Add end_psymtab_common, have all debug info readers call it.
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72 #include "namespace.h"
73
74 #include <fcntl.h>
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83 static unsigned int dwarf_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf_die_debug = 0;
87
88 /* When non-zero, dump line number entries as they are read in. */
89 static unsigned int dwarf_line_debug = 0;
90
91 /* When non-zero, cross-check physname against demangler. */
92 static int check_physname = 0;
93
94 /* When non-zero, do not reject deprecated .gdb_index sections. */
95 static int use_deprecated_index_sections = 0;
96
97 static const struct objfile_data *dwarf2_objfile_data_key;
98
99 /* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101 static int dwarf2_locexpr_index;
102 static int dwarf2_loclist_index;
103 static int dwarf2_locexpr_block_index;
104 static int dwarf2_loclist_block_index;
105
106 /* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
122 struct dwarf2_section_info
123 {
124 union
125 {
126 /* If this is a real section, the bfd section. */
127 asection *asection;
128 /* If this is a virtual section, pointer to the containing ("real")
129 section. */
130 struct dwarf2_section_info *containing_section;
131 } s;
132 /* Pointer to section data, only valid if readin. */
133 const gdb_byte *buffer;
134 /* The size of the section, real or virtual. */
135 bfd_size_type size;
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
139 /* True if we have tried to read this section. */
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.asection and s.containing_section to use. */
143 char is_virtual;
144 };
145
146 typedef struct dwarf2_section_info dwarf2_section_info_def;
147 DEF_VEC_O (dwarf2_section_info_def);
148
149 /* All offsets in the index are of this type. It must be
150 architecture-independent. */
151 typedef uint32_t offset_type;
152
153 DEF_VEC_I (offset_type);
154
155 /* Ensure only legit values are used. */
156 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
171 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index
180 {
181 /* Index data format version. */
182 int version;
183
184 /* The total length of the buffer. */
185 off_t total_size;
186
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
189
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
192
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
195
196 /* Size in slots, each slot is 2 offset_types. */
197 offset_type symbol_table_slots;
198
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201 };
202
203 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204 DEF_VEC_P (dwarf2_per_cu_ptr);
205
206 struct tu_stats
207 {
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213 };
214
215 /* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
218 struct dwarf2_per_objfile
219 {
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
225 struct dwarf2_section_info macro;
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
228 struct dwarf2_section_info addr;
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
231 struct dwarf2_section_info gdb_index;
232
233 VEC (dwarf2_section_info_def) *types;
234
235 /* Back link. */
236 struct objfile *objfile;
237
238 /* Table of all the compilation units. This is used to locate
239 the target compilation unit of a particular reference. */
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
245 /* The number of .debug_types-related CUs. */
246 int n_type_units;
247
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
254 struct signatured_type **all_type_units;
255
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
259
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
266 struct tu_stats tu_stats;
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
289
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
292 unsigned char using_index;
293
294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
295 struct mapped_index *index_table;
296
297 /* When using index_table, this keeps track of all quick_file_names entries.
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
304 htab_t quick_file_names_table;
305
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
309
310 /* Table mapping type DIEs to their struct type *.
311 This is NULL if not allocated yet.
312 The mapping is done via (CU/TU + DIE offset) -> type. */
313 htab_t die_type_hash;
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
320 };
321
322 static struct dwarf2_per_objfile *dwarf2_per_objfile;
323
324 /* Default names of the debugging sections. */
325
326 /* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
329 static const struct dwarf2_debug_sections dwarf2_elf_names =
330 {
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
336 { ".debug_macro", ".zdebug_macro" },
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
340 { ".debug_addr", ".zdebug_addr" },
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
343 { ".gdb_index", ".zgdb_index" },
344 23
345 };
346
347 /* List of DWO/DWP sections. */
348
349 static const struct dwop_section_names
350 {
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
362 }
363 dwop_section_names =
364 {
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
376 };
377
378 /* local data types */
379
380 /* The data in a compilation unit header, after target2host
381 translation, looks like this. */
382 struct comp_unit_head
383 {
384 unsigned int length;
385 short version;
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
388 sect_offset abbrev_offset;
389
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
392
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
395
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
398 sect_offset offset;
399
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
402 cu_offset first_die_offset;
403 };
404
405 /* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407 struct delayed_method_info
408 {
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423 };
424
425 typedef struct delayed_method_info delayed_method_info;
426 DEF_VEC_O (delayed_method_info);
427
428 /* Internal state when decoding a particular compilation unit. */
429 struct dwarf2_cu
430 {
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
434 /* The header of the compilation unit. */
435 struct comp_unit_head header;
436
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
447 const char *producer;
448
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
464
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
479 /* Backlink to our per_cu entry. */
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
487 htab_t die_hash;
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE. */
521 ULONGEST addr_base;
522
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE.
526 Also note that the value is zero in the non-DWO case so this value can
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
533 ULONGEST ranges_base;
534
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 unsigned int has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
550 unsigned int producer_is_gcc_lt_4_3 : 1;
551 unsigned int producer_is_icc : 1;
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
558 };
559
560 /* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
562 read_symtab_private field of the psymtab. */
563
564 struct dwarf2_per_cu_data
565 {
566 /* The start offset and length of this compilation unit.
567 NOTE: Unlike comp_unit_head.length, this length includes
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
571 sect_offset offset;
572 unsigned int length;
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
576 unsigned int queued : 1;
577
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
587 unsigned int is_debug_types : 1;
588
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
611 struct dwarf2_section_info *section;
612
613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
616 struct dwarf2_cu *cu;
617
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
621 struct objfile *objfile;
622
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
628 or NULL for unread partial units. */
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
634
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
654 };
655
656 /* Entry in the signatured_types hash table. */
657
658 struct signatured_type
659 {
660 /* The "per_cu" object of this type.
661 This struct is used iff per_cu.is_debug_types.
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
666 /* The type's signature. */
667 ULONGEST signature;
668
669 /* Offset in the TU of the type's DIE, as read from the TU header.
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
693 };
694
695 typedef struct signatured_type *sig_type_ptr;
696 DEF_VEC_P (sig_type_ptr);
697
698 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701 struct stmt_list_hash
702 {
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708 };
709
710 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713 struct type_unit_group
714 {
715 /* dwarf2read.c's main "handle" on a TU symtab.
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
720 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
721 struct dwarf2_per_cu_data per_cu;
722
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
727
728 /* The compunit symtab.
729 Type units in a group needn't all be defined in the same source file,
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
732
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749 };
750
751 /* These sections are what may appear in a (real or virtual) DWO file. */
752
753 struct dwo_sections
754 {
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
764 VEC (dwarf2_section_info_def) *types;
765 };
766
767 /* CUs/TUs in DWP/DWO files. */
768
769 struct dwo_unit
770 {
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
780 struct dwarf2_section_info *section;
781
782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788 };
789
790 /* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794 enum dwp_v2_section_ids
795 {
796 DW_SECT_MIN = 1
797 };
798
799 /* Data for one DWO file.
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
809
810 struct dwo_file
811 {
812 /* The DW_AT_GNU_dwo_name attribute.
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
820
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
824
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
828 struct dwo_sections sections;
829
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840 };
841
842 /* These sections are what may appear in a DWP file. */
843
844 struct dwp_sections
845 {
846 /* These are used by both DWP version 1 and 2. */
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
867 };
868
869 /* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
871
872 struct virtual_v1_dwo_sections
873 {
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
881 That is recorded here, and copied to dwo_unit.section. */
882 struct dwarf2_section_info info_or_types;
883 };
884
885 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890 struct virtual_v2_dwo_sections
891 {
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914 };
915
916 /* Contents of DWP hash tables. */
917
918 struct dwp_hash_table
919 {
920 uint32_t version, nr_columns;
921 uint32_t nr_units, nr_slots;
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933 #define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
945 };
946
947 /* Data for one DWP file. */
948
949 struct dwp_file
950 {
951 /* Name of the file. */
952 const char *name;
953
954 /* File format version. */
955 int version;
956
957 /* The bfd. */
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
963 /* Table of CUs in the file. */
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
972
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
975 unsigned int num_sections;
976 asection **elf_sections;
977 };
978
979 /* This represents a '.dwz' file. */
980
981 struct dwz_file
982 {
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
989 struct dwarf2_section_info gdb_index;
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993 };
994
995 /* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
998 struct exists to abstract away the constant parameters of die reading. */
999
1000 struct die_reader_specs
1001 {
1002 /* The bfd of die_section. */
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1009 struct dwo_file *dwo_file;
1010
1011 /* The section the die comes from.
1012 This is either .debug_info or .debug_types, or the .dwo variants. */
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
1016 const gdb_byte *buffer;
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
1023 };
1024
1025 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1026 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1027 const gdb_byte *info_ptr,
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
1032 struct file_entry
1033 {
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
1042 };
1043
1044 /* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047 struct line_header
1048 {
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
1059 unsigned char maximum_ops_per_instruction;
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
1076 const char **include_dirs;
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
1082 struct file_entry *file_names;
1083
1084 /* The start and end of the statement program following this
1085 header. These point into dwarf2_per_objfile->line_buffer. */
1086 const gdb_byte *statement_program_start, *statement_program_end;
1087 };
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info
1092 {
1093 /* Offset of this DIE. */
1094 sect_offset offset;
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
1106 unsigned int may_be_inlined : 1;
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
1130 /* The name of this DIE. Normally the value of DW_AT_name, but
1131 sometimes a default name for unnamed DIEs. */
1132 const char *name;
1133
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
1140 const char *scope;
1141
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
1155
1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1157 DW_AT_sibling, if any. */
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
1160 const gdb_byte *sibling;
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
1165 sect_offset spec_offset;
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
1170 };
1171
1172 /* This data structure holds the information of an abbrev. */
1173 struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183 struct attr_abbrev
1184 {
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
1187 };
1188
1189 /* Size of abbrev_table.abbrev_hash_table. */
1190 #define ABBREV_HASH_SIZE 121
1191
1192 /* Top level data structure to contain an abbreviation table. */
1193
1194 struct abbrev_table
1195 {
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208 };
1209
1210 /* Attributes have a name and a value. */
1211 struct attribute
1212 {
1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
1221 union
1222 {
1223 const char *str;
1224 struct dwarf_block *blk;
1225 ULONGEST unsnd;
1226 LONGEST snd;
1227 CORE_ADDR addr;
1228 ULONGEST signature;
1229 }
1230 u;
1231 };
1232
1233 /* This data structure holds a complete die structure. */
1234 struct die_info
1235 {
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1245
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
1252 /* Offset in .debug_info or .debug_types section. */
1253 sect_offset offset;
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
1258 together via their SIBLING fields. */
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
1262
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
1267 };
1268
1269 /* Get at parts of an attribute structure. */
1270
1271 #define DW_STRING(attr) ((attr)->u.str)
1272 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1273 #define DW_UNSND(attr) ((attr)->u.unsnd)
1274 #define DW_BLOCK(attr) ((attr)->u.blk)
1275 #define DW_SND(attr) ((attr)->u.snd)
1276 #define DW_ADDR(attr) ((attr)->u.addr)
1277 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1278
1279 /* Blocks are a bunch of untyped bytes. */
1280 struct dwarf_block
1281 {
1282 size_t size;
1283
1284 /* Valid only if SIZE is not zero. */
1285 const gdb_byte *data;
1286 };
1287
1288 #ifndef ATTR_ALLOC_CHUNK
1289 #define ATTR_ALLOC_CHUNK 4
1290 #endif
1291
1292 /* Allocate fields for structs, unions and enums in this size. */
1293 #ifndef DW_FIELD_ALLOC_CHUNK
1294 #define DW_FIELD_ALLOC_CHUNK 4
1295 #endif
1296
1297 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300 static int bits_per_byte = 8;
1301
1302 struct nextfield
1303 {
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308 };
1309
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 };
1315
1316 struct fnfieldlist
1317 {
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321 };
1322
1323 struct typedef_field_list
1324 {
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327 };
1328
1329 /* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332 struct field_info
1333 {
1334 /* List of data member and baseclasses fields. */
1335 struct nextfield *fields, *baseclasses;
1336
1337 /* Number of fields (including baseclasses). */
1338 int nfields;
1339
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
1342
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
1345
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
1348 struct nextfnfield *fnfields;
1349
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
1353 struct fnfieldlist *fnfieldlists;
1354
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1360 struct typedef_field_list *typedef_field_list;
1361 unsigned typedef_field_list_count;
1362 };
1363
1364 /* One item on the queue of compilation units to read in full symbols
1365 for. */
1366 struct dwarf2_queue_item
1367 {
1368 struct dwarf2_per_cu_data *per_cu;
1369 enum language pretend_language;
1370 struct dwarf2_queue_item *next;
1371 };
1372
1373 /* The current queue. */
1374 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
1376 /* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
1381 static int dwarf_max_cache_age = 5;
1382 static void
1383 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
1385 {
1386 fprintf_filtered (file, _("The upper bound on the age of cached "
1387 "DWARF compilation units is %s.\n"),
1388 value);
1389 }
1390 \f
1391 /* local function prototypes */
1392
1393 static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395 static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
1397 static void dwarf2_locate_sections (bfd *, asection *, void *);
1398
1399 static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
1402 static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
1405 static void dwarf2_build_psymtabs_hard (struct objfile *);
1406
1407 static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
1409 int, struct dwarf2_cu *);
1410
1411 static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
1413
1414 static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1416 int set_addrmap, struct dwarf2_cu *cu);
1417
1418 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1419 CORE_ADDR *highpc, int set_addrmap,
1420 struct dwarf2_cu *cu);
1421
1422 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
1424
1425 static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1427 int need_pc, struct dwarf2_cu *cu);
1428
1429 static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
1431
1432 static void psymtab_to_symtab_1 (struct partial_symtab *);
1433
1434 static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437 static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440 static void abbrev_table_free (struct abbrev_table *);
1441
1442 static void abbrev_table_free_cleanup (void *);
1443
1444 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
1446
1447 static void dwarf2_free_abbrev_table (void *);
1448
1449 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1450
1451 static struct partial_die_info *load_partial_dies
1452 (const struct die_reader_specs *, const gdb_byte *, int);
1453
1454 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
1459
1460 static struct partial_die_info *find_partial_die (sect_offset, int,
1461 struct dwarf2_cu *);
1462
1463 static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
1466 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
1469
1470 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1471
1472 static int read_1_signed_byte (bfd *, const gdb_byte *);
1473
1474 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1475
1476 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1477
1478 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1479
1480 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1481 unsigned int *);
1482
1483 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_checked_initial_length_and_offset
1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1487 unsigned int *, unsigned int *);
1488
1489 static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
1491 unsigned int *);
1492
1493 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1494
1495 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
1498 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1499
1500 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1501
1502 static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
1505
1506 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1507
1508 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1509
1510 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
1514 unsigned int *);
1515
1516 static const char *read_str_index (const struct die_reader_specs *reader,
1517 ULONGEST str_index);
1518
1519 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1520
1521 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
1523
1524 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1525 unsigned int);
1526
1527 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1528 struct dwarf2_cu *cu);
1529
1530 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1531
1532 static struct die_info *die_specification (struct die_info *die,
1533 struct dwarf2_cu **);
1534
1535 static void free_line_header (struct line_header *lh);
1536
1537 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1538 struct dwarf2_cu *cu);
1539
1540 static void dwarf_decode_lines (struct line_header *, const char *,
1541 struct dwarf2_cu *, struct partial_symtab *,
1542 CORE_ADDR, int decode_mapping);
1543
1544 static void dwarf2_start_subfile (const char *, const char *);
1545
1546 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1547 const char *, const char *,
1548 CORE_ADDR);
1549
1550 static struct symbol *new_symbol (struct die_info *, struct type *,
1551 struct dwarf2_cu *);
1552
1553 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1554 struct dwarf2_cu *, struct symbol *);
1555
1556 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1557 struct dwarf2_cu *);
1558
1559 static void dwarf2_const_value_attr (const struct attribute *attr,
1560 struct type *type,
1561 const char *name,
1562 struct obstack *obstack,
1563 struct dwarf2_cu *cu, LONGEST *value,
1564 const gdb_byte **bytes,
1565 struct dwarf2_locexpr_baton **baton);
1566
1567 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1568
1569 static int need_gnat_info (struct dwarf2_cu *);
1570
1571 static struct type *die_descriptive_type (struct die_info *,
1572 struct dwarf2_cu *);
1573
1574 static void set_descriptive_type (struct type *, struct die_info *,
1575 struct dwarf2_cu *);
1576
1577 static struct type *die_containing_type (struct die_info *,
1578 struct dwarf2_cu *);
1579
1580 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1581 struct dwarf2_cu *);
1582
1583 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1584
1585 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1586
1587 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1588
1589 static char *typename_concat (struct obstack *obs, const char *prefix,
1590 const char *suffix, int physname,
1591 struct dwarf2_cu *cu);
1592
1593 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1594
1595 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1596
1597 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1598
1599 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1600
1601 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1602
1603 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1604 struct dwarf2_cu *, struct partial_symtab *);
1605
1606 static int dwarf2_get_pc_bounds (struct die_info *,
1607 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1608 struct partial_symtab *);
1609
1610 static void get_scope_pc_bounds (struct die_info *,
1611 CORE_ADDR *, CORE_ADDR *,
1612 struct dwarf2_cu *);
1613
1614 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1615 CORE_ADDR, struct dwarf2_cu *);
1616
1617 static void dwarf2_add_field (struct field_info *, struct die_info *,
1618 struct dwarf2_cu *);
1619
1620 static void dwarf2_attach_fields_to_type (struct field_info *,
1621 struct type *, struct dwarf2_cu *);
1622
1623 static void dwarf2_add_member_fn (struct field_info *,
1624 struct die_info *, struct type *,
1625 struct dwarf2_cu *);
1626
1627 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1628 struct type *,
1629 struct dwarf2_cu *);
1630
1631 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1632
1633 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1634
1635 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1636
1637 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1638
1639 static struct using_direct **using_directives (enum language);
1640
1641 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1642
1643 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1644
1645 static struct type *read_module_type (struct die_info *die,
1646 struct dwarf2_cu *cu);
1647
1648 static const char *namespace_name (struct die_info *die,
1649 int *is_anonymous, struct dwarf2_cu *);
1650
1651 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1652
1653 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1654
1655 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1656 struct dwarf2_cu *);
1657
1658 static struct die_info *read_die_and_siblings_1
1659 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1660 struct die_info *);
1661
1662 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1663 const gdb_byte *info_ptr,
1664 const gdb_byte **new_info_ptr,
1665 struct die_info *parent);
1666
1667 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1668 struct die_info **, const gdb_byte *,
1669 int *, int);
1670
1671 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1672 struct die_info **, const gdb_byte *,
1673 int *);
1674
1675 static void process_die (struct die_info *, struct dwarf2_cu *);
1676
1677 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1678 struct obstack *);
1679
1680 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1681
1682 static const char *dwarf2_full_name (const char *name,
1683 struct die_info *die,
1684 struct dwarf2_cu *cu);
1685
1686 static const char *dwarf2_physname (const char *name, struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
1689 static struct die_info *dwarf2_extension (struct die_info *die,
1690 struct dwarf2_cu **);
1691
1692 static const char *dwarf_tag_name (unsigned int);
1693
1694 static const char *dwarf_attr_name (unsigned int);
1695
1696 static const char *dwarf_form_name (unsigned int);
1697
1698 static char *dwarf_bool_name (unsigned int);
1699
1700 static const char *dwarf_type_encoding_name (unsigned int);
1701
1702 static struct die_info *sibling_die (struct die_info *);
1703
1704 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1705
1706 static void dump_die_for_error (struct die_info *);
1707
1708 static void dump_die_1 (struct ui_file *, int level, int max_level,
1709 struct die_info *);
1710
1711 /*static*/ void dump_die (struct die_info *, int max_level);
1712
1713 static void store_in_ref_table (struct die_info *,
1714 struct dwarf2_cu *);
1715
1716 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1717
1718 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1719
1720 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1721 const struct attribute *,
1722 struct dwarf2_cu **);
1723
1724 static struct die_info *follow_die_ref (struct die_info *,
1725 const struct attribute *,
1726 struct dwarf2_cu **);
1727
1728 static struct die_info *follow_die_sig (struct die_info *,
1729 const struct attribute *,
1730 struct dwarf2_cu **);
1731
1732 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1733 struct dwarf2_cu *);
1734
1735 static struct type *get_DW_AT_signature_type (struct die_info *,
1736 const struct attribute *,
1737 struct dwarf2_cu *);
1738
1739 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1740
1741 static void read_signatured_type (struct signatured_type *);
1742
1743 /* memory allocation interface */
1744
1745 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1746
1747 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1748
1749 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1750
1751 static int attr_form_is_block (const struct attribute *);
1752
1753 static int attr_form_is_section_offset (const struct attribute *);
1754
1755 static int attr_form_is_constant (const struct attribute *);
1756
1757 static int attr_form_is_ref (const struct attribute *);
1758
1759 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1760 struct dwarf2_loclist_baton *baton,
1761 const struct attribute *attr);
1762
1763 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1764 struct symbol *sym,
1765 struct dwarf2_cu *cu,
1766 int is_block);
1767
1768 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1769 const gdb_byte *info_ptr,
1770 struct abbrev_info *abbrev);
1771
1772 static void free_stack_comp_unit (void *);
1773
1774 static hashval_t partial_die_hash (const void *item);
1775
1776 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1777
1778 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1779 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1780
1781 static void init_one_comp_unit (struct dwarf2_cu *cu,
1782 struct dwarf2_per_cu_data *per_cu);
1783
1784 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1785 struct die_info *comp_unit_die,
1786 enum language pretend_language);
1787
1788 static void free_heap_comp_unit (void *);
1789
1790 static void free_cached_comp_units (void *);
1791
1792 static void age_cached_comp_units (void);
1793
1794 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1795
1796 static struct type *set_die_type (struct die_info *, struct type *,
1797 struct dwarf2_cu *);
1798
1799 static void create_all_comp_units (struct objfile *);
1800
1801 static int create_all_type_units (struct objfile *);
1802
1803 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1804 enum language);
1805
1806 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1807 enum language);
1808
1809 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1810 enum language);
1811
1812 static void dwarf2_add_dependence (struct dwarf2_cu *,
1813 struct dwarf2_per_cu_data *);
1814
1815 static void dwarf2_mark (struct dwarf2_cu *);
1816
1817 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1818
1819 static struct type *get_die_type_at_offset (sect_offset,
1820 struct dwarf2_per_cu_data *);
1821
1822 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1823
1824 static void dwarf2_release_queue (void *dummy);
1825
1826 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1827 enum language pretend_language);
1828
1829 static void process_queue (void);
1830
1831 static void find_file_and_directory (struct die_info *die,
1832 struct dwarf2_cu *cu,
1833 const char **name, const char **comp_dir);
1834
1835 static char *file_full_name (int file, struct line_header *lh,
1836 const char *comp_dir);
1837
1838 static const gdb_byte *read_and_check_comp_unit_head
1839 (struct comp_unit_head *header,
1840 struct dwarf2_section_info *section,
1841 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1842 int is_debug_types_section);
1843
1844 static void init_cutu_and_read_dies
1845 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1846 int use_existing_cu, int keep,
1847 die_reader_func_ftype *die_reader_func, void *data);
1848
1849 static void init_cutu_and_read_dies_simple
1850 (struct dwarf2_per_cu_data *this_cu,
1851 die_reader_func_ftype *die_reader_func, void *data);
1852
1853 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1854
1855 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1856
1857 static struct dwo_unit *lookup_dwo_unit_in_dwp
1858 (struct dwp_file *dwp_file, const char *comp_dir,
1859 ULONGEST signature, int is_debug_types);
1860
1861 static struct dwp_file *get_dwp_file (void);
1862
1863 static struct dwo_unit *lookup_dwo_comp_unit
1864 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1865
1866 static struct dwo_unit *lookup_dwo_type_unit
1867 (struct signatured_type *, const char *, const char *);
1868
1869 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1870
1871 static void free_dwo_file_cleanup (void *);
1872
1873 static void process_cu_includes (void);
1874
1875 static void check_producer (struct dwarf2_cu *cu);
1876
1877 static void free_line_header_voidp (void *arg);
1878 \f
1879 /* Various complaints about symbol reading that don't abort the process. */
1880
1881 static void
1882 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1883 {
1884 complaint (&symfile_complaints,
1885 _("statement list doesn't fit in .debug_line section"));
1886 }
1887
1888 static void
1889 dwarf2_debug_line_missing_file_complaint (void)
1890 {
1891 complaint (&symfile_complaints,
1892 _(".debug_line section has line data without a file"));
1893 }
1894
1895 static void
1896 dwarf2_debug_line_missing_end_sequence_complaint (void)
1897 {
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line "
1900 "program sequence without an end"));
1901 }
1902
1903 static void
1904 dwarf2_complex_location_expr_complaint (void)
1905 {
1906 complaint (&symfile_complaints, _("location expression too complex"));
1907 }
1908
1909 static void
1910 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1911 int arg3)
1912 {
1913 complaint (&symfile_complaints,
1914 _("const value length mismatch for '%s', got %d, expected %d"),
1915 arg1, arg2, arg3);
1916 }
1917
1918 static void
1919 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1920 {
1921 complaint (&symfile_complaints,
1922 _("debug info runs off end of %s section"
1923 " [in module %s]"),
1924 get_section_name (section),
1925 get_section_file_name (section));
1926 }
1927
1928 static void
1929 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1930 {
1931 complaint (&symfile_complaints,
1932 _("macro debug info contains a "
1933 "malformed macro definition:\n`%s'"),
1934 arg1);
1935 }
1936
1937 static void
1938 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1939 {
1940 complaint (&symfile_complaints,
1941 _("invalid attribute class or form for '%s' in '%s'"),
1942 arg1, arg2);
1943 }
1944
1945 /* Hash function for line_header_hash. */
1946
1947 static hashval_t
1948 line_header_hash (const struct line_header *ofs)
1949 {
1950 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1951 }
1952
1953 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1954
1955 static hashval_t
1956 line_header_hash_voidp (const void *item)
1957 {
1958 const struct line_header *ofs = item;
1959
1960 return line_header_hash (ofs);
1961 }
1962
1963 /* Equality function for line_header_hash. */
1964
1965 static int
1966 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1967 {
1968 const struct line_header *ofs_lhs = item_lhs;
1969 const struct line_header *ofs_rhs = item_rhs;
1970
1971 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1972 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1973 }
1974
1975 \f
1976 #if WORDS_BIGENDIAN
1977
1978 /* Convert VALUE between big- and little-endian. */
1979 static offset_type
1980 byte_swap (offset_type value)
1981 {
1982 offset_type result;
1983
1984 result = (value & 0xff) << 24;
1985 result |= (value & 0xff00) << 8;
1986 result |= (value & 0xff0000) >> 8;
1987 result |= (value & 0xff000000) >> 24;
1988 return result;
1989 }
1990
1991 #define MAYBE_SWAP(V) byte_swap (V)
1992
1993 #else
1994 #define MAYBE_SWAP(V) (V)
1995 #endif /* WORDS_BIGENDIAN */
1996
1997 /* Read the given attribute value as an address, taking the attribute's
1998 form into account. */
1999
2000 static CORE_ADDR
2001 attr_value_as_address (struct attribute *attr)
2002 {
2003 CORE_ADDR addr;
2004
2005 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2006 {
2007 /* Aside from a few clearly defined exceptions, attributes that
2008 contain an address must always be in DW_FORM_addr form.
2009 Unfortunately, some compilers happen to be violating this
2010 requirement by encoding addresses using other forms, such
2011 as DW_FORM_data4 for example. For those broken compilers,
2012 we try to do our best, without any guarantee of success,
2013 to interpret the address correctly. It would also be nice
2014 to generate a complaint, but that would require us to maintain
2015 a list of legitimate cases where a non-address form is allowed,
2016 as well as update callers to pass in at least the CU's DWARF
2017 version. This is more overhead than what we're willing to
2018 expand for a pretty rare case. */
2019 addr = DW_UNSND (attr);
2020 }
2021 else
2022 addr = DW_ADDR (attr);
2023
2024 return addr;
2025 }
2026
2027 /* The suffix for an index file. */
2028 #define INDEX_SUFFIX ".gdb-index"
2029
2030 /* Try to locate the sections we need for DWARF 2 debugging
2031 information and return true if we have enough to do something.
2032 NAMES points to the dwarf2 section names, or is NULL if the standard
2033 ELF names are used. */
2034
2035 int
2036 dwarf2_has_info (struct objfile *objfile,
2037 const struct dwarf2_debug_sections *names)
2038 {
2039 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2040 if (!dwarf2_per_objfile)
2041 {
2042 /* Initialize per-objfile state. */
2043 struct dwarf2_per_objfile *data
2044 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
2045
2046 memset (data, 0, sizeof (*data));
2047 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2048 dwarf2_per_objfile = data;
2049
2050 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2051 (void *) names);
2052 dwarf2_per_objfile->objfile = objfile;
2053 }
2054 return (!dwarf2_per_objfile->info.is_virtual
2055 && dwarf2_per_objfile->info.s.asection != NULL
2056 && !dwarf2_per_objfile->abbrev.is_virtual
2057 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2058 }
2059
2060 /* Return the containing section of virtual section SECTION. */
2061
2062 static struct dwarf2_section_info *
2063 get_containing_section (const struct dwarf2_section_info *section)
2064 {
2065 gdb_assert (section->is_virtual);
2066 return section->s.containing_section;
2067 }
2068
2069 /* Return the bfd owner of SECTION. */
2070
2071 static struct bfd *
2072 get_section_bfd_owner (const struct dwarf2_section_info *section)
2073 {
2074 if (section->is_virtual)
2075 {
2076 section = get_containing_section (section);
2077 gdb_assert (!section->is_virtual);
2078 }
2079 return section->s.asection->owner;
2080 }
2081
2082 /* Return the bfd section of SECTION.
2083 Returns NULL if the section is not present. */
2084
2085 static asection *
2086 get_section_bfd_section (const struct dwarf2_section_info *section)
2087 {
2088 if (section->is_virtual)
2089 {
2090 section = get_containing_section (section);
2091 gdb_assert (!section->is_virtual);
2092 }
2093 return section->s.asection;
2094 }
2095
2096 /* Return the name of SECTION. */
2097
2098 static const char *
2099 get_section_name (const struct dwarf2_section_info *section)
2100 {
2101 asection *sectp = get_section_bfd_section (section);
2102
2103 gdb_assert (sectp != NULL);
2104 return bfd_section_name (get_section_bfd_owner (section), sectp);
2105 }
2106
2107 /* Return the name of the file SECTION is in. */
2108
2109 static const char *
2110 get_section_file_name (const struct dwarf2_section_info *section)
2111 {
2112 bfd *abfd = get_section_bfd_owner (section);
2113
2114 return bfd_get_filename (abfd);
2115 }
2116
2117 /* Return the id of SECTION.
2118 Returns 0 if SECTION doesn't exist. */
2119
2120 static int
2121 get_section_id (const struct dwarf2_section_info *section)
2122 {
2123 asection *sectp = get_section_bfd_section (section);
2124
2125 if (sectp == NULL)
2126 return 0;
2127 return sectp->id;
2128 }
2129
2130 /* Return the flags of SECTION.
2131 SECTION (or containing section if this is a virtual section) must exist. */
2132
2133 static int
2134 get_section_flags (const struct dwarf2_section_info *section)
2135 {
2136 asection *sectp = get_section_bfd_section (section);
2137
2138 gdb_assert (sectp != NULL);
2139 return bfd_get_section_flags (sectp->owner, sectp);
2140 }
2141
2142 /* When loading sections, we look either for uncompressed section or for
2143 compressed section names. */
2144
2145 static int
2146 section_is_p (const char *section_name,
2147 const struct dwarf2_section_names *names)
2148 {
2149 if (names->normal != NULL
2150 && strcmp (section_name, names->normal) == 0)
2151 return 1;
2152 if (names->compressed != NULL
2153 && strcmp (section_name, names->compressed) == 0)
2154 return 1;
2155 return 0;
2156 }
2157
2158 /* This function is mapped across the sections and remembers the
2159 offset and size of each of the debugging sections we are interested
2160 in. */
2161
2162 static void
2163 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2164 {
2165 const struct dwarf2_debug_sections *names;
2166 flagword aflag = bfd_get_section_flags (abfd, sectp);
2167
2168 if (vnames == NULL)
2169 names = &dwarf2_elf_names;
2170 else
2171 names = (const struct dwarf2_debug_sections *) vnames;
2172
2173 if ((aflag & SEC_HAS_CONTENTS) == 0)
2174 {
2175 }
2176 else if (section_is_p (sectp->name, &names->info))
2177 {
2178 dwarf2_per_objfile->info.s.asection = sectp;
2179 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2180 }
2181 else if (section_is_p (sectp->name, &names->abbrev))
2182 {
2183 dwarf2_per_objfile->abbrev.s.asection = sectp;
2184 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2185 }
2186 else if (section_is_p (sectp->name, &names->line))
2187 {
2188 dwarf2_per_objfile->line.s.asection = sectp;
2189 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2190 }
2191 else if (section_is_p (sectp->name, &names->loc))
2192 {
2193 dwarf2_per_objfile->loc.s.asection = sectp;
2194 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2195 }
2196 else if (section_is_p (sectp->name, &names->macinfo))
2197 {
2198 dwarf2_per_objfile->macinfo.s.asection = sectp;
2199 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2200 }
2201 else if (section_is_p (sectp->name, &names->macro))
2202 {
2203 dwarf2_per_objfile->macro.s.asection = sectp;
2204 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2205 }
2206 else if (section_is_p (sectp->name, &names->str))
2207 {
2208 dwarf2_per_objfile->str.s.asection = sectp;
2209 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2210 }
2211 else if (section_is_p (sectp->name, &names->addr))
2212 {
2213 dwarf2_per_objfile->addr.s.asection = sectp;
2214 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2215 }
2216 else if (section_is_p (sectp->name, &names->frame))
2217 {
2218 dwarf2_per_objfile->frame.s.asection = sectp;
2219 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2220 }
2221 else if (section_is_p (sectp->name, &names->eh_frame))
2222 {
2223 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2224 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2225 }
2226 else if (section_is_p (sectp->name, &names->ranges))
2227 {
2228 dwarf2_per_objfile->ranges.s.asection = sectp;
2229 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2230 }
2231 else if (section_is_p (sectp->name, &names->types))
2232 {
2233 struct dwarf2_section_info type_section;
2234
2235 memset (&type_section, 0, sizeof (type_section));
2236 type_section.s.asection = sectp;
2237 type_section.size = bfd_get_section_size (sectp);
2238
2239 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2240 &type_section);
2241 }
2242 else if (section_is_p (sectp->name, &names->gdb_index))
2243 {
2244 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2245 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2246 }
2247
2248 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2249 && bfd_section_vma (abfd, sectp) == 0)
2250 dwarf2_per_objfile->has_section_at_zero = 1;
2251 }
2252
2253 /* A helper function that decides whether a section is empty,
2254 or not present. */
2255
2256 static int
2257 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2258 {
2259 if (section->is_virtual)
2260 return section->size == 0;
2261 return section->s.asection == NULL || section->size == 0;
2262 }
2263
2264 /* Read the contents of the section INFO.
2265 OBJFILE is the main object file, but not necessarily the file where
2266 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2267 of the DWO file.
2268 If the section is compressed, uncompress it before returning. */
2269
2270 static void
2271 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2272 {
2273 asection *sectp;
2274 bfd *abfd;
2275 gdb_byte *buf, *retbuf;
2276
2277 if (info->readin)
2278 return;
2279 info->buffer = NULL;
2280 info->readin = 1;
2281
2282 if (dwarf2_section_empty_p (info))
2283 return;
2284
2285 sectp = get_section_bfd_section (info);
2286
2287 /* If this is a virtual section we need to read in the real one first. */
2288 if (info->is_virtual)
2289 {
2290 struct dwarf2_section_info *containing_section =
2291 get_containing_section (info);
2292
2293 gdb_assert (sectp != NULL);
2294 if ((sectp->flags & SEC_RELOC) != 0)
2295 {
2296 error (_("Dwarf Error: DWP format V2 with relocations is not"
2297 " supported in section %s [in module %s]"),
2298 get_section_name (info), get_section_file_name (info));
2299 }
2300 dwarf2_read_section (objfile, containing_section);
2301 /* Other code should have already caught virtual sections that don't
2302 fit. */
2303 gdb_assert (info->virtual_offset + info->size
2304 <= containing_section->size);
2305 /* If the real section is empty or there was a problem reading the
2306 section we shouldn't get here. */
2307 gdb_assert (containing_section->buffer != NULL);
2308 info->buffer = containing_section->buffer + info->virtual_offset;
2309 return;
2310 }
2311
2312 /* If the section has relocations, we must read it ourselves.
2313 Otherwise we attach it to the BFD. */
2314 if ((sectp->flags & SEC_RELOC) == 0)
2315 {
2316 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2317 return;
2318 }
2319
2320 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2321 info->buffer = buf;
2322
2323 /* When debugging .o files, we may need to apply relocations; see
2324 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2325 We never compress sections in .o files, so we only need to
2326 try this when the section is not compressed. */
2327 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2328 if (retbuf != NULL)
2329 {
2330 info->buffer = retbuf;
2331 return;
2332 }
2333
2334 abfd = get_section_bfd_owner (info);
2335 gdb_assert (abfd != NULL);
2336
2337 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2338 || bfd_bread (buf, info->size, abfd) != info->size)
2339 {
2340 error (_("Dwarf Error: Can't read DWARF data"
2341 " in section %s [in module %s]"),
2342 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2343 }
2344 }
2345
2346 /* A helper function that returns the size of a section in a safe way.
2347 If you are positive that the section has been read before using the
2348 size, then it is safe to refer to the dwarf2_section_info object's
2349 "size" field directly. In other cases, you must call this
2350 function, because for compressed sections the size field is not set
2351 correctly until the section has been read. */
2352
2353 static bfd_size_type
2354 dwarf2_section_size (struct objfile *objfile,
2355 struct dwarf2_section_info *info)
2356 {
2357 if (!info->readin)
2358 dwarf2_read_section (objfile, info);
2359 return info->size;
2360 }
2361
2362 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2363 SECTION_NAME. */
2364
2365 void
2366 dwarf2_get_section_info (struct objfile *objfile,
2367 enum dwarf2_section_enum sect,
2368 asection **sectp, const gdb_byte **bufp,
2369 bfd_size_type *sizep)
2370 {
2371 struct dwarf2_per_objfile *data
2372 = objfile_data (objfile, dwarf2_objfile_data_key);
2373 struct dwarf2_section_info *info;
2374
2375 /* We may see an objfile without any DWARF, in which case we just
2376 return nothing. */
2377 if (data == NULL)
2378 {
2379 *sectp = NULL;
2380 *bufp = NULL;
2381 *sizep = 0;
2382 return;
2383 }
2384 switch (sect)
2385 {
2386 case DWARF2_DEBUG_FRAME:
2387 info = &data->frame;
2388 break;
2389 case DWARF2_EH_FRAME:
2390 info = &data->eh_frame;
2391 break;
2392 default:
2393 gdb_assert_not_reached ("unexpected section");
2394 }
2395
2396 dwarf2_read_section (objfile, info);
2397
2398 *sectp = get_section_bfd_section (info);
2399 *bufp = info->buffer;
2400 *sizep = info->size;
2401 }
2402
2403 /* A helper function to find the sections for a .dwz file. */
2404
2405 static void
2406 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2407 {
2408 struct dwz_file *dwz_file = arg;
2409
2410 /* Note that we only support the standard ELF names, because .dwz
2411 is ELF-only (at the time of writing). */
2412 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2413 {
2414 dwz_file->abbrev.s.asection = sectp;
2415 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2416 }
2417 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2418 {
2419 dwz_file->info.s.asection = sectp;
2420 dwz_file->info.size = bfd_get_section_size (sectp);
2421 }
2422 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2423 {
2424 dwz_file->str.s.asection = sectp;
2425 dwz_file->str.size = bfd_get_section_size (sectp);
2426 }
2427 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2428 {
2429 dwz_file->line.s.asection = sectp;
2430 dwz_file->line.size = bfd_get_section_size (sectp);
2431 }
2432 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2433 {
2434 dwz_file->macro.s.asection = sectp;
2435 dwz_file->macro.size = bfd_get_section_size (sectp);
2436 }
2437 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2438 {
2439 dwz_file->gdb_index.s.asection = sectp;
2440 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2441 }
2442 }
2443
2444 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2445 there is no .gnu_debugaltlink section in the file. Error if there
2446 is such a section but the file cannot be found. */
2447
2448 static struct dwz_file *
2449 dwarf2_get_dwz_file (void)
2450 {
2451 bfd *dwz_bfd;
2452 char *data;
2453 struct cleanup *cleanup;
2454 const char *filename;
2455 struct dwz_file *result;
2456 bfd_size_type buildid_len_arg;
2457 size_t buildid_len;
2458 bfd_byte *buildid;
2459
2460 if (dwarf2_per_objfile->dwz_file != NULL)
2461 return dwarf2_per_objfile->dwz_file;
2462
2463 bfd_set_error (bfd_error_no_error);
2464 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2465 &buildid_len_arg, &buildid);
2466 if (data == NULL)
2467 {
2468 if (bfd_get_error () == bfd_error_no_error)
2469 return NULL;
2470 error (_("could not read '.gnu_debugaltlink' section: %s"),
2471 bfd_errmsg (bfd_get_error ()));
2472 }
2473 cleanup = make_cleanup (xfree, data);
2474 make_cleanup (xfree, buildid);
2475
2476 buildid_len = (size_t) buildid_len_arg;
2477
2478 filename = (const char *) data;
2479 if (!IS_ABSOLUTE_PATH (filename))
2480 {
2481 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2482 char *rel;
2483
2484 make_cleanup (xfree, abs);
2485 abs = ldirname (abs);
2486 make_cleanup (xfree, abs);
2487
2488 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2489 make_cleanup (xfree, rel);
2490 filename = rel;
2491 }
2492
2493 /* First try the file name given in the section. If that doesn't
2494 work, try to use the build-id instead. */
2495 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2496 if (dwz_bfd != NULL)
2497 {
2498 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2499 {
2500 gdb_bfd_unref (dwz_bfd);
2501 dwz_bfd = NULL;
2502 }
2503 }
2504
2505 if (dwz_bfd == NULL)
2506 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2507
2508 if (dwz_bfd == NULL)
2509 error (_("could not find '.gnu_debugaltlink' file for %s"),
2510 objfile_name (dwarf2_per_objfile->objfile));
2511
2512 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2513 struct dwz_file);
2514 result->dwz_bfd = dwz_bfd;
2515
2516 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2517
2518 do_cleanups (cleanup);
2519
2520 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2521 dwarf2_per_objfile->dwz_file = result;
2522 return result;
2523 }
2524 \f
2525 /* DWARF quick_symbols_functions support. */
2526
2527 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2528 unique line tables, so we maintain a separate table of all .debug_line
2529 derived entries to support the sharing.
2530 All the quick functions need is the list of file names. We discard the
2531 line_header when we're done and don't need to record it here. */
2532 struct quick_file_names
2533 {
2534 /* The data used to construct the hash key. */
2535 struct stmt_list_hash hash;
2536
2537 /* The number of entries in file_names, real_names. */
2538 unsigned int num_file_names;
2539
2540 /* The file names from the line table, after being run through
2541 file_full_name. */
2542 const char **file_names;
2543
2544 /* The file names from the line table after being run through
2545 gdb_realpath. These are computed lazily. */
2546 const char **real_names;
2547 };
2548
2549 /* When using the index (and thus not using psymtabs), each CU has an
2550 object of this type. This is used to hold information needed by
2551 the various "quick" methods. */
2552 struct dwarf2_per_cu_quick_data
2553 {
2554 /* The file table. This can be NULL if there was no file table
2555 or it's currently not read in.
2556 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2557 struct quick_file_names *file_names;
2558
2559 /* The corresponding symbol table. This is NULL if symbols for this
2560 CU have not yet been read. */
2561 struct compunit_symtab *compunit_symtab;
2562
2563 /* A temporary mark bit used when iterating over all CUs in
2564 expand_symtabs_matching. */
2565 unsigned int mark : 1;
2566
2567 /* True if we've tried to read the file table and found there isn't one.
2568 There will be no point in trying to read it again next time. */
2569 unsigned int no_file_data : 1;
2570 };
2571
2572 /* Utility hash function for a stmt_list_hash. */
2573
2574 static hashval_t
2575 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2576 {
2577 hashval_t v = 0;
2578
2579 if (stmt_list_hash->dwo_unit != NULL)
2580 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2581 v += stmt_list_hash->line_offset.sect_off;
2582 return v;
2583 }
2584
2585 /* Utility equality function for a stmt_list_hash. */
2586
2587 static int
2588 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2589 const struct stmt_list_hash *rhs)
2590 {
2591 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2592 return 0;
2593 if (lhs->dwo_unit != NULL
2594 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2595 return 0;
2596
2597 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2598 }
2599
2600 /* Hash function for a quick_file_names. */
2601
2602 static hashval_t
2603 hash_file_name_entry (const void *e)
2604 {
2605 const struct quick_file_names *file_data = e;
2606
2607 return hash_stmt_list_entry (&file_data->hash);
2608 }
2609
2610 /* Equality function for a quick_file_names. */
2611
2612 static int
2613 eq_file_name_entry (const void *a, const void *b)
2614 {
2615 const struct quick_file_names *ea = a;
2616 const struct quick_file_names *eb = b;
2617
2618 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2619 }
2620
2621 /* Delete function for a quick_file_names. */
2622
2623 static void
2624 delete_file_name_entry (void *e)
2625 {
2626 struct quick_file_names *file_data = e;
2627 int i;
2628
2629 for (i = 0; i < file_data->num_file_names; ++i)
2630 {
2631 xfree ((void*) file_data->file_names[i]);
2632 if (file_data->real_names)
2633 xfree ((void*) file_data->real_names[i]);
2634 }
2635
2636 /* The space for the struct itself lives on objfile_obstack,
2637 so we don't free it here. */
2638 }
2639
2640 /* Create a quick_file_names hash table. */
2641
2642 static htab_t
2643 create_quick_file_names_table (unsigned int nr_initial_entries)
2644 {
2645 return htab_create_alloc (nr_initial_entries,
2646 hash_file_name_entry, eq_file_name_entry,
2647 delete_file_name_entry, xcalloc, xfree);
2648 }
2649
2650 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2651 have to be created afterwards. You should call age_cached_comp_units after
2652 processing PER_CU->CU. dw2_setup must have been already called. */
2653
2654 static void
2655 load_cu (struct dwarf2_per_cu_data *per_cu)
2656 {
2657 if (per_cu->is_debug_types)
2658 load_full_type_unit (per_cu);
2659 else
2660 load_full_comp_unit (per_cu, language_minimal);
2661
2662 if (per_cu->cu == NULL)
2663 return; /* Dummy CU. */
2664
2665 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2666 }
2667
2668 /* Read in the symbols for PER_CU. */
2669
2670 static void
2671 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2672 {
2673 struct cleanup *back_to;
2674
2675 /* Skip type_unit_groups, reading the type units they contain
2676 is handled elsewhere. */
2677 if (IS_TYPE_UNIT_GROUP (per_cu))
2678 return;
2679
2680 back_to = make_cleanup (dwarf2_release_queue, NULL);
2681
2682 if (dwarf2_per_objfile->using_index
2683 ? per_cu->v.quick->compunit_symtab == NULL
2684 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2685 {
2686 queue_comp_unit (per_cu, language_minimal);
2687 load_cu (per_cu);
2688
2689 /* If we just loaded a CU from a DWO, and we're working with an index
2690 that may badly handle TUs, load all the TUs in that DWO as well.
2691 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2692 if (!per_cu->is_debug_types
2693 && per_cu->cu != NULL
2694 && per_cu->cu->dwo_unit != NULL
2695 && dwarf2_per_objfile->index_table != NULL
2696 && dwarf2_per_objfile->index_table->version <= 7
2697 /* DWP files aren't supported yet. */
2698 && get_dwp_file () == NULL)
2699 queue_and_load_all_dwo_tus (per_cu);
2700 }
2701
2702 process_queue ();
2703
2704 /* Age the cache, releasing compilation units that have not
2705 been used recently. */
2706 age_cached_comp_units ();
2707
2708 do_cleanups (back_to);
2709 }
2710
2711 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2712 the objfile from which this CU came. Returns the resulting symbol
2713 table. */
2714
2715 static struct compunit_symtab *
2716 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2717 {
2718 gdb_assert (dwarf2_per_objfile->using_index);
2719 if (!per_cu->v.quick->compunit_symtab)
2720 {
2721 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2722 increment_reading_symtab ();
2723 dw2_do_instantiate_symtab (per_cu);
2724 process_cu_includes ();
2725 do_cleanups (back_to);
2726 }
2727
2728 return per_cu->v.quick->compunit_symtab;
2729 }
2730
2731 /* Return the CU/TU given its index.
2732
2733 This is intended for loops like:
2734
2735 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2736 + dwarf2_per_objfile->n_type_units); ++i)
2737 {
2738 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2739
2740 ...;
2741 }
2742 */
2743
2744 static struct dwarf2_per_cu_data *
2745 dw2_get_cutu (int index)
2746 {
2747 if (index >= dwarf2_per_objfile->n_comp_units)
2748 {
2749 index -= dwarf2_per_objfile->n_comp_units;
2750 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2751 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2752 }
2753
2754 return dwarf2_per_objfile->all_comp_units[index];
2755 }
2756
2757 /* Return the CU given its index.
2758 This differs from dw2_get_cutu in that it's for when you know INDEX
2759 refers to a CU. */
2760
2761 static struct dwarf2_per_cu_data *
2762 dw2_get_cu (int index)
2763 {
2764 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2765
2766 return dwarf2_per_objfile->all_comp_units[index];
2767 }
2768
2769 /* A helper for create_cus_from_index that handles a given list of
2770 CUs. */
2771
2772 static void
2773 create_cus_from_index_list (struct objfile *objfile,
2774 const gdb_byte *cu_list, offset_type n_elements,
2775 struct dwarf2_section_info *section,
2776 int is_dwz,
2777 int base_offset)
2778 {
2779 offset_type i;
2780
2781 for (i = 0; i < n_elements; i += 2)
2782 {
2783 struct dwarf2_per_cu_data *the_cu;
2784 ULONGEST offset, length;
2785
2786 gdb_static_assert (sizeof (ULONGEST) >= 8);
2787 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2788 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2789 cu_list += 2 * 8;
2790
2791 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2792 struct dwarf2_per_cu_data);
2793 the_cu->offset.sect_off = offset;
2794 the_cu->length = length;
2795 the_cu->objfile = objfile;
2796 the_cu->section = section;
2797 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2798 struct dwarf2_per_cu_quick_data);
2799 the_cu->is_dwz = is_dwz;
2800 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2801 }
2802 }
2803
2804 /* Read the CU list from the mapped index, and use it to create all
2805 the CU objects for this objfile. */
2806
2807 static void
2808 create_cus_from_index (struct objfile *objfile,
2809 const gdb_byte *cu_list, offset_type cu_list_elements,
2810 const gdb_byte *dwz_list, offset_type dwz_elements)
2811 {
2812 struct dwz_file *dwz;
2813
2814 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2815 dwarf2_per_objfile->all_comp_units
2816 = obstack_alloc (&objfile->objfile_obstack,
2817 dwarf2_per_objfile->n_comp_units
2818 * sizeof (struct dwarf2_per_cu_data *));
2819
2820 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2821 &dwarf2_per_objfile->info, 0, 0);
2822
2823 if (dwz_elements == 0)
2824 return;
2825
2826 dwz = dwarf2_get_dwz_file ();
2827 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2828 cu_list_elements / 2);
2829 }
2830
2831 /* Create the signatured type hash table from the index. */
2832
2833 static void
2834 create_signatured_type_table_from_index (struct objfile *objfile,
2835 struct dwarf2_section_info *section,
2836 const gdb_byte *bytes,
2837 offset_type elements)
2838 {
2839 offset_type i;
2840 htab_t sig_types_hash;
2841
2842 dwarf2_per_objfile->n_type_units
2843 = dwarf2_per_objfile->n_allocated_type_units
2844 = elements / 3;
2845 dwarf2_per_objfile->all_type_units
2846 = xmalloc (dwarf2_per_objfile->n_type_units
2847 * sizeof (struct signatured_type *));
2848
2849 sig_types_hash = allocate_signatured_type_table (objfile);
2850
2851 for (i = 0; i < elements; i += 3)
2852 {
2853 struct signatured_type *sig_type;
2854 ULONGEST offset, type_offset_in_tu, signature;
2855 void **slot;
2856
2857 gdb_static_assert (sizeof (ULONGEST) >= 8);
2858 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2859 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2860 BFD_ENDIAN_LITTLE);
2861 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2862 bytes += 3 * 8;
2863
2864 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2865 struct signatured_type);
2866 sig_type->signature = signature;
2867 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2868 sig_type->per_cu.is_debug_types = 1;
2869 sig_type->per_cu.section = section;
2870 sig_type->per_cu.offset.sect_off = offset;
2871 sig_type->per_cu.objfile = objfile;
2872 sig_type->per_cu.v.quick
2873 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2874 struct dwarf2_per_cu_quick_data);
2875
2876 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2877 *slot = sig_type;
2878
2879 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2880 }
2881
2882 dwarf2_per_objfile->signatured_types = sig_types_hash;
2883 }
2884
2885 /* Read the address map data from the mapped index, and use it to
2886 populate the objfile's psymtabs_addrmap. */
2887
2888 static void
2889 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2890 {
2891 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2892 const gdb_byte *iter, *end;
2893 struct obstack temp_obstack;
2894 struct addrmap *mutable_map;
2895 struct cleanup *cleanup;
2896 CORE_ADDR baseaddr;
2897
2898 obstack_init (&temp_obstack);
2899 cleanup = make_cleanup_obstack_free (&temp_obstack);
2900 mutable_map = addrmap_create_mutable (&temp_obstack);
2901
2902 iter = index->address_table;
2903 end = iter + index->address_table_size;
2904
2905 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2906
2907 while (iter < end)
2908 {
2909 ULONGEST hi, lo, cu_index;
2910 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2911 iter += 8;
2912 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2913 iter += 8;
2914 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2915 iter += 4;
2916
2917 if (lo > hi)
2918 {
2919 complaint (&symfile_complaints,
2920 _(".gdb_index address table has invalid range (%s - %s)"),
2921 hex_string (lo), hex_string (hi));
2922 continue;
2923 }
2924
2925 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2926 {
2927 complaint (&symfile_complaints,
2928 _(".gdb_index address table has invalid CU number %u"),
2929 (unsigned) cu_index);
2930 continue;
2931 }
2932
2933 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2934 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2935 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2936 }
2937
2938 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2939 &objfile->objfile_obstack);
2940 do_cleanups (cleanup);
2941 }
2942
2943 /* The hash function for strings in the mapped index. This is the same as
2944 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2945 implementation. This is necessary because the hash function is tied to the
2946 format of the mapped index file. The hash values do not have to match with
2947 SYMBOL_HASH_NEXT.
2948
2949 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2950
2951 static hashval_t
2952 mapped_index_string_hash (int index_version, const void *p)
2953 {
2954 const unsigned char *str = (const unsigned char *) p;
2955 hashval_t r = 0;
2956 unsigned char c;
2957
2958 while ((c = *str++) != 0)
2959 {
2960 if (index_version >= 5)
2961 c = tolower (c);
2962 r = r * 67 + c - 113;
2963 }
2964
2965 return r;
2966 }
2967
2968 /* Find a slot in the mapped index INDEX for the object named NAME.
2969 If NAME is found, set *VEC_OUT to point to the CU vector in the
2970 constant pool and return 1. If NAME cannot be found, return 0. */
2971
2972 static int
2973 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2974 offset_type **vec_out)
2975 {
2976 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2977 offset_type hash;
2978 offset_type slot, step;
2979 int (*cmp) (const char *, const char *);
2980
2981 if (current_language->la_language == language_cplus
2982 || current_language->la_language == language_java
2983 || current_language->la_language == language_fortran
2984 || current_language->la_language == language_d)
2985 {
2986 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2987 not contain any. */
2988
2989 if (strchr (name, '(') != NULL)
2990 {
2991 char *without_params = cp_remove_params (name);
2992
2993 if (without_params != NULL)
2994 {
2995 make_cleanup (xfree, without_params);
2996 name = without_params;
2997 }
2998 }
2999 }
3000
3001 /* Index version 4 did not support case insensitive searches. But the
3002 indices for case insensitive languages are built in lowercase, therefore
3003 simulate our NAME being searched is also lowercased. */
3004 hash = mapped_index_string_hash ((index->version == 4
3005 && case_sensitivity == case_sensitive_off
3006 ? 5 : index->version),
3007 name);
3008
3009 slot = hash & (index->symbol_table_slots - 1);
3010 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3011 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3012
3013 for (;;)
3014 {
3015 /* Convert a slot number to an offset into the table. */
3016 offset_type i = 2 * slot;
3017 const char *str;
3018 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3019 {
3020 do_cleanups (back_to);
3021 return 0;
3022 }
3023
3024 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3025 if (!cmp (name, str))
3026 {
3027 *vec_out = (offset_type *) (index->constant_pool
3028 + MAYBE_SWAP (index->symbol_table[i + 1]));
3029 do_cleanups (back_to);
3030 return 1;
3031 }
3032
3033 slot = (slot + step) & (index->symbol_table_slots - 1);
3034 }
3035 }
3036
3037 /* A helper function that reads the .gdb_index from SECTION and fills
3038 in MAP. FILENAME is the name of the file containing the section;
3039 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3040 ok to use deprecated sections.
3041
3042 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3043 out parameters that are filled in with information about the CU and
3044 TU lists in the section.
3045
3046 Returns 1 if all went well, 0 otherwise. */
3047
3048 static int
3049 read_index_from_section (struct objfile *objfile,
3050 const char *filename,
3051 int deprecated_ok,
3052 struct dwarf2_section_info *section,
3053 struct mapped_index *map,
3054 const gdb_byte **cu_list,
3055 offset_type *cu_list_elements,
3056 const gdb_byte **types_list,
3057 offset_type *types_list_elements)
3058 {
3059 const gdb_byte *addr;
3060 offset_type version;
3061 offset_type *metadata;
3062 int i;
3063
3064 if (dwarf2_section_empty_p (section))
3065 return 0;
3066
3067 /* Older elfutils strip versions could keep the section in the main
3068 executable while splitting it for the separate debug info file. */
3069 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3070 return 0;
3071
3072 dwarf2_read_section (objfile, section);
3073
3074 addr = section->buffer;
3075 /* Version check. */
3076 version = MAYBE_SWAP (*(offset_type *) addr);
3077 /* Versions earlier than 3 emitted every copy of a psymbol. This
3078 causes the index to behave very poorly for certain requests. Version 3
3079 contained incomplete addrmap. So, it seems better to just ignore such
3080 indices. */
3081 if (version < 4)
3082 {
3083 static int warning_printed = 0;
3084 if (!warning_printed)
3085 {
3086 warning (_("Skipping obsolete .gdb_index section in %s."),
3087 filename);
3088 warning_printed = 1;
3089 }
3090 return 0;
3091 }
3092 /* Index version 4 uses a different hash function than index version
3093 5 and later.
3094
3095 Versions earlier than 6 did not emit psymbols for inlined
3096 functions. Using these files will cause GDB not to be able to
3097 set breakpoints on inlined functions by name, so we ignore these
3098 indices unless the user has done
3099 "set use-deprecated-index-sections on". */
3100 if (version < 6 && !deprecated_ok)
3101 {
3102 static int warning_printed = 0;
3103 if (!warning_printed)
3104 {
3105 warning (_("\
3106 Skipping deprecated .gdb_index section in %s.\n\
3107 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3108 to use the section anyway."),
3109 filename);
3110 warning_printed = 1;
3111 }
3112 return 0;
3113 }
3114 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3115 of the TU (for symbols coming from TUs),
3116 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3117 Plus gold-generated indices can have duplicate entries for global symbols,
3118 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3119 These are just performance bugs, and we can't distinguish gdb-generated
3120 indices from gold-generated ones, so issue no warning here. */
3121
3122 /* Indexes with higher version than the one supported by GDB may be no
3123 longer backward compatible. */
3124 if (version > 8)
3125 return 0;
3126
3127 map->version = version;
3128 map->total_size = section->size;
3129
3130 metadata = (offset_type *) (addr + sizeof (offset_type));
3131
3132 i = 0;
3133 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3134 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3135 / 8);
3136 ++i;
3137
3138 *types_list = addr + MAYBE_SWAP (metadata[i]);
3139 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3140 - MAYBE_SWAP (metadata[i]))
3141 / 8);
3142 ++i;
3143
3144 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3145 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3146 - MAYBE_SWAP (metadata[i]));
3147 ++i;
3148
3149 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3150 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3151 - MAYBE_SWAP (metadata[i]))
3152 / (2 * sizeof (offset_type)));
3153 ++i;
3154
3155 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3156
3157 return 1;
3158 }
3159
3160
3161 /* Read the index file. If everything went ok, initialize the "quick"
3162 elements of all the CUs and return 1. Otherwise, return 0. */
3163
3164 static int
3165 dwarf2_read_index (struct objfile *objfile)
3166 {
3167 struct mapped_index local_map, *map;
3168 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3169 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3170 struct dwz_file *dwz;
3171
3172 if (!read_index_from_section (objfile, objfile_name (objfile),
3173 use_deprecated_index_sections,
3174 &dwarf2_per_objfile->gdb_index, &local_map,
3175 &cu_list, &cu_list_elements,
3176 &types_list, &types_list_elements))
3177 return 0;
3178
3179 /* Don't use the index if it's empty. */
3180 if (local_map.symbol_table_slots == 0)
3181 return 0;
3182
3183 /* If there is a .dwz file, read it so we can get its CU list as
3184 well. */
3185 dwz = dwarf2_get_dwz_file ();
3186 if (dwz != NULL)
3187 {
3188 struct mapped_index dwz_map;
3189 const gdb_byte *dwz_types_ignore;
3190 offset_type dwz_types_elements_ignore;
3191
3192 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3193 1,
3194 &dwz->gdb_index, &dwz_map,
3195 &dwz_list, &dwz_list_elements,
3196 &dwz_types_ignore,
3197 &dwz_types_elements_ignore))
3198 {
3199 warning (_("could not read '.gdb_index' section from %s; skipping"),
3200 bfd_get_filename (dwz->dwz_bfd));
3201 return 0;
3202 }
3203 }
3204
3205 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3206 dwz_list_elements);
3207
3208 if (types_list_elements)
3209 {
3210 struct dwarf2_section_info *section;
3211
3212 /* We can only handle a single .debug_types when we have an
3213 index. */
3214 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3215 return 0;
3216
3217 section = VEC_index (dwarf2_section_info_def,
3218 dwarf2_per_objfile->types, 0);
3219
3220 create_signatured_type_table_from_index (objfile, section, types_list,
3221 types_list_elements);
3222 }
3223
3224 create_addrmap_from_index (objfile, &local_map);
3225
3226 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3227 *map = local_map;
3228
3229 dwarf2_per_objfile->index_table = map;
3230 dwarf2_per_objfile->using_index = 1;
3231 dwarf2_per_objfile->quick_file_names_table =
3232 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3233
3234 return 1;
3235 }
3236
3237 /* A helper for the "quick" functions which sets the global
3238 dwarf2_per_objfile according to OBJFILE. */
3239
3240 static void
3241 dw2_setup (struct objfile *objfile)
3242 {
3243 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3244 gdb_assert (dwarf2_per_objfile);
3245 }
3246
3247 /* die_reader_func for dw2_get_file_names. */
3248
3249 static void
3250 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3251 const gdb_byte *info_ptr,
3252 struct die_info *comp_unit_die,
3253 int has_children,
3254 void *data)
3255 {
3256 struct dwarf2_cu *cu = reader->cu;
3257 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3258 struct objfile *objfile = dwarf2_per_objfile->objfile;
3259 struct dwarf2_per_cu_data *lh_cu;
3260 struct line_header *lh;
3261 struct attribute *attr;
3262 int i;
3263 const char *name, *comp_dir;
3264 void **slot;
3265 struct quick_file_names *qfn;
3266 unsigned int line_offset;
3267
3268 gdb_assert (! this_cu->is_debug_types);
3269
3270 /* Our callers never want to match partial units -- instead they
3271 will match the enclosing full CU. */
3272 if (comp_unit_die->tag == DW_TAG_partial_unit)
3273 {
3274 this_cu->v.quick->no_file_data = 1;
3275 return;
3276 }
3277
3278 lh_cu = this_cu;
3279 lh = NULL;
3280 slot = NULL;
3281 line_offset = 0;
3282
3283 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3284 if (attr)
3285 {
3286 struct quick_file_names find_entry;
3287
3288 line_offset = DW_UNSND (attr);
3289
3290 /* We may have already read in this line header (TU line header sharing).
3291 If we have we're done. */
3292 find_entry.hash.dwo_unit = cu->dwo_unit;
3293 find_entry.hash.line_offset.sect_off = line_offset;
3294 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3295 &find_entry, INSERT);
3296 if (*slot != NULL)
3297 {
3298 lh_cu->v.quick->file_names = *slot;
3299 return;
3300 }
3301
3302 lh = dwarf_decode_line_header (line_offset, cu);
3303 }
3304 if (lh == NULL)
3305 {
3306 lh_cu->v.quick->no_file_data = 1;
3307 return;
3308 }
3309
3310 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3311 qfn->hash.dwo_unit = cu->dwo_unit;
3312 qfn->hash.line_offset.sect_off = line_offset;
3313 gdb_assert (slot != NULL);
3314 *slot = qfn;
3315
3316 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3317
3318 qfn->num_file_names = lh->num_file_names;
3319 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3320 lh->num_file_names * sizeof (char *));
3321 for (i = 0; i < lh->num_file_names; ++i)
3322 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3323 qfn->real_names = NULL;
3324
3325 free_line_header (lh);
3326
3327 lh_cu->v.quick->file_names = qfn;
3328 }
3329
3330 /* A helper for the "quick" functions which attempts to read the line
3331 table for THIS_CU. */
3332
3333 static struct quick_file_names *
3334 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3335 {
3336 /* This should never be called for TUs. */
3337 gdb_assert (! this_cu->is_debug_types);
3338 /* Nor type unit groups. */
3339 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3340
3341 if (this_cu->v.quick->file_names != NULL)
3342 return this_cu->v.quick->file_names;
3343 /* If we know there is no line data, no point in looking again. */
3344 if (this_cu->v.quick->no_file_data)
3345 return NULL;
3346
3347 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3348
3349 if (this_cu->v.quick->no_file_data)
3350 return NULL;
3351 return this_cu->v.quick->file_names;
3352 }
3353
3354 /* A helper for the "quick" functions which computes and caches the
3355 real path for a given file name from the line table. */
3356
3357 static const char *
3358 dw2_get_real_path (struct objfile *objfile,
3359 struct quick_file_names *qfn, int index)
3360 {
3361 if (qfn->real_names == NULL)
3362 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3363 qfn->num_file_names, const char *);
3364
3365 if (qfn->real_names[index] == NULL)
3366 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3367
3368 return qfn->real_names[index];
3369 }
3370
3371 static struct symtab *
3372 dw2_find_last_source_symtab (struct objfile *objfile)
3373 {
3374 struct compunit_symtab *cust;
3375 int index;
3376
3377 dw2_setup (objfile);
3378 index = dwarf2_per_objfile->n_comp_units - 1;
3379 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3380 if (cust == NULL)
3381 return NULL;
3382 return compunit_primary_filetab (cust);
3383 }
3384
3385 /* Traversal function for dw2_forget_cached_source_info. */
3386
3387 static int
3388 dw2_free_cached_file_names (void **slot, void *info)
3389 {
3390 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3391
3392 if (file_data->real_names)
3393 {
3394 int i;
3395
3396 for (i = 0; i < file_data->num_file_names; ++i)
3397 {
3398 xfree ((void*) file_data->real_names[i]);
3399 file_data->real_names[i] = NULL;
3400 }
3401 }
3402
3403 return 1;
3404 }
3405
3406 static void
3407 dw2_forget_cached_source_info (struct objfile *objfile)
3408 {
3409 dw2_setup (objfile);
3410
3411 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3412 dw2_free_cached_file_names, NULL);
3413 }
3414
3415 /* Helper function for dw2_map_symtabs_matching_filename that expands
3416 the symtabs and calls the iterator. */
3417
3418 static int
3419 dw2_map_expand_apply (struct objfile *objfile,
3420 struct dwarf2_per_cu_data *per_cu,
3421 const char *name, const char *real_path,
3422 int (*callback) (struct symtab *, void *),
3423 void *data)
3424 {
3425 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3426
3427 /* Don't visit already-expanded CUs. */
3428 if (per_cu->v.quick->compunit_symtab)
3429 return 0;
3430
3431 /* This may expand more than one symtab, and we want to iterate over
3432 all of them. */
3433 dw2_instantiate_symtab (per_cu);
3434
3435 return iterate_over_some_symtabs (name, real_path, callback, data,
3436 objfile->compunit_symtabs, last_made);
3437 }
3438
3439 /* Implementation of the map_symtabs_matching_filename method. */
3440
3441 static int
3442 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3443 const char *real_path,
3444 int (*callback) (struct symtab *, void *),
3445 void *data)
3446 {
3447 int i;
3448 const char *name_basename = lbasename (name);
3449
3450 dw2_setup (objfile);
3451
3452 /* The rule is CUs specify all the files, including those used by
3453 any TU, so there's no need to scan TUs here. */
3454
3455 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3456 {
3457 int j;
3458 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3459 struct quick_file_names *file_data;
3460
3461 /* We only need to look at symtabs not already expanded. */
3462 if (per_cu->v.quick->compunit_symtab)
3463 continue;
3464
3465 file_data = dw2_get_file_names (per_cu);
3466 if (file_data == NULL)
3467 continue;
3468
3469 for (j = 0; j < file_data->num_file_names; ++j)
3470 {
3471 const char *this_name = file_data->file_names[j];
3472 const char *this_real_name;
3473
3474 if (compare_filenames_for_search (this_name, name))
3475 {
3476 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3477 callback, data))
3478 return 1;
3479 continue;
3480 }
3481
3482 /* Before we invoke realpath, which can get expensive when many
3483 files are involved, do a quick comparison of the basenames. */
3484 if (! basenames_may_differ
3485 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3486 continue;
3487
3488 this_real_name = dw2_get_real_path (objfile, file_data, j);
3489 if (compare_filenames_for_search (this_real_name, name))
3490 {
3491 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3492 callback, data))
3493 return 1;
3494 continue;
3495 }
3496
3497 if (real_path != NULL)
3498 {
3499 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3500 gdb_assert (IS_ABSOLUTE_PATH (name));
3501 if (this_real_name != NULL
3502 && FILENAME_CMP (real_path, this_real_name) == 0)
3503 {
3504 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3505 callback, data))
3506 return 1;
3507 continue;
3508 }
3509 }
3510 }
3511 }
3512
3513 return 0;
3514 }
3515
3516 /* Struct used to manage iterating over all CUs looking for a symbol. */
3517
3518 struct dw2_symtab_iterator
3519 {
3520 /* The internalized form of .gdb_index. */
3521 struct mapped_index *index;
3522 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3523 int want_specific_block;
3524 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3525 Unused if !WANT_SPECIFIC_BLOCK. */
3526 int block_index;
3527 /* The kind of symbol we're looking for. */
3528 domain_enum domain;
3529 /* The list of CUs from the index entry of the symbol,
3530 or NULL if not found. */
3531 offset_type *vec;
3532 /* The next element in VEC to look at. */
3533 int next;
3534 /* The number of elements in VEC, or zero if there is no match. */
3535 int length;
3536 /* Have we seen a global version of the symbol?
3537 If so we can ignore all further global instances.
3538 This is to work around gold/15646, inefficient gold-generated
3539 indices. */
3540 int global_seen;
3541 };
3542
3543 /* Initialize the index symtab iterator ITER.
3544 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3545 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3546
3547 static void
3548 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3549 struct mapped_index *index,
3550 int want_specific_block,
3551 int block_index,
3552 domain_enum domain,
3553 const char *name)
3554 {
3555 iter->index = index;
3556 iter->want_specific_block = want_specific_block;
3557 iter->block_index = block_index;
3558 iter->domain = domain;
3559 iter->next = 0;
3560 iter->global_seen = 0;
3561
3562 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3563 iter->length = MAYBE_SWAP (*iter->vec);
3564 else
3565 {
3566 iter->vec = NULL;
3567 iter->length = 0;
3568 }
3569 }
3570
3571 /* Return the next matching CU or NULL if there are no more. */
3572
3573 static struct dwarf2_per_cu_data *
3574 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3575 {
3576 for ( ; iter->next < iter->length; ++iter->next)
3577 {
3578 offset_type cu_index_and_attrs =
3579 MAYBE_SWAP (iter->vec[iter->next + 1]);
3580 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3581 struct dwarf2_per_cu_data *per_cu;
3582 int want_static = iter->block_index != GLOBAL_BLOCK;
3583 /* This value is only valid for index versions >= 7. */
3584 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3585 gdb_index_symbol_kind symbol_kind =
3586 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3587 /* Only check the symbol attributes if they're present.
3588 Indices prior to version 7 don't record them,
3589 and indices >= 7 may elide them for certain symbols
3590 (gold does this). */
3591 int attrs_valid =
3592 (iter->index->version >= 7
3593 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3594
3595 /* Don't crash on bad data. */
3596 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3597 + dwarf2_per_objfile->n_type_units))
3598 {
3599 complaint (&symfile_complaints,
3600 _(".gdb_index entry has bad CU index"
3601 " [in module %s]"),
3602 objfile_name (dwarf2_per_objfile->objfile));
3603 continue;
3604 }
3605
3606 per_cu = dw2_get_cutu (cu_index);
3607
3608 /* Skip if already read in. */
3609 if (per_cu->v.quick->compunit_symtab)
3610 continue;
3611
3612 /* Check static vs global. */
3613 if (attrs_valid)
3614 {
3615 if (iter->want_specific_block
3616 && want_static != is_static)
3617 continue;
3618 /* Work around gold/15646. */
3619 if (!is_static && iter->global_seen)
3620 continue;
3621 if (!is_static)
3622 iter->global_seen = 1;
3623 }
3624
3625 /* Only check the symbol's kind if it has one. */
3626 if (attrs_valid)
3627 {
3628 switch (iter->domain)
3629 {
3630 case VAR_DOMAIN:
3631 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3632 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3633 /* Some types are also in VAR_DOMAIN. */
3634 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3635 continue;
3636 break;
3637 case STRUCT_DOMAIN:
3638 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3639 continue;
3640 break;
3641 case LABEL_DOMAIN:
3642 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3643 continue;
3644 break;
3645 default:
3646 break;
3647 }
3648 }
3649
3650 ++iter->next;
3651 return per_cu;
3652 }
3653
3654 return NULL;
3655 }
3656
3657 static struct compunit_symtab *
3658 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3659 const char *name, domain_enum domain)
3660 {
3661 struct compunit_symtab *stab_best = NULL;
3662 struct mapped_index *index;
3663
3664 dw2_setup (objfile);
3665
3666 index = dwarf2_per_objfile->index_table;
3667
3668 /* index is NULL if OBJF_READNOW. */
3669 if (index)
3670 {
3671 struct dw2_symtab_iterator iter;
3672 struct dwarf2_per_cu_data *per_cu;
3673
3674 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3675
3676 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3677 {
3678 struct symbol *sym, *with_opaque = NULL;
3679 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3680 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3681 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3682
3683 sym = block_find_symbol (block, name, domain,
3684 block_find_non_opaque_type_preferred,
3685 &with_opaque);
3686
3687 /* Some caution must be observed with overloaded functions
3688 and methods, since the index will not contain any overload
3689 information (but NAME might contain it). */
3690
3691 if (sym != NULL
3692 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3693 return stab;
3694 if (with_opaque != NULL
3695 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3696 stab_best = stab;
3697
3698 /* Keep looking through other CUs. */
3699 }
3700 }
3701
3702 return stab_best;
3703 }
3704
3705 static void
3706 dw2_print_stats (struct objfile *objfile)
3707 {
3708 int i, total, count;
3709
3710 dw2_setup (objfile);
3711 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3712 count = 0;
3713 for (i = 0; i < total; ++i)
3714 {
3715 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3716
3717 if (!per_cu->v.quick->compunit_symtab)
3718 ++count;
3719 }
3720 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3721 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3722 }
3723
3724 /* This dumps minimal information about the index.
3725 It is called via "mt print objfiles".
3726 One use is to verify .gdb_index has been loaded by the
3727 gdb.dwarf2/gdb-index.exp testcase. */
3728
3729 static void
3730 dw2_dump (struct objfile *objfile)
3731 {
3732 dw2_setup (objfile);
3733 gdb_assert (dwarf2_per_objfile->using_index);
3734 printf_filtered (".gdb_index:");
3735 if (dwarf2_per_objfile->index_table != NULL)
3736 {
3737 printf_filtered (" version %d\n",
3738 dwarf2_per_objfile->index_table->version);
3739 }
3740 else
3741 printf_filtered (" faked for \"readnow\"\n");
3742 printf_filtered ("\n");
3743 }
3744
3745 static void
3746 dw2_relocate (struct objfile *objfile,
3747 const struct section_offsets *new_offsets,
3748 const struct section_offsets *delta)
3749 {
3750 /* There's nothing to relocate here. */
3751 }
3752
3753 static void
3754 dw2_expand_symtabs_for_function (struct objfile *objfile,
3755 const char *func_name)
3756 {
3757 struct mapped_index *index;
3758
3759 dw2_setup (objfile);
3760
3761 index = dwarf2_per_objfile->index_table;
3762
3763 /* index is NULL if OBJF_READNOW. */
3764 if (index)
3765 {
3766 struct dw2_symtab_iterator iter;
3767 struct dwarf2_per_cu_data *per_cu;
3768
3769 /* Note: It doesn't matter what we pass for block_index here. */
3770 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3771 func_name);
3772
3773 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3774 dw2_instantiate_symtab (per_cu);
3775 }
3776 }
3777
3778 static void
3779 dw2_expand_all_symtabs (struct objfile *objfile)
3780 {
3781 int i;
3782
3783 dw2_setup (objfile);
3784
3785 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3786 + dwarf2_per_objfile->n_type_units); ++i)
3787 {
3788 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3789
3790 dw2_instantiate_symtab (per_cu);
3791 }
3792 }
3793
3794 static void
3795 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3796 const char *fullname)
3797 {
3798 int i;
3799
3800 dw2_setup (objfile);
3801
3802 /* We don't need to consider type units here.
3803 This is only called for examining code, e.g. expand_line_sal.
3804 There can be an order of magnitude (or more) more type units
3805 than comp units, and we avoid them if we can. */
3806
3807 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3808 {
3809 int j;
3810 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3811 struct quick_file_names *file_data;
3812
3813 /* We only need to look at symtabs not already expanded. */
3814 if (per_cu->v.quick->compunit_symtab)
3815 continue;
3816
3817 file_data = dw2_get_file_names (per_cu);
3818 if (file_data == NULL)
3819 continue;
3820
3821 for (j = 0; j < file_data->num_file_names; ++j)
3822 {
3823 const char *this_fullname = file_data->file_names[j];
3824
3825 if (filename_cmp (this_fullname, fullname) == 0)
3826 {
3827 dw2_instantiate_symtab (per_cu);
3828 break;
3829 }
3830 }
3831 }
3832 }
3833
3834 static void
3835 dw2_map_matching_symbols (struct objfile *objfile,
3836 const char * name, domain_enum domain,
3837 int global,
3838 int (*callback) (struct block *,
3839 struct symbol *, void *),
3840 void *data, symbol_compare_ftype *match,
3841 symbol_compare_ftype *ordered_compare)
3842 {
3843 /* Currently unimplemented; used for Ada. The function can be called if the
3844 current language is Ada for a non-Ada objfile using GNU index. As Ada
3845 does not look for non-Ada symbols this function should just return. */
3846 }
3847
3848 static void
3849 dw2_expand_symtabs_matching
3850 (struct objfile *objfile,
3851 expand_symtabs_file_matcher_ftype *file_matcher,
3852 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3853 expand_symtabs_exp_notify_ftype *expansion_notify,
3854 enum search_domain kind,
3855 void *data)
3856 {
3857 int i;
3858 offset_type iter;
3859 struct mapped_index *index;
3860
3861 dw2_setup (objfile);
3862
3863 /* index_table is NULL if OBJF_READNOW. */
3864 if (!dwarf2_per_objfile->index_table)
3865 return;
3866 index = dwarf2_per_objfile->index_table;
3867
3868 if (file_matcher != NULL)
3869 {
3870 struct cleanup *cleanup;
3871 htab_t visited_found, visited_not_found;
3872
3873 visited_found = htab_create_alloc (10,
3874 htab_hash_pointer, htab_eq_pointer,
3875 NULL, xcalloc, xfree);
3876 cleanup = make_cleanup_htab_delete (visited_found);
3877 visited_not_found = htab_create_alloc (10,
3878 htab_hash_pointer, htab_eq_pointer,
3879 NULL, xcalloc, xfree);
3880 make_cleanup_htab_delete (visited_not_found);
3881
3882 /* The rule is CUs specify all the files, including those used by
3883 any TU, so there's no need to scan TUs here. */
3884
3885 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3886 {
3887 int j;
3888 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3889 struct quick_file_names *file_data;
3890 void **slot;
3891
3892 QUIT;
3893
3894 per_cu->v.quick->mark = 0;
3895
3896 /* We only need to look at symtabs not already expanded. */
3897 if (per_cu->v.quick->compunit_symtab)
3898 continue;
3899
3900 file_data = dw2_get_file_names (per_cu);
3901 if (file_data == NULL)
3902 continue;
3903
3904 if (htab_find (visited_not_found, file_data) != NULL)
3905 continue;
3906 else if (htab_find (visited_found, file_data) != NULL)
3907 {
3908 per_cu->v.quick->mark = 1;
3909 continue;
3910 }
3911
3912 for (j = 0; j < file_data->num_file_names; ++j)
3913 {
3914 const char *this_real_name;
3915
3916 if (file_matcher (file_data->file_names[j], data, 0))
3917 {
3918 per_cu->v.quick->mark = 1;
3919 break;
3920 }
3921
3922 /* Before we invoke realpath, which can get expensive when many
3923 files are involved, do a quick comparison of the basenames. */
3924 if (!basenames_may_differ
3925 && !file_matcher (lbasename (file_data->file_names[j]),
3926 data, 1))
3927 continue;
3928
3929 this_real_name = dw2_get_real_path (objfile, file_data, j);
3930 if (file_matcher (this_real_name, data, 0))
3931 {
3932 per_cu->v.quick->mark = 1;
3933 break;
3934 }
3935 }
3936
3937 slot = htab_find_slot (per_cu->v.quick->mark
3938 ? visited_found
3939 : visited_not_found,
3940 file_data, INSERT);
3941 *slot = file_data;
3942 }
3943
3944 do_cleanups (cleanup);
3945 }
3946
3947 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3948 {
3949 offset_type idx = 2 * iter;
3950 const char *name;
3951 offset_type *vec, vec_len, vec_idx;
3952 int global_seen = 0;
3953
3954 QUIT;
3955
3956 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3957 continue;
3958
3959 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3960
3961 if (! (*symbol_matcher) (name, data))
3962 continue;
3963
3964 /* The name was matched, now expand corresponding CUs that were
3965 marked. */
3966 vec = (offset_type *) (index->constant_pool
3967 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3968 vec_len = MAYBE_SWAP (vec[0]);
3969 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3970 {
3971 struct dwarf2_per_cu_data *per_cu;
3972 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3973 /* This value is only valid for index versions >= 7. */
3974 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3975 gdb_index_symbol_kind symbol_kind =
3976 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3977 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3978 /* Only check the symbol attributes if they're present.
3979 Indices prior to version 7 don't record them,
3980 and indices >= 7 may elide them for certain symbols
3981 (gold does this). */
3982 int attrs_valid =
3983 (index->version >= 7
3984 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3985
3986 /* Work around gold/15646. */
3987 if (attrs_valid)
3988 {
3989 if (!is_static && global_seen)
3990 continue;
3991 if (!is_static)
3992 global_seen = 1;
3993 }
3994
3995 /* Only check the symbol's kind if it has one. */
3996 if (attrs_valid)
3997 {
3998 switch (kind)
3999 {
4000 case VARIABLES_DOMAIN:
4001 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4002 continue;
4003 break;
4004 case FUNCTIONS_DOMAIN:
4005 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4006 continue;
4007 break;
4008 case TYPES_DOMAIN:
4009 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4010 continue;
4011 break;
4012 default:
4013 break;
4014 }
4015 }
4016
4017 /* Don't crash on bad data. */
4018 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4019 + dwarf2_per_objfile->n_type_units))
4020 {
4021 complaint (&symfile_complaints,
4022 _(".gdb_index entry has bad CU index"
4023 " [in module %s]"), objfile_name (objfile));
4024 continue;
4025 }
4026
4027 per_cu = dw2_get_cutu (cu_index);
4028 if (file_matcher == NULL || per_cu->v.quick->mark)
4029 {
4030 int symtab_was_null =
4031 (per_cu->v.quick->compunit_symtab == NULL);
4032
4033 dw2_instantiate_symtab (per_cu);
4034
4035 if (expansion_notify != NULL
4036 && symtab_was_null
4037 && per_cu->v.quick->compunit_symtab != NULL)
4038 {
4039 expansion_notify (per_cu->v.quick->compunit_symtab,
4040 data);
4041 }
4042 }
4043 }
4044 }
4045 }
4046
4047 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4048 symtab. */
4049
4050 static struct compunit_symtab *
4051 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4052 CORE_ADDR pc)
4053 {
4054 int i;
4055
4056 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4057 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4058 return cust;
4059
4060 if (cust->includes == NULL)
4061 return NULL;
4062
4063 for (i = 0; cust->includes[i]; ++i)
4064 {
4065 struct compunit_symtab *s = cust->includes[i];
4066
4067 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4068 if (s != NULL)
4069 return s;
4070 }
4071
4072 return NULL;
4073 }
4074
4075 static struct compunit_symtab *
4076 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4077 struct bound_minimal_symbol msymbol,
4078 CORE_ADDR pc,
4079 struct obj_section *section,
4080 int warn_if_readin)
4081 {
4082 struct dwarf2_per_cu_data *data;
4083 struct compunit_symtab *result;
4084
4085 dw2_setup (objfile);
4086
4087 if (!objfile->psymtabs_addrmap)
4088 return NULL;
4089
4090 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4091 if (!data)
4092 return NULL;
4093
4094 if (warn_if_readin && data->v.quick->compunit_symtab)
4095 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4096 paddress (get_objfile_arch (objfile), pc));
4097
4098 result
4099 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4100 pc);
4101 gdb_assert (result != NULL);
4102 return result;
4103 }
4104
4105 static void
4106 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4107 void *data, int need_fullname)
4108 {
4109 int i;
4110 struct cleanup *cleanup;
4111 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4112 NULL, xcalloc, xfree);
4113
4114 cleanup = make_cleanup_htab_delete (visited);
4115 dw2_setup (objfile);
4116
4117 /* The rule is CUs specify all the files, including those used by
4118 any TU, so there's no need to scan TUs here.
4119 We can ignore file names coming from already-expanded CUs. */
4120
4121 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4122 {
4123 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4124
4125 if (per_cu->v.quick->compunit_symtab)
4126 {
4127 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4128 INSERT);
4129
4130 *slot = per_cu->v.quick->file_names;
4131 }
4132 }
4133
4134 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4135 {
4136 int j;
4137 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4138 struct quick_file_names *file_data;
4139 void **slot;
4140
4141 /* We only need to look at symtabs not already expanded. */
4142 if (per_cu->v.quick->compunit_symtab)
4143 continue;
4144
4145 file_data = dw2_get_file_names (per_cu);
4146 if (file_data == NULL)
4147 continue;
4148
4149 slot = htab_find_slot (visited, file_data, INSERT);
4150 if (*slot)
4151 {
4152 /* Already visited. */
4153 continue;
4154 }
4155 *slot = file_data;
4156
4157 for (j = 0; j < file_data->num_file_names; ++j)
4158 {
4159 const char *this_real_name;
4160
4161 if (need_fullname)
4162 this_real_name = dw2_get_real_path (objfile, file_data, j);
4163 else
4164 this_real_name = NULL;
4165 (*fun) (file_data->file_names[j], this_real_name, data);
4166 }
4167 }
4168
4169 do_cleanups (cleanup);
4170 }
4171
4172 static int
4173 dw2_has_symbols (struct objfile *objfile)
4174 {
4175 return 1;
4176 }
4177
4178 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4179 {
4180 dw2_has_symbols,
4181 dw2_find_last_source_symtab,
4182 dw2_forget_cached_source_info,
4183 dw2_map_symtabs_matching_filename,
4184 dw2_lookup_symbol,
4185 dw2_print_stats,
4186 dw2_dump,
4187 dw2_relocate,
4188 dw2_expand_symtabs_for_function,
4189 dw2_expand_all_symtabs,
4190 dw2_expand_symtabs_with_fullname,
4191 dw2_map_matching_symbols,
4192 dw2_expand_symtabs_matching,
4193 dw2_find_pc_sect_compunit_symtab,
4194 dw2_map_symbol_filenames
4195 };
4196
4197 /* Initialize for reading DWARF for this objfile. Return 0 if this
4198 file will use psymtabs, or 1 if using the GNU index. */
4199
4200 int
4201 dwarf2_initialize_objfile (struct objfile *objfile)
4202 {
4203 /* If we're about to read full symbols, don't bother with the
4204 indices. In this case we also don't care if some other debug
4205 format is making psymtabs, because they are all about to be
4206 expanded anyway. */
4207 if ((objfile->flags & OBJF_READNOW))
4208 {
4209 int i;
4210
4211 dwarf2_per_objfile->using_index = 1;
4212 create_all_comp_units (objfile);
4213 create_all_type_units (objfile);
4214 dwarf2_per_objfile->quick_file_names_table =
4215 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4216
4217 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4218 + dwarf2_per_objfile->n_type_units); ++i)
4219 {
4220 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4221
4222 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4223 struct dwarf2_per_cu_quick_data);
4224 }
4225
4226 /* Return 1 so that gdb sees the "quick" functions. However,
4227 these functions will be no-ops because we will have expanded
4228 all symtabs. */
4229 return 1;
4230 }
4231
4232 if (dwarf2_read_index (objfile))
4233 return 1;
4234
4235 return 0;
4236 }
4237
4238 \f
4239
4240 /* Build a partial symbol table. */
4241
4242 void
4243 dwarf2_build_psymtabs (struct objfile *objfile)
4244 {
4245
4246 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4247 {
4248 init_psymbol_list (objfile, 1024);
4249 }
4250
4251 TRY
4252 {
4253 /* This isn't really ideal: all the data we allocate on the
4254 objfile's obstack is still uselessly kept around. However,
4255 freeing it seems unsafe. */
4256 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4257
4258 dwarf2_build_psymtabs_hard (objfile);
4259 discard_cleanups (cleanups);
4260 }
4261 CATCH (except, RETURN_MASK_ERROR)
4262 {
4263 exception_print (gdb_stderr, except);
4264 }
4265 END_CATCH
4266 }
4267
4268 /* Return the total length of the CU described by HEADER. */
4269
4270 static unsigned int
4271 get_cu_length (const struct comp_unit_head *header)
4272 {
4273 return header->initial_length_size + header->length;
4274 }
4275
4276 /* Return TRUE if OFFSET is within CU_HEADER. */
4277
4278 static inline int
4279 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4280 {
4281 sect_offset bottom = { cu_header->offset.sect_off };
4282 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4283
4284 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4285 }
4286
4287 /* Find the base address of the compilation unit for range lists and
4288 location lists. It will normally be specified by DW_AT_low_pc.
4289 In DWARF-3 draft 4, the base address could be overridden by
4290 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4291 compilation units with discontinuous ranges. */
4292
4293 static void
4294 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4295 {
4296 struct attribute *attr;
4297
4298 cu->base_known = 0;
4299 cu->base_address = 0;
4300
4301 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4302 if (attr)
4303 {
4304 cu->base_address = attr_value_as_address (attr);
4305 cu->base_known = 1;
4306 }
4307 else
4308 {
4309 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4310 if (attr)
4311 {
4312 cu->base_address = attr_value_as_address (attr);
4313 cu->base_known = 1;
4314 }
4315 }
4316 }
4317
4318 /* Read in the comp unit header information from the debug_info at info_ptr.
4319 NOTE: This leaves members offset, first_die_offset to be filled in
4320 by the caller. */
4321
4322 static const gdb_byte *
4323 read_comp_unit_head (struct comp_unit_head *cu_header,
4324 const gdb_byte *info_ptr, bfd *abfd)
4325 {
4326 int signed_addr;
4327 unsigned int bytes_read;
4328
4329 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4330 cu_header->initial_length_size = bytes_read;
4331 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4332 info_ptr += bytes_read;
4333 cu_header->version = read_2_bytes (abfd, info_ptr);
4334 info_ptr += 2;
4335 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4336 &bytes_read);
4337 info_ptr += bytes_read;
4338 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4339 info_ptr += 1;
4340 signed_addr = bfd_get_sign_extend_vma (abfd);
4341 if (signed_addr < 0)
4342 internal_error (__FILE__, __LINE__,
4343 _("read_comp_unit_head: dwarf from non elf file"));
4344 cu_header->signed_addr_p = signed_addr;
4345
4346 return info_ptr;
4347 }
4348
4349 /* Helper function that returns the proper abbrev section for
4350 THIS_CU. */
4351
4352 static struct dwarf2_section_info *
4353 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4354 {
4355 struct dwarf2_section_info *abbrev;
4356
4357 if (this_cu->is_dwz)
4358 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4359 else
4360 abbrev = &dwarf2_per_objfile->abbrev;
4361
4362 return abbrev;
4363 }
4364
4365 /* Subroutine of read_and_check_comp_unit_head and
4366 read_and_check_type_unit_head to simplify them.
4367 Perform various error checking on the header. */
4368
4369 static void
4370 error_check_comp_unit_head (struct comp_unit_head *header,
4371 struct dwarf2_section_info *section,
4372 struct dwarf2_section_info *abbrev_section)
4373 {
4374 bfd *abfd = get_section_bfd_owner (section);
4375 const char *filename = get_section_file_name (section);
4376
4377 if (header->version != 2 && header->version != 3 && header->version != 4)
4378 error (_("Dwarf Error: wrong version in compilation unit header "
4379 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4380 filename);
4381
4382 if (header->abbrev_offset.sect_off
4383 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4384 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4385 "(offset 0x%lx + 6) [in module %s]"),
4386 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4387 filename);
4388
4389 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4390 avoid potential 32-bit overflow. */
4391 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4392 > section->size)
4393 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4394 "(offset 0x%lx + 0) [in module %s]"),
4395 (long) header->length, (long) header->offset.sect_off,
4396 filename);
4397 }
4398
4399 /* Read in a CU/TU header and perform some basic error checking.
4400 The contents of the header are stored in HEADER.
4401 The result is a pointer to the start of the first DIE. */
4402
4403 static const gdb_byte *
4404 read_and_check_comp_unit_head (struct comp_unit_head *header,
4405 struct dwarf2_section_info *section,
4406 struct dwarf2_section_info *abbrev_section,
4407 const gdb_byte *info_ptr,
4408 int is_debug_types_section)
4409 {
4410 const gdb_byte *beg_of_comp_unit = info_ptr;
4411 bfd *abfd = get_section_bfd_owner (section);
4412
4413 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4414
4415 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4416
4417 /* If we're reading a type unit, skip over the signature and
4418 type_offset fields. */
4419 if (is_debug_types_section)
4420 info_ptr += 8 /*signature*/ + header->offset_size;
4421
4422 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4423
4424 error_check_comp_unit_head (header, section, abbrev_section);
4425
4426 return info_ptr;
4427 }
4428
4429 /* Read in the types comp unit header information from .debug_types entry at
4430 types_ptr. The result is a pointer to one past the end of the header. */
4431
4432 static const gdb_byte *
4433 read_and_check_type_unit_head (struct comp_unit_head *header,
4434 struct dwarf2_section_info *section,
4435 struct dwarf2_section_info *abbrev_section,
4436 const gdb_byte *info_ptr,
4437 ULONGEST *signature,
4438 cu_offset *type_offset_in_tu)
4439 {
4440 const gdb_byte *beg_of_comp_unit = info_ptr;
4441 bfd *abfd = get_section_bfd_owner (section);
4442
4443 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4444
4445 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4446
4447 /* If we're reading a type unit, skip over the signature and
4448 type_offset fields. */
4449 if (signature != NULL)
4450 *signature = read_8_bytes (abfd, info_ptr);
4451 info_ptr += 8;
4452 if (type_offset_in_tu != NULL)
4453 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4454 header->offset_size);
4455 info_ptr += header->offset_size;
4456
4457 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4458
4459 error_check_comp_unit_head (header, section, abbrev_section);
4460
4461 return info_ptr;
4462 }
4463
4464 /* Fetch the abbreviation table offset from a comp or type unit header. */
4465
4466 static sect_offset
4467 read_abbrev_offset (struct dwarf2_section_info *section,
4468 sect_offset offset)
4469 {
4470 bfd *abfd = get_section_bfd_owner (section);
4471 const gdb_byte *info_ptr;
4472 unsigned int length, initial_length_size, offset_size;
4473 sect_offset abbrev_offset;
4474
4475 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4476 info_ptr = section->buffer + offset.sect_off;
4477 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4478 offset_size = initial_length_size == 4 ? 4 : 8;
4479 info_ptr += initial_length_size + 2 /*version*/;
4480 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4481 return abbrev_offset;
4482 }
4483
4484 /* Allocate a new partial symtab for file named NAME and mark this new
4485 partial symtab as being an include of PST. */
4486
4487 static void
4488 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4489 struct objfile *objfile)
4490 {
4491 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4492
4493 if (!IS_ABSOLUTE_PATH (subpst->filename))
4494 {
4495 /* It shares objfile->objfile_obstack. */
4496 subpst->dirname = pst->dirname;
4497 }
4498
4499 subpst->textlow = 0;
4500 subpst->texthigh = 0;
4501
4502 subpst->dependencies = (struct partial_symtab **)
4503 obstack_alloc (&objfile->objfile_obstack,
4504 sizeof (struct partial_symtab *));
4505 subpst->dependencies[0] = pst;
4506 subpst->number_of_dependencies = 1;
4507
4508 subpst->globals_offset = 0;
4509 subpst->n_global_syms = 0;
4510 subpst->statics_offset = 0;
4511 subpst->n_static_syms = 0;
4512 subpst->compunit_symtab = NULL;
4513 subpst->read_symtab = pst->read_symtab;
4514 subpst->readin = 0;
4515
4516 /* No private part is necessary for include psymtabs. This property
4517 can be used to differentiate between such include psymtabs and
4518 the regular ones. */
4519 subpst->read_symtab_private = NULL;
4520 }
4521
4522 /* Read the Line Number Program data and extract the list of files
4523 included by the source file represented by PST. Build an include
4524 partial symtab for each of these included files. */
4525
4526 static void
4527 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4528 struct die_info *die,
4529 struct partial_symtab *pst)
4530 {
4531 struct line_header *lh = NULL;
4532 struct attribute *attr;
4533
4534 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4535 if (attr)
4536 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4537 if (lh == NULL)
4538 return; /* No linetable, so no includes. */
4539
4540 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4541 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4542
4543 free_line_header (lh);
4544 }
4545
4546 static hashval_t
4547 hash_signatured_type (const void *item)
4548 {
4549 const struct signatured_type *sig_type = item;
4550
4551 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4552 return sig_type->signature;
4553 }
4554
4555 static int
4556 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4557 {
4558 const struct signatured_type *lhs = item_lhs;
4559 const struct signatured_type *rhs = item_rhs;
4560
4561 return lhs->signature == rhs->signature;
4562 }
4563
4564 /* Allocate a hash table for signatured types. */
4565
4566 static htab_t
4567 allocate_signatured_type_table (struct objfile *objfile)
4568 {
4569 return htab_create_alloc_ex (41,
4570 hash_signatured_type,
4571 eq_signatured_type,
4572 NULL,
4573 &objfile->objfile_obstack,
4574 hashtab_obstack_allocate,
4575 dummy_obstack_deallocate);
4576 }
4577
4578 /* A helper function to add a signatured type CU to a table. */
4579
4580 static int
4581 add_signatured_type_cu_to_table (void **slot, void *datum)
4582 {
4583 struct signatured_type *sigt = *slot;
4584 struct signatured_type ***datap = datum;
4585
4586 **datap = sigt;
4587 ++*datap;
4588
4589 return 1;
4590 }
4591
4592 /* Create the hash table of all entries in the .debug_types
4593 (or .debug_types.dwo) section(s).
4594 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4595 otherwise it is NULL.
4596
4597 The result is a pointer to the hash table or NULL if there are no types.
4598
4599 Note: This function processes DWO files only, not DWP files. */
4600
4601 static htab_t
4602 create_debug_types_hash_table (struct dwo_file *dwo_file,
4603 VEC (dwarf2_section_info_def) *types)
4604 {
4605 struct objfile *objfile = dwarf2_per_objfile->objfile;
4606 htab_t types_htab = NULL;
4607 int ix;
4608 struct dwarf2_section_info *section;
4609 struct dwarf2_section_info *abbrev_section;
4610
4611 if (VEC_empty (dwarf2_section_info_def, types))
4612 return NULL;
4613
4614 abbrev_section = (dwo_file != NULL
4615 ? &dwo_file->sections.abbrev
4616 : &dwarf2_per_objfile->abbrev);
4617
4618 if (dwarf_read_debug)
4619 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4620 dwo_file ? ".dwo" : "",
4621 get_section_file_name (abbrev_section));
4622
4623 for (ix = 0;
4624 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4625 ++ix)
4626 {
4627 bfd *abfd;
4628 const gdb_byte *info_ptr, *end_ptr;
4629
4630 dwarf2_read_section (objfile, section);
4631 info_ptr = section->buffer;
4632
4633 if (info_ptr == NULL)
4634 continue;
4635
4636 /* We can't set abfd until now because the section may be empty or
4637 not present, in which case the bfd is unknown. */
4638 abfd = get_section_bfd_owner (section);
4639
4640 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4641 because we don't need to read any dies: the signature is in the
4642 header. */
4643
4644 end_ptr = info_ptr + section->size;
4645 while (info_ptr < end_ptr)
4646 {
4647 sect_offset offset;
4648 cu_offset type_offset_in_tu;
4649 ULONGEST signature;
4650 struct signatured_type *sig_type;
4651 struct dwo_unit *dwo_tu;
4652 void **slot;
4653 const gdb_byte *ptr = info_ptr;
4654 struct comp_unit_head header;
4655 unsigned int length;
4656
4657 offset.sect_off = ptr - section->buffer;
4658
4659 /* We need to read the type's signature in order to build the hash
4660 table, but we don't need anything else just yet. */
4661
4662 ptr = read_and_check_type_unit_head (&header, section,
4663 abbrev_section, ptr,
4664 &signature, &type_offset_in_tu);
4665
4666 length = get_cu_length (&header);
4667
4668 /* Skip dummy type units. */
4669 if (ptr >= info_ptr + length
4670 || peek_abbrev_code (abfd, ptr) == 0)
4671 {
4672 info_ptr += length;
4673 continue;
4674 }
4675
4676 if (types_htab == NULL)
4677 {
4678 if (dwo_file)
4679 types_htab = allocate_dwo_unit_table (objfile);
4680 else
4681 types_htab = allocate_signatured_type_table (objfile);
4682 }
4683
4684 if (dwo_file)
4685 {
4686 sig_type = NULL;
4687 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4688 struct dwo_unit);
4689 dwo_tu->dwo_file = dwo_file;
4690 dwo_tu->signature = signature;
4691 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4692 dwo_tu->section = section;
4693 dwo_tu->offset = offset;
4694 dwo_tu->length = length;
4695 }
4696 else
4697 {
4698 /* N.B.: type_offset is not usable if this type uses a DWO file.
4699 The real type_offset is in the DWO file. */
4700 dwo_tu = NULL;
4701 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4702 struct signatured_type);
4703 sig_type->signature = signature;
4704 sig_type->type_offset_in_tu = type_offset_in_tu;
4705 sig_type->per_cu.objfile = objfile;
4706 sig_type->per_cu.is_debug_types = 1;
4707 sig_type->per_cu.section = section;
4708 sig_type->per_cu.offset = offset;
4709 sig_type->per_cu.length = length;
4710 }
4711
4712 slot = htab_find_slot (types_htab,
4713 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4714 INSERT);
4715 gdb_assert (slot != NULL);
4716 if (*slot != NULL)
4717 {
4718 sect_offset dup_offset;
4719
4720 if (dwo_file)
4721 {
4722 const struct dwo_unit *dup_tu = *slot;
4723
4724 dup_offset = dup_tu->offset;
4725 }
4726 else
4727 {
4728 const struct signatured_type *dup_tu = *slot;
4729
4730 dup_offset = dup_tu->per_cu.offset;
4731 }
4732
4733 complaint (&symfile_complaints,
4734 _("debug type entry at offset 0x%x is duplicate to"
4735 " the entry at offset 0x%x, signature %s"),
4736 offset.sect_off, dup_offset.sect_off,
4737 hex_string (signature));
4738 }
4739 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4740
4741 if (dwarf_read_debug > 1)
4742 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4743 offset.sect_off,
4744 hex_string (signature));
4745
4746 info_ptr += length;
4747 }
4748 }
4749
4750 return types_htab;
4751 }
4752
4753 /* Create the hash table of all entries in the .debug_types section,
4754 and initialize all_type_units.
4755 The result is zero if there is an error (e.g. missing .debug_types section),
4756 otherwise non-zero. */
4757
4758 static int
4759 create_all_type_units (struct objfile *objfile)
4760 {
4761 htab_t types_htab;
4762 struct signatured_type **iter;
4763
4764 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4765 if (types_htab == NULL)
4766 {
4767 dwarf2_per_objfile->signatured_types = NULL;
4768 return 0;
4769 }
4770
4771 dwarf2_per_objfile->signatured_types = types_htab;
4772
4773 dwarf2_per_objfile->n_type_units
4774 = dwarf2_per_objfile->n_allocated_type_units
4775 = htab_elements (types_htab);
4776 dwarf2_per_objfile->all_type_units
4777 = xmalloc (dwarf2_per_objfile->n_type_units
4778 * sizeof (struct signatured_type *));
4779 iter = &dwarf2_per_objfile->all_type_units[0];
4780 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4781 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4782 == dwarf2_per_objfile->n_type_units);
4783
4784 return 1;
4785 }
4786
4787 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4788 If SLOT is non-NULL, it is the entry to use in the hash table.
4789 Otherwise we find one. */
4790
4791 static struct signatured_type *
4792 add_type_unit (ULONGEST sig, void **slot)
4793 {
4794 struct objfile *objfile = dwarf2_per_objfile->objfile;
4795 int n_type_units = dwarf2_per_objfile->n_type_units;
4796 struct signatured_type *sig_type;
4797
4798 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4799 ++n_type_units;
4800 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4801 {
4802 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4803 dwarf2_per_objfile->n_allocated_type_units = 1;
4804 dwarf2_per_objfile->n_allocated_type_units *= 2;
4805 dwarf2_per_objfile->all_type_units
4806 = xrealloc (dwarf2_per_objfile->all_type_units,
4807 dwarf2_per_objfile->n_allocated_type_units
4808 * sizeof (struct signatured_type *));
4809 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4810 }
4811 dwarf2_per_objfile->n_type_units = n_type_units;
4812
4813 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4814 struct signatured_type);
4815 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4816 sig_type->signature = sig;
4817 sig_type->per_cu.is_debug_types = 1;
4818 if (dwarf2_per_objfile->using_index)
4819 {
4820 sig_type->per_cu.v.quick =
4821 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4822 struct dwarf2_per_cu_quick_data);
4823 }
4824
4825 if (slot == NULL)
4826 {
4827 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4828 sig_type, INSERT);
4829 }
4830 gdb_assert (*slot == NULL);
4831 *slot = sig_type;
4832 /* The rest of sig_type must be filled in by the caller. */
4833 return sig_type;
4834 }
4835
4836 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4837 Fill in SIG_ENTRY with DWO_ENTRY. */
4838
4839 static void
4840 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4841 struct signatured_type *sig_entry,
4842 struct dwo_unit *dwo_entry)
4843 {
4844 /* Make sure we're not clobbering something we don't expect to. */
4845 gdb_assert (! sig_entry->per_cu.queued);
4846 gdb_assert (sig_entry->per_cu.cu == NULL);
4847 if (dwarf2_per_objfile->using_index)
4848 {
4849 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4850 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4851 }
4852 else
4853 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4854 gdb_assert (sig_entry->signature == dwo_entry->signature);
4855 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4856 gdb_assert (sig_entry->type_unit_group == NULL);
4857 gdb_assert (sig_entry->dwo_unit == NULL);
4858
4859 sig_entry->per_cu.section = dwo_entry->section;
4860 sig_entry->per_cu.offset = dwo_entry->offset;
4861 sig_entry->per_cu.length = dwo_entry->length;
4862 sig_entry->per_cu.reading_dwo_directly = 1;
4863 sig_entry->per_cu.objfile = objfile;
4864 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4865 sig_entry->dwo_unit = dwo_entry;
4866 }
4867
4868 /* Subroutine of lookup_signatured_type.
4869 If we haven't read the TU yet, create the signatured_type data structure
4870 for a TU to be read in directly from a DWO file, bypassing the stub.
4871 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4872 using .gdb_index, then when reading a CU we want to stay in the DWO file
4873 containing that CU. Otherwise we could end up reading several other DWO
4874 files (due to comdat folding) to process the transitive closure of all the
4875 mentioned TUs, and that can be slow. The current DWO file will have every
4876 type signature that it needs.
4877 We only do this for .gdb_index because in the psymtab case we already have
4878 to read all the DWOs to build the type unit groups. */
4879
4880 static struct signatured_type *
4881 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4882 {
4883 struct objfile *objfile = dwarf2_per_objfile->objfile;
4884 struct dwo_file *dwo_file;
4885 struct dwo_unit find_dwo_entry, *dwo_entry;
4886 struct signatured_type find_sig_entry, *sig_entry;
4887 void **slot;
4888
4889 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4890
4891 /* If TU skeletons have been removed then we may not have read in any
4892 TUs yet. */
4893 if (dwarf2_per_objfile->signatured_types == NULL)
4894 {
4895 dwarf2_per_objfile->signatured_types
4896 = allocate_signatured_type_table (objfile);
4897 }
4898
4899 /* We only ever need to read in one copy of a signatured type.
4900 Use the global signatured_types array to do our own comdat-folding
4901 of types. If this is the first time we're reading this TU, and
4902 the TU has an entry in .gdb_index, replace the recorded data from
4903 .gdb_index with this TU. */
4904
4905 find_sig_entry.signature = sig;
4906 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4907 &find_sig_entry, INSERT);
4908 sig_entry = *slot;
4909
4910 /* We can get here with the TU already read, *or* in the process of being
4911 read. Don't reassign the global entry to point to this DWO if that's
4912 the case. Also note that if the TU is already being read, it may not
4913 have come from a DWO, the program may be a mix of Fission-compiled
4914 code and non-Fission-compiled code. */
4915
4916 /* Have we already tried to read this TU?
4917 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4918 needn't exist in the global table yet). */
4919 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4920 return sig_entry;
4921
4922 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4923 dwo_unit of the TU itself. */
4924 dwo_file = cu->dwo_unit->dwo_file;
4925
4926 /* Ok, this is the first time we're reading this TU. */
4927 if (dwo_file->tus == NULL)
4928 return NULL;
4929 find_dwo_entry.signature = sig;
4930 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4931 if (dwo_entry == NULL)
4932 return NULL;
4933
4934 /* If the global table doesn't have an entry for this TU, add one. */
4935 if (sig_entry == NULL)
4936 sig_entry = add_type_unit (sig, slot);
4937
4938 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4939 sig_entry->per_cu.tu_read = 1;
4940 return sig_entry;
4941 }
4942
4943 /* Subroutine of lookup_signatured_type.
4944 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4945 then try the DWP file. If the TU stub (skeleton) has been removed then
4946 it won't be in .gdb_index. */
4947
4948 static struct signatured_type *
4949 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4950 {
4951 struct objfile *objfile = dwarf2_per_objfile->objfile;
4952 struct dwp_file *dwp_file = get_dwp_file ();
4953 struct dwo_unit *dwo_entry;
4954 struct signatured_type find_sig_entry, *sig_entry;
4955 void **slot;
4956
4957 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4958 gdb_assert (dwp_file != NULL);
4959
4960 /* If TU skeletons have been removed then we may not have read in any
4961 TUs yet. */
4962 if (dwarf2_per_objfile->signatured_types == NULL)
4963 {
4964 dwarf2_per_objfile->signatured_types
4965 = allocate_signatured_type_table (objfile);
4966 }
4967
4968 find_sig_entry.signature = sig;
4969 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4970 &find_sig_entry, INSERT);
4971 sig_entry = *slot;
4972
4973 /* Have we already tried to read this TU?
4974 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4975 needn't exist in the global table yet). */
4976 if (sig_entry != NULL)
4977 return sig_entry;
4978
4979 if (dwp_file->tus == NULL)
4980 return NULL;
4981 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4982 sig, 1 /* is_debug_types */);
4983 if (dwo_entry == NULL)
4984 return NULL;
4985
4986 sig_entry = add_type_unit (sig, slot);
4987 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4988
4989 return sig_entry;
4990 }
4991
4992 /* Lookup a signature based type for DW_FORM_ref_sig8.
4993 Returns NULL if signature SIG is not present in the table.
4994 It is up to the caller to complain about this. */
4995
4996 static struct signatured_type *
4997 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4998 {
4999 if (cu->dwo_unit
5000 && dwarf2_per_objfile->using_index)
5001 {
5002 /* We're in a DWO/DWP file, and we're using .gdb_index.
5003 These cases require special processing. */
5004 if (get_dwp_file () == NULL)
5005 return lookup_dwo_signatured_type (cu, sig);
5006 else
5007 return lookup_dwp_signatured_type (cu, sig);
5008 }
5009 else
5010 {
5011 struct signatured_type find_entry, *entry;
5012
5013 if (dwarf2_per_objfile->signatured_types == NULL)
5014 return NULL;
5015 find_entry.signature = sig;
5016 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
5017 return entry;
5018 }
5019 }
5020 \f
5021 /* Low level DIE reading support. */
5022
5023 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5024
5025 static void
5026 init_cu_die_reader (struct die_reader_specs *reader,
5027 struct dwarf2_cu *cu,
5028 struct dwarf2_section_info *section,
5029 struct dwo_file *dwo_file)
5030 {
5031 gdb_assert (section->readin && section->buffer != NULL);
5032 reader->abfd = get_section_bfd_owner (section);
5033 reader->cu = cu;
5034 reader->dwo_file = dwo_file;
5035 reader->die_section = section;
5036 reader->buffer = section->buffer;
5037 reader->buffer_end = section->buffer + section->size;
5038 reader->comp_dir = NULL;
5039 }
5040
5041 /* Subroutine of init_cutu_and_read_dies to simplify it.
5042 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5043 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5044 already.
5045
5046 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5047 from it to the DIE in the DWO. If NULL we are skipping the stub.
5048 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5049 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5050 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5051 STUB_COMP_DIR may be non-NULL.
5052 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5053 are filled in with the info of the DIE from the DWO file.
5054 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5055 provided an abbrev table to use.
5056 The result is non-zero if a valid (non-dummy) DIE was found. */
5057
5058 static int
5059 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5060 struct dwo_unit *dwo_unit,
5061 int abbrev_table_provided,
5062 struct die_info *stub_comp_unit_die,
5063 const char *stub_comp_dir,
5064 struct die_reader_specs *result_reader,
5065 const gdb_byte **result_info_ptr,
5066 struct die_info **result_comp_unit_die,
5067 int *result_has_children)
5068 {
5069 struct objfile *objfile = dwarf2_per_objfile->objfile;
5070 struct dwarf2_cu *cu = this_cu->cu;
5071 struct dwarf2_section_info *section;
5072 bfd *abfd;
5073 const gdb_byte *begin_info_ptr, *info_ptr;
5074 ULONGEST signature; /* Or dwo_id. */
5075 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5076 int i,num_extra_attrs;
5077 struct dwarf2_section_info *dwo_abbrev_section;
5078 struct attribute *attr;
5079 struct die_info *comp_unit_die;
5080
5081 /* At most one of these may be provided. */
5082 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5083
5084 /* These attributes aren't processed until later:
5085 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5086 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5087 referenced later. However, these attributes are found in the stub
5088 which we won't have later. In order to not impose this complication
5089 on the rest of the code, we read them here and copy them to the
5090 DWO CU/TU die. */
5091
5092 stmt_list = NULL;
5093 low_pc = NULL;
5094 high_pc = NULL;
5095 ranges = NULL;
5096 comp_dir = NULL;
5097
5098 if (stub_comp_unit_die != NULL)
5099 {
5100 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5101 DWO file. */
5102 if (! this_cu->is_debug_types)
5103 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5104 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5105 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5106 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5107 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5108
5109 /* There should be a DW_AT_addr_base attribute here (if needed).
5110 We need the value before we can process DW_FORM_GNU_addr_index. */
5111 cu->addr_base = 0;
5112 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5113 if (attr)
5114 cu->addr_base = DW_UNSND (attr);
5115
5116 /* There should be a DW_AT_ranges_base attribute here (if needed).
5117 We need the value before we can process DW_AT_ranges. */
5118 cu->ranges_base = 0;
5119 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5120 if (attr)
5121 cu->ranges_base = DW_UNSND (attr);
5122 }
5123 else if (stub_comp_dir != NULL)
5124 {
5125 /* Reconstruct the comp_dir attribute to simplify the code below. */
5126 comp_dir = (struct attribute *)
5127 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5128 comp_dir->name = DW_AT_comp_dir;
5129 comp_dir->form = DW_FORM_string;
5130 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5131 DW_STRING (comp_dir) = stub_comp_dir;
5132 }
5133
5134 /* Set up for reading the DWO CU/TU. */
5135 cu->dwo_unit = dwo_unit;
5136 section = dwo_unit->section;
5137 dwarf2_read_section (objfile, section);
5138 abfd = get_section_bfd_owner (section);
5139 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5140 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5141 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5142
5143 if (this_cu->is_debug_types)
5144 {
5145 ULONGEST header_signature;
5146 cu_offset type_offset_in_tu;
5147 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5148
5149 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5150 dwo_abbrev_section,
5151 info_ptr,
5152 &header_signature,
5153 &type_offset_in_tu);
5154 /* This is not an assert because it can be caused by bad debug info. */
5155 if (sig_type->signature != header_signature)
5156 {
5157 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5158 " TU at offset 0x%x [in module %s]"),
5159 hex_string (sig_type->signature),
5160 hex_string (header_signature),
5161 dwo_unit->offset.sect_off,
5162 bfd_get_filename (abfd));
5163 }
5164 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5165 /* For DWOs coming from DWP files, we don't know the CU length
5166 nor the type's offset in the TU until now. */
5167 dwo_unit->length = get_cu_length (&cu->header);
5168 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5169
5170 /* Establish the type offset that can be used to lookup the type.
5171 For DWO files, we don't know it until now. */
5172 sig_type->type_offset_in_section.sect_off =
5173 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5174 }
5175 else
5176 {
5177 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5178 dwo_abbrev_section,
5179 info_ptr, 0);
5180 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5181 /* For DWOs coming from DWP files, we don't know the CU length
5182 until now. */
5183 dwo_unit->length = get_cu_length (&cu->header);
5184 }
5185
5186 /* Replace the CU's original abbrev table with the DWO's.
5187 Reminder: We can't read the abbrev table until we've read the header. */
5188 if (abbrev_table_provided)
5189 {
5190 /* Don't free the provided abbrev table, the caller of
5191 init_cutu_and_read_dies owns it. */
5192 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5193 /* Ensure the DWO abbrev table gets freed. */
5194 make_cleanup (dwarf2_free_abbrev_table, cu);
5195 }
5196 else
5197 {
5198 dwarf2_free_abbrev_table (cu);
5199 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5200 /* Leave any existing abbrev table cleanup as is. */
5201 }
5202
5203 /* Read in the die, but leave space to copy over the attributes
5204 from the stub. This has the benefit of simplifying the rest of
5205 the code - all the work to maintain the illusion of a single
5206 DW_TAG_{compile,type}_unit DIE is done here. */
5207 num_extra_attrs = ((stmt_list != NULL)
5208 + (low_pc != NULL)
5209 + (high_pc != NULL)
5210 + (ranges != NULL)
5211 + (comp_dir != NULL));
5212 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5213 result_has_children, num_extra_attrs);
5214
5215 /* Copy over the attributes from the stub to the DIE we just read in. */
5216 comp_unit_die = *result_comp_unit_die;
5217 i = comp_unit_die->num_attrs;
5218 if (stmt_list != NULL)
5219 comp_unit_die->attrs[i++] = *stmt_list;
5220 if (low_pc != NULL)
5221 comp_unit_die->attrs[i++] = *low_pc;
5222 if (high_pc != NULL)
5223 comp_unit_die->attrs[i++] = *high_pc;
5224 if (ranges != NULL)
5225 comp_unit_die->attrs[i++] = *ranges;
5226 if (comp_dir != NULL)
5227 comp_unit_die->attrs[i++] = *comp_dir;
5228 comp_unit_die->num_attrs += num_extra_attrs;
5229
5230 if (dwarf_die_debug)
5231 {
5232 fprintf_unfiltered (gdb_stdlog,
5233 "Read die from %s@0x%x of %s:\n",
5234 get_section_name (section),
5235 (unsigned) (begin_info_ptr - section->buffer),
5236 bfd_get_filename (abfd));
5237 dump_die (comp_unit_die, dwarf_die_debug);
5238 }
5239
5240 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5241 TUs by skipping the stub and going directly to the entry in the DWO file.
5242 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5243 to get it via circuitous means. Blech. */
5244 if (comp_dir != NULL)
5245 result_reader->comp_dir = DW_STRING (comp_dir);
5246
5247 /* Skip dummy compilation units. */
5248 if (info_ptr >= begin_info_ptr + dwo_unit->length
5249 || peek_abbrev_code (abfd, info_ptr) == 0)
5250 return 0;
5251
5252 *result_info_ptr = info_ptr;
5253 return 1;
5254 }
5255
5256 /* Subroutine of init_cutu_and_read_dies to simplify it.
5257 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5258 Returns NULL if the specified DWO unit cannot be found. */
5259
5260 static struct dwo_unit *
5261 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5262 struct die_info *comp_unit_die)
5263 {
5264 struct dwarf2_cu *cu = this_cu->cu;
5265 struct attribute *attr;
5266 ULONGEST signature;
5267 struct dwo_unit *dwo_unit;
5268 const char *comp_dir, *dwo_name;
5269
5270 gdb_assert (cu != NULL);
5271
5272 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5273 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5274 gdb_assert (attr != NULL);
5275 dwo_name = DW_STRING (attr);
5276 comp_dir = NULL;
5277 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5278 if (attr)
5279 comp_dir = DW_STRING (attr);
5280
5281 if (this_cu->is_debug_types)
5282 {
5283 struct signatured_type *sig_type;
5284
5285 /* Since this_cu is the first member of struct signatured_type,
5286 we can go from a pointer to one to a pointer to the other. */
5287 sig_type = (struct signatured_type *) this_cu;
5288 signature = sig_type->signature;
5289 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5290 }
5291 else
5292 {
5293 struct attribute *attr;
5294
5295 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5296 if (! attr)
5297 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5298 " [in module %s]"),
5299 dwo_name, objfile_name (this_cu->objfile));
5300 signature = DW_UNSND (attr);
5301 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5302 signature);
5303 }
5304
5305 return dwo_unit;
5306 }
5307
5308 /* Subroutine of init_cutu_and_read_dies to simplify it.
5309 See it for a description of the parameters.
5310 Read a TU directly from a DWO file, bypassing the stub.
5311
5312 Note: This function could be a little bit simpler if we shared cleanups
5313 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5314 to do, so we keep this function self-contained. Or we could move this
5315 into our caller, but it's complex enough already. */
5316
5317 static void
5318 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5319 int use_existing_cu, int keep,
5320 die_reader_func_ftype *die_reader_func,
5321 void *data)
5322 {
5323 struct dwarf2_cu *cu;
5324 struct signatured_type *sig_type;
5325 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5326 struct die_reader_specs reader;
5327 const gdb_byte *info_ptr;
5328 struct die_info *comp_unit_die;
5329 int has_children;
5330
5331 /* Verify we can do the following downcast, and that we have the
5332 data we need. */
5333 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5334 sig_type = (struct signatured_type *) this_cu;
5335 gdb_assert (sig_type->dwo_unit != NULL);
5336
5337 cleanups = make_cleanup (null_cleanup, NULL);
5338
5339 if (use_existing_cu && this_cu->cu != NULL)
5340 {
5341 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5342 cu = this_cu->cu;
5343 /* There's no need to do the rereading_dwo_cu handling that
5344 init_cutu_and_read_dies does since we don't read the stub. */
5345 }
5346 else
5347 {
5348 /* If !use_existing_cu, this_cu->cu must be NULL. */
5349 gdb_assert (this_cu->cu == NULL);
5350 cu = xmalloc (sizeof (*cu));
5351 init_one_comp_unit (cu, this_cu);
5352 /* If an error occurs while loading, release our storage. */
5353 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5354 }
5355
5356 /* A future optimization, if needed, would be to use an existing
5357 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5358 could share abbrev tables. */
5359
5360 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5361 0 /* abbrev_table_provided */,
5362 NULL /* stub_comp_unit_die */,
5363 sig_type->dwo_unit->dwo_file->comp_dir,
5364 &reader, &info_ptr,
5365 &comp_unit_die, &has_children) == 0)
5366 {
5367 /* Dummy die. */
5368 do_cleanups (cleanups);
5369 return;
5370 }
5371
5372 /* All the "real" work is done here. */
5373 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5374
5375 /* This duplicates the code in init_cutu_and_read_dies,
5376 but the alternative is making the latter more complex.
5377 This function is only for the special case of using DWO files directly:
5378 no point in overly complicating the general case just to handle this. */
5379 if (free_cu_cleanup != NULL)
5380 {
5381 if (keep)
5382 {
5383 /* We've successfully allocated this compilation unit. Let our
5384 caller clean it up when finished with it. */
5385 discard_cleanups (free_cu_cleanup);
5386
5387 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5388 So we have to manually free the abbrev table. */
5389 dwarf2_free_abbrev_table (cu);
5390
5391 /* Link this CU into read_in_chain. */
5392 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5393 dwarf2_per_objfile->read_in_chain = this_cu;
5394 }
5395 else
5396 do_cleanups (free_cu_cleanup);
5397 }
5398
5399 do_cleanups (cleanups);
5400 }
5401
5402 /* Initialize a CU (or TU) and read its DIEs.
5403 If the CU defers to a DWO file, read the DWO file as well.
5404
5405 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5406 Otherwise the table specified in the comp unit header is read in and used.
5407 This is an optimization for when we already have the abbrev table.
5408
5409 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5410 Otherwise, a new CU is allocated with xmalloc.
5411
5412 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5413 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5414
5415 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5416 linker) then DIE_READER_FUNC will not get called. */
5417
5418 static void
5419 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5420 struct abbrev_table *abbrev_table,
5421 int use_existing_cu, int keep,
5422 die_reader_func_ftype *die_reader_func,
5423 void *data)
5424 {
5425 struct objfile *objfile = dwarf2_per_objfile->objfile;
5426 struct dwarf2_section_info *section = this_cu->section;
5427 bfd *abfd = get_section_bfd_owner (section);
5428 struct dwarf2_cu *cu;
5429 const gdb_byte *begin_info_ptr, *info_ptr;
5430 struct die_reader_specs reader;
5431 struct die_info *comp_unit_die;
5432 int has_children;
5433 struct attribute *attr;
5434 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5435 struct signatured_type *sig_type = NULL;
5436 struct dwarf2_section_info *abbrev_section;
5437 /* Non-zero if CU currently points to a DWO file and we need to
5438 reread it. When this happens we need to reread the skeleton die
5439 before we can reread the DWO file (this only applies to CUs, not TUs). */
5440 int rereading_dwo_cu = 0;
5441
5442 if (dwarf_die_debug)
5443 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5444 this_cu->is_debug_types ? "type" : "comp",
5445 this_cu->offset.sect_off);
5446
5447 if (use_existing_cu)
5448 gdb_assert (keep);
5449
5450 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5451 file (instead of going through the stub), short-circuit all of this. */
5452 if (this_cu->reading_dwo_directly)
5453 {
5454 /* Narrow down the scope of possibilities to have to understand. */
5455 gdb_assert (this_cu->is_debug_types);
5456 gdb_assert (abbrev_table == NULL);
5457 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5458 die_reader_func, data);
5459 return;
5460 }
5461
5462 cleanups = make_cleanup (null_cleanup, NULL);
5463
5464 /* This is cheap if the section is already read in. */
5465 dwarf2_read_section (objfile, section);
5466
5467 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5468
5469 abbrev_section = get_abbrev_section_for_cu (this_cu);
5470
5471 if (use_existing_cu && this_cu->cu != NULL)
5472 {
5473 cu = this_cu->cu;
5474 /* If this CU is from a DWO file we need to start over, we need to
5475 refetch the attributes from the skeleton CU.
5476 This could be optimized by retrieving those attributes from when we
5477 were here the first time: the previous comp_unit_die was stored in
5478 comp_unit_obstack. But there's no data yet that we need this
5479 optimization. */
5480 if (cu->dwo_unit != NULL)
5481 rereading_dwo_cu = 1;
5482 }
5483 else
5484 {
5485 /* If !use_existing_cu, this_cu->cu must be NULL. */
5486 gdb_assert (this_cu->cu == NULL);
5487 cu = xmalloc (sizeof (*cu));
5488 init_one_comp_unit (cu, this_cu);
5489 /* If an error occurs while loading, release our storage. */
5490 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5491 }
5492
5493 /* Get the header. */
5494 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5495 {
5496 /* We already have the header, there's no need to read it in again. */
5497 info_ptr += cu->header.first_die_offset.cu_off;
5498 }
5499 else
5500 {
5501 if (this_cu->is_debug_types)
5502 {
5503 ULONGEST signature;
5504 cu_offset type_offset_in_tu;
5505
5506 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5507 abbrev_section, info_ptr,
5508 &signature,
5509 &type_offset_in_tu);
5510
5511 /* Since per_cu is the first member of struct signatured_type,
5512 we can go from a pointer to one to a pointer to the other. */
5513 sig_type = (struct signatured_type *) this_cu;
5514 gdb_assert (sig_type->signature == signature);
5515 gdb_assert (sig_type->type_offset_in_tu.cu_off
5516 == type_offset_in_tu.cu_off);
5517 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5518
5519 /* LENGTH has not been set yet for type units if we're
5520 using .gdb_index. */
5521 this_cu->length = get_cu_length (&cu->header);
5522
5523 /* Establish the type offset that can be used to lookup the type. */
5524 sig_type->type_offset_in_section.sect_off =
5525 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5526 }
5527 else
5528 {
5529 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5530 abbrev_section,
5531 info_ptr, 0);
5532
5533 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5534 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5535 }
5536 }
5537
5538 /* Skip dummy compilation units. */
5539 if (info_ptr >= begin_info_ptr + this_cu->length
5540 || peek_abbrev_code (abfd, info_ptr) == 0)
5541 {
5542 do_cleanups (cleanups);
5543 return;
5544 }
5545
5546 /* If we don't have them yet, read the abbrevs for this compilation unit.
5547 And if we need to read them now, make sure they're freed when we're
5548 done. Note that it's important that if the CU had an abbrev table
5549 on entry we don't free it when we're done: Somewhere up the call stack
5550 it may be in use. */
5551 if (abbrev_table != NULL)
5552 {
5553 gdb_assert (cu->abbrev_table == NULL);
5554 gdb_assert (cu->header.abbrev_offset.sect_off
5555 == abbrev_table->offset.sect_off);
5556 cu->abbrev_table = abbrev_table;
5557 }
5558 else if (cu->abbrev_table == NULL)
5559 {
5560 dwarf2_read_abbrevs (cu, abbrev_section);
5561 make_cleanup (dwarf2_free_abbrev_table, cu);
5562 }
5563 else if (rereading_dwo_cu)
5564 {
5565 dwarf2_free_abbrev_table (cu);
5566 dwarf2_read_abbrevs (cu, abbrev_section);
5567 }
5568
5569 /* Read the top level CU/TU die. */
5570 init_cu_die_reader (&reader, cu, section, NULL);
5571 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5572
5573 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5574 from the DWO file.
5575 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5576 DWO CU, that this test will fail (the attribute will not be present). */
5577 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5578 if (attr)
5579 {
5580 struct dwo_unit *dwo_unit;
5581 struct die_info *dwo_comp_unit_die;
5582
5583 if (has_children)
5584 {
5585 complaint (&symfile_complaints,
5586 _("compilation unit with DW_AT_GNU_dwo_name"
5587 " has children (offset 0x%x) [in module %s]"),
5588 this_cu->offset.sect_off, bfd_get_filename (abfd));
5589 }
5590 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5591 if (dwo_unit != NULL)
5592 {
5593 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5594 abbrev_table != NULL,
5595 comp_unit_die, NULL,
5596 &reader, &info_ptr,
5597 &dwo_comp_unit_die, &has_children) == 0)
5598 {
5599 /* Dummy die. */
5600 do_cleanups (cleanups);
5601 return;
5602 }
5603 comp_unit_die = dwo_comp_unit_die;
5604 }
5605 else
5606 {
5607 /* Yikes, we couldn't find the rest of the DIE, we only have
5608 the stub. A complaint has already been logged. There's
5609 not much more we can do except pass on the stub DIE to
5610 die_reader_func. We don't want to throw an error on bad
5611 debug info. */
5612 }
5613 }
5614
5615 /* All of the above is setup for this call. Yikes. */
5616 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5617
5618 /* Done, clean up. */
5619 if (free_cu_cleanup != NULL)
5620 {
5621 if (keep)
5622 {
5623 /* We've successfully allocated this compilation unit. Let our
5624 caller clean it up when finished with it. */
5625 discard_cleanups (free_cu_cleanup);
5626
5627 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5628 So we have to manually free the abbrev table. */
5629 dwarf2_free_abbrev_table (cu);
5630
5631 /* Link this CU into read_in_chain. */
5632 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5633 dwarf2_per_objfile->read_in_chain = this_cu;
5634 }
5635 else
5636 do_cleanups (free_cu_cleanup);
5637 }
5638
5639 do_cleanups (cleanups);
5640 }
5641
5642 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5643 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5644 to have already done the lookup to find the DWO file).
5645
5646 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5647 THIS_CU->is_debug_types, but nothing else.
5648
5649 We fill in THIS_CU->length.
5650
5651 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5652 linker) then DIE_READER_FUNC will not get called.
5653
5654 THIS_CU->cu is always freed when done.
5655 This is done in order to not leave THIS_CU->cu in a state where we have
5656 to care whether it refers to the "main" CU or the DWO CU. */
5657
5658 static void
5659 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5660 struct dwo_file *dwo_file,
5661 die_reader_func_ftype *die_reader_func,
5662 void *data)
5663 {
5664 struct objfile *objfile = dwarf2_per_objfile->objfile;
5665 struct dwarf2_section_info *section = this_cu->section;
5666 bfd *abfd = get_section_bfd_owner (section);
5667 struct dwarf2_section_info *abbrev_section;
5668 struct dwarf2_cu cu;
5669 const gdb_byte *begin_info_ptr, *info_ptr;
5670 struct die_reader_specs reader;
5671 struct cleanup *cleanups;
5672 struct die_info *comp_unit_die;
5673 int has_children;
5674
5675 if (dwarf_die_debug)
5676 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5677 this_cu->is_debug_types ? "type" : "comp",
5678 this_cu->offset.sect_off);
5679
5680 gdb_assert (this_cu->cu == NULL);
5681
5682 abbrev_section = (dwo_file != NULL
5683 ? &dwo_file->sections.abbrev
5684 : get_abbrev_section_for_cu (this_cu));
5685
5686 /* This is cheap if the section is already read in. */
5687 dwarf2_read_section (objfile, section);
5688
5689 init_one_comp_unit (&cu, this_cu);
5690
5691 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5692
5693 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5694 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5695 abbrev_section, info_ptr,
5696 this_cu->is_debug_types);
5697
5698 this_cu->length = get_cu_length (&cu.header);
5699
5700 /* Skip dummy compilation units. */
5701 if (info_ptr >= begin_info_ptr + this_cu->length
5702 || peek_abbrev_code (abfd, info_ptr) == 0)
5703 {
5704 do_cleanups (cleanups);
5705 return;
5706 }
5707
5708 dwarf2_read_abbrevs (&cu, abbrev_section);
5709 make_cleanup (dwarf2_free_abbrev_table, &cu);
5710
5711 init_cu_die_reader (&reader, &cu, section, dwo_file);
5712 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5713
5714 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5715
5716 do_cleanups (cleanups);
5717 }
5718
5719 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5720 does not lookup the specified DWO file.
5721 This cannot be used to read DWO files.
5722
5723 THIS_CU->cu is always freed when done.
5724 This is done in order to not leave THIS_CU->cu in a state where we have
5725 to care whether it refers to the "main" CU or the DWO CU.
5726 We can revisit this if the data shows there's a performance issue. */
5727
5728 static void
5729 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5730 die_reader_func_ftype *die_reader_func,
5731 void *data)
5732 {
5733 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5734 }
5735 \f
5736 /* Type Unit Groups.
5737
5738 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5739 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5740 so that all types coming from the same compilation (.o file) are grouped
5741 together. A future step could be to put the types in the same symtab as
5742 the CU the types ultimately came from. */
5743
5744 static hashval_t
5745 hash_type_unit_group (const void *item)
5746 {
5747 const struct type_unit_group *tu_group = item;
5748
5749 return hash_stmt_list_entry (&tu_group->hash);
5750 }
5751
5752 static int
5753 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5754 {
5755 const struct type_unit_group *lhs = item_lhs;
5756 const struct type_unit_group *rhs = item_rhs;
5757
5758 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5759 }
5760
5761 /* Allocate a hash table for type unit groups. */
5762
5763 static htab_t
5764 allocate_type_unit_groups_table (void)
5765 {
5766 return htab_create_alloc_ex (3,
5767 hash_type_unit_group,
5768 eq_type_unit_group,
5769 NULL,
5770 &dwarf2_per_objfile->objfile->objfile_obstack,
5771 hashtab_obstack_allocate,
5772 dummy_obstack_deallocate);
5773 }
5774
5775 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5776 partial symtabs. We combine several TUs per psymtab to not let the size
5777 of any one psymtab grow too big. */
5778 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5779 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5780
5781 /* Helper routine for get_type_unit_group.
5782 Create the type_unit_group object used to hold one or more TUs. */
5783
5784 static struct type_unit_group *
5785 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5786 {
5787 struct objfile *objfile = dwarf2_per_objfile->objfile;
5788 struct dwarf2_per_cu_data *per_cu;
5789 struct type_unit_group *tu_group;
5790
5791 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5792 struct type_unit_group);
5793 per_cu = &tu_group->per_cu;
5794 per_cu->objfile = objfile;
5795
5796 if (dwarf2_per_objfile->using_index)
5797 {
5798 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5799 struct dwarf2_per_cu_quick_data);
5800 }
5801 else
5802 {
5803 unsigned int line_offset = line_offset_struct.sect_off;
5804 struct partial_symtab *pst;
5805 char *name;
5806
5807 /* Give the symtab a useful name for debug purposes. */
5808 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5809 name = xstrprintf ("<type_units_%d>",
5810 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5811 else
5812 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5813
5814 pst = create_partial_symtab (per_cu, name);
5815 pst->anonymous = 1;
5816
5817 xfree (name);
5818 }
5819
5820 tu_group->hash.dwo_unit = cu->dwo_unit;
5821 tu_group->hash.line_offset = line_offset_struct;
5822
5823 return tu_group;
5824 }
5825
5826 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5827 STMT_LIST is a DW_AT_stmt_list attribute. */
5828
5829 static struct type_unit_group *
5830 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5831 {
5832 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5833 struct type_unit_group *tu_group;
5834 void **slot;
5835 unsigned int line_offset;
5836 struct type_unit_group type_unit_group_for_lookup;
5837
5838 if (dwarf2_per_objfile->type_unit_groups == NULL)
5839 {
5840 dwarf2_per_objfile->type_unit_groups =
5841 allocate_type_unit_groups_table ();
5842 }
5843
5844 /* Do we need to create a new group, or can we use an existing one? */
5845
5846 if (stmt_list)
5847 {
5848 line_offset = DW_UNSND (stmt_list);
5849 ++tu_stats->nr_symtab_sharers;
5850 }
5851 else
5852 {
5853 /* Ugh, no stmt_list. Rare, but we have to handle it.
5854 We can do various things here like create one group per TU or
5855 spread them over multiple groups to split up the expansion work.
5856 To avoid worst case scenarios (too many groups or too large groups)
5857 we, umm, group them in bunches. */
5858 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5859 | (tu_stats->nr_stmt_less_type_units
5860 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5861 ++tu_stats->nr_stmt_less_type_units;
5862 }
5863
5864 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5865 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5866 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5867 &type_unit_group_for_lookup, INSERT);
5868 if (*slot != NULL)
5869 {
5870 tu_group = *slot;
5871 gdb_assert (tu_group != NULL);
5872 }
5873 else
5874 {
5875 sect_offset line_offset_struct;
5876
5877 line_offset_struct.sect_off = line_offset;
5878 tu_group = create_type_unit_group (cu, line_offset_struct);
5879 *slot = tu_group;
5880 ++tu_stats->nr_symtabs;
5881 }
5882
5883 return tu_group;
5884 }
5885 \f
5886 /* Partial symbol tables. */
5887
5888 /* Create a psymtab named NAME and assign it to PER_CU.
5889
5890 The caller must fill in the following details:
5891 dirname, textlow, texthigh. */
5892
5893 static struct partial_symtab *
5894 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5895 {
5896 struct objfile *objfile = per_cu->objfile;
5897 struct partial_symtab *pst;
5898
5899 pst = start_psymtab_common (objfile, name, 0,
5900 objfile->global_psymbols.next,
5901 objfile->static_psymbols.next);
5902
5903 pst->psymtabs_addrmap_supported = 1;
5904
5905 /* This is the glue that links PST into GDB's symbol API. */
5906 pst->read_symtab_private = per_cu;
5907 pst->read_symtab = dwarf2_read_symtab;
5908 per_cu->v.psymtab = pst;
5909
5910 return pst;
5911 }
5912
5913 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5914 type. */
5915
5916 struct process_psymtab_comp_unit_data
5917 {
5918 /* True if we are reading a DW_TAG_partial_unit. */
5919
5920 int want_partial_unit;
5921
5922 /* The "pretend" language that is used if the CU doesn't declare a
5923 language. */
5924
5925 enum language pretend_language;
5926 };
5927
5928 /* die_reader_func for process_psymtab_comp_unit. */
5929
5930 static void
5931 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5932 const gdb_byte *info_ptr,
5933 struct die_info *comp_unit_die,
5934 int has_children,
5935 void *data)
5936 {
5937 struct dwarf2_cu *cu = reader->cu;
5938 struct objfile *objfile = cu->objfile;
5939 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5940 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5941 struct attribute *attr;
5942 CORE_ADDR baseaddr;
5943 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5944 struct partial_symtab *pst;
5945 int has_pc_info;
5946 const char *filename;
5947 struct process_psymtab_comp_unit_data *info = data;
5948
5949 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5950 return;
5951
5952 gdb_assert (! per_cu->is_debug_types);
5953
5954 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5955
5956 cu->list_in_scope = &file_symbols;
5957
5958 /* Allocate a new partial symbol table structure. */
5959 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5960 if (attr == NULL || !DW_STRING (attr))
5961 filename = "";
5962 else
5963 filename = DW_STRING (attr);
5964
5965 pst = create_partial_symtab (per_cu, filename);
5966
5967 /* This must be done before calling dwarf2_build_include_psymtabs. */
5968 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5969 if (attr != NULL)
5970 pst->dirname = DW_STRING (attr);
5971
5972 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5973
5974 dwarf2_find_base_address (comp_unit_die, cu);
5975
5976 /* Possibly set the default values of LOWPC and HIGHPC from
5977 `DW_AT_ranges'. */
5978 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5979 &best_highpc, cu, pst);
5980 if (has_pc_info == 1 && best_lowpc < best_highpc)
5981 /* Store the contiguous range if it is not empty; it can be empty for
5982 CUs with no code. */
5983 addrmap_set_empty (objfile->psymtabs_addrmap,
5984 gdbarch_adjust_dwarf2_addr (gdbarch,
5985 best_lowpc + baseaddr),
5986 gdbarch_adjust_dwarf2_addr (gdbarch,
5987 best_highpc + baseaddr) - 1,
5988 pst);
5989
5990 /* Check if comp unit has_children.
5991 If so, read the rest of the partial symbols from this comp unit.
5992 If not, there's no more debug_info for this comp unit. */
5993 if (has_children)
5994 {
5995 struct partial_die_info *first_die;
5996 CORE_ADDR lowpc, highpc;
5997
5998 lowpc = ((CORE_ADDR) -1);
5999 highpc = ((CORE_ADDR) 0);
6000
6001 first_die = load_partial_dies (reader, info_ptr, 1);
6002
6003 scan_partial_symbols (first_die, &lowpc, &highpc,
6004 ! has_pc_info, cu);
6005
6006 /* If we didn't find a lowpc, set it to highpc to avoid
6007 complaints from `maint check'. */
6008 if (lowpc == ((CORE_ADDR) -1))
6009 lowpc = highpc;
6010
6011 /* If the compilation unit didn't have an explicit address range,
6012 then use the information extracted from its child dies. */
6013 if (! has_pc_info)
6014 {
6015 best_lowpc = lowpc;
6016 best_highpc = highpc;
6017 }
6018 }
6019 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6020 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6021
6022 end_psymtab_common (objfile, pst);
6023
6024 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6025 {
6026 int i;
6027 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6028 struct dwarf2_per_cu_data *iter;
6029
6030 /* Fill in 'dependencies' here; we fill in 'users' in a
6031 post-pass. */
6032 pst->number_of_dependencies = len;
6033 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6034 len * sizeof (struct symtab *));
6035 for (i = 0;
6036 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6037 i, iter);
6038 ++i)
6039 pst->dependencies[i] = iter->v.psymtab;
6040
6041 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6042 }
6043
6044 /* Get the list of files included in the current compilation unit,
6045 and build a psymtab for each of them. */
6046 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6047
6048 if (dwarf_read_debug)
6049 {
6050 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6051
6052 fprintf_unfiltered (gdb_stdlog,
6053 "Psymtab for %s unit @0x%x: %s - %s"
6054 ", %d global, %d static syms\n",
6055 per_cu->is_debug_types ? "type" : "comp",
6056 per_cu->offset.sect_off,
6057 paddress (gdbarch, pst->textlow),
6058 paddress (gdbarch, pst->texthigh),
6059 pst->n_global_syms, pst->n_static_syms);
6060 }
6061 }
6062
6063 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6064 Process compilation unit THIS_CU for a psymtab. */
6065
6066 static void
6067 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6068 int want_partial_unit,
6069 enum language pretend_language)
6070 {
6071 struct process_psymtab_comp_unit_data info;
6072
6073 /* If this compilation unit was already read in, free the
6074 cached copy in order to read it in again. This is
6075 necessary because we skipped some symbols when we first
6076 read in the compilation unit (see load_partial_dies).
6077 This problem could be avoided, but the benefit is unclear. */
6078 if (this_cu->cu != NULL)
6079 free_one_cached_comp_unit (this_cu);
6080
6081 gdb_assert (! this_cu->is_debug_types);
6082 info.want_partial_unit = want_partial_unit;
6083 info.pretend_language = pretend_language;
6084 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6085 process_psymtab_comp_unit_reader,
6086 &info);
6087
6088 /* Age out any secondary CUs. */
6089 age_cached_comp_units ();
6090 }
6091
6092 /* Reader function for build_type_psymtabs. */
6093
6094 static void
6095 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6096 const gdb_byte *info_ptr,
6097 struct die_info *type_unit_die,
6098 int has_children,
6099 void *data)
6100 {
6101 struct objfile *objfile = dwarf2_per_objfile->objfile;
6102 struct dwarf2_cu *cu = reader->cu;
6103 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6104 struct signatured_type *sig_type;
6105 struct type_unit_group *tu_group;
6106 struct attribute *attr;
6107 struct partial_die_info *first_die;
6108 CORE_ADDR lowpc, highpc;
6109 struct partial_symtab *pst;
6110
6111 gdb_assert (data == NULL);
6112 gdb_assert (per_cu->is_debug_types);
6113 sig_type = (struct signatured_type *) per_cu;
6114
6115 if (! has_children)
6116 return;
6117
6118 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6119 tu_group = get_type_unit_group (cu, attr);
6120
6121 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6122
6123 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6124 cu->list_in_scope = &file_symbols;
6125 pst = create_partial_symtab (per_cu, "");
6126 pst->anonymous = 1;
6127
6128 first_die = load_partial_dies (reader, info_ptr, 1);
6129
6130 lowpc = (CORE_ADDR) -1;
6131 highpc = (CORE_ADDR) 0;
6132 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6133
6134 end_psymtab_common (objfile, pst);
6135 }
6136
6137 /* Struct used to sort TUs by their abbreviation table offset. */
6138
6139 struct tu_abbrev_offset
6140 {
6141 struct signatured_type *sig_type;
6142 sect_offset abbrev_offset;
6143 };
6144
6145 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6146
6147 static int
6148 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6149 {
6150 const struct tu_abbrev_offset * const *a = ap;
6151 const struct tu_abbrev_offset * const *b = bp;
6152 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6153 unsigned int boff = (*b)->abbrev_offset.sect_off;
6154
6155 return (aoff > boff) - (aoff < boff);
6156 }
6157
6158 /* Efficiently read all the type units.
6159 This does the bulk of the work for build_type_psymtabs.
6160
6161 The efficiency is because we sort TUs by the abbrev table they use and
6162 only read each abbrev table once. In one program there are 200K TUs
6163 sharing 8K abbrev tables.
6164
6165 The main purpose of this function is to support building the
6166 dwarf2_per_objfile->type_unit_groups table.
6167 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6168 can collapse the search space by grouping them by stmt_list.
6169 The savings can be significant, in the same program from above the 200K TUs
6170 share 8K stmt_list tables.
6171
6172 FUNC is expected to call get_type_unit_group, which will create the
6173 struct type_unit_group if necessary and add it to
6174 dwarf2_per_objfile->type_unit_groups. */
6175
6176 static void
6177 build_type_psymtabs_1 (void)
6178 {
6179 struct objfile *objfile = dwarf2_per_objfile->objfile;
6180 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6181 struct cleanup *cleanups;
6182 struct abbrev_table *abbrev_table;
6183 sect_offset abbrev_offset;
6184 struct tu_abbrev_offset *sorted_by_abbrev;
6185 struct type_unit_group **iter;
6186 int i;
6187
6188 /* It's up to the caller to not call us multiple times. */
6189 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6190
6191 if (dwarf2_per_objfile->n_type_units == 0)
6192 return;
6193
6194 /* TUs typically share abbrev tables, and there can be way more TUs than
6195 abbrev tables. Sort by abbrev table to reduce the number of times we
6196 read each abbrev table in.
6197 Alternatives are to punt or to maintain a cache of abbrev tables.
6198 This is simpler and efficient enough for now.
6199
6200 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6201 symtab to use). Typically TUs with the same abbrev offset have the same
6202 stmt_list value too so in practice this should work well.
6203
6204 The basic algorithm here is:
6205
6206 sort TUs by abbrev table
6207 for each TU with same abbrev table:
6208 read abbrev table if first user
6209 read TU top level DIE
6210 [IWBN if DWO skeletons had DW_AT_stmt_list]
6211 call FUNC */
6212
6213 if (dwarf_read_debug)
6214 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6215
6216 /* Sort in a separate table to maintain the order of all_type_units
6217 for .gdb_index: TU indices directly index all_type_units. */
6218 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6219 dwarf2_per_objfile->n_type_units);
6220 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6221 {
6222 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6223
6224 sorted_by_abbrev[i].sig_type = sig_type;
6225 sorted_by_abbrev[i].abbrev_offset =
6226 read_abbrev_offset (sig_type->per_cu.section,
6227 sig_type->per_cu.offset);
6228 }
6229 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6230 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6231 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6232
6233 abbrev_offset.sect_off = ~(unsigned) 0;
6234 abbrev_table = NULL;
6235 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6236
6237 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6238 {
6239 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6240
6241 /* Switch to the next abbrev table if necessary. */
6242 if (abbrev_table == NULL
6243 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6244 {
6245 if (abbrev_table != NULL)
6246 {
6247 abbrev_table_free (abbrev_table);
6248 /* Reset to NULL in case abbrev_table_read_table throws
6249 an error: abbrev_table_free_cleanup will get called. */
6250 abbrev_table = NULL;
6251 }
6252 abbrev_offset = tu->abbrev_offset;
6253 abbrev_table =
6254 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6255 abbrev_offset);
6256 ++tu_stats->nr_uniq_abbrev_tables;
6257 }
6258
6259 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6260 build_type_psymtabs_reader, NULL);
6261 }
6262
6263 do_cleanups (cleanups);
6264 }
6265
6266 /* Print collected type unit statistics. */
6267
6268 static void
6269 print_tu_stats (void)
6270 {
6271 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6272
6273 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6274 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6275 dwarf2_per_objfile->n_type_units);
6276 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6277 tu_stats->nr_uniq_abbrev_tables);
6278 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6279 tu_stats->nr_symtabs);
6280 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6281 tu_stats->nr_symtab_sharers);
6282 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6283 tu_stats->nr_stmt_less_type_units);
6284 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6285 tu_stats->nr_all_type_units_reallocs);
6286 }
6287
6288 /* Traversal function for build_type_psymtabs. */
6289
6290 static int
6291 build_type_psymtab_dependencies (void **slot, void *info)
6292 {
6293 struct objfile *objfile = dwarf2_per_objfile->objfile;
6294 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6295 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6296 struct partial_symtab *pst = per_cu->v.psymtab;
6297 int len = VEC_length (sig_type_ptr, tu_group->tus);
6298 struct signatured_type *iter;
6299 int i;
6300
6301 gdb_assert (len > 0);
6302 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6303
6304 pst->number_of_dependencies = len;
6305 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6306 len * sizeof (struct psymtab *));
6307 for (i = 0;
6308 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6309 ++i)
6310 {
6311 gdb_assert (iter->per_cu.is_debug_types);
6312 pst->dependencies[i] = iter->per_cu.v.psymtab;
6313 iter->type_unit_group = tu_group;
6314 }
6315
6316 VEC_free (sig_type_ptr, tu_group->tus);
6317
6318 return 1;
6319 }
6320
6321 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6322 Build partial symbol tables for the .debug_types comp-units. */
6323
6324 static void
6325 build_type_psymtabs (struct objfile *objfile)
6326 {
6327 if (! create_all_type_units (objfile))
6328 return;
6329
6330 build_type_psymtabs_1 ();
6331 }
6332
6333 /* Traversal function for process_skeletonless_type_unit.
6334 Read a TU in a DWO file and build partial symbols for it. */
6335
6336 static int
6337 process_skeletonless_type_unit (void **slot, void *info)
6338 {
6339 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6340 struct objfile *objfile = info;
6341 struct signatured_type find_entry, *entry;
6342
6343 /* If this TU doesn't exist in the global table, add it and read it in. */
6344
6345 if (dwarf2_per_objfile->signatured_types == NULL)
6346 {
6347 dwarf2_per_objfile->signatured_types
6348 = allocate_signatured_type_table (objfile);
6349 }
6350
6351 find_entry.signature = dwo_unit->signature;
6352 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6353 INSERT);
6354 /* If we've already seen this type there's nothing to do. What's happening
6355 is we're doing our own version of comdat-folding here. */
6356 if (*slot != NULL)
6357 return 1;
6358
6359 /* This does the job that create_all_type_units would have done for
6360 this TU. */
6361 entry = add_type_unit (dwo_unit->signature, slot);
6362 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6363 *slot = entry;
6364
6365 /* This does the job that build_type_psymtabs_1 would have done. */
6366 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6367 build_type_psymtabs_reader, NULL);
6368
6369 return 1;
6370 }
6371
6372 /* Traversal function for process_skeletonless_type_units. */
6373
6374 static int
6375 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6376 {
6377 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6378
6379 if (dwo_file->tus != NULL)
6380 {
6381 htab_traverse_noresize (dwo_file->tus,
6382 process_skeletonless_type_unit, info);
6383 }
6384
6385 return 1;
6386 }
6387
6388 /* Scan all TUs of DWO files, verifying we've processed them.
6389 This is needed in case a TU was emitted without its skeleton.
6390 Note: This can't be done until we know what all the DWO files are. */
6391
6392 static void
6393 process_skeletonless_type_units (struct objfile *objfile)
6394 {
6395 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6396 if (get_dwp_file () == NULL
6397 && dwarf2_per_objfile->dwo_files != NULL)
6398 {
6399 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6400 process_dwo_file_for_skeletonless_type_units,
6401 objfile);
6402 }
6403 }
6404
6405 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6406
6407 static void
6408 psymtabs_addrmap_cleanup (void *o)
6409 {
6410 struct objfile *objfile = o;
6411
6412 objfile->psymtabs_addrmap = NULL;
6413 }
6414
6415 /* Compute the 'user' field for each psymtab in OBJFILE. */
6416
6417 static void
6418 set_partial_user (struct objfile *objfile)
6419 {
6420 int i;
6421
6422 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6423 {
6424 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6425 struct partial_symtab *pst = per_cu->v.psymtab;
6426 int j;
6427
6428 if (pst == NULL)
6429 continue;
6430
6431 for (j = 0; j < pst->number_of_dependencies; ++j)
6432 {
6433 /* Set the 'user' field only if it is not already set. */
6434 if (pst->dependencies[j]->user == NULL)
6435 pst->dependencies[j]->user = pst;
6436 }
6437 }
6438 }
6439
6440 /* Build the partial symbol table by doing a quick pass through the
6441 .debug_info and .debug_abbrev sections. */
6442
6443 static void
6444 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6445 {
6446 struct cleanup *back_to, *addrmap_cleanup;
6447 struct obstack temp_obstack;
6448 int i;
6449
6450 if (dwarf_read_debug)
6451 {
6452 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6453 objfile_name (objfile));
6454 }
6455
6456 dwarf2_per_objfile->reading_partial_symbols = 1;
6457
6458 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6459
6460 /* Any cached compilation units will be linked by the per-objfile
6461 read_in_chain. Make sure to free them when we're done. */
6462 back_to = make_cleanup (free_cached_comp_units, NULL);
6463
6464 build_type_psymtabs (objfile);
6465
6466 create_all_comp_units (objfile);
6467
6468 /* Create a temporary address map on a temporary obstack. We later
6469 copy this to the final obstack. */
6470 obstack_init (&temp_obstack);
6471 make_cleanup_obstack_free (&temp_obstack);
6472 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6473 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6474
6475 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6476 {
6477 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6478
6479 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6480 }
6481
6482 /* This has to wait until we read the CUs, we need the list of DWOs. */
6483 process_skeletonless_type_units (objfile);
6484
6485 /* Now that all TUs have been processed we can fill in the dependencies. */
6486 if (dwarf2_per_objfile->type_unit_groups != NULL)
6487 {
6488 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6489 build_type_psymtab_dependencies, NULL);
6490 }
6491
6492 if (dwarf_read_debug)
6493 print_tu_stats ();
6494
6495 set_partial_user (objfile);
6496
6497 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6498 &objfile->objfile_obstack);
6499 discard_cleanups (addrmap_cleanup);
6500
6501 do_cleanups (back_to);
6502
6503 if (dwarf_read_debug)
6504 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6505 objfile_name (objfile));
6506 }
6507
6508 /* die_reader_func for load_partial_comp_unit. */
6509
6510 static void
6511 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6512 const gdb_byte *info_ptr,
6513 struct die_info *comp_unit_die,
6514 int has_children,
6515 void *data)
6516 {
6517 struct dwarf2_cu *cu = reader->cu;
6518
6519 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6520
6521 /* Check if comp unit has_children.
6522 If so, read the rest of the partial symbols from this comp unit.
6523 If not, there's no more debug_info for this comp unit. */
6524 if (has_children)
6525 load_partial_dies (reader, info_ptr, 0);
6526 }
6527
6528 /* Load the partial DIEs for a secondary CU into memory.
6529 This is also used when rereading a primary CU with load_all_dies. */
6530
6531 static void
6532 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6533 {
6534 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6535 load_partial_comp_unit_reader, NULL);
6536 }
6537
6538 static void
6539 read_comp_units_from_section (struct objfile *objfile,
6540 struct dwarf2_section_info *section,
6541 unsigned int is_dwz,
6542 int *n_allocated,
6543 int *n_comp_units,
6544 struct dwarf2_per_cu_data ***all_comp_units)
6545 {
6546 const gdb_byte *info_ptr;
6547 bfd *abfd = get_section_bfd_owner (section);
6548
6549 if (dwarf_read_debug)
6550 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6551 get_section_name (section),
6552 get_section_file_name (section));
6553
6554 dwarf2_read_section (objfile, section);
6555
6556 info_ptr = section->buffer;
6557
6558 while (info_ptr < section->buffer + section->size)
6559 {
6560 unsigned int length, initial_length_size;
6561 struct dwarf2_per_cu_data *this_cu;
6562 sect_offset offset;
6563
6564 offset.sect_off = info_ptr - section->buffer;
6565
6566 /* Read just enough information to find out where the next
6567 compilation unit is. */
6568 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6569
6570 /* Save the compilation unit for later lookup. */
6571 this_cu = obstack_alloc (&objfile->objfile_obstack,
6572 sizeof (struct dwarf2_per_cu_data));
6573 memset (this_cu, 0, sizeof (*this_cu));
6574 this_cu->offset = offset;
6575 this_cu->length = length + initial_length_size;
6576 this_cu->is_dwz = is_dwz;
6577 this_cu->objfile = objfile;
6578 this_cu->section = section;
6579
6580 if (*n_comp_units == *n_allocated)
6581 {
6582 *n_allocated *= 2;
6583 *all_comp_units = xrealloc (*all_comp_units,
6584 *n_allocated
6585 * sizeof (struct dwarf2_per_cu_data *));
6586 }
6587 (*all_comp_units)[*n_comp_units] = this_cu;
6588 ++*n_comp_units;
6589
6590 info_ptr = info_ptr + this_cu->length;
6591 }
6592 }
6593
6594 /* Create a list of all compilation units in OBJFILE.
6595 This is only done for -readnow and building partial symtabs. */
6596
6597 static void
6598 create_all_comp_units (struct objfile *objfile)
6599 {
6600 int n_allocated;
6601 int n_comp_units;
6602 struct dwarf2_per_cu_data **all_comp_units;
6603 struct dwz_file *dwz;
6604
6605 n_comp_units = 0;
6606 n_allocated = 10;
6607 all_comp_units = xmalloc (n_allocated
6608 * sizeof (struct dwarf2_per_cu_data *));
6609
6610 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6611 &n_allocated, &n_comp_units, &all_comp_units);
6612
6613 dwz = dwarf2_get_dwz_file ();
6614 if (dwz != NULL)
6615 read_comp_units_from_section (objfile, &dwz->info, 1,
6616 &n_allocated, &n_comp_units,
6617 &all_comp_units);
6618
6619 dwarf2_per_objfile->all_comp_units
6620 = obstack_alloc (&objfile->objfile_obstack,
6621 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6622 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6623 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6624 xfree (all_comp_units);
6625 dwarf2_per_objfile->n_comp_units = n_comp_units;
6626 }
6627
6628 /* Process all loaded DIEs for compilation unit CU, starting at
6629 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6630 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6631 DW_AT_ranges). See the comments of add_partial_subprogram on how
6632 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6633
6634 static void
6635 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6636 CORE_ADDR *highpc, int set_addrmap,
6637 struct dwarf2_cu *cu)
6638 {
6639 struct partial_die_info *pdi;
6640
6641 /* Now, march along the PDI's, descending into ones which have
6642 interesting children but skipping the children of the other ones,
6643 until we reach the end of the compilation unit. */
6644
6645 pdi = first_die;
6646
6647 while (pdi != NULL)
6648 {
6649 fixup_partial_die (pdi, cu);
6650
6651 /* Anonymous namespaces or modules have no name but have interesting
6652 children, so we need to look at them. Ditto for anonymous
6653 enums. */
6654
6655 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6656 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6657 || pdi->tag == DW_TAG_imported_unit)
6658 {
6659 switch (pdi->tag)
6660 {
6661 case DW_TAG_subprogram:
6662 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6663 break;
6664 case DW_TAG_constant:
6665 case DW_TAG_variable:
6666 case DW_TAG_typedef:
6667 case DW_TAG_union_type:
6668 if (!pdi->is_declaration)
6669 {
6670 add_partial_symbol (pdi, cu);
6671 }
6672 break;
6673 case DW_TAG_class_type:
6674 case DW_TAG_interface_type:
6675 case DW_TAG_structure_type:
6676 if (!pdi->is_declaration)
6677 {
6678 add_partial_symbol (pdi, cu);
6679 }
6680 break;
6681 case DW_TAG_enumeration_type:
6682 if (!pdi->is_declaration)
6683 add_partial_enumeration (pdi, cu);
6684 break;
6685 case DW_TAG_base_type:
6686 case DW_TAG_subrange_type:
6687 /* File scope base type definitions are added to the partial
6688 symbol table. */
6689 add_partial_symbol (pdi, cu);
6690 break;
6691 case DW_TAG_namespace:
6692 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6693 break;
6694 case DW_TAG_module:
6695 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6696 break;
6697 case DW_TAG_imported_unit:
6698 {
6699 struct dwarf2_per_cu_data *per_cu;
6700
6701 /* For now we don't handle imported units in type units. */
6702 if (cu->per_cu->is_debug_types)
6703 {
6704 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6705 " supported in type units [in module %s]"),
6706 objfile_name (cu->objfile));
6707 }
6708
6709 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6710 pdi->is_dwz,
6711 cu->objfile);
6712
6713 /* Go read the partial unit, if needed. */
6714 if (per_cu->v.psymtab == NULL)
6715 process_psymtab_comp_unit (per_cu, 1, cu->language);
6716
6717 VEC_safe_push (dwarf2_per_cu_ptr,
6718 cu->per_cu->imported_symtabs, per_cu);
6719 }
6720 break;
6721 case DW_TAG_imported_declaration:
6722 add_partial_symbol (pdi, cu);
6723 break;
6724 default:
6725 break;
6726 }
6727 }
6728
6729 /* If the die has a sibling, skip to the sibling. */
6730
6731 pdi = pdi->die_sibling;
6732 }
6733 }
6734
6735 /* Functions used to compute the fully scoped name of a partial DIE.
6736
6737 Normally, this is simple. For C++, the parent DIE's fully scoped
6738 name is concatenated with "::" and the partial DIE's name. For
6739 Java, the same thing occurs except that "." is used instead of "::".
6740 Enumerators are an exception; they use the scope of their parent
6741 enumeration type, i.e. the name of the enumeration type is not
6742 prepended to the enumerator.
6743
6744 There are two complexities. One is DW_AT_specification; in this
6745 case "parent" means the parent of the target of the specification,
6746 instead of the direct parent of the DIE. The other is compilers
6747 which do not emit DW_TAG_namespace; in this case we try to guess
6748 the fully qualified name of structure types from their members'
6749 linkage names. This must be done using the DIE's children rather
6750 than the children of any DW_AT_specification target. We only need
6751 to do this for structures at the top level, i.e. if the target of
6752 any DW_AT_specification (if any; otherwise the DIE itself) does not
6753 have a parent. */
6754
6755 /* Compute the scope prefix associated with PDI's parent, in
6756 compilation unit CU. The result will be allocated on CU's
6757 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6758 field. NULL is returned if no prefix is necessary. */
6759 static const char *
6760 partial_die_parent_scope (struct partial_die_info *pdi,
6761 struct dwarf2_cu *cu)
6762 {
6763 const char *grandparent_scope;
6764 struct partial_die_info *parent, *real_pdi;
6765
6766 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6767 then this means the parent of the specification DIE. */
6768
6769 real_pdi = pdi;
6770 while (real_pdi->has_specification)
6771 real_pdi = find_partial_die (real_pdi->spec_offset,
6772 real_pdi->spec_is_dwz, cu);
6773
6774 parent = real_pdi->die_parent;
6775 if (parent == NULL)
6776 return NULL;
6777
6778 if (parent->scope_set)
6779 return parent->scope;
6780
6781 fixup_partial_die (parent, cu);
6782
6783 grandparent_scope = partial_die_parent_scope (parent, cu);
6784
6785 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6786 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6787 Work around this problem here. */
6788 if (cu->language == language_cplus
6789 && parent->tag == DW_TAG_namespace
6790 && strcmp (parent->name, "::") == 0
6791 && grandparent_scope == NULL)
6792 {
6793 parent->scope = NULL;
6794 parent->scope_set = 1;
6795 return NULL;
6796 }
6797
6798 if (pdi->tag == DW_TAG_enumerator)
6799 /* Enumerators should not get the name of the enumeration as a prefix. */
6800 parent->scope = grandparent_scope;
6801 else if (parent->tag == DW_TAG_namespace
6802 || parent->tag == DW_TAG_module
6803 || parent->tag == DW_TAG_structure_type
6804 || parent->tag == DW_TAG_class_type
6805 || parent->tag == DW_TAG_interface_type
6806 || parent->tag == DW_TAG_union_type
6807 || parent->tag == DW_TAG_enumeration_type)
6808 {
6809 if (grandparent_scope == NULL)
6810 parent->scope = parent->name;
6811 else
6812 parent->scope = typename_concat (&cu->comp_unit_obstack,
6813 grandparent_scope,
6814 parent->name, 0, cu);
6815 }
6816 else
6817 {
6818 /* FIXME drow/2004-04-01: What should we be doing with
6819 function-local names? For partial symbols, we should probably be
6820 ignoring them. */
6821 complaint (&symfile_complaints,
6822 _("unhandled containing DIE tag %d for DIE at %d"),
6823 parent->tag, pdi->offset.sect_off);
6824 parent->scope = grandparent_scope;
6825 }
6826
6827 parent->scope_set = 1;
6828 return parent->scope;
6829 }
6830
6831 /* Return the fully scoped name associated with PDI, from compilation unit
6832 CU. The result will be allocated with malloc. */
6833
6834 static char *
6835 partial_die_full_name (struct partial_die_info *pdi,
6836 struct dwarf2_cu *cu)
6837 {
6838 const char *parent_scope;
6839
6840 /* If this is a template instantiation, we can not work out the
6841 template arguments from partial DIEs. So, unfortunately, we have
6842 to go through the full DIEs. At least any work we do building
6843 types here will be reused if full symbols are loaded later. */
6844 if (pdi->has_template_arguments)
6845 {
6846 fixup_partial_die (pdi, cu);
6847
6848 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6849 {
6850 struct die_info *die;
6851 struct attribute attr;
6852 struct dwarf2_cu *ref_cu = cu;
6853
6854 /* DW_FORM_ref_addr is using section offset. */
6855 attr.name = 0;
6856 attr.form = DW_FORM_ref_addr;
6857 attr.u.unsnd = pdi->offset.sect_off;
6858 die = follow_die_ref (NULL, &attr, &ref_cu);
6859
6860 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6861 }
6862 }
6863
6864 parent_scope = partial_die_parent_scope (pdi, cu);
6865 if (parent_scope == NULL)
6866 return NULL;
6867 else
6868 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6869 }
6870
6871 static void
6872 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6873 {
6874 struct objfile *objfile = cu->objfile;
6875 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6876 CORE_ADDR addr = 0;
6877 const char *actual_name = NULL;
6878 CORE_ADDR baseaddr;
6879 char *built_actual_name;
6880
6881 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6882
6883 built_actual_name = partial_die_full_name (pdi, cu);
6884 if (built_actual_name != NULL)
6885 actual_name = built_actual_name;
6886
6887 if (actual_name == NULL)
6888 actual_name = pdi->name;
6889
6890 switch (pdi->tag)
6891 {
6892 case DW_TAG_subprogram:
6893 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6894 if (pdi->is_external || cu->language == language_ada)
6895 {
6896 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6897 of the global scope. But in Ada, we want to be able to access
6898 nested procedures globally. So all Ada subprograms are stored
6899 in the global scope. */
6900 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6901 objfile); */
6902 add_psymbol_to_list (actual_name, strlen (actual_name),
6903 built_actual_name != NULL,
6904 VAR_DOMAIN, LOC_BLOCK,
6905 &objfile->global_psymbols,
6906 0, addr, cu->language, objfile);
6907 }
6908 else
6909 {
6910 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6911 objfile); */
6912 add_psymbol_to_list (actual_name, strlen (actual_name),
6913 built_actual_name != NULL,
6914 VAR_DOMAIN, LOC_BLOCK,
6915 &objfile->static_psymbols,
6916 0, addr, cu->language, objfile);
6917 }
6918 break;
6919 case DW_TAG_constant:
6920 {
6921 struct psymbol_allocation_list *list;
6922
6923 if (pdi->is_external)
6924 list = &objfile->global_psymbols;
6925 else
6926 list = &objfile->static_psymbols;
6927 add_psymbol_to_list (actual_name, strlen (actual_name),
6928 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6929 list, 0, 0, cu->language, objfile);
6930 }
6931 break;
6932 case DW_TAG_variable:
6933 if (pdi->d.locdesc)
6934 addr = decode_locdesc (pdi->d.locdesc, cu);
6935
6936 if (pdi->d.locdesc
6937 && addr == 0
6938 && !dwarf2_per_objfile->has_section_at_zero)
6939 {
6940 /* A global or static variable may also have been stripped
6941 out by the linker if unused, in which case its address
6942 will be nullified; do not add such variables into partial
6943 symbol table then. */
6944 }
6945 else if (pdi->is_external)
6946 {
6947 /* Global Variable.
6948 Don't enter into the minimal symbol tables as there is
6949 a minimal symbol table entry from the ELF symbols already.
6950 Enter into partial symbol table if it has a location
6951 descriptor or a type.
6952 If the location descriptor is missing, new_symbol will create
6953 a LOC_UNRESOLVED symbol, the address of the variable will then
6954 be determined from the minimal symbol table whenever the variable
6955 is referenced.
6956 The address for the partial symbol table entry is not
6957 used by GDB, but it comes in handy for debugging partial symbol
6958 table building. */
6959
6960 if (pdi->d.locdesc || pdi->has_type)
6961 add_psymbol_to_list (actual_name, strlen (actual_name),
6962 built_actual_name != NULL,
6963 VAR_DOMAIN, LOC_STATIC,
6964 &objfile->global_psymbols,
6965 0, addr + baseaddr,
6966 cu->language, objfile);
6967 }
6968 else
6969 {
6970 int has_loc = pdi->d.locdesc != NULL;
6971
6972 /* Static Variable. Skip symbols whose value we cannot know (those
6973 without location descriptors or constant values). */
6974 if (!has_loc && !pdi->has_const_value)
6975 {
6976 xfree (built_actual_name);
6977 return;
6978 }
6979
6980 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6981 mst_file_data, objfile); */
6982 add_psymbol_to_list (actual_name, strlen (actual_name),
6983 built_actual_name != NULL,
6984 VAR_DOMAIN, LOC_STATIC,
6985 &objfile->static_psymbols,
6986 0,
6987 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6988 cu->language, objfile);
6989 }
6990 break;
6991 case DW_TAG_typedef:
6992 case DW_TAG_base_type:
6993 case DW_TAG_subrange_type:
6994 add_psymbol_to_list (actual_name, strlen (actual_name),
6995 built_actual_name != NULL,
6996 VAR_DOMAIN, LOC_TYPEDEF,
6997 &objfile->static_psymbols,
6998 0, (CORE_ADDR) 0, cu->language, objfile);
6999 break;
7000 case DW_TAG_imported_declaration:
7001 case DW_TAG_namespace:
7002 add_psymbol_to_list (actual_name, strlen (actual_name),
7003 built_actual_name != NULL,
7004 VAR_DOMAIN, LOC_TYPEDEF,
7005 &objfile->global_psymbols,
7006 0, (CORE_ADDR) 0, cu->language, objfile);
7007 break;
7008 case DW_TAG_module:
7009 add_psymbol_to_list (actual_name, strlen (actual_name),
7010 built_actual_name != NULL,
7011 MODULE_DOMAIN, LOC_TYPEDEF,
7012 &objfile->global_psymbols,
7013 0, (CORE_ADDR) 0, cu->language, objfile);
7014 break;
7015 case DW_TAG_class_type:
7016 case DW_TAG_interface_type:
7017 case DW_TAG_structure_type:
7018 case DW_TAG_union_type:
7019 case DW_TAG_enumeration_type:
7020 /* Skip external references. The DWARF standard says in the section
7021 about "Structure, Union, and Class Type Entries": "An incomplete
7022 structure, union or class type is represented by a structure,
7023 union or class entry that does not have a byte size attribute
7024 and that has a DW_AT_declaration attribute." */
7025 if (!pdi->has_byte_size && pdi->is_declaration)
7026 {
7027 xfree (built_actual_name);
7028 return;
7029 }
7030
7031 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7032 static vs. global. */
7033 add_psymbol_to_list (actual_name, strlen (actual_name),
7034 built_actual_name != NULL,
7035 STRUCT_DOMAIN, LOC_TYPEDEF,
7036 (cu->language == language_cplus
7037 || cu->language == language_java)
7038 ? &objfile->global_psymbols
7039 : &objfile->static_psymbols,
7040 0, (CORE_ADDR) 0, cu->language, objfile);
7041
7042 break;
7043 case DW_TAG_enumerator:
7044 add_psymbol_to_list (actual_name, strlen (actual_name),
7045 built_actual_name != NULL,
7046 VAR_DOMAIN, LOC_CONST,
7047 (cu->language == language_cplus
7048 || cu->language == language_java)
7049 ? &objfile->global_psymbols
7050 : &objfile->static_psymbols,
7051 0, (CORE_ADDR) 0, cu->language, objfile);
7052 break;
7053 default:
7054 break;
7055 }
7056
7057 xfree (built_actual_name);
7058 }
7059
7060 /* Read a partial die corresponding to a namespace; also, add a symbol
7061 corresponding to that namespace to the symbol table. NAMESPACE is
7062 the name of the enclosing namespace. */
7063
7064 static void
7065 add_partial_namespace (struct partial_die_info *pdi,
7066 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7067 int set_addrmap, struct dwarf2_cu *cu)
7068 {
7069 /* Add a symbol for the namespace. */
7070
7071 add_partial_symbol (pdi, cu);
7072
7073 /* Now scan partial symbols in that namespace. */
7074
7075 if (pdi->has_children)
7076 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7077 }
7078
7079 /* Read a partial die corresponding to a Fortran module. */
7080
7081 static void
7082 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7083 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7084 {
7085 /* Add a symbol for the namespace. */
7086
7087 add_partial_symbol (pdi, cu);
7088
7089 /* Now scan partial symbols in that module. */
7090
7091 if (pdi->has_children)
7092 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7093 }
7094
7095 /* Read a partial die corresponding to a subprogram and create a partial
7096 symbol for that subprogram. When the CU language allows it, this
7097 routine also defines a partial symbol for each nested subprogram
7098 that this subprogram contains. If SET_ADDRMAP is true, record the
7099 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7100 and highest PC values found in PDI.
7101
7102 PDI may also be a lexical block, in which case we simply search
7103 recursively for subprograms defined inside that lexical block.
7104 Again, this is only performed when the CU language allows this
7105 type of definitions. */
7106
7107 static void
7108 add_partial_subprogram (struct partial_die_info *pdi,
7109 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7110 int set_addrmap, struct dwarf2_cu *cu)
7111 {
7112 if (pdi->tag == DW_TAG_subprogram)
7113 {
7114 if (pdi->has_pc_info)
7115 {
7116 if (pdi->lowpc < *lowpc)
7117 *lowpc = pdi->lowpc;
7118 if (pdi->highpc > *highpc)
7119 *highpc = pdi->highpc;
7120 if (set_addrmap)
7121 {
7122 struct objfile *objfile = cu->objfile;
7123 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7124 CORE_ADDR baseaddr;
7125 CORE_ADDR highpc;
7126 CORE_ADDR lowpc;
7127
7128 baseaddr = ANOFFSET (objfile->section_offsets,
7129 SECT_OFF_TEXT (objfile));
7130 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7131 pdi->lowpc + baseaddr);
7132 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7133 pdi->highpc + baseaddr);
7134 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7135 cu->per_cu->v.psymtab);
7136 }
7137 }
7138
7139 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7140 {
7141 if (!pdi->is_declaration)
7142 /* Ignore subprogram DIEs that do not have a name, they are
7143 illegal. Do not emit a complaint at this point, we will
7144 do so when we convert this psymtab into a symtab. */
7145 if (pdi->name)
7146 add_partial_symbol (pdi, cu);
7147 }
7148 }
7149
7150 if (! pdi->has_children)
7151 return;
7152
7153 if (cu->language == language_ada)
7154 {
7155 pdi = pdi->die_child;
7156 while (pdi != NULL)
7157 {
7158 fixup_partial_die (pdi, cu);
7159 if (pdi->tag == DW_TAG_subprogram
7160 || pdi->tag == DW_TAG_lexical_block)
7161 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7162 pdi = pdi->die_sibling;
7163 }
7164 }
7165 }
7166
7167 /* Read a partial die corresponding to an enumeration type. */
7168
7169 static void
7170 add_partial_enumeration (struct partial_die_info *enum_pdi,
7171 struct dwarf2_cu *cu)
7172 {
7173 struct partial_die_info *pdi;
7174
7175 if (enum_pdi->name != NULL)
7176 add_partial_symbol (enum_pdi, cu);
7177
7178 pdi = enum_pdi->die_child;
7179 while (pdi)
7180 {
7181 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7182 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7183 else
7184 add_partial_symbol (pdi, cu);
7185 pdi = pdi->die_sibling;
7186 }
7187 }
7188
7189 /* Return the initial uleb128 in the die at INFO_PTR. */
7190
7191 static unsigned int
7192 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7193 {
7194 unsigned int bytes_read;
7195
7196 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7197 }
7198
7199 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7200 Return the corresponding abbrev, or NULL if the number is zero (indicating
7201 an empty DIE). In either case *BYTES_READ will be set to the length of
7202 the initial number. */
7203
7204 static struct abbrev_info *
7205 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7206 struct dwarf2_cu *cu)
7207 {
7208 bfd *abfd = cu->objfile->obfd;
7209 unsigned int abbrev_number;
7210 struct abbrev_info *abbrev;
7211
7212 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7213
7214 if (abbrev_number == 0)
7215 return NULL;
7216
7217 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7218 if (!abbrev)
7219 {
7220 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7221 " at offset 0x%x [in module %s]"),
7222 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7223 cu->header.offset.sect_off, bfd_get_filename (abfd));
7224 }
7225
7226 return abbrev;
7227 }
7228
7229 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7230 Returns a pointer to the end of a series of DIEs, terminated by an empty
7231 DIE. Any children of the skipped DIEs will also be skipped. */
7232
7233 static const gdb_byte *
7234 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7235 {
7236 struct dwarf2_cu *cu = reader->cu;
7237 struct abbrev_info *abbrev;
7238 unsigned int bytes_read;
7239
7240 while (1)
7241 {
7242 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7243 if (abbrev == NULL)
7244 return info_ptr + bytes_read;
7245 else
7246 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7247 }
7248 }
7249
7250 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7251 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7252 abbrev corresponding to that skipped uleb128 should be passed in
7253 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7254 children. */
7255
7256 static const gdb_byte *
7257 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7258 struct abbrev_info *abbrev)
7259 {
7260 unsigned int bytes_read;
7261 struct attribute attr;
7262 bfd *abfd = reader->abfd;
7263 struct dwarf2_cu *cu = reader->cu;
7264 const gdb_byte *buffer = reader->buffer;
7265 const gdb_byte *buffer_end = reader->buffer_end;
7266 const gdb_byte *start_info_ptr = info_ptr;
7267 unsigned int form, i;
7268
7269 for (i = 0; i < abbrev->num_attrs; i++)
7270 {
7271 /* The only abbrev we care about is DW_AT_sibling. */
7272 if (abbrev->attrs[i].name == DW_AT_sibling)
7273 {
7274 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7275 if (attr.form == DW_FORM_ref_addr)
7276 complaint (&symfile_complaints,
7277 _("ignoring absolute DW_AT_sibling"));
7278 else
7279 {
7280 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7281 const gdb_byte *sibling_ptr = buffer + off;
7282
7283 if (sibling_ptr < info_ptr)
7284 complaint (&symfile_complaints,
7285 _("DW_AT_sibling points backwards"));
7286 else if (sibling_ptr > reader->buffer_end)
7287 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7288 else
7289 return sibling_ptr;
7290 }
7291 }
7292
7293 /* If it isn't DW_AT_sibling, skip this attribute. */
7294 form = abbrev->attrs[i].form;
7295 skip_attribute:
7296 switch (form)
7297 {
7298 case DW_FORM_ref_addr:
7299 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7300 and later it is offset sized. */
7301 if (cu->header.version == 2)
7302 info_ptr += cu->header.addr_size;
7303 else
7304 info_ptr += cu->header.offset_size;
7305 break;
7306 case DW_FORM_GNU_ref_alt:
7307 info_ptr += cu->header.offset_size;
7308 break;
7309 case DW_FORM_addr:
7310 info_ptr += cu->header.addr_size;
7311 break;
7312 case DW_FORM_data1:
7313 case DW_FORM_ref1:
7314 case DW_FORM_flag:
7315 info_ptr += 1;
7316 break;
7317 case DW_FORM_flag_present:
7318 break;
7319 case DW_FORM_data2:
7320 case DW_FORM_ref2:
7321 info_ptr += 2;
7322 break;
7323 case DW_FORM_data4:
7324 case DW_FORM_ref4:
7325 info_ptr += 4;
7326 break;
7327 case DW_FORM_data8:
7328 case DW_FORM_ref8:
7329 case DW_FORM_ref_sig8:
7330 info_ptr += 8;
7331 break;
7332 case DW_FORM_string:
7333 read_direct_string (abfd, info_ptr, &bytes_read);
7334 info_ptr += bytes_read;
7335 break;
7336 case DW_FORM_sec_offset:
7337 case DW_FORM_strp:
7338 case DW_FORM_GNU_strp_alt:
7339 info_ptr += cu->header.offset_size;
7340 break;
7341 case DW_FORM_exprloc:
7342 case DW_FORM_block:
7343 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7344 info_ptr += bytes_read;
7345 break;
7346 case DW_FORM_block1:
7347 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7348 break;
7349 case DW_FORM_block2:
7350 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7351 break;
7352 case DW_FORM_block4:
7353 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7354 break;
7355 case DW_FORM_sdata:
7356 case DW_FORM_udata:
7357 case DW_FORM_ref_udata:
7358 case DW_FORM_GNU_addr_index:
7359 case DW_FORM_GNU_str_index:
7360 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7361 break;
7362 case DW_FORM_indirect:
7363 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7364 info_ptr += bytes_read;
7365 /* We need to continue parsing from here, so just go back to
7366 the top. */
7367 goto skip_attribute;
7368
7369 default:
7370 error (_("Dwarf Error: Cannot handle %s "
7371 "in DWARF reader [in module %s]"),
7372 dwarf_form_name (form),
7373 bfd_get_filename (abfd));
7374 }
7375 }
7376
7377 if (abbrev->has_children)
7378 return skip_children (reader, info_ptr);
7379 else
7380 return info_ptr;
7381 }
7382
7383 /* Locate ORIG_PDI's sibling.
7384 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7385
7386 static const gdb_byte *
7387 locate_pdi_sibling (const struct die_reader_specs *reader,
7388 struct partial_die_info *orig_pdi,
7389 const gdb_byte *info_ptr)
7390 {
7391 /* Do we know the sibling already? */
7392
7393 if (orig_pdi->sibling)
7394 return orig_pdi->sibling;
7395
7396 /* Are there any children to deal with? */
7397
7398 if (!orig_pdi->has_children)
7399 return info_ptr;
7400
7401 /* Skip the children the long way. */
7402
7403 return skip_children (reader, info_ptr);
7404 }
7405
7406 /* Expand this partial symbol table into a full symbol table. SELF is
7407 not NULL. */
7408
7409 static void
7410 dwarf2_read_symtab (struct partial_symtab *self,
7411 struct objfile *objfile)
7412 {
7413 if (self->readin)
7414 {
7415 warning (_("bug: psymtab for %s is already read in."),
7416 self->filename);
7417 }
7418 else
7419 {
7420 if (info_verbose)
7421 {
7422 printf_filtered (_("Reading in symbols for %s..."),
7423 self->filename);
7424 gdb_flush (gdb_stdout);
7425 }
7426
7427 /* Restore our global data. */
7428 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7429
7430 /* If this psymtab is constructed from a debug-only objfile, the
7431 has_section_at_zero flag will not necessarily be correct. We
7432 can get the correct value for this flag by looking at the data
7433 associated with the (presumably stripped) associated objfile. */
7434 if (objfile->separate_debug_objfile_backlink)
7435 {
7436 struct dwarf2_per_objfile *dpo_backlink
7437 = objfile_data (objfile->separate_debug_objfile_backlink,
7438 dwarf2_objfile_data_key);
7439
7440 dwarf2_per_objfile->has_section_at_zero
7441 = dpo_backlink->has_section_at_zero;
7442 }
7443
7444 dwarf2_per_objfile->reading_partial_symbols = 0;
7445
7446 psymtab_to_symtab_1 (self);
7447
7448 /* Finish up the debug error message. */
7449 if (info_verbose)
7450 printf_filtered (_("done.\n"));
7451 }
7452
7453 process_cu_includes ();
7454 }
7455 \f
7456 /* Reading in full CUs. */
7457
7458 /* Add PER_CU to the queue. */
7459
7460 static void
7461 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7462 enum language pretend_language)
7463 {
7464 struct dwarf2_queue_item *item;
7465
7466 per_cu->queued = 1;
7467 item = xmalloc (sizeof (*item));
7468 item->per_cu = per_cu;
7469 item->pretend_language = pretend_language;
7470 item->next = NULL;
7471
7472 if (dwarf2_queue == NULL)
7473 dwarf2_queue = item;
7474 else
7475 dwarf2_queue_tail->next = item;
7476
7477 dwarf2_queue_tail = item;
7478 }
7479
7480 /* If PER_CU is not yet queued, add it to the queue.
7481 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7482 dependency.
7483 The result is non-zero if PER_CU was queued, otherwise the result is zero
7484 meaning either PER_CU is already queued or it is already loaded.
7485
7486 N.B. There is an invariant here that if a CU is queued then it is loaded.
7487 The caller is required to load PER_CU if we return non-zero. */
7488
7489 static int
7490 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7491 struct dwarf2_per_cu_data *per_cu,
7492 enum language pretend_language)
7493 {
7494 /* We may arrive here during partial symbol reading, if we need full
7495 DIEs to process an unusual case (e.g. template arguments). Do
7496 not queue PER_CU, just tell our caller to load its DIEs. */
7497 if (dwarf2_per_objfile->reading_partial_symbols)
7498 {
7499 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7500 return 1;
7501 return 0;
7502 }
7503
7504 /* Mark the dependence relation so that we don't flush PER_CU
7505 too early. */
7506 if (dependent_cu != NULL)
7507 dwarf2_add_dependence (dependent_cu, per_cu);
7508
7509 /* If it's already on the queue, we have nothing to do. */
7510 if (per_cu->queued)
7511 return 0;
7512
7513 /* If the compilation unit is already loaded, just mark it as
7514 used. */
7515 if (per_cu->cu != NULL)
7516 {
7517 per_cu->cu->last_used = 0;
7518 return 0;
7519 }
7520
7521 /* Add it to the queue. */
7522 queue_comp_unit (per_cu, pretend_language);
7523
7524 return 1;
7525 }
7526
7527 /* Process the queue. */
7528
7529 static void
7530 process_queue (void)
7531 {
7532 struct dwarf2_queue_item *item, *next_item;
7533
7534 if (dwarf_read_debug)
7535 {
7536 fprintf_unfiltered (gdb_stdlog,
7537 "Expanding one or more symtabs of objfile %s ...\n",
7538 objfile_name (dwarf2_per_objfile->objfile));
7539 }
7540
7541 /* The queue starts out with one item, but following a DIE reference
7542 may load a new CU, adding it to the end of the queue. */
7543 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7544 {
7545 if ((dwarf2_per_objfile->using_index
7546 ? !item->per_cu->v.quick->compunit_symtab
7547 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7548 /* Skip dummy CUs. */
7549 && item->per_cu->cu != NULL)
7550 {
7551 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7552 unsigned int debug_print_threshold;
7553 char buf[100];
7554
7555 if (per_cu->is_debug_types)
7556 {
7557 struct signatured_type *sig_type =
7558 (struct signatured_type *) per_cu;
7559
7560 sprintf (buf, "TU %s at offset 0x%x",
7561 hex_string (sig_type->signature),
7562 per_cu->offset.sect_off);
7563 /* There can be 100s of TUs.
7564 Only print them in verbose mode. */
7565 debug_print_threshold = 2;
7566 }
7567 else
7568 {
7569 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7570 debug_print_threshold = 1;
7571 }
7572
7573 if (dwarf_read_debug >= debug_print_threshold)
7574 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7575
7576 if (per_cu->is_debug_types)
7577 process_full_type_unit (per_cu, item->pretend_language);
7578 else
7579 process_full_comp_unit (per_cu, item->pretend_language);
7580
7581 if (dwarf_read_debug >= debug_print_threshold)
7582 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7583 }
7584
7585 item->per_cu->queued = 0;
7586 next_item = item->next;
7587 xfree (item);
7588 }
7589
7590 dwarf2_queue_tail = NULL;
7591
7592 if (dwarf_read_debug)
7593 {
7594 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7595 objfile_name (dwarf2_per_objfile->objfile));
7596 }
7597 }
7598
7599 /* Free all allocated queue entries. This function only releases anything if
7600 an error was thrown; if the queue was processed then it would have been
7601 freed as we went along. */
7602
7603 static void
7604 dwarf2_release_queue (void *dummy)
7605 {
7606 struct dwarf2_queue_item *item, *last;
7607
7608 item = dwarf2_queue;
7609 while (item)
7610 {
7611 /* Anything still marked queued is likely to be in an
7612 inconsistent state, so discard it. */
7613 if (item->per_cu->queued)
7614 {
7615 if (item->per_cu->cu != NULL)
7616 free_one_cached_comp_unit (item->per_cu);
7617 item->per_cu->queued = 0;
7618 }
7619
7620 last = item;
7621 item = item->next;
7622 xfree (last);
7623 }
7624
7625 dwarf2_queue = dwarf2_queue_tail = NULL;
7626 }
7627
7628 /* Read in full symbols for PST, and anything it depends on. */
7629
7630 static void
7631 psymtab_to_symtab_1 (struct partial_symtab *pst)
7632 {
7633 struct dwarf2_per_cu_data *per_cu;
7634 int i;
7635
7636 if (pst->readin)
7637 return;
7638
7639 for (i = 0; i < pst->number_of_dependencies; i++)
7640 if (!pst->dependencies[i]->readin
7641 && pst->dependencies[i]->user == NULL)
7642 {
7643 /* Inform about additional files that need to be read in. */
7644 if (info_verbose)
7645 {
7646 /* FIXME: i18n: Need to make this a single string. */
7647 fputs_filtered (" ", gdb_stdout);
7648 wrap_here ("");
7649 fputs_filtered ("and ", gdb_stdout);
7650 wrap_here ("");
7651 printf_filtered ("%s...", pst->dependencies[i]->filename);
7652 wrap_here (""); /* Flush output. */
7653 gdb_flush (gdb_stdout);
7654 }
7655 psymtab_to_symtab_1 (pst->dependencies[i]);
7656 }
7657
7658 per_cu = pst->read_symtab_private;
7659
7660 if (per_cu == NULL)
7661 {
7662 /* It's an include file, no symbols to read for it.
7663 Everything is in the parent symtab. */
7664 pst->readin = 1;
7665 return;
7666 }
7667
7668 dw2_do_instantiate_symtab (per_cu);
7669 }
7670
7671 /* Trivial hash function for die_info: the hash value of a DIE
7672 is its offset in .debug_info for this objfile. */
7673
7674 static hashval_t
7675 die_hash (const void *item)
7676 {
7677 const struct die_info *die = item;
7678
7679 return die->offset.sect_off;
7680 }
7681
7682 /* Trivial comparison function for die_info structures: two DIEs
7683 are equal if they have the same offset. */
7684
7685 static int
7686 die_eq (const void *item_lhs, const void *item_rhs)
7687 {
7688 const struct die_info *die_lhs = item_lhs;
7689 const struct die_info *die_rhs = item_rhs;
7690
7691 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7692 }
7693
7694 /* die_reader_func for load_full_comp_unit.
7695 This is identical to read_signatured_type_reader,
7696 but is kept separate for now. */
7697
7698 static void
7699 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7700 const gdb_byte *info_ptr,
7701 struct die_info *comp_unit_die,
7702 int has_children,
7703 void *data)
7704 {
7705 struct dwarf2_cu *cu = reader->cu;
7706 enum language *language_ptr = data;
7707
7708 gdb_assert (cu->die_hash == NULL);
7709 cu->die_hash =
7710 htab_create_alloc_ex (cu->header.length / 12,
7711 die_hash,
7712 die_eq,
7713 NULL,
7714 &cu->comp_unit_obstack,
7715 hashtab_obstack_allocate,
7716 dummy_obstack_deallocate);
7717
7718 if (has_children)
7719 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7720 &info_ptr, comp_unit_die);
7721 cu->dies = comp_unit_die;
7722 /* comp_unit_die is not stored in die_hash, no need. */
7723
7724 /* We try not to read any attributes in this function, because not
7725 all CUs needed for references have been loaded yet, and symbol
7726 table processing isn't initialized. But we have to set the CU language,
7727 or we won't be able to build types correctly.
7728 Similarly, if we do not read the producer, we can not apply
7729 producer-specific interpretation. */
7730 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7731 }
7732
7733 /* Load the DIEs associated with PER_CU into memory. */
7734
7735 static void
7736 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7737 enum language pretend_language)
7738 {
7739 gdb_assert (! this_cu->is_debug_types);
7740
7741 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7742 load_full_comp_unit_reader, &pretend_language);
7743 }
7744
7745 /* Add a DIE to the delayed physname list. */
7746
7747 static void
7748 add_to_method_list (struct type *type, int fnfield_index, int index,
7749 const char *name, struct die_info *die,
7750 struct dwarf2_cu *cu)
7751 {
7752 struct delayed_method_info mi;
7753 mi.type = type;
7754 mi.fnfield_index = fnfield_index;
7755 mi.index = index;
7756 mi.name = name;
7757 mi.die = die;
7758 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7759 }
7760
7761 /* A cleanup for freeing the delayed method list. */
7762
7763 static void
7764 free_delayed_list (void *ptr)
7765 {
7766 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7767 if (cu->method_list != NULL)
7768 {
7769 VEC_free (delayed_method_info, cu->method_list);
7770 cu->method_list = NULL;
7771 }
7772 }
7773
7774 /* Compute the physnames of any methods on the CU's method list.
7775
7776 The computation of method physnames is delayed in order to avoid the
7777 (bad) condition that one of the method's formal parameters is of an as yet
7778 incomplete type. */
7779
7780 static void
7781 compute_delayed_physnames (struct dwarf2_cu *cu)
7782 {
7783 int i;
7784 struct delayed_method_info *mi;
7785 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7786 {
7787 const char *physname;
7788 struct fn_fieldlist *fn_flp
7789 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7790 physname = dwarf2_physname (mi->name, mi->die, cu);
7791 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7792 = physname ? physname : "";
7793 }
7794 }
7795
7796 /* Go objects should be embedded in a DW_TAG_module DIE,
7797 and it's not clear if/how imported objects will appear.
7798 To keep Go support simple until that's worked out,
7799 go back through what we've read and create something usable.
7800 We could do this while processing each DIE, and feels kinda cleaner,
7801 but that way is more invasive.
7802 This is to, for example, allow the user to type "p var" or "b main"
7803 without having to specify the package name, and allow lookups
7804 of module.object to work in contexts that use the expression
7805 parser. */
7806
7807 static void
7808 fixup_go_packaging (struct dwarf2_cu *cu)
7809 {
7810 char *package_name = NULL;
7811 struct pending *list;
7812 int i;
7813
7814 for (list = global_symbols; list != NULL; list = list->next)
7815 {
7816 for (i = 0; i < list->nsyms; ++i)
7817 {
7818 struct symbol *sym = list->symbol[i];
7819
7820 if (SYMBOL_LANGUAGE (sym) == language_go
7821 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7822 {
7823 char *this_package_name = go_symbol_package_name (sym);
7824
7825 if (this_package_name == NULL)
7826 continue;
7827 if (package_name == NULL)
7828 package_name = this_package_name;
7829 else
7830 {
7831 if (strcmp (package_name, this_package_name) != 0)
7832 complaint (&symfile_complaints,
7833 _("Symtab %s has objects from two different Go packages: %s and %s"),
7834 (symbol_symtab (sym) != NULL
7835 ? symtab_to_filename_for_display
7836 (symbol_symtab (sym))
7837 : objfile_name (cu->objfile)),
7838 this_package_name, package_name);
7839 xfree (this_package_name);
7840 }
7841 }
7842 }
7843 }
7844
7845 if (package_name != NULL)
7846 {
7847 struct objfile *objfile = cu->objfile;
7848 const char *saved_package_name
7849 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7850 package_name,
7851 strlen (package_name));
7852 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7853 saved_package_name, objfile);
7854 struct symbol *sym;
7855
7856 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7857
7858 sym = allocate_symbol (objfile);
7859 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7860 SYMBOL_SET_NAMES (sym, saved_package_name,
7861 strlen (saved_package_name), 0, objfile);
7862 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7863 e.g., "main" finds the "main" module and not C's main(). */
7864 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7865 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7866 SYMBOL_TYPE (sym) = type;
7867
7868 add_symbol_to_list (sym, &global_symbols);
7869
7870 xfree (package_name);
7871 }
7872 }
7873
7874 /* Return the symtab for PER_CU. This works properly regardless of
7875 whether we're using the index or psymtabs. */
7876
7877 static struct compunit_symtab *
7878 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7879 {
7880 return (dwarf2_per_objfile->using_index
7881 ? per_cu->v.quick->compunit_symtab
7882 : per_cu->v.psymtab->compunit_symtab);
7883 }
7884
7885 /* A helper function for computing the list of all symbol tables
7886 included by PER_CU. */
7887
7888 static void
7889 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7890 htab_t all_children, htab_t all_type_symtabs,
7891 struct dwarf2_per_cu_data *per_cu,
7892 struct compunit_symtab *immediate_parent)
7893 {
7894 void **slot;
7895 int ix;
7896 struct compunit_symtab *cust;
7897 struct dwarf2_per_cu_data *iter;
7898
7899 slot = htab_find_slot (all_children, per_cu, INSERT);
7900 if (*slot != NULL)
7901 {
7902 /* This inclusion and its children have been processed. */
7903 return;
7904 }
7905
7906 *slot = per_cu;
7907 /* Only add a CU if it has a symbol table. */
7908 cust = get_compunit_symtab (per_cu);
7909 if (cust != NULL)
7910 {
7911 /* If this is a type unit only add its symbol table if we haven't
7912 seen it yet (type unit per_cu's can share symtabs). */
7913 if (per_cu->is_debug_types)
7914 {
7915 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7916 if (*slot == NULL)
7917 {
7918 *slot = cust;
7919 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7920 if (cust->user == NULL)
7921 cust->user = immediate_parent;
7922 }
7923 }
7924 else
7925 {
7926 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7927 if (cust->user == NULL)
7928 cust->user = immediate_parent;
7929 }
7930 }
7931
7932 for (ix = 0;
7933 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7934 ++ix)
7935 {
7936 recursively_compute_inclusions (result, all_children,
7937 all_type_symtabs, iter, cust);
7938 }
7939 }
7940
7941 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7942 PER_CU. */
7943
7944 static void
7945 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7946 {
7947 gdb_assert (! per_cu->is_debug_types);
7948
7949 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7950 {
7951 int ix, len;
7952 struct dwarf2_per_cu_data *per_cu_iter;
7953 struct compunit_symtab *compunit_symtab_iter;
7954 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7955 htab_t all_children, all_type_symtabs;
7956 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7957
7958 /* If we don't have a symtab, we can just skip this case. */
7959 if (cust == NULL)
7960 return;
7961
7962 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7963 NULL, xcalloc, xfree);
7964 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7965 NULL, xcalloc, xfree);
7966
7967 for (ix = 0;
7968 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7969 ix, per_cu_iter);
7970 ++ix)
7971 {
7972 recursively_compute_inclusions (&result_symtabs, all_children,
7973 all_type_symtabs, per_cu_iter,
7974 cust);
7975 }
7976
7977 /* Now we have a transitive closure of all the included symtabs. */
7978 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7979 cust->includes
7980 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7981 (len + 1) * sizeof (struct compunit_symtab *));
7982 for (ix = 0;
7983 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7984 compunit_symtab_iter);
7985 ++ix)
7986 cust->includes[ix] = compunit_symtab_iter;
7987 cust->includes[len] = NULL;
7988
7989 VEC_free (compunit_symtab_ptr, result_symtabs);
7990 htab_delete (all_children);
7991 htab_delete (all_type_symtabs);
7992 }
7993 }
7994
7995 /* Compute the 'includes' field for the symtabs of all the CUs we just
7996 read. */
7997
7998 static void
7999 process_cu_includes (void)
8000 {
8001 int ix;
8002 struct dwarf2_per_cu_data *iter;
8003
8004 for (ix = 0;
8005 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8006 ix, iter);
8007 ++ix)
8008 {
8009 if (! iter->is_debug_types)
8010 compute_compunit_symtab_includes (iter);
8011 }
8012
8013 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8014 }
8015
8016 /* Generate full symbol information for PER_CU, whose DIEs have
8017 already been loaded into memory. */
8018
8019 static void
8020 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8021 enum language pretend_language)
8022 {
8023 struct dwarf2_cu *cu = per_cu->cu;
8024 struct objfile *objfile = per_cu->objfile;
8025 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8026 CORE_ADDR lowpc, highpc;
8027 struct compunit_symtab *cust;
8028 struct cleanup *back_to, *delayed_list_cleanup;
8029 CORE_ADDR baseaddr;
8030 struct block *static_block;
8031 CORE_ADDR addr;
8032
8033 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8034
8035 buildsym_init ();
8036 back_to = make_cleanup (really_free_pendings, NULL);
8037 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8038
8039 cu->list_in_scope = &file_symbols;
8040
8041 cu->language = pretend_language;
8042 cu->language_defn = language_def (cu->language);
8043
8044 /* Do line number decoding in read_file_scope () */
8045 process_die (cu->dies, cu);
8046
8047 /* For now fudge the Go package. */
8048 if (cu->language == language_go)
8049 fixup_go_packaging (cu);
8050
8051 /* Now that we have processed all the DIEs in the CU, all the types
8052 should be complete, and it should now be safe to compute all of the
8053 physnames. */
8054 compute_delayed_physnames (cu);
8055 do_cleanups (delayed_list_cleanup);
8056
8057 /* Some compilers don't define a DW_AT_high_pc attribute for the
8058 compilation unit. If the DW_AT_high_pc is missing, synthesize
8059 it, by scanning the DIE's below the compilation unit. */
8060 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8061
8062 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8063 static_block = end_symtab_get_static_block (addr, 0, 1);
8064
8065 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8066 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8067 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8068 addrmap to help ensure it has an accurate map of pc values belonging to
8069 this comp unit. */
8070 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8071
8072 cust = end_symtab_from_static_block (static_block,
8073 SECT_OFF_TEXT (objfile), 0);
8074
8075 if (cust != NULL)
8076 {
8077 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8078
8079 /* Set symtab language to language from DW_AT_language. If the
8080 compilation is from a C file generated by language preprocessors, do
8081 not set the language if it was already deduced by start_subfile. */
8082 if (!(cu->language == language_c
8083 && COMPUNIT_FILETABS (cust)->language != language_c))
8084 COMPUNIT_FILETABS (cust)->language = cu->language;
8085
8086 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8087 produce DW_AT_location with location lists but it can be possibly
8088 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8089 there were bugs in prologue debug info, fixed later in GCC-4.5
8090 by "unwind info for epilogues" patch (which is not directly related).
8091
8092 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8093 needed, it would be wrong due to missing DW_AT_producer there.
8094
8095 Still one can confuse GDB by using non-standard GCC compilation
8096 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8097 */
8098 if (cu->has_loclist && gcc_4_minor >= 5)
8099 cust->locations_valid = 1;
8100
8101 if (gcc_4_minor >= 5)
8102 cust->epilogue_unwind_valid = 1;
8103
8104 cust->call_site_htab = cu->call_site_htab;
8105 }
8106
8107 if (dwarf2_per_objfile->using_index)
8108 per_cu->v.quick->compunit_symtab = cust;
8109 else
8110 {
8111 struct partial_symtab *pst = per_cu->v.psymtab;
8112 pst->compunit_symtab = cust;
8113 pst->readin = 1;
8114 }
8115
8116 /* Push it for inclusion processing later. */
8117 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8118
8119 do_cleanups (back_to);
8120 }
8121
8122 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8123 already been loaded into memory. */
8124
8125 static void
8126 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8127 enum language pretend_language)
8128 {
8129 struct dwarf2_cu *cu = per_cu->cu;
8130 struct objfile *objfile = per_cu->objfile;
8131 struct compunit_symtab *cust;
8132 struct cleanup *back_to, *delayed_list_cleanup;
8133 struct signatured_type *sig_type;
8134
8135 gdb_assert (per_cu->is_debug_types);
8136 sig_type = (struct signatured_type *) per_cu;
8137
8138 buildsym_init ();
8139 back_to = make_cleanup (really_free_pendings, NULL);
8140 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8141
8142 cu->list_in_scope = &file_symbols;
8143
8144 cu->language = pretend_language;
8145 cu->language_defn = language_def (cu->language);
8146
8147 /* The symbol tables are set up in read_type_unit_scope. */
8148 process_die (cu->dies, cu);
8149
8150 /* For now fudge the Go package. */
8151 if (cu->language == language_go)
8152 fixup_go_packaging (cu);
8153
8154 /* Now that we have processed all the DIEs in the CU, all the types
8155 should be complete, and it should now be safe to compute all of the
8156 physnames. */
8157 compute_delayed_physnames (cu);
8158 do_cleanups (delayed_list_cleanup);
8159
8160 /* TUs share symbol tables.
8161 If this is the first TU to use this symtab, complete the construction
8162 of it with end_expandable_symtab. Otherwise, complete the addition of
8163 this TU's symbols to the existing symtab. */
8164 if (sig_type->type_unit_group->compunit_symtab == NULL)
8165 {
8166 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8167 sig_type->type_unit_group->compunit_symtab = cust;
8168
8169 if (cust != NULL)
8170 {
8171 /* Set symtab language to language from DW_AT_language. If the
8172 compilation is from a C file generated by language preprocessors,
8173 do not set the language if it was already deduced by
8174 start_subfile. */
8175 if (!(cu->language == language_c
8176 && COMPUNIT_FILETABS (cust)->language != language_c))
8177 COMPUNIT_FILETABS (cust)->language = cu->language;
8178 }
8179 }
8180 else
8181 {
8182 augment_type_symtab ();
8183 cust = sig_type->type_unit_group->compunit_symtab;
8184 }
8185
8186 if (dwarf2_per_objfile->using_index)
8187 per_cu->v.quick->compunit_symtab = cust;
8188 else
8189 {
8190 struct partial_symtab *pst = per_cu->v.psymtab;
8191 pst->compunit_symtab = cust;
8192 pst->readin = 1;
8193 }
8194
8195 do_cleanups (back_to);
8196 }
8197
8198 /* Process an imported unit DIE. */
8199
8200 static void
8201 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8202 {
8203 struct attribute *attr;
8204
8205 /* For now we don't handle imported units in type units. */
8206 if (cu->per_cu->is_debug_types)
8207 {
8208 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8209 " supported in type units [in module %s]"),
8210 objfile_name (cu->objfile));
8211 }
8212
8213 attr = dwarf2_attr (die, DW_AT_import, cu);
8214 if (attr != NULL)
8215 {
8216 struct dwarf2_per_cu_data *per_cu;
8217 struct symtab *imported_symtab;
8218 sect_offset offset;
8219 int is_dwz;
8220
8221 offset = dwarf2_get_ref_die_offset (attr);
8222 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8223 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8224
8225 /* If necessary, add it to the queue and load its DIEs. */
8226 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8227 load_full_comp_unit (per_cu, cu->language);
8228
8229 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8230 per_cu);
8231 }
8232 }
8233
8234 /* Reset the in_process bit of a die. */
8235
8236 static void
8237 reset_die_in_process (void *arg)
8238 {
8239 struct die_info *die = arg;
8240
8241 die->in_process = 0;
8242 }
8243
8244 /* Process a die and its children. */
8245
8246 static void
8247 process_die (struct die_info *die, struct dwarf2_cu *cu)
8248 {
8249 struct cleanup *in_process;
8250
8251 /* We should only be processing those not already in process. */
8252 gdb_assert (!die->in_process);
8253
8254 die->in_process = 1;
8255 in_process = make_cleanup (reset_die_in_process,die);
8256
8257 switch (die->tag)
8258 {
8259 case DW_TAG_padding:
8260 break;
8261 case DW_TAG_compile_unit:
8262 case DW_TAG_partial_unit:
8263 read_file_scope (die, cu);
8264 break;
8265 case DW_TAG_type_unit:
8266 read_type_unit_scope (die, cu);
8267 break;
8268 case DW_TAG_subprogram:
8269 case DW_TAG_inlined_subroutine:
8270 read_func_scope (die, cu);
8271 break;
8272 case DW_TAG_lexical_block:
8273 case DW_TAG_try_block:
8274 case DW_TAG_catch_block:
8275 read_lexical_block_scope (die, cu);
8276 break;
8277 case DW_TAG_GNU_call_site:
8278 read_call_site_scope (die, cu);
8279 break;
8280 case DW_TAG_class_type:
8281 case DW_TAG_interface_type:
8282 case DW_TAG_structure_type:
8283 case DW_TAG_union_type:
8284 process_structure_scope (die, cu);
8285 break;
8286 case DW_TAG_enumeration_type:
8287 process_enumeration_scope (die, cu);
8288 break;
8289
8290 /* These dies have a type, but processing them does not create
8291 a symbol or recurse to process the children. Therefore we can
8292 read them on-demand through read_type_die. */
8293 case DW_TAG_subroutine_type:
8294 case DW_TAG_set_type:
8295 case DW_TAG_array_type:
8296 case DW_TAG_pointer_type:
8297 case DW_TAG_ptr_to_member_type:
8298 case DW_TAG_reference_type:
8299 case DW_TAG_string_type:
8300 break;
8301
8302 case DW_TAG_base_type:
8303 case DW_TAG_subrange_type:
8304 case DW_TAG_typedef:
8305 /* Add a typedef symbol for the type definition, if it has a
8306 DW_AT_name. */
8307 new_symbol (die, read_type_die (die, cu), cu);
8308 break;
8309 case DW_TAG_common_block:
8310 read_common_block (die, cu);
8311 break;
8312 case DW_TAG_common_inclusion:
8313 break;
8314 case DW_TAG_namespace:
8315 cu->processing_has_namespace_info = 1;
8316 read_namespace (die, cu);
8317 break;
8318 case DW_TAG_module:
8319 cu->processing_has_namespace_info = 1;
8320 read_module (die, cu);
8321 break;
8322 case DW_TAG_imported_declaration:
8323 cu->processing_has_namespace_info = 1;
8324 if (read_namespace_alias (die, cu))
8325 break;
8326 /* The declaration is not a global namespace alias: fall through. */
8327 case DW_TAG_imported_module:
8328 cu->processing_has_namespace_info = 1;
8329 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8330 || cu->language != language_fortran))
8331 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8332 dwarf_tag_name (die->tag));
8333 read_import_statement (die, cu);
8334 break;
8335
8336 case DW_TAG_imported_unit:
8337 process_imported_unit_die (die, cu);
8338 break;
8339
8340 default:
8341 new_symbol (die, NULL, cu);
8342 break;
8343 }
8344
8345 do_cleanups (in_process);
8346 }
8347 \f
8348 /* DWARF name computation. */
8349
8350 /* A helper function for dwarf2_compute_name which determines whether DIE
8351 needs to have the name of the scope prepended to the name listed in the
8352 die. */
8353
8354 static int
8355 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8356 {
8357 struct attribute *attr;
8358
8359 switch (die->tag)
8360 {
8361 case DW_TAG_namespace:
8362 case DW_TAG_typedef:
8363 case DW_TAG_class_type:
8364 case DW_TAG_interface_type:
8365 case DW_TAG_structure_type:
8366 case DW_TAG_union_type:
8367 case DW_TAG_enumeration_type:
8368 case DW_TAG_enumerator:
8369 case DW_TAG_subprogram:
8370 case DW_TAG_inlined_subroutine:
8371 case DW_TAG_member:
8372 case DW_TAG_imported_declaration:
8373 return 1;
8374
8375 case DW_TAG_variable:
8376 case DW_TAG_constant:
8377 /* We only need to prefix "globally" visible variables. These include
8378 any variable marked with DW_AT_external or any variable that
8379 lives in a namespace. [Variables in anonymous namespaces
8380 require prefixing, but they are not DW_AT_external.] */
8381
8382 if (dwarf2_attr (die, DW_AT_specification, cu))
8383 {
8384 struct dwarf2_cu *spec_cu = cu;
8385
8386 return die_needs_namespace (die_specification (die, &spec_cu),
8387 spec_cu);
8388 }
8389
8390 attr = dwarf2_attr (die, DW_AT_external, cu);
8391 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8392 && die->parent->tag != DW_TAG_module)
8393 return 0;
8394 /* A variable in a lexical block of some kind does not need a
8395 namespace, even though in C++ such variables may be external
8396 and have a mangled name. */
8397 if (die->parent->tag == DW_TAG_lexical_block
8398 || die->parent->tag == DW_TAG_try_block
8399 || die->parent->tag == DW_TAG_catch_block
8400 || die->parent->tag == DW_TAG_subprogram)
8401 return 0;
8402 return 1;
8403
8404 default:
8405 return 0;
8406 }
8407 }
8408
8409 /* Retrieve the last character from a mem_file. */
8410
8411 static void
8412 do_ui_file_peek_last (void *object, const char *buffer, long length)
8413 {
8414 char *last_char_p = (char *) object;
8415
8416 if (length > 0)
8417 *last_char_p = buffer[length - 1];
8418 }
8419
8420 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8421 compute the physname for the object, which include a method's:
8422 - formal parameters (C++/Java),
8423 - receiver type (Go),
8424 - return type (Java).
8425
8426 The term "physname" is a bit confusing.
8427 For C++, for example, it is the demangled name.
8428 For Go, for example, it's the mangled name.
8429
8430 For Ada, return the DIE's linkage name rather than the fully qualified
8431 name. PHYSNAME is ignored..
8432
8433 The result is allocated on the objfile_obstack and canonicalized. */
8434
8435 static const char *
8436 dwarf2_compute_name (const char *name,
8437 struct die_info *die, struct dwarf2_cu *cu,
8438 int physname)
8439 {
8440 struct objfile *objfile = cu->objfile;
8441
8442 if (name == NULL)
8443 name = dwarf2_name (die, cu);
8444
8445 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8446 compute it by typename_concat inside GDB. */
8447 if (cu->language == language_ada
8448 || (cu->language == language_fortran && physname))
8449 {
8450 /* For Ada unit, we prefer the linkage name over the name, as
8451 the former contains the exported name, which the user expects
8452 to be able to reference. Ideally, we want the user to be able
8453 to reference this entity using either natural or linkage name,
8454 but we haven't started looking at this enhancement yet. */
8455 struct attribute *attr;
8456
8457 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8458 if (attr == NULL)
8459 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8460 if (attr && DW_STRING (attr))
8461 return DW_STRING (attr);
8462 }
8463
8464 /* These are the only languages we know how to qualify names in. */
8465 if (name != NULL
8466 && (cu->language == language_cplus || cu->language == language_java
8467 || cu->language == language_fortran || cu->language == language_d))
8468 {
8469 if (die_needs_namespace (die, cu))
8470 {
8471 long length;
8472 const char *prefix;
8473 struct ui_file *buf;
8474 char *intermediate_name;
8475 const char *canonical_name = NULL;
8476
8477 prefix = determine_prefix (die, cu);
8478 buf = mem_fileopen ();
8479 if (*prefix != '\0')
8480 {
8481 char *prefixed_name = typename_concat (NULL, prefix, name,
8482 physname, cu);
8483
8484 fputs_unfiltered (prefixed_name, buf);
8485 xfree (prefixed_name);
8486 }
8487 else
8488 fputs_unfiltered (name, buf);
8489
8490 /* Template parameters may be specified in the DIE's DW_AT_name, or
8491 as children with DW_TAG_template_type_param or
8492 DW_TAG_value_type_param. If the latter, add them to the name
8493 here. If the name already has template parameters, then
8494 skip this step; some versions of GCC emit both, and
8495 it is more efficient to use the pre-computed name.
8496
8497 Something to keep in mind about this process: it is very
8498 unlikely, or in some cases downright impossible, to produce
8499 something that will match the mangled name of a function.
8500 If the definition of the function has the same debug info,
8501 we should be able to match up with it anyway. But fallbacks
8502 using the minimal symbol, for instance to find a method
8503 implemented in a stripped copy of libstdc++, will not work.
8504 If we do not have debug info for the definition, we will have to
8505 match them up some other way.
8506
8507 When we do name matching there is a related problem with function
8508 templates; two instantiated function templates are allowed to
8509 differ only by their return types, which we do not add here. */
8510
8511 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8512 {
8513 struct attribute *attr;
8514 struct die_info *child;
8515 int first = 1;
8516
8517 die->building_fullname = 1;
8518
8519 for (child = die->child; child != NULL; child = child->sibling)
8520 {
8521 struct type *type;
8522 LONGEST value;
8523 const gdb_byte *bytes;
8524 struct dwarf2_locexpr_baton *baton;
8525 struct value *v;
8526
8527 if (child->tag != DW_TAG_template_type_param
8528 && child->tag != DW_TAG_template_value_param)
8529 continue;
8530
8531 if (first)
8532 {
8533 fputs_unfiltered ("<", buf);
8534 first = 0;
8535 }
8536 else
8537 fputs_unfiltered (", ", buf);
8538
8539 attr = dwarf2_attr (child, DW_AT_type, cu);
8540 if (attr == NULL)
8541 {
8542 complaint (&symfile_complaints,
8543 _("template parameter missing DW_AT_type"));
8544 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8545 continue;
8546 }
8547 type = die_type (child, cu);
8548
8549 if (child->tag == DW_TAG_template_type_param)
8550 {
8551 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8552 continue;
8553 }
8554
8555 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8556 if (attr == NULL)
8557 {
8558 complaint (&symfile_complaints,
8559 _("template parameter missing "
8560 "DW_AT_const_value"));
8561 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8562 continue;
8563 }
8564
8565 dwarf2_const_value_attr (attr, type, name,
8566 &cu->comp_unit_obstack, cu,
8567 &value, &bytes, &baton);
8568
8569 if (TYPE_NOSIGN (type))
8570 /* GDB prints characters as NUMBER 'CHAR'. If that's
8571 changed, this can use value_print instead. */
8572 c_printchar (value, type, buf);
8573 else
8574 {
8575 struct value_print_options opts;
8576
8577 if (baton != NULL)
8578 v = dwarf2_evaluate_loc_desc (type, NULL,
8579 baton->data,
8580 baton->size,
8581 baton->per_cu);
8582 else if (bytes != NULL)
8583 {
8584 v = allocate_value (type);
8585 memcpy (value_contents_writeable (v), bytes,
8586 TYPE_LENGTH (type));
8587 }
8588 else
8589 v = value_from_longest (type, value);
8590
8591 /* Specify decimal so that we do not depend on
8592 the radix. */
8593 get_formatted_print_options (&opts, 'd');
8594 opts.raw = 1;
8595 value_print (v, buf, &opts);
8596 release_value (v);
8597 value_free (v);
8598 }
8599 }
8600
8601 die->building_fullname = 0;
8602
8603 if (!first)
8604 {
8605 /* Close the argument list, with a space if necessary
8606 (nested templates). */
8607 char last_char = '\0';
8608 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8609 if (last_char == '>')
8610 fputs_unfiltered (" >", buf);
8611 else
8612 fputs_unfiltered (">", buf);
8613 }
8614 }
8615
8616 /* For Java and C++ methods, append formal parameter type
8617 information, if PHYSNAME. */
8618
8619 if (physname && die->tag == DW_TAG_subprogram
8620 && (cu->language == language_cplus
8621 || cu->language == language_java))
8622 {
8623 struct type *type = read_type_die (die, cu);
8624
8625 c_type_print_args (type, buf, 1, cu->language,
8626 &type_print_raw_options);
8627
8628 if (cu->language == language_java)
8629 {
8630 /* For java, we must append the return type to method
8631 names. */
8632 if (die->tag == DW_TAG_subprogram)
8633 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8634 0, 0, &type_print_raw_options);
8635 }
8636 else if (cu->language == language_cplus)
8637 {
8638 /* Assume that an artificial first parameter is
8639 "this", but do not crash if it is not. RealView
8640 marks unnamed (and thus unused) parameters as
8641 artificial; there is no way to differentiate
8642 the two cases. */
8643 if (TYPE_NFIELDS (type) > 0
8644 && TYPE_FIELD_ARTIFICIAL (type, 0)
8645 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8646 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8647 0))))
8648 fputs_unfiltered (" const", buf);
8649 }
8650 }
8651
8652 intermediate_name = ui_file_xstrdup (buf, &length);
8653 ui_file_delete (buf);
8654
8655 if (cu->language == language_cplus)
8656 canonical_name
8657 = dwarf2_canonicalize_name (intermediate_name, cu,
8658 &objfile->per_bfd->storage_obstack);
8659
8660 /* If we only computed INTERMEDIATE_NAME, or if
8661 INTERMEDIATE_NAME is already canonical, then we need to
8662 copy it to the appropriate obstack. */
8663 if (canonical_name == NULL || canonical_name == intermediate_name)
8664 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8665 intermediate_name,
8666 strlen (intermediate_name));
8667 else
8668 name = canonical_name;
8669
8670 xfree (intermediate_name);
8671 }
8672 }
8673
8674 return name;
8675 }
8676
8677 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8678 If scope qualifiers are appropriate they will be added. The result
8679 will be allocated on the storage_obstack, or NULL if the DIE does
8680 not have a name. NAME may either be from a previous call to
8681 dwarf2_name or NULL.
8682
8683 The output string will be canonicalized (if C++/Java). */
8684
8685 static const char *
8686 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8687 {
8688 return dwarf2_compute_name (name, die, cu, 0);
8689 }
8690
8691 /* Construct a physname for the given DIE in CU. NAME may either be
8692 from a previous call to dwarf2_name or NULL. The result will be
8693 allocated on the objfile_objstack or NULL if the DIE does not have a
8694 name.
8695
8696 The output string will be canonicalized (if C++/Java). */
8697
8698 static const char *
8699 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8700 {
8701 struct objfile *objfile = cu->objfile;
8702 struct attribute *attr;
8703 const char *retval, *mangled = NULL, *canon = NULL;
8704 struct cleanup *back_to;
8705 int need_copy = 1;
8706
8707 /* In this case dwarf2_compute_name is just a shortcut not building anything
8708 on its own. */
8709 if (!die_needs_namespace (die, cu))
8710 return dwarf2_compute_name (name, die, cu, 1);
8711
8712 back_to = make_cleanup (null_cleanup, NULL);
8713
8714 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8715 if (!attr)
8716 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8717
8718 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8719 has computed. */
8720 if (attr && DW_STRING (attr))
8721 {
8722 char *demangled;
8723
8724 mangled = DW_STRING (attr);
8725
8726 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8727 type. It is easier for GDB users to search for such functions as
8728 `name(params)' than `long name(params)'. In such case the minimal
8729 symbol names do not match the full symbol names but for template
8730 functions there is never a need to look up their definition from their
8731 declaration so the only disadvantage remains the minimal symbol
8732 variant `long name(params)' does not have the proper inferior type.
8733 */
8734
8735 if (cu->language == language_go)
8736 {
8737 /* This is a lie, but we already lie to the caller new_symbol_full.
8738 new_symbol_full assumes we return the mangled name.
8739 This just undoes that lie until things are cleaned up. */
8740 demangled = NULL;
8741 }
8742 else
8743 {
8744 demangled = gdb_demangle (mangled,
8745 (DMGL_PARAMS | DMGL_ANSI
8746 | (cu->language == language_java
8747 ? DMGL_JAVA | DMGL_RET_POSTFIX
8748 : DMGL_RET_DROP)));
8749 }
8750 if (demangled)
8751 {
8752 make_cleanup (xfree, demangled);
8753 canon = demangled;
8754 }
8755 else
8756 {
8757 canon = mangled;
8758 need_copy = 0;
8759 }
8760 }
8761
8762 if (canon == NULL || check_physname)
8763 {
8764 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8765
8766 if (canon != NULL && strcmp (physname, canon) != 0)
8767 {
8768 /* It may not mean a bug in GDB. The compiler could also
8769 compute DW_AT_linkage_name incorrectly. But in such case
8770 GDB would need to be bug-to-bug compatible. */
8771
8772 complaint (&symfile_complaints,
8773 _("Computed physname <%s> does not match demangled <%s> "
8774 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8775 physname, canon, mangled, die->offset.sect_off,
8776 objfile_name (objfile));
8777
8778 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8779 is available here - over computed PHYSNAME. It is safer
8780 against both buggy GDB and buggy compilers. */
8781
8782 retval = canon;
8783 }
8784 else
8785 {
8786 retval = physname;
8787 need_copy = 0;
8788 }
8789 }
8790 else
8791 retval = canon;
8792
8793 if (need_copy)
8794 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8795 retval, strlen (retval));
8796
8797 do_cleanups (back_to);
8798 return retval;
8799 }
8800
8801 /* Inspect DIE in CU for a namespace alias. If one exists, record
8802 a new symbol for it.
8803
8804 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8805
8806 static int
8807 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8808 {
8809 struct attribute *attr;
8810
8811 /* If the die does not have a name, this is not a namespace
8812 alias. */
8813 attr = dwarf2_attr (die, DW_AT_name, cu);
8814 if (attr != NULL)
8815 {
8816 int num;
8817 struct die_info *d = die;
8818 struct dwarf2_cu *imported_cu = cu;
8819
8820 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8821 keep inspecting DIEs until we hit the underlying import. */
8822 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8823 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8824 {
8825 attr = dwarf2_attr (d, DW_AT_import, cu);
8826 if (attr == NULL)
8827 break;
8828
8829 d = follow_die_ref (d, attr, &imported_cu);
8830 if (d->tag != DW_TAG_imported_declaration)
8831 break;
8832 }
8833
8834 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8835 {
8836 complaint (&symfile_complaints,
8837 _("DIE at 0x%x has too many recursively imported "
8838 "declarations"), d->offset.sect_off);
8839 return 0;
8840 }
8841
8842 if (attr != NULL)
8843 {
8844 struct type *type;
8845 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8846
8847 type = get_die_type_at_offset (offset, cu->per_cu);
8848 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8849 {
8850 /* This declaration is a global namespace alias. Add
8851 a symbol for it whose type is the aliased namespace. */
8852 new_symbol (die, type, cu);
8853 return 1;
8854 }
8855 }
8856 }
8857
8858 return 0;
8859 }
8860
8861 /* Return the using directives repository (global or local?) to use in the
8862 current context for LANGUAGE.
8863
8864 For Ada, imported declarations can materialize renamings, which *may* be
8865 global. However it is impossible (for now?) in DWARF to distinguish
8866 "external" imported declarations and "static" ones. As all imported
8867 declarations seem to be static in all other languages, make them all CU-wide
8868 global only in Ada. */
8869
8870 static struct using_direct **
8871 using_directives (enum language language)
8872 {
8873 if (language == language_ada && context_stack_depth == 0)
8874 return &global_using_directives;
8875 else
8876 return &local_using_directives;
8877 }
8878
8879 /* Read the import statement specified by the given die and record it. */
8880
8881 static void
8882 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8883 {
8884 struct objfile *objfile = cu->objfile;
8885 struct attribute *import_attr;
8886 struct die_info *imported_die, *child_die;
8887 struct dwarf2_cu *imported_cu;
8888 const char *imported_name;
8889 const char *imported_name_prefix;
8890 const char *canonical_name;
8891 const char *import_alias;
8892 const char *imported_declaration = NULL;
8893 const char *import_prefix;
8894 VEC (const_char_ptr) *excludes = NULL;
8895 struct cleanup *cleanups;
8896
8897 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8898 if (import_attr == NULL)
8899 {
8900 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8901 dwarf_tag_name (die->tag));
8902 return;
8903 }
8904
8905 imported_cu = cu;
8906 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8907 imported_name = dwarf2_name (imported_die, imported_cu);
8908 if (imported_name == NULL)
8909 {
8910 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8911
8912 The import in the following code:
8913 namespace A
8914 {
8915 typedef int B;
8916 }
8917
8918 int main ()
8919 {
8920 using A::B;
8921 B b;
8922 return b;
8923 }
8924
8925 ...
8926 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8927 <52> DW_AT_decl_file : 1
8928 <53> DW_AT_decl_line : 6
8929 <54> DW_AT_import : <0x75>
8930 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8931 <59> DW_AT_name : B
8932 <5b> DW_AT_decl_file : 1
8933 <5c> DW_AT_decl_line : 2
8934 <5d> DW_AT_type : <0x6e>
8935 ...
8936 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8937 <76> DW_AT_byte_size : 4
8938 <77> DW_AT_encoding : 5 (signed)
8939
8940 imports the wrong die ( 0x75 instead of 0x58 ).
8941 This case will be ignored until the gcc bug is fixed. */
8942 return;
8943 }
8944
8945 /* Figure out the local name after import. */
8946 import_alias = dwarf2_name (die, cu);
8947
8948 /* Figure out where the statement is being imported to. */
8949 import_prefix = determine_prefix (die, cu);
8950
8951 /* Figure out what the scope of the imported die is and prepend it
8952 to the name of the imported die. */
8953 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8954
8955 if (imported_die->tag != DW_TAG_namespace
8956 && imported_die->tag != DW_TAG_module)
8957 {
8958 imported_declaration = imported_name;
8959 canonical_name = imported_name_prefix;
8960 }
8961 else if (strlen (imported_name_prefix) > 0)
8962 canonical_name = obconcat (&objfile->objfile_obstack,
8963 imported_name_prefix,
8964 (cu->language == language_d ? "." : "::"),
8965 imported_name, (char *) NULL);
8966 else
8967 canonical_name = imported_name;
8968
8969 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8970
8971 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8972 for (child_die = die->child; child_die && child_die->tag;
8973 child_die = sibling_die (child_die))
8974 {
8975 /* DWARF-4: A Fortran use statement with a “rename list” may be
8976 represented by an imported module entry with an import attribute
8977 referring to the module and owned entries corresponding to those
8978 entities that are renamed as part of being imported. */
8979
8980 if (child_die->tag != DW_TAG_imported_declaration)
8981 {
8982 complaint (&symfile_complaints,
8983 _("child DW_TAG_imported_declaration expected "
8984 "- DIE at 0x%x [in module %s]"),
8985 child_die->offset.sect_off, objfile_name (objfile));
8986 continue;
8987 }
8988
8989 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8990 if (import_attr == NULL)
8991 {
8992 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8993 dwarf_tag_name (child_die->tag));
8994 continue;
8995 }
8996
8997 imported_cu = cu;
8998 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8999 &imported_cu);
9000 imported_name = dwarf2_name (imported_die, imported_cu);
9001 if (imported_name == NULL)
9002 {
9003 complaint (&symfile_complaints,
9004 _("child DW_TAG_imported_declaration has unknown "
9005 "imported name - DIE at 0x%x [in module %s]"),
9006 child_die->offset.sect_off, objfile_name (objfile));
9007 continue;
9008 }
9009
9010 VEC_safe_push (const_char_ptr, excludes, imported_name);
9011
9012 process_die (child_die, cu);
9013 }
9014
9015 add_using_directive (using_directives (cu->language),
9016 import_prefix,
9017 canonical_name,
9018 import_alias,
9019 imported_declaration,
9020 excludes,
9021 0,
9022 &objfile->objfile_obstack);
9023
9024 do_cleanups (cleanups);
9025 }
9026
9027 /* Cleanup function for handle_DW_AT_stmt_list. */
9028
9029 static void
9030 free_cu_line_header (void *arg)
9031 {
9032 struct dwarf2_cu *cu = arg;
9033
9034 free_line_header (cu->line_header);
9035 cu->line_header = NULL;
9036 }
9037
9038 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9039 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9040 this, it was first present in GCC release 4.3.0. */
9041
9042 static int
9043 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9044 {
9045 if (!cu->checked_producer)
9046 check_producer (cu);
9047
9048 return cu->producer_is_gcc_lt_4_3;
9049 }
9050
9051 static void
9052 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9053 const char **name, const char **comp_dir)
9054 {
9055 struct attribute *attr;
9056
9057 *name = NULL;
9058 *comp_dir = NULL;
9059
9060 /* Find the filename. Do not use dwarf2_name here, since the filename
9061 is not a source language identifier. */
9062 attr = dwarf2_attr (die, DW_AT_name, cu);
9063 if (attr)
9064 {
9065 *name = DW_STRING (attr);
9066 }
9067
9068 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
9069 if (attr)
9070 *comp_dir = DW_STRING (attr);
9071 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
9072 && IS_ABSOLUTE_PATH (*name))
9073 {
9074 char *d = ldirname (*name);
9075
9076 *comp_dir = d;
9077 if (d != NULL)
9078 make_cleanup (xfree, d);
9079 }
9080 if (*comp_dir != NULL)
9081 {
9082 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9083 directory, get rid of it. */
9084 char *cp = strchr (*comp_dir, ':');
9085
9086 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9087 *comp_dir = cp + 1;
9088 }
9089
9090 if (*name == NULL)
9091 *name = "<unknown>";
9092 }
9093
9094 /* Handle DW_AT_stmt_list for a compilation unit.
9095 DIE is the DW_TAG_compile_unit die for CU.
9096 COMP_DIR is the compilation directory. LOWPC is passed to
9097 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9098
9099 static void
9100 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9101 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9102 {
9103 struct objfile *objfile = dwarf2_per_objfile->objfile;
9104 struct attribute *attr;
9105 unsigned int line_offset;
9106 struct line_header line_header_local;
9107 hashval_t line_header_local_hash;
9108 unsigned u;
9109 void **slot;
9110 int decode_mapping;
9111
9112 gdb_assert (! cu->per_cu->is_debug_types);
9113
9114 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9115 if (attr == NULL)
9116 return;
9117
9118 line_offset = DW_UNSND (attr);
9119
9120 /* The line header hash table is only created if needed (it exists to
9121 prevent redundant reading of the line table for partial_units).
9122 If we're given a partial_unit, we'll need it. If we're given a
9123 compile_unit, then use the line header hash table if it's already
9124 created, but don't create one just yet. */
9125
9126 if (dwarf2_per_objfile->line_header_hash == NULL
9127 && die->tag == DW_TAG_partial_unit)
9128 {
9129 dwarf2_per_objfile->line_header_hash
9130 = htab_create_alloc_ex (127, line_header_hash_voidp,
9131 line_header_eq_voidp,
9132 free_line_header_voidp,
9133 &objfile->objfile_obstack,
9134 hashtab_obstack_allocate,
9135 dummy_obstack_deallocate);
9136 }
9137
9138 line_header_local.offset.sect_off = line_offset;
9139 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9140 line_header_local_hash = line_header_hash (&line_header_local);
9141 if (dwarf2_per_objfile->line_header_hash != NULL)
9142 {
9143 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9144 &line_header_local,
9145 line_header_local_hash, NO_INSERT);
9146
9147 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9148 is not present in *SLOT (since if there is something in *SLOT then
9149 it will be for a partial_unit). */
9150 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9151 {
9152 gdb_assert (*slot != NULL);
9153 cu->line_header = *slot;
9154 return;
9155 }
9156 }
9157
9158 /* dwarf_decode_line_header does not yet provide sufficient information.
9159 We always have to call also dwarf_decode_lines for it. */
9160 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9161 if (cu->line_header == NULL)
9162 return;
9163
9164 if (dwarf2_per_objfile->line_header_hash == NULL)
9165 slot = NULL;
9166 else
9167 {
9168 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9169 &line_header_local,
9170 line_header_local_hash, INSERT);
9171 gdb_assert (slot != NULL);
9172 }
9173 if (slot != NULL && *slot == NULL)
9174 {
9175 /* This newly decoded line number information unit will be owned
9176 by line_header_hash hash table. */
9177 *slot = cu->line_header;
9178 }
9179 else
9180 {
9181 /* We cannot free any current entry in (*slot) as that struct line_header
9182 may be already used by multiple CUs. Create only temporary decoded
9183 line_header for this CU - it may happen at most once for each line
9184 number information unit. And if we're not using line_header_hash
9185 then this is what we want as well. */
9186 gdb_assert (die->tag != DW_TAG_partial_unit);
9187 make_cleanup (free_cu_line_header, cu);
9188 }
9189 decode_mapping = (die->tag != DW_TAG_partial_unit);
9190 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9191 decode_mapping);
9192 }
9193
9194 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9195
9196 static void
9197 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9198 {
9199 struct objfile *objfile = dwarf2_per_objfile->objfile;
9200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9201 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9202 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9203 CORE_ADDR highpc = ((CORE_ADDR) 0);
9204 struct attribute *attr;
9205 const char *name = NULL;
9206 const char *comp_dir = NULL;
9207 struct die_info *child_die;
9208 bfd *abfd = objfile->obfd;
9209 CORE_ADDR baseaddr;
9210
9211 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9212
9213 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9214
9215 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9216 from finish_block. */
9217 if (lowpc == ((CORE_ADDR) -1))
9218 lowpc = highpc;
9219 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9220
9221 find_file_and_directory (die, cu, &name, &comp_dir);
9222
9223 prepare_one_comp_unit (cu, die, cu->language);
9224
9225 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9226 standardised yet. As a workaround for the language detection we fall
9227 back to the DW_AT_producer string. */
9228 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9229 cu->language = language_opencl;
9230
9231 /* Similar hack for Go. */
9232 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9233 set_cu_language (DW_LANG_Go, cu);
9234
9235 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9236
9237 /* Decode line number information if present. We do this before
9238 processing child DIEs, so that the line header table is available
9239 for DW_AT_decl_file. */
9240 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9241
9242 /* Process all dies in compilation unit. */
9243 if (die->child != NULL)
9244 {
9245 child_die = die->child;
9246 while (child_die && child_die->tag)
9247 {
9248 process_die (child_die, cu);
9249 child_die = sibling_die (child_die);
9250 }
9251 }
9252
9253 /* Decode macro information, if present. Dwarf 2 macro information
9254 refers to information in the line number info statement program
9255 header, so we can only read it if we've read the header
9256 successfully. */
9257 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9258 if (attr && cu->line_header)
9259 {
9260 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9261 complaint (&symfile_complaints,
9262 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9263
9264 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9265 }
9266 else
9267 {
9268 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9269 if (attr && cu->line_header)
9270 {
9271 unsigned int macro_offset = DW_UNSND (attr);
9272
9273 dwarf_decode_macros (cu, macro_offset, 0);
9274 }
9275 }
9276
9277 do_cleanups (back_to);
9278 }
9279
9280 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9281 Create the set of symtabs used by this TU, or if this TU is sharing
9282 symtabs with another TU and the symtabs have already been created
9283 then restore those symtabs in the line header.
9284 We don't need the pc/line-number mapping for type units. */
9285
9286 static void
9287 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9288 {
9289 struct objfile *objfile = dwarf2_per_objfile->objfile;
9290 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9291 struct type_unit_group *tu_group;
9292 int first_time;
9293 struct line_header *lh;
9294 struct attribute *attr;
9295 unsigned int i, line_offset;
9296 struct signatured_type *sig_type;
9297
9298 gdb_assert (per_cu->is_debug_types);
9299 sig_type = (struct signatured_type *) per_cu;
9300
9301 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9302
9303 /* If we're using .gdb_index (includes -readnow) then
9304 per_cu->type_unit_group may not have been set up yet. */
9305 if (sig_type->type_unit_group == NULL)
9306 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9307 tu_group = sig_type->type_unit_group;
9308
9309 /* If we've already processed this stmt_list there's no real need to
9310 do it again, we could fake it and just recreate the part we need
9311 (file name,index -> symtab mapping). If data shows this optimization
9312 is useful we can do it then. */
9313 first_time = tu_group->compunit_symtab == NULL;
9314
9315 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9316 debug info. */
9317 lh = NULL;
9318 if (attr != NULL)
9319 {
9320 line_offset = DW_UNSND (attr);
9321 lh = dwarf_decode_line_header (line_offset, cu);
9322 }
9323 if (lh == NULL)
9324 {
9325 if (first_time)
9326 dwarf2_start_symtab (cu, "", NULL, 0);
9327 else
9328 {
9329 gdb_assert (tu_group->symtabs == NULL);
9330 restart_symtab (tu_group->compunit_symtab, "", 0);
9331 }
9332 return;
9333 }
9334
9335 cu->line_header = lh;
9336 make_cleanup (free_cu_line_header, cu);
9337
9338 if (first_time)
9339 {
9340 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9341
9342 tu_group->num_symtabs = lh->num_file_names;
9343 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9344
9345 for (i = 0; i < lh->num_file_names; ++i)
9346 {
9347 const char *dir = NULL;
9348 struct file_entry *fe = &lh->file_names[i];
9349
9350 if (fe->dir_index && lh->include_dirs != NULL)
9351 dir = lh->include_dirs[fe->dir_index - 1];
9352 dwarf2_start_subfile (fe->name, dir);
9353
9354 if (current_subfile->symtab == NULL)
9355 {
9356 /* NOTE: start_subfile will recognize when it's been passed
9357 a file it has already seen. So we can't assume there's a
9358 simple mapping from lh->file_names to subfiles, plus
9359 lh->file_names may contain dups. */
9360 current_subfile->symtab
9361 = allocate_symtab (cust, current_subfile->name);
9362 }
9363
9364 fe->symtab = current_subfile->symtab;
9365 tu_group->symtabs[i] = fe->symtab;
9366 }
9367 }
9368 else
9369 {
9370 restart_symtab (tu_group->compunit_symtab, "", 0);
9371
9372 for (i = 0; i < lh->num_file_names; ++i)
9373 {
9374 struct file_entry *fe = &lh->file_names[i];
9375
9376 fe->symtab = tu_group->symtabs[i];
9377 }
9378 }
9379
9380 /* The main symtab is allocated last. Type units don't have DW_AT_name
9381 so they don't have a "real" (so to speak) symtab anyway.
9382 There is later code that will assign the main symtab to all symbols
9383 that don't have one. We need to handle the case of a symbol with a
9384 missing symtab (DW_AT_decl_file) anyway. */
9385 }
9386
9387 /* Process DW_TAG_type_unit.
9388 For TUs we want to skip the first top level sibling if it's not the
9389 actual type being defined by this TU. In this case the first top
9390 level sibling is there to provide context only. */
9391
9392 static void
9393 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9394 {
9395 struct die_info *child_die;
9396
9397 prepare_one_comp_unit (cu, die, language_minimal);
9398
9399 /* Initialize (or reinitialize) the machinery for building symtabs.
9400 We do this before processing child DIEs, so that the line header table
9401 is available for DW_AT_decl_file. */
9402 setup_type_unit_groups (die, cu);
9403
9404 if (die->child != NULL)
9405 {
9406 child_die = die->child;
9407 while (child_die && child_die->tag)
9408 {
9409 process_die (child_die, cu);
9410 child_die = sibling_die (child_die);
9411 }
9412 }
9413 }
9414 \f
9415 /* DWO/DWP files.
9416
9417 http://gcc.gnu.org/wiki/DebugFission
9418 http://gcc.gnu.org/wiki/DebugFissionDWP
9419
9420 To simplify handling of both DWO files ("object" files with the DWARF info)
9421 and DWP files (a file with the DWOs packaged up into one file), we treat
9422 DWP files as having a collection of virtual DWO files. */
9423
9424 static hashval_t
9425 hash_dwo_file (const void *item)
9426 {
9427 const struct dwo_file *dwo_file = item;
9428 hashval_t hash;
9429
9430 hash = htab_hash_string (dwo_file->dwo_name);
9431 if (dwo_file->comp_dir != NULL)
9432 hash += htab_hash_string (dwo_file->comp_dir);
9433 return hash;
9434 }
9435
9436 static int
9437 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9438 {
9439 const struct dwo_file *lhs = item_lhs;
9440 const struct dwo_file *rhs = item_rhs;
9441
9442 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9443 return 0;
9444 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9445 return lhs->comp_dir == rhs->comp_dir;
9446 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9447 }
9448
9449 /* Allocate a hash table for DWO files. */
9450
9451 static htab_t
9452 allocate_dwo_file_hash_table (void)
9453 {
9454 struct objfile *objfile = dwarf2_per_objfile->objfile;
9455
9456 return htab_create_alloc_ex (41,
9457 hash_dwo_file,
9458 eq_dwo_file,
9459 NULL,
9460 &objfile->objfile_obstack,
9461 hashtab_obstack_allocate,
9462 dummy_obstack_deallocate);
9463 }
9464
9465 /* Lookup DWO file DWO_NAME. */
9466
9467 static void **
9468 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9469 {
9470 struct dwo_file find_entry;
9471 void **slot;
9472
9473 if (dwarf2_per_objfile->dwo_files == NULL)
9474 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9475
9476 memset (&find_entry, 0, sizeof (find_entry));
9477 find_entry.dwo_name = dwo_name;
9478 find_entry.comp_dir = comp_dir;
9479 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9480
9481 return slot;
9482 }
9483
9484 static hashval_t
9485 hash_dwo_unit (const void *item)
9486 {
9487 const struct dwo_unit *dwo_unit = item;
9488
9489 /* This drops the top 32 bits of the id, but is ok for a hash. */
9490 return dwo_unit->signature;
9491 }
9492
9493 static int
9494 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9495 {
9496 const struct dwo_unit *lhs = item_lhs;
9497 const struct dwo_unit *rhs = item_rhs;
9498
9499 /* The signature is assumed to be unique within the DWO file.
9500 So while object file CU dwo_id's always have the value zero,
9501 that's OK, assuming each object file DWO file has only one CU,
9502 and that's the rule for now. */
9503 return lhs->signature == rhs->signature;
9504 }
9505
9506 /* Allocate a hash table for DWO CUs,TUs.
9507 There is one of these tables for each of CUs,TUs for each DWO file. */
9508
9509 static htab_t
9510 allocate_dwo_unit_table (struct objfile *objfile)
9511 {
9512 /* Start out with a pretty small number.
9513 Generally DWO files contain only one CU and maybe some TUs. */
9514 return htab_create_alloc_ex (3,
9515 hash_dwo_unit,
9516 eq_dwo_unit,
9517 NULL,
9518 &objfile->objfile_obstack,
9519 hashtab_obstack_allocate,
9520 dummy_obstack_deallocate);
9521 }
9522
9523 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9524
9525 struct create_dwo_cu_data
9526 {
9527 struct dwo_file *dwo_file;
9528 struct dwo_unit dwo_unit;
9529 };
9530
9531 /* die_reader_func for create_dwo_cu. */
9532
9533 static void
9534 create_dwo_cu_reader (const struct die_reader_specs *reader,
9535 const gdb_byte *info_ptr,
9536 struct die_info *comp_unit_die,
9537 int has_children,
9538 void *datap)
9539 {
9540 struct dwarf2_cu *cu = reader->cu;
9541 struct objfile *objfile = dwarf2_per_objfile->objfile;
9542 sect_offset offset = cu->per_cu->offset;
9543 struct dwarf2_section_info *section = cu->per_cu->section;
9544 struct create_dwo_cu_data *data = datap;
9545 struct dwo_file *dwo_file = data->dwo_file;
9546 struct dwo_unit *dwo_unit = &data->dwo_unit;
9547 struct attribute *attr;
9548
9549 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9550 if (attr == NULL)
9551 {
9552 complaint (&symfile_complaints,
9553 _("Dwarf Error: debug entry at offset 0x%x is missing"
9554 " its dwo_id [in module %s]"),
9555 offset.sect_off, dwo_file->dwo_name);
9556 return;
9557 }
9558
9559 dwo_unit->dwo_file = dwo_file;
9560 dwo_unit->signature = DW_UNSND (attr);
9561 dwo_unit->section = section;
9562 dwo_unit->offset = offset;
9563 dwo_unit->length = cu->per_cu->length;
9564
9565 if (dwarf_read_debug)
9566 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9567 offset.sect_off, hex_string (dwo_unit->signature));
9568 }
9569
9570 /* Create the dwo_unit for the lone CU in DWO_FILE.
9571 Note: This function processes DWO files only, not DWP files. */
9572
9573 static struct dwo_unit *
9574 create_dwo_cu (struct dwo_file *dwo_file)
9575 {
9576 struct objfile *objfile = dwarf2_per_objfile->objfile;
9577 struct dwarf2_section_info *section = &dwo_file->sections.info;
9578 bfd *abfd;
9579 htab_t cu_htab;
9580 const gdb_byte *info_ptr, *end_ptr;
9581 struct create_dwo_cu_data create_dwo_cu_data;
9582 struct dwo_unit *dwo_unit;
9583
9584 dwarf2_read_section (objfile, section);
9585 info_ptr = section->buffer;
9586
9587 if (info_ptr == NULL)
9588 return NULL;
9589
9590 /* We can't set abfd until now because the section may be empty or
9591 not present, in which case section->asection will be NULL. */
9592 abfd = get_section_bfd_owner (section);
9593
9594 if (dwarf_read_debug)
9595 {
9596 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9597 get_section_name (section),
9598 get_section_file_name (section));
9599 }
9600
9601 create_dwo_cu_data.dwo_file = dwo_file;
9602 dwo_unit = NULL;
9603
9604 end_ptr = info_ptr + section->size;
9605 while (info_ptr < end_ptr)
9606 {
9607 struct dwarf2_per_cu_data per_cu;
9608
9609 memset (&create_dwo_cu_data.dwo_unit, 0,
9610 sizeof (create_dwo_cu_data.dwo_unit));
9611 memset (&per_cu, 0, sizeof (per_cu));
9612 per_cu.objfile = objfile;
9613 per_cu.is_debug_types = 0;
9614 per_cu.offset.sect_off = info_ptr - section->buffer;
9615 per_cu.section = section;
9616
9617 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9618 create_dwo_cu_reader,
9619 &create_dwo_cu_data);
9620
9621 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9622 {
9623 /* If we've already found one, complain. We only support one
9624 because having more than one requires hacking the dwo_name of
9625 each to match, which is highly unlikely to happen. */
9626 if (dwo_unit != NULL)
9627 {
9628 complaint (&symfile_complaints,
9629 _("Multiple CUs in DWO file %s [in module %s]"),
9630 dwo_file->dwo_name, objfile_name (objfile));
9631 break;
9632 }
9633
9634 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9635 *dwo_unit = create_dwo_cu_data.dwo_unit;
9636 }
9637
9638 info_ptr += per_cu.length;
9639 }
9640
9641 return dwo_unit;
9642 }
9643
9644 /* DWP file .debug_{cu,tu}_index section format:
9645 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9646
9647 DWP Version 1:
9648
9649 Both index sections have the same format, and serve to map a 64-bit
9650 signature to a set of section numbers. Each section begins with a header,
9651 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9652 indexes, and a pool of 32-bit section numbers. The index sections will be
9653 aligned at 8-byte boundaries in the file.
9654
9655 The index section header consists of:
9656
9657 V, 32 bit version number
9658 -, 32 bits unused
9659 N, 32 bit number of compilation units or type units in the index
9660 M, 32 bit number of slots in the hash table
9661
9662 Numbers are recorded using the byte order of the application binary.
9663
9664 The hash table begins at offset 16 in the section, and consists of an array
9665 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9666 order of the application binary). Unused slots in the hash table are 0.
9667 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9668
9669 The parallel table begins immediately after the hash table
9670 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9671 array of 32-bit indexes (using the byte order of the application binary),
9672 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9673 table contains a 32-bit index into the pool of section numbers. For unused
9674 hash table slots, the corresponding entry in the parallel table will be 0.
9675
9676 The pool of section numbers begins immediately following the hash table
9677 (at offset 16 + 12 * M from the beginning of the section). The pool of
9678 section numbers consists of an array of 32-bit words (using the byte order
9679 of the application binary). Each item in the array is indexed starting
9680 from 0. The hash table entry provides the index of the first section
9681 number in the set. Additional section numbers in the set follow, and the
9682 set is terminated by a 0 entry (section number 0 is not used in ELF).
9683
9684 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9685 section must be the first entry in the set, and the .debug_abbrev.dwo must
9686 be the second entry. Other members of the set may follow in any order.
9687
9688 ---
9689
9690 DWP Version 2:
9691
9692 DWP Version 2 combines all the .debug_info, etc. sections into one,
9693 and the entries in the index tables are now offsets into these sections.
9694 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9695 section.
9696
9697 Index Section Contents:
9698 Header
9699 Hash Table of Signatures dwp_hash_table.hash_table
9700 Parallel Table of Indices dwp_hash_table.unit_table
9701 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9702 Table of Section Sizes dwp_hash_table.v2.sizes
9703
9704 The index section header consists of:
9705
9706 V, 32 bit version number
9707 L, 32 bit number of columns in the table of section offsets
9708 N, 32 bit number of compilation units or type units in the index
9709 M, 32 bit number of slots in the hash table
9710
9711 Numbers are recorded using the byte order of the application binary.
9712
9713 The hash table has the same format as version 1.
9714 The parallel table of indices has the same format as version 1,
9715 except that the entries are origin-1 indices into the table of sections
9716 offsets and the table of section sizes.
9717
9718 The table of offsets begins immediately following the parallel table
9719 (at offset 16 + 12 * M from the beginning of the section). The table is
9720 a two-dimensional array of 32-bit words (using the byte order of the
9721 application binary), with L columns and N+1 rows, in row-major order.
9722 Each row in the array is indexed starting from 0. The first row provides
9723 a key to the remaining rows: each column in this row provides an identifier
9724 for a debug section, and the offsets in the same column of subsequent rows
9725 refer to that section. The section identifiers are:
9726
9727 DW_SECT_INFO 1 .debug_info.dwo
9728 DW_SECT_TYPES 2 .debug_types.dwo
9729 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9730 DW_SECT_LINE 4 .debug_line.dwo
9731 DW_SECT_LOC 5 .debug_loc.dwo
9732 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9733 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9734 DW_SECT_MACRO 8 .debug_macro.dwo
9735
9736 The offsets provided by the CU and TU index sections are the base offsets
9737 for the contributions made by each CU or TU to the corresponding section
9738 in the package file. Each CU and TU header contains an abbrev_offset
9739 field, used to find the abbreviations table for that CU or TU within the
9740 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9741 be interpreted as relative to the base offset given in the index section.
9742 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9743 should be interpreted as relative to the base offset for .debug_line.dwo,
9744 and offsets into other debug sections obtained from DWARF attributes should
9745 also be interpreted as relative to the corresponding base offset.
9746
9747 The table of sizes begins immediately following the table of offsets.
9748 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9749 with L columns and N rows, in row-major order. Each row in the array is
9750 indexed starting from 1 (row 0 is shared by the two tables).
9751
9752 ---
9753
9754 Hash table lookup is handled the same in version 1 and 2:
9755
9756 We assume that N and M will not exceed 2^32 - 1.
9757 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9758
9759 Given a 64-bit compilation unit signature or a type signature S, an entry
9760 in the hash table is located as follows:
9761
9762 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9763 the low-order k bits all set to 1.
9764
9765 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9766
9767 3) If the hash table entry at index H matches the signature, use that
9768 entry. If the hash table entry at index H is unused (all zeroes),
9769 terminate the search: the signature is not present in the table.
9770
9771 4) Let H = (H + H') modulo M. Repeat at Step 3.
9772
9773 Because M > N and H' and M are relatively prime, the search is guaranteed
9774 to stop at an unused slot or find the match. */
9775
9776 /* Create a hash table to map DWO IDs to their CU/TU entry in
9777 .debug_{info,types}.dwo in DWP_FILE.
9778 Returns NULL if there isn't one.
9779 Note: This function processes DWP files only, not DWO files. */
9780
9781 static struct dwp_hash_table *
9782 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9783 {
9784 struct objfile *objfile = dwarf2_per_objfile->objfile;
9785 bfd *dbfd = dwp_file->dbfd;
9786 const gdb_byte *index_ptr, *index_end;
9787 struct dwarf2_section_info *index;
9788 uint32_t version, nr_columns, nr_units, nr_slots;
9789 struct dwp_hash_table *htab;
9790
9791 if (is_debug_types)
9792 index = &dwp_file->sections.tu_index;
9793 else
9794 index = &dwp_file->sections.cu_index;
9795
9796 if (dwarf2_section_empty_p (index))
9797 return NULL;
9798 dwarf2_read_section (objfile, index);
9799
9800 index_ptr = index->buffer;
9801 index_end = index_ptr + index->size;
9802
9803 version = read_4_bytes (dbfd, index_ptr);
9804 index_ptr += 4;
9805 if (version == 2)
9806 nr_columns = read_4_bytes (dbfd, index_ptr);
9807 else
9808 nr_columns = 0;
9809 index_ptr += 4;
9810 nr_units = read_4_bytes (dbfd, index_ptr);
9811 index_ptr += 4;
9812 nr_slots = read_4_bytes (dbfd, index_ptr);
9813 index_ptr += 4;
9814
9815 if (version != 1 && version != 2)
9816 {
9817 error (_("Dwarf Error: unsupported DWP file version (%s)"
9818 " [in module %s]"),
9819 pulongest (version), dwp_file->name);
9820 }
9821 if (nr_slots != (nr_slots & -nr_slots))
9822 {
9823 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9824 " is not power of 2 [in module %s]"),
9825 pulongest (nr_slots), dwp_file->name);
9826 }
9827
9828 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9829 htab->version = version;
9830 htab->nr_columns = nr_columns;
9831 htab->nr_units = nr_units;
9832 htab->nr_slots = nr_slots;
9833 htab->hash_table = index_ptr;
9834 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9835
9836 /* Exit early if the table is empty. */
9837 if (nr_slots == 0 || nr_units == 0
9838 || (version == 2 && nr_columns == 0))
9839 {
9840 /* All must be zero. */
9841 if (nr_slots != 0 || nr_units != 0
9842 || (version == 2 && nr_columns != 0))
9843 {
9844 complaint (&symfile_complaints,
9845 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9846 " all zero [in modules %s]"),
9847 dwp_file->name);
9848 }
9849 return htab;
9850 }
9851
9852 if (version == 1)
9853 {
9854 htab->section_pool.v1.indices =
9855 htab->unit_table + sizeof (uint32_t) * nr_slots;
9856 /* It's harder to decide whether the section is too small in v1.
9857 V1 is deprecated anyway so we punt. */
9858 }
9859 else
9860 {
9861 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9862 int *ids = htab->section_pool.v2.section_ids;
9863 /* Reverse map for error checking. */
9864 int ids_seen[DW_SECT_MAX + 1];
9865 int i;
9866
9867 if (nr_columns < 2)
9868 {
9869 error (_("Dwarf Error: bad DWP hash table, too few columns"
9870 " in section table [in module %s]"),
9871 dwp_file->name);
9872 }
9873 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9874 {
9875 error (_("Dwarf Error: bad DWP hash table, too many columns"
9876 " in section table [in module %s]"),
9877 dwp_file->name);
9878 }
9879 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9880 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9881 for (i = 0; i < nr_columns; ++i)
9882 {
9883 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9884
9885 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9886 {
9887 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9888 " in section table [in module %s]"),
9889 id, dwp_file->name);
9890 }
9891 if (ids_seen[id] != -1)
9892 {
9893 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9894 " id %d in section table [in module %s]"),
9895 id, dwp_file->name);
9896 }
9897 ids_seen[id] = i;
9898 ids[i] = id;
9899 }
9900 /* Must have exactly one info or types section. */
9901 if (((ids_seen[DW_SECT_INFO] != -1)
9902 + (ids_seen[DW_SECT_TYPES] != -1))
9903 != 1)
9904 {
9905 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9906 " DWO info/types section [in module %s]"),
9907 dwp_file->name);
9908 }
9909 /* Must have an abbrev section. */
9910 if (ids_seen[DW_SECT_ABBREV] == -1)
9911 {
9912 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9913 " section [in module %s]"),
9914 dwp_file->name);
9915 }
9916 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9917 htab->section_pool.v2.sizes =
9918 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9919 * nr_units * nr_columns);
9920 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9921 * nr_units * nr_columns))
9922 > index_end)
9923 {
9924 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9925 " [in module %s]"),
9926 dwp_file->name);
9927 }
9928 }
9929
9930 return htab;
9931 }
9932
9933 /* Update SECTIONS with the data from SECTP.
9934
9935 This function is like the other "locate" section routines that are
9936 passed to bfd_map_over_sections, but in this context the sections to
9937 read comes from the DWP V1 hash table, not the full ELF section table.
9938
9939 The result is non-zero for success, or zero if an error was found. */
9940
9941 static int
9942 locate_v1_virtual_dwo_sections (asection *sectp,
9943 struct virtual_v1_dwo_sections *sections)
9944 {
9945 const struct dwop_section_names *names = &dwop_section_names;
9946
9947 if (section_is_p (sectp->name, &names->abbrev_dwo))
9948 {
9949 /* There can be only one. */
9950 if (sections->abbrev.s.asection != NULL)
9951 return 0;
9952 sections->abbrev.s.asection = sectp;
9953 sections->abbrev.size = bfd_get_section_size (sectp);
9954 }
9955 else if (section_is_p (sectp->name, &names->info_dwo)
9956 || section_is_p (sectp->name, &names->types_dwo))
9957 {
9958 /* There can be only one. */
9959 if (sections->info_or_types.s.asection != NULL)
9960 return 0;
9961 sections->info_or_types.s.asection = sectp;
9962 sections->info_or_types.size = bfd_get_section_size (sectp);
9963 }
9964 else if (section_is_p (sectp->name, &names->line_dwo))
9965 {
9966 /* There can be only one. */
9967 if (sections->line.s.asection != NULL)
9968 return 0;
9969 sections->line.s.asection = sectp;
9970 sections->line.size = bfd_get_section_size (sectp);
9971 }
9972 else if (section_is_p (sectp->name, &names->loc_dwo))
9973 {
9974 /* There can be only one. */
9975 if (sections->loc.s.asection != NULL)
9976 return 0;
9977 sections->loc.s.asection = sectp;
9978 sections->loc.size = bfd_get_section_size (sectp);
9979 }
9980 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9981 {
9982 /* There can be only one. */
9983 if (sections->macinfo.s.asection != NULL)
9984 return 0;
9985 sections->macinfo.s.asection = sectp;
9986 sections->macinfo.size = bfd_get_section_size (sectp);
9987 }
9988 else if (section_is_p (sectp->name, &names->macro_dwo))
9989 {
9990 /* There can be only one. */
9991 if (sections->macro.s.asection != NULL)
9992 return 0;
9993 sections->macro.s.asection = sectp;
9994 sections->macro.size = bfd_get_section_size (sectp);
9995 }
9996 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9997 {
9998 /* There can be only one. */
9999 if (sections->str_offsets.s.asection != NULL)
10000 return 0;
10001 sections->str_offsets.s.asection = sectp;
10002 sections->str_offsets.size = bfd_get_section_size (sectp);
10003 }
10004 else
10005 {
10006 /* No other kind of section is valid. */
10007 return 0;
10008 }
10009
10010 return 1;
10011 }
10012
10013 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10014 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10015 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10016 This is for DWP version 1 files. */
10017
10018 static struct dwo_unit *
10019 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10020 uint32_t unit_index,
10021 const char *comp_dir,
10022 ULONGEST signature, int is_debug_types)
10023 {
10024 struct objfile *objfile = dwarf2_per_objfile->objfile;
10025 const struct dwp_hash_table *dwp_htab =
10026 is_debug_types ? dwp_file->tus : dwp_file->cus;
10027 bfd *dbfd = dwp_file->dbfd;
10028 const char *kind = is_debug_types ? "TU" : "CU";
10029 struct dwo_file *dwo_file;
10030 struct dwo_unit *dwo_unit;
10031 struct virtual_v1_dwo_sections sections;
10032 void **dwo_file_slot;
10033 char *virtual_dwo_name;
10034 struct dwarf2_section_info *cutu;
10035 struct cleanup *cleanups;
10036 int i;
10037
10038 gdb_assert (dwp_file->version == 1);
10039
10040 if (dwarf_read_debug)
10041 {
10042 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10043 kind,
10044 pulongest (unit_index), hex_string (signature),
10045 dwp_file->name);
10046 }
10047
10048 /* Fetch the sections of this DWO unit.
10049 Put a limit on the number of sections we look for so that bad data
10050 doesn't cause us to loop forever. */
10051
10052 #define MAX_NR_V1_DWO_SECTIONS \
10053 (1 /* .debug_info or .debug_types */ \
10054 + 1 /* .debug_abbrev */ \
10055 + 1 /* .debug_line */ \
10056 + 1 /* .debug_loc */ \
10057 + 1 /* .debug_str_offsets */ \
10058 + 1 /* .debug_macro or .debug_macinfo */ \
10059 + 1 /* trailing zero */)
10060
10061 memset (&sections, 0, sizeof (sections));
10062 cleanups = make_cleanup (null_cleanup, 0);
10063
10064 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10065 {
10066 asection *sectp;
10067 uint32_t section_nr =
10068 read_4_bytes (dbfd,
10069 dwp_htab->section_pool.v1.indices
10070 + (unit_index + i) * sizeof (uint32_t));
10071
10072 if (section_nr == 0)
10073 break;
10074 if (section_nr >= dwp_file->num_sections)
10075 {
10076 error (_("Dwarf Error: bad DWP hash table, section number too large"
10077 " [in module %s]"),
10078 dwp_file->name);
10079 }
10080
10081 sectp = dwp_file->elf_sections[section_nr];
10082 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10083 {
10084 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10085 " [in module %s]"),
10086 dwp_file->name);
10087 }
10088 }
10089
10090 if (i < 2
10091 || dwarf2_section_empty_p (&sections.info_or_types)
10092 || dwarf2_section_empty_p (&sections.abbrev))
10093 {
10094 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10095 " [in module %s]"),
10096 dwp_file->name);
10097 }
10098 if (i == MAX_NR_V1_DWO_SECTIONS)
10099 {
10100 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10101 " [in module %s]"),
10102 dwp_file->name);
10103 }
10104
10105 /* It's easier for the rest of the code if we fake a struct dwo_file and
10106 have dwo_unit "live" in that. At least for now.
10107
10108 The DWP file can be made up of a random collection of CUs and TUs.
10109 However, for each CU + set of TUs that came from the same original DWO
10110 file, we can combine them back into a virtual DWO file to save space
10111 (fewer struct dwo_file objects to allocate). Remember that for really
10112 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10113
10114 virtual_dwo_name =
10115 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10116 get_section_id (&sections.abbrev),
10117 get_section_id (&sections.line),
10118 get_section_id (&sections.loc),
10119 get_section_id (&sections.str_offsets));
10120 make_cleanup (xfree, virtual_dwo_name);
10121 /* Can we use an existing virtual DWO file? */
10122 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10123 /* Create one if necessary. */
10124 if (*dwo_file_slot == NULL)
10125 {
10126 if (dwarf_read_debug)
10127 {
10128 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10129 virtual_dwo_name);
10130 }
10131 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10132 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10133 virtual_dwo_name,
10134 strlen (virtual_dwo_name));
10135 dwo_file->comp_dir = comp_dir;
10136 dwo_file->sections.abbrev = sections.abbrev;
10137 dwo_file->sections.line = sections.line;
10138 dwo_file->sections.loc = sections.loc;
10139 dwo_file->sections.macinfo = sections.macinfo;
10140 dwo_file->sections.macro = sections.macro;
10141 dwo_file->sections.str_offsets = sections.str_offsets;
10142 /* The "str" section is global to the entire DWP file. */
10143 dwo_file->sections.str = dwp_file->sections.str;
10144 /* The info or types section is assigned below to dwo_unit,
10145 there's no need to record it in dwo_file.
10146 Also, we can't simply record type sections in dwo_file because
10147 we record a pointer into the vector in dwo_unit. As we collect more
10148 types we'll grow the vector and eventually have to reallocate space
10149 for it, invalidating all copies of pointers into the previous
10150 contents. */
10151 *dwo_file_slot = dwo_file;
10152 }
10153 else
10154 {
10155 if (dwarf_read_debug)
10156 {
10157 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10158 virtual_dwo_name);
10159 }
10160 dwo_file = *dwo_file_slot;
10161 }
10162 do_cleanups (cleanups);
10163
10164 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10165 dwo_unit->dwo_file = dwo_file;
10166 dwo_unit->signature = signature;
10167 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10168 sizeof (struct dwarf2_section_info));
10169 *dwo_unit->section = sections.info_or_types;
10170 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10171
10172 return dwo_unit;
10173 }
10174
10175 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10176 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10177 piece within that section used by a TU/CU, return a virtual section
10178 of just that piece. */
10179
10180 static struct dwarf2_section_info
10181 create_dwp_v2_section (struct dwarf2_section_info *section,
10182 bfd_size_type offset, bfd_size_type size)
10183 {
10184 struct dwarf2_section_info result;
10185 asection *sectp;
10186
10187 gdb_assert (section != NULL);
10188 gdb_assert (!section->is_virtual);
10189
10190 memset (&result, 0, sizeof (result));
10191 result.s.containing_section = section;
10192 result.is_virtual = 1;
10193
10194 if (size == 0)
10195 return result;
10196
10197 sectp = get_section_bfd_section (section);
10198
10199 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10200 bounds of the real section. This is a pretty-rare event, so just
10201 flag an error (easier) instead of a warning and trying to cope. */
10202 if (sectp == NULL
10203 || offset + size > bfd_get_section_size (sectp))
10204 {
10205 bfd *abfd = sectp->owner;
10206
10207 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10208 " in section %s [in module %s]"),
10209 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10210 objfile_name (dwarf2_per_objfile->objfile));
10211 }
10212
10213 result.virtual_offset = offset;
10214 result.size = size;
10215 return result;
10216 }
10217
10218 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10219 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10220 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10221 This is for DWP version 2 files. */
10222
10223 static struct dwo_unit *
10224 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10225 uint32_t unit_index,
10226 const char *comp_dir,
10227 ULONGEST signature, int is_debug_types)
10228 {
10229 struct objfile *objfile = dwarf2_per_objfile->objfile;
10230 const struct dwp_hash_table *dwp_htab =
10231 is_debug_types ? dwp_file->tus : dwp_file->cus;
10232 bfd *dbfd = dwp_file->dbfd;
10233 const char *kind = is_debug_types ? "TU" : "CU";
10234 struct dwo_file *dwo_file;
10235 struct dwo_unit *dwo_unit;
10236 struct virtual_v2_dwo_sections sections;
10237 void **dwo_file_slot;
10238 char *virtual_dwo_name;
10239 struct dwarf2_section_info *cutu;
10240 struct cleanup *cleanups;
10241 int i;
10242
10243 gdb_assert (dwp_file->version == 2);
10244
10245 if (dwarf_read_debug)
10246 {
10247 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10248 kind,
10249 pulongest (unit_index), hex_string (signature),
10250 dwp_file->name);
10251 }
10252
10253 /* Fetch the section offsets of this DWO unit. */
10254
10255 memset (&sections, 0, sizeof (sections));
10256 cleanups = make_cleanup (null_cleanup, 0);
10257
10258 for (i = 0; i < dwp_htab->nr_columns; ++i)
10259 {
10260 uint32_t offset = read_4_bytes (dbfd,
10261 dwp_htab->section_pool.v2.offsets
10262 + (((unit_index - 1) * dwp_htab->nr_columns
10263 + i)
10264 * sizeof (uint32_t)));
10265 uint32_t size = read_4_bytes (dbfd,
10266 dwp_htab->section_pool.v2.sizes
10267 + (((unit_index - 1) * dwp_htab->nr_columns
10268 + i)
10269 * sizeof (uint32_t)));
10270
10271 switch (dwp_htab->section_pool.v2.section_ids[i])
10272 {
10273 case DW_SECT_INFO:
10274 case DW_SECT_TYPES:
10275 sections.info_or_types_offset = offset;
10276 sections.info_or_types_size = size;
10277 break;
10278 case DW_SECT_ABBREV:
10279 sections.abbrev_offset = offset;
10280 sections.abbrev_size = size;
10281 break;
10282 case DW_SECT_LINE:
10283 sections.line_offset = offset;
10284 sections.line_size = size;
10285 break;
10286 case DW_SECT_LOC:
10287 sections.loc_offset = offset;
10288 sections.loc_size = size;
10289 break;
10290 case DW_SECT_STR_OFFSETS:
10291 sections.str_offsets_offset = offset;
10292 sections.str_offsets_size = size;
10293 break;
10294 case DW_SECT_MACINFO:
10295 sections.macinfo_offset = offset;
10296 sections.macinfo_size = size;
10297 break;
10298 case DW_SECT_MACRO:
10299 sections.macro_offset = offset;
10300 sections.macro_size = size;
10301 break;
10302 }
10303 }
10304
10305 /* It's easier for the rest of the code if we fake a struct dwo_file and
10306 have dwo_unit "live" in that. At least for now.
10307
10308 The DWP file can be made up of a random collection of CUs and TUs.
10309 However, for each CU + set of TUs that came from the same original DWO
10310 file, we can combine them back into a virtual DWO file to save space
10311 (fewer struct dwo_file objects to allocate). Remember that for really
10312 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10313
10314 virtual_dwo_name =
10315 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10316 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10317 (long) (sections.line_size ? sections.line_offset : 0),
10318 (long) (sections.loc_size ? sections.loc_offset : 0),
10319 (long) (sections.str_offsets_size
10320 ? sections.str_offsets_offset : 0));
10321 make_cleanup (xfree, virtual_dwo_name);
10322 /* Can we use an existing virtual DWO file? */
10323 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10324 /* Create one if necessary. */
10325 if (*dwo_file_slot == NULL)
10326 {
10327 if (dwarf_read_debug)
10328 {
10329 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10330 virtual_dwo_name);
10331 }
10332 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10333 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10334 virtual_dwo_name,
10335 strlen (virtual_dwo_name));
10336 dwo_file->comp_dir = comp_dir;
10337 dwo_file->sections.abbrev =
10338 create_dwp_v2_section (&dwp_file->sections.abbrev,
10339 sections.abbrev_offset, sections.abbrev_size);
10340 dwo_file->sections.line =
10341 create_dwp_v2_section (&dwp_file->sections.line,
10342 sections.line_offset, sections.line_size);
10343 dwo_file->sections.loc =
10344 create_dwp_v2_section (&dwp_file->sections.loc,
10345 sections.loc_offset, sections.loc_size);
10346 dwo_file->sections.macinfo =
10347 create_dwp_v2_section (&dwp_file->sections.macinfo,
10348 sections.macinfo_offset, sections.macinfo_size);
10349 dwo_file->sections.macro =
10350 create_dwp_v2_section (&dwp_file->sections.macro,
10351 sections.macro_offset, sections.macro_size);
10352 dwo_file->sections.str_offsets =
10353 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10354 sections.str_offsets_offset,
10355 sections.str_offsets_size);
10356 /* The "str" section is global to the entire DWP file. */
10357 dwo_file->sections.str = dwp_file->sections.str;
10358 /* The info or types section is assigned below to dwo_unit,
10359 there's no need to record it in dwo_file.
10360 Also, we can't simply record type sections in dwo_file because
10361 we record a pointer into the vector in dwo_unit. As we collect more
10362 types we'll grow the vector and eventually have to reallocate space
10363 for it, invalidating all copies of pointers into the previous
10364 contents. */
10365 *dwo_file_slot = dwo_file;
10366 }
10367 else
10368 {
10369 if (dwarf_read_debug)
10370 {
10371 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10372 virtual_dwo_name);
10373 }
10374 dwo_file = *dwo_file_slot;
10375 }
10376 do_cleanups (cleanups);
10377
10378 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10379 dwo_unit->dwo_file = dwo_file;
10380 dwo_unit->signature = signature;
10381 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10382 sizeof (struct dwarf2_section_info));
10383 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10384 ? &dwp_file->sections.types
10385 : &dwp_file->sections.info,
10386 sections.info_or_types_offset,
10387 sections.info_or_types_size);
10388 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10389
10390 return dwo_unit;
10391 }
10392
10393 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10394 Returns NULL if the signature isn't found. */
10395
10396 static struct dwo_unit *
10397 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10398 ULONGEST signature, int is_debug_types)
10399 {
10400 const struct dwp_hash_table *dwp_htab =
10401 is_debug_types ? dwp_file->tus : dwp_file->cus;
10402 bfd *dbfd = dwp_file->dbfd;
10403 uint32_t mask = dwp_htab->nr_slots - 1;
10404 uint32_t hash = signature & mask;
10405 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10406 unsigned int i;
10407 void **slot;
10408 struct dwo_unit find_dwo_cu, *dwo_cu;
10409
10410 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10411 find_dwo_cu.signature = signature;
10412 slot = htab_find_slot (is_debug_types
10413 ? dwp_file->loaded_tus
10414 : dwp_file->loaded_cus,
10415 &find_dwo_cu, INSERT);
10416
10417 if (*slot != NULL)
10418 return *slot;
10419
10420 /* Use a for loop so that we don't loop forever on bad debug info. */
10421 for (i = 0; i < dwp_htab->nr_slots; ++i)
10422 {
10423 ULONGEST signature_in_table;
10424
10425 signature_in_table =
10426 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10427 if (signature_in_table == signature)
10428 {
10429 uint32_t unit_index =
10430 read_4_bytes (dbfd,
10431 dwp_htab->unit_table + hash * sizeof (uint32_t));
10432
10433 if (dwp_file->version == 1)
10434 {
10435 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10436 comp_dir, signature,
10437 is_debug_types);
10438 }
10439 else
10440 {
10441 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10442 comp_dir, signature,
10443 is_debug_types);
10444 }
10445 return *slot;
10446 }
10447 if (signature_in_table == 0)
10448 return NULL;
10449 hash = (hash + hash2) & mask;
10450 }
10451
10452 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10453 " [in module %s]"),
10454 dwp_file->name);
10455 }
10456
10457 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10458 Open the file specified by FILE_NAME and hand it off to BFD for
10459 preliminary analysis. Return a newly initialized bfd *, which
10460 includes a canonicalized copy of FILE_NAME.
10461 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10462 SEARCH_CWD is true if the current directory is to be searched.
10463 It will be searched before debug-file-directory.
10464 If successful, the file is added to the bfd include table of the
10465 objfile's bfd (see gdb_bfd_record_inclusion).
10466 If unable to find/open the file, return NULL.
10467 NOTE: This function is derived from symfile_bfd_open. */
10468
10469 static bfd *
10470 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10471 {
10472 bfd *sym_bfd;
10473 int desc, flags;
10474 char *absolute_name;
10475 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10476 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10477 to debug_file_directory. */
10478 char *search_path;
10479 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10480
10481 if (search_cwd)
10482 {
10483 if (*debug_file_directory != '\0')
10484 search_path = concat (".", dirname_separator_string,
10485 debug_file_directory, NULL);
10486 else
10487 search_path = xstrdup (".");
10488 }
10489 else
10490 search_path = xstrdup (debug_file_directory);
10491
10492 flags = OPF_RETURN_REALPATH;
10493 if (is_dwp)
10494 flags |= OPF_SEARCH_IN_PATH;
10495 desc = openp (search_path, flags, file_name,
10496 O_RDONLY | O_BINARY, &absolute_name);
10497 xfree (search_path);
10498 if (desc < 0)
10499 return NULL;
10500
10501 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10502 xfree (absolute_name);
10503 if (sym_bfd == NULL)
10504 return NULL;
10505 bfd_set_cacheable (sym_bfd, 1);
10506
10507 if (!bfd_check_format (sym_bfd, bfd_object))
10508 {
10509 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10510 return NULL;
10511 }
10512
10513 /* Success. Record the bfd as having been included by the objfile's bfd.
10514 This is important because things like demangled_names_hash lives in the
10515 objfile's per_bfd space and may have references to things like symbol
10516 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10517 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10518
10519 return sym_bfd;
10520 }
10521
10522 /* Try to open DWO file FILE_NAME.
10523 COMP_DIR is the DW_AT_comp_dir attribute.
10524 The result is the bfd handle of the file.
10525 If there is a problem finding or opening the file, return NULL.
10526 Upon success, the canonicalized path of the file is stored in the bfd,
10527 same as symfile_bfd_open. */
10528
10529 static bfd *
10530 open_dwo_file (const char *file_name, const char *comp_dir)
10531 {
10532 bfd *abfd;
10533
10534 if (IS_ABSOLUTE_PATH (file_name))
10535 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10536
10537 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10538
10539 if (comp_dir != NULL)
10540 {
10541 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10542
10543 /* NOTE: If comp_dir is a relative path, this will also try the
10544 search path, which seems useful. */
10545 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10546 xfree (path_to_try);
10547 if (abfd != NULL)
10548 return abfd;
10549 }
10550
10551 /* That didn't work, try debug-file-directory, which, despite its name,
10552 is a list of paths. */
10553
10554 if (*debug_file_directory == '\0')
10555 return NULL;
10556
10557 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10558 }
10559
10560 /* This function is mapped across the sections and remembers the offset and
10561 size of each of the DWO debugging sections we are interested in. */
10562
10563 static void
10564 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10565 {
10566 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10567 const struct dwop_section_names *names = &dwop_section_names;
10568
10569 if (section_is_p (sectp->name, &names->abbrev_dwo))
10570 {
10571 dwo_sections->abbrev.s.asection = sectp;
10572 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10573 }
10574 else if (section_is_p (sectp->name, &names->info_dwo))
10575 {
10576 dwo_sections->info.s.asection = sectp;
10577 dwo_sections->info.size = bfd_get_section_size (sectp);
10578 }
10579 else if (section_is_p (sectp->name, &names->line_dwo))
10580 {
10581 dwo_sections->line.s.asection = sectp;
10582 dwo_sections->line.size = bfd_get_section_size (sectp);
10583 }
10584 else if (section_is_p (sectp->name, &names->loc_dwo))
10585 {
10586 dwo_sections->loc.s.asection = sectp;
10587 dwo_sections->loc.size = bfd_get_section_size (sectp);
10588 }
10589 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10590 {
10591 dwo_sections->macinfo.s.asection = sectp;
10592 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10593 }
10594 else if (section_is_p (sectp->name, &names->macro_dwo))
10595 {
10596 dwo_sections->macro.s.asection = sectp;
10597 dwo_sections->macro.size = bfd_get_section_size (sectp);
10598 }
10599 else if (section_is_p (sectp->name, &names->str_dwo))
10600 {
10601 dwo_sections->str.s.asection = sectp;
10602 dwo_sections->str.size = bfd_get_section_size (sectp);
10603 }
10604 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10605 {
10606 dwo_sections->str_offsets.s.asection = sectp;
10607 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10608 }
10609 else if (section_is_p (sectp->name, &names->types_dwo))
10610 {
10611 struct dwarf2_section_info type_section;
10612
10613 memset (&type_section, 0, sizeof (type_section));
10614 type_section.s.asection = sectp;
10615 type_section.size = bfd_get_section_size (sectp);
10616 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10617 &type_section);
10618 }
10619 }
10620
10621 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10622 by PER_CU. This is for the non-DWP case.
10623 The result is NULL if DWO_NAME can't be found. */
10624
10625 static struct dwo_file *
10626 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10627 const char *dwo_name, const char *comp_dir)
10628 {
10629 struct objfile *objfile = dwarf2_per_objfile->objfile;
10630 struct dwo_file *dwo_file;
10631 bfd *dbfd;
10632 struct cleanup *cleanups;
10633
10634 dbfd = open_dwo_file (dwo_name, comp_dir);
10635 if (dbfd == NULL)
10636 {
10637 if (dwarf_read_debug)
10638 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10639 return NULL;
10640 }
10641 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10642 dwo_file->dwo_name = dwo_name;
10643 dwo_file->comp_dir = comp_dir;
10644 dwo_file->dbfd = dbfd;
10645
10646 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10647
10648 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10649
10650 dwo_file->cu = create_dwo_cu (dwo_file);
10651
10652 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10653 dwo_file->sections.types);
10654
10655 discard_cleanups (cleanups);
10656
10657 if (dwarf_read_debug)
10658 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10659
10660 return dwo_file;
10661 }
10662
10663 /* This function is mapped across the sections and remembers the offset and
10664 size of each of the DWP debugging sections common to version 1 and 2 that
10665 we are interested in. */
10666
10667 static void
10668 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10669 void *dwp_file_ptr)
10670 {
10671 struct dwp_file *dwp_file = dwp_file_ptr;
10672 const struct dwop_section_names *names = &dwop_section_names;
10673 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10674
10675 /* Record the ELF section number for later lookup: this is what the
10676 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10677 gdb_assert (elf_section_nr < dwp_file->num_sections);
10678 dwp_file->elf_sections[elf_section_nr] = sectp;
10679
10680 /* Look for specific sections that we need. */
10681 if (section_is_p (sectp->name, &names->str_dwo))
10682 {
10683 dwp_file->sections.str.s.asection = sectp;
10684 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10685 }
10686 else if (section_is_p (sectp->name, &names->cu_index))
10687 {
10688 dwp_file->sections.cu_index.s.asection = sectp;
10689 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10690 }
10691 else if (section_is_p (sectp->name, &names->tu_index))
10692 {
10693 dwp_file->sections.tu_index.s.asection = sectp;
10694 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10695 }
10696 }
10697
10698 /* This function is mapped across the sections and remembers the offset and
10699 size of each of the DWP version 2 debugging sections that we are interested
10700 in. This is split into a separate function because we don't know if we
10701 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10702
10703 static void
10704 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10705 {
10706 struct dwp_file *dwp_file = dwp_file_ptr;
10707 const struct dwop_section_names *names = &dwop_section_names;
10708 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10709
10710 /* Record the ELF section number for later lookup: this is what the
10711 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10712 gdb_assert (elf_section_nr < dwp_file->num_sections);
10713 dwp_file->elf_sections[elf_section_nr] = sectp;
10714
10715 /* Look for specific sections that we need. */
10716 if (section_is_p (sectp->name, &names->abbrev_dwo))
10717 {
10718 dwp_file->sections.abbrev.s.asection = sectp;
10719 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10720 }
10721 else if (section_is_p (sectp->name, &names->info_dwo))
10722 {
10723 dwp_file->sections.info.s.asection = sectp;
10724 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10725 }
10726 else if (section_is_p (sectp->name, &names->line_dwo))
10727 {
10728 dwp_file->sections.line.s.asection = sectp;
10729 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10730 }
10731 else if (section_is_p (sectp->name, &names->loc_dwo))
10732 {
10733 dwp_file->sections.loc.s.asection = sectp;
10734 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10735 }
10736 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10737 {
10738 dwp_file->sections.macinfo.s.asection = sectp;
10739 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10740 }
10741 else if (section_is_p (sectp->name, &names->macro_dwo))
10742 {
10743 dwp_file->sections.macro.s.asection = sectp;
10744 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10745 }
10746 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10747 {
10748 dwp_file->sections.str_offsets.s.asection = sectp;
10749 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10750 }
10751 else if (section_is_p (sectp->name, &names->types_dwo))
10752 {
10753 dwp_file->sections.types.s.asection = sectp;
10754 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10755 }
10756 }
10757
10758 /* Hash function for dwp_file loaded CUs/TUs. */
10759
10760 static hashval_t
10761 hash_dwp_loaded_cutus (const void *item)
10762 {
10763 const struct dwo_unit *dwo_unit = item;
10764
10765 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10766 return dwo_unit->signature;
10767 }
10768
10769 /* Equality function for dwp_file loaded CUs/TUs. */
10770
10771 static int
10772 eq_dwp_loaded_cutus (const void *a, const void *b)
10773 {
10774 const struct dwo_unit *dua = a;
10775 const struct dwo_unit *dub = b;
10776
10777 return dua->signature == dub->signature;
10778 }
10779
10780 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10781
10782 static htab_t
10783 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10784 {
10785 return htab_create_alloc_ex (3,
10786 hash_dwp_loaded_cutus,
10787 eq_dwp_loaded_cutus,
10788 NULL,
10789 &objfile->objfile_obstack,
10790 hashtab_obstack_allocate,
10791 dummy_obstack_deallocate);
10792 }
10793
10794 /* Try to open DWP file FILE_NAME.
10795 The result is the bfd handle of the file.
10796 If there is a problem finding or opening the file, return NULL.
10797 Upon success, the canonicalized path of the file is stored in the bfd,
10798 same as symfile_bfd_open. */
10799
10800 static bfd *
10801 open_dwp_file (const char *file_name)
10802 {
10803 bfd *abfd;
10804
10805 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10806 if (abfd != NULL)
10807 return abfd;
10808
10809 /* Work around upstream bug 15652.
10810 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10811 [Whether that's a "bug" is debatable, but it is getting in our way.]
10812 We have no real idea where the dwp file is, because gdb's realpath-ing
10813 of the executable's path may have discarded the needed info.
10814 [IWBN if the dwp file name was recorded in the executable, akin to
10815 .gnu_debuglink, but that doesn't exist yet.]
10816 Strip the directory from FILE_NAME and search again. */
10817 if (*debug_file_directory != '\0')
10818 {
10819 /* Don't implicitly search the current directory here.
10820 If the user wants to search "." to handle this case,
10821 it must be added to debug-file-directory. */
10822 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10823 0 /*search_cwd*/);
10824 }
10825
10826 return NULL;
10827 }
10828
10829 /* Initialize the use of the DWP file for the current objfile.
10830 By convention the name of the DWP file is ${objfile}.dwp.
10831 The result is NULL if it can't be found. */
10832
10833 static struct dwp_file *
10834 open_and_init_dwp_file (void)
10835 {
10836 struct objfile *objfile = dwarf2_per_objfile->objfile;
10837 struct dwp_file *dwp_file;
10838 char *dwp_name;
10839 bfd *dbfd;
10840 struct cleanup *cleanups;
10841
10842 /* Try to find first .dwp for the binary file before any symbolic links
10843 resolving. */
10844 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10845 cleanups = make_cleanup (xfree, dwp_name);
10846
10847 dbfd = open_dwp_file (dwp_name);
10848 if (dbfd == NULL
10849 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10850 {
10851 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10852 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10853 make_cleanup (xfree, dwp_name);
10854 dbfd = open_dwp_file (dwp_name);
10855 }
10856
10857 if (dbfd == NULL)
10858 {
10859 if (dwarf_read_debug)
10860 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10861 do_cleanups (cleanups);
10862 return NULL;
10863 }
10864 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10865 dwp_file->name = bfd_get_filename (dbfd);
10866 dwp_file->dbfd = dbfd;
10867 do_cleanups (cleanups);
10868
10869 /* +1: section 0 is unused */
10870 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10871 dwp_file->elf_sections =
10872 OBSTACK_CALLOC (&objfile->objfile_obstack,
10873 dwp_file->num_sections, asection *);
10874
10875 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10876
10877 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10878
10879 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10880
10881 /* The DWP file version is stored in the hash table. Oh well. */
10882 if (dwp_file->cus->version != dwp_file->tus->version)
10883 {
10884 /* Technically speaking, we should try to limp along, but this is
10885 pretty bizarre. We use pulongest here because that's the established
10886 portability solution (e.g, we cannot use %u for uint32_t). */
10887 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10888 " TU version %s [in DWP file %s]"),
10889 pulongest (dwp_file->cus->version),
10890 pulongest (dwp_file->tus->version), dwp_name);
10891 }
10892 dwp_file->version = dwp_file->cus->version;
10893
10894 if (dwp_file->version == 2)
10895 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10896
10897 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10898 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10899
10900 if (dwarf_read_debug)
10901 {
10902 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10903 fprintf_unfiltered (gdb_stdlog,
10904 " %s CUs, %s TUs\n",
10905 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10906 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10907 }
10908
10909 return dwp_file;
10910 }
10911
10912 /* Wrapper around open_and_init_dwp_file, only open it once. */
10913
10914 static struct dwp_file *
10915 get_dwp_file (void)
10916 {
10917 if (! dwarf2_per_objfile->dwp_checked)
10918 {
10919 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10920 dwarf2_per_objfile->dwp_checked = 1;
10921 }
10922 return dwarf2_per_objfile->dwp_file;
10923 }
10924
10925 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10926 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10927 or in the DWP file for the objfile, referenced by THIS_UNIT.
10928 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10929 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10930
10931 This is called, for example, when wanting to read a variable with a
10932 complex location. Therefore we don't want to do file i/o for every call.
10933 Therefore we don't want to look for a DWO file on every call.
10934 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10935 then we check if we've already seen DWO_NAME, and only THEN do we check
10936 for a DWO file.
10937
10938 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10939 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10940
10941 static struct dwo_unit *
10942 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10943 const char *dwo_name, const char *comp_dir,
10944 ULONGEST signature, int is_debug_types)
10945 {
10946 struct objfile *objfile = dwarf2_per_objfile->objfile;
10947 const char *kind = is_debug_types ? "TU" : "CU";
10948 void **dwo_file_slot;
10949 struct dwo_file *dwo_file;
10950 struct dwp_file *dwp_file;
10951
10952 /* First see if there's a DWP file.
10953 If we have a DWP file but didn't find the DWO inside it, don't
10954 look for the original DWO file. It makes gdb behave differently
10955 depending on whether one is debugging in the build tree. */
10956
10957 dwp_file = get_dwp_file ();
10958 if (dwp_file != NULL)
10959 {
10960 const struct dwp_hash_table *dwp_htab =
10961 is_debug_types ? dwp_file->tus : dwp_file->cus;
10962
10963 if (dwp_htab != NULL)
10964 {
10965 struct dwo_unit *dwo_cutu =
10966 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10967 signature, is_debug_types);
10968
10969 if (dwo_cutu != NULL)
10970 {
10971 if (dwarf_read_debug)
10972 {
10973 fprintf_unfiltered (gdb_stdlog,
10974 "Virtual DWO %s %s found: @%s\n",
10975 kind, hex_string (signature),
10976 host_address_to_string (dwo_cutu));
10977 }
10978 return dwo_cutu;
10979 }
10980 }
10981 }
10982 else
10983 {
10984 /* No DWP file, look for the DWO file. */
10985
10986 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10987 if (*dwo_file_slot == NULL)
10988 {
10989 /* Read in the file and build a table of the CUs/TUs it contains. */
10990 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10991 }
10992 /* NOTE: This will be NULL if unable to open the file. */
10993 dwo_file = *dwo_file_slot;
10994
10995 if (dwo_file != NULL)
10996 {
10997 struct dwo_unit *dwo_cutu = NULL;
10998
10999 if (is_debug_types && dwo_file->tus)
11000 {
11001 struct dwo_unit find_dwo_cutu;
11002
11003 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11004 find_dwo_cutu.signature = signature;
11005 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
11006 }
11007 else if (!is_debug_types && dwo_file->cu)
11008 {
11009 if (signature == dwo_file->cu->signature)
11010 dwo_cutu = dwo_file->cu;
11011 }
11012
11013 if (dwo_cutu != NULL)
11014 {
11015 if (dwarf_read_debug)
11016 {
11017 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11018 kind, dwo_name, hex_string (signature),
11019 host_address_to_string (dwo_cutu));
11020 }
11021 return dwo_cutu;
11022 }
11023 }
11024 }
11025
11026 /* We didn't find it. This could mean a dwo_id mismatch, or
11027 someone deleted the DWO/DWP file, or the search path isn't set up
11028 correctly to find the file. */
11029
11030 if (dwarf_read_debug)
11031 {
11032 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11033 kind, dwo_name, hex_string (signature));
11034 }
11035
11036 /* This is a warning and not a complaint because it can be caused by
11037 pilot error (e.g., user accidentally deleting the DWO). */
11038 {
11039 /* Print the name of the DWP file if we looked there, helps the user
11040 better diagnose the problem. */
11041 char *dwp_text = NULL;
11042 struct cleanup *cleanups;
11043
11044 if (dwp_file != NULL)
11045 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11046 cleanups = make_cleanup (xfree, dwp_text);
11047
11048 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11049 " [in module %s]"),
11050 kind, dwo_name, hex_string (signature),
11051 dwp_text != NULL ? dwp_text : "",
11052 this_unit->is_debug_types ? "TU" : "CU",
11053 this_unit->offset.sect_off, objfile_name (objfile));
11054
11055 do_cleanups (cleanups);
11056 }
11057 return NULL;
11058 }
11059
11060 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11061 See lookup_dwo_cutu_unit for details. */
11062
11063 static struct dwo_unit *
11064 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11065 const char *dwo_name, const char *comp_dir,
11066 ULONGEST signature)
11067 {
11068 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11069 }
11070
11071 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11072 See lookup_dwo_cutu_unit for details. */
11073
11074 static struct dwo_unit *
11075 lookup_dwo_type_unit (struct signatured_type *this_tu,
11076 const char *dwo_name, const char *comp_dir)
11077 {
11078 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11079 }
11080
11081 /* Traversal function for queue_and_load_all_dwo_tus. */
11082
11083 static int
11084 queue_and_load_dwo_tu (void **slot, void *info)
11085 {
11086 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11087 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11088 ULONGEST signature = dwo_unit->signature;
11089 struct signatured_type *sig_type =
11090 lookup_dwo_signatured_type (per_cu->cu, signature);
11091
11092 if (sig_type != NULL)
11093 {
11094 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11095
11096 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11097 a real dependency of PER_CU on SIG_TYPE. That is detected later
11098 while processing PER_CU. */
11099 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11100 load_full_type_unit (sig_cu);
11101 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11102 }
11103
11104 return 1;
11105 }
11106
11107 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11108 The DWO may have the only definition of the type, though it may not be
11109 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11110 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11111
11112 static void
11113 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11114 {
11115 struct dwo_unit *dwo_unit;
11116 struct dwo_file *dwo_file;
11117
11118 gdb_assert (!per_cu->is_debug_types);
11119 gdb_assert (get_dwp_file () == NULL);
11120 gdb_assert (per_cu->cu != NULL);
11121
11122 dwo_unit = per_cu->cu->dwo_unit;
11123 gdb_assert (dwo_unit != NULL);
11124
11125 dwo_file = dwo_unit->dwo_file;
11126 if (dwo_file->tus != NULL)
11127 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11128 }
11129
11130 /* Free all resources associated with DWO_FILE.
11131 Close the DWO file and munmap the sections.
11132 All memory should be on the objfile obstack. */
11133
11134 static void
11135 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11136 {
11137 int ix;
11138 struct dwarf2_section_info *section;
11139
11140 /* Note: dbfd is NULL for virtual DWO files. */
11141 gdb_bfd_unref (dwo_file->dbfd);
11142
11143 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11144 }
11145
11146 /* Wrapper for free_dwo_file for use in cleanups. */
11147
11148 static void
11149 free_dwo_file_cleanup (void *arg)
11150 {
11151 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11152 struct objfile *objfile = dwarf2_per_objfile->objfile;
11153
11154 free_dwo_file (dwo_file, objfile);
11155 }
11156
11157 /* Traversal function for free_dwo_files. */
11158
11159 static int
11160 free_dwo_file_from_slot (void **slot, void *info)
11161 {
11162 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11163 struct objfile *objfile = (struct objfile *) info;
11164
11165 free_dwo_file (dwo_file, objfile);
11166
11167 return 1;
11168 }
11169
11170 /* Free all resources associated with DWO_FILES. */
11171
11172 static void
11173 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11174 {
11175 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11176 }
11177 \f
11178 /* Read in various DIEs. */
11179
11180 /* qsort helper for inherit_abstract_dies. */
11181
11182 static int
11183 unsigned_int_compar (const void *ap, const void *bp)
11184 {
11185 unsigned int a = *(unsigned int *) ap;
11186 unsigned int b = *(unsigned int *) bp;
11187
11188 return (a > b) - (b > a);
11189 }
11190
11191 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11192 Inherit only the children of the DW_AT_abstract_origin DIE not being
11193 already referenced by DW_AT_abstract_origin from the children of the
11194 current DIE. */
11195
11196 static void
11197 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11198 {
11199 struct die_info *child_die;
11200 unsigned die_children_count;
11201 /* CU offsets which were referenced by children of the current DIE. */
11202 sect_offset *offsets;
11203 sect_offset *offsets_end, *offsetp;
11204 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11205 struct die_info *origin_die;
11206 /* Iterator of the ORIGIN_DIE children. */
11207 struct die_info *origin_child_die;
11208 struct cleanup *cleanups;
11209 struct attribute *attr;
11210 struct dwarf2_cu *origin_cu;
11211 struct pending **origin_previous_list_in_scope;
11212
11213 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11214 if (!attr)
11215 return;
11216
11217 /* Note that following die references may follow to a die in a
11218 different cu. */
11219
11220 origin_cu = cu;
11221 origin_die = follow_die_ref (die, attr, &origin_cu);
11222
11223 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11224 symbols in. */
11225 origin_previous_list_in_scope = origin_cu->list_in_scope;
11226 origin_cu->list_in_scope = cu->list_in_scope;
11227
11228 if (die->tag != origin_die->tag
11229 && !(die->tag == DW_TAG_inlined_subroutine
11230 && origin_die->tag == DW_TAG_subprogram))
11231 complaint (&symfile_complaints,
11232 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11233 die->offset.sect_off, origin_die->offset.sect_off);
11234
11235 child_die = die->child;
11236 die_children_count = 0;
11237 while (child_die && child_die->tag)
11238 {
11239 child_die = sibling_die (child_die);
11240 die_children_count++;
11241 }
11242 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11243 cleanups = make_cleanup (xfree, offsets);
11244
11245 offsets_end = offsets;
11246 for (child_die = die->child;
11247 child_die && child_die->tag;
11248 child_die = sibling_die (child_die))
11249 {
11250 struct die_info *child_origin_die;
11251 struct dwarf2_cu *child_origin_cu;
11252
11253 /* We are trying to process concrete instance entries:
11254 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11255 it's not relevant to our analysis here. i.e. detecting DIEs that are
11256 present in the abstract instance but not referenced in the concrete
11257 one. */
11258 if (child_die->tag == DW_TAG_GNU_call_site)
11259 continue;
11260
11261 /* For each CHILD_DIE, find the corresponding child of
11262 ORIGIN_DIE. If there is more than one layer of
11263 DW_AT_abstract_origin, follow them all; there shouldn't be,
11264 but GCC versions at least through 4.4 generate this (GCC PR
11265 40573). */
11266 child_origin_die = child_die;
11267 child_origin_cu = cu;
11268 while (1)
11269 {
11270 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11271 child_origin_cu);
11272 if (attr == NULL)
11273 break;
11274 child_origin_die = follow_die_ref (child_origin_die, attr,
11275 &child_origin_cu);
11276 }
11277
11278 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11279 counterpart may exist. */
11280 if (child_origin_die != child_die)
11281 {
11282 if (child_die->tag != child_origin_die->tag
11283 && !(child_die->tag == DW_TAG_inlined_subroutine
11284 && child_origin_die->tag == DW_TAG_subprogram))
11285 complaint (&symfile_complaints,
11286 _("Child DIE 0x%x and its abstract origin 0x%x have "
11287 "different tags"), child_die->offset.sect_off,
11288 child_origin_die->offset.sect_off);
11289 if (child_origin_die->parent != origin_die)
11290 complaint (&symfile_complaints,
11291 _("Child DIE 0x%x and its abstract origin 0x%x have "
11292 "different parents"), child_die->offset.sect_off,
11293 child_origin_die->offset.sect_off);
11294 else
11295 *offsets_end++ = child_origin_die->offset;
11296 }
11297 }
11298 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11299 unsigned_int_compar);
11300 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11301 if (offsetp[-1].sect_off == offsetp->sect_off)
11302 complaint (&symfile_complaints,
11303 _("Multiple children of DIE 0x%x refer "
11304 "to DIE 0x%x as their abstract origin"),
11305 die->offset.sect_off, offsetp->sect_off);
11306
11307 offsetp = offsets;
11308 origin_child_die = origin_die->child;
11309 while (origin_child_die && origin_child_die->tag)
11310 {
11311 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11312 while (offsetp < offsets_end
11313 && offsetp->sect_off < origin_child_die->offset.sect_off)
11314 offsetp++;
11315 if (offsetp >= offsets_end
11316 || offsetp->sect_off > origin_child_die->offset.sect_off)
11317 {
11318 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11319 Check whether we're already processing ORIGIN_CHILD_DIE.
11320 This can happen with mutually referenced abstract_origins.
11321 PR 16581. */
11322 if (!origin_child_die->in_process)
11323 process_die (origin_child_die, origin_cu);
11324 }
11325 origin_child_die = sibling_die (origin_child_die);
11326 }
11327 origin_cu->list_in_scope = origin_previous_list_in_scope;
11328
11329 do_cleanups (cleanups);
11330 }
11331
11332 static void
11333 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11334 {
11335 struct objfile *objfile = cu->objfile;
11336 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11337 struct context_stack *newobj;
11338 CORE_ADDR lowpc;
11339 CORE_ADDR highpc;
11340 struct die_info *child_die;
11341 struct attribute *attr, *call_line, *call_file;
11342 const char *name;
11343 CORE_ADDR baseaddr;
11344 struct block *block;
11345 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11346 VEC (symbolp) *template_args = NULL;
11347 struct template_symbol *templ_func = NULL;
11348
11349 if (inlined_func)
11350 {
11351 /* If we do not have call site information, we can't show the
11352 caller of this inlined function. That's too confusing, so
11353 only use the scope for local variables. */
11354 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11355 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11356 if (call_line == NULL || call_file == NULL)
11357 {
11358 read_lexical_block_scope (die, cu);
11359 return;
11360 }
11361 }
11362
11363 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11364
11365 name = dwarf2_name (die, cu);
11366
11367 /* Ignore functions with missing or empty names. These are actually
11368 illegal according to the DWARF standard. */
11369 if (name == NULL)
11370 {
11371 complaint (&symfile_complaints,
11372 _("missing name for subprogram DIE at %d"),
11373 die->offset.sect_off);
11374 return;
11375 }
11376
11377 /* Ignore functions with missing or invalid low and high pc attributes. */
11378 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11379 {
11380 attr = dwarf2_attr (die, DW_AT_external, cu);
11381 if (!attr || !DW_UNSND (attr))
11382 complaint (&symfile_complaints,
11383 _("cannot get low and high bounds "
11384 "for subprogram DIE at %d"),
11385 die->offset.sect_off);
11386 return;
11387 }
11388
11389 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11390 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11391
11392 /* If we have any template arguments, then we must allocate a
11393 different sort of symbol. */
11394 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11395 {
11396 if (child_die->tag == DW_TAG_template_type_param
11397 || child_die->tag == DW_TAG_template_value_param)
11398 {
11399 templ_func = allocate_template_symbol (objfile);
11400 templ_func->base.is_cplus_template_function = 1;
11401 break;
11402 }
11403 }
11404
11405 newobj = push_context (0, lowpc);
11406 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11407 (struct symbol *) templ_func);
11408
11409 /* If there is a location expression for DW_AT_frame_base, record
11410 it. */
11411 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11412 if (attr)
11413 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11414
11415 cu->list_in_scope = &local_symbols;
11416
11417 if (die->child != NULL)
11418 {
11419 child_die = die->child;
11420 while (child_die && child_die->tag)
11421 {
11422 if (child_die->tag == DW_TAG_template_type_param
11423 || child_die->tag == DW_TAG_template_value_param)
11424 {
11425 struct symbol *arg = new_symbol (child_die, NULL, cu);
11426
11427 if (arg != NULL)
11428 VEC_safe_push (symbolp, template_args, arg);
11429 }
11430 else
11431 process_die (child_die, cu);
11432 child_die = sibling_die (child_die);
11433 }
11434 }
11435
11436 inherit_abstract_dies (die, cu);
11437
11438 /* If we have a DW_AT_specification, we might need to import using
11439 directives from the context of the specification DIE. See the
11440 comment in determine_prefix. */
11441 if (cu->language == language_cplus
11442 && dwarf2_attr (die, DW_AT_specification, cu))
11443 {
11444 struct dwarf2_cu *spec_cu = cu;
11445 struct die_info *spec_die = die_specification (die, &spec_cu);
11446
11447 while (spec_die)
11448 {
11449 child_die = spec_die->child;
11450 while (child_die && child_die->tag)
11451 {
11452 if (child_die->tag == DW_TAG_imported_module)
11453 process_die (child_die, spec_cu);
11454 child_die = sibling_die (child_die);
11455 }
11456
11457 /* In some cases, GCC generates specification DIEs that
11458 themselves contain DW_AT_specification attributes. */
11459 spec_die = die_specification (spec_die, &spec_cu);
11460 }
11461 }
11462
11463 newobj = pop_context ();
11464 /* Make a block for the local symbols within. */
11465 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11466 lowpc, highpc);
11467
11468 /* For C++, set the block's scope. */
11469 if ((cu->language == language_cplus
11470 || cu->language == language_fortran
11471 || cu->language == language_d)
11472 && cu->processing_has_namespace_info)
11473 block_set_scope (block, determine_prefix (die, cu),
11474 &objfile->objfile_obstack);
11475
11476 /* If we have address ranges, record them. */
11477 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11478
11479 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11480
11481 /* Attach template arguments to function. */
11482 if (! VEC_empty (symbolp, template_args))
11483 {
11484 gdb_assert (templ_func != NULL);
11485
11486 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11487 templ_func->template_arguments
11488 = obstack_alloc (&objfile->objfile_obstack,
11489 (templ_func->n_template_arguments
11490 * sizeof (struct symbol *)));
11491 memcpy (templ_func->template_arguments,
11492 VEC_address (symbolp, template_args),
11493 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11494 VEC_free (symbolp, template_args);
11495 }
11496
11497 /* In C++, we can have functions nested inside functions (e.g., when
11498 a function declares a class that has methods). This means that
11499 when we finish processing a function scope, we may need to go
11500 back to building a containing block's symbol lists. */
11501 local_symbols = newobj->locals;
11502 local_using_directives = newobj->local_using_directives;
11503
11504 /* If we've finished processing a top-level function, subsequent
11505 symbols go in the file symbol list. */
11506 if (outermost_context_p ())
11507 cu->list_in_scope = &file_symbols;
11508 }
11509
11510 /* Process all the DIES contained within a lexical block scope. Start
11511 a new scope, process the dies, and then close the scope. */
11512
11513 static void
11514 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11515 {
11516 struct objfile *objfile = cu->objfile;
11517 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11518 struct context_stack *newobj;
11519 CORE_ADDR lowpc, highpc;
11520 struct die_info *child_die;
11521 CORE_ADDR baseaddr;
11522
11523 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11524
11525 /* Ignore blocks with missing or invalid low and high pc attributes. */
11526 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11527 as multiple lexical blocks? Handling children in a sane way would
11528 be nasty. Might be easier to properly extend generic blocks to
11529 describe ranges. */
11530 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11531 return;
11532 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11533 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11534
11535 push_context (0, lowpc);
11536 if (die->child != NULL)
11537 {
11538 child_die = die->child;
11539 while (child_die && child_die->tag)
11540 {
11541 process_die (child_die, cu);
11542 child_die = sibling_die (child_die);
11543 }
11544 }
11545 inherit_abstract_dies (die, cu);
11546 newobj = pop_context ();
11547
11548 if (local_symbols != NULL || local_using_directives != NULL)
11549 {
11550 struct block *block
11551 = finish_block (0, &local_symbols, newobj->old_blocks,
11552 newobj->start_addr, highpc);
11553
11554 /* Note that recording ranges after traversing children, as we
11555 do here, means that recording a parent's ranges entails
11556 walking across all its children's ranges as they appear in
11557 the address map, which is quadratic behavior.
11558
11559 It would be nicer to record the parent's ranges before
11560 traversing its children, simply overriding whatever you find
11561 there. But since we don't even decide whether to create a
11562 block until after we've traversed its children, that's hard
11563 to do. */
11564 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11565 }
11566 local_symbols = newobj->locals;
11567 local_using_directives = newobj->local_using_directives;
11568 }
11569
11570 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11571
11572 static void
11573 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11574 {
11575 struct objfile *objfile = cu->objfile;
11576 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11577 CORE_ADDR pc, baseaddr;
11578 struct attribute *attr;
11579 struct call_site *call_site, call_site_local;
11580 void **slot;
11581 int nparams;
11582 struct die_info *child_die;
11583
11584 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11585
11586 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11587 if (!attr)
11588 {
11589 complaint (&symfile_complaints,
11590 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11591 "DIE 0x%x [in module %s]"),
11592 die->offset.sect_off, objfile_name (objfile));
11593 return;
11594 }
11595 pc = attr_value_as_address (attr) + baseaddr;
11596 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11597
11598 if (cu->call_site_htab == NULL)
11599 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11600 NULL, &objfile->objfile_obstack,
11601 hashtab_obstack_allocate, NULL);
11602 call_site_local.pc = pc;
11603 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11604 if (*slot != NULL)
11605 {
11606 complaint (&symfile_complaints,
11607 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11608 "DIE 0x%x [in module %s]"),
11609 paddress (gdbarch, pc), die->offset.sect_off,
11610 objfile_name (objfile));
11611 return;
11612 }
11613
11614 /* Count parameters at the caller. */
11615
11616 nparams = 0;
11617 for (child_die = die->child; child_die && child_die->tag;
11618 child_die = sibling_die (child_die))
11619 {
11620 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11621 {
11622 complaint (&symfile_complaints,
11623 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11624 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11625 child_die->tag, child_die->offset.sect_off,
11626 objfile_name (objfile));
11627 continue;
11628 }
11629
11630 nparams++;
11631 }
11632
11633 call_site = obstack_alloc (&objfile->objfile_obstack,
11634 (sizeof (*call_site)
11635 + (sizeof (*call_site->parameter)
11636 * (nparams - 1))));
11637 *slot = call_site;
11638 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11639 call_site->pc = pc;
11640
11641 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11642 {
11643 struct die_info *func_die;
11644
11645 /* Skip also over DW_TAG_inlined_subroutine. */
11646 for (func_die = die->parent;
11647 func_die && func_die->tag != DW_TAG_subprogram
11648 && func_die->tag != DW_TAG_subroutine_type;
11649 func_die = func_die->parent);
11650
11651 /* DW_AT_GNU_all_call_sites is a superset
11652 of DW_AT_GNU_all_tail_call_sites. */
11653 if (func_die
11654 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11655 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11656 {
11657 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11658 not complete. But keep CALL_SITE for look ups via call_site_htab,
11659 both the initial caller containing the real return address PC and
11660 the final callee containing the current PC of a chain of tail
11661 calls do not need to have the tail call list complete. But any
11662 function candidate for a virtual tail call frame searched via
11663 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11664 determined unambiguously. */
11665 }
11666 else
11667 {
11668 struct type *func_type = NULL;
11669
11670 if (func_die)
11671 func_type = get_die_type (func_die, cu);
11672 if (func_type != NULL)
11673 {
11674 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11675
11676 /* Enlist this call site to the function. */
11677 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11678 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11679 }
11680 else
11681 complaint (&symfile_complaints,
11682 _("Cannot find function owning DW_TAG_GNU_call_site "
11683 "DIE 0x%x [in module %s]"),
11684 die->offset.sect_off, objfile_name (objfile));
11685 }
11686 }
11687
11688 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11689 if (attr == NULL)
11690 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11691 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11692 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11693 /* Keep NULL DWARF_BLOCK. */;
11694 else if (attr_form_is_block (attr))
11695 {
11696 struct dwarf2_locexpr_baton *dlbaton;
11697
11698 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11699 dlbaton->data = DW_BLOCK (attr)->data;
11700 dlbaton->size = DW_BLOCK (attr)->size;
11701 dlbaton->per_cu = cu->per_cu;
11702
11703 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11704 }
11705 else if (attr_form_is_ref (attr))
11706 {
11707 struct dwarf2_cu *target_cu = cu;
11708 struct die_info *target_die;
11709
11710 target_die = follow_die_ref (die, attr, &target_cu);
11711 gdb_assert (target_cu->objfile == objfile);
11712 if (die_is_declaration (target_die, target_cu))
11713 {
11714 const char *target_physname = NULL;
11715 struct attribute *target_attr;
11716
11717 /* Prefer the mangled name; otherwise compute the demangled one. */
11718 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11719 if (target_attr == NULL)
11720 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11721 target_cu);
11722 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11723 target_physname = DW_STRING (target_attr);
11724 else
11725 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11726 if (target_physname == NULL)
11727 complaint (&symfile_complaints,
11728 _("DW_AT_GNU_call_site_target target DIE has invalid "
11729 "physname, for referencing DIE 0x%x [in module %s]"),
11730 die->offset.sect_off, objfile_name (objfile));
11731 else
11732 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11733 }
11734 else
11735 {
11736 CORE_ADDR lowpc;
11737
11738 /* DW_AT_entry_pc should be preferred. */
11739 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11740 complaint (&symfile_complaints,
11741 _("DW_AT_GNU_call_site_target target DIE has invalid "
11742 "low pc, for referencing DIE 0x%x [in module %s]"),
11743 die->offset.sect_off, objfile_name (objfile));
11744 else
11745 {
11746 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11747 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11748 }
11749 }
11750 }
11751 else
11752 complaint (&symfile_complaints,
11753 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11754 "block nor reference, for DIE 0x%x [in module %s]"),
11755 die->offset.sect_off, objfile_name (objfile));
11756
11757 call_site->per_cu = cu->per_cu;
11758
11759 for (child_die = die->child;
11760 child_die && child_die->tag;
11761 child_die = sibling_die (child_die))
11762 {
11763 struct call_site_parameter *parameter;
11764 struct attribute *loc, *origin;
11765
11766 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11767 {
11768 /* Already printed the complaint above. */
11769 continue;
11770 }
11771
11772 gdb_assert (call_site->parameter_count < nparams);
11773 parameter = &call_site->parameter[call_site->parameter_count];
11774
11775 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11776 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11777 register is contained in DW_AT_GNU_call_site_value. */
11778
11779 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11780 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11781 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11782 {
11783 sect_offset offset;
11784
11785 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11786 offset = dwarf2_get_ref_die_offset (origin);
11787 if (!offset_in_cu_p (&cu->header, offset))
11788 {
11789 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11790 binding can be done only inside one CU. Such referenced DIE
11791 therefore cannot be even moved to DW_TAG_partial_unit. */
11792 complaint (&symfile_complaints,
11793 _("DW_AT_abstract_origin offset is not in CU for "
11794 "DW_TAG_GNU_call_site child DIE 0x%x "
11795 "[in module %s]"),
11796 child_die->offset.sect_off, objfile_name (objfile));
11797 continue;
11798 }
11799 parameter->u.param_offset.cu_off = (offset.sect_off
11800 - cu->header.offset.sect_off);
11801 }
11802 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11803 {
11804 complaint (&symfile_complaints,
11805 _("No DW_FORM_block* DW_AT_location for "
11806 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11807 child_die->offset.sect_off, objfile_name (objfile));
11808 continue;
11809 }
11810 else
11811 {
11812 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11813 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11814 if (parameter->u.dwarf_reg != -1)
11815 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11816 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11817 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11818 &parameter->u.fb_offset))
11819 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11820 else
11821 {
11822 complaint (&symfile_complaints,
11823 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11824 "for DW_FORM_block* DW_AT_location is supported for "
11825 "DW_TAG_GNU_call_site child DIE 0x%x "
11826 "[in module %s]"),
11827 child_die->offset.sect_off, objfile_name (objfile));
11828 continue;
11829 }
11830 }
11831
11832 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11833 if (!attr_form_is_block (attr))
11834 {
11835 complaint (&symfile_complaints,
11836 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11837 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11838 child_die->offset.sect_off, objfile_name (objfile));
11839 continue;
11840 }
11841 parameter->value = DW_BLOCK (attr)->data;
11842 parameter->value_size = DW_BLOCK (attr)->size;
11843
11844 /* Parameters are not pre-cleared by memset above. */
11845 parameter->data_value = NULL;
11846 parameter->data_value_size = 0;
11847 call_site->parameter_count++;
11848
11849 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11850 if (attr)
11851 {
11852 if (!attr_form_is_block (attr))
11853 complaint (&symfile_complaints,
11854 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11855 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11856 child_die->offset.sect_off, objfile_name (objfile));
11857 else
11858 {
11859 parameter->data_value = DW_BLOCK (attr)->data;
11860 parameter->data_value_size = DW_BLOCK (attr)->size;
11861 }
11862 }
11863 }
11864 }
11865
11866 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11867 Return 1 if the attributes are present and valid, otherwise, return 0.
11868 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11869
11870 static int
11871 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11872 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11873 struct partial_symtab *ranges_pst)
11874 {
11875 struct objfile *objfile = cu->objfile;
11876 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11877 struct comp_unit_head *cu_header = &cu->header;
11878 bfd *obfd = objfile->obfd;
11879 unsigned int addr_size = cu_header->addr_size;
11880 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11881 /* Base address selection entry. */
11882 CORE_ADDR base;
11883 int found_base;
11884 unsigned int dummy;
11885 const gdb_byte *buffer;
11886 CORE_ADDR marker;
11887 int low_set;
11888 CORE_ADDR low = 0;
11889 CORE_ADDR high = 0;
11890 CORE_ADDR baseaddr;
11891
11892 found_base = cu->base_known;
11893 base = cu->base_address;
11894
11895 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11896 if (offset >= dwarf2_per_objfile->ranges.size)
11897 {
11898 complaint (&symfile_complaints,
11899 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11900 offset);
11901 return 0;
11902 }
11903 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11904
11905 /* Read in the largest possible address. */
11906 marker = read_address (obfd, buffer, cu, &dummy);
11907 if ((marker & mask) == mask)
11908 {
11909 /* If we found the largest possible address, then
11910 read the base address. */
11911 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11912 buffer += 2 * addr_size;
11913 offset += 2 * addr_size;
11914 found_base = 1;
11915 }
11916
11917 low_set = 0;
11918
11919 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11920
11921 while (1)
11922 {
11923 CORE_ADDR range_beginning, range_end;
11924
11925 range_beginning = read_address (obfd, buffer, cu, &dummy);
11926 buffer += addr_size;
11927 range_end = read_address (obfd, buffer, cu, &dummy);
11928 buffer += addr_size;
11929 offset += 2 * addr_size;
11930
11931 /* An end of list marker is a pair of zero addresses. */
11932 if (range_beginning == 0 && range_end == 0)
11933 /* Found the end of list entry. */
11934 break;
11935
11936 /* Each base address selection entry is a pair of 2 values.
11937 The first is the largest possible address, the second is
11938 the base address. Check for a base address here. */
11939 if ((range_beginning & mask) == mask)
11940 {
11941 /* If we found the largest possible address, then
11942 read the base address. */
11943 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11944 found_base = 1;
11945 continue;
11946 }
11947
11948 if (!found_base)
11949 {
11950 /* We have no valid base address for the ranges
11951 data. */
11952 complaint (&symfile_complaints,
11953 _("Invalid .debug_ranges data (no base address)"));
11954 return 0;
11955 }
11956
11957 if (range_beginning > range_end)
11958 {
11959 /* Inverted range entries are invalid. */
11960 complaint (&symfile_complaints,
11961 _("Invalid .debug_ranges data (inverted range)"));
11962 return 0;
11963 }
11964
11965 /* Empty range entries have no effect. */
11966 if (range_beginning == range_end)
11967 continue;
11968
11969 range_beginning += base;
11970 range_end += base;
11971
11972 /* A not-uncommon case of bad debug info.
11973 Don't pollute the addrmap with bad data. */
11974 if (range_beginning + baseaddr == 0
11975 && !dwarf2_per_objfile->has_section_at_zero)
11976 {
11977 complaint (&symfile_complaints,
11978 _(".debug_ranges entry has start address of zero"
11979 " [in module %s]"), objfile_name (objfile));
11980 continue;
11981 }
11982
11983 if (ranges_pst != NULL)
11984 {
11985 CORE_ADDR lowpc;
11986 CORE_ADDR highpc;
11987
11988 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11989 range_beginning + baseaddr);
11990 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11991 range_end + baseaddr);
11992 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11993 ranges_pst);
11994 }
11995
11996 /* FIXME: This is recording everything as a low-high
11997 segment of consecutive addresses. We should have a
11998 data structure for discontiguous block ranges
11999 instead. */
12000 if (! low_set)
12001 {
12002 low = range_beginning;
12003 high = range_end;
12004 low_set = 1;
12005 }
12006 else
12007 {
12008 if (range_beginning < low)
12009 low = range_beginning;
12010 if (range_end > high)
12011 high = range_end;
12012 }
12013 }
12014
12015 if (! low_set)
12016 /* If the first entry is an end-of-list marker, the range
12017 describes an empty scope, i.e. no instructions. */
12018 return 0;
12019
12020 if (low_return)
12021 *low_return = low;
12022 if (high_return)
12023 *high_return = high;
12024 return 1;
12025 }
12026
12027 /* Get low and high pc attributes from a die. Return 1 if the attributes
12028 are present and valid, otherwise, return 0. Return -1 if the range is
12029 discontinuous, i.e. derived from DW_AT_ranges information. */
12030
12031 static int
12032 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12033 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12034 struct partial_symtab *pst)
12035 {
12036 struct attribute *attr;
12037 struct attribute *attr_high;
12038 CORE_ADDR low = 0;
12039 CORE_ADDR high = 0;
12040 int ret = 0;
12041
12042 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12043 if (attr_high)
12044 {
12045 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12046 if (attr)
12047 {
12048 low = attr_value_as_address (attr);
12049 high = attr_value_as_address (attr_high);
12050 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12051 high += low;
12052 }
12053 else
12054 /* Found high w/o low attribute. */
12055 return 0;
12056
12057 /* Found consecutive range of addresses. */
12058 ret = 1;
12059 }
12060 else
12061 {
12062 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12063 if (attr != NULL)
12064 {
12065 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12066 We take advantage of the fact that DW_AT_ranges does not appear
12067 in DW_TAG_compile_unit of DWO files. */
12068 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12069 unsigned int ranges_offset = (DW_UNSND (attr)
12070 + (need_ranges_base
12071 ? cu->ranges_base
12072 : 0));
12073
12074 /* Value of the DW_AT_ranges attribute is the offset in the
12075 .debug_ranges section. */
12076 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12077 return 0;
12078 /* Found discontinuous range of addresses. */
12079 ret = -1;
12080 }
12081 }
12082
12083 /* read_partial_die has also the strict LOW < HIGH requirement. */
12084 if (high <= low)
12085 return 0;
12086
12087 /* When using the GNU linker, .gnu.linkonce. sections are used to
12088 eliminate duplicate copies of functions and vtables and such.
12089 The linker will arbitrarily choose one and discard the others.
12090 The AT_*_pc values for such functions refer to local labels in
12091 these sections. If the section from that file was discarded, the
12092 labels are not in the output, so the relocs get a value of 0.
12093 If this is a discarded function, mark the pc bounds as invalid,
12094 so that GDB will ignore it. */
12095 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12096 return 0;
12097
12098 *lowpc = low;
12099 if (highpc)
12100 *highpc = high;
12101 return ret;
12102 }
12103
12104 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12105 its low and high PC addresses. Do nothing if these addresses could not
12106 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12107 and HIGHPC to the high address if greater than HIGHPC. */
12108
12109 static void
12110 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12111 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12112 struct dwarf2_cu *cu)
12113 {
12114 CORE_ADDR low, high;
12115 struct die_info *child = die->child;
12116
12117 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12118 {
12119 *lowpc = min (*lowpc, low);
12120 *highpc = max (*highpc, high);
12121 }
12122
12123 /* If the language does not allow nested subprograms (either inside
12124 subprograms or lexical blocks), we're done. */
12125 if (cu->language != language_ada)
12126 return;
12127
12128 /* Check all the children of the given DIE. If it contains nested
12129 subprograms, then check their pc bounds. Likewise, we need to
12130 check lexical blocks as well, as they may also contain subprogram
12131 definitions. */
12132 while (child && child->tag)
12133 {
12134 if (child->tag == DW_TAG_subprogram
12135 || child->tag == DW_TAG_lexical_block)
12136 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12137 child = sibling_die (child);
12138 }
12139 }
12140
12141 /* Get the low and high pc's represented by the scope DIE, and store
12142 them in *LOWPC and *HIGHPC. If the correct values can't be
12143 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12144
12145 static void
12146 get_scope_pc_bounds (struct die_info *die,
12147 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12148 struct dwarf2_cu *cu)
12149 {
12150 CORE_ADDR best_low = (CORE_ADDR) -1;
12151 CORE_ADDR best_high = (CORE_ADDR) 0;
12152 CORE_ADDR current_low, current_high;
12153
12154 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12155 {
12156 best_low = current_low;
12157 best_high = current_high;
12158 }
12159 else
12160 {
12161 struct die_info *child = die->child;
12162
12163 while (child && child->tag)
12164 {
12165 switch (child->tag) {
12166 case DW_TAG_subprogram:
12167 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12168 break;
12169 case DW_TAG_namespace:
12170 case DW_TAG_module:
12171 /* FIXME: carlton/2004-01-16: Should we do this for
12172 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12173 that current GCC's always emit the DIEs corresponding
12174 to definitions of methods of classes as children of a
12175 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12176 the DIEs giving the declarations, which could be
12177 anywhere). But I don't see any reason why the
12178 standards says that they have to be there. */
12179 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12180
12181 if (current_low != ((CORE_ADDR) -1))
12182 {
12183 best_low = min (best_low, current_low);
12184 best_high = max (best_high, current_high);
12185 }
12186 break;
12187 default:
12188 /* Ignore. */
12189 break;
12190 }
12191
12192 child = sibling_die (child);
12193 }
12194 }
12195
12196 *lowpc = best_low;
12197 *highpc = best_high;
12198 }
12199
12200 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12201 in DIE. */
12202
12203 static void
12204 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12205 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12206 {
12207 struct objfile *objfile = cu->objfile;
12208 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12209 struct attribute *attr;
12210 struct attribute *attr_high;
12211
12212 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12213 if (attr_high)
12214 {
12215 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12216 if (attr)
12217 {
12218 CORE_ADDR low = attr_value_as_address (attr);
12219 CORE_ADDR high = attr_value_as_address (attr_high);
12220
12221 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12222 high += low;
12223
12224 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12225 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12226 record_block_range (block, low, high - 1);
12227 }
12228 }
12229
12230 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12231 if (attr)
12232 {
12233 bfd *obfd = objfile->obfd;
12234 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12235 We take advantage of the fact that DW_AT_ranges does not appear
12236 in DW_TAG_compile_unit of DWO files. */
12237 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12238
12239 /* The value of the DW_AT_ranges attribute is the offset of the
12240 address range list in the .debug_ranges section. */
12241 unsigned long offset = (DW_UNSND (attr)
12242 + (need_ranges_base ? cu->ranges_base : 0));
12243 const gdb_byte *buffer;
12244
12245 /* For some target architectures, but not others, the
12246 read_address function sign-extends the addresses it returns.
12247 To recognize base address selection entries, we need a
12248 mask. */
12249 unsigned int addr_size = cu->header.addr_size;
12250 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12251
12252 /* The base address, to which the next pair is relative. Note
12253 that this 'base' is a DWARF concept: most entries in a range
12254 list are relative, to reduce the number of relocs against the
12255 debugging information. This is separate from this function's
12256 'baseaddr' argument, which GDB uses to relocate debugging
12257 information from a shared library based on the address at
12258 which the library was loaded. */
12259 CORE_ADDR base = cu->base_address;
12260 int base_known = cu->base_known;
12261
12262 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12263 if (offset >= dwarf2_per_objfile->ranges.size)
12264 {
12265 complaint (&symfile_complaints,
12266 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12267 offset);
12268 return;
12269 }
12270 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12271
12272 for (;;)
12273 {
12274 unsigned int bytes_read;
12275 CORE_ADDR start, end;
12276
12277 start = read_address (obfd, buffer, cu, &bytes_read);
12278 buffer += bytes_read;
12279 end = read_address (obfd, buffer, cu, &bytes_read);
12280 buffer += bytes_read;
12281
12282 /* Did we find the end of the range list? */
12283 if (start == 0 && end == 0)
12284 break;
12285
12286 /* Did we find a base address selection entry? */
12287 else if ((start & base_select_mask) == base_select_mask)
12288 {
12289 base = end;
12290 base_known = 1;
12291 }
12292
12293 /* We found an ordinary address range. */
12294 else
12295 {
12296 if (!base_known)
12297 {
12298 complaint (&symfile_complaints,
12299 _("Invalid .debug_ranges data "
12300 "(no base address)"));
12301 return;
12302 }
12303
12304 if (start > end)
12305 {
12306 /* Inverted range entries are invalid. */
12307 complaint (&symfile_complaints,
12308 _("Invalid .debug_ranges data "
12309 "(inverted range)"));
12310 return;
12311 }
12312
12313 /* Empty range entries have no effect. */
12314 if (start == end)
12315 continue;
12316
12317 start += base + baseaddr;
12318 end += base + baseaddr;
12319
12320 /* A not-uncommon case of bad debug info.
12321 Don't pollute the addrmap with bad data. */
12322 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12323 {
12324 complaint (&symfile_complaints,
12325 _(".debug_ranges entry has start address of zero"
12326 " [in module %s]"), objfile_name (objfile));
12327 continue;
12328 }
12329
12330 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12331 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12332 record_block_range (block, start, end - 1);
12333 }
12334 }
12335 }
12336 }
12337
12338 /* Check whether the producer field indicates either of GCC < 4.6, or the
12339 Intel C/C++ compiler, and cache the result in CU. */
12340
12341 static void
12342 check_producer (struct dwarf2_cu *cu)
12343 {
12344 const char *cs;
12345 int major, minor;
12346
12347 if (cu->producer == NULL)
12348 {
12349 /* For unknown compilers expect their behavior is DWARF version
12350 compliant.
12351
12352 GCC started to support .debug_types sections by -gdwarf-4 since
12353 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12354 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12355 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12356 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12357 }
12358 else if (producer_is_gcc (cu->producer, &major, &minor))
12359 {
12360 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12361 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12362 }
12363 else if (startswith (cu->producer, "Intel(R) C"))
12364 cu->producer_is_icc = 1;
12365 else
12366 {
12367 /* For other non-GCC compilers, expect their behavior is DWARF version
12368 compliant. */
12369 }
12370
12371 cu->checked_producer = 1;
12372 }
12373
12374 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12375 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12376 during 4.6.0 experimental. */
12377
12378 static int
12379 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12380 {
12381 if (!cu->checked_producer)
12382 check_producer (cu);
12383
12384 return cu->producer_is_gxx_lt_4_6;
12385 }
12386
12387 /* Return the default accessibility type if it is not overriden by
12388 DW_AT_accessibility. */
12389
12390 static enum dwarf_access_attribute
12391 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12392 {
12393 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12394 {
12395 /* The default DWARF 2 accessibility for members is public, the default
12396 accessibility for inheritance is private. */
12397
12398 if (die->tag != DW_TAG_inheritance)
12399 return DW_ACCESS_public;
12400 else
12401 return DW_ACCESS_private;
12402 }
12403 else
12404 {
12405 /* DWARF 3+ defines the default accessibility a different way. The same
12406 rules apply now for DW_TAG_inheritance as for the members and it only
12407 depends on the container kind. */
12408
12409 if (die->parent->tag == DW_TAG_class_type)
12410 return DW_ACCESS_private;
12411 else
12412 return DW_ACCESS_public;
12413 }
12414 }
12415
12416 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12417 offset. If the attribute was not found return 0, otherwise return
12418 1. If it was found but could not properly be handled, set *OFFSET
12419 to 0. */
12420
12421 static int
12422 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12423 LONGEST *offset)
12424 {
12425 struct attribute *attr;
12426
12427 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12428 if (attr != NULL)
12429 {
12430 *offset = 0;
12431
12432 /* Note that we do not check for a section offset first here.
12433 This is because DW_AT_data_member_location is new in DWARF 4,
12434 so if we see it, we can assume that a constant form is really
12435 a constant and not a section offset. */
12436 if (attr_form_is_constant (attr))
12437 *offset = dwarf2_get_attr_constant_value (attr, 0);
12438 else if (attr_form_is_section_offset (attr))
12439 dwarf2_complex_location_expr_complaint ();
12440 else if (attr_form_is_block (attr))
12441 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12442 else
12443 dwarf2_complex_location_expr_complaint ();
12444
12445 return 1;
12446 }
12447
12448 return 0;
12449 }
12450
12451 /* Add an aggregate field to the field list. */
12452
12453 static void
12454 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12455 struct dwarf2_cu *cu)
12456 {
12457 struct objfile *objfile = cu->objfile;
12458 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12459 struct nextfield *new_field;
12460 struct attribute *attr;
12461 struct field *fp;
12462 const char *fieldname = "";
12463
12464 /* Allocate a new field list entry and link it in. */
12465 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12466 make_cleanup (xfree, new_field);
12467 memset (new_field, 0, sizeof (struct nextfield));
12468
12469 if (die->tag == DW_TAG_inheritance)
12470 {
12471 new_field->next = fip->baseclasses;
12472 fip->baseclasses = new_field;
12473 }
12474 else
12475 {
12476 new_field->next = fip->fields;
12477 fip->fields = new_field;
12478 }
12479 fip->nfields++;
12480
12481 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12482 if (attr)
12483 new_field->accessibility = DW_UNSND (attr);
12484 else
12485 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12486 if (new_field->accessibility != DW_ACCESS_public)
12487 fip->non_public_fields = 1;
12488
12489 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12490 if (attr)
12491 new_field->virtuality = DW_UNSND (attr);
12492 else
12493 new_field->virtuality = DW_VIRTUALITY_none;
12494
12495 fp = &new_field->field;
12496
12497 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12498 {
12499 LONGEST offset;
12500
12501 /* Data member other than a C++ static data member. */
12502
12503 /* Get type of field. */
12504 fp->type = die_type (die, cu);
12505
12506 SET_FIELD_BITPOS (*fp, 0);
12507
12508 /* Get bit size of field (zero if none). */
12509 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12510 if (attr)
12511 {
12512 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12513 }
12514 else
12515 {
12516 FIELD_BITSIZE (*fp) = 0;
12517 }
12518
12519 /* Get bit offset of field. */
12520 if (handle_data_member_location (die, cu, &offset))
12521 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12522 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12523 if (attr)
12524 {
12525 if (gdbarch_bits_big_endian (gdbarch))
12526 {
12527 /* For big endian bits, the DW_AT_bit_offset gives the
12528 additional bit offset from the MSB of the containing
12529 anonymous object to the MSB of the field. We don't
12530 have to do anything special since we don't need to
12531 know the size of the anonymous object. */
12532 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12533 }
12534 else
12535 {
12536 /* For little endian bits, compute the bit offset to the
12537 MSB of the anonymous object, subtract off the number of
12538 bits from the MSB of the field to the MSB of the
12539 object, and then subtract off the number of bits of
12540 the field itself. The result is the bit offset of
12541 the LSB of the field. */
12542 int anonymous_size;
12543 int bit_offset = DW_UNSND (attr);
12544
12545 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12546 if (attr)
12547 {
12548 /* The size of the anonymous object containing
12549 the bit field is explicit, so use the
12550 indicated size (in bytes). */
12551 anonymous_size = DW_UNSND (attr);
12552 }
12553 else
12554 {
12555 /* The size of the anonymous object containing
12556 the bit field must be inferred from the type
12557 attribute of the data member containing the
12558 bit field. */
12559 anonymous_size = TYPE_LENGTH (fp->type);
12560 }
12561 SET_FIELD_BITPOS (*fp,
12562 (FIELD_BITPOS (*fp)
12563 + anonymous_size * bits_per_byte
12564 - bit_offset - FIELD_BITSIZE (*fp)));
12565 }
12566 }
12567
12568 /* Get name of field. */
12569 fieldname = dwarf2_name (die, cu);
12570 if (fieldname == NULL)
12571 fieldname = "";
12572
12573 /* The name is already allocated along with this objfile, so we don't
12574 need to duplicate it for the type. */
12575 fp->name = fieldname;
12576
12577 /* Change accessibility for artificial fields (e.g. virtual table
12578 pointer or virtual base class pointer) to private. */
12579 if (dwarf2_attr (die, DW_AT_artificial, cu))
12580 {
12581 FIELD_ARTIFICIAL (*fp) = 1;
12582 new_field->accessibility = DW_ACCESS_private;
12583 fip->non_public_fields = 1;
12584 }
12585 }
12586 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12587 {
12588 /* C++ static member. */
12589
12590 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12591 is a declaration, but all versions of G++ as of this writing
12592 (so through at least 3.2.1) incorrectly generate
12593 DW_TAG_variable tags. */
12594
12595 const char *physname;
12596
12597 /* Get name of field. */
12598 fieldname = dwarf2_name (die, cu);
12599 if (fieldname == NULL)
12600 return;
12601
12602 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12603 if (attr
12604 /* Only create a symbol if this is an external value.
12605 new_symbol checks this and puts the value in the global symbol
12606 table, which we want. If it is not external, new_symbol
12607 will try to put the value in cu->list_in_scope which is wrong. */
12608 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12609 {
12610 /* A static const member, not much different than an enum as far as
12611 we're concerned, except that we can support more types. */
12612 new_symbol (die, NULL, cu);
12613 }
12614
12615 /* Get physical name. */
12616 physname = dwarf2_physname (fieldname, die, cu);
12617
12618 /* The name is already allocated along with this objfile, so we don't
12619 need to duplicate it for the type. */
12620 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12621 FIELD_TYPE (*fp) = die_type (die, cu);
12622 FIELD_NAME (*fp) = fieldname;
12623 }
12624 else if (die->tag == DW_TAG_inheritance)
12625 {
12626 LONGEST offset;
12627
12628 /* C++ base class field. */
12629 if (handle_data_member_location (die, cu, &offset))
12630 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12631 FIELD_BITSIZE (*fp) = 0;
12632 FIELD_TYPE (*fp) = die_type (die, cu);
12633 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12634 fip->nbaseclasses++;
12635 }
12636 }
12637
12638 /* Add a typedef defined in the scope of the FIP's class. */
12639
12640 static void
12641 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12642 struct dwarf2_cu *cu)
12643 {
12644 struct objfile *objfile = cu->objfile;
12645 struct typedef_field_list *new_field;
12646 struct attribute *attr;
12647 struct typedef_field *fp;
12648 char *fieldname = "";
12649
12650 /* Allocate a new field list entry and link it in. */
12651 new_field = xzalloc (sizeof (*new_field));
12652 make_cleanup (xfree, new_field);
12653
12654 gdb_assert (die->tag == DW_TAG_typedef);
12655
12656 fp = &new_field->field;
12657
12658 /* Get name of field. */
12659 fp->name = dwarf2_name (die, cu);
12660 if (fp->name == NULL)
12661 return;
12662
12663 fp->type = read_type_die (die, cu);
12664
12665 new_field->next = fip->typedef_field_list;
12666 fip->typedef_field_list = new_field;
12667 fip->typedef_field_list_count++;
12668 }
12669
12670 /* Create the vector of fields, and attach it to the type. */
12671
12672 static void
12673 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12674 struct dwarf2_cu *cu)
12675 {
12676 int nfields = fip->nfields;
12677
12678 /* Record the field count, allocate space for the array of fields,
12679 and create blank accessibility bitfields if necessary. */
12680 TYPE_NFIELDS (type) = nfields;
12681 TYPE_FIELDS (type) = (struct field *)
12682 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12683 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12684
12685 if (fip->non_public_fields && cu->language != language_ada)
12686 {
12687 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12688
12689 TYPE_FIELD_PRIVATE_BITS (type) =
12690 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12691 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12692
12693 TYPE_FIELD_PROTECTED_BITS (type) =
12694 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12695 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12696
12697 TYPE_FIELD_IGNORE_BITS (type) =
12698 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12699 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12700 }
12701
12702 /* If the type has baseclasses, allocate and clear a bit vector for
12703 TYPE_FIELD_VIRTUAL_BITS. */
12704 if (fip->nbaseclasses && cu->language != language_ada)
12705 {
12706 int num_bytes = B_BYTES (fip->nbaseclasses);
12707 unsigned char *pointer;
12708
12709 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12710 pointer = TYPE_ALLOC (type, num_bytes);
12711 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12712 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12713 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12714 }
12715
12716 /* Copy the saved-up fields into the field vector. Start from the head of
12717 the list, adding to the tail of the field array, so that they end up in
12718 the same order in the array in which they were added to the list. */
12719 while (nfields-- > 0)
12720 {
12721 struct nextfield *fieldp;
12722
12723 if (fip->fields)
12724 {
12725 fieldp = fip->fields;
12726 fip->fields = fieldp->next;
12727 }
12728 else
12729 {
12730 fieldp = fip->baseclasses;
12731 fip->baseclasses = fieldp->next;
12732 }
12733
12734 TYPE_FIELD (type, nfields) = fieldp->field;
12735 switch (fieldp->accessibility)
12736 {
12737 case DW_ACCESS_private:
12738 if (cu->language != language_ada)
12739 SET_TYPE_FIELD_PRIVATE (type, nfields);
12740 break;
12741
12742 case DW_ACCESS_protected:
12743 if (cu->language != language_ada)
12744 SET_TYPE_FIELD_PROTECTED (type, nfields);
12745 break;
12746
12747 case DW_ACCESS_public:
12748 break;
12749
12750 default:
12751 /* Unknown accessibility. Complain and treat it as public. */
12752 {
12753 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12754 fieldp->accessibility);
12755 }
12756 break;
12757 }
12758 if (nfields < fip->nbaseclasses)
12759 {
12760 switch (fieldp->virtuality)
12761 {
12762 case DW_VIRTUALITY_virtual:
12763 case DW_VIRTUALITY_pure_virtual:
12764 if (cu->language == language_ada)
12765 error (_("unexpected virtuality in component of Ada type"));
12766 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12767 break;
12768 }
12769 }
12770 }
12771 }
12772
12773 /* Return true if this member function is a constructor, false
12774 otherwise. */
12775
12776 static int
12777 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12778 {
12779 const char *fieldname;
12780 const char *type_name;
12781 int len;
12782
12783 if (die->parent == NULL)
12784 return 0;
12785
12786 if (die->parent->tag != DW_TAG_structure_type
12787 && die->parent->tag != DW_TAG_union_type
12788 && die->parent->tag != DW_TAG_class_type)
12789 return 0;
12790
12791 fieldname = dwarf2_name (die, cu);
12792 type_name = dwarf2_name (die->parent, cu);
12793 if (fieldname == NULL || type_name == NULL)
12794 return 0;
12795
12796 len = strlen (fieldname);
12797 return (strncmp (fieldname, type_name, len) == 0
12798 && (type_name[len] == '\0' || type_name[len] == '<'));
12799 }
12800
12801 /* Add a member function to the proper fieldlist. */
12802
12803 static void
12804 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12805 struct type *type, struct dwarf2_cu *cu)
12806 {
12807 struct objfile *objfile = cu->objfile;
12808 struct attribute *attr;
12809 struct fnfieldlist *flp;
12810 int i;
12811 struct fn_field *fnp;
12812 const char *fieldname;
12813 struct nextfnfield *new_fnfield;
12814 struct type *this_type;
12815 enum dwarf_access_attribute accessibility;
12816
12817 if (cu->language == language_ada)
12818 error (_("unexpected member function in Ada type"));
12819
12820 /* Get name of member function. */
12821 fieldname = dwarf2_name (die, cu);
12822 if (fieldname == NULL)
12823 return;
12824
12825 /* Look up member function name in fieldlist. */
12826 for (i = 0; i < fip->nfnfields; i++)
12827 {
12828 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12829 break;
12830 }
12831
12832 /* Create new list element if necessary. */
12833 if (i < fip->nfnfields)
12834 flp = &fip->fnfieldlists[i];
12835 else
12836 {
12837 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12838 {
12839 fip->fnfieldlists = (struct fnfieldlist *)
12840 xrealloc (fip->fnfieldlists,
12841 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12842 * sizeof (struct fnfieldlist));
12843 if (fip->nfnfields == 0)
12844 make_cleanup (free_current_contents, &fip->fnfieldlists);
12845 }
12846 flp = &fip->fnfieldlists[fip->nfnfields];
12847 flp->name = fieldname;
12848 flp->length = 0;
12849 flp->head = NULL;
12850 i = fip->nfnfields++;
12851 }
12852
12853 /* Create a new member function field and chain it to the field list
12854 entry. */
12855 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12856 make_cleanup (xfree, new_fnfield);
12857 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12858 new_fnfield->next = flp->head;
12859 flp->head = new_fnfield;
12860 flp->length++;
12861
12862 /* Fill in the member function field info. */
12863 fnp = &new_fnfield->fnfield;
12864
12865 /* Delay processing of the physname until later. */
12866 if (cu->language == language_cplus || cu->language == language_java)
12867 {
12868 add_to_method_list (type, i, flp->length - 1, fieldname,
12869 die, cu);
12870 }
12871 else
12872 {
12873 const char *physname = dwarf2_physname (fieldname, die, cu);
12874 fnp->physname = physname ? physname : "";
12875 }
12876
12877 fnp->type = alloc_type (objfile);
12878 this_type = read_type_die (die, cu);
12879 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12880 {
12881 int nparams = TYPE_NFIELDS (this_type);
12882
12883 /* TYPE is the domain of this method, and THIS_TYPE is the type
12884 of the method itself (TYPE_CODE_METHOD). */
12885 smash_to_method_type (fnp->type, type,
12886 TYPE_TARGET_TYPE (this_type),
12887 TYPE_FIELDS (this_type),
12888 TYPE_NFIELDS (this_type),
12889 TYPE_VARARGS (this_type));
12890
12891 /* Handle static member functions.
12892 Dwarf2 has no clean way to discern C++ static and non-static
12893 member functions. G++ helps GDB by marking the first
12894 parameter for non-static member functions (which is the this
12895 pointer) as artificial. We obtain this information from
12896 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12897 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12898 fnp->voffset = VOFFSET_STATIC;
12899 }
12900 else
12901 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12902 dwarf2_full_name (fieldname, die, cu));
12903
12904 /* Get fcontext from DW_AT_containing_type if present. */
12905 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12906 fnp->fcontext = die_containing_type (die, cu);
12907
12908 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12909 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12910
12911 /* Get accessibility. */
12912 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12913 if (attr)
12914 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12915 else
12916 accessibility = dwarf2_default_access_attribute (die, cu);
12917 switch (accessibility)
12918 {
12919 case DW_ACCESS_private:
12920 fnp->is_private = 1;
12921 break;
12922 case DW_ACCESS_protected:
12923 fnp->is_protected = 1;
12924 break;
12925 }
12926
12927 /* Check for artificial methods. */
12928 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12929 if (attr && DW_UNSND (attr) != 0)
12930 fnp->is_artificial = 1;
12931
12932 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12933
12934 /* Get index in virtual function table if it is a virtual member
12935 function. For older versions of GCC, this is an offset in the
12936 appropriate virtual table, as specified by DW_AT_containing_type.
12937 For everyone else, it is an expression to be evaluated relative
12938 to the object address. */
12939
12940 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12941 if (attr)
12942 {
12943 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12944 {
12945 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12946 {
12947 /* Old-style GCC. */
12948 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12949 }
12950 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12951 || (DW_BLOCK (attr)->size > 1
12952 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12953 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12954 {
12955 struct dwarf_block blk;
12956 int offset;
12957
12958 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12959 ? 1 : 2);
12960 blk.size = DW_BLOCK (attr)->size - offset;
12961 blk.data = DW_BLOCK (attr)->data + offset;
12962 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12963 if ((fnp->voffset % cu->header.addr_size) != 0)
12964 dwarf2_complex_location_expr_complaint ();
12965 else
12966 fnp->voffset /= cu->header.addr_size;
12967 fnp->voffset += 2;
12968 }
12969 else
12970 dwarf2_complex_location_expr_complaint ();
12971
12972 if (!fnp->fcontext)
12973 {
12974 /* If there is no `this' field and no DW_AT_containing_type,
12975 we cannot actually find a base class context for the
12976 vtable! */
12977 if (TYPE_NFIELDS (this_type) == 0
12978 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12979 {
12980 complaint (&symfile_complaints,
12981 _("cannot determine context for virtual member "
12982 "function \"%s\" (offset %d)"),
12983 fieldname, die->offset.sect_off);
12984 }
12985 else
12986 {
12987 fnp->fcontext
12988 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12989 }
12990 }
12991 }
12992 else if (attr_form_is_section_offset (attr))
12993 {
12994 dwarf2_complex_location_expr_complaint ();
12995 }
12996 else
12997 {
12998 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12999 fieldname);
13000 }
13001 }
13002 else
13003 {
13004 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13005 if (attr && DW_UNSND (attr))
13006 {
13007 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13008 complaint (&symfile_complaints,
13009 _("Member function \"%s\" (offset %d) is virtual "
13010 "but the vtable offset is not specified"),
13011 fieldname, die->offset.sect_off);
13012 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13013 TYPE_CPLUS_DYNAMIC (type) = 1;
13014 }
13015 }
13016 }
13017
13018 /* Create the vector of member function fields, and attach it to the type. */
13019
13020 static void
13021 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13022 struct dwarf2_cu *cu)
13023 {
13024 struct fnfieldlist *flp;
13025 int i;
13026
13027 if (cu->language == language_ada)
13028 error (_("unexpected member functions in Ada type"));
13029
13030 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13031 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13032 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13033
13034 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13035 {
13036 struct nextfnfield *nfp = flp->head;
13037 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13038 int k;
13039
13040 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13041 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13042 fn_flp->fn_fields = (struct fn_field *)
13043 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13044 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13045 fn_flp->fn_fields[k] = nfp->fnfield;
13046 }
13047
13048 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13049 }
13050
13051 /* Returns non-zero if NAME is the name of a vtable member in CU's
13052 language, zero otherwise. */
13053 static int
13054 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13055 {
13056 static const char vptr[] = "_vptr";
13057 static const char vtable[] = "vtable";
13058
13059 /* Look for the C++ and Java forms of the vtable. */
13060 if ((cu->language == language_java
13061 && startswith (name, vtable))
13062 || (startswith (name, vptr)
13063 && is_cplus_marker (name[sizeof (vptr) - 1])))
13064 return 1;
13065
13066 return 0;
13067 }
13068
13069 /* GCC outputs unnamed structures that are really pointers to member
13070 functions, with the ABI-specified layout. If TYPE describes
13071 such a structure, smash it into a member function type.
13072
13073 GCC shouldn't do this; it should just output pointer to member DIEs.
13074 This is GCC PR debug/28767. */
13075
13076 static void
13077 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13078 {
13079 struct type *pfn_type, *self_type, *new_type;
13080
13081 /* Check for a structure with no name and two children. */
13082 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13083 return;
13084
13085 /* Check for __pfn and __delta members. */
13086 if (TYPE_FIELD_NAME (type, 0) == NULL
13087 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13088 || TYPE_FIELD_NAME (type, 1) == NULL
13089 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13090 return;
13091
13092 /* Find the type of the method. */
13093 pfn_type = TYPE_FIELD_TYPE (type, 0);
13094 if (pfn_type == NULL
13095 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13096 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13097 return;
13098
13099 /* Look for the "this" argument. */
13100 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13101 if (TYPE_NFIELDS (pfn_type) == 0
13102 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13103 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13104 return;
13105
13106 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13107 new_type = alloc_type (objfile);
13108 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13109 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13110 TYPE_VARARGS (pfn_type));
13111 smash_to_methodptr_type (type, new_type);
13112 }
13113
13114 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13115 (icc). */
13116
13117 static int
13118 producer_is_icc (struct dwarf2_cu *cu)
13119 {
13120 if (!cu->checked_producer)
13121 check_producer (cu);
13122
13123 return cu->producer_is_icc;
13124 }
13125
13126 /* Called when we find the DIE that starts a structure or union scope
13127 (definition) to create a type for the structure or union. Fill in
13128 the type's name and general properties; the members will not be
13129 processed until process_structure_scope. A symbol table entry for
13130 the type will also not be done until process_structure_scope (assuming
13131 the type has a name).
13132
13133 NOTE: we need to call these functions regardless of whether or not the
13134 DIE has a DW_AT_name attribute, since it might be an anonymous
13135 structure or union. This gets the type entered into our set of
13136 user defined types. */
13137
13138 static struct type *
13139 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13140 {
13141 struct objfile *objfile = cu->objfile;
13142 struct type *type;
13143 struct attribute *attr;
13144 const char *name;
13145
13146 /* If the definition of this type lives in .debug_types, read that type.
13147 Don't follow DW_AT_specification though, that will take us back up
13148 the chain and we want to go down. */
13149 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13150 if (attr)
13151 {
13152 type = get_DW_AT_signature_type (die, attr, cu);
13153
13154 /* The type's CU may not be the same as CU.
13155 Ensure TYPE is recorded with CU in die_type_hash. */
13156 return set_die_type (die, type, cu);
13157 }
13158
13159 type = alloc_type (objfile);
13160 INIT_CPLUS_SPECIFIC (type);
13161
13162 name = dwarf2_name (die, cu);
13163 if (name != NULL)
13164 {
13165 if (cu->language == language_cplus
13166 || cu->language == language_java
13167 || cu->language == language_d)
13168 {
13169 const char *full_name = dwarf2_full_name (name, die, cu);
13170
13171 /* dwarf2_full_name might have already finished building the DIE's
13172 type. If so, there is no need to continue. */
13173 if (get_die_type (die, cu) != NULL)
13174 return get_die_type (die, cu);
13175
13176 TYPE_TAG_NAME (type) = full_name;
13177 if (die->tag == DW_TAG_structure_type
13178 || die->tag == DW_TAG_class_type)
13179 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13180 }
13181 else
13182 {
13183 /* The name is already allocated along with this objfile, so
13184 we don't need to duplicate it for the type. */
13185 TYPE_TAG_NAME (type) = name;
13186 if (die->tag == DW_TAG_class_type)
13187 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13188 }
13189 }
13190
13191 if (die->tag == DW_TAG_structure_type)
13192 {
13193 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13194 }
13195 else if (die->tag == DW_TAG_union_type)
13196 {
13197 TYPE_CODE (type) = TYPE_CODE_UNION;
13198 }
13199 else
13200 {
13201 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13202 }
13203
13204 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13205 TYPE_DECLARED_CLASS (type) = 1;
13206
13207 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13208 if (attr)
13209 {
13210 TYPE_LENGTH (type) = DW_UNSND (attr);
13211 }
13212 else
13213 {
13214 TYPE_LENGTH (type) = 0;
13215 }
13216
13217 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13218 {
13219 /* ICC does not output the required DW_AT_declaration
13220 on incomplete types, but gives them a size of zero. */
13221 TYPE_STUB (type) = 1;
13222 }
13223 else
13224 TYPE_STUB_SUPPORTED (type) = 1;
13225
13226 if (die_is_declaration (die, cu))
13227 TYPE_STUB (type) = 1;
13228 else if (attr == NULL && die->child == NULL
13229 && producer_is_realview (cu->producer))
13230 /* RealView does not output the required DW_AT_declaration
13231 on incomplete types. */
13232 TYPE_STUB (type) = 1;
13233
13234 /* We need to add the type field to the die immediately so we don't
13235 infinitely recurse when dealing with pointers to the structure
13236 type within the structure itself. */
13237 set_die_type (die, type, cu);
13238
13239 /* set_die_type should be already done. */
13240 set_descriptive_type (type, die, cu);
13241
13242 return type;
13243 }
13244
13245 /* Finish creating a structure or union type, including filling in
13246 its members and creating a symbol for it. */
13247
13248 static void
13249 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13250 {
13251 struct objfile *objfile = cu->objfile;
13252 struct die_info *child_die;
13253 struct type *type;
13254
13255 type = get_die_type (die, cu);
13256 if (type == NULL)
13257 type = read_structure_type (die, cu);
13258
13259 if (die->child != NULL && ! die_is_declaration (die, cu))
13260 {
13261 struct field_info fi;
13262 VEC (symbolp) *template_args = NULL;
13263 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13264
13265 memset (&fi, 0, sizeof (struct field_info));
13266
13267 child_die = die->child;
13268
13269 while (child_die && child_die->tag)
13270 {
13271 if (child_die->tag == DW_TAG_member
13272 || child_die->tag == DW_TAG_variable)
13273 {
13274 /* NOTE: carlton/2002-11-05: A C++ static data member
13275 should be a DW_TAG_member that is a declaration, but
13276 all versions of G++ as of this writing (so through at
13277 least 3.2.1) incorrectly generate DW_TAG_variable
13278 tags for them instead. */
13279 dwarf2_add_field (&fi, child_die, cu);
13280 }
13281 else if (child_die->tag == DW_TAG_subprogram)
13282 {
13283 /* C++ member function. */
13284 dwarf2_add_member_fn (&fi, child_die, type, cu);
13285 }
13286 else if (child_die->tag == DW_TAG_inheritance)
13287 {
13288 /* C++ base class field. */
13289 dwarf2_add_field (&fi, child_die, cu);
13290 }
13291 else if (child_die->tag == DW_TAG_typedef)
13292 dwarf2_add_typedef (&fi, child_die, cu);
13293 else if (child_die->tag == DW_TAG_template_type_param
13294 || child_die->tag == DW_TAG_template_value_param)
13295 {
13296 struct symbol *arg = new_symbol (child_die, NULL, cu);
13297
13298 if (arg != NULL)
13299 VEC_safe_push (symbolp, template_args, arg);
13300 }
13301
13302 child_die = sibling_die (child_die);
13303 }
13304
13305 /* Attach template arguments to type. */
13306 if (! VEC_empty (symbolp, template_args))
13307 {
13308 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13309 TYPE_N_TEMPLATE_ARGUMENTS (type)
13310 = VEC_length (symbolp, template_args);
13311 TYPE_TEMPLATE_ARGUMENTS (type)
13312 = obstack_alloc (&objfile->objfile_obstack,
13313 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13314 * sizeof (struct symbol *)));
13315 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13316 VEC_address (symbolp, template_args),
13317 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13318 * sizeof (struct symbol *)));
13319 VEC_free (symbolp, template_args);
13320 }
13321
13322 /* Attach fields and member functions to the type. */
13323 if (fi.nfields)
13324 dwarf2_attach_fields_to_type (&fi, type, cu);
13325 if (fi.nfnfields)
13326 {
13327 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13328
13329 /* Get the type which refers to the base class (possibly this
13330 class itself) which contains the vtable pointer for the current
13331 class from the DW_AT_containing_type attribute. This use of
13332 DW_AT_containing_type is a GNU extension. */
13333
13334 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13335 {
13336 struct type *t = die_containing_type (die, cu);
13337
13338 set_type_vptr_basetype (type, t);
13339 if (type == t)
13340 {
13341 int i;
13342
13343 /* Our own class provides vtbl ptr. */
13344 for (i = TYPE_NFIELDS (t) - 1;
13345 i >= TYPE_N_BASECLASSES (t);
13346 --i)
13347 {
13348 const char *fieldname = TYPE_FIELD_NAME (t, i);
13349
13350 if (is_vtable_name (fieldname, cu))
13351 {
13352 set_type_vptr_fieldno (type, i);
13353 break;
13354 }
13355 }
13356
13357 /* Complain if virtual function table field not found. */
13358 if (i < TYPE_N_BASECLASSES (t))
13359 complaint (&symfile_complaints,
13360 _("virtual function table pointer "
13361 "not found when defining class '%s'"),
13362 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13363 "");
13364 }
13365 else
13366 {
13367 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13368 }
13369 }
13370 else if (cu->producer
13371 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13372 {
13373 /* The IBM XLC compiler does not provide direct indication
13374 of the containing type, but the vtable pointer is
13375 always named __vfp. */
13376
13377 int i;
13378
13379 for (i = TYPE_NFIELDS (type) - 1;
13380 i >= TYPE_N_BASECLASSES (type);
13381 --i)
13382 {
13383 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13384 {
13385 set_type_vptr_fieldno (type, i);
13386 set_type_vptr_basetype (type, type);
13387 break;
13388 }
13389 }
13390 }
13391 }
13392
13393 /* Copy fi.typedef_field_list linked list elements content into the
13394 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13395 if (fi.typedef_field_list)
13396 {
13397 int i = fi.typedef_field_list_count;
13398
13399 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13400 TYPE_TYPEDEF_FIELD_ARRAY (type)
13401 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13402 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13403
13404 /* Reverse the list order to keep the debug info elements order. */
13405 while (--i >= 0)
13406 {
13407 struct typedef_field *dest, *src;
13408
13409 dest = &TYPE_TYPEDEF_FIELD (type, i);
13410 src = &fi.typedef_field_list->field;
13411 fi.typedef_field_list = fi.typedef_field_list->next;
13412 *dest = *src;
13413 }
13414 }
13415
13416 do_cleanups (back_to);
13417
13418 if (HAVE_CPLUS_STRUCT (type))
13419 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13420 }
13421
13422 quirk_gcc_member_function_pointer (type, objfile);
13423
13424 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13425 snapshots) has been known to create a die giving a declaration
13426 for a class that has, as a child, a die giving a definition for a
13427 nested class. So we have to process our children even if the
13428 current die is a declaration. Normally, of course, a declaration
13429 won't have any children at all. */
13430
13431 child_die = die->child;
13432
13433 while (child_die != NULL && child_die->tag)
13434 {
13435 if (child_die->tag == DW_TAG_member
13436 || child_die->tag == DW_TAG_variable
13437 || child_die->tag == DW_TAG_inheritance
13438 || child_die->tag == DW_TAG_template_value_param
13439 || child_die->tag == DW_TAG_template_type_param)
13440 {
13441 /* Do nothing. */
13442 }
13443 else
13444 process_die (child_die, cu);
13445
13446 child_die = sibling_die (child_die);
13447 }
13448
13449 /* Do not consider external references. According to the DWARF standard,
13450 these DIEs are identified by the fact that they have no byte_size
13451 attribute, and a declaration attribute. */
13452 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13453 || !die_is_declaration (die, cu))
13454 new_symbol (die, type, cu);
13455 }
13456
13457 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13458 update TYPE using some information only available in DIE's children. */
13459
13460 static void
13461 update_enumeration_type_from_children (struct die_info *die,
13462 struct type *type,
13463 struct dwarf2_cu *cu)
13464 {
13465 struct obstack obstack;
13466 struct die_info *child_die;
13467 int unsigned_enum = 1;
13468 int flag_enum = 1;
13469 ULONGEST mask = 0;
13470 struct cleanup *old_chain;
13471
13472 obstack_init (&obstack);
13473 old_chain = make_cleanup_obstack_free (&obstack);
13474
13475 for (child_die = die->child;
13476 child_die != NULL && child_die->tag;
13477 child_die = sibling_die (child_die))
13478 {
13479 struct attribute *attr;
13480 LONGEST value;
13481 const gdb_byte *bytes;
13482 struct dwarf2_locexpr_baton *baton;
13483 const char *name;
13484
13485 if (child_die->tag != DW_TAG_enumerator)
13486 continue;
13487
13488 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13489 if (attr == NULL)
13490 continue;
13491
13492 name = dwarf2_name (child_die, cu);
13493 if (name == NULL)
13494 name = "<anonymous enumerator>";
13495
13496 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13497 &value, &bytes, &baton);
13498 if (value < 0)
13499 {
13500 unsigned_enum = 0;
13501 flag_enum = 0;
13502 }
13503 else if ((mask & value) != 0)
13504 flag_enum = 0;
13505 else
13506 mask |= value;
13507
13508 /* If we already know that the enum type is neither unsigned, nor
13509 a flag type, no need to look at the rest of the enumerates. */
13510 if (!unsigned_enum && !flag_enum)
13511 break;
13512 }
13513
13514 if (unsigned_enum)
13515 TYPE_UNSIGNED (type) = 1;
13516 if (flag_enum)
13517 TYPE_FLAG_ENUM (type) = 1;
13518
13519 do_cleanups (old_chain);
13520 }
13521
13522 /* Given a DW_AT_enumeration_type die, set its type. We do not
13523 complete the type's fields yet, or create any symbols. */
13524
13525 static struct type *
13526 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13527 {
13528 struct objfile *objfile = cu->objfile;
13529 struct type *type;
13530 struct attribute *attr;
13531 const char *name;
13532
13533 /* If the definition of this type lives in .debug_types, read that type.
13534 Don't follow DW_AT_specification though, that will take us back up
13535 the chain and we want to go down. */
13536 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13537 if (attr)
13538 {
13539 type = get_DW_AT_signature_type (die, attr, cu);
13540
13541 /* The type's CU may not be the same as CU.
13542 Ensure TYPE is recorded with CU in die_type_hash. */
13543 return set_die_type (die, type, cu);
13544 }
13545
13546 type = alloc_type (objfile);
13547
13548 TYPE_CODE (type) = TYPE_CODE_ENUM;
13549 name = dwarf2_full_name (NULL, die, cu);
13550 if (name != NULL)
13551 TYPE_TAG_NAME (type) = name;
13552
13553 attr = dwarf2_attr (die, DW_AT_type, cu);
13554 if (attr != NULL)
13555 {
13556 struct type *underlying_type = die_type (die, cu);
13557
13558 TYPE_TARGET_TYPE (type) = underlying_type;
13559 }
13560
13561 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13562 if (attr)
13563 {
13564 TYPE_LENGTH (type) = DW_UNSND (attr);
13565 }
13566 else
13567 {
13568 TYPE_LENGTH (type) = 0;
13569 }
13570
13571 /* The enumeration DIE can be incomplete. In Ada, any type can be
13572 declared as private in the package spec, and then defined only
13573 inside the package body. Such types are known as Taft Amendment
13574 Types. When another package uses such a type, an incomplete DIE
13575 may be generated by the compiler. */
13576 if (die_is_declaration (die, cu))
13577 TYPE_STUB (type) = 1;
13578
13579 /* Finish the creation of this type by using the enum's children.
13580 We must call this even when the underlying type has been provided
13581 so that we can determine if we're looking at a "flag" enum. */
13582 update_enumeration_type_from_children (die, type, cu);
13583
13584 /* If this type has an underlying type that is not a stub, then we
13585 may use its attributes. We always use the "unsigned" attribute
13586 in this situation, because ordinarily we guess whether the type
13587 is unsigned -- but the guess can be wrong and the underlying type
13588 can tell us the reality. However, we defer to a local size
13589 attribute if one exists, because this lets the compiler override
13590 the underlying type if needed. */
13591 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13592 {
13593 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13594 if (TYPE_LENGTH (type) == 0)
13595 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13596 }
13597
13598 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13599
13600 return set_die_type (die, type, cu);
13601 }
13602
13603 /* Given a pointer to a die which begins an enumeration, process all
13604 the dies that define the members of the enumeration, and create the
13605 symbol for the enumeration type.
13606
13607 NOTE: We reverse the order of the element list. */
13608
13609 static void
13610 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13611 {
13612 struct type *this_type;
13613
13614 this_type = get_die_type (die, cu);
13615 if (this_type == NULL)
13616 this_type = read_enumeration_type (die, cu);
13617
13618 if (die->child != NULL)
13619 {
13620 struct die_info *child_die;
13621 struct symbol *sym;
13622 struct field *fields = NULL;
13623 int num_fields = 0;
13624 const char *name;
13625
13626 child_die = die->child;
13627 while (child_die && child_die->tag)
13628 {
13629 if (child_die->tag != DW_TAG_enumerator)
13630 {
13631 process_die (child_die, cu);
13632 }
13633 else
13634 {
13635 name = dwarf2_name (child_die, cu);
13636 if (name)
13637 {
13638 sym = new_symbol (child_die, this_type, cu);
13639
13640 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13641 {
13642 fields = (struct field *)
13643 xrealloc (fields,
13644 (num_fields + DW_FIELD_ALLOC_CHUNK)
13645 * sizeof (struct field));
13646 }
13647
13648 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13649 FIELD_TYPE (fields[num_fields]) = NULL;
13650 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13651 FIELD_BITSIZE (fields[num_fields]) = 0;
13652
13653 num_fields++;
13654 }
13655 }
13656
13657 child_die = sibling_die (child_die);
13658 }
13659
13660 if (num_fields)
13661 {
13662 TYPE_NFIELDS (this_type) = num_fields;
13663 TYPE_FIELDS (this_type) = (struct field *)
13664 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13665 memcpy (TYPE_FIELDS (this_type), fields,
13666 sizeof (struct field) * num_fields);
13667 xfree (fields);
13668 }
13669 }
13670
13671 /* If we are reading an enum from a .debug_types unit, and the enum
13672 is a declaration, and the enum is not the signatured type in the
13673 unit, then we do not want to add a symbol for it. Adding a
13674 symbol would in some cases obscure the true definition of the
13675 enum, giving users an incomplete type when the definition is
13676 actually available. Note that we do not want to do this for all
13677 enums which are just declarations, because C++0x allows forward
13678 enum declarations. */
13679 if (cu->per_cu->is_debug_types
13680 && die_is_declaration (die, cu))
13681 {
13682 struct signatured_type *sig_type;
13683
13684 sig_type = (struct signatured_type *) cu->per_cu;
13685 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13686 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13687 return;
13688 }
13689
13690 new_symbol (die, this_type, cu);
13691 }
13692
13693 /* Extract all information from a DW_TAG_array_type DIE and put it in
13694 the DIE's type field. For now, this only handles one dimensional
13695 arrays. */
13696
13697 static struct type *
13698 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13699 {
13700 struct objfile *objfile = cu->objfile;
13701 struct die_info *child_die;
13702 struct type *type;
13703 struct type *element_type, *range_type, *index_type;
13704 struct type **range_types = NULL;
13705 struct attribute *attr;
13706 int ndim = 0;
13707 struct cleanup *back_to;
13708 const char *name;
13709 unsigned int bit_stride = 0;
13710
13711 element_type = die_type (die, cu);
13712
13713 /* The die_type call above may have already set the type for this DIE. */
13714 type = get_die_type (die, cu);
13715 if (type)
13716 return type;
13717
13718 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13719 if (attr != NULL)
13720 bit_stride = DW_UNSND (attr) * 8;
13721
13722 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13723 if (attr != NULL)
13724 bit_stride = DW_UNSND (attr);
13725
13726 /* Irix 6.2 native cc creates array types without children for
13727 arrays with unspecified length. */
13728 if (die->child == NULL)
13729 {
13730 index_type = objfile_type (objfile)->builtin_int;
13731 range_type = create_static_range_type (NULL, index_type, 0, -1);
13732 type = create_array_type_with_stride (NULL, element_type, range_type,
13733 bit_stride);
13734 return set_die_type (die, type, cu);
13735 }
13736
13737 back_to = make_cleanup (null_cleanup, NULL);
13738 child_die = die->child;
13739 while (child_die && child_die->tag)
13740 {
13741 if (child_die->tag == DW_TAG_subrange_type)
13742 {
13743 struct type *child_type = read_type_die (child_die, cu);
13744
13745 if (child_type != NULL)
13746 {
13747 /* The range type was succesfully read. Save it for the
13748 array type creation. */
13749 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13750 {
13751 range_types = (struct type **)
13752 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13753 * sizeof (struct type *));
13754 if (ndim == 0)
13755 make_cleanup (free_current_contents, &range_types);
13756 }
13757 range_types[ndim++] = child_type;
13758 }
13759 }
13760 child_die = sibling_die (child_die);
13761 }
13762
13763 /* Dwarf2 dimensions are output from left to right, create the
13764 necessary array types in backwards order. */
13765
13766 type = element_type;
13767
13768 if (read_array_order (die, cu) == DW_ORD_col_major)
13769 {
13770 int i = 0;
13771
13772 while (i < ndim)
13773 type = create_array_type_with_stride (NULL, type, range_types[i++],
13774 bit_stride);
13775 }
13776 else
13777 {
13778 while (ndim-- > 0)
13779 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13780 bit_stride);
13781 }
13782
13783 /* Understand Dwarf2 support for vector types (like they occur on
13784 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13785 array type. This is not part of the Dwarf2/3 standard yet, but a
13786 custom vendor extension. The main difference between a regular
13787 array and the vector variant is that vectors are passed by value
13788 to functions. */
13789 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13790 if (attr)
13791 make_vector_type (type);
13792
13793 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13794 implementation may choose to implement triple vectors using this
13795 attribute. */
13796 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13797 if (attr)
13798 {
13799 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13800 TYPE_LENGTH (type) = DW_UNSND (attr);
13801 else
13802 complaint (&symfile_complaints,
13803 _("DW_AT_byte_size for array type smaller "
13804 "than the total size of elements"));
13805 }
13806
13807 name = dwarf2_name (die, cu);
13808 if (name)
13809 TYPE_NAME (type) = name;
13810
13811 /* Install the type in the die. */
13812 set_die_type (die, type, cu);
13813
13814 /* set_die_type should be already done. */
13815 set_descriptive_type (type, die, cu);
13816
13817 do_cleanups (back_to);
13818
13819 return type;
13820 }
13821
13822 static enum dwarf_array_dim_ordering
13823 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13824 {
13825 struct attribute *attr;
13826
13827 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13828
13829 if (attr)
13830 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13831
13832 /* GNU F77 is a special case, as at 08/2004 array type info is the
13833 opposite order to the dwarf2 specification, but data is still
13834 laid out as per normal fortran.
13835
13836 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13837 version checking. */
13838
13839 if (cu->language == language_fortran
13840 && cu->producer && strstr (cu->producer, "GNU F77"))
13841 {
13842 return DW_ORD_row_major;
13843 }
13844
13845 switch (cu->language_defn->la_array_ordering)
13846 {
13847 case array_column_major:
13848 return DW_ORD_col_major;
13849 case array_row_major:
13850 default:
13851 return DW_ORD_row_major;
13852 };
13853 }
13854
13855 /* Extract all information from a DW_TAG_set_type DIE and put it in
13856 the DIE's type field. */
13857
13858 static struct type *
13859 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13860 {
13861 struct type *domain_type, *set_type;
13862 struct attribute *attr;
13863
13864 domain_type = die_type (die, cu);
13865
13866 /* The die_type call above may have already set the type for this DIE. */
13867 set_type = get_die_type (die, cu);
13868 if (set_type)
13869 return set_type;
13870
13871 set_type = create_set_type (NULL, domain_type);
13872
13873 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13874 if (attr)
13875 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13876
13877 return set_die_type (die, set_type, cu);
13878 }
13879
13880 /* A helper for read_common_block that creates a locexpr baton.
13881 SYM is the symbol which we are marking as computed.
13882 COMMON_DIE is the DIE for the common block.
13883 COMMON_LOC is the location expression attribute for the common
13884 block itself.
13885 MEMBER_LOC is the location expression attribute for the particular
13886 member of the common block that we are processing.
13887 CU is the CU from which the above come. */
13888
13889 static void
13890 mark_common_block_symbol_computed (struct symbol *sym,
13891 struct die_info *common_die,
13892 struct attribute *common_loc,
13893 struct attribute *member_loc,
13894 struct dwarf2_cu *cu)
13895 {
13896 struct objfile *objfile = dwarf2_per_objfile->objfile;
13897 struct dwarf2_locexpr_baton *baton;
13898 gdb_byte *ptr;
13899 unsigned int cu_off;
13900 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13901 LONGEST offset = 0;
13902
13903 gdb_assert (common_loc && member_loc);
13904 gdb_assert (attr_form_is_block (common_loc));
13905 gdb_assert (attr_form_is_block (member_loc)
13906 || attr_form_is_constant (member_loc));
13907
13908 baton = obstack_alloc (&objfile->objfile_obstack,
13909 sizeof (struct dwarf2_locexpr_baton));
13910 baton->per_cu = cu->per_cu;
13911 gdb_assert (baton->per_cu);
13912
13913 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13914
13915 if (attr_form_is_constant (member_loc))
13916 {
13917 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13918 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13919 }
13920 else
13921 baton->size += DW_BLOCK (member_loc)->size;
13922
13923 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13924 baton->data = ptr;
13925
13926 *ptr++ = DW_OP_call4;
13927 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13928 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13929 ptr += 4;
13930
13931 if (attr_form_is_constant (member_loc))
13932 {
13933 *ptr++ = DW_OP_addr;
13934 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13935 ptr += cu->header.addr_size;
13936 }
13937 else
13938 {
13939 /* We have to copy the data here, because DW_OP_call4 will only
13940 use a DW_AT_location attribute. */
13941 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13942 ptr += DW_BLOCK (member_loc)->size;
13943 }
13944
13945 *ptr++ = DW_OP_plus;
13946 gdb_assert (ptr - baton->data == baton->size);
13947
13948 SYMBOL_LOCATION_BATON (sym) = baton;
13949 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13950 }
13951
13952 /* Create appropriate locally-scoped variables for all the
13953 DW_TAG_common_block entries. Also create a struct common_block
13954 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13955 is used to sepate the common blocks name namespace from regular
13956 variable names. */
13957
13958 static void
13959 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13960 {
13961 struct attribute *attr;
13962
13963 attr = dwarf2_attr (die, DW_AT_location, cu);
13964 if (attr)
13965 {
13966 /* Support the .debug_loc offsets. */
13967 if (attr_form_is_block (attr))
13968 {
13969 /* Ok. */
13970 }
13971 else if (attr_form_is_section_offset (attr))
13972 {
13973 dwarf2_complex_location_expr_complaint ();
13974 attr = NULL;
13975 }
13976 else
13977 {
13978 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13979 "common block member");
13980 attr = NULL;
13981 }
13982 }
13983
13984 if (die->child != NULL)
13985 {
13986 struct objfile *objfile = cu->objfile;
13987 struct die_info *child_die;
13988 size_t n_entries = 0, size;
13989 struct common_block *common_block;
13990 struct symbol *sym;
13991
13992 for (child_die = die->child;
13993 child_die && child_die->tag;
13994 child_die = sibling_die (child_die))
13995 ++n_entries;
13996
13997 size = (sizeof (struct common_block)
13998 + (n_entries - 1) * sizeof (struct symbol *));
13999 common_block = obstack_alloc (&objfile->objfile_obstack, size);
14000 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14001 common_block->n_entries = 0;
14002
14003 for (child_die = die->child;
14004 child_die && child_die->tag;
14005 child_die = sibling_die (child_die))
14006 {
14007 /* Create the symbol in the DW_TAG_common_block block in the current
14008 symbol scope. */
14009 sym = new_symbol (child_die, NULL, cu);
14010 if (sym != NULL)
14011 {
14012 struct attribute *member_loc;
14013
14014 common_block->contents[common_block->n_entries++] = sym;
14015
14016 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14017 cu);
14018 if (member_loc)
14019 {
14020 /* GDB has handled this for a long time, but it is
14021 not specified by DWARF. It seems to have been
14022 emitted by gfortran at least as recently as:
14023 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14024 complaint (&symfile_complaints,
14025 _("Variable in common block has "
14026 "DW_AT_data_member_location "
14027 "- DIE at 0x%x [in module %s]"),
14028 child_die->offset.sect_off,
14029 objfile_name (cu->objfile));
14030
14031 if (attr_form_is_section_offset (member_loc))
14032 dwarf2_complex_location_expr_complaint ();
14033 else if (attr_form_is_constant (member_loc)
14034 || attr_form_is_block (member_loc))
14035 {
14036 if (attr)
14037 mark_common_block_symbol_computed (sym, die, attr,
14038 member_loc, cu);
14039 }
14040 else
14041 dwarf2_complex_location_expr_complaint ();
14042 }
14043 }
14044 }
14045
14046 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14047 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14048 }
14049 }
14050
14051 /* Create a type for a C++ namespace. */
14052
14053 static struct type *
14054 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14055 {
14056 struct objfile *objfile = cu->objfile;
14057 const char *previous_prefix, *name;
14058 int is_anonymous;
14059 struct type *type;
14060
14061 /* For extensions, reuse the type of the original namespace. */
14062 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14063 {
14064 struct die_info *ext_die;
14065 struct dwarf2_cu *ext_cu = cu;
14066
14067 ext_die = dwarf2_extension (die, &ext_cu);
14068 type = read_type_die (ext_die, ext_cu);
14069
14070 /* EXT_CU may not be the same as CU.
14071 Ensure TYPE is recorded with CU in die_type_hash. */
14072 return set_die_type (die, type, cu);
14073 }
14074
14075 name = namespace_name (die, &is_anonymous, cu);
14076
14077 /* Now build the name of the current namespace. */
14078
14079 previous_prefix = determine_prefix (die, cu);
14080 if (previous_prefix[0] != '\0')
14081 name = typename_concat (&objfile->objfile_obstack,
14082 previous_prefix, name, 0, cu);
14083
14084 /* Create the type. */
14085 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14086 objfile);
14087 TYPE_NAME (type) = name;
14088 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14089
14090 return set_die_type (die, type, cu);
14091 }
14092
14093 /* Read a namespace scope. */
14094
14095 static void
14096 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14097 {
14098 struct objfile *objfile = cu->objfile;
14099 int is_anonymous;
14100
14101 /* Add a symbol associated to this if we haven't seen the namespace
14102 before. Also, add a using directive if it's an anonymous
14103 namespace. */
14104
14105 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14106 {
14107 struct type *type;
14108
14109 type = read_type_die (die, cu);
14110 new_symbol (die, type, cu);
14111
14112 namespace_name (die, &is_anonymous, cu);
14113 if (is_anonymous)
14114 {
14115 const char *previous_prefix = determine_prefix (die, cu);
14116
14117 add_using_directive (using_directives (cu->language),
14118 previous_prefix, TYPE_NAME (type), NULL,
14119 NULL, NULL, 0, &objfile->objfile_obstack);
14120 }
14121 }
14122
14123 if (die->child != NULL)
14124 {
14125 struct die_info *child_die = die->child;
14126
14127 while (child_die && child_die->tag)
14128 {
14129 process_die (child_die, cu);
14130 child_die = sibling_die (child_die);
14131 }
14132 }
14133 }
14134
14135 /* Read a Fortran module as type. This DIE can be only a declaration used for
14136 imported module. Still we need that type as local Fortran "use ... only"
14137 declaration imports depend on the created type in determine_prefix. */
14138
14139 static struct type *
14140 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14141 {
14142 struct objfile *objfile = cu->objfile;
14143 const char *module_name;
14144 struct type *type;
14145
14146 module_name = dwarf2_name (die, cu);
14147 if (!module_name)
14148 complaint (&symfile_complaints,
14149 _("DW_TAG_module has no name, offset 0x%x"),
14150 die->offset.sect_off);
14151 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14152
14153 /* determine_prefix uses TYPE_TAG_NAME. */
14154 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14155
14156 return set_die_type (die, type, cu);
14157 }
14158
14159 /* Read a Fortran module. */
14160
14161 static void
14162 read_module (struct die_info *die, struct dwarf2_cu *cu)
14163 {
14164 struct die_info *child_die = die->child;
14165 struct type *type;
14166
14167 type = read_type_die (die, cu);
14168 new_symbol (die, type, cu);
14169
14170 while (child_die && child_die->tag)
14171 {
14172 process_die (child_die, cu);
14173 child_die = sibling_die (child_die);
14174 }
14175 }
14176
14177 /* Return the name of the namespace represented by DIE. Set
14178 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14179 namespace. */
14180
14181 static const char *
14182 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14183 {
14184 struct die_info *current_die;
14185 const char *name = NULL;
14186
14187 /* Loop through the extensions until we find a name. */
14188
14189 for (current_die = die;
14190 current_die != NULL;
14191 current_die = dwarf2_extension (die, &cu))
14192 {
14193 /* We don't use dwarf2_name here so that we can detect the absence
14194 of a name -> anonymous namespace. */
14195 struct attribute *attr = dwarf2_attr (die, DW_AT_name, cu);
14196
14197 if (attr != NULL)
14198 name = DW_STRING (attr);
14199 if (name != NULL)
14200 break;
14201 }
14202
14203 /* Is it an anonymous namespace? */
14204
14205 *is_anonymous = (name == NULL);
14206 if (*is_anonymous)
14207 name = CP_ANONYMOUS_NAMESPACE_STR;
14208
14209 return name;
14210 }
14211
14212 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14213 the user defined type vector. */
14214
14215 static struct type *
14216 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14217 {
14218 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14219 struct comp_unit_head *cu_header = &cu->header;
14220 struct type *type;
14221 struct attribute *attr_byte_size;
14222 struct attribute *attr_address_class;
14223 int byte_size, addr_class;
14224 struct type *target_type;
14225
14226 target_type = die_type (die, cu);
14227
14228 /* The die_type call above may have already set the type for this DIE. */
14229 type = get_die_type (die, cu);
14230 if (type)
14231 return type;
14232
14233 type = lookup_pointer_type (target_type);
14234
14235 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14236 if (attr_byte_size)
14237 byte_size = DW_UNSND (attr_byte_size);
14238 else
14239 byte_size = cu_header->addr_size;
14240
14241 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14242 if (attr_address_class)
14243 addr_class = DW_UNSND (attr_address_class);
14244 else
14245 addr_class = DW_ADDR_none;
14246
14247 /* If the pointer size or address class is different than the
14248 default, create a type variant marked as such and set the
14249 length accordingly. */
14250 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14251 {
14252 if (gdbarch_address_class_type_flags_p (gdbarch))
14253 {
14254 int type_flags;
14255
14256 type_flags = gdbarch_address_class_type_flags
14257 (gdbarch, byte_size, addr_class);
14258 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14259 == 0);
14260 type = make_type_with_address_space (type, type_flags);
14261 }
14262 else if (TYPE_LENGTH (type) != byte_size)
14263 {
14264 complaint (&symfile_complaints,
14265 _("invalid pointer size %d"), byte_size);
14266 }
14267 else
14268 {
14269 /* Should we also complain about unhandled address classes? */
14270 }
14271 }
14272
14273 TYPE_LENGTH (type) = byte_size;
14274 return set_die_type (die, type, cu);
14275 }
14276
14277 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14278 the user defined type vector. */
14279
14280 static struct type *
14281 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14282 {
14283 struct type *type;
14284 struct type *to_type;
14285 struct type *domain;
14286
14287 to_type = die_type (die, cu);
14288 domain = die_containing_type (die, cu);
14289
14290 /* The calls above may have already set the type for this DIE. */
14291 type = get_die_type (die, cu);
14292 if (type)
14293 return type;
14294
14295 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14296 type = lookup_methodptr_type (to_type);
14297 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14298 {
14299 struct type *new_type = alloc_type (cu->objfile);
14300
14301 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14302 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14303 TYPE_VARARGS (to_type));
14304 type = lookup_methodptr_type (new_type);
14305 }
14306 else
14307 type = lookup_memberptr_type (to_type, domain);
14308
14309 return set_die_type (die, type, cu);
14310 }
14311
14312 /* Extract all information from a DW_TAG_reference_type DIE and add to
14313 the user defined type vector. */
14314
14315 static struct type *
14316 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14317 {
14318 struct comp_unit_head *cu_header = &cu->header;
14319 struct type *type, *target_type;
14320 struct attribute *attr;
14321
14322 target_type = die_type (die, cu);
14323
14324 /* The die_type call above may have already set the type for this DIE. */
14325 type = get_die_type (die, cu);
14326 if (type)
14327 return type;
14328
14329 type = lookup_reference_type (target_type);
14330 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14331 if (attr)
14332 {
14333 TYPE_LENGTH (type) = DW_UNSND (attr);
14334 }
14335 else
14336 {
14337 TYPE_LENGTH (type) = cu_header->addr_size;
14338 }
14339 return set_die_type (die, type, cu);
14340 }
14341
14342 /* Add the given cv-qualifiers to the element type of the array. GCC
14343 outputs DWARF type qualifiers that apply to an array, not the
14344 element type. But GDB relies on the array element type to carry
14345 the cv-qualifiers. This mimics section 6.7.3 of the C99
14346 specification. */
14347
14348 static struct type *
14349 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14350 struct type *base_type, int cnst, int voltl)
14351 {
14352 struct type *el_type, *inner_array;
14353
14354 base_type = copy_type (base_type);
14355 inner_array = base_type;
14356
14357 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14358 {
14359 TYPE_TARGET_TYPE (inner_array) =
14360 copy_type (TYPE_TARGET_TYPE (inner_array));
14361 inner_array = TYPE_TARGET_TYPE (inner_array);
14362 }
14363
14364 el_type = TYPE_TARGET_TYPE (inner_array);
14365 cnst |= TYPE_CONST (el_type);
14366 voltl |= TYPE_VOLATILE (el_type);
14367 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14368
14369 return set_die_type (die, base_type, cu);
14370 }
14371
14372 static struct type *
14373 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14374 {
14375 struct type *base_type, *cv_type;
14376
14377 base_type = die_type (die, cu);
14378
14379 /* The die_type call above may have already set the type for this DIE. */
14380 cv_type = get_die_type (die, cu);
14381 if (cv_type)
14382 return cv_type;
14383
14384 /* In case the const qualifier is applied to an array type, the element type
14385 is so qualified, not the array type (section 6.7.3 of C99). */
14386 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14387 return add_array_cv_type (die, cu, base_type, 1, 0);
14388
14389 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14390 return set_die_type (die, cv_type, cu);
14391 }
14392
14393 static struct type *
14394 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14395 {
14396 struct type *base_type, *cv_type;
14397
14398 base_type = die_type (die, cu);
14399
14400 /* The die_type call above may have already set the type for this DIE. */
14401 cv_type = get_die_type (die, cu);
14402 if (cv_type)
14403 return cv_type;
14404
14405 /* In case the volatile qualifier is applied to an array type, the
14406 element type is so qualified, not the array type (section 6.7.3
14407 of C99). */
14408 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14409 return add_array_cv_type (die, cu, base_type, 0, 1);
14410
14411 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14412 return set_die_type (die, cv_type, cu);
14413 }
14414
14415 /* Handle DW_TAG_restrict_type. */
14416
14417 static struct type *
14418 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14419 {
14420 struct type *base_type, *cv_type;
14421
14422 base_type = die_type (die, cu);
14423
14424 /* The die_type call above may have already set the type for this DIE. */
14425 cv_type = get_die_type (die, cu);
14426 if (cv_type)
14427 return cv_type;
14428
14429 cv_type = make_restrict_type (base_type);
14430 return set_die_type (die, cv_type, cu);
14431 }
14432
14433 /* Handle DW_TAG_atomic_type. */
14434
14435 static struct type *
14436 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14437 {
14438 struct type *base_type, *cv_type;
14439
14440 base_type = die_type (die, cu);
14441
14442 /* The die_type call above may have already set the type for this DIE. */
14443 cv_type = get_die_type (die, cu);
14444 if (cv_type)
14445 return cv_type;
14446
14447 cv_type = make_atomic_type (base_type);
14448 return set_die_type (die, cv_type, cu);
14449 }
14450
14451 /* Extract all information from a DW_TAG_string_type DIE and add to
14452 the user defined type vector. It isn't really a user defined type,
14453 but it behaves like one, with other DIE's using an AT_user_def_type
14454 attribute to reference it. */
14455
14456 static struct type *
14457 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14458 {
14459 struct objfile *objfile = cu->objfile;
14460 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14461 struct type *type, *range_type, *index_type, *char_type;
14462 struct attribute *attr;
14463 unsigned int length;
14464
14465 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14466 if (attr)
14467 {
14468 length = DW_UNSND (attr);
14469 }
14470 else
14471 {
14472 /* Check for the DW_AT_byte_size attribute. */
14473 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14474 if (attr)
14475 {
14476 length = DW_UNSND (attr);
14477 }
14478 else
14479 {
14480 length = 1;
14481 }
14482 }
14483
14484 index_type = objfile_type (objfile)->builtin_int;
14485 range_type = create_static_range_type (NULL, index_type, 1, length);
14486 char_type = language_string_char_type (cu->language_defn, gdbarch);
14487 type = create_string_type (NULL, char_type, range_type);
14488
14489 return set_die_type (die, type, cu);
14490 }
14491
14492 /* Assuming that DIE corresponds to a function, returns nonzero
14493 if the function is prototyped. */
14494
14495 static int
14496 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14497 {
14498 struct attribute *attr;
14499
14500 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14501 if (attr && (DW_UNSND (attr) != 0))
14502 return 1;
14503
14504 /* The DWARF standard implies that the DW_AT_prototyped attribute
14505 is only meaninful for C, but the concept also extends to other
14506 languages that allow unprototyped functions (Eg: Objective C).
14507 For all other languages, assume that functions are always
14508 prototyped. */
14509 if (cu->language != language_c
14510 && cu->language != language_objc
14511 && cu->language != language_opencl)
14512 return 1;
14513
14514 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14515 prototyped and unprototyped functions; default to prototyped,
14516 since that is more common in modern code (and RealView warns
14517 about unprototyped functions). */
14518 if (producer_is_realview (cu->producer))
14519 return 1;
14520
14521 return 0;
14522 }
14523
14524 /* Handle DIES due to C code like:
14525
14526 struct foo
14527 {
14528 int (*funcp)(int a, long l);
14529 int b;
14530 };
14531
14532 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14533
14534 static struct type *
14535 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14536 {
14537 struct objfile *objfile = cu->objfile;
14538 struct type *type; /* Type that this function returns. */
14539 struct type *ftype; /* Function that returns above type. */
14540 struct attribute *attr;
14541
14542 type = die_type (die, cu);
14543
14544 /* The die_type call above may have already set the type for this DIE. */
14545 ftype = get_die_type (die, cu);
14546 if (ftype)
14547 return ftype;
14548
14549 ftype = lookup_function_type (type);
14550
14551 if (prototyped_function_p (die, cu))
14552 TYPE_PROTOTYPED (ftype) = 1;
14553
14554 /* Store the calling convention in the type if it's available in
14555 the subroutine die. Otherwise set the calling convention to
14556 the default value DW_CC_normal. */
14557 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14558 if (attr)
14559 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14560 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14561 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14562 else
14563 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14564
14565 /* Record whether the function returns normally to its caller or not
14566 if the DWARF producer set that information. */
14567 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14568 if (attr && (DW_UNSND (attr) != 0))
14569 TYPE_NO_RETURN (ftype) = 1;
14570
14571 /* We need to add the subroutine type to the die immediately so
14572 we don't infinitely recurse when dealing with parameters
14573 declared as the same subroutine type. */
14574 set_die_type (die, ftype, cu);
14575
14576 if (die->child != NULL)
14577 {
14578 struct type *void_type = objfile_type (objfile)->builtin_void;
14579 struct die_info *child_die;
14580 int nparams, iparams;
14581
14582 /* Count the number of parameters.
14583 FIXME: GDB currently ignores vararg functions, but knows about
14584 vararg member functions. */
14585 nparams = 0;
14586 child_die = die->child;
14587 while (child_die && child_die->tag)
14588 {
14589 if (child_die->tag == DW_TAG_formal_parameter)
14590 nparams++;
14591 else if (child_die->tag == DW_TAG_unspecified_parameters)
14592 TYPE_VARARGS (ftype) = 1;
14593 child_die = sibling_die (child_die);
14594 }
14595
14596 /* Allocate storage for parameters and fill them in. */
14597 TYPE_NFIELDS (ftype) = nparams;
14598 TYPE_FIELDS (ftype) = (struct field *)
14599 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14600
14601 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14602 even if we error out during the parameters reading below. */
14603 for (iparams = 0; iparams < nparams; iparams++)
14604 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14605
14606 iparams = 0;
14607 child_die = die->child;
14608 while (child_die && child_die->tag)
14609 {
14610 if (child_die->tag == DW_TAG_formal_parameter)
14611 {
14612 struct type *arg_type;
14613
14614 /* DWARF version 2 has no clean way to discern C++
14615 static and non-static member functions. G++ helps
14616 GDB by marking the first parameter for non-static
14617 member functions (which is the this pointer) as
14618 artificial. We pass this information to
14619 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14620
14621 DWARF version 3 added DW_AT_object_pointer, which GCC
14622 4.5 does not yet generate. */
14623 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14624 if (attr)
14625 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14626 else
14627 {
14628 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14629
14630 /* GCC/43521: In java, the formal parameter
14631 "this" is sometimes not marked with DW_AT_artificial. */
14632 if (cu->language == language_java)
14633 {
14634 const char *name = dwarf2_name (child_die, cu);
14635
14636 if (name && !strcmp (name, "this"))
14637 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14638 }
14639 }
14640 arg_type = die_type (child_die, cu);
14641
14642 /* RealView does not mark THIS as const, which the testsuite
14643 expects. GCC marks THIS as const in method definitions,
14644 but not in the class specifications (GCC PR 43053). */
14645 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14646 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14647 {
14648 int is_this = 0;
14649 struct dwarf2_cu *arg_cu = cu;
14650 const char *name = dwarf2_name (child_die, cu);
14651
14652 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14653 if (attr)
14654 {
14655 /* If the compiler emits this, use it. */
14656 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14657 is_this = 1;
14658 }
14659 else if (name && strcmp (name, "this") == 0)
14660 /* Function definitions will have the argument names. */
14661 is_this = 1;
14662 else if (name == NULL && iparams == 0)
14663 /* Declarations may not have the names, so like
14664 elsewhere in GDB, assume an artificial first
14665 argument is "this". */
14666 is_this = 1;
14667
14668 if (is_this)
14669 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14670 arg_type, 0);
14671 }
14672
14673 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14674 iparams++;
14675 }
14676 child_die = sibling_die (child_die);
14677 }
14678 }
14679
14680 return ftype;
14681 }
14682
14683 static struct type *
14684 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14685 {
14686 struct objfile *objfile = cu->objfile;
14687 const char *name = NULL;
14688 struct type *this_type, *target_type;
14689
14690 name = dwarf2_full_name (NULL, die, cu);
14691 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14692 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14693 TYPE_NAME (this_type) = name;
14694 set_die_type (die, this_type, cu);
14695 target_type = die_type (die, cu);
14696 if (target_type != this_type)
14697 TYPE_TARGET_TYPE (this_type) = target_type;
14698 else
14699 {
14700 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14701 spec and cause infinite loops in GDB. */
14702 complaint (&symfile_complaints,
14703 _("Self-referential DW_TAG_typedef "
14704 "- DIE at 0x%x [in module %s]"),
14705 die->offset.sect_off, objfile_name (objfile));
14706 TYPE_TARGET_TYPE (this_type) = NULL;
14707 }
14708 return this_type;
14709 }
14710
14711 /* Find a representation of a given base type and install
14712 it in the TYPE field of the die. */
14713
14714 static struct type *
14715 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14716 {
14717 struct objfile *objfile = cu->objfile;
14718 struct type *type;
14719 struct attribute *attr;
14720 int encoding = 0, size = 0;
14721 const char *name;
14722 enum type_code code = TYPE_CODE_INT;
14723 int type_flags = 0;
14724 struct type *target_type = NULL;
14725
14726 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14727 if (attr)
14728 {
14729 encoding = DW_UNSND (attr);
14730 }
14731 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14732 if (attr)
14733 {
14734 size = DW_UNSND (attr);
14735 }
14736 name = dwarf2_name (die, cu);
14737 if (!name)
14738 {
14739 complaint (&symfile_complaints,
14740 _("DW_AT_name missing from DW_TAG_base_type"));
14741 }
14742
14743 switch (encoding)
14744 {
14745 case DW_ATE_address:
14746 /* Turn DW_ATE_address into a void * pointer. */
14747 code = TYPE_CODE_PTR;
14748 type_flags |= TYPE_FLAG_UNSIGNED;
14749 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14750 break;
14751 case DW_ATE_boolean:
14752 code = TYPE_CODE_BOOL;
14753 type_flags |= TYPE_FLAG_UNSIGNED;
14754 break;
14755 case DW_ATE_complex_float:
14756 code = TYPE_CODE_COMPLEX;
14757 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14758 break;
14759 case DW_ATE_decimal_float:
14760 code = TYPE_CODE_DECFLOAT;
14761 break;
14762 case DW_ATE_float:
14763 code = TYPE_CODE_FLT;
14764 break;
14765 case DW_ATE_signed:
14766 break;
14767 case DW_ATE_unsigned:
14768 type_flags |= TYPE_FLAG_UNSIGNED;
14769 if (cu->language == language_fortran
14770 && name
14771 && startswith (name, "character("))
14772 code = TYPE_CODE_CHAR;
14773 break;
14774 case DW_ATE_signed_char:
14775 if (cu->language == language_ada || cu->language == language_m2
14776 || cu->language == language_pascal
14777 || cu->language == language_fortran)
14778 code = TYPE_CODE_CHAR;
14779 break;
14780 case DW_ATE_unsigned_char:
14781 if (cu->language == language_ada || cu->language == language_m2
14782 || cu->language == language_pascal
14783 || cu->language == language_fortran)
14784 code = TYPE_CODE_CHAR;
14785 type_flags |= TYPE_FLAG_UNSIGNED;
14786 break;
14787 case DW_ATE_UTF:
14788 /* We just treat this as an integer and then recognize the
14789 type by name elsewhere. */
14790 break;
14791
14792 default:
14793 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14794 dwarf_type_encoding_name (encoding));
14795 break;
14796 }
14797
14798 type = init_type (code, size, type_flags, NULL, objfile);
14799 TYPE_NAME (type) = name;
14800 TYPE_TARGET_TYPE (type) = target_type;
14801
14802 if (name && strcmp (name, "char") == 0)
14803 TYPE_NOSIGN (type) = 1;
14804
14805 return set_die_type (die, type, cu);
14806 }
14807
14808 /* Parse dwarf attribute if it's a block, reference or constant and put the
14809 resulting value of the attribute into struct bound_prop.
14810 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14811
14812 static int
14813 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14814 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14815 {
14816 struct dwarf2_property_baton *baton;
14817 struct obstack *obstack = &cu->objfile->objfile_obstack;
14818
14819 if (attr == NULL || prop == NULL)
14820 return 0;
14821
14822 if (attr_form_is_block (attr))
14823 {
14824 baton = obstack_alloc (obstack, sizeof (*baton));
14825 baton->referenced_type = NULL;
14826 baton->locexpr.per_cu = cu->per_cu;
14827 baton->locexpr.size = DW_BLOCK (attr)->size;
14828 baton->locexpr.data = DW_BLOCK (attr)->data;
14829 prop->data.baton = baton;
14830 prop->kind = PROP_LOCEXPR;
14831 gdb_assert (prop->data.baton != NULL);
14832 }
14833 else if (attr_form_is_ref (attr))
14834 {
14835 struct dwarf2_cu *target_cu = cu;
14836 struct die_info *target_die;
14837 struct attribute *target_attr;
14838
14839 target_die = follow_die_ref (die, attr, &target_cu);
14840 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14841 if (target_attr == NULL)
14842 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14843 target_cu);
14844 if (target_attr == NULL)
14845 return 0;
14846
14847 switch (target_attr->name)
14848 {
14849 case DW_AT_location:
14850 if (attr_form_is_section_offset (target_attr))
14851 {
14852 baton = obstack_alloc (obstack, sizeof (*baton));
14853 baton->referenced_type = die_type (target_die, target_cu);
14854 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14855 prop->data.baton = baton;
14856 prop->kind = PROP_LOCLIST;
14857 gdb_assert (prop->data.baton != NULL);
14858 }
14859 else if (attr_form_is_block (target_attr))
14860 {
14861 baton = obstack_alloc (obstack, sizeof (*baton));
14862 baton->referenced_type = die_type (target_die, target_cu);
14863 baton->locexpr.per_cu = cu->per_cu;
14864 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14865 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14866 prop->data.baton = baton;
14867 prop->kind = PROP_LOCEXPR;
14868 gdb_assert (prop->data.baton != NULL);
14869 }
14870 else
14871 {
14872 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14873 "dynamic property");
14874 return 0;
14875 }
14876 break;
14877 case DW_AT_data_member_location:
14878 {
14879 LONGEST offset;
14880
14881 if (!handle_data_member_location (target_die, target_cu,
14882 &offset))
14883 return 0;
14884
14885 baton = obstack_alloc (obstack, sizeof (*baton));
14886 baton->referenced_type = read_type_die (target_die->parent,
14887 target_cu);
14888 baton->offset_info.offset = offset;
14889 baton->offset_info.type = die_type (target_die, target_cu);
14890 prop->data.baton = baton;
14891 prop->kind = PROP_ADDR_OFFSET;
14892 break;
14893 }
14894 }
14895 }
14896 else if (attr_form_is_constant (attr))
14897 {
14898 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14899 prop->kind = PROP_CONST;
14900 }
14901 else
14902 {
14903 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14904 dwarf2_name (die, cu));
14905 return 0;
14906 }
14907
14908 return 1;
14909 }
14910
14911 /* Read the given DW_AT_subrange DIE. */
14912
14913 static struct type *
14914 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14915 {
14916 struct type *base_type, *orig_base_type;
14917 struct type *range_type;
14918 struct attribute *attr;
14919 struct dynamic_prop low, high;
14920 int low_default_is_valid;
14921 int high_bound_is_count = 0;
14922 const char *name;
14923 LONGEST negative_mask;
14924
14925 orig_base_type = die_type (die, cu);
14926 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14927 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14928 creating the range type, but we use the result of check_typedef
14929 when examining properties of the type. */
14930 base_type = check_typedef (orig_base_type);
14931
14932 /* The die_type call above may have already set the type for this DIE. */
14933 range_type = get_die_type (die, cu);
14934 if (range_type)
14935 return range_type;
14936
14937 low.kind = PROP_CONST;
14938 high.kind = PROP_CONST;
14939 high.data.const_val = 0;
14940
14941 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14942 omitting DW_AT_lower_bound. */
14943 switch (cu->language)
14944 {
14945 case language_c:
14946 case language_cplus:
14947 low.data.const_val = 0;
14948 low_default_is_valid = 1;
14949 break;
14950 case language_fortran:
14951 low.data.const_val = 1;
14952 low_default_is_valid = 1;
14953 break;
14954 case language_d:
14955 case language_java:
14956 case language_objc:
14957 low.data.const_val = 0;
14958 low_default_is_valid = (cu->header.version >= 4);
14959 break;
14960 case language_ada:
14961 case language_m2:
14962 case language_pascal:
14963 low.data.const_val = 1;
14964 low_default_is_valid = (cu->header.version >= 4);
14965 break;
14966 default:
14967 low.data.const_val = 0;
14968 low_default_is_valid = 0;
14969 break;
14970 }
14971
14972 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14973 if (attr)
14974 attr_to_dynamic_prop (attr, die, cu, &low);
14975 else if (!low_default_is_valid)
14976 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14977 "- DIE at 0x%x [in module %s]"),
14978 die->offset.sect_off, objfile_name (cu->objfile));
14979
14980 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14981 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14982 {
14983 attr = dwarf2_attr (die, DW_AT_count, cu);
14984 if (attr_to_dynamic_prop (attr, die, cu, &high))
14985 {
14986 /* If bounds are constant do the final calculation here. */
14987 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14988 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14989 else
14990 high_bound_is_count = 1;
14991 }
14992 }
14993
14994 /* Dwarf-2 specifications explicitly allows to create subrange types
14995 without specifying a base type.
14996 In that case, the base type must be set to the type of
14997 the lower bound, upper bound or count, in that order, if any of these
14998 three attributes references an object that has a type.
14999 If no base type is found, the Dwarf-2 specifications say that
15000 a signed integer type of size equal to the size of an address should
15001 be used.
15002 For the following C code: `extern char gdb_int [];'
15003 GCC produces an empty range DIE.
15004 FIXME: muller/2010-05-28: Possible references to object for low bound,
15005 high bound or count are not yet handled by this code. */
15006 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15007 {
15008 struct objfile *objfile = cu->objfile;
15009 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15010 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15011 struct type *int_type = objfile_type (objfile)->builtin_int;
15012
15013 /* Test "int", "long int", and "long long int" objfile types,
15014 and select the first one having a size above or equal to the
15015 architecture address size. */
15016 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15017 base_type = int_type;
15018 else
15019 {
15020 int_type = objfile_type (objfile)->builtin_long;
15021 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15022 base_type = int_type;
15023 else
15024 {
15025 int_type = objfile_type (objfile)->builtin_long_long;
15026 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15027 base_type = int_type;
15028 }
15029 }
15030 }
15031
15032 /* Normally, the DWARF producers are expected to use a signed
15033 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15034 But this is unfortunately not always the case, as witnessed
15035 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15036 is used instead. To work around that ambiguity, we treat
15037 the bounds as signed, and thus sign-extend their values, when
15038 the base type is signed. */
15039 negative_mask =
15040 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
15041 if (low.kind == PROP_CONST
15042 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15043 low.data.const_val |= negative_mask;
15044 if (high.kind == PROP_CONST
15045 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15046 high.data.const_val |= negative_mask;
15047
15048 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15049
15050 if (high_bound_is_count)
15051 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15052
15053 /* Ada expects an empty array on no boundary attributes. */
15054 if (attr == NULL && cu->language != language_ada)
15055 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15056
15057 name = dwarf2_name (die, cu);
15058 if (name)
15059 TYPE_NAME (range_type) = name;
15060
15061 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15062 if (attr)
15063 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15064
15065 set_die_type (die, range_type, cu);
15066
15067 /* set_die_type should be already done. */
15068 set_descriptive_type (range_type, die, cu);
15069
15070 return range_type;
15071 }
15072
15073 static struct type *
15074 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15075 {
15076 struct type *type;
15077
15078 /* For now, we only support the C meaning of an unspecified type: void. */
15079
15080 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15081 TYPE_NAME (type) = dwarf2_name (die, cu);
15082
15083 return set_die_type (die, type, cu);
15084 }
15085
15086 /* Read a single die and all its descendents. Set the die's sibling
15087 field to NULL; set other fields in the die correctly, and set all
15088 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15089 location of the info_ptr after reading all of those dies. PARENT
15090 is the parent of the die in question. */
15091
15092 static struct die_info *
15093 read_die_and_children (const struct die_reader_specs *reader,
15094 const gdb_byte *info_ptr,
15095 const gdb_byte **new_info_ptr,
15096 struct die_info *parent)
15097 {
15098 struct die_info *die;
15099 const gdb_byte *cur_ptr;
15100 int has_children;
15101
15102 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15103 if (die == NULL)
15104 {
15105 *new_info_ptr = cur_ptr;
15106 return NULL;
15107 }
15108 store_in_ref_table (die, reader->cu);
15109
15110 if (has_children)
15111 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15112 else
15113 {
15114 die->child = NULL;
15115 *new_info_ptr = cur_ptr;
15116 }
15117
15118 die->sibling = NULL;
15119 die->parent = parent;
15120 return die;
15121 }
15122
15123 /* Read a die, all of its descendents, and all of its siblings; set
15124 all of the fields of all of the dies correctly. Arguments are as
15125 in read_die_and_children. */
15126
15127 static struct die_info *
15128 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15129 const gdb_byte *info_ptr,
15130 const gdb_byte **new_info_ptr,
15131 struct die_info *parent)
15132 {
15133 struct die_info *first_die, *last_sibling;
15134 const gdb_byte *cur_ptr;
15135
15136 cur_ptr = info_ptr;
15137 first_die = last_sibling = NULL;
15138
15139 while (1)
15140 {
15141 struct die_info *die
15142 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15143
15144 if (die == NULL)
15145 {
15146 *new_info_ptr = cur_ptr;
15147 return first_die;
15148 }
15149
15150 if (!first_die)
15151 first_die = die;
15152 else
15153 last_sibling->sibling = die;
15154
15155 last_sibling = die;
15156 }
15157 }
15158
15159 /* Read a die, all of its descendents, and all of its siblings; set
15160 all of the fields of all of the dies correctly. Arguments are as
15161 in read_die_and_children.
15162 This the main entry point for reading a DIE and all its children. */
15163
15164 static struct die_info *
15165 read_die_and_siblings (const struct die_reader_specs *reader,
15166 const gdb_byte *info_ptr,
15167 const gdb_byte **new_info_ptr,
15168 struct die_info *parent)
15169 {
15170 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15171 new_info_ptr, parent);
15172
15173 if (dwarf_die_debug)
15174 {
15175 fprintf_unfiltered (gdb_stdlog,
15176 "Read die from %s@0x%x of %s:\n",
15177 get_section_name (reader->die_section),
15178 (unsigned) (info_ptr - reader->die_section->buffer),
15179 bfd_get_filename (reader->abfd));
15180 dump_die (die, dwarf_die_debug);
15181 }
15182
15183 return die;
15184 }
15185
15186 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15187 attributes.
15188 The caller is responsible for filling in the extra attributes
15189 and updating (*DIEP)->num_attrs.
15190 Set DIEP to point to a newly allocated die with its information,
15191 except for its child, sibling, and parent fields.
15192 Set HAS_CHILDREN to tell whether the die has children or not. */
15193
15194 static const gdb_byte *
15195 read_full_die_1 (const struct die_reader_specs *reader,
15196 struct die_info **diep, const gdb_byte *info_ptr,
15197 int *has_children, int num_extra_attrs)
15198 {
15199 unsigned int abbrev_number, bytes_read, i;
15200 sect_offset offset;
15201 struct abbrev_info *abbrev;
15202 struct die_info *die;
15203 struct dwarf2_cu *cu = reader->cu;
15204 bfd *abfd = reader->abfd;
15205
15206 offset.sect_off = info_ptr - reader->buffer;
15207 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15208 info_ptr += bytes_read;
15209 if (!abbrev_number)
15210 {
15211 *diep = NULL;
15212 *has_children = 0;
15213 return info_ptr;
15214 }
15215
15216 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15217 if (!abbrev)
15218 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15219 abbrev_number,
15220 bfd_get_filename (abfd));
15221
15222 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15223 die->offset = offset;
15224 die->tag = abbrev->tag;
15225 die->abbrev = abbrev_number;
15226
15227 /* Make the result usable.
15228 The caller needs to update num_attrs after adding the extra
15229 attributes. */
15230 die->num_attrs = abbrev->num_attrs;
15231
15232 for (i = 0; i < abbrev->num_attrs; ++i)
15233 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15234 info_ptr);
15235
15236 *diep = die;
15237 *has_children = abbrev->has_children;
15238 return info_ptr;
15239 }
15240
15241 /* Read a die and all its attributes.
15242 Set DIEP to point to a newly allocated die with its information,
15243 except for its child, sibling, and parent fields.
15244 Set HAS_CHILDREN to tell whether the die has children or not. */
15245
15246 static const gdb_byte *
15247 read_full_die (const struct die_reader_specs *reader,
15248 struct die_info **diep, const gdb_byte *info_ptr,
15249 int *has_children)
15250 {
15251 const gdb_byte *result;
15252
15253 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15254
15255 if (dwarf_die_debug)
15256 {
15257 fprintf_unfiltered (gdb_stdlog,
15258 "Read die from %s@0x%x of %s:\n",
15259 get_section_name (reader->die_section),
15260 (unsigned) (info_ptr - reader->die_section->buffer),
15261 bfd_get_filename (reader->abfd));
15262 dump_die (*diep, dwarf_die_debug);
15263 }
15264
15265 return result;
15266 }
15267 \f
15268 /* Abbreviation tables.
15269
15270 In DWARF version 2, the description of the debugging information is
15271 stored in a separate .debug_abbrev section. Before we read any
15272 dies from a section we read in all abbreviations and install them
15273 in a hash table. */
15274
15275 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15276
15277 static struct abbrev_info *
15278 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15279 {
15280 struct abbrev_info *abbrev;
15281
15282 abbrev = (struct abbrev_info *)
15283 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15284 memset (abbrev, 0, sizeof (struct abbrev_info));
15285 return abbrev;
15286 }
15287
15288 /* Add an abbreviation to the table. */
15289
15290 static void
15291 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15292 unsigned int abbrev_number,
15293 struct abbrev_info *abbrev)
15294 {
15295 unsigned int hash_number;
15296
15297 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15298 abbrev->next = abbrev_table->abbrevs[hash_number];
15299 abbrev_table->abbrevs[hash_number] = abbrev;
15300 }
15301
15302 /* Look up an abbrev in the table.
15303 Returns NULL if the abbrev is not found. */
15304
15305 static struct abbrev_info *
15306 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15307 unsigned int abbrev_number)
15308 {
15309 unsigned int hash_number;
15310 struct abbrev_info *abbrev;
15311
15312 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15313 abbrev = abbrev_table->abbrevs[hash_number];
15314
15315 while (abbrev)
15316 {
15317 if (abbrev->number == abbrev_number)
15318 return abbrev;
15319 abbrev = abbrev->next;
15320 }
15321 return NULL;
15322 }
15323
15324 /* Read in an abbrev table. */
15325
15326 static struct abbrev_table *
15327 abbrev_table_read_table (struct dwarf2_section_info *section,
15328 sect_offset offset)
15329 {
15330 struct objfile *objfile = dwarf2_per_objfile->objfile;
15331 bfd *abfd = get_section_bfd_owner (section);
15332 struct abbrev_table *abbrev_table;
15333 const gdb_byte *abbrev_ptr;
15334 struct abbrev_info *cur_abbrev;
15335 unsigned int abbrev_number, bytes_read, abbrev_name;
15336 unsigned int abbrev_form;
15337 struct attr_abbrev *cur_attrs;
15338 unsigned int allocated_attrs;
15339
15340 abbrev_table = XNEW (struct abbrev_table);
15341 abbrev_table->offset = offset;
15342 obstack_init (&abbrev_table->abbrev_obstack);
15343 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15344 (ABBREV_HASH_SIZE
15345 * sizeof (struct abbrev_info *)));
15346 memset (abbrev_table->abbrevs, 0,
15347 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15348
15349 dwarf2_read_section (objfile, section);
15350 abbrev_ptr = section->buffer + offset.sect_off;
15351 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15352 abbrev_ptr += bytes_read;
15353
15354 allocated_attrs = ATTR_ALLOC_CHUNK;
15355 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15356
15357 /* Loop until we reach an abbrev number of 0. */
15358 while (abbrev_number)
15359 {
15360 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15361
15362 /* read in abbrev header */
15363 cur_abbrev->number = abbrev_number;
15364 cur_abbrev->tag
15365 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15366 abbrev_ptr += bytes_read;
15367 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15368 abbrev_ptr += 1;
15369
15370 /* now read in declarations */
15371 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15372 abbrev_ptr += bytes_read;
15373 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15374 abbrev_ptr += bytes_read;
15375 while (abbrev_name)
15376 {
15377 if (cur_abbrev->num_attrs == allocated_attrs)
15378 {
15379 allocated_attrs += ATTR_ALLOC_CHUNK;
15380 cur_attrs
15381 = xrealloc (cur_attrs, (allocated_attrs
15382 * sizeof (struct attr_abbrev)));
15383 }
15384
15385 cur_attrs[cur_abbrev->num_attrs].name
15386 = (enum dwarf_attribute) abbrev_name;
15387 cur_attrs[cur_abbrev->num_attrs++].form
15388 = (enum dwarf_form) abbrev_form;
15389 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15390 abbrev_ptr += bytes_read;
15391 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15392 abbrev_ptr += bytes_read;
15393 }
15394
15395 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15396 (cur_abbrev->num_attrs
15397 * sizeof (struct attr_abbrev)));
15398 memcpy (cur_abbrev->attrs, cur_attrs,
15399 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15400
15401 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15402
15403 /* Get next abbreviation.
15404 Under Irix6 the abbreviations for a compilation unit are not
15405 always properly terminated with an abbrev number of 0.
15406 Exit loop if we encounter an abbreviation which we have
15407 already read (which means we are about to read the abbreviations
15408 for the next compile unit) or if the end of the abbreviation
15409 table is reached. */
15410 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15411 break;
15412 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15413 abbrev_ptr += bytes_read;
15414 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15415 break;
15416 }
15417
15418 xfree (cur_attrs);
15419 return abbrev_table;
15420 }
15421
15422 /* Free the resources held by ABBREV_TABLE. */
15423
15424 static void
15425 abbrev_table_free (struct abbrev_table *abbrev_table)
15426 {
15427 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15428 xfree (abbrev_table);
15429 }
15430
15431 /* Same as abbrev_table_free but as a cleanup.
15432 We pass in a pointer to the pointer to the table so that we can
15433 set the pointer to NULL when we're done. It also simplifies
15434 build_type_psymtabs_1. */
15435
15436 static void
15437 abbrev_table_free_cleanup (void *table_ptr)
15438 {
15439 struct abbrev_table **abbrev_table_ptr = table_ptr;
15440
15441 if (*abbrev_table_ptr != NULL)
15442 abbrev_table_free (*abbrev_table_ptr);
15443 *abbrev_table_ptr = NULL;
15444 }
15445
15446 /* Read the abbrev table for CU from ABBREV_SECTION. */
15447
15448 static void
15449 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15450 struct dwarf2_section_info *abbrev_section)
15451 {
15452 cu->abbrev_table =
15453 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15454 }
15455
15456 /* Release the memory used by the abbrev table for a compilation unit. */
15457
15458 static void
15459 dwarf2_free_abbrev_table (void *ptr_to_cu)
15460 {
15461 struct dwarf2_cu *cu = ptr_to_cu;
15462
15463 if (cu->abbrev_table != NULL)
15464 abbrev_table_free (cu->abbrev_table);
15465 /* Set this to NULL so that we SEGV if we try to read it later,
15466 and also because free_comp_unit verifies this is NULL. */
15467 cu->abbrev_table = NULL;
15468 }
15469 \f
15470 /* Returns nonzero if TAG represents a type that we might generate a partial
15471 symbol for. */
15472
15473 static int
15474 is_type_tag_for_partial (int tag)
15475 {
15476 switch (tag)
15477 {
15478 #if 0
15479 /* Some types that would be reasonable to generate partial symbols for,
15480 that we don't at present. */
15481 case DW_TAG_array_type:
15482 case DW_TAG_file_type:
15483 case DW_TAG_ptr_to_member_type:
15484 case DW_TAG_set_type:
15485 case DW_TAG_string_type:
15486 case DW_TAG_subroutine_type:
15487 #endif
15488 case DW_TAG_base_type:
15489 case DW_TAG_class_type:
15490 case DW_TAG_interface_type:
15491 case DW_TAG_enumeration_type:
15492 case DW_TAG_structure_type:
15493 case DW_TAG_subrange_type:
15494 case DW_TAG_typedef:
15495 case DW_TAG_union_type:
15496 return 1;
15497 default:
15498 return 0;
15499 }
15500 }
15501
15502 /* Load all DIEs that are interesting for partial symbols into memory. */
15503
15504 static struct partial_die_info *
15505 load_partial_dies (const struct die_reader_specs *reader,
15506 const gdb_byte *info_ptr, int building_psymtab)
15507 {
15508 struct dwarf2_cu *cu = reader->cu;
15509 struct objfile *objfile = cu->objfile;
15510 struct partial_die_info *part_die;
15511 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15512 struct abbrev_info *abbrev;
15513 unsigned int bytes_read;
15514 unsigned int load_all = 0;
15515 int nesting_level = 1;
15516
15517 parent_die = NULL;
15518 last_die = NULL;
15519
15520 gdb_assert (cu->per_cu != NULL);
15521 if (cu->per_cu->load_all_dies)
15522 load_all = 1;
15523
15524 cu->partial_dies
15525 = htab_create_alloc_ex (cu->header.length / 12,
15526 partial_die_hash,
15527 partial_die_eq,
15528 NULL,
15529 &cu->comp_unit_obstack,
15530 hashtab_obstack_allocate,
15531 dummy_obstack_deallocate);
15532
15533 part_die = obstack_alloc (&cu->comp_unit_obstack,
15534 sizeof (struct partial_die_info));
15535
15536 while (1)
15537 {
15538 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15539
15540 /* A NULL abbrev means the end of a series of children. */
15541 if (abbrev == NULL)
15542 {
15543 if (--nesting_level == 0)
15544 {
15545 /* PART_DIE was probably the last thing allocated on the
15546 comp_unit_obstack, so we could call obstack_free
15547 here. We don't do that because the waste is small,
15548 and will be cleaned up when we're done with this
15549 compilation unit. This way, we're also more robust
15550 against other users of the comp_unit_obstack. */
15551 return first_die;
15552 }
15553 info_ptr += bytes_read;
15554 last_die = parent_die;
15555 parent_die = parent_die->die_parent;
15556 continue;
15557 }
15558
15559 /* Check for template arguments. We never save these; if
15560 they're seen, we just mark the parent, and go on our way. */
15561 if (parent_die != NULL
15562 && cu->language == language_cplus
15563 && (abbrev->tag == DW_TAG_template_type_param
15564 || abbrev->tag == DW_TAG_template_value_param))
15565 {
15566 parent_die->has_template_arguments = 1;
15567
15568 if (!load_all)
15569 {
15570 /* We don't need a partial DIE for the template argument. */
15571 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15572 continue;
15573 }
15574 }
15575
15576 /* We only recurse into c++ subprograms looking for template arguments.
15577 Skip their other children. */
15578 if (!load_all
15579 && cu->language == language_cplus
15580 && parent_die != NULL
15581 && parent_die->tag == DW_TAG_subprogram)
15582 {
15583 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15584 continue;
15585 }
15586
15587 /* Check whether this DIE is interesting enough to save. Normally
15588 we would not be interested in members here, but there may be
15589 later variables referencing them via DW_AT_specification (for
15590 static members). */
15591 if (!load_all
15592 && !is_type_tag_for_partial (abbrev->tag)
15593 && abbrev->tag != DW_TAG_constant
15594 && abbrev->tag != DW_TAG_enumerator
15595 && abbrev->tag != DW_TAG_subprogram
15596 && abbrev->tag != DW_TAG_lexical_block
15597 && abbrev->tag != DW_TAG_variable
15598 && abbrev->tag != DW_TAG_namespace
15599 && abbrev->tag != DW_TAG_module
15600 && abbrev->tag != DW_TAG_member
15601 && abbrev->tag != DW_TAG_imported_unit
15602 && abbrev->tag != DW_TAG_imported_declaration)
15603 {
15604 /* Otherwise we skip to the next sibling, if any. */
15605 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15606 continue;
15607 }
15608
15609 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15610 info_ptr);
15611
15612 /* This two-pass algorithm for processing partial symbols has a
15613 high cost in cache pressure. Thus, handle some simple cases
15614 here which cover the majority of C partial symbols. DIEs
15615 which neither have specification tags in them, nor could have
15616 specification tags elsewhere pointing at them, can simply be
15617 processed and discarded.
15618
15619 This segment is also optional; scan_partial_symbols and
15620 add_partial_symbol will handle these DIEs if we chain
15621 them in normally. When compilers which do not emit large
15622 quantities of duplicate debug information are more common,
15623 this code can probably be removed. */
15624
15625 /* Any complete simple types at the top level (pretty much all
15626 of them, for a language without namespaces), can be processed
15627 directly. */
15628 if (parent_die == NULL
15629 && part_die->has_specification == 0
15630 && part_die->is_declaration == 0
15631 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15632 || part_die->tag == DW_TAG_base_type
15633 || part_die->tag == DW_TAG_subrange_type))
15634 {
15635 if (building_psymtab && part_die->name != NULL)
15636 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15637 VAR_DOMAIN, LOC_TYPEDEF,
15638 &objfile->static_psymbols,
15639 0, (CORE_ADDR) 0, cu->language, objfile);
15640 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15641 continue;
15642 }
15643
15644 /* The exception for DW_TAG_typedef with has_children above is
15645 a workaround of GCC PR debug/47510. In the case of this complaint
15646 type_name_no_tag_or_error will error on such types later.
15647
15648 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15649 it could not find the child DIEs referenced later, this is checked
15650 above. In correct DWARF DW_TAG_typedef should have no children. */
15651
15652 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15653 complaint (&symfile_complaints,
15654 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15655 "- DIE at 0x%x [in module %s]"),
15656 part_die->offset.sect_off, objfile_name (objfile));
15657
15658 /* If we're at the second level, and we're an enumerator, and
15659 our parent has no specification (meaning possibly lives in a
15660 namespace elsewhere), then we can add the partial symbol now
15661 instead of queueing it. */
15662 if (part_die->tag == DW_TAG_enumerator
15663 && parent_die != NULL
15664 && parent_die->die_parent == NULL
15665 && parent_die->tag == DW_TAG_enumeration_type
15666 && parent_die->has_specification == 0)
15667 {
15668 if (part_die->name == NULL)
15669 complaint (&symfile_complaints,
15670 _("malformed enumerator DIE ignored"));
15671 else if (building_psymtab)
15672 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15673 VAR_DOMAIN, LOC_CONST,
15674 (cu->language == language_cplus
15675 || cu->language == language_java)
15676 ? &objfile->global_psymbols
15677 : &objfile->static_psymbols,
15678 0, (CORE_ADDR) 0, cu->language, objfile);
15679
15680 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15681 continue;
15682 }
15683
15684 /* We'll save this DIE so link it in. */
15685 part_die->die_parent = parent_die;
15686 part_die->die_sibling = NULL;
15687 part_die->die_child = NULL;
15688
15689 if (last_die && last_die == parent_die)
15690 last_die->die_child = part_die;
15691 else if (last_die)
15692 last_die->die_sibling = part_die;
15693
15694 last_die = part_die;
15695
15696 if (first_die == NULL)
15697 first_die = part_die;
15698
15699 /* Maybe add the DIE to the hash table. Not all DIEs that we
15700 find interesting need to be in the hash table, because we
15701 also have the parent/sibling/child chains; only those that we
15702 might refer to by offset later during partial symbol reading.
15703
15704 For now this means things that might have be the target of a
15705 DW_AT_specification, DW_AT_abstract_origin, or
15706 DW_AT_extension. DW_AT_extension will refer only to
15707 namespaces; DW_AT_abstract_origin refers to functions (and
15708 many things under the function DIE, but we do not recurse
15709 into function DIEs during partial symbol reading) and
15710 possibly variables as well; DW_AT_specification refers to
15711 declarations. Declarations ought to have the DW_AT_declaration
15712 flag. It happens that GCC forgets to put it in sometimes, but
15713 only for functions, not for types.
15714
15715 Adding more things than necessary to the hash table is harmless
15716 except for the performance cost. Adding too few will result in
15717 wasted time in find_partial_die, when we reread the compilation
15718 unit with load_all_dies set. */
15719
15720 if (load_all
15721 || abbrev->tag == DW_TAG_constant
15722 || abbrev->tag == DW_TAG_subprogram
15723 || abbrev->tag == DW_TAG_variable
15724 || abbrev->tag == DW_TAG_namespace
15725 || part_die->is_declaration)
15726 {
15727 void **slot;
15728
15729 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15730 part_die->offset.sect_off, INSERT);
15731 *slot = part_die;
15732 }
15733
15734 part_die = obstack_alloc (&cu->comp_unit_obstack,
15735 sizeof (struct partial_die_info));
15736
15737 /* For some DIEs we want to follow their children (if any). For C
15738 we have no reason to follow the children of structures; for other
15739 languages we have to, so that we can get at method physnames
15740 to infer fully qualified class names, for DW_AT_specification,
15741 and for C++ template arguments. For C++, we also look one level
15742 inside functions to find template arguments (if the name of the
15743 function does not already contain the template arguments).
15744
15745 For Ada, we need to scan the children of subprograms and lexical
15746 blocks as well because Ada allows the definition of nested
15747 entities that could be interesting for the debugger, such as
15748 nested subprograms for instance. */
15749 if (last_die->has_children
15750 && (load_all
15751 || last_die->tag == DW_TAG_namespace
15752 || last_die->tag == DW_TAG_module
15753 || last_die->tag == DW_TAG_enumeration_type
15754 || (cu->language == language_cplus
15755 && last_die->tag == DW_TAG_subprogram
15756 && (last_die->name == NULL
15757 || strchr (last_die->name, '<') == NULL))
15758 || (cu->language != language_c
15759 && (last_die->tag == DW_TAG_class_type
15760 || last_die->tag == DW_TAG_interface_type
15761 || last_die->tag == DW_TAG_structure_type
15762 || last_die->tag == DW_TAG_union_type))
15763 || (cu->language == language_ada
15764 && (last_die->tag == DW_TAG_subprogram
15765 || last_die->tag == DW_TAG_lexical_block))))
15766 {
15767 nesting_level++;
15768 parent_die = last_die;
15769 continue;
15770 }
15771
15772 /* Otherwise we skip to the next sibling, if any. */
15773 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15774
15775 /* Back to the top, do it again. */
15776 }
15777 }
15778
15779 /* Read a minimal amount of information into the minimal die structure. */
15780
15781 static const gdb_byte *
15782 read_partial_die (const struct die_reader_specs *reader,
15783 struct partial_die_info *part_die,
15784 struct abbrev_info *abbrev, unsigned int abbrev_len,
15785 const gdb_byte *info_ptr)
15786 {
15787 struct dwarf2_cu *cu = reader->cu;
15788 struct objfile *objfile = cu->objfile;
15789 const gdb_byte *buffer = reader->buffer;
15790 unsigned int i;
15791 struct attribute attr;
15792 int has_low_pc_attr = 0;
15793 int has_high_pc_attr = 0;
15794 int high_pc_relative = 0;
15795
15796 memset (part_die, 0, sizeof (struct partial_die_info));
15797
15798 part_die->offset.sect_off = info_ptr - buffer;
15799
15800 info_ptr += abbrev_len;
15801
15802 if (abbrev == NULL)
15803 return info_ptr;
15804
15805 part_die->tag = abbrev->tag;
15806 part_die->has_children = abbrev->has_children;
15807
15808 for (i = 0; i < abbrev->num_attrs; ++i)
15809 {
15810 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15811
15812 /* Store the data if it is of an attribute we want to keep in a
15813 partial symbol table. */
15814 switch (attr.name)
15815 {
15816 case DW_AT_name:
15817 switch (part_die->tag)
15818 {
15819 case DW_TAG_compile_unit:
15820 case DW_TAG_partial_unit:
15821 case DW_TAG_type_unit:
15822 /* Compilation units have a DW_AT_name that is a filename, not
15823 a source language identifier. */
15824 case DW_TAG_enumeration_type:
15825 case DW_TAG_enumerator:
15826 /* These tags always have simple identifiers already; no need
15827 to canonicalize them. */
15828 part_die->name = DW_STRING (&attr);
15829 break;
15830 default:
15831 part_die->name
15832 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15833 &objfile->per_bfd->storage_obstack);
15834 break;
15835 }
15836 break;
15837 case DW_AT_linkage_name:
15838 case DW_AT_MIPS_linkage_name:
15839 /* Note that both forms of linkage name might appear. We
15840 assume they will be the same, and we only store the last
15841 one we see. */
15842 if (cu->language == language_ada)
15843 part_die->name = DW_STRING (&attr);
15844 part_die->linkage_name = DW_STRING (&attr);
15845 break;
15846 case DW_AT_low_pc:
15847 has_low_pc_attr = 1;
15848 part_die->lowpc = attr_value_as_address (&attr);
15849 break;
15850 case DW_AT_high_pc:
15851 has_high_pc_attr = 1;
15852 part_die->highpc = attr_value_as_address (&attr);
15853 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15854 high_pc_relative = 1;
15855 break;
15856 case DW_AT_location:
15857 /* Support the .debug_loc offsets. */
15858 if (attr_form_is_block (&attr))
15859 {
15860 part_die->d.locdesc = DW_BLOCK (&attr);
15861 }
15862 else if (attr_form_is_section_offset (&attr))
15863 {
15864 dwarf2_complex_location_expr_complaint ();
15865 }
15866 else
15867 {
15868 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15869 "partial symbol information");
15870 }
15871 break;
15872 case DW_AT_external:
15873 part_die->is_external = DW_UNSND (&attr);
15874 break;
15875 case DW_AT_declaration:
15876 part_die->is_declaration = DW_UNSND (&attr);
15877 break;
15878 case DW_AT_type:
15879 part_die->has_type = 1;
15880 break;
15881 case DW_AT_abstract_origin:
15882 case DW_AT_specification:
15883 case DW_AT_extension:
15884 part_die->has_specification = 1;
15885 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15886 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15887 || cu->per_cu->is_dwz);
15888 break;
15889 case DW_AT_sibling:
15890 /* Ignore absolute siblings, they might point outside of
15891 the current compile unit. */
15892 if (attr.form == DW_FORM_ref_addr)
15893 complaint (&symfile_complaints,
15894 _("ignoring absolute DW_AT_sibling"));
15895 else
15896 {
15897 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15898 const gdb_byte *sibling_ptr = buffer + off;
15899
15900 if (sibling_ptr < info_ptr)
15901 complaint (&symfile_complaints,
15902 _("DW_AT_sibling points backwards"));
15903 else if (sibling_ptr > reader->buffer_end)
15904 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15905 else
15906 part_die->sibling = sibling_ptr;
15907 }
15908 break;
15909 case DW_AT_byte_size:
15910 part_die->has_byte_size = 1;
15911 break;
15912 case DW_AT_const_value:
15913 part_die->has_const_value = 1;
15914 break;
15915 case DW_AT_calling_convention:
15916 /* DWARF doesn't provide a way to identify a program's source-level
15917 entry point. DW_AT_calling_convention attributes are only meant
15918 to describe functions' calling conventions.
15919
15920 However, because it's a necessary piece of information in
15921 Fortran, and because DW_CC_program is the only piece of debugging
15922 information whose definition refers to a 'main program' at all,
15923 several compilers have begun marking Fortran main programs with
15924 DW_CC_program --- even when those functions use the standard
15925 calling conventions.
15926
15927 So until DWARF specifies a way to provide this information and
15928 compilers pick up the new representation, we'll support this
15929 practice. */
15930 if (DW_UNSND (&attr) == DW_CC_program
15931 && cu->language == language_fortran)
15932 set_objfile_main_name (objfile, part_die->name, language_fortran);
15933 break;
15934 case DW_AT_inline:
15935 if (DW_UNSND (&attr) == DW_INL_inlined
15936 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15937 part_die->may_be_inlined = 1;
15938 break;
15939
15940 case DW_AT_import:
15941 if (part_die->tag == DW_TAG_imported_unit)
15942 {
15943 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15944 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15945 || cu->per_cu->is_dwz);
15946 }
15947 break;
15948
15949 default:
15950 break;
15951 }
15952 }
15953
15954 if (high_pc_relative)
15955 part_die->highpc += part_die->lowpc;
15956
15957 if (has_low_pc_attr && has_high_pc_attr)
15958 {
15959 /* When using the GNU linker, .gnu.linkonce. sections are used to
15960 eliminate duplicate copies of functions and vtables and such.
15961 The linker will arbitrarily choose one and discard the others.
15962 The AT_*_pc values for such functions refer to local labels in
15963 these sections. If the section from that file was discarded, the
15964 labels are not in the output, so the relocs get a value of 0.
15965 If this is a discarded function, mark the pc bounds as invalid,
15966 so that GDB will ignore it. */
15967 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15968 {
15969 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15970
15971 complaint (&symfile_complaints,
15972 _("DW_AT_low_pc %s is zero "
15973 "for DIE at 0x%x [in module %s]"),
15974 paddress (gdbarch, part_die->lowpc),
15975 part_die->offset.sect_off, objfile_name (objfile));
15976 }
15977 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15978 else if (part_die->lowpc >= part_die->highpc)
15979 {
15980 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15981
15982 complaint (&symfile_complaints,
15983 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15984 "for DIE at 0x%x [in module %s]"),
15985 paddress (gdbarch, part_die->lowpc),
15986 paddress (gdbarch, part_die->highpc),
15987 part_die->offset.sect_off, objfile_name (objfile));
15988 }
15989 else
15990 part_die->has_pc_info = 1;
15991 }
15992
15993 return info_ptr;
15994 }
15995
15996 /* Find a cached partial DIE at OFFSET in CU. */
15997
15998 static struct partial_die_info *
15999 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
16000 {
16001 struct partial_die_info *lookup_die = NULL;
16002 struct partial_die_info part_die;
16003
16004 part_die.offset = offset;
16005 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
16006 offset.sect_off);
16007
16008 return lookup_die;
16009 }
16010
16011 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16012 except in the case of .debug_types DIEs which do not reference
16013 outside their CU (they do however referencing other types via
16014 DW_FORM_ref_sig8). */
16015
16016 static struct partial_die_info *
16017 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16018 {
16019 struct objfile *objfile = cu->objfile;
16020 struct dwarf2_per_cu_data *per_cu = NULL;
16021 struct partial_die_info *pd = NULL;
16022
16023 if (offset_in_dwz == cu->per_cu->is_dwz
16024 && offset_in_cu_p (&cu->header, offset))
16025 {
16026 pd = find_partial_die_in_comp_unit (offset, cu);
16027 if (pd != NULL)
16028 return pd;
16029 /* We missed recording what we needed.
16030 Load all dies and try again. */
16031 per_cu = cu->per_cu;
16032 }
16033 else
16034 {
16035 /* TUs don't reference other CUs/TUs (except via type signatures). */
16036 if (cu->per_cu->is_debug_types)
16037 {
16038 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16039 " external reference to offset 0x%lx [in module %s].\n"),
16040 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16041 bfd_get_filename (objfile->obfd));
16042 }
16043 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16044 objfile);
16045
16046 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16047 load_partial_comp_unit (per_cu);
16048
16049 per_cu->cu->last_used = 0;
16050 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16051 }
16052
16053 /* If we didn't find it, and not all dies have been loaded,
16054 load them all and try again. */
16055
16056 if (pd == NULL && per_cu->load_all_dies == 0)
16057 {
16058 per_cu->load_all_dies = 1;
16059
16060 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16061 THIS_CU->cu may already be in use. So we can't just free it and
16062 replace its DIEs with the ones we read in. Instead, we leave those
16063 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16064 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16065 set. */
16066 load_partial_comp_unit (per_cu);
16067
16068 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16069 }
16070
16071 if (pd == NULL)
16072 internal_error (__FILE__, __LINE__,
16073 _("could not find partial DIE 0x%x "
16074 "in cache [from module %s]\n"),
16075 offset.sect_off, bfd_get_filename (objfile->obfd));
16076 return pd;
16077 }
16078
16079 /* See if we can figure out if the class lives in a namespace. We do
16080 this by looking for a member function; its demangled name will
16081 contain namespace info, if there is any. */
16082
16083 static void
16084 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16085 struct dwarf2_cu *cu)
16086 {
16087 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16088 what template types look like, because the demangler
16089 frequently doesn't give the same name as the debug info. We
16090 could fix this by only using the demangled name to get the
16091 prefix (but see comment in read_structure_type). */
16092
16093 struct partial_die_info *real_pdi;
16094 struct partial_die_info *child_pdi;
16095
16096 /* If this DIE (this DIE's specification, if any) has a parent, then
16097 we should not do this. We'll prepend the parent's fully qualified
16098 name when we create the partial symbol. */
16099
16100 real_pdi = struct_pdi;
16101 while (real_pdi->has_specification)
16102 real_pdi = find_partial_die (real_pdi->spec_offset,
16103 real_pdi->spec_is_dwz, cu);
16104
16105 if (real_pdi->die_parent != NULL)
16106 return;
16107
16108 for (child_pdi = struct_pdi->die_child;
16109 child_pdi != NULL;
16110 child_pdi = child_pdi->die_sibling)
16111 {
16112 if (child_pdi->tag == DW_TAG_subprogram
16113 && child_pdi->linkage_name != NULL)
16114 {
16115 char *actual_class_name
16116 = language_class_name_from_physname (cu->language_defn,
16117 child_pdi->linkage_name);
16118 if (actual_class_name != NULL)
16119 {
16120 struct_pdi->name
16121 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16122 actual_class_name,
16123 strlen (actual_class_name));
16124 xfree (actual_class_name);
16125 }
16126 break;
16127 }
16128 }
16129 }
16130
16131 /* Adjust PART_DIE before generating a symbol for it. This function
16132 may set the is_external flag or change the DIE's name. */
16133
16134 static void
16135 fixup_partial_die (struct partial_die_info *part_die,
16136 struct dwarf2_cu *cu)
16137 {
16138 /* Once we've fixed up a die, there's no point in doing so again.
16139 This also avoids a memory leak if we were to call
16140 guess_partial_die_structure_name multiple times. */
16141 if (part_die->fixup_called)
16142 return;
16143
16144 /* If we found a reference attribute and the DIE has no name, try
16145 to find a name in the referred to DIE. */
16146
16147 if (part_die->name == NULL && part_die->has_specification)
16148 {
16149 struct partial_die_info *spec_die;
16150
16151 spec_die = find_partial_die (part_die->spec_offset,
16152 part_die->spec_is_dwz, cu);
16153
16154 fixup_partial_die (spec_die, cu);
16155
16156 if (spec_die->name)
16157 {
16158 part_die->name = spec_die->name;
16159
16160 /* Copy DW_AT_external attribute if it is set. */
16161 if (spec_die->is_external)
16162 part_die->is_external = spec_die->is_external;
16163 }
16164 }
16165
16166 /* Set default names for some unnamed DIEs. */
16167
16168 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16169 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16170
16171 /* If there is no parent die to provide a namespace, and there are
16172 children, see if we can determine the namespace from their linkage
16173 name. */
16174 if (cu->language == language_cplus
16175 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16176 && part_die->die_parent == NULL
16177 && part_die->has_children
16178 && (part_die->tag == DW_TAG_class_type
16179 || part_die->tag == DW_TAG_structure_type
16180 || part_die->tag == DW_TAG_union_type))
16181 guess_partial_die_structure_name (part_die, cu);
16182
16183 /* GCC might emit a nameless struct or union that has a linkage
16184 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16185 if (part_die->name == NULL
16186 && (part_die->tag == DW_TAG_class_type
16187 || part_die->tag == DW_TAG_interface_type
16188 || part_die->tag == DW_TAG_structure_type
16189 || part_die->tag == DW_TAG_union_type)
16190 && part_die->linkage_name != NULL)
16191 {
16192 char *demangled;
16193
16194 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16195 if (demangled)
16196 {
16197 const char *base;
16198
16199 /* Strip any leading namespaces/classes, keep only the base name.
16200 DW_AT_name for named DIEs does not contain the prefixes. */
16201 base = strrchr (demangled, ':');
16202 if (base && base > demangled && base[-1] == ':')
16203 base++;
16204 else
16205 base = demangled;
16206
16207 part_die->name
16208 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16209 base, strlen (base));
16210 xfree (demangled);
16211 }
16212 }
16213
16214 part_die->fixup_called = 1;
16215 }
16216
16217 /* Read an attribute value described by an attribute form. */
16218
16219 static const gdb_byte *
16220 read_attribute_value (const struct die_reader_specs *reader,
16221 struct attribute *attr, unsigned form,
16222 const gdb_byte *info_ptr)
16223 {
16224 struct dwarf2_cu *cu = reader->cu;
16225 struct objfile *objfile = cu->objfile;
16226 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16227 bfd *abfd = reader->abfd;
16228 struct comp_unit_head *cu_header = &cu->header;
16229 unsigned int bytes_read;
16230 struct dwarf_block *blk;
16231
16232 attr->form = (enum dwarf_form) form;
16233 switch (form)
16234 {
16235 case DW_FORM_ref_addr:
16236 if (cu->header.version == 2)
16237 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16238 else
16239 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16240 &cu->header, &bytes_read);
16241 info_ptr += bytes_read;
16242 break;
16243 case DW_FORM_GNU_ref_alt:
16244 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16245 info_ptr += bytes_read;
16246 break;
16247 case DW_FORM_addr:
16248 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16249 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16250 info_ptr += bytes_read;
16251 break;
16252 case DW_FORM_block2:
16253 blk = dwarf_alloc_block (cu);
16254 blk->size = read_2_bytes (abfd, info_ptr);
16255 info_ptr += 2;
16256 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16257 info_ptr += blk->size;
16258 DW_BLOCK (attr) = blk;
16259 break;
16260 case DW_FORM_block4:
16261 blk = dwarf_alloc_block (cu);
16262 blk->size = read_4_bytes (abfd, info_ptr);
16263 info_ptr += 4;
16264 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16265 info_ptr += blk->size;
16266 DW_BLOCK (attr) = blk;
16267 break;
16268 case DW_FORM_data2:
16269 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16270 info_ptr += 2;
16271 break;
16272 case DW_FORM_data4:
16273 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16274 info_ptr += 4;
16275 break;
16276 case DW_FORM_data8:
16277 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16278 info_ptr += 8;
16279 break;
16280 case DW_FORM_sec_offset:
16281 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16282 info_ptr += bytes_read;
16283 break;
16284 case DW_FORM_string:
16285 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16286 DW_STRING_IS_CANONICAL (attr) = 0;
16287 info_ptr += bytes_read;
16288 break;
16289 case DW_FORM_strp:
16290 if (!cu->per_cu->is_dwz)
16291 {
16292 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16293 &bytes_read);
16294 DW_STRING_IS_CANONICAL (attr) = 0;
16295 info_ptr += bytes_read;
16296 break;
16297 }
16298 /* FALLTHROUGH */
16299 case DW_FORM_GNU_strp_alt:
16300 {
16301 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16302 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16303 &bytes_read);
16304
16305 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16306 DW_STRING_IS_CANONICAL (attr) = 0;
16307 info_ptr += bytes_read;
16308 }
16309 break;
16310 case DW_FORM_exprloc:
16311 case DW_FORM_block:
16312 blk = dwarf_alloc_block (cu);
16313 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16314 info_ptr += bytes_read;
16315 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16316 info_ptr += blk->size;
16317 DW_BLOCK (attr) = blk;
16318 break;
16319 case DW_FORM_block1:
16320 blk = dwarf_alloc_block (cu);
16321 blk->size = read_1_byte (abfd, info_ptr);
16322 info_ptr += 1;
16323 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16324 info_ptr += blk->size;
16325 DW_BLOCK (attr) = blk;
16326 break;
16327 case DW_FORM_data1:
16328 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16329 info_ptr += 1;
16330 break;
16331 case DW_FORM_flag:
16332 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16333 info_ptr += 1;
16334 break;
16335 case DW_FORM_flag_present:
16336 DW_UNSND (attr) = 1;
16337 break;
16338 case DW_FORM_sdata:
16339 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16340 info_ptr += bytes_read;
16341 break;
16342 case DW_FORM_udata:
16343 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16344 info_ptr += bytes_read;
16345 break;
16346 case DW_FORM_ref1:
16347 DW_UNSND (attr) = (cu->header.offset.sect_off
16348 + read_1_byte (abfd, info_ptr));
16349 info_ptr += 1;
16350 break;
16351 case DW_FORM_ref2:
16352 DW_UNSND (attr) = (cu->header.offset.sect_off
16353 + read_2_bytes (abfd, info_ptr));
16354 info_ptr += 2;
16355 break;
16356 case DW_FORM_ref4:
16357 DW_UNSND (attr) = (cu->header.offset.sect_off
16358 + read_4_bytes (abfd, info_ptr));
16359 info_ptr += 4;
16360 break;
16361 case DW_FORM_ref8:
16362 DW_UNSND (attr) = (cu->header.offset.sect_off
16363 + read_8_bytes (abfd, info_ptr));
16364 info_ptr += 8;
16365 break;
16366 case DW_FORM_ref_sig8:
16367 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16368 info_ptr += 8;
16369 break;
16370 case DW_FORM_ref_udata:
16371 DW_UNSND (attr) = (cu->header.offset.sect_off
16372 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16373 info_ptr += bytes_read;
16374 break;
16375 case DW_FORM_indirect:
16376 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16377 info_ptr += bytes_read;
16378 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16379 break;
16380 case DW_FORM_GNU_addr_index:
16381 if (reader->dwo_file == NULL)
16382 {
16383 /* For now flag a hard error.
16384 Later we can turn this into a complaint. */
16385 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16386 dwarf_form_name (form),
16387 bfd_get_filename (abfd));
16388 }
16389 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16390 info_ptr += bytes_read;
16391 break;
16392 case DW_FORM_GNU_str_index:
16393 if (reader->dwo_file == NULL)
16394 {
16395 /* For now flag a hard error.
16396 Later we can turn this into a complaint if warranted. */
16397 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16398 dwarf_form_name (form),
16399 bfd_get_filename (abfd));
16400 }
16401 {
16402 ULONGEST str_index =
16403 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16404
16405 DW_STRING (attr) = read_str_index (reader, str_index);
16406 DW_STRING_IS_CANONICAL (attr) = 0;
16407 info_ptr += bytes_read;
16408 }
16409 break;
16410 default:
16411 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16412 dwarf_form_name (form),
16413 bfd_get_filename (abfd));
16414 }
16415
16416 /* Super hack. */
16417 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16418 attr->form = DW_FORM_GNU_ref_alt;
16419
16420 /* We have seen instances where the compiler tried to emit a byte
16421 size attribute of -1 which ended up being encoded as an unsigned
16422 0xffffffff. Although 0xffffffff is technically a valid size value,
16423 an object of this size seems pretty unlikely so we can relatively
16424 safely treat these cases as if the size attribute was invalid and
16425 treat them as zero by default. */
16426 if (attr->name == DW_AT_byte_size
16427 && form == DW_FORM_data4
16428 && DW_UNSND (attr) >= 0xffffffff)
16429 {
16430 complaint
16431 (&symfile_complaints,
16432 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16433 hex_string (DW_UNSND (attr)));
16434 DW_UNSND (attr) = 0;
16435 }
16436
16437 return info_ptr;
16438 }
16439
16440 /* Read an attribute described by an abbreviated attribute. */
16441
16442 static const gdb_byte *
16443 read_attribute (const struct die_reader_specs *reader,
16444 struct attribute *attr, struct attr_abbrev *abbrev,
16445 const gdb_byte *info_ptr)
16446 {
16447 attr->name = abbrev->name;
16448 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16449 }
16450
16451 /* Read dwarf information from a buffer. */
16452
16453 static unsigned int
16454 read_1_byte (bfd *abfd, const gdb_byte *buf)
16455 {
16456 return bfd_get_8 (abfd, buf);
16457 }
16458
16459 static int
16460 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16461 {
16462 return bfd_get_signed_8 (abfd, buf);
16463 }
16464
16465 static unsigned int
16466 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16467 {
16468 return bfd_get_16 (abfd, buf);
16469 }
16470
16471 static int
16472 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16473 {
16474 return bfd_get_signed_16 (abfd, buf);
16475 }
16476
16477 static unsigned int
16478 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16479 {
16480 return bfd_get_32 (abfd, buf);
16481 }
16482
16483 static int
16484 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16485 {
16486 return bfd_get_signed_32 (abfd, buf);
16487 }
16488
16489 static ULONGEST
16490 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16491 {
16492 return bfd_get_64 (abfd, buf);
16493 }
16494
16495 static CORE_ADDR
16496 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16497 unsigned int *bytes_read)
16498 {
16499 struct comp_unit_head *cu_header = &cu->header;
16500 CORE_ADDR retval = 0;
16501
16502 if (cu_header->signed_addr_p)
16503 {
16504 switch (cu_header->addr_size)
16505 {
16506 case 2:
16507 retval = bfd_get_signed_16 (abfd, buf);
16508 break;
16509 case 4:
16510 retval = bfd_get_signed_32 (abfd, buf);
16511 break;
16512 case 8:
16513 retval = bfd_get_signed_64 (abfd, buf);
16514 break;
16515 default:
16516 internal_error (__FILE__, __LINE__,
16517 _("read_address: bad switch, signed [in module %s]"),
16518 bfd_get_filename (abfd));
16519 }
16520 }
16521 else
16522 {
16523 switch (cu_header->addr_size)
16524 {
16525 case 2:
16526 retval = bfd_get_16 (abfd, buf);
16527 break;
16528 case 4:
16529 retval = bfd_get_32 (abfd, buf);
16530 break;
16531 case 8:
16532 retval = bfd_get_64 (abfd, buf);
16533 break;
16534 default:
16535 internal_error (__FILE__, __LINE__,
16536 _("read_address: bad switch, "
16537 "unsigned [in module %s]"),
16538 bfd_get_filename (abfd));
16539 }
16540 }
16541
16542 *bytes_read = cu_header->addr_size;
16543 return retval;
16544 }
16545
16546 /* Read the initial length from a section. The (draft) DWARF 3
16547 specification allows the initial length to take up either 4 bytes
16548 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16549 bytes describe the length and all offsets will be 8 bytes in length
16550 instead of 4.
16551
16552 An older, non-standard 64-bit format is also handled by this
16553 function. The older format in question stores the initial length
16554 as an 8-byte quantity without an escape value. Lengths greater
16555 than 2^32 aren't very common which means that the initial 4 bytes
16556 is almost always zero. Since a length value of zero doesn't make
16557 sense for the 32-bit format, this initial zero can be considered to
16558 be an escape value which indicates the presence of the older 64-bit
16559 format. As written, the code can't detect (old format) lengths
16560 greater than 4GB. If it becomes necessary to handle lengths
16561 somewhat larger than 4GB, we could allow other small values (such
16562 as the non-sensical values of 1, 2, and 3) to also be used as
16563 escape values indicating the presence of the old format.
16564
16565 The value returned via bytes_read should be used to increment the
16566 relevant pointer after calling read_initial_length().
16567
16568 [ Note: read_initial_length() and read_offset() are based on the
16569 document entitled "DWARF Debugging Information Format", revision
16570 3, draft 8, dated November 19, 2001. This document was obtained
16571 from:
16572
16573 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16574
16575 This document is only a draft and is subject to change. (So beware.)
16576
16577 Details regarding the older, non-standard 64-bit format were
16578 determined empirically by examining 64-bit ELF files produced by
16579 the SGI toolchain on an IRIX 6.5 machine.
16580
16581 - Kevin, July 16, 2002
16582 ] */
16583
16584 static LONGEST
16585 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16586 {
16587 LONGEST length = bfd_get_32 (abfd, buf);
16588
16589 if (length == 0xffffffff)
16590 {
16591 length = bfd_get_64 (abfd, buf + 4);
16592 *bytes_read = 12;
16593 }
16594 else if (length == 0)
16595 {
16596 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16597 length = bfd_get_64 (abfd, buf);
16598 *bytes_read = 8;
16599 }
16600 else
16601 {
16602 *bytes_read = 4;
16603 }
16604
16605 return length;
16606 }
16607
16608 /* Cover function for read_initial_length.
16609 Returns the length of the object at BUF, and stores the size of the
16610 initial length in *BYTES_READ and stores the size that offsets will be in
16611 *OFFSET_SIZE.
16612 If the initial length size is not equivalent to that specified in
16613 CU_HEADER then issue a complaint.
16614 This is useful when reading non-comp-unit headers. */
16615
16616 static LONGEST
16617 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16618 const struct comp_unit_head *cu_header,
16619 unsigned int *bytes_read,
16620 unsigned int *offset_size)
16621 {
16622 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16623
16624 gdb_assert (cu_header->initial_length_size == 4
16625 || cu_header->initial_length_size == 8
16626 || cu_header->initial_length_size == 12);
16627
16628 if (cu_header->initial_length_size != *bytes_read)
16629 complaint (&symfile_complaints,
16630 _("intermixed 32-bit and 64-bit DWARF sections"));
16631
16632 *offset_size = (*bytes_read == 4) ? 4 : 8;
16633 return length;
16634 }
16635
16636 /* Read an offset from the data stream. The size of the offset is
16637 given by cu_header->offset_size. */
16638
16639 static LONGEST
16640 read_offset (bfd *abfd, const gdb_byte *buf,
16641 const struct comp_unit_head *cu_header,
16642 unsigned int *bytes_read)
16643 {
16644 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16645
16646 *bytes_read = cu_header->offset_size;
16647 return offset;
16648 }
16649
16650 /* Read an offset from the data stream. */
16651
16652 static LONGEST
16653 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16654 {
16655 LONGEST retval = 0;
16656
16657 switch (offset_size)
16658 {
16659 case 4:
16660 retval = bfd_get_32 (abfd, buf);
16661 break;
16662 case 8:
16663 retval = bfd_get_64 (abfd, buf);
16664 break;
16665 default:
16666 internal_error (__FILE__, __LINE__,
16667 _("read_offset_1: bad switch [in module %s]"),
16668 bfd_get_filename (abfd));
16669 }
16670
16671 return retval;
16672 }
16673
16674 static const gdb_byte *
16675 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16676 {
16677 /* If the size of a host char is 8 bits, we can return a pointer
16678 to the buffer, otherwise we have to copy the data to a buffer
16679 allocated on the temporary obstack. */
16680 gdb_assert (HOST_CHAR_BIT == 8);
16681 return buf;
16682 }
16683
16684 static const char *
16685 read_direct_string (bfd *abfd, const gdb_byte *buf,
16686 unsigned int *bytes_read_ptr)
16687 {
16688 /* If the size of a host char is 8 bits, we can return a pointer
16689 to the string, otherwise we have to copy the string to a buffer
16690 allocated on the temporary obstack. */
16691 gdb_assert (HOST_CHAR_BIT == 8);
16692 if (*buf == '\0')
16693 {
16694 *bytes_read_ptr = 1;
16695 return NULL;
16696 }
16697 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16698 return (const char *) buf;
16699 }
16700
16701 static const char *
16702 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16703 {
16704 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16705 if (dwarf2_per_objfile->str.buffer == NULL)
16706 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16707 bfd_get_filename (abfd));
16708 if (str_offset >= dwarf2_per_objfile->str.size)
16709 error (_("DW_FORM_strp pointing outside of "
16710 ".debug_str section [in module %s]"),
16711 bfd_get_filename (abfd));
16712 gdb_assert (HOST_CHAR_BIT == 8);
16713 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16714 return NULL;
16715 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16716 }
16717
16718 /* Read a string at offset STR_OFFSET in the .debug_str section from
16719 the .dwz file DWZ. Throw an error if the offset is too large. If
16720 the string consists of a single NUL byte, return NULL; otherwise
16721 return a pointer to the string. */
16722
16723 static const char *
16724 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16725 {
16726 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16727
16728 if (dwz->str.buffer == NULL)
16729 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16730 "section [in module %s]"),
16731 bfd_get_filename (dwz->dwz_bfd));
16732 if (str_offset >= dwz->str.size)
16733 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16734 ".debug_str section [in module %s]"),
16735 bfd_get_filename (dwz->dwz_bfd));
16736 gdb_assert (HOST_CHAR_BIT == 8);
16737 if (dwz->str.buffer[str_offset] == '\0')
16738 return NULL;
16739 return (const char *) (dwz->str.buffer + str_offset);
16740 }
16741
16742 static const char *
16743 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16744 const struct comp_unit_head *cu_header,
16745 unsigned int *bytes_read_ptr)
16746 {
16747 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16748
16749 return read_indirect_string_at_offset (abfd, str_offset);
16750 }
16751
16752 static ULONGEST
16753 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16754 unsigned int *bytes_read_ptr)
16755 {
16756 ULONGEST result;
16757 unsigned int num_read;
16758 int i, shift;
16759 unsigned char byte;
16760
16761 result = 0;
16762 shift = 0;
16763 num_read = 0;
16764 i = 0;
16765 while (1)
16766 {
16767 byte = bfd_get_8 (abfd, buf);
16768 buf++;
16769 num_read++;
16770 result |= ((ULONGEST) (byte & 127) << shift);
16771 if ((byte & 128) == 0)
16772 {
16773 break;
16774 }
16775 shift += 7;
16776 }
16777 *bytes_read_ptr = num_read;
16778 return result;
16779 }
16780
16781 static LONGEST
16782 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16783 unsigned int *bytes_read_ptr)
16784 {
16785 LONGEST result;
16786 int i, shift, num_read;
16787 unsigned char byte;
16788
16789 result = 0;
16790 shift = 0;
16791 num_read = 0;
16792 i = 0;
16793 while (1)
16794 {
16795 byte = bfd_get_8 (abfd, buf);
16796 buf++;
16797 num_read++;
16798 result |= ((LONGEST) (byte & 127) << shift);
16799 shift += 7;
16800 if ((byte & 128) == 0)
16801 {
16802 break;
16803 }
16804 }
16805 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16806 result |= -(((LONGEST) 1) << shift);
16807 *bytes_read_ptr = num_read;
16808 return result;
16809 }
16810
16811 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16812 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16813 ADDR_SIZE is the size of addresses from the CU header. */
16814
16815 static CORE_ADDR
16816 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16817 {
16818 struct objfile *objfile = dwarf2_per_objfile->objfile;
16819 bfd *abfd = objfile->obfd;
16820 const gdb_byte *info_ptr;
16821
16822 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16823 if (dwarf2_per_objfile->addr.buffer == NULL)
16824 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16825 objfile_name (objfile));
16826 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16827 error (_("DW_FORM_addr_index pointing outside of "
16828 ".debug_addr section [in module %s]"),
16829 objfile_name (objfile));
16830 info_ptr = (dwarf2_per_objfile->addr.buffer
16831 + addr_base + addr_index * addr_size);
16832 if (addr_size == 4)
16833 return bfd_get_32 (abfd, info_ptr);
16834 else
16835 return bfd_get_64 (abfd, info_ptr);
16836 }
16837
16838 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16839
16840 static CORE_ADDR
16841 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16842 {
16843 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16844 }
16845
16846 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16847
16848 static CORE_ADDR
16849 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16850 unsigned int *bytes_read)
16851 {
16852 bfd *abfd = cu->objfile->obfd;
16853 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16854
16855 return read_addr_index (cu, addr_index);
16856 }
16857
16858 /* Data structure to pass results from dwarf2_read_addr_index_reader
16859 back to dwarf2_read_addr_index. */
16860
16861 struct dwarf2_read_addr_index_data
16862 {
16863 ULONGEST addr_base;
16864 int addr_size;
16865 };
16866
16867 /* die_reader_func for dwarf2_read_addr_index. */
16868
16869 static void
16870 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16871 const gdb_byte *info_ptr,
16872 struct die_info *comp_unit_die,
16873 int has_children,
16874 void *data)
16875 {
16876 struct dwarf2_cu *cu = reader->cu;
16877 struct dwarf2_read_addr_index_data *aidata =
16878 (struct dwarf2_read_addr_index_data *) data;
16879
16880 aidata->addr_base = cu->addr_base;
16881 aidata->addr_size = cu->header.addr_size;
16882 }
16883
16884 /* Given an index in .debug_addr, fetch the value.
16885 NOTE: This can be called during dwarf expression evaluation,
16886 long after the debug information has been read, and thus per_cu->cu
16887 may no longer exist. */
16888
16889 CORE_ADDR
16890 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16891 unsigned int addr_index)
16892 {
16893 struct objfile *objfile = per_cu->objfile;
16894 struct dwarf2_cu *cu = per_cu->cu;
16895 ULONGEST addr_base;
16896 int addr_size;
16897
16898 /* This is intended to be called from outside this file. */
16899 dw2_setup (objfile);
16900
16901 /* We need addr_base and addr_size.
16902 If we don't have PER_CU->cu, we have to get it.
16903 Nasty, but the alternative is storing the needed info in PER_CU,
16904 which at this point doesn't seem justified: it's not clear how frequently
16905 it would get used and it would increase the size of every PER_CU.
16906 Entry points like dwarf2_per_cu_addr_size do a similar thing
16907 so we're not in uncharted territory here.
16908 Alas we need to be a bit more complicated as addr_base is contained
16909 in the DIE.
16910
16911 We don't need to read the entire CU(/TU).
16912 We just need the header and top level die.
16913
16914 IWBN to use the aging mechanism to let us lazily later discard the CU.
16915 For now we skip this optimization. */
16916
16917 if (cu != NULL)
16918 {
16919 addr_base = cu->addr_base;
16920 addr_size = cu->header.addr_size;
16921 }
16922 else
16923 {
16924 struct dwarf2_read_addr_index_data aidata;
16925
16926 /* Note: We can't use init_cutu_and_read_dies_simple here,
16927 we need addr_base. */
16928 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16929 dwarf2_read_addr_index_reader, &aidata);
16930 addr_base = aidata.addr_base;
16931 addr_size = aidata.addr_size;
16932 }
16933
16934 return read_addr_index_1 (addr_index, addr_base, addr_size);
16935 }
16936
16937 /* Given a DW_FORM_GNU_str_index, fetch the string.
16938 This is only used by the Fission support. */
16939
16940 static const char *
16941 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16942 {
16943 struct objfile *objfile = dwarf2_per_objfile->objfile;
16944 const char *objf_name = objfile_name (objfile);
16945 bfd *abfd = objfile->obfd;
16946 struct dwarf2_cu *cu = reader->cu;
16947 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16948 struct dwarf2_section_info *str_offsets_section =
16949 &reader->dwo_file->sections.str_offsets;
16950 const gdb_byte *info_ptr;
16951 ULONGEST str_offset;
16952 static const char form_name[] = "DW_FORM_GNU_str_index";
16953
16954 dwarf2_read_section (objfile, str_section);
16955 dwarf2_read_section (objfile, str_offsets_section);
16956 if (str_section->buffer == NULL)
16957 error (_("%s used without .debug_str.dwo section"
16958 " in CU at offset 0x%lx [in module %s]"),
16959 form_name, (long) cu->header.offset.sect_off, objf_name);
16960 if (str_offsets_section->buffer == NULL)
16961 error (_("%s used without .debug_str_offsets.dwo section"
16962 " in CU at offset 0x%lx [in module %s]"),
16963 form_name, (long) cu->header.offset.sect_off, objf_name);
16964 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16965 error (_("%s pointing outside of .debug_str_offsets.dwo"
16966 " section in CU at offset 0x%lx [in module %s]"),
16967 form_name, (long) cu->header.offset.sect_off, objf_name);
16968 info_ptr = (str_offsets_section->buffer
16969 + str_index * cu->header.offset_size);
16970 if (cu->header.offset_size == 4)
16971 str_offset = bfd_get_32 (abfd, info_ptr);
16972 else
16973 str_offset = bfd_get_64 (abfd, info_ptr);
16974 if (str_offset >= str_section->size)
16975 error (_("Offset from %s pointing outside of"
16976 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16977 form_name, (long) cu->header.offset.sect_off, objf_name);
16978 return (const char *) (str_section->buffer + str_offset);
16979 }
16980
16981 /* Return the length of an LEB128 number in BUF. */
16982
16983 static int
16984 leb128_size (const gdb_byte *buf)
16985 {
16986 const gdb_byte *begin = buf;
16987 gdb_byte byte;
16988
16989 while (1)
16990 {
16991 byte = *buf++;
16992 if ((byte & 128) == 0)
16993 return buf - begin;
16994 }
16995 }
16996
16997 static void
16998 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16999 {
17000 switch (lang)
17001 {
17002 case DW_LANG_C89:
17003 case DW_LANG_C99:
17004 case DW_LANG_C11:
17005 case DW_LANG_C:
17006 case DW_LANG_UPC:
17007 cu->language = language_c;
17008 break;
17009 case DW_LANG_C_plus_plus:
17010 case DW_LANG_C_plus_plus_11:
17011 case DW_LANG_C_plus_plus_14:
17012 cu->language = language_cplus;
17013 break;
17014 case DW_LANG_D:
17015 cu->language = language_d;
17016 break;
17017 case DW_LANG_Fortran77:
17018 case DW_LANG_Fortran90:
17019 case DW_LANG_Fortran95:
17020 case DW_LANG_Fortran03:
17021 case DW_LANG_Fortran08:
17022 cu->language = language_fortran;
17023 break;
17024 case DW_LANG_Go:
17025 cu->language = language_go;
17026 break;
17027 case DW_LANG_Mips_Assembler:
17028 cu->language = language_asm;
17029 break;
17030 case DW_LANG_Java:
17031 cu->language = language_java;
17032 break;
17033 case DW_LANG_Ada83:
17034 case DW_LANG_Ada95:
17035 cu->language = language_ada;
17036 break;
17037 case DW_LANG_Modula2:
17038 cu->language = language_m2;
17039 break;
17040 case DW_LANG_Pascal83:
17041 cu->language = language_pascal;
17042 break;
17043 case DW_LANG_ObjC:
17044 cu->language = language_objc;
17045 break;
17046 case DW_LANG_Cobol74:
17047 case DW_LANG_Cobol85:
17048 default:
17049 cu->language = language_minimal;
17050 break;
17051 }
17052 cu->language_defn = language_def (cu->language);
17053 }
17054
17055 /* Return the named attribute or NULL if not there. */
17056
17057 static struct attribute *
17058 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17059 {
17060 for (;;)
17061 {
17062 unsigned int i;
17063 struct attribute *spec = NULL;
17064
17065 for (i = 0; i < die->num_attrs; ++i)
17066 {
17067 if (die->attrs[i].name == name)
17068 return &die->attrs[i];
17069 if (die->attrs[i].name == DW_AT_specification
17070 || die->attrs[i].name == DW_AT_abstract_origin)
17071 spec = &die->attrs[i];
17072 }
17073
17074 if (!spec)
17075 break;
17076
17077 die = follow_die_ref (die, spec, &cu);
17078 }
17079
17080 return NULL;
17081 }
17082
17083 /* Return the named attribute or NULL if not there,
17084 but do not follow DW_AT_specification, etc.
17085 This is for use in contexts where we're reading .debug_types dies.
17086 Following DW_AT_specification, DW_AT_abstract_origin will take us
17087 back up the chain, and we want to go down. */
17088
17089 static struct attribute *
17090 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17091 {
17092 unsigned int i;
17093
17094 for (i = 0; i < die->num_attrs; ++i)
17095 if (die->attrs[i].name == name)
17096 return &die->attrs[i];
17097
17098 return NULL;
17099 }
17100
17101 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17102 and holds a non-zero value. This function should only be used for
17103 DW_FORM_flag or DW_FORM_flag_present attributes. */
17104
17105 static int
17106 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17107 {
17108 struct attribute *attr = dwarf2_attr (die, name, cu);
17109
17110 return (attr && DW_UNSND (attr));
17111 }
17112
17113 static int
17114 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17115 {
17116 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17117 which value is non-zero. However, we have to be careful with
17118 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17119 (via dwarf2_flag_true_p) follows this attribute. So we may
17120 end up accidently finding a declaration attribute that belongs
17121 to a different DIE referenced by the specification attribute,
17122 even though the given DIE does not have a declaration attribute. */
17123 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17124 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17125 }
17126
17127 /* Return the die giving the specification for DIE, if there is
17128 one. *SPEC_CU is the CU containing DIE on input, and the CU
17129 containing the return value on output. If there is no
17130 specification, but there is an abstract origin, that is
17131 returned. */
17132
17133 static struct die_info *
17134 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17135 {
17136 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17137 *spec_cu);
17138
17139 if (spec_attr == NULL)
17140 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17141
17142 if (spec_attr == NULL)
17143 return NULL;
17144 else
17145 return follow_die_ref (die, spec_attr, spec_cu);
17146 }
17147
17148 /* Free the line_header structure *LH, and any arrays and strings it
17149 refers to.
17150 NOTE: This is also used as a "cleanup" function. */
17151
17152 static void
17153 free_line_header (struct line_header *lh)
17154 {
17155 if (lh->standard_opcode_lengths)
17156 xfree (lh->standard_opcode_lengths);
17157
17158 /* Remember that all the lh->file_names[i].name pointers are
17159 pointers into debug_line_buffer, and don't need to be freed. */
17160 if (lh->file_names)
17161 xfree (lh->file_names);
17162
17163 /* Similarly for the include directory names. */
17164 if (lh->include_dirs)
17165 xfree (lh->include_dirs);
17166
17167 xfree (lh);
17168 }
17169
17170 /* Stub for free_line_header to match void * callback types. */
17171
17172 static void
17173 free_line_header_voidp (void *arg)
17174 {
17175 struct line_header *lh = arg;
17176
17177 free_line_header (lh);
17178 }
17179
17180 /* Add an entry to LH's include directory table. */
17181
17182 static void
17183 add_include_dir (struct line_header *lh, const char *include_dir)
17184 {
17185 if (dwarf_line_debug >= 2)
17186 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17187 lh->num_include_dirs + 1, include_dir);
17188
17189 /* Grow the array if necessary. */
17190 if (lh->include_dirs_size == 0)
17191 {
17192 lh->include_dirs_size = 1; /* for testing */
17193 lh->include_dirs = xmalloc (lh->include_dirs_size
17194 * sizeof (*lh->include_dirs));
17195 }
17196 else if (lh->num_include_dirs >= lh->include_dirs_size)
17197 {
17198 lh->include_dirs_size *= 2;
17199 lh->include_dirs = xrealloc (lh->include_dirs,
17200 (lh->include_dirs_size
17201 * sizeof (*lh->include_dirs)));
17202 }
17203
17204 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17205 }
17206
17207 /* Add an entry to LH's file name table. */
17208
17209 static void
17210 add_file_name (struct line_header *lh,
17211 const char *name,
17212 unsigned int dir_index,
17213 unsigned int mod_time,
17214 unsigned int length)
17215 {
17216 struct file_entry *fe;
17217
17218 if (dwarf_line_debug >= 2)
17219 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17220 lh->num_file_names + 1, name);
17221
17222 /* Grow the array if necessary. */
17223 if (lh->file_names_size == 0)
17224 {
17225 lh->file_names_size = 1; /* for testing */
17226 lh->file_names = xmalloc (lh->file_names_size
17227 * sizeof (*lh->file_names));
17228 }
17229 else if (lh->num_file_names >= lh->file_names_size)
17230 {
17231 lh->file_names_size *= 2;
17232 lh->file_names = xrealloc (lh->file_names,
17233 (lh->file_names_size
17234 * sizeof (*lh->file_names)));
17235 }
17236
17237 fe = &lh->file_names[lh->num_file_names++];
17238 fe->name = name;
17239 fe->dir_index = dir_index;
17240 fe->mod_time = mod_time;
17241 fe->length = length;
17242 fe->included_p = 0;
17243 fe->symtab = NULL;
17244 }
17245
17246 /* A convenience function to find the proper .debug_line section for a CU. */
17247
17248 static struct dwarf2_section_info *
17249 get_debug_line_section (struct dwarf2_cu *cu)
17250 {
17251 struct dwarf2_section_info *section;
17252
17253 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17254 DWO file. */
17255 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17256 section = &cu->dwo_unit->dwo_file->sections.line;
17257 else if (cu->per_cu->is_dwz)
17258 {
17259 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17260
17261 section = &dwz->line;
17262 }
17263 else
17264 section = &dwarf2_per_objfile->line;
17265
17266 return section;
17267 }
17268
17269 /* Read the statement program header starting at OFFSET in
17270 .debug_line, or .debug_line.dwo. Return a pointer
17271 to a struct line_header, allocated using xmalloc.
17272 Returns NULL if there is a problem reading the header, e.g., if it
17273 has a version we don't understand.
17274
17275 NOTE: the strings in the include directory and file name tables of
17276 the returned object point into the dwarf line section buffer,
17277 and must not be freed. */
17278
17279 static struct line_header *
17280 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17281 {
17282 struct cleanup *back_to;
17283 struct line_header *lh;
17284 const gdb_byte *line_ptr;
17285 unsigned int bytes_read, offset_size;
17286 int i;
17287 const char *cur_dir, *cur_file;
17288 struct dwarf2_section_info *section;
17289 bfd *abfd;
17290
17291 section = get_debug_line_section (cu);
17292 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17293 if (section->buffer == NULL)
17294 {
17295 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17296 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17297 else
17298 complaint (&symfile_complaints, _("missing .debug_line section"));
17299 return 0;
17300 }
17301
17302 /* We can't do this until we know the section is non-empty.
17303 Only then do we know we have such a section. */
17304 abfd = get_section_bfd_owner (section);
17305
17306 /* Make sure that at least there's room for the total_length field.
17307 That could be 12 bytes long, but we're just going to fudge that. */
17308 if (offset + 4 >= section->size)
17309 {
17310 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17311 return 0;
17312 }
17313
17314 lh = xmalloc (sizeof (*lh));
17315 memset (lh, 0, sizeof (*lh));
17316 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17317 (void *) lh);
17318
17319 lh->offset.sect_off = offset;
17320 lh->offset_in_dwz = cu->per_cu->is_dwz;
17321
17322 line_ptr = section->buffer + offset;
17323
17324 /* Read in the header. */
17325 lh->total_length =
17326 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17327 &bytes_read, &offset_size);
17328 line_ptr += bytes_read;
17329 if (line_ptr + lh->total_length > (section->buffer + section->size))
17330 {
17331 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17332 do_cleanups (back_to);
17333 return 0;
17334 }
17335 lh->statement_program_end = line_ptr + lh->total_length;
17336 lh->version = read_2_bytes (abfd, line_ptr);
17337 line_ptr += 2;
17338 if (lh->version > 4)
17339 {
17340 /* This is a version we don't understand. The format could have
17341 changed in ways we don't handle properly so just punt. */
17342 complaint (&symfile_complaints,
17343 _("unsupported version in .debug_line section"));
17344 return NULL;
17345 }
17346 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17347 line_ptr += offset_size;
17348 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17349 line_ptr += 1;
17350 if (lh->version >= 4)
17351 {
17352 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17353 line_ptr += 1;
17354 }
17355 else
17356 lh->maximum_ops_per_instruction = 1;
17357
17358 if (lh->maximum_ops_per_instruction == 0)
17359 {
17360 lh->maximum_ops_per_instruction = 1;
17361 complaint (&symfile_complaints,
17362 _("invalid maximum_ops_per_instruction "
17363 "in `.debug_line' section"));
17364 }
17365
17366 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17367 line_ptr += 1;
17368 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17369 line_ptr += 1;
17370 lh->line_range = read_1_byte (abfd, line_ptr);
17371 line_ptr += 1;
17372 lh->opcode_base = read_1_byte (abfd, line_ptr);
17373 line_ptr += 1;
17374 lh->standard_opcode_lengths
17375 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17376
17377 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17378 for (i = 1; i < lh->opcode_base; ++i)
17379 {
17380 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17381 line_ptr += 1;
17382 }
17383
17384 /* Read directory table. */
17385 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17386 {
17387 line_ptr += bytes_read;
17388 add_include_dir (lh, cur_dir);
17389 }
17390 line_ptr += bytes_read;
17391
17392 /* Read file name table. */
17393 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17394 {
17395 unsigned int dir_index, mod_time, length;
17396
17397 line_ptr += bytes_read;
17398 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17399 line_ptr += bytes_read;
17400 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17401 line_ptr += bytes_read;
17402 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17403 line_ptr += bytes_read;
17404
17405 add_file_name (lh, cur_file, dir_index, mod_time, length);
17406 }
17407 line_ptr += bytes_read;
17408 lh->statement_program_start = line_ptr;
17409
17410 if (line_ptr > (section->buffer + section->size))
17411 complaint (&symfile_complaints,
17412 _("line number info header doesn't "
17413 "fit in `.debug_line' section"));
17414
17415 discard_cleanups (back_to);
17416 return lh;
17417 }
17418
17419 /* Subroutine of dwarf_decode_lines to simplify it.
17420 Return the file name of the psymtab for included file FILE_INDEX
17421 in line header LH of PST.
17422 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17423 If space for the result is malloc'd, it will be freed by a cleanup.
17424 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17425
17426 The function creates dangling cleanup registration. */
17427
17428 static const char *
17429 psymtab_include_file_name (const struct line_header *lh, int file_index,
17430 const struct partial_symtab *pst,
17431 const char *comp_dir)
17432 {
17433 const struct file_entry fe = lh->file_names [file_index];
17434 const char *include_name = fe.name;
17435 const char *include_name_to_compare = include_name;
17436 const char *dir_name = NULL;
17437 const char *pst_filename;
17438 char *copied_name = NULL;
17439 int file_is_pst;
17440
17441 if (fe.dir_index && lh->include_dirs != NULL)
17442 dir_name = lh->include_dirs[fe.dir_index - 1];
17443
17444 if (!IS_ABSOLUTE_PATH (include_name)
17445 && (dir_name != NULL || comp_dir != NULL))
17446 {
17447 /* Avoid creating a duplicate psymtab for PST.
17448 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17449 Before we do the comparison, however, we need to account
17450 for DIR_NAME and COMP_DIR.
17451 First prepend dir_name (if non-NULL). If we still don't
17452 have an absolute path prepend comp_dir (if non-NULL).
17453 However, the directory we record in the include-file's
17454 psymtab does not contain COMP_DIR (to match the
17455 corresponding symtab(s)).
17456
17457 Example:
17458
17459 bash$ cd /tmp
17460 bash$ gcc -g ./hello.c
17461 include_name = "hello.c"
17462 dir_name = "."
17463 DW_AT_comp_dir = comp_dir = "/tmp"
17464 DW_AT_name = "./hello.c"
17465
17466 */
17467
17468 if (dir_name != NULL)
17469 {
17470 char *tem = concat (dir_name, SLASH_STRING,
17471 include_name, (char *)NULL);
17472
17473 make_cleanup (xfree, tem);
17474 include_name = tem;
17475 include_name_to_compare = include_name;
17476 }
17477 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17478 {
17479 char *tem = concat (comp_dir, SLASH_STRING,
17480 include_name, (char *)NULL);
17481
17482 make_cleanup (xfree, tem);
17483 include_name_to_compare = tem;
17484 }
17485 }
17486
17487 pst_filename = pst->filename;
17488 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17489 {
17490 copied_name = concat (pst->dirname, SLASH_STRING,
17491 pst_filename, (char *)NULL);
17492 pst_filename = copied_name;
17493 }
17494
17495 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17496
17497 if (copied_name != NULL)
17498 xfree (copied_name);
17499
17500 if (file_is_pst)
17501 return NULL;
17502 return include_name;
17503 }
17504
17505 /* State machine to track the state of the line number program. */
17506
17507 typedef struct
17508 {
17509 /* These are part of the standard DWARF line number state machine. */
17510
17511 unsigned char op_index;
17512 unsigned int file;
17513 unsigned int line;
17514 CORE_ADDR address;
17515 int is_stmt;
17516 unsigned int discriminator;
17517
17518 /* Additional bits of state we need to track. */
17519
17520 /* The last file that we called dwarf2_start_subfile for.
17521 This is only used for TLLs. */
17522 unsigned int last_file;
17523 /* The last file a line number was recorded for. */
17524 struct subfile *last_subfile;
17525
17526 /* The function to call to record a line. */
17527 record_line_ftype *record_line;
17528
17529 /* The last line number that was recorded, used to coalesce
17530 consecutive entries for the same line. This can happen, for
17531 example, when discriminators are present. PR 17276. */
17532 unsigned int last_line;
17533 int line_has_non_zero_discriminator;
17534 } lnp_state_machine;
17535
17536 /* There's a lot of static state to pass to dwarf_record_line.
17537 This keeps it all together. */
17538
17539 typedef struct
17540 {
17541 /* The gdbarch. */
17542 struct gdbarch *gdbarch;
17543
17544 /* The line number header. */
17545 struct line_header *line_header;
17546
17547 /* Non-zero if we're recording lines.
17548 Otherwise we're building partial symtabs and are just interested in
17549 finding include files mentioned by the line number program. */
17550 int record_lines_p;
17551 } lnp_reader_state;
17552
17553 /* Ignore this record_line request. */
17554
17555 static void
17556 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17557 {
17558 return;
17559 }
17560
17561 /* Return non-zero if we should add LINE to the line number table.
17562 LINE is the line to add, LAST_LINE is the last line that was added,
17563 LAST_SUBFILE is the subfile for LAST_LINE.
17564 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17565 had a non-zero discriminator.
17566
17567 We have to be careful in the presence of discriminators.
17568 E.g., for this line:
17569
17570 for (i = 0; i < 100000; i++);
17571
17572 clang can emit four line number entries for that one line,
17573 each with a different discriminator.
17574 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17575
17576 However, we want gdb to coalesce all four entries into one.
17577 Otherwise the user could stepi into the middle of the line and
17578 gdb would get confused about whether the pc really was in the
17579 middle of the line.
17580
17581 Things are further complicated by the fact that two consecutive
17582 line number entries for the same line is a heuristic used by gcc
17583 to denote the end of the prologue. So we can't just discard duplicate
17584 entries, we have to be selective about it. The heuristic we use is
17585 that we only collapse consecutive entries for the same line if at least
17586 one of those entries has a non-zero discriminator. PR 17276.
17587
17588 Note: Addresses in the line number state machine can never go backwards
17589 within one sequence, thus this coalescing is ok. */
17590
17591 static int
17592 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17593 int line_has_non_zero_discriminator,
17594 struct subfile *last_subfile)
17595 {
17596 if (current_subfile != last_subfile)
17597 return 1;
17598 if (line != last_line)
17599 return 1;
17600 /* Same line for the same file that we've seen already.
17601 As a last check, for pr 17276, only record the line if the line
17602 has never had a non-zero discriminator. */
17603 if (!line_has_non_zero_discriminator)
17604 return 1;
17605 return 0;
17606 }
17607
17608 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17609 in the line table of subfile SUBFILE. */
17610
17611 static void
17612 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17613 unsigned int line, CORE_ADDR address,
17614 record_line_ftype p_record_line)
17615 {
17616 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17617
17618 if (dwarf_line_debug)
17619 {
17620 fprintf_unfiltered (gdb_stdlog,
17621 "Recording line %u, file %s, address %s\n",
17622 line, lbasename (subfile->name),
17623 paddress (gdbarch, address));
17624 }
17625
17626 (*p_record_line) (subfile, line, addr);
17627 }
17628
17629 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17630 Mark the end of a set of line number records.
17631 The arguments are the same as for dwarf_record_line_1.
17632 If SUBFILE is NULL the request is ignored. */
17633
17634 static void
17635 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17636 CORE_ADDR address, record_line_ftype p_record_line)
17637 {
17638 if (subfile == NULL)
17639 return;
17640
17641 if (dwarf_line_debug)
17642 {
17643 fprintf_unfiltered (gdb_stdlog,
17644 "Finishing current line, file %s, address %s\n",
17645 lbasename (subfile->name),
17646 paddress (gdbarch, address));
17647 }
17648
17649 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17650 }
17651
17652 /* Record the line in STATE.
17653 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17654
17655 static void
17656 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17657 int end_sequence)
17658 {
17659 const struct line_header *lh = reader->line_header;
17660 unsigned int file, line, discriminator;
17661 int is_stmt;
17662
17663 file = state->file;
17664 line = state->line;
17665 is_stmt = state->is_stmt;
17666 discriminator = state->discriminator;
17667
17668 if (dwarf_line_debug)
17669 {
17670 fprintf_unfiltered (gdb_stdlog,
17671 "Processing actual line %u: file %u,"
17672 " address %s, is_stmt %u, discrim %u\n",
17673 line, file,
17674 paddress (reader->gdbarch, state->address),
17675 is_stmt, discriminator);
17676 }
17677
17678 if (file == 0 || file - 1 >= lh->num_file_names)
17679 dwarf2_debug_line_missing_file_complaint ();
17680 /* For now we ignore lines not starting on an instruction boundary.
17681 But not when processing end_sequence for compatibility with the
17682 previous version of the code. */
17683 else if (state->op_index == 0 || end_sequence)
17684 {
17685 lh->file_names[file - 1].included_p = 1;
17686 if (reader->record_lines_p && is_stmt)
17687 {
17688 if (state->last_subfile != current_subfile || end_sequence)
17689 {
17690 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17691 state->address, state->record_line);
17692 }
17693
17694 if (!end_sequence)
17695 {
17696 if (dwarf_record_line_p (line, state->last_line,
17697 state->line_has_non_zero_discriminator,
17698 state->last_subfile))
17699 {
17700 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17701 line, state->address,
17702 state->record_line);
17703 }
17704 state->last_subfile = current_subfile;
17705 state->last_line = line;
17706 }
17707 }
17708 }
17709 }
17710
17711 /* Initialize STATE for the start of a line number program. */
17712
17713 static void
17714 init_lnp_state_machine (lnp_state_machine *state,
17715 const lnp_reader_state *reader)
17716 {
17717 memset (state, 0, sizeof (*state));
17718
17719 /* Just starting, there is no "last file". */
17720 state->last_file = 0;
17721 state->last_subfile = NULL;
17722
17723 state->record_line = record_line;
17724
17725 state->last_line = 0;
17726 state->line_has_non_zero_discriminator = 0;
17727
17728 /* Initialize these according to the DWARF spec. */
17729 state->op_index = 0;
17730 state->file = 1;
17731 state->line = 1;
17732 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17733 was a line entry for it so that the backend has a chance to adjust it
17734 and also record it in case it needs it. This is currently used by MIPS
17735 code, cf. `mips_adjust_dwarf2_line'. */
17736 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17737 state->is_stmt = reader->line_header->default_is_stmt;
17738 state->discriminator = 0;
17739 }
17740
17741 /* Check address and if invalid nop-out the rest of the lines in this
17742 sequence. */
17743
17744 static void
17745 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17746 const gdb_byte *line_ptr,
17747 CORE_ADDR lowpc, CORE_ADDR address)
17748 {
17749 /* If address < lowpc then it's not a usable value, it's outside the
17750 pc range of the CU. However, we restrict the test to only address
17751 values of zero to preserve GDB's previous behaviour which is to
17752 handle the specific case of a function being GC'd by the linker. */
17753
17754 if (address == 0 && address < lowpc)
17755 {
17756 /* This line table is for a function which has been
17757 GCd by the linker. Ignore it. PR gdb/12528 */
17758
17759 struct objfile *objfile = cu->objfile;
17760 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17761
17762 complaint (&symfile_complaints,
17763 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17764 line_offset, objfile_name (objfile));
17765 state->record_line = noop_record_line;
17766 /* Note: sm.record_line is left as noop_record_line
17767 until we see DW_LNE_end_sequence. */
17768 }
17769 }
17770
17771 /* Subroutine of dwarf_decode_lines to simplify it.
17772 Process the line number information in LH.
17773 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17774 program in order to set included_p for every referenced header. */
17775
17776 static void
17777 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17778 const int decode_for_pst_p, CORE_ADDR lowpc)
17779 {
17780 const gdb_byte *line_ptr, *extended_end;
17781 const gdb_byte *line_end;
17782 unsigned int bytes_read, extended_len;
17783 unsigned char op_code, extended_op;
17784 CORE_ADDR baseaddr;
17785 struct objfile *objfile = cu->objfile;
17786 bfd *abfd = objfile->obfd;
17787 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17788 /* Non-zero if we're recording line info (as opposed to building partial
17789 symtabs). */
17790 int record_lines_p = !decode_for_pst_p;
17791 /* A collection of things we need to pass to dwarf_record_line. */
17792 lnp_reader_state reader_state;
17793
17794 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17795
17796 line_ptr = lh->statement_program_start;
17797 line_end = lh->statement_program_end;
17798
17799 reader_state.gdbarch = gdbarch;
17800 reader_state.line_header = lh;
17801 reader_state.record_lines_p = record_lines_p;
17802
17803 /* Read the statement sequences until there's nothing left. */
17804 while (line_ptr < line_end)
17805 {
17806 /* The DWARF line number program state machine. */
17807 lnp_state_machine state_machine;
17808 int end_sequence = 0;
17809
17810 /* Reset the state machine at the start of each sequence. */
17811 init_lnp_state_machine (&state_machine, &reader_state);
17812
17813 if (record_lines_p && lh->num_file_names >= state_machine.file)
17814 {
17815 /* Start a subfile for the current file of the state machine. */
17816 /* lh->include_dirs and lh->file_names are 0-based, but the
17817 directory and file name numbers in the statement program
17818 are 1-based. */
17819 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17820 const char *dir = NULL;
17821
17822 if (fe->dir_index && lh->include_dirs != NULL)
17823 dir = lh->include_dirs[fe->dir_index - 1];
17824
17825 dwarf2_start_subfile (fe->name, dir);
17826 }
17827
17828 /* Decode the table. */
17829 while (line_ptr < line_end && !end_sequence)
17830 {
17831 op_code = read_1_byte (abfd, line_ptr);
17832 line_ptr += 1;
17833
17834 if (op_code >= lh->opcode_base)
17835 {
17836 /* Special opcode. */
17837 unsigned char adj_opcode;
17838 CORE_ADDR addr_adj;
17839 int line_delta;
17840
17841 adj_opcode = op_code - lh->opcode_base;
17842 addr_adj = (((state_machine.op_index
17843 + (adj_opcode / lh->line_range))
17844 / lh->maximum_ops_per_instruction)
17845 * lh->minimum_instruction_length);
17846 state_machine.address
17847 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17848 state_machine.op_index = ((state_machine.op_index
17849 + (adj_opcode / lh->line_range))
17850 % lh->maximum_ops_per_instruction);
17851 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17852 state_machine.line += line_delta;
17853 if (line_delta != 0)
17854 state_machine.line_has_non_zero_discriminator
17855 = state_machine.discriminator != 0;
17856
17857 dwarf_record_line (&reader_state, &state_machine, 0);
17858 state_machine.discriminator = 0;
17859 }
17860 else switch (op_code)
17861 {
17862 case DW_LNS_extended_op:
17863 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17864 &bytes_read);
17865 line_ptr += bytes_read;
17866 extended_end = line_ptr + extended_len;
17867 extended_op = read_1_byte (abfd, line_ptr);
17868 line_ptr += 1;
17869 switch (extended_op)
17870 {
17871 case DW_LNE_end_sequence:
17872 state_machine.record_line = record_line;
17873 end_sequence = 1;
17874 break;
17875 case DW_LNE_set_address:
17876 {
17877 CORE_ADDR address
17878 = read_address (abfd, line_ptr, cu, &bytes_read);
17879
17880 line_ptr += bytes_read;
17881 check_line_address (cu, &state_machine, line_ptr,
17882 lowpc, address);
17883 state_machine.op_index = 0;
17884 address += baseaddr;
17885 state_machine.address
17886 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17887 }
17888 break;
17889 case DW_LNE_define_file:
17890 {
17891 const char *cur_file;
17892 unsigned int dir_index, mod_time, length;
17893
17894 cur_file = read_direct_string (abfd, line_ptr,
17895 &bytes_read);
17896 line_ptr += bytes_read;
17897 dir_index =
17898 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17899 line_ptr += bytes_read;
17900 mod_time =
17901 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17902 line_ptr += bytes_read;
17903 length =
17904 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17905 line_ptr += bytes_read;
17906 add_file_name (lh, cur_file, dir_index, mod_time, length);
17907 }
17908 break;
17909 case DW_LNE_set_discriminator:
17910 /* The discriminator is not interesting to the debugger;
17911 just ignore it. We still need to check its value though:
17912 if there are consecutive entries for the same
17913 (non-prologue) line we want to coalesce them.
17914 PR 17276. */
17915 state_machine.discriminator
17916 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17917 state_machine.line_has_non_zero_discriminator
17918 |= state_machine.discriminator != 0;
17919 line_ptr += bytes_read;
17920 break;
17921 default:
17922 complaint (&symfile_complaints,
17923 _("mangled .debug_line section"));
17924 return;
17925 }
17926 /* Make sure that we parsed the extended op correctly. If e.g.
17927 we expected a different address size than the producer used,
17928 we may have read the wrong number of bytes. */
17929 if (line_ptr != extended_end)
17930 {
17931 complaint (&symfile_complaints,
17932 _("mangled .debug_line section"));
17933 return;
17934 }
17935 break;
17936 case DW_LNS_copy:
17937 dwarf_record_line (&reader_state, &state_machine, 0);
17938 state_machine.discriminator = 0;
17939 break;
17940 case DW_LNS_advance_pc:
17941 {
17942 CORE_ADDR adjust
17943 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17944 CORE_ADDR addr_adj;
17945
17946 addr_adj = (((state_machine.op_index + adjust)
17947 / lh->maximum_ops_per_instruction)
17948 * lh->minimum_instruction_length);
17949 state_machine.address
17950 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17951 state_machine.op_index = ((state_machine.op_index + adjust)
17952 % lh->maximum_ops_per_instruction);
17953 line_ptr += bytes_read;
17954 }
17955 break;
17956 case DW_LNS_advance_line:
17957 {
17958 int line_delta
17959 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17960
17961 state_machine.line += line_delta;
17962 if (line_delta != 0)
17963 state_machine.line_has_non_zero_discriminator
17964 = state_machine.discriminator != 0;
17965 line_ptr += bytes_read;
17966 }
17967 break;
17968 case DW_LNS_set_file:
17969 {
17970 /* The arrays lh->include_dirs and lh->file_names are
17971 0-based, but the directory and file name numbers in
17972 the statement program are 1-based. */
17973 struct file_entry *fe;
17974 const char *dir = NULL;
17975
17976 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
17977 &bytes_read);
17978 line_ptr += bytes_read;
17979 if (state_machine.file == 0
17980 || state_machine.file - 1 >= lh->num_file_names)
17981 dwarf2_debug_line_missing_file_complaint ();
17982 else
17983 {
17984 fe = &lh->file_names[state_machine.file - 1];
17985 if (fe->dir_index && lh->include_dirs != NULL)
17986 dir = lh->include_dirs[fe->dir_index - 1];
17987 if (record_lines_p)
17988 {
17989 state_machine.last_subfile = current_subfile;
17990 state_machine.line_has_non_zero_discriminator
17991 = state_machine.discriminator != 0;
17992 dwarf2_start_subfile (fe->name, dir);
17993 }
17994 }
17995 }
17996 break;
17997 case DW_LNS_set_column:
17998 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17999 line_ptr += bytes_read;
18000 break;
18001 case DW_LNS_negate_stmt:
18002 state_machine.is_stmt = (!state_machine.is_stmt);
18003 break;
18004 case DW_LNS_set_basic_block:
18005 break;
18006 /* Add to the address register of the state machine the
18007 address increment value corresponding to special opcode
18008 255. I.e., this value is scaled by the minimum
18009 instruction length since special opcode 255 would have
18010 scaled the increment. */
18011 case DW_LNS_const_add_pc:
18012 {
18013 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18014 CORE_ADDR addr_adj;
18015
18016 addr_adj = (((state_machine.op_index + adjust)
18017 / lh->maximum_ops_per_instruction)
18018 * lh->minimum_instruction_length);
18019 state_machine.address
18020 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18021 state_machine.op_index = ((state_machine.op_index + adjust)
18022 % lh->maximum_ops_per_instruction);
18023 }
18024 break;
18025 case DW_LNS_fixed_advance_pc:
18026 {
18027 CORE_ADDR addr_adj;
18028
18029 addr_adj = read_2_bytes (abfd, line_ptr);
18030 state_machine.address
18031 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18032 state_machine.op_index = 0;
18033 line_ptr += 2;
18034 }
18035 break;
18036 default:
18037 {
18038 /* Unknown standard opcode, ignore it. */
18039 int i;
18040
18041 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18042 {
18043 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18044 line_ptr += bytes_read;
18045 }
18046 }
18047 }
18048 }
18049
18050 if (!end_sequence)
18051 dwarf2_debug_line_missing_end_sequence_complaint ();
18052
18053 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18054 in which case we still finish recording the last line). */
18055 dwarf_record_line (&reader_state, &state_machine, 1);
18056 }
18057 }
18058
18059 /* Decode the Line Number Program (LNP) for the given line_header
18060 structure and CU. The actual information extracted and the type
18061 of structures created from the LNP depends on the value of PST.
18062
18063 1. If PST is NULL, then this procedure uses the data from the program
18064 to create all necessary symbol tables, and their linetables.
18065
18066 2. If PST is not NULL, this procedure reads the program to determine
18067 the list of files included by the unit represented by PST, and
18068 builds all the associated partial symbol tables.
18069
18070 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18071 It is used for relative paths in the line table.
18072 NOTE: When processing partial symtabs (pst != NULL),
18073 comp_dir == pst->dirname.
18074
18075 NOTE: It is important that psymtabs have the same file name (via strcmp)
18076 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18077 symtab we don't use it in the name of the psymtabs we create.
18078 E.g. expand_line_sal requires this when finding psymtabs to expand.
18079 A good testcase for this is mb-inline.exp.
18080
18081 LOWPC is the lowest address in CU (or 0 if not known).
18082
18083 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18084 for its PC<->lines mapping information. Otherwise only the filename
18085 table is read in. */
18086
18087 static void
18088 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18089 struct dwarf2_cu *cu, struct partial_symtab *pst,
18090 CORE_ADDR lowpc, int decode_mapping)
18091 {
18092 struct objfile *objfile = cu->objfile;
18093 const int decode_for_pst_p = (pst != NULL);
18094
18095 if (decode_mapping)
18096 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18097
18098 if (decode_for_pst_p)
18099 {
18100 int file_index;
18101
18102 /* Now that we're done scanning the Line Header Program, we can
18103 create the psymtab of each included file. */
18104 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18105 if (lh->file_names[file_index].included_p == 1)
18106 {
18107 const char *include_name =
18108 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18109 if (include_name != NULL)
18110 dwarf2_create_include_psymtab (include_name, pst, objfile);
18111 }
18112 }
18113 else
18114 {
18115 /* Make sure a symtab is created for every file, even files
18116 which contain only variables (i.e. no code with associated
18117 line numbers). */
18118 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18119 int i;
18120
18121 for (i = 0; i < lh->num_file_names; i++)
18122 {
18123 const char *dir = NULL;
18124 struct file_entry *fe;
18125
18126 fe = &lh->file_names[i];
18127 if (fe->dir_index && lh->include_dirs != NULL)
18128 dir = lh->include_dirs[fe->dir_index - 1];
18129 dwarf2_start_subfile (fe->name, dir);
18130
18131 if (current_subfile->symtab == NULL)
18132 {
18133 current_subfile->symtab
18134 = allocate_symtab (cust, current_subfile->name);
18135 }
18136 fe->symtab = current_subfile->symtab;
18137 }
18138 }
18139 }
18140
18141 /* Start a subfile for DWARF. FILENAME is the name of the file and
18142 DIRNAME the name of the source directory which contains FILENAME
18143 or NULL if not known.
18144 This routine tries to keep line numbers from identical absolute and
18145 relative file names in a common subfile.
18146
18147 Using the `list' example from the GDB testsuite, which resides in
18148 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18149 of /srcdir/list0.c yields the following debugging information for list0.c:
18150
18151 DW_AT_name: /srcdir/list0.c
18152 DW_AT_comp_dir: /compdir
18153 files.files[0].name: list0.h
18154 files.files[0].dir: /srcdir
18155 files.files[1].name: list0.c
18156 files.files[1].dir: /srcdir
18157
18158 The line number information for list0.c has to end up in a single
18159 subfile, so that `break /srcdir/list0.c:1' works as expected.
18160 start_subfile will ensure that this happens provided that we pass the
18161 concatenation of files.files[1].dir and files.files[1].name as the
18162 subfile's name. */
18163
18164 static void
18165 dwarf2_start_subfile (const char *filename, const char *dirname)
18166 {
18167 char *copy = NULL;
18168
18169 /* In order not to lose the line information directory,
18170 we concatenate it to the filename when it makes sense.
18171 Note that the Dwarf3 standard says (speaking of filenames in line
18172 information): ``The directory index is ignored for file names
18173 that represent full path names''. Thus ignoring dirname in the
18174 `else' branch below isn't an issue. */
18175
18176 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18177 {
18178 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18179 filename = copy;
18180 }
18181
18182 start_subfile (filename);
18183
18184 if (copy != NULL)
18185 xfree (copy);
18186 }
18187
18188 /* Start a symtab for DWARF.
18189 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18190
18191 static struct compunit_symtab *
18192 dwarf2_start_symtab (struct dwarf2_cu *cu,
18193 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18194 {
18195 struct compunit_symtab *cust
18196 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18197
18198 record_debugformat ("DWARF 2");
18199 record_producer (cu->producer);
18200
18201 /* We assume that we're processing GCC output. */
18202 processing_gcc_compilation = 2;
18203
18204 cu->processing_has_namespace_info = 0;
18205
18206 return cust;
18207 }
18208
18209 static void
18210 var_decode_location (struct attribute *attr, struct symbol *sym,
18211 struct dwarf2_cu *cu)
18212 {
18213 struct objfile *objfile = cu->objfile;
18214 struct comp_unit_head *cu_header = &cu->header;
18215
18216 /* NOTE drow/2003-01-30: There used to be a comment and some special
18217 code here to turn a symbol with DW_AT_external and a
18218 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18219 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18220 with some versions of binutils) where shared libraries could have
18221 relocations against symbols in their debug information - the
18222 minimal symbol would have the right address, but the debug info
18223 would not. It's no longer necessary, because we will explicitly
18224 apply relocations when we read in the debug information now. */
18225
18226 /* A DW_AT_location attribute with no contents indicates that a
18227 variable has been optimized away. */
18228 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18229 {
18230 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18231 return;
18232 }
18233
18234 /* Handle one degenerate form of location expression specially, to
18235 preserve GDB's previous behavior when section offsets are
18236 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18237 then mark this symbol as LOC_STATIC. */
18238
18239 if (attr_form_is_block (attr)
18240 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18241 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18242 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18243 && (DW_BLOCK (attr)->size
18244 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18245 {
18246 unsigned int dummy;
18247
18248 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18249 SYMBOL_VALUE_ADDRESS (sym) =
18250 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18251 else
18252 SYMBOL_VALUE_ADDRESS (sym) =
18253 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18254 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18255 fixup_symbol_section (sym, objfile);
18256 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18257 SYMBOL_SECTION (sym));
18258 return;
18259 }
18260
18261 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18262 expression evaluator, and use LOC_COMPUTED only when necessary
18263 (i.e. when the value of a register or memory location is
18264 referenced, or a thread-local block, etc.). Then again, it might
18265 not be worthwhile. I'm assuming that it isn't unless performance
18266 or memory numbers show me otherwise. */
18267
18268 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18269
18270 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18271 cu->has_loclist = 1;
18272 }
18273
18274 /* Given a pointer to a DWARF information entry, figure out if we need
18275 to make a symbol table entry for it, and if so, create a new entry
18276 and return a pointer to it.
18277 If TYPE is NULL, determine symbol type from the die, otherwise
18278 used the passed type.
18279 If SPACE is not NULL, use it to hold the new symbol. If it is
18280 NULL, allocate a new symbol on the objfile's obstack. */
18281
18282 static struct symbol *
18283 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18284 struct symbol *space)
18285 {
18286 struct objfile *objfile = cu->objfile;
18287 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18288 struct symbol *sym = NULL;
18289 const char *name;
18290 struct attribute *attr = NULL;
18291 struct attribute *attr2 = NULL;
18292 CORE_ADDR baseaddr;
18293 struct pending **list_to_add = NULL;
18294
18295 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18296
18297 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18298
18299 name = dwarf2_name (die, cu);
18300 if (name)
18301 {
18302 const char *linkagename;
18303 int suppress_add = 0;
18304
18305 if (space)
18306 sym = space;
18307 else
18308 sym = allocate_symbol (objfile);
18309 OBJSTAT (objfile, n_syms++);
18310
18311 /* Cache this symbol's name and the name's demangled form (if any). */
18312 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18313 linkagename = dwarf2_physname (name, die, cu);
18314 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18315
18316 /* Fortran does not have mangling standard and the mangling does differ
18317 between gfortran, iFort etc. */
18318 if (cu->language == language_fortran
18319 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18320 symbol_set_demangled_name (&(sym->ginfo),
18321 dwarf2_full_name (name, die, cu),
18322 NULL);
18323
18324 /* Default assumptions.
18325 Use the passed type or decode it from the die. */
18326 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18327 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18328 if (type != NULL)
18329 SYMBOL_TYPE (sym) = type;
18330 else
18331 SYMBOL_TYPE (sym) = die_type (die, cu);
18332 attr = dwarf2_attr (die,
18333 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18334 cu);
18335 if (attr)
18336 {
18337 SYMBOL_LINE (sym) = DW_UNSND (attr);
18338 }
18339
18340 attr = dwarf2_attr (die,
18341 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18342 cu);
18343 if (attr)
18344 {
18345 int file_index = DW_UNSND (attr);
18346
18347 if (cu->line_header == NULL
18348 || file_index > cu->line_header->num_file_names)
18349 complaint (&symfile_complaints,
18350 _("file index out of range"));
18351 else if (file_index > 0)
18352 {
18353 struct file_entry *fe;
18354
18355 fe = &cu->line_header->file_names[file_index - 1];
18356 symbol_set_symtab (sym, fe->symtab);
18357 }
18358 }
18359
18360 switch (die->tag)
18361 {
18362 case DW_TAG_label:
18363 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18364 if (attr)
18365 {
18366 CORE_ADDR addr;
18367
18368 addr = attr_value_as_address (attr);
18369 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18370 SYMBOL_VALUE_ADDRESS (sym) = addr;
18371 }
18372 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18373 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18374 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18375 add_symbol_to_list (sym, cu->list_in_scope);
18376 break;
18377 case DW_TAG_subprogram:
18378 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18379 finish_block. */
18380 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18381 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18382 if ((attr2 && (DW_UNSND (attr2) != 0))
18383 || cu->language == language_ada)
18384 {
18385 /* Subprograms marked external are stored as a global symbol.
18386 Ada subprograms, whether marked external or not, are always
18387 stored as a global symbol, because we want to be able to
18388 access them globally. For instance, we want to be able
18389 to break on a nested subprogram without having to
18390 specify the context. */
18391 list_to_add = &global_symbols;
18392 }
18393 else
18394 {
18395 list_to_add = cu->list_in_scope;
18396 }
18397 break;
18398 case DW_TAG_inlined_subroutine:
18399 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18400 finish_block. */
18401 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18402 SYMBOL_INLINED (sym) = 1;
18403 list_to_add = cu->list_in_scope;
18404 break;
18405 case DW_TAG_template_value_param:
18406 suppress_add = 1;
18407 /* Fall through. */
18408 case DW_TAG_constant:
18409 case DW_TAG_variable:
18410 case DW_TAG_member:
18411 /* Compilation with minimal debug info may result in
18412 variables with missing type entries. Change the
18413 misleading `void' type to something sensible. */
18414 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18415 SYMBOL_TYPE (sym)
18416 = objfile_type (objfile)->nodebug_data_symbol;
18417
18418 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18419 /* In the case of DW_TAG_member, we should only be called for
18420 static const members. */
18421 if (die->tag == DW_TAG_member)
18422 {
18423 /* dwarf2_add_field uses die_is_declaration,
18424 so we do the same. */
18425 gdb_assert (die_is_declaration (die, cu));
18426 gdb_assert (attr);
18427 }
18428 if (attr)
18429 {
18430 dwarf2_const_value (attr, sym, cu);
18431 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18432 if (!suppress_add)
18433 {
18434 if (attr2 && (DW_UNSND (attr2) != 0))
18435 list_to_add = &global_symbols;
18436 else
18437 list_to_add = cu->list_in_scope;
18438 }
18439 break;
18440 }
18441 attr = dwarf2_attr (die, DW_AT_location, cu);
18442 if (attr)
18443 {
18444 var_decode_location (attr, sym, cu);
18445 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18446
18447 /* Fortran explicitly imports any global symbols to the local
18448 scope by DW_TAG_common_block. */
18449 if (cu->language == language_fortran && die->parent
18450 && die->parent->tag == DW_TAG_common_block)
18451 attr2 = NULL;
18452
18453 if (SYMBOL_CLASS (sym) == LOC_STATIC
18454 && SYMBOL_VALUE_ADDRESS (sym) == 0
18455 && !dwarf2_per_objfile->has_section_at_zero)
18456 {
18457 /* When a static variable is eliminated by the linker,
18458 the corresponding debug information is not stripped
18459 out, but the variable address is set to null;
18460 do not add such variables into symbol table. */
18461 }
18462 else if (attr2 && (DW_UNSND (attr2) != 0))
18463 {
18464 /* Workaround gfortran PR debug/40040 - it uses
18465 DW_AT_location for variables in -fPIC libraries which may
18466 get overriden by other libraries/executable and get
18467 a different address. Resolve it by the minimal symbol
18468 which may come from inferior's executable using copy
18469 relocation. Make this workaround only for gfortran as for
18470 other compilers GDB cannot guess the minimal symbol
18471 Fortran mangling kind. */
18472 if (cu->language == language_fortran && die->parent
18473 && die->parent->tag == DW_TAG_module
18474 && cu->producer
18475 && startswith (cu->producer, "GNU Fortran "))
18476 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18477
18478 /* A variable with DW_AT_external is never static,
18479 but it may be block-scoped. */
18480 list_to_add = (cu->list_in_scope == &file_symbols
18481 ? &global_symbols : cu->list_in_scope);
18482 }
18483 else
18484 list_to_add = cu->list_in_scope;
18485 }
18486 else
18487 {
18488 /* We do not know the address of this symbol.
18489 If it is an external symbol and we have type information
18490 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18491 The address of the variable will then be determined from
18492 the minimal symbol table whenever the variable is
18493 referenced. */
18494 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18495
18496 /* Fortran explicitly imports any global symbols to the local
18497 scope by DW_TAG_common_block. */
18498 if (cu->language == language_fortran && die->parent
18499 && die->parent->tag == DW_TAG_common_block)
18500 {
18501 /* SYMBOL_CLASS doesn't matter here because
18502 read_common_block is going to reset it. */
18503 if (!suppress_add)
18504 list_to_add = cu->list_in_scope;
18505 }
18506 else if (attr2 && (DW_UNSND (attr2) != 0)
18507 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18508 {
18509 /* A variable with DW_AT_external is never static, but it
18510 may be block-scoped. */
18511 list_to_add = (cu->list_in_scope == &file_symbols
18512 ? &global_symbols : cu->list_in_scope);
18513
18514 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18515 }
18516 else if (!die_is_declaration (die, cu))
18517 {
18518 /* Use the default LOC_OPTIMIZED_OUT class. */
18519 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18520 if (!suppress_add)
18521 list_to_add = cu->list_in_scope;
18522 }
18523 }
18524 break;
18525 case DW_TAG_formal_parameter:
18526 /* If we are inside a function, mark this as an argument. If
18527 not, we might be looking at an argument to an inlined function
18528 when we do not have enough information to show inlined frames;
18529 pretend it's a local variable in that case so that the user can
18530 still see it. */
18531 if (context_stack_depth > 0
18532 && context_stack[context_stack_depth - 1].name != NULL)
18533 SYMBOL_IS_ARGUMENT (sym) = 1;
18534 attr = dwarf2_attr (die, DW_AT_location, cu);
18535 if (attr)
18536 {
18537 var_decode_location (attr, sym, cu);
18538 }
18539 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18540 if (attr)
18541 {
18542 dwarf2_const_value (attr, sym, cu);
18543 }
18544
18545 list_to_add = cu->list_in_scope;
18546 break;
18547 case DW_TAG_unspecified_parameters:
18548 /* From varargs functions; gdb doesn't seem to have any
18549 interest in this information, so just ignore it for now.
18550 (FIXME?) */
18551 break;
18552 case DW_TAG_template_type_param:
18553 suppress_add = 1;
18554 /* Fall through. */
18555 case DW_TAG_class_type:
18556 case DW_TAG_interface_type:
18557 case DW_TAG_structure_type:
18558 case DW_TAG_union_type:
18559 case DW_TAG_set_type:
18560 case DW_TAG_enumeration_type:
18561 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18562 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18563
18564 {
18565 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18566 really ever be static objects: otherwise, if you try
18567 to, say, break of a class's method and you're in a file
18568 which doesn't mention that class, it won't work unless
18569 the check for all static symbols in lookup_symbol_aux
18570 saves you. See the OtherFileClass tests in
18571 gdb.c++/namespace.exp. */
18572
18573 if (!suppress_add)
18574 {
18575 list_to_add = (cu->list_in_scope == &file_symbols
18576 && (cu->language == language_cplus
18577 || cu->language == language_java)
18578 ? &global_symbols : cu->list_in_scope);
18579
18580 /* The semantics of C++ state that "struct foo {
18581 ... }" also defines a typedef for "foo". A Java
18582 class declaration also defines a typedef for the
18583 class. */
18584 if (cu->language == language_cplus
18585 || cu->language == language_java
18586 || cu->language == language_ada
18587 || cu->language == language_d)
18588 {
18589 /* The symbol's name is already allocated along
18590 with this objfile, so we don't need to
18591 duplicate it for the type. */
18592 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18593 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18594 }
18595 }
18596 }
18597 break;
18598 case DW_TAG_typedef:
18599 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18600 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18601 list_to_add = cu->list_in_scope;
18602 break;
18603 case DW_TAG_base_type:
18604 case DW_TAG_subrange_type:
18605 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18606 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18607 list_to_add = cu->list_in_scope;
18608 break;
18609 case DW_TAG_enumerator:
18610 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18611 if (attr)
18612 {
18613 dwarf2_const_value (attr, sym, cu);
18614 }
18615 {
18616 /* NOTE: carlton/2003-11-10: See comment above in the
18617 DW_TAG_class_type, etc. block. */
18618
18619 list_to_add = (cu->list_in_scope == &file_symbols
18620 && (cu->language == language_cplus
18621 || cu->language == language_java)
18622 ? &global_symbols : cu->list_in_scope);
18623 }
18624 break;
18625 case DW_TAG_imported_declaration:
18626 case DW_TAG_namespace:
18627 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18628 list_to_add = &global_symbols;
18629 break;
18630 case DW_TAG_module:
18631 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18632 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18633 list_to_add = &global_symbols;
18634 break;
18635 case DW_TAG_common_block:
18636 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18637 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18638 add_symbol_to_list (sym, cu->list_in_scope);
18639 break;
18640 default:
18641 /* Not a tag we recognize. Hopefully we aren't processing
18642 trash data, but since we must specifically ignore things
18643 we don't recognize, there is nothing else we should do at
18644 this point. */
18645 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18646 dwarf_tag_name (die->tag));
18647 break;
18648 }
18649
18650 if (suppress_add)
18651 {
18652 sym->hash_next = objfile->template_symbols;
18653 objfile->template_symbols = sym;
18654 list_to_add = NULL;
18655 }
18656
18657 if (list_to_add != NULL)
18658 add_symbol_to_list (sym, list_to_add);
18659
18660 /* For the benefit of old versions of GCC, check for anonymous
18661 namespaces based on the demangled name. */
18662 if (!cu->processing_has_namespace_info
18663 && cu->language == language_cplus)
18664 cp_scan_for_anonymous_namespaces (sym, objfile);
18665 }
18666 return (sym);
18667 }
18668
18669 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18670
18671 static struct symbol *
18672 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18673 {
18674 return new_symbol_full (die, type, cu, NULL);
18675 }
18676
18677 /* Given an attr with a DW_FORM_dataN value in host byte order,
18678 zero-extend it as appropriate for the symbol's type. The DWARF
18679 standard (v4) is not entirely clear about the meaning of using
18680 DW_FORM_dataN for a constant with a signed type, where the type is
18681 wider than the data. The conclusion of a discussion on the DWARF
18682 list was that this is unspecified. We choose to always zero-extend
18683 because that is the interpretation long in use by GCC. */
18684
18685 static gdb_byte *
18686 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18687 struct dwarf2_cu *cu, LONGEST *value, int bits)
18688 {
18689 struct objfile *objfile = cu->objfile;
18690 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18691 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18692 LONGEST l = DW_UNSND (attr);
18693
18694 if (bits < sizeof (*value) * 8)
18695 {
18696 l &= ((LONGEST) 1 << bits) - 1;
18697 *value = l;
18698 }
18699 else if (bits == sizeof (*value) * 8)
18700 *value = l;
18701 else
18702 {
18703 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18704 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18705 return bytes;
18706 }
18707
18708 return NULL;
18709 }
18710
18711 /* Read a constant value from an attribute. Either set *VALUE, or if
18712 the value does not fit in *VALUE, set *BYTES - either already
18713 allocated on the objfile obstack, or newly allocated on OBSTACK,
18714 or, set *BATON, if we translated the constant to a location
18715 expression. */
18716
18717 static void
18718 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18719 const char *name, struct obstack *obstack,
18720 struct dwarf2_cu *cu,
18721 LONGEST *value, const gdb_byte **bytes,
18722 struct dwarf2_locexpr_baton **baton)
18723 {
18724 struct objfile *objfile = cu->objfile;
18725 struct comp_unit_head *cu_header = &cu->header;
18726 struct dwarf_block *blk;
18727 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18728 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18729
18730 *value = 0;
18731 *bytes = NULL;
18732 *baton = NULL;
18733
18734 switch (attr->form)
18735 {
18736 case DW_FORM_addr:
18737 case DW_FORM_GNU_addr_index:
18738 {
18739 gdb_byte *data;
18740
18741 if (TYPE_LENGTH (type) != cu_header->addr_size)
18742 dwarf2_const_value_length_mismatch_complaint (name,
18743 cu_header->addr_size,
18744 TYPE_LENGTH (type));
18745 /* Symbols of this form are reasonably rare, so we just
18746 piggyback on the existing location code rather than writing
18747 a new implementation of symbol_computed_ops. */
18748 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18749 (*baton)->per_cu = cu->per_cu;
18750 gdb_assert ((*baton)->per_cu);
18751
18752 (*baton)->size = 2 + cu_header->addr_size;
18753 data = obstack_alloc (obstack, (*baton)->size);
18754 (*baton)->data = data;
18755
18756 data[0] = DW_OP_addr;
18757 store_unsigned_integer (&data[1], cu_header->addr_size,
18758 byte_order, DW_ADDR (attr));
18759 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18760 }
18761 break;
18762 case DW_FORM_string:
18763 case DW_FORM_strp:
18764 case DW_FORM_GNU_str_index:
18765 case DW_FORM_GNU_strp_alt:
18766 /* DW_STRING is already allocated on the objfile obstack, point
18767 directly to it. */
18768 *bytes = (const gdb_byte *) DW_STRING (attr);
18769 break;
18770 case DW_FORM_block1:
18771 case DW_FORM_block2:
18772 case DW_FORM_block4:
18773 case DW_FORM_block:
18774 case DW_FORM_exprloc:
18775 blk = DW_BLOCK (attr);
18776 if (TYPE_LENGTH (type) != blk->size)
18777 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18778 TYPE_LENGTH (type));
18779 *bytes = blk->data;
18780 break;
18781
18782 /* The DW_AT_const_value attributes are supposed to carry the
18783 symbol's value "represented as it would be on the target
18784 architecture." By the time we get here, it's already been
18785 converted to host endianness, so we just need to sign- or
18786 zero-extend it as appropriate. */
18787 case DW_FORM_data1:
18788 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18789 break;
18790 case DW_FORM_data2:
18791 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18792 break;
18793 case DW_FORM_data4:
18794 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18795 break;
18796 case DW_FORM_data8:
18797 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18798 break;
18799
18800 case DW_FORM_sdata:
18801 *value = DW_SND (attr);
18802 break;
18803
18804 case DW_FORM_udata:
18805 *value = DW_UNSND (attr);
18806 break;
18807
18808 default:
18809 complaint (&symfile_complaints,
18810 _("unsupported const value attribute form: '%s'"),
18811 dwarf_form_name (attr->form));
18812 *value = 0;
18813 break;
18814 }
18815 }
18816
18817
18818 /* Copy constant value from an attribute to a symbol. */
18819
18820 static void
18821 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18822 struct dwarf2_cu *cu)
18823 {
18824 struct objfile *objfile = cu->objfile;
18825 struct comp_unit_head *cu_header = &cu->header;
18826 LONGEST value;
18827 const gdb_byte *bytes;
18828 struct dwarf2_locexpr_baton *baton;
18829
18830 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18831 SYMBOL_PRINT_NAME (sym),
18832 &objfile->objfile_obstack, cu,
18833 &value, &bytes, &baton);
18834
18835 if (baton != NULL)
18836 {
18837 SYMBOL_LOCATION_BATON (sym) = baton;
18838 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18839 }
18840 else if (bytes != NULL)
18841 {
18842 SYMBOL_VALUE_BYTES (sym) = bytes;
18843 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18844 }
18845 else
18846 {
18847 SYMBOL_VALUE (sym) = value;
18848 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18849 }
18850 }
18851
18852 /* Return the type of the die in question using its DW_AT_type attribute. */
18853
18854 static struct type *
18855 die_type (struct die_info *die, struct dwarf2_cu *cu)
18856 {
18857 struct attribute *type_attr;
18858
18859 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18860 if (!type_attr)
18861 {
18862 /* A missing DW_AT_type represents a void type. */
18863 return objfile_type (cu->objfile)->builtin_void;
18864 }
18865
18866 return lookup_die_type (die, type_attr, cu);
18867 }
18868
18869 /* True iff CU's producer generates GNAT Ada auxiliary information
18870 that allows to find parallel types through that information instead
18871 of having to do expensive parallel lookups by type name. */
18872
18873 static int
18874 need_gnat_info (struct dwarf2_cu *cu)
18875 {
18876 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18877 of GNAT produces this auxiliary information, without any indication
18878 that it is produced. Part of enhancing the FSF version of GNAT
18879 to produce that information will be to put in place an indicator
18880 that we can use in order to determine whether the descriptive type
18881 info is available or not. One suggestion that has been made is
18882 to use a new attribute, attached to the CU die. For now, assume
18883 that the descriptive type info is not available. */
18884 return 0;
18885 }
18886
18887 /* Return the auxiliary type of the die in question using its
18888 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18889 attribute is not present. */
18890
18891 static struct type *
18892 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18893 {
18894 struct attribute *type_attr;
18895
18896 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18897 if (!type_attr)
18898 return NULL;
18899
18900 return lookup_die_type (die, type_attr, cu);
18901 }
18902
18903 /* If DIE has a descriptive_type attribute, then set the TYPE's
18904 descriptive type accordingly. */
18905
18906 static void
18907 set_descriptive_type (struct type *type, struct die_info *die,
18908 struct dwarf2_cu *cu)
18909 {
18910 struct type *descriptive_type = die_descriptive_type (die, cu);
18911
18912 if (descriptive_type)
18913 {
18914 ALLOCATE_GNAT_AUX_TYPE (type);
18915 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18916 }
18917 }
18918
18919 /* Return the containing type of the die in question using its
18920 DW_AT_containing_type attribute. */
18921
18922 static struct type *
18923 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18924 {
18925 struct attribute *type_attr;
18926
18927 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18928 if (!type_attr)
18929 error (_("Dwarf Error: Problem turning containing type into gdb type "
18930 "[in module %s]"), objfile_name (cu->objfile));
18931
18932 return lookup_die_type (die, type_attr, cu);
18933 }
18934
18935 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18936
18937 static struct type *
18938 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18939 {
18940 struct objfile *objfile = dwarf2_per_objfile->objfile;
18941 char *message, *saved;
18942
18943 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18944 objfile_name (objfile),
18945 cu->header.offset.sect_off,
18946 die->offset.sect_off);
18947 saved = obstack_copy0 (&objfile->objfile_obstack,
18948 message, strlen (message));
18949 xfree (message);
18950
18951 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18952 }
18953
18954 /* Look up the type of DIE in CU using its type attribute ATTR.
18955 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18956 DW_AT_containing_type.
18957 If there is no type substitute an error marker. */
18958
18959 static struct type *
18960 lookup_die_type (struct die_info *die, const struct attribute *attr,
18961 struct dwarf2_cu *cu)
18962 {
18963 struct objfile *objfile = cu->objfile;
18964 struct type *this_type;
18965
18966 gdb_assert (attr->name == DW_AT_type
18967 || attr->name == DW_AT_GNAT_descriptive_type
18968 || attr->name == DW_AT_containing_type);
18969
18970 /* First see if we have it cached. */
18971
18972 if (attr->form == DW_FORM_GNU_ref_alt)
18973 {
18974 struct dwarf2_per_cu_data *per_cu;
18975 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18976
18977 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18978 this_type = get_die_type_at_offset (offset, per_cu);
18979 }
18980 else if (attr_form_is_ref (attr))
18981 {
18982 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18983
18984 this_type = get_die_type_at_offset (offset, cu->per_cu);
18985 }
18986 else if (attr->form == DW_FORM_ref_sig8)
18987 {
18988 ULONGEST signature = DW_SIGNATURE (attr);
18989
18990 return get_signatured_type (die, signature, cu);
18991 }
18992 else
18993 {
18994 complaint (&symfile_complaints,
18995 _("Dwarf Error: Bad type attribute %s in DIE"
18996 " at 0x%x [in module %s]"),
18997 dwarf_attr_name (attr->name), die->offset.sect_off,
18998 objfile_name (objfile));
18999 return build_error_marker_type (cu, die);
19000 }
19001
19002 /* If not cached we need to read it in. */
19003
19004 if (this_type == NULL)
19005 {
19006 struct die_info *type_die = NULL;
19007 struct dwarf2_cu *type_cu = cu;
19008
19009 if (attr_form_is_ref (attr))
19010 type_die = follow_die_ref (die, attr, &type_cu);
19011 if (type_die == NULL)
19012 return build_error_marker_type (cu, die);
19013 /* If we find the type now, it's probably because the type came
19014 from an inter-CU reference and the type's CU got expanded before
19015 ours. */
19016 this_type = read_type_die (type_die, type_cu);
19017 }
19018
19019 /* If we still don't have a type use an error marker. */
19020
19021 if (this_type == NULL)
19022 return build_error_marker_type (cu, die);
19023
19024 return this_type;
19025 }
19026
19027 /* Return the type in DIE, CU.
19028 Returns NULL for invalid types.
19029
19030 This first does a lookup in die_type_hash,
19031 and only reads the die in if necessary.
19032
19033 NOTE: This can be called when reading in partial or full symbols. */
19034
19035 static struct type *
19036 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19037 {
19038 struct type *this_type;
19039
19040 this_type = get_die_type (die, cu);
19041 if (this_type)
19042 return this_type;
19043
19044 return read_type_die_1 (die, cu);
19045 }
19046
19047 /* Read the type in DIE, CU.
19048 Returns NULL for invalid types. */
19049
19050 static struct type *
19051 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19052 {
19053 struct type *this_type = NULL;
19054
19055 switch (die->tag)
19056 {
19057 case DW_TAG_class_type:
19058 case DW_TAG_interface_type:
19059 case DW_TAG_structure_type:
19060 case DW_TAG_union_type:
19061 this_type = read_structure_type (die, cu);
19062 break;
19063 case DW_TAG_enumeration_type:
19064 this_type = read_enumeration_type (die, cu);
19065 break;
19066 case DW_TAG_subprogram:
19067 case DW_TAG_subroutine_type:
19068 case DW_TAG_inlined_subroutine:
19069 this_type = read_subroutine_type (die, cu);
19070 break;
19071 case DW_TAG_array_type:
19072 this_type = read_array_type (die, cu);
19073 break;
19074 case DW_TAG_set_type:
19075 this_type = read_set_type (die, cu);
19076 break;
19077 case DW_TAG_pointer_type:
19078 this_type = read_tag_pointer_type (die, cu);
19079 break;
19080 case DW_TAG_ptr_to_member_type:
19081 this_type = read_tag_ptr_to_member_type (die, cu);
19082 break;
19083 case DW_TAG_reference_type:
19084 this_type = read_tag_reference_type (die, cu);
19085 break;
19086 case DW_TAG_const_type:
19087 this_type = read_tag_const_type (die, cu);
19088 break;
19089 case DW_TAG_volatile_type:
19090 this_type = read_tag_volatile_type (die, cu);
19091 break;
19092 case DW_TAG_restrict_type:
19093 this_type = read_tag_restrict_type (die, cu);
19094 break;
19095 case DW_TAG_string_type:
19096 this_type = read_tag_string_type (die, cu);
19097 break;
19098 case DW_TAG_typedef:
19099 this_type = read_typedef (die, cu);
19100 break;
19101 case DW_TAG_subrange_type:
19102 this_type = read_subrange_type (die, cu);
19103 break;
19104 case DW_TAG_base_type:
19105 this_type = read_base_type (die, cu);
19106 break;
19107 case DW_TAG_unspecified_type:
19108 this_type = read_unspecified_type (die, cu);
19109 break;
19110 case DW_TAG_namespace:
19111 this_type = read_namespace_type (die, cu);
19112 break;
19113 case DW_TAG_module:
19114 this_type = read_module_type (die, cu);
19115 break;
19116 case DW_TAG_atomic_type:
19117 this_type = read_tag_atomic_type (die, cu);
19118 break;
19119 default:
19120 complaint (&symfile_complaints,
19121 _("unexpected tag in read_type_die: '%s'"),
19122 dwarf_tag_name (die->tag));
19123 break;
19124 }
19125
19126 return this_type;
19127 }
19128
19129 /* See if we can figure out if the class lives in a namespace. We do
19130 this by looking for a member function; its demangled name will
19131 contain namespace info, if there is any.
19132 Return the computed name or NULL.
19133 Space for the result is allocated on the objfile's obstack.
19134 This is the full-die version of guess_partial_die_structure_name.
19135 In this case we know DIE has no useful parent. */
19136
19137 static char *
19138 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19139 {
19140 struct die_info *spec_die;
19141 struct dwarf2_cu *spec_cu;
19142 struct die_info *child;
19143
19144 spec_cu = cu;
19145 spec_die = die_specification (die, &spec_cu);
19146 if (spec_die != NULL)
19147 {
19148 die = spec_die;
19149 cu = spec_cu;
19150 }
19151
19152 for (child = die->child;
19153 child != NULL;
19154 child = child->sibling)
19155 {
19156 if (child->tag == DW_TAG_subprogram)
19157 {
19158 struct attribute *attr;
19159
19160 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
19161 if (attr == NULL)
19162 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
19163 if (attr != NULL)
19164 {
19165 char *actual_name
19166 = language_class_name_from_physname (cu->language_defn,
19167 DW_STRING (attr));
19168 char *name = NULL;
19169
19170 if (actual_name != NULL)
19171 {
19172 const char *die_name = dwarf2_name (die, cu);
19173
19174 if (die_name != NULL
19175 && strcmp (die_name, actual_name) != 0)
19176 {
19177 /* Strip off the class name from the full name.
19178 We want the prefix. */
19179 int die_name_len = strlen (die_name);
19180 int actual_name_len = strlen (actual_name);
19181
19182 /* Test for '::' as a sanity check. */
19183 if (actual_name_len > die_name_len + 2
19184 && actual_name[actual_name_len
19185 - die_name_len - 1] == ':')
19186 name =
19187 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19188 actual_name,
19189 actual_name_len - die_name_len - 2);
19190 }
19191 }
19192 xfree (actual_name);
19193 return name;
19194 }
19195 }
19196 }
19197
19198 return NULL;
19199 }
19200
19201 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19202 prefix part in such case. See
19203 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19204
19205 static char *
19206 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19207 {
19208 struct attribute *attr;
19209 char *base;
19210
19211 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19212 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19213 return NULL;
19214
19215 attr = dwarf2_attr (die, DW_AT_name, cu);
19216 if (attr != NULL && DW_STRING (attr) != NULL)
19217 return NULL;
19218
19219 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19220 if (attr == NULL)
19221 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19222 if (attr == NULL || DW_STRING (attr) == NULL)
19223 return NULL;
19224
19225 /* dwarf2_name had to be already called. */
19226 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19227
19228 /* Strip the base name, keep any leading namespaces/classes. */
19229 base = strrchr (DW_STRING (attr), ':');
19230 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19231 return "";
19232
19233 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19234 DW_STRING (attr), &base[-1] - DW_STRING (attr));
19235 }
19236
19237 /* Return the name of the namespace/class that DIE is defined within,
19238 or "" if we can't tell. The caller should not xfree the result.
19239
19240 For example, if we're within the method foo() in the following
19241 code:
19242
19243 namespace N {
19244 class C {
19245 void foo () {
19246 }
19247 };
19248 }
19249
19250 then determine_prefix on foo's die will return "N::C". */
19251
19252 static const char *
19253 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19254 {
19255 struct die_info *parent, *spec_die;
19256 struct dwarf2_cu *spec_cu;
19257 struct type *parent_type;
19258 char *retval;
19259
19260 if (cu->language != language_cplus && cu->language != language_java
19261 && cu->language != language_fortran && cu->language != language_d)
19262 return "";
19263
19264 retval = anonymous_struct_prefix (die, cu);
19265 if (retval)
19266 return retval;
19267
19268 /* We have to be careful in the presence of DW_AT_specification.
19269 For example, with GCC 3.4, given the code
19270
19271 namespace N {
19272 void foo() {
19273 // Definition of N::foo.
19274 }
19275 }
19276
19277 then we'll have a tree of DIEs like this:
19278
19279 1: DW_TAG_compile_unit
19280 2: DW_TAG_namespace // N
19281 3: DW_TAG_subprogram // declaration of N::foo
19282 4: DW_TAG_subprogram // definition of N::foo
19283 DW_AT_specification // refers to die #3
19284
19285 Thus, when processing die #4, we have to pretend that we're in
19286 the context of its DW_AT_specification, namely the contex of die
19287 #3. */
19288 spec_cu = cu;
19289 spec_die = die_specification (die, &spec_cu);
19290 if (spec_die == NULL)
19291 parent = die->parent;
19292 else
19293 {
19294 parent = spec_die->parent;
19295 cu = spec_cu;
19296 }
19297
19298 if (parent == NULL)
19299 return "";
19300 else if (parent->building_fullname)
19301 {
19302 const char *name;
19303 const char *parent_name;
19304
19305 /* It has been seen on RealView 2.2 built binaries,
19306 DW_TAG_template_type_param types actually _defined_ as
19307 children of the parent class:
19308
19309 enum E {};
19310 template class <class Enum> Class{};
19311 Class<enum E> class_e;
19312
19313 1: DW_TAG_class_type (Class)
19314 2: DW_TAG_enumeration_type (E)
19315 3: DW_TAG_enumerator (enum1:0)
19316 3: DW_TAG_enumerator (enum2:1)
19317 ...
19318 2: DW_TAG_template_type_param
19319 DW_AT_type DW_FORM_ref_udata (E)
19320
19321 Besides being broken debug info, it can put GDB into an
19322 infinite loop. Consider:
19323
19324 When we're building the full name for Class<E>, we'll start
19325 at Class, and go look over its template type parameters,
19326 finding E. We'll then try to build the full name of E, and
19327 reach here. We're now trying to build the full name of E,
19328 and look over the parent DIE for containing scope. In the
19329 broken case, if we followed the parent DIE of E, we'd again
19330 find Class, and once again go look at its template type
19331 arguments, etc., etc. Simply don't consider such parent die
19332 as source-level parent of this die (it can't be, the language
19333 doesn't allow it), and break the loop here. */
19334 name = dwarf2_name (die, cu);
19335 parent_name = dwarf2_name (parent, cu);
19336 complaint (&symfile_complaints,
19337 _("template param type '%s' defined within parent '%s'"),
19338 name ? name : "<unknown>",
19339 parent_name ? parent_name : "<unknown>");
19340 return "";
19341 }
19342 else
19343 switch (parent->tag)
19344 {
19345 case DW_TAG_namespace:
19346 parent_type = read_type_die (parent, cu);
19347 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19348 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19349 Work around this problem here. */
19350 if (cu->language == language_cplus
19351 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19352 return "";
19353 /* We give a name to even anonymous namespaces. */
19354 return TYPE_TAG_NAME (parent_type);
19355 case DW_TAG_class_type:
19356 case DW_TAG_interface_type:
19357 case DW_TAG_structure_type:
19358 case DW_TAG_union_type:
19359 case DW_TAG_module:
19360 parent_type = read_type_die (parent, cu);
19361 if (TYPE_TAG_NAME (parent_type) != NULL)
19362 return TYPE_TAG_NAME (parent_type);
19363 else
19364 /* An anonymous structure is only allowed non-static data
19365 members; no typedefs, no member functions, et cetera.
19366 So it does not need a prefix. */
19367 return "";
19368 case DW_TAG_compile_unit:
19369 case DW_TAG_partial_unit:
19370 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19371 if (cu->language == language_cplus
19372 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19373 && die->child != NULL
19374 && (die->tag == DW_TAG_class_type
19375 || die->tag == DW_TAG_structure_type
19376 || die->tag == DW_TAG_union_type))
19377 {
19378 char *name = guess_full_die_structure_name (die, cu);
19379 if (name != NULL)
19380 return name;
19381 }
19382 return "";
19383 case DW_TAG_enumeration_type:
19384 parent_type = read_type_die (parent, cu);
19385 if (TYPE_DECLARED_CLASS (parent_type))
19386 {
19387 if (TYPE_TAG_NAME (parent_type) != NULL)
19388 return TYPE_TAG_NAME (parent_type);
19389 return "";
19390 }
19391 /* Fall through. */
19392 default:
19393 return determine_prefix (parent, cu);
19394 }
19395 }
19396
19397 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19398 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19399 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19400 an obconcat, otherwise allocate storage for the result. The CU argument is
19401 used to determine the language and hence, the appropriate separator. */
19402
19403 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19404
19405 static char *
19406 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19407 int physname, struct dwarf2_cu *cu)
19408 {
19409 const char *lead = "";
19410 const char *sep;
19411
19412 if (suffix == NULL || suffix[0] == '\0'
19413 || prefix == NULL || prefix[0] == '\0')
19414 sep = "";
19415 else if (cu->language == language_java)
19416 sep = ".";
19417 else if (cu->language == language_d)
19418 {
19419 /* For D, the 'main' function could be defined in any module, but it
19420 should never be prefixed. */
19421 if (strcmp (suffix, "D main") == 0)
19422 {
19423 prefix = "";
19424 sep = "";
19425 }
19426 else
19427 sep = ".";
19428 }
19429 else if (cu->language == language_fortran && physname)
19430 {
19431 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19432 DW_AT_MIPS_linkage_name is preferred and used instead. */
19433
19434 lead = "__";
19435 sep = "_MOD_";
19436 }
19437 else
19438 sep = "::";
19439
19440 if (prefix == NULL)
19441 prefix = "";
19442 if (suffix == NULL)
19443 suffix = "";
19444
19445 if (obs == NULL)
19446 {
19447 char *retval
19448 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
19449
19450 strcpy (retval, lead);
19451 strcat (retval, prefix);
19452 strcat (retval, sep);
19453 strcat (retval, suffix);
19454 return retval;
19455 }
19456 else
19457 {
19458 /* We have an obstack. */
19459 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19460 }
19461 }
19462
19463 /* Return sibling of die, NULL if no sibling. */
19464
19465 static struct die_info *
19466 sibling_die (struct die_info *die)
19467 {
19468 return die->sibling;
19469 }
19470
19471 /* Get name of a die, return NULL if not found. */
19472
19473 static const char *
19474 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19475 struct obstack *obstack)
19476 {
19477 if (name && cu->language == language_cplus)
19478 {
19479 char *canon_name = cp_canonicalize_string (name);
19480
19481 if (canon_name != NULL)
19482 {
19483 if (strcmp (canon_name, name) != 0)
19484 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
19485 xfree (canon_name);
19486 }
19487 }
19488
19489 return name;
19490 }
19491
19492 /* Get name of a die, return NULL if not found.
19493 Anonymous namespaces are converted to their magic string. */
19494
19495 static const char *
19496 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19497 {
19498 struct attribute *attr;
19499
19500 attr = dwarf2_attr (die, DW_AT_name, cu);
19501 if ((!attr || !DW_STRING (attr))
19502 && die->tag != DW_TAG_namespace
19503 && die->tag != DW_TAG_class_type
19504 && die->tag != DW_TAG_interface_type
19505 && die->tag != DW_TAG_structure_type
19506 && die->tag != DW_TAG_union_type)
19507 return NULL;
19508
19509 switch (die->tag)
19510 {
19511 case DW_TAG_compile_unit:
19512 case DW_TAG_partial_unit:
19513 /* Compilation units have a DW_AT_name that is a filename, not
19514 a source language identifier. */
19515 case DW_TAG_enumeration_type:
19516 case DW_TAG_enumerator:
19517 /* These tags always have simple identifiers already; no need
19518 to canonicalize them. */
19519 return DW_STRING (attr);
19520
19521 case DW_TAG_namespace:
19522 if (attr != NULL && DW_STRING (attr) != NULL)
19523 return DW_STRING (attr);
19524 return CP_ANONYMOUS_NAMESPACE_STR;
19525
19526 case DW_TAG_subprogram:
19527 /* Java constructors will all be named "<init>", so return
19528 the class name when we see this special case. */
19529 if (cu->language == language_java
19530 && DW_STRING (attr) != NULL
19531 && strcmp (DW_STRING (attr), "<init>") == 0)
19532 {
19533 struct dwarf2_cu *spec_cu = cu;
19534 struct die_info *spec_die;
19535
19536 /* GCJ will output '<init>' for Java constructor names.
19537 For this special case, return the name of the parent class. */
19538
19539 /* GCJ may output subprogram DIEs with AT_specification set.
19540 If so, use the name of the specified DIE. */
19541 spec_die = die_specification (die, &spec_cu);
19542 if (spec_die != NULL)
19543 return dwarf2_name (spec_die, spec_cu);
19544
19545 do
19546 {
19547 die = die->parent;
19548 if (die->tag == DW_TAG_class_type)
19549 return dwarf2_name (die, cu);
19550 }
19551 while (die->tag != DW_TAG_compile_unit
19552 && die->tag != DW_TAG_partial_unit);
19553 }
19554 break;
19555
19556 case DW_TAG_class_type:
19557 case DW_TAG_interface_type:
19558 case DW_TAG_structure_type:
19559 case DW_TAG_union_type:
19560 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19561 structures or unions. These were of the form "._%d" in GCC 4.1,
19562 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19563 and GCC 4.4. We work around this problem by ignoring these. */
19564 if (attr && DW_STRING (attr)
19565 && (startswith (DW_STRING (attr), "._")
19566 || startswith (DW_STRING (attr), "<anonymous")))
19567 return NULL;
19568
19569 /* GCC might emit a nameless typedef that has a linkage name. See
19570 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19571 if (!attr || DW_STRING (attr) == NULL)
19572 {
19573 char *demangled = NULL;
19574
19575 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19576 if (attr == NULL)
19577 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19578
19579 if (attr == NULL || DW_STRING (attr) == NULL)
19580 return NULL;
19581
19582 /* Avoid demangling DW_STRING (attr) the second time on a second
19583 call for the same DIE. */
19584 if (!DW_STRING_IS_CANONICAL (attr))
19585 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19586
19587 if (demangled)
19588 {
19589 char *base;
19590
19591 /* FIXME: we already did this for the partial symbol... */
19592 DW_STRING (attr)
19593 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19594 demangled, strlen (demangled));
19595 DW_STRING_IS_CANONICAL (attr) = 1;
19596 xfree (demangled);
19597
19598 /* Strip any leading namespaces/classes, keep only the base name.
19599 DW_AT_name for named DIEs does not contain the prefixes. */
19600 base = strrchr (DW_STRING (attr), ':');
19601 if (base && base > DW_STRING (attr) && base[-1] == ':')
19602 return &base[1];
19603 else
19604 return DW_STRING (attr);
19605 }
19606 }
19607 break;
19608
19609 default:
19610 break;
19611 }
19612
19613 if (!DW_STRING_IS_CANONICAL (attr))
19614 {
19615 DW_STRING (attr)
19616 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19617 &cu->objfile->per_bfd->storage_obstack);
19618 DW_STRING_IS_CANONICAL (attr) = 1;
19619 }
19620 return DW_STRING (attr);
19621 }
19622
19623 /* Return the die that this die in an extension of, or NULL if there
19624 is none. *EXT_CU is the CU containing DIE on input, and the CU
19625 containing the return value on output. */
19626
19627 static struct die_info *
19628 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19629 {
19630 struct attribute *attr;
19631
19632 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19633 if (attr == NULL)
19634 return NULL;
19635
19636 return follow_die_ref (die, attr, ext_cu);
19637 }
19638
19639 /* Convert a DIE tag into its string name. */
19640
19641 static const char *
19642 dwarf_tag_name (unsigned tag)
19643 {
19644 const char *name = get_DW_TAG_name (tag);
19645
19646 if (name == NULL)
19647 return "DW_TAG_<unknown>";
19648
19649 return name;
19650 }
19651
19652 /* Convert a DWARF attribute code into its string name. */
19653
19654 static const char *
19655 dwarf_attr_name (unsigned attr)
19656 {
19657 const char *name;
19658
19659 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19660 if (attr == DW_AT_MIPS_fde)
19661 return "DW_AT_MIPS_fde";
19662 #else
19663 if (attr == DW_AT_HP_block_index)
19664 return "DW_AT_HP_block_index";
19665 #endif
19666
19667 name = get_DW_AT_name (attr);
19668
19669 if (name == NULL)
19670 return "DW_AT_<unknown>";
19671
19672 return name;
19673 }
19674
19675 /* Convert a DWARF value form code into its string name. */
19676
19677 static const char *
19678 dwarf_form_name (unsigned form)
19679 {
19680 const char *name = get_DW_FORM_name (form);
19681
19682 if (name == NULL)
19683 return "DW_FORM_<unknown>";
19684
19685 return name;
19686 }
19687
19688 static char *
19689 dwarf_bool_name (unsigned mybool)
19690 {
19691 if (mybool)
19692 return "TRUE";
19693 else
19694 return "FALSE";
19695 }
19696
19697 /* Convert a DWARF type code into its string name. */
19698
19699 static const char *
19700 dwarf_type_encoding_name (unsigned enc)
19701 {
19702 const char *name = get_DW_ATE_name (enc);
19703
19704 if (name == NULL)
19705 return "DW_ATE_<unknown>";
19706
19707 return name;
19708 }
19709
19710 static void
19711 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19712 {
19713 unsigned int i;
19714
19715 print_spaces (indent, f);
19716 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19717 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19718
19719 if (die->parent != NULL)
19720 {
19721 print_spaces (indent, f);
19722 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19723 die->parent->offset.sect_off);
19724 }
19725
19726 print_spaces (indent, f);
19727 fprintf_unfiltered (f, " has children: %s\n",
19728 dwarf_bool_name (die->child != NULL));
19729
19730 print_spaces (indent, f);
19731 fprintf_unfiltered (f, " attributes:\n");
19732
19733 for (i = 0; i < die->num_attrs; ++i)
19734 {
19735 print_spaces (indent, f);
19736 fprintf_unfiltered (f, " %s (%s) ",
19737 dwarf_attr_name (die->attrs[i].name),
19738 dwarf_form_name (die->attrs[i].form));
19739
19740 switch (die->attrs[i].form)
19741 {
19742 case DW_FORM_addr:
19743 case DW_FORM_GNU_addr_index:
19744 fprintf_unfiltered (f, "address: ");
19745 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19746 break;
19747 case DW_FORM_block2:
19748 case DW_FORM_block4:
19749 case DW_FORM_block:
19750 case DW_FORM_block1:
19751 fprintf_unfiltered (f, "block: size %s",
19752 pulongest (DW_BLOCK (&die->attrs[i])->size));
19753 break;
19754 case DW_FORM_exprloc:
19755 fprintf_unfiltered (f, "expression: size %s",
19756 pulongest (DW_BLOCK (&die->attrs[i])->size));
19757 break;
19758 case DW_FORM_ref_addr:
19759 fprintf_unfiltered (f, "ref address: ");
19760 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19761 break;
19762 case DW_FORM_GNU_ref_alt:
19763 fprintf_unfiltered (f, "alt ref address: ");
19764 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19765 break;
19766 case DW_FORM_ref1:
19767 case DW_FORM_ref2:
19768 case DW_FORM_ref4:
19769 case DW_FORM_ref8:
19770 case DW_FORM_ref_udata:
19771 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19772 (long) (DW_UNSND (&die->attrs[i])));
19773 break;
19774 case DW_FORM_data1:
19775 case DW_FORM_data2:
19776 case DW_FORM_data4:
19777 case DW_FORM_data8:
19778 case DW_FORM_udata:
19779 case DW_FORM_sdata:
19780 fprintf_unfiltered (f, "constant: %s",
19781 pulongest (DW_UNSND (&die->attrs[i])));
19782 break;
19783 case DW_FORM_sec_offset:
19784 fprintf_unfiltered (f, "section offset: %s",
19785 pulongest (DW_UNSND (&die->attrs[i])));
19786 break;
19787 case DW_FORM_ref_sig8:
19788 fprintf_unfiltered (f, "signature: %s",
19789 hex_string (DW_SIGNATURE (&die->attrs[i])));
19790 break;
19791 case DW_FORM_string:
19792 case DW_FORM_strp:
19793 case DW_FORM_GNU_str_index:
19794 case DW_FORM_GNU_strp_alt:
19795 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19796 DW_STRING (&die->attrs[i])
19797 ? DW_STRING (&die->attrs[i]) : "",
19798 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19799 break;
19800 case DW_FORM_flag:
19801 if (DW_UNSND (&die->attrs[i]))
19802 fprintf_unfiltered (f, "flag: TRUE");
19803 else
19804 fprintf_unfiltered (f, "flag: FALSE");
19805 break;
19806 case DW_FORM_flag_present:
19807 fprintf_unfiltered (f, "flag: TRUE");
19808 break;
19809 case DW_FORM_indirect:
19810 /* The reader will have reduced the indirect form to
19811 the "base form" so this form should not occur. */
19812 fprintf_unfiltered (f,
19813 "unexpected attribute form: DW_FORM_indirect");
19814 break;
19815 default:
19816 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19817 die->attrs[i].form);
19818 break;
19819 }
19820 fprintf_unfiltered (f, "\n");
19821 }
19822 }
19823
19824 static void
19825 dump_die_for_error (struct die_info *die)
19826 {
19827 dump_die_shallow (gdb_stderr, 0, die);
19828 }
19829
19830 static void
19831 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19832 {
19833 int indent = level * 4;
19834
19835 gdb_assert (die != NULL);
19836
19837 if (level >= max_level)
19838 return;
19839
19840 dump_die_shallow (f, indent, die);
19841
19842 if (die->child != NULL)
19843 {
19844 print_spaces (indent, f);
19845 fprintf_unfiltered (f, " Children:");
19846 if (level + 1 < max_level)
19847 {
19848 fprintf_unfiltered (f, "\n");
19849 dump_die_1 (f, level + 1, max_level, die->child);
19850 }
19851 else
19852 {
19853 fprintf_unfiltered (f,
19854 " [not printed, max nesting level reached]\n");
19855 }
19856 }
19857
19858 if (die->sibling != NULL && level > 0)
19859 {
19860 dump_die_1 (f, level, max_level, die->sibling);
19861 }
19862 }
19863
19864 /* This is called from the pdie macro in gdbinit.in.
19865 It's not static so gcc will keep a copy callable from gdb. */
19866
19867 void
19868 dump_die (struct die_info *die, int max_level)
19869 {
19870 dump_die_1 (gdb_stdlog, 0, max_level, die);
19871 }
19872
19873 static void
19874 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19875 {
19876 void **slot;
19877
19878 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19879 INSERT);
19880
19881 *slot = die;
19882 }
19883
19884 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19885 required kind. */
19886
19887 static sect_offset
19888 dwarf2_get_ref_die_offset (const struct attribute *attr)
19889 {
19890 sect_offset retval = { DW_UNSND (attr) };
19891
19892 if (attr_form_is_ref (attr))
19893 return retval;
19894
19895 retval.sect_off = 0;
19896 complaint (&symfile_complaints,
19897 _("unsupported die ref attribute form: '%s'"),
19898 dwarf_form_name (attr->form));
19899 return retval;
19900 }
19901
19902 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19903 * the value held by the attribute is not constant. */
19904
19905 static LONGEST
19906 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19907 {
19908 if (attr->form == DW_FORM_sdata)
19909 return DW_SND (attr);
19910 else if (attr->form == DW_FORM_udata
19911 || attr->form == DW_FORM_data1
19912 || attr->form == DW_FORM_data2
19913 || attr->form == DW_FORM_data4
19914 || attr->form == DW_FORM_data8)
19915 return DW_UNSND (attr);
19916 else
19917 {
19918 complaint (&symfile_complaints,
19919 _("Attribute value is not a constant (%s)"),
19920 dwarf_form_name (attr->form));
19921 return default_value;
19922 }
19923 }
19924
19925 /* Follow reference or signature attribute ATTR of SRC_DIE.
19926 On entry *REF_CU is the CU of SRC_DIE.
19927 On exit *REF_CU is the CU of the result. */
19928
19929 static struct die_info *
19930 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19931 struct dwarf2_cu **ref_cu)
19932 {
19933 struct die_info *die;
19934
19935 if (attr_form_is_ref (attr))
19936 die = follow_die_ref (src_die, attr, ref_cu);
19937 else if (attr->form == DW_FORM_ref_sig8)
19938 die = follow_die_sig (src_die, attr, ref_cu);
19939 else
19940 {
19941 dump_die_for_error (src_die);
19942 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19943 objfile_name ((*ref_cu)->objfile));
19944 }
19945
19946 return die;
19947 }
19948
19949 /* Follow reference OFFSET.
19950 On entry *REF_CU is the CU of the source die referencing OFFSET.
19951 On exit *REF_CU is the CU of the result.
19952 Returns NULL if OFFSET is invalid. */
19953
19954 static struct die_info *
19955 follow_die_offset (sect_offset offset, int offset_in_dwz,
19956 struct dwarf2_cu **ref_cu)
19957 {
19958 struct die_info temp_die;
19959 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19960
19961 gdb_assert (cu->per_cu != NULL);
19962
19963 target_cu = cu;
19964
19965 if (cu->per_cu->is_debug_types)
19966 {
19967 /* .debug_types CUs cannot reference anything outside their CU.
19968 If they need to, they have to reference a signatured type via
19969 DW_FORM_ref_sig8. */
19970 if (! offset_in_cu_p (&cu->header, offset))
19971 return NULL;
19972 }
19973 else if (offset_in_dwz != cu->per_cu->is_dwz
19974 || ! offset_in_cu_p (&cu->header, offset))
19975 {
19976 struct dwarf2_per_cu_data *per_cu;
19977
19978 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19979 cu->objfile);
19980
19981 /* If necessary, add it to the queue and load its DIEs. */
19982 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19983 load_full_comp_unit (per_cu, cu->language);
19984
19985 target_cu = per_cu->cu;
19986 }
19987 else if (cu->dies == NULL)
19988 {
19989 /* We're loading full DIEs during partial symbol reading. */
19990 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19991 load_full_comp_unit (cu->per_cu, language_minimal);
19992 }
19993
19994 *ref_cu = target_cu;
19995 temp_die.offset = offset;
19996 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19997 }
19998
19999 /* Follow reference attribute ATTR of SRC_DIE.
20000 On entry *REF_CU is the CU of SRC_DIE.
20001 On exit *REF_CU is the CU of the result. */
20002
20003 static struct die_info *
20004 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20005 struct dwarf2_cu **ref_cu)
20006 {
20007 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20008 struct dwarf2_cu *cu = *ref_cu;
20009 struct die_info *die;
20010
20011 die = follow_die_offset (offset,
20012 (attr->form == DW_FORM_GNU_ref_alt
20013 || cu->per_cu->is_dwz),
20014 ref_cu);
20015 if (!die)
20016 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20017 "at 0x%x [in module %s]"),
20018 offset.sect_off, src_die->offset.sect_off,
20019 objfile_name (cu->objfile));
20020
20021 return die;
20022 }
20023
20024 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20025 Returned value is intended for DW_OP_call*. Returned
20026 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20027
20028 struct dwarf2_locexpr_baton
20029 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20030 struct dwarf2_per_cu_data *per_cu,
20031 CORE_ADDR (*get_frame_pc) (void *baton),
20032 void *baton)
20033 {
20034 struct dwarf2_cu *cu;
20035 struct die_info *die;
20036 struct attribute *attr;
20037 struct dwarf2_locexpr_baton retval;
20038
20039 dw2_setup (per_cu->objfile);
20040
20041 if (per_cu->cu == NULL)
20042 load_cu (per_cu);
20043 cu = per_cu->cu;
20044 if (cu == NULL)
20045 {
20046 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20047 Instead just throw an error, not much else we can do. */
20048 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20049 offset.sect_off, objfile_name (per_cu->objfile));
20050 }
20051
20052 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20053 if (!die)
20054 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20055 offset.sect_off, objfile_name (per_cu->objfile));
20056
20057 attr = dwarf2_attr (die, DW_AT_location, cu);
20058 if (!attr)
20059 {
20060 /* DWARF: "If there is no such attribute, then there is no effect.".
20061 DATA is ignored if SIZE is 0. */
20062
20063 retval.data = NULL;
20064 retval.size = 0;
20065 }
20066 else if (attr_form_is_section_offset (attr))
20067 {
20068 struct dwarf2_loclist_baton loclist_baton;
20069 CORE_ADDR pc = (*get_frame_pc) (baton);
20070 size_t size;
20071
20072 fill_in_loclist_baton (cu, &loclist_baton, attr);
20073
20074 retval.data = dwarf2_find_location_expression (&loclist_baton,
20075 &size, pc);
20076 retval.size = size;
20077 }
20078 else
20079 {
20080 if (!attr_form_is_block (attr))
20081 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20082 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20083 offset.sect_off, objfile_name (per_cu->objfile));
20084
20085 retval.data = DW_BLOCK (attr)->data;
20086 retval.size = DW_BLOCK (attr)->size;
20087 }
20088 retval.per_cu = cu->per_cu;
20089
20090 age_cached_comp_units ();
20091
20092 return retval;
20093 }
20094
20095 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20096 offset. */
20097
20098 struct dwarf2_locexpr_baton
20099 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20100 struct dwarf2_per_cu_data *per_cu,
20101 CORE_ADDR (*get_frame_pc) (void *baton),
20102 void *baton)
20103 {
20104 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20105
20106 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20107 }
20108
20109 /* Write a constant of a given type as target-ordered bytes into
20110 OBSTACK. */
20111
20112 static const gdb_byte *
20113 write_constant_as_bytes (struct obstack *obstack,
20114 enum bfd_endian byte_order,
20115 struct type *type,
20116 ULONGEST value,
20117 LONGEST *len)
20118 {
20119 gdb_byte *result;
20120
20121 *len = TYPE_LENGTH (type);
20122 result = obstack_alloc (obstack, *len);
20123 store_unsigned_integer (result, *len, byte_order, value);
20124
20125 return result;
20126 }
20127
20128 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20129 pointer to the constant bytes and set LEN to the length of the
20130 data. If memory is needed, allocate it on OBSTACK. If the DIE
20131 does not have a DW_AT_const_value, return NULL. */
20132
20133 const gdb_byte *
20134 dwarf2_fetch_constant_bytes (sect_offset offset,
20135 struct dwarf2_per_cu_data *per_cu,
20136 struct obstack *obstack,
20137 LONGEST *len)
20138 {
20139 struct dwarf2_cu *cu;
20140 struct die_info *die;
20141 struct attribute *attr;
20142 const gdb_byte *result = NULL;
20143 struct type *type;
20144 LONGEST value;
20145 enum bfd_endian byte_order;
20146
20147 dw2_setup (per_cu->objfile);
20148
20149 if (per_cu->cu == NULL)
20150 load_cu (per_cu);
20151 cu = per_cu->cu;
20152 if (cu == NULL)
20153 {
20154 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20155 Instead just throw an error, not much else we can do. */
20156 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20157 offset.sect_off, objfile_name (per_cu->objfile));
20158 }
20159
20160 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20161 if (!die)
20162 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20163 offset.sect_off, objfile_name (per_cu->objfile));
20164
20165
20166 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20167 if (attr == NULL)
20168 return NULL;
20169
20170 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20171 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20172
20173 switch (attr->form)
20174 {
20175 case DW_FORM_addr:
20176 case DW_FORM_GNU_addr_index:
20177 {
20178 gdb_byte *tem;
20179
20180 *len = cu->header.addr_size;
20181 tem = obstack_alloc (obstack, *len);
20182 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20183 result = tem;
20184 }
20185 break;
20186 case DW_FORM_string:
20187 case DW_FORM_strp:
20188 case DW_FORM_GNU_str_index:
20189 case DW_FORM_GNU_strp_alt:
20190 /* DW_STRING is already allocated on the objfile obstack, point
20191 directly to it. */
20192 result = (const gdb_byte *) DW_STRING (attr);
20193 *len = strlen (DW_STRING (attr));
20194 break;
20195 case DW_FORM_block1:
20196 case DW_FORM_block2:
20197 case DW_FORM_block4:
20198 case DW_FORM_block:
20199 case DW_FORM_exprloc:
20200 result = DW_BLOCK (attr)->data;
20201 *len = DW_BLOCK (attr)->size;
20202 break;
20203
20204 /* The DW_AT_const_value attributes are supposed to carry the
20205 symbol's value "represented as it would be on the target
20206 architecture." By the time we get here, it's already been
20207 converted to host endianness, so we just need to sign- or
20208 zero-extend it as appropriate. */
20209 case DW_FORM_data1:
20210 type = die_type (die, cu);
20211 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20212 if (result == NULL)
20213 result = write_constant_as_bytes (obstack, byte_order,
20214 type, value, len);
20215 break;
20216 case DW_FORM_data2:
20217 type = die_type (die, cu);
20218 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20219 if (result == NULL)
20220 result = write_constant_as_bytes (obstack, byte_order,
20221 type, value, len);
20222 break;
20223 case DW_FORM_data4:
20224 type = die_type (die, cu);
20225 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20226 if (result == NULL)
20227 result = write_constant_as_bytes (obstack, byte_order,
20228 type, value, len);
20229 break;
20230 case DW_FORM_data8:
20231 type = die_type (die, cu);
20232 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20233 if (result == NULL)
20234 result = write_constant_as_bytes (obstack, byte_order,
20235 type, value, len);
20236 break;
20237
20238 case DW_FORM_sdata:
20239 type = die_type (die, cu);
20240 result = write_constant_as_bytes (obstack, byte_order,
20241 type, DW_SND (attr), len);
20242 break;
20243
20244 case DW_FORM_udata:
20245 type = die_type (die, cu);
20246 result = write_constant_as_bytes (obstack, byte_order,
20247 type, DW_UNSND (attr), len);
20248 break;
20249
20250 default:
20251 complaint (&symfile_complaints,
20252 _("unsupported const value attribute form: '%s'"),
20253 dwarf_form_name (attr->form));
20254 break;
20255 }
20256
20257 return result;
20258 }
20259
20260 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20261 PER_CU. */
20262
20263 struct type *
20264 dwarf2_get_die_type (cu_offset die_offset,
20265 struct dwarf2_per_cu_data *per_cu)
20266 {
20267 sect_offset die_offset_sect;
20268
20269 dw2_setup (per_cu->objfile);
20270
20271 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20272 return get_die_type_at_offset (die_offset_sect, per_cu);
20273 }
20274
20275 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20276 On entry *REF_CU is the CU of SRC_DIE.
20277 On exit *REF_CU is the CU of the result.
20278 Returns NULL if the referenced DIE isn't found. */
20279
20280 static struct die_info *
20281 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20282 struct dwarf2_cu **ref_cu)
20283 {
20284 struct objfile *objfile = (*ref_cu)->objfile;
20285 struct die_info temp_die;
20286 struct dwarf2_cu *sig_cu;
20287 struct die_info *die;
20288
20289 /* While it might be nice to assert sig_type->type == NULL here,
20290 we can get here for DW_AT_imported_declaration where we need
20291 the DIE not the type. */
20292
20293 /* If necessary, add it to the queue and load its DIEs. */
20294
20295 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20296 read_signatured_type (sig_type);
20297
20298 sig_cu = sig_type->per_cu.cu;
20299 gdb_assert (sig_cu != NULL);
20300 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20301 temp_die.offset = sig_type->type_offset_in_section;
20302 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20303 temp_die.offset.sect_off);
20304 if (die)
20305 {
20306 /* For .gdb_index version 7 keep track of included TUs.
20307 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20308 if (dwarf2_per_objfile->index_table != NULL
20309 && dwarf2_per_objfile->index_table->version <= 7)
20310 {
20311 VEC_safe_push (dwarf2_per_cu_ptr,
20312 (*ref_cu)->per_cu->imported_symtabs,
20313 sig_cu->per_cu);
20314 }
20315
20316 *ref_cu = sig_cu;
20317 return die;
20318 }
20319
20320 return NULL;
20321 }
20322
20323 /* Follow signatured type referenced by ATTR in SRC_DIE.
20324 On entry *REF_CU is the CU of SRC_DIE.
20325 On exit *REF_CU is the CU of the result.
20326 The result is the DIE of the type.
20327 If the referenced type cannot be found an error is thrown. */
20328
20329 static struct die_info *
20330 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20331 struct dwarf2_cu **ref_cu)
20332 {
20333 ULONGEST signature = DW_SIGNATURE (attr);
20334 struct signatured_type *sig_type;
20335 struct die_info *die;
20336
20337 gdb_assert (attr->form == DW_FORM_ref_sig8);
20338
20339 sig_type = lookup_signatured_type (*ref_cu, signature);
20340 /* sig_type will be NULL if the signatured type is missing from
20341 the debug info. */
20342 if (sig_type == NULL)
20343 {
20344 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20345 " from DIE at 0x%x [in module %s]"),
20346 hex_string (signature), src_die->offset.sect_off,
20347 objfile_name ((*ref_cu)->objfile));
20348 }
20349
20350 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20351 if (die == NULL)
20352 {
20353 dump_die_for_error (src_die);
20354 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20355 " from DIE at 0x%x [in module %s]"),
20356 hex_string (signature), src_die->offset.sect_off,
20357 objfile_name ((*ref_cu)->objfile));
20358 }
20359
20360 return die;
20361 }
20362
20363 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20364 reading in and processing the type unit if necessary. */
20365
20366 static struct type *
20367 get_signatured_type (struct die_info *die, ULONGEST signature,
20368 struct dwarf2_cu *cu)
20369 {
20370 struct signatured_type *sig_type;
20371 struct dwarf2_cu *type_cu;
20372 struct die_info *type_die;
20373 struct type *type;
20374
20375 sig_type = lookup_signatured_type (cu, signature);
20376 /* sig_type will be NULL if the signatured type is missing from
20377 the debug info. */
20378 if (sig_type == NULL)
20379 {
20380 complaint (&symfile_complaints,
20381 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20382 " from DIE at 0x%x [in module %s]"),
20383 hex_string (signature), die->offset.sect_off,
20384 objfile_name (dwarf2_per_objfile->objfile));
20385 return build_error_marker_type (cu, die);
20386 }
20387
20388 /* If we already know the type we're done. */
20389 if (sig_type->type != NULL)
20390 return sig_type->type;
20391
20392 type_cu = cu;
20393 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20394 if (type_die != NULL)
20395 {
20396 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20397 is created. This is important, for example, because for c++ classes
20398 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20399 type = read_type_die (type_die, type_cu);
20400 if (type == NULL)
20401 {
20402 complaint (&symfile_complaints,
20403 _("Dwarf Error: Cannot build signatured type %s"
20404 " referenced from DIE at 0x%x [in module %s]"),
20405 hex_string (signature), die->offset.sect_off,
20406 objfile_name (dwarf2_per_objfile->objfile));
20407 type = build_error_marker_type (cu, die);
20408 }
20409 }
20410 else
20411 {
20412 complaint (&symfile_complaints,
20413 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20414 " from DIE at 0x%x [in module %s]"),
20415 hex_string (signature), die->offset.sect_off,
20416 objfile_name (dwarf2_per_objfile->objfile));
20417 type = build_error_marker_type (cu, die);
20418 }
20419 sig_type->type = type;
20420
20421 return type;
20422 }
20423
20424 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20425 reading in and processing the type unit if necessary. */
20426
20427 static struct type *
20428 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20429 struct dwarf2_cu *cu) /* ARI: editCase function */
20430 {
20431 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20432 if (attr_form_is_ref (attr))
20433 {
20434 struct dwarf2_cu *type_cu = cu;
20435 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20436
20437 return read_type_die (type_die, type_cu);
20438 }
20439 else if (attr->form == DW_FORM_ref_sig8)
20440 {
20441 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20442 }
20443 else
20444 {
20445 complaint (&symfile_complaints,
20446 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20447 " at 0x%x [in module %s]"),
20448 dwarf_form_name (attr->form), die->offset.sect_off,
20449 objfile_name (dwarf2_per_objfile->objfile));
20450 return build_error_marker_type (cu, die);
20451 }
20452 }
20453
20454 /* Load the DIEs associated with type unit PER_CU into memory. */
20455
20456 static void
20457 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20458 {
20459 struct signatured_type *sig_type;
20460
20461 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20462 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20463
20464 /* We have the per_cu, but we need the signatured_type.
20465 Fortunately this is an easy translation. */
20466 gdb_assert (per_cu->is_debug_types);
20467 sig_type = (struct signatured_type *) per_cu;
20468
20469 gdb_assert (per_cu->cu == NULL);
20470
20471 read_signatured_type (sig_type);
20472
20473 gdb_assert (per_cu->cu != NULL);
20474 }
20475
20476 /* die_reader_func for read_signatured_type.
20477 This is identical to load_full_comp_unit_reader,
20478 but is kept separate for now. */
20479
20480 static void
20481 read_signatured_type_reader (const struct die_reader_specs *reader,
20482 const gdb_byte *info_ptr,
20483 struct die_info *comp_unit_die,
20484 int has_children,
20485 void *data)
20486 {
20487 struct dwarf2_cu *cu = reader->cu;
20488
20489 gdb_assert (cu->die_hash == NULL);
20490 cu->die_hash =
20491 htab_create_alloc_ex (cu->header.length / 12,
20492 die_hash,
20493 die_eq,
20494 NULL,
20495 &cu->comp_unit_obstack,
20496 hashtab_obstack_allocate,
20497 dummy_obstack_deallocate);
20498
20499 if (has_children)
20500 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20501 &info_ptr, comp_unit_die);
20502 cu->dies = comp_unit_die;
20503 /* comp_unit_die is not stored in die_hash, no need. */
20504
20505 /* We try not to read any attributes in this function, because not
20506 all CUs needed for references have been loaded yet, and symbol
20507 table processing isn't initialized. But we have to set the CU language,
20508 or we won't be able to build types correctly.
20509 Similarly, if we do not read the producer, we can not apply
20510 producer-specific interpretation. */
20511 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20512 }
20513
20514 /* Read in a signatured type and build its CU and DIEs.
20515 If the type is a stub for the real type in a DWO file,
20516 read in the real type from the DWO file as well. */
20517
20518 static void
20519 read_signatured_type (struct signatured_type *sig_type)
20520 {
20521 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20522
20523 gdb_assert (per_cu->is_debug_types);
20524 gdb_assert (per_cu->cu == NULL);
20525
20526 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20527 read_signatured_type_reader, NULL);
20528 sig_type->per_cu.tu_read = 1;
20529 }
20530
20531 /* Decode simple location descriptions.
20532 Given a pointer to a dwarf block that defines a location, compute
20533 the location and return the value.
20534
20535 NOTE drow/2003-11-18: This function is called in two situations
20536 now: for the address of static or global variables (partial symbols
20537 only) and for offsets into structures which are expected to be
20538 (more or less) constant. The partial symbol case should go away,
20539 and only the constant case should remain. That will let this
20540 function complain more accurately. A few special modes are allowed
20541 without complaint for global variables (for instance, global
20542 register values and thread-local values).
20543
20544 A location description containing no operations indicates that the
20545 object is optimized out. The return value is 0 for that case.
20546 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20547 callers will only want a very basic result and this can become a
20548 complaint.
20549
20550 Note that stack[0] is unused except as a default error return. */
20551
20552 static CORE_ADDR
20553 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20554 {
20555 struct objfile *objfile = cu->objfile;
20556 size_t i;
20557 size_t size = blk->size;
20558 const gdb_byte *data = blk->data;
20559 CORE_ADDR stack[64];
20560 int stacki;
20561 unsigned int bytes_read, unsnd;
20562 gdb_byte op;
20563
20564 i = 0;
20565 stacki = 0;
20566 stack[stacki] = 0;
20567 stack[++stacki] = 0;
20568
20569 while (i < size)
20570 {
20571 op = data[i++];
20572 switch (op)
20573 {
20574 case DW_OP_lit0:
20575 case DW_OP_lit1:
20576 case DW_OP_lit2:
20577 case DW_OP_lit3:
20578 case DW_OP_lit4:
20579 case DW_OP_lit5:
20580 case DW_OP_lit6:
20581 case DW_OP_lit7:
20582 case DW_OP_lit8:
20583 case DW_OP_lit9:
20584 case DW_OP_lit10:
20585 case DW_OP_lit11:
20586 case DW_OP_lit12:
20587 case DW_OP_lit13:
20588 case DW_OP_lit14:
20589 case DW_OP_lit15:
20590 case DW_OP_lit16:
20591 case DW_OP_lit17:
20592 case DW_OP_lit18:
20593 case DW_OP_lit19:
20594 case DW_OP_lit20:
20595 case DW_OP_lit21:
20596 case DW_OP_lit22:
20597 case DW_OP_lit23:
20598 case DW_OP_lit24:
20599 case DW_OP_lit25:
20600 case DW_OP_lit26:
20601 case DW_OP_lit27:
20602 case DW_OP_lit28:
20603 case DW_OP_lit29:
20604 case DW_OP_lit30:
20605 case DW_OP_lit31:
20606 stack[++stacki] = op - DW_OP_lit0;
20607 break;
20608
20609 case DW_OP_reg0:
20610 case DW_OP_reg1:
20611 case DW_OP_reg2:
20612 case DW_OP_reg3:
20613 case DW_OP_reg4:
20614 case DW_OP_reg5:
20615 case DW_OP_reg6:
20616 case DW_OP_reg7:
20617 case DW_OP_reg8:
20618 case DW_OP_reg9:
20619 case DW_OP_reg10:
20620 case DW_OP_reg11:
20621 case DW_OP_reg12:
20622 case DW_OP_reg13:
20623 case DW_OP_reg14:
20624 case DW_OP_reg15:
20625 case DW_OP_reg16:
20626 case DW_OP_reg17:
20627 case DW_OP_reg18:
20628 case DW_OP_reg19:
20629 case DW_OP_reg20:
20630 case DW_OP_reg21:
20631 case DW_OP_reg22:
20632 case DW_OP_reg23:
20633 case DW_OP_reg24:
20634 case DW_OP_reg25:
20635 case DW_OP_reg26:
20636 case DW_OP_reg27:
20637 case DW_OP_reg28:
20638 case DW_OP_reg29:
20639 case DW_OP_reg30:
20640 case DW_OP_reg31:
20641 stack[++stacki] = op - DW_OP_reg0;
20642 if (i < size)
20643 dwarf2_complex_location_expr_complaint ();
20644 break;
20645
20646 case DW_OP_regx:
20647 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20648 i += bytes_read;
20649 stack[++stacki] = unsnd;
20650 if (i < size)
20651 dwarf2_complex_location_expr_complaint ();
20652 break;
20653
20654 case DW_OP_addr:
20655 stack[++stacki] = read_address (objfile->obfd, &data[i],
20656 cu, &bytes_read);
20657 i += bytes_read;
20658 break;
20659
20660 case DW_OP_const1u:
20661 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20662 i += 1;
20663 break;
20664
20665 case DW_OP_const1s:
20666 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20667 i += 1;
20668 break;
20669
20670 case DW_OP_const2u:
20671 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20672 i += 2;
20673 break;
20674
20675 case DW_OP_const2s:
20676 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20677 i += 2;
20678 break;
20679
20680 case DW_OP_const4u:
20681 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20682 i += 4;
20683 break;
20684
20685 case DW_OP_const4s:
20686 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20687 i += 4;
20688 break;
20689
20690 case DW_OP_const8u:
20691 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20692 i += 8;
20693 break;
20694
20695 case DW_OP_constu:
20696 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20697 &bytes_read);
20698 i += bytes_read;
20699 break;
20700
20701 case DW_OP_consts:
20702 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20703 i += bytes_read;
20704 break;
20705
20706 case DW_OP_dup:
20707 stack[stacki + 1] = stack[stacki];
20708 stacki++;
20709 break;
20710
20711 case DW_OP_plus:
20712 stack[stacki - 1] += stack[stacki];
20713 stacki--;
20714 break;
20715
20716 case DW_OP_plus_uconst:
20717 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20718 &bytes_read);
20719 i += bytes_read;
20720 break;
20721
20722 case DW_OP_minus:
20723 stack[stacki - 1] -= stack[stacki];
20724 stacki--;
20725 break;
20726
20727 case DW_OP_deref:
20728 /* If we're not the last op, then we definitely can't encode
20729 this using GDB's address_class enum. This is valid for partial
20730 global symbols, although the variable's address will be bogus
20731 in the psymtab. */
20732 if (i < size)
20733 dwarf2_complex_location_expr_complaint ();
20734 break;
20735
20736 case DW_OP_GNU_push_tls_address:
20737 /* The top of the stack has the offset from the beginning
20738 of the thread control block at which the variable is located. */
20739 /* Nothing should follow this operator, so the top of stack would
20740 be returned. */
20741 /* This is valid for partial global symbols, but the variable's
20742 address will be bogus in the psymtab. Make it always at least
20743 non-zero to not look as a variable garbage collected by linker
20744 which have DW_OP_addr 0. */
20745 if (i < size)
20746 dwarf2_complex_location_expr_complaint ();
20747 stack[stacki]++;
20748 break;
20749
20750 case DW_OP_GNU_uninit:
20751 break;
20752
20753 case DW_OP_GNU_addr_index:
20754 case DW_OP_GNU_const_index:
20755 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20756 &bytes_read);
20757 i += bytes_read;
20758 break;
20759
20760 default:
20761 {
20762 const char *name = get_DW_OP_name (op);
20763
20764 if (name)
20765 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20766 name);
20767 else
20768 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20769 op);
20770 }
20771
20772 return (stack[stacki]);
20773 }
20774
20775 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20776 outside of the allocated space. Also enforce minimum>0. */
20777 if (stacki >= ARRAY_SIZE (stack) - 1)
20778 {
20779 complaint (&symfile_complaints,
20780 _("location description stack overflow"));
20781 return 0;
20782 }
20783
20784 if (stacki <= 0)
20785 {
20786 complaint (&symfile_complaints,
20787 _("location description stack underflow"));
20788 return 0;
20789 }
20790 }
20791 return (stack[stacki]);
20792 }
20793
20794 /* memory allocation interface */
20795
20796 static struct dwarf_block *
20797 dwarf_alloc_block (struct dwarf2_cu *cu)
20798 {
20799 struct dwarf_block *blk;
20800
20801 blk = (struct dwarf_block *)
20802 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20803 return (blk);
20804 }
20805
20806 static struct die_info *
20807 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20808 {
20809 struct die_info *die;
20810 size_t size = sizeof (struct die_info);
20811
20812 if (num_attrs > 1)
20813 size += (num_attrs - 1) * sizeof (struct attribute);
20814
20815 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20816 memset (die, 0, sizeof (struct die_info));
20817 return (die);
20818 }
20819
20820 \f
20821 /* Macro support. */
20822
20823 /* Return file name relative to the compilation directory of file number I in
20824 *LH's file name table. The result is allocated using xmalloc; the caller is
20825 responsible for freeing it. */
20826
20827 static char *
20828 file_file_name (int file, struct line_header *lh)
20829 {
20830 /* Is the file number a valid index into the line header's file name
20831 table? Remember that file numbers start with one, not zero. */
20832 if (1 <= file && file <= lh->num_file_names)
20833 {
20834 struct file_entry *fe = &lh->file_names[file - 1];
20835
20836 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20837 || lh->include_dirs == NULL)
20838 return xstrdup (fe->name);
20839 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20840 fe->name, NULL);
20841 }
20842 else
20843 {
20844 /* The compiler produced a bogus file number. We can at least
20845 record the macro definitions made in the file, even if we
20846 won't be able to find the file by name. */
20847 char fake_name[80];
20848
20849 xsnprintf (fake_name, sizeof (fake_name),
20850 "<bad macro file number %d>", file);
20851
20852 complaint (&symfile_complaints,
20853 _("bad file number in macro information (%d)"),
20854 file);
20855
20856 return xstrdup (fake_name);
20857 }
20858 }
20859
20860 /* Return the full name of file number I in *LH's file name table.
20861 Use COMP_DIR as the name of the current directory of the
20862 compilation. The result is allocated using xmalloc; the caller is
20863 responsible for freeing it. */
20864 static char *
20865 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20866 {
20867 /* Is the file number a valid index into the line header's file name
20868 table? Remember that file numbers start with one, not zero. */
20869 if (1 <= file && file <= lh->num_file_names)
20870 {
20871 char *relative = file_file_name (file, lh);
20872
20873 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20874 return relative;
20875 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20876 }
20877 else
20878 return file_file_name (file, lh);
20879 }
20880
20881
20882 static struct macro_source_file *
20883 macro_start_file (int file, int line,
20884 struct macro_source_file *current_file,
20885 struct line_header *lh)
20886 {
20887 /* File name relative to the compilation directory of this source file. */
20888 char *file_name = file_file_name (file, lh);
20889
20890 if (! current_file)
20891 {
20892 /* Note: We don't create a macro table for this compilation unit
20893 at all until we actually get a filename. */
20894 struct macro_table *macro_table = get_macro_table ();
20895
20896 /* If we have no current file, then this must be the start_file
20897 directive for the compilation unit's main source file. */
20898 current_file = macro_set_main (macro_table, file_name);
20899 macro_define_special (macro_table);
20900 }
20901 else
20902 current_file = macro_include (current_file, line, file_name);
20903
20904 xfree (file_name);
20905
20906 return current_file;
20907 }
20908
20909
20910 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20911 followed by a null byte. */
20912 static char *
20913 copy_string (const char *buf, int len)
20914 {
20915 char *s = xmalloc (len + 1);
20916
20917 memcpy (s, buf, len);
20918 s[len] = '\0';
20919 return s;
20920 }
20921
20922
20923 static const char *
20924 consume_improper_spaces (const char *p, const char *body)
20925 {
20926 if (*p == ' ')
20927 {
20928 complaint (&symfile_complaints,
20929 _("macro definition contains spaces "
20930 "in formal argument list:\n`%s'"),
20931 body);
20932
20933 while (*p == ' ')
20934 p++;
20935 }
20936
20937 return p;
20938 }
20939
20940
20941 static void
20942 parse_macro_definition (struct macro_source_file *file, int line,
20943 const char *body)
20944 {
20945 const char *p;
20946
20947 /* The body string takes one of two forms. For object-like macro
20948 definitions, it should be:
20949
20950 <macro name> " " <definition>
20951
20952 For function-like macro definitions, it should be:
20953
20954 <macro name> "() " <definition>
20955 or
20956 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20957
20958 Spaces may appear only where explicitly indicated, and in the
20959 <definition>.
20960
20961 The Dwarf 2 spec says that an object-like macro's name is always
20962 followed by a space, but versions of GCC around March 2002 omit
20963 the space when the macro's definition is the empty string.
20964
20965 The Dwarf 2 spec says that there should be no spaces between the
20966 formal arguments in a function-like macro's formal argument list,
20967 but versions of GCC around March 2002 include spaces after the
20968 commas. */
20969
20970
20971 /* Find the extent of the macro name. The macro name is terminated
20972 by either a space or null character (for an object-like macro) or
20973 an opening paren (for a function-like macro). */
20974 for (p = body; *p; p++)
20975 if (*p == ' ' || *p == '(')
20976 break;
20977
20978 if (*p == ' ' || *p == '\0')
20979 {
20980 /* It's an object-like macro. */
20981 int name_len = p - body;
20982 char *name = copy_string (body, name_len);
20983 const char *replacement;
20984
20985 if (*p == ' ')
20986 replacement = body + name_len + 1;
20987 else
20988 {
20989 dwarf2_macro_malformed_definition_complaint (body);
20990 replacement = body + name_len;
20991 }
20992
20993 macro_define_object (file, line, name, replacement);
20994
20995 xfree (name);
20996 }
20997 else if (*p == '(')
20998 {
20999 /* It's a function-like macro. */
21000 char *name = copy_string (body, p - body);
21001 int argc = 0;
21002 int argv_size = 1;
21003 char **argv = xmalloc (argv_size * sizeof (*argv));
21004
21005 p++;
21006
21007 p = consume_improper_spaces (p, body);
21008
21009 /* Parse the formal argument list. */
21010 while (*p && *p != ')')
21011 {
21012 /* Find the extent of the current argument name. */
21013 const char *arg_start = p;
21014
21015 while (*p && *p != ',' && *p != ')' && *p != ' ')
21016 p++;
21017
21018 if (! *p || p == arg_start)
21019 dwarf2_macro_malformed_definition_complaint (body);
21020 else
21021 {
21022 /* Make sure argv has room for the new argument. */
21023 if (argc >= argv_size)
21024 {
21025 argv_size *= 2;
21026 argv = xrealloc (argv, argv_size * sizeof (*argv));
21027 }
21028
21029 argv[argc++] = copy_string (arg_start, p - arg_start);
21030 }
21031
21032 p = consume_improper_spaces (p, body);
21033
21034 /* Consume the comma, if present. */
21035 if (*p == ',')
21036 {
21037 p++;
21038
21039 p = consume_improper_spaces (p, body);
21040 }
21041 }
21042
21043 if (*p == ')')
21044 {
21045 p++;
21046
21047 if (*p == ' ')
21048 /* Perfectly formed definition, no complaints. */
21049 macro_define_function (file, line, name,
21050 argc, (const char **) argv,
21051 p + 1);
21052 else if (*p == '\0')
21053 {
21054 /* Complain, but do define it. */
21055 dwarf2_macro_malformed_definition_complaint (body);
21056 macro_define_function (file, line, name,
21057 argc, (const char **) argv,
21058 p);
21059 }
21060 else
21061 /* Just complain. */
21062 dwarf2_macro_malformed_definition_complaint (body);
21063 }
21064 else
21065 /* Just complain. */
21066 dwarf2_macro_malformed_definition_complaint (body);
21067
21068 xfree (name);
21069 {
21070 int i;
21071
21072 for (i = 0; i < argc; i++)
21073 xfree (argv[i]);
21074 }
21075 xfree (argv);
21076 }
21077 else
21078 dwarf2_macro_malformed_definition_complaint (body);
21079 }
21080
21081 /* Skip some bytes from BYTES according to the form given in FORM.
21082 Returns the new pointer. */
21083
21084 static const gdb_byte *
21085 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21086 enum dwarf_form form,
21087 unsigned int offset_size,
21088 struct dwarf2_section_info *section)
21089 {
21090 unsigned int bytes_read;
21091
21092 switch (form)
21093 {
21094 case DW_FORM_data1:
21095 case DW_FORM_flag:
21096 ++bytes;
21097 break;
21098
21099 case DW_FORM_data2:
21100 bytes += 2;
21101 break;
21102
21103 case DW_FORM_data4:
21104 bytes += 4;
21105 break;
21106
21107 case DW_FORM_data8:
21108 bytes += 8;
21109 break;
21110
21111 case DW_FORM_string:
21112 read_direct_string (abfd, bytes, &bytes_read);
21113 bytes += bytes_read;
21114 break;
21115
21116 case DW_FORM_sec_offset:
21117 case DW_FORM_strp:
21118 case DW_FORM_GNU_strp_alt:
21119 bytes += offset_size;
21120 break;
21121
21122 case DW_FORM_block:
21123 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21124 bytes += bytes_read;
21125 break;
21126
21127 case DW_FORM_block1:
21128 bytes += 1 + read_1_byte (abfd, bytes);
21129 break;
21130 case DW_FORM_block2:
21131 bytes += 2 + read_2_bytes (abfd, bytes);
21132 break;
21133 case DW_FORM_block4:
21134 bytes += 4 + read_4_bytes (abfd, bytes);
21135 break;
21136
21137 case DW_FORM_sdata:
21138 case DW_FORM_udata:
21139 case DW_FORM_GNU_addr_index:
21140 case DW_FORM_GNU_str_index:
21141 bytes = gdb_skip_leb128 (bytes, buffer_end);
21142 if (bytes == NULL)
21143 {
21144 dwarf2_section_buffer_overflow_complaint (section);
21145 return NULL;
21146 }
21147 break;
21148
21149 default:
21150 {
21151 complain:
21152 complaint (&symfile_complaints,
21153 _("invalid form 0x%x in `%s'"),
21154 form, get_section_name (section));
21155 return NULL;
21156 }
21157 }
21158
21159 return bytes;
21160 }
21161
21162 /* A helper for dwarf_decode_macros that handles skipping an unknown
21163 opcode. Returns an updated pointer to the macro data buffer; or,
21164 on error, issues a complaint and returns NULL. */
21165
21166 static const gdb_byte *
21167 skip_unknown_opcode (unsigned int opcode,
21168 const gdb_byte **opcode_definitions,
21169 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21170 bfd *abfd,
21171 unsigned int offset_size,
21172 struct dwarf2_section_info *section)
21173 {
21174 unsigned int bytes_read, i;
21175 unsigned long arg;
21176 const gdb_byte *defn;
21177
21178 if (opcode_definitions[opcode] == NULL)
21179 {
21180 complaint (&symfile_complaints,
21181 _("unrecognized DW_MACFINO opcode 0x%x"),
21182 opcode);
21183 return NULL;
21184 }
21185
21186 defn = opcode_definitions[opcode];
21187 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21188 defn += bytes_read;
21189
21190 for (i = 0; i < arg; ++i)
21191 {
21192 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21193 (enum dwarf_form) defn[i], offset_size,
21194 section);
21195 if (mac_ptr == NULL)
21196 {
21197 /* skip_form_bytes already issued the complaint. */
21198 return NULL;
21199 }
21200 }
21201
21202 return mac_ptr;
21203 }
21204
21205 /* A helper function which parses the header of a macro section.
21206 If the macro section is the extended (for now called "GNU") type,
21207 then this updates *OFFSET_SIZE. Returns a pointer to just after
21208 the header, or issues a complaint and returns NULL on error. */
21209
21210 static const gdb_byte *
21211 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21212 bfd *abfd,
21213 const gdb_byte *mac_ptr,
21214 unsigned int *offset_size,
21215 int section_is_gnu)
21216 {
21217 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21218
21219 if (section_is_gnu)
21220 {
21221 unsigned int version, flags;
21222
21223 version = read_2_bytes (abfd, mac_ptr);
21224 if (version != 4)
21225 {
21226 complaint (&symfile_complaints,
21227 _("unrecognized version `%d' in .debug_macro section"),
21228 version);
21229 return NULL;
21230 }
21231 mac_ptr += 2;
21232
21233 flags = read_1_byte (abfd, mac_ptr);
21234 ++mac_ptr;
21235 *offset_size = (flags & 1) ? 8 : 4;
21236
21237 if ((flags & 2) != 0)
21238 /* We don't need the line table offset. */
21239 mac_ptr += *offset_size;
21240
21241 /* Vendor opcode descriptions. */
21242 if ((flags & 4) != 0)
21243 {
21244 unsigned int i, count;
21245
21246 count = read_1_byte (abfd, mac_ptr);
21247 ++mac_ptr;
21248 for (i = 0; i < count; ++i)
21249 {
21250 unsigned int opcode, bytes_read;
21251 unsigned long arg;
21252
21253 opcode = read_1_byte (abfd, mac_ptr);
21254 ++mac_ptr;
21255 opcode_definitions[opcode] = mac_ptr;
21256 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21257 mac_ptr += bytes_read;
21258 mac_ptr += arg;
21259 }
21260 }
21261 }
21262
21263 return mac_ptr;
21264 }
21265
21266 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21267 including DW_MACRO_GNU_transparent_include. */
21268
21269 static void
21270 dwarf_decode_macro_bytes (bfd *abfd,
21271 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21272 struct macro_source_file *current_file,
21273 struct line_header *lh,
21274 struct dwarf2_section_info *section,
21275 int section_is_gnu, int section_is_dwz,
21276 unsigned int offset_size,
21277 htab_t include_hash)
21278 {
21279 struct objfile *objfile = dwarf2_per_objfile->objfile;
21280 enum dwarf_macro_record_type macinfo_type;
21281 int at_commandline;
21282 const gdb_byte *opcode_definitions[256];
21283
21284 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21285 &offset_size, section_is_gnu);
21286 if (mac_ptr == NULL)
21287 {
21288 /* We already issued a complaint. */
21289 return;
21290 }
21291
21292 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21293 GDB is still reading the definitions from command line. First
21294 DW_MACINFO_start_file will need to be ignored as it was already executed
21295 to create CURRENT_FILE for the main source holding also the command line
21296 definitions. On first met DW_MACINFO_start_file this flag is reset to
21297 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21298
21299 at_commandline = 1;
21300
21301 do
21302 {
21303 /* Do we at least have room for a macinfo type byte? */
21304 if (mac_ptr >= mac_end)
21305 {
21306 dwarf2_section_buffer_overflow_complaint (section);
21307 break;
21308 }
21309
21310 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21311 mac_ptr++;
21312
21313 /* Note that we rely on the fact that the corresponding GNU and
21314 DWARF constants are the same. */
21315 switch (macinfo_type)
21316 {
21317 /* A zero macinfo type indicates the end of the macro
21318 information. */
21319 case 0:
21320 break;
21321
21322 case DW_MACRO_GNU_define:
21323 case DW_MACRO_GNU_undef:
21324 case DW_MACRO_GNU_define_indirect:
21325 case DW_MACRO_GNU_undef_indirect:
21326 case DW_MACRO_GNU_define_indirect_alt:
21327 case DW_MACRO_GNU_undef_indirect_alt:
21328 {
21329 unsigned int bytes_read;
21330 int line;
21331 const char *body;
21332 int is_define;
21333
21334 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21335 mac_ptr += bytes_read;
21336
21337 if (macinfo_type == DW_MACRO_GNU_define
21338 || macinfo_type == DW_MACRO_GNU_undef)
21339 {
21340 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21341 mac_ptr += bytes_read;
21342 }
21343 else
21344 {
21345 LONGEST str_offset;
21346
21347 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21348 mac_ptr += offset_size;
21349
21350 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21351 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21352 || section_is_dwz)
21353 {
21354 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21355
21356 body = read_indirect_string_from_dwz (dwz, str_offset);
21357 }
21358 else
21359 body = read_indirect_string_at_offset (abfd, str_offset);
21360 }
21361
21362 is_define = (macinfo_type == DW_MACRO_GNU_define
21363 || macinfo_type == DW_MACRO_GNU_define_indirect
21364 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21365 if (! current_file)
21366 {
21367 /* DWARF violation as no main source is present. */
21368 complaint (&symfile_complaints,
21369 _("debug info with no main source gives macro %s "
21370 "on line %d: %s"),
21371 is_define ? _("definition") : _("undefinition"),
21372 line, body);
21373 break;
21374 }
21375 if ((line == 0 && !at_commandline)
21376 || (line != 0 && at_commandline))
21377 complaint (&symfile_complaints,
21378 _("debug info gives %s macro %s with %s line %d: %s"),
21379 at_commandline ? _("command-line") : _("in-file"),
21380 is_define ? _("definition") : _("undefinition"),
21381 line == 0 ? _("zero") : _("non-zero"), line, body);
21382
21383 if (is_define)
21384 parse_macro_definition (current_file, line, body);
21385 else
21386 {
21387 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21388 || macinfo_type == DW_MACRO_GNU_undef_indirect
21389 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21390 macro_undef (current_file, line, body);
21391 }
21392 }
21393 break;
21394
21395 case DW_MACRO_GNU_start_file:
21396 {
21397 unsigned int bytes_read;
21398 int line, file;
21399
21400 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21401 mac_ptr += bytes_read;
21402 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21403 mac_ptr += bytes_read;
21404
21405 if ((line == 0 && !at_commandline)
21406 || (line != 0 && at_commandline))
21407 complaint (&symfile_complaints,
21408 _("debug info gives source %d included "
21409 "from %s at %s line %d"),
21410 file, at_commandline ? _("command-line") : _("file"),
21411 line == 0 ? _("zero") : _("non-zero"), line);
21412
21413 if (at_commandline)
21414 {
21415 /* This DW_MACRO_GNU_start_file was executed in the
21416 pass one. */
21417 at_commandline = 0;
21418 }
21419 else
21420 current_file = macro_start_file (file, line, current_file, lh);
21421 }
21422 break;
21423
21424 case DW_MACRO_GNU_end_file:
21425 if (! current_file)
21426 complaint (&symfile_complaints,
21427 _("macro debug info has an unmatched "
21428 "`close_file' directive"));
21429 else
21430 {
21431 current_file = current_file->included_by;
21432 if (! current_file)
21433 {
21434 enum dwarf_macro_record_type next_type;
21435
21436 /* GCC circa March 2002 doesn't produce the zero
21437 type byte marking the end of the compilation
21438 unit. Complain if it's not there, but exit no
21439 matter what. */
21440
21441 /* Do we at least have room for a macinfo type byte? */
21442 if (mac_ptr >= mac_end)
21443 {
21444 dwarf2_section_buffer_overflow_complaint (section);
21445 return;
21446 }
21447
21448 /* We don't increment mac_ptr here, so this is just
21449 a look-ahead. */
21450 next_type
21451 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21452 mac_ptr);
21453 if (next_type != 0)
21454 complaint (&symfile_complaints,
21455 _("no terminating 0-type entry for "
21456 "macros in `.debug_macinfo' section"));
21457
21458 return;
21459 }
21460 }
21461 break;
21462
21463 case DW_MACRO_GNU_transparent_include:
21464 case DW_MACRO_GNU_transparent_include_alt:
21465 {
21466 LONGEST offset;
21467 void **slot;
21468 bfd *include_bfd = abfd;
21469 struct dwarf2_section_info *include_section = section;
21470 struct dwarf2_section_info alt_section;
21471 const gdb_byte *include_mac_end = mac_end;
21472 int is_dwz = section_is_dwz;
21473 const gdb_byte *new_mac_ptr;
21474
21475 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21476 mac_ptr += offset_size;
21477
21478 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21479 {
21480 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21481
21482 dwarf2_read_section (objfile, &dwz->macro);
21483
21484 include_section = &dwz->macro;
21485 include_bfd = get_section_bfd_owner (include_section);
21486 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21487 is_dwz = 1;
21488 }
21489
21490 new_mac_ptr = include_section->buffer + offset;
21491 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21492
21493 if (*slot != NULL)
21494 {
21495 /* This has actually happened; see
21496 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21497 complaint (&symfile_complaints,
21498 _("recursive DW_MACRO_GNU_transparent_include in "
21499 ".debug_macro section"));
21500 }
21501 else
21502 {
21503 *slot = (void *) new_mac_ptr;
21504
21505 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21506 include_mac_end, current_file, lh,
21507 section, section_is_gnu, is_dwz,
21508 offset_size, include_hash);
21509
21510 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21511 }
21512 }
21513 break;
21514
21515 case DW_MACINFO_vendor_ext:
21516 if (!section_is_gnu)
21517 {
21518 unsigned int bytes_read;
21519 int constant;
21520
21521 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21522 mac_ptr += bytes_read;
21523 read_direct_string (abfd, mac_ptr, &bytes_read);
21524 mac_ptr += bytes_read;
21525
21526 /* We don't recognize any vendor extensions. */
21527 break;
21528 }
21529 /* FALLTHROUGH */
21530
21531 default:
21532 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21533 mac_ptr, mac_end, abfd, offset_size,
21534 section);
21535 if (mac_ptr == NULL)
21536 return;
21537 break;
21538 }
21539 } while (macinfo_type != 0);
21540 }
21541
21542 static void
21543 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21544 int section_is_gnu)
21545 {
21546 struct objfile *objfile = dwarf2_per_objfile->objfile;
21547 struct line_header *lh = cu->line_header;
21548 bfd *abfd;
21549 const gdb_byte *mac_ptr, *mac_end;
21550 struct macro_source_file *current_file = 0;
21551 enum dwarf_macro_record_type macinfo_type;
21552 unsigned int offset_size = cu->header.offset_size;
21553 const gdb_byte *opcode_definitions[256];
21554 struct cleanup *cleanup;
21555 htab_t include_hash;
21556 void **slot;
21557 struct dwarf2_section_info *section;
21558 const char *section_name;
21559
21560 if (cu->dwo_unit != NULL)
21561 {
21562 if (section_is_gnu)
21563 {
21564 section = &cu->dwo_unit->dwo_file->sections.macro;
21565 section_name = ".debug_macro.dwo";
21566 }
21567 else
21568 {
21569 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21570 section_name = ".debug_macinfo.dwo";
21571 }
21572 }
21573 else
21574 {
21575 if (section_is_gnu)
21576 {
21577 section = &dwarf2_per_objfile->macro;
21578 section_name = ".debug_macro";
21579 }
21580 else
21581 {
21582 section = &dwarf2_per_objfile->macinfo;
21583 section_name = ".debug_macinfo";
21584 }
21585 }
21586
21587 dwarf2_read_section (objfile, section);
21588 if (section->buffer == NULL)
21589 {
21590 complaint (&symfile_complaints, _("missing %s section"), section_name);
21591 return;
21592 }
21593 abfd = get_section_bfd_owner (section);
21594
21595 /* First pass: Find the name of the base filename.
21596 This filename is needed in order to process all macros whose definition
21597 (or undefinition) comes from the command line. These macros are defined
21598 before the first DW_MACINFO_start_file entry, and yet still need to be
21599 associated to the base file.
21600
21601 To determine the base file name, we scan the macro definitions until we
21602 reach the first DW_MACINFO_start_file entry. We then initialize
21603 CURRENT_FILE accordingly so that any macro definition found before the
21604 first DW_MACINFO_start_file can still be associated to the base file. */
21605
21606 mac_ptr = section->buffer + offset;
21607 mac_end = section->buffer + section->size;
21608
21609 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21610 &offset_size, section_is_gnu);
21611 if (mac_ptr == NULL)
21612 {
21613 /* We already issued a complaint. */
21614 return;
21615 }
21616
21617 do
21618 {
21619 /* Do we at least have room for a macinfo type byte? */
21620 if (mac_ptr >= mac_end)
21621 {
21622 /* Complaint is printed during the second pass as GDB will probably
21623 stop the first pass earlier upon finding
21624 DW_MACINFO_start_file. */
21625 break;
21626 }
21627
21628 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21629 mac_ptr++;
21630
21631 /* Note that we rely on the fact that the corresponding GNU and
21632 DWARF constants are the same. */
21633 switch (macinfo_type)
21634 {
21635 /* A zero macinfo type indicates the end of the macro
21636 information. */
21637 case 0:
21638 break;
21639
21640 case DW_MACRO_GNU_define:
21641 case DW_MACRO_GNU_undef:
21642 /* Only skip the data by MAC_PTR. */
21643 {
21644 unsigned int bytes_read;
21645
21646 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21647 mac_ptr += bytes_read;
21648 read_direct_string (abfd, mac_ptr, &bytes_read);
21649 mac_ptr += bytes_read;
21650 }
21651 break;
21652
21653 case DW_MACRO_GNU_start_file:
21654 {
21655 unsigned int bytes_read;
21656 int line, file;
21657
21658 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21659 mac_ptr += bytes_read;
21660 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21661 mac_ptr += bytes_read;
21662
21663 current_file = macro_start_file (file, line, current_file, lh);
21664 }
21665 break;
21666
21667 case DW_MACRO_GNU_end_file:
21668 /* No data to skip by MAC_PTR. */
21669 break;
21670
21671 case DW_MACRO_GNU_define_indirect:
21672 case DW_MACRO_GNU_undef_indirect:
21673 case DW_MACRO_GNU_define_indirect_alt:
21674 case DW_MACRO_GNU_undef_indirect_alt:
21675 {
21676 unsigned int bytes_read;
21677
21678 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21679 mac_ptr += bytes_read;
21680 mac_ptr += offset_size;
21681 }
21682 break;
21683
21684 case DW_MACRO_GNU_transparent_include:
21685 case DW_MACRO_GNU_transparent_include_alt:
21686 /* Note that, according to the spec, a transparent include
21687 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21688 skip this opcode. */
21689 mac_ptr += offset_size;
21690 break;
21691
21692 case DW_MACINFO_vendor_ext:
21693 /* Only skip the data by MAC_PTR. */
21694 if (!section_is_gnu)
21695 {
21696 unsigned int bytes_read;
21697
21698 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21699 mac_ptr += bytes_read;
21700 read_direct_string (abfd, mac_ptr, &bytes_read);
21701 mac_ptr += bytes_read;
21702 }
21703 /* FALLTHROUGH */
21704
21705 default:
21706 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21707 mac_ptr, mac_end, abfd, offset_size,
21708 section);
21709 if (mac_ptr == NULL)
21710 return;
21711 break;
21712 }
21713 } while (macinfo_type != 0 && current_file == NULL);
21714
21715 /* Second pass: Process all entries.
21716
21717 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21718 command-line macro definitions/undefinitions. This flag is unset when we
21719 reach the first DW_MACINFO_start_file entry. */
21720
21721 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21722 NULL, xcalloc, xfree);
21723 cleanup = make_cleanup_htab_delete (include_hash);
21724 mac_ptr = section->buffer + offset;
21725 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21726 *slot = (void *) mac_ptr;
21727 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21728 current_file, lh, section,
21729 section_is_gnu, 0, offset_size, include_hash);
21730 do_cleanups (cleanup);
21731 }
21732
21733 /* Check if the attribute's form is a DW_FORM_block*
21734 if so return true else false. */
21735
21736 static int
21737 attr_form_is_block (const struct attribute *attr)
21738 {
21739 return (attr == NULL ? 0 :
21740 attr->form == DW_FORM_block1
21741 || attr->form == DW_FORM_block2
21742 || attr->form == DW_FORM_block4
21743 || attr->form == DW_FORM_block
21744 || attr->form == DW_FORM_exprloc);
21745 }
21746
21747 /* Return non-zero if ATTR's value is a section offset --- classes
21748 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21749 You may use DW_UNSND (attr) to retrieve such offsets.
21750
21751 Section 7.5.4, "Attribute Encodings", explains that no attribute
21752 may have a value that belongs to more than one of these classes; it
21753 would be ambiguous if we did, because we use the same forms for all
21754 of them. */
21755
21756 static int
21757 attr_form_is_section_offset (const struct attribute *attr)
21758 {
21759 return (attr->form == DW_FORM_data4
21760 || attr->form == DW_FORM_data8
21761 || attr->form == DW_FORM_sec_offset);
21762 }
21763
21764 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21765 zero otherwise. When this function returns true, you can apply
21766 dwarf2_get_attr_constant_value to it.
21767
21768 However, note that for some attributes you must check
21769 attr_form_is_section_offset before using this test. DW_FORM_data4
21770 and DW_FORM_data8 are members of both the constant class, and of
21771 the classes that contain offsets into other debug sections
21772 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21773 that, if an attribute's can be either a constant or one of the
21774 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21775 taken as section offsets, not constants. */
21776
21777 static int
21778 attr_form_is_constant (const struct attribute *attr)
21779 {
21780 switch (attr->form)
21781 {
21782 case DW_FORM_sdata:
21783 case DW_FORM_udata:
21784 case DW_FORM_data1:
21785 case DW_FORM_data2:
21786 case DW_FORM_data4:
21787 case DW_FORM_data8:
21788 return 1;
21789 default:
21790 return 0;
21791 }
21792 }
21793
21794
21795 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21796 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21797
21798 static int
21799 attr_form_is_ref (const struct attribute *attr)
21800 {
21801 switch (attr->form)
21802 {
21803 case DW_FORM_ref_addr:
21804 case DW_FORM_ref1:
21805 case DW_FORM_ref2:
21806 case DW_FORM_ref4:
21807 case DW_FORM_ref8:
21808 case DW_FORM_ref_udata:
21809 case DW_FORM_GNU_ref_alt:
21810 return 1;
21811 default:
21812 return 0;
21813 }
21814 }
21815
21816 /* Return the .debug_loc section to use for CU.
21817 For DWO files use .debug_loc.dwo. */
21818
21819 static struct dwarf2_section_info *
21820 cu_debug_loc_section (struct dwarf2_cu *cu)
21821 {
21822 if (cu->dwo_unit)
21823 return &cu->dwo_unit->dwo_file->sections.loc;
21824 return &dwarf2_per_objfile->loc;
21825 }
21826
21827 /* A helper function that fills in a dwarf2_loclist_baton. */
21828
21829 static void
21830 fill_in_loclist_baton (struct dwarf2_cu *cu,
21831 struct dwarf2_loclist_baton *baton,
21832 const struct attribute *attr)
21833 {
21834 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21835
21836 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21837
21838 baton->per_cu = cu->per_cu;
21839 gdb_assert (baton->per_cu);
21840 /* We don't know how long the location list is, but make sure we
21841 don't run off the edge of the section. */
21842 baton->size = section->size - DW_UNSND (attr);
21843 baton->data = section->buffer + DW_UNSND (attr);
21844 baton->base_address = cu->base_address;
21845 baton->from_dwo = cu->dwo_unit != NULL;
21846 }
21847
21848 static void
21849 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21850 struct dwarf2_cu *cu, int is_block)
21851 {
21852 struct objfile *objfile = dwarf2_per_objfile->objfile;
21853 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21854
21855 if (attr_form_is_section_offset (attr)
21856 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21857 the section. If so, fall through to the complaint in the
21858 other branch. */
21859 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21860 {
21861 struct dwarf2_loclist_baton *baton;
21862
21863 baton = obstack_alloc (&objfile->objfile_obstack,
21864 sizeof (struct dwarf2_loclist_baton));
21865
21866 fill_in_loclist_baton (cu, baton, attr);
21867
21868 if (cu->base_known == 0)
21869 complaint (&symfile_complaints,
21870 _("Location list used without "
21871 "specifying the CU base address."));
21872
21873 SYMBOL_ACLASS_INDEX (sym) = (is_block
21874 ? dwarf2_loclist_block_index
21875 : dwarf2_loclist_index);
21876 SYMBOL_LOCATION_BATON (sym) = baton;
21877 }
21878 else
21879 {
21880 struct dwarf2_locexpr_baton *baton;
21881
21882 baton = obstack_alloc (&objfile->objfile_obstack,
21883 sizeof (struct dwarf2_locexpr_baton));
21884 baton->per_cu = cu->per_cu;
21885 gdb_assert (baton->per_cu);
21886
21887 if (attr_form_is_block (attr))
21888 {
21889 /* Note that we're just copying the block's data pointer
21890 here, not the actual data. We're still pointing into the
21891 info_buffer for SYM's objfile; right now we never release
21892 that buffer, but when we do clean up properly this may
21893 need to change. */
21894 baton->size = DW_BLOCK (attr)->size;
21895 baton->data = DW_BLOCK (attr)->data;
21896 }
21897 else
21898 {
21899 dwarf2_invalid_attrib_class_complaint ("location description",
21900 SYMBOL_NATURAL_NAME (sym));
21901 baton->size = 0;
21902 }
21903
21904 SYMBOL_ACLASS_INDEX (sym) = (is_block
21905 ? dwarf2_locexpr_block_index
21906 : dwarf2_locexpr_index);
21907 SYMBOL_LOCATION_BATON (sym) = baton;
21908 }
21909 }
21910
21911 /* Return the OBJFILE associated with the compilation unit CU. If CU
21912 came from a separate debuginfo file, then the master objfile is
21913 returned. */
21914
21915 struct objfile *
21916 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21917 {
21918 struct objfile *objfile = per_cu->objfile;
21919
21920 /* Return the master objfile, so that we can report and look up the
21921 correct file containing this variable. */
21922 if (objfile->separate_debug_objfile_backlink)
21923 objfile = objfile->separate_debug_objfile_backlink;
21924
21925 return objfile;
21926 }
21927
21928 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21929 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21930 CU_HEADERP first. */
21931
21932 static const struct comp_unit_head *
21933 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21934 struct dwarf2_per_cu_data *per_cu)
21935 {
21936 const gdb_byte *info_ptr;
21937
21938 if (per_cu->cu)
21939 return &per_cu->cu->header;
21940
21941 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21942
21943 memset (cu_headerp, 0, sizeof (*cu_headerp));
21944 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21945
21946 return cu_headerp;
21947 }
21948
21949 /* Return the address size given in the compilation unit header for CU. */
21950
21951 int
21952 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21953 {
21954 struct comp_unit_head cu_header_local;
21955 const struct comp_unit_head *cu_headerp;
21956
21957 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21958
21959 return cu_headerp->addr_size;
21960 }
21961
21962 /* Return the offset size given in the compilation unit header for CU. */
21963
21964 int
21965 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21966 {
21967 struct comp_unit_head cu_header_local;
21968 const struct comp_unit_head *cu_headerp;
21969
21970 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21971
21972 return cu_headerp->offset_size;
21973 }
21974
21975 /* See its dwarf2loc.h declaration. */
21976
21977 int
21978 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21979 {
21980 struct comp_unit_head cu_header_local;
21981 const struct comp_unit_head *cu_headerp;
21982
21983 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21984
21985 if (cu_headerp->version == 2)
21986 return cu_headerp->addr_size;
21987 else
21988 return cu_headerp->offset_size;
21989 }
21990
21991 /* Return the text offset of the CU. The returned offset comes from
21992 this CU's objfile. If this objfile came from a separate debuginfo
21993 file, then the offset may be different from the corresponding
21994 offset in the parent objfile. */
21995
21996 CORE_ADDR
21997 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21998 {
21999 struct objfile *objfile = per_cu->objfile;
22000
22001 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22002 }
22003
22004 /* Locate the .debug_info compilation unit from CU's objfile which contains
22005 the DIE at OFFSET. Raises an error on failure. */
22006
22007 static struct dwarf2_per_cu_data *
22008 dwarf2_find_containing_comp_unit (sect_offset offset,
22009 unsigned int offset_in_dwz,
22010 struct objfile *objfile)
22011 {
22012 struct dwarf2_per_cu_data *this_cu;
22013 int low, high;
22014 const sect_offset *cu_off;
22015
22016 low = 0;
22017 high = dwarf2_per_objfile->n_comp_units - 1;
22018 while (high > low)
22019 {
22020 struct dwarf2_per_cu_data *mid_cu;
22021 int mid = low + (high - low) / 2;
22022
22023 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22024 cu_off = &mid_cu->offset;
22025 if (mid_cu->is_dwz > offset_in_dwz
22026 || (mid_cu->is_dwz == offset_in_dwz
22027 && cu_off->sect_off >= offset.sect_off))
22028 high = mid;
22029 else
22030 low = mid + 1;
22031 }
22032 gdb_assert (low == high);
22033 this_cu = dwarf2_per_objfile->all_comp_units[low];
22034 cu_off = &this_cu->offset;
22035 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22036 {
22037 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22038 error (_("Dwarf Error: could not find partial DIE containing "
22039 "offset 0x%lx [in module %s]"),
22040 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22041
22042 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22043 <= offset.sect_off);
22044 return dwarf2_per_objfile->all_comp_units[low-1];
22045 }
22046 else
22047 {
22048 this_cu = dwarf2_per_objfile->all_comp_units[low];
22049 if (low == dwarf2_per_objfile->n_comp_units - 1
22050 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22051 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22052 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22053 return this_cu;
22054 }
22055 }
22056
22057 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22058
22059 static void
22060 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22061 {
22062 memset (cu, 0, sizeof (*cu));
22063 per_cu->cu = cu;
22064 cu->per_cu = per_cu;
22065 cu->objfile = per_cu->objfile;
22066 obstack_init (&cu->comp_unit_obstack);
22067 }
22068
22069 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22070
22071 static void
22072 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22073 enum language pretend_language)
22074 {
22075 struct attribute *attr;
22076
22077 /* Set the language we're debugging. */
22078 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22079 if (attr)
22080 set_cu_language (DW_UNSND (attr), cu);
22081 else
22082 {
22083 cu->language = pretend_language;
22084 cu->language_defn = language_def (cu->language);
22085 }
22086
22087 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
22088 if (attr)
22089 cu->producer = DW_STRING (attr);
22090 }
22091
22092 /* Release one cached compilation unit, CU. We unlink it from the tree
22093 of compilation units, but we don't remove it from the read_in_chain;
22094 the caller is responsible for that.
22095 NOTE: DATA is a void * because this function is also used as a
22096 cleanup routine. */
22097
22098 static void
22099 free_heap_comp_unit (void *data)
22100 {
22101 struct dwarf2_cu *cu = data;
22102
22103 gdb_assert (cu->per_cu != NULL);
22104 cu->per_cu->cu = NULL;
22105 cu->per_cu = NULL;
22106
22107 obstack_free (&cu->comp_unit_obstack, NULL);
22108
22109 xfree (cu);
22110 }
22111
22112 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22113 when we're finished with it. We can't free the pointer itself, but be
22114 sure to unlink it from the cache. Also release any associated storage. */
22115
22116 static void
22117 free_stack_comp_unit (void *data)
22118 {
22119 struct dwarf2_cu *cu = data;
22120
22121 gdb_assert (cu->per_cu != NULL);
22122 cu->per_cu->cu = NULL;
22123 cu->per_cu = NULL;
22124
22125 obstack_free (&cu->comp_unit_obstack, NULL);
22126 cu->partial_dies = NULL;
22127 }
22128
22129 /* Free all cached compilation units. */
22130
22131 static void
22132 free_cached_comp_units (void *data)
22133 {
22134 struct dwarf2_per_cu_data *per_cu, **last_chain;
22135
22136 per_cu = dwarf2_per_objfile->read_in_chain;
22137 last_chain = &dwarf2_per_objfile->read_in_chain;
22138 while (per_cu != NULL)
22139 {
22140 struct dwarf2_per_cu_data *next_cu;
22141
22142 next_cu = per_cu->cu->read_in_chain;
22143
22144 free_heap_comp_unit (per_cu->cu);
22145 *last_chain = next_cu;
22146
22147 per_cu = next_cu;
22148 }
22149 }
22150
22151 /* Increase the age counter on each cached compilation unit, and free
22152 any that are too old. */
22153
22154 static void
22155 age_cached_comp_units (void)
22156 {
22157 struct dwarf2_per_cu_data *per_cu, **last_chain;
22158
22159 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22160 per_cu = dwarf2_per_objfile->read_in_chain;
22161 while (per_cu != NULL)
22162 {
22163 per_cu->cu->last_used ++;
22164 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22165 dwarf2_mark (per_cu->cu);
22166 per_cu = per_cu->cu->read_in_chain;
22167 }
22168
22169 per_cu = dwarf2_per_objfile->read_in_chain;
22170 last_chain = &dwarf2_per_objfile->read_in_chain;
22171 while (per_cu != NULL)
22172 {
22173 struct dwarf2_per_cu_data *next_cu;
22174
22175 next_cu = per_cu->cu->read_in_chain;
22176
22177 if (!per_cu->cu->mark)
22178 {
22179 free_heap_comp_unit (per_cu->cu);
22180 *last_chain = next_cu;
22181 }
22182 else
22183 last_chain = &per_cu->cu->read_in_chain;
22184
22185 per_cu = next_cu;
22186 }
22187 }
22188
22189 /* Remove a single compilation unit from the cache. */
22190
22191 static void
22192 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22193 {
22194 struct dwarf2_per_cu_data *per_cu, **last_chain;
22195
22196 per_cu = dwarf2_per_objfile->read_in_chain;
22197 last_chain = &dwarf2_per_objfile->read_in_chain;
22198 while (per_cu != NULL)
22199 {
22200 struct dwarf2_per_cu_data *next_cu;
22201
22202 next_cu = per_cu->cu->read_in_chain;
22203
22204 if (per_cu == target_per_cu)
22205 {
22206 free_heap_comp_unit (per_cu->cu);
22207 per_cu->cu = NULL;
22208 *last_chain = next_cu;
22209 break;
22210 }
22211 else
22212 last_chain = &per_cu->cu->read_in_chain;
22213
22214 per_cu = next_cu;
22215 }
22216 }
22217
22218 /* Release all extra memory associated with OBJFILE. */
22219
22220 void
22221 dwarf2_free_objfile (struct objfile *objfile)
22222 {
22223 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22224
22225 if (dwarf2_per_objfile == NULL)
22226 return;
22227
22228 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22229 free_cached_comp_units (NULL);
22230
22231 if (dwarf2_per_objfile->quick_file_names_table)
22232 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22233
22234 if (dwarf2_per_objfile->line_header_hash)
22235 htab_delete (dwarf2_per_objfile->line_header_hash);
22236
22237 /* Everything else should be on the objfile obstack. */
22238 }
22239
22240 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22241 We store these in a hash table separate from the DIEs, and preserve them
22242 when the DIEs are flushed out of cache.
22243
22244 The CU "per_cu" pointer is needed because offset alone is not enough to
22245 uniquely identify the type. A file may have multiple .debug_types sections,
22246 or the type may come from a DWO file. Furthermore, while it's more logical
22247 to use per_cu->section+offset, with Fission the section with the data is in
22248 the DWO file but we don't know that section at the point we need it.
22249 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22250 because we can enter the lookup routine, get_die_type_at_offset, from
22251 outside this file, and thus won't necessarily have PER_CU->cu.
22252 Fortunately, PER_CU is stable for the life of the objfile. */
22253
22254 struct dwarf2_per_cu_offset_and_type
22255 {
22256 const struct dwarf2_per_cu_data *per_cu;
22257 sect_offset offset;
22258 struct type *type;
22259 };
22260
22261 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22262
22263 static hashval_t
22264 per_cu_offset_and_type_hash (const void *item)
22265 {
22266 const struct dwarf2_per_cu_offset_and_type *ofs = item;
22267
22268 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22269 }
22270
22271 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22272
22273 static int
22274 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22275 {
22276 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22277 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
22278
22279 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22280 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22281 }
22282
22283 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22284 table if necessary. For convenience, return TYPE.
22285
22286 The DIEs reading must have careful ordering to:
22287 * Not cause infite loops trying to read in DIEs as a prerequisite for
22288 reading current DIE.
22289 * Not trying to dereference contents of still incompletely read in types
22290 while reading in other DIEs.
22291 * Enable referencing still incompletely read in types just by a pointer to
22292 the type without accessing its fields.
22293
22294 Therefore caller should follow these rules:
22295 * Try to fetch any prerequisite types we may need to build this DIE type
22296 before building the type and calling set_die_type.
22297 * After building type call set_die_type for current DIE as soon as
22298 possible before fetching more types to complete the current type.
22299 * Make the type as complete as possible before fetching more types. */
22300
22301 static struct type *
22302 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22303 {
22304 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22305 struct objfile *objfile = cu->objfile;
22306 struct attribute *attr;
22307 struct dynamic_prop prop;
22308
22309 /* For Ada types, make sure that the gnat-specific data is always
22310 initialized (if not already set). There are a few types where
22311 we should not be doing so, because the type-specific area is
22312 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22313 where the type-specific area is used to store the floatformat).
22314 But this is not a problem, because the gnat-specific information
22315 is actually not needed for these types. */
22316 if (need_gnat_info (cu)
22317 && TYPE_CODE (type) != TYPE_CODE_FUNC
22318 && TYPE_CODE (type) != TYPE_CODE_FLT
22319 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22320 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22321 && TYPE_CODE (type) != TYPE_CODE_METHOD
22322 && !HAVE_GNAT_AUX_INFO (type))
22323 INIT_GNAT_SPECIFIC (type);
22324
22325 /* Read DW_AT_data_location and set in type. */
22326 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22327 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22328 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22329
22330 if (dwarf2_per_objfile->die_type_hash == NULL)
22331 {
22332 dwarf2_per_objfile->die_type_hash =
22333 htab_create_alloc_ex (127,
22334 per_cu_offset_and_type_hash,
22335 per_cu_offset_and_type_eq,
22336 NULL,
22337 &objfile->objfile_obstack,
22338 hashtab_obstack_allocate,
22339 dummy_obstack_deallocate);
22340 }
22341
22342 ofs.per_cu = cu->per_cu;
22343 ofs.offset = die->offset;
22344 ofs.type = type;
22345 slot = (struct dwarf2_per_cu_offset_and_type **)
22346 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22347 if (*slot)
22348 complaint (&symfile_complaints,
22349 _("A problem internal to GDB: DIE 0x%x has type already set"),
22350 die->offset.sect_off);
22351 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
22352 **slot = ofs;
22353 return type;
22354 }
22355
22356 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22357 or return NULL if the die does not have a saved type. */
22358
22359 static struct type *
22360 get_die_type_at_offset (sect_offset offset,
22361 struct dwarf2_per_cu_data *per_cu)
22362 {
22363 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22364
22365 if (dwarf2_per_objfile->die_type_hash == NULL)
22366 return NULL;
22367
22368 ofs.per_cu = per_cu;
22369 ofs.offset = offset;
22370 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
22371 if (slot)
22372 return slot->type;
22373 else
22374 return NULL;
22375 }
22376
22377 /* Look up the type for DIE in CU in die_type_hash,
22378 or return NULL if DIE does not have a saved type. */
22379
22380 static struct type *
22381 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22382 {
22383 return get_die_type_at_offset (die->offset, cu->per_cu);
22384 }
22385
22386 /* Add a dependence relationship from CU to REF_PER_CU. */
22387
22388 static void
22389 dwarf2_add_dependence (struct dwarf2_cu *cu,
22390 struct dwarf2_per_cu_data *ref_per_cu)
22391 {
22392 void **slot;
22393
22394 if (cu->dependencies == NULL)
22395 cu->dependencies
22396 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22397 NULL, &cu->comp_unit_obstack,
22398 hashtab_obstack_allocate,
22399 dummy_obstack_deallocate);
22400
22401 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22402 if (*slot == NULL)
22403 *slot = ref_per_cu;
22404 }
22405
22406 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22407 Set the mark field in every compilation unit in the
22408 cache that we must keep because we are keeping CU. */
22409
22410 static int
22411 dwarf2_mark_helper (void **slot, void *data)
22412 {
22413 struct dwarf2_per_cu_data *per_cu;
22414
22415 per_cu = (struct dwarf2_per_cu_data *) *slot;
22416
22417 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22418 reading of the chain. As such dependencies remain valid it is not much
22419 useful to track and undo them during QUIT cleanups. */
22420 if (per_cu->cu == NULL)
22421 return 1;
22422
22423 if (per_cu->cu->mark)
22424 return 1;
22425 per_cu->cu->mark = 1;
22426
22427 if (per_cu->cu->dependencies != NULL)
22428 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22429
22430 return 1;
22431 }
22432
22433 /* Set the mark field in CU and in every other compilation unit in the
22434 cache that we must keep because we are keeping CU. */
22435
22436 static void
22437 dwarf2_mark (struct dwarf2_cu *cu)
22438 {
22439 if (cu->mark)
22440 return;
22441 cu->mark = 1;
22442 if (cu->dependencies != NULL)
22443 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22444 }
22445
22446 static void
22447 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22448 {
22449 while (per_cu)
22450 {
22451 per_cu->cu->mark = 0;
22452 per_cu = per_cu->cu->read_in_chain;
22453 }
22454 }
22455
22456 /* Trivial hash function for partial_die_info: the hash value of a DIE
22457 is its offset in .debug_info for this objfile. */
22458
22459 static hashval_t
22460 partial_die_hash (const void *item)
22461 {
22462 const struct partial_die_info *part_die = item;
22463
22464 return part_die->offset.sect_off;
22465 }
22466
22467 /* Trivial comparison function for partial_die_info structures: two DIEs
22468 are equal if they have the same offset. */
22469
22470 static int
22471 partial_die_eq (const void *item_lhs, const void *item_rhs)
22472 {
22473 const struct partial_die_info *part_die_lhs = item_lhs;
22474 const struct partial_die_info *part_die_rhs = item_rhs;
22475
22476 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22477 }
22478
22479 static struct cmd_list_element *set_dwarf_cmdlist;
22480 static struct cmd_list_element *show_dwarf_cmdlist;
22481
22482 static void
22483 set_dwarf_cmd (char *args, int from_tty)
22484 {
22485 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22486 gdb_stdout);
22487 }
22488
22489 static void
22490 show_dwarf_cmd (char *args, int from_tty)
22491 {
22492 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22493 }
22494
22495 /* Free data associated with OBJFILE, if necessary. */
22496
22497 static void
22498 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22499 {
22500 struct dwarf2_per_objfile *data = d;
22501 int ix;
22502
22503 /* Make sure we don't accidentally use dwarf2_per_objfile while
22504 cleaning up. */
22505 dwarf2_per_objfile = NULL;
22506
22507 for (ix = 0; ix < data->n_comp_units; ++ix)
22508 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22509
22510 for (ix = 0; ix < data->n_type_units; ++ix)
22511 VEC_free (dwarf2_per_cu_ptr,
22512 data->all_type_units[ix]->per_cu.imported_symtabs);
22513 xfree (data->all_type_units);
22514
22515 VEC_free (dwarf2_section_info_def, data->types);
22516
22517 if (data->dwo_files)
22518 free_dwo_files (data->dwo_files, objfile);
22519 if (data->dwp_file)
22520 gdb_bfd_unref (data->dwp_file->dbfd);
22521
22522 if (data->dwz_file && data->dwz_file->dwz_bfd)
22523 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22524 }
22525
22526 \f
22527 /* The "save gdb-index" command. */
22528
22529 /* The contents of the hash table we create when building the string
22530 table. */
22531 struct strtab_entry
22532 {
22533 offset_type offset;
22534 const char *str;
22535 };
22536
22537 /* Hash function for a strtab_entry.
22538
22539 Function is used only during write_hash_table so no index format backward
22540 compatibility is needed. */
22541
22542 static hashval_t
22543 hash_strtab_entry (const void *e)
22544 {
22545 const struct strtab_entry *entry = e;
22546 return mapped_index_string_hash (INT_MAX, entry->str);
22547 }
22548
22549 /* Equality function for a strtab_entry. */
22550
22551 static int
22552 eq_strtab_entry (const void *a, const void *b)
22553 {
22554 const struct strtab_entry *ea = a;
22555 const struct strtab_entry *eb = b;
22556 return !strcmp (ea->str, eb->str);
22557 }
22558
22559 /* Create a strtab_entry hash table. */
22560
22561 static htab_t
22562 create_strtab (void)
22563 {
22564 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22565 xfree, xcalloc, xfree);
22566 }
22567
22568 /* Add a string to the constant pool. Return the string's offset in
22569 host order. */
22570
22571 static offset_type
22572 add_string (htab_t table, struct obstack *cpool, const char *str)
22573 {
22574 void **slot;
22575 struct strtab_entry entry;
22576 struct strtab_entry *result;
22577
22578 entry.str = str;
22579 slot = htab_find_slot (table, &entry, INSERT);
22580 if (*slot)
22581 result = *slot;
22582 else
22583 {
22584 result = XNEW (struct strtab_entry);
22585 result->offset = obstack_object_size (cpool);
22586 result->str = str;
22587 obstack_grow_str0 (cpool, str);
22588 *slot = result;
22589 }
22590 return result->offset;
22591 }
22592
22593 /* An entry in the symbol table. */
22594 struct symtab_index_entry
22595 {
22596 /* The name of the symbol. */
22597 const char *name;
22598 /* The offset of the name in the constant pool. */
22599 offset_type index_offset;
22600 /* A sorted vector of the indices of all the CUs that hold an object
22601 of this name. */
22602 VEC (offset_type) *cu_indices;
22603 };
22604
22605 /* The symbol table. This is a power-of-2-sized hash table. */
22606 struct mapped_symtab
22607 {
22608 offset_type n_elements;
22609 offset_type size;
22610 struct symtab_index_entry **data;
22611 };
22612
22613 /* Hash function for a symtab_index_entry. */
22614
22615 static hashval_t
22616 hash_symtab_entry (const void *e)
22617 {
22618 const struct symtab_index_entry *entry = e;
22619 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22620 sizeof (offset_type) * VEC_length (offset_type,
22621 entry->cu_indices),
22622 0);
22623 }
22624
22625 /* Equality function for a symtab_index_entry. */
22626
22627 static int
22628 eq_symtab_entry (const void *a, const void *b)
22629 {
22630 const struct symtab_index_entry *ea = a;
22631 const struct symtab_index_entry *eb = b;
22632 int len = VEC_length (offset_type, ea->cu_indices);
22633 if (len != VEC_length (offset_type, eb->cu_indices))
22634 return 0;
22635 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22636 VEC_address (offset_type, eb->cu_indices),
22637 sizeof (offset_type) * len);
22638 }
22639
22640 /* Destroy a symtab_index_entry. */
22641
22642 static void
22643 delete_symtab_entry (void *p)
22644 {
22645 struct symtab_index_entry *entry = p;
22646 VEC_free (offset_type, entry->cu_indices);
22647 xfree (entry);
22648 }
22649
22650 /* Create a hash table holding symtab_index_entry objects. */
22651
22652 static htab_t
22653 create_symbol_hash_table (void)
22654 {
22655 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22656 delete_symtab_entry, xcalloc, xfree);
22657 }
22658
22659 /* Create a new mapped symtab object. */
22660
22661 static struct mapped_symtab *
22662 create_mapped_symtab (void)
22663 {
22664 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22665 symtab->n_elements = 0;
22666 symtab->size = 1024;
22667 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22668 return symtab;
22669 }
22670
22671 /* Destroy a mapped_symtab. */
22672
22673 static void
22674 cleanup_mapped_symtab (void *p)
22675 {
22676 struct mapped_symtab *symtab = p;
22677 /* The contents of the array are freed when the other hash table is
22678 destroyed. */
22679 xfree (symtab->data);
22680 xfree (symtab);
22681 }
22682
22683 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22684 the slot.
22685
22686 Function is used only during write_hash_table so no index format backward
22687 compatibility is needed. */
22688
22689 static struct symtab_index_entry **
22690 find_slot (struct mapped_symtab *symtab, const char *name)
22691 {
22692 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22693
22694 index = hash & (symtab->size - 1);
22695 step = ((hash * 17) & (symtab->size - 1)) | 1;
22696
22697 for (;;)
22698 {
22699 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22700 return &symtab->data[index];
22701 index = (index + step) & (symtab->size - 1);
22702 }
22703 }
22704
22705 /* Expand SYMTAB's hash table. */
22706
22707 static void
22708 hash_expand (struct mapped_symtab *symtab)
22709 {
22710 offset_type old_size = symtab->size;
22711 offset_type i;
22712 struct symtab_index_entry **old_entries = symtab->data;
22713
22714 symtab->size *= 2;
22715 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22716
22717 for (i = 0; i < old_size; ++i)
22718 {
22719 if (old_entries[i])
22720 {
22721 struct symtab_index_entry **slot = find_slot (symtab,
22722 old_entries[i]->name);
22723 *slot = old_entries[i];
22724 }
22725 }
22726
22727 xfree (old_entries);
22728 }
22729
22730 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22731 CU_INDEX is the index of the CU in which the symbol appears.
22732 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22733
22734 static void
22735 add_index_entry (struct mapped_symtab *symtab, const char *name,
22736 int is_static, gdb_index_symbol_kind kind,
22737 offset_type cu_index)
22738 {
22739 struct symtab_index_entry **slot;
22740 offset_type cu_index_and_attrs;
22741
22742 ++symtab->n_elements;
22743 if (4 * symtab->n_elements / 3 >= symtab->size)
22744 hash_expand (symtab);
22745
22746 slot = find_slot (symtab, name);
22747 if (!*slot)
22748 {
22749 *slot = XNEW (struct symtab_index_entry);
22750 (*slot)->name = name;
22751 /* index_offset is set later. */
22752 (*slot)->cu_indices = NULL;
22753 }
22754
22755 cu_index_and_attrs = 0;
22756 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22757 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22758 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22759
22760 /* We don't want to record an index value twice as we want to avoid the
22761 duplication.
22762 We process all global symbols and then all static symbols
22763 (which would allow us to avoid the duplication by only having to check
22764 the last entry pushed), but a symbol could have multiple kinds in one CU.
22765 To keep things simple we don't worry about the duplication here and
22766 sort and uniqufy the list after we've processed all symbols. */
22767 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22768 }
22769
22770 /* qsort helper routine for uniquify_cu_indices. */
22771
22772 static int
22773 offset_type_compare (const void *ap, const void *bp)
22774 {
22775 offset_type a = *(offset_type *) ap;
22776 offset_type b = *(offset_type *) bp;
22777
22778 return (a > b) - (b > a);
22779 }
22780
22781 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22782
22783 static void
22784 uniquify_cu_indices (struct mapped_symtab *symtab)
22785 {
22786 int i;
22787
22788 for (i = 0; i < symtab->size; ++i)
22789 {
22790 struct symtab_index_entry *entry = symtab->data[i];
22791
22792 if (entry
22793 && entry->cu_indices != NULL)
22794 {
22795 unsigned int next_to_insert, next_to_check;
22796 offset_type last_value;
22797
22798 qsort (VEC_address (offset_type, entry->cu_indices),
22799 VEC_length (offset_type, entry->cu_indices),
22800 sizeof (offset_type), offset_type_compare);
22801
22802 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22803 next_to_insert = 1;
22804 for (next_to_check = 1;
22805 next_to_check < VEC_length (offset_type, entry->cu_indices);
22806 ++next_to_check)
22807 {
22808 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22809 != last_value)
22810 {
22811 last_value = VEC_index (offset_type, entry->cu_indices,
22812 next_to_check);
22813 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22814 last_value);
22815 ++next_to_insert;
22816 }
22817 }
22818 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22819 }
22820 }
22821 }
22822
22823 /* Add a vector of indices to the constant pool. */
22824
22825 static offset_type
22826 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22827 struct symtab_index_entry *entry)
22828 {
22829 void **slot;
22830
22831 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22832 if (!*slot)
22833 {
22834 offset_type len = VEC_length (offset_type, entry->cu_indices);
22835 offset_type val = MAYBE_SWAP (len);
22836 offset_type iter;
22837 int i;
22838
22839 *slot = entry;
22840 entry->index_offset = obstack_object_size (cpool);
22841
22842 obstack_grow (cpool, &val, sizeof (val));
22843 for (i = 0;
22844 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22845 ++i)
22846 {
22847 val = MAYBE_SWAP (iter);
22848 obstack_grow (cpool, &val, sizeof (val));
22849 }
22850 }
22851 else
22852 {
22853 struct symtab_index_entry *old_entry = *slot;
22854 entry->index_offset = old_entry->index_offset;
22855 entry = old_entry;
22856 }
22857 return entry->index_offset;
22858 }
22859
22860 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22861 constant pool entries going into the obstack CPOOL. */
22862
22863 static void
22864 write_hash_table (struct mapped_symtab *symtab,
22865 struct obstack *output, struct obstack *cpool)
22866 {
22867 offset_type i;
22868 htab_t symbol_hash_table;
22869 htab_t str_table;
22870
22871 symbol_hash_table = create_symbol_hash_table ();
22872 str_table = create_strtab ();
22873
22874 /* We add all the index vectors to the constant pool first, to
22875 ensure alignment is ok. */
22876 for (i = 0; i < symtab->size; ++i)
22877 {
22878 if (symtab->data[i])
22879 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22880 }
22881
22882 /* Now write out the hash table. */
22883 for (i = 0; i < symtab->size; ++i)
22884 {
22885 offset_type str_off, vec_off;
22886
22887 if (symtab->data[i])
22888 {
22889 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22890 vec_off = symtab->data[i]->index_offset;
22891 }
22892 else
22893 {
22894 /* While 0 is a valid constant pool index, it is not valid
22895 to have 0 for both offsets. */
22896 str_off = 0;
22897 vec_off = 0;
22898 }
22899
22900 str_off = MAYBE_SWAP (str_off);
22901 vec_off = MAYBE_SWAP (vec_off);
22902
22903 obstack_grow (output, &str_off, sizeof (str_off));
22904 obstack_grow (output, &vec_off, sizeof (vec_off));
22905 }
22906
22907 htab_delete (str_table);
22908 htab_delete (symbol_hash_table);
22909 }
22910
22911 /* Struct to map psymtab to CU index in the index file. */
22912 struct psymtab_cu_index_map
22913 {
22914 struct partial_symtab *psymtab;
22915 unsigned int cu_index;
22916 };
22917
22918 static hashval_t
22919 hash_psymtab_cu_index (const void *item)
22920 {
22921 const struct psymtab_cu_index_map *map = item;
22922
22923 return htab_hash_pointer (map->psymtab);
22924 }
22925
22926 static int
22927 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22928 {
22929 const struct psymtab_cu_index_map *lhs = item_lhs;
22930 const struct psymtab_cu_index_map *rhs = item_rhs;
22931
22932 return lhs->psymtab == rhs->psymtab;
22933 }
22934
22935 /* Helper struct for building the address table. */
22936 struct addrmap_index_data
22937 {
22938 struct objfile *objfile;
22939 struct obstack *addr_obstack;
22940 htab_t cu_index_htab;
22941
22942 /* Non-zero if the previous_* fields are valid.
22943 We can't write an entry until we see the next entry (since it is only then
22944 that we know the end of the entry). */
22945 int previous_valid;
22946 /* Index of the CU in the table of all CUs in the index file. */
22947 unsigned int previous_cu_index;
22948 /* Start address of the CU. */
22949 CORE_ADDR previous_cu_start;
22950 };
22951
22952 /* Write an address entry to OBSTACK. */
22953
22954 static void
22955 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22956 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22957 {
22958 offset_type cu_index_to_write;
22959 gdb_byte addr[8];
22960 CORE_ADDR baseaddr;
22961
22962 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22963
22964 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22965 obstack_grow (obstack, addr, 8);
22966 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22967 obstack_grow (obstack, addr, 8);
22968 cu_index_to_write = MAYBE_SWAP (cu_index);
22969 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22970 }
22971
22972 /* Worker function for traversing an addrmap to build the address table. */
22973
22974 static int
22975 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22976 {
22977 struct addrmap_index_data *data = datap;
22978 struct partial_symtab *pst = obj;
22979
22980 if (data->previous_valid)
22981 add_address_entry (data->objfile, data->addr_obstack,
22982 data->previous_cu_start, start_addr,
22983 data->previous_cu_index);
22984
22985 data->previous_cu_start = start_addr;
22986 if (pst != NULL)
22987 {
22988 struct psymtab_cu_index_map find_map, *map;
22989 find_map.psymtab = pst;
22990 map = htab_find (data->cu_index_htab, &find_map);
22991 gdb_assert (map != NULL);
22992 data->previous_cu_index = map->cu_index;
22993 data->previous_valid = 1;
22994 }
22995 else
22996 data->previous_valid = 0;
22997
22998 return 0;
22999 }
23000
23001 /* Write OBJFILE's address map to OBSTACK.
23002 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23003 in the index file. */
23004
23005 static void
23006 write_address_map (struct objfile *objfile, struct obstack *obstack,
23007 htab_t cu_index_htab)
23008 {
23009 struct addrmap_index_data addrmap_index_data;
23010
23011 /* When writing the address table, we have to cope with the fact that
23012 the addrmap iterator only provides the start of a region; we have to
23013 wait until the next invocation to get the start of the next region. */
23014
23015 addrmap_index_data.objfile = objfile;
23016 addrmap_index_data.addr_obstack = obstack;
23017 addrmap_index_data.cu_index_htab = cu_index_htab;
23018 addrmap_index_data.previous_valid = 0;
23019
23020 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23021 &addrmap_index_data);
23022
23023 /* It's highly unlikely the last entry (end address = 0xff...ff)
23024 is valid, but we should still handle it.
23025 The end address is recorded as the start of the next region, but that
23026 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23027 anyway. */
23028 if (addrmap_index_data.previous_valid)
23029 add_address_entry (objfile, obstack,
23030 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23031 addrmap_index_data.previous_cu_index);
23032 }
23033
23034 /* Return the symbol kind of PSYM. */
23035
23036 static gdb_index_symbol_kind
23037 symbol_kind (struct partial_symbol *psym)
23038 {
23039 domain_enum domain = PSYMBOL_DOMAIN (psym);
23040 enum address_class aclass = PSYMBOL_CLASS (psym);
23041
23042 switch (domain)
23043 {
23044 case VAR_DOMAIN:
23045 switch (aclass)
23046 {
23047 case LOC_BLOCK:
23048 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23049 case LOC_TYPEDEF:
23050 return GDB_INDEX_SYMBOL_KIND_TYPE;
23051 case LOC_COMPUTED:
23052 case LOC_CONST_BYTES:
23053 case LOC_OPTIMIZED_OUT:
23054 case LOC_STATIC:
23055 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23056 case LOC_CONST:
23057 /* Note: It's currently impossible to recognize psyms as enum values
23058 short of reading the type info. For now punt. */
23059 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23060 default:
23061 /* There are other LOC_FOO values that one might want to classify
23062 as variables, but dwarf2read.c doesn't currently use them. */
23063 return GDB_INDEX_SYMBOL_KIND_OTHER;
23064 }
23065 case STRUCT_DOMAIN:
23066 return GDB_INDEX_SYMBOL_KIND_TYPE;
23067 default:
23068 return GDB_INDEX_SYMBOL_KIND_OTHER;
23069 }
23070 }
23071
23072 /* Add a list of partial symbols to SYMTAB. */
23073
23074 static void
23075 write_psymbols (struct mapped_symtab *symtab,
23076 htab_t psyms_seen,
23077 struct partial_symbol **psymp,
23078 int count,
23079 offset_type cu_index,
23080 int is_static)
23081 {
23082 for (; count-- > 0; ++psymp)
23083 {
23084 struct partial_symbol *psym = *psymp;
23085 void **slot;
23086
23087 if (SYMBOL_LANGUAGE (psym) == language_ada)
23088 error (_("Ada is not currently supported by the index"));
23089
23090 /* Only add a given psymbol once. */
23091 slot = htab_find_slot (psyms_seen, psym, INSERT);
23092 if (!*slot)
23093 {
23094 gdb_index_symbol_kind kind = symbol_kind (psym);
23095
23096 *slot = psym;
23097 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23098 is_static, kind, cu_index);
23099 }
23100 }
23101 }
23102
23103 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23104 exception if there is an error. */
23105
23106 static void
23107 write_obstack (FILE *file, struct obstack *obstack)
23108 {
23109 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23110 file)
23111 != obstack_object_size (obstack))
23112 error (_("couldn't data write to file"));
23113 }
23114
23115 /* Unlink a file if the argument is not NULL. */
23116
23117 static void
23118 unlink_if_set (void *p)
23119 {
23120 char **filename = p;
23121 if (*filename)
23122 unlink (*filename);
23123 }
23124
23125 /* A helper struct used when iterating over debug_types. */
23126 struct signatured_type_index_data
23127 {
23128 struct objfile *objfile;
23129 struct mapped_symtab *symtab;
23130 struct obstack *types_list;
23131 htab_t psyms_seen;
23132 int cu_index;
23133 };
23134
23135 /* A helper function that writes a single signatured_type to an
23136 obstack. */
23137
23138 static int
23139 write_one_signatured_type (void **slot, void *d)
23140 {
23141 struct signatured_type_index_data *info = d;
23142 struct signatured_type *entry = (struct signatured_type *) *slot;
23143 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23144 gdb_byte val[8];
23145
23146 write_psymbols (info->symtab,
23147 info->psyms_seen,
23148 info->objfile->global_psymbols.list
23149 + psymtab->globals_offset,
23150 psymtab->n_global_syms, info->cu_index,
23151 0);
23152 write_psymbols (info->symtab,
23153 info->psyms_seen,
23154 info->objfile->static_psymbols.list
23155 + psymtab->statics_offset,
23156 psymtab->n_static_syms, info->cu_index,
23157 1);
23158
23159 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23160 entry->per_cu.offset.sect_off);
23161 obstack_grow (info->types_list, val, 8);
23162 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23163 entry->type_offset_in_tu.cu_off);
23164 obstack_grow (info->types_list, val, 8);
23165 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23166 obstack_grow (info->types_list, val, 8);
23167
23168 ++info->cu_index;
23169
23170 return 1;
23171 }
23172
23173 /* Recurse into all "included" dependencies and write their symbols as
23174 if they appeared in this psymtab. */
23175
23176 static void
23177 recursively_write_psymbols (struct objfile *objfile,
23178 struct partial_symtab *psymtab,
23179 struct mapped_symtab *symtab,
23180 htab_t psyms_seen,
23181 offset_type cu_index)
23182 {
23183 int i;
23184
23185 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23186 if (psymtab->dependencies[i]->user != NULL)
23187 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23188 symtab, psyms_seen, cu_index);
23189
23190 write_psymbols (symtab,
23191 psyms_seen,
23192 objfile->global_psymbols.list + psymtab->globals_offset,
23193 psymtab->n_global_syms, cu_index,
23194 0);
23195 write_psymbols (symtab,
23196 psyms_seen,
23197 objfile->static_psymbols.list + psymtab->statics_offset,
23198 psymtab->n_static_syms, cu_index,
23199 1);
23200 }
23201
23202 /* Create an index file for OBJFILE in the directory DIR. */
23203
23204 static void
23205 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23206 {
23207 struct cleanup *cleanup;
23208 char *filename, *cleanup_filename;
23209 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23210 struct obstack cu_list, types_cu_list;
23211 int i;
23212 FILE *out_file;
23213 struct mapped_symtab *symtab;
23214 offset_type val, size_of_contents, total_len;
23215 struct stat st;
23216 htab_t psyms_seen;
23217 htab_t cu_index_htab;
23218 struct psymtab_cu_index_map *psymtab_cu_index_map;
23219
23220 if (dwarf2_per_objfile->using_index)
23221 error (_("Cannot use an index to create the index"));
23222
23223 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23224 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23225
23226 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23227 return;
23228
23229 if (stat (objfile_name (objfile), &st) < 0)
23230 perror_with_name (objfile_name (objfile));
23231
23232 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23233 INDEX_SUFFIX, (char *) NULL);
23234 cleanup = make_cleanup (xfree, filename);
23235
23236 out_file = gdb_fopen_cloexec (filename, "wb");
23237 if (!out_file)
23238 error (_("Can't open `%s' for writing"), filename);
23239
23240 cleanup_filename = filename;
23241 make_cleanup (unlink_if_set, &cleanup_filename);
23242
23243 symtab = create_mapped_symtab ();
23244 make_cleanup (cleanup_mapped_symtab, symtab);
23245
23246 obstack_init (&addr_obstack);
23247 make_cleanup_obstack_free (&addr_obstack);
23248
23249 obstack_init (&cu_list);
23250 make_cleanup_obstack_free (&cu_list);
23251
23252 obstack_init (&types_cu_list);
23253 make_cleanup_obstack_free (&types_cu_list);
23254
23255 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23256 NULL, xcalloc, xfree);
23257 make_cleanup_htab_delete (psyms_seen);
23258
23259 /* While we're scanning CU's create a table that maps a psymtab pointer
23260 (which is what addrmap records) to its index (which is what is recorded
23261 in the index file). This will later be needed to write the address
23262 table. */
23263 cu_index_htab = htab_create_alloc (100,
23264 hash_psymtab_cu_index,
23265 eq_psymtab_cu_index,
23266 NULL, xcalloc, xfree);
23267 make_cleanup_htab_delete (cu_index_htab);
23268 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
23269 xmalloc (sizeof (struct psymtab_cu_index_map)
23270 * dwarf2_per_objfile->n_comp_units);
23271 make_cleanup (xfree, psymtab_cu_index_map);
23272
23273 /* The CU list is already sorted, so we don't need to do additional
23274 work here. Also, the debug_types entries do not appear in
23275 all_comp_units, but only in their own hash table. */
23276 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23277 {
23278 struct dwarf2_per_cu_data *per_cu
23279 = dwarf2_per_objfile->all_comp_units[i];
23280 struct partial_symtab *psymtab = per_cu->v.psymtab;
23281 gdb_byte val[8];
23282 struct psymtab_cu_index_map *map;
23283 void **slot;
23284
23285 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23286 It may be referenced from a local scope but in such case it does not
23287 need to be present in .gdb_index. */
23288 if (psymtab == NULL)
23289 continue;
23290
23291 if (psymtab->user == NULL)
23292 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23293
23294 map = &psymtab_cu_index_map[i];
23295 map->psymtab = psymtab;
23296 map->cu_index = i;
23297 slot = htab_find_slot (cu_index_htab, map, INSERT);
23298 gdb_assert (slot != NULL);
23299 gdb_assert (*slot == NULL);
23300 *slot = map;
23301
23302 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23303 per_cu->offset.sect_off);
23304 obstack_grow (&cu_list, val, 8);
23305 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23306 obstack_grow (&cu_list, val, 8);
23307 }
23308
23309 /* Dump the address map. */
23310 write_address_map (objfile, &addr_obstack, cu_index_htab);
23311
23312 /* Write out the .debug_type entries, if any. */
23313 if (dwarf2_per_objfile->signatured_types)
23314 {
23315 struct signatured_type_index_data sig_data;
23316
23317 sig_data.objfile = objfile;
23318 sig_data.symtab = symtab;
23319 sig_data.types_list = &types_cu_list;
23320 sig_data.psyms_seen = psyms_seen;
23321 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23322 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23323 write_one_signatured_type, &sig_data);
23324 }
23325
23326 /* Now that we've processed all symbols we can shrink their cu_indices
23327 lists. */
23328 uniquify_cu_indices (symtab);
23329
23330 obstack_init (&constant_pool);
23331 make_cleanup_obstack_free (&constant_pool);
23332 obstack_init (&symtab_obstack);
23333 make_cleanup_obstack_free (&symtab_obstack);
23334 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23335
23336 obstack_init (&contents);
23337 make_cleanup_obstack_free (&contents);
23338 size_of_contents = 6 * sizeof (offset_type);
23339 total_len = size_of_contents;
23340
23341 /* The version number. */
23342 val = MAYBE_SWAP (8);
23343 obstack_grow (&contents, &val, sizeof (val));
23344
23345 /* The offset of the CU list from the start of the file. */
23346 val = MAYBE_SWAP (total_len);
23347 obstack_grow (&contents, &val, sizeof (val));
23348 total_len += obstack_object_size (&cu_list);
23349
23350 /* The offset of the types CU list from the start of the file. */
23351 val = MAYBE_SWAP (total_len);
23352 obstack_grow (&contents, &val, sizeof (val));
23353 total_len += obstack_object_size (&types_cu_list);
23354
23355 /* The offset of the address table from the start of the file. */
23356 val = MAYBE_SWAP (total_len);
23357 obstack_grow (&contents, &val, sizeof (val));
23358 total_len += obstack_object_size (&addr_obstack);
23359
23360 /* The offset of the symbol table from the start of the file. */
23361 val = MAYBE_SWAP (total_len);
23362 obstack_grow (&contents, &val, sizeof (val));
23363 total_len += obstack_object_size (&symtab_obstack);
23364
23365 /* The offset of the constant pool from the start of the file. */
23366 val = MAYBE_SWAP (total_len);
23367 obstack_grow (&contents, &val, sizeof (val));
23368 total_len += obstack_object_size (&constant_pool);
23369
23370 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23371
23372 write_obstack (out_file, &contents);
23373 write_obstack (out_file, &cu_list);
23374 write_obstack (out_file, &types_cu_list);
23375 write_obstack (out_file, &addr_obstack);
23376 write_obstack (out_file, &symtab_obstack);
23377 write_obstack (out_file, &constant_pool);
23378
23379 fclose (out_file);
23380
23381 /* We want to keep the file, so we set cleanup_filename to NULL
23382 here. See unlink_if_set. */
23383 cleanup_filename = NULL;
23384
23385 do_cleanups (cleanup);
23386 }
23387
23388 /* Implementation of the `save gdb-index' command.
23389
23390 Note that the file format used by this command is documented in the
23391 GDB manual. Any changes here must be documented there. */
23392
23393 static void
23394 save_gdb_index_command (char *arg, int from_tty)
23395 {
23396 struct objfile *objfile;
23397
23398 if (!arg || !*arg)
23399 error (_("usage: save gdb-index DIRECTORY"));
23400
23401 ALL_OBJFILES (objfile)
23402 {
23403 struct stat st;
23404
23405 /* If the objfile does not correspond to an actual file, skip it. */
23406 if (stat (objfile_name (objfile), &st) < 0)
23407 continue;
23408
23409 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23410 if (dwarf2_per_objfile)
23411 {
23412
23413 TRY
23414 {
23415 write_psymtabs_to_index (objfile, arg);
23416 }
23417 CATCH (except, RETURN_MASK_ERROR)
23418 {
23419 exception_fprintf (gdb_stderr, except,
23420 _("Error while writing index for `%s': "),
23421 objfile_name (objfile));
23422 }
23423 END_CATCH
23424 }
23425 }
23426 }
23427
23428 \f
23429
23430 int dwarf_always_disassemble;
23431
23432 static void
23433 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23434 struct cmd_list_element *c, const char *value)
23435 {
23436 fprintf_filtered (file,
23437 _("Whether to always disassemble "
23438 "DWARF expressions is %s.\n"),
23439 value);
23440 }
23441
23442 static void
23443 show_check_physname (struct ui_file *file, int from_tty,
23444 struct cmd_list_element *c, const char *value)
23445 {
23446 fprintf_filtered (file,
23447 _("Whether to check \"physname\" is %s.\n"),
23448 value);
23449 }
23450
23451 void _initialize_dwarf2_read (void);
23452
23453 void
23454 _initialize_dwarf2_read (void)
23455 {
23456 struct cmd_list_element *c;
23457
23458 dwarf2_objfile_data_key
23459 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23460
23461 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23462 Set DWARF specific variables.\n\
23463 Configure DWARF variables such as the cache size"),
23464 &set_dwarf_cmdlist, "maintenance set dwarf ",
23465 0/*allow-unknown*/, &maintenance_set_cmdlist);
23466
23467 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23468 Show DWARF specific variables\n\
23469 Show DWARF variables such as the cache size"),
23470 &show_dwarf_cmdlist, "maintenance show dwarf ",
23471 0/*allow-unknown*/, &maintenance_show_cmdlist);
23472
23473 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23474 &dwarf_max_cache_age, _("\
23475 Set the upper bound on the age of cached DWARF compilation units."), _("\
23476 Show the upper bound on the age of cached DWARF compilation units."), _("\
23477 A higher limit means that cached compilation units will be stored\n\
23478 in memory longer, and more total memory will be used. Zero disables\n\
23479 caching, which can slow down startup."),
23480 NULL,
23481 show_dwarf_max_cache_age,
23482 &set_dwarf_cmdlist,
23483 &show_dwarf_cmdlist);
23484
23485 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23486 &dwarf_always_disassemble, _("\
23487 Set whether `info address' always disassembles DWARF expressions."), _("\
23488 Show whether `info address' always disassembles DWARF expressions."), _("\
23489 When enabled, DWARF expressions are always printed in an assembly-like\n\
23490 syntax. When disabled, expressions will be printed in a more\n\
23491 conversational style, when possible."),
23492 NULL,
23493 show_dwarf_always_disassemble,
23494 &set_dwarf_cmdlist,
23495 &show_dwarf_cmdlist);
23496
23497 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23498 Set debugging of the DWARF reader."), _("\
23499 Show debugging of the DWARF reader."), _("\
23500 When enabled (non-zero), debugging messages are printed during DWARF\n\
23501 reading and symtab expansion. A value of 1 (one) provides basic\n\
23502 information. A value greater than 1 provides more verbose information."),
23503 NULL,
23504 NULL,
23505 &setdebuglist, &showdebuglist);
23506
23507 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23508 Set debugging of the DWARF DIE reader."), _("\
23509 Show debugging of the DWARF DIE reader."), _("\
23510 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23511 The value is the maximum depth to print."),
23512 NULL,
23513 NULL,
23514 &setdebuglist, &showdebuglist);
23515
23516 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23517 Set debugging of the dwarf line reader."), _("\
23518 Show debugging of the dwarf line reader."), _("\
23519 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23520 A value of 1 (one) provides basic information.\n\
23521 A value greater than 1 provides more verbose information."),
23522 NULL,
23523 NULL,
23524 &setdebuglist, &showdebuglist);
23525
23526 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23527 Set cross-checking of \"physname\" code against demangler."), _("\
23528 Show cross-checking of \"physname\" code against demangler."), _("\
23529 When enabled, GDB's internal \"physname\" code is checked against\n\
23530 the demangler."),
23531 NULL, show_check_physname,
23532 &setdebuglist, &showdebuglist);
23533
23534 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23535 no_class, &use_deprecated_index_sections, _("\
23536 Set whether to use deprecated gdb_index sections."), _("\
23537 Show whether to use deprecated gdb_index sections."), _("\
23538 When enabled, deprecated .gdb_index sections are used anyway.\n\
23539 Normally they are ignored either because of a missing feature or\n\
23540 performance issue.\n\
23541 Warning: This option must be enabled before gdb reads the file."),
23542 NULL,
23543 NULL,
23544 &setlist, &showlist);
23545
23546 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23547 _("\
23548 Save a gdb-index file.\n\
23549 Usage: save gdb-index DIRECTORY"),
23550 &save_cmdlist);
23551 set_cmd_completer (c, filename_completer);
23552
23553 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23554 &dwarf2_locexpr_funcs);
23555 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23556 &dwarf2_loclist_funcs);
23557
23558 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23559 &dwarf2_block_frame_base_locexpr_funcs);
23560 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23561 &dwarf2_block_frame_base_loclist_funcs);
23562 }