
9383 is not a source language identifier. */
9384 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9385 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9386
9387 if (res.comp_dir == NULL
9388 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9389 && IS_ABSOLUTE_PATH (res.name))
9390 {
9391 res.comp_dir_storage = ldirname (res.name);
9392 if (!res.comp_dir_storage.empty ())
9393 res.comp_dir = res.comp_dir_storage.c_str ();
9394 }
9395 if (res.comp_dir != NULL)
9396 {
9397 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9398 directory, get rid of it. */
9399 const char *cp = strchr (res.comp_dir, ':');
9400
9401 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9402 res.comp_dir = cp + 1;
9403 }
9404
9405 if (res.name == NULL)
9406 res.name = "<unknown>";
9407
9408 return res;
9409 }
9410
9411 /* Handle DW_AT_stmt_list for a compilation unit.
9412 DIE is the DW_TAG_compile_unit die for CU.
9413 COMP_DIR is the compilation directory. LOWPC is passed to
9414 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9415
9416 static void
9417 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9418 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9419 {
9420 struct objfile *objfile = dwarf2_per_objfile->objfile;
9421 struct attribute *attr;
9422 struct line_header line_header_local;
9423 hashval_t line_header_local_hash;
9424 unsigned u;
9425 void **slot;
9426 int decode_mapping;
9427
9428 gdb_assert (! cu->per_cu->is_debug_types);
9429
9430 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9431 if (attr == NULL)
9432 return;
9433
9434 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9435
9436 /* The line header hash table is only created if needed (it exists to
9437 prevent redundant reading of the line table for partial_units).
9438 If we're given a partial_unit, we'll need it. If we're given a
9439 compile_unit, then use the line header hash table if it's already
9440 created, but don't create one just yet. */
9441
9442 if (dwarf2_per_objfile->line_header_hash == NULL
9443 && die->tag == DW_TAG_partial_unit)
9444 {
9445 dwarf2_per_objfile->line_header_hash
9446 = htab_create_alloc_ex (127, line_header_hash_voidp,
9447 line_header_eq_voidp,
9448 free_line_header_voidp,
9449 &objfile->objfile_obstack,
9450 hashtab_obstack_allocate,
9451 dummy_obstack_deallocate);
9452 }
9453
9454 line_header_local.sect_off = line_offset;
9455 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9456 line_header_local_hash = line_header_hash (&line_header_local);
9457 if (dwarf2_per_objfile->line_header_hash != NULL)
9458 {
9459 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9460 &line_header_local,
9461 line_header_local_hash, NO_INSERT);
9462
9463 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9464 is not present in *SLOT (since if there is something in *SLOT then
9465 it will be for a partial_unit). */
9466 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9467 {
9468 gdb_assert (*slot != NULL);
9469 cu->line_header = (struct line_header *) *slot;
9470 return;
9471 }
9472 }
9473
9474 /* dwarf_decode_line_header does not yet provide sufficient information.
9475 We always have to call also dwarf_decode_lines for it. */
9476 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
9477 if (lh == NULL)
9478 return;
9479
9480 cu->line_header = lh.release ();
9481 cu->line_header_die_owner = die;
9482
9483 if (dwarf2_per_objfile->line_header_hash == NULL)
9484 slot = NULL;
9485 else
9486 {
9487 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9488 &line_header_local,
9489 line_header_local_hash, INSERT);
9490 gdb_assert (slot != NULL);
9491 }
9492 if (slot != NULL && *slot == NULL)
9493 {
9494 /* This newly decoded line number information unit will be owned
9495 by line_header_hash hash table. */
9496 *slot = cu->line_header;
9497 cu->line_header_die_owner = NULL;
9498 }
9499 else
9500 {
9501 /* We cannot free any current entry in (*slot) as that struct line_header
9502 may be already used by multiple CUs. Create only temporary decoded
9503 line_header for this CU - it may happen at most once for each line
9504 number information unit. And if we're not using line_header_hash
9505 then this is what we want as well. */
9506 gdb_assert (die->tag != DW_TAG_partial_unit);
9507 }
9508 decode_mapping = (die->tag != DW_TAG_partial_unit);
9509 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9510 decode_mapping);
9511
9512 }
9513
9514 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9515
9516 static void
9517 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9518 {
9519 struct objfile *objfile = dwarf2_per_objfile->objfile;
9520 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9521 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9522 CORE_ADDR highpc = ((CORE_ADDR) 0);
9523 struct attribute *attr;
9524 struct die_info *child_die;
9525 CORE_ADDR baseaddr;
9526
9527 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9528
9529 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9530
9531 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9532 from finish_block. */
9533 if (lowpc == ((CORE_ADDR) -1))
9534 lowpc = highpc;
9535 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9536
9537 file_and_directory fnd = find_file_and_directory (die, cu);
9538
9539 prepare_one_comp_unit (cu, die, cu->language);
9540
9541 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9542 standardised yet. As a workaround for the language detection we fall
9543 back to the DW_AT_producer string. */
9544 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9545 cu->language = language_opencl;
9546
9547 /* Similar hack for Go. */
9548 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9549 set_cu_language (DW_LANG_Go, cu);
9550
9551 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
9552
9553 /* Decode line number information if present. We do this before
9554 processing child DIEs, so that the line header table is available
9555 for DW_AT_decl_file. */
9556 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
9557
9558 /* Process all dies in compilation unit. */
9559 if (die->child != NULL)
9560 {
9561 child_die = die->child;
9562 while (child_die && child_die->tag)
9563 {
9564 process_die (child_die, cu);
9565 child_die = sibling_die (child_die);
9566 }
9567 }
9568
9569 /* Decode macro information, if present. Dwarf 2 macro information
9570 refers to information in the line number info statement program
9571 header, so we can only read it if we've read the header
9572 successfully. */
9573 attr = dwarf2_attr (die, DW_AT_macros, cu);
9574 if (attr == NULL)
9575 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9576 if (attr && cu->line_header)
9577 {
9578 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9579 complaint (&symfile_complaints,
9580 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
9581
9582 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9583 }
9584 else
9585 {
9586 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9587 if (attr && cu->line_header)
9588 {
9589 unsigned int macro_offset = DW_UNSND (attr);
9590
9591 dwarf_decode_macros (cu, macro_offset, 0);
9592 }
9593 }
9594 }
9595
9596 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9597 Create the set of symtabs used by this TU, or if this TU is sharing
9598 symtabs with another TU and the symtabs have already been created
9599 then restore those symtabs in the line header.
9600 We don't need the pc/line-number mapping for type units. */
9601
9602 static void
9603 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9604 {
9605 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9606 struct type_unit_group *tu_group;
9607 int first_time;
9608 struct attribute *attr;
9609 unsigned int i;
9610 struct signatured_type *sig_type;
9611
9612 gdb_assert (per_cu->is_debug_types);
9613 sig_type = (struct signatured_type *) per_cu;
9614
9615 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9616
9617 /* If we're using .gdb_index (includes -readnow) then
9618 per_cu->type_unit_group may not have been set up yet. */
9619 if (sig_type->type_unit_group == NULL)
9620 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9621 tu_group = sig_type->type_unit_group;
9622
9623 /* If we've already processed this stmt_list there's no real need to
9624 do it again, we could fake it and just recreate the part we need
9625 (file name,index -> symtab mapping). If data shows this optimization
9626 is useful we can do it then. */
9627 first_time = tu_group->compunit_symtab == NULL;
9628
9629 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9630 debug info. */
9631 line_header_up lh;
9632 if (attr != NULL)
9633 {
9634 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9635 lh = dwarf_decode_line_header (line_offset, cu);
9636 }
9637 if (lh == NULL)
9638 {
9639 if (first_time)
9640 dwarf2_start_symtab (cu, "", NULL, 0);
9641 else
9642 {
9643 gdb_assert (tu_group->symtabs == NULL);
9644 restart_symtab (tu_group->compunit_symtab, "", 0);
9645 }
9646 return;
9647 }
9648
9649 cu->line_header = lh.release ();
9650 cu->line_header_die_owner = die;
9651
9652 if (first_time)
9653 {
9654 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9655
9656 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9657 still initializing it, and our caller (a few levels up)
9658 process_full_type_unit still needs to know if this is the first
9659 time. */
9660
9661 tu_group->num_symtabs = cu->line_header->file_names.size ();
9662 tu_group->symtabs = XNEWVEC (struct symtab *,
9663 cu->line_header->file_names.size ());
9664
9665 for (i = 0; i < cu->line_header->file_names.size (); ++i)
9666 {
9667 file_entry &fe = cu->line_header->file_names[i];
9668
9669 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
9670
9671 if (current_subfile->symtab == NULL)
9672 {
9673 /* NOTE: start_subfile will recognize when it's been
9674 passed a file it has already seen. So we can't
9675 assume there's a simple mapping from
9676 cu->line_header->file_names to subfiles, plus
9677 cu->line_header->file_names may contain dups. */
9678 current_subfile->symtab
9679 = allocate_symtab (cust, current_subfile->name);
9680 }
9681
9682 fe.symtab = current_subfile->symtab;
9683 tu_group->symtabs[i] = fe.symtab;
9684 }
9685 }
9686 else
9687 {
9688 restart_symtab (tu_group->compunit_symtab, "", 0);
9689
9690 for (i = 0; i < cu->line_header->file_names.size (); ++i)
9691 {
9692 file_entry &fe = cu->line_header->file_names[i];
9693
9694 fe.symtab = tu_group->symtabs[i];
9695 }
9696 }
9697
9698 /* The main symtab is allocated last. Type units don't have DW_AT_name
9699 so they don't have a "real" (so to speak) symtab anyway.
9700 There is later code that will assign the main symtab to all symbols
9701 that don't have one. We need to handle the case of a symbol with a
9702 missing symtab (DW_AT_decl_file) anyway. */
9703 }
9704
9705 /* Process DW_TAG_type_unit.
9706 For TUs we want to skip the first top level sibling if it's not the
9707 actual type being defined by this TU. In this case the first top
9708 level sibling is there to provide context only. */
9709
9710 static void
9711 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9712 {
9713 struct die_info *child_die;
9714
9715 prepare_one_comp_unit (cu, die, language_minimal);
9716
9717 /* Initialize (or reinitialize) the machinery for building symtabs.
9718 We do this before processing child DIEs, so that the line header table
9719 is available for DW_AT_decl_file. */
9720 setup_type_unit_groups (die, cu);
9721
9722 if (die->child != NULL)
9723 {
9724 child_die = die->child;
9725 while (child_die && child_die->tag)
9726 {
9727 process_die (child_die, cu);
9728 child_die = sibling_die (child_die);
9729 }
9730 }
9731 }
9732 \f
9733 /* DWO/DWP files.
9734
9735 http://gcc.gnu.org/wiki/DebugFission
9736 http://gcc.gnu.org/wiki/DebugFissionDWP
9737
9738 To simplify handling of both DWO files ("object" files with the DWARF info)
9739 and DWP files (a file with the DWOs packaged up into one file), we treat
9740 DWP files as having a collection of virtual DWO files. */
9741
9742 static hashval_t
9743 hash_dwo_file (const void *item)
9744 {
9745 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9746 hashval_t hash;
9747
9748 hash = htab_hash_string (dwo_file->dwo_name);
9749 if (dwo_file->comp_dir != NULL)
9750 hash += htab_hash_string (dwo_file->comp_dir);
9751 return hash;
9752 }
9753
9754 static int
9755 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9756 {
9757 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9758 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9759
9760 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9761 return 0;
9762 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9763 return lhs->comp_dir == rhs->comp_dir;
9764 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9765 }
9766
9767 /* Allocate a hash table for DWO files. */
9768
9769 static htab_t
9770 allocate_dwo_file_hash_table (void)
9771 {
9772 struct objfile *objfile = dwarf2_per_objfile->objfile;
9773
9774 return htab_create_alloc_ex (41,
9775 hash_dwo_file,
9776 eq_dwo_file,
9777 NULL,
9778 &objfile->objfile_obstack,
9779 hashtab_obstack_allocate,
9780 dummy_obstack_deallocate);
9781 }
9782
9783 /* Lookup DWO file DWO_NAME. */
9784
9785 static void **
9786 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9787 {
9788 struct dwo_file find_entry;
9789 void **slot;
9790
9791 if (dwarf2_per_objfile->dwo_files == NULL)
9792 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9793
9794 memset (&find_entry, 0, sizeof (find_entry));
9795 find_entry.dwo_name = dwo_name;
9796 find_entry.comp_dir = comp_dir;
9797 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9798
9799 return slot;
9800 }
9801
9802 static hashval_t
9803 hash_dwo_unit (const void *item)
9804 {
9805 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9806
9807 /* This drops the top 32 bits of the id, but is ok for a hash. */
9808 return dwo_unit->signature;
9809 }
9810
9811 static int
9812 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9813 {
9814 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9815 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9816
9817 /* The signature is assumed to be unique within the DWO file.
9818 So while object file CU dwo_id's always have the value zero,
9819 that's OK, assuming each object file DWO file has only one CU,
9820 and that's the rule for now. */
9821 return lhs->signature == rhs->signature;
9822 }
9823
9824 /* Allocate a hash table for DWO CUs,TUs.
9825 There is one of these tables for each of CUs,TUs for each DWO file. */
9826
9827 static htab_t
9828 allocate_dwo_unit_table (struct objfile *objfile)
9829 {
9830 /* Start out with a pretty small number.
9831 Generally DWO files contain only one CU and maybe some TUs. */
9832 return htab_create_alloc_ex (3,
9833 hash_dwo_unit,
9834 eq_dwo_unit,
9835 NULL,
9836 &objfile->objfile_obstack,
9837 hashtab_obstack_allocate,
9838 dummy_obstack_deallocate);
9839 }
9840
9841 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9842
9843 struct create_dwo_cu_data
9844 {
9845 struct dwo_file *dwo_file;
9846 struct dwo_unit dwo_unit;
9847 };
9848
9849 /* die_reader_func for create_dwo_cu. */
9850
9851 static void
9852 create_dwo_cu_reader (const struct die_reader_specs *reader,
9853 const gdb_byte *info_ptr,
9854 struct die_info *comp_unit_die,
9855 int has_children,
9856 void *datap)
9857 {
9858 struct dwarf2_cu *cu = reader->cu;
9859 sect_offset sect_off = cu->per_cu->sect_off;
9860 struct dwarf2_section_info *section = cu->per_cu->section;
9861 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9862 struct dwo_file *dwo_file = data->dwo_file;
9863 struct dwo_unit *dwo_unit = &data->dwo_unit;
9864 struct attribute *attr;
9865
9866 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9867 if (attr == NULL)
9868 {
9869 complaint (&symfile_complaints,
9870 _("Dwarf Error: debug entry at offset 0x%x is missing"
9871 " its dwo_id [in module %s]"),
9872 to_underlying (sect_off), dwo_file->dwo_name);
9873 return;
9874 }
9875
9876 dwo_unit->dwo_file = dwo_file;
9877 dwo_unit->signature = DW_UNSND (attr);
9878 dwo_unit->section = section;
9879 dwo_unit->sect_off = sect_off;
9880 dwo_unit->length = cu->per_cu->length;
9881
9882 if (dwarf_read_debug)
9883 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9884 to_underlying (sect_off),
9885 hex_string (dwo_unit->signature));
9886 }
9887
9888 /* Create the dwo_units for the CUs in a DWO_FILE.
9889 Note: This function processes DWO files only, not DWP files. */
9890
9891 static void
9892 create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
9893 htab_t &cus_htab)
9894 {
9895 struct objfile *objfile = dwarf2_per_objfile->objfile;
9896 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
9897 const gdb_byte *info_ptr, *end_ptr;
9898
9899 dwarf2_read_section (objfile, &section);
9900 info_ptr = section.buffer;
9901
9902 if (info_ptr == NULL)
9903 return;
9904
9905 if (dwarf_read_debug)
9906 {
9907 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9908 get_section_name (&section),
9909 get_section_file_name (&section));
9910 }
9911
9912 end_ptr = info_ptr + section.size;
9913 while (info_ptr < end_ptr)
9914 {
9915 struct dwarf2_per_cu_data per_cu;
9916 struct create_dwo_cu_data create_dwo_cu_data;
9917 struct dwo_unit *dwo_unit;
9918 void **slot;
9919 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
9920
9921 memset (&create_dwo_cu_data.dwo_unit, 0,
9922 sizeof (create_dwo_cu_data.dwo_unit));
9923 memset (&per_cu, 0, sizeof (per_cu));
9924 per_cu.objfile = objfile;
9925 per_cu.is_debug_types = 0;
9926 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
9927 per_cu.section = &section;
9928 create_dwo_cu_data.dwo_file = &dwo_file;
9929
9930 init_cutu_and_read_dies_no_follow (
9931 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
9932 info_ptr += per_cu.length;
9933
9934 // If the unit could not be parsed, skip it.
9935 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
9936 continue;
9937
9938 if (cus_htab == NULL)
9939 cus_htab = allocate_dwo_unit_table (objfile);
9940
9941 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9942 *dwo_unit = create_dwo_cu_data.dwo_unit;
9943 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
9944 gdb_assert (slot != NULL);
9945 if (*slot != NULL)
9946 {
9947 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
9948 sect_offset dup_sect_off = dup_cu->sect_off;
9949
9950 complaint (&symfile_complaints,
9951 _("debug cu entry at offset 0x%x is duplicate to"
9952 " the entry at offset 0x%x, signature %s"),
9953 to_underlying (sect_off), to_underlying (dup_sect_off),
9954 hex_string (dwo_unit->signature));
9955 }
9956 *slot = (void *)dwo_unit;
9957 }
9958 }
9959
9960 /* DWP file .debug_{cu,tu}_index section format:
9961 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9962
9963 DWP Version 1:
9964
9965 Both index sections have the same format, and serve to map a 64-bit
9966 signature to a set of section numbers. Each section begins with a header,
9967 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9968 indexes, and a pool of 32-bit section numbers. The index sections will be
9969 aligned at 8-byte boundaries in the file.
9970
9971 The index section header consists of:
9972
9973 V, 32 bit version number
9974 -, 32 bits unused
9975 N, 32 bit number of compilation units or type units in the index
9976 M, 32 bit number of slots in the hash table
9977
9978 Numbers are recorded using the byte order of the application binary.
9979
9980 The hash table begins at offset 16 in the section, and consists of an array
9981 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9982 order of the application binary). Unused slots in the hash table are 0.
9983 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9984
9985 The parallel table begins immediately after the hash table
9986 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9987 array of 32-bit indexes (using the byte order of the application binary),
9988 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9989 table contains a 32-bit index into the pool of section numbers. For unused
9990 hash table slots, the corresponding entry in the parallel table will be 0.
9991
9992 The pool of section numbers begins immediately following the hash table
9993 (at offset 16 + 12 * M from the beginning of the section). The pool of
9994 section numbers consists of an array of 32-bit words (using the byte order
9995 of the application binary). Each item in the array is indexed starting
9996 from 0. The hash table entry provides the index of the first section
9997 number in the set. Additional section numbers in the set follow, and the
9998 set is terminated by a 0 entry (section number 0 is not used in ELF).
9999
10000 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
10001 section must be the first entry in the set, and the .debug_abbrev.dwo must
10002 be the second entry. Other members of the set may follow in any order.
10003
10004 ---
10005
10006 DWP Version 2:
10007
10008 DWP Version 2 combines all the .debug_info, etc. sections into one,
10009 and the entries in the index tables are now offsets into these sections.
10010 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
10011 section.
10012
10013 Index Section Contents:
10014 Header
10015 Hash Table of Signatures dwp_hash_table.hash_table
10016 Parallel Table of Indices dwp_hash_table.unit_table
10017 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
10018 Table of Section Sizes dwp_hash_table.v2.sizes
10019
10020 The index section header consists of:
10021
10022 V, 32 bit version number
10023 L, 32 bit number of columns in the table of section offsets
10024 N, 32 bit number of compilation units or type units in the index
10025 M, 32 bit number of slots in the hash table
10026
10027 Numbers are recorded using the byte order of the application binary.
10028
10029 The hash table has the same format as version 1.
10030 The parallel table of indices has the same format as version 1,
10031 except that the entries are origin-1 indices into the table of sections
10032 offsets and the table of section sizes.
10033
10034 The table of offsets begins immediately following the parallel table
10035 (at offset 16 + 12 * M from the beginning of the section). The table is
10036 a two-dimensional array of 32-bit words (using the byte order of the
10037 application binary), with L columns and N+1 rows, in row-major order.
10038 Each row in the array is indexed starting from 0. The first row provides
10039 a key to the remaining rows: each column in this row provides an identifier
10040 for a debug section, and the offsets in the same column of subsequent rows
10041 refer to that section. The section identifiers are:
10042
10043 DW_SECT_INFO 1 .debug_info.dwo
10044 DW_SECT_TYPES 2 .debug_types.dwo
10045 DW_SECT_ABBREV 3 .debug_abbrev.dwo
10046 DW_SECT_LINE 4 .debug_line.dwo
10047 DW_SECT_LOC 5 .debug_loc.dwo
10048 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
10049 DW_SECT_MACINFO 7 .debug_macinfo.dwo
10050 DW_SECT_MACRO 8 .debug_macro.dwo
10051
10052 The offsets provided by the CU and TU index sections are the base offsets
10053 for the contributions made by each CU or TU to the corresponding section
10054 in the package file. Each CU and TU header contains an abbrev_offset
10055 field, used to find the abbreviations table for that CU or TU within the
10056 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
10057 be interpreted as relative to the base offset given in the index section.
10058 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
10059 should be interpreted as relative to the base offset for .debug_line.dwo,
10060 and offsets into other debug sections obtained from DWARF attributes should
10061 also be interpreted as relative to the corresponding base offset.
10062
10063 The table of sizes begins immediately following the table of offsets.
10064 Like the table of offsets, it is a two-dimensional array of 32-bit words,
10065 with L columns and N rows, in row-major order. Each row in the array is
10066 indexed starting from 1 (row 0 is shared by the two tables).
10067
10068 ---
10069
10070 Hash table lookup is handled the same in version 1 and 2:
10071
10072 We assume that N and M will not exceed 2^32 - 1.
10073 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
10074
10075 Given a 64-bit compilation unit signature or a type signature S, an entry
10076 in the hash table is located as follows:
10077
10078 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
10079 the low-order k bits all set to 1.
10080
10081 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
10082
10083 3) If the hash table entry at index H matches the signature, use that
10084 entry. If the hash table entry at index H is unused (all zeroes),
10085 terminate the search: the signature is not present in the table.
10086
10087 4) Let H = (H + H') modulo M. Repeat at Step 3.
10088
10089 Because M > N and H' and M are relatively prime, the search is guaranteed
10090 to stop at an unused slot or find the match. */
10091
10092 /* Create a hash table to map DWO IDs to their CU/TU entry in
10093 .debug_{info,types}.dwo in DWP_FILE.
10094 Returns NULL if there isn't one.
10095 Note: This function processes DWP files only, not DWO files. */
10096
10097 static struct dwp_hash_table *
10098 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
10099 {
10100 struct objfile *objfile = dwarf2_per_objfile->objfile;
10101 bfd *dbfd = dwp_file->dbfd;
10102 const gdb_byte *index_ptr, *index_end;
10103 struct dwarf2_section_info *index;
10104 uint32_t version, nr_columns, nr_units, nr_slots;
10105 struct dwp_hash_table *htab;
10106
10107 if (is_debug_types)
10108 index = &dwp_file->sections.tu_index;
10109 else
10110 index = &dwp_file->sections.cu_index;
10111
10112 if (dwarf2_section_empty_p (index))
10113 return NULL;
10114 dwarf2_read_section (objfile, index);
10115
10116 index_ptr = index->buffer;
10117 index_end = index_ptr + index->size;
10118
10119 version = read_4_bytes (dbfd, index_ptr);
10120 index_ptr += 4;
10121 if (version == 2)
10122 nr_columns = read_4_bytes (dbfd, index_ptr);
10123 else
10124 nr_columns = 0;
10125 index_ptr += 4;
10126 nr_units = read_4_bytes (dbfd, index_ptr);
10127 index_ptr += 4;
10128 nr_slots = read_4_bytes (dbfd, index_ptr);
10129 index_ptr += 4;
10130
10131 if (version != 1 && version != 2)
10132 {
10133 error (_("Dwarf Error: unsupported DWP file version (%s)"
10134 " [in module %s]"),
10135 pulongest (version), dwp_file->name);
10136 }
10137 if (nr_slots != (nr_slots & -nr_slots))
10138 {
10139 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
10140 " is not power of 2 [in module %s]"),
10141 pulongest (nr_slots), dwp_file->name);
10142 }
10143
10144 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
10145 htab->version = version;
10146 htab->nr_columns = nr_columns;
10147 htab->nr_units = nr_units;
10148 htab->nr_slots = nr_slots;
10149 htab->hash_table = index_ptr;
10150 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
10151
10152 /* Exit early if the table is empty. */
10153 if (nr_slots == 0 || nr_units == 0
10154 || (version == 2 && nr_columns == 0))
10155 {
10156 /* All must be zero. */
10157 if (nr_slots != 0 || nr_units != 0
10158 || (version == 2 && nr_columns != 0))
10159 {
10160 complaint (&symfile_complaints,
10161 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10162 " all zero [in modules %s]"),
10163 dwp_file->name);
10164 }
10165 return htab;
10166 }
10167
10168 if (version == 1)
10169 {
10170 htab->section_pool.v1.indices =
10171 htab->unit_table + sizeof (uint32_t) * nr_slots;
10172 /* It's harder to decide whether the section is too small in v1.
10173 V1 is deprecated anyway so we punt. */
10174 }
10175 else
10176 {
10177 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10178 int *ids = htab->section_pool.v2.section_ids;
10179 /* Reverse map for error checking. */
10180 int ids_seen[DW_SECT_MAX + 1];
10181 int i;
10182
10183 if (nr_columns < 2)
10184 {
10185 error (_("Dwarf Error: bad DWP hash table, too few columns"
10186 " in section table [in module %s]"),
10187 dwp_file->name);
10188 }
10189 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10190 {
10191 error (_("Dwarf Error: bad DWP hash table, too many columns"
10192 " in section table [in module %s]"),
10193 dwp_file->name);
10194 }
10195 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10196 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10197 for (i = 0; i < nr_columns; ++i)
10198 {
10199 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10200
10201 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10202 {
10203 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10204 " in section table [in module %s]"),
10205 id, dwp_file->name);
10206 }
10207 if (ids_seen[id] != -1)
10208 {
10209 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10210 " id %d in section table [in module %s]"),
10211 id, dwp_file->name);
10212 }
10213 ids_seen[id] = i;
10214 ids[i] = id;
10215 }
10216 /* Must have exactly one info or types section. */
10217 if (((ids_seen[DW_SECT_INFO] != -1)
10218 + (ids_seen[DW_SECT_TYPES] != -1))
10219 != 1)
10220 {
10221 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10222 " DWO info/types section [in module %s]"),
10223 dwp_file->name);
10224 }
10225 /* Must have an abbrev section. */
10226 if (ids_seen[DW_SECT_ABBREV] == -1)
10227 {
10228 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10229 " section [in module %s]"),
10230 dwp_file->name);
10231 }
10232 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10233 htab->section_pool.v2.sizes =
10234 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10235 * nr_units * nr_columns);
10236 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10237 * nr_units * nr_columns))
10238 > index_end)
10239 {
10240 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10241 " [in module %s]"),
10242 dwp_file->name);
10243 }
10244 }
10245
10246 return htab;
10247 }
10248
10249 /* Update SECTIONS with the data from SECTP.
10250
10251 This function is like the other "locate" section routines that are
10252 passed to bfd_map_over_sections, but in this context the sections to
10253 read comes from the DWP V1 hash table, not the full ELF section table.
10254
10255 The result is non-zero for success, or zero if an error was found. */
10256
10257 static int
10258 locate_v1_virtual_dwo_sections (asection *sectp,
10259 struct virtual_v1_dwo_sections *sections)
10260 {
10261 const struct dwop_section_names *names = &dwop_section_names;
10262
10263 if (section_is_p (sectp->name, &names->abbrev_dwo))
10264 {
10265 /* There can be only one. */
10266 if (sections->abbrev.s.section != NULL)
10267 return 0;
10268 sections->abbrev.s.section = sectp;
10269 sections->abbrev.size = bfd_get_section_size (sectp);
10270 }
10271 else if (section_is_p (sectp->name, &names->info_dwo)
10272 || section_is_p (sectp->name, &names->types_dwo))
10273 {
10274 /* There can be only one. */
10275 if (sections->info_or_types.s.section != NULL)
10276 return 0;
10277 sections->info_or_types.s.section = sectp;
10278 sections->info_or_types.size = bfd_get_section_size (sectp);
10279 }
10280 else if (section_is_p (sectp->name, &names->line_dwo))
10281 {
10282 /* There can be only one. */
10283 if (sections->line.s.section != NULL)
10284 return 0;
10285 sections->line.s.section = sectp;
10286 sections->line.size = bfd_get_section_size (sectp);
10287 }
10288 else if (section_is_p (sectp->name, &names->loc_dwo))
10289 {
10290 /* There can be only one. */
10291 if (sections->loc.s.section != NULL)
10292 return 0;
10293 sections->loc.s.section = sectp;
10294 sections->loc.size = bfd_get_section_size (sectp);
10295 }
10296 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10297 {
10298 /* There can be only one. */
10299 if (sections->macinfo.s.section != NULL)
10300 return 0;
10301 sections->macinfo.s.section = sectp;
10302 sections->macinfo.size = bfd_get_section_size (sectp);
10303 }
10304 else if (section_is_p (sectp->name, &names->macro_dwo))
10305 {
10306 /* There can be only one. */
10307 if (sections->macro.s.section != NULL)
10308 return 0;
10309 sections->macro.s.section = sectp;
10310 sections->macro.size = bfd_get_section_size (sectp);
10311 }
10312 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10313 {
10314 /* There can be only one. */
10315 if (sections->str_offsets.s.section != NULL)
10316 return 0;
10317 sections->str_offsets.s.section = sectp;
10318 sections->str_offsets.size = bfd_get_section_size (sectp);
10319 }
10320 else
10321 {
10322 /* No other kind of section is valid. */
10323 return 0;
10324 }
10325
10326 return 1;
10327 }
10328
10329 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10330 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10331 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10332 This is for DWP version 1 files. */
10333
10334 static struct dwo_unit *
10335 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10336 uint32_t unit_index,
10337 const char *comp_dir,
10338 ULONGEST signature, int is_debug_types)
10339 {
10340 struct objfile *objfile = dwarf2_per_objfile->objfile;
10341 const struct dwp_hash_table *dwp_htab =
10342 is_debug_types ? dwp_file->tus : dwp_file->cus;
10343 bfd *dbfd = dwp_file->dbfd;
10344 const char *kind = is_debug_types ? "TU" : "CU";
10345 struct dwo_file *dwo_file;
10346 struct dwo_unit *dwo_unit;
10347 struct virtual_v1_dwo_sections sections;
10348 void **dwo_file_slot;
10349 char *virtual_dwo_name;
10350 struct cleanup *cleanups;
10351 int i;
10352
10353 gdb_assert (dwp_file->version == 1);
10354
10355 if (dwarf_read_debug)
10356 {
10357 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10358 kind,
10359 pulongest (unit_index), hex_string (signature),
10360 dwp_file->name);
10361 }
10362
10363 /* Fetch the sections of this DWO unit.
10364 Put a limit on the number of sections we look for so that bad data
10365 doesn't cause us to loop forever. */
10366
10367 #define MAX_NR_V1_DWO_SECTIONS \
10368 (1 /* .debug_info or .debug_types */ \
10369 + 1 /* .debug_abbrev */ \
10370 + 1 /* .debug_line */ \
10371 + 1 /* .debug_loc */ \
10372 + 1 /* .debug_str_offsets */ \
10373 + 1 /* .debug_macro or .debug_macinfo */ \
10374 + 1 /* trailing zero */)
10375
10376 memset (&sections, 0, sizeof (sections));
10377 cleanups = make_cleanup (null_cleanup, 0);
10378
10379 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10380 {
10381 asection *sectp;
10382 uint32_t section_nr =
10383 read_4_bytes (dbfd,
10384 dwp_htab->section_pool.v1.indices
10385 + (unit_index + i) * sizeof (uint32_t));
10386
10387 if (section_nr == 0)
10388 break;
10389 if (section_nr >= dwp_file->num_sections)
10390 {
10391 error (_("Dwarf Error: bad DWP hash table, section number too large"
10392 " [in module %s]"),
10393 dwp_file->name);
10394 }
10395
10396 sectp = dwp_file->elf_sections[section_nr];
10397 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10398 {
10399 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10400 " [in module %s]"),
10401 dwp_file->name);
10402 }
10403 }
10404
10405 if (i < 2
10406 || dwarf2_section_empty_p (&sections.info_or_types)
10407 || dwarf2_section_empty_p (&sections.abbrev))
10408 {
10409 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10410 " [in module %s]"),
10411 dwp_file->name);
10412 }
10413 if (i == MAX_NR_V1_DWO_SECTIONS)
10414 {
10415 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10416 " [in module %s]"),
10417 dwp_file->name);
10418 }
10419
10420 /* It's easier for the rest of the code if we fake a struct dwo_file and
10421 have dwo_unit "live" in that. At least for now.
10422
10423 The DWP file can be made up of a random collection of CUs and TUs.
10424 However, for each CU + set of TUs that came from the same original DWO
10425 file, we can combine them back into a virtual DWO file to save space
10426 (fewer struct dwo_file objects to allocate). Remember that for really
10427 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10428
10429 virtual_dwo_name =
10430 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10431 get_section_id (&sections.abbrev),
10432 get_section_id (&sections.line),
10433 get_section_id (&sections.loc),
10434 get_section_id (&sections.str_offsets));
10435 make_cleanup (xfree, virtual_dwo_name);
10436 /* Can we use an existing virtual DWO file? */
10437 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10438 /* Create one if necessary. */
10439 if (*dwo_file_slot == NULL)
10440 {
10441 if (dwarf_read_debug)
10442 {
10443 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10444 virtual_dwo_name);
10445 }
10446 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10447 dwo_file->dwo_name
10448 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10449 virtual_dwo_name,
10450 strlen (virtual_dwo_name));
10451 dwo_file->comp_dir = comp_dir;
10452 dwo_file->sections.abbrev = sections.abbrev;
10453 dwo_file->sections.line = sections.line;
10454 dwo_file->sections.loc = sections.loc;
10455 dwo_file->sections.macinfo = sections.macinfo;
10456 dwo_file->sections.macro = sections.macro;
10457 dwo_file->sections.str_offsets = sections.str_offsets;
10458 /* The "str" section is global to the entire DWP file. */
10459 dwo_file->sections.str = dwp_file->sections.str;
10460 /* The info or types section is assigned below to dwo_unit,
10461 there's no need to record it in dwo_file.
10462 Also, we can't simply record type sections in dwo_file because
10463 we record a pointer into the vector in dwo_unit. As we collect more
10464 types we'll grow the vector and eventually have to reallocate space
10465 for it, invalidating all copies of pointers into the previous
10466 contents. */
10467 *dwo_file_slot = dwo_file;
10468 }
10469 else
10470 {
10471 if (dwarf_read_debug)
10472 {
10473 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10474 virtual_dwo_name);
10475 }
10476 dwo_file = (struct dwo_file *) *dwo_file_slot;
10477 }
10478 do_cleanups (cleanups);
10479
10480 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10481 dwo_unit->dwo_file = dwo_file;
10482 dwo_unit->signature = signature;
10483 dwo_unit->section =
10484 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10485 *dwo_unit->section = sections.info_or_types;
10486 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10487
10488 return dwo_unit;
10489 }
10490
10491 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10492 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10493 piece within that section used by a TU/CU, return a virtual section
10494 of just that piece. */
10495
10496 static struct dwarf2_section_info
10497 create_dwp_v2_section (struct dwarf2_section_info *section,
10498 bfd_size_type offset, bfd_size_type size)
10499 {
10500 struct dwarf2_section_info result;
10501 asection *sectp;
10502
10503 gdb_assert (section != NULL);
10504 gdb_assert (!section->is_virtual);
10505
10506 memset (&result, 0, sizeof (result));
10507 result.s.containing_section = section;
10508 result.is_virtual = 1;
10509
10510 if (size == 0)
10511 return result;
10512
10513 sectp = get_section_bfd_section (section);
10514
10515 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10516 bounds of the real section. This is a pretty-rare event, so just
10517 flag an error (easier) instead of a warning and trying to cope. */
10518 if (sectp == NULL
10519 || offset + size > bfd_get_section_size (sectp))
10520 {
10521 bfd *abfd = sectp->owner;
10522
10523 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10524 " in section %s [in module %s]"),
10525 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10526 objfile_name (dwarf2_per_objfile->objfile));
10527 }
10528
10529 result.virtual_offset = offset;
10530 result.size = size;
10531 return result;
10532 }
10533
10534 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10535 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10536 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10537 This is for DWP version 2 files. */
10538
10539 static struct dwo_unit *
10540 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10541 uint32_t unit_index,
10542 const char *comp_dir,
10543 ULONGEST signature, int is_debug_types)
10544 {
10545 struct objfile *objfile = dwarf2_per_objfile->objfile;
10546 const struct dwp_hash_table *dwp_htab =
10547 is_debug_types ? dwp_file->tus : dwp_file->cus;
10548 bfd *dbfd = dwp_file->dbfd;
10549 const char *kind = is_debug_types ? "TU" : "CU";
10550 struct dwo_file *dwo_file;
10551 struct dwo_unit *dwo_unit;
10552 struct virtual_v2_dwo_sections sections;
10553 void **dwo_file_slot;
10554 char *virtual_dwo_name;
10555 struct cleanup *cleanups;
10556 int i;
10557
10558 gdb_assert (dwp_file->version == 2);
10559
10560 if (dwarf_read_debug)
10561 {
10562 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10563 kind,
10564 pulongest (unit_index), hex_string (signature),
10565 dwp_file->name);
10566 }
10567
10568 /* Fetch the section offsets of this DWO unit. */
10569
10570 memset (&sections, 0, sizeof (sections));
10571 cleanups = make_cleanup (null_cleanup, 0);
10572
10573 for (i = 0; i < dwp_htab->nr_columns; ++i)
10574 {
10575 uint32_t offset = read_4_bytes (dbfd,
10576 dwp_htab->section_pool.v2.offsets
10577 + (((unit_index - 1) * dwp_htab->nr_columns
10578 + i)
10579 * sizeof (uint32_t)));
10580 uint32_t size = read_4_bytes (dbfd,
10581 dwp_htab->section_pool.v2.sizes
10582 + (((unit_index - 1) * dwp_htab->nr_columns
10583 + i)
10584 * sizeof (uint32_t)));
10585
10586 switch (dwp_htab->section_pool.v2.section_ids[i])
10587 {
10588 case DW_SECT_INFO:
10589 case DW_SECT_TYPES:
10590 sections.info_or_types_offset = offset;
10591 sections.info_or_types_size = size;
10592 break;
10593 case DW_SECT_ABBREV:
10594 sections.abbrev_offset = offset;
10595 sections.abbrev_size = size;
10596 break;
10597 case DW_SECT_LINE:
10598 sections.line_offset = offset;
10599 sections.line_size = size;
10600 break;
10601 case DW_SECT_LOC:
10602 sections.loc_offset = offset;
10603 sections.loc_size = size;
10604 break;
10605 case DW_SECT_STR_OFFSETS:
10606 sections.str_offsets_offset = offset;
10607 sections.str_offsets_size = size;
10608 break;
10609 case DW_SECT_MACINFO:
10610 sections.macinfo_offset = offset;
10611 sections.macinfo_size = size;
10612 break;
10613 case DW_SECT_MACRO:
10614 sections.macro_offset = offset;
10615 sections.macro_size = size;
10616 break;
10617 }
10618 }
10619
10620 /* It's easier for the rest of the code if we fake a struct dwo_file and
10621 have dwo_unit "live" in that. At least for now.
10622
10623 The DWP file can be made up of a random collection of CUs and TUs.
10624 However, for each CU + set of TUs that came from the same original DWO
10625 file, we can combine them back into a virtual DWO file to save space
10626 (fewer struct dwo_file objects to allocate). Remember that for really
10627 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10628
10629 virtual_dwo_name =
10630 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10631 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10632 (long) (sections.line_size ? sections.line_offset : 0),
10633 (long) (sections.loc_size ? sections.loc_offset : 0),
10634 (long) (sections.str_offsets_size
10635 ? sections.str_offsets_offset : 0));
10636 make_cleanup (xfree, virtual_dwo_name);
10637 /* Can we use an existing virtual DWO file? */
10638 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10639 /* Create one if necessary. */
10640 if (*dwo_file_slot == NULL)
10641 {
10642 if (dwarf_read_debug)
10643 {
10644 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10645 virtual_dwo_name);
10646 }
10647 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10648 dwo_file->dwo_name
10649 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10650 virtual_dwo_name,
10651 strlen (virtual_dwo_name));
10652 dwo_file->comp_dir = comp_dir;
10653 dwo_file->sections.abbrev =
10654 create_dwp_v2_section (&dwp_file->sections.abbrev,
10655 sections.abbrev_offset, sections.abbrev_size);
10656 dwo_file->sections.line =
10657 create_dwp_v2_section (&dwp_file->sections.line,
10658 sections.line_offset, sections.line_size);
10659 dwo_file->sections.loc =
10660 create_dwp_v2_section (&dwp_file->sections.loc,
10661 sections.loc_offset, sections.loc_size);
10662 dwo_file->sections.macinfo =
10663 create_dwp_v2_section (&dwp_file->sections.macinfo,
10664 sections.macinfo_offset, sections.macinfo_size);
10665 dwo_file->sections.macro =
10666 create_dwp_v2_section (&dwp_file->sections.macro,
10667 sections.macro_offset, sections.macro_size);
10668 dwo_file->sections.str_offsets =
10669 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10670 sections.str_offsets_offset,
10671 sections.str_offsets_size);
10672 /* The "str" section is global to the entire DWP file. */
10673 dwo_file->sections.str = dwp_file->sections.str;
10674 /* The info or types section is assigned below to dwo_unit,
10675 there's no need to record it in dwo_file.
10676 Also, we can't simply record type sections in dwo_file because
10677 we record a pointer into the vector in dwo_unit. As we collect more
10678 types we'll grow the vector and eventually have to reallocate space
10679 for it, invalidating all copies of pointers into the previous
10680 contents. */
10681 *dwo_file_slot = dwo_file;
10682 }
10683 else
10684 {
10685 if (dwarf_read_debug)
10686 {
10687 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10688 virtual_dwo_name);
10689 }
10690 dwo_file = (struct dwo_file *) *dwo_file_slot;
10691 }
10692 do_cleanups (cleanups);
10693
10694 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10695 dwo_unit->dwo_file = dwo_file;
10696 dwo_unit->signature = signature;
10697 dwo_unit->section =
10698 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10699 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10700 ? &dwp_file->sections.types
10701 : &dwp_file->sections.info,
10702 sections.info_or_types_offset,
10703 sections.info_or_types_size);
10704 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10705
10706 return dwo_unit;
10707 }
10708
10709 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10710 Returns NULL if the signature isn't found. */
10711
10712 static struct dwo_unit *
10713 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10714 ULONGEST signature, int is_debug_types)
10715 {
10716 const struct dwp_hash_table *dwp_htab =
10717 is_debug_types ? dwp_file->tus : dwp_file->cus;
10718 bfd *dbfd = dwp_file->dbfd;
10719 uint32_t mask = dwp_htab->nr_slots - 1;
10720 uint32_t hash = signature & mask;
10721 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10722 unsigned int i;
10723 void **slot;
10724 struct dwo_unit find_dwo_cu;
10725
10726 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10727 find_dwo_cu.signature = signature;
10728 slot = htab_find_slot (is_debug_types
10729 ? dwp_file->loaded_tus
10730 : dwp_file->loaded_cus,
10731 &find_dwo_cu, INSERT);
10732
10733 if (*slot != NULL)
10734 return (struct dwo_unit *) *slot;
10735
10736 /* Use a for loop so that we don't loop forever on bad debug info. */
10737 for (i = 0; i < dwp_htab->nr_slots; ++i)
10738 {
10739 ULONGEST signature_in_table;
10740
10741 signature_in_table =
10742 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10743 if (signature_in_table == signature)
10744 {
10745 uint32_t unit_index =
10746 read_4_bytes (dbfd,
10747 dwp_htab->unit_table + hash * sizeof (uint32_t));
10748
10749 if (dwp_file->version == 1)
10750 {
10751 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10752 comp_dir, signature,
10753 is_debug_types);
10754 }
10755 else
10756 {
10757 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10758 comp_dir, signature,
10759 is_debug_types);
10760 }
10761 return (struct dwo_unit *) *slot;
10762 }
10763 if (signature_in_table == 0)
10764 return NULL;
10765 hash = (hash + hash2) & mask;
10766 }
10767
10768 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10769 " [in module %s]"),
10770 dwp_file->name);
10771 }
10772
10773 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10774 Open the file specified by FILE_NAME and hand it off to BFD for
10775 preliminary analysis. Return a newly initialized bfd *, which
10776 includes a canonicalized copy of FILE_NAME.
10777 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10778 SEARCH_CWD is true if the current directory is to be searched.
10779 It will be searched before debug-file-directory.
10780 If successful, the file is added to the bfd include table of the
10781 objfile's bfd (see gdb_bfd_record_inclusion).
10782 If unable to find/open the file, return NULL.
10783 NOTE: This function is derived from symfile_bfd_open. */
10784
10785 static gdb_bfd_ref_ptr
10786 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10787 {
10788 int desc, flags;
10789 char *absolute_name;
10790 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10791 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10792 to debug_file_directory. */
10793 char *search_path;
10794 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10795
10796 if (search_cwd)
10797 {
10798 if (*debug_file_directory != '\0')
10799 search_path = concat (".", dirname_separator_string,
10800 debug_file_directory, (char *) NULL);
10801 else
10802 search_path = xstrdup (".");
10803 }
10804 else
10805 search_path = xstrdup (debug_file_directory);
10806
10807 flags = OPF_RETURN_REALPATH;
10808 if (is_dwp)
10809 flags |= OPF_SEARCH_IN_PATH;
10810 desc = openp (search_path, flags, file_name,
10811 O_RDONLY | O_BINARY, &absolute_name);
10812 xfree (search_path);
10813 if (desc < 0)
10814 return NULL;
10815
10816 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
10817 xfree (absolute_name);
10818 if (sym_bfd == NULL)
10819 return NULL;
10820 bfd_set_cacheable (sym_bfd.get (), 1);
10821
10822 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10823 return NULL;
10824
10825 /* Success. Record the bfd as having been included by the objfile's bfd.
10826 This is important because things like demangled_names_hash lives in the
10827 objfile's per_bfd space and may have references to things like symbol
10828 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10829 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
10830
10831 return sym_bfd;
10832 }
10833
10834 /* Try to open DWO file FILE_NAME.
10835 COMP_DIR is the DW_AT_comp_dir attribute.
10836 The result is the bfd handle of the file.
10837 If there is a problem finding or opening the file, return NULL.
10838 Upon success, the canonicalized path of the file is stored in the bfd,
10839 same as symfile_bfd_open. */
10840
10841 static gdb_bfd_ref_ptr
10842 open_dwo_file (const char *file_name, const char *comp_dir)
10843 {
10844 if (IS_ABSOLUTE_PATH (file_name))
10845 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10846
10847 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10848
10849 if (comp_dir != NULL)
10850 {
10851 char *path_to_try = concat (comp_dir, SLASH_STRING,
10852 file_name, (char *) NULL);
10853
10854 /* NOTE: If comp_dir is a relative path, this will also try the
10855 search path, which seems useful. */
10856 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10857 1 /*search_cwd*/));
10858 xfree (path_to_try);
10859 if (abfd != NULL)
10860 return abfd;
10861 }
10862
10863 /* That didn't work, try debug-file-directory, which, despite its name,
10864 is a list of paths. */
10865
10866 if (*debug_file_directory == '\0')
10867 return NULL;
10868
10869 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10870 }
10871
10872 /* This function is mapped across the sections and remembers the offset and
10873 size of each of the DWO debugging sections we are interested in. */
10874
10875 static void
10876 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10877 {
10878 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10879 const struct dwop_section_names *names = &dwop_section_names;
10880
10881 if (section_is_p (sectp->name, &names->abbrev_dwo))
10882 {
10883 dwo_sections->abbrev.s.section = sectp;
10884 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10885 }
10886 else if (section_is_p (sectp->name, &names->info_dwo))
10887 {
10888 dwo_sections->info.s.section = sectp;
10889 dwo_sections->info.size = bfd_get_section_size (sectp);
10890 }
10891 else if (section_is_p (sectp->name, &names->line_dwo))
10892 {
10893 dwo_sections->line.s.section = sectp;
10894 dwo_sections->line.size = bfd_get_section_size (sectp);
10895 }
10896 else if (section_is_p (sectp->name, &names->loc_dwo))
10897 {
10898 dwo_sections->loc.s.section = sectp;
10899 dwo_sections->loc.size = bfd_get_section_size (sectp);
10900 }
10901 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10902 {
10903 dwo_sections->macinfo.s.section = sectp;
10904 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10905 }
10906 else if (section_is_p (sectp->name, &names->macro_dwo))
10907 {
10908 dwo_sections->macro.s.section = sectp;
10909 dwo_sections->macro.size = bfd_get_section_size (sectp);
10910 }
10911 else if (section_is_p (sectp->name, &names->str_dwo))
10912 {
10913 dwo_sections->str.s.section = sectp;
10914 dwo_sections->str.size = bfd_get_section_size (sectp);
10915 }
10916 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10917 {
10918 dwo_sections->str_offsets.s.section = sectp;
10919 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10920 }
10921 else if (section_is_p (sectp->name, &names->types_dwo))
10922 {
10923 struct dwarf2_section_info type_section;
10924
10925 memset (&type_section, 0, sizeof (type_section));
10926 type_section.s.section = sectp;
10927 type_section.size = bfd_get_section_size (sectp);
10928 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10929 &type_section);
10930 }
10931 }
10932
10933 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10934 by PER_CU. This is for the non-DWP case.
10935 The result is NULL if DWO_NAME can't be found. */
10936
10937 static struct dwo_file *
10938 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10939 const char *dwo_name, const char *comp_dir)
10940 {
10941 struct objfile *objfile = dwarf2_per_objfile->objfile;
10942 struct dwo_file *dwo_file;
10943 struct cleanup *cleanups;
10944
10945 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
10946 if (dbfd == NULL)
10947 {
10948 if (dwarf_read_debug)
10949 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10950 return NULL;
10951 }
10952 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10953 dwo_file->dwo_name = dwo_name;
10954 dwo_file->comp_dir = comp_dir;
10955 dwo_file->dbfd = dbfd.release ();
10956
10957 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10958
10959 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10960 &dwo_file->sections);
10961
10962 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
10963
10964 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10965 dwo_file->tus);
10966
10967 discard_cleanups (cleanups);
10968
10969 if (dwarf_read_debug)
10970 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10971
10972 return dwo_file;
10973 }
10974
10975 /* This function is mapped across the sections and remembers the offset and
10976 size of each of the DWP debugging sections common to version 1 and 2 that
10977 we are interested in. */
10978
10979 static void
10980 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10981 void *dwp_file_ptr)
10982 {
10983 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10984 const struct dwop_section_names *names = &dwop_section_names;
10985 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10986
10987 /* Record the ELF section number for later lookup: this is what the
10988 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10989 gdb_assert (elf_section_nr < dwp_file->num_sections);
10990 dwp_file->elf_sections[elf_section_nr] = sectp;
10991
10992 /* Look for specific sections that we need. */
10993 if (section_is_p (sectp->name, &names->str_dwo))
10994 {
10995 dwp_file->sections.str.s.section = sectp;
10996 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10997 }
10998 else if (section_is_p (sectp->name, &names->cu_index))
10999 {
11000 dwp_file->sections.cu_index.s.section = sectp;
11001 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
11002 }
11003 else if (section_is_p (sectp->name, &names->tu_index))
11004 {
11005 dwp_file->sections.tu_index.s.section = sectp;
11006 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
11007 }
11008 }
11009
11010 /* This function is mapped across the sections and remembers the offset and
11011 size of each of the DWP version 2 debugging sections that we are interested
11012 in. This is split into a separate function because we don't know if we
11013 have version 1 or 2 until we parse the cu_index/tu_index sections. */
11014
11015 static void
11016 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
11017 {
11018 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
11019 const struct dwop_section_names *names = &dwop_section_names;
11020 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
11021
11022 /* Record the ELF section number for later lookup: this is what the
11023 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
11024 gdb_assert (elf_section_nr < dwp_file->num_sections);
11025 dwp_file->elf_sections[elf_section_nr] = sectp;
11026
11027 /* Look for specific sections that we need. */
11028 if (section_is_p (sectp->name, &names->abbrev_dwo))
11029 {
11030 dwp_file->sections.abbrev.s.section = sectp;
11031 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
11032 }
11033 else if (section_is_p (sectp->name, &names->info_dwo))
11034 {
11035 dwp_file->sections.info.s.section = sectp;
11036 dwp_file->sections.info.size = bfd_get_section_size (sectp);
11037 }
11038 else if (section_is_p (sectp->name, &names->line_dwo))
11039 {
11040 dwp_file->sections.line.s.section = sectp;
11041 dwp_file->sections.line.size = bfd_get_section_size (sectp);
11042 }
11043 else if (section_is_p (sectp->name, &names->loc_dwo))
11044 {
11045 dwp_file->sections.loc.s.section = sectp;
11046 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
11047 }
11048 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11049 {
11050 dwp_file->sections.macinfo.s.section = sectp;
11051 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
11052 }
11053 else if (section_is_p (sectp->name, &names->macro_dwo))
11054 {
11055 dwp_file->sections.macro.s.section = sectp;
11056 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
11057 }
11058 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11059 {
11060 dwp_file->sections.str_offsets.s.section = sectp;
11061 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
11062 }
11063 else if (section_is_p (sectp->name, &names->types_dwo))
11064 {
11065 dwp_file->sections.types.s.section = sectp;
11066 dwp_file->sections.types.size = bfd_get_section_size (sectp);
11067 }
11068 }
11069
11070 /* Hash function for dwp_file loaded CUs/TUs. */
11071
11072 static hashval_t
11073 hash_dwp_loaded_cutus (const void *item)
11074 {
11075 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11076
11077 /* This drops the top 32 bits of the signature, but is ok for a hash. */
11078 return dwo_unit->signature;
11079 }
11080
11081 /* Equality function for dwp_file loaded CUs/TUs. */
11082
11083 static int
11084 eq_dwp_loaded_cutus (const void *a, const void *b)
11085 {
11086 const struct dwo_unit *dua = (const struct dwo_unit *) a;
11087 const struct dwo_unit *dub = (const struct dwo_unit *) b;
11088
11089 return dua->signature == dub->signature;
11090 }
11091
11092 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
11093
11094 static htab_t
11095 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
11096 {
11097 return htab_create_alloc_ex (3,
11098 hash_dwp_loaded_cutus,
11099 eq_dwp_loaded_cutus,
11100 NULL,
11101 &objfile->objfile_obstack,
11102 hashtab_obstack_allocate,
11103 dummy_obstack_deallocate);
11104 }
11105
11106 /* Try to open DWP file FILE_NAME.
11107 The result is the bfd handle of the file.
11108 If there is a problem finding or opening the file, return NULL.
11109 Upon success, the canonicalized path of the file is stored in the bfd,
11110 same as symfile_bfd_open. */
11111
11112 static gdb_bfd_ref_ptr
11113 open_dwp_file (const char *file_name)
11114 {
11115 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
11116 1 /*search_cwd*/));
11117 if (abfd != NULL)
11118 return abfd;
11119
11120 /* Work around upstream bug 15652.
11121 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11122 [Whether that's a "bug" is debatable, but it is getting in our way.]
11123 We have no real idea where the dwp file is, because gdb's realpath-ing
11124 of the executable's path may have discarded the needed info.
11125 [IWBN if the dwp file name was recorded in the executable, akin to
11126 .gnu_debuglink, but that doesn't exist yet.]
11127 Strip the directory from FILE_NAME and search again. */
11128 if (*debug_file_directory != '\0')
11129 {
11130 /* Don't implicitly search the current directory here.
11131 If the user wants to search "." to handle this case,
11132 it must be added to debug-file-directory. */
11133 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11134 0 /*search_cwd*/);
11135 }
11136
11137 return NULL;
11138 }
11139
11140 /* Initialize the use of the DWP file for the current objfile.
11141 By convention the name of the DWP file is ${objfile}.dwp.
11142 The result is NULL if it can't be found. */
11143
11144 static struct dwp_file *
11145 open_and_init_dwp_file (void)
11146 {
11147 struct objfile *objfile = dwarf2_per_objfile->objfile;
11148 struct dwp_file *dwp_file;
11149
11150 /* Try to find first .dwp for the binary file before any symbolic links
11151 resolving. */
11152
11153 /* If the objfile is a debug file, find the name of the real binary
11154 file and get the name of dwp file from there. */
11155 std::string dwp_name;
11156 if (objfile->separate_debug_objfile_backlink != NULL)
11157 {
11158 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11159 const char *backlink_basename = lbasename (backlink->original_name);
11160
11161 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
11162 }
11163 else
11164 dwp_name = objfile->original_name;
11165
11166 dwp_name += ".dwp";
11167
11168 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
11169 if (dbfd == NULL
11170 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11171 {
11172 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
11173 dwp_name = objfile_name (objfile);
11174 dwp_name += ".dwp";
11175 dbfd = open_dwp_file (dwp_name.c_str ());
11176 }
11177
11178 if (dbfd == NULL)
11179 {
11180 if (dwarf_read_debug)
11181 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
11182 return NULL;
11183 }
11184 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
11185 dwp_file->name = bfd_get_filename (dbfd.get ());
11186 dwp_file->dbfd = dbfd.release ();
11187
11188 /* +1: section 0 is unused */
11189 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
11190 dwp_file->elf_sections =
11191 OBSTACK_CALLOC (&objfile->objfile_obstack,
11192 dwp_file->num_sections, asection *);
11193
11194 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11195 dwp_file);
11196
11197 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11198
11199 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11200
11201 /* The DWP file version is stored in the hash table. Oh well. */
11202 if (dwp_file->cus->version != dwp_file->tus->version)
11203 {
11204 /* Technically speaking, we should try to limp along, but this is
11205 pretty bizarre. We use pulongest here because that's the established
11206 portability solution (e.g, we cannot use %u for uint32_t). */
11207 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11208 " TU version %s [in DWP file %s]"),
11209 pulongest (dwp_file->cus->version),
11210 pulongest (dwp_file->tus->version), dwp_name.c_str ());
11211 }
11212 dwp_file->version = dwp_file->cus->version;
11213
11214 if (dwp_file->version == 2)
11215 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11216 dwp_file);
11217
11218 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11219 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
11220
11221 if (dwarf_read_debug)
11222 {
11223 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11224 fprintf_unfiltered (gdb_stdlog,
11225 " %s CUs, %s TUs\n",
11226 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11227 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
11228 }
11229
11230 return dwp_file;
11231 }
11232
11233 /* Wrapper around open_and_init_dwp_file, only open it once. */
11234
11235 static struct dwp_file *
11236 get_dwp_file (void)
11237 {
11238 if (! dwarf2_per_objfile->dwp_checked)
11239 {
11240 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11241 dwarf2_per_objfile->dwp_checked = 1;
11242 }
11243 return dwarf2_per_objfile->dwp_file;
11244 }
11245
11246 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11247 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11248 or in the DWP file for the objfile, referenced by THIS_UNIT.
11249 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
11250 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11251
11252 This is called, for example, when wanting to read a variable with a
11253 complex location. Therefore we don't want to do file i/o for every call.
11254 Therefore we don't want to look for a DWO file on every call.
11255 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11256 then we check if we've already seen DWO_NAME, and only THEN do we check
11257 for a DWO file.
11258
11259 The result is a pointer to the dwo_unit object or NULL if we didn't find it
11260 (dwo_id mismatch or couldn't find the DWO/DWP file). */
11261
11262 static struct dwo_unit *
11263 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11264 const char *dwo_name, const char *comp_dir,
11265 ULONGEST signature, int is_debug_types)
11266 {
11267 struct objfile *objfile = dwarf2_per_objfile->objfile;
11268 const char *kind = is_debug_types ? "TU" : "CU";
11269 void **dwo_file_slot;
11270 struct dwo_file *dwo_file;
11271 struct dwp_file *dwp_file;
11272
11273 /* First see if there's a DWP file.
11274 If we have a DWP file but didn't find the DWO inside it, don't
11275 look for the original DWO file. It makes gdb behave differently
11276 depending on whether one is debugging in the build tree. */
11277
11278 dwp_file = get_dwp_file ();
11279 if (dwp_file != NULL)
11280 {
11281 const struct dwp_hash_table *dwp_htab =
11282 is_debug_types ? dwp_file->tus : dwp_file->cus;
11283
11284 if (dwp_htab != NULL)
11285 {
11286 struct dwo_unit *dwo_cutu =
11287 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11288 signature, is_debug_types);
11289
11290 if (dwo_cutu != NULL)
11291 {
11292 if (dwarf_read_debug)
11293 {
11294 fprintf_unfiltered (gdb_stdlog,
11295 "Virtual DWO %s %s found: @%s\n",
11296 kind, hex_string (signature),
11297 host_address_to_string (dwo_cutu));
11298 }
11299 return dwo_cutu;
11300 }
11301 }
11302 }
11303 else
11304 {
11305 /* No DWP file, look for the DWO file. */
11306
11307 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11308 if (*dwo_file_slot == NULL)
11309 {
11310 /* Read in the file and build a table of the CUs/TUs it contains. */
11311 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11312 }
11313 /* NOTE: This will be NULL if unable to open the file. */
11314 dwo_file = (struct dwo_file *) *dwo_file_slot;
11315
11316 if (dwo_file != NULL)
11317 {
11318 struct dwo_unit *dwo_cutu = NULL;
11319
11320 if (is_debug_types && dwo_file->tus)
11321 {
11322 struct dwo_unit find_dwo_cutu;
11323
11324 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11325 find_dwo_cutu.signature = signature;
11326 dwo_cutu
11327 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11328 }
11329 else if (!is_debug_types && dwo_file->cus)
11330 {
11331 struct dwo_unit find_dwo_cutu;
11332
11333 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11334 find_dwo_cutu.signature = signature;
11335 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11336 &find_dwo_cutu);
11337 }
11338
11339 if (dwo_cutu != NULL)
11340 {
11341 if (dwarf_read_debug)
11342 {
11343 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11344 kind, dwo_name, hex_string (signature),
11345 host_address_to_string (dwo_cutu));
11346 }
11347 return dwo_cutu;
11348 }
11349 }
11350 }
11351
11352 /* We didn't find it. This could mean a dwo_id mismatch, or
11353 someone deleted the DWO/DWP file, or the search path isn't set up
11354 correctly to find the file. */
11355
11356 if (dwarf_read_debug)
11357 {
11358 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11359 kind, dwo_name, hex_string (signature));
11360 }
11361
11362 /* This is a warning and not a complaint because it can be caused by
11363 pilot error (e.g., user accidentally deleting the DWO). */
11364 {
11365 /* Print the name of the DWP file if we looked there, helps the user
11366 better diagnose the problem. */
11367 char *dwp_text = NULL;
11368 struct cleanup *cleanups;
11369
11370 if (dwp_file != NULL)
11371 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11372 cleanups = make_cleanup (xfree, dwp_text);
11373
11374 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11375 " [in module %s]"),
11376 kind, dwo_name, hex_string (signature),
11377 dwp_text != NULL ? dwp_text : "",
11378 this_unit->is_debug_types ? "TU" : "CU",
11379 to_underlying (this_unit->sect_off), objfile_name (objfile));
11380
11381 do_cleanups (cleanups);
11382 }
11383 return NULL;
11384 }
11385
11386 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11387 See lookup_dwo_cutu_unit for details. */
11388
11389 static struct dwo_unit *
11390 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11391 const char *dwo_name, const char *comp_dir,
11392 ULONGEST signature)
11393 {
11394 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11395 }
11396
11397 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11398 See lookup_dwo_cutu_unit for details. */
11399
11400 static struct dwo_unit *
11401 lookup_dwo_type_unit (struct signatured_type *this_tu,
11402 const char *dwo_name, const char *comp_dir)
11403 {
11404 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11405 }
11406
11407 /* Traversal function for queue_and_load_all_dwo_tus. */
11408
11409 static int
11410 queue_and_load_dwo_tu (void **slot, void *info)
11411 {
11412 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11413 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11414 ULONGEST signature = dwo_unit->signature;
11415 struct signatured_type *sig_type =
11416 lookup_dwo_signatured_type (per_cu->cu, signature);
11417
11418 if (sig_type != NULL)
11419 {
11420 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11421
11422 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11423 a real dependency of PER_CU on SIG_TYPE. That is detected later
11424 while processing PER_CU. */
11425 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11426 load_full_type_unit (sig_cu);
11427 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11428 }
11429
11430 return 1;
11431 }
11432
11433 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11434 The DWO may have the only definition of the type, though it may not be
11435 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11436 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11437
11438 static void
11439 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11440 {
11441 struct dwo_unit *dwo_unit;
11442 struct dwo_file *dwo_file;
11443
11444 gdb_assert (!per_cu->is_debug_types);
11445 gdb_assert (get_dwp_file () == NULL);
11446 gdb_assert (per_cu->cu != NULL);
11447
11448 dwo_unit = per_cu->cu->dwo_unit;
11449 gdb_assert (dwo_unit != NULL);
11450
11451 dwo_file = dwo_unit->dwo_file;
11452 if (dwo_file->tus != NULL)
11453 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11454 }
11455
11456 /* Free all resources associated with DWO_FILE.
11457 Close the DWO file and munmap the sections.
11458 All memory should be on the objfile obstack. */
11459
11460 static void
11461 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11462 {
11463
11464 /* Note: dbfd is NULL for virtual DWO files. */
11465 gdb_bfd_unref (dwo_file->dbfd);
11466
11467 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11468 }
11469
11470 /* Wrapper for free_dwo_file for use in cleanups. */
11471
11472 static void
11473 free_dwo_file_cleanup (void *arg)
11474 {
11475 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11476 struct objfile *objfile = dwarf2_per_objfile->objfile;
11477
11478 free_dwo_file (dwo_file, objfile);
11479 }
11480
11481 /* Traversal function for free_dwo_files. */
11482
11483 static int
11484 free_dwo_file_from_slot (void **slot, void *info)
11485 {
11486 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11487 struct objfile *objfile = (struct objfile *) info;
11488
11489 free_dwo_file (dwo_file, objfile);
11490
11491 return 1;
11492 }
11493
11494 /* Free all resources associated with DWO_FILES. */
11495
11496 static void
11497 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11498 {
11499 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11500 }
11501 \f
11502 /* Read in various DIEs. */
11503
11504 /* qsort helper for inherit_abstract_dies. */
11505
11506 static int
11507 unsigned_int_compar (const void *ap, const void *bp)
11508 {
11509 unsigned int a = *(unsigned int *) ap;
11510 unsigned int b = *(unsigned int *) bp;
11511
11512 return (a > b) - (b > a);
11513 }
11514
11515 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11516 Inherit only the children of the DW_AT_abstract_origin DIE not being
11517 already referenced by DW_AT_abstract_origin from the children of the
11518 current DIE. */
11519
11520 static void
11521 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11522 {
11523 struct die_info *child_die;
11524 unsigned die_children_count;
11525 /* CU offsets which were referenced by children of the current DIE. */
11526 sect_offset *offsets;
11527 sect_offset *offsets_end, *offsetp;
11528 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11529 struct die_info *origin_die;
11530 /* Iterator of the ORIGIN_DIE children. */
11531 struct die_info *origin_child_die;
11532 struct cleanup *cleanups;
11533 struct attribute *attr;
11534 struct dwarf2_cu *origin_cu;
11535 struct pending **origin_previous_list_in_scope;
11536
11537 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11538 if (!attr)
11539 return;
11540
11541 /* Note that following die references may follow to a die in a
11542 different cu. */
11543
11544 origin_cu = cu;
11545 origin_die = follow_die_ref (die, attr, &origin_cu);
11546
11547 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11548 symbols in. */
11549 origin_previous_list_in_scope = origin_cu->list_in_scope;
11550 origin_cu->list_in_scope = cu->list_in_scope;
11551
11552 if (die->tag != origin_die->tag
11553 && !(die->tag == DW_TAG_inlined_subroutine
11554 && origin_die->tag == DW_TAG_subprogram))
11555 complaint (&symfile_complaints,
11556 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11557 to_underlying (die->sect_off),
11558 to_underlying (origin_die->sect_off));
11559
11560 child_die = die->child;
11561 die_children_count = 0;
11562 while (child_die && child_die->tag)
11563 {
11564 child_die = sibling_die (child_die);
11565 die_children_count++;
11566 }
11567 offsets = XNEWVEC (sect_offset, die_children_count);
11568 cleanups = make_cleanup (xfree, offsets);
11569
11570 offsets_end = offsets;
11571 for (child_die = die->child;
11572 child_die && child_die->tag;
11573 child_die = sibling_die (child_die))
11574 {
11575 struct die_info *child_origin_die;
11576 struct dwarf2_cu *child_origin_cu;
11577
11578 /* We are trying to process concrete instance entries:
11579 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11580 it's not relevant to our analysis here. i.e. detecting DIEs that are
11581 present in the abstract instance but not referenced in the concrete
11582 one. */
11583 if (child_die->tag == DW_TAG_call_site
11584 || child_die->tag == DW_TAG_GNU_call_site)
11585 continue;
11586
11587 /* For each CHILD_DIE, find the corresponding child of
11588 ORIGIN_DIE. If there is more than one layer of
11589 DW_AT_abstract_origin, follow them all; there shouldn't be,
11590 but GCC versions at least through 4.4 generate this (GCC PR
11591 40573). */
11592 child_origin_die = child_die;
11593 child_origin_cu = cu;
11594 while (1)
11595 {
11596 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11597 child_origin_cu);
11598 if (attr == NULL)
11599 break;
11600 child_origin_die = follow_die_ref (child_origin_die, attr,
11601 &child_origin_cu);
11602 }
11603
11604 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11605 counterpart may exist. */
11606 if (child_origin_die != child_die)
11607 {
11608 if (child_die->tag != child_origin_die->tag
11609 && !(child_die->tag == DW_TAG_inlined_subroutine
11610 && child_origin_die->tag == DW_TAG_subprogram))
11611 complaint (&symfile_complaints,
11612 _("Child DIE 0x%x and its abstract origin 0x%x have "
11613 "different tags"),
11614 to_underlying (child_die->sect_off),
11615 to_underlying (child_origin_die->sect_off));
11616 if (child_origin_die->parent != origin_die)
11617 complaint (&symfile_complaints,
11618 _("Child DIE 0x%x and its abstract origin 0x%x have "
11619 "different parents"),
11620 to_underlying (child_die->sect_off),
11621 to_underlying (child_origin_die->sect_off));
11622 else
11623 *offsets_end++ = child_origin_die->sect_off;
11624 }
11625 }
11626 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11627 unsigned_int_compar);
11628 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11629 if (offsetp[-1] == *offsetp)
11630 complaint (&symfile_complaints,
11631 _("Multiple children of DIE 0x%x refer "
11632 "to DIE 0x%x as their abstract origin"),
11633 to_underlying (die->sect_off), to_underlying (*offsetp));
11634
11635 offsetp = offsets;
11636 origin_child_die = origin_die->child;
11637 while (origin_child_die && origin_child_die->tag)
11638 {
11639 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11640 while (offsetp < offsets_end
11641 && *offsetp < origin_child_die->sect_off)
11642 offsetp++;
11643 if (offsetp >= offsets_end
11644 || *offsetp > origin_child_die->sect_off)
11645 {
11646 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11647 Check whether we're already processing ORIGIN_CHILD_DIE.
11648 This can happen with mutually referenced abstract_origins.
11649 PR 16581. */
11650 if (!origin_child_die->in_process)
11651 process_die (origin_child_die, origin_cu);
11652 }
11653 origin_child_die = sibling_die (origin_child_die);
11654 }
11655 origin_cu->list_in_scope = origin_previous_list_in_scope;
11656
11657 do_cleanups (cleanups);
11658 }
11659
11660 static void
11661 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11662 {
11663 struct objfile *objfile = cu->objfile;
11664 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11665 struct context_stack *newobj;
11666 CORE_ADDR lowpc;
11667 CORE_ADDR highpc;
11668 struct die_info *child_die;
11669 struct attribute *attr, *call_line, *call_file;
11670 const char *name;
11671 CORE_ADDR baseaddr;
11672 struct block *block;
11673 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11674 VEC (symbolp) *template_args = NULL;
11675 struct template_symbol *templ_func = NULL;
11676
11677 if (inlined_func)
11678 {
11679 /* If we do not have call site information, we can't show the
11680 caller of this inlined function. That's too confusing, so
11681 only use the scope for local variables. */
11682 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11683 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11684 if (call_line == NULL || call_file == NULL)
11685 {
11686 read_lexical_block_scope (die, cu);
11687 return;
11688 }
11689 }
11690
11691 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11692
11693 name = dwarf2_name (die, cu);
11694
11695 /* Ignore functions with missing or empty names. These are actually
11696 illegal according to the DWARF standard. */
11697 if (name == NULL)
11698 {
11699 complaint (&symfile_complaints,
11700 _("missing name for subprogram DIE at %d"),
11701 to_underlying (die->sect_off));
11702 return;
11703 }
11704
11705 /* Ignore functions with missing or invalid low and high pc attributes. */
11706 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11707 <= PC_BOUNDS_INVALID)
11708 {
11709 attr = dwarf2_attr (die, DW_AT_external, cu);
11710 if (!attr || !DW_UNSND (attr))
11711 complaint (&symfile_complaints,
11712 _("cannot get low and high bounds "
11713 "for subprogram DIE at %d"),
11714 to_underlying (die->sect_off));
11715 return;
11716 }
11717
11718 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11719 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11720
11721 /* If we have any template arguments, then we must allocate a
11722 different sort of symbol. */
11723 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11724 {
11725 if (child_die->tag == DW_TAG_template_type_param
11726 || child_die->tag == DW_TAG_template_value_param)
11727 {
11728 templ_func = allocate_template_symbol (objfile);
11729 templ_func->base.is_cplus_template_function = 1;
11730 break;
11731 }
11732 }
11733
11734 newobj = push_context (0, lowpc);
11735 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11736 (struct symbol *) templ_func);
11737
11738 /* If there is a location expression for DW_AT_frame_base, record
11739 it. */
11740 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11741 if (attr)
11742 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11743
11744 /* If there is a location for the static link, record it. */
11745 newobj->static_link = NULL;
11746 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11747 if (attr)
11748 {
11749 newobj->static_link
11750 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11751 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11752 }
11753
11754 cu->list_in_scope = &local_symbols;
11755
11756 if (die->child != NULL)
11757 {
11758 child_die = die->child;
11759 while (child_die && child_die->tag)
11760 {
11761 if (child_die->tag == DW_TAG_template_type_param
11762 || child_die->tag == DW_TAG_template_value_param)
11763 {
11764 struct symbol *arg = new_symbol (child_die, NULL, cu);
11765
11766 if (arg != NULL)
11767 VEC_safe_push (symbolp, template_args, arg);
11768 }
11769 else
11770 process_die (child_die, cu);
11771 child_die = sibling_die (child_die);
11772 }
11773 }
11774
11775 inherit_abstract_dies (die, cu);
11776
11777 /* If we have a DW_AT_specification, we might need to import using
11778 directives from the context of the specification DIE. See the
11779 comment in determine_prefix. */
11780 if (cu->language == language_cplus
11781 && dwarf2_attr (die, DW_AT_specification, cu))
11782 {
11783 struct dwarf2_cu *spec_cu = cu;
11784 struct die_info *spec_die = die_specification (die, &spec_cu);
11785
11786 while (spec_die)
11787 {
11788 child_die = spec_die->child;
11789 while (child_die && child_die->tag)
11790 {
11791 if (child_die->tag == DW_TAG_imported_module)
11792 process_die (child_die, spec_cu);
11793 child_die = sibling_die (child_die);
11794 }
11795
11796 /* In some cases, GCC generates specification DIEs that
11797 themselves contain DW_AT_specification attributes. */
11798 spec_die = die_specification (spec_die, &spec_cu);
11799 }
11800 }
11801
11802 newobj = pop_context ();
11803 /* Make a block for the local symbols within. */
11804 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11805 newobj->static_link, lowpc, highpc);
11806
11807 /* For C++, set the block's scope. */
11808 if ((cu->language == language_cplus
11809 || cu->language == language_fortran
11810 || cu->language == language_d
11811 || cu->language == language_rust)
11812 && cu->processing_has_namespace_info)
11813 block_set_scope (block, determine_prefix (die, cu),
11814 &objfile->objfile_obstack);
11815
11816 /* If we have address ranges, record them. */
11817 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11818
11819 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11820
11821 /* Attach template arguments to function. */
11822 if (! VEC_empty (symbolp, template_args))
11823 {
11824 gdb_assert (templ_func != NULL);
11825
11826 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11827 templ_func->template_arguments
11828 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11829 templ_func->n_template_arguments);
11830 memcpy (templ_func->template_arguments,
11831 VEC_address (symbolp, template_args),
11832 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11833 VEC_free (symbolp, template_args);
11834 }
11835
11836 /* In C++, we can have functions nested inside functions (e.g., when
11837 a function declares a class that has methods). This means that
11838 when we finish processing a function scope, we may need to go
11839 back to building a containing block's symbol lists. */
11840 local_symbols = newobj->locals;
11841 local_using_directives = newobj->local_using_directives;
11842
11843 /* If we've finished processing a top-level function, subsequent
11844 symbols go in the file symbol list. */
11845 if (outermost_context_p ())
11846 cu->list_in_scope = &file_symbols;
11847 }
11848
11849 /* Process all the DIES contained within a lexical block scope. Start
11850 a new scope, process the dies, and then close the scope. */
11851
11852 static void
11853 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11854 {
11855 struct objfile *objfile = cu->objfile;
11856 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11857 struct context_stack *newobj;
11858 CORE_ADDR lowpc, highpc;
11859 struct die_info *child_die;
11860 CORE_ADDR baseaddr;
11861
11862 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11863
11864 /* Ignore blocks with missing or invalid low and high pc attributes. */
11865 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11866 as multiple lexical blocks? Handling children in a sane way would
11867 be nasty. Might be easier to properly extend generic blocks to
11868 describe ranges. */
11869 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11870 {
11871 case PC_BOUNDS_NOT_PRESENT:
11872 /* DW_TAG_lexical_block has no attributes, process its children as if
11873 there was no wrapping by that DW_TAG_lexical_block.
11874 GCC does no longer produces such DWARF since GCC r224161. */
11875 for (child_die = die->child;
11876 child_die != NULL && child_die->tag;
11877 child_die = sibling_die (child_die))
11878 process_die (child_die, cu);
11879 return;
11880 case PC_BOUNDS_INVALID:
11881 return;
11882 }
11883 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11884 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11885
11886 push_context (0, lowpc);
11887 if (die->child != NULL)
11888 {
11889 child_die = die->child;
11890 while (child_die && child_die->tag)
11891 {
11892 process_die (child_die, cu);
11893 child_die = sibling_die (child_die);
11894 }
11895 }
11896 inherit_abstract_dies (die, cu);
11897 newobj = pop_context ();
11898
11899 if (local_symbols != NULL || local_using_directives != NULL)
11900 {
11901 struct block *block
11902 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11903 newobj->start_addr, highpc);
11904
11905 /* Note that recording ranges after traversing children, as we
11906 do here, means that recording a parent's ranges entails
11907 walking across all its children's ranges as they appear in
11908 the address map, which is quadratic behavior.
11909
11910 It would be nicer to record the parent's ranges before
11911 traversing its children, simply overriding whatever you find
11912 there. But since we don't even decide whether to create a
11913 block until after we've traversed its children, that's hard
11914 to do. */
11915 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11916 }
11917 local_symbols = newobj->locals;
11918 local_using_directives = newobj->local_using_directives;
11919 }
11920
11921 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
11922
11923 static void
11924 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11925 {
11926 struct objfile *objfile = cu->objfile;
11927 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11928 CORE_ADDR pc, baseaddr;
11929 struct attribute *attr;
11930 struct call_site *call_site, call_site_local;
11931 void **slot;
11932 int nparams;
11933 struct die_info *child_die;
11934
11935 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11936
11937 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11938 if (attr == NULL)
11939 {
11940 /* This was a pre-DWARF-5 GNU extension alias
11941 for DW_AT_call_return_pc. */
11942 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11943 }
11944 if (!attr)
11945 {
11946 complaint (&symfile_complaints,
11947 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
11948 "DIE 0x%x [in module %s]"),
11949 to_underlying (die->sect_off), objfile_name (objfile));
11950 return;
11951 }
11952 pc = attr_value_as_address (attr) + baseaddr;
11953 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11954
11955 if (cu->call_site_htab == NULL)
11956 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11957 NULL, &objfile->objfile_obstack,
11958 hashtab_obstack_allocate, NULL);
11959 call_site_local.pc = pc;
11960 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11961 if (*slot != NULL)
11962 {
11963 complaint (&symfile_complaints,
11964 _("Duplicate PC %s for DW_TAG_call_site "
11965 "DIE 0x%x [in module %s]"),
11966 paddress (gdbarch, pc), to_underlying (die->sect_off),
11967 objfile_name (objfile));
11968 return;
11969 }
11970
11971 /* Count parameters at the caller. */
11972
11973 nparams = 0;
11974 for (child_die = die->child; child_die && child_die->tag;
11975 child_die = sibling_die (child_die))
11976 {
11977 if (child_die->tag != DW_TAG_call_site_parameter
11978 && child_die->tag != DW_TAG_GNU_call_site_parameter)
11979 {
11980 complaint (&symfile_complaints,
11981 _("Tag %d is not DW_TAG_call_site_parameter in "
11982 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11983 child_die->tag, to_underlying (child_die->sect_off),
11984 objfile_name (objfile));
11985 continue;
11986 }
11987
11988 nparams++;
11989 }
11990
11991 call_site
11992 = ((struct call_site *)
11993 obstack_alloc (&objfile->objfile_obstack,
11994 sizeof (*call_site)
11995 + (sizeof (*call_site->parameter) * (nparams - 1))));
11996 *slot = call_site;
11997 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11998 call_site->pc = pc;
11999
12000 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
12001 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
12002 {
12003 struct die_info *func_die;
12004
12005 /* Skip also over DW_TAG_inlined_subroutine. */
12006 for (func_die = die->parent;
12007 func_die && func_die->tag != DW_TAG_subprogram
12008 && func_die->tag != DW_TAG_subroutine_type;
12009 func_die = func_die->parent);
12010
12011 /* DW_AT_call_all_calls is a superset
12012 of DW_AT_call_all_tail_calls. */
12013 if (func_die
12014 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
12015 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
12016 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
12017 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
12018 {
12019 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
12020 not complete. But keep CALL_SITE for look ups via call_site_htab,
12021 both the initial caller containing the real return address PC and
12022 the final callee containing the current PC of a chain of tail
12023 calls do not need to have the tail call list complete. But any
12024 function candidate for a virtual tail call frame searched via
12025 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
12026 determined unambiguously. */
12027 }
12028 else
12029 {
12030 struct type *func_type = NULL;
12031
12032 if (func_die)
12033 func_type = get_die_type (func_die, cu);
12034 if (func_type != NULL)
12035 {
12036 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
12037
12038 /* Enlist this call site to the function. */
12039 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
12040 TYPE_TAIL_CALL_LIST (func_type) = call_site;
12041 }
12042 else
12043 complaint (&symfile_complaints,
12044 _("Cannot find function owning DW_TAG_call_site "
12045 "DIE 0x%x [in module %s]"),
12046 to_underlying (die->sect_off), objfile_name (objfile));
12047 }
12048 }
12049
12050 attr = dwarf2_attr (die, DW_AT_call_target, cu);
12051 if (attr == NULL)
12052 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
12053 if (attr == NULL)
12054 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
12055 if (attr == NULL)
12056 {
12057 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
12058 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12059 }
12060 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
12061 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
12062 /* Keep NULL DWARF_BLOCK. */;
12063 else if (attr_form_is_block (attr))
12064 {
12065 struct dwarf2_locexpr_baton *dlbaton;
12066
12067 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
12068 dlbaton->data = DW_BLOCK (attr)->data;
12069 dlbaton->size = DW_BLOCK (attr)->size;
12070 dlbaton->per_cu = cu->per_cu;
12071
12072 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
12073 }
12074 else if (attr_form_is_ref (attr))
12075 {
12076 struct dwarf2_cu *target_cu = cu;
12077 struct die_info *target_die;
12078
12079 target_die = follow_die_ref (die, attr, &target_cu);
12080 gdb_assert (target_cu->objfile == objfile);
12081 if (die_is_declaration (target_die, target_cu))
12082 {
12083 const char *target_physname;
12084
12085 /* Prefer the mangled name; otherwise compute the demangled one. */
12086 target_physname = dw2_linkage_name (target_die, target_cu);
12087 if (target_physname == NULL)
12088 target_physname = dwarf2_physname (NULL, target_die, target_cu);
12089 if (target_physname == NULL)
12090 complaint (&symfile_complaints,
12091 _("DW_AT_call_target target DIE has invalid "
12092 "physname, for referencing DIE 0x%x [in module %s]"),
12093 to_underlying (die->sect_off), objfile_name (objfile));
12094 else
12095 SET_FIELD_PHYSNAME (call_site->target, target_physname);
12096 }
12097 else
12098 {
12099 CORE_ADDR lowpc;
12100
12101 /* DW_AT_entry_pc should be preferred. */
12102 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
12103 <= PC_BOUNDS_INVALID)
12104 complaint (&symfile_complaints,
12105 _("DW_AT_call_target target DIE has invalid "
12106 "low pc, for referencing DIE 0x%x [in module %s]"),
12107 to_underlying (die->sect_off), objfile_name (objfile));
12108 else
12109 {
12110 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12111 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12112 }
12113 }
12114 }
12115 else
12116 complaint (&symfile_complaints,
12117 _("DW_TAG_call_site DW_AT_call_target is neither "
12118 "block nor reference, for DIE 0x%x [in module %s]"),
12119 to_underlying (die->sect_off), objfile_name (objfile));
12120
12121 call_site->per_cu = cu->per_cu;
12122
12123 for (child_die = die->child;
12124 child_die && child_die->tag;
12125 child_die = sibling_die (child_die))
12126 {
12127 struct call_site_parameter *parameter;
12128 struct attribute *loc, *origin;
12129
12130 if (child_die->tag != DW_TAG_call_site_parameter
12131 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12132 {
12133 /* Already printed the complaint above. */
12134 continue;
12135 }
12136
12137 gdb_assert (call_site->parameter_count < nparams);
12138 parameter = &call_site->parameter[call_site->parameter_count];
12139
12140 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12141 specifies DW_TAG_formal_parameter. Value of the data assumed for the
12142 register is contained in DW_AT_call_value. */
12143
12144 loc = dwarf2_attr (child_die, DW_AT_location, cu);
12145 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12146 if (origin == NULL)
12147 {
12148 /* This was a pre-DWARF-5 GNU extension alias
12149 for DW_AT_call_parameter. */
12150 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12151 }
12152 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
12153 {
12154 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
12155
12156 sect_offset sect_off
12157 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12158 if (!offset_in_cu_p (&cu->header, sect_off))
12159 {
12160 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12161 binding can be done only inside one CU. Such referenced DIE
12162 therefore cannot be even moved to DW_TAG_partial_unit. */
12163 complaint (&symfile_complaints,
12164 _("DW_AT_call_parameter offset is not in CU for "
12165 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12166 to_underlying (child_die->sect_off),
12167 objfile_name (objfile));
12168 continue;
12169 }
12170 parameter->u.param_cu_off
12171 = (cu_offset) (sect_off - cu->header.sect_off);
12172 }
12173 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
12174 {
12175 complaint (&symfile_complaints,
12176 _("No DW_FORM_block* DW_AT_location for "
12177 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12178 to_underlying (child_die->sect_off), objfile_name (objfile));
12179 continue;
12180 }
12181 else
12182 {
12183 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12184 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12185 if (parameter->u.dwarf_reg != -1)
12186 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12187 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12188 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12189 &parameter->u.fb_offset))
12190 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12191 else
12192 {
12193 complaint (&symfile_complaints,
12194 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12195 "for DW_FORM_block* DW_AT_location is supported for "
12196 "DW_TAG_call_site child DIE 0x%x "
12197 "[in module %s]"),
12198 to_underlying (child_die->sect_off),
12199 objfile_name (objfile));
12200 continue;
12201 }
12202 }
12203
12204 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12205 if (attr == NULL)
12206 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
12207 if (!attr_form_is_block (attr))
12208 {
12209 complaint (&symfile_complaints,
12210 _("No DW_FORM_block* DW_AT_call_value for "
12211 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12212 to_underlying (child_die->sect_off),
12213 objfile_name (objfile));
12214 continue;
12215 }
12216 parameter->value = DW_BLOCK (attr)->data;
12217 parameter->value_size = DW_BLOCK (attr)->size;
12218
12219 /* Parameters are not pre-cleared by memset above. */
12220 parameter->data_value = NULL;
12221 parameter->data_value_size = 0;
12222 call_site->parameter_count++;
12223
12224 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12225 if (attr == NULL)
12226 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
12227 if (attr)
12228 {
12229 if (!attr_form_is_block (attr))
12230 complaint (&symfile_complaints,
12231 _("No DW_FORM_block* DW_AT_call_data_value for "
12232 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12233 to_underlying (child_die->sect_off),
12234 objfile_name (objfile));
12235 else
12236 {
12237 parameter->data_value = DW_BLOCK (attr)->data;
12238 parameter->data_value_size = DW_BLOCK (attr)->size;
12239 }
12240 }
12241 }
12242 }
12243
12244 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12245 reading .debug_rnglists.
12246 Callback's type should be:
12247 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12248 Return true if the attributes are present and valid, otherwise,
12249 return false. */
12250
12251 template <typename Callback>
12252 static bool
12253 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12254 Callback &&callback)
12255 {
12256 struct objfile *objfile = cu->objfile;
12257 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12258 struct comp_unit_head *cu_header = &cu->header;
12259 bfd *obfd = objfile->obfd;
12260 unsigned int addr_size = cu_header->addr_size;
12261 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12262 /* Base address selection entry. */
12263 CORE_ADDR base;
12264 int found_base;
12265 unsigned int dummy;
12266 const gdb_byte *buffer;
12267 CORE_ADDR low = 0;
12268 CORE_ADDR high = 0;
12269 CORE_ADDR baseaddr;
12270 bool overflow = false;
12271
12272 found_base = cu->base_known;
12273 base = cu->base_address;
12274
12275 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12276 if (offset >= dwarf2_per_objfile->rnglists.size)
12277 {
12278 complaint (&symfile_complaints,
12279 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12280 offset);
12281 return false;
12282 }
12283 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12284
12285 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12286
12287 while (1)
12288 {
12289 /* Initialize it due to a false compiler warning. */
12290 CORE_ADDR range_beginning = 0, range_end = 0;
12291 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12292 + dwarf2_per_objfile->rnglists.size);
12293 unsigned int bytes_read;
12294
12295 if (buffer == buf_end)
12296 {
12297 overflow = true;
12298 break;
12299 }
12300 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12301 switch (rlet)
12302 {
12303 case DW_RLE_end_of_list:
12304 break;
12305 case DW_RLE_base_address:
12306 if (buffer + cu->header.addr_size > buf_end)
12307 {
12308 overflow = true;
12309 break;
12310 }
12311 base = read_address (obfd, buffer, cu, &bytes_read);
12312 found_base = 1;
12313 buffer += bytes_read;
12314 break;
12315 case DW_RLE_start_length:
12316 if (buffer + cu->header.addr_size > buf_end)
12317 {
12318 overflow = true;
12319 break;
12320 }
12321 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12322 buffer += bytes_read;
12323 range_end = (range_beginning
12324 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12325 buffer += bytes_read;
12326 if (buffer > buf_end)
12327 {
12328 overflow = true;
12329 break;
12330 }
12331 break;
12332 case DW_RLE_offset_pair:
12333 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12334 buffer += bytes_read;
12335 if (buffer > buf_end)
12336 {
12337 overflow = true;
12338 break;
12339 }
12340 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12341 buffer += bytes_read;
12342 if (buffer > buf_end)
12343 {
12344 overflow = true;
12345 break;
12346 }
12347 break;
12348 case DW_RLE_start_end:
12349 if (buffer + 2 * cu->header.addr_size > buf_end)
12350 {
12351 overflow = true;
12352 break;
12353 }
12354 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12355 buffer += bytes_read;
12356 range_end = read_address (obfd, buffer, cu, &bytes_read);
12357 buffer += bytes_read;
12358 break;
12359 default:
12360 complaint (&symfile_complaints,
12361 _("Invalid .debug_rnglists data (no base address)"));
12362 return false;
12363 }
12364 if (rlet == DW_RLE_end_of_list || overflow)
12365 break;
12366 if (rlet == DW_RLE_base_address)
12367 continue;
12368
12369 if (!found_base)
12370 {
12371 /* We have no valid base address for the ranges
12372 data. */
12373 complaint (&symfile_complaints,
12374 _("Invalid .debug_rnglists data (no base address)"));
12375 return false;
12376 }
12377
12378 if (range_beginning > range_end)
12379 {
12380 /* Inverted range entries are invalid. */
12381 complaint (&symfile_complaints,
12382 _("Invalid .debug_rnglists data (inverted range)"));
12383 return false;
12384 }
12385
12386 /* Empty range entries have no effect. */
12387 if (range_beginning == range_end)
12388 continue;
12389
12390 range_beginning += base;
12391 range_end += base;
12392
12393 /* A not-uncommon case of bad debug info.
12394 Don't pollute the addrmap with bad data. */
12395 if (range_beginning + baseaddr == 0
12396 && !dwarf2_per_objfile->has_section_at_zero)
12397 {
12398 complaint (&symfile_complaints,
12399 _(".debug_rnglists entry has start address of zero"
12400 " [in module %s]"), objfile_name (objfile));
12401 continue;
12402 }
12403
12404 callback (range_beginning, range_end);
12405 }
12406
12407 if (overflow)
12408 {
12409 complaint (&symfile_complaints,
12410 _("Offset %d is not terminated "
12411 "for DW_AT_ranges attribute"),
12412 offset);
12413 return false;
12414 }
12415
12416 return true;
12417 }
12418
12419 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12420 Callback's type should be:
12421 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12422 Return 1 if the attributes are present and valid, otherwise, return 0. */
12423
12424 template <typename Callback>
12425 static int
12426 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
12427 Callback &&callback)
12428 {
12429 struct objfile *objfile = cu->objfile;
12430 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12431 struct comp_unit_head *cu_header = &cu->header;
12432 bfd *obfd = objfile->obfd;
12433 unsigned int addr_size = cu_header->addr_size;
12434 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12435 /* Base address selection entry. */
12436 CORE_ADDR base;
12437 int found_base;
12438 unsigned int dummy;
12439 const gdb_byte *buffer;
12440 CORE_ADDR baseaddr;
12441
12442 if (cu_header->version >= 5)
12443 return dwarf2_rnglists_process (offset, cu, callback);
12444
12445 found_base = cu->base_known;
12446 base = cu->base_address;
12447
12448 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12449 if (offset >= dwarf2_per_objfile->ranges.size)
12450 {
12451 complaint (&symfile_complaints,
12452 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12453 offset);
12454 return 0;
12455 }
12456 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12457
12458 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12459
12460 while (1)
12461 {
12462 CORE_ADDR range_beginning, range_end;
12463
12464 range_beginning = read_address (obfd, buffer, cu, &dummy);
12465 buffer += addr_size;
12466 range_end = read_address (obfd, buffer, cu, &dummy);
12467 buffer += addr_size;
12468 offset += 2 * addr_size;
12469
12470 /* An end of list marker is a pair of zero addresses. */
12471 if (range_beginning == 0 && range_end == 0)
12472 /* Found the end of list entry. */
12473 break;
12474
12475 /* Each base address selection entry is a pair of 2 values.
12476 The first is the largest possible address, the second is
12477 the base address. Check for a base address here. */
12478 if ((range_beginning & mask) == mask)
12479 {
12480 /* If we found the largest possible address, then we already
12481 have the base address in range_end. */
12482 base = range_end;
12483 found_base = 1;
12484 continue;
12485 }
12486
12487 if (!found_base)
12488 {
12489 /* We have no valid base address for the ranges
12490 data. */
12491 complaint (&symfile_complaints,
12492 _("Invalid .debug_ranges data (no base address)"));
12493 return 0;
12494 }
12495
12496 if (range_beginning > range_end)
12497 {
12498 /* Inverted range entries are invalid. */
12499 complaint (&symfile_complaints,
12500 _("Invalid .debug_ranges data (inverted range)"));
12501 return 0;
12502 }
12503
12504 /* Empty range entries have no effect. */
12505 if (range_beginning == range_end)
12506 continue;
12507
12508 range_beginning += base;
12509 range_end += base;
12510
12511 /* A not-uncommon case of bad debug info.
12512 Don't pollute the addrmap with bad data. */
12513 if (range_beginning + baseaddr == 0
12514 && !dwarf2_per_objfile->has_section_at_zero)
12515 {
12516 complaint (&symfile_complaints,
12517 _(".debug_ranges entry has start address of zero"
12518 " [in module %s]"), objfile_name (objfile));
12519 continue;
12520 }
12521
12522 callback (range_beginning, range_end);
12523 }
12524
12525 return 1;
12526 }
12527
12528 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12529 Return 1 if the attributes are present and valid, otherwise, return 0.
12530 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12531
12532 static int
12533 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12534 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12535 struct partial_symtab *ranges_pst)
12536 {
12537 struct objfile *objfile = cu->objfile;
12538 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12539 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12540 SECT_OFF_TEXT (objfile));
12541 int low_set = 0;
12542 CORE_ADDR low = 0;
12543 CORE_ADDR high = 0;
12544 int retval;
12545
12546 retval = dwarf2_ranges_process (offset, cu,
12547 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12548 {
12549 if (ranges_pst != NULL)
12550 {
12551 CORE_ADDR lowpc;
12552 CORE_ADDR highpc;
12553
12554 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12555 range_beginning + baseaddr);
12556 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12557 range_end + baseaddr);
12558 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12559 ranges_pst);
12560 }
12561
12562 /* FIXME: This is recording everything as a low-high
12563 segment of consecutive addresses. We should have a
12564 data structure for discontiguous block ranges
12565 instead. */
12566 if (! low_set)
12567 {
12568 low = range_beginning;
12569 high = range_end;
12570 low_set = 1;
12571 }
12572 else
12573 {
12574 if (range_beginning < low)
12575 low = range_beginning;
12576 if (range_end > high)
12577 high = range_end;
12578 }
12579 });
12580 if (!retval)
12581 return 0;
12582
12583 if (! low_set)
12584 /* If the first entry is an end-of-list marker, the range
12585 describes an empty scope, i.e. no instructions. */
12586 return 0;
12587
12588 if (low_return)
12589 *low_return = low;
12590 if (high_return)
12591 *high_return = high;
12592 return 1;
12593 }
12594
12595 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12596 definition for the return value. *LOWPC and *HIGHPC are set iff
12597 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12598
12599 static enum pc_bounds_kind
12600 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12601 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12602 struct partial_symtab *pst)
12603 {
12604 struct attribute *attr;
12605 struct attribute *attr_high;
12606 CORE_ADDR low = 0;
12607 CORE_ADDR high = 0;
12608 enum pc_bounds_kind ret;
12609
12610 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12611 if (attr_high)
12612 {
12613 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12614 if (attr)
12615 {
12616 low = attr_value_as_address (attr);
12617 high = attr_value_as_address (attr_high);
12618 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12619 high += low;
12620 }
12621 else
12622 /* Found high w/o low attribute. */
12623 return PC_BOUNDS_INVALID;
12624
12625 /* Found consecutive range of addresses. */
12626 ret = PC_BOUNDS_HIGH_LOW;
12627 }
12628 else
12629 {
12630 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12631 if (attr != NULL)
12632 {
12633 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12634 We take advantage of the fact that DW_AT_ranges does not appear
12635 in DW_TAG_compile_unit of DWO files. */
12636 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12637 unsigned int ranges_offset = (DW_UNSND (attr)
12638 + (need_ranges_base
12639 ? cu->ranges_base
12640 : 0));
12641
12642 /* Value of the DW_AT_ranges attribute is the offset in the
12643 .debug_ranges section. */
12644 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12645 return PC_BOUNDS_INVALID;
12646 /* Found discontinuous range of addresses. */
12647 ret = PC_BOUNDS_RANGES;
12648 }
12649 else
12650 return PC_BOUNDS_NOT_PRESENT;
12651 }
12652
12653 /* read_partial_die has also the strict LOW < HIGH requirement. */
12654 if (high <= low)
12655 return PC_BOUNDS_INVALID;
12656
12657 /* When using the GNU linker, .gnu.linkonce. sections are used to
12658 eliminate duplicate copies of functions and vtables and such.
12659 The linker will arbitrarily choose one and discard the others.
12660 The AT_*_pc values for such functions refer to local labels in
12661 these sections. If the section from that file was discarded, the
12662 labels are not in the output, so the relocs get a value of 0.
12663 If this is a discarded function, mark the pc bounds as invalid,
12664 so that GDB will ignore it. */
12665 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12666 return PC_BOUNDS_INVALID;
12667
12668 *lowpc = low;
12669 if (highpc)
12670 *highpc = high;
12671 return ret;
12672 }
12673
12674 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12675 its low and high PC addresses. Do nothing if these addresses could not
12676 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12677 and HIGHPC to the high address if greater than HIGHPC. */
12678
12679 static void
12680 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12681 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12682 struct dwarf2_cu *cu)
12683 {
12684 CORE_ADDR low, high;
12685 struct die_info *child = die->child;
12686
12687 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12688 {
12689 *lowpc = std::min (*lowpc, low);
12690 *highpc = std::max (*highpc, high);
12691 }
12692
12693 /* If the language does not allow nested subprograms (either inside
12694 subprograms or lexical blocks), we're done. */
12695 if (cu->language != language_ada)
12696 return;
12697
12698 /* Check all the children of the given DIE. If it contains nested
12699 subprograms, then check their pc bounds. Likewise, we need to
12700 check lexical blocks as well, as they may also contain subprogram
12701 definitions. */
12702 while (child && child->tag)
12703 {
12704 if (child->tag == DW_TAG_subprogram
12705 || child->tag == DW_TAG_lexical_block)
12706 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12707 child = sibling_die (child);
12708 }
12709 }
12710
12711 /* Get the low and high pc's represented by the scope DIE, and store
12712 them in *LOWPC and *HIGHPC. If the correct values can't be
12713 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12714
12715 static void
12716 get_scope_pc_bounds (struct die_info *die,
12717 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12718 struct dwarf2_cu *cu)
12719 {
12720 CORE_ADDR best_low = (CORE_ADDR) -1;
12721 CORE_ADDR best_high = (CORE_ADDR) 0;
12722 CORE_ADDR current_low, current_high;
12723
12724 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12725 >= PC_BOUNDS_RANGES)
12726 {
12727 best_low = current_low;
12728 best_high = current_high;
12729 }
12730 else
12731 {
12732 struct die_info *child = die->child;
12733
12734 while (child && child->tag)
12735 {
12736 switch (child->tag) {
12737 case DW_TAG_subprogram:
12738 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12739 break;
12740 case DW_TAG_namespace:
12741 case DW_TAG_module:
12742 /* FIXME: carlton/2004-01-16: Should we do this for
12743 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12744 that current GCC's always emit the DIEs corresponding
12745 to definitions of methods of classes as children of a
12746 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12747 the DIEs giving the declarations, which could be
12748 anywhere). But I don't see any reason why the
12749 standards says that they have to be there. */
12750 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12751
12752 if (current_low != ((CORE_ADDR) -1))
12753 {
12754 best_low = std::min (best_low, current_low);
12755 best_high = std::max (best_high, current_high);
12756 }
12757 break;
12758 default:
12759 /* Ignore. */
12760 break;
12761 }
12762
12763 child = sibling_die (child);
12764 }
12765 }
12766
12767 *lowpc = best_low;
12768 *highpc = best_high;
12769 }
12770
12771 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12772 in DIE. */
12773
12774 static void
12775 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12776 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12777 {
12778 struct objfile *objfile = cu->objfile;
12779 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12780 struct attribute *attr;
12781 struct attribute *attr_high;
12782
12783 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12784 if (attr_high)
12785 {
12786 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12787 if (attr)
12788 {
12789 CORE_ADDR low = attr_value_as_address (attr);
12790 CORE_ADDR high = attr_value_as_address (attr_high);
12791
12792 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12793 high += low;
12794
12795 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12796 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12797 record_block_range (block, low, high - 1);
12798 }
12799 }
12800
12801 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12802 if (attr)
12803 {
12804 bfd *obfd = objfile->obfd;
12805 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12806 We take advantage of the fact that DW_AT_ranges does not appear
12807 in DW_TAG_compile_unit of DWO files. */
12808 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12809
12810 /* The value of the DW_AT_ranges attribute is the offset of the
12811 address range list in the .debug_ranges section. */
12812 unsigned long offset = (DW_UNSND (attr)
12813 + (need_ranges_base ? cu->ranges_base : 0));
12814 const gdb_byte *buffer;
12815
12816 /* For some target architectures, but not others, the
12817 read_address function sign-extends the addresses it returns.
12818 To recognize base address selection entries, we need a
12819 mask. */
12820 unsigned int addr_size = cu->header.addr_size;
12821 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12822
12823 /* The base address, to which the next pair is relative. Note
12824 that this 'base' is a DWARF concept: most entries in a range
12825 list are relative, to reduce the number of relocs against the
12826 debugging information. This is separate from this function's
12827 'baseaddr' argument, which GDB uses to relocate debugging
12828 information from a shared library based on the address at
12829 which the library was loaded. */
12830 CORE_ADDR base = cu->base_address;
12831 int base_known = cu->base_known;
12832
12833 dwarf2_ranges_process (offset, cu,
12834 [&] (CORE_ADDR start, CORE_ADDR end)
12835 {
12836 start += baseaddr;
12837 end += baseaddr;
12838 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12839 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12840 record_block_range (block, start, end - 1);
12841 });
12842 }
12843 }
12844
12845 /* Check whether the producer field indicates either of GCC < 4.6, or the
12846 Intel C/C++ compiler, and cache the result in CU. */
12847
12848 static void
12849 check_producer (struct dwarf2_cu *cu)
12850 {
12851 int major, minor;
12852
12853 if (cu->producer == NULL)
12854 {
12855 /* For unknown compilers expect their behavior is DWARF version
12856 compliant.
12857
12858 GCC started to support .debug_types sections by -gdwarf-4 since
12859 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12860 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12861 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12862 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12863 }
12864 else if (producer_is_gcc (cu->producer, &major, &minor))
12865 {
12866 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12867 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12868 }
12869 else if (producer_is_icc (cu->producer, &major, &minor))
12870 cu->producer_is_icc_lt_14 = major < 14;
12871 else
12872 {
12873 /* For other non-GCC compilers, expect their behavior is DWARF version
12874 compliant. */
12875 }
12876
12877 cu->checked_producer = 1;
12878 }
12879
12880 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12881 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12882 during 4.6.0 experimental. */
12883
12884 static int
12885 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12886 {
12887 if (!cu->checked_producer)
12888 check_producer (cu);
12889
12890 return cu->producer_is_gxx_lt_4_6;
12891 }
12892
12893 /* Return the default accessibility type if it is not overriden by
12894 DW_AT_accessibility. */
12895
12896 static enum dwarf_access_attribute
12897 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12898 {
12899 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12900 {
12901 /* The default DWARF 2 accessibility for members is public, the default
12902 accessibility for inheritance is private. */
12903
12904 if (die->tag != DW_TAG_inheritance)
12905 return DW_ACCESS_public;
12906 else
12907 return DW_ACCESS_private;
12908 }
12909 else
12910 {
12911 /* DWARF 3+ defines the default accessibility a different way. The same
12912 rules apply now for DW_TAG_inheritance as for the members and it only
12913 depends on the container kind. */
12914
12915 if (die->parent->tag == DW_TAG_class_type)
12916 return DW_ACCESS_private;
12917 else
12918 return DW_ACCESS_public;
12919 }
12920 }
12921
12922 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12923 offset. If the attribute was not found return 0, otherwise return
12924 1. If it was found but could not properly be handled, set *OFFSET
12925 to 0. */
12926
12927 static int
12928 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12929 LONGEST *offset)
12930 {
12931 struct attribute *attr;
12932
12933 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12934 if (attr != NULL)
12935 {
12936 *offset = 0;
12937
12938 /* Note that we do not check for a section offset first here.
12939 This is because DW_AT_data_member_location is new in DWARF 4,
12940 so if we see it, we can assume that a constant form is really
12941 a constant and not a section offset. */
12942 if (attr_form_is_constant (attr))
12943 *offset = dwarf2_get_attr_constant_value (attr, 0);
12944 else if (attr_form_is_section_offset (attr))
12945 dwarf2_complex_location_expr_complaint ();
12946 else if (attr_form_is_block (attr))
12947 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12948 else
12949 dwarf2_complex_location_expr_complaint ();
12950
12951 return 1;
12952 }
12953
12954 return 0;
12955 }
12956
12957 /* Add an aggregate field to the field list. */
12958
12959 static void
12960 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12961 struct dwarf2_cu *cu)
12962 {
12963 struct objfile *objfile = cu->objfile;
12964 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12965 struct nextfield *new_field;
12966 struct attribute *attr;
12967 struct field *fp;
12968 const char *fieldname = "";
12969
12970 /* Allocate a new field list entry and link it in. */
12971 new_field = XNEW (struct nextfield);
12972 make_cleanup (xfree, new_field);
12973 memset (new_field, 0, sizeof (struct nextfield));
12974
12975 if (die->tag == DW_TAG_inheritance)
12976 {
12977 new_field->next = fip->baseclasses;
12978 fip->baseclasses = new_field;
12979 }
12980 else
12981 {
12982 new_field->next = fip->fields;
12983 fip->fields = new_field;
12984 }
12985 fip->nfields++;
12986
12987 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12988 if (attr)
12989 new_field->accessibility = DW_UNSND (attr);
12990 else
12991 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12992 if (new_field->accessibility != DW_ACCESS_public)
12993 fip->non_public_fields = 1;
12994
12995 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12996 if (attr)
12997 new_field->virtuality = DW_UNSND (attr);
12998 else
12999 new_field->virtuality = DW_VIRTUALITY_none;
13000
13001 fp = &new_field->field;
13002
13003 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
13004 {
13005 LONGEST offset;
13006
13007 /* Data member other than a C++ static data member. */
13008
13009 /* Get type of field. */
13010 fp->type = die_type (die, cu);
13011
13012 SET_FIELD_BITPOS (*fp, 0);
13013
13014 /* Get bit size of field (zero if none). */
13015 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
13016 if (attr)
13017 {
13018 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
13019 }
13020 else
13021 {
13022 FIELD_BITSIZE (*fp) = 0;
13023 }
13024
13025 /* Get bit offset of field. */
13026 if (handle_data_member_location (die, cu, &offset))
13027 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13028 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
13029 if (attr)
13030 {
13031 if (gdbarch_bits_big_endian (gdbarch))
13032 {
13033 /* For big endian bits, the DW_AT_bit_offset gives the
13034 additional bit offset from the MSB of the containing
13035 anonymous object to the MSB of the field. We don't
13036 have to do anything special since we don't need to
13037 know the size of the anonymous object. */
13038 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
13039 }
13040 else
13041 {
13042 /* For little endian bits, compute the bit offset to the
13043 MSB of the anonymous object, subtract off the number of
13044 bits from the MSB of the field to the MSB of the
13045 object, and then subtract off the number of bits of
13046 the field itself. The result is the bit offset of
13047 the LSB of the field. */
13048 int anonymous_size;
13049 int bit_offset = DW_UNSND (attr);
13050
13051 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13052 if (attr)
13053 {
13054 /* The size of the anonymous object containing
13055 the bit field is explicit, so use the
13056 indicated size (in bytes). */
13057 anonymous_size = DW_UNSND (attr);
13058 }
13059 else
13060 {
13061 /* The size of the anonymous object containing
13062 the bit field must be inferred from the type
13063 attribute of the data member containing the
13064 bit field. */
13065 anonymous_size = TYPE_LENGTH (fp->type);
13066 }
13067 SET_FIELD_BITPOS (*fp,
13068 (FIELD_BITPOS (*fp)
13069 + anonymous_size * bits_per_byte
13070 - bit_offset - FIELD_BITSIZE (*fp)));
13071 }
13072 }
13073 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
13074 if (attr != NULL)
13075 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
13076 + dwarf2_get_attr_constant_value (attr, 0)));
13077
13078 /* Get name of field. */
13079 fieldname = dwarf2_name (die, cu);
13080 if (fieldname == NULL)
13081 fieldname = "";
13082
13083 /* The name is already allocated along with this objfile, so we don't
13084 need to duplicate it for the type. */
13085 fp->name = fieldname;
13086
13087 /* Change accessibility for artificial fields (e.g. virtual table
13088 pointer or virtual base class pointer) to private. */
13089 if (dwarf2_attr (die, DW_AT_artificial, cu))
13090 {
13091 FIELD_ARTIFICIAL (*fp) = 1;
13092 new_field->accessibility = DW_ACCESS_private;
13093 fip->non_public_fields = 1;
13094 }
13095 }
13096 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
13097 {
13098 /* C++ static member. */
13099
13100 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
13101 is a declaration, but all versions of G++ as of this writing
13102 (so through at least 3.2.1) incorrectly generate
13103 DW_TAG_variable tags. */
13104
13105 const char *physname;
13106
13107 /* Get name of field. */
13108 fieldname = dwarf2_name (die, cu);
13109 if (fieldname == NULL)
13110 return;
13111
13112 attr = dwarf2_attr (die, DW_AT_const_value, cu);
13113 if (attr
13114 /* Only create a symbol if this is an external value.
13115 new_symbol checks this and puts the value in the global symbol
13116 table, which we want. If it is not external, new_symbol
13117 will try to put the value in cu->list_in_scope which is wrong. */
13118 && dwarf2_flag_true_p (die, DW_AT_external, cu))
13119 {
13120 /* A static const member, not much different than an enum as far as
13121 we're concerned, except that we can support more types. */
13122 new_symbol (die, NULL, cu);
13123 }
13124
13125 /* Get physical name. */
13126 physname = dwarf2_physname (fieldname, die, cu);
13127
13128 /* The name is already allocated along with this objfile, so we don't
13129 need to duplicate it for the type. */
13130 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
13131 FIELD_TYPE (*fp) = die_type (die, cu);
13132 FIELD_NAME (*fp) = fieldname;
13133 }
13134 else if (die->tag == DW_TAG_inheritance)
13135 {
13136 LONGEST offset;
13137
13138 /* C++ base class field. */
13139 if (handle_data_member_location (die, cu, &offset))
13140 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13141 FIELD_BITSIZE (*fp) = 0;
13142 FIELD_TYPE (*fp) = die_type (die, cu);
13143 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13144 fip->nbaseclasses++;
13145 }
13146 }
13147
13148 /* Add a typedef defined in the scope of the FIP's class. */
13149
13150 static void
13151 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13152 struct dwarf2_cu *cu)
13153 {
13154 struct typedef_field_list *new_field;
13155 struct typedef_field *fp;
13156
13157 /* Allocate a new field list entry and link it in. */
13158 new_field = XCNEW (struct typedef_field_list);
13159 make_cleanup (xfree, new_field);
13160
13161 gdb_assert (die->tag == DW_TAG_typedef);
13162
13163 fp = &new_field->field;
13164
13165 /* Get name of field. */
13166 fp->name = dwarf2_name (die, cu);
13167 if (fp->name == NULL)
13168 return;
13169
13170 fp->type = read_type_die (die, cu);
13171
13172 new_field->next = fip->typedef_field_list;
13173 fip->typedef_field_list = new_field;
13174 fip->typedef_field_list_count++;
13175 }
13176
13177 /* Create the vector of fields, and attach it to the type. */
13178
13179 static void
13180 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
13181 struct dwarf2_cu *cu)
13182 {
13183 int nfields = fip->nfields;
13184
13185 /* Record the field count, allocate space for the array of fields,
13186 and create blank accessibility bitfields if necessary. */
13187 TYPE_NFIELDS (type) = nfields;
13188 TYPE_FIELDS (type) = (struct field *)
13189 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13190 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13191
13192 if (fip->non_public_fields && cu->language != language_ada)
13193 {
13194 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13195
13196 TYPE_FIELD_PRIVATE_BITS (type) =
13197 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13198 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13199
13200 TYPE_FIELD_PROTECTED_BITS (type) =
13201 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13202 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13203
13204 TYPE_FIELD_IGNORE_BITS (type) =
13205 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13206 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
13207 }
13208
13209 /* If the type has baseclasses, allocate and clear a bit vector for
13210 TYPE_FIELD_VIRTUAL_BITS. */
13211 if (fip->nbaseclasses && cu->language != language_ada)
13212 {
13213 int num_bytes = B_BYTES (fip->nbaseclasses);
13214 unsigned char *pointer;
13215
13216 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13217 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
13218 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
13219 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13220 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13221 }
13222
13223 /* Copy the saved-up fields into the field vector. Start from the head of
13224 the list, adding to the tail of the field array, so that they end up in
13225 the same order in the array in which they were added to the list. */
13226 while (nfields-- > 0)
13227 {
13228 struct nextfield *fieldp;
13229
13230 if (fip->fields)
13231 {
13232 fieldp = fip->fields;
13233 fip->fields = fieldp->next;
13234 }
13235 else
13236 {
13237 fieldp = fip->baseclasses;
13238 fip->baseclasses = fieldp->next;
13239 }
13240
13241 TYPE_FIELD (type, nfields) = fieldp->field;
13242 switch (fieldp->accessibility)
13243 {
13244 case DW_ACCESS_private:
13245 if (cu->language != language_ada)
13246 SET_TYPE_FIELD_PRIVATE (type, nfields);
13247 break;
13248
13249 case DW_ACCESS_protected:
13250 if (cu->language != language_ada)
13251 SET_TYPE_FIELD_PROTECTED (type, nfields);
13252 break;
13253
13254 case DW_ACCESS_public:
13255 break;
13256
13257 default:
13258 /* Unknown accessibility. Complain and treat it as public. */
13259 {
13260 complaint (&symfile_complaints, _("unsupported accessibility %d"),
13261 fieldp->accessibility);
13262 }
13263 break;
13264 }
13265 if (nfields < fip->nbaseclasses)
13266 {
13267 switch (fieldp->virtuality)
13268 {
13269 case DW_VIRTUALITY_virtual:
13270 case DW_VIRTUALITY_pure_virtual:
13271 if (cu->language == language_ada)
13272 error (_("unexpected virtuality in component of Ada type"));
13273 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13274 break;
13275 }
13276 }
13277 }
13278 }
13279
13280 /* Return true if this member function is a constructor, false
13281 otherwise. */
13282
13283 static int
13284 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13285 {
13286 const char *fieldname;
13287 const char *type_name;
13288 int len;
13289
13290 if (die->parent == NULL)
13291 return 0;
13292
13293 if (die->parent->tag != DW_TAG_structure_type
13294 && die->parent->tag != DW_TAG_union_type
13295 && die->parent->tag != DW_TAG_class_type)
13296 return 0;
13297
13298 fieldname = dwarf2_name (die, cu);
13299 type_name = dwarf2_name (die->parent, cu);
13300 if (fieldname == NULL || type_name == NULL)
13301 return 0;
13302
13303 len = strlen (fieldname);
13304 return (strncmp (fieldname, type_name, len) == 0
13305 && (type_name[len] == '\0' || type_name[len] == '<'));
13306 }
13307
13308 /* Add a member function to the proper fieldlist. */
13309
13310 static void
13311 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
13312 struct type *type, struct dwarf2_cu *cu)
13313 {
13314 struct objfile *objfile = cu->objfile;
13315 struct attribute *attr;
13316 struct fnfieldlist *flp;
13317 int i;
13318 struct fn_field *fnp;
13319 const char *fieldname;
13320 struct nextfnfield *new_fnfield;
13321 struct type *this_type;
13322 enum dwarf_access_attribute accessibility;
13323
13324 if (cu->language == language_ada)
13325 error (_("unexpected member function in Ada type"));
13326
13327 /* Get name of member function. */
13328 fieldname = dwarf2_name (die, cu);
13329 if (fieldname == NULL)
13330 return;
13331
13332 /* Look up member function name in fieldlist. */
13333 for (i = 0; i < fip->nfnfields; i++)
13334 {
13335 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
13336 break;
13337 }
13338
13339 /* Create new list element if necessary. */
13340 if (i < fip->nfnfields)
13341 flp = &fip->fnfieldlists[i];
13342 else
13343 {
13344 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13345 {
13346 fip->fnfieldlists = (struct fnfieldlist *)
13347 xrealloc (fip->fnfieldlists,
13348 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
13349 * sizeof (struct fnfieldlist));
13350 if (fip->nfnfields == 0)
13351 make_cleanup (free_current_contents, &fip->fnfieldlists);
13352 }
13353 flp = &fip->fnfieldlists[fip->nfnfields];
13354 flp->name = fieldname;
13355 flp->length = 0;
13356 flp->head = NULL;
13357 i = fip->nfnfields++;
13358 }
13359
13360 /* Create a new member function field and chain it to the field list
13361 entry. */
13362 new_fnfield = XNEW (struct nextfnfield);
13363 make_cleanup (xfree, new_fnfield);
13364 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13365 new_fnfield->next = flp->head;
13366 flp->head = new_fnfield;
13367 flp->length++;
13368
13369 /* Fill in the member function field info. */
13370 fnp = &new_fnfield->fnfield;
13371
13372 /* Delay processing of the physname until later. */
13373 if (cu->language == language_cplus)
13374 {
13375 add_to_method_list (type, i, flp->length - 1, fieldname,
13376 die, cu);
13377 }
13378 else
13379 {
13380 const char *physname = dwarf2_physname (fieldname, die, cu);
13381 fnp->physname = physname ? physname : "";
13382 }
13383
13384 fnp->type = alloc_type (objfile);
13385 this_type = read_type_die (die, cu);
13386 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
13387 {
13388 int nparams = TYPE_NFIELDS (this_type);
13389
13390 /* TYPE is the domain of this method, and THIS_TYPE is the type
13391 of the method itself (TYPE_CODE_METHOD). */
13392 smash_to_method_type (fnp->type, type,
13393 TYPE_TARGET_TYPE (this_type),
13394 TYPE_FIELDS (this_type),
13395 TYPE_NFIELDS (this_type),
13396 TYPE_VARARGS (this_type));
13397
13398 /* Handle static member functions.
13399 Dwarf2 has no clean way to discern C++ static and non-static
13400 member functions. G++ helps GDB by marking the first
13401 parameter for non-static member functions (which is the this
13402 pointer) as artificial. We obtain this information from
13403 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
13404 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
13405 fnp->voffset = VOFFSET_STATIC;
13406 }
13407 else
13408 complaint (&symfile_complaints, _("member function type missing for '%s'"),
13409 dwarf2_full_name (fieldname, die, cu));
13410
13411 /* Get fcontext from DW_AT_containing_type if present. */
13412 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13413 fnp->fcontext = die_containing_type (die, cu);
13414
13415 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13416 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
13417
13418 /* Get accessibility. */
13419 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13420 if (attr)
13421 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13422 else
13423 accessibility = dwarf2_default_access_attribute (die, cu);
13424 switch (accessibility)
13425 {
13426 case DW_ACCESS_private:
13427 fnp->is_private = 1;
13428 break;
13429 case DW_ACCESS_protected:
13430 fnp->is_protected = 1;
13431 break;
13432 }
13433
13434 /* Check for artificial methods. */
13435 attr = dwarf2_attr (die, DW_AT_artificial, cu);
13436 if (attr && DW_UNSND (attr) != 0)
13437 fnp->is_artificial = 1;
13438
13439 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13440
13441 /* Get index in virtual function table if it is a virtual member
13442 function. For older versions of GCC, this is an offset in the
13443 appropriate virtual table, as specified by DW_AT_containing_type.
13444 For everyone else, it is an expression to be evaluated relative
13445 to the object address. */
13446
13447 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
13448 if (attr)
13449 {
13450 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
13451 {
13452 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13453 {
13454 /* Old-style GCC. */
13455 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13456 }
13457 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13458 || (DW_BLOCK (attr)->size > 1
13459 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13460 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13461 {
13462 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13463 if ((fnp->voffset % cu->header.addr_size) != 0)
13464 dwarf2_complex_location_expr_complaint ();
13465 else
13466 fnp->voffset /= cu->header.addr_size;
13467 fnp->voffset += 2;
13468 }
13469 else
13470 dwarf2_complex_location_expr_complaint ();
13471
13472 if (!fnp->fcontext)
13473 {
13474 /* If there is no `this' field and no DW_AT_containing_type,
13475 we cannot actually find a base class context for the
13476 vtable! */
13477 if (TYPE_NFIELDS (this_type) == 0
13478 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13479 {
13480 complaint (&symfile_complaints,
13481 _("cannot determine context for virtual member "
13482 "function \"%s\" (offset %d)"),
13483 fieldname, to_underlying (die->sect_off));
13484 }
13485 else
13486 {
13487 fnp->fcontext
13488 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13489 }
13490 }
13491 }
13492 else if (attr_form_is_section_offset (attr))
13493 {
13494 dwarf2_complex_location_expr_complaint ();
13495 }
13496 else
13497 {
13498 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13499 fieldname);
13500 }
13501 }
13502 else
13503 {
13504 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13505 if (attr && DW_UNSND (attr))
13506 {
13507 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13508 complaint (&symfile_complaints,
13509 _("Member function \"%s\" (offset %d) is virtual "
13510 "but the vtable offset is not specified"),
13511 fieldname, to_underlying (die->sect_off));
13512 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13513 TYPE_CPLUS_DYNAMIC (type) = 1;
13514 }
13515 }
13516 }
13517
13518 /* Create the vector of member function fields, and attach it to the type. */
13519
13520 static void
13521 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13522 struct dwarf2_cu *cu)
13523 {
13524 struct fnfieldlist *flp;
13525 int i;
13526
13527 if (cu->language == language_ada)
13528 error (_("unexpected member functions in Ada type"));
13529
13530 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13531 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13532 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13533
13534 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13535 {
13536 struct nextfnfield *nfp = flp->head;
13537 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13538 int k;
13539
13540 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13541 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13542 fn_flp->fn_fields = (struct fn_field *)
13543 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13544 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13545 fn_flp->fn_fields[k] = nfp->fnfield;
13546 }
13547
13548 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13549 }
13550
13551 /* Returns non-zero if NAME is the name of a vtable member in CU's
13552 language, zero otherwise. */
13553 static int
13554 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13555 {
13556 static const char vptr[] = "_vptr";
13557 static const char vtable[] = "vtable";
13558
13559 /* Look for the C++ form of the vtable. */
13560 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13561 return 1;
13562
13563 return 0;
13564 }
13565
13566 /* GCC outputs unnamed structures that are really pointers to member
13567 functions, with the ABI-specified layout. If TYPE describes
13568 such a structure, smash it into a member function type.
13569
13570 GCC shouldn't do this; it should just output pointer to member DIEs.
13571 This is GCC PR debug/28767. */
13572
13573 static void
13574 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13575 {
13576 struct type *pfn_type, *self_type, *new_type;
13577
13578 /* Check for a structure with no name and two children. */
13579 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13580 return;
13581
13582 /* Check for __pfn and __delta members. */
13583 if (TYPE_FIELD_NAME (type, 0) == NULL
13584 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13585 || TYPE_FIELD_NAME (type, 1) == NULL
13586 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13587 return;
13588
13589 /* Find the type of the method. */
13590 pfn_type = TYPE_FIELD_TYPE (type, 0);
13591 if (pfn_type == NULL
13592 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13593 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13594 return;
13595
13596 /* Look for the "this" argument. */
13597 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13598 if (TYPE_NFIELDS (pfn_type) == 0
13599 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13600 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13601 return;
13602
13603 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13604 new_type = alloc_type (objfile);
13605 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13606 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13607 TYPE_VARARGS (pfn_type));
13608 smash_to_methodptr_type (type, new_type);
13609 }
13610
13611
13612 /* Called when we find the DIE that starts a structure or union scope
13613 (definition) to create a type for the structure or union. Fill in
13614 the type's name and general properties; the members will not be
13615 processed until process_structure_scope. A symbol table entry for
13616 the type will also not be done until process_structure_scope (assuming
13617 the type has a name).
13618
13619 NOTE: we need to call these functions regardless of whether or not the
13620 DIE has a DW_AT_name attribute, since it might be an anonymous
13621 structure or union. This gets the type entered into our set of
13622 user defined types. */
13623
13624 static struct type *
13625 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13626 {
13627 struct objfile *objfile = cu->objfile;
13628 struct type *type;
13629 struct attribute *attr;
13630 const char *name;
13631
13632 /* If the definition of this type lives in .debug_types, read that type.
13633 Don't follow DW_AT_specification though, that will take us back up
13634 the chain and we want to go down. */
13635 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13636 if (attr)
13637 {
13638 type = get_DW_AT_signature_type (die, attr, cu);
13639
13640 /* The type's CU may not be the same as CU.
13641 Ensure TYPE is recorded with CU in die_type_hash. */
13642 return set_die_type (die, type, cu);
13643 }
13644
13645 type = alloc_type (objfile);
13646 INIT_CPLUS_SPECIFIC (type);
13647
13648 name = dwarf2_name (die, cu);
13649 if (name != NULL)
13650 {
13651 if (cu->language == language_cplus
13652 || cu->language == language_d
13653 || cu->language == language_rust)
13654 {
13655 const char *full_name = dwarf2_full_name (name, die, cu);
13656
13657 /* dwarf2_full_name might have already finished building the DIE's
13658 type. If so, there is no need to continue. */
13659 if (get_die_type (die, cu) != NULL)
13660 return get_die_type (die, cu);
13661
13662 TYPE_TAG_NAME (type) = full_name;
13663 if (die->tag == DW_TAG_structure_type
13664 || die->tag == DW_TAG_class_type)
13665 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13666 }
13667 else
13668 {
13669 /* The name is already allocated along with this objfile, so
13670 we don't need to duplicate it for the type. */
13671 TYPE_TAG_NAME (type) = name;
13672 if (die->tag == DW_TAG_class_type)
13673 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13674 }
13675 }
13676
13677 if (die->tag == DW_TAG_structure_type)
13678 {
13679 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13680 }
13681 else if (die->tag == DW_TAG_union_type)
13682 {
13683 TYPE_CODE (type) = TYPE_CODE_UNION;
13684 }
13685 else
13686 {
13687 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13688 }
13689
13690 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13691 TYPE_DECLARED_CLASS (type) = 1;
13692
13693 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13694 if (attr)
13695 {
13696 if (attr_form_is_constant (attr))
13697 TYPE_LENGTH (type) = DW_UNSND (attr);
13698 else
13699 {
13700 /* For the moment, dynamic type sizes are not supported
13701 by GDB's struct type. The actual size is determined
13702 on-demand when resolving the type of a given object,
13703 so set the type's length to zero for now. Otherwise,
13704 we record an expression as the length, and that expression
13705 could lead to a very large value, which could eventually
13706 lead to us trying to allocate that much memory when creating
13707 a value of that type. */
13708 TYPE_LENGTH (type) = 0;
13709 }
13710 }
13711 else
13712 {
13713 TYPE_LENGTH (type) = 0;
13714 }
13715
13716 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
13717 {
13718 /* ICC<14 does not output the required DW_AT_declaration on
13719 incomplete types, but gives them a size of zero. */
13720 TYPE_STUB (type) = 1;
13721 }
13722 else
13723 TYPE_STUB_SUPPORTED (type) = 1;
13724
13725 if (die_is_declaration (die, cu))
13726 TYPE_STUB (type) = 1;
13727 else if (attr == NULL && die->child == NULL
13728 && producer_is_realview (cu->producer))
13729 /* RealView does not output the required DW_AT_declaration
13730 on incomplete types. */
13731 TYPE_STUB (type) = 1;
13732
13733 /* We need to add the type field to the die immediately so we don't
13734 infinitely recurse when dealing with pointers to the structure
13735 type within the structure itself. */
13736 set_die_type (die, type, cu);
13737
13738 /* set_die_type should be already done. */
13739 set_descriptive_type (type, die, cu);
13740
13741 return type;
13742 }
13743
13744 /* Finish creating a structure or union type, including filling in
13745 its members and creating a symbol for it. */
13746
13747 static void
13748 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13749 {
13750 struct objfile *objfile = cu->objfile;
13751 struct die_info *child_die;
13752 struct type *type;
13753
13754 type = get_die_type (die, cu);
13755 if (type == NULL)
13756 type = read_structure_type (die, cu);
13757
13758 if (die->child != NULL && ! die_is_declaration (die, cu))
13759 {
13760 struct field_info fi;
13761 VEC (symbolp) *template_args = NULL;
13762 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13763
13764 memset (&fi, 0, sizeof (struct field_info));
13765
13766 child_die = die->child;
13767
13768 while (child_die && child_die->tag)
13769 {
13770 if (child_die->tag == DW_TAG_member
13771 || child_die->tag == DW_TAG_variable)
13772 {
13773 /* NOTE: carlton/2002-11-05: A C++ static data member
13774 should be a DW_TAG_member that is a declaration, but
13775 all versions of G++ as of this writing (so through at
13776 least 3.2.1) incorrectly generate DW_TAG_variable
13777 tags for them instead. */
13778 dwarf2_add_field (&fi, child_die, cu);
13779 }
13780 else if (child_die->tag == DW_TAG_subprogram)
13781 {
13782 /* Rust doesn't have member functions in the C++ sense.
13783 However, it does emit ordinary functions as children
13784 of a struct DIE. */
13785 if (cu->language == language_rust)
13786 read_func_scope (child_die, cu);
13787 else
13788 {
13789 /* C++ member function. */
13790 dwarf2_add_member_fn (&fi, child_die, type, cu);
13791 }
13792 }
13793 else if (child_die->tag == DW_TAG_inheritance)
13794 {
13795 /* C++ base class field. */
13796 dwarf2_add_field (&fi, child_die, cu);
13797 }
13798 else if (child_die->tag == DW_TAG_typedef)
13799 dwarf2_add_typedef (&fi, child_die, cu);
13800 else if (child_die->tag == DW_TAG_template_type_param
13801 || child_die->tag == DW_TAG_template_value_param)
13802 {
13803 struct symbol *arg = new_symbol (child_die, NULL, cu);
13804
13805 if (arg != NULL)
13806 VEC_safe_push (symbolp, template_args, arg);
13807 }
13808
13809 child_die = sibling_die (child_die);
13810 }
13811
13812 /* Attach template arguments to type. */
13813 if (! VEC_empty (symbolp, template_args))
13814 {
13815 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13816 TYPE_N_TEMPLATE_ARGUMENTS (type)
13817 = VEC_length (symbolp, template_args);
13818 TYPE_TEMPLATE_ARGUMENTS (type)
13819 = XOBNEWVEC (&objfile->objfile_obstack,
13820 struct symbol *,
13821 TYPE_N_TEMPLATE_ARGUMENTS (type));
13822 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13823 VEC_address (symbolp, template_args),
13824 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13825 * sizeof (struct symbol *)));
13826 VEC_free (symbolp, template_args);
13827 }
13828
13829 /* Attach fields and member functions to the type. */
13830 if (fi.nfields)
13831 dwarf2_attach_fields_to_type (&fi, type, cu);
13832 if (fi.nfnfields)
13833 {
13834 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13835
13836 /* Get the type which refers to the base class (possibly this
13837 class itself) which contains the vtable pointer for the current
13838 class from the DW_AT_containing_type attribute. This use of
13839 DW_AT_containing_type is a GNU extension. */
13840
13841 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13842 {
13843 struct type *t = die_containing_type (die, cu);
13844
13845 set_type_vptr_basetype (type, t);
13846 if (type == t)
13847 {
13848 int i;
13849
13850 /* Our own class provides vtbl ptr. */
13851 for (i = TYPE_NFIELDS (t) - 1;
13852 i >= TYPE_N_BASECLASSES (t);
13853 --i)
13854 {
13855 const char *fieldname = TYPE_FIELD_NAME (t, i);
13856
13857 if (is_vtable_name (fieldname, cu))
13858 {
13859 set_type_vptr_fieldno (type, i);
13860 break;
13861 }
13862 }
13863
13864 /* Complain if virtual function table field not found. */
13865 if (i < TYPE_N_BASECLASSES (t))
13866 complaint (&symfile_complaints,
13867 _("virtual function table pointer "
13868 "not found when defining class '%s'"),
13869 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13870 "");
13871 }
13872 else
13873 {
13874 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13875 }
13876 }
13877 else if (cu->producer
13878 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13879 {
13880 /* The IBM XLC compiler does not provide direct indication
13881 of the containing type, but the vtable pointer is
13882 always named __vfp. */
13883
13884 int i;
13885
13886 for (i = TYPE_NFIELDS (type) - 1;
13887 i >= TYPE_N_BASECLASSES (type);
13888 --i)
13889 {
13890 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13891 {
13892 set_type_vptr_fieldno (type, i);
13893 set_type_vptr_basetype (type, type);
13894 break;
13895 }
13896 }
13897 }
13898 }
13899
13900 /* Copy fi.typedef_field_list linked list elements content into the
13901 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13902 if (fi.typedef_field_list)
13903 {
13904 int i = fi.typedef_field_list_count;
13905
13906 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13907 TYPE_TYPEDEF_FIELD_ARRAY (type)
13908 = ((struct typedef_field *)
13909 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13910 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13911
13912 /* Reverse the list order to keep the debug info elements order. */
13913 while (--i >= 0)
13914 {
13915 struct typedef_field *dest, *src;
13916
13917 dest = &TYPE_TYPEDEF_FIELD (type, i);
13918 src = &fi.typedef_field_list->field;
13919 fi.typedef_field_list = fi.typedef_field_list->next;
13920 *dest = *src;
13921 }
13922 }
13923
13924 do_cleanups (back_to);
13925 }
13926
13927 quirk_gcc_member_function_pointer (type, objfile);
13928
13929 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13930 snapshots) has been known to create a die giving a declaration
13931 for a class that has, as a child, a die giving a definition for a
13932 nested class. So we have to process our children even if the
13933 current die is a declaration. Normally, of course, a declaration
13934 won't have any children at all. */
13935
13936 child_die = die->child;
13937
13938 while (child_die != NULL && child_die->tag)
13939 {
13940 if (child_die->tag == DW_TAG_member
13941 || child_die->tag == DW_TAG_variable
13942 || child_die->tag == DW_TAG_inheritance
13943 || child_die->tag == DW_TAG_template_value_param
13944 || child_die->tag == DW_TAG_template_type_param)
13945 {
13946 /* Do nothing. */
13947 }
13948 else
13949 process_die (child_die, cu);
13950
13951 child_die = sibling_die (child_die);
13952 }
13953
13954 /* Do not consider external references. According to the DWARF standard,
13955 these DIEs are identified by the fact that they have no byte_size
13956 attribute, and a declaration attribute. */
13957 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13958 || !die_is_declaration (die, cu))
13959 new_symbol (die, type, cu);
13960 }
13961
13962 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13963 update TYPE using some information only available in DIE's children. */
13964
13965 static void
13966 update_enumeration_type_from_children (struct die_info *die,
13967 struct type *type,
13968 struct dwarf2_cu *cu)
13969 {
13970 struct die_info *child_die;
13971 int unsigned_enum = 1;
13972 int flag_enum = 1;
13973 ULONGEST mask = 0;
13974
13975 auto_obstack obstack;
13976
13977 for (child_die = die->child;
13978 child_die != NULL && child_die->tag;
13979 child_die = sibling_die (child_die))
13980 {
13981 struct attribute *attr;
13982 LONGEST value;
13983 const gdb_byte *bytes;
13984 struct dwarf2_locexpr_baton *baton;
13985 const char *name;
13986
13987 if (child_die->tag != DW_TAG_enumerator)
13988 continue;
13989
13990 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13991 if (attr == NULL)
13992 continue;
13993
13994 name = dwarf2_name (child_die, cu);
13995 if (name == NULL)
13996 name = "<anonymous enumerator>";
13997
13998 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13999 &value, &bytes, &baton);
14000 if (value < 0)
14001 {
14002 unsigned_enum = 0;
14003 flag_enum = 0;
14004 }
14005 else if ((mask & value) != 0)
14006 flag_enum = 0;
14007 else
14008 mask |= value;
14009
14010 /* If we already know that the enum type is neither unsigned, nor
14011 a flag type, no need to look at the rest of the enumerates. */
14012 if (!unsigned_enum && !flag_enum)
14013 break;
14014 }
14015
14016 if (unsigned_enum)
14017 TYPE_UNSIGNED (type) = 1;
14018 if (flag_enum)
14019 TYPE_FLAG_ENUM (type) = 1;
14020 }
14021
14022 /* Given a DW_AT_enumeration_type die, set its type. We do not
14023 complete the type's fields yet, or create any symbols. */
14024
14025 static struct type *
14026 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
14027 {
14028 struct objfile *objfile = cu->objfile;
14029 struct type *type;
14030 struct attribute *attr;
14031 const char *name;
14032
14033 /* If the definition of this type lives in .debug_types, read that type.
14034 Don't follow DW_AT_specification though, that will take us back up
14035 the chain and we want to go down. */
14036 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
14037 if (attr)
14038 {
14039 type = get_DW_AT_signature_type (die, attr, cu);
14040
14041 /* The type's CU may not be the same as CU.
14042 Ensure TYPE is recorded with CU in die_type_hash. */
14043 return set_die_type (die, type, cu);
14044 }
14045
14046 type = alloc_type (objfile);
14047
14048 TYPE_CODE (type) = TYPE_CODE_ENUM;
14049 name = dwarf2_full_name (NULL, die, cu);
14050 if (name != NULL)
14051 TYPE_TAG_NAME (type) = name;
14052
14053 attr = dwarf2_attr (die, DW_AT_type, cu);
14054 if (attr != NULL)
14055 {
14056 struct type *underlying_type = die_type (die, cu);
14057
14058 TYPE_TARGET_TYPE (type) = underlying_type;
14059 }
14060
14061 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14062 if (attr)
14063 {
14064 TYPE_LENGTH (type) = DW_UNSND (attr);
14065 }
14066 else
14067 {
14068 TYPE_LENGTH (type) = 0;
14069 }
14070
14071 /* The enumeration DIE can be incomplete. In Ada, any type can be
14072 declared as private in the package spec, and then defined only
14073 inside the package body. Such types are known as Taft Amendment
14074 Types. When another package uses such a type, an incomplete DIE
14075 may be generated by the compiler. */
14076 if (die_is_declaration (die, cu))
14077 TYPE_STUB (type) = 1;
14078
14079 /* Finish the creation of this type by using the enum's children.
14080 We must call this even when the underlying type has been provided
14081 so that we can determine if we're looking at a "flag" enum. */
14082 update_enumeration_type_from_children (die, type, cu);
14083
14084 /* If this type has an underlying type that is not a stub, then we
14085 may use its attributes. We always use the "unsigned" attribute
14086 in this situation, because ordinarily we guess whether the type
14087 is unsigned -- but the guess can be wrong and the underlying type
14088 can tell us the reality. However, we defer to a local size
14089 attribute if one exists, because this lets the compiler override
14090 the underlying type if needed. */
14091 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
14092 {
14093 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
14094 if (TYPE_LENGTH (type) == 0)
14095 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
14096 }
14097
14098 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
14099
14100 return set_die_type (die, type, cu);
14101 }
14102
14103 /* Given a pointer to a die which begins an enumeration, process all
14104 the dies that define the members of the enumeration, and create the
14105 symbol for the enumeration type.
14106
14107 NOTE: We reverse the order of the element list. */
14108
14109 static void
14110 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14111 {
14112 struct type *this_type;
14113
14114 this_type = get_die_type (die, cu);
14115 if (this_type == NULL)
14116 this_type = read_enumeration_type (die, cu);
14117
14118 if (die->child != NULL)
14119 {
14120 struct die_info *child_die;
14121 struct symbol *sym;
14122 struct field *fields = NULL;
14123 int num_fields = 0;
14124 const char *name;
14125
14126 child_die = die->child;
14127 while (child_die && child_die->tag)
14128 {
14129 if (child_die->tag != DW_TAG_enumerator)
14130 {
14131 process_die (child_die, cu);
14132 }
14133 else
14134 {
14135 name = dwarf2_name (child_die, cu);
14136 if (name)
14137 {
14138 sym = new_symbol (child_die, this_type, cu);
14139
14140 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14141 {
14142 fields = (struct field *)
14143 xrealloc (fields,
14144 (num_fields + DW_FIELD_ALLOC_CHUNK)
14145 * sizeof (struct field));
14146 }
14147
14148 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
14149 FIELD_TYPE (fields[num_fields]) = NULL;
14150 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
14151 FIELD_BITSIZE (fields[num_fields]) = 0;
14152
14153 num_fields++;
14154 }
14155 }
14156
14157 child_die = sibling_die (child_die);
14158 }
14159
14160 if (num_fields)
14161 {
14162 TYPE_NFIELDS (this_type) = num_fields;
14163 TYPE_FIELDS (this_type) = (struct field *)
14164 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14165 memcpy (TYPE_FIELDS (this_type), fields,
14166 sizeof (struct field) * num_fields);
14167 xfree (fields);
14168 }
14169 }
14170
14171 /* If we are reading an enum from a .debug_types unit, and the enum
14172 is a declaration, and the enum is not the signatured type in the
14173 unit, then we do not want to add a symbol for it. Adding a
14174 symbol would in some cases obscure the true definition of the
14175 enum, giving users an incomplete type when the definition is
14176 actually available. Note that we do not want to do this for all
14177 enums which are just declarations, because C++0x allows forward
14178 enum declarations. */
14179 if (cu->per_cu->is_debug_types
14180 && die_is_declaration (die, cu))
14181 {
14182 struct signatured_type *sig_type;
14183
14184 sig_type = (struct signatured_type *) cu->per_cu;
14185 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14186 if (sig_type->type_offset_in_section != die->sect_off)
14187 return;
14188 }
14189
14190 new_symbol (die, this_type, cu);
14191 }
14192
14193 /* Extract all information from a DW_TAG_array_type DIE and put it in
14194 the DIE's type field. For now, this only handles one dimensional
14195 arrays. */
14196
14197 static struct type *
14198 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
14199 {
14200 struct objfile *objfile = cu->objfile;
14201 struct die_info *child_die;
14202 struct type *type;
14203 struct type *element_type, *range_type, *index_type;
14204 struct type **range_types = NULL;
14205 struct attribute *attr;
14206 int ndim = 0;
14207 struct cleanup *back_to;
14208 const char *name;
14209 unsigned int bit_stride = 0;
14210
14211 element_type = die_type (die, cu);
14212
14213 /* The die_type call above may have already set the type for this DIE. */
14214 type = get_die_type (die, cu);
14215 if (type)
14216 return type;
14217
14218 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14219 if (attr != NULL)
14220 bit_stride = DW_UNSND (attr) * 8;
14221
14222 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14223 if (attr != NULL)
14224 bit_stride = DW_UNSND (attr);
14225
14226 /* Irix 6.2 native cc creates array types without children for
14227 arrays with unspecified length. */
14228 if (die->child == NULL)
14229 {
14230 index_type = objfile_type (objfile)->builtin_int;
14231 range_type = create_static_range_type (NULL, index_type, 0, -1);
14232 type = create_array_type_with_stride (NULL, element_type, range_type,
14233 bit_stride);
14234 return set_die_type (die, type, cu);
14235 }
14236
14237 back_to = make_cleanup (null_cleanup, NULL);
14238 child_die = die->child;
14239 while (child_die && child_die->tag)
14240 {
14241 if (child_die->tag == DW_TAG_subrange_type)
14242 {
14243 struct type *child_type = read_type_die (child_die, cu);
14244
14245 if (child_type != NULL)
14246 {
14247 /* The range type was succesfully read. Save it for the
14248 array type creation. */
14249 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
14250 {
14251 range_types = (struct type **)
14252 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
14253 * sizeof (struct type *));
14254 if (ndim == 0)
14255 make_cleanup (free_current_contents, &range_types);
14256 }
14257 range_types[ndim++] = child_type;
14258 }
14259 }
14260 child_die = sibling_die (child_die);
14261 }
14262
14263 /* Dwarf2 dimensions are output from left to right, create the
14264 necessary array types in backwards order. */
14265
14266 type = element_type;
14267
14268 if (read_array_order (die, cu) == DW_ORD_col_major)
14269 {
14270 int i = 0;
14271
14272 while (i < ndim)
14273 type = create_array_type_with_stride (NULL, type, range_types[i++],
14274 bit_stride);
14275 }
14276 else
14277 {
14278 while (ndim-- > 0)
14279 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14280 bit_stride);
14281 }
14282
14283 /* Understand Dwarf2 support for vector types (like they occur on
14284 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14285 array type. This is not part of the Dwarf2/3 standard yet, but a
14286 custom vendor extension. The main difference between a regular
14287 array and the vector variant is that vectors are passed by value
14288 to functions. */
14289 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
14290 if (attr)
14291 make_vector_type (type);
14292
14293 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14294 implementation may choose to implement triple vectors using this
14295 attribute. */
14296 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14297 if (attr)
14298 {
14299 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14300 TYPE_LENGTH (type) = DW_UNSND (attr);
14301 else
14302 complaint (&symfile_complaints,
14303 _("DW_AT_byte_size for array type smaller "
14304 "than the total size of elements"));
14305 }
14306
14307 name = dwarf2_name (die, cu);
14308 if (name)
14309 TYPE_NAME (type) = name;
14310
14311 /* Install the type in the die. */
14312 set_die_type (die, type, cu);
14313
14314 /* set_die_type should be already done. */
14315 set_descriptive_type (type, die, cu);
14316
14317 do_cleanups (back_to);
14318
14319 return type;
14320 }
14321
14322 static enum dwarf_array_dim_ordering
14323 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
14324 {
14325 struct attribute *attr;
14326
14327 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14328
14329 if (attr)
14330 return (enum dwarf_array_dim_ordering) DW_SND (attr);
14331
14332 /* GNU F77 is a special case, as at 08/2004 array type info is the
14333 opposite order to the dwarf2 specification, but data is still
14334 laid out as per normal fortran.
14335
14336 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14337 version checking. */
14338
14339 if (cu->language == language_fortran
14340 && cu->producer && strstr (cu->producer, "GNU F77"))
14341 {
14342 return DW_ORD_row_major;
14343 }
14344
14345 switch (cu->language_defn->la_array_ordering)
14346 {
14347 case array_column_major:
14348 return DW_ORD_col_major;
14349 case array_row_major:
14350 default:
14351 return DW_ORD_row_major;
14352 };
14353 }
14354
14355 /* Extract all information from a DW_TAG_set_type DIE and put it in
14356 the DIE's type field. */
14357
14358 static struct type *
14359 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14360 {
14361 struct type *domain_type, *set_type;
14362 struct attribute *attr;
14363
14364 domain_type = die_type (die, cu);
14365
14366 /* The die_type call above may have already set the type for this DIE. */
14367 set_type = get_die_type (die, cu);
14368 if (set_type)
14369 return set_type;
14370
14371 set_type = create_set_type (NULL, domain_type);
14372
14373 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14374 if (attr)
14375 TYPE_LENGTH (set_type) = DW_UNSND (attr);
14376
14377 return set_die_type (die, set_type, cu);
14378 }
14379
14380 /* A helper for read_common_block that creates a locexpr baton.
14381 SYM is the symbol which we are marking as computed.
14382 COMMON_DIE is the DIE for the common block.
14383 COMMON_LOC is the location expression attribute for the common
14384 block itself.
14385 MEMBER_LOC is the location expression attribute for the particular
14386 member of the common block that we are processing.
14387 CU is the CU from which the above come. */
14388
14389 static void
14390 mark_common_block_symbol_computed (struct symbol *sym,
14391 struct die_info *common_die,
14392 struct attribute *common_loc,
14393 struct attribute *member_loc,
14394 struct dwarf2_cu *cu)
14395 {
14396 struct objfile *objfile = dwarf2_per_objfile->objfile;
14397 struct dwarf2_locexpr_baton *baton;
14398 gdb_byte *ptr;
14399 unsigned int cu_off;
14400 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14401 LONGEST offset = 0;
14402
14403 gdb_assert (common_loc && member_loc);
14404 gdb_assert (attr_form_is_block (common_loc));
14405 gdb_assert (attr_form_is_block (member_loc)
14406 || attr_form_is_constant (member_loc));
14407
14408 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14409 baton->per_cu = cu->per_cu;
14410 gdb_assert (baton->per_cu);
14411
14412 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14413
14414 if (attr_form_is_constant (member_loc))
14415 {
14416 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14417 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14418 }
14419 else
14420 baton->size += DW_BLOCK (member_loc)->size;
14421
14422 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
14423 baton->data = ptr;
14424
14425 *ptr++ = DW_OP_call4;
14426 cu_off = common_die->sect_off - cu->per_cu->sect_off;
14427 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14428 ptr += 4;
14429
14430 if (attr_form_is_constant (member_loc))
14431 {
14432 *ptr++ = DW_OP_addr;
14433 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14434 ptr += cu->header.addr_size;
14435 }
14436 else
14437 {
14438 /* We have to copy the data here, because DW_OP_call4 will only
14439 use a DW_AT_location attribute. */
14440 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14441 ptr += DW_BLOCK (member_loc)->size;
14442 }
14443
14444 *ptr++ = DW_OP_plus;
14445 gdb_assert (ptr - baton->data == baton->size);
14446
14447 SYMBOL_LOCATION_BATON (sym) = baton;
14448 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
14449 }
14450
14451 /* Create appropriate locally-scoped variables for all the
14452 DW_TAG_common_block entries. Also create a struct common_block
14453 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14454 is used to sepate the common blocks name namespace from regular
14455 variable names. */
14456
14457 static void
14458 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
14459 {
14460 struct attribute *attr;
14461
14462 attr = dwarf2_attr (die, DW_AT_location, cu);
14463 if (attr)
14464 {
14465 /* Support the .debug_loc offsets. */
14466 if (attr_form_is_block (attr))
14467 {
14468 /* Ok. */
14469 }
14470 else if (attr_form_is_section_offset (attr))
14471 {
14472 dwarf2_complex_location_expr_complaint ();
14473 attr = NULL;
14474 }
14475 else
14476 {
14477 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14478 "common block member");
14479 attr = NULL;
14480 }
14481 }
14482
14483 if (die->child != NULL)
14484 {
14485 struct objfile *objfile = cu->objfile;
14486 struct die_info *child_die;
14487 size_t n_entries = 0, size;
14488 struct common_block *common_block;
14489 struct symbol *sym;
14490
14491 for (child_die = die->child;
14492 child_die && child_die->tag;
14493 child_die = sibling_die (child_die))
14494 ++n_entries;
14495
14496 size = (sizeof (struct common_block)
14497 + (n_entries - 1) * sizeof (struct symbol *));
14498 common_block
14499 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14500 size);
14501 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14502 common_block->n_entries = 0;
14503
14504 for (child_die = die->child;
14505 child_die && child_die->tag;
14506 child_die = sibling_die (child_die))
14507 {
14508 /* Create the symbol in the DW_TAG_common_block block in the current
14509 symbol scope. */
14510 sym = new_symbol (child_die, NULL, cu);
14511 if (sym != NULL)
14512 {
14513 struct attribute *member_loc;
14514
14515 common_block->contents[common_block->n_entries++] = sym;
14516
14517 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14518 cu);
14519 if (member_loc)
14520 {
14521 /* GDB has handled this for a long time, but it is
14522 not specified by DWARF. It seems to have been
14523 emitted by gfortran at least as recently as:
14524 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14525 complaint (&symfile_complaints,
14526 _("Variable in common block has "
14527 "DW_AT_data_member_location "
14528 "- DIE at 0x%x [in module %s]"),
14529 to_underlying (child_die->sect_off),
14530 objfile_name (cu->objfile));
14531
14532 if (attr_form_is_section_offset (member_loc))
14533 dwarf2_complex_location_expr_complaint ();
14534 else if (attr_form_is_constant (member_loc)
14535 || attr_form_is_block (member_loc))
14536 {
14537 if (attr)
14538 mark_common_block_symbol_computed (sym, die, attr,
14539 member_loc, cu);
14540 }
14541 else
14542 dwarf2_complex_location_expr_complaint ();
14543 }
14544 }
14545 }
14546
14547 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14548 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14549 }
14550 }
14551
14552 /* Create a type for a C++ namespace. */
14553
14554 static struct type *
14555 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14556 {
14557 struct objfile *objfile = cu->objfile;
14558 const char *previous_prefix, *name;
14559 int is_anonymous;
14560 struct type *type;
14561
14562 /* For extensions, reuse the type of the original namespace. */
14563 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14564 {
14565 struct die_info *ext_die;
14566 struct dwarf2_cu *ext_cu = cu;
14567
14568 ext_die = dwarf2_extension (die, &ext_cu);
14569 type = read_type_die (ext_die, ext_cu);
14570
14571 /* EXT_CU may not be the same as CU.
14572 Ensure TYPE is recorded with CU in die_type_hash. */
14573 return set_die_type (die, type, cu);
14574 }
14575
14576 name = namespace_name (die, &is_anonymous, cu);
14577
14578 /* Now build the name of the current namespace. */
14579
14580 previous_prefix = determine_prefix (die, cu);
14581 if (previous_prefix[0] != '\0')
14582 name = typename_concat (&objfile->objfile_obstack,
14583 previous_prefix, name, 0, cu);
14584
14585 /* Create the type. */
14586 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14587 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14588
14589 return set_die_type (die, type, cu);
14590 }
14591
14592 /* Read a namespace scope. */
14593
14594 static void
14595 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14596 {
14597 struct objfile *objfile = cu->objfile;
14598 int is_anonymous;
14599
14600 /* Add a symbol associated to this if we haven't seen the namespace
14601 before. Also, add a using directive if it's an anonymous
14602 namespace. */
14603
14604 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14605 {
14606 struct type *type;
14607
14608 type = read_type_die (die, cu);
14609 new_symbol (die, type, cu);
14610
14611 namespace_name (die, &is_anonymous, cu);
14612 if (is_anonymous)
14613 {
14614 const char *previous_prefix = determine_prefix (die, cu);
14615
14616 std::vector<const char *> excludes;
14617 add_using_directive (using_directives (cu->language),
14618 previous_prefix, TYPE_NAME (type), NULL,
14619 NULL, excludes, 0, &objfile->objfile_obstack);
14620 }
14621 }
14622
14623 if (die->child != NULL)
14624 {
14625 struct die_info *child_die = die->child;
14626
14627 while (child_die && child_die->tag)
14628 {
14629 process_die (child_die, cu);
14630 child_die = sibling_die (child_die);
14631 }
14632 }
14633 }
14634
14635 /* Read a Fortran module as type. This DIE can be only a declaration used for
14636 imported module. Still we need that type as local Fortran "use ... only"
14637 declaration imports depend on the created type in determine_prefix. */
14638
14639 static struct type *
14640 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14641 {
14642 struct objfile *objfile = cu->objfile;
14643 const char *module_name;
14644 struct type *type;
14645
14646 module_name = dwarf2_name (die, cu);
14647 if (!module_name)
14648 complaint (&symfile_complaints,
14649 _("DW_TAG_module has no name, offset 0x%x"),
14650 to_underlying (die->sect_off));
14651 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14652
14653 /* determine_prefix uses TYPE_TAG_NAME. */
14654 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14655
14656 return set_die_type (die, type, cu);
14657 }
14658
14659 /* Read a Fortran module. */
14660
14661 static void
14662 read_module (struct die_info *die, struct dwarf2_cu *cu)
14663 {
14664 struct die_info *child_die = die->child;
14665 struct type *type;
14666
14667 type = read_type_die (die, cu);
14668 new_symbol (die, type, cu);
14669
14670 while (child_die && child_die->tag)
14671 {
14672 process_die (child_die, cu);
14673 child_die = sibling_die (child_die);
14674 }
14675 }
14676
14677 /* Return the name of the namespace represented by DIE. Set
14678 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14679 namespace. */
14680
14681 static const char *
14682 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14683 {
14684 struct die_info *current_die;
14685 const char *name = NULL;
14686
14687 /* Loop through the extensions until we find a name. */
14688
14689 for (current_die = die;
14690 current_die != NULL;
14691 current_die = dwarf2_extension (die, &cu))
14692 {
14693 /* We don't use dwarf2_name here so that we can detect the absence
14694 of a name -> anonymous namespace. */
14695 name = dwarf2_string_attr (die, DW_AT_name, cu);
14696
14697 if (name != NULL)
14698 break;
14699 }
14700
14701 /* Is it an anonymous namespace? */
14702
14703 *is_anonymous = (name == NULL);
14704 if (*is_anonymous)
14705 name = CP_ANONYMOUS_NAMESPACE_STR;
14706
14707 return name;
14708 }
14709
14710 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14711 the user defined type vector. */
14712
14713 static struct type *
14714 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14715 {
14716 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14717 struct comp_unit_head *cu_header = &cu->header;
14718 struct type *type;
14719 struct attribute *attr_byte_size;
14720 struct attribute *attr_address_class;
14721 int byte_size, addr_class;
14722 struct type *target_type;
14723
14724 target_type = die_type (die, cu);
14725
14726 /* The die_type call above may have already set the type for this DIE. */
14727 type = get_die_type (die, cu);
14728 if (type)
14729 return type;
14730
14731 type = lookup_pointer_type (target_type);
14732
14733 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14734 if (attr_byte_size)
14735 byte_size = DW_UNSND (attr_byte_size);
14736 else
14737 byte_size = cu_header->addr_size;
14738
14739 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14740 if (attr_address_class)
14741 addr_class = DW_UNSND (attr_address_class);
14742 else
14743 addr_class = DW_ADDR_none;
14744
14745 /* If the pointer size or address class is different than the
14746 default, create a type variant marked as such and set the
14747 length accordingly. */
14748 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14749 {
14750 if (gdbarch_address_class_type_flags_p (gdbarch))
14751 {
14752 int type_flags;
14753
14754 type_flags = gdbarch_address_class_type_flags
14755 (gdbarch, byte_size, addr_class);
14756 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14757 == 0);
14758 type = make_type_with_address_space (type, type_flags);
14759 }
14760 else if (TYPE_LENGTH (type) != byte_size)
14761 {
14762 complaint (&symfile_complaints,
14763 _("invalid pointer size %d"), byte_size);
14764 }
14765 else
14766 {
14767 /* Should we also complain about unhandled address classes? */
14768 }
14769 }
14770
14771 TYPE_LENGTH (type) = byte_size;
14772 return set_die_type (die, type, cu);
14773 }
14774
14775 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14776 the user defined type vector. */
14777
14778 static struct type *
14779 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14780 {
14781 struct type *type;
14782 struct type *to_type;
14783 struct type *domain;
14784
14785 to_type = die_type (die, cu);
14786 domain = die_containing_type (die, cu);
14787
14788 /* The calls above may have already set the type for this DIE. */
14789 type = get_die_type (die, cu);
14790 if (type)
14791 return type;
14792
14793 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14794 type = lookup_methodptr_type (to_type);
14795 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14796 {
14797 struct type *new_type = alloc_type (cu->objfile);
14798
14799 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14800 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14801 TYPE_VARARGS (to_type));
14802 type = lookup_methodptr_type (new_type);
14803 }
14804 else
14805 type = lookup_memberptr_type (to_type, domain);
14806
14807 return set_die_type (die, type, cu);
14808 }
14809
14810 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
14811 the user defined type vector. */
14812
14813 static struct type *
14814 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
14815 enum type_code refcode)
14816 {
14817 struct comp_unit_head *cu_header = &cu->header;
14818 struct type *type, *target_type;
14819 struct attribute *attr;
14820
14821 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
14822
14823 target_type = die_type (die, cu);
14824
14825 /* The die_type call above may have already set the type for this DIE. */
14826 type = get_die_type (die, cu);
14827 if (type)
14828 return type;
14829
14830 type = lookup_reference_type (target_type, refcode);
14831 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14832 if (attr)
14833 {
14834 TYPE_LENGTH (type) = DW_UNSND (attr);
14835 }
14836 else
14837 {
14838 TYPE_LENGTH (type) = cu_header->addr_size;
14839 }
14840 return set_die_type (die, type, cu);
14841 }
14842
14843 /* Add the given cv-qualifiers to the element type of the array. GCC
14844 outputs DWARF type qualifiers that apply to an array, not the
14845 element type. But GDB relies on the array element type to carry
14846 the cv-qualifiers. This mimics section 6.7.3 of the C99
14847 specification. */
14848
14849 static struct type *
14850 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14851 struct type *base_type, int cnst, int voltl)
14852 {
14853 struct type *el_type, *inner_array;
14854
14855 base_type = copy_type (base_type);
14856 inner_array = base_type;
14857
14858 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14859 {
14860 TYPE_TARGET_TYPE (inner_array) =
14861 copy_type (TYPE_TARGET_TYPE (inner_array));
14862 inner_array = TYPE_TARGET_TYPE (inner_array);
14863 }
14864
14865 el_type = TYPE_TARGET_TYPE (inner_array);
14866 cnst |= TYPE_CONST (el_type);
14867 voltl |= TYPE_VOLATILE (el_type);
14868 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14869
14870 return set_die_type (die, base_type, cu);
14871 }
14872
14873 static struct type *
14874 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14875 {
14876 struct type *base_type, *cv_type;
14877
14878 base_type = die_type (die, cu);
14879
14880 /* The die_type call above may have already set the type for this DIE. */
14881 cv_type = get_die_type (die, cu);
14882 if (cv_type)
14883 return cv_type;
14884
14885 /* In case the const qualifier is applied to an array type, the element type
14886 is so qualified, not the array type (section 6.7.3 of C99). */
14887 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14888 return add_array_cv_type (die, cu, base_type, 1, 0);
14889
14890 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14891 return set_die_type (die, cv_type, cu);
14892 }
14893
14894 static struct type *
14895 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14896 {
14897 struct type *base_type, *cv_type;
14898
14899 base_type = die_type (die, cu);
14900
14901 /* The die_type call above may have already set the type for this DIE. */
14902 cv_type = get_die_type (die, cu);
14903 if (cv_type)
14904 return cv_type;
14905
14906 /* In case the volatile qualifier is applied to an array type, the
14907 element type is so qualified, not the array type (section 6.7.3
14908 of C99). */
14909 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14910 return add_array_cv_type (die, cu, base_type, 0, 1);
14911
14912 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14913 return set_die_type (die, cv_type, cu);
14914 }
14915
14916 /* Handle DW_TAG_restrict_type. */
14917
14918 static struct type *
14919 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14920 {
14921 struct type *base_type, *cv_type;
14922
14923 base_type = die_type (die, cu);
14924
14925 /* The die_type call above may have already set the type for this DIE. */
14926 cv_type = get_die_type (die, cu);
14927 if (cv_type)
14928 return cv_type;
14929
14930 cv_type = make_restrict_type (base_type);
14931 return set_die_type (die, cv_type, cu);
14932 }
14933
14934 /* Handle DW_TAG_atomic_type. */
14935
14936 static struct type *
14937 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14938 {
14939 struct type *base_type, *cv_type;
14940
14941 base_type = die_type (die, cu);
14942
14943 /* The die_type call above may have already set the type for this DIE. */
14944 cv_type = get_die_type (die, cu);
14945 if (cv_type)
14946 return cv_type;
14947
14948 cv_type = make_atomic_type (base_type);
14949 return set_die_type (die, cv_type, cu);
14950 }
14951
14952 /* Extract all information from a DW_TAG_string_type DIE and add to
14953 the user defined type vector. It isn't really a user defined type,
14954 but it behaves like one, with other DIE's using an AT_user_def_type
14955 attribute to reference it. */
14956
14957 static struct type *
14958 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14959 {
14960 struct objfile *objfile = cu->objfile;
14961 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14962 struct type *type, *range_type, *index_type, *char_type;
14963 struct attribute *attr;
14964 unsigned int length;
14965
14966 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14967 if (attr)
14968 {
14969 length = DW_UNSND (attr);
14970 }
14971 else
14972 {
14973 /* Check for the DW_AT_byte_size attribute. */
14974 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14975 if (attr)
14976 {
14977 length = DW_UNSND (attr);
14978 }
14979 else
14980 {
14981 length = 1;
14982 }
14983 }
14984
14985 index_type = objfile_type (objfile)->builtin_int;
14986 range_type = create_static_range_type (NULL, index_type, 1, length);
14987 char_type = language_string_char_type (cu->language_defn, gdbarch);
14988 type = create_string_type (NULL, char_type, range_type);
14989
14990 return set_die_type (die, type, cu);
14991 }
14992
14993 /* Assuming that DIE corresponds to a function, returns nonzero
14994 if the function is prototyped. */
14995
14996 static int
14997 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14998 {
14999 struct attribute *attr;
15000
15001 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
15002 if (attr && (DW_UNSND (attr) != 0))
15003 return 1;
15004
15005 /* The DWARF standard implies that the DW_AT_prototyped attribute
15006 is only meaninful for C, but the concept also extends to other
15007 languages that allow unprototyped functions (Eg: Objective C).
15008 For all other languages, assume that functions are always
15009 prototyped. */
15010 if (cu->language != language_c
15011 && cu->language != language_objc
15012 && cu->language != language_opencl)
15013 return 1;
15014
15015 /* RealView does not emit DW_AT_prototyped. We can not distinguish
15016 prototyped and unprototyped functions; default to prototyped,
15017 since that is more common in modern code (and RealView warns
15018 about unprototyped functions). */
15019 if (producer_is_realview (cu->producer))
15020 return 1;
15021
15022 return 0;
15023 }
15024
15025 /* Handle DIES due to C code like:
15026
15027 struct foo
15028 {
15029 int (*funcp)(int a, long l);
15030 int b;
15031 };
15032
15033 ('funcp' generates a DW_TAG_subroutine_type DIE). */
15034
15035 static struct type *
15036 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
15037 {
15038 struct objfile *objfile = cu->objfile;
15039 struct type *type; /* Type that this function returns. */
15040 struct type *ftype; /* Function that returns above type. */
15041 struct attribute *attr;
15042
15043 type = die_type (die, cu);
15044
15045 /* The die_type call above may have already set the type for this DIE. */
15046 ftype = get_die_type (die, cu);
15047 if (ftype)
15048 return ftype;
15049
15050 ftype = lookup_function_type (type);
15051
15052 if (prototyped_function_p (die, cu))
15053 TYPE_PROTOTYPED (ftype) = 1;
15054
15055 /* Store the calling convention in the type if it's available in
15056 the subroutine die. Otherwise set the calling convention to
15057 the default value DW_CC_normal. */
15058 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15059 if (attr)
15060 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
15061 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
15062 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
15063 else
15064 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
15065
15066 /* Record whether the function returns normally to its caller or not
15067 if the DWARF producer set that information. */
15068 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
15069 if (attr && (DW_UNSND (attr) != 0))
15070 TYPE_NO_RETURN (ftype) = 1;
15071
15072 /* We need to add the subroutine type to the die immediately so
15073 we don't infinitely recurse when dealing with parameters
15074 declared as the same subroutine type. */
15075 set_die_type (die, ftype, cu);
15076
15077 if (die->child != NULL)
15078 {
15079 struct type *void_type = objfile_type (objfile)->builtin_void;
15080 struct die_info *child_die;
15081 int nparams, iparams;
15082
15083 /* Count the number of parameters.
15084 FIXME: GDB currently ignores vararg functions, but knows about
15085 vararg member functions. */
15086 nparams = 0;
15087 child_die = die->child;
15088 while (child_die && child_die->tag)
15089 {
15090 if (child_die->tag == DW_TAG_formal_parameter)
15091 nparams++;
15092 else if (child_die->tag == DW_TAG_unspecified_parameters)
15093 TYPE_VARARGS (ftype) = 1;
15094 child_die = sibling_die (child_die);
15095 }
15096
15097 /* Allocate storage for parameters and fill them in. */
15098 TYPE_NFIELDS (ftype) = nparams;
15099 TYPE_FIELDS (ftype) = (struct field *)
15100 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
15101
15102 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15103 even if we error out during the parameters reading below. */
15104 for (iparams = 0; iparams < nparams; iparams++)
15105 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15106
15107 iparams = 0;
15108 child_die = die->child;
15109 while (child_die && child_die->tag)
15110 {
15111 if (child_die->tag == DW_TAG_formal_parameter)
15112 {
15113 struct type *arg_type;
15114
15115 /* DWARF version 2 has no clean way to discern C++
15116 static and non-static member functions. G++ helps
15117 GDB by marking the first parameter for non-static
15118 member functions (which is the this pointer) as
15119 artificial. We pass this information to
15120 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15121
15122 DWARF version 3 added DW_AT_object_pointer, which GCC
15123 4.5 does not yet generate. */
15124 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
15125 if (attr)
15126 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15127 else
15128 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
15129 arg_type = die_type (child_die, cu);
15130
15131 /* RealView does not mark THIS as const, which the testsuite
15132 expects. GCC marks THIS as const in method definitions,
15133 but not in the class specifications (GCC PR 43053). */
15134 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15135 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15136 {
15137 int is_this = 0;
15138 struct dwarf2_cu *arg_cu = cu;
15139 const char *name = dwarf2_name (child_die, cu);
15140
15141 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15142 if (attr)
15143 {
15144 /* If the compiler emits this, use it. */
15145 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15146 is_this = 1;
15147 }
15148 else if (name && strcmp (name, "this") == 0)
15149 /* Function definitions will have the argument names. */
15150 is_this = 1;
15151 else if (name == NULL && iparams == 0)
15152 /* Declarations may not have the names, so like
15153 elsewhere in GDB, assume an artificial first
15154 argument is "this". */
15155 is_this = 1;
15156
15157 if (is_this)
15158 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15159 arg_type, 0);
15160 }
15161
15162 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
15163 iparams++;
15164 }
15165 child_die = sibling_die (child_die);
15166 }
15167 }
15168
15169 return ftype;
15170 }
15171
15172 static struct type *
15173 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
15174 {
15175 struct objfile *objfile = cu->objfile;
15176 const char *name = NULL;
15177 struct type *this_type, *target_type;
15178
15179 name = dwarf2_full_name (NULL, die, cu);
15180 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15181 TYPE_TARGET_STUB (this_type) = 1;
15182 set_die_type (die, this_type, cu);
15183 target_type = die_type (die, cu);
15184 if (target_type != this_type)
15185 TYPE_TARGET_TYPE (this_type) = target_type;
15186 else
15187 {
15188 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15189 spec and cause infinite loops in GDB. */
15190 complaint (&symfile_complaints,
15191 _("Self-referential DW_TAG_typedef "
15192 "- DIE at 0x%x [in module %s]"),
15193 to_underlying (die->sect_off), objfile_name (objfile));
15194 TYPE_TARGET_TYPE (this_type) = NULL;
15195 }
15196 return this_type;
15197 }
15198
15199 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15200 (which may be different from NAME) to the architecture back-end to allow
15201 it to guess the correct format if necessary. */
15202
15203 static struct type *
15204 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15205 const char *name_hint)
15206 {
15207 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15208 const struct floatformat **format;
15209 struct type *type;
15210
15211 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15212 if (format)
15213 type = init_float_type (objfile, bits, name, format);
15214 else
15215 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
15216
15217 return type;
15218 }
15219
15220 /* Find a representation of a given base type and install
15221 it in the TYPE field of the die. */
15222
15223 static struct type *
15224 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
15225 {
15226 struct objfile *objfile = cu->objfile;
15227 struct type *type;
15228 struct attribute *attr;
15229 int encoding = 0, bits = 0;
15230 const char *name;
15231
15232 attr = dwarf2_attr (die, DW_AT_encoding, cu);
15233 if (attr)
15234 {
15235 encoding = DW_UNSND (attr);
15236 }
15237 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15238 if (attr)
15239 {
15240 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
15241 }
15242 name = dwarf2_name (die, cu);
15243 if (!name)
15244 {
15245 complaint (&symfile_complaints,
15246 _("DW_AT_name missing from DW_TAG_base_type"));
15247 }
15248
15249 switch (encoding)
15250 {
15251 case DW_ATE_address:
15252 /* Turn DW_ATE_address into a void * pointer. */
15253 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
15254 type = init_pointer_type (objfile, bits, name, type);
15255 break;
15256 case DW_ATE_boolean:
15257 type = init_boolean_type (objfile, bits, 1, name);
15258 break;
15259 case DW_ATE_complex_float:
15260 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
15261 type = init_complex_type (objfile, name, type);
15262 break;
15263 case DW_ATE_decimal_float:
15264 type = init_decfloat_type (objfile, bits, name);
15265 break;
15266 case DW_ATE_float:
15267 type = dwarf2_init_float_type (objfile, bits, name, name);
15268 break;
15269 case DW_ATE_signed:
15270 type = init_integer_type (objfile, bits, 0, name);
15271 break;
15272 case DW_ATE_unsigned:
15273 if (cu->language == language_fortran
15274 && name
15275 && startswith (name, "character("))
15276 type = init_character_type (objfile, bits, 1, name);
15277 else
15278 type = init_integer_type (objfile, bits, 1, name);
15279 break;
15280 case DW_ATE_signed_char:
15281 if (cu->language == language_ada || cu->language == language_m2
15282 || cu->language == language_pascal
15283 || cu->language == language_fortran)
15284 type = init_character_type (objfile, bits, 0, name);
15285 else
15286 type = init_integer_type (objfile, bits, 0, name);
15287 break;
15288 case DW_ATE_unsigned_char:
15289 if (cu->language == language_ada || cu->language == language_m2
15290 || cu->language == language_pascal
15291 || cu->language == language_fortran
15292 || cu->language == language_rust)
15293 type = init_character_type (objfile, bits, 1, name);
15294 else
15295 type = init_integer_type (objfile, bits, 1, name);
15296 break;
15297 case DW_ATE_UTF:
15298 {
15299 gdbarch *arch = get_objfile_arch (objfile);
15300
15301 if (bits == 16)
15302 type = builtin_type (arch)->builtin_char16;
15303 else if (bits == 32)
15304 type = builtin_type (arch)->builtin_char32;
15305 else
15306 {
15307 complaint (&symfile_complaints,
15308 _("unsupported DW_ATE_UTF bit size: '%d'"),
15309 bits);
15310 type = init_integer_type (objfile, bits, 1, name);
15311 }
15312 return set_die_type (die, type, cu);
15313 }
15314 break;
15315
15316 default:
15317 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15318 dwarf_type_encoding_name (encoding));
15319 type = init_type (objfile, TYPE_CODE_ERROR,
15320 bits / TARGET_CHAR_BIT, name);
15321 break;
15322 }
15323
15324 if (name && strcmp (name, "char") == 0)
15325 TYPE_NOSIGN (type) = 1;
15326
15327 return set_die_type (die, type, cu);
15328 }
15329
15330 /* Parse dwarf attribute if it's a block, reference or constant and put the
15331 resulting value of the attribute into struct bound_prop.
15332 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15333
15334 static int
15335 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15336 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15337 {
15338 struct dwarf2_property_baton *baton;
15339 struct obstack *obstack = &cu->objfile->objfile_obstack;
15340
15341 if (attr == NULL || prop == NULL)
15342 return 0;
15343
15344 if (attr_form_is_block (attr))
15345 {
15346 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15347 baton->referenced_type = NULL;
15348 baton->locexpr.per_cu = cu->per_cu;
15349 baton->locexpr.size = DW_BLOCK (attr)->size;
15350 baton->locexpr.data = DW_BLOCK (attr)->data;
15351 prop->data.baton = baton;
15352 prop->kind = PROP_LOCEXPR;
15353 gdb_assert (prop->data.baton != NULL);
15354 }
15355 else if (attr_form_is_ref (attr))
15356 {
15357 struct dwarf2_cu *target_cu = cu;
15358 struct die_info *target_die;
15359 struct attribute *target_attr;
15360
15361 target_die = follow_die_ref (die, attr, &target_cu);
15362 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
15363 if (target_attr == NULL)
15364 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15365 target_cu);
15366 if (target_attr == NULL)
15367 return 0;
15368
15369 switch (target_attr->name)
15370 {
15371 case DW_AT_location:
15372 if (attr_form_is_section_offset (target_attr))
15373 {
15374 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15375 baton->referenced_type = die_type (target_die, target_cu);
15376 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15377 prop->data.baton = baton;
15378 prop->kind = PROP_LOCLIST;
15379 gdb_assert (prop->data.baton != NULL);
15380 }
15381 else if (attr_form_is_block (target_attr))
15382 {
15383 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15384 baton->referenced_type = die_type (target_die, target_cu);
15385 baton->locexpr.per_cu = cu->per_cu;
15386 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15387 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15388 prop->data.baton = baton;
15389 prop->kind = PROP_LOCEXPR;
15390 gdb_assert (prop->data.baton != NULL);
15391 }
15392 else
15393 {
15394 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15395 "dynamic property");
15396 return 0;
15397 }
15398 break;
15399 case DW_AT_data_member_location:
15400 {
15401 LONGEST offset;
15402
15403 if (!handle_data_member_location (target_die, target_cu,
15404 &offset))
15405 return 0;
15406
15407 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15408 baton->referenced_type = read_type_die (target_die->parent,
15409 target_cu);
15410 baton->offset_info.offset = offset;
15411 baton->offset_info.type = die_type (target_die, target_cu);
15412 prop->data.baton = baton;
15413 prop->kind = PROP_ADDR_OFFSET;
15414 break;
15415 }
15416 }
15417 }
15418 else if (attr_form_is_constant (attr))
15419 {
15420 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15421 prop->kind = PROP_CONST;
15422 }
15423 else
15424 {
15425 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15426 dwarf2_name (die, cu));
15427 return 0;
15428 }
15429
15430 return 1;
15431 }
15432
15433 /* Read the given DW_AT_subrange DIE. */
15434
15435 static struct type *
15436 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15437 {
15438 struct type *base_type, *orig_base_type;
15439 struct type *range_type;
15440 struct attribute *attr;
15441 struct dynamic_prop low, high;
15442 int low_default_is_valid;
15443 int high_bound_is_count = 0;
15444 const char *name;
15445 LONGEST negative_mask;
15446
15447 orig_base_type = die_type (die, cu);
15448 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15449 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15450 creating the range type, but we use the result of check_typedef
15451 when examining properties of the type. */
15452 base_type = check_typedef (orig_base_type);
15453
15454 /* The die_type call above may have already set the type for this DIE. */
15455 range_type = get_die_type (die, cu);
15456 if (range_type)
15457 return range_type;
15458
15459 low.kind = PROP_CONST;
15460 high.kind = PROP_CONST;
15461 high.data.const_val = 0;
15462
15463 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15464 omitting DW_AT_lower_bound. */
15465 switch (cu->language)
15466 {
15467 case language_c:
15468 case language_cplus:
15469 low.data.const_val = 0;
15470 low_default_is_valid = 1;
15471 break;
15472 case language_fortran:
15473 low.data.const_val = 1;
15474 low_default_is_valid = 1;
15475 break;
15476 case language_d:
15477 case language_objc:
15478 case language_rust:
15479 low.data.const_val = 0;
15480 low_default_is_valid = (cu->header.version >= 4);
15481 break;
15482 case language_ada:
15483 case language_m2:
15484 case language_pascal:
15485 low.data.const_val = 1;
15486 low_default_is_valid = (cu->header.version >= 4);
15487 break;
15488 default:
15489 low.data.const_val = 0;
15490 low_default_is_valid = 0;
15491 break;
15492 }
15493
15494 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15495 if (attr)
15496 attr_to_dynamic_prop (attr, die, cu, &low);
15497 else if (!low_default_is_valid)
15498 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15499 "- DIE at 0x%x [in module %s]"),
15500 to_underlying (die->sect_off), objfile_name (cu->objfile));
15501
15502 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15503 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15504 {
15505 attr = dwarf2_attr (die, DW_AT_count, cu);
15506 if (attr_to_dynamic_prop (attr, die, cu, &high))
15507 {
15508 /* If bounds are constant do the final calculation here. */
15509 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15510 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15511 else
15512 high_bound_is_count = 1;
15513 }
15514 }
15515
15516 /* Dwarf-2 specifications explicitly allows to create subrange types
15517 without specifying a base type.
15518 In that case, the base type must be set to the type of
15519 the lower bound, upper bound or count, in that order, if any of these
15520 three attributes references an object that has a type.
15521 If no base type is found, the Dwarf-2 specifications say that
15522 a signed integer type of size equal to the size of an address should
15523 be used.
15524 For the following C code: `extern char gdb_int [];'
15525 GCC produces an empty range DIE.
15526 FIXME: muller/2010-05-28: Possible references to object for low bound,
15527 high bound or count are not yet handled by this code. */
15528 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15529 {
15530 struct objfile *objfile = cu->objfile;
15531 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15532 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15533 struct type *int_type = objfile_type (objfile)->builtin_int;
15534
15535 /* Test "int", "long int", and "long long int" objfile types,
15536 and select the first one having a size above or equal to the
15537 architecture address size. */
15538 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15539 base_type = int_type;
15540 else
15541 {
15542 int_type = objfile_type (objfile)->builtin_long;
15543 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15544 base_type = int_type;
15545 else
15546 {
15547 int_type = objfile_type (objfile)->builtin_long_long;
15548 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15549 base_type = int_type;
15550 }
15551 }
15552 }
15553
15554 /* Normally, the DWARF producers are expected to use a signed
15555 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15556 But this is unfortunately not always the case, as witnessed
15557 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15558 is used instead. To work around that ambiguity, we treat
15559 the bounds as signed, and thus sign-extend their values, when
15560 the base type is signed. */
15561 negative_mask =
15562 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15563 if (low.kind == PROP_CONST
15564 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15565 low.data.const_val |= negative_mask;
15566 if (high.kind == PROP_CONST
15567 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15568 high.data.const_val |= negative_mask;
15569
15570 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15571
15572 if (high_bound_is_count)
15573 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15574
15575 /* Ada expects an empty array on no boundary attributes. */
15576 if (attr == NULL && cu->language != language_ada)
15577 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15578
15579 name = dwarf2_name (die, cu);
15580 if (name)
15581 TYPE_NAME (range_type) = name;
15582
15583 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15584 if (attr)
15585 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15586
15587 set_die_type (die, range_type, cu);
15588
15589 /* set_die_type should be already done. */
15590 set_descriptive_type (range_type, die, cu);
15591
15592 return range_type;
15593 }
15594
15595 static struct type *
15596 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15597 {
15598 struct type *type;
15599
15600 /* For now, we only support the C meaning of an unspecified type: void. */
15601
15602 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15603 TYPE_NAME (type) = dwarf2_name (die, cu);
15604
15605 return set_die_type (die, type, cu);
15606 }
15607
15608 /* Read a single die and all its descendents. Set the die's sibling
15609 field to NULL; set other fields in the die correctly, and set all
15610 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15611 location of the info_ptr after reading all of those dies. PARENT
15612 is the parent of the die in question. */
15613
15614 static struct die_info *
15615 read_die_and_children (const struct die_reader_specs *reader,
15616 const gdb_byte *info_ptr,
15617 const gdb_byte **new_info_ptr,
15618 struct die_info *parent)
15619 {
15620 struct die_info *die;
15621 const gdb_byte *cur_ptr;
15622 int has_children;
15623
15624 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15625 if (die == NULL)
15626 {
15627 *new_info_ptr = cur_ptr;
15628 return NULL;
15629 }
15630 store_in_ref_table (die, reader->cu);
15631
15632 if (has_children)
15633 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15634 else
15635 {
15636 die->child = NULL;
15637 *new_info_ptr = cur_ptr;
15638 }
15639
15640 die->sibling = NULL;
15641 die->parent = parent;
15642 return die;
15643 }
15644
15645 /* Read a die, all of its descendents, and all of its siblings; set
15646 all of the fields of all of the dies correctly. Arguments are as
15647 in read_die_and_children. */
15648
15649 static struct die_info *
15650 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15651 const gdb_byte *info_ptr,
15652 const gdb_byte **new_info_ptr,
15653 struct die_info *parent)
15654 {
15655 struct die_info *first_die, *last_sibling;
15656 const gdb_byte *cur_ptr;
15657
15658 cur_ptr = info_ptr;
15659 first_die = last_sibling = NULL;
15660
15661 while (1)
15662 {
15663 struct die_info *die
15664 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15665
15666 if (die == NULL)
15667 {
15668 *new_info_ptr = cur_ptr;
15669 return first_die;
15670 }
15671
15672 if (!first_die)
15673 first_die = die;
15674 else
15675 last_sibling->sibling = die;
15676
15677 last_sibling = die;
15678 }
15679 }
15680
15681 /* Read a die, all of its descendents, and all of its siblings; set
15682 all of the fields of all of the dies correctly. Arguments are as
15683 in read_die_and_children.
15684 This the main entry point for reading a DIE and all its children. */
15685
15686 static struct die_info *
15687 read_die_and_siblings (const struct die_reader_specs *reader,
15688 const gdb_byte *info_ptr,
15689 const gdb_byte **new_info_ptr,
15690 struct die_info *parent)
15691 {
15692 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15693 new_info_ptr, parent);
15694
15695 if (dwarf_die_debug)
15696 {
15697 fprintf_unfiltered (gdb_stdlog,
15698 "Read die from %s@0x%x of %s:\n",
15699 get_section_name (reader->die_section),
15700 (unsigned) (info_ptr - reader->die_section->buffer),
15701 bfd_get_filename (reader->abfd));
15702 dump_die (die, dwarf_die_debug);
15703 }
15704
15705 return die;
15706 }
15707
15708 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15709 attributes.
15710 The caller is responsible for filling in the extra attributes
15711 and updating (*DIEP)->num_attrs.
15712 Set DIEP to point to a newly allocated die with its information,
15713 except for its child, sibling, and parent fields.
15714 Set HAS_CHILDREN to tell whether the die has children or not. */
15715
15716 static const gdb_byte *
15717 read_full_die_1 (const struct die_reader_specs *reader,
15718 struct die_info **diep, const gdb_byte *info_ptr,
15719 int *has_children, int num_extra_attrs)
15720 {
15721 unsigned int abbrev_number, bytes_read, i;
15722 struct abbrev_info *abbrev;
15723 struct die_info *die;
15724 struct dwarf2_cu *cu = reader->cu;
15725 bfd *abfd = reader->abfd;
15726
15727 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
15728 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15729 info_ptr += bytes_read;
15730 if (!abbrev_number)
15731 {
15732 *diep = NULL;
15733 *has_children = 0;
15734 return info_ptr;
15735 }
15736
15737 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15738 if (!abbrev)
15739 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15740 abbrev_number,
15741 bfd_get_filename (abfd));
15742
15743 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15744 die->sect_off = sect_off;
15745 die->tag = abbrev->tag;
15746 die->abbrev = abbrev_number;
15747
15748 /* Make the result usable.
15749 The caller needs to update num_attrs after adding the extra
15750 attributes. */
15751 die->num_attrs = abbrev->num_attrs;
15752
15753 for (i = 0; i < abbrev->num_attrs; ++i)
15754 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15755 info_ptr);
15756
15757 *diep = die;
15758 *has_children = abbrev->has_children;
15759 return info_ptr;
15760 }
15761
15762 /* Read a die and all its attributes.
15763 Set DIEP to point to a newly allocated die with its information,
15764 except for its child, sibling, and parent fields.
15765 Set HAS_CHILDREN to tell whether the die has children or not. */
15766
15767 static const gdb_byte *
15768 read_full_die (const struct die_reader_specs *reader,
15769 struct die_info **diep, const gdb_byte *info_ptr,
15770 int *has_children)
15771 {
15772 const gdb_byte *result;
15773
15774 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15775
15776 if (dwarf_die_debug)
15777 {
15778 fprintf_unfiltered (gdb_stdlog,
15779 "Read die from %s@0x%x of %s:\n",
15780 get_section_name (reader->die_section),
15781 (unsigned) (info_ptr - reader->die_section->buffer),
15782 bfd_get_filename (reader->abfd));
15783 dump_die (*diep, dwarf_die_debug);
15784 }
15785
15786 return result;
15787 }
15788 \f
15789 /* Abbreviation tables.
15790
15791 In DWARF version 2, the description of the debugging information is
15792 stored in a separate .debug_abbrev section. Before we read any
15793 dies from a section we read in all abbreviations and install them
15794 in a hash table. */
15795
15796 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15797
15798 static struct abbrev_info *
15799 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15800 {
15801 struct abbrev_info *abbrev;
15802
15803 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15804 memset (abbrev, 0, sizeof (struct abbrev_info));
15805
15806 return abbrev;
15807 }
15808
15809 /* Add an abbreviation to the table. */
15810
15811 static void
15812 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15813 unsigned int abbrev_number,
15814 struct abbrev_info *abbrev)
15815 {
15816 unsigned int hash_number;
15817
15818 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15819 abbrev->next = abbrev_table->abbrevs[hash_number];
15820 abbrev_table->abbrevs[hash_number] = abbrev;
15821 }
15822
15823 /* Look up an abbrev in the table.
15824 Returns NULL if the abbrev is not found. */
15825
15826 static struct abbrev_info *
15827 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15828 unsigned int abbrev_number)
15829 {
15830 unsigned int hash_number;
15831 struct abbrev_info *abbrev;
15832
15833 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15834 abbrev = abbrev_table->abbrevs[hash_number];
15835
15836 while (abbrev)
15837 {
15838 if (abbrev->number == abbrev_number)
15839 return abbrev;
15840 abbrev = abbrev->next;
15841 }
15842 return NULL;
15843 }
15844
15845 /* Read in an abbrev table. */
15846
15847 static struct abbrev_table *
15848 abbrev_table_read_table (struct dwarf2_section_info *section,
15849 sect_offset sect_off)
15850 {
15851 struct objfile *objfile = dwarf2_per_objfile->objfile;
15852 bfd *abfd = get_section_bfd_owner (section);
15853 struct abbrev_table *abbrev_table;
15854 const gdb_byte *abbrev_ptr;
15855 struct abbrev_info *cur_abbrev;
15856 unsigned int abbrev_number, bytes_read, abbrev_name;
15857 unsigned int abbrev_form;
15858 struct attr_abbrev *cur_attrs;
15859 unsigned int allocated_attrs;
15860
15861 abbrev_table = XNEW (struct abbrev_table);
15862 abbrev_table->sect_off = sect_off;
15863 obstack_init (&abbrev_table->abbrev_obstack);
15864 abbrev_table->abbrevs =
15865 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15866 ABBREV_HASH_SIZE);
15867 memset (abbrev_table->abbrevs, 0,
15868 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15869
15870 dwarf2_read_section (objfile, section);
15871 abbrev_ptr = section->buffer + to_underlying (sect_off);
15872 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15873 abbrev_ptr += bytes_read;
15874
15875 allocated_attrs = ATTR_ALLOC_CHUNK;
15876 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15877
15878 /* Loop until we reach an abbrev number of 0. */
15879 while (abbrev_number)
15880 {
15881 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15882
15883 /* read in abbrev header */
15884 cur_abbrev->number = abbrev_number;
15885 cur_abbrev->tag
15886 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15887 abbrev_ptr += bytes_read;
15888 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15889 abbrev_ptr += 1;
15890
15891 /* now read in declarations */
15892 for (;;)
15893 {
15894 LONGEST implicit_const;
15895
15896 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15897 abbrev_ptr += bytes_read;
15898 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15899 abbrev_ptr += bytes_read;
15900 if (abbrev_form == DW_FORM_implicit_const)
15901 {
15902 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15903 &bytes_read);
15904 abbrev_ptr += bytes_read;
15905 }
15906 else
15907 {
15908 /* Initialize it due to a false compiler warning. */
15909 implicit_const = -1;
15910 }
15911
15912 if (abbrev_name == 0)
15913 break;
15914
15915 if (cur_abbrev->num_attrs == allocated_attrs)
15916 {
15917 allocated_attrs += ATTR_ALLOC_CHUNK;
15918 cur_attrs
15919 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15920 }
15921
15922 cur_attrs[cur_abbrev->num_attrs].name
15923 = (enum dwarf_attribute) abbrev_name;
15924 cur_attrs[cur_abbrev->num_attrs].form
15925 = (enum dwarf_form) abbrev_form;
15926 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
15927 ++cur_abbrev->num_attrs;
15928 }
15929
15930 cur_abbrev->attrs =
15931 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15932 cur_abbrev->num_attrs);
15933 memcpy (cur_abbrev->attrs, cur_attrs,
15934 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15935
15936 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15937
15938 /* Get next abbreviation.
15939 Under Irix6 the abbreviations for a compilation unit are not
15940 always properly terminated with an abbrev number of 0.
15941 Exit loop if we encounter an abbreviation which we have
15942 already read (which means we are about to read the abbreviations
15943 for the next compile unit) or if the end of the abbreviation
15944 table is reached. */
15945 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15946 break;
15947 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15948 abbrev_ptr += bytes_read;
15949 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15950 break;
15951 }
15952
15953 xfree (cur_attrs);
15954 return abbrev_table;
15955 }
15956
15957 /* Free the resources held by ABBREV_TABLE. */
15958
15959 static void
15960 abbrev_table_free (struct abbrev_table *abbrev_table)
15961 {
15962 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15963 xfree (abbrev_table);
15964 }
15965
15966 /* Same as abbrev_table_free but as a cleanup.
15967 We pass in a pointer to the pointer to the table so that we can
15968 set the pointer to NULL when we're done. It also simplifies
15969 build_type_psymtabs_1. */
15970
15971 static void
15972 abbrev_table_free_cleanup (void *table_ptr)
15973 {
15974 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15975
15976 if (*abbrev_table_ptr != NULL)
15977 abbrev_table_free (*abbrev_table_ptr);
15978 *abbrev_table_ptr = NULL;
15979 }
15980
15981 /* Read the abbrev table for CU from ABBREV_SECTION. */
15982
15983 static void
15984 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15985 struct dwarf2_section_info *abbrev_section)
15986 {
15987 cu->abbrev_table =
15988 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
15989 }
15990
15991 /* Release the memory used by the abbrev table for a compilation unit. */
15992
15993 static void
15994 dwarf2_free_abbrev_table (void *ptr_to_cu)
15995 {
15996 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15997
15998 if (cu->abbrev_table != NULL)
15999 abbrev_table_free (cu->abbrev_table);
16000 /* Set this to NULL so that we SEGV if we try to read it later,
16001 and also because free_comp_unit verifies this is NULL. */
16002 cu->abbrev_table = NULL;
16003 }
16004 \f
16005 /* Returns nonzero if TAG represents a type that we might generate a partial
16006 symbol for. */
16007
16008 static int
16009 is_type_tag_for_partial (int tag)
16010 {
16011 switch (tag)
16012 {
16013 #if 0
16014 /* Some types that would be reasonable to generate partial symbols for,
16015 that we don't at present. */
16016 case DW_TAG_array_type:
16017 case DW_TAG_file_type:
16018 case DW_TAG_ptr_to_member_type:
16019 case DW_TAG_set_type:
16020 case DW_TAG_string_type:
16021 case DW_TAG_subroutine_type:
16022 #endif
16023 case DW_TAG_base_type:
16024 case DW_TAG_class_type:
16025 case DW_TAG_interface_type:
16026 case DW_TAG_enumeration_type:
16027 case DW_TAG_structure_type:
16028 case DW_TAG_subrange_type:
16029 case DW_TAG_typedef:
16030 case DW_TAG_union_type:
16031 return 1;
16032 default:
16033 return 0;
16034 }
16035 }
16036
16037 /* Load all DIEs that are interesting for partial symbols into memory. */
16038
16039 static struct partial_die_info *
16040 load_partial_dies (const struct die_reader_specs *reader,
16041 const gdb_byte *info_ptr, int building_psymtab)
16042 {
16043 struct dwarf2_cu *cu = reader->cu;
16044 struct objfile *objfile = cu->objfile;
16045 struct partial_die_info *part_die;
16046 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
16047 struct abbrev_info *abbrev;
16048 unsigned int bytes_read;
16049 unsigned int load_all = 0;
16050 int nesting_level = 1;
16051
16052 parent_die = NULL;
16053 last_die = NULL;
16054
16055 gdb_assert (cu->per_cu != NULL);
16056 if (cu->per_cu->load_all_dies)
16057 load_all = 1;
16058
16059 cu->partial_dies
16060 = htab_create_alloc_ex (cu->header.length / 12,
16061 partial_die_hash,
16062 partial_die_eq,
16063 NULL,
16064 &cu->comp_unit_obstack,
16065 hashtab_obstack_allocate,
16066 dummy_obstack_deallocate);
16067
16068 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16069
16070 while (1)
16071 {
16072 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
16073
16074 /* A NULL abbrev means the end of a series of children. */
16075 if (abbrev == NULL)
16076 {
16077 if (--nesting_level == 0)
16078 {
16079 /* PART_DIE was probably the last thing allocated on the
16080 comp_unit_obstack, so we could call obstack_free
16081 here. We don't do that because the waste is small,
16082 and will be cleaned up when we're done with this
16083 compilation unit. This way, we're also more robust
16084 against other users of the comp_unit_obstack. */
16085 return first_die;
16086 }
16087 info_ptr += bytes_read;
16088 last_die = parent_die;
16089 parent_die = parent_die->die_parent;
16090 continue;
16091 }
16092
16093 /* Check for template arguments. We never save these; if
16094 they're seen, we just mark the parent, and go on our way. */
16095 if (parent_die != NULL
16096 && cu->language == language_cplus
16097 && (abbrev->tag == DW_TAG_template_type_param
16098 || abbrev->tag == DW_TAG_template_value_param))
16099 {
16100 parent_die->has_template_arguments = 1;
16101
16102 if (!load_all)
16103 {
16104 /* We don't need a partial DIE for the template argument. */
16105 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16106 continue;
16107 }
16108 }
16109
16110 /* We only recurse into c++ subprograms looking for template arguments.
16111 Skip their other children. */
16112 if (!load_all
16113 && cu->language == language_cplus
16114 && parent_die != NULL
16115 && parent_die->tag == DW_TAG_subprogram)
16116 {
16117 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16118 continue;
16119 }
16120
16121 /* Check whether this DIE is interesting enough to save. Normally
16122 we would not be interested in members here, but there may be
16123 later variables referencing them via DW_AT_specification (for
16124 static members). */
16125 if (!load_all
16126 && !is_type_tag_for_partial (abbrev->tag)
16127 && abbrev->tag != DW_TAG_constant
16128 && abbrev->tag != DW_TAG_enumerator
16129 && abbrev->tag != DW_TAG_subprogram
16130 && abbrev->tag != DW_TAG_lexical_block
16131 && abbrev->tag != DW_TAG_variable
16132 && abbrev->tag != DW_TAG_namespace
16133 && abbrev->tag != DW_TAG_module
16134 && abbrev->tag != DW_TAG_member
16135 && abbrev->tag != DW_TAG_imported_unit
16136 && abbrev->tag != DW_TAG_imported_declaration)
16137 {
16138 /* Otherwise we skip to the next sibling, if any. */
16139 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16140 continue;
16141 }
16142
16143 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16144 info_ptr);
16145
16146 /* This two-pass algorithm for processing partial symbols has a
16147 high cost in cache pressure. Thus, handle some simple cases
16148 here which cover the majority of C partial symbols. DIEs
16149 which neither have specification tags in them, nor could have
16150 specification tags elsewhere pointing at them, can simply be
16151 processed and discarded.
16152
16153 This segment is also optional; scan_partial_symbols and
16154 add_partial_symbol will handle these DIEs if we chain
16155 them in normally. When compilers which do not emit large
16156 quantities of duplicate debug information are more common,
16157 this code can probably be removed. */
16158
16159 /* Any complete simple types at the top level (pretty much all
16160 of them, for a language without namespaces), can be processed
16161 directly. */
16162 if (parent_die == NULL
16163 && part_die->has_specification == 0
16164 && part_die->is_declaration == 0
16165 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
16166 || part_die->tag == DW_TAG_base_type
16167 || part_die->tag == DW_TAG_subrange_type))
16168 {
16169 if (building_psymtab && part_die->name != NULL)
16170 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16171 VAR_DOMAIN, LOC_TYPEDEF,
16172 &objfile->static_psymbols,
16173 0, cu->language, objfile);
16174 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16175 continue;
16176 }
16177
16178 /* The exception for DW_TAG_typedef with has_children above is
16179 a workaround of GCC PR debug/47510. In the case of this complaint
16180 type_name_no_tag_or_error will error on such types later.
16181
16182 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16183 it could not find the child DIEs referenced later, this is checked
16184 above. In correct DWARF DW_TAG_typedef should have no children. */
16185
16186 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16187 complaint (&symfile_complaints,
16188 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16189 "- DIE at 0x%x [in module %s]"),
16190 to_underlying (part_die->sect_off), objfile_name (objfile));
16191
16192 /* If we're at the second level, and we're an enumerator, and
16193 our parent has no specification (meaning possibly lives in a
16194 namespace elsewhere), then we can add the partial symbol now
16195 instead of queueing it. */
16196 if (part_die->tag == DW_TAG_enumerator
16197 && parent_die != NULL
16198 && parent_die->die_parent == NULL
16199 && parent_die->tag == DW_TAG_enumeration_type
16200 && parent_die->has_specification == 0)
16201 {
16202 if (part_die->name == NULL)
16203 complaint (&symfile_complaints,
16204 _("malformed enumerator DIE ignored"));
16205 else if (building_psymtab)
16206 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16207 VAR_DOMAIN, LOC_CONST,
16208 cu->language == language_cplus
16209 ? &objfile->global_psymbols
16210 : &objfile->static_psymbols,
16211 0, cu->language, objfile);
16212
16213 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16214 continue;
16215 }
16216
16217 /* We'll save this DIE so link it in. */
16218 part_die->die_parent = parent_die;
16219 part_die->die_sibling = NULL;
16220 part_die->die_child = NULL;
16221
16222 if (last_die && last_die == parent_die)
16223 last_die->die_child = part_die;
16224 else if (last_die)
16225 last_die->die_sibling = part_die;
16226
16227 last_die = part_die;
16228
16229 if (first_die == NULL)
16230 first_die = part_die;
16231
16232 /* Maybe add the DIE to the hash table. Not all DIEs that we
16233 find interesting need to be in the hash table, because we
16234 also have the parent/sibling/child chains; only those that we
16235 might refer to by offset later during partial symbol reading.
16236
16237 For now this means things that might have be the target of a
16238 DW_AT_specification, DW_AT_abstract_origin, or
16239 DW_AT_extension. DW_AT_extension will refer only to
16240 namespaces; DW_AT_abstract_origin refers to functions (and
16241 many things under the function DIE, but we do not recurse
16242 into function DIEs during partial symbol reading) and
16243 possibly variables as well; DW_AT_specification refers to
16244 declarations. Declarations ought to have the DW_AT_declaration
16245 flag. It happens that GCC forgets to put it in sometimes, but
16246 only for functions, not for types.
16247
16248 Adding more things than necessary to the hash table is harmless
16249 except for the performance cost. Adding too few will result in
16250 wasted time in find_partial_die, when we reread the compilation
16251 unit with load_all_dies set. */
16252
16253 if (load_all
16254 || abbrev->tag == DW_TAG_constant
16255 || abbrev->tag == DW_TAG_subprogram
16256 || abbrev->tag == DW_TAG_variable
16257 || abbrev->tag == DW_TAG_namespace
16258 || part_die->is_declaration)
16259 {
16260 void **slot;
16261
16262 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
16263 to_underlying (part_die->sect_off),
16264 INSERT);
16265 *slot = part_die;
16266 }
16267
16268 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16269
16270 /* For some DIEs we want to follow their children (if any). For C
16271 we have no reason to follow the children of structures; for other
16272 languages we have to, so that we can get at method physnames
16273 to infer fully qualified class names, for DW_AT_specification,
16274 and for C++ template arguments. For C++, we also look one level
16275 inside functions to find template arguments (if the name of the
16276 function does not already contain the template arguments).
16277
16278 For Ada, we need to scan the children of subprograms and lexical
16279 blocks as well because Ada allows the definition of nested
16280 entities that could be interesting for the debugger, such as
16281 nested subprograms for instance. */
16282 if (last_die->has_children
16283 && (load_all
16284 || last_die->tag == DW_TAG_namespace
16285 || last_die->tag == DW_TAG_module
16286 || last_die->tag == DW_TAG_enumeration_type
16287 || (cu->language == language_cplus
16288 && last_die->tag == DW_TAG_subprogram
16289 && (last_die->name == NULL
16290 || strchr (last_die->name, '<') == NULL))
16291 || (cu->language != language_c
16292 && (last_die->tag == DW_TAG_class_type
16293 || last_die->tag == DW_TAG_interface_type
16294 || last_die->tag == DW_TAG_structure_type
16295 || last_die->tag == DW_TAG_union_type))
16296 || (cu->language == language_ada
16297 && (last_die->tag == DW_TAG_subprogram
16298 || last_die->tag == DW_TAG_lexical_block))))
16299 {
16300 nesting_level++;
16301 parent_die = last_die;
16302 continue;
16303 }
16304
16305 /* Otherwise we skip to the next sibling, if any. */
16306 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
16307
16308 /* Back to the top, do it again. */
16309 }
16310 }
16311
16312 /* Read a minimal amount of information into the minimal die structure. */
16313
16314 static const gdb_byte *
16315 read_partial_die (const struct die_reader_specs *reader,
16316 struct partial_die_info *part_die,
16317 struct abbrev_info *abbrev, unsigned int abbrev_len,
16318 const gdb_byte *info_ptr)
16319 {
16320 struct dwarf2_cu *cu = reader->cu;
16321 struct objfile *objfile = cu->objfile;
16322 const gdb_byte *buffer = reader->buffer;
16323 unsigned int i;
16324 struct attribute attr;
16325 int has_low_pc_attr = 0;
16326 int has_high_pc_attr = 0;
16327 int high_pc_relative = 0;
16328
16329 memset (part_die, 0, sizeof (struct partial_die_info));
16330
16331 part_die->sect_off = (sect_offset) (info_ptr - buffer);
16332
16333 info_ptr += abbrev_len;
16334
16335 if (abbrev == NULL)
16336 return info_ptr;
16337
16338 part_die->tag = abbrev->tag;
16339 part_die->has_children = abbrev->has_children;
16340
16341 for (i = 0; i < abbrev->num_attrs; ++i)
16342 {
16343 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
16344
16345 /* Store the data if it is of an attribute we want to keep in a
16346 partial symbol table. */
16347 switch (attr.name)
16348 {
16349 case DW_AT_name:
16350 switch (part_die->tag)
16351 {
16352 case DW_TAG_compile_unit:
16353 case DW_TAG_partial_unit:
16354 case DW_TAG_type_unit:
16355 /* Compilation units have a DW_AT_name that is a filename, not
16356 a source language identifier. */
16357 case DW_TAG_enumeration_type:
16358 case DW_TAG_enumerator:
16359 /* These tags always have simple identifiers already; no need
16360 to canonicalize them. */
16361 part_die->name = DW_STRING (&attr);
16362 break;
16363 default:
16364 part_die->name
16365 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
16366 &objfile->per_bfd->storage_obstack);
16367 break;
16368 }
16369 break;
16370 case DW_AT_linkage_name:
16371 case DW_AT_MIPS_linkage_name:
16372 /* Note that both forms of linkage name might appear. We
16373 assume they will be the same, and we only store the last
16374 one we see. */
16375 if (cu->language == language_ada)
16376 part_die->name = DW_STRING (&attr);
16377 part_die->linkage_name = DW_STRING (&attr);
16378 break;
16379 case DW_AT_low_pc:
16380 has_low_pc_attr = 1;
16381 part_die->lowpc = attr_value_as_address (&attr);
16382 break;
16383 case DW_AT_high_pc:
16384 has_high_pc_attr = 1;
16385 part_die->highpc = attr_value_as_address (&attr);
16386 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16387 high_pc_relative = 1;
16388 break;
16389 case DW_AT_location:
16390 /* Support the .debug_loc offsets. */
16391 if (attr_form_is_block (&attr))
16392 {
16393 part_die->d.locdesc = DW_BLOCK (&attr);
16394 }
16395 else if (attr_form_is_section_offset (&attr))
16396 {
16397 dwarf2_complex_location_expr_complaint ();
16398 }
16399 else
16400 {
16401 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16402 "partial symbol information");
16403 }
16404 break;
16405 case DW_AT_external:
16406 part_die->is_external = DW_UNSND (&attr);
16407 break;
16408 case DW_AT_declaration:
16409 part_die->is_declaration = DW_UNSND (&attr);
16410 break;
16411 case DW_AT_type:
16412 part_die->has_type = 1;
16413 break;
16414 case DW_AT_abstract_origin:
16415 case DW_AT_specification:
16416 case DW_AT_extension:
16417 part_die->has_specification = 1;
16418 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
16419 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16420 || cu->per_cu->is_dwz);
16421 break;
16422 case DW_AT_sibling:
16423 /* Ignore absolute siblings, they might point outside of
16424 the current compile unit. */
16425 if (attr.form == DW_FORM_ref_addr)
16426 complaint (&symfile_complaints,
16427 _("ignoring absolute DW_AT_sibling"));
16428 else
16429 {
16430 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16431 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
16432
16433 if (sibling_ptr < info_ptr)
16434 complaint (&symfile_complaints,
16435 _("DW_AT_sibling points backwards"));
16436 else if (sibling_ptr > reader->buffer_end)
16437 dwarf2_section_buffer_overflow_complaint (reader->die_section);
16438 else
16439 part_die->sibling = sibling_ptr;
16440 }
16441 break;
16442 case DW_AT_byte_size:
16443 part_die->has_byte_size = 1;
16444 break;
16445 case DW_AT_const_value:
16446 part_die->has_const_value = 1;
16447 break;
16448 case DW_AT_calling_convention:
16449 /* DWARF doesn't provide a way to identify a program's source-level
16450 entry point. DW_AT_calling_convention attributes are only meant
16451 to describe functions' calling conventions.
16452
16453 However, because it's a necessary piece of information in
16454 Fortran, and before DWARF 4 DW_CC_program was the only
16455 piece of debugging information whose definition refers to
16456 a 'main program' at all, several compilers marked Fortran
16457 main programs with DW_CC_program --- even when those
16458 functions use the standard calling conventions.
16459
16460 Although DWARF now specifies a way to provide this
16461 information, we support this practice for backward
16462 compatibility. */
16463 if (DW_UNSND (&attr) == DW_CC_program
16464 && cu->language == language_fortran)
16465 part_die->main_subprogram = 1;
16466 break;
16467 case DW_AT_inline:
16468 if (DW_UNSND (&attr) == DW_INL_inlined
16469 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16470 part_die->may_be_inlined = 1;
16471 break;
16472
16473 case DW_AT_import:
16474 if (part_die->tag == DW_TAG_imported_unit)
16475 {
16476 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
16477 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16478 || cu->per_cu->is_dwz);
16479 }
16480 break;
16481
16482 case DW_AT_main_subprogram:
16483 part_die->main_subprogram = DW_UNSND (&attr);
16484 break;
16485
16486 default:
16487 break;
16488 }
16489 }
16490
16491 if (high_pc_relative)
16492 part_die->highpc += part_die->lowpc;
16493
16494 if (has_low_pc_attr && has_high_pc_attr)
16495 {
16496 /* When using the GNU linker, .gnu.linkonce. sections are used to
16497 eliminate duplicate copies of functions and vtables and such.
16498 The linker will arbitrarily choose one and discard the others.
16499 The AT_*_pc values for such functions refer to local labels in
16500 these sections. If the section from that file was discarded, the
16501 labels are not in the output, so the relocs get a value of 0.
16502 If this is a discarded function, mark the pc bounds as invalid,
16503 so that GDB will ignore it. */
16504 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16505 {
16506 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16507
16508 complaint (&symfile_complaints,
16509 _("DW_AT_low_pc %s is zero "
16510 "for DIE at 0x%x [in module %s]"),
16511 paddress (gdbarch, part_die->lowpc),
16512 to_underlying (part_die->sect_off), objfile_name (objfile));
16513 }
16514 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16515 else if (part_die->lowpc >= part_die->highpc)
16516 {
16517 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16518
16519 complaint (&symfile_complaints,
16520 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16521 "for DIE at 0x%x [in module %s]"),
16522 paddress (gdbarch, part_die->lowpc),
16523 paddress (gdbarch, part_die->highpc),
16524 to_underlying (part_die->sect_off),
16525 objfile_name (objfile));
16526 }
16527 else
16528 part_die->has_pc_info = 1;
16529 }
16530
16531 return info_ptr;
16532 }
16533
16534 /* Find a cached partial DIE at OFFSET in CU. */
16535
16536 static struct partial_die_info *
16537 find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
16538 {
16539 struct partial_die_info *lookup_die = NULL;
16540 struct partial_die_info part_die;
16541
16542 part_die.sect_off = sect_off;
16543 lookup_die = ((struct partial_die_info *)
16544 htab_find_with_hash (cu->partial_dies, &part_die,
16545 to_underlying (sect_off)));
16546
16547 return lookup_die;
16548 }
16549
16550 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16551 except in the case of .debug_types DIEs which do not reference
16552 outside their CU (they do however referencing other types via
16553 DW_FORM_ref_sig8). */
16554
16555 static struct partial_die_info *
16556 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
16557 {
16558 struct objfile *objfile = cu->objfile;
16559 struct dwarf2_per_cu_data *per_cu = NULL;
16560 struct partial_die_info *pd = NULL;
16561
16562 if (offset_in_dwz == cu->per_cu->is_dwz
16563 && offset_in_cu_p (&cu->header, sect_off))
16564 {
16565 pd = find_partial_die_in_comp_unit (sect_off, cu);
16566 if (pd != NULL)
16567 return pd;
16568 /* We missed recording what we needed.
16569 Load all dies and try again. */
16570 per_cu = cu->per_cu;
16571 }
16572 else
16573 {
16574 /* TUs don't reference other CUs/TUs (except via type signatures). */
16575 if (cu->per_cu->is_debug_types)
16576 {
16577 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
16578 " external reference to offset 0x%x [in module %s].\n"),
16579 to_underlying (cu->header.sect_off), to_underlying (sect_off),
16580 bfd_get_filename (objfile->obfd));
16581 }
16582 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
16583 objfile);
16584
16585 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16586 load_partial_comp_unit (per_cu);
16587
16588 per_cu->cu->last_used = 0;
16589 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16590 }
16591
16592 /* If we didn't find it, and not all dies have been loaded,
16593 load them all and try again. */
16594
16595 if (pd == NULL && per_cu->load_all_dies == 0)
16596 {
16597 per_cu->load_all_dies = 1;
16598
16599 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16600 THIS_CU->cu may already be in use. So we can't just free it and
16601 replace its DIEs with the ones we read in. Instead, we leave those
16602 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16603 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16604 set. */
16605 load_partial_comp_unit (per_cu);
16606
16607 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16608 }
16609
16610 if (pd == NULL)
16611 internal_error (__FILE__, __LINE__,
16612 _("could not find partial DIE 0x%x "
16613 "in cache [from module %s]\n"),
16614 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
16615 return pd;
16616 }
16617
16618 /* See if we can figure out if the class lives in a namespace. We do
16619 this by looking for a member function; its demangled name will
16620 contain namespace info, if there is any. */
16621
16622 static void
16623 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16624 struct dwarf2_cu *cu)
16625 {
16626 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16627 what template types look like, because the demangler
16628 frequently doesn't give the same name as the debug info. We
16629 could fix this by only using the demangled name to get the
16630 prefix (but see comment in read_structure_type). */
16631
16632 struct partial_die_info *real_pdi;
16633 struct partial_die_info *child_pdi;
16634
16635 /* If this DIE (this DIE's specification, if any) has a parent, then
16636 we should not do this. We'll prepend the parent's fully qualified
16637 name when we create the partial symbol. */
16638
16639 real_pdi = struct_pdi;
16640 while (real_pdi->has_specification)
16641 real_pdi = find_partial_die (real_pdi->spec_offset,
16642 real_pdi->spec_is_dwz, cu);
16643
16644 if (real_pdi->die_parent != NULL)
16645 return;
16646
16647 for (child_pdi = struct_pdi->die_child;
16648 child_pdi != NULL;
16649 child_pdi = child_pdi->die_sibling)
16650 {
16651 if (child_pdi->tag == DW_TAG_subprogram
16652 && child_pdi->linkage_name != NULL)
16653 {
16654 char *actual_class_name
16655 = language_class_name_from_physname (cu->language_defn,
16656 child_pdi->linkage_name);
16657 if (actual_class_name != NULL)
16658 {
16659 struct_pdi->name
16660 = ((const char *)
16661 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16662 actual_class_name,
16663 strlen (actual_class_name)));
16664 xfree (actual_class_name);
16665 }
16666 break;
16667 }
16668 }
16669 }
16670
16671 /* Adjust PART_DIE before generating a symbol for it. This function
16672 may set the is_external flag or change the DIE's name. */
16673
16674 static void
16675 fixup_partial_die (struct partial_die_info *part_die,
16676 struct dwarf2_cu *cu)
16677 {
16678 /* Once we've fixed up a die, there's no point in doing so again.
16679 This also avoids a memory leak if we were to call
16680 guess_partial_die_structure_name multiple times. */
16681 if (part_die->fixup_called)
16682 return;
16683
16684 /* If we found a reference attribute and the DIE has no name, try
16685 to find a name in the referred to DIE. */
16686
16687 if (part_die->name == NULL && part_die->has_specification)
16688 {
16689 struct partial_die_info *spec_die;
16690
16691 spec_die = find_partial_die (part_die->spec_offset,
16692 part_die->spec_is_dwz, cu);
16693
16694 fixup_partial_die (spec_die, cu);
16695
16696 if (spec_die->name)
16697 {
16698 part_die->name = spec_die->name;
16699
16700 /* Copy DW_AT_external attribute if it is set. */
16701 if (spec_die->is_external)
16702 part_die->is_external = spec_die->is_external;
16703 }
16704 }
16705
16706 /* Set default names for some unnamed DIEs. */
16707
16708 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16709 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16710
16711 /* If there is no parent die to provide a namespace, and there are
16712 children, see if we can determine the namespace from their linkage
16713 name. */
16714 if (cu->language == language_cplus
16715 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16716 && part_die->die_parent == NULL
16717 && part_die->has_children
16718 && (part_die->tag == DW_TAG_class_type
16719 || part_die->tag == DW_TAG_structure_type
16720 || part_die->tag == DW_TAG_union_type))
16721 guess_partial_die_structure_name (part_die, cu);
16722
16723 /* GCC might emit a nameless struct or union that has a linkage
16724 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16725 if (part_die->name == NULL
16726 && (part_die->tag == DW_TAG_class_type
16727 || part_die->tag == DW_TAG_interface_type
16728 || part_die->tag == DW_TAG_structure_type
16729 || part_die->tag == DW_TAG_union_type)
16730 && part_die->linkage_name != NULL)
16731 {
16732 char *demangled;
16733
16734 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16735 if (demangled)
16736 {
16737 const char *base;
16738
16739 /* Strip any leading namespaces/classes, keep only the base name.
16740 DW_AT_name for named DIEs does not contain the prefixes. */
16741 base = strrchr (demangled, ':');
16742 if (base && base > demangled && base[-1] == ':')
16743 base++;
16744 else
16745 base = demangled;
16746
16747 part_die->name
16748 = ((const char *)
16749 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16750 base, strlen (base)));
16751 xfree (demangled);
16752 }
16753 }
16754
16755 part_die->fixup_called = 1;
16756 }
16757
16758 /* Read an attribute value described by an attribute form. */
16759
16760 static const gdb_byte *
16761 read_attribute_value (const struct die_reader_specs *reader,
16762 struct attribute *attr, unsigned form,
16763 LONGEST implicit_const, const gdb_byte *info_ptr)
16764 {
16765 struct dwarf2_cu *cu = reader->cu;
16766 struct objfile *objfile = cu->objfile;
16767 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16768 bfd *abfd = reader->abfd;
16769 struct comp_unit_head *cu_header = &cu->header;
16770 unsigned int bytes_read;
16771 struct dwarf_block *blk;
16772
16773 attr->form = (enum dwarf_form) form;
16774 switch (form)
16775 {
16776 case DW_FORM_ref_addr:
16777 if (cu->header.version == 2)
16778 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16779 else
16780 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16781 &cu->header, &bytes_read);
16782 info_ptr += bytes_read;
16783 break;
16784 case DW_FORM_GNU_ref_alt:
16785 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16786 info_ptr += bytes_read;
16787 break;
16788 case DW_FORM_addr:
16789 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16790 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16791 info_ptr += bytes_read;
16792 break;
16793 case DW_FORM_block2:
16794 blk = dwarf_alloc_block (cu);
16795 blk->size = read_2_bytes (abfd, info_ptr);
16796 info_ptr += 2;
16797 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16798 info_ptr += blk->size;
16799 DW_BLOCK (attr) = blk;
16800 break;
16801 case DW_FORM_block4:
16802 blk = dwarf_alloc_block (cu);
16803 blk->size = read_4_bytes (abfd, info_ptr);
16804 info_ptr += 4;
16805 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16806 info_ptr += blk->size;
16807 DW_BLOCK (attr) = blk;
16808 break;
16809 case DW_FORM_data2:
16810 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16811 info_ptr += 2;
16812 break;
16813 case DW_FORM_data4:
16814 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16815 info_ptr += 4;
16816 break;
16817 case DW_FORM_data8:
16818 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16819 info_ptr += 8;
16820 break;
16821 case DW_FORM_data16:
16822 blk = dwarf_alloc_block (cu);
16823 blk->size = 16;
16824 blk->data = read_n_bytes (abfd, info_ptr, 16);
16825 info_ptr += 16;
16826 DW_BLOCK (attr) = blk;
16827 break;
16828 case DW_FORM_sec_offset:
16829 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16830 info_ptr += bytes_read;
16831 break;
16832 case DW_FORM_string:
16833 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16834 DW_STRING_IS_CANONICAL (attr) = 0;
16835 info_ptr += bytes_read;
16836 break;
16837 case DW_FORM_strp:
16838 if (!cu->per_cu->is_dwz)
16839 {
16840 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16841 &bytes_read);
16842 DW_STRING_IS_CANONICAL (attr) = 0;
16843 info_ptr += bytes_read;
16844 break;
16845 }
16846 /* FALLTHROUGH */
16847 case DW_FORM_line_strp:
16848 if (!cu->per_cu->is_dwz)
16849 {
16850 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16851 cu_header, &bytes_read);
16852 DW_STRING_IS_CANONICAL (attr) = 0;
16853 info_ptr += bytes_read;
16854 break;
16855 }
16856 /* FALLTHROUGH */
16857 case DW_FORM_GNU_strp_alt:
16858 {
16859 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16860 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16861 &bytes_read);
16862
16863 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16864 DW_STRING_IS_CANONICAL (attr) = 0;
16865 info_ptr += bytes_read;
16866 }
16867 break;
16868 case DW_FORM_exprloc:
16869 case DW_FORM_block:
16870 blk = dwarf_alloc_block (cu);
16871 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16872 info_ptr += bytes_read;
16873 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16874 info_ptr += blk->size;
16875 DW_BLOCK (attr) = blk;
16876 break;
16877 case DW_FORM_block1:
16878 blk = dwarf_alloc_block (cu);
16879 blk->size = read_1_byte (abfd, info_ptr);
16880 info_ptr += 1;
16881 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16882 info_ptr += blk->size;
16883 DW_BLOCK (attr) = blk;
16884 break;
16885 case DW_FORM_data1:
16886 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16887 info_ptr += 1;
16888 break;
16889 case DW_FORM_flag:
16890 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16891 info_ptr += 1;
16892 break;
16893 case DW_FORM_flag_present:
16894 DW_UNSND (attr) = 1;
16895 break;
16896 case DW_FORM_sdata:
16897 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16898 info_ptr += bytes_read;
16899 break;
16900 case DW_FORM_udata:
16901 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16902 info_ptr += bytes_read;
16903 break;
16904 case DW_FORM_ref1:
16905 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16906 + read_1_byte (abfd, info_ptr));
16907 info_ptr += 1;
16908 break;
16909 case DW_FORM_ref2:
16910 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16911 + read_2_bytes (abfd, info_ptr));
16912 info_ptr += 2;
16913 break;
16914 case DW_FORM_ref4:
16915 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16916 + read_4_bytes (abfd, info_ptr));
16917 info_ptr += 4;
16918 break;
16919 case DW_FORM_ref8:
16920 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16921 + read_8_bytes (abfd, info_ptr));
16922 info_ptr += 8;
16923 break;
16924 case DW_FORM_ref_sig8:
16925 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16926 info_ptr += 8;
16927 break;
16928 case DW_FORM_ref_udata:
16929 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16930 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16931 info_ptr += bytes_read;
16932 break;
16933 case DW_FORM_indirect:
16934 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16935 info_ptr += bytes_read;
16936 if (form == DW_FORM_implicit_const)
16937 {
16938 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16939 info_ptr += bytes_read;
16940 }
16941 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16942 info_ptr);
16943 break;
16944 case DW_FORM_implicit_const:
16945 DW_SND (attr) = implicit_const;
16946 break;
16947 case DW_FORM_GNU_addr_index:
16948 if (reader->dwo_file == NULL)
16949 {
16950 /* For now flag a hard error.
16951 Later we can turn this into a complaint. */
16952 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16953 dwarf_form_name (form),
16954 bfd_get_filename (abfd));
16955 }
16956 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16957 info_ptr += bytes_read;
16958 break;
16959 case DW_FORM_GNU_str_index:
16960 if (reader->dwo_file == NULL)
16961 {
16962 /* For now flag a hard error.
16963 Later we can turn this into a complaint if warranted. */
16964 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16965 dwarf_form_name (form),
16966 bfd_get_filename (abfd));
16967 }
16968 {
16969 ULONGEST str_index =
16970 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16971
16972 DW_STRING (attr) = read_str_index (reader, str_index);
16973 DW_STRING_IS_CANONICAL (attr) = 0;
16974 info_ptr += bytes_read;
16975 }
16976 break;
16977 default:
16978 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16979 dwarf_form_name (form),
16980 bfd_get_filename (abfd));
16981 }
16982
16983 /* Super hack. */
16984 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16985 attr->form = DW_FORM_GNU_ref_alt;
16986
16987 /* We have seen instances where the compiler tried to emit a byte
16988 size attribute of -1 which ended up being encoded as an unsigned
16989 0xffffffff. Although 0xffffffff is technically a valid size value,
16990 an object of this size seems pretty unlikely so we can relatively
16991 safely treat these cases as if the size attribute was invalid and
16992 treat them as zero by default. */
16993 if (attr->name == DW_AT_byte_size
16994 && form == DW_FORM_data4
16995 && DW_UNSND (attr) >= 0xffffffff)
16996 {
16997 complaint
16998 (&symfile_complaints,
16999 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
17000 hex_string (DW_UNSND (attr)));
17001 DW_UNSND (attr) = 0;
17002 }
17003
17004 return info_ptr;
17005 }
17006
17007 /* Read an attribute described by an abbreviated attribute. */
17008
17009 static const gdb_byte *
17010 read_attribute (const struct die_reader_specs *reader,
17011 struct attribute *attr, struct attr_abbrev *abbrev,
17012 const gdb_byte *info_ptr)
17013 {
17014 attr->name = abbrev->name;
17015 return read_attribute_value (reader, attr, abbrev->form,
17016 abbrev->implicit_const, info_ptr);
17017 }
17018
17019 /* Read dwarf information from a buffer. */
17020
17021 static unsigned int
17022 read_1_byte (bfd *abfd, const gdb_byte *buf)
17023 {
17024 return bfd_get_8 (abfd, buf);
17025 }
17026
17027 static int
17028 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
17029 {
17030 return bfd_get_signed_8 (abfd, buf);
17031 }
17032
17033 static unsigned int
17034 read_2_bytes (bfd *abfd, const gdb_byte *buf)
17035 {
17036 return bfd_get_16 (abfd, buf);
17037 }
17038
17039 static int
17040 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
17041 {
17042 return bfd_get_signed_16 (abfd, buf);
17043 }
17044
17045 static unsigned int
17046 read_4_bytes (bfd *abfd, const gdb_byte *buf)
17047 {
17048 return bfd_get_32 (abfd, buf);
17049 }
17050
17051 static int
17052 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
17053 {
17054 return bfd_get_signed_32 (abfd, buf);
17055 }
17056
17057 static ULONGEST
17058 read_8_bytes (bfd *abfd, const gdb_byte *buf)
17059 {
17060 return bfd_get_64 (abfd, buf);
17061 }
17062
17063 static CORE_ADDR
17064 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
17065 unsigned int *bytes_read)
17066 {
17067 struct comp_unit_head *cu_header = &cu->header;
17068 CORE_ADDR retval = 0;
17069
17070 if (cu_header->signed_addr_p)
17071 {
17072 switch (cu_header->addr_size)
17073 {
17074 case 2:
17075 retval = bfd_get_signed_16 (abfd, buf);
17076 break;
17077 case 4:
17078 retval = bfd_get_signed_32 (abfd, buf);
17079 break;
17080 case 8:
17081 retval = bfd_get_signed_64 (abfd, buf);
17082 break;
17083 default:
17084 internal_error (__FILE__, __LINE__,
17085 _("read_address: bad switch, signed [in module %s]"),
17086 bfd_get_filename (abfd));
17087 }
17088 }
17089 else
17090 {
17091 switch (cu_header->addr_size)
17092 {
17093 case 2:
17094 retval = bfd_get_16 (abfd, buf);
17095 break;
17096 case 4:
17097 retval = bfd_get_32 (abfd, buf);
17098 break;
17099 case 8:
17100 retval = bfd_get_64 (abfd, buf);
17101 break;
17102 default:
17103 internal_error (__FILE__, __LINE__,
17104 _("read_address: bad switch, "
17105 "unsigned [in module %s]"),
17106 bfd_get_filename (abfd));
17107 }
17108 }
17109
17110 *bytes_read = cu_header->addr_size;
17111 return retval;
17112 }
17113
17114 /* Read the initial length from a section. The (draft) DWARF 3
17115 specification allows the initial length to take up either 4 bytes
17116 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17117 bytes describe the length and all offsets will be 8 bytes in length
17118 instead of 4.
17119
17120 An older, non-standard 64-bit format is also handled by this
17121 function. The older format in question stores the initial length
17122 as an 8-byte quantity without an escape value. Lengths greater
17123 than 2^32 aren't very common which means that the initial 4 bytes
17124 is almost always zero. Since a length value of zero doesn't make
17125 sense for the 32-bit format, this initial zero can be considered to
17126 be an escape value which indicates the presence of the older 64-bit
17127 format. As written, the code can't detect (old format) lengths
17128 greater than 4GB. If it becomes necessary to handle lengths
17129 somewhat larger than 4GB, we could allow other small values (such
17130 as the non-sensical values of 1, 2, and 3) to also be used as
17131 escape values indicating the presence of the old format.
17132
17133 The value returned via bytes_read should be used to increment the
17134 relevant pointer after calling read_initial_length().
17135
17136 [ Note: read_initial_length() and read_offset() are based on the
17137 document entitled "DWARF Debugging Information Format", revision
17138 3, draft 8, dated November 19, 2001. This document was obtained
17139 from:
17140
17141 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
17142
17143 This document is only a draft and is subject to change. (So beware.)
17144
17145 Details regarding the older, non-standard 64-bit format were
17146 determined empirically by examining 64-bit ELF files produced by
17147 the SGI toolchain on an IRIX 6.5 machine.
17148
17149 - Kevin, July 16, 2002
17150 ] */
17151
17152 static LONGEST
17153 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
17154 {
17155 LONGEST length = bfd_get_32 (abfd, buf);
17156
17157 if (length == 0xffffffff)
17158 {
17159 length = bfd_get_64 (abfd, buf + 4);
17160 *bytes_read = 12;
17161 }
17162 else if (length == 0)
17163 {
17164 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
17165 length = bfd_get_64 (abfd, buf);
17166 *bytes_read = 8;
17167 }
17168 else
17169 {
17170 *bytes_read = 4;
17171 }
17172
17173 return length;
17174 }
17175
17176 /* Cover function for read_initial_length.
17177 Returns the length of the object at BUF, and stores the size of the
17178 initial length in *BYTES_READ and stores the size that offsets will be in
17179 *OFFSET_SIZE.
17180 If the initial length size is not equivalent to that specified in
17181 CU_HEADER then issue a complaint.
17182 This is useful when reading non-comp-unit headers. */
17183
17184 static LONGEST
17185 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
17186 const struct comp_unit_head *cu_header,
17187 unsigned int *bytes_read,
17188 unsigned int *offset_size)
17189 {
17190 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17191
17192 gdb_assert (cu_header->initial_length_size == 4
17193 || cu_header->initial_length_size == 8
17194 || cu_header->initial_length_size == 12);
17195
17196 if (cu_header->initial_length_size != *bytes_read)
17197 complaint (&symfile_complaints,
17198 _("intermixed 32-bit and 64-bit DWARF sections"));
17199
17200 *offset_size = (*bytes_read == 4) ? 4 : 8;
17201 return length;
17202 }
17203
17204 /* Read an offset from the data stream. The size of the offset is
17205 given by cu_header->offset_size. */
17206
17207 static LONGEST
17208 read_offset (bfd *abfd, const gdb_byte *buf,
17209 const struct comp_unit_head *cu_header,
17210 unsigned int *bytes_read)
17211 {
17212 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
17213
17214 *bytes_read = cu_header->offset_size;
17215 return offset;
17216 }
17217
17218 /* Read an offset from the data stream. */
17219
17220 static LONGEST
17221 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
17222 {
17223 LONGEST retval = 0;
17224
17225 switch (offset_size)
17226 {
17227 case 4:
17228 retval = bfd_get_32 (abfd, buf);
17229 break;
17230 case 8:
17231 retval = bfd_get_64 (abfd, buf);
17232 break;
17233 default:
17234 internal_error (__FILE__, __LINE__,
17235 _("read_offset_1: bad switch [in module %s]"),
17236 bfd_get_filename (abfd));
17237 }
17238
17239 return retval;
17240 }
17241
17242 static const gdb_byte *
17243 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
17244 {
17245 /* If the size of a host char is 8 bits, we can return a pointer
17246 to the buffer, otherwise we have to copy the data to a buffer
17247 allocated on the temporary obstack. */
17248 gdb_assert (HOST_CHAR_BIT == 8);
17249 return buf;
17250 }
17251
17252 static const char *
17253 read_direct_string (bfd *abfd, const gdb_byte *buf,
17254 unsigned int *bytes_read_ptr)
17255 {
17256 /* If the size of a host char is 8 bits, we can return a pointer
17257 to the string, otherwise we have to copy the string to a buffer
17258 allocated on the temporary obstack. */
17259 gdb_assert (HOST_CHAR_BIT == 8);
17260 if (*buf == '\0')
17261 {
17262 *bytes_read_ptr = 1;
17263 return NULL;
17264 }
17265 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17266 return (const char *) buf;
17267 }
17268
17269 /* Return pointer to string at section SECT offset STR_OFFSET with error
17270 reporting strings FORM_NAME and SECT_NAME. */
17271
17272 static const char *
17273 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17274 struct dwarf2_section_info *sect,
17275 const char *form_name,
17276 const char *sect_name)
17277 {
17278 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17279 if (sect->buffer == NULL)
17280 error (_("%s used without %s section [in module %s]"),
17281 form_name, sect_name, bfd_get_filename (abfd));
17282 if (str_offset >= sect->size)
17283 error (_("%s pointing outside of %s section [in module %s]"),
17284 form_name, sect_name, bfd_get_filename (abfd));
17285 gdb_assert (HOST_CHAR_BIT == 8);
17286 if (sect->buffer[str_offset] == '\0')
17287 return NULL;
17288 return (const char *) (sect->buffer + str_offset);
17289 }
17290
17291 /* Return pointer to string at .debug_str offset STR_OFFSET. */
17292
17293 static const char *
17294 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17295 {
17296 return read_indirect_string_at_offset_from (abfd, str_offset,
17297 &dwarf2_per_objfile->str,
17298 "DW_FORM_strp", ".debug_str");
17299 }
17300
17301 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17302
17303 static const char *
17304 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17305 {
17306 return read_indirect_string_at_offset_from (abfd, str_offset,
17307 &dwarf2_per_objfile->line_str,
17308 "DW_FORM_line_strp",
17309 ".debug_line_str");
17310 }
17311
17312 /* Read a string at offset STR_OFFSET in the .debug_str section from
17313 the .dwz file DWZ. Throw an error if the offset is too large. If
17314 the string consists of a single NUL byte, return NULL; otherwise
17315 return a pointer to the string. */
17316
17317 static const char *
17318 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17319 {
17320 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17321
17322 if (dwz->str.buffer == NULL)
17323 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17324 "section [in module %s]"),
17325 bfd_get_filename (dwz->dwz_bfd));
17326 if (str_offset >= dwz->str.size)
17327 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17328 ".debug_str section [in module %s]"),
17329 bfd_get_filename (dwz->dwz_bfd));
17330 gdb_assert (HOST_CHAR_BIT == 8);
17331 if (dwz->str.buffer[str_offset] == '\0')
17332 return NULL;
17333 return (const char *) (dwz->str.buffer + str_offset);
17334 }
17335
17336 /* Return pointer to string at .debug_str offset as read from BUF.
17337 BUF is assumed to be in a compilation unit described by CU_HEADER.
17338 Return *BYTES_READ_PTR count of bytes read from BUF. */
17339
17340 static const char *
17341 read_indirect_string (bfd *abfd, const gdb_byte *buf,
17342 const struct comp_unit_head *cu_header,
17343 unsigned int *bytes_read_ptr)
17344 {
17345 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17346
17347 return read_indirect_string_at_offset (abfd, str_offset);
17348 }
17349
17350 /* Return pointer to string at .debug_line_str offset as read from BUF.
17351 BUF is assumed to be in a compilation unit described by CU_HEADER.
17352 Return *BYTES_READ_PTR count of bytes read from BUF. */
17353
17354 static const char *
17355 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17356 const struct comp_unit_head *cu_header,
17357 unsigned int *bytes_read_ptr)
17358 {
17359 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17360
17361 return read_indirect_line_string_at_offset (abfd, str_offset);
17362 }
17363
17364 ULONGEST
17365 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
17366 unsigned int *bytes_read_ptr)
17367 {
17368 ULONGEST result;
17369 unsigned int num_read;
17370 int shift;
17371 unsigned char byte;
17372
17373 result = 0;
17374 shift = 0;
17375 num_read = 0;
17376 while (1)
17377 {
17378 byte = bfd_get_8 (abfd, buf);
17379 buf++;
17380 num_read++;
17381 result |= ((ULONGEST) (byte & 127) << shift);
17382 if ((byte & 128) == 0)
17383 {
17384 break;
17385 }
17386 shift += 7;
17387 }
17388 *bytes_read_ptr = num_read;
17389 return result;
17390 }
17391
17392 static LONGEST
17393 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17394 unsigned int *bytes_read_ptr)
17395 {
17396 LONGEST result;
17397 int shift, num_read;
17398 unsigned char byte;
17399
17400 result = 0;
17401 shift = 0;
17402 num_read = 0;
17403 while (1)
17404 {
17405 byte = bfd_get_8 (abfd, buf);
17406 buf++;
17407 num_read++;
17408 result |= ((LONGEST) (byte & 127) << shift);
17409 shift += 7;
17410 if ((byte & 128) == 0)
17411 {
17412 break;
17413 }
17414 }
17415 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
17416 result |= -(((LONGEST) 1) << shift);
17417 *bytes_read_ptr = num_read;
17418 return result;
17419 }
17420
17421 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
17422 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17423 ADDR_SIZE is the size of addresses from the CU header. */
17424
17425 static CORE_ADDR
17426 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17427 {
17428 struct objfile *objfile = dwarf2_per_objfile->objfile;
17429 bfd *abfd = objfile->obfd;
17430 const gdb_byte *info_ptr;
17431
17432 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17433 if (dwarf2_per_objfile->addr.buffer == NULL)
17434 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
17435 objfile_name (objfile));
17436 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17437 error (_("DW_FORM_addr_index pointing outside of "
17438 ".debug_addr section [in module %s]"),
17439 objfile_name (objfile));
17440 info_ptr = (dwarf2_per_objfile->addr.buffer
17441 + addr_base + addr_index * addr_size);
17442 if (addr_size == 4)
17443 return bfd_get_32 (abfd, info_ptr);
17444 else
17445 return bfd_get_64 (abfd, info_ptr);
17446 }
17447
17448 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17449
17450 static CORE_ADDR
17451 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17452 {
17453 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17454 }
17455
17456 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17457
17458 static CORE_ADDR
17459 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
17460 unsigned int *bytes_read)
17461 {
17462 bfd *abfd = cu->objfile->obfd;
17463 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17464
17465 return read_addr_index (cu, addr_index);
17466 }
17467
17468 /* Data structure to pass results from dwarf2_read_addr_index_reader
17469 back to dwarf2_read_addr_index. */
17470
17471 struct dwarf2_read_addr_index_data
17472 {
17473 ULONGEST addr_base;
17474 int addr_size;
17475 };
17476
17477 /* die_reader_func for dwarf2_read_addr_index. */
17478
17479 static void
17480 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
17481 const gdb_byte *info_ptr,
17482 struct die_info *comp_unit_die,
17483 int has_children,
17484 void *data)
17485 {
17486 struct dwarf2_cu *cu = reader->cu;
17487 struct dwarf2_read_addr_index_data *aidata =
17488 (struct dwarf2_read_addr_index_data *) data;
17489
17490 aidata->addr_base = cu->addr_base;
17491 aidata->addr_size = cu->header.addr_size;
17492 }
17493
17494 /* Given an index in .debug_addr, fetch the value.
17495 NOTE: This can be called during dwarf expression evaluation,
17496 long after the debug information has been read, and thus per_cu->cu
17497 may no longer exist. */
17498
17499 CORE_ADDR
17500 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17501 unsigned int addr_index)
17502 {
17503 struct objfile *objfile = per_cu->objfile;
17504 struct dwarf2_cu *cu = per_cu->cu;
17505 ULONGEST addr_base;
17506 int addr_size;
17507
17508 /* This is intended to be called from outside this file. */
17509 dw2_setup (objfile);
17510
17511 /* We need addr_base and addr_size.
17512 If we don't have PER_CU->cu, we have to get it.
17513 Nasty, but the alternative is storing the needed info in PER_CU,
17514 which at this point doesn't seem justified: it's not clear how frequently
17515 it would get used and it would increase the size of every PER_CU.
17516 Entry points like dwarf2_per_cu_addr_size do a similar thing
17517 so we're not in uncharted territory here.
17518 Alas we need to be a bit more complicated as addr_base is contained
17519 in the DIE.
17520
17521 We don't need to read the entire CU(/TU).
17522 We just need the header and top level die.
17523
17524 IWBN to use the aging mechanism to let us lazily later discard the CU.
17525 For now we skip this optimization. */
17526
17527 if (cu != NULL)
17528 {
17529 addr_base = cu->addr_base;
17530 addr_size = cu->header.addr_size;
17531 }
17532 else
17533 {
17534 struct dwarf2_read_addr_index_data aidata;
17535
17536 /* Note: We can't use init_cutu_and_read_dies_simple here,
17537 we need addr_base. */
17538 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17539 dwarf2_read_addr_index_reader, &aidata);
17540 addr_base = aidata.addr_base;
17541 addr_size = aidata.addr_size;
17542 }
17543
17544 return read_addr_index_1 (addr_index, addr_base, addr_size);
17545 }
17546
17547 /* Given a DW_FORM_GNU_str_index, fetch the string.
17548 This is only used by the Fission support. */
17549
17550 static const char *
17551 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
17552 {
17553 struct objfile *objfile = dwarf2_per_objfile->objfile;
17554 const char *objf_name = objfile_name (objfile);
17555 bfd *abfd = objfile->obfd;
17556 struct dwarf2_cu *cu = reader->cu;
17557 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17558 struct dwarf2_section_info *str_offsets_section =
17559 &reader->dwo_file->sections.str_offsets;
17560 const gdb_byte *info_ptr;
17561 ULONGEST str_offset;
17562 static const char form_name[] = "DW_FORM_GNU_str_index";
17563
17564 dwarf2_read_section (objfile, str_section);
17565 dwarf2_read_section (objfile, str_offsets_section);
17566 if (str_section->buffer == NULL)
17567 error (_("%s used without .debug_str.dwo section"
17568 " in CU at offset 0x%x [in module %s]"),
17569 form_name, to_underlying (cu->header.sect_off), objf_name);
17570 if (str_offsets_section->buffer == NULL)
17571 error (_("%s used without .debug_str_offsets.dwo section"
17572 " in CU at offset 0x%x [in module %s]"),
17573 form_name, to_underlying (cu->header.sect_off), objf_name);
17574 if (str_index * cu->header.offset_size >= str_offsets_section->size)
17575 error (_("%s pointing outside of .debug_str_offsets.dwo"
17576 " section in CU at offset 0x%x [in module %s]"),
17577 form_name, to_underlying (cu->header.sect_off), objf_name);
17578 info_ptr = (str_offsets_section->buffer
17579 + str_index * cu->header.offset_size);
17580 if (cu->header.offset_size == 4)
17581 str_offset = bfd_get_32 (abfd, info_ptr);
17582 else
17583 str_offset = bfd_get_64 (abfd, info_ptr);
17584 if (str_offset >= str_section->size)
17585 error (_("Offset from %s pointing outside of"
17586 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
17587 form_name, to_underlying (cu->header.sect_off), objf_name);
17588 return (const char *) (str_section->buffer + str_offset);
17589 }
17590
17591 /* Return the length of an LEB128 number in BUF. */
17592
17593 static int
17594 leb128_size (const gdb_byte *buf)
17595 {
17596 const gdb_byte *begin = buf;
17597 gdb_byte byte;
17598
17599 while (1)
17600 {
17601 byte = *buf++;
17602 if ((byte & 128) == 0)
17603 return buf - begin;
17604 }
17605 }
17606
17607 static void
17608 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17609 {
17610 switch (lang)
17611 {
17612 case DW_LANG_C89:
17613 case DW_LANG_C99:
17614 case DW_LANG_C11:
17615 case DW_LANG_C:
17616 case DW_LANG_UPC:
17617 cu->language = language_c;
17618 break;
17619 case DW_LANG_Java:
17620 case DW_LANG_C_plus_plus:
17621 case DW_LANG_C_plus_plus_11:
17622 case DW_LANG_C_plus_plus_14:
17623 cu->language = language_cplus;
17624 break;
17625 case DW_LANG_D:
17626 cu->language = language_d;
17627 break;
17628 case DW_LANG_Fortran77:
17629 case DW_LANG_Fortran90:
17630 case DW_LANG_Fortran95:
17631 case DW_LANG_Fortran03:
17632 case DW_LANG_Fortran08:
17633 cu->language = language_fortran;
17634 break;
17635 case DW_LANG_Go:
17636 cu->language = language_go;
17637 break;
17638 case DW_LANG_Mips_Assembler:
17639 cu->language = language_asm;
17640 break;
17641 case DW_LANG_Ada83:
17642 case DW_LANG_Ada95:
17643 cu->language = language_ada;
17644 break;
17645 case DW_LANG_Modula2:
17646 cu->language = language_m2;
17647 break;
17648 case DW_LANG_Pascal83:
17649 cu->language = language_pascal;
17650 break;
17651 case DW_LANG_ObjC:
17652 cu->language = language_objc;
17653 break;
17654 case DW_LANG_Rust:
17655 case DW_LANG_Rust_old:
17656 cu->language = language_rust;
17657 break;
17658 case DW_LANG_Cobol74:
17659 case DW_LANG_Cobol85:
17660 default:
17661 cu->language = language_minimal;
17662 break;
17663 }
17664 cu->language_defn = language_def (cu->language);
17665 }
17666
17667 /* Return the named attribute or NULL if not there. */
17668
17669 static struct attribute *
17670 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17671 {
17672 for (;;)
17673 {
17674 unsigned int i;
17675 struct attribute *spec = NULL;
17676
17677 for (i = 0; i < die->num_attrs; ++i)
17678 {
17679 if (die->attrs[i].name == name)
17680 return &die->attrs[i];
17681 if (die->attrs[i].name == DW_AT_specification
17682 || die->attrs[i].name == DW_AT_abstract_origin)
17683 spec = &die->attrs[i];
17684 }
17685
17686 if (!spec)
17687 break;
17688
17689 die = follow_die_ref (die, spec, &cu);
17690 }
17691
17692 return NULL;
17693 }
17694
17695 /* Return the named attribute or NULL if not there,
17696 but do not follow DW_AT_specification, etc.
17697 This is for use in contexts where we're reading .debug_types dies.
17698 Following DW_AT_specification, DW_AT_abstract_origin will take us
17699 back up the chain, and we want to go down. */
17700
17701 static struct attribute *
17702 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17703 {
17704 unsigned int i;
17705
17706 for (i = 0; i < die->num_attrs; ++i)
17707 if (die->attrs[i].name == name)
17708 return &die->attrs[i];
17709
17710 return NULL;
17711 }
17712
17713 /* Return the string associated with a string-typed attribute, or NULL if it
17714 is either not found or is of an incorrect type. */
17715
17716 static const char *
17717 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17718 {
17719 struct attribute *attr;
17720 const char *str = NULL;
17721
17722 attr = dwarf2_attr (die, name, cu);
17723
17724 if (attr != NULL)
17725 {
17726 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
17727 || attr->form == DW_FORM_string
17728 || attr->form == DW_FORM_GNU_str_index
17729 || attr->form == DW_FORM_GNU_strp_alt)
17730 str = DW_STRING (attr);
17731 else
17732 complaint (&symfile_complaints,
17733 _("string type expected for attribute %s for "
17734 "DIE at 0x%x in module %s"),
17735 dwarf_attr_name (name), to_underlying (die->sect_off),
17736 objfile_name (cu->objfile));
17737 }
17738
17739 return str;
17740 }
17741
17742 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17743 and holds a non-zero value. This function should only be used for
17744 DW_FORM_flag or DW_FORM_flag_present attributes. */
17745
17746 static int
17747 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17748 {
17749 struct attribute *attr = dwarf2_attr (die, name, cu);
17750
17751 return (attr && DW_UNSND (attr));
17752 }
17753
17754 static int
17755 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17756 {
17757 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17758 which value is non-zero. However, we have to be careful with
17759 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17760 (via dwarf2_flag_true_p) follows this attribute. So we may
17761 end up accidently finding a declaration attribute that belongs
17762 to a different DIE referenced by the specification attribute,
17763 even though the given DIE does not have a declaration attribute. */
17764 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17765 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17766 }
17767
17768 /* Return the die giving the specification for DIE, if there is
17769 one. *SPEC_CU is the CU containing DIE on input, and the CU
17770 containing the return value on output. If there is no
17771 specification, but there is an abstract origin, that is
17772 returned. */
17773
17774 static struct die_info *
17775 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17776 {
17777 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17778 *spec_cu);
17779
17780 if (spec_attr == NULL)
17781 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17782
17783 if (spec_attr == NULL)
17784 return NULL;
17785 else
17786 return follow_die_ref (die, spec_attr, spec_cu);
17787 }
17788
17789 /* Stub for free_line_header to match void * callback types. */
17790
17791 static void
17792 free_line_header_voidp (void *arg)
17793 {
17794 struct line_header *lh = (struct line_header *) arg;
17795
17796 delete lh;
17797 }
17798
17799 void
17800 line_header::add_include_dir (const char *include_dir)
17801 {
17802 if (dwarf_line_debug >= 2)
17803 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
17804 include_dirs.size () + 1, include_dir);
17805
17806 include_dirs.push_back (include_dir);
17807 }
17808
17809 void
17810 line_header::add_file_name (const char *name,
17811 dir_index d_index,
17812 unsigned int mod_time,
17813 unsigned int length)
17814 {
17815 if (dwarf_line_debug >= 2)
17816 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17817 (unsigned) file_names.size () + 1, name);
17818
17819 file_names.emplace_back (name, d_index, mod_time, length);
17820 }
17821
17822 /* A convenience function to find the proper .debug_line section for a CU. */
17823
17824 static struct dwarf2_section_info *
17825 get_debug_line_section (struct dwarf2_cu *cu)
17826 {
17827 struct dwarf2_section_info *section;
17828
17829 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17830 DWO file. */
17831 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17832 section = &cu->dwo_unit->dwo_file->sections.line;
17833 else if (cu->per_cu->is_dwz)
17834 {
17835 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17836
17837 section = &dwz->line;
17838 }
17839 else
17840 section = &dwarf2_per_objfile->line;
17841
17842 return section;
17843 }
17844
17845 /* Read directory or file name entry format, starting with byte of
17846 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17847 entries count and the entries themselves in the described entry
17848 format. */
17849
17850 static void
17851 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17852 struct line_header *lh,
17853 const struct comp_unit_head *cu_header,
17854 void (*callback) (struct line_header *lh,
17855 const char *name,
17856 dir_index d_index,
17857 unsigned int mod_time,
17858 unsigned int length))
17859 {
17860 gdb_byte format_count, formati;
17861 ULONGEST data_count, datai;
17862 const gdb_byte *buf = *bufp;
17863 const gdb_byte *format_header_data;
17864 int i;
17865 unsigned int bytes_read;
17866
17867 format_count = read_1_byte (abfd, buf);
17868 buf += 1;
17869 format_header_data = buf;
17870 for (formati = 0; formati < format_count; formati++)
17871 {
17872 read_unsigned_leb128 (abfd, buf, &bytes_read);
17873 buf += bytes_read;
17874 read_unsigned_leb128 (abfd, buf, &bytes_read);
17875 buf += bytes_read;
17876 }
17877
17878 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17879 buf += bytes_read;
17880 for (datai = 0; datai < data_count; datai++)
17881 {
17882 const gdb_byte *format = format_header_data;
17883 struct file_entry fe;
17884
17885 for (formati = 0; formati < format_count; formati++)
17886 {
17887 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
17888 format += bytes_read;
17889
17890 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
17891 format += bytes_read;
17892
17893 gdb::optional<const char *> string;
17894 gdb::optional<unsigned int> uint;
17895
17896 switch (form)
17897 {
17898 case DW_FORM_string:
17899 string.emplace (read_direct_string (abfd, buf, &bytes_read));
17900 buf += bytes_read;
17901 break;
17902
17903 case DW_FORM_line_strp:
17904 string.emplace (read_indirect_line_string (abfd, buf,
17905 cu_header,
17906 &bytes_read));
17907 buf += bytes_read;
17908 break;
17909
17910 case DW_FORM_data1:
17911 uint.emplace (read_1_byte (abfd, buf));
17912 buf += 1;
17913 break;
17914
17915 case DW_FORM_data2:
17916 uint.emplace (read_2_bytes (abfd, buf));
17917 buf += 2;
17918 break;
17919
17920 case DW_FORM_data4:
17921 uint.emplace (read_4_bytes (abfd, buf));
17922 buf += 4;
17923 break;
17924
17925 case DW_FORM_data8:
17926 uint.emplace (read_8_bytes (abfd, buf));
17927 buf += 8;
17928 break;
17929
17930 case DW_FORM_udata:
17931 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
17932 buf += bytes_read;
17933 break;
17934
17935 case DW_FORM_block:
17936 /* It is valid only for DW_LNCT_timestamp which is ignored by
17937 current GDB. */
17938 break;
17939 }
17940
17941 switch (content_type)
17942 {
17943 case DW_LNCT_path:
17944 if (string.has_value ())
17945 fe.name = *string;
17946 break;
17947 case DW_LNCT_directory_index:
17948 if (uint.has_value ())
17949 fe.d_index = (dir_index) *uint;
17950 break;
17951 case DW_LNCT_timestamp:
17952 if (uint.has_value ())
17953 fe.mod_time = *uint;
17954 break;
17955 case DW_LNCT_size:
17956 if (uint.has_value ())
17957 fe.length = *uint;
17958 break;
17959 case DW_LNCT_MD5:
17960 break;
17961 default:
17962 complaint (&symfile_complaints,
17963 _("Unknown format content type %s"),
17964 pulongest (content_type));
17965 }
17966 }
17967
17968 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
17969 }
17970
17971 *bufp = buf;
17972 }
17973
17974 /* Read the statement program header starting at OFFSET in
17975 .debug_line, or .debug_line.dwo. Return a pointer
17976 to a struct line_header, allocated using xmalloc.
17977 Returns NULL if there is a problem reading the header, e.g., if it
17978 has a version we don't understand.
17979
17980 NOTE: the strings in the include directory and file name tables of
17981 the returned object point into the dwarf line section buffer,
17982 and must not be freed. */
17983
17984 static line_header_up
17985 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
17986 {
17987 const gdb_byte *line_ptr;
17988 unsigned int bytes_read, offset_size;
17989 int i;
17990 const char *cur_dir, *cur_file;
17991 struct dwarf2_section_info *section;
17992 bfd *abfd;
17993
17994 section = get_debug_line_section (cu);
17995 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17996 if (section->buffer == NULL)
17997 {
17998 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17999 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
18000 else
18001 complaint (&symfile_complaints, _("missing .debug_line section"));
18002 return 0;
18003 }
18004
18005 /* We can't do this until we know the section is non-empty.
18006 Only then do we know we have such a section. */
18007 abfd = get_section_bfd_owner (section);
18008
18009 /* Make sure that at least there's room for the total_length field.
18010 That could be 12 bytes long, but we're just going to fudge that. */
18011 if (to_underlying (sect_off) + 4 >= section->size)
18012 {
18013 dwarf2_statement_list_fits_in_line_number_section_complaint ();
18014 return 0;
18015 }
18016
18017 line_header_up lh (new line_header ());
18018
18019 lh->sect_off = sect_off;
18020 lh->offset_in_dwz = cu->per_cu->is_dwz;
18021
18022 line_ptr = section->buffer + to_underlying (sect_off);
18023
18024 /* Read in the header. */
18025 lh->total_length =
18026 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
18027 &bytes_read, &offset_size);
18028 line_ptr += bytes_read;
18029 if (line_ptr + lh->total_length > (section->buffer + section->size))
18030 {
18031 dwarf2_statement_list_fits_in_line_number_section_complaint ();
18032 return 0;
18033 }
18034 lh->statement_program_end = line_ptr + lh->total_length;
18035 lh->version = read_2_bytes (abfd, line_ptr);
18036 line_ptr += 2;
18037 if (lh->version > 5)
18038 {
18039 /* This is a version we don't understand. The format could have
18040 changed in ways we don't handle properly so just punt. */
18041 complaint (&symfile_complaints,
18042 _("unsupported version in .debug_line section"));
18043 return NULL;
18044 }
18045 if (lh->version >= 5)
18046 {
18047 gdb_byte segment_selector_size;
18048
18049 /* Skip address size. */
18050 read_1_byte (abfd, line_ptr);
18051 line_ptr += 1;
18052
18053 segment_selector_size = read_1_byte (abfd, line_ptr);
18054 line_ptr += 1;
18055 if (segment_selector_size != 0)
18056 {
18057 complaint (&symfile_complaints,
18058 _("unsupported segment selector size %u "
18059 "in .debug_line section"),
18060 segment_selector_size);
18061 return NULL;
18062 }
18063 }
18064 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
18065 line_ptr += offset_size;
18066 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
18067 line_ptr += 1;
18068 if (lh->version >= 4)
18069 {
18070 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
18071 line_ptr += 1;
18072 }
18073 else
18074 lh->maximum_ops_per_instruction = 1;
18075
18076 if (lh->maximum_ops_per_instruction == 0)
18077 {
18078 lh->maximum_ops_per_instruction = 1;
18079 complaint (&symfile_complaints,
18080 _("invalid maximum_ops_per_instruction "
18081 "in `.debug_line' section"));
18082 }
18083
18084 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
18085 line_ptr += 1;
18086 lh->line_base = read_1_signed_byte (abfd, line_ptr);
18087 line_ptr += 1;
18088 lh->line_range = read_1_byte (abfd, line_ptr);
18089 line_ptr += 1;
18090 lh->opcode_base = read_1_byte (abfd, line_ptr);
18091 line_ptr += 1;
18092 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
18093
18094 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
18095 for (i = 1; i < lh->opcode_base; ++i)
18096 {
18097 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
18098 line_ptr += 1;
18099 }
18100
18101 if (lh->version >= 5)
18102 {
18103 /* Read directory table. */
18104 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18105 [] (struct line_header *lh, const char *name,
18106 dir_index d_index, unsigned int mod_time,
18107 unsigned int length)
18108 {
18109 lh->add_include_dir (name);
18110 });
18111
18112 /* Read file name table. */
18113 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18114 [] (struct line_header *lh, const char *name,
18115 dir_index d_index, unsigned int mod_time,
18116 unsigned int length)
18117 {
18118 lh->add_file_name (name, d_index, mod_time, length);
18119 });
18120 }
18121 else
18122 {
18123 /* Read directory table. */
18124 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18125 {
18126 line_ptr += bytes_read;
18127 lh->add_include_dir (cur_dir);
18128 }
18129 line_ptr += bytes_read;
18130
18131 /* Read file name table. */
18132 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18133 {
18134 unsigned int mod_time, length;
18135 dir_index d_index;
18136
18137 line_ptr += bytes_read;
18138 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18139 line_ptr += bytes_read;
18140 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18141 line_ptr += bytes_read;
18142 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18143 line_ptr += bytes_read;
18144
18145 lh->add_file_name (cur_file, d_index, mod_time, length);
18146 }
18147 line_ptr += bytes_read;
18148 }
18149 lh->statement_program_start = line_ptr;
18150
18151 if (line_ptr > (section->buffer + section->size))
18152 complaint (&symfile_complaints,
18153 _("line number info header doesn't "
18154 "fit in `.debug_line' section"));
18155
18156 return lh;
18157 }
18158
18159 /* Subroutine of dwarf_decode_lines to simplify it.
18160 Return the file name of the psymtab for included file FILE_INDEX
18161 in line header LH of PST.
18162 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18163 If space for the result is malloc'd, it will be freed by a cleanup.
18164 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18165
18166 The function creates dangling cleanup registration. */
18167
18168 static const char *
18169 psymtab_include_file_name (const struct line_header *lh, int file_index,
18170 const struct partial_symtab *pst,
18171 const char *comp_dir)
18172 {
18173 const file_entry &fe = lh->file_names[file_index];
18174 const char *include_name = fe.name;
18175 const char *include_name_to_compare = include_name;
18176 const char *pst_filename;
18177 char *copied_name = NULL;
18178 int file_is_pst;
18179
18180 const char *dir_name = fe.include_dir (lh);
18181
18182 if (!IS_ABSOLUTE_PATH (include_name)
18183 && (dir_name != NULL || comp_dir != NULL))
18184 {
18185 /* Avoid creating a duplicate psymtab for PST.
18186 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18187 Before we do the comparison, however, we need to account
18188 for DIR_NAME and COMP_DIR.
18189 First prepend dir_name (if non-NULL). If we still don't
18190 have an absolute path prepend comp_dir (if non-NULL).
18191 However, the directory we record in the include-file's
18192 psymtab does not contain COMP_DIR (to match the
18193 corresponding symtab(s)).
18194
18195 Example:
18196
18197 bash$ cd /tmp
18198 bash$ gcc -g ./hello.c
18199 include_name = "hello.c"
18200 dir_name = "."
18201 DW_AT_comp_dir = comp_dir = "/tmp"
18202 DW_AT_name = "./hello.c"
18203
18204 */
18205
18206 if (dir_name != NULL)
18207 {
18208 char *tem = concat (dir_name, SLASH_STRING,
18209 include_name, (char *)NULL);
18210
18211 make_cleanup (xfree, tem);
18212 include_name = tem;
18213 include_name_to_compare = include_name;
18214 }
18215 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18216 {
18217 char *tem = concat (comp_dir, SLASH_STRING,
18218 include_name, (char *)NULL);
18219
18220 make_cleanup (xfree, tem);
18221 include_name_to_compare = tem;
18222 }
18223 }
18224
18225 pst_filename = pst->filename;
18226 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18227 {
18228 copied_name = concat (pst->dirname, SLASH_STRING,
18229 pst_filename, (char *)NULL);
18230 pst_filename = copied_name;
18231 }
18232
18233 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
18234
18235 if (copied_name != NULL)
18236 xfree (copied_name);
18237
18238 if (file_is_pst)
18239 return NULL;
18240 return include_name;
18241 }
18242
18243 /* State machine to track the state of the line number program. */
18244
18245 class lnp_state_machine
18246 {
18247 public:
18248 /* Initialize a machine state for the start of a line number
18249 program. */
18250 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18251
18252 file_entry *current_file ()
18253 {
18254 /* lh->file_names is 0-based, but the file name numbers in the
18255 statement program are 1-based. */
18256 return m_line_header->file_name_at (m_file);
18257 }
18258
18259 /* Record the line in the state machine. END_SEQUENCE is true if
18260 we're processing the end of a sequence. */
18261 void record_line (bool end_sequence);
18262
18263 /* Check address and if invalid nop-out the rest of the lines in this
18264 sequence. */
18265 void check_line_address (struct dwarf2_cu *cu,
18266 const gdb_byte *line_ptr,
18267 CORE_ADDR lowpc, CORE_ADDR address);
18268
18269 void handle_set_discriminator (unsigned int discriminator)
18270 {
18271 m_discriminator = discriminator;
18272 m_line_has_non_zero_discriminator |= discriminator != 0;
18273 }
18274
18275 /* Handle DW_LNE_set_address. */
18276 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18277 {
18278 m_op_index = 0;
18279 address += baseaddr;
18280 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18281 }
18282
18283 /* Handle DW_LNS_advance_pc. */
18284 void handle_advance_pc (CORE_ADDR adjust);
18285
18286 /* Handle a special opcode. */
18287 void handle_special_opcode (unsigned char op_code);
18288
18289 /* Handle DW_LNS_advance_line. */
18290 void handle_advance_line (int line_delta)
18291 {
18292 advance_line (line_delta);
18293 }
18294
18295 /* Handle DW_LNS_set_file. */
18296 void handle_set_file (file_name_index file);
18297
18298 /* Handle DW_LNS_negate_stmt. */
18299 void handle_negate_stmt ()
18300 {
18301 m_is_stmt = !m_is_stmt;
18302 }
18303
18304 /* Handle DW_LNS_const_add_pc. */
18305 void handle_const_add_pc ();
18306
18307 /* Handle DW_LNS_fixed_advance_pc. */
18308 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18309 {
18310 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18311 m_op_index = 0;
18312 }
18313
18314 /* Handle DW_LNS_copy. */
18315 void handle_copy ()
18316 {
18317 record_line (false);
18318 m_discriminator = 0;
18319 }
18320
18321 /* Handle DW_LNE_end_sequence. */
18322 void handle_end_sequence ()
18323 {
18324 m_record_line_callback = ::record_line;
18325 }
18326
18327 private:
18328 /* Advance the line by LINE_DELTA. */
18329 void advance_line (int line_delta)
18330 {
18331 m_line += line_delta;
18332
18333 if (line_delta != 0)
18334 m_line_has_non_zero_discriminator = m_discriminator != 0;
18335 }
18336
18337 gdbarch *m_gdbarch;
18338
18339 /* True if we're recording lines.
18340 Otherwise we're building partial symtabs and are just interested in
18341 finding include files mentioned by the line number program. */
18342 bool m_record_lines_p;
18343
18344 /* The line number header. */
18345 line_header *m_line_header;
18346
18347 /* These are part of the standard DWARF line number state machine,
18348 and initialized according to the DWARF spec. */
18349
18350 unsigned char m_op_index = 0;
18351 /* The line table index (1-based) of the current file. */
18352 file_name_index m_file = (file_name_index) 1;
18353 unsigned int m_line = 1;
18354
18355 /* These are initialized in the constructor. */
18356
18357 CORE_ADDR m_address;
18358 bool m_is_stmt;
18359 unsigned int m_discriminator;
18360
18361 /* Additional bits of state we need to track. */
18362
18363 /* The last file that we called dwarf2_start_subfile for.
18364 This is only used for TLLs. */
18365 unsigned int m_last_file = 0;
18366 /* The last file a line number was recorded for. */
18367 struct subfile *m_last_subfile = NULL;
18368
18369 /* The function to call to record a line. */
18370 record_line_ftype *m_record_line_callback = NULL;
18371
18372 /* The last line number that was recorded, used to coalesce
18373 consecutive entries for the same line. This can happen, for
18374 example, when discriminators are present. PR 17276. */
18375 unsigned int m_last_line = 0;
18376 bool m_line_has_non_zero_discriminator = false;
18377 };
18378
18379 void
18380 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18381 {
18382 CORE_ADDR addr_adj = (((m_op_index + adjust)
18383 / m_line_header->maximum_ops_per_instruction)
18384 * m_line_header->minimum_instruction_length);
18385 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18386 m_op_index = ((m_op_index + adjust)
18387 % m_line_header->maximum_ops_per_instruction);
18388 }
18389
18390 void
18391 lnp_state_machine::handle_special_opcode (unsigned char op_code)
18392 {
18393 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18394 CORE_ADDR addr_adj = (((m_op_index
18395 + (adj_opcode / m_line_header->line_range))
18396 / m_line_header->maximum_ops_per_instruction)
18397 * m_line_header->minimum_instruction_length);
18398 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18399 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18400 % m_line_header->maximum_ops_per_instruction);
18401
18402 int line_delta = (m_line_header->line_base
18403 + (adj_opcode % m_line_header->line_range));
18404 advance_line (line_delta);
18405 record_line (false);
18406 m_discriminator = 0;
18407 }
18408
18409 void
18410 lnp_state_machine::handle_set_file (file_name_index file)
18411 {
18412 m_file = file;
18413
18414 const file_entry *fe = current_file ();
18415 if (fe == NULL)
18416 dwarf2_debug_line_missing_file_complaint ();
18417 else if (m_record_lines_p)
18418 {
18419 const char *dir = fe->include_dir (m_line_header);
18420
18421 m_last_subfile = current_subfile;
18422 m_line_has_non_zero_discriminator = m_discriminator != 0;
18423 dwarf2_start_subfile (fe->name, dir);
18424 }
18425 }
18426
18427 void
18428 lnp_state_machine::handle_const_add_pc ()
18429 {
18430 CORE_ADDR adjust
18431 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18432
18433 CORE_ADDR addr_adj
18434 = (((m_op_index + adjust)
18435 / m_line_header->maximum_ops_per_instruction)
18436 * m_line_header->minimum_instruction_length);
18437
18438 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18439 m_op_index = ((m_op_index + adjust)
18440 % m_line_header->maximum_ops_per_instruction);
18441 }
18442
18443 /* Ignore this record_line request. */
18444
18445 static void
18446 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18447 {
18448 return;
18449 }
18450
18451 /* Return non-zero if we should add LINE to the line number table.
18452 LINE is the line to add, LAST_LINE is the last line that was added,
18453 LAST_SUBFILE is the subfile for LAST_LINE.
18454 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18455 had a non-zero discriminator.
18456
18457 We have to be careful in the presence of discriminators.
18458 E.g., for this line:
18459
18460 for (i = 0; i < 100000; i++);
18461
18462 clang can emit four line number entries for that one line,
18463 each with a different discriminator.
18464 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18465
18466 However, we want gdb to coalesce all four entries into one.
18467 Otherwise the user could stepi into the middle of the line and
18468 gdb would get confused about whether the pc really was in the
18469 middle of the line.
18470
18471 Things are further complicated by the fact that two consecutive
18472 line number entries for the same line is a heuristic used by gcc
18473 to denote the end of the prologue. So we can't just discard duplicate
18474 entries, we have to be selective about it. The heuristic we use is
18475 that we only collapse consecutive entries for the same line if at least
18476 one of those entries has a non-zero discriminator. PR 17276.
18477
18478 Note: Addresses in the line number state machine can never go backwards
18479 within one sequence, thus this coalescing is ok. */
18480
18481 static int
18482 dwarf_record_line_p (unsigned int line, unsigned int last_line,
18483 int line_has_non_zero_discriminator,
18484 struct subfile *last_subfile)
18485 {
18486 if (current_subfile != last_subfile)
18487 return 1;
18488 if (line != last_line)
18489 return 1;
18490 /* Same line for the same file that we've seen already.
18491 As a last check, for pr 17276, only record the line if the line
18492 has never had a non-zero discriminator. */
18493 if (!line_has_non_zero_discriminator)
18494 return 1;
18495 return 0;
18496 }
18497
18498 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18499 in the line table of subfile SUBFILE. */
18500
18501 static void
18502 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18503 unsigned int line, CORE_ADDR address,
18504 record_line_ftype p_record_line)
18505 {
18506 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18507
18508 if (dwarf_line_debug)
18509 {
18510 fprintf_unfiltered (gdb_stdlog,
18511 "Recording line %u, file %s, address %s\n",
18512 line, lbasename (subfile->name),
18513 paddress (gdbarch, address));
18514 }
18515
18516 (*p_record_line) (subfile, line, addr);
18517 }
18518
18519 /* Subroutine of dwarf_decode_lines_1 to simplify it.
18520 Mark the end of a set of line number records.
18521 The arguments are the same as for dwarf_record_line_1.
18522 If SUBFILE is NULL the request is ignored. */
18523
18524 static void
18525 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18526 CORE_ADDR address, record_line_ftype p_record_line)
18527 {
18528 if (subfile == NULL)
18529 return;
18530
18531 if (dwarf_line_debug)
18532 {
18533 fprintf_unfiltered (gdb_stdlog,
18534 "Finishing current line, file %s, address %s\n",
18535 lbasename (subfile->name),
18536 paddress (gdbarch, address));
18537 }
18538
18539 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18540 }
18541
18542 void
18543 lnp_state_machine::record_line (bool end_sequence)
18544 {
18545 if (dwarf_line_debug)
18546 {
18547 fprintf_unfiltered (gdb_stdlog,
18548 "Processing actual line %u: file %u,"
18549 " address %s, is_stmt %u, discrim %u\n",
18550 m_line, to_underlying (m_file),
18551 paddress (m_gdbarch, m_address),
18552 m_is_stmt, m_discriminator);
18553 }
18554
18555 file_entry *fe = current_file ();
18556
18557 if (fe == NULL)
18558 dwarf2_debug_line_missing_file_complaint ();
18559 /* For now we ignore lines not starting on an instruction boundary.
18560 But not when processing end_sequence for compatibility with the
18561 previous version of the code. */
18562 else if (m_op_index == 0 || end_sequence)
18563 {
18564 fe->included_p = 1;
18565 if (m_record_lines_p && m_is_stmt)
18566 {
18567 if (m_last_subfile != current_subfile || end_sequence)
18568 {
18569 dwarf_finish_line (m_gdbarch, m_last_subfile,
18570 m_address, m_record_line_callback);
18571 }
18572
18573 if (!end_sequence)
18574 {
18575 if (dwarf_record_line_p (m_line, m_last_line,
18576 m_line_has_non_zero_discriminator,
18577 m_last_subfile))
18578 {
18579 dwarf_record_line_1 (m_gdbarch, current_subfile,
18580 m_line, m_address,
18581 m_record_line_callback);
18582 }
18583 m_last_subfile = current_subfile;
18584 m_last_line = m_line;
18585 }
18586 }
18587 }
18588 }
18589
18590 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
18591 bool record_lines_p)
18592 {
18593 m_gdbarch = arch;
18594 m_record_lines_p = record_lines_p;
18595 m_line_header = lh;
18596
18597 m_record_line_callback = ::record_line;
18598
18599 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18600 was a line entry for it so that the backend has a chance to adjust it
18601 and also record it in case it needs it. This is currently used by MIPS
18602 code, cf. `mips_adjust_dwarf2_line'. */
18603 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
18604 m_is_stmt = lh->default_is_stmt;
18605 m_discriminator = 0;
18606 }
18607
18608 void
18609 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
18610 const gdb_byte *line_ptr,
18611 CORE_ADDR lowpc, CORE_ADDR address)
18612 {
18613 /* If address < lowpc then it's not a usable value, it's outside the
18614 pc range of the CU. However, we restrict the test to only address
18615 values of zero to preserve GDB's previous behaviour which is to
18616 handle the specific case of a function being GC'd by the linker. */
18617
18618 if (address == 0 && address < lowpc)
18619 {
18620 /* This line table is for a function which has been
18621 GCd by the linker. Ignore it. PR gdb/12528 */
18622
18623 struct objfile *objfile = cu->objfile;
18624 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18625
18626 complaint (&symfile_complaints,
18627 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18628 line_offset, objfile_name (objfile));
18629 m_record_line_callback = noop_record_line;
18630 /* Note: record_line_callback is left as noop_record_line until
18631 we see DW_LNE_end_sequence. */
18632 }
18633 }
18634
18635 /* Subroutine of dwarf_decode_lines to simplify it.
18636 Process the line number information in LH.
18637 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18638 program in order to set included_p for every referenced header. */
18639
18640 static void
18641 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18642 const int decode_for_pst_p, CORE_ADDR lowpc)
18643 {
18644 const gdb_byte *line_ptr, *extended_end;
18645 const gdb_byte *line_end;
18646 unsigned int bytes_read, extended_len;
18647 unsigned char op_code, extended_op;
18648 CORE_ADDR baseaddr;
18649 struct objfile *objfile = cu->objfile;
18650 bfd *abfd = objfile->obfd;
18651 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18652 /* True if we're recording line info (as opposed to building partial
18653 symtabs and just interested in finding include files mentioned by
18654 the line number program). */
18655 bool record_lines_p = !decode_for_pst_p;
18656
18657 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18658
18659 line_ptr = lh->statement_program_start;
18660 line_end = lh->statement_program_end;
18661
18662 /* Read the statement sequences until there's nothing left. */
18663 while (line_ptr < line_end)
18664 {
18665 /* The DWARF line number program state machine. Reset the state
18666 machine at the start of each sequence. */
18667 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
18668 bool end_sequence = false;
18669
18670 if (record_lines_p)
18671 {
18672 /* Start a subfile for the current file of the state
18673 machine. */
18674 const file_entry *fe = state_machine.current_file ();
18675
18676 if (fe != NULL)
18677 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
18678 }
18679
18680 /* Decode the table. */
18681 while (line_ptr < line_end && !end_sequence)
18682 {
18683 op_code = read_1_byte (abfd, line_ptr);
18684 line_ptr += 1;
18685
18686 if (op_code >= lh->opcode_base)
18687 {
18688 /* Special opcode. */
18689 state_machine.handle_special_opcode (op_code);
18690 }
18691 else switch (op_code)
18692 {
18693 case DW_LNS_extended_op:
18694 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18695 &bytes_read);
18696 line_ptr += bytes_read;
18697 extended_end = line_ptr + extended_len;
18698 extended_op = read_1_byte (abfd, line_ptr);
18699 line_ptr += 1;
18700 switch (extended_op)
18701 {
18702 case DW_LNE_end_sequence:
18703 state_machine.handle_end_sequence ();
18704 end_sequence = true;
18705 break;
18706 case DW_LNE_set_address:
18707 {
18708 CORE_ADDR address
18709 = read_address (abfd, line_ptr, cu, &bytes_read);
18710 line_ptr += bytes_read;
18711
18712 state_machine.check_line_address (cu, line_ptr,
18713 lowpc, address);
18714 state_machine.handle_set_address (baseaddr, address);
18715 }
18716 break;
18717 case DW_LNE_define_file:
18718 {
18719 const char *cur_file;
18720 unsigned int mod_time, length;
18721 dir_index dindex;
18722
18723 cur_file = read_direct_string (abfd, line_ptr,
18724 &bytes_read);
18725 line_ptr += bytes_read;
18726 dindex = (dir_index)
18727 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18728 line_ptr += bytes_read;
18729 mod_time =
18730 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18731 line_ptr += bytes_read;
18732 length =
18733 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18734 line_ptr += bytes_read;
18735 lh->add_file_name (cur_file, dindex, mod_time, length);
18736 }
18737 break;
18738 case DW_LNE_set_discriminator:
18739 {
18740 /* The discriminator is not interesting to the
18741 debugger; just ignore it. We still need to
18742 check its value though:
18743 if there are consecutive entries for the same
18744 (non-prologue) line we want to coalesce them.
18745 PR 17276. */
18746 unsigned int discr
18747 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18748 line_ptr += bytes_read;
18749
18750 state_machine.handle_set_discriminator (discr);
18751 }
18752 break;
18753 default:
18754 complaint (&symfile_complaints,
18755 _("mangled .debug_line section"));
18756 return;
18757 }
18758 /* Make sure that we parsed the extended op correctly. If e.g.
18759 we expected a different address size than the producer used,
18760 we may have read the wrong number of bytes. */
18761 if (line_ptr != extended_end)
18762 {
18763 complaint (&symfile_complaints,
18764 _("mangled .debug_line section"));
18765 return;
18766 }
18767 break;
18768 case DW_LNS_copy:
18769 state_machine.handle_copy ();
18770 break;
18771 case DW_LNS_advance_pc:
18772 {
18773 CORE_ADDR adjust
18774 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18775 line_ptr += bytes_read;
18776
18777 state_machine.handle_advance_pc (adjust);
18778 }
18779 break;
18780 case DW_LNS_advance_line:
18781 {
18782 int line_delta
18783 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18784 line_ptr += bytes_read;
18785
18786 state_machine.handle_advance_line (line_delta);
18787 }
18788 break;
18789 case DW_LNS_set_file:
18790 {
18791 file_name_index file
18792 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
18793 &bytes_read);
18794 line_ptr += bytes_read;
18795
18796 state_machine.handle_set_file (file);
18797 }
18798 break;
18799 case DW_LNS_set_column:
18800 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18801 line_ptr += bytes_read;
18802 break;
18803 case DW_LNS_negate_stmt:
18804 state_machine.handle_negate_stmt ();
18805 break;
18806 case DW_LNS_set_basic_block:
18807 break;
18808 /* Add to the address register of the state machine the
18809 address increment value corresponding to special opcode
18810 255. I.e., this value is scaled by the minimum
18811 instruction length since special opcode 255 would have
18812 scaled the increment. */
18813 case DW_LNS_const_add_pc:
18814 state_machine.handle_const_add_pc ();
18815 break;
18816 case DW_LNS_fixed_advance_pc:
18817 {
18818 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
18819 line_ptr += 2;
18820
18821 state_machine.handle_fixed_advance_pc (addr_adj);
18822 }
18823 break;
18824 default:
18825 {
18826 /* Unknown standard opcode, ignore it. */
18827 int i;
18828
18829 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18830 {
18831 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18832 line_ptr += bytes_read;
18833 }
18834 }
18835 }
18836 }
18837
18838 if (!end_sequence)
18839 dwarf2_debug_line_missing_end_sequence_complaint ();
18840
18841 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18842 in which case we still finish recording the last line). */
18843 state_machine.record_line (true);
18844 }
18845 }
18846
18847 /* Decode the Line Number Program (LNP) for the given line_header
18848 structure and CU. The actual information extracted and the type
18849 of structures created from the LNP depends on the value of PST.
18850
18851 1. If PST is NULL, then this procedure uses the data from the program
18852 to create all necessary symbol tables, and their linetables.
18853
18854 2. If PST is not NULL, this procedure reads the program to determine
18855 the list of files included by the unit represented by PST, and
18856 builds all the associated partial symbol tables.
18857
18858 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18859 It is used for relative paths in the line table.
18860 NOTE: When processing partial symtabs (pst != NULL),
18861 comp_dir == pst->dirname.
18862
18863 NOTE: It is important that psymtabs have the same file name (via strcmp)
18864 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18865 symtab we don't use it in the name of the psymtabs we create.
18866 E.g. expand_line_sal requires this when finding psymtabs to expand.
18867 A good testcase for this is mb-inline.exp.
18868
18869 LOWPC is the lowest address in CU (or 0 if not known).
18870
18871 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18872 for its PC<->lines mapping information. Otherwise only the filename
18873 table is read in. */
18874
18875 static void
18876 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18877 struct dwarf2_cu *cu, struct partial_symtab *pst,
18878 CORE_ADDR lowpc, int decode_mapping)
18879 {
18880 struct objfile *objfile = cu->objfile;
18881 const int decode_for_pst_p = (pst != NULL);
18882
18883 if (decode_mapping)
18884 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18885
18886 if (decode_for_pst_p)
18887 {
18888 int file_index;
18889
18890 /* Now that we're done scanning the Line Header Program, we can
18891 create the psymtab of each included file. */
18892 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
18893 if (lh->file_names[file_index].included_p == 1)
18894 {
18895 const char *include_name =
18896 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18897 if (include_name != NULL)
18898 dwarf2_create_include_psymtab (include_name, pst, objfile);
18899 }
18900 }
18901 else
18902 {
18903 /* Make sure a symtab is created for every file, even files
18904 which contain only variables (i.e. no code with associated
18905 line numbers). */
18906 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18907 int i;
18908
18909 for (i = 0; i < lh->file_names.size (); i++)
18910 {
18911 file_entry &fe = lh->file_names[i];
18912
18913 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
18914
18915 if (current_subfile->symtab == NULL)
18916 {
18917 current_subfile->symtab
18918 = allocate_symtab (cust, current_subfile->name);
18919 }
18920 fe.symtab = current_subfile->symtab;
18921 }
18922 }
18923 }
18924
18925 /* Start a subfile for DWARF. FILENAME is the name of the file and
18926 DIRNAME the name of the source directory which contains FILENAME
18927 or NULL if not known.
18928 This routine tries to keep line numbers from identical absolute and
18929 relative file names in a common subfile.
18930
18931 Using the `list' example from the GDB testsuite, which resides in
18932 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18933 of /srcdir/list0.c yields the following debugging information for list0.c:
18934
18935 DW_AT_name: /srcdir/list0.c
18936 DW_AT_comp_dir: /compdir
18937 files.files[0].name: list0.h
18938 files.files[0].dir: /srcdir
18939 files.files[1].name: list0.c
18940 files.files[1].dir: /srcdir
18941
18942 The line number information for list0.c has to end up in a single
18943 subfile, so that `break /srcdir/list0.c:1' works as expected.
18944 start_subfile will ensure that this happens provided that we pass the
18945 concatenation of files.files[1].dir and files.files[1].name as the
18946 subfile's name. */
18947
18948 static void
18949 dwarf2_start_subfile (const char *filename, const char *dirname)
18950 {
18951 char *copy = NULL;
18952
18953 /* In order not to lose the line information directory,
18954 we concatenate it to the filename when it makes sense.
18955 Note that the Dwarf3 standard says (speaking of filenames in line
18956 information): ``The directory index is ignored for file names
18957 that represent full path names''. Thus ignoring dirname in the
18958 `else' branch below isn't an issue. */
18959
18960 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18961 {
18962 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18963 filename = copy;
18964 }
18965
18966 start_subfile (filename);
18967
18968 if (copy != NULL)
18969 xfree (copy);
18970 }
18971
18972 /* Start a symtab for DWARF.
18973 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18974
18975 static struct compunit_symtab *
18976 dwarf2_start_symtab (struct dwarf2_cu *cu,
18977 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18978 {
18979 struct compunit_symtab *cust
18980 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18981
18982 record_debugformat ("DWARF 2");
18983 record_producer (cu->producer);
18984
18985 /* We assume that we're processing GCC output. */
18986 processing_gcc_compilation = 2;
18987
18988 cu->processing_has_namespace_info = 0;
18989
18990 return cust;
18991 }
18992
18993 static void
18994 var_decode_location (struct attribute *attr, struct symbol *sym,
18995 struct dwarf2_cu *cu)
18996 {
18997 struct objfile *objfile = cu->objfile;
18998 struct comp_unit_head *cu_header = &cu->header;
18999
19000 /* NOTE drow/2003-01-30: There used to be a comment and some special
19001 code here to turn a symbol with DW_AT_external and a
19002 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
19003 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
19004 with some versions of binutils) where shared libraries could have
19005 relocations against symbols in their debug information - the
19006 minimal symbol would have the right address, but the debug info
19007 would not. It's no longer necessary, because we will explicitly
19008 apply relocations when we read in the debug information now. */
19009
19010 /* A DW_AT_location attribute with no contents indicates that a
19011 variable has been optimized away. */
19012 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
19013 {
19014 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19015 return;
19016 }
19017
19018 /* Handle one degenerate form of location expression specially, to
19019 preserve GDB's previous behavior when section offsets are
19020 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
19021 then mark this symbol as LOC_STATIC. */
19022
19023 if (attr_form_is_block (attr)
19024 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
19025 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
19026 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
19027 && (DW_BLOCK (attr)->size
19028 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
19029 {
19030 unsigned int dummy;
19031
19032 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
19033 SYMBOL_VALUE_ADDRESS (sym) =
19034 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
19035 else
19036 SYMBOL_VALUE_ADDRESS (sym) =
19037 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
19038 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
19039 fixup_symbol_section (sym, objfile);
19040 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
19041 SYMBOL_SECTION (sym));
19042 return;
19043 }
19044
19045 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
19046 expression evaluator, and use LOC_COMPUTED only when necessary
19047 (i.e. when the value of a register or memory location is
19048 referenced, or a thread-local block, etc.). Then again, it might
19049 not be worthwhile. I'm assuming that it isn't unless performance
19050 or memory numbers show me otherwise. */
19051
19052 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
19053
19054 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
19055 cu->has_loclist = 1;
19056 }
19057
19058 /* Given a pointer to a DWARF information entry, figure out if we need
19059 to make a symbol table entry for it, and if so, create a new entry
19060 and return a pointer to it.
19061 If TYPE is NULL, determine symbol type from the die, otherwise
19062 used the passed type.
19063 If SPACE is not NULL, use it to hold the new symbol. If it is
19064 NULL, allocate a new symbol on the objfile's obstack. */
19065
19066 static struct symbol *
19067 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
19068 struct symbol *space)
19069 {
19070 struct objfile *objfile = cu->objfile;
19071 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19072 struct symbol *sym = NULL;
19073 const char *name;
19074 struct attribute *attr = NULL;
19075 struct attribute *attr2 = NULL;
19076 CORE_ADDR baseaddr;
19077 struct pending **list_to_add = NULL;
19078
19079 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
19080
19081 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19082
19083 name = dwarf2_name (die, cu);
19084 if (name)
19085 {
19086 const char *linkagename;
19087 int suppress_add = 0;
19088
19089 if (space)
19090 sym = space;
19091 else
19092 sym = allocate_symbol (objfile);
19093 OBJSTAT (objfile, n_syms++);
19094
19095 /* Cache this symbol's name and the name's demangled form (if any). */
19096 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
19097 linkagename = dwarf2_physname (name, die, cu);
19098 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
19099
19100 /* Fortran does not have mangling standard and the mangling does differ
19101 between gfortran, iFort etc. */
19102 if (cu->language == language_fortran
19103 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
19104 symbol_set_demangled_name (&(sym->ginfo),
19105 dwarf2_full_name (name, die, cu),
19106 NULL);
19107
19108 /* Default assumptions.
19109 Use the passed type or decode it from the die. */
19110 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19111 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19112 if (type != NULL)
19113 SYMBOL_TYPE (sym) = type;
19114 else
19115 SYMBOL_TYPE (sym) = die_type (die, cu);
19116 attr = dwarf2_attr (die,
19117 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19118 cu);
19119 if (attr)
19120 {
19121 SYMBOL_LINE (sym) = DW_UNSND (attr);
19122 }
19123
19124 attr = dwarf2_attr (die,
19125 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19126 cu);
19127 if (attr)
19128 {
19129 file_name_index file_index = (file_name_index) DW_UNSND (attr);
19130 struct file_entry *fe;
19131
19132 if (cu->line_header != NULL)
19133 fe = cu->line_header->file_name_at (file_index);
19134 else
19135 fe = NULL;
19136
19137 if (fe == NULL)
19138 complaint (&symfile_complaints,
19139 _("file index out of range"));
19140 else
19141 symbol_set_symtab (sym, fe->symtab);
19142 }
19143
19144 switch (die->tag)
19145 {
19146 case DW_TAG_label:
19147 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
19148 if (attr)
19149 {
19150 CORE_ADDR addr;
19151
19152 addr = attr_value_as_address (attr);
19153 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19154 SYMBOL_VALUE_ADDRESS (sym) = addr;
19155 }
19156 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19157 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
19158 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
19159 add_symbol_to_list (sym, cu->list_in_scope);
19160 break;
19161 case DW_TAG_subprogram:
19162 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19163 finish_block. */
19164 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19165 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19166 if ((attr2 && (DW_UNSND (attr2) != 0))
19167 || cu->language == language_ada)
19168 {
19169 /* Subprograms marked external are stored as a global symbol.
19170 Ada subprograms, whether marked external or not, are always
19171 stored as a global symbol, because we want to be able to
19172 access them globally. For instance, we want to be able
19173 to break on a nested subprogram without having to
19174 specify the context. */
19175 list_to_add = &global_symbols;
19176 }
19177 else
19178 {
19179 list_to_add = cu->list_in_scope;
19180 }
19181 break;
19182 case DW_TAG_inlined_subroutine:
19183 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19184 finish_block. */
19185 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19186 SYMBOL_INLINED (sym) = 1;
19187 list_to_add = cu->list_in_scope;
19188 break;
19189 case DW_TAG_template_value_param:
19190 suppress_add = 1;
19191 /* Fall through. */
19192 case DW_TAG_constant:
19193 case DW_TAG_variable:
19194 case DW_TAG_member:
19195 /* Compilation with minimal debug info may result in
19196 variables with missing type entries. Change the
19197 misleading `void' type to something sensible. */
19198 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
19199 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
19200
19201 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19202 /* In the case of DW_TAG_member, we should only be called for
19203 static const members. */
19204 if (die->tag == DW_TAG_member)
19205 {
19206 /* dwarf2_add_field uses die_is_declaration,
19207 so we do the same. */
19208 gdb_assert (die_is_declaration (die, cu));
19209 gdb_assert (attr);
19210 }
19211 if (attr)
19212 {
19213 dwarf2_const_value (attr, sym, cu);
19214 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19215 if (!suppress_add)
19216 {
19217 if (attr2 && (DW_UNSND (attr2) != 0))
19218 list_to_add = &global_symbols;
19219 else
19220 list_to_add = cu->list_in_scope;
19221 }
19222 break;
19223 }
19224 attr = dwarf2_attr (die, DW_AT_location, cu);
19225 if (attr)
19226 {
19227 var_decode_location (attr, sym, cu);
19228 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19229
19230 /* Fortran explicitly imports any global symbols to the local
19231 scope by DW_TAG_common_block. */
19232 if (cu->language == language_fortran && die->parent
19233 && die->parent->tag == DW_TAG_common_block)
19234 attr2 = NULL;
19235
19236 if (SYMBOL_CLASS (sym) == LOC_STATIC
19237 && SYMBOL_VALUE_ADDRESS (sym) == 0
19238 && !dwarf2_per_objfile->has_section_at_zero)
19239 {
19240 /* When a static variable is eliminated by the linker,
19241 the corresponding debug information is not stripped
19242 out, but the variable address is set to null;
19243 do not add such variables into symbol table. */
19244 }
19245 else if (attr2 && (DW_UNSND (attr2) != 0))
19246 {
19247 /* Workaround gfortran PR debug/40040 - it uses
19248 DW_AT_location for variables in -fPIC libraries which may
19249 get overriden by other libraries/executable and get
19250 a different address. Resolve it by the minimal symbol
19251 which may come from inferior's executable using copy
19252 relocation. Make this workaround only for gfortran as for
19253 other compilers GDB cannot guess the minimal symbol
19254 Fortran mangling kind. */
19255 if (cu->language == language_fortran && die->parent
19256 && die->parent->tag == DW_TAG_module
19257 && cu->producer
19258 && startswith (cu->producer, "GNU Fortran"))
19259 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19260
19261 /* A variable with DW_AT_external is never static,
19262 but it may be block-scoped. */
19263 list_to_add = (cu->list_in_scope == &file_symbols
19264 ? &global_symbols : cu->list_in_scope);
19265 }
19266 else
19267 list_to_add = cu->list_in_scope;
19268 }
19269 else
19270 {
19271 /* We do not know the address of this symbol.
19272 If it is an external symbol and we have type information
19273 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19274 The address of the variable will then be determined from
19275 the minimal symbol table whenever the variable is
19276 referenced. */
19277 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19278
19279 /* Fortran explicitly imports any global symbols to the local
19280 scope by DW_TAG_common_block. */
19281 if (cu->language == language_fortran && die->parent
19282 && die->parent->tag == DW_TAG_common_block)
19283 {
19284 /* SYMBOL_CLASS doesn't matter here because
19285 read_common_block is going to reset it. */
19286 if (!suppress_add)
19287 list_to_add = cu->list_in_scope;
19288 }
19289 else if (attr2 && (DW_UNSND (attr2) != 0)
19290 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
19291 {
19292 /* A variable with DW_AT_external is never static, but it
19293 may be block-scoped. */
19294 list_to_add = (cu->list_in_scope == &file_symbols
19295 ? &global_symbols : cu->list_in_scope);
19296
19297 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19298 }
19299 else if (!die_is_declaration (die, cu))
19300 {
19301 /* Use the default LOC_OPTIMIZED_OUT class. */
19302 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
19303 if (!suppress_add)
19304 list_to_add = cu->list_in_scope;
19305 }
19306 }
19307 break;
19308 case DW_TAG_formal_parameter:
19309 /* If we are inside a function, mark this as an argument. If
19310 not, we might be looking at an argument to an inlined function
19311 when we do not have enough information to show inlined frames;
19312 pretend it's a local variable in that case so that the user can
19313 still see it. */
19314 if (context_stack_depth > 0
19315 && context_stack[context_stack_depth - 1].name != NULL)
19316 SYMBOL_IS_ARGUMENT (sym) = 1;
19317 attr = dwarf2_attr (die, DW_AT_location, cu);
19318 if (attr)
19319 {
19320 var_decode_location (attr, sym, cu);
19321 }
19322 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19323 if (attr)
19324 {
19325 dwarf2_const_value (attr, sym, cu);
19326 }
19327
19328 list_to_add = cu->list_in_scope;
19329 break;
19330 case DW_TAG_unspecified_parameters:
19331 /* From varargs functions; gdb doesn't seem to have any
19332 interest in this information, so just ignore it for now.
19333 (FIXME?) */
19334 break;
19335 case DW_TAG_template_type_param:
19336 suppress_add = 1;
19337 /* Fall through. */
19338 case DW_TAG_class_type:
19339 case DW_TAG_interface_type:
19340 case DW_TAG_structure_type:
19341 case DW_TAG_union_type:
19342 case DW_TAG_set_type:
19343 case DW_TAG_enumeration_type:
19344 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19345 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
19346
19347 {
19348 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
19349 really ever be static objects: otherwise, if you try
19350 to, say, break of a class's method and you're in a file
19351 which doesn't mention that class, it won't work unless
19352 the check for all static symbols in lookup_symbol_aux
19353 saves you. See the OtherFileClass tests in
19354 gdb.c++/namespace.exp. */
19355
19356 if (!suppress_add)
19357 {
19358 list_to_add = (cu->list_in_scope == &file_symbols
19359 && cu->language == language_cplus
19360 ? &global_symbols : cu->list_in_scope);
19361
19362 /* The semantics of C++ state that "struct foo {
19363 ... }" also defines a typedef for "foo". */
19364 if (cu->language == language_cplus
19365 || cu->language == language_ada
19366 || cu->language == language_d
19367 || cu->language == language_rust)
19368 {
19369 /* The symbol's name is already allocated along
19370 with this objfile, so we don't need to
19371 duplicate it for the type. */
19372 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19373 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19374 }
19375 }
19376 }
19377 break;
19378 case DW_TAG_typedef:
19379 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19380 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19381 list_to_add = cu->list_in_scope;
19382 break;
19383 case DW_TAG_base_type:
19384 case DW_TAG_subrange_type:
19385 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19386 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19387 list_to_add = cu->list_in_scope;
19388 break;
19389 case DW_TAG_enumerator:
19390 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19391 if (attr)
19392 {
19393 dwarf2_const_value (attr, sym, cu);
19394 }
19395 {
19396 /* NOTE: carlton/2003-11-10: See comment above in the
19397 DW_TAG_class_type, etc. block. */
19398
19399 list_to_add = (cu->list_in_scope == &file_symbols
19400 && cu->language == language_cplus
19401 ? &global_symbols : cu->list_in_scope);
19402 }
19403 break;
19404 case DW_TAG_imported_declaration:
19405 case DW_TAG_namespace:
19406 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19407 list_to_add = &global_symbols;
19408 break;
19409 case DW_TAG_module:
19410 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19411 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19412 list_to_add = &global_symbols;
19413 break;
19414 case DW_TAG_common_block:
19415 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
19416 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19417 add_symbol_to_list (sym, cu->list_in_scope);
19418 break;
19419 default:
19420 /* Not a tag we recognize. Hopefully we aren't processing
19421 trash data, but since we must specifically ignore things
19422 we don't recognize, there is nothing else we should do at
19423 this point. */
19424 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
19425 dwarf_tag_name (die->tag));
19426 break;
19427 }
19428
19429 if (suppress_add)
19430 {
19431 sym->hash_next = objfile->template_symbols;
19432 objfile->template_symbols = sym;
19433 list_to_add = NULL;
19434 }
19435
19436 if (list_to_add != NULL)
19437 add_symbol_to_list (sym, list_to_add);
19438
19439 /* For the benefit of old versions of GCC, check for anonymous
19440 namespaces based on the demangled name. */
19441 if (!cu->processing_has_namespace_info
19442 && cu->language == language_cplus)
19443 cp_scan_for_anonymous_namespaces (sym, objfile);
19444 }
19445 return (sym);
19446 }
19447
19448 /* A wrapper for new_symbol_full that always allocates a new symbol. */
19449
19450 static struct symbol *
19451 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19452 {
19453 return new_symbol_full (die, type, cu, NULL);
19454 }
19455
19456 /* Given an attr with a DW_FORM_dataN value in host byte order,
19457 zero-extend it as appropriate for the symbol's type. The DWARF
19458 standard (v4) is not entirely clear about the meaning of using
19459 DW_FORM_dataN for a constant with a signed type, where the type is
19460 wider than the data. The conclusion of a discussion on the DWARF
19461 list was that this is unspecified. We choose to always zero-extend
19462 because that is the interpretation long in use by GCC. */
19463
19464 static gdb_byte *
19465 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
19466 struct dwarf2_cu *cu, LONGEST *value, int bits)
19467 {
19468 struct objfile *objfile = cu->objfile;
19469 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19470 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
19471 LONGEST l = DW_UNSND (attr);
19472
19473 if (bits < sizeof (*value) * 8)
19474 {
19475 l &= ((LONGEST) 1 << bits) - 1;
19476 *value = l;
19477 }
19478 else if (bits == sizeof (*value) * 8)
19479 *value = l;
19480 else
19481 {
19482 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
19483 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19484 return bytes;
19485 }
19486
19487 return NULL;
19488 }
19489
19490 /* Read a constant value from an attribute. Either set *VALUE, or if
19491 the value does not fit in *VALUE, set *BYTES - either already
19492 allocated on the objfile obstack, or newly allocated on OBSTACK,
19493 or, set *BATON, if we translated the constant to a location
19494 expression. */
19495
19496 static void
19497 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
19498 const char *name, struct obstack *obstack,
19499 struct dwarf2_cu *cu,
19500 LONGEST *value, const gdb_byte **bytes,
19501 struct dwarf2_locexpr_baton **baton)
19502 {
19503 struct objfile *objfile = cu->objfile;
19504 struct comp_unit_head *cu_header = &cu->header;
19505 struct dwarf_block *blk;
19506 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19507 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19508
19509 *value = 0;
19510 *bytes = NULL;
19511 *baton = NULL;
19512
19513 switch (attr->form)
19514 {
19515 case DW_FORM_addr:
19516 case DW_FORM_GNU_addr_index:
19517 {
19518 gdb_byte *data;
19519
19520 if (TYPE_LENGTH (type) != cu_header->addr_size)
19521 dwarf2_const_value_length_mismatch_complaint (name,
19522 cu_header->addr_size,
19523 TYPE_LENGTH (type));
19524 /* Symbols of this form are reasonably rare, so we just
19525 piggyback on the existing location code rather than writing
19526 a new implementation of symbol_computed_ops. */
19527 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
19528 (*baton)->per_cu = cu->per_cu;
19529 gdb_assert ((*baton)->per_cu);
19530
19531 (*baton)->size = 2 + cu_header->addr_size;
19532 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
19533 (*baton)->data = data;
19534
19535 data[0] = DW_OP_addr;
19536 store_unsigned_integer (&data[1], cu_header->addr_size,
19537 byte_order, DW_ADDR (attr));
19538 data[cu_header->addr_size + 1] = DW_OP_stack_value;
19539 }
19540 break;
19541 case DW_FORM_string:
19542 case DW_FORM_strp:
19543 case DW_FORM_GNU_str_index:
19544 case DW_FORM_GNU_strp_alt:
19545 /* DW_STRING is already allocated on the objfile obstack, point
19546 directly to it. */
19547 *bytes = (const gdb_byte *) DW_STRING (attr);
19548 break;
19549 case DW_FORM_block1:
19550 case DW_FORM_block2:
19551 case DW_FORM_block4:
19552 case DW_FORM_block:
19553 case DW_FORM_exprloc:
19554 case DW_FORM_data16:
19555 blk = DW_BLOCK (attr);
19556 if (TYPE_LENGTH (type) != blk->size)
19557 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19558 TYPE_LENGTH (type));
19559 *bytes = blk->data;
19560 break;
19561
19562 /* The DW_AT_const_value attributes are supposed to carry the
19563 symbol's value "represented as it would be on the target
19564 architecture." By the time we get here, it's already been
19565 converted to host endianness, so we just need to sign- or
19566 zero-extend it as appropriate. */
19567 case DW_FORM_data1:
19568 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
19569 break;
19570 case DW_FORM_data2:
19571 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
19572 break;
19573 case DW_FORM_data4:
19574 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
19575 break;
19576 case DW_FORM_data8:
19577 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
19578 break;
19579
19580 case DW_FORM_sdata:
19581 case DW_FORM_implicit_const:
19582 *value = DW_SND (attr);
19583 break;
19584
19585 case DW_FORM_udata:
19586 *value = DW_UNSND (attr);
19587 break;
19588
19589 default:
19590 complaint (&symfile_complaints,
19591 _("unsupported const value attribute form: '%s'"),
19592 dwarf_form_name (attr->form));
19593 *value = 0;
19594 break;
19595 }
19596 }
19597
19598
19599 /* Copy constant value from an attribute to a symbol. */
19600
19601 static void
19602 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
19603 struct dwarf2_cu *cu)
19604 {
19605 struct objfile *objfile = cu->objfile;
19606 LONGEST value;
19607 const gdb_byte *bytes;
19608 struct dwarf2_locexpr_baton *baton;
19609
19610 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19611 SYMBOL_PRINT_NAME (sym),
19612 &objfile->objfile_obstack, cu,
19613 &value, &bytes, &baton);
19614
19615 if (baton != NULL)
19616 {
19617 SYMBOL_LOCATION_BATON (sym) = baton;
19618 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
19619 }
19620 else if (bytes != NULL)
19621 {
19622 SYMBOL_VALUE_BYTES (sym) = bytes;
19623 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
19624 }
19625 else
19626 {
19627 SYMBOL_VALUE (sym) = value;
19628 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
19629 }
19630 }
19631
19632 /* Return the type of the die in question using its DW_AT_type attribute. */
19633
19634 static struct type *
19635 die_type (struct die_info *die, struct dwarf2_cu *cu)
19636 {
19637 struct attribute *type_attr;
19638
19639 type_attr = dwarf2_attr (die, DW_AT_type, cu);
19640 if (!type_attr)
19641 {
19642 /* A missing DW_AT_type represents a void type. */
19643 return objfile_type (cu->objfile)->builtin_void;
19644 }
19645
19646 return lookup_die_type (die, type_attr, cu);
19647 }
19648
19649 /* True iff CU's producer generates GNAT Ada auxiliary information
19650 that allows to find parallel types through that information instead
19651 of having to do expensive parallel lookups by type name. */
19652
19653 static int
19654 need_gnat_info (struct dwarf2_cu *cu)
19655 {
19656 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19657 of GNAT produces this auxiliary information, without any indication
19658 that it is produced. Part of enhancing the FSF version of GNAT
19659 to produce that information will be to put in place an indicator
19660 that we can use in order to determine whether the descriptive type
19661 info is available or not. One suggestion that has been made is
19662 to use a new attribute, attached to the CU die. For now, assume
19663 that the descriptive type info is not available. */
19664 return 0;
19665 }
19666
19667 /* Return the auxiliary type of the die in question using its
19668 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19669 attribute is not present. */
19670
19671 static struct type *
19672 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19673 {
19674 struct attribute *type_attr;
19675
19676 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19677 if (!type_attr)
19678 return NULL;
19679
19680 return lookup_die_type (die, type_attr, cu);
19681 }
19682
19683 /* If DIE has a descriptive_type attribute, then set the TYPE's
19684 descriptive type accordingly. */
19685
19686 static void
19687 set_descriptive_type (struct type *type, struct die_info *die,
19688 struct dwarf2_cu *cu)
19689 {
19690 struct type *descriptive_type = die_descriptive_type (die, cu);
19691
19692 if (descriptive_type)
19693 {
19694 ALLOCATE_GNAT_AUX_TYPE (type);
19695 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19696 }
19697 }
19698
19699 /* Return the containing type of the die in question using its
19700 DW_AT_containing_type attribute. */
19701
19702 static struct type *
19703 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
19704 {
19705 struct attribute *type_attr;
19706
19707 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
19708 if (!type_attr)
19709 error (_("Dwarf Error: Problem turning containing type into gdb type "
19710 "[in module %s]"), objfile_name (cu->objfile));
19711
19712 return lookup_die_type (die, type_attr, cu);
19713 }
19714
19715 /* Return an error marker type to use for the ill formed type in DIE/CU. */
19716
19717 static struct type *
19718 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19719 {
19720 struct objfile *objfile = dwarf2_per_objfile->objfile;
19721 char *message, *saved;
19722
19723 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
19724 objfile_name (objfile),
19725 to_underlying (cu->header.sect_off),
19726 to_underlying (die->sect_off));
19727 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19728 message, strlen (message));
19729 xfree (message);
19730
19731 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19732 }
19733
19734 /* Look up the type of DIE in CU using its type attribute ATTR.
19735 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19736 DW_AT_containing_type.
19737 If there is no type substitute an error marker. */
19738
19739 static struct type *
19740 lookup_die_type (struct die_info *die, const struct attribute *attr,
19741 struct dwarf2_cu *cu)
19742 {
19743 struct objfile *objfile = cu->objfile;
19744 struct type *this_type;
19745
19746 gdb_assert (attr->name == DW_AT_type
19747 || attr->name == DW_AT_GNAT_descriptive_type
19748 || attr->name == DW_AT_containing_type);
19749
19750 /* First see if we have it cached. */
19751
19752 if (attr->form == DW_FORM_GNU_ref_alt)
19753 {
19754 struct dwarf2_per_cu_data *per_cu;
19755 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19756
19757 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
19758 this_type = get_die_type_at_offset (sect_off, per_cu);
19759 }
19760 else if (attr_form_is_ref (attr))
19761 {
19762 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19763
19764 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
19765 }
19766 else if (attr->form == DW_FORM_ref_sig8)
19767 {
19768 ULONGEST signature = DW_SIGNATURE (attr);
19769
19770 return get_signatured_type (die, signature, cu);
19771 }
19772 else
19773 {
19774 complaint (&symfile_complaints,
19775 _("Dwarf Error: Bad type attribute %s in DIE"
19776 " at 0x%x [in module %s]"),
19777 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
19778 objfile_name (objfile));
19779 return build_error_marker_type (cu, die);
19780 }
19781
19782 /* If not cached we need to read it in. */
19783
19784 if (this_type == NULL)
19785 {
19786 struct die_info *type_die = NULL;
19787 struct dwarf2_cu *type_cu = cu;
19788
19789 if (attr_form_is_ref (attr))
19790 type_die = follow_die_ref (die, attr, &type_cu);
19791 if (type_die == NULL)
19792 return build_error_marker_type (cu, die);
19793 /* If we find the type now, it's probably because the type came
19794 from an inter-CU reference and the type's CU got expanded before
19795 ours. */
19796 this_type = read_type_die (type_die, type_cu);
19797 }
19798
19799 /* If we still don't have a type use an error marker. */
19800
19801 if (this_type == NULL)
19802 return build_error_marker_type (cu, die);
19803
19804 return this_type;
19805 }
19806
19807 /* Return the type in DIE, CU.
19808 Returns NULL for invalid types.
19809
19810 This first does a lookup in die_type_hash,
19811 and only reads the die in if necessary.
19812
19813 NOTE: This can be called when reading in partial or full symbols. */
19814
19815 static struct type *
19816 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19817 {
19818 struct type *this_type;
19819
19820 this_type = get_die_type (die, cu);
19821 if (this_type)
19822 return this_type;
19823
19824 return read_type_die_1 (die, cu);
19825 }
19826
19827 /* Read the type in DIE, CU.
19828 Returns NULL for invalid types. */
19829
19830 static struct type *
19831 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19832 {
19833 struct type *this_type = NULL;
19834
19835 switch (die->tag)
19836 {
19837 case DW_TAG_class_type:
19838 case DW_TAG_interface_type:
19839 case DW_TAG_structure_type:
19840 case DW_TAG_union_type:
19841 this_type = read_structure_type (die, cu);
19842 break;
19843 case DW_TAG_enumeration_type:
19844 this_type = read_enumeration_type (die, cu);
19845 break;
19846 case DW_TAG_subprogram:
19847 case DW_TAG_subroutine_type:
19848 case DW_TAG_inlined_subroutine:
19849 this_type = read_subroutine_type (die, cu);
19850 break;
19851 case DW_TAG_array_type:
19852 this_type = read_array_type (die, cu);
19853 break;
19854 case DW_TAG_set_type:
19855 this_type = read_set_type (die, cu);
19856 break;
19857 case DW_TAG_pointer_type:
19858 this_type = read_tag_pointer_type (die, cu);
19859 break;
19860 case DW_TAG_ptr_to_member_type:
19861 this_type = read_tag_ptr_to_member_type (die, cu);
19862 break;
19863 case DW_TAG_reference_type:
19864 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
19865 break;
19866 case DW_TAG_rvalue_reference_type:
19867 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
19868 break;
19869 case DW_TAG_const_type:
19870 this_type = read_tag_const_type (die, cu);
19871 break;
19872 case DW_TAG_volatile_type:
19873 this_type = read_tag_volatile_type (die, cu);
19874 break;
19875 case DW_TAG_restrict_type:
19876 this_type = read_tag_restrict_type (die, cu);
19877 break;
19878 case DW_TAG_string_type:
19879 this_type = read_tag_string_type (die, cu);
19880 break;
19881 case DW_TAG_typedef:
19882 this_type = read_typedef (die, cu);
19883 break;
19884 case DW_TAG_subrange_type:
19885 this_type = read_subrange_type (die, cu);
19886 break;
19887 case DW_TAG_base_type:
19888 this_type = read_base_type (die, cu);
19889 break;
19890 case DW_TAG_unspecified_type:
19891 this_type = read_unspecified_type (die, cu);
19892 break;
19893 case DW_TAG_namespace:
19894 this_type = read_namespace_type (die, cu);
19895 break;
19896 case DW_TAG_module:
19897 this_type = read_module_type (die, cu);
19898 break;
19899 case DW_TAG_atomic_type:
19900 this_type = read_tag_atomic_type (die, cu);
19901 break;
19902 default:
19903 complaint (&symfile_complaints,
19904 _("unexpected tag in read_type_die: '%s'"),
19905 dwarf_tag_name (die->tag));
19906 break;
19907 }
19908
19909 return this_type;
19910 }
19911
19912 /* See if we can figure out if the class lives in a namespace. We do
19913 this by looking for a member function; its demangled name will
19914 contain namespace info, if there is any.
19915 Return the computed name or NULL.
19916 Space for the result is allocated on the objfile's obstack.
19917 This is the full-die version of guess_partial_die_structure_name.
19918 In this case we know DIE has no useful parent. */
19919
19920 static char *
19921 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19922 {
19923 struct die_info *spec_die;
19924 struct dwarf2_cu *spec_cu;
19925 struct die_info *child;
19926
19927 spec_cu = cu;
19928 spec_die = die_specification (die, &spec_cu);
19929 if (spec_die != NULL)
19930 {
19931 die = spec_die;
19932 cu = spec_cu;
19933 }
19934
19935 for (child = die->child;
19936 child != NULL;
19937 child = child->sibling)
19938 {
19939 if (child->tag == DW_TAG_subprogram)
19940 {
19941 const char *linkage_name = dw2_linkage_name (child, cu);
19942
19943 if (linkage_name != NULL)
19944 {
19945 char *actual_name
19946 = language_class_name_from_physname (cu->language_defn,
19947 linkage_name);
19948 char *name = NULL;
19949
19950 if (actual_name != NULL)
19951 {
19952 const char *die_name = dwarf2_name (die, cu);
19953
19954 if (die_name != NULL
19955 && strcmp (die_name, actual_name) != 0)
19956 {
19957 /* Strip off the class name from the full name.
19958 We want the prefix. */
19959 int die_name_len = strlen (die_name);
19960 int actual_name_len = strlen (actual_name);
19961
19962 /* Test for '::' as a sanity check. */
19963 if (actual_name_len > die_name_len + 2
19964 && actual_name[actual_name_len
19965 - die_name_len - 1] == ':')
19966 name = (char *) obstack_copy0 (
19967 &cu->objfile->per_bfd->storage_obstack,
19968 actual_name, actual_name_len - die_name_len - 2);
19969 }
19970 }
19971 xfree (actual_name);
19972 return name;
19973 }
19974 }
19975 }
19976
19977 return NULL;
19978 }
19979
19980 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19981 prefix part in such case. See
19982 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19983
19984 static const char *
19985 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19986 {
19987 struct attribute *attr;
19988 const char *base;
19989
19990 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19991 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19992 return NULL;
19993
19994 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19995 return NULL;
19996
19997 attr = dw2_linkage_name_attr (die, cu);
19998 if (attr == NULL || DW_STRING (attr) == NULL)
19999 return NULL;
20000
20001 /* dwarf2_name had to be already called. */
20002 gdb_assert (DW_STRING_IS_CANONICAL (attr));
20003
20004 /* Strip the base name, keep any leading namespaces/classes. */
20005 base = strrchr (DW_STRING (attr), ':');
20006 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
20007 return "";
20008
20009 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20010 DW_STRING (attr),
20011 &base[-1] - DW_STRING (attr));
20012 }
20013
20014 /* Return the name of the namespace/class that DIE is defined within,
20015 or "" if we can't tell. The caller should not xfree the result.
20016
20017 For example, if we're within the method foo() in the following
20018 code:
20019
20020 namespace N {
20021 class C {
20022 void foo () {
20023 }
20024 };
20025 }
20026
20027 then determine_prefix on foo's die will return "N::C". */
20028
20029 static const char *
20030 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
20031 {
20032 struct die_info *parent, *spec_die;
20033 struct dwarf2_cu *spec_cu;
20034 struct type *parent_type;
20035 const char *retval;
20036
20037 if (cu->language != language_cplus
20038 && cu->language != language_fortran && cu->language != language_d
20039 && cu->language != language_rust)
20040 return "";
20041
20042 retval = anonymous_struct_prefix (die, cu);
20043 if (retval)
20044 return retval;
20045
20046 /* We have to be careful in the presence of DW_AT_specification.
20047 For example, with GCC 3.4, given the code
20048
20049 namespace N {
20050 void foo() {
20051 // Definition of N::foo.
20052 }
20053 }
20054
20055 then we'll have a tree of DIEs like this:
20056
20057 1: DW_TAG_compile_unit
20058 2: DW_TAG_namespace // N
20059 3: DW_TAG_subprogram // declaration of N::foo
20060 4: DW_TAG_subprogram // definition of N::foo
20061 DW_AT_specification // refers to die #3
20062
20063 Thus, when processing die #4, we have to pretend that we're in
20064 the context of its DW_AT_specification, namely the contex of die
20065 #3. */
20066 spec_cu = cu;
20067 spec_die = die_specification (die, &spec_cu);
20068 if (spec_die == NULL)
20069 parent = die->parent;
20070 else
20071 {
20072 parent = spec_die->parent;
20073 cu = spec_cu;
20074 }
20075
20076 if (parent == NULL)
20077 return "";
20078 else if (parent->building_fullname)
20079 {
20080 const char *name;
20081 const char *parent_name;
20082
20083 /* It has been seen on RealView 2.2 built binaries,
20084 DW_TAG_template_type_param types actually _defined_ as
20085 children of the parent class:
20086
20087 enum E {};
20088 template class <class Enum> Class{};
20089 Class<enum E> class_e;
20090
20091 1: DW_TAG_class_type (Class)
20092 2: DW_TAG_enumeration_type (E)
20093 3: DW_TAG_enumerator (enum1:0)
20094 3: DW_TAG_enumerator (enum2:1)
20095 ...
20096 2: DW_TAG_template_type_param
20097 DW_AT_type DW_FORM_ref_udata (E)
20098
20099 Besides being broken debug info, it can put GDB into an
20100 infinite loop. Consider:
20101
20102 When we're building the full name for Class<E>, we'll start
20103 at Class, and go look over its template type parameters,
20104 finding E. We'll then try to build the full name of E, and
20105 reach here. We're now trying to build the full name of E,
20106 and look over the parent DIE for containing scope. In the
20107 broken case, if we followed the parent DIE of E, we'd again
20108 find Class, and once again go look at its template type
20109 arguments, etc., etc. Simply don't consider such parent die
20110 as source-level parent of this die (it can't be, the language
20111 doesn't allow it), and break the loop here. */
20112 name = dwarf2_name (die, cu);
20113 parent_name = dwarf2_name (parent, cu);
20114 complaint (&symfile_complaints,
20115 _("template param type '%s' defined within parent '%s'"),
20116 name ? name : "<unknown>",
20117 parent_name ? parent_name : "<unknown>");
20118 return "";
20119 }
20120 else
20121 switch (parent->tag)
20122 {
20123 case DW_TAG_namespace:
20124 parent_type = read_type_die (parent, cu);
20125 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20126 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20127 Work around this problem here. */
20128 if (cu->language == language_cplus
20129 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20130 return "";
20131 /* We give a name to even anonymous namespaces. */
20132 return TYPE_TAG_NAME (parent_type);
20133 case DW_TAG_class_type:
20134 case DW_TAG_interface_type:
20135 case DW_TAG_structure_type:
20136 case DW_TAG_union_type:
20137 case DW_TAG_module:
20138 parent_type = read_type_die (parent, cu);
20139 if (TYPE_TAG_NAME (parent_type) != NULL)
20140 return TYPE_TAG_NAME (parent_type);
20141 else
20142 /* An anonymous structure is only allowed non-static data
20143 members; no typedefs, no member functions, et cetera.
20144 So it does not need a prefix. */
20145 return "";
20146 case DW_TAG_compile_unit:
20147 case DW_TAG_partial_unit:
20148 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20149 if (cu->language == language_cplus
20150 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
20151 && die->child != NULL
20152 && (die->tag == DW_TAG_class_type
20153 || die->tag == DW_TAG_structure_type
20154 || die->tag == DW_TAG_union_type))
20155 {
20156 char *name = guess_full_die_structure_name (die, cu);
20157 if (name != NULL)
20158 return name;
20159 }
20160 return "";
20161 case DW_TAG_enumeration_type:
20162 parent_type = read_type_die (parent, cu);
20163 if (TYPE_DECLARED_CLASS (parent_type))
20164 {
20165 if (TYPE_TAG_NAME (parent_type) != NULL)
20166 return TYPE_TAG_NAME (parent_type);
20167 return "";
20168 }
20169 /* Fall through. */
20170 default:
20171 return determine_prefix (parent, cu);
20172 }
20173 }
20174
20175 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20176 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20177 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20178 an obconcat, otherwise allocate storage for the result. The CU argument is
20179 used to determine the language and hence, the appropriate separator. */
20180
20181 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
20182
20183 static char *
20184 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20185 int physname, struct dwarf2_cu *cu)
20186 {
20187 const char *lead = "";
20188 const char *sep;
20189
20190 if (suffix == NULL || suffix[0] == '\0'
20191 || prefix == NULL || prefix[0] == '\0')
20192 sep = "";
20193 else if (cu->language == language_d)
20194 {
20195 /* For D, the 'main' function could be defined in any module, but it
20196 should never be prefixed. */
20197 if (strcmp (suffix, "D main") == 0)
20198 {
20199 prefix = "";
20200 sep = "";
20201 }
20202 else
20203 sep = ".";
20204 }
20205 else if (cu->language == language_fortran && physname)
20206 {
20207 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20208 DW_AT_MIPS_linkage_name is preferred and used instead. */
20209
20210 lead = "__";
20211 sep = "_MOD_";
20212 }
20213 else
20214 sep = "::";
20215
20216 if (prefix == NULL)
20217 prefix = "";
20218 if (suffix == NULL)
20219 suffix = "";
20220
20221 if (obs == NULL)
20222 {
20223 char *retval
20224 = ((char *)
20225 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
20226
20227 strcpy (retval, lead);
20228 strcat (retval, prefix);
20229 strcat (retval, sep);
20230 strcat (retval, suffix);
20231 return retval;
20232 }
20233 else
20234 {
20235 /* We have an obstack. */
20236 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
20237 }
20238 }
20239
20240 /* Return sibling of die, NULL if no sibling. */
20241
20242 static struct die_info *
20243 sibling_die (struct die_info *die)
20244 {
20245 return die->sibling;
20246 }
20247
20248 /* Get name of a die, return NULL if not found. */
20249
20250 static const char *
20251 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
20252 struct obstack *obstack)
20253 {
20254 if (name && cu->language == language_cplus)
20255 {
20256 std::string canon_name = cp_canonicalize_string (name);
20257
20258 if (!canon_name.empty ())
20259 {
20260 if (canon_name != name)
20261 name = (const char *) obstack_copy0 (obstack,
20262 canon_name.c_str (),
20263 canon_name.length ());
20264 }
20265 }
20266
20267 return name;
20268 }
20269
20270 /* Get name of a die, return NULL if not found.
20271 Anonymous namespaces are converted to their magic string. */
20272
20273 static const char *
20274 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
20275 {
20276 struct attribute *attr;
20277
20278 attr = dwarf2_attr (die, DW_AT_name, cu);
20279 if ((!attr || !DW_STRING (attr))
20280 && die->tag != DW_TAG_namespace
20281 && die->tag != DW_TAG_class_type
20282 && die->tag != DW_TAG_interface_type
20283 && die->tag != DW_TAG_structure_type
20284 && die->tag != DW_TAG_union_type)
20285 return NULL;
20286
20287 switch (die->tag)
20288 {
20289 case DW_TAG_compile_unit:
20290 case DW_TAG_partial_unit:
20291 /* Compilation units have a DW_AT_name that is a filename, not
20292 a source language identifier. */
20293 case DW_TAG_enumeration_type:
20294 case DW_TAG_enumerator:
20295 /* These tags always have simple identifiers already; no need
20296 to canonicalize them. */
20297 return DW_STRING (attr);
20298
20299 case DW_TAG_namespace:
20300 if (attr != NULL && DW_STRING (attr) != NULL)
20301 return DW_STRING (attr);
20302 return CP_ANONYMOUS_NAMESPACE_STR;
20303
20304 case DW_TAG_class_type:
20305 case DW_TAG_interface_type:
20306 case DW_TAG_structure_type:
20307 case DW_TAG_union_type:
20308 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20309 structures or unions. These were of the form "._%d" in GCC 4.1,
20310 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20311 and GCC 4.4. We work around this problem by ignoring these. */
20312 if (attr && DW_STRING (attr)
20313 && (startswith (DW_STRING (attr), "._")
20314 || startswith (DW_STRING (attr), "<anonymous")))
20315 return NULL;
20316
20317 /* GCC might emit a nameless typedef that has a linkage name. See
20318 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20319 if (!attr || DW_STRING (attr) == NULL)
20320 {
20321 char *demangled = NULL;
20322
20323 attr = dw2_linkage_name_attr (die, cu);
20324 if (attr == NULL || DW_STRING (attr) == NULL)
20325 return NULL;
20326
20327 /* Avoid demangling DW_STRING (attr) the second time on a second
20328 call for the same DIE. */
20329 if (!DW_STRING_IS_CANONICAL (attr))
20330 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
20331
20332 if (demangled)
20333 {
20334 const char *base;
20335
20336 /* FIXME: we already did this for the partial symbol... */
20337 DW_STRING (attr)
20338 = ((const char *)
20339 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20340 demangled, strlen (demangled)));
20341 DW_STRING_IS_CANONICAL (attr) = 1;
20342 xfree (demangled);
20343
20344 /* Strip any leading namespaces/classes, keep only the base name.
20345 DW_AT_name for named DIEs does not contain the prefixes. */
20346 base = strrchr (DW_STRING (attr), ':');
20347 if (base && base > DW_STRING (attr) && base[-1] == ':')
20348 return &base[1];
20349 else
20350 return DW_STRING (attr);
20351 }
20352 }
20353 break;
20354
20355 default:
20356 break;
20357 }
20358
20359 if (!DW_STRING_IS_CANONICAL (attr))
20360 {
20361 DW_STRING (attr)
20362 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
20363 &cu->objfile->per_bfd->storage_obstack);
20364 DW_STRING_IS_CANONICAL (attr) = 1;
20365 }
20366 return DW_STRING (attr);
20367 }
20368
20369 /* Return the die that this die in an extension of, or NULL if there
20370 is none. *EXT_CU is the CU containing DIE on input, and the CU
20371 containing the return value on output. */
20372
20373 static struct die_info *
20374 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
20375 {
20376 struct attribute *attr;
20377
20378 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
20379 if (attr == NULL)
20380 return NULL;
20381
20382 return follow_die_ref (die, attr, ext_cu);
20383 }
20384
20385 /* Convert a DIE tag into its string name. */
20386
20387 static const char *
20388 dwarf_tag_name (unsigned tag)
20389 {
20390 const char *name = get_DW_TAG_name (tag);
20391
20392 if (name == NULL)
20393 return "DW_TAG_<unknown>";
20394
20395 return name;
20396 }
20397
20398 /* Convert a DWARF attribute code into its string name. */
20399
20400 static const char *
20401 dwarf_attr_name (unsigned attr)
20402 {
20403 const char *name;
20404
20405 #ifdef MIPS /* collides with DW_AT_HP_block_index */
20406 if (attr == DW_AT_MIPS_fde)
20407 return "DW_AT_MIPS_fde";
20408 #else
20409 if (attr == DW_AT_HP_block_index)
20410 return "DW_AT_HP_block_index";
20411 #endif
20412
20413 name = get_DW_AT_name (attr);
20414
20415 if (name == NULL)
20416 return "DW_AT_<unknown>";
20417
20418 return name;
20419 }
20420
20421 /* Convert a DWARF value form code into its string name. */
20422
20423 static const char *
20424 dwarf_form_name (unsigned form)
20425 {
20426 const char *name = get_DW_FORM_name (form);
20427
20428 if (name == NULL)
20429 return "DW_FORM_<unknown>";
20430
20431 return name;
20432 }
20433
20434 static const char *
20435 dwarf_bool_name (unsigned mybool)
20436 {
20437 if (mybool)
20438 return "TRUE";
20439 else
20440 return "FALSE";
20441 }
20442
20443 /* Convert a DWARF type code into its string name. */
20444
20445 static const char *
20446 dwarf_type_encoding_name (unsigned enc)
20447 {
20448 const char *name = get_DW_ATE_name (enc);
20449
20450 if (name == NULL)
20451 return "DW_ATE_<unknown>";
20452
20453 return name;
20454 }
20455
20456 static void
20457 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
20458 {
20459 unsigned int i;
20460
20461 print_spaces (indent, f);
20462 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
20463 dwarf_tag_name (die->tag), die->abbrev,
20464 to_underlying (die->sect_off));
20465
20466 if (die->parent != NULL)
20467 {
20468 print_spaces (indent, f);
20469 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
20470 to_underlying (die->parent->sect_off));
20471 }
20472
20473 print_spaces (indent, f);
20474 fprintf_unfiltered (f, " has children: %s\n",
20475 dwarf_bool_name (die->child != NULL));
20476
20477 print_spaces (indent, f);
20478 fprintf_unfiltered (f, " attributes:\n");
20479
20480 for (i = 0; i < die->num_attrs; ++i)
20481 {
20482 print_spaces (indent, f);
20483 fprintf_unfiltered (f, " %s (%s) ",
20484 dwarf_attr_name (die->attrs[i].name),
20485 dwarf_form_name (die->attrs[i].form));
20486
20487 switch (die->attrs[i].form)
20488 {
20489 case DW_FORM_addr:
20490 case DW_FORM_GNU_addr_index:
20491 fprintf_unfiltered (f, "address: ");
20492 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
20493 break;
20494 case DW_FORM_block2:
20495 case DW_FORM_block4:
20496 case DW_FORM_block:
20497 case DW_FORM_block1:
20498 fprintf_unfiltered (f, "block: size %s",
20499 pulongest (DW_BLOCK (&die->attrs[i])->size));
20500 break;
20501 case DW_FORM_exprloc:
20502 fprintf_unfiltered (f, "expression: size %s",
20503 pulongest (DW_BLOCK (&die->attrs[i])->size));
20504 break;
20505 case DW_FORM_data16:
20506 fprintf_unfiltered (f, "constant of 16 bytes");
20507 break;
20508 case DW_FORM_ref_addr:
20509 fprintf_unfiltered (f, "ref address: ");
20510 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20511 break;
20512 case DW_FORM_GNU_ref_alt:
20513 fprintf_unfiltered (f, "alt ref address: ");
20514 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20515 break;
20516 case DW_FORM_ref1:
20517 case DW_FORM_ref2:
20518 case DW_FORM_ref4:
20519 case DW_FORM_ref8:
20520 case DW_FORM_ref_udata:
20521 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
20522 (long) (DW_UNSND (&die->attrs[i])));
20523 break;
20524 case DW_FORM_data1:
20525 case DW_FORM_data2:
20526 case DW_FORM_data4:
20527 case DW_FORM_data8:
20528 case DW_FORM_udata:
20529 case DW_FORM_sdata:
20530 fprintf_unfiltered (f, "constant: %s",
20531 pulongest (DW_UNSND (&die->attrs[i])));
20532 break;
20533 case DW_FORM_sec_offset:
20534 fprintf_unfiltered (f, "section offset: %s",
20535 pulongest (DW_UNSND (&die->attrs[i])));
20536 break;
20537 case DW_FORM_ref_sig8:
20538 fprintf_unfiltered (f, "signature: %s",
20539 hex_string (DW_SIGNATURE (&die->attrs[i])));
20540 break;
20541 case DW_FORM_string:
20542 case DW_FORM_strp:
20543 case DW_FORM_line_strp:
20544 case DW_FORM_GNU_str_index:
20545 case DW_FORM_GNU_strp_alt:
20546 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
20547 DW_STRING (&die->attrs[i])
20548 ? DW_STRING (&die->attrs[i]) : "",
20549 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
20550 break;
20551 case DW_FORM_flag:
20552 if (DW_UNSND (&die->attrs[i]))
20553 fprintf_unfiltered (f, "flag: TRUE");
20554 else
20555 fprintf_unfiltered (f, "flag: FALSE");
20556 break;
20557 case DW_FORM_flag_present:
20558 fprintf_unfiltered (f, "flag: TRUE");
20559 break;
20560 case DW_FORM_indirect:
20561 /* The reader will have reduced the indirect form to
20562 the "base form" so this form should not occur. */
20563 fprintf_unfiltered (f,
20564 "unexpected attribute form: DW_FORM_indirect");
20565 break;
20566 case DW_FORM_implicit_const:
20567 fprintf_unfiltered (f, "constant: %s",
20568 plongest (DW_SND (&die->attrs[i])));
20569 break;
20570 default:
20571 fprintf_unfiltered (f, "unsupported attribute form: %d.",
20572 die->attrs[i].form);
20573 break;
20574 }
20575 fprintf_unfiltered (f, "\n");
20576 }
20577 }
20578
20579 static void
20580 dump_die_for_error (struct die_info *die)
20581 {
20582 dump_die_shallow (gdb_stderr, 0, die);
20583 }
20584
20585 static void
20586 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20587 {
20588 int indent = level * 4;
20589
20590 gdb_assert (die != NULL);
20591
20592 if (level >= max_level)
20593 return;
20594
20595 dump_die_shallow (f, indent, die);
20596
20597 if (die->child != NULL)
20598 {
20599 print_spaces (indent, f);
20600 fprintf_unfiltered (f, " Children:");
20601 if (level + 1 < max_level)
20602 {
20603 fprintf_unfiltered (f, "\n");
20604 dump_die_1 (f, level + 1, max_level, die->child);
20605 }
20606 else
20607 {
20608 fprintf_unfiltered (f,
20609 " [not printed, max nesting level reached]\n");
20610 }
20611 }
20612
20613 if (die->sibling != NULL && level > 0)
20614 {
20615 dump_die_1 (f, level, max_level, die->sibling);
20616 }
20617 }
20618
20619 /* This is called from the pdie macro in gdbinit.in.
20620 It's not static so gcc will keep a copy callable from gdb. */
20621
20622 void
20623 dump_die (struct die_info *die, int max_level)
20624 {
20625 dump_die_1 (gdb_stdlog, 0, max_level, die);
20626 }
20627
20628 static void
20629 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
20630 {
20631 void **slot;
20632
20633 slot = htab_find_slot_with_hash (cu->die_hash, die,
20634 to_underlying (die->sect_off),
20635 INSERT);
20636
20637 *slot = die;
20638 }
20639
20640 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20641 required kind. */
20642
20643 static sect_offset
20644 dwarf2_get_ref_die_offset (const struct attribute *attr)
20645 {
20646 if (attr_form_is_ref (attr))
20647 return (sect_offset) DW_UNSND (attr);
20648
20649 complaint (&symfile_complaints,
20650 _("unsupported die ref attribute form: '%s'"),
20651 dwarf_form_name (attr->form));
20652 return {};
20653 }
20654
20655 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20656 * the value held by the attribute is not constant. */
20657
20658 static LONGEST
20659 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
20660 {
20661 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
20662 return DW_SND (attr);
20663 else if (attr->form == DW_FORM_udata
20664 || attr->form == DW_FORM_data1
20665 || attr->form == DW_FORM_data2
20666 || attr->form == DW_FORM_data4
20667 || attr->form == DW_FORM_data8)
20668 return DW_UNSND (attr);
20669 else
20670 {
20671 /* For DW_FORM_data16 see attr_form_is_constant. */
20672 complaint (&symfile_complaints,
20673 _("Attribute value is not a constant (%s)"),
20674 dwarf_form_name (attr->form));
20675 return default_value;
20676 }
20677 }
20678
20679 /* Follow reference or signature attribute ATTR of SRC_DIE.
20680 On entry *REF_CU is the CU of SRC_DIE.
20681 On exit *REF_CU is the CU of the result. */
20682
20683 static struct die_info *
20684 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
20685 struct dwarf2_cu **ref_cu)
20686 {
20687 struct die_info *die;
20688
20689 if (attr_form_is_ref (attr))
20690 die = follow_die_ref (src_die, attr, ref_cu);
20691 else if (attr->form == DW_FORM_ref_sig8)
20692 die = follow_die_sig (src_die, attr, ref_cu);
20693 else
20694 {
20695 dump_die_for_error (src_die);
20696 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
20697 objfile_name ((*ref_cu)->objfile));
20698 }
20699
20700 return die;
20701 }
20702
20703 /* Follow reference OFFSET.
20704 On entry *REF_CU is the CU of the source die referencing OFFSET.
20705 On exit *REF_CU is the CU of the result.
20706 Returns NULL if OFFSET is invalid. */
20707
20708 static struct die_info *
20709 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
20710 struct dwarf2_cu **ref_cu)
20711 {
20712 struct die_info temp_die;
20713 struct dwarf2_cu *target_cu, *cu = *ref_cu;
20714
20715 gdb_assert (cu->per_cu != NULL);
20716
20717 target_cu = cu;
20718
20719 if (cu->per_cu->is_debug_types)
20720 {
20721 /* .debug_types CUs cannot reference anything outside their CU.
20722 If they need to, they have to reference a signatured type via
20723 DW_FORM_ref_sig8. */
20724 if (!offset_in_cu_p (&cu->header, sect_off))
20725 return NULL;
20726 }
20727 else if (offset_in_dwz != cu->per_cu->is_dwz
20728 || !offset_in_cu_p (&cu->header, sect_off))
20729 {
20730 struct dwarf2_per_cu_data *per_cu;
20731
20732 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
20733 cu->objfile);
20734
20735 /* If necessary, add it to the queue and load its DIEs. */
20736 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20737 load_full_comp_unit (per_cu, cu->language);
20738
20739 target_cu = per_cu->cu;
20740 }
20741 else if (cu->dies == NULL)
20742 {
20743 /* We're loading full DIEs during partial symbol reading. */
20744 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20745 load_full_comp_unit (cu->per_cu, language_minimal);
20746 }
20747
20748 *ref_cu = target_cu;
20749 temp_die.sect_off = sect_off;
20750 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20751 &temp_die,
20752 to_underlying (sect_off));
20753 }
20754
20755 /* Follow reference attribute ATTR of SRC_DIE.
20756 On entry *REF_CU is the CU of SRC_DIE.
20757 On exit *REF_CU is the CU of the result. */
20758
20759 static struct die_info *
20760 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20761 struct dwarf2_cu **ref_cu)
20762 {
20763 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20764 struct dwarf2_cu *cu = *ref_cu;
20765 struct die_info *die;
20766
20767 die = follow_die_offset (sect_off,
20768 (attr->form == DW_FORM_GNU_ref_alt
20769 || cu->per_cu->is_dwz),
20770 ref_cu);
20771 if (!die)
20772 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20773 "at 0x%x [in module %s]"),
20774 to_underlying (sect_off), to_underlying (src_die->sect_off),
20775 objfile_name (cu->objfile));
20776
20777 return die;
20778 }
20779
20780 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
20781 Returned value is intended for DW_OP_call*. Returned
20782 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20783
20784 struct dwarf2_locexpr_baton
20785 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
20786 struct dwarf2_per_cu_data *per_cu,
20787 CORE_ADDR (*get_frame_pc) (void *baton),
20788 void *baton)
20789 {
20790 struct dwarf2_cu *cu;
20791 struct die_info *die;
20792 struct attribute *attr;
20793 struct dwarf2_locexpr_baton retval;
20794
20795 dw2_setup (per_cu->objfile);
20796
20797 if (per_cu->cu == NULL)
20798 load_cu (per_cu);
20799 cu = per_cu->cu;
20800 if (cu == NULL)
20801 {
20802 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20803 Instead just throw an error, not much else we can do. */
20804 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20805 to_underlying (sect_off), objfile_name (per_cu->objfile));
20806 }
20807
20808 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20809 if (!die)
20810 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20811 to_underlying (sect_off), objfile_name (per_cu->objfile));
20812
20813 attr = dwarf2_attr (die, DW_AT_location, cu);
20814 if (!attr)
20815 {
20816 /* DWARF: "If there is no such attribute, then there is no effect.".
20817 DATA is ignored if SIZE is 0. */
20818
20819 retval.data = NULL;
20820 retval.size = 0;
20821 }
20822 else if (attr_form_is_section_offset (attr))
20823 {
20824 struct dwarf2_loclist_baton loclist_baton;
20825 CORE_ADDR pc = (*get_frame_pc) (baton);
20826 size_t size;
20827
20828 fill_in_loclist_baton (cu, &loclist_baton, attr);
20829
20830 retval.data = dwarf2_find_location_expression (&loclist_baton,
20831 &size, pc);
20832 retval.size = size;
20833 }
20834 else
20835 {
20836 if (!attr_form_is_block (attr))
20837 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20838 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20839 to_underlying (sect_off), objfile_name (per_cu->objfile));
20840
20841 retval.data = DW_BLOCK (attr)->data;
20842 retval.size = DW_BLOCK (attr)->size;
20843 }
20844 retval.per_cu = cu->per_cu;
20845
20846 age_cached_comp_units ();
20847
20848 return retval;
20849 }
20850
20851 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20852 offset. */
20853
20854 struct dwarf2_locexpr_baton
20855 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20856 struct dwarf2_per_cu_data *per_cu,
20857 CORE_ADDR (*get_frame_pc) (void *baton),
20858 void *baton)
20859 {
20860 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
20861
20862 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
20863 }
20864
20865 /* Write a constant of a given type as target-ordered bytes into
20866 OBSTACK. */
20867
20868 static const gdb_byte *
20869 write_constant_as_bytes (struct obstack *obstack,
20870 enum bfd_endian byte_order,
20871 struct type *type,
20872 ULONGEST value,
20873 LONGEST *len)
20874 {
20875 gdb_byte *result;
20876
20877 *len = TYPE_LENGTH (type);
20878 result = (gdb_byte *) obstack_alloc (obstack, *len);
20879 store_unsigned_integer (result, *len, byte_order, value);
20880
20881 return result;
20882 }
20883
20884 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20885 pointer to the constant bytes and set LEN to the length of the
20886 data. If memory is needed, allocate it on OBSTACK. If the DIE
20887 does not have a DW_AT_const_value, return NULL. */
20888
20889 const gdb_byte *
20890 dwarf2_fetch_constant_bytes (sect_offset sect_off,
20891 struct dwarf2_per_cu_data *per_cu,
20892 struct obstack *obstack,
20893 LONGEST *len)
20894 {
20895 struct dwarf2_cu *cu;
20896 struct die_info *die;
20897 struct attribute *attr;
20898 const gdb_byte *result = NULL;
20899 struct type *type;
20900 LONGEST value;
20901 enum bfd_endian byte_order;
20902
20903 dw2_setup (per_cu->objfile);
20904
20905 if (per_cu->cu == NULL)
20906 load_cu (per_cu);
20907 cu = per_cu->cu;
20908 if (cu == NULL)
20909 {
20910 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20911 Instead just throw an error, not much else we can do. */
20912 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20913 to_underlying (sect_off), objfile_name (per_cu->objfile));
20914 }
20915
20916 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20917 if (!die)
20918 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20919 to_underlying (sect_off), objfile_name (per_cu->objfile));
20920
20921
20922 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20923 if (attr == NULL)
20924 return NULL;
20925
20926 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20927 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20928
20929 switch (attr->form)
20930 {
20931 case DW_FORM_addr:
20932 case DW_FORM_GNU_addr_index:
20933 {
20934 gdb_byte *tem;
20935
20936 *len = cu->header.addr_size;
20937 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20938 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20939 result = tem;
20940 }
20941 break;
20942 case DW_FORM_string:
20943 case DW_FORM_strp:
20944 case DW_FORM_GNU_str_index:
20945 case DW_FORM_GNU_strp_alt:
20946 /* DW_STRING is already allocated on the objfile obstack, point
20947 directly to it. */
20948 result = (const gdb_byte *) DW_STRING (attr);
20949 *len = strlen (DW_STRING (attr));
20950 break;
20951 case DW_FORM_block1:
20952 case DW_FORM_block2:
20953 case DW_FORM_block4:
20954 case DW_FORM_block:
20955 case DW_FORM_exprloc:
20956 case DW_FORM_data16:
20957 result = DW_BLOCK (attr)->data;
20958 *len = DW_BLOCK (attr)->size;
20959 break;
20960
20961 /* The DW_AT_const_value attributes are supposed to carry the
20962 symbol's value "represented as it would be on the target
20963 architecture." By the time we get here, it's already been
20964 converted to host endianness, so we just need to sign- or
20965 zero-extend it as appropriate. */
20966 case DW_FORM_data1:
20967 type = die_type (die, cu);
20968 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20969 if (result == NULL)
20970 result = write_constant_as_bytes (obstack, byte_order,
20971 type, value, len);
20972 break;
20973 case DW_FORM_data2:
20974 type = die_type (die, cu);
20975 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20976 if (result == NULL)
20977 result = write_constant_as_bytes (obstack, byte_order,
20978 type, value, len);
20979 break;
20980 case DW_FORM_data4:
20981 type = die_type (die, cu);
20982 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20983 if (result == NULL)
20984 result = write_constant_as_bytes (obstack, byte_order,
20985 type, value, len);
20986 break;
20987 case DW_FORM_data8:
20988 type = die_type (die, cu);
20989 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20990 if (result == NULL)
20991 result = write_constant_as_bytes (obstack, byte_order,
20992 type, value, len);
20993 break;
20994
20995 case DW_FORM_sdata:
20996 case DW_FORM_implicit_const:
20997 type = die_type (die, cu);
20998 result = write_constant_as_bytes (obstack, byte_order,
20999 type, DW_SND (attr), len);
21000 break;
21001
21002 case DW_FORM_udata:
21003 type = die_type (die, cu);
21004 result = write_constant_as_bytes (obstack, byte_order,
21005 type, DW_UNSND (attr), len);
21006 break;
21007
21008 default:
21009 complaint (&symfile_complaints,
21010 _("unsupported const value attribute form: '%s'"),
21011 dwarf_form_name (attr->form));
21012 break;
21013 }
21014
21015 return result;
21016 }
21017
21018 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
21019 valid type for this die is found. */
21020
21021 struct type *
21022 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
21023 struct dwarf2_per_cu_data *per_cu)
21024 {
21025 struct dwarf2_cu *cu;
21026 struct die_info *die;
21027
21028 dw2_setup (per_cu->objfile);
21029
21030 if (per_cu->cu == NULL)
21031 load_cu (per_cu);
21032 cu = per_cu->cu;
21033 if (!cu)
21034 return NULL;
21035
21036 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21037 if (!die)
21038 return NULL;
21039
21040 return die_type (die, cu);
21041 }
21042
21043 /* Return the type of the DIE at DIE_OFFSET in the CU named by
21044 PER_CU. */
21045
21046 struct type *
21047 dwarf2_get_die_type (cu_offset die_offset,
21048 struct dwarf2_per_cu_data *per_cu)
21049 {
21050 dw2_setup (per_cu->objfile);
21051
21052 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
21053 return get_die_type_at_offset (die_offset_sect, per_cu);
21054 }
21055
21056 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
21057 On entry *REF_CU is the CU of SRC_DIE.
21058 On exit *REF_CU is the CU of the result.
21059 Returns NULL if the referenced DIE isn't found. */
21060
21061 static struct die_info *
21062 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
21063 struct dwarf2_cu **ref_cu)
21064 {
21065 struct die_info temp_die;
21066 struct dwarf2_cu *sig_cu;
21067 struct die_info *die;
21068
21069 /* While it might be nice to assert sig_type->type == NULL here,
21070 we can get here for DW_AT_imported_declaration where we need
21071 the DIE not the type. */
21072
21073 /* If necessary, add it to the queue and load its DIEs. */
21074
21075 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
21076 read_signatured_type (sig_type);
21077
21078 sig_cu = sig_type->per_cu.cu;
21079 gdb_assert (sig_cu != NULL);
21080 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
21081 temp_die.sect_off = sig_type->type_offset_in_section;
21082 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
21083 to_underlying (temp_die.sect_off));
21084 if (die)
21085 {
21086 /* For .gdb_index version 7 keep track of included TUs.
21087 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
21088 if (dwarf2_per_objfile->index_table != NULL
21089 && dwarf2_per_objfile->index_table->version <= 7)
21090 {
21091 VEC_safe_push (dwarf2_per_cu_ptr,
21092 (*ref_cu)->per_cu->imported_symtabs,
21093 sig_cu->per_cu);
21094 }
21095
21096 *ref_cu = sig_cu;
21097 return die;
21098 }
21099
21100 return NULL;
21101 }
21102
21103 /* Follow signatured type referenced by ATTR in SRC_DIE.
21104 On entry *REF_CU is the CU of SRC_DIE.
21105 On exit *REF_CU is the CU of the result.
21106 The result is the DIE of the type.
21107 If the referenced type cannot be found an error is thrown. */
21108
21109 static struct die_info *
21110 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
21111 struct dwarf2_cu **ref_cu)
21112 {
21113 ULONGEST signature = DW_SIGNATURE (attr);
21114 struct signatured_type *sig_type;
21115 struct die_info *die;
21116
21117 gdb_assert (attr->form == DW_FORM_ref_sig8);
21118
21119 sig_type = lookup_signatured_type (*ref_cu, signature);
21120 /* sig_type will be NULL if the signatured type is missing from
21121 the debug info. */
21122 if (sig_type == NULL)
21123 {
21124 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21125 " from DIE at 0x%x [in module %s]"),
21126 hex_string (signature), to_underlying (src_die->sect_off),
21127 objfile_name ((*ref_cu)->objfile));
21128 }
21129
21130 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21131 if (die == NULL)
21132 {
21133 dump_die_for_error (src_die);
21134 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21135 " from DIE at 0x%x [in module %s]"),
21136 hex_string (signature), to_underlying (src_die->sect_off),
21137 objfile_name ((*ref_cu)->objfile));
21138 }
21139
21140 return die;
21141 }
21142
21143 /* Get the type specified by SIGNATURE referenced in DIE/CU,
21144 reading in and processing the type unit if necessary. */
21145
21146 static struct type *
21147 get_signatured_type (struct die_info *die, ULONGEST signature,
21148 struct dwarf2_cu *cu)
21149 {
21150 struct signatured_type *sig_type;
21151 struct dwarf2_cu *type_cu;
21152 struct die_info *type_die;
21153 struct type *type;
21154
21155 sig_type = lookup_signatured_type (cu, signature);
21156 /* sig_type will be NULL if the signatured type is missing from
21157 the debug info. */
21158 if (sig_type == NULL)
21159 {
21160 complaint (&symfile_complaints,
21161 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21162 " from DIE at 0x%x [in module %s]"),
21163 hex_string (signature), to_underlying (die->sect_off),
21164 objfile_name (dwarf2_per_objfile->objfile));
21165 return build_error_marker_type (cu, die);
21166 }
21167
21168 /* If we already know the type we're done. */
21169 if (sig_type->type != NULL)
21170 return sig_type->type;
21171
21172 type_cu = cu;
21173 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21174 if (type_die != NULL)
21175 {
21176 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21177 is created. This is important, for example, because for c++ classes
21178 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21179 type = read_type_die (type_die, type_cu);
21180 if (type == NULL)
21181 {
21182 complaint (&symfile_complaints,
21183 _("Dwarf Error: Cannot build signatured type %s"
21184 " referenced from DIE at 0x%x [in module %s]"),
21185 hex_string (signature), to_underlying (die->sect_off),
21186 objfile_name (dwarf2_per_objfile->objfile));
21187 type = build_error_marker_type (cu, die);
21188 }
21189 }
21190 else
21191 {
21192 complaint (&symfile_complaints,
21193 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21194 " from DIE at 0x%x [in module %s]"),
21195 hex_string (signature), to_underlying (die->sect_off),
21196 objfile_name (dwarf2_per_objfile->objfile));
21197 type = build_error_marker_type (cu, die);
21198 }
21199 sig_type->type = type;
21200
21201 return type;
21202 }
21203
21204 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21205 reading in and processing the type unit if necessary. */
21206
21207 static struct type *
21208 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
21209 struct dwarf2_cu *cu) /* ARI: editCase function */
21210 {
21211 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
21212 if (attr_form_is_ref (attr))
21213 {
21214 struct dwarf2_cu *type_cu = cu;
21215 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21216
21217 return read_type_die (type_die, type_cu);
21218 }
21219 else if (attr->form == DW_FORM_ref_sig8)
21220 {
21221 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21222 }
21223 else
21224 {
21225 complaint (&symfile_complaints,
21226 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21227 " at 0x%x [in module %s]"),
21228 dwarf_form_name (attr->form), to_underlying (die->sect_off),
21229 objfile_name (dwarf2_per_objfile->objfile));
21230 return build_error_marker_type (cu, die);
21231 }
21232 }
21233
21234 /* Load the DIEs associated with type unit PER_CU into memory. */
21235
21236 static void
21237 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
21238 {
21239 struct signatured_type *sig_type;
21240
21241 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21242 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21243
21244 /* We have the per_cu, but we need the signatured_type.
21245 Fortunately this is an easy translation. */
21246 gdb_assert (per_cu->is_debug_types);
21247 sig_type = (struct signatured_type *) per_cu;
21248
21249 gdb_assert (per_cu->cu == NULL);
21250
21251 read_signatured_type (sig_type);
21252
21253 gdb_assert (per_cu->cu != NULL);
21254 }
21255
21256 /* die_reader_func for read_signatured_type.
21257 This is identical to load_full_comp_unit_reader,
21258 but is kept separate for now. */
21259
21260 static void
21261 read_signatured_type_reader (const struct die_reader_specs *reader,
21262 const gdb_byte *info_ptr,
21263 struct die_info *comp_unit_die,
21264 int has_children,
21265 void *data)
21266 {
21267 struct dwarf2_cu *cu = reader->cu;
21268
21269 gdb_assert (cu->die_hash == NULL);
21270 cu->die_hash =
21271 htab_create_alloc_ex (cu->header.length / 12,
21272 die_hash,
21273 die_eq,
21274 NULL,
21275 &cu->comp_unit_obstack,
21276 hashtab_obstack_allocate,
21277 dummy_obstack_deallocate);
21278
21279 if (has_children)
21280 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21281 &info_ptr, comp_unit_die);
21282 cu->dies = comp_unit_die;
21283 /* comp_unit_die is not stored in die_hash, no need. */
21284
21285 /* We try not to read any attributes in this function, because not
21286 all CUs needed for references have been loaded yet, and symbol
21287 table processing isn't initialized. But we have to set the CU language,
21288 or we won't be able to build types correctly.
21289 Similarly, if we do not read the producer, we can not apply
21290 producer-specific interpretation. */
21291 prepare_one_comp_unit (cu, cu->dies, language_minimal);
21292 }
21293
21294 /* Read in a signatured type and build its CU and DIEs.
21295 If the type is a stub for the real type in a DWO file,
21296 read in the real type from the DWO file as well. */
21297
21298 static void
21299 read_signatured_type (struct signatured_type *sig_type)
21300 {
21301 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
21302
21303 gdb_assert (per_cu->is_debug_types);
21304 gdb_assert (per_cu->cu == NULL);
21305
21306 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21307 read_signatured_type_reader, NULL);
21308 sig_type->per_cu.tu_read = 1;
21309 }
21310
21311 /* Decode simple location descriptions.
21312 Given a pointer to a dwarf block that defines a location, compute
21313 the location and return the value.
21314
21315 NOTE drow/2003-11-18: This function is called in two situations
21316 now: for the address of static or global variables (partial symbols
21317 only) and for offsets into structures which are expected to be
21318 (more or less) constant. The partial symbol case should go away,
21319 and only the constant case should remain. That will let this
21320 function complain more accurately. A few special modes are allowed
21321 without complaint for global variables (for instance, global
21322 register values and thread-local values).
21323
21324 A location description containing no operations indicates that the
21325 object is optimized out. The return value is 0 for that case.
21326 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21327 callers will only want a very basic result and this can become a
21328 complaint.
21329
21330 Note that stack[0] is unused except as a default error return. */
21331
21332 static CORE_ADDR
21333 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
21334 {
21335 struct objfile *objfile = cu->objfile;
21336 size_t i;
21337 size_t size = blk->size;
21338 const gdb_byte *data = blk->data;
21339 CORE_ADDR stack[64];
21340 int stacki;
21341 unsigned int bytes_read, unsnd;
21342 gdb_byte op;
21343
21344 i = 0;
21345 stacki = 0;
21346 stack[stacki] = 0;
21347 stack[++stacki] = 0;
21348
21349 while (i < size)
21350 {
21351 op = data[i++];
21352 switch (op)
21353 {
21354 case DW_OP_lit0:
21355 case DW_OP_lit1:
21356 case DW_OP_lit2:
21357 case DW_OP_lit3:
21358 case DW_OP_lit4:
21359 case DW_OP_lit5:
21360 case DW_OP_lit6:
21361 case DW_OP_lit7:
21362 case DW_OP_lit8:
21363 case DW_OP_lit9:
21364 case DW_OP_lit10:
21365 case DW_OP_lit11:
21366 case DW_OP_lit12:
21367 case DW_OP_lit13:
21368 case DW_OP_lit14:
21369 case DW_OP_lit15:
21370 case DW_OP_lit16:
21371 case DW_OP_lit17:
21372 case DW_OP_lit18:
21373 case DW_OP_lit19:
21374 case DW_OP_lit20:
21375 case DW_OP_lit21:
21376 case DW_OP_lit22:
21377 case DW_OP_lit23:
21378 case DW_OP_lit24:
21379 case DW_OP_lit25:
21380 case DW_OP_lit26:
21381 case DW_OP_lit27:
21382 case DW_OP_lit28:
21383 case DW_OP_lit29:
21384 case DW_OP_lit30:
21385 case DW_OP_lit31:
21386 stack[++stacki] = op - DW_OP_lit0;
21387 break;
21388
21389 case DW_OP_reg0:
21390 case DW_OP_reg1:
21391 case DW_OP_reg2:
21392 case DW_OP_reg3:
21393 case DW_OP_reg4:
21394 case DW_OP_reg5:
21395 case DW_OP_reg6:
21396 case DW_OP_reg7:
21397 case DW_OP_reg8:
21398 case DW_OP_reg9:
21399 case DW_OP_reg10:
21400 case DW_OP_reg11:
21401 case DW_OP_reg12:
21402 case DW_OP_reg13:
21403 case DW_OP_reg14:
21404 case DW_OP_reg15:
21405 case DW_OP_reg16:
21406 case DW_OP_reg17:
21407 case DW_OP_reg18:
21408 case DW_OP_reg19:
21409 case DW_OP_reg20:
21410 case DW_OP_reg21:
21411 case DW_OP_reg22:
21412 case DW_OP_reg23:
21413 case DW_OP_reg24:
21414 case DW_OP_reg25:
21415 case DW_OP_reg26:
21416 case DW_OP_reg27:
21417 case DW_OP_reg28:
21418 case DW_OP_reg29:
21419 case DW_OP_reg30:
21420 case DW_OP_reg31:
21421 stack[++stacki] = op - DW_OP_reg0;
21422 if (i < size)
21423 dwarf2_complex_location_expr_complaint ();
21424 break;
21425
21426 case DW_OP_regx:
21427 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21428 i += bytes_read;
21429 stack[++stacki] = unsnd;
21430 if (i < size)
21431 dwarf2_complex_location_expr_complaint ();
21432 break;
21433
21434 case DW_OP_addr:
21435 stack[++stacki] = read_address (objfile->obfd, &data[i],
21436 cu, &bytes_read);
21437 i += bytes_read;
21438 break;
21439
21440 case DW_OP_const1u:
21441 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21442 i += 1;
21443 break;
21444
21445 case DW_OP_const1s:
21446 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21447 i += 1;
21448 break;
21449
21450 case DW_OP_const2u:
21451 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21452 i += 2;
21453 break;
21454
21455 case DW_OP_const2s:
21456 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21457 i += 2;
21458 break;
21459
21460 case DW_OP_const4u:
21461 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21462 i += 4;
21463 break;
21464
21465 case DW_OP_const4s:
21466 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21467 i += 4;
21468 break;
21469
21470 case DW_OP_const8u:
21471 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21472 i += 8;
21473 break;
21474
21475 case DW_OP_constu:
21476 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21477 &bytes_read);
21478 i += bytes_read;
21479 break;
21480
21481 case DW_OP_consts:
21482 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21483 i += bytes_read;
21484 break;
21485
21486 case DW_OP_dup:
21487 stack[stacki + 1] = stack[stacki];
21488 stacki++;
21489 break;
21490
21491 case DW_OP_plus:
21492 stack[stacki - 1] += stack[stacki];
21493 stacki--;
21494 break;
21495
21496 case DW_OP_plus_uconst:
21497 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21498 &bytes_read);
21499 i += bytes_read;
21500 break;
21501
21502 case DW_OP_minus:
21503 stack[stacki - 1] -= stack[stacki];
21504 stacki--;
21505 break;
21506
21507 case DW_OP_deref:
21508 /* If we're not the last op, then we definitely can't encode
21509 this using GDB's address_class enum. This is valid for partial
21510 global symbols, although the variable's address will be bogus
21511 in the psymtab. */
21512 if (i < size)
21513 dwarf2_complex_location_expr_complaint ();
21514 break;
21515
21516 case DW_OP_GNU_push_tls_address:
21517 case DW_OP_form_tls_address:
21518 /* The top of the stack has the offset from the beginning
21519 of the thread control block at which the variable is located. */
21520 /* Nothing should follow this operator, so the top of stack would
21521 be returned. */
21522 /* This is valid for partial global symbols, but the variable's
21523 address will be bogus in the psymtab. Make it always at least
21524 non-zero to not look as a variable garbage collected by linker
21525 which have DW_OP_addr 0. */
21526 if (i < size)
21527 dwarf2_complex_location_expr_complaint ();
21528 stack[stacki]++;
21529 break;
21530
21531 case DW_OP_GNU_uninit:
21532 break;
21533
21534 case DW_OP_GNU_addr_index:
21535 case DW_OP_GNU_const_index:
21536 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21537 &bytes_read);
21538 i += bytes_read;
21539 break;
21540
21541 default:
21542 {
21543 const char *name = get_DW_OP_name (op);
21544
21545 if (name)
21546 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21547 name);
21548 else
21549 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21550 op);
21551 }
21552
21553 return (stack[stacki]);
21554 }
21555
21556 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21557 outside of the allocated space. Also enforce minimum>0. */
21558 if (stacki >= ARRAY_SIZE (stack) - 1)
21559 {
21560 complaint (&symfile_complaints,
21561 _("location description stack overflow"));
21562 return 0;
21563 }
21564
21565 if (stacki <= 0)
21566 {
21567 complaint (&symfile_complaints,
21568 _("location description stack underflow"));
21569 return 0;
21570 }
21571 }
21572 return (stack[stacki]);
21573 }
21574
21575 /* memory allocation interface */
21576
21577 static struct dwarf_block *
21578 dwarf_alloc_block (struct dwarf2_cu *cu)
21579 {
21580 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
21581 }
21582
21583 static struct die_info *
21584 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
21585 {
21586 struct die_info *die;
21587 size_t size = sizeof (struct die_info);
21588
21589 if (num_attrs > 1)
21590 size += (num_attrs - 1) * sizeof (struct attribute);
21591
21592 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
21593 memset (die, 0, sizeof (struct die_info));
21594 return (die);
21595 }
21596
21597 \f
21598 /* Macro support. */
21599
21600 /* Return file name relative to the compilation directory of file number I in
21601 *LH's file name table. The result is allocated using xmalloc; the caller is
21602 responsible for freeing it. */
21603
21604 static char *
21605 file_file_name (int file, struct line_header *lh)
21606 {
21607 /* Is the file number a valid index into the line header's file name
21608 table? Remember that file numbers start with one, not zero. */
21609 if (1 <= file && file <= lh->file_names.size ())
21610 {
21611 const file_entry &fe = lh->file_names[file - 1];
21612
21613 if (!IS_ABSOLUTE_PATH (fe.name))
21614 {
21615 const char *dir = fe.include_dir (lh);
21616 if (dir != NULL)
21617 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
21618 }
21619 return xstrdup (fe.name);
21620 }
21621 else
21622 {
21623 /* The compiler produced a bogus file number. We can at least
21624 record the macro definitions made in the file, even if we
21625 won't be able to find the file by name. */
21626 char fake_name[80];
21627
21628 xsnprintf (fake_name, sizeof (fake_name),
21629 "<bad macro file number %d>", file);
21630
21631 complaint (&symfile_complaints,
21632 _("bad file number in macro information (%d)"),
21633 file);
21634
21635 return xstrdup (fake_name);
21636 }
21637 }
21638
21639 /* Return the full name of file number I in *LH's file name table.
21640 Use COMP_DIR as the name of the current directory of the
21641 compilation. The result is allocated using xmalloc; the caller is
21642 responsible for freeing it. */
21643 static char *
21644 file_full_name (int file, struct line_header *lh, const char *comp_dir)
21645 {
21646 /* Is the file number a valid index into the line header's file name
21647 table? Remember that file numbers start with one, not zero. */
21648 if (1 <= file && file <= lh->file_names.size ())
21649 {
21650 char *relative = file_file_name (file, lh);
21651
21652 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21653 return relative;
21654 return reconcat (relative, comp_dir, SLASH_STRING,
21655 relative, (char *) NULL);
21656 }
21657 else
21658 return file_file_name (file, lh);
21659 }
21660
21661
21662 static struct macro_source_file *
21663 macro_start_file (int file, int line,
21664 struct macro_source_file *current_file,
21665 struct line_header *lh)
21666 {
21667 /* File name relative to the compilation directory of this source file. */
21668 char *file_name = file_file_name (file, lh);
21669
21670 if (! current_file)
21671 {
21672 /* Note: We don't create a macro table for this compilation unit
21673 at all until we actually get a filename. */
21674 struct macro_table *macro_table = get_macro_table ();
21675
21676 /* If we have no current file, then this must be the start_file
21677 directive for the compilation unit's main source file. */
21678 current_file = macro_set_main (macro_table, file_name);
21679 macro_define_special (macro_table);
21680 }
21681 else
21682 current_file = macro_include (current_file, line, file_name);
21683
21684 xfree (file_name);
21685
21686 return current_file;
21687 }
21688
21689 static const char *
21690 consume_improper_spaces (const char *p, const char *body)
21691 {
21692 if (*p == ' ')
21693 {
21694 complaint (&symfile_complaints,
21695 _("macro definition contains spaces "
21696 "in formal argument list:\n`%s'"),
21697 body);
21698
21699 while (*p == ' ')
21700 p++;
21701 }
21702
21703 return p;
21704 }
21705
21706
21707 static void
21708 parse_macro_definition (struct macro_source_file *file, int line,
21709 const char *body)
21710 {
21711 const char *p;
21712
21713 /* The body string takes one of two forms. For object-like macro
21714 definitions, it should be:
21715
21716 <macro name> " " <definition>
21717
21718 For function-like macro definitions, it should be:
21719
21720 <macro name> "() " <definition>
21721 or
21722 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21723
21724 Spaces may appear only where explicitly indicated, and in the
21725 <definition>.
21726
21727 The Dwarf 2 spec says that an object-like macro's name is always
21728 followed by a space, but versions of GCC around March 2002 omit
21729 the space when the macro's definition is the empty string.
21730
21731 The Dwarf 2 spec says that there should be no spaces between the
21732 formal arguments in a function-like macro's formal argument list,
21733 but versions of GCC around March 2002 include spaces after the
21734 commas. */
21735
21736
21737 /* Find the extent of the macro name. The macro name is terminated
21738 by either a space or null character (for an object-like macro) or
21739 an opening paren (for a function-like macro). */
21740 for (p = body; *p; p++)
21741 if (*p == ' ' || *p == '(')
21742 break;
21743
21744 if (*p == ' ' || *p == '\0')
21745 {
21746 /* It's an object-like macro. */
21747 int name_len = p - body;
21748 char *name = savestring (body, name_len);
21749 const char *replacement;
21750
21751 if (*p == ' ')
21752 replacement = body + name_len + 1;
21753 else
21754 {
21755 dwarf2_macro_malformed_definition_complaint (body);
21756 replacement = body + name_len;
21757 }
21758
21759 macro_define_object (file, line, name, replacement);
21760
21761 xfree (name);
21762 }
21763 else if (*p == '(')
21764 {
21765 /* It's a function-like macro. */
21766 char *name = savestring (body, p - body);
21767 int argc = 0;
21768 int argv_size = 1;
21769 char **argv = XNEWVEC (char *, argv_size);
21770
21771 p++;
21772
21773 p = consume_improper_spaces (p, body);
21774
21775 /* Parse the formal argument list. */
21776 while (*p && *p != ')')
21777 {
21778 /* Find the extent of the current argument name. */
21779 const char *arg_start = p;
21780
21781 while (*p && *p != ',' && *p != ')' && *p != ' ')
21782 p++;
21783
21784 if (! *p || p == arg_start)
21785 dwarf2_macro_malformed_definition_complaint (body);
21786 else
21787 {
21788 /* Make sure argv has room for the new argument. */
21789 if (argc >= argv_size)
21790 {
21791 argv_size *= 2;
21792 argv = XRESIZEVEC (char *, argv, argv_size);
21793 }
21794
21795 argv[argc++] = savestring (arg_start, p - arg_start);
21796 }
21797
21798 p = consume_improper_spaces (p, body);
21799
21800 /* Consume the comma, if present. */
21801 if (*p == ',')
21802 {
21803 p++;
21804
21805 p = consume_improper_spaces (p, body);
21806 }
21807 }
21808
21809 if (*p == ')')
21810 {
21811 p++;
21812
21813 if (*p == ' ')
21814 /* Perfectly formed definition, no complaints. */
21815 macro_define_function (file, line, name,
21816 argc, (const char **) argv,
21817 p + 1);
21818 else if (*p == '\0')
21819 {
21820 /* Complain, but do define it. */
21821 dwarf2_macro_malformed_definition_complaint (body);
21822 macro_define_function (file, line, name,
21823 argc, (const char **) argv,
21824 p);
21825 }
21826 else
21827 /* Just complain. */
21828 dwarf2_macro_malformed_definition_complaint (body);
21829 }
21830 else
21831 /* Just complain. */
21832 dwarf2_macro_malformed_definition_complaint (body);
21833
21834 xfree (name);
21835 {
21836 int i;
21837
21838 for (i = 0; i < argc; i++)
21839 xfree (argv[i]);
21840 }
21841 xfree (argv);
21842 }
21843 else
21844 dwarf2_macro_malformed_definition_complaint (body);
21845 }
21846
21847 /* Skip some bytes from BYTES according to the form given in FORM.
21848 Returns the new pointer. */
21849
21850 static const gdb_byte *
21851 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21852 enum dwarf_form form,
21853 unsigned int offset_size,
21854 struct dwarf2_section_info *section)
21855 {
21856 unsigned int bytes_read;
21857
21858 switch (form)
21859 {
21860 case DW_FORM_data1:
21861 case DW_FORM_flag:
21862 ++bytes;
21863 break;
21864
21865 case DW_FORM_data2:
21866 bytes += 2;
21867 break;
21868
21869 case DW_FORM_data4:
21870 bytes += 4;
21871 break;
21872
21873 case DW_FORM_data8:
21874 bytes += 8;
21875 break;
21876
21877 case DW_FORM_data16:
21878 bytes += 16;
21879 break;
21880
21881 case DW_FORM_string:
21882 read_direct_string (abfd, bytes, &bytes_read);
21883 bytes += bytes_read;
21884 break;
21885
21886 case DW_FORM_sec_offset:
21887 case DW_FORM_strp:
21888 case DW_FORM_GNU_strp_alt:
21889 bytes += offset_size;
21890 break;
21891
21892 case DW_FORM_block:
21893 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21894 bytes += bytes_read;
21895 break;
21896
21897 case DW_FORM_block1:
21898 bytes += 1 + read_1_byte (abfd, bytes);
21899 break;
21900 case DW_FORM_block2:
21901 bytes += 2 + read_2_bytes (abfd, bytes);
21902 break;
21903 case DW_FORM_block4:
21904 bytes += 4 + read_4_bytes (abfd, bytes);
21905 break;
21906
21907 case DW_FORM_sdata:
21908 case DW_FORM_udata:
21909 case DW_FORM_GNU_addr_index:
21910 case DW_FORM_GNU_str_index:
21911 bytes = gdb_skip_leb128 (bytes, buffer_end);
21912 if (bytes == NULL)
21913 {
21914 dwarf2_section_buffer_overflow_complaint (section);
21915 return NULL;
21916 }
21917 break;
21918
21919 case DW_FORM_implicit_const:
21920 break;
21921
21922 default:
21923 {
21924 complain:
21925 complaint (&symfile_complaints,
21926 _("invalid form 0x%x in `%s'"),
21927 form, get_section_name (section));
21928 return NULL;
21929 }
21930 }
21931
21932 return bytes;
21933 }
21934
21935 /* A helper for dwarf_decode_macros that handles skipping an unknown
21936 opcode. Returns an updated pointer to the macro data buffer; or,
21937 on error, issues a complaint and returns NULL. */
21938
21939 static const gdb_byte *
21940 skip_unknown_opcode (unsigned int opcode,
21941 const gdb_byte **opcode_definitions,
21942 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21943 bfd *abfd,
21944 unsigned int offset_size,
21945 struct dwarf2_section_info *section)
21946 {
21947 unsigned int bytes_read, i;
21948 unsigned long arg;
21949 const gdb_byte *defn;
21950
21951 if (opcode_definitions[opcode] == NULL)
21952 {
21953 complaint (&symfile_complaints,
21954 _("unrecognized DW_MACFINO opcode 0x%x"),
21955 opcode);
21956 return NULL;
21957 }
21958
21959 defn = opcode_definitions[opcode];
21960 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21961 defn += bytes_read;
21962
21963 for (i = 0; i < arg; ++i)
21964 {
21965 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21966 (enum dwarf_form) defn[i], offset_size,
21967 section);
21968 if (mac_ptr == NULL)
21969 {
21970 /* skip_form_bytes already issued the complaint. */
21971 return NULL;
21972 }
21973 }
21974
21975 return mac_ptr;
21976 }
21977
21978 /* A helper function which parses the header of a macro section.
21979 If the macro section is the extended (for now called "GNU") type,
21980 then this updates *OFFSET_SIZE. Returns a pointer to just after
21981 the header, or issues a complaint and returns NULL on error. */
21982
21983 static const gdb_byte *
21984 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21985 bfd *abfd,
21986 const gdb_byte *mac_ptr,
21987 unsigned int *offset_size,
21988 int section_is_gnu)
21989 {
21990 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21991
21992 if (section_is_gnu)
21993 {
21994 unsigned int version, flags;
21995
21996 version = read_2_bytes (abfd, mac_ptr);
21997 if (version != 4 && version != 5)
21998 {
21999 complaint (&symfile_complaints,
22000 _("unrecognized version `%d' in .debug_macro section"),
22001 version);
22002 return NULL;
22003 }
22004 mac_ptr += 2;
22005
22006 flags = read_1_byte (abfd, mac_ptr);
22007 ++mac_ptr;
22008 *offset_size = (flags & 1) ? 8 : 4;
22009
22010 if ((flags & 2) != 0)
22011 /* We don't need the line table offset. */
22012 mac_ptr += *offset_size;
22013
22014 /* Vendor opcode descriptions. */
22015 if ((flags & 4) != 0)
22016 {
22017 unsigned int i, count;
22018
22019 count = read_1_byte (abfd, mac_ptr);
22020 ++mac_ptr;
22021 for (i = 0; i < count; ++i)
22022 {
22023 unsigned int opcode, bytes_read;
22024 unsigned long arg;
22025
22026 opcode = read_1_byte (abfd, mac_ptr);
22027 ++mac_ptr;
22028 opcode_definitions[opcode] = mac_ptr;
22029 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22030 mac_ptr += bytes_read;
22031 mac_ptr += arg;
22032 }
22033 }
22034 }
22035
22036 return mac_ptr;
22037 }
22038
22039 /* A helper for dwarf_decode_macros that handles the GNU extensions,
22040 including DW_MACRO_import. */
22041
22042 static void
22043 dwarf_decode_macro_bytes (bfd *abfd,
22044 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
22045 struct macro_source_file *current_file,
22046 struct line_header *lh,
22047 struct dwarf2_section_info *section,
22048 int section_is_gnu, int section_is_dwz,
22049 unsigned int offset_size,
22050 htab_t include_hash)
22051 {
22052 struct objfile *objfile = dwarf2_per_objfile->objfile;
22053 enum dwarf_macro_record_type macinfo_type;
22054 int at_commandline;
22055 const gdb_byte *opcode_definitions[256];
22056
22057 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22058 &offset_size, section_is_gnu);
22059 if (mac_ptr == NULL)
22060 {
22061 /* We already issued a complaint. */
22062 return;
22063 }
22064
22065 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
22066 GDB is still reading the definitions from command line. First
22067 DW_MACINFO_start_file will need to be ignored as it was already executed
22068 to create CURRENT_FILE for the main source holding also the command line
22069 definitions. On first met DW_MACINFO_start_file this flag is reset to
22070 normally execute all the remaining DW_MACINFO_start_file macinfos. */
22071
22072 at_commandline = 1;
22073
22074 do
22075 {
22076 /* Do we at least have room for a macinfo type byte? */
22077 if (mac_ptr >= mac_end)
22078 {
22079 dwarf2_section_buffer_overflow_complaint (section);
22080 break;
22081 }
22082
22083 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22084 mac_ptr++;
22085
22086 /* Note that we rely on the fact that the corresponding GNU and
22087 DWARF constants are the same. */
22088 switch (macinfo_type)
22089 {
22090 /* A zero macinfo type indicates the end of the macro
22091 information. */
22092 case 0:
22093 break;
22094
22095 case DW_MACRO_define:
22096 case DW_MACRO_undef:
22097 case DW_MACRO_define_strp:
22098 case DW_MACRO_undef_strp:
22099 case DW_MACRO_define_sup:
22100 case DW_MACRO_undef_sup:
22101 {
22102 unsigned int bytes_read;
22103 int line;
22104 const char *body;
22105 int is_define;
22106
22107 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22108 mac_ptr += bytes_read;
22109
22110 if (macinfo_type == DW_MACRO_define
22111 || macinfo_type == DW_MACRO_undef)
22112 {
22113 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22114 mac_ptr += bytes_read;
22115 }
22116 else
22117 {
22118 LONGEST str_offset;
22119
22120 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22121 mac_ptr += offset_size;
22122
22123 if (macinfo_type == DW_MACRO_define_sup
22124 || macinfo_type == DW_MACRO_undef_sup
22125 || section_is_dwz)
22126 {
22127 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22128
22129 body = read_indirect_string_from_dwz (dwz, str_offset);
22130 }
22131 else
22132 body = read_indirect_string_at_offset (abfd, str_offset);
22133 }
22134
22135 is_define = (macinfo_type == DW_MACRO_define
22136 || macinfo_type == DW_MACRO_define_strp
22137 || macinfo_type == DW_MACRO_define_sup);
22138 if (! current_file)
22139 {
22140 /* DWARF violation as no main source is present. */
22141 complaint (&symfile_complaints,
22142 _("debug info with no main source gives macro %s "
22143 "on line %d: %s"),
22144 is_define ? _("definition") : _("undefinition"),
22145 line, body);
22146 break;
22147 }
22148 if ((line == 0 && !at_commandline)
22149 || (line != 0 && at_commandline))
22150 complaint (&symfile_complaints,
22151 _("debug info gives %s macro %s with %s line %d: %s"),
22152 at_commandline ? _("command-line") : _("in-file"),
22153 is_define ? _("definition") : _("undefinition"),
22154 line == 0 ? _("zero") : _("non-zero"), line, body);
22155
22156 if (is_define)
22157 parse_macro_definition (current_file, line, body);
22158 else
22159 {
22160 gdb_assert (macinfo_type == DW_MACRO_undef
22161 || macinfo_type == DW_MACRO_undef_strp
22162 || macinfo_type == DW_MACRO_undef_sup);
22163 macro_undef (current_file, line, body);
22164 }
22165 }
22166 break;
22167
22168 case DW_MACRO_start_file:
22169 {
22170 unsigned int bytes_read;
22171 int line, file;
22172
22173 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22174 mac_ptr += bytes_read;
22175 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22176 mac_ptr += bytes_read;
22177
22178 if ((line == 0 && !at_commandline)
22179 || (line != 0 && at_commandline))
22180 complaint (&symfile_complaints,
22181 _("debug info gives source %d included "
22182 "from %s at %s line %d"),
22183 file, at_commandline ? _("command-line") : _("file"),
22184 line == 0 ? _("zero") : _("non-zero"), line);
22185
22186 if (at_commandline)
22187 {
22188 /* This DW_MACRO_start_file was executed in the
22189 pass one. */
22190 at_commandline = 0;
22191 }
22192 else
22193 current_file = macro_start_file (file, line, current_file, lh);
22194 }
22195 break;
22196
22197 case DW_MACRO_end_file:
22198 if (! current_file)
22199 complaint (&symfile_complaints,
22200 _("macro debug info has an unmatched "
22201 "`close_file' directive"));
22202 else
22203 {
22204 current_file = current_file->included_by;
22205 if (! current_file)
22206 {
22207 enum dwarf_macro_record_type next_type;
22208
22209 /* GCC circa March 2002 doesn't produce the zero
22210 type byte marking the end of the compilation
22211 unit. Complain if it's not there, but exit no
22212 matter what. */
22213
22214 /* Do we at least have room for a macinfo type byte? */
22215 if (mac_ptr >= mac_end)
22216 {
22217 dwarf2_section_buffer_overflow_complaint (section);
22218 return;
22219 }
22220
22221 /* We don't increment mac_ptr here, so this is just
22222 a look-ahead. */
22223 next_type
22224 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22225 mac_ptr);
22226 if (next_type != 0)
22227 complaint (&symfile_complaints,
22228 _("no terminating 0-type entry for "
22229 "macros in `.debug_macinfo' section"));
22230
22231 return;
22232 }
22233 }
22234 break;
22235
22236 case DW_MACRO_import:
22237 case DW_MACRO_import_sup:
22238 {
22239 LONGEST offset;
22240 void **slot;
22241 bfd *include_bfd = abfd;
22242 struct dwarf2_section_info *include_section = section;
22243 const gdb_byte *include_mac_end = mac_end;
22244 int is_dwz = section_is_dwz;
22245 const gdb_byte *new_mac_ptr;
22246
22247 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22248 mac_ptr += offset_size;
22249
22250 if (macinfo_type == DW_MACRO_import_sup)
22251 {
22252 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22253
22254 dwarf2_read_section (objfile, &dwz->macro);
22255
22256 include_section = &dwz->macro;
22257 include_bfd = get_section_bfd_owner (include_section);
22258 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22259 is_dwz = 1;
22260 }
22261
22262 new_mac_ptr = include_section->buffer + offset;
22263 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22264
22265 if (*slot != NULL)
22266 {
22267 /* This has actually happened; see
22268 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22269 complaint (&symfile_complaints,
22270 _("recursive DW_MACRO_import in "
22271 ".debug_macro section"));
22272 }
22273 else
22274 {
22275 *slot = (void *) new_mac_ptr;
22276
22277 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
22278 include_mac_end, current_file, lh,
22279 section, section_is_gnu, is_dwz,
22280 offset_size, include_hash);
22281
22282 htab_remove_elt (include_hash, (void *) new_mac_ptr);
22283 }
22284 }
22285 break;
22286
22287 case DW_MACINFO_vendor_ext:
22288 if (!section_is_gnu)
22289 {
22290 unsigned int bytes_read;
22291
22292 /* This reads the constant, but since we don't recognize
22293 any vendor extensions, we ignore it. */
22294 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22295 mac_ptr += bytes_read;
22296 read_direct_string (abfd, mac_ptr, &bytes_read);
22297 mac_ptr += bytes_read;
22298
22299 /* We don't recognize any vendor extensions. */
22300 break;
22301 }
22302 /* FALLTHROUGH */
22303
22304 default:
22305 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22306 mac_ptr, mac_end, abfd, offset_size,
22307 section);
22308 if (mac_ptr == NULL)
22309 return;
22310 break;
22311 }
22312 } while (macinfo_type != 0);
22313 }
22314
22315 static void
22316 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22317 int section_is_gnu)
22318 {
22319 struct objfile *objfile = dwarf2_per_objfile->objfile;
22320 struct line_header *lh = cu->line_header;
22321 bfd *abfd;
22322 const gdb_byte *mac_ptr, *mac_end;
22323 struct macro_source_file *current_file = 0;
22324 enum dwarf_macro_record_type macinfo_type;
22325 unsigned int offset_size = cu->header.offset_size;
22326 const gdb_byte *opcode_definitions[256];
22327 struct cleanup *cleanup;
22328 void **slot;
22329 struct dwarf2_section_info *section;
22330 const char *section_name;
22331
22332 if (cu->dwo_unit != NULL)
22333 {
22334 if (section_is_gnu)
22335 {
22336 section = &cu->dwo_unit->dwo_file->sections.macro;
22337 section_name = ".debug_macro.dwo";
22338 }
22339 else
22340 {
22341 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22342 section_name = ".debug_macinfo.dwo";
22343 }
22344 }
22345 else
22346 {
22347 if (section_is_gnu)
22348 {
22349 section = &dwarf2_per_objfile->macro;
22350 section_name = ".debug_macro";
22351 }
22352 else
22353 {
22354 section = &dwarf2_per_objfile->macinfo;
22355 section_name = ".debug_macinfo";
22356 }
22357 }
22358
22359 dwarf2_read_section (objfile, section);
22360 if (section->buffer == NULL)
22361 {
22362 complaint (&symfile_complaints, _("missing %s section"), section_name);
22363 return;
22364 }
22365 abfd = get_section_bfd_owner (section);
22366
22367 /* First pass: Find the name of the base filename.
22368 This filename is needed in order to process all macros whose definition
22369 (or undefinition) comes from the command line. These macros are defined
22370 before the first DW_MACINFO_start_file entry, and yet still need to be
22371 associated to the base file.
22372
22373 To determine the base file name, we scan the macro definitions until we
22374 reach the first DW_MACINFO_start_file entry. We then initialize
22375 CURRENT_FILE accordingly so that any macro definition found before the
22376 first DW_MACINFO_start_file can still be associated to the base file. */
22377
22378 mac_ptr = section->buffer + offset;
22379 mac_end = section->buffer + section->size;
22380
22381 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22382 &offset_size, section_is_gnu);
22383 if (mac_ptr == NULL)
22384 {
22385 /* We already issued a complaint. */
22386 return;
22387 }
22388
22389 do
22390 {
22391 /* Do we at least have room for a macinfo type byte? */
22392 if (mac_ptr >= mac_end)
22393 {
22394 /* Complaint is printed during the second pass as GDB will probably
22395 stop the first pass earlier upon finding
22396 DW_MACINFO_start_file. */
22397 break;
22398 }
22399
22400 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22401 mac_ptr++;
22402
22403 /* Note that we rely on the fact that the corresponding GNU and
22404 DWARF constants are the same. */
22405 switch (macinfo_type)
22406 {
22407 /* A zero macinfo type indicates the end of the macro
22408 information. */
22409 case 0:
22410 break;
22411
22412 case DW_MACRO_define:
22413 case DW_MACRO_undef:
22414 /* Only skip the data by MAC_PTR. */
22415 {
22416 unsigned int bytes_read;
22417
22418 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22419 mac_ptr += bytes_read;
22420 read_direct_string (abfd, mac_ptr, &bytes_read);
22421 mac_ptr += bytes_read;
22422 }
22423 break;
22424
22425 case DW_MACRO_start_file:
22426 {
22427 unsigned int bytes_read;
22428 int line, file;
22429
22430 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22431 mac_ptr += bytes_read;
22432 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22433 mac_ptr += bytes_read;
22434
22435 current_file = macro_start_file (file, line, current_file, lh);
22436 }
22437 break;
22438
22439 case DW_MACRO_end_file:
22440 /* No data to skip by MAC_PTR. */
22441 break;
22442
22443 case DW_MACRO_define_strp:
22444 case DW_MACRO_undef_strp:
22445 case DW_MACRO_define_sup:
22446 case DW_MACRO_undef_sup:
22447 {
22448 unsigned int bytes_read;
22449
22450 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22451 mac_ptr += bytes_read;
22452 mac_ptr += offset_size;
22453 }
22454 break;
22455
22456 case DW_MACRO_import:
22457 case DW_MACRO_import_sup:
22458 /* Note that, according to the spec, a transparent include
22459 chain cannot call DW_MACRO_start_file. So, we can just
22460 skip this opcode. */
22461 mac_ptr += offset_size;
22462 break;
22463
22464 case DW_MACINFO_vendor_ext:
22465 /* Only skip the data by MAC_PTR. */
22466 if (!section_is_gnu)
22467 {
22468 unsigned int bytes_read;
22469
22470 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22471 mac_ptr += bytes_read;
22472 read_direct_string (abfd, mac_ptr, &bytes_read);
22473 mac_ptr += bytes_read;
22474 }
22475 /* FALLTHROUGH */
22476
22477 default:
22478 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22479 mac_ptr, mac_end, abfd, offset_size,
22480 section);
22481 if (mac_ptr == NULL)
22482 return;
22483 break;
22484 }
22485 } while (macinfo_type != 0 && current_file == NULL);
22486
22487 /* Second pass: Process all entries.
22488
22489 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22490 command-line macro definitions/undefinitions. This flag is unset when we
22491 reach the first DW_MACINFO_start_file entry. */
22492
22493 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22494 htab_eq_pointer,
22495 NULL, xcalloc, xfree));
22496 mac_ptr = section->buffer + offset;
22497 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
22498 *slot = (void *) mac_ptr;
22499 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
22500 current_file, lh, section,
22501 section_is_gnu, 0, offset_size,
22502 include_hash.get ());
22503 }
22504
22505 /* Check if the attribute's form is a DW_FORM_block*
22506 if so return true else false. */
22507
22508 static int
22509 attr_form_is_block (const struct attribute *attr)
22510 {
22511 return (attr == NULL ? 0 :
22512 attr->form == DW_FORM_block1
22513 || attr->form == DW_FORM_block2
22514 || attr->form == DW_FORM_block4
22515 || attr->form == DW_FORM_block
22516 || attr->form == DW_FORM_exprloc);
22517 }
22518
22519 /* Return non-zero if ATTR's value is a section offset --- classes
22520 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22521 You may use DW_UNSND (attr) to retrieve such offsets.
22522
22523 Section 7.5.4, "Attribute Encodings", explains that no attribute
22524 may have a value that belongs to more than one of these classes; it
22525 would be ambiguous if we did, because we use the same forms for all
22526 of them. */
22527
22528 static int
22529 attr_form_is_section_offset (const struct attribute *attr)
22530 {
22531 return (attr->form == DW_FORM_data4
22532 || attr->form == DW_FORM_data8
22533 || attr->form == DW_FORM_sec_offset);
22534 }
22535
22536 /* Return non-zero if ATTR's value falls in the 'constant' class, or
22537 zero otherwise. When this function returns true, you can apply
22538 dwarf2_get_attr_constant_value to it.
22539
22540 However, note that for some attributes you must check
22541 attr_form_is_section_offset before using this test. DW_FORM_data4
22542 and DW_FORM_data8 are members of both the constant class, and of
22543 the classes that contain offsets into other debug sections
22544 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22545 that, if an attribute's can be either a constant or one of the
22546 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
22547 taken as section offsets, not constants.
22548
22549 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22550 cannot handle that. */
22551
22552 static int
22553 attr_form_is_constant (const struct attribute *attr)
22554 {
22555 switch (attr->form)
22556 {
22557 case DW_FORM_sdata:
22558 case DW_FORM_udata:
22559 case DW_FORM_data1:
22560 case DW_FORM_data2:
22561 case DW_FORM_data4:
22562 case DW_FORM_data8:
22563 case DW_FORM_implicit_const:
22564 return 1;
22565 default:
22566 return 0;
22567 }
22568 }
22569
22570
22571 /* DW_ADDR is always stored already as sect_offset; despite for the forms
22572 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22573
22574 static int
22575 attr_form_is_ref (const struct attribute *attr)
22576 {
22577 switch (attr->form)
22578 {
22579 case DW_FORM_ref_addr:
22580 case DW_FORM_ref1:
22581 case DW_FORM_ref2:
22582 case DW_FORM_ref4:
22583 case DW_FORM_ref8:
22584 case DW_FORM_ref_udata:
22585 case DW_FORM_GNU_ref_alt:
22586 return 1;
22587 default:
22588 return 0;
22589 }
22590 }
22591
22592 /* Return the .debug_loc section to use for CU.
22593 For DWO files use .debug_loc.dwo. */
22594
22595 static struct dwarf2_section_info *
22596 cu_debug_loc_section (struct dwarf2_cu *cu)
22597 {
22598 if (cu->dwo_unit)
22599 {
22600 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22601
22602 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22603 }
22604 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22605 : &dwarf2_per_objfile->loc);
22606 }
22607
22608 /* A helper function that fills in a dwarf2_loclist_baton. */
22609
22610 static void
22611 fill_in_loclist_baton (struct dwarf2_cu *cu,
22612 struct dwarf2_loclist_baton *baton,
22613 const struct attribute *attr)
22614 {
22615 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22616
22617 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
22618
22619 baton->per_cu = cu->per_cu;
22620 gdb_assert (baton->per_cu);
22621 /* We don't know how long the location list is, but make sure we
22622 don't run off the edge of the section. */
22623 baton->size = section->size - DW_UNSND (attr);
22624 baton->data = section->buffer + DW_UNSND (attr);
22625 baton->base_address = cu->base_address;
22626 baton->from_dwo = cu->dwo_unit != NULL;
22627 }
22628
22629 static void
22630 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
22631 struct dwarf2_cu *cu, int is_block)
22632 {
22633 struct objfile *objfile = dwarf2_per_objfile->objfile;
22634 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22635
22636 if (attr_form_is_section_offset (attr)
22637 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
22638 the section. If so, fall through to the complaint in the
22639 other branch. */
22640 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
22641 {
22642 struct dwarf2_loclist_baton *baton;
22643
22644 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
22645
22646 fill_in_loclist_baton (cu, baton, attr);
22647
22648 if (cu->base_known == 0)
22649 complaint (&symfile_complaints,
22650 _("Location list used without "
22651 "specifying the CU base address."));
22652
22653 SYMBOL_ACLASS_INDEX (sym) = (is_block
22654 ? dwarf2_loclist_block_index
22655 : dwarf2_loclist_index);
22656 SYMBOL_LOCATION_BATON (sym) = baton;
22657 }
22658 else
22659 {
22660 struct dwarf2_locexpr_baton *baton;
22661
22662 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
22663 baton->per_cu = cu->per_cu;
22664 gdb_assert (baton->per_cu);
22665
22666 if (attr_form_is_block (attr))
22667 {
22668 /* Note that we're just copying the block's data pointer
22669 here, not the actual data. We're still pointing into the
22670 info_buffer for SYM's objfile; right now we never release
22671 that buffer, but when we do clean up properly this may
22672 need to change. */
22673 baton->size = DW_BLOCK (attr)->size;
22674 baton->data = DW_BLOCK (attr)->data;
22675 }
22676 else
22677 {
22678 dwarf2_invalid_attrib_class_complaint ("location description",
22679 SYMBOL_NATURAL_NAME (sym));
22680 baton->size = 0;
22681 }
22682
22683 SYMBOL_ACLASS_INDEX (sym) = (is_block
22684 ? dwarf2_locexpr_block_index
22685 : dwarf2_locexpr_index);
22686 SYMBOL_LOCATION_BATON (sym) = baton;
22687 }
22688 }
22689
22690 /* Return the OBJFILE associated with the compilation unit CU. If CU
22691 came from a separate debuginfo file, then the master objfile is
22692 returned. */
22693
22694 struct objfile *
22695 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22696 {
22697 struct objfile *objfile = per_cu->objfile;
22698
22699 /* Return the master objfile, so that we can report and look up the
22700 correct file containing this variable. */
22701 if (objfile->separate_debug_objfile_backlink)
22702 objfile = objfile->separate_debug_objfile_backlink;
22703
22704 return objfile;
22705 }
22706
22707 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22708 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22709 CU_HEADERP first. */
22710
22711 static const struct comp_unit_head *
22712 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22713 struct dwarf2_per_cu_data *per_cu)
22714 {
22715 const gdb_byte *info_ptr;
22716
22717 if (per_cu->cu)
22718 return &per_cu->cu->header;
22719
22720 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
22721
22722 memset (cu_headerp, 0, sizeof (*cu_headerp));
22723 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22724 rcuh_kind::COMPILE);
22725
22726 return cu_headerp;
22727 }
22728
22729 /* Return the address size given in the compilation unit header for CU. */
22730
22731 int
22732 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22733 {
22734 struct comp_unit_head cu_header_local;
22735 const struct comp_unit_head *cu_headerp;
22736
22737 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22738
22739 return cu_headerp->addr_size;
22740 }
22741
22742 /* Return the offset size given in the compilation unit header for CU. */
22743
22744 int
22745 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22746 {
22747 struct comp_unit_head cu_header_local;
22748 const struct comp_unit_head *cu_headerp;
22749
22750 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22751
22752 return cu_headerp->offset_size;
22753 }
22754
22755 /* See its dwarf2loc.h declaration. */
22756
22757 int
22758 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22759 {
22760 struct comp_unit_head cu_header_local;
22761 const struct comp_unit_head *cu_headerp;
22762
22763 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22764
22765 if (cu_headerp->version == 2)
22766 return cu_headerp->addr_size;
22767 else
22768 return cu_headerp->offset_size;
22769 }
22770
22771 /* Return the text offset of the CU. The returned offset comes from
22772 this CU's objfile. If this objfile came from a separate debuginfo
22773 file, then the offset may be different from the corresponding
22774 offset in the parent objfile. */
22775
22776 CORE_ADDR
22777 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22778 {
22779 struct objfile *objfile = per_cu->objfile;
22780
22781 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22782 }
22783
22784 /* Return DWARF version number of PER_CU. */
22785
22786 short
22787 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22788 {
22789 return per_cu->dwarf_version;
22790 }
22791
22792 /* Locate the .debug_info compilation unit from CU's objfile which contains
22793 the DIE at OFFSET. Raises an error on failure. */
22794
22795 static struct dwarf2_per_cu_data *
22796 dwarf2_find_containing_comp_unit (sect_offset sect_off,
22797 unsigned int offset_in_dwz,
22798 struct objfile *objfile)
22799 {
22800 struct dwarf2_per_cu_data *this_cu;
22801 int low, high;
22802 const sect_offset *cu_off;
22803
22804 low = 0;
22805 high = dwarf2_per_objfile->n_comp_units - 1;
22806 while (high > low)
22807 {
22808 struct dwarf2_per_cu_data *mid_cu;
22809 int mid = low + (high - low) / 2;
22810
22811 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22812 cu_off = &mid_cu->sect_off;
22813 if (mid_cu->is_dwz > offset_in_dwz
22814 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
22815 high = mid;
22816 else
22817 low = mid + 1;
22818 }
22819 gdb_assert (low == high);
22820 this_cu = dwarf2_per_objfile->all_comp_units[low];
22821 cu_off = &this_cu->sect_off;
22822 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
22823 {
22824 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22825 error (_("Dwarf Error: could not find partial DIE containing "
22826 "offset 0x%x [in module %s]"),
22827 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
22828
22829 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
22830 <= sect_off);
22831 return dwarf2_per_objfile->all_comp_units[low-1];
22832 }
22833 else
22834 {
22835 this_cu = dwarf2_per_objfile->all_comp_units[low];
22836 if (low == dwarf2_per_objfile->n_comp_units - 1
22837 && sect_off >= this_cu->sect_off + this_cu->length)
22838 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
22839 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
22840 return this_cu;
22841 }
22842 }
22843
22844 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22845
22846 static void
22847 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22848 {
22849 memset (cu, 0, sizeof (*cu));
22850 per_cu->cu = cu;
22851 cu->per_cu = per_cu;
22852 cu->objfile = per_cu->objfile;
22853 obstack_init (&cu->comp_unit_obstack);
22854 }
22855
22856 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22857
22858 static void
22859 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22860 enum language pretend_language)
22861 {
22862 struct attribute *attr;
22863
22864 /* Set the language we're debugging. */
22865 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22866 if (attr)
22867 set_cu_language (DW_UNSND (attr), cu);
22868 else
22869 {
22870 cu->language = pretend_language;
22871 cu->language_defn = language_def (cu->language);
22872 }
22873
22874 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22875 }
22876
22877 /* Release one cached compilation unit, CU. We unlink it from the tree
22878 of compilation units, but we don't remove it from the read_in_chain;
22879 the caller is responsible for that.
22880 NOTE: DATA is a void * because this function is also used as a
22881 cleanup routine. */
22882
22883 static void
22884 free_heap_comp_unit (void *data)
22885 {
22886 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22887
22888 gdb_assert (cu->per_cu != NULL);
22889 cu->per_cu->cu = NULL;
22890 cu->per_cu = NULL;
22891
22892 obstack_free (&cu->comp_unit_obstack, NULL);
22893
22894 xfree (cu);
22895 }
22896
22897 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22898 when we're finished with it. We can't free the pointer itself, but be
22899 sure to unlink it from the cache. Also release any associated storage. */
22900
22901 static void
22902 free_stack_comp_unit (void *data)
22903 {
22904 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22905
22906 gdb_assert (cu->per_cu != NULL);
22907 cu->per_cu->cu = NULL;
22908 cu->per_cu = NULL;
22909
22910 obstack_free (&cu->comp_unit_obstack, NULL);
22911 cu->partial_dies = NULL;
22912 }
22913
22914 /* Free all cached compilation units. */
22915
22916 static void
22917 free_cached_comp_units (void *data)
22918 {
22919 dwarf2_per_objfile->free_cached_comp_units ();
22920 }
22921
22922 /* Increase the age counter on each cached compilation unit, and free
22923 any that are too old. */
22924
22925 static void
22926 age_cached_comp_units (void)
22927 {
22928 struct dwarf2_per_cu_data *per_cu, **last_chain;
22929
22930 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22931 per_cu = dwarf2_per_objfile->read_in_chain;
22932 while (per_cu != NULL)
22933 {
22934 per_cu->cu->last_used ++;
22935 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22936 dwarf2_mark (per_cu->cu);
22937 per_cu = per_cu->cu->read_in_chain;
22938 }
22939
22940 per_cu = dwarf2_per_objfile->read_in_chain;
22941 last_chain = &dwarf2_per_objfile->read_in_chain;
22942 while (per_cu != NULL)
22943 {
22944 struct dwarf2_per_cu_data *next_cu;
22945
22946 next_cu = per_cu->cu->read_in_chain;
22947
22948 if (!per_cu->cu->mark)
22949 {
22950 free_heap_comp_unit (per_cu->cu);
22951 *last_chain = next_cu;
22952 }
22953 else
22954 last_chain = &per_cu->cu->read_in_chain;
22955
22956 per_cu = next_cu;
22957 }
22958 }
22959
22960 /* Remove a single compilation unit from the cache. */
22961
22962 static void
22963 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22964 {
22965 struct dwarf2_per_cu_data *per_cu, **last_chain;
22966
22967 per_cu = dwarf2_per_objfile->read_in_chain;
22968 last_chain = &dwarf2_per_objfile->read_in_chain;
22969 while (per_cu != NULL)
22970 {
22971 struct dwarf2_per_cu_data *next_cu;
22972
22973 next_cu = per_cu->cu->read_in_chain;
22974
22975 if (per_cu == target_per_cu)
22976 {
22977 free_heap_comp_unit (per_cu->cu);
22978 per_cu->cu = NULL;
22979 *last_chain = next_cu;
22980 break;
22981 }
22982 else
22983 last_chain = &per_cu->cu->read_in_chain;
22984
22985 per_cu = next_cu;
22986 }
22987 }
22988
22989 /* Release all extra memory associated with OBJFILE. */
22990
22991 void
22992 dwarf2_free_objfile (struct objfile *objfile)
22993 {
22994 dwarf2_per_objfile
22995 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22996 dwarf2_objfile_data_key);
22997
22998 if (dwarf2_per_objfile == NULL)
22999 return;
23000
23001 dwarf2_per_objfile->~dwarf2_per_objfile ();
23002 }
23003
23004 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23005 We store these in a hash table separate from the DIEs, and preserve them
23006 when the DIEs are flushed out of cache.
23007
23008 The CU "per_cu" pointer is needed because offset alone is not enough to
23009 uniquely identify the type. A file may have multiple .debug_types sections,
23010 or the type may come from a DWO file. Furthermore, while it's more logical
23011 to use per_cu->section+offset, with Fission the section with the data is in
23012 the DWO file but we don't know that section at the point we need it.
23013 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23014 because we can enter the lookup routine, get_die_type_at_offset, from
23015 outside this file, and thus won't necessarily have PER_CU->cu.
23016 Fortunately, PER_CU is stable for the life of the objfile. */
23017
23018 struct dwarf2_per_cu_offset_and_type
23019 {
23020 const struct dwarf2_per_cu_data *per_cu;
23021 sect_offset sect_off;
23022 struct type *type;
23023 };
23024
23025 /* Hash function for a dwarf2_per_cu_offset_and_type. */
23026
23027 static hashval_t
23028 per_cu_offset_and_type_hash (const void *item)
23029 {
23030 const struct dwarf2_per_cu_offset_and_type *ofs
23031 = (const struct dwarf2_per_cu_offset_and_type *) item;
23032
23033 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
23034 }
23035
23036 /* Equality function for a dwarf2_per_cu_offset_and_type. */
23037
23038 static int
23039 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
23040 {
23041 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23042 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23043 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23044 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
23045
23046 return (ofs_lhs->per_cu == ofs_rhs->per_cu
23047 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23048 }
23049
23050 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23051 table if necessary. For convenience, return TYPE.
23052
23053 The DIEs reading must have careful ordering to:
23054 * Not cause infite loops trying to read in DIEs as a prerequisite for
23055 reading current DIE.
23056 * Not trying to dereference contents of still incompletely read in types
23057 while reading in other DIEs.
23058 * Enable referencing still incompletely read in types just by a pointer to
23059 the type without accessing its fields.
23060
23061 Therefore caller should follow these rules:
23062 * Try to fetch any prerequisite types we may need to build this DIE type
23063 before building the type and calling set_die_type.
23064 * After building type call set_die_type for current DIE as soon as
23065 possible before fetching more types to complete the current type.
23066 * Make the type as complete as possible before fetching more types. */
23067
23068 static struct type *
23069 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23070 {
23071 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23072 struct objfile *objfile = cu->objfile;
23073 struct attribute *attr;
23074 struct dynamic_prop prop;
23075
23076 /* For Ada types, make sure that the gnat-specific data is always
23077 initialized (if not already set). There are a few types where
23078 we should not be doing so, because the type-specific area is
23079 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23080 where the type-specific area is used to store the floatformat).
23081 But this is not a problem, because the gnat-specific information
23082 is actually not needed for these types. */
23083 if (need_gnat_info (cu)
23084 && TYPE_CODE (type) != TYPE_CODE_FUNC
23085 && TYPE_CODE (type) != TYPE_CODE_FLT
23086 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23087 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23088 && TYPE_CODE (type) != TYPE_CODE_METHOD
23089 && !HAVE_GNAT_AUX_INFO (type))
23090 INIT_GNAT_SPECIFIC (type);
23091
23092 /* Read DW_AT_allocated and set in type. */
23093 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23094 if (attr_form_is_block (attr))
23095 {
23096 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23097 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23098 }
23099 else if (attr != NULL)
23100 {
23101 complaint (&symfile_complaints,
23102 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23103 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23104 to_underlying (die->sect_off));
23105 }
23106
23107 /* Read DW_AT_associated and set in type. */
23108 attr = dwarf2_attr (die, DW_AT_associated, cu);
23109 if (attr_form_is_block (attr))
23110 {
23111 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23112 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23113 }
23114 else if (attr != NULL)
23115 {
23116 complaint (&symfile_complaints,
23117 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23118 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23119 to_underlying (die->sect_off));
23120 }
23121
23122 /* Read DW_AT_data_location and set in type. */
23123 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23124 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23125 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
23126
23127 if (dwarf2_per_objfile->die_type_hash == NULL)
23128 {
23129 dwarf2_per_objfile->die_type_hash =
23130 htab_create_alloc_ex (127,
23131 per_cu_offset_and_type_hash,
23132 per_cu_offset_and_type_eq,
23133 NULL,
23134 &objfile->objfile_obstack,
23135 hashtab_obstack_allocate,
23136 dummy_obstack_deallocate);
23137 }
23138
23139 ofs.per_cu = cu->per_cu;
23140 ofs.sect_off = die->sect_off;
23141 ofs.type = type;
23142 slot = (struct dwarf2_per_cu_offset_and_type **)
23143 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
23144 if (*slot)
23145 complaint (&symfile_complaints,
23146 _("A problem internal to GDB: DIE 0x%x has type already set"),
23147 to_underlying (die->sect_off));
23148 *slot = XOBNEW (&objfile->objfile_obstack,
23149 struct dwarf2_per_cu_offset_and_type);
23150 **slot = ofs;
23151 return type;
23152 }
23153
23154 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23155 or return NULL if the die does not have a saved type. */
23156
23157 static struct type *
23158 get_die_type_at_offset (sect_offset sect_off,
23159 struct dwarf2_per_cu_data *per_cu)
23160 {
23161 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23162
23163 if (dwarf2_per_objfile->die_type_hash == NULL)
23164 return NULL;
23165
23166 ofs.per_cu = per_cu;
23167 ofs.sect_off = sect_off;
23168 slot = ((struct dwarf2_per_cu_offset_and_type *)
23169 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
23170 if (slot)
23171 return slot->type;
23172 else
23173 return NULL;
23174 }
23175
23176 /* Look up the type for DIE in CU in die_type_hash,
23177 or return NULL if DIE does not have a saved type. */
23178
23179 static struct type *
23180 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23181 {
23182 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23183 }
23184
23185 /* Add a dependence relationship from CU to REF_PER_CU. */
23186
23187 static void
23188 dwarf2_add_dependence (struct dwarf2_cu *cu,
23189 struct dwarf2_per_cu_data *ref_per_cu)
23190 {
23191 void **slot;
23192
23193 if (cu->dependencies == NULL)
23194 cu->dependencies
23195 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23196 NULL, &cu->comp_unit_obstack,
23197 hashtab_obstack_allocate,
23198 dummy_obstack_deallocate);
23199
23200 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23201 if (*slot == NULL)
23202 *slot = ref_per_cu;
23203 }
23204
23205 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23206 Set the mark field in every compilation unit in the
23207 cache that we must keep because we are keeping CU. */
23208
23209 static int
23210 dwarf2_mark_helper (void **slot, void *data)
23211 {
23212 struct dwarf2_per_cu_data *per_cu;
23213
23214 per_cu = (struct dwarf2_per_cu_data *) *slot;
23215
23216 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23217 reading of the chain. As such dependencies remain valid it is not much
23218 useful to track and undo them during QUIT cleanups. */
23219 if (per_cu->cu == NULL)
23220 return 1;
23221
23222 if (per_cu->cu->mark)
23223 return 1;
23224 per_cu->cu->mark = 1;
23225
23226 if (per_cu->cu->dependencies != NULL)
23227 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23228
23229 return 1;
23230 }
23231
23232 /* Set the mark field in CU and in every other compilation unit in the
23233 cache that we must keep because we are keeping CU. */
23234
23235 static void
23236 dwarf2_mark (struct dwarf2_cu *cu)
23237 {
23238 if (cu->mark)
23239 return;
23240 cu->mark = 1;
23241 if (cu->dependencies != NULL)
23242 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23243 }
23244
23245 static void
23246 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23247 {
23248 while (per_cu)
23249 {
23250 per_cu->cu->mark = 0;
23251 per_cu = per_cu->cu->read_in_chain;
23252 }
23253 }
23254
23255 /* Trivial hash function for partial_die_info: the hash value of a DIE
23256 is its offset in .debug_info for this objfile. */
23257
23258 static hashval_t
23259 partial_die_hash (const void *item)
23260 {
23261 const struct partial_die_info *part_die
23262 = (const struct partial_die_info *) item;
23263
23264 return to_underlying (part_die->sect_off);
23265 }
23266
23267 /* Trivial comparison function for partial_die_info structures: two DIEs
23268 are equal if they have the same offset. */
23269
23270 static int
23271 partial_die_eq (const void *item_lhs, const void *item_rhs)
23272 {
23273 const struct partial_die_info *part_die_lhs
23274 = (const struct partial_die_info *) item_lhs;
23275 const struct partial_die_info *part_die_rhs
23276 = (const struct partial_die_info *) item_rhs;
23277
23278 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23279 }
23280
23281 static struct cmd_list_element *set_dwarf_cmdlist;
23282 static struct cmd_list_element *show_dwarf_cmdlist;
23283
23284 static void
23285 set_dwarf_cmd (char *args, int from_tty)
23286 {
23287 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
23288 gdb_stdout);
23289 }
23290
23291 static void
23292 show_dwarf_cmd (char *args, int from_tty)
23293 {
23294 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
23295 }
23296
23297 /* Free data associated with OBJFILE, if necessary. */
23298
23299 static void
23300 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
23301 {
23302 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
23303 int ix;
23304
23305 /* Make sure we don't accidentally use dwarf2_per_objfile while
23306 cleaning up. */
23307 dwarf2_per_objfile = NULL;
23308
23309 for (ix = 0; ix < data->n_comp_units; ++ix)
23310 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
23311
23312 for (ix = 0; ix < data->n_type_units; ++ix)
23313 VEC_free (dwarf2_per_cu_ptr,
23314 data->all_type_units[ix]->per_cu.imported_symtabs);
23315 xfree (data->all_type_units);
23316
23317 VEC_free (dwarf2_section_info_def, data->types);
23318
23319 if (data->dwo_files)
23320 free_dwo_files (data->dwo_files, objfile);
23321 if (data->dwp_file)
23322 gdb_bfd_unref (data->dwp_file->dbfd);
23323
23324 if (data->dwz_file && data->dwz_file->dwz_bfd)
23325 gdb_bfd_unref (data->dwz_file->dwz_bfd);
23326 }
23327
23328 \f
23329 /* The "save gdb-index" command. */
23330
23331 /* In-memory buffer to prepare data to be written later to a file. */
23332 class data_buf
23333 {
23334 public:
23335 /* Copy DATA to the end of the buffer. */
23336 template<typename T>
23337 void append_data (const T &data)
23338 {
23339 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23340 reinterpret_cast<const gdb_byte *> (&data + 1),
23341 grow (sizeof (data)));
23342 }
23343
23344 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23345 terminating zero is appended too. */
23346 void append_cstr0 (const char *cstr)
23347 {
23348 const size_t size = strlen (cstr) + 1;
23349 std::copy (cstr, cstr + size, grow (size));
23350 }
23351
23352 /* Accept a host-format integer in VAL and append it to the buffer
23353 as a target-format integer which is LEN bytes long. */
23354 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23355 {
23356 ::store_unsigned_integer (grow (len), len, byte_order, val);
23357 }
23358
23359 /* Return the size of the buffer. */
23360 size_t size () const
23361 {
23362 return m_vec.size ();
23363 }
23364
23365 /* Write the buffer to FILE. */
23366 void file_write (FILE *file) const
23367 {
23368 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23369 error (_("couldn't write data to file"));
23370 }
23371
23372 private:
23373 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23374 the start of the new block. */
23375 gdb_byte *grow (size_t size)
23376 {
23377 m_vec.resize (m_vec.size () + size);
23378 return &*m_vec.end () - size;
23379 }
23380
23381 gdb::byte_vector m_vec;
23382 };
23383
23384 /* An entry in the symbol table. */
23385 struct symtab_index_entry
23386 {
23387 /* The name of the symbol. */
23388 const char *name;
23389 /* The offset of the name in the constant pool. */
23390 offset_type index_offset;
23391 /* A sorted vector of the indices of all the CUs that hold an object
23392 of this name. */
23393 std::vector<offset_type> cu_indices;
23394 };
23395
23396 /* The symbol table. This is a power-of-2-sized hash table. */
23397 struct mapped_symtab
23398 {
23399 mapped_symtab ()
23400 {
23401 data.resize (1024);
23402 }
23403
23404 offset_type n_elements = 0;
23405 std::vector<symtab_index_entry> data;
23406 };
23407
23408 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
23409 the slot.
23410
23411 Function is used only during write_hash_table so no index format backward
23412 compatibility is needed. */
23413
23414 static symtab_index_entry &
23415 find_slot (struct mapped_symtab *symtab, const char *name)
23416 {
23417 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
23418
23419 index = hash & (symtab->data.size () - 1);
23420 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
23421
23422 for (;;)
23423 {
23424 if (symtab->data[index].name == NULL
23425 || strcmp (name, symtab->data[index].name) == 0)
23426 return symtab->data[index];
23427 index = (index + step) & (symtab->data.size () - 1);
23428 }
23429 }
23430
23431 /* Expand SYMTAB's hash table. */
23432
23433 static void
23434 hash_expand (struct mapped_symtab *symtab)
23435 {
23436 auto old_entries = std::move (symtab->data);
23437
23438 symtab->data.clear ();
23439 symtab->data.resize (old_entries.size () * 2);
23440
23441 for (auto &it : old_entries)
23442 if (it.name != NULL)
23443 {
23444 auto &ref = find_slot (symtab, it.name);
23445 ref = std::move (it);
23446 }
23447 }
23448
23449 /* Add an entry to SYMTAB. NAME is the name of the symbol.
23450 CU_INDEX is the index of the CU in which the symbol appears.
23451 IS_STATIC is one if the symbol is static, otherwise zero (global). */
23452
23453 static void
23454 add_index_entry (struct mapped_symtab *symtab, const char *name,
23455 int is_static, gdb_index_symbol_kind kind,
23456 offset_type cu_index)
23457 {
23458 offset_type cu_index_and_attrs;
23459
23460 ++symtab->n_elements;
23461 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
23462 hash_expand (symtab);
23463
23464 symtab_index_entry &slot = find_slot (symtab, name);
23465 if (slot.name == NULL)
23466 {
23467 slot.name = name;
23468 /* index_offset is set later. */
23469 }
23470
23471 cu_index_and_attrs = 0;
23472 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23473 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23474 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23475
23476 /* We don't want to record an index value twice as we want to avoid the
23477 duplication.
23478 We process all global symbols and then all static symbols
23479 (which would allow us to avoid the duplication by only having to check
23480 the last entry pushed), but a symbol could have multiple kinds in one CU.
23481 To keep things simple we don't worry about the duplication here and
23482 sort and uniqufy the list after we've processed all symbols. */
23483 slot.cu_indices.push_back (cu_index_and_attrs);
23484 }
23485
23486 /* Sort and remove duplicates of all symbols' cu_indices lists. */
23487
23488 static void
23489 uniquify_cu_indices (struct mapped_symtab *symtab)
23490 {
23491 for (auto &entry : symtab->data)
23492 {
23493 if (entry.name != NULL && !entry.cu_indices.empty ())
23494 {
23495 auto &cu_indices = entry.cu_indices;
23496 std::sort (cu_indices.begin (), cu_indices.end ());
23497 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
23498 cu_indices.erase (from, cu_indices.end ());
23499 }
23500 }
23501 }
23502
23503 /* A form of 'const char *' suitable for container keys. Only the
23504 pointer is stored. The strings themselves are compared, not the
23505 pointers. */
23506 class c_str_view
23507 {
23508 public:
23509 c_str_view (const char *cstr)
23510 : m_cstr (cstr)
23511 {}
23512
23513 bool operator== (const c_str_view &other) const
23514 {
23515 return strcmp (m_cstr, other.m_cstr) == 0;
23516 }
23517
23518 private:
23519 friend class c_str_view_hasher;
23520 const char *const m_cstr;
23521 };
23522
23523 /* A std::unordered_map::hasher for c_str_view that uses the right
23524 hash function for strings in a mapped index. */
23525 class c_str_view_hasher
23526 {
23527 public:
23528 size_t operator () (const c_str_view &x) const
23529 {
23530 return mapped_index_string_hash (INT_MAX, x.m_cstr);
23531 }
23532 };
23533
23534 /* A std::unordered_map::hasher for std::vector<>. */
23535 template<typename T>
23536 class vector_hasher
23537 {
23538 public:
23539 size_t operator () (const std::vector<T> &key) const
23540 {
23541 return iterative_hash (key.data (),
23542 sizeof (key.front ()) * key.size (), 0);
23543 }
23544 };
23545
23546 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
23547 constant pool entries going into the data buffer CPOOL. */
23548
23549 static void
23550 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
23551 {
23552 {
23553 /* Elements are sorted vectors of the indices of all the CUs that
23554 hold an object of this name. */
23555 std::unordered_map<std::vector<offset_type>, offset_type,
23556 vector_hasher<offset_type>>
23557 symbol_hash_table;
23558
23559 /* We add all the index vectors to the constant pool first, to
23560 ensure alignment is ok. */
23561 for (symtab_index_entry &entry : symtab->data)
23562 {
23563 if (entry.name == NULL)
23564 continue;
23565 gdb_assert (entry.index_offset == 0);
23566
23567 /* Finding before inserting is faster than always trying to
23568 insert, because inserting always allocates a node, does the
23569 lookup, and then destroys the new node if another node
23570 already had the same key. C++17 try_emplace will avoid
23571 this. */
23572 const auto found
23573 = symbol_hash_table.find (entry.cu_indices);
23574 if (found != symbol_hash_table.end ())
23575 {
23576 entry.index_offset = found->second;
23577 continue;
23578 }
23579
23580 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
23581 entry.index_offset = cpool.size ();
23582 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
23583 for (const auto index : entry.cu_indices)
23584 cpool.append_data (MAYBE_SWAP (index));
23585 }
23586 }
23587
23588 /* Now write out the hash table. */
23589 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
23590 for (const auto &entry : symtab->data)
23591 {
23592 offset_type str_off, vec_off;
23593
23594 if (entry.name != NULL)
23595 {
23596 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
23597 if (insertpair.second)
23598 cpool.append_cstr0 (entry.name);
23599 str_off = insertpair.first->second;
23600 vec_off = entry.index_offset;
23601 }
23602 else
23603 {
23604 /* While 0 is a valid constant pool index, it is not valid
23605 to have 0 for both offsets. */
23606 str_off = 0;
23607 vec_off = 0;
23608 }
23609
23610 output.append_data (MAYBE_SWAP (str_off));
23611 output.append_data (MAYBE_SWAP (vec_off));
23612 }
23613 }
23614
23615 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
23616
23617 /* Helper struct for building the address table. */
23618 struct addrmap_index_data
23619 {
23620 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
23621 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
23622 {}
23623
23624 struct objfile *objfile;
23625 data_buf &addr_vec;
23626 psym_index_map &cu_index_htab;
23627
23628 /* Non-zero if the previous_* fields are valid.
23629 We can't write an entry until we see the next entry (since it is only then
23630 that we know the end of the entry). */
23631 int previous_valid;
23632 /* Index of the CU in the table of all CUs in the index file. */
23633 unsigned int previous_cu_index;
23634 /* Start address of the CU. */
23635 CORE_ADDR previous_cu_start;
23636 };
23637
23638 /* Write an address entry to ADDR_VEC. */
23639
23640 static void
23641 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
23642 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23643 {
23644 CORE_ADDR baseaddr;
23645
23646 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23647
23648 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
23649 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
23650 addr_vec.append_data (MAYBE_SWAP (cu_index));
23651 }
23652
23653 /* Worker function for traversing an addrmap to build the address table. */
23654
23655 static int
23656 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23657 {
23658 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23659 struct partial_symtab *pst = (struct partial_symtab *) obj;
23660
23661 if (data->previous_valid)
23662 add_address_entry (data->objfile, data->addr_vec,
23663 data->previous_cu_start, start_addr,
23664 data->previous_cu_index);
23665
23666 data->previous_cu_start = start_addr;
23667 if (pst != NULL)
23668 {
23669 const auto it = data->cu_index_htab.find (pst);
23670 gdb_assert (it != data->cu_index_htab.cend ());
23671 data->previous_cu_index = it->second;
23672 data->previous_valid = 1;
23673 }
23674 else
23675 data->previous_valid = 0;
23676
23677 return 0;
23678 }
23679
23680 /* Write OBJFILE's address map to ADDR_VEC.
23681 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23682 in the index file. */
23683
23684 static void
23685 write_address_map (struct objfile *objfile, data_buf &addr_vec,
23686 psym_index_map &cu_index_htab)
23687 {
23688 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
23689
23690 /* When writing the address table, we have to cope with the fact that
23691 the addrmap iterator only provides the start of a region; we have to
23692 wait until the next invocation to get the start of the next region. */
23693
23694 addrmap_index_data.objfile = objfile;
23695 addrmap_index_data.previous_valid = 0;
23696
23697 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23698 &addrmap_index_data);
23699
23700 /* It's highly unlikely the last entry (end address = 0xff...ff)
23701 is valid, but we should still handle it.
23702 The end address is recorded as the start of the next region, but that
23703 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23704 anyway. */
23705 if (addrmap_index_data.previous_valid)
23706 add_address_entry (objfile, addr_vec,
23707 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23708 addrmap_index_data.previous_cu_index);
23709 }
23710
23711 /* Return the symbol kind of PSYM. */
23712
23713 static gdb_index_symbol_kind
23714 symbol_kind (struct partial_symbol *psym)
23715 {
23716 domain_enum domain = PSYMBOL_DOMAIN (psym);
23717 enum address_class aclass = PSYMBOL_CLASS (psym);
23718
23719 switch (domain)
23720 {
23721 case VAR_DOMAIN:
23722 switch (aclass)
23723 {
23724 case LOC_BLOCK:
23725 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23726 case LOC_TYPEDEF:
23727 return GDB_INDEX_SYMBOL_KIND_TYPE;
23728 case LOC_COMPUTED:
23729 case LOC_CONST_BYTES:
23730 case LOC_OPTIMIZED_OUT:
23731 case LOC_STATIC:
23732 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23733 case LOC_CONST:
23734 /* Note: It's currently impossible to recognize psyms as enum values
23735 short of reading the type info. For now punt. */
23736 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23737 default:
23738 /* There are other LOC_FOO values that one might want to classify
23739 as variables, but dwarf2read.c doesn't currently use them. */
23740 return GDB_INDEX_SYMBOL_KIND_OTHER;
23741 }
23742 case STRUCT_DOMAIN:
23743 return GDB_INDEX_SYMBOL_KIND_TYPE;
23744 default:
23745 return GDB_INDEX_SYMBOL_KIND_OTHER;
23746 }
23747 }
23748
23749 /* Add a list of partial symbols to SYMTAB. */
23750
23751 static void
23752 write_psymbols (struct mapped_symtab *symtab,
23753 std::unordered_set<partial_symbol *> &psyms_seen,
23754 struct partial_symbol **psymp,
23755 int count,
23756 offset_type cu_index,
23757 int is_static)
23758 {
23759 for (; count-- > 0; ++psymp)
23760 {
23761 struct partial_symbol *psym = *psymp;
23762
23763 if (SYMBOL_LANGUAGE (psym) == language_ada)
23764 error (_("Ada is not currently supported by the index"));
23765
23766 /* Only add a given psymbol once. */
23767 if (psyms_seen.insert (psym).second)
23768 {
23769 gdb_index_symbol_kind kind = symbol_kind (psym);
23770
23771 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23772 is_static, kind, cu_index);
23773 }
23774 }
23775 }
23776
23777 /* A helper struct used when iterating over debug_types. */
23778 struct signatured_type_index_data
23779 {
23780 signatured_type_index_data (data_buf &types_list_,
23781 std::unordered_set<partial_symbol *> &psyms_seen_)
23782 : types_list (types_list_), psyms_seen (psyms_seen_)
23783 {}
23784
23785 struct objfile *objfile;
23786 struct mapped_symtab *symtab;
23787 data_buf &types_list;
23788 std::unordered_set<partial_symbol *> &psyms_seen;
23789 int cu_index;
23790 };
23791
23792 /* A helper function that writes a single signatured_type to an
23793 obstack. */
23794
23795 static int
23796 write_one_signatured_type (void **slot, void *d)
23797 {
23798 struct signatured_type_index_data *info
23799 = (struct signatured_type_index_data *) d;
23800 struct signatured_type *entry = (struct signatured_type *) *slot;
23801 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23802
23803 write_psymbols (info->symtab,
23804 info->psyms_seen,
23805 info->objfile->global_psymbols.list
23806 + psymtab->globals_offset,
23807 psymtab->n_global_syms, info->cu_index,
23808 0);
23809 write_psymbols (info->symtab,
23810 info->psyms_seen,
23811 info->objfile->static_psymbols.list
23812 + psymtab->statics_offset,
23813 psymtab->n_static_syms, info->cu_index,
23814 1);
23815
23816 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23817 to_underlying (entry->per_cu.sect_off));
23818 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23819 to_underlying (entry->type_offset_in_tu));
23820 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
23821
23822 ++info->cu_index;
23823
23824 return 1;
23825 }
23826
23827 /* Recurse into all "included" dependencies and count their symbols as
23828 if they appeared in this psymtab. */
23829
23830 static void
23831 recursively_count_psymbols (struct partial_symtab *psymtab,
23832 size_t &psyms_seen)
23833 {
23834 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
23835 if (psymtab->dependencies[i]->user != NULL)
23836 recursively_count_psymbols (psymtab->dependencies[i],
23837 psyms_seen);
23838
23839 psyms_seen += psymtab->n_global_syms;
23840 psyms_seen += psymtab->n_static_syms;
23841 }
23842
23843 /* Recurse into all "included" dependencies and write their symbols as
23844 if they appeared in this psymtab. */
23845
23846 static void
23847 recursively_write_psymbols (struct objfile *objfile,
23848 struct partial_symtab *psymtab,
23849 struct mapped_symtab *symtab,
23850 std::unordered_set<partial_symbol *> &psyms_seen,
23851 offset_type cu_index)
23852 {
23853 int i;
23854
23855 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23856 if (psymtab->dependencies[i]->user != NULL)
23857 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23858 symtab, psyms_seen, cu_index);
23859
23860 write_psymbols (symtab,
23861 psyms_seen,
23862 objfile->global_psymbols.list + psymtab->globals_offset,
23863 psymtab->n_global_syms, cu_index,
23864 0);
23865 write_psymbols (symtab,
23866 psyms_seen,
23867 objfile->static_psymbols.list + psymtab->statics_offset,
23868 psymtab->n_static_syms, cu_index,
23869 1);
23870 }
23871
23872 /* Create an index file for OBJFILE in the directory DIR. */
23873
23874 static void
23875 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23876 {
23877 if (dwarf2_per_objfile->using_index)
23878 error (_("Cannot use an index to create the index"));
23879
23880 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23881 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23882
23883 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23884 return;
23885
23886 struct stat st;
23887 if (stat (objfile_name (objfile), &st) < 0)
23888 perror_with_name (objfile_name (objfile));
23889
23890 std::string filename (std::string (dir) + SLASH_STRING
23891 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
23892
23893 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
23894 if (!out_file)
23895 error (_("Can't open `%s' for writing"), filename.c_str ());
23896
23897 /* Order matters here; we want FILE to be closed before FILENAME is
23898 unlinked, because on MS-Windows one cannot delete a file that is
23899 still open. (Don't call anything here that might throw until
23900 file_closer is created.) */
23901 gdb::unlinker unlink_file (filename.c_str ());
23902 gdb_file_up close_out_file (out_file);
23903
23904 mapped_symtab symtab;
23905 data_buf cu_list;
23906
23907 /* While we're scanning CU's create a table that maps a psymtab pointer
23908 (which is what addrmap records) to its index (which is what is recorded
23909 in the index file). This will later be needed to write the address
23910 table. */
23911 psym_index_map cu_index_htab;
23912 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
23913
23914 /* The CU list is already sorted, so we don't need to do additional
23915 work here. Also, the debug_types entries do not appear in
23916 all_comp_units, but only in their own hash table. */
23917
23918 /* The psyms_seen set is potentially going to be largish (~40k
23919 elements when indexing a -g3 build of GDB itself). Estimate the
23920 number of elements in order to avoid too many rehashes, which
23921 require rebuilding buckets and thus many trips to
23922 malloc/free. */
23923 size_t psyms_count = 0;
23924 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23925 {
23926 struct dwarf2_per_cu_data *per_cu
23927 = dwarf2_per_objfile->all_comp_units[i];
23928 struct partial_symtab *psymtab = per_cu->v.psymtab;
23929
23930 if (psymtab != NULL && psymtab->user == NULL)
23931 recursively_count_psymbols (psymtab, psyms_count);
23932 }
23933 /* Generating an index for gdb itself shows a ratio of
23934 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
23935 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
23936 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23937 {
23938 struct dwarf2_per_cu_data *per_cu
23939 = dwarf2_per_objfile->all_comp_units[i];
23940 struct partial_symtab *psymtab = per_cu->v.psymtab;
23941
23942 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23943 It may be referenced from a local scope but in such case it does not
23944 need to be present in .gdb_index. */
23945 if (psymtab == NULL)
23946 continue;
23947
23948 if (psymtab->user == NULL)
23949 recursively_write_psymbols (objfile, psymtab, &symtab,
23950 psyms_seen, i);
23951
23952 const auto insertpair = cu_index_htab.emplace (psymtab, i);
23953 gdb_assert (insertpair.second);
23954
23955 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
23956 to_underlying (per_cu->sect_off));
23957 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
23958 }
23959
23960 /* Dump the address map. */
23961 data_buf addr_vec;
23962 write_address_map (objfile, addr_vec, cu_index_htab);
23963
23964 /* Write out the .debug_type entries, if any. */
23965 data_buf types_cu_list;
23966 if (dwarf2_per_objfile->signatured_types)
23967 {
23968 signatured_type_index_data sig_data (types_cu_list,
23969 psyms_seen);
23970
23971 sig_data.objfile = objfile;
23972 sig_data.symtab = &symtab;
23973 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23974 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23975 write_one_signatured_type, &sig_data);
23976 }
23977
23978 /* Now that we've processed all symbols we can shrink their cu_indices
23979 lists. */
23980 uniquify_cu_indices (&symtab);
23981
23982 data_buf symtab_vec, constant_pool;
23983 write_hash_table (&symtab, symtab_vec, constant_pool);
23984
23985 data_buf contents;
23986 const offset_type size_of_contents = 6 * sizeof (offset_type);
23987 offset_type total_len = size_of_contents;
23988
23989 /* The version number. */
23990 contents.append_data (MAYBE_SWAP (8));
23991
23992 /* The offset of the CU list from the start of the file. */
23993 contents.append_data (MAYBE_SWAP (total_len));
23994 total_len += cu_list.size ();
23995
23996 /* The offset of the types CU list from the start of the file. */
23997 contents.append_data (MAYBE_SWAP (total_len));
23998 total_len += types_cu_list.size ();
23999
24000 /* The offset of the address table from the start of the file. */
24001 contents.append_data (MAYBE_SWAP (total_len));
24002 total_len += addr_vec.size ();
24003
24004 /* The offset of the symbol table from the start of the file. */
24005 contents.append_data (MAYBE_SWAP (total_len));
24006 total_len += symtab_vec.size ();
24007
24008 /* The offset of the constant pool from the start of the file. */
24009 contents.append_data (MAYBE_SWAP (total_len));
24010 total_len += constant_pool.size ();
24011
24012 gdb_assert (contents.size () == size_of_contents);
24013
24014 contents.file_write (out_file);
24015 cu_list.file_write (out_file);
24016 types_cu_list.file_write (out_file);
24017 addr_vec.file_write (out_file);
24018 symtab_vec.file_write (out_file);
24019 constant_pool.file_write (out_file);
24020
24021 /* We want to keep the file. */
24022 unlink_file.keep ();
24023 }
24024
24025 /* Implementation of the `save gdb-index' command.
24026
24027 Note that the file format used by this command is documented in the
24028 GDB manual. Any changes here must be documented there. */
24029
24030 static void
24031 save_gdb_index_command (const char *arg, int from_tty)
24032 {
24033 struct objfile *objfile;
24034
24035 if (!arg || !*arg)
24036 error (_("usage: save gdb-index DIRECTORY"));
24037
24038 ALL_OBJFILES (objfile)
24039 {
24040 struct stat st;
24041
24042 /* If the objfile does not correspond to an actual file, skip it. */
24043 if (stat (objfile_name (objfile), &st) < 0)
24044 continue;
24045
24046 dwarf2_per_objfile
24047 = (struct dwarf2_per_objfile *) objfile_data (objfile,
24048 dwarf2_objfile_data_key);
24049 if (dwarf2_per_objfile)
24050 {
24051
24052 TRY
24053 {
24054 write_psymtabs_to_index (objfile, arg);
24055 }
24056 CATCH (except, RETURN_MASK_ERROR)
24057 {
24058 exception_fprintf (gdb_stderr, except,
24059 _("Error while writing index for `%s': "),
24060 objfile_name (objfile));
24061 }
24062 END_CATCH
24063 }
24064 }
24065 }
24066
24067 \f
24068
24069 int dwarf_always_disassemble;
24070
24071 static void
24072 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
24073 struct cmd_list_element *c, const char *value)
24074 {
24075 fprintf_filtered (file,
24076 _("Whether to always disassemble "
24077 "DWARF expressions is %s.\n"),
24078 value);
24079 }
24080
24081 static void
24082 show_check_physname (struct ui_file *file, int from_tty,
24083 struct cmd_list_element *c, const char *value)
24084 {
24085 fprintf_filtered (file,
24086 _("Whether to check \"physname\" is %s.\n"),
24087 value);
24088 }
24089
24090 void
24091 _initialize_dwarf2_read (void)
24092 {
24093 struct cmd_list_element *c;
24094
24095 dwarf2_objfile_data_key
24096 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
24097
24098 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24099 Set DWARF specific variables.\n\
24100 Configure DWARF variables such as the cache size"),
24101 &set_dwarf_cmdlist, "maintenance set dwarf ",
24102 0/*allow-unknown*/, &maintenance_set_cmdlist);
24103
24104 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24105 Show DWARF specific variables\n\
24106 Show DWARF variables such as the cache size"),
24107 &show_dwarf_cmdlist, "maintenance show dwarf ",
24108 0/*allow-unknown*/, &maintenance_show_cmdlist);
24109
24110 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24111 &dwarf_max_cache_age, _("\
24112 Set the upper bound on the age of cached DWARF compilation units."), _("\
24113 Show the upper bound on the age of cached DWARF compilation units."), _("\
24114 A higher limit means that cached compilation units will be stored\n\
24115 in memory longer, and more total memory will be used. Zero disables\n\
24116 caching, which can slow down startup."),
24117 NULL,
24118 show_dwarf_max_cache_age,
24119 &set_dwarf_cmdlist,
24120 &show_dwarf_cmdlist);
24121
24122 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
24123 &dwarf_always_disassemble, _("\
24124 Set whether `info address' always disassembles DWARF expressions."), _("\
24125 Show whether `info address' always disassembles DWARF expressions."), _("\
24126 When enabled, DWARF expressions are always printed in an assembly-like\n\
24127 syntax. When disabled, expressions will be printed in a more\n\
24128 conversational style, when possible."),
24129 NULL,
24130 show_dwarf_always_disassemble,
24131 &set_dwarf_cmdlist,
24132 &show_dwarf_cmdlist);
24133
24134 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24135 Set debugging of the DWARF reader."), _("\
24136 Show debugging of the DWARF reader."), _("\
24137 When enabled (non-zero), debugging messages are printed during DWARF\n\
24138 reading and symtab expansion. A value of 1 (one) provides basic\n\
24139 information. A value greater than 1 provides more verbose information."),
24140 NULL,
24141 NULL,
24142 &setdebuglist, &showdebuglist);
24143
24144 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24145 Set debugging of the DWARF DIE reader."), _("\
24146 Show debugging of the DWARF DIE reader."), _("\
24147 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24148 The value is the maximum depth to print."),
24149 NULL,
24150 NULL,
24151 &setdebuglist, &showdebuglist);
24152
24153 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24154 Set debugging of the dwarf line reader."), _("\
24155 Show debugging of the dwarf line reader."), _("\
24156 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24157 A value of 1 (one) provides basic information.\n\
24158 A value greater than 1 provides more verbose information."),
24159 NULL,
24160 NULL,
24161 &setdebuglist, &showdebuglist);
24162
24163 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24164 Set cross-checking of \"physname\" code against demangler."), _("\
24165 Show cross-checking of \"physname\" code against demangler."), _("\
24166 When enabled, GDB's internal \"physname\" code is checked against\n\
24167 the demangler."),
24168 NULL, show_check_physname,
24169 &setdebuglist, &showdebuglist);
24170
24171 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24172 no_class, &use_deprecated_index_sections, _("\
24173 Set whether to use deprecated gdb_index sections."), _("\
24174 Show whether to use deprecated gdb_index sections."), _("\
24175 When enabled, deprecated .gdb_index sections are used anyway.\n\
24176 Normally they are ignored either because of a missing feature or\n\
24177 performance issue.\n\
24178 Warning: This option must be enabled before gdb reads the file."),
24179 NULL,
24180 NULL,
24181 &setlist, &showlist);
24182
24183 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
24184 _("\
24185 Save a gdb-index file.\n\
24186 Usage: save gdb-index DIRECTORY"),
24187 &save_cmdlist);
24188 set_cmd_completer (c, filename_completer);
24189
24190 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24191 &dwarf2_locexpr_funcs);
24192 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24193 &dwarf2_loclist_funcs);
24194
24195 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24196 &dwarf2_block_frame_base_locexpr_funcs);
24197 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24198 &dwarf2_block_frame_base_loclist_funcs);
24199 }