* dwarf2read.c (dwarf2_get_dwz_file): Set 'dwz_file'.
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70
71 #include <fcntl.h>
72 #include "gdb_string.h"
73 #include "gdb_assert.h"
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When non-zero, print basic high level tracing messages.
80 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
81 static int dwarf2_read_debug = 0;
82
83 /* When non-zero, dump DIEs after they are read in. */
84 static unsigned int dwarf2_die_debug = 0;
85
86 /* When non-zero, cross-check physname against demangler. */
87 static int check_physname = 0;
88
89 /* When non-zero, do not reject deprecated .gdb_index sections. */
90 static int use_deprecated_index_sections = 0;
91
92 /* When set, the file that we're processing is known to have debugging
93 info for C++ namespaces. GCC 3.3.x did not produce this information,
94 but later versions do. */
95
96 static int processing_has_namespace_info;
97
98 static const struct objfile_data *dwarf2_objfile_data_key;
99
100 struct dwarf2_section_info
101 {
102 asection *asection;
103 gdb_byte *buffer;
104 bfd_size_type size;
105 /* True if we have tried to read this section. */
106 int readin;
107 };
108
109 typedef struct dwarf2_section_info dwarf2_section_info_def;
110 DEF_VEC_O (dwarf2_section_info_def);
111
112 /* All offsets in the index are of this type. It must be
113 architecture-independent. */
114 typedef uint32_t offset_type;
115
116 DEF_VEC_I (offset_type);
117
118 /* Ensure only legit values are used. */
119 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
120 do { \
121 gdb_assert ((unsigned int) (value) <= 1); \
122 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
123 } while (0)
124
125 /* Ensure only legit values are used. */
126 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
127 do { \
128 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
129 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
130 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
131 } while (0)
132
133 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
134 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
135 do { \
136 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
137 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
138 } while (0)
139
140 /* A description of the mapped index. The file format is described in
141 a comment by the code that writes the index. */
142 struct mapped_index
143 {
144 /* Index data format version. */
145 int version;
146
147 /* The total length of the buffer. */
148 off_t total_size;
149
150 /* A pointer to the address table data. */
151 const gdb_byte *address_table;
152
153 /* Size of the address table data in bytes. */
154 offset_type address_table_size;
155
156 /* The symbol table, implemented as a hash table. */
157 const offset_type *symbol_table;
158
159 /* Size in slots, each slot is 2 offset_types. */
160 offset_type symbol_table_slots;
161
162 /* A pointer to the constant pool. */
163 const char *constant_pool;
164 };
165
166 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
167 DEF_VEC_P (dwarf2_per_cu_ptr);
168
169 /* Collection of data recorded per objfile.
170 This hangs off of dwarf2_objfile_data_key. */
171
172 struct dwarf2_per_objfile
173 {
174 struct dwarf2_section_info info;
175 struct dwarf2_section_info abbrev;
176 struct dwarf2_section_info line;
177 struct dwarf2_section_info loc;
178 struct dwarf2_section_info macinfo;
179 struct dwarf2_section_info macro;
180 struct dwarf2_section_info str;
181 struct dwarf2_section_info ranges;
182 struct dwarf2_section_info addr;
183 struct dwarf2_section_info frame;
184 struct dwarf2_section_info eh_frame;
185 struct dwarf2_section_info gdb_index;
186
187 VEC (dwarf2_section_info_def) *types;
188
189 /* Back link. */
190 struct objfile *objfile;
191
192 /* Table of all the compilation units. This is used to locate
193 the target compilation unit of a particular reference. */
194 struct dwarf2_per_cu_data **all_comp_units;
195
196 /* The number of compilation units in ALL_COMP_UNITS. */
197 int n_comp_units;
198
199 /* The number of .debug_types-related CUs. */
200 int n_type_units;
201
202 /* The .debug_types-related CUs (TUs). */
203 struct signatured_type **all_type_units;
204
205 /* The number of entries in all_type_unit_groups. */
206 int n_type_unit_groups;
207
208 /* Table of type unit groups.
209 This exists to make it easy to iterate over all CUs and TU groups. */
210 struct type_unit_group **all_type_unit_groups;
211
212 /* Table of struct type_unit_group objects.
213 The hash key is the DW_AT_stmt_list value. */
214 htab_t type_unit_groups;
215
216 /* A table mapping .debug_types signatures to its signatured_type entry.
217 This is NULL if the .debug_types section hasn't been read in yet. */
218 htab_t signatured_types;
219
220 /* Type unit statistics, to see how well the scaling improvements
221 are doing. */
222 struct tu_stats
223 {
224 int nr_uniq_abbrev_tables;
225 int nr_symtabs;
226 int nr_symtab_sharers;
227 int nr_stmt_less_type_units;
228 } tu_stats;
229
230 /* A chain of compilation units that are currently read in, so that
231 they can be freed later. */
232 struct dwarf2_per_cu_data *read_in_chain;
233
234 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
235 This is NULL if the table hasn't been allocated yet. */
236 htab_t dwo_files;
237
238 /* Non-zero if we've check for whether there is a DWP file. */
239 int dwp_checked;
240
241 /* The DWP file if there is one, or NULL. */
242 struct dwp_file *dwp_file;
243
244 /* The shared '.dwz' file, if one exists. This is used when the
245 original data was compressed using 'dwz -m'. */
246 struct dwz_file *dwz_file;
247
248 /* A flag indicating wether this objfile has a section loaded at a
249 VMA of 0. */
250 int has_section_at_zero;
251
252 /* True if we are using the mapped index,
253 or we are faking it for OBJF_READNOW's sake. */
254 unsigned char using_index;
255
256 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
257 struct mapped_index *index_table;
258
259 /* When using index_table, this keeps track of all quick_file_names entries.
260 TUs typically share line table entries with a CU, so we maintain a
261 separate table of all line table entries to support the sharing.
262 Note that while there can be way more TUs than CUs, we've already
263 sorted all the TUs into "type unit groups", grouped by their
264 DW_AT_stmt_list value. Therefore the only sharing done here is with a
265 CU and its associated TU group if there is one. */
266 htab_t quick_file_names_table;
267
268 /* Set during partial symbol reading, to prevent queueing of full
269 symbols. */
270 int reading_partial_symbols;
271
272 /* Table mapping type DIEs to their struct type *.
273 This is NULL if not allocated yet.
274 The mapping is done via (CU/TU signature + DIE offset) -> type. */
275 htab_t die_type_hash;
276
277 /* The CUs we recently read. */
278 VEC (dwarf2_per_cu_ptr) *just_read_cus;
279 };
280
281 static struct dwarf2_per_objfile *dwarf2_per_objfile;
282
283 /* Default names of the debugging sections. */
284
285 /* Note that if the debugging section has been compressed, it might
286 have a name like .zdebug_info. */
287
288 static const struct dwarf2_debug_sections dwarf2_elf_names =
289 {
290 { ".debug_info", ".zdebug_info" },
291 { ".debug_abbrev", ".zdebug_abbrev" },
292 { ".debug_line", ".zdebug_line" },
293 { ".debug_loc", ".zdebug_loc" },
294 { ".debug_macinfo", ".zdebug_macinfo" },
295 { ".debug_macro", ".zdebug_macro" },
296 { ".debug_str", ".zdebug_str" },
297 { ".debug_ranges", ".zdebug_ranges" },
298 { ".debug_types", ".zdebug_types" },
299 { ".debug_addr", ".zdebug_addr" },
300 { ".debug_frame", ".zdebug_frame" },
301 { ".eh_frame", NULL },
302 { ".gdb_index", ".zgdb_index" },
303 23
304 };
305
306 /* List of DWO/DWP sections. */
307
308 static const struct dwop_section_names
309 {
310 struct dwarf2_section_names abbrev_dwo;
311 struct dwarf2_section_names info_dwo;
312 struct dwarf2_section_names line_dwo;
313 struct dwarf2_section_names loc_dwo;
314 struct dwarf2_section_names macinfo_dwo;
315 struct dwarf2_section_names macro_dwo;
316 struct dwarf2_section_names str_dwo;
317 struct dwarf2_section_names str_offsets_dwo;
318 struct dwarf2_section_names types_dwo;
319 struct dwarf2_section_names cu_index;
320 struct dwarf2_section_names tu_index;
321 }
322 dwop_section_names =
323 {
324 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
325 { ".debug_info.dwo", ".zdebug_info.dwo" },
326 { ".debug_line.dwo", ".zdebug_line.dwo" },
327 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
328 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
329 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
330 { ".debug_str.dwo", ".zdebug_str.dwo" },
331 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
332 { ".debug_types.dwo", ".zdebug_types.dwo" },
333 { ".debug_cu_index", ".zdebug_cu_index" },
334 { ".debug_tu_index", ".zdebug_tu_index" },
335 };
336
337 /* local data types */
338
339 /* The data in a compilation unit header, after target2host
340 translation, looks like this. */
341 struct comp_unit_head
342 {
343 unsigned int length;
344 short version;
345 unsigned char addr_size;
346 unsigned char signed_addr_p;
347 sect_offset abbrev_offset;
348
349 /* Size of file offsets; either 4 or 8. */
350 unsigned int offset_size;
351
352 /* Size of the length field; either 4 or 12. */
353 unsigned int initial_length_size;
354
355 /* Offset to the first byte of this compilation unit header in the
356 .debug_info section, for resolving relative reference dies. */
357 sect_offset offset;
358
359 /* Offset to first die in this cu from the start of the cu.
360 This will be the first byte following the compilation unit header. */
361 cu_offset first_die_offset;
362 };
363
364 /* Type used for delaying computation of method physnames.
365 See comments for compute_delayed_physnames. */
366 struct delayed_method_info
367 {
368 /* The type to which the method is attached, i.e., its parent class. */
369 struct type *type;
370
371 /* The index of the method in the type's function fieldlists. */
372 int fnfield_index;
373
374 /* The index of the method in the fieldlist. */
375 int index;
376
377 /* The name of the DIE. */
378 const char *name;
379
380 /* The DIE associated with this method. */
381 struct die_info *die;
382 };
383
384 typedef struct delayed_method_info delayed_method_info;
385 DEF_VEC_O (delayed_method_info);
386
387 /* Internal state when decoding a particular compilation unit. */
388 struct dwarf2_cu
389 {
390 /* The objfile containing this compilation unit. */
391 struct objfile *objfile;
392
393 /* The header of the compilation unit. */
394 struct comp_unit_head header;
395
396 /* Base address of this compilation unit. */
397 CORE_ADDR base_address;
398
399 /* Non-zero if base_address has been set. */
400 int base_known;
401
402 /* The language we are debugging. */
403 enum language language;
404 const struct language_defn *language_defn;
405
406 const char *producer;
407
408 /* The generic symbol table building routines have separate lists for
409 file scope symbols and all all other scopes (local scopes). So
410 we need to select the right one to pass to add_symbol_to_list().
411 We do it by keeping a pointer to the correct list in list_in_scope.
412
413 FIXME: The original dwarf code just treated the file scope as the
414 first local scope, and all other local scopes as nested local
415 scopes, and worked fine. Check to see if we really need to
416 distinguish these in buildsym.c. */
417 struct pending **list_in_scope;
418
419 /* The abbrev table for this CU.
420 Normally this points to the abbrev table in the objfile.
421 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
422 struct abbrev_table *abbrev_table;
423
424 /* Hash table holding all the loaded partial DIEs
425 with partial_die->offset.SECT_OFF as hash. */
426 htab_t partial_dies;
427
428 /* Storage for things with the same lifetime as this read-in compilation
429 unit, including partial DIEs. */
430 struct obstack comp_unit_obstack;
431
432 /* When multiple dwarf2_cu structures are living in memory, this field
433 chains them all together, so that they can be released efficiently.
434 We will probably also want a generation counter so that most-recently-used
435 compilation units are cached... */
436 struct dwarf2_per_cu_data *read_in_chain;
437
438 /* Backchain to our per_cu entry if the tree has been built. */
439 struct dwarf2_per_cu_data *per_cu;
440
441 /* How many compilation units ago was this CU last referenced? */
442 int last_used;
443
444 /* A hash table of DIE cu_offset for following references with
445 die_info->offset.sect_off as hash. */
446 htab_t die_hash;
447
448 /* Full DIEs if read in. */
449 struct die_info *dies;
450
451 /* A set of pointers to dwarf2_per_cu_data objects for compilation
452 units referenced by this one. Only set during full symbol processing;
453 partial symbol tables do not have dependencies. */
454 htab_t dependencies;
455
456 /* Header data from the line table, during full symbol processing. */
457 struct line_header *line_header;
458
459 /* A list of methods which need to have physnames computed
460 after all type information has been read. */
461 VEC (delayed_method_info) *method_list;
462
463 /* To be copied to symtab->call_site_htab. */
464 htab_t call_site_htab;
465
466 /* Non-NULL if this CU came from a DWO file.
467 There is an invariant here that is important to remember:
468 Except for attributes copied from the top level DIE in the "main"
469 (or "stub") file in preparation for reading the DWO file
470 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
471 Either there isn't a DWO file (in which case this is NULL and the point
472 is moot), or there is and either we're not going to read it (in which
473 case this is NULL) or there is and we are reading it (in which case this
474 is non-NULL). */
475 struct dwo_unit *dwo_unit;
476
477 /* The DW_AT_addr_base attribute if present, zero otherwise
478 (zero is a valid value though).
479 Note this value comes from the stub CU/TU's DIE. */
480 ULONGEST addr_base;
481
482 /* The DW_AT_ranges_base attribute if present, zero otherwise
483 (zero is a valid value though).
484 Note this value comes from the stub CU/TU's DIE.
485 Also note that the value is zero in the non-DWO case so this value can
486 be used without needing to know whether DWO files are in use or not.
487 N.B. This does not apply to DW_AT_ranges appearing in
488 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
489 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
490 DW_AT_ranges_base *would* have to be applied, and we'd have to care
491 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
492 ULONGEST ranges_base;
493
494 /* Mark used when releasing cached dies. */
495 unsigned int mark : 1;
496
497 /* This CU references .debug_loc. See the symtab->locations_valid field.
498 This test is imperfect as there may exist optimized debug code not using
499 any location list and still facing inlining issues if handled as
500 unoptimized code. For a future better test see GCC PR other/32998. */
501 unsigned int has_loclist : 1;
502
503 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
504 if all the producer_is_* fields are valid. This information is cached
505 because profiling CU expansion showed excessive time spent in
506 producer_is_gxx_lt_4_6. */
507 unsigned int checked_producer : 1;
508 unsigned int producer_is_gxx_lt_4_6 : 1;
509 unsigned int producer_is_gcc_lt_4_3 : 1;
510 unsigned int producer_is_icc : 1;
511 };
512
513 /* Persistent data held for a compilation unit, even when not
514 processing it. We put a pointer to this structure in the
515 read_symtab_private field of the psymtab. */
516
517 struct dwarf2_per_cu_data
518 {
519 /* The start offset and length of this compilation unit.
520 NOTE: Unlike comp_unit_head.length, this length includes
521 initial_length_size.
522 If the DIE refers to a DWO file, this is always of the original die,
523 not the DWO file. */
524 sect_offset offset;
525 unsigned int length;
526
527 /* Flag indicating this compilation unit will be read in before
528 any of the current compilation units are processed. */
529 unsigned int queued : 1;
530
531 /* This flag will be set when reading partial DIEs if we need to load
532 absolutely all DIEs for this compilation unit, instead of just the ones
533 we think are interesting. It gets set if we look for a DIE in the
534 hash table and don't find it. */
535 unsigned int load_all_dies : 1;
536
537 /* Non-zero if this CU is from .debug_types. */
538 unsigned int is_debug_types : 1;
539
540 /* Non-zero if this CU is from the .dwz file. */
541 unsigned int is_dwz : 1;
542
543 /* The section this CU/TU lives in.
544 If the DIE refers to a DWO file, this is always the original die,
545 not the DWO file. */
546 struct dwarf2_section_info *info_or_types_section;
547
548 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
549 of the CU cache it gets reset to NULL again. */
550 struct dwarf2_cu *cu;
551
552 /* The corresponding objfile.
553 Normally we can get the objfile from dwarf2_per_objfile.
554 However we can enter this file with just a "per_cu" handle. */
555 struct objfile *objfile;
556
557 /* When using partial symbol tables, the 'psymtab' field is active.
558 Otherwise the 'quick' field is active. */
559 union
560 {
561 /* The partial symbol table associated with this compilation unit,
562 or NULL for unread partial units. */
563 struct partial_symtab *psymtab;
564
565 /* Data needed by the "quick" functions. */
566 struct dwarf2_per_cu_quick_data *quick;
567 } v;
568
569 union
570 {
571 /* The CUs we import using DW_TAG_imported_unit. This is filled in
572 while reading psymtabs, used to compute the psymtab dependencies,
573 and then cleared. Then it is filled in again while reading full
574 symbols, and only deleted when the objfile is destroyed. */
575 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
576
577 /* Type units are grouped by their DW_AT_stmt_list entry so that they
578 can share them. If this is a TU, this points to the containing
579 symtab. */
580 struct type_unit_group *type_unit_group;
581 } s;
582 };
583
584 /* Entry in the signatured_types hash table. */
585
586 struct signatured_type
587 {
588 /* The "per_cu" object of this type.
589 N.B.: This is the first member so that it's easy to convert pointers
590 between them. */
591 struct dwarf2_per_cu_data per_cu;
592
593 /* The type's signature. */
594 ULONGEST signature;
595
596 /* Offset in the TU of the type's DIE, as read from the TU header.
597 If the definition lives in a DWO file, this value is unusable. */
598 cu_offset type_offset_in_tu;
599
600 /* Offset in the section of the type's DIE.
601 If the definition lives in a DWO file, this is the offset in the
602 .debug_types.dwo section.
603 The value is zero until the actual value is known.
604 Zero is otherwise not a valid section offset. */
605 sect_offset type_offset_in_section;
606 };
607
608 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
609 This includes type_unit_group and quick_file_names. */
610
611 struct stmt_list_hash
612 {
613 /* The DWO unit this table is from or NULL if there is none. */
614 struct dwo_unit *dwo_unit;
615
616 /* Offset in .debug_line or .debug_line.dwo. */
617 sect_offset line_offset;
618 };
619
620 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
621 an object of this type. */
622
623 struct type_unit_group
624 {
625 /* dwarf2read.c's main "handle" on the symtab.
626 To simplify things we create an artificial CU that "includes" all the
627 type units using this stmt_list so that the rest of the code still has
628 a "per_cu" handle on the symtab.
629 This PER_CU is recognized by having no section. */
630 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->info_or_types_section == NULL)
631 struct dwarf2_per_cu_data per_cu;
632
633 union
634 {
635 /* The TUs that share this DW_AT_stmt_list entry.
636 This is added to while parsing type units to build partial symtabs,
637 and is deleted afterwards and not used again. */
638 VEC (dwarf2_per_cu_ptr) *tus;
639
640 /* When reading the line table in "quick" functions, we need a real TU.
641 Any will do, we know they all share the same DW_AT_stmt_list entry.
642 For simplicity's sake, we pick the first one. */
643 struct dwarf2_per_cu_data *first_tu;
644 } t;
645
646 /* The primary symtab.
647 Type units in a group needn't all be defined in the same source file,
648 so we create an essentially anonymous symtab as the primary symtab. */
649 struct symtab *primary_symtab;
650
651 /* The data used to construct the hash key. */
652 struct stmt_list_hash hash;
653
654 /* The number of symtabs from the line header.
655 The value here must match line_header.num_file_names. */
656 unsigned int num_symtabs;
657
658 /* The symbol tables for this TU (obtained from the files listed in
659 DW_AT_stmt_list).
660 WARNING: The order of entries here must match the order of entries
661 in the line header. After the first TU using this type_unit_group, the
662 line header for the subsequent TUs is recreated from this. This is done
663 because we need to use the same symtabs for each TU using the same
664 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
665 there's no guarantee the line header doesn't have duplicate entries. */
666 struct symtab **symtabs;
667 };
668
669 /* These sections are what may appear in a DWO file. */
670
671 struct dwo_sections
672 {
673 struct dwarf2_section_info abbrev;
674 struct dwarf2_section_info line;
675 struct dwarf2_section_info loc;
676 struct dwarf2_section_info macinfo;
677 struct dwarf2_section_info macro;
678 struct dwarf2_section_info str;
679 struct dwarf2_section_info str_offsets;
680 /* In the case of a virtual DWO file, these two are unused. */
681 struct dwarf2_section_info info;
682 VEC (dwarf2_section_info_def) *types;
683 };
684
685 /* Common bits of DWO CUs/TUs. */
686
687 struct dwo_unit
688 {
689 /* Backlink to the containing struct dwo_file. */
690 struct dwo_file *dwo_file;
691
692 /* The "id" that distinguishes this CU/TU.
693 .debug_info calls this "dwo_id", .debug_types calls this "signature".
694 Since signatures came first, we stick with it for consistency. */
695 ULONGEST signature;
696
697 /* The section this CU/TU lives in, in the DWO file. */
698 struct dwarf2_section_info *info_or_types_section;
699
700 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
701 sect_offset offset;
702 unsigned int length;
703
704 /* For types, offset in the type's DIE of the type defined by this TU. */
705 cu_offset type_offset_in_tu;
706 };
707
708 /* Data for one DWO file.
709 This includes virtual DWO files that have been packaged into a
710 DWP file. */
711
712 struct dwo_file
713 {
714 /* The DW_AT_GNU_dwo_name attribute. This is the hash key.
715 For virtual DWO files the name is constructed from the section offsets
716 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
717 from related CU+TUs. */
718 const char *name;
719
720 /* The bfd, when the file is open. Otherwise this is NULL.
721 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
722 bfd *dbfd;
723
724 /* Section info for this file. */
725 struct dwo_sections sections;
726
727 /* Table of CUs in the file.
728 Each element is a struct dwo_unit. */
729 htab_t cus;
730
731 /* Table of TUs in the file.
732 Each element is a struct dwo_unit. */
733 htab_t tus;
734 };
735
736 /* These sections are what may appear in a DWP file. */
737
738 struct dwp_sections
739 {
740 struct dwarf2_section_info str;
741 struct dwarf2_section_info cu_index;
742 struct dwarf2_section_info tu_index;
743 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
744 by section number. We don't need to record them here. */
745 };
746
747 /* These sections are what may appear in a virtual DWO file. */
748
749 struct virtual_dwo_sections
750 {
751 struct dwarf2_section_info abbrev;
752 struct dwarf2_section_info line;
753 struct dwarf2_section_info loc;
754 struct dwarf2_section_info macinfo;
755 struct dwarf2_section_info macro;
756 struct dwarf2_section_info str_offsets;
757 /* Each DWP hash table entry records one CU or one TU.
758 That is recorded here, and copied to dwo_unit.info_or_types_section. */
759 struct dwarf2_section_info info_or_types;
760 };
761
762 /* Contents of DWP hash tables. */
763
764 struct dwp_hash_table
765 {
766 uint32_t nr_units, nr_slots;
767 const gdb_byte *hash_table, *unit_table, *section_pool;
768 };
769
770 /* Data for one DWP file. */
771
772 struct dwp_file
773 {
774 /* Name of the file. */
775 const char *name;
776
777 /* The bfd, when the file is open. Otherwise this is NULL. */
778 bfd *dbfd;
779
780 /* Section info for this file. */
781 struct dwp_sections sections;
782
783 /* Table of CUs in the file. */
784 const struct dwp_hash_table *cus;
785
786 /* Table of TUs in the file. */
787 const struct dwp_hash_table *tus;
788
789 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
790 htab_t loaded_cutus;
791
792 /* Table to map ELF section numbers to their sections. */
793 unsigned int num_sections;
794 asection **elf_sections;
795 };
796
797 /* This represents a '.dwz' file. */
798
799 struct dwz_file
800 {
801 /* A dwz file can only contain a few sections. */
802 struct dwarf2_section_info abbrev;
803 struct dwarf2_section_info info;
804 struct dwarf2_section_info str;
805 struct dwarf2_section_info line;
806 struct dwarf2_section_info macro;
807 struct dwarf2_section_info gdb_index;
808
809 /* The dwz's BFD. */
810 bfd *dwz_bfd;
811 };
812
813 /* Struct used to pass misc. parameters to read_die_and_children, et
814 al. which are used for both .debug_info and .debug_types dies.
815 All parameters here are unchanging for the life of the call. This
816 struct exists to abstract away the constant parameters of die reading. */
817
818 struct die_reader_specs
819 {
820 /* die_section->asection->owner. */
821 bfd* abfd;
822
823 /* The CU of the DIE we are parsing. */
824 struct dwarf2_cu *cu;
825
826 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
827 struct dwo_file *dwo_file;
828
829 /* The section the die comes from.
830 This is either .debug_info or .debug_types, or the .dwo variants. */
831 struct dwarf2_section_info *die_section;
832
833 /* die_section->buffer. */
834 gdb_byte *buffer;
835
836 /* The end of the buffer. */
837 const gdb_byte *buffer_end;
838 };
839
840 /* Type of function passed to init_cutu_and_read_dies, et.al. */
841 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
842 gdb_byte *info_ptr,
843 struct die_info *comp_unit_die,
844 int has_children,
845 void *data);
846
847 /* The line number information for a compilation unit (found in the
848 .debug_line section) begins with a "statement program header",
849 which contains the following information. */
850 struct line_header
851 {
852 unsigned int total_length;
853 unsigned short version;
854 unsigned int header_length;
855 unsigned char minimum_instruction_length;
856 unsigned char maximum_ops_per_instruction;
857 unsigned char default_is_stmt;
858 int line_base;
859 unsigned char line_range;
860 unsigned char opcode_base;
861
862 /* standard_opcode_lengths[i] is the number of operands for the
863 standard opcode whose value is i. This means that
864 standard_opcode_lengths[0] is unused, and the last meaningful
865 element is standard_opcode_lengths[opcode_base - 1]. */
866 unsigned char *standard_opcode_lengths;
867
868 /* The include_directories table. NOTE! These strings are not
869 allocated with xmalloc; instead, they are pointers into
870 debug_line_buffer. If you try to free them, `free' will get
871 indigestion. */
872 unsigned int num_include_dirs, include_dirs_size;
873 char **include_dirs;
874
875 /* The file_names table. NOTE! These strings are not allocated
876 with xmalloc; instead, they are pointers into debug_line_buffer.
877 Don't try to free them directly. */
878 unsigned int num_file_names, file_names_size;
879 struct file_entry
880 {
881 char *name;
882 unsigned int dir_index;
883 unsigned int mod_time;
884 unsigned int length;
885 int included_p; /* Non-zero if referenced by the Line Number Program. */
886 struct symtab *symtab; /* The associated symbol table, if any. */
887 } *file_names;
888
889 /* The start and end of the statement program following this
890 header. These point into dwarf2_per_objfile->line_buffer. */
891 gdb_byte *statement_program_start, *statement_program_end;
892 };
893
894 /* When we construct a partial symbol table entry we only
895 need this much information. */
896 struct partial_die_info
897 {
898 /* Offset of this DIE. */
899 sect_offset offset;
900
901 /* DWARF-2 tag for this DIE. */
902 ENUM_BITFIELD(dwarf_tag) tag : 16;
903
904 /* Assorted flags describing the data found in this DIE. */
905 unsigned int has_children : 1;
906 unsigned int is_external : 1;
907 unsigned int is_declaration : 1;
908 unsigned int has_type : 1;
909 unsigned int has_specification : 1;
910 unsigned int has_pc_info : 1;
911 unsigned int may_be_inlined : 1;
912
913 /* Flag set if the SCOPE field of this structure has been
914 computed. */
915 unsigned int scope_set : 1;
916
917 /* Flag set if the DIE has a byte_size attribute. */
918 unsigned int has_byte_size : 1;
919
920 /* Flag set if any of the DIE's children are template arguments. */
921 unsigned int has_template_arguments : 1;
922
923 /* Flag set if fixup_partial_die has been called on this die. */
924 unsigned int fixup_called : 1;
925
926 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
927 unsigned int is_dwz : 1;
928
929 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
930 unsigned int spec_is_dwz : 1;
931
932 /* The name of this DIE. Normally the value of DW_AT_name, but
933 sometimes a default name for unnamed DIEs. */
934 char *name;
935
936 /* The linkage name, if present. */
937 const char *linkage_name;
938
939 /* The scope to prepend to our children. This is generally
940 allocated on the comp_unit_obstack, so will disappear
941 when this compilation unit leaves the cache. */
942 char *scope;
943
944 /* Some data associated with the partial DIE. The tag determines
945 which field is live. */
946 union
947 {
948 /* The location description associated with this DIE, if any. */
949 struct dwarf_block *locdesc;
950 /* The offset of an import, for DW_TAG_imported_unit. */
951 sect_offset offset;
952 } d;
953
954 /* If HAS_PC_INFO, the PC range associated with this DIE. */
955 CORE_ADDR lowpc;
956 CORE_ADDR highpc;
957
958 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
959 DW_AT_sibling, if any. */
960 /* NOTE: This member isn't strictly necessary, read_partial_die could
961 return DW_AT_sibling values to its caller load_partial_dies. */
962 gdb_byte *sibling;
963
964 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
965 DW_AT_specification (or DW_AT_abstract_origin or
966 DW_AT_extension). */
967 sect_offset spec_offset;
968
969 /* Pointers to this DIE's parent, first child, and next sibling,
970 if any. */
971 struct partial_die_info *die_parent, *die_child, *die_sibling;
972 };
973
974 /* This data structure holds the information of an abbrev. */
975 struct abbrev_info
976 {
977 unsigned int number; /* number identifying abbrev */
978 enum dwarf_tag tag; /* dwarf tag */
979 unsigned short has_children; /* boolean */
980 unsigned short num_attrs; /* number of attributes */
981 struct attr_abbrev *attrs; /* an array of attribute descriptions */
982 struct abbrev_info *next; /* next in chain */
983 };
984
985 struct attr_abbrev
986 {
987 ENUM_BITFIELD(dwarf_attribute) name : 16;
988 ENUM_BITFIELD(dwarf_form) form : 16;
989 };
990
991 /* Size of abbrev_table.abbrev_hash_table. */
992 #define ABBREV_HASH_SIZE 121
993
994 /* Top level data structure to contain an abbreviation table. */
995
996 struct abbrev_table
997 {
998 /* Where the abbrev table came from.
999 This is used as a sanity check when the table is used. */
1000 sect_offset offset;
1001
1002 /* Storage for the abbrev table. */
1003 struct obstack abbrev_obstack;
1004
1005 /* Hash table of abbrevs.
1006 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1007 It could be statically allocated, but the previous code didn't so we
1008 don't either. */
1009 struct abbrev_info **abbrevs;
1010 };
1011
1012 /* Attributes have a name and a value. */
1013 struct attribute
1014 {
1015 ENUM_BITFIELD(dwarf_attribute) name : 16;
1016 ENUM_BITFIELD(dwarf_form) form : 15;
1017
1018 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1019 field should be in u.str (existing only for DW_STRING) but it is kept
1020 here for better struct attribute alignment. */
1021 unsigned int string_is_canonical : 1;
1022
1023 union
1024 {
1025 char *str;
1026 struct dwarf_block *blk;
1027 ULONGEST unsnd;
1028 LONGEST snd;
1029 CORE_ADDR addr;
1030 struct signatured_type *signatured_type;
1031 }
1032 u;
1033 };
1034
1035 /* This data structure holds a complete die structure. */
1036 struct die_info
1037 {
1038 /* DWARF-2 tag for this DIE. */
1039 ENUM_BITFIELD(dwarf_tag) tag : 16;
1040
1041 /* Number of attributes */
1042 unsigned char num_attrs;
1043
1044 /* True if we're presently building the full type name for the
1045 type derived from this DIE. */
1046 unsigned char building_fullname : 1;
1047
1048 /* Abbrev number */
1049 unsigned int abbrev;
1050
1051 /* Offset in .debug_info or .debug_types section. */
1052 sect_offset offset;
1053
1054 /* The dies in a compilation unit form an n-ary tree. PARENT
1055 points to this die's parent; CHILD points to the first child of
1056 this node; and all the children of a given node are chained
1057 together via their SIBLING fields. */
1058 struct die_info *child; /* Its first child, if any. */
1059 struct die_info *sibling; /* Its next sibling, if any. */
1060 struct die_info *parent; /* Its parent, if any. */
1061
1062 /* An array of attributes, with NUM_ATTRS elements. There may be
1063 zero, but it's not common and zero-sized arrays are not
1064 sufficiently portable C. */
1065 struct attribute attrs[1];
1066 };
1067
1068 /* Get at parts of an attribute structure. */
1069
1070 #define DW_STRING(attr) ((attr)->u.str)
1071 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1072 #define DW_UNSND(attr) ((attr)->u.unsnd)
1073 #define DW_BLOCK(attr) ((attr)->u.blk)
1074 #define DW_SND(attr) ((attr)->u.snd)
1075 #define DW_ADDR(attr) ((attr)->u.addr)
1076 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
1077
1078 /* Blocks are a bunch of untyped bytes. */
1079 struct dwarf_block
1080 {
1081 size_t size;
1082
1083 /* Valid only if SIZE is not zero. */
1084 gdb_byte *data;
1085 };
1086
1087 #ifndef ATTR_ALLOC_CHUNK
1088 #define ATTR_ALLOC_CHUNK 4
1089 #endif
1090
1091 /* Allocate fields for structs, unions and enums in this size. */
1092 #ifndef DW_FIELD_ALLOC_CHUNK
1093 #define DW_FIELD_ALLOC_CHUNK 4
1094 #endif
1095
1096 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1097 but this would require a corresponding change in unpack_field_as_long
1098 and friends. */
1099 static int bits_per_byte = 8;
1100
1101 /* The routines that read and process dies for a C struct or C++ class
1102 pass lists of data member fields and lists of member function fields
1103 in an instance of a field_info structure, as defined below. */
1104 struct field_info
1105 {
1106 /* List of data member and baseclasses fields. */
1107 struct nextfield
1108 {
1109 struct nextfield *next;
1110 int accessibility;
1111 int virtuality;
1112 struct field field;
1113 }
1114 *fields, *baseclasses;
1115
1116 /* Number of fields (including baseclasses). */
1117 int nfields;
1118
1119 /* Number of baseclasses. */
1120 int nbaseclasses;
1121
1122 /* Set if the accesibility of one of the fields is not public. */
1123 int non_public_fields;
1124
1125 /* Member function fields array, entries are allocated in the order they
1126 are encountered in the object file. */
1127 struct nextfnfield
1128 {
1129 struct nextfnfield *next;
1130 struct fn_field fnfield;
1131 }
1132 *fnfields;
1133
1134 /* Member function fieldlist array, contains name of possibly overloaded
1135 member function, number of overloaded member functions and a pointer
1136 to the head of the member function field chain. */
1137 struct fnfieldlist
1138 {
1139 char *name;
1140 int length;
1141 struct nextfnfield *head;
1142 }
1143 *fnfieldlists;
1144
1145 /* Number of entries in the fnfieldlists array. */
1146 int nfnfields;
1147
1148 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1149 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1150 struct typedef_field_list
1151 {
1152 struct typedef_field field;
1153 struct typedef_field_list *next;
1154 }
1155 *typedef_field_list;
1156 unsigned typedef_field_list_count;
1157 };
1158
1159 /* One item on the queue of compilation units to read in full symbols
1160 for. */
1161 struct dwarf2_queue_item
1162 {
1163 struct dwarf2_per_cu_data *per_cu;
1164 enum language pretend_language;
1165 struct dwarf2_queue_item *next;
1166 };
1167
1168 /* The current queue. */
1169 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1170
1171 /* Loaded secondary compilation units are kept in memory until they
1172 have not been referenced for the processing of this many
1173 compilation units. Set this to zero to disable caching. Cache
1174 sizes of up to at least twenty will improve startup time for
1175 typical inter-CU-reference binaries, at an obvious memory cost. */
1176 static int dwarf2_max_cache_age = 5;
1177 static void
1178 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1179 struct cmd_list_element *c, const char *value)
1180 {
1181 fprintf_filtered (file, _("The upper bound on the age of cached "
1182 "dwarf2 compilation units is %s.\n"),
1183 value);
1184 }
1185
1186
1187 /* Various complaints about symbol reading that don't abort the process. */
1188
1189 static void
1190 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1191 {
1192 complaint (&symfile_complaints,
1193 _("statement list doesn't fit in .debug_line section"));
1194 }
1195
1196 static void
1197 dwarf2_debug_line_missing_file_complaint (void)
1198 {
1199 complaint (&symfile_complaints,
1200 _(".debug_line section has line data without a file"));
1201 }
1202
1203 static void
1204 dwarf2_debug_line_missing_end_sequence_complaint (void)
1205 {
1206 complaint (&symfile_complaints,
1207 _(".debug_line section has line "
1208 "program sequence without an end"));
1209 }
1210
1211 static void
1212 dwarf2_complex_location_expr_complaint (void)
1213 {
1214 complaint (&symfile_complaints, _("location expression too complex"));
1215 }
1216
1217 static void
1218 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1219 int arg3)
1220 {
1221 complaint (&symfile_complaints,
1222 _("const value length mismatch for '%s', got %d, expected %d"),
1223 arg1, arg2, arg3);
1224 }
1225
1226 static void
1227 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1228 {
1229 complaint (&symfile_complaints,
1230 _("debug info runs off end of %s section"
1231 " [in module %s]"),
1232 section->asection->name,
1233 bfd_get_filename (section->asection->owner));
1234 }
1235
1236 static void
1237 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1238 {
1239 complaint (&symfile_complaints,
1240 _("macro debug info contains a "
1241 "malformed macro definition:\n`%s'"),
1242 arg1);
1243 }
1244
1245 static void
1246 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1247 {
1248 complaint (&symfile_complaints,
1249 _("invalid attribute class or form for '%s' in '%s'"),
1250 arg1, arg2);
1251 }
1252
1253 /* local function prototypes */
1254
1255 static void dwarf2_locate_sections (bfd *, asection *, void *);
1256
1257 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1258 struct objfile *);
1259
1260 static void dwarf2_find_base_address (struct die_info *die,
1261 struct dwarf2_cu *cu);
1262
1263 static void dwarf2_build_psymtabs_hard (struct objfile *);
1264
1265 static void scan_partial_symbols (struct partial_die_info *,
1266 CORE_ADDR *, CORE_ADDR *,
1267 int, struct dwarf2_cu *);
1268
1269 static void add_partial_symbol (struct partial_die_info *,
1270 struct dwarf2_cu *);
1271
1272 static void add_partial_namespace (struct partial_die_info *pdi,
1273 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1274 int need_pc, struct dwarf2_cu *cu);
1275
1276 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1277 CORE_ADDR *highpc, int need_pc,
1278 struct dwarf2_cu *cu);
1279
1280 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1281 struct dwarf2_cu *cu);
1282
1283 static void add_partial_subprogram (struct partial_die_info *pdi,
1284 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1285 int need_pc, struct dwarf2_cu *cu);
1286
1287 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
1288
1289 static void psymtab_to_symtab_1 (struct partial_symtab *);
1290
1291 static struct abbrev_info *abbrev_table_lookup_abbrev
1292 (const struct abbrev_table *, unsigned int);
1293
1294 static struct abbrev_table *abbrev_table_read_table
1295 (struct dwarf2_section_info *, sect_offset);
1296
1297 static void abbrev_table_free (struct abbrev_table *);
1298
1299 static void abbrev_table_free_cleanup (void *);
1300
1301 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1302 struct dwarf2_section_info *);
1303
1304 static void dwarf2_free_abbrev_table (void *);
1305
1306 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1307
1308 static struct partial_die_info *load_partial_dies
1309 (const struct die_reader_specs *, gdb_byte *, int);
1310
1311 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1312 struct partial_die_info *,
1313 struct abbrev_info *,
1314 unsigned int,
1315 gdb_byte *);
1316
1317 static struct partial_die_info *find_partial_die (sect_offset, int,
1318 struct dwarf2_cu *);
1319
1320 static void fixup_partial_die (struct partial_die_info *,
1321 struct dwarf2_cu *);
1322
1323 static gdb_byte *read_attribute (const struct die_reader_specs *,
1324 struct attribute *, struct attr_abbrev *,
1325 gdb_byte *);
1326
1327 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1328
1329 static int read_1_signed_byte (bfd *, const gdb_byte *);
1330
1331 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1332
1333 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1334
1335 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1336
1337 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1338 unsigned int *);
1339
1340 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1341
1342 static LONGEST read_checked_initial_length_and_offset
1343 (bfd *, gdb_byte *, const struct comp_unit_head *,
1344 unsigned int *, unsigned int *);
1345
1346 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1347 unsigned int *);
1348
1349 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1350
1351 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1352 sect_offset);
1353
1354 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1355
1356 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1357
1358 static char *read_indirect_string (bfd *, gdb_byte *,
1359 const struct comp_unit_head *,
1360 unsigned int *);
1361
1362 static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1363
1364 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1365
1366 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1367
1368 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1369 unsigned int *);
1370
1371 static char *read_str_index (const struct die_reader_specs *reader,
1372 struct dwarf2_cu *cu, ULONGEST str_index);
1373
1374 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1375
1376 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1377 struct dwarf2_cu *);
1378
1379 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1380 unsigned int);
1381
1382 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1383 struct dwarf2_cu *cu);
1384
1385 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1386
1387 static struct die_info *die_specification (struct die_info *die,
1388 struct dwarf2_cu **);
1389
1390 static void free_line_header (struct line_header *lh);
1391
1392 static void add_file_name (struct line_header *, char *, unsigned int,
1393 unsigned int, unsigned int);
1394
1395 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1396 struct dwarf2_cu *cu);
1397
1398 static void dwarf_decode_lines (struct line_header *, const char *,
1399 struct dwarf2_cu *, struct partial_symtab *,
1400 int);
1401
1402 static void dwarf2_start_subfile (char *, const char *, const char *);
1403
1404 static void dwarf2_start_symtab (struct dwarf2_cu *,
1405 char *, char *, CORE_ADDR);
1406
1407 static struct symbol *new_symbol (struct die_info *, struct type *,
1408 struct dwarf2_cu *);
1409
1410 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1411 struct dwarf2_cu *, struct symbol *);
1412
1413 static void dwarf2_const_value (struct attribute *, struct symbol *,
1414 struct dwarf2_cu *);
1415
1416 static void dwarf2_const_value_attr (struct attribute *attr,
1417 struct type *type,
1418 const char *name,
1419 struct obstack *obstack,
1420 struct dwarf2_cu *cu, LONGEST *value,
1421 gdb_byte **bytes,
1422 struct dwarf2_locexpr_baton **baton);
1423
1424 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1425
1426 static int need_gnat_info (struct dwarf2_cu *);
1427
1428 static struct type *die_descriptive_type (struct die_info *,
1429 struct dwarf2_cu *);
1430
1431 static void set_descriptive_type (struct type *, struct die_info *,
1432 struct dwarf2_cu *);
1433
1434 static struct type *die_containing_type (struct die_info *,
1435 struct dwarf2_cu *);
1436
1437 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1438 struct dwarf2_cu *);
1439
1440 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1441
1442 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1443
1444 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1445
1446 static char *typename_concat (struct obstack *obs, const char *prefix,
1447 const char *suffix, int physname,
1448 struct dwarf2_cu *cu);
1449
1450 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1451
1452 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1453
1454 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1455
1456 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1457
1458 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1459
1460 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1461 struct dwarf2_cu *, struct partial_symtab *);
1462
1463 static int dwarf2_get_pc_bounds (struct die_info *,
1464 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1465 struct partial_symtab *);
1466
1467 static void get_scope_pc_bounds (struct die_info *,
1468 CORE_ADDR *, CORE_ADDR *,
1469 struct dwarf2_cu *);
1470
1471 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1472 CORE_ADDR, struct dwarf2_cu *);
1473
1474 static void dwarf2_add_field (struct field_info *, struct die_info *,
1475 struct dwarf2_cu *);
1476
1477 static void dwarf2_attach_fields_to_type (struct field_info *,
1478 struct type *, struct dwarf2_cu *);
1479
1480 static void dwarf2_add_member_fn (struct field_info *,
1481 struct die_info *, struct type *,
1482 struct dwarf2_cu *);
1483
1484 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1485 struct type *,
1486 struct dwarf2_cu *);
1487
1488 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1489
1490 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1491
1492 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1493
1494 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1495
1496 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1497
1498 static struct type *read_module_type (struct die_info *die,
1499 struct dwarf2_cu *cu);
1500
1501 static const char *namespace_name (struct die_info *die,
1502 int *is_anonymous, struct dwarf2_cu *);
1503
1504 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1505
1506 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1507
1508 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1509 struct dwarf2_cu *);
1510
1511 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1512 gdb_byte *info_ptr,
1513 gdb_byte **new_info_ptr,
1514 struct die_info *parent);
1515
1516 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1517 gdb_byte *info_ptr,
1518 gdb_byte **new_info_ptr,
1519 struct die_info *parent);
1520
1521 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1522 struct die_info **, gdb_byte *, int *, int);
1523
1524 static gdb_byte *read_full_die (const struct die_reader_specs *,
1525 struct die_info **, gdb_byte *, int *);
1526
1527 static void process_die (struct die_info *, struct dwarf2_cu *);
1528
1529 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1530 struct obstack *);
1531
1532 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1533
1534 static const char *dwarf2_full_name (char *name,
1535 struct die_info *die,
1536 struct dwarf2_cu *cu);
1537
1538 static struct die_info *dwarf2_extension (struct die_info *die,
1539 struct dwarf2_cu **);
1540
1541 static const char *dwarf_tag_name (unsigned int);
1542
1543 static const char *dwarf_attr_name (unsigned int);
1544
1545 static const char *dwarf_form_name (unsigned int);
1546
1547 static char *dwarf_bool_name (unsigned int);
1548
1549 static const char *dwarf_type_encoding_name (unsigned int);
1550
1551 static struct die_info *sibling_die (struct die_info *);
1552
1553 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1554
1555 static void dump_die_for_error (struct die_info *);
1556
1557 static void dump_die_1 (struct ui_file *, int level, int max_level,
1558 struct die_info *);
1559
1560 /*static*/ void dump_die (struct die_info *, int max_level);
1561
1562 static void store_in_ref_table (struct die_info *,
1563 struct dwarf2_cu *);
1564
1565 static int is_ref_attr (struct attribute *);
1566
1567 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1568
1569 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1570
1571 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1572 struct attribute *,
1573 struct dwarf2_cu **);
1574
1575 static struct die_info *follow_die_ref (struct die_info *,
1576 struct attribute *,
1577 struct dwarf2_cu **);
1578
1579 static struct die_info *follow_die_sig (struct die_info *,
1580 struct attribute *,
1581 struct dwarf2_cu **);
1582
1583 static struct signatured_type *lookup_signatured_type_at_offset
1584 (struct objfile *objfile,
1585 struct dwarf2_section_info *section, sect_offset offset);
1586
1587 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1588
1589 static void read_signatured_type (struct signatured_type *);
1590
1591 static struct type_unit_group *get_type_unit_group
1592 (struct dwarf2_cu *, struct attribute *);
1593
1594 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1595
1596 /* memory allocation interface */
1597
1598 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1599
1600 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1601
1602 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1603 char *, int);
1604
1605 static int attr_form_is_block (struct attribute *);
1606
1607 static int attr_form_is_section_offset (struct attribute *);
1608
1609 static int attr_form_is_constant (struct attribute *);
1610
1611 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1612 struct dwarf2_loclist_baton *baton,
1613 struct attribute *attr);
1614
1615 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1616 struct symbol *sym,
1617 struct dwarf2_cu *cu);
1618
1619 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1620 gdb_byte *info_ptr,
1621 struct abbrev_info *abbrev);
1622
1623 static void free_stack_comp_unit (void *);
1624
1625 static hashval_t partial_die_hash (const void *item);
1626
1627 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1628
1629 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1630 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1631
1632 static void init_one_comp_unit (struct dwarf2_cu *cu,
1633 struct dwarf2_per_cu_data *per_cu);
1634
1635 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1636 struct die_info *comp_unit_die,
1637 enum language pretend_language);
1638
1639 static void free_heap_comp_unit (void *);
1640
1641 static void free_cached_comp_units (void *);
1642
1643 static void age_cached_comp_units (void);
1644
1645 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1646
1647 static struct type *set_die_type (struct die_info *, struct type *,
1648 struct dwarf2_cu *);
1649
1650 static void create_all_comp_units (struct objfile *);
1651
1652 static int create_all_type_units (struct objfile *);
1653
1654 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1655 enum language);
1656
1657 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1658 enum language);
1659
1660 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1661 enum language);
1662
1663 static void dwarf2_add_dependence (struct dwarf2_cu *,
1664 struct dwarf2_per_cu_data *);
1665
1666 static void dwarf2_mark (struct dwarf2_cu *);
1667
1668 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1669
1670 static struct type *get_die_type_at_offset (sect_offset,
1671 struct dwarf2_per_cu_data *per_cu);
1672
1673 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1674
1675 static void dwarf2_release_queue (void *dummy);
1676
1677 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1678 enum language pretend_language);
1679
1680 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1681 struct dwarf2_per_cu_data *per_cu,
1682 enum language pretend_language);
1683
1684 static void process_queue (void);
1685
1686 static void find_file_and_directory (struct die_info *die,
1687 struct dwarf2_cu *cu,
1688 char **name, char **comp_dir);
1689
1690 static char *file_full_name (int file, struct line_header *lh,
1691 const char *comp_dir);
1692
1693 static gdb_byte *read_and_check_comp_unit_head
1694 (struct comp_unit_head *header,
1695 struct dwarf2_section_info *section,
1696 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1697 int is_debug_types_section);
1698
1699 static void init_cutu_and_read_dies
1700 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1701 int use_existing_cu, int keep,
1702 die_reader_func_ftype *die_reader_func, void *data);
1703
1704 static void init_cutu_and_read_dies_simple
1705 (struct dwarf2_per_cu_data *this_cu,
1706 die_reader_func_ftype *die_reader_func, void *data);
1707
1708 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1709
1710 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1711
1712 static struct dwo_unit *lookup_dwo_comp_unit
1713 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1714
1715 static struct dwo_unit *lookup_dwo_type_unit
1716 (struct signatured_type *, const char *, const char *);
1717
1718 static void free_dwo_file_cleanup (void *);
1719
1720 static void process_cu_includes (void);
1721
1722 static void check_producer (struct dwarf2_cu *cu);
1723
1724 #if WORDS_BIGENDIAN
1725
1726 /* Convert VALUE between big- and little-endian. */
1727 static offset_type
1728 byte_swap (offset_type value)
1729 {
1730 offset_type result;
1731
1732 result = (value & 0xff) << 24;
1733 result |= (value & 0xff00) << 8;
1734 result |= (value & 0xff0000) >> 8;
1735 result |= (value & 0xff000000) >> 24;
1736 return result;
1737 }
1738
1739 #define MAYBE_SWAP(V) byte_swap (V)
1740
1741 #else
1742 #define MAYBE_SWAP(V) (V)
1743 #endif /* WORDS_BIGENDIAN */
1744
1745 /* The suffix for an index file. */
1746 #define INDEX_SUFFIX ".gdb-index"
1747
1748 static const char *dwarf2_physname (char *name, struct die_info *die,
1749 struct dwarf2_cu *cu);
1750
1751 /* Try to locate the sections we need for DWARF 2 debugging
1752 information and return true if we have enough to do something.
1753 NAMES points to the dwarf2 section names, or is NULL if the standard
1754 ELF names are used. */
1755
1756 int
1757 dwarf2_has_info (struct objfile *objfile,
1758 const struct dwarf2_debug_sections *names)
1759 {
1760 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1761 if (!dwarf2_per_objfile)
1762 {
1763 /* Initialize per-objfile state. */
1764 struct dwarf2_per_objfile *data
1765 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1766
1767 memset (data, 0, sizeof (*data));
1768 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1769 dwarf2_per_objfile = data;
1770
1771 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1772 (void *) names);
1773 dwarf2_per_objfile->objfile = objfile;
1774 }
1775 return (dwarf2_per_objfile->info.asection != NULL
1776 && dwarf2_per_objfile->abbrev.asection != NULL);
1777 }
1778
1779 /* When loading sections, we look either for uncompressed section or for
1780 compressed section names. */
1781
1782 static int
1783 section_is_p (const char *section_name,
1784 const struct dwarf2_section_names *names)
1785 {
1786 if (names->normal != NULL
1787 && strcmp (section_name, names->normal) == 0)
1788 return 1;
1789 if (names->compressed != NULL
1790 && strcmp (section_name, names->compressed) == 0)
1791 return 1;
1792 return 0;
1793 }
1794
1795 /* This function is mapped across the sections and remembers the
1796 offset and size of each of the debugging sections we are interested
1797 in. */
1798
1799 static void
1800 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1801 {
1802 const struct dwarf2_debug_sections *names;
1803 flagword aflag = bfd_get_section_flags (abfd, sectp);
1804
1805 if (vnames == NULL)
1806 names = &dwarf2_elf_names;
1807 else
1808 names = (const struct dwarf2_debug_sections *) vnames;
1809
1810 if ((aflag & SEC_HAS_CONTENTS) == 0)
1811 {
1812 }
1813 else if (section_is_p (sectp->name, &names->info))
1814 {
1815 dwarf2_per_objfile->info.asection = sectp;
1816 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1817 }
1818 else if (section_is_p (sectp->name, &names->abbrev))
1819 {
1820 dwarf2_per_objfile->abbrev.asection = sectp;
1821 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1822 }
1823 else if (section_is_p (sectp->name, &names->line))
1824 {
1825 dwarf2_per_objfile->line.asection = sectp;
1826 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1827 }
1828 else if (section_is_p (sectp->name, &names->loc))
1829 {
1830 dwarf2_per_objfile->loc.asection = sectp;
1831 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1832 }
1833 else if (section_is_p (sectp->name, &names->macinfo))
1834 {
1835 dwarf2_per_objfile->macinfo.asection = sectp;
1836 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1837 }
1838 else if (section_is_p (sectp->name, &names->macro))
1839 {
1840 dwarf2_per_objfile->macro.asection = sectp;
1841 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1842 }
1843 else if (section_is_p (sectp->name, &names->str))
1844 {
1845 dwarf2_per_objfile->str.asection = sectp;
1846 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1847 }
1848 else if (section_is_p (sectp->name, &names->addr))
1849 {
1850 dwarf2_per_objfile->addr.asection = sectp;
1851 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1852 }
1853 else if (section_is_p (sectp->name, &names->frame))
1854 {
1855 dwarf2_per_objfile->frame.asection = sectp;
1856 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1857 }
1858 else if (section_is_p (sectp->name, &names->eh_frame))
1859 {
1860 dwarf2_per_objfile->eh_frame.asection = sectp;
1861 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1862 }
1863 else if (section_is_p (sectp->name, &names->ranges))
1864 {
1865 dwarf2_per_objfile->ranges.asection = sectp;
1866 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1867 }
1868 else if (section_is_p (sectp->name, &names->types))
1869 {
1870 struct dwarf2_section_info type_section;
1871
1872 memset (&type_section, 0, sizeof (type_section));
1873 type_section.asection = sectp;
1874 type_section.size = bfd_get_section_size (sectp);
1875
1876 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1877 &type_section);
1878 }
1879 else if (section_is_p (sectp->name, &names->gdb_index))
1880 {
1881 dwarf2_per_objfile->gdb_index.asection = sectp;
1882 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1883 }
1884
1885 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1886 && bfd_section_vma (abfd, sectp) == 0)
1887 dwarf2_per_objfile->has_section_at_zero = 1;
1888 }
1889
1890 /* A helper function that decides whether a section is empty,
1891 or not present. */
1892
1893 static int
1894 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1895 {
1896 return info->asection == NULL || info->size == 0;
1897 }
1898
1899 /* Read the contents of the section INFO.
1900 OBJFILE is the main object file, but not necessarily the file where
1901 the section comes from. E.g., for DWO files INFO->asection->owner
1902 is the bfd of the DWO file.
1903 If the section is compressed, uncompress it before returning. */
1904
1905 static void
1906 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1907 {
1908 asection *sectp = info->asection;
1909 bfd *abfd;
1910 gdb_byte *buf, *retbuf;
1911 unsigned char header[4];
1912
1913 if (info->readin)
1914 return;
1915 info->buffer = NULL;
1916 info->readin = 1;
1917
1918 if (dwarf2_section_empty_p (info))
1919 return;
1920
1921 abfd = sectp->owner;
1922
1923 /* If the section has relocations, we must read it ourselves.
1924 Otherwise we attach it to the BFD. */
1925 if ((sectp->flags & SEC_RELOC) == 0)
1926 {
1927 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
1928
1929 /* We have to cast away const here for historical reasons.
1930 Fixing dwarf2read to be const-correct would be quite nice. */
1931 info->buffer = (gdb_byte *) bytes;
1932 return;
1933 }
1934
1935 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1936 info->buffer = buf;
1937
1938 /* When debugging .o files, we may need to apply relocations; see
1939 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1940 We never compress sections in .o files, so we only need to
1941 try this when the section is not compressed. */
1942 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1943 if (retbuf != NULL)
1944 {
1945 info->buffer = retbuf;
1946 return;
1947 }
1948
1949 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1950 || bfd_bread (buf, info->size, abfd) != info->size)
1951 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1952 bfd_get_filename (abfd));
1953 }
1954
1955 /* A helper function that returns the size of a section in a safe way.
1956 If you are positive that the section has been read before using the
1957 size, then it is safe to refer to the dwarf2_section_info object's
1958 "size" field directly. In other cases, you must call this
1959 function, because for compressed sections the size field is not set
1960 correctly until the section has been read. */
1961
1962 static bfd_size_type
1963 dwarf2_section_size (struct objfile *objfile,
1964 struct dwarf2_section_info *info)
1965 {
1966 if (!info->readin)
1967 dwarf2_read_section (objfile, info);
1968 return info->size;
1969 }
1970
1971 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1972 SECTION_NAME. */
1973
1974 void
1975 dwarf2_get_section_info (struct objfile *objfile,
1976 enum dwarf2_section_enum sect,
1977 asection **sectp, gdb_byte **bufp,
1978 bfd_size_type *sizep)
1979 {
1980 struct dwarf2_per_objfile *data
1981 = objfile_data (objfile, dwarf2_objfile_data_key);
1982 struct dwarf2_section_info *info;
1983
1984 /* We may see an objfile without any DWARF, in which case we just
1985 return nothing. */
1986 if (data == NULL)
1987 {
1988 *sectp = NULL;
1989 *bufp = NULL;
1990 *sizep = 0;
1991 return;
1992 }
1993 switch (sect)
1994 {
1995 case DWARF2_DEBUG_FRAME:
1996 info = &data->frame;
1997 break;
1998 case DWARF2_EH_FRAME:
1999 info = &data->eh_frame;
2000 break;
2001 default:
2002 gdb_assert_not_reached ("unexpected section");
2003 }
2004
2005 dwarf2_read_section (objfile, info);
2006
2007 *sectp = info->asection;
2008 *bufp = info->buffer;
2009 *sizep = info->size;
2010 }
2011
2012 /* A helper function to find the sections for a .dwz file. */
2013
2014 static void
2015 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2016 {
2017 struct dwz_file *dwz_file = arg;
2018
2019 /* Note that we only support the standard ELF names, because .dwz
2020 is ELF-only (at the time of writing). */
2021 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2022 {
2023 dwz_file->abbrev.asection = sectp;
2024 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2025 }
2026 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2027 {
2028 dwz_file->info.asection = sectp;
2029 dwz_file->info.size = bfd_get_section_size (sectp);
2030 }
2031 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2032 {
2033 dwz_file->str.asection = sectp;
2034 dwz_file->str.size = bfd_get_section_size (sectp);
2035 }
2036 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2037 {
2038 dwz_file->line.asection = sectp;
2039 dwz_file->line.size = bfd_get_section_size (sectp);
2040 }
2041 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2042 {
2043 dwz_file->macro.asection = sectp;
2044 dwz_file->macro.size = bfd_get_section_size (sectp);
2045 }
2046 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2047 {
2048 dwz_file->gdb_index.asection = sectp;
2049 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2050 }
2051 }
2052
2053 /* Open the separate '.dwz' debug file, if needed. Error if the file
2054 cannot be found. */
2055
2056 static struct dwz_file *
2057 dwarf2_get_dwz_file (void)
2058 {
2059 bfd *abfd, *dwz_bfd;
2060 asection *section;
2061 gdb_byte *data;
2062 struct cleanup *cleanup;
2063 const char *filename;
2064 struct dwz_file *result;
2065
2066 if (dwarf2_per_objfile->dwz_file != NULL)
2067 return dwarf2_per_objfile->dwz_file;
2068
2069 abfd = dwarf2_per_objfile->objfile->obfd;
2070 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2071 if (section == NULL)
2072 error (_("could not find '.gnu_debugaltlink' section"));
2073 if (!bfd_malloc_and_get_section (abfd, section, &data))
2074 error (_("could not read '.gnu_debugaltlink' section: %s"),
2075 bfd_errmsg (bfd_get_error ()));
2076 cleanup = make_cleanup (xfree, data);
2077
2078 filename = data;
2079 if (!IS_ABSOLUTE_PATH (filename))
2080 {
2081 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2082 char *rel;
2083
2084 make_cleanup (xfree, abs);
2085 abs = ldirname (abs);
2086 make_cleanup (xfree, abs);
2087
2088 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2089 make_cleanup (xfree, rel);
2090 filename = rel;
2091 }
2092
2093 /* The format is just a NUL-terminated file name, followed by the
2094 build-id. For now, though, we ignore the build-id. */
2095 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2096 if (dwz_bfd == NULL)
2097 error (_("could not read '%s': %s"), filename,
2098 bfd_errmsg (bfd_get_error ()));
2099
2100 if (!bfd_check_format (dwz_bfd, bfd_object))
2101 {
2102 gdb_bfd_unref (dwz_bfd);
2103 error (_("file '%s' was not usable: %s"), filename,
2104 bfd_errmsg (bfd_get_error ()));
2105 }
2106
2107 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2108 struct dwz_file);
2109 result->dwz_bfd = dwz_bfd;
2110
2111 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2112
2113 do_cleanups (cleanup);
2114
2115 dwarf2_per_objfile->dwz_file = result;
2116 return result;
2117 }
2118 \f
2119 /* DWARF quick_symbols_functions support. */
2120
2121 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2122 unique line tables, so we maintain a separate table of all .debug_line
2123 derived entries to support the sharing.
2124 All the quick functions need is the list of file names. We discard the
2125 line_header when we're done and don't need to record it here. */
2126 struct quick_file_names
2127 {
2128 /* The data used to construct the hash key. */
2129 struct stmt_list_hash hash;
2130
2131 /* The number of entries in file_names, real_names. */
2132 unsigned int num_file_names;
2133
2134 /* The file names from the line table, after being run through
2135 file_full_name. */
2136 const char **file_names;
2137
2138 /* The file names from the line table after being run through
2139 gdb_realpath. These are computed lazily. */
2140 const char **real_names;
2141 };
2142
2143 /* When using the index (and thus not using psymtabs), each CU has an
2144 object of this type. This is used to hold information needed by
2145 the various "quick" methods. */
2146 struct dwarf2_per_cu_quick_data
2147 {
2148 /* The file table. This can be NULL if there was no file table
2149 or it's currently not read in.
2150 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2151 struct quick_file_names *file_names;
2152
2153 /* The corresponding symbol table. This is NULL if symbols for this
2154 CU have not yet been read. */
2155 struct symtab *symtab;
2156
2157 /* A temporary mark bit used when iterating over all CUs in
2158 expand_symtabs_matching. */
2159 unsigned int mark : 1;
2160
2161 /* True if we've tried to read the file table and found there isn't one.
2162 There will be no point in trying to read it again next time. */
2163 unsigned int no_file_data : 1;
2164 };
2165
2166 /* Utility hash function for a stmt_list_hash. */
2167
2168 static hashval_t
2169 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2170 {
2171 hashval_t v = 0;
2172
2173 if (stmt_list_hash->dwo_unit != NULL)
2174 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2175 v += stmt_list_hash->line_offset.sect_off;
2176 return v;
2177 }
2178
2179 /* Utility equality function for a stmt_list_hash. */
2180
2181 static int
2182 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2183 const struct stmt_list_hash *rhs)
2184 {
2185 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2186 return 0;
2187 if (lhs->dwo_unit != NULL
2188 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2189 return 0;
2190
2191 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2192 }
2193
2194 /* Hash function for a quick_file_names. */
2195
2196 static hashval_t
2197 hash_file_name_entry (const void *e)
2198 {
2199 const struct quick_file_names *file_data = e;
2200
2201 return hash_stmt_list_entry (&file_data->hash);
2202 }
2203
2204 /* Equality function for a quick_file_names. */
2205
2206 static int
2207 eq_file_name_entry (const void *a, const void *b)
2208 {
2209 const struct quick_file_names *ea = a;
2210 const struct quick_file_names *eb = b;
2211
2212 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2213 }
2214
2215 /* Delete function for a quick_file_names. */
2216
2217 static void
2218 delete_file_name_entry (void *e)
2219 {
2220 struct quick_file_names *file_data = e;
2221 int i;
2222
2223 for (i = 0; i < file_data->num_file_names; ++i)
2224 {
2225 xfree ((void*) file_data->file_names[i]);
2226 if (file_data->real_names)
2227 xfree ((void*) file_data->real_names[i]);
2228 }
2229
2230 /* The space for the struct itself lives on objfile_obstack,
2231 so we don't free it here. */
2232 }
2233
2234 /* Create a quick_file_names hash table. */
2235
2236 static htab_t
2237 create_quick_file_names_table (unsigned int nr_initial_entries)
2238 {
2239 return htab_create_alloc (nr_initial_entries,
2240 hash_file_name_entry, eq_file_name_entry,
2241 delete_file_name_entry, xcalloc, xfree);
2242 }
2243
2244 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2245 have to be created afterwards. You should call age_cached_comp_units after
2246 processing PER_CU->CU. dw2_setup must have been already called. */
2247
2248 static void
2249 load_cu (struct dwarf2_per_cu_data *per_cu)
2250 {
2251 if (per_cu->is_debug_types)
2252 load_full_type_unit (per_cu);
2253 else
2254 load_full_comp_unit (per_cu, language_minimal);
2255
2256 gdb_assert (per_cu->cu != NULL);
2257
2258 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2259 }
2260
2261 /* Read in the symbols for PER_CU. */
2262
2263 static void
2264 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2265 {
2266 struct cleanup *back_to;
2267
2268 /* Skip type_unit_groups, reading the type units they contain
2269 is handled elsewhere. */
2270 if (IS_TYPE_UNIT_GROUP (per_cu))
2271 return;
2272
2273 back_to = make_cleanup (dwarf2_release_queue, NULL);
2274
2275 if (dwarf2_per_objfile->using_index
2276 ? per_cu->v.quick->symtab == NULL
2277 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2278 {
2279 queue_comp_unit (per_cu, language_minimal);
2280 load_cu (per_cu);
2281 }
2282
2283 process_queue ();
2284
2285 /* Age the cache, releasing compilation units that have not
2286 been used recently. */
2287 age_cached_comp_units ();
2288
2289 do_cleanups (back_to);
2290 }
2291
2292 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2293 the objfile from which this CU came. Returns the resulting symbol
2294 table. */
2295
2296 static struct symtab *
2297 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2298 {
2299 gdb_assert (dwarf2_per_objfile->using_index);
2300 if (!per_cu->v.quick->symtab)
2301 {
2302 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2303 increment_reading_symtab ();
2304 dw2_do_instantiate_symtab (per_cu);
2305 process_cu_includes ();
2306 do_cleanups (back_to);
2307 }
2308 return per_cu->v.quick->symtab;
2309 }
2310
2311 /* Return the CU given its index.
2312
2313 This is intended for loops like:
2314
2315 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2316 + dwarf2_per_objfile->n_type_units); ++i)
2317 {
2318 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2319
2320 ...;
2321 }
2322 */
2323
2324 static struct dwarf2_per_cu_data *
2325 dw2_get_cu (int index)
2326 {
2327 if (index >= dwarf2_per_objfile->n_comp_units)
2328 {
2329 index -= dwarf2_per_objfile->n_comp_units;
2330 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2331 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2332 }
2333
2334 return dwarf2_per_objfile->all_comp_units[index];
2335 }
2336
2337 /* Return the primary CU given its index.
2338 The difference between this function and dw2_get_cu is in the handling
2339 of type units (TUs). Here we return the type_unit_group object.
2340
2341 This is intended for loops like:
2342
2343 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2344 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2345 {
2346 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2347
2348 ...;
2349 }
2350 */
2351
2352 static struct dwarf2_per_cu_data *
2353 dw2_get_primary_cu (int index)
2354 {
2355 if (index >= dwarf2_per_objfile->n_comp_units)
2356 {
2357 index -= dwarf2_per_objfile->n_comp_units;
2358 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2359 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2360 }
2361
2362 return dwarf2_per_objfile->all_comp_units[index];
2363 }
2364
2365 /* A helper for create_cus_from_index that handles a given list of
2366 CUs. */
2367
2368 static void
2369 create_cus_from_index_list (struct objfile *objfile,
2370 const gdb_byte *cu_list, offset_type n_elements,
2371 struct dwarf2_section_info *section,
2372 int is_dwz,
2373 int base_offset)
2374 {
2375 offset_type i;
2376
2377 for (i = 0; i < n_elements; i += 2)
2378 {
2379 struct dwarf2_per_cu_data *the_cu;
2380 ULONGEST offset, length;
2381
2382 gdb_static_assert (sizeof (ULONGEST) >= 8);
2383 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2384 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2385 cu_list += 2 * 8;
2386
2387 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2388 struct dwarf2_per_cu_data);
2389 the_cu->offset.sect_off = offset;
2390 the_cu->length = length;
2391 the_cu->objfile = objfile;
2392 the_cu->info_or_types_section = section;
2393 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2394 struct dwarf2_per_cu_quick_data);
2395 the_cu->is_dwz = is_dwz;
2396 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2397 }
2398 }
2399
2400 /* Read the CU list from the mapped index, and use it to create all
2401 the CU objects for this objfile. */
2402
2403 static void
2404 create_cus_from_index (struct objfile *objfile,
2405 const gdb_byte *cu_list, offset_type cu_list_elements,
2406 const gdb_byte *dwz_list, offset_type dwz_elements)
2407 {
2408 struct dwz_file *dwz;
2409
2410 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2411 dwarf2_per_objfile->all_comp_units
2412 = obstack_alloc (&objfile->objfile_obstack,
2413 dwarf2_per_objfile->n_comp_units
2414 * sizeof (struct dwarf2_per_cu_data *));
2415
2416 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2417 &dwarf2_per_objfile->info, 0, 0);
2418
2419 if (dwz_elements == 0)
2420 return;
2421
2422 dwz = dwarf2_get_dwz_file ();
2423 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2424 cu_list_elements / 2);
2425 }
2426
2427 /* Create the signatured type hash table from the index. */
2428
2429 static void
2430 create_signatured_type_table_from_index (struct objfile *objfile,
2431 struct dwarf2_section_info *section,
2432 const gdb_byte *bytes,
2433 offset_type elements)
2434 {
2435 offset_type i;
2436 htab_t sig_types_hash;
2437
2438 dwarf2_per_objfile->n_type_units = elements / 3;
2439 dwarf2_per_objfile->all_type_units
2440 = obstack_alloc (&objfile->objfile_obstack,
2441 dwarf2_per_objfile->n_type_units
2442 * sizeof (struct signatured_type *));
2443
2444 sig_types_hash = allocate_signatured_type_table (objfile);
2445
2446 for (i = 0; i < elements; i += 3)
2447 {
2448 struct signatured_type *sig_type;
2449 ULONGEST offset, type_offset_in_tu, signature;
2450 void **slot;
2451
2452 gdb_static_assert (sizeof (ULONGEST) >= 8);
2453 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2454 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2455 BFD_ENDIAN_LITTLE);
2456 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2457 bytes += 3 * 8;
2458
2459 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2460 struct signatured_type);
2461 sig_type->signature = signature;
2462 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2463 sig_type->per_cu.is_debug_types = 1;
2464 sig_type->per_cu.info_or_types_section = section;
2465 sig_type->per_cu.offset.sect_off = offset;
2466 sig_type->per_cu.objfile = objfile;
2467 sig_type->per_cu.v.quick
2468 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2469 struct dwarf2_per_cu_quick_data);
2470
2471 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2472 *slot = sig_type;
2473
2474 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2475 }
2476
2477 dwarf2_per_objfile->signatured_types = sig_types_hash;
2478 }
2479
2480 /* Read the address map data from the mapped index, and use it to
2481 populate the objfile's psymtabs_addrmap. */
2482
2483 static void
2484 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2485 {
2486 const gdb_byte *iter, *end;
2487 struct obstack temp_obstack;
2488 struct addrmap *mutable_map;
2489 struct cleanup *cleanup;
2490 CORE_ADDR baseaddr;
2491
2492 obstack_init (&temp_obstack);
2493 cleanup = make_cleanup_obstack_free (&temp_obstack);
2494 mutable_map = addrmap_create_mutable (&temp_obstack);
2495
2496 iter = index->address_table;
2497 end = iter + index->address_table_size;
2498
2499 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2500
2501 while (iter < end)
2502 {
2503 ULONGEST hi, lo, cu_index;
2504 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2505 iter += 8;
2506 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2507 iter += 8;
2508 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2509 iter += 4;
2510
2511 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2512 dw2_get_cu (cu_index));
2513 }
2514
2515 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2516 &objfile->objfile_obstack);
2517 do_cleanups (cleanup);
2518 }
2519
2520 /* The hash function for strings in the mapped index. This is the same as
2521 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2522 implementation. This is necessary because the hash function is tied to the
2523 format of the mapped index file. The hash values do not have to match with
2524 SYMBOL_HASH_NEXT.
2525
2526 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2527
2528 static hashval_t
2529 mapped_index_string_hash (int index_version, const void *p)
2530 {
2531 const unsigned char *str = (const unsigned char *) p;
2532 hashval_t r = 0;
2533 unsigned char c;
2534
2535 while ((c = *str++) != 0)
2536 {
2537 if (index_version >= 5)
2538 c = tolower (c);
2539 r = r * 67 + c - 113;
2540 }
2541
2542 return r;
2543 }
2544
2545 /* Find a slot in the mapped index INDEX for the object named NAME.
2546 If NAME is found, set *VEC_OUT to point to the CU vector in the
2547 constant pool and return 1. If NAME cannot be found, return 0. */
2548
2549 static int
2550 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2551 offset_type **vec_out)
2552 {
2553 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2554 offset_type hash;
2555 offset_type slot, step;
2556 int (*cmp) (const char *, const char *);
2557
2558 if (current_language->la_language == language_cplus
2559 || current_language->la_language == language_java
2560 || current_language->la_language == language_fortran)
2561 {
2562 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2563 not contain any. */
2564 const char *paren = strchr (name, '(');
2565
2566 if (paren)
2567 {
2568 char *dup;
2569
2570 dup = xmalloc (paren - name + 1);
2571 memcpy (dup, name, paren - name);
2572 dup[paren - name] = 0;
2573
2574 make_cleanup (xfree, dup);
2575 name = dup;
2576 }
2577 }
2578
2579 /* Index version 4 did not support case insensitive searches. But the
2580 indices for case insensitive languages are built in lowercase, therefore
2581 simulate our NAME being searched is also lowercased. */
2582 hash = mapped_index_string_hash ((index->version == 4
2583 && case_sensitivity == case_sensitive_off
2584 ? 5 : index->version),
2585 name);
2586
2587 slot = hash & (index->symbol_table_slots - 1);
2588 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2589 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2590
2591 for (;;)
2592 {
2593 /* Convert a slot number to an offset into the table. */
2594 offset_type i = 2 * slot;
2595 const char *str;
2596 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2597 {
2598 do_cleanups (back_to);
2599 return 0;
2600 }
2601
2602 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2603 if (!cmp (name, str))
2604 {
2605 *vec_out = (offset_type *) (index->constant_pool
2606 + MAYBE_SWAP (index->symbol_table[i + 1]));
2607 do_cleanups (back_to);
2608 return 1;
2609 }
2610
2611 slot = (slot + step) & (index->symbol_table_slots - 1);
2612 }
2613 }
2614
2615 /* A helper function that reads the .gdb_index from SECTION and fills
2616 in MAP. FILENAME is the name of the file containing the section;
2617 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2618 ok to use deprecated sections.
2619
2620 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2621 out parameters that are filled in with information about the CU and
2622 TU lists in the section.
2623
2624 Returns 1 if all went well, 0 otherwise. */
2625
2626 static int
2627 read_index_from_section (struct objfile *objfile,
2628 const char *filename,
2629 int deprecated_ok,
2630 struct dwarf2_section_info *section,
2631 struct mapped_index *map,
2632 const gdb_byte **cu_list,
2633 offset_type *cu_list_elements,
2634 const gdb_byte **types_list,
2635 offset_type *types_list_elements)
2636 {
2637 char *addr;
2638 offset_type version;
2639 offset_type *metadata;
2640 int i;
2641
2642 if (dwarf2_section_empty_p (section))
2643 return 0;
2644
2645 /* Older elfutils strip versions could keep the section in the main
2646 executable while splitting it for the separate debug info file. */
2647 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2648 return 0;
2649
2650 dwarf2_read_section (objfile, section);
2651
2652 addr = section->buffer;
2653 /* Version check. */
2654 version = MAYBE_SWAP (*(offset_type *) addr);
2655 /* Versions earlier than 3 emitted every copy of a psymbol. This
2656 causes the index to behave very poorly for certain requests. Version 3
2657 contained incomplete addrmap. So, it seems better to just ignore such
2658 indices. */
2659 if (version < 4)
2660 {
2661 static int warning_printed = 0;
2662 if (!warning_printed)
2663 {
2664 warning (_("Skipping obsolete .gdb_index section in %s."),
2665 filename);
2666 warning_printed = 1;
2667 }
2668 return 0;
2669 }
2670 /* Index version 4 uses a different hash function than index version
2671 5 and later.
2672
2673 Versions earlier than 6 did not emit psymbols for inlined
2674 functions. Using these files will cause GDB not to be able to
2675 set breakpoints on inlined functions by name, so we ignore these
2676 indices unless the user has done
2677 "set use-deprecated-index-sections on". */
2678 if (version < 6 && !deprecated_ok)
2679 {
2680 static int warning_printed = 0;
2681 if (!warning_printed)
2682 {
2683 warning (_("\
2684 Skipping deprecated .gdb_index section in %s.\n\
2685 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2686 to use the section anyway."),
2687 filename);
2688 warning_printed = 1;
2689 }
2690 return 0;
2691 }
2692 /* Indexes with higher version than the one supported by GDB may be no
2693 longer backward compatible. */
2694 if (version > 7)
2695 return 0;
2696
2697 map->version = version;
2698 map->total_size = section->size;
2699
2700 metadata = (offset_type *) (addr + sizeof (offset_type));
2701
2702 i = 0;
2703 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2704 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2705 / 8);
2706 ++i;
2707
2708 *types_list = addr + MAYBE_SWAP (metadata[i]);
2709 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2710 - MAYBE_SWAP (metadata[i]))
2711 / 8);
2712 ++i;
2713
2714 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2715 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2716 - MAYBE_SWAP (metadata[i]));
2717 ++i;
2718
2719 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2720 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2721 - MAYBE_SWAP (metadata[i]))
2722 / (2 * sizeof (offset_type)));
2723 ++i;
2724
2725 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2726
2727 return 1;
2728 }
2729
2730
2731 /* Read the index file. If everything went ok, initialize the "quick"
2732 elements of all the CUs and return 1. Otherwise, return 0. */
2733
2734 static int
2735 dwarf2_read_index (struct objfile *objfile)
2736 {
2737 struct mapped_index local_map, *map;
2738 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2739 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2740
2741 if (!read_index_from_section (objfile, objfile->name,
2742 use_deprecated_index_sections,
2743 &dwarf2_per_objfile->gdb_index, &local_map,
2744 &cu_list, &cu_list_elements,
2745 &types_list, &types_list_elements))
2746 return 0;
2747
2748 /* Don't use the index if it's empty. */
2749 if (local_map.symbol_table_slots == 0)
2750 return 0;
2751
2752 /* If there is a .dwz file, read it so we can get its CU list as
2753 well. */
2754 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2755 {
2756 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2757 struct mapped_index dwz_map;
2758 const gdb_byte *dwz_types_ignore;
2759 offset_type dwz_types_elements_ignore;
2760
2761 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2762 1,
2763 &dwz->gdb_index, &dwz_map,
2764 &dwz_list, &dwz_list_elements,
2765 &dwz_types_ignore,
2766 &dwz_types_elements_ignore))
2767 {
2768 warning (_("could not read '.gdb_index' section from %s; skipping"),
2769 bfd_get_filename (dwz->dwz_bfd));
2770 return 0;
2771 }
2772 }
2773
2774 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2775 dwz_list_elements);
2776
2777 if (types_list_elements)
2778 {
2779 struct dwarf2_section_info *section;
2780
2781 /* We can only handle a single .debug_types when we have an
2782 index. */
2783 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2784 return 0;
2785
2786 section = VEC_index (dwarf2_section_info_def,
2787 dwarf2_per_objfile->types, 0);
2788
2789 create_signatured_type_table_from_index (objfile, section, types_list,
2790 types_list_elements);
2791 }
2792
2793 create_addrmap_from_index (objfile, &local_map);
2794
2795 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2796 *map = local_map;
2797
2798 dwarf2_per_objfile->index_table = map;
2799 dwarf2_per_objfile->using_index = 1;
2800 dwarf2_per_objfile->quick_file_names_table =
2801 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2802
2803 return 1;
2804 }
2805
2806 /* A helper for the "quick" functions which sets the global
2807 dwarf2_per_objfile according to OBJFILE. */
2808
2809 static void
2810 dw2_setup (struct objfile *objfile)
2811 {
2812 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2813 gdb_assert (dwarf2_per_objfile);
2814 }
2815
2816 /* Reader function for dw2_build_type_unit_groups. */
2817
2818 static void
2819 dw2_build_type_unit_groups_reader (const struct die_reader_specs *reader,
2820 gdb_byte *info_ptr,
2821 struct die_info *type_unit_die,
2822 int has_children,
2823 void *data)
2824 {
2825 struct dwarf2_cu *cu = reader->cu;
2826 struct attribute *attr;
2827 struct type_unit_group *tu_group;
2828
2829 gdb_assert (data == NULL);
2830
2831 if (! has_children)
2832 return;
2833
2834 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
2835 /* Call this for its side-effect of creating the associated
2836 struct type_unit_group if it doesn't already exist. */
2837 tu_group = get_type_unit_group (cu, attr);
2838 }
2839
2840 /* Build dwarf2_per_objfile->type_unit_groups.
2841 This function may be called multiple times. */
2842
2843 static void
2844 dw2_build_type_unit_groups (void)
2845 {
2846 if (dwarf2_per_objfile->type_unit_groups == NULL)
2847 build_type_unit_groups (dw2_build_type_unit_groups_reader, NULL);
2848 }
2849
2850 /* die_reader_func for dw2_get_file_names. */
2851
2852 static void
2853 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2854 gdb_byte *info_ptr,
2855 struct die_info *comp_unit_die,
2856 int has_children,
2857 void *data)
2858 {
2859 struct dwarf2_cu *cu = reader->cu;
2860 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2861 struct objfile *objfile = dwarf2_per_objfile->objfile;
2862 struct dwarf2_per_cu_data *lh_cu;
2863 struct line_header *lh;
2864 struct attribute *attr;
2865 int i;
2866 char *name, *comp_dir;
2867 void **slot;
2868 struct quick_file_names *qfn;
2869 unsigned int line_offset;
2870
2871 /* Our callers never want to match partial units -- instead they
2872 will match the enclosing full CU. */
2873 if (comp_unit_die->tag == DW_TAG_partial_unit)
2874 {
2875 this_cu->v.quick->no_file_data = 1;
2876 return;
2877 }
2878
2879 /* If we're reading the line header for TUs, store it in the "per_cu"
2880 for tu_group. */
2881 if (this_cu->is_debug_types)
2882 {
2883 struct type_unit_group *tu_group = data;
2884
2885 gdb_assert (tu_group != NULL);
2886 lh_cu = &tu_group->per_cu;
2887 }
2888 else
2889 lh_cu = this_cu;
2890
2891 lh = NULL;
2892 slot = NULL;
2893 line_offset = 0;
2894
2895 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2896 if (attr)
2897 {
2898 struct quick_file_names find_entry;
2899
2900 line_offset = DW_UNSND (attr);
2901
2902 /* We may have already read in this line header (TU line header sharing).
2903 If we have we're done. */
2904 find_entry.hash.dwo_unit = cu->dwo_unit;
2905 find_entry.hash.line_offset.sect_off = line_offset;
2906 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2907 &find_entry, INSERT);
2908 if (*slot != NULL)
2909 {
2910 lh_cu->v.quick->file_names = *slot;
2911 return;
2912 }
2913
2914 lh = dwarf_decode_line_header (line_offset, cu);
2915 }
2916 if (lh == NULL)
2917 {
2918 lh_cu->v.quick->no_file_data = 1;
2919 return;
2920 }
2921
2922 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2923 qfn->hash.dwo_unit = cu->dwo_unit;
2924 qfn->hash.line_offset.sect_off = line_offset;
2925 gdb_assert (slot != NULL);
2926 *slot = qfn;
2927
2928 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2929
2930 qfn->num_file_names = lh->num_file_names;
2931 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2932 lh->num_file_names * sizeof (char *));
2933 for (i = 0; i < lh->num_file_names; ++i)
2934 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2935 qfn->real_names = NULL;
2936
2937 free_line_header (lh);
2938
2939 lh_cu->v.quick->file_names = qfn;
2940 }
2941
2942 /* A helper for the "quick" functions which attempts to read the line
2943 table for THIS_CU. */
2944
2945 static struct quick_file_names *
2946 dw2_get_file_names (struct objfile *objfile,
2947 struct dwarf2_per_cu_data *this_cu)
2948 {
2949 /* For TUs this should only be called on the parent group. */
2950 if (this_cu->is_debug_types)
2951 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2952
2953 if (this_cu->v.quick->file_names != NULL)
2954 return this_cu->v.quick->file_names;
2955 /* If we know there is no line data, no point in looking again. */
2956 if (this_cu->v.quick->no_file_data)
2957 return NULL;
2958
2959 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2960 in the stub for CUs, there's is no need to lookup the DWO file.
2961 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2962 DWO file. */
2963 if (this_cu->is_debug_types)
2964 {
2965 struct type_unit_group *tu_group = this_cu->s.type_unit_group;
2966
2967 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2968 dw2_get_file_names_reader, tu_group);
2969 }
2970 else
2971 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2972
2973 if (this_cu->v.quick->no_file_data)
2974 return NULL;
2975 return this_cu->v.quick->file_names;
2976 }
2977
2978 /* A helper for the "quick" functions which computes and caches the
2979 real path for a given file name from the line table. */
2980
2981 static const char *
2982 dw2_get_real_path (struct objfile *objfile,
2983 struct quick_file_names *qfn, int index)
2984 {
2985 if (qfn->real_names == NULL)
2986 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2987 qfn->num_file_names, sizeof (char *));
2988
2989 if (qfn->real_names[index] == NULL)
2990 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2991
2992 return qfn->real_names[index];
2993 }
2994
2995 static struct symtab *
2996 dw2_find_last_source_symtab (struct objfile *objfile)
2997 {
2998 int index;
2999
3000 dw2_setup (objfile);
3001 index = dwarf2_per_objfile->n_comp_units - 1;
3002 return dw2_instantiate_symtab (dw2_get_cu (index));
3003 }
3004
3005 /* Traversal function for dw2_forget_cached_source_info. */
3006
3007 static int
3008 dw2_free_cached_file_names (void **slot, void *info)
3009 {
3010 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3011
3012 if (file_data->real_names)
3013 {
3014 int i;
3015
3016 for (i = 0; i < file_data->num_file_names; ++i)
3017 {
3018 xfree ((void*) file_data->real_names[i]);
3019 file_data->real_names[i] = NULL;
3020 }
3021 }
3022
3023 return 1;
3024 }
3025
3026 static void
3027 dw2_forget_cached_source_info (struct objfile *objfile)
3028 {
3029 dw2_setup (objfile);
3030
3031 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3032 dw2_free_cached_file_names, NULL);
3033 }
3034
3035 /* Helper function for dw2_map_symtabs_matching_filename that expands
3036 the symtabs and calls the iterator. */
3037
3038 static int
3039 dw2_map_expand_apply (struct objfile *objfile,
3040 struct dwarf2_per_cu_data *per_cu,
3041 const char *name,
3042 const char *full_path, const char *real_path,
3043 int (*callback) (struct symtab *, void *),
3044 void *data)
3045 {
3046 struct symtab *last_made = objfile->symtabs;
3047
3048 /* Don't visit already-expanded CUs. */
3049 if (per_cu->v.quick->symtab)
3050 return 0;
3051
3052 /* This may expand more than one symtab, and we want to iterate over
3053 all of them. */
3054 dw2_instantiate_symtab (per_cu);
3055
3056 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
3057 objfile->symtabs, last_made);
3058 }
3059
3060 /* Implementation of the map_symtabs_matching_filename method. */
3061
3062 static int
3063 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3064 const char *full_path, const char *real_path,
3065 int (*callback) (struct symtab *, void *),
3066 void *data)
3067 {
3068 int i;
3069 const char *name_basename = lbasename (name);
3070 int name_len = strlen (name);
3071 int is_abs = IS_ABSOLUTE_PATH (name);
3072
3073 dw2_setup (objfile);
3074
3075 dw2_build_type_unit_groups ();
3076
3077 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3078 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3079 {
3080 int j;
3081 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3082 struct quick_file_names *file_data;
3083
3084 /* We only need to look at symtabs not already expanded. */
3085 if (per_cu->v.quick->symtab)
3086 continue;
3087
3088 file_data = dw2_get_file_names (objfile, per_cu);
3089 if (file_data == NULL)
3090 continue;
3091
3092 for (j = 0; j < file_data->num_file_names; ++j)
3093 {
3094 const char *this_name = file_data->file_names[j];
3095
3096 if (FILENAME_CMP (name, this_name) == 0
3097 || (!is_abs && compare_filenames_for_search (this_name,
3098 name, name_len)))
3099 {
3100 if (dw2_map_expand_apply (objfile, per_cu,
3101 name, full_path, real_path,
3102 callback, data))
3103 return 1;
3104 }
3105
3106 /* Before we invoke realpath, which can get expensive when many
3107 files are involved, do a quick comparison of the basenames. */
3108 if (! basenames_may_differ
3109 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3110 continue;
3111
3112 if (full_path != NULL)
3113 {
3114 const char *this_real_name = dw2_get_real_path (objfile,
3115 file_data, j);
3116
3117 if (this_real_name != NULL
3118 && (FILENAME_CMP (full_path, this_real_name) == 0
3119 || (!is_abs
3120 && compare_filenames_for_search (this_real_name,
3121 name, name_len))))
3122 {
3123 if (dw2_map_expand_apply (objfile, per_cu,
3124 name, full_path, real_path,
3125 callback, data))
3126 return 1;
3127 }
3128 }
3129
3130 if (real_path != NULL)
3131 {
3132 const char *this_real_name = dw2_get_real_path (objfile,
3133 file_data, j);
3134
3135 if (this_real_name != NULL
3136 && (FILENAME_CMP (real_path, this_real_name) == 0
3137 || (!is_abs
3138 && compare_filenames_for_search (this_real_name,
3139 name, name_len))))
3140 {
3141 if (dw2_map_expand_apply (objfile, per_cu,
3142 name, full_path, real_path,
3143 callback, data))
3144 return 1;
3145 }
3146 }
3147 }
3148 }
3149
3150 return 0;
3151 }
3152
3153 static struct symtab *
3154 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3155 const char *name, domain_enum domain)
3156 {
3157 /* We do all the work in the pre_expand_symtabs_matching hook
3158 instead. */
3159 return NULL;
3160 }
3161
3162 /* A helper function that expands all symtabs that hold an object
3163 named NAME. If WANT_SPECIFIC_BLOCK is non-zero, only look for
3164 symbols in block BLOCK_KIND. */
3165
3166 static void
3167 dw2_do_expand_symtabs_matching (struct objfile *objfile,
3168 int want_specific_block,
3169 enum block_enum block_kind,
3170 const char *name, domain_enum domain)
3171 {
3172 struct mapped_index *index;
3173
3174 dw2_setup (objfile);
3175
3176 index = dwarf2_per_objfile->index_table;
3177
3178 /* index_table is NULL if OBJF_READNOW. */
3179 if (index)
3180 {
3181 offset_type *vec;
3182
3183 if (find_slot_in_mapped_hash (index, name, &vec))
3184 {
3185 offset_type i, len = MAYBE_SWAP (*vec);
3186 for (i = 0; i < len; ++i)
3187 {
3188 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[i + 1]);
3189 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3191 int want_static = block_kind != GLOBAL_BLOCK;
3192 /* This value is only valid for index versions >= 7. */
3193 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3194 gdb_index_symbol_kind symbol_kind =
3195 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3196 /* Only check the symbol attributes if they're present.
3197 Indices prior to version 7 don't record them,
3198 and indices >= 7 may elide them for certain symbols
3199 (gold does this). */
3200 int attrs_valid =
3201 (index->version >= 7
3202 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3203
3204 if (attrs_valid
3205 && want_specific_block
3206 && want_static != is_static)
3207 continue;
3208
3209 /* Only check the symbol's kind if it has one. */
3210 if (attrs_valid)
3211 {
3212 switch (domain)
3213 {
3214 case VAR_DOMAIN:
3215 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3216 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3217 /* Some types are also in VAR_DOMAIN. */
3218 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3219 continue;
3220 break;
3221 case STRUCT_DOMAIN:
3222 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3223 continue;
3224 break;
3225 case LABEL_DOMAIN:
3226 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3227 continue;
3228 break;
3229 default:
3230 break;
3231 }
3232 }
3233
3234 dw2_instantiate_symtab (per_cu);
3235 }
3236 }
3237 }
3238 }
3239
3240 static void
3241 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
3242 enum block_enum block_kind, const char *name,
3243 domain_enum domain)
3244 {
3245 dw2_do_expand_symtabs_matching (objfile, 1, block_kind, name, domain);
3246 }
3247
3248 static void
3249 dw2_print_stats (struct objfile *objfile)
3250 {
3251 int i, count;
3252
3253 dw2_setup (objfile);
3254 count = 0;
3255 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3256 + dwarf2_per_objfile->n_type_units); ++i)
3257 {
3258 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3259
3260 if (!per_cu->v.quick->symtab)
3261 ++count;
3262 }
3263 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3264 }
3265
3266 static void
3267 dw2_dump (struct objfile *objfile)
3268 {
3269 /* Nothing worth printing. */
3270 }
3271
3272 static void
3273 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3274 struct section_offsets *delta)
3275 {
3276 /* There's nothing to relocate here. */
3277 }
3278
3279 static void
3280 dw2_expand_symtabs_for_function (struct objfile *objfile,
3281 const char *func_name)
3282 {
3283 /* Note: It doesn't matter what we pass for block_kind here. */
3284 dw2_do_expand_symtabs_matching (objfile, 0, GLOBAL_BLOCK, func_name,
3285 VAR_DOMAIN);
3286 }
3287
3288 static void
3289 dw2_expand_all_symtabs (struct objfile *objfile)
3290 {
3291 int i;
3292
3293 dw2_setup (objfile);
3294
3295 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3296 + dwarf2_per_objfile->n_type_units); ++i)
3297 {
3298 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3299
3300 dw2_instantiate_symtab (per_cu);
3301 }
3302 }
3303
3304 static void
3305 dw2_expand_symtabs_with_filename (struct objfile *objfile,
3306 const char *filename)
3307 {
3308 int i;
3309
3310 dw2_setup (objfile);
3311
3312 /* We don't need to consider type units here.
3313 This is only called for examining code, e.g. expand_line_sal.
3314 There can be an order of magnitude (or more) more type units
3315 than comp units, and we avoid them if we can. */
3316
3317 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3318 {
3319 int j;
3320 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3321 struct quick_file_names *file_data;
3322
3323 /* We only need to look at symtabs not already expanded. */
3324 if (per_cu->v.quick->symtab)
3325 continue;
3326
3327 file_data = dw2_get_file_names (objfile, per_cu);
3328 if (file_data == NULL)
3329 continue;
3330
3331 for (j = 0; j < file_data->num_file_names; ++j)
3332 {
3333 const char *this_name = file_data->file_names[j];
3334 if (FILENAME_CMP (this_name, filename) == 0)
3335 {
3336 dw2_instantiate_symtab (per_cu);
3337 break;
3338 }
3339 }
3340 }
3341 }
3342
3343 /* A helper function for dw2_find_symbol_file that finds the primary
3344 file name for a given CU. This is a die_reader_func. */
3345
3346 static void
3347 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3348 gdb_byte *info_ptr,
3349 struct die_info *comp_unit_die,
3350 int has_children,
3351 void *data)
3352 {
3353 const char **result_ptr = data;
3354 struct dwarf2_cu *cu = reader->cu;
3355 struct attribute *attr;
3356
3357 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3358 if (attr == NULL)
3359 *result_ptr = NULL;
3360 else
3361 *result_ptr = DW_STRING (attr);
3362 }
3363
3364 static const char *
3365 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3366 {
3367 struct dwarf2_per_cu_data *per_cu;
3368 offset_type *vec;
3369 const char *filename;
3370
3371 dw2_setup (objfile);
3372
3373 /* index_table is NULL if OBJF_READNOW. */
3374 if (!dwarf2_per_objfile->index_table)
3375 {
3376 struct symtab *s;
3377
3378 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3379 {
3380 struct blockvector *bv = BLOCKVECTOR (s);
3381 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3382 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3383
3384 if (sym)
3385 return SYMBOL_SYMTAB (sym)->filename;
3386 }
3387 return NULL;
3388 }
3389
3390 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3391 name, &vec))
3392 return NULL;
3393
3394 /* Note that this just looks at the very first one named NAME -- but
3395 actually we are looking for a function. find_main_filename
3396 should be rewritten so that it doesn't require a custom hook. It
3397 could just use the ordinary symbol tables. */
3398 /* vec[0] is the length, which must always be >0. */
3399 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3400
3401 if (per_cu->v.quick->symtab != NULL)
3402 return per_cu->v.quick->symtab->filename;
3403
3404 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3405 dw2_get_primary_filename_reader, &filename);
3406
3407 return filename;
3408 }
3409
3410 static void
3411 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3412 struct objfile *objfile, int global,
3413 int (*callback) (struct block *,
3414 struct symbol *, void *),
3415 void *data, symbol_compare_ftype *match,
3416 symbol_compare_ftype *ordered_compare)
3417 {
3418 /* Currently unimplemented; used for Ada. The function can be called if the
3419 current language is Ada for a non-Ada objfile using GNU index. As Ada
3420 does not look for non-Ada symbols this function should just return. */
3421 }
3422
3423 static void
3424 dw2_expand_symtabs_matching
3425 (struct objfile *objfile,
3426 int (*file_matcher) (const char *, void *),
3427 int (*name_matcher) (const char *, void *),
3428 enum search_domain kind,
3429 void *data)
3430 {
3431 int i;
3432 offset_type iter;
3433 struct mapped_index *index;
3434
3435 dw2_setup (objfile);
3436
3437 /* index_table is NULL if OBJF_READNOW. */
3438 if (!dwarf2_per_objfile->index_table)
3439 return;
3440 index = dwarf2_per_objfile->index_table;
3441
3442 if (file_matcher != NULL)
3443 {
3444 struct cleanup *cleanup;
3445 htab_t visited_found, visited_not_found;
3446
3447 dw2_build_type_unit_groups ();
3448
3449 visited_found = htab_create_alloc (10,
3450 htab_hash_pointer, htab_eq_pointer,
3451 NULL, xcalloc, xfree);
3452 cleanup = make_cleanup_htab_delete (visited_found);
3453 visited_not_found = htab_create_alloc (10,
3454 htab_hash_pointer, htab_eq_pointer,
3455 NULL, xcalloc, xfree);
3456 make_cleanup_htab_delete (visited_not_found);
3457
3458 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3459 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3460 {
3461 int j;
3462 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3463 struct quick_file_names *file_data;
3464 void **slot;
3465
3466 per_cu->v.quick->mark = 0;
3467
3468 /* We only need to look at symtabs not already expanded. */
3469 if (per_cu->v.quick->symtab)
3470 continue;
3471
3472 file_data = dw2_get_file_names (objfile, per_cu);
3473 if (file_data == NULL)
3474 continue;
3475
3476 if (htab_find (visited_not_found, file_data) != NULL)
3477 continue;
3478 else if (htab_find (visited_found, file_data) != NULL)
3479 {
3480 per_cu->v.quick->mark = 1;
3481 continue;
3482 }
3483
3484 for (j = 0; j < file_data->num_file_names; ++j)
3485 {
3486 if (file_matcher (file_data->file_names[j], data))
3487 {
3488 per_cu->v.quick->mark = 1;
3489 break;
3490 }
3491 }
3492
3493 slot = htab_find_slot (per_cu->v.quick->mark
3494 ? visited_found
3495 : visited_not_found,
3496 file_data, INSERT);
3497 *slot = file_data;
3498 }
3499
3500 do_cleanups (cleanup);
3501 }
3502
3503 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3504 {
3505 offset_type idx = 2 * iter;
3506 const char *name;
3507 offset_type *vec, vec_len, vec_idx;
3508
3509 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3510 continue;
3511
3512 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3513
3514 if (! (*name_matcher) (name, data))
3515 continue;
3516
3517 /* The name was matched, now expand corresponding CUs that were
3518 marked. */
3519 vec = (offset_type *) (index->constant_pool
3520 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3521 vec_len = MAYBE_SWAP (vec[0]);
3522 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3523 {
3524 struct dwarf2_per_cu_data *per_cu;
3525 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3526 gdb_index_symbol_kind symbol_kind =
3527 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3528 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3529
3530 /* Don't crash on bad data. */
3531 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3532 + dwarf2_per_objfile->n_type_units))
3533 continue;
3534
3535 /* Only check the symbol's kind if it has one.
3536 Indices prior to version 7 don't record it. */
3537 if (index->version >= 7)
3538 {
3539 switch (kind)
3540 {
3541 case VARIABLES_DOMAIN:
3542 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3543 continue;
3544 break;
3545 case FUNCTIONS_DOMAIN:
3546 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3547 continue;
3548 break;
3549 case TYPES_DOMAIN:
3550 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3551 continue;
3552 break;
3553 default:
3554 break;
3555 }
3556 }
3557
3558 per_cu = dw2_get_cu (cu_index);
3559 if (file_matcher == NULL || per_cu->v.quick->mark)
3560 dw2_instantiate_symtab (per_cu);
3561 }
3562 }
3563 }
3564
3565 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3566 symtab. */
3567
3568 static struct symtab *
3569 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3570 {
3571 int i;
3572
3573 if (BLOCKVECTOR (symtab) != NULL
3574 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3575 return symtab;
3576
3577 if (symtab->includes == NULL)
3578 return NULL;
3579
3580 for (i = 0; symtab->includes[i]; ++i)
3581 {
3582 struct symtab *s = symtab->includes[i];
3583
3584 s = recursively_find_pc_sect_symtab (s, pc);
3585 if (s != NULL)
3586 return s;
3587 }
3588
3589 return NULL;
3590 }
3591
3592 static struct symtab *
3593 dw2_find_pc_sect_symtab (struct objfile *objfile,
3594 struct minimal_symbol *msymbol,
3595 CORE_ADDR pc,
3596 struct obj_section *section,
3597 int warn_if_readin)
3598 {
3599 struct dwarf2_per_cu_data *data;
3600 struct symtab *result;
3601
3602 dw2_setup (objfile);
3603
3604 if (!objfile->psymtabs_addrmap)
3605 return NULL;
3606
3607 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3608 if (!data)
3609 return NULL;
3610
3611 if (warn_if_readin && data->v.quick->symtab)
3612 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3613 paddress (get_objfile_arch (objfile), pc));
3614
3615 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3616 gdb_assert (result != NULL);
3617 return result;
3618 }
3619
3620 static void
3621 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3622 void *data, int need_fullname)
3623 {
3624 int i;
3625 struct cleanup *cleanup;
3626 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3627 NULL, xcalloc, xfree);
3628
3629 cleanup = make_cleanup_htab_delete (visited);
3630 dw2_setup (objfile);
3631
3632 dw2_build_type_unit_groups ();
3633
3634 /* We can ignore file names coming from already-expanded CUs. */
3635 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3636 + dwarf2_per_objfile->n_type_units); ++i)
3637 {
3638 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3639
3640 if (per_cu->v.quick->symtab)
3641 {
3642 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3643 INSERT);
3644
3645 *slot = per_cu->v.quick->file_names;
3646 }
3647 }
3648
3649 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3650 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3651 {
3652 int j;
3653 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3654 struct quick_file_names *file_data;
3655 void **slot;
3656
3657 /* We only need to look at symtabs not already expanded. */
3658 if (per_cu->v.quick->symtab)
3659 continue;
3660
3661 file_data = dw2_get_file_names (objfile, per_cu);
3662 if (file_data == NULL)
3663 continue;
3664
3665 slot = htab_find_slot (visited, file_data, INSERT);
3666 if (*slot)
3667 {
3668 /* Already visited. */
3669 continue;
3670 }
3671 *slot = file_data;
3672
3673 for (j = 0; j < file_data->num_file_names; ++j)
3674 {
3675 const char *this_real_name;
3676
3677 if (need_fullname)
3678 this_real_name = dw2_get_real_path (objfile, file_data, j);
3679 else
3680 this_real_name = NULL;
3681 (*fun) (file_data->file_names[j], this_real_name, data);
3682 }
3683 }
3684
3685 do_cleanups (cleanup);
3686 }
3687
3688 static int
3689 dw2_has_symbols (struct objfile *objfile)
3690 {
3691 return 1;
3692 }
3693
3694 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3695 {
3696 dw2_has_symbols,
3697 dw2_find_last_source_symtab,
3698 dw2_forget_cached_source_info,
3699 dw2_map_symtabs_matching_filename,
3700 dw2_lookup_symbol,
3701 dw2_pre_expand_symtabs_matching,
3702 dw2_print_stats,
3703 dw2_dump,
3704 dw2_relocate,
3705 dw2_expand_symtabs_for_function,
3706 dw2_expand_all_symtabs,
3707 dw2_expand_symtabs_with_filename,
3708 dw2_find_symbol_file,
3709 dw2_map_matching_symbols,
3710 dw2_expand_symtabs_matching,
3711 dw2_find_pc_sect_symtab,
3712 dw2_map_symbol_filenames
3713 };
3714
3715 /* Initialize for reading DWARF for this objfile. Return 0 if this
3716 file will use psymtabs, or 1 if using the GNU index. */
3717
3718 int
3719 dwarf2_initialize_objfile (struct objfile *objfile)
3720 {
3721 /* If we're about to read full symbols, don't bother with the
3722 indices. In this case we also don't care if some other debug
3723 format is making psymtabs, because they are all about to be
3724 expanded anyway. */
3725 if ((objfile->flags & OBJF_READNOW))
3726 {
3727 int i;
3728
3729 dwarf2_per_objfile->using_index = 1;
3730 create_all_comp_units (objfile);
3731 create_all_type_units (objfile);
3732 dwarf2_per_objfile->quick_file_names_table =
3733 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3734
3735 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3736 + dwarf2_per_objfile->n_type_units); ++i)
3737 {
3738 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3739
3740 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3741 struct dwarf2_per_cu_quick_data);
3742 }
3743
3744 /* Return 1 so that gdb sees the "quick" functions. However,
3745 these functions will be no-ops because we will have expanded
3746 all symtabs. */
3747 return 1;
3748 }
3749
3750 if (dwarf2_read_index (objfile))
3751 return 1;
3752
3753 return 0;
3754 }
3755
3756 \f
3757
3758 /* Build a partial symbol table. */
3759
3760 void
3761 dwarf2_build_psymtabs (struct objfile *objfile)
3762 {
3763 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3764 {
3765 init_psymbol_list (objfile, 1024);
3766 }
3767
3768 dwarf2_build_psymtabs_hard (objfile);
3769 }
3770
3771 /* Return the total length of the CU described by HEADER. */
3772
3773 static unsigned int
3774 get_cu_length (const struct comp_unit_head *header)
3775 {
3776 return header->initial_length_size + header->length;
3777 }
3778
3779 /* Return TRUE if OFFSET is within CU_HEADER. */
3780
3781 static inline int
3782 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3783 {
3784 sect_offset bottom = { cu_header->offset.sect_off };
3785 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3786
3787 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3788 }
3789
3790 /* Find the base address of the compilation unit for range lists and
3791 location lists. It will normally be specified by DW_AT_low_pc.
3792 In DWARF-3 draft 4, the base address could be overridden by
3793 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3794 compilation units with discontinuous ranges. */
3795
3796 static void
3797 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3798 {
3799 struct attribute *attr;
3800
3801 cu->base_known = 0;
3802 cu->base_address = 0;
3803
3804 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3805 if (attr)
3806 {
3807 cu->base_address = DW_ADDR (attr);
3808 cu->base_known = 1;
3809 }
3810 else
3811 {
3812 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3813 if (attr)
3814 {
3815 cu->base_address = DW_ADDR (attr);
3816 cu->base_known = 1;
3817 }
3818 }
3819 }
3820
3821 /* Read in the comp unit header information from the debug_info at info_ptr.
3822 NOTE: This leaves members offset, first_die_offset to be filled in
3823 by the caller. */
3824
3825 static gdb_byte *
3826 read_comp_unit_head (struct comp_unit_head *cu_header,
3827 gdb_byte *info_ptr, bfd *abfd)
3828 {
3829 int signed_addr;
3830 unsigned int bytes_read;
3831
3832 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3833 cu_header->initial_length_size = bytes_read;
3834 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3835 info_ptr += bytes_read;
3836 cu_header->version = read_2_bytes (abfd, info_ptr);
3837 info_ptr += 2;
3838 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3839 &bytes_read);
3840 info_ptr += bytes_read;
3841 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3842 info_ptr += 1;
3843 signed_addr = bfd_get_sign_extend_vma (abfd);
3844 if (signed_addr < 0)
3845 internal_error (__FILE__, __LINE__,
3846 _("read_comp_unit_head: dwarf from non elf file"));
3847 cu_header->signed_addr_p = signed_addr;
3848
3849 return info_ptr;
3850 }
3851
3852 /* Helper function that returns the proper abbrev section for
3853 THIS_CU. */
3854
3855 static struct dwarf2_section_info *
3856 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3857 {
3858 struct dwarf2_section_info *abbrev;
3859
3860 if (this_cu->is_dwz)
3861 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3862 else
3863 abbrev = &dwarf2_per_objfile->abbrev;
3864
3865 return abbrev;
3866 }
3867
3868 /* Subroutine of read_and_check_comp_unit_head and
3869 read_and_check_type_unit_head to simplify them.
3870 Perform various error checking on the header. */
3871
3872 static void
3873 error_check_comp_unit_head (struct comp_unit_head *header,
3874 struct dwarf2_section_info *section,
3875 struct dwarf2_section_info *abbrev_section)
3876 {
3877 bfd *abfd = section->asection->owner;
3878 const char *filename = bfd_get_filename (abfd);
3879
3880 if (header->version != 2 && header->version != 3 && header->version != 4)
3881 error (_("Dwarf Error: wrong version in compilation unit header "
3882 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3883 filename);
3884
3885 if (header->abbrev_offset.sect_off
3886 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3887 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3888 "(offset 0x%lx + 6) [in module %s]"),
3889 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3890 filename);
3891
3892 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3893 avoid potential 32-bit overflow. */
3894 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3895 > section->size)
3896 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3897 "(offset 0x%lx + 0) [in module %s]"),
3898 (long) header->length, (long) header->offset.sect_off,
3899 filename);
3900 }
3901
3902 /* Read in a CU/TU header and perform some basic error checking.
3903 The contents of the header are stored in HEADER.
3904 The result is a pointer to the start of the first DIE. */
3905
3906 static gdb_byte *
3907 read_and_check_comp_unit_head (struct comp_unit_head *header,
3908 struct dwarf2_section_info *section,
3909 struct dwarf2_section_info *abbrev_section,
3910 gdb_byte *info_ptr,
3911 int is_debug_types_section)
3912 {
3913 gdb_byte *beg_of_comp_unit = info_ptr;
3914 bfd *abfd = section->asection->owner;
3915
3916 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3917
3918 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3919
3920 /* If we're reading a type unit, skip over the signature and
3921 type_offset fields. */
3922 if (is_debug_types_section)
3923 info_ptr += 8 /*signature*/ + header->offset_size;
3924
3925 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3926
3927 error_check_comp_unit_head (header, section, abbrev_section);
3928
3929 return info_ptr;
3930 }
3931
3932 /* Read in the types comp unit header information from .debug_types entry at
3933 types_ptr. The result is a pointer to one past the end of the header. */
3934
3935 static gdb_byte *
3936 read_and_check_type_unit_head (struct comp_unit_head *header,
3937 struct dwarf2_section_info *section,
3938 struct dwarf2_section_info *abbrev_section,
3939 gdb_byte *info_ptr,
3940 ULONGEST *signature,
3941 cu_offset *type_offset_in_tu)
3942 {
3943 gdb_byte *beg_of_comp_unit = info_ptr;
3944 bfd *abfd = section->asection->owner;
3945
3946 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3947
3948 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3949
3950 /* If we're reading a type unit, skip over the signature and
3951 type_offset fields. */
3952 if (signature != NULL)
3953 *signature = read_8_bytes (abfd, info_ptr);
3954 info_ptr += 8;
3955 if (type_offset_in_tu != NULL)
3956 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
3957 header->offset_size);
3958 info_ptr += header->offset_size;
3959
3960 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3961
3962 error_check_comp_unit_head (header, section, abbrev_section);
3963
3964 return info_ptr;
3965 }
3966
3967 /* Fetch the abbreviation table offset from a comp or type unit header. */
3968
3969 static sect_offset
3970 read_abbrev_offset (struct dwarf2_section_info *section,
3971 sect_offset offset)
3972 {
3973 bfd *abfd = section->asection->owner;
3974 gdb_byte *info_ptr;
3975 unsigned int length, initial_length_size, offset_size;
3976 sect_offset abbrev_offset;
3977
3978 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
3979 info_ptr = section->buffer + offset.sect_off;
3980 length = read_initial_length (abfd, info_ptr, &initial_length_size);
3981 offset_size = initial_length_size == 4 ? 4 : 8;
3982 info_ptr += initial_length_size + 2 /*version*/;
3983 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
3984 return abbrev_offset;
3985 }
3986
3987 /* Allocate a new partial symtab for file named NAME and mark this new
3988 partial symtab as being an include of PST. */
3989
3990 static void
3991 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3992 struct objfile *objfile)
3993 {
3994 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3995
3996 subpst->section_offsets = pst->section_offsets;
3997 subpst->textlow = 0;
3998 subpst->texthigh = 0;
3999
4000 subpst->dependencies = (struct partial_symtab **)
4001 obstack_alloc (&objfile->objfile_obstack,
4002 sizeof (struct partial_symtab *));
4003 subpst->dependencies[0] = pst;
4004 subpst->number_of_dependencies = 1;
4005
4006 subpst->globals_offset = 0;
4007 subpst->n_global_syms = 0;
4008 subpst->statics_offset = 0;
4009 subpst->n_static_syms = 0;
4010 subpst->symtab = NULL;
4011 subpst->read_symtab = pst->read_symtab;
4012 subpst->readin = 0;
4013
4014 /* No private part is necessary for include psymtabs. This property
4015 can be used to differentiate between such include psymtabs and
4016 the regular ones. */
4017 subpst->read_symtab_private = NULL;
4018 }
4019
4020 /* Read the Line Number Program data and extract the list of files
4021 included by the source file represented by PST. Build an include
4022 partial symtab for each of these included files. */
4023
4024 static void
4025 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4026 struct die_info *die,
4027 struct partial_symtab *pst)
4028 {
4029 struct line_header *lh = NULL;
4030 struct attribute *attr;
4031
4032 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4033 if (attr)
4034 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4035 if (lh == NULL)
4036 return; /* No linetable, so no includes. */
4037
4038 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4039 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4040
4041 free_line_header (lh);
4042 }
4043
4044 static hashval_t
4045 hash_signatured_type (const void *item)
4046 {
4047 const struct signatured_type *sig_type = item;
4048
4049 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4050 return sig_type->signature;
4051 }
4052
4053 static int
4054 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4055 {
4056 const struct signatured_type *lhs = item_lhs;
4057 const struct signatured_type *rhs = item_rhs;
4058
4059 return lhs->signature == rhs->signature;
4060 }
4061
4062 /* Allocate a hash table for signatured types. */
4063
4064 static htab_t
4065 allocate_signatured_type_table (struct objfile *objfile)
4066 {
4067 return htab_create_alloc_ex (41,
4068 hash_signatured_type,
4069 eq_signatured_type,
4070 NULL,
4071 &objfile->objfile_obstack,
4072 hashtab_obstack_allocate,
4073 dummy_obstack_deallocate);
4074 }
4075
4076 /* A helper function to add a signatured type CU to a table. */
4077
4078 static int
4079 add_signatured_type_cu_to_table (void **slot, void *datum)
4080 {
4081 struct signatured_type *sigt = *slot;
4082 struct signatured_type ***datap = datum;
4083
4084 **datap = sigt;
4085 ++*datap;
4086
4087 return 1;
4088 }
4089
4090 /* Create the hash table of all entries in the .debug_types section.
4091 DWO_FILE is a pointer to the DWO file for .debug_types.dwo,
4092 NULL otherwise.
4093 Note: This function processes DWO files only, not DWP files.
4094 The result is a pointer to the hash table or NULL if there are
4095 no types. */
4096
4097 static htab_t
4098 create_debug_types_hash_table (struct dwo_file *dwo_file,
4099 VEC (dwarf2_section_info_def) *types)
4100 {
4101 struct objfile *objfile = dwarf2_per_objfile->objfile;
4102 htab_t types_htab = NULL;
4103 int ix;
4104 struct dwarf2_section_info *section;
4105 struct dwarf2_section_info *abbrev_section;
4106
4107 if (VEC_empty (dwarf2_section_info_def, types))
4108 return NULL;
4109
4110 abbrev_section = (dwo_file != NULL
4111 ? &dwo_file->sections.abbrev
4112 : &dwarf2_per_objfile->abbrev);
4113
4114 if (dwarf2_read_debug)
4115 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4116 dwo_file ? ".dwo" : "",
4117 bfd_get_filename (abbrev_section->asection->owner));
4118
4119 for (ix = 0;
4120 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4121 ++ix)
4122 {
4123 bfd *abfd;
4124 gdb_byte *info_ptr, *end_ptr;
4125 struct dwarf2_section_info *abbrev_section;
4126
4127 dwarf2_read_section (objfile, section);
4128 info_ptr = section->buffer;
4129
4130 if (info_ptr == NULL)
4131 continue;
4132
4133 /* We can't set abfd until now because the section may be empty or
4134 not present, in which case section->asection will be NULL. */
4135 abfd = section->asection->owner;
4136
4137 if (dwo_file)
4138 abbrev_section = &dwo_file->sections.abbrev;
4139 else
4140 abbrev_section = &dwarf2_per_objfile->abbrev;
4141
4142 if (types_htab == NULL)
4143 {
4144 if (dwo_file)
4145 types_htab = allocate_dwo_unit_table (objfile);
4146 else
4147 types_htab = allocate_signatured_type_table (objfile);
4148 }
4149
4150 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4151 because we don't need to read any dies: the signature is in the
4152 header. */
4153
4154 end_ptr = info_ptr + section->size;
4155 while (info_ptr < end_ptr)
4156 {
4157 sect_offset offset;
4158 cu_offset type_offset_in_tu;
4159 ULONGEST signature;
4160 struct signatured_type *sig_type;
4161 struct dwo_unit *dwo_tu;
4162 void **slot;
4163 gdb_byte *ptr = info_ptr;
4164 struct comp_unit_head header;
4165 unsigned int length;
4166
4167 offset.sect_off = ptr - section->buffer;
4168
4169 /* We need to read the type's signature in order to build the hash
4170 table, but we don't need anything else just yet. */
4171
4172 ptr = read_and_check_type_unit_head (&header, section,
4173 abbrev_section, ptr,
4174 &signature, &type_offset_in_tu);
4175
4176 length = get_cu_length (&header);
4177
4178 /* Skip dummy type units. */
4179 if (ptr >= info_ptr + length
4180 || peek_abbrev_code (abfd, ptr) == 0)
4181 {
4182 info_ptr += length;
4183 continue;
4184 }
4185
4186 if (dwo_file)
4187 {
4188 sig_type = NULL;
4189 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4190 struct dwo_unit);
4191 dwo_tu->dwo_file = dwo_file;
4192 dwo_tu->signature = signature;
4193 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4194 dwo_tu->info_or_types_section = section;
4195 dwo_tu->offset = offset;
4196 dwo_tu->length = length;
4197 }
4198 else
4199 {
4200 /* N.B.: type_offset is not usable if this type uses a DWO file.
4201 The real type_offset is in the DWO file. */
4202 dwo_tu = NULL;
4203 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4204 struct signatured_type);
4205 sig_type->signature = signature;
4206 sig_type->type_offset_in_tu = type_offset_in_tu;
4207 sig_type->per_cu.objfile = objfile;
4208 sig_type->per_cu.is_debug_types = 1;
4209 sig_type->per_cu.info_or_types_section = section;
4210 sig_type->per_cu.offset = offset;
4211 sig_type->per_cu.length = length;
4212 }
4213
4214 slot = htab_find_slot (types_htab,
4215 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4216 INSERT);
4217 gdb_assert (slot != NULL);
4218 if (*slot != NULL)
4219 {
4220 sect_offset dup_offset;
4221
4222 if (dwo_file)
4223 {
4224 const struct dwo_unit *dup_tu = *slot;
4225
4226 dup_offset = dup_tu->offset;
4227 }
4228 else
4229 {
4230 const struct signatured_type *dup_tu = *slot;
4231
4232 dup_offset = dup_tu->per_cu.offset;
4233 }
4234
4235 complaint (&symfile_complaints,
4236 _("debug type entry at offset 0x%x is duplicate to the "
4237 "entry at offset 0x%x, signature 0x%s"),
4238 offset.sect_off, dup_offset.sect_off,
4239 phex (signature, sizeof (signature)));
4240 }
4241 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4242
4243 if (dwarf2_read_debug)
4244 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
4245 offset.sect_off,
4246 phex (signature, sizeof (signature)));
4247
4248 info_ptr += length;
4249 }
4250 }
4251
4252 return types_htab;
4253 }
4254
4255 /* Create the hash table of all entries in the .debug_types section,
4256 and initialize all_type_units.
4257 The result is zero if there is an error (e.g. missing .debug_types section),
4258 otherwise non-zero. */
4259
4260 static int
4261 create_all_type_units (struct objfile *objfile)
4262 {
4263 htab_t types_htab;
4264 struct signatured_type **iter;
4265
4266 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4267 if (types_htab == NULL)
4268 {
4269 dwarf2_per_objfile->signatured_types = NULL;
4270 return 0;
4271 }
4272
4273 dwarf2_per_objfile->signatured_types = types_htab;
4274
4275 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4276 dwarf2_per_objfile->all_type_units
4277 = obstack_alloc (&objfile->objfile_obstack,
4278 dwarf2_per_objfile->n_type_units
4279 * sizeof (struct signatured_type *));
4280 iter = &dwarf2_per_objfile->all_type_units[0];
4281 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4282 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4283 == dwarf2_per_objfile->n_type_units);
4284
4285 return 1;
4286 }
4287
4288 /* Lookup a signature based type for DW_FORM_ref_sig8.
4289 Returns NULL if signature SIG is not present in the table. */
4290
4291 static struct signatured_type *
4292 lookup_signatured_type (ULONGEST sig)
4293 {
4294 struct signatured_type find_entry, *entry;
4295
4296 if (dwarf2_per_objfile->signatured_types == NULL)
4297 {
4298 complaint (&symfile_complaints,
4299 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
4300 return NULL;
4301 }
4302
4303 find_entry.signature = sig;
4304 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4305 return entry;
4306 }
4307 \f
4308 /* Low level DIE reading support. */
4309
4310 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4311
4312 static void
4313 init_cu_die_reader (struct die_reader_specs *reader,
4314 struct dwarf2_cu *cu,
4315 struct dwarf2_section_info *section,
4316 struct dwo_file *dwo_file)
4317 {
4318 gdb_assert (section->readin && section->buffer != NULL);
4319 reader->abfd = section->asection->owner;
4320 reader->cu = cu;
4321 reader->dwo_file = dwo_file;
4322 reader->die_section = section;
4323 reader->buffer = section->buffer;
4324 reader->buffer_end = section->buffer + section->size;
4325 }
4326
4327 /* Initialize a CU (or TU) and read its DIEs.
4328 If the CU defers to a DWO file, read the DWO file as well.
4329
4330 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4331 Otherwise the table specified in the comp unit header is read in and used.
4332 This is an optimization for when we already have the abbrev table.
4333
4334 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4335 Otherwise, a new CU is allocated with xmalloc.
4336
4337 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4338 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4339
4340 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4341 linker) then DIE_READER_FUNC will not get called. */
4342
4343 static void
4344 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4345 struct abbrev_table *abbrev_table,
4346 int use_existing_cu, int keep,
4347 die_reader_func_ftype *die_reader_func,
4348 void *data)
4349 {
4350 struct objfile *objfile = dwarf2_per_objfile->objfile;
4351 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4352 bfd *abfd = section->asection->owner;
4353 struct dwarf2_cu *cu;
4354 gdb_byte *begin_info_ptr, *info_ptr;
4355 struct die_reader_specs reader;
4356 struct die_info *comp_unit_die;
4357 int has_children;
4358 struct attribute *attr;
4359 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4360 struct signatured_type *sig_type = NULL;
4361 struct dwarf2_section_info *abbrev_section;
4362 /* Non-zero if CU currently points to a DWO file and we need to
4363 reread it. When this happens we need to reread the skeleton die
4364 before we can reread the DWO file. */
4365 int rereading_dwo_cu = 0;
4366
4367 if (dwarf2_die_debug)
4368 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4369 this_cu->is_debug_types ? "type" : "comp",
4370 this_cu->offset.sect_off);
4371
4372 if (use_existing_cu)
4373 gdb_assert (keep);
4374
4375 cleanups = make_cleanup (null_cleanup, NULL);
4376
4377 /* This is cheap if the section is already read in. */
4378 dwarf2_read_section (objfile, section);
4379
4380 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4381
4382 abbrev_section = get_abbrev_section_for_cu (this_cu);
4383
4384 if (use_existing_cu && this_cu->cu != NULL)
4385 {
4386 cu = this_cu->cu;
4387
4388 /* If this CU is from a DWO file we need to start over, we need to
4389 refetch the attributes from the skeleton CU.
4390 This could be optimized by retrieving those attributes from when we
4391 were here the first time: the previous comp_unit_die was stored in
4392 comp_unit_obstack. But there's no data yet that we need this
4393 optimization. */
4394 if (cu->dwo_unit != NULL)
4395 rereading_dwo_cu = 1;
4396 }
4397 else
4398 {
4399 /* If !use_existing_cu, this_cu->cu must be NULL. */
4400 gdb_assert (this_cu->cu == NULL);
4401
4402 cu = xmalloc (sizeof (*cu));
4403 init_one_comp_unit (cu, this_cu);
4404
4405 /* If an error occurs while loading, release our storage. */
4406 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4407 }
4408
4409 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4410 {
4411 /* We already have the header, there's no need to read it in again. */
4412 info_ptr += cu->header.first_die_offset.cu_off;
4413 }
4414 else
4415 {
4416 if (this_cu->is_debug_types)
4417 {
4418 ULONGEST signature;
4419 cu_offset type_offset_in_tu;
4420
4421 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4422 abbrev_section, info_ptr,
4423 &signature,
4424 &type_offset_in_tu);
4425
4426 /* Since per_cu is the first member of struct signatured_type,
4427 we can go from a pointer to one to a pointer to the other. */
4428 sig_type = (struct signatured_type *) this_cu;
4429 gdb_assert (sig_type->signature == signature);
4430 gdb_assert (sig_type->type_offset_in_tu.cu_off
4431 == type_offset_in_tu.cu_off);
4432 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4433
4434 /* LENGTH has not been set yet for type units if we're
4435 using .gdb_index. */
4436 this_cu->length = get_cu_length (&cu->header);
4437
4438 /* Establish the type offset that can be used to lookup the type. */
4439 sig_type->type_offset_in_section.sect_off =
4440 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4441 }
4442 else
4443 {
4444 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4445 abbrev_section,
4446 info_ptr, 0);
4447
4448 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4449 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4450 }
4451 }
4452
4453 /* Skip dummy compilation units. */
4454 if (info_ptr >= begin_info_ptr + this_cu->length
4455 || peek_abbrev_code (abfd, info_ptr) == 0)
4456 {
4457 do_cleanups (cleanups);
4458 return;
4459 }
4460
4461 /* If we don't have them yet, read the abbrevs for this compilation unit.
4462 And if we need to read them now, make sure they're freed when we're
4463 done. Note that it's important that if the CU had an abbrev table
4464 on entry we don't free it when we're done: Somewhere up the call stack
4465 it may be in use. */
4466 if (abbrev_table != NULL)
4467 {
4468 gdb_assert (cu->abbrev_table == NULL);
4469 gdb_assert (cu->header.abbrev_offset.sect_off
4470 == abbrev_table->offset.sect_off);
4471 cu->abbrev_table = abbrev_table;
4472 }
4473 else if (cu->abbrev_table == NULL)
4474 {
4475 dwarf2_read_abbrevs (cu, abbrev_section);
4476 make_cleanup (dwarf2_free_abbrev_table, cu);
4477 }
4478 else if (rereading_dwo_cu)
4479 {
4480 dwarf2_free_abbrev_table (cu);
4481 dwarf2_read_abbrevs (cu, abbrev_section);
4482 }
4483
4484 /* Read the top level CU/TU die. */
4485 init_cu_die_reader (&reader, cu, section, NULL);
4486 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4487
4488 /* If we have a DWO stub, process it and then read in the DWO file.
4489 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4490 a DWO CU, that this test will fail. */
4491 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4492 if (attr)
4493 {
4494 char *dwo_name = DW_STRING (attr);
4495 const char *comp_dir_string;
4496 struct dwo_unit *dwo_unit;
4497 ULONGEST signature; /* Or dwo_id. */
4498 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4499 int i,num_extra_attrs;
4500 struct dwarf2_section_info *dwo_abbrev_section;
4501
4502 if (has_children)
4503 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4504 " has children (offset 0x%x) [in module %s]"),
4505 this_cu->offset.sect_off, bfd_get_filename (abfd));
4506
4507 /* These attributes aren't processed until later:
4508 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4509 However, the attribute is found in the stub which we won't have later.
4510 In order to not impose this complication on the rest of the code,
4511 we read them here and copy them to the DWO CU/TU die. */
4512
4513 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4514 DWO file. */
4515 stmt_list = NULL;
4516 if (! this_cu->is_debug_types)
4517 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4518 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4519 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4520 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
4521 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4522
4523 /* There should be a DW_AT_addr_base attribute here (if needed).
4524 We need the value before we can process DW_FORM_GNU_addr_index. */
4525 cu->addr_base = 0;
4526 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4527 if (attr)
4528 cu->addr_base = DW_UNSND (attr);
4529
4530 /* There should be a DW_AT_ranges_base attribute here (if needed).
4531 We need the value before we can process DW_AT_ranges. */
4532 cu->ranges_base = 0;
4533 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4534 if (attr)
4535 cu->ranges_base = DW_UNSND (attr);
4536
4537 if (this_cu->is_debug_types)
4538 {
4539 gdb_assert (sig_type != NULL);
4540 signature = sig_type->signature;
4541 }
4542 else
4543 {
4544 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4545 if (! attr)
4546 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4547 dwo_name);
4548 signature = DW_UNSND (attr);
4549 }
4550
4551 /* We may need the comp_dir in order to find the DWO file. */
4552 comp_dir_string = NULL;
4553 if (comp_dir)
4554 comp_dir_string = DW_STRING (comp_dir);
4555
4556 if (this_cu->is_debug_types)
4557 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
4558 else
4559 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
4560 signature);
4561
4562 if (dwo_unit == NULL)
4563 {
4564 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4565 " with ID %s [in module %s]"),
4566 this_cu->offset.sect_off,
4567 phex (signature, sizeof (signature)),
4568 objfile->name);
4569 }
4570
4571 /* Set up for reading the DWO CU/TU. */
4572 cu->dwo_unit = dwo_unit;
4573 section = dwo_unit->info_or_types_section;
4574 dwarf2_read_section (objfile, section);
4575 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4576 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4577 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4578
4579 if (this_cu->is_debug_types)
4580 {
4581 ULONGEST signature;
4582 cu_offset type_offset_in_tu;
4583
4584 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4585 dwo_abbrev_section,
4586 info_ptr,
4587 &signature,
4588 &type_offset_in_tu);
4589 gdb_assert (sig_type->signature == signature);
4590 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4591 /* For DWOs coming from DWP files, we don't know the CU length
4592 nor the type's offset in the TU until now. */
4593 dwo_unit->length = get_cu_length (&cu->header);
4594 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4595
4596 /* Establish the type offset that can be used to lookup the type.
4597 For DWO files, we don't know it until now. */
4598 sig_type->type_offset_in_section.sect_off =
4599 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4600 }
4601 else
4602 {
4603 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4604 dwo_abbrev_section,
4605 info_ptr, 0);
4606 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4607 /* For DWOs coming from DWP files, we don't know the CU length
4608 until now. */
4609 dwo_unit->length = get_cu_length (&cu->header);
4610 }
4611
4612 /* Discard the original CU's abbrev table, and read the DWO's. */
4613 if (abbrev_table == NULL)
4614 {
4615 dwarf2_free_abbrev_table (cu);
4616 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4617 }
4618 else
4619 {
4620 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4621 make_cleanup (dwarf2_free_abbrev_table, cu);
4622 }
4623
4624 /* Read in the die, but leave space to copy over the attributes
4625 from the stub. This has the benefit of simplifying the rest of
4626 the code - all the real work is done here. */
4627 num_extra_attrs = ((stmt_list != NULL)
4628 + (low_pc != NULL)
4629 + (high_pc != NULL)
4630 + (ranges != NULL)
4631 + (comp_dir != NULL));
4632 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4633 &has_children, num_extra_attrs);
4634
4635 /* Copy over the attributes from the stub to the DWO die. */
4636 i = comp_unit_die->num_attrs;
4637 if (stmt_list != NULL)
4638 comp_unit_die->attrs[i++] = *stmt_list;
4639 if (low_pc != NULL)
4640 comp_unit_die->attrs[i++] = *low_pc;
4641 if (high_pc != NULL)
4642 comp_unit_die->attrs[i++] = *high_pc;
4643 if (ranges != NULL)
4644 comp_unit_die->attrs[i++] = *ranges;
4645 if (comp_dir != NULL)
4646 comp_unit_die->attrs[i++] = *comp_dir;
4647 comp_unit_die->num_attrs += num_extra_attrs;
4648
4649 /* Skip dummy compilation units. */
4650 if (info_ptr >= begin_info_ptr + dwo_unit->length
4651 || peek_abbrev_code (abfd, info_ptr) == 0)
4652 {
4653 do_cleanups (cleanups);
4654 return;
4655 }
4656 }
4657
4658 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4659
4660 if (free_cu_cleanup != NULL)
4661 {
4662 if (keep)
4663 {
4664 /* We've successfully allocated this compilation unit. Let our
4665 caller clean it up when finished with it. */
4666 discard_cleanups (free_cu_cleanup);
4667
4668 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4669 So we have to manually free the abbrev table. */
4670 dwarf2_free_abbrev_table (cu);
4671
4672 /* Link this CU into read_in_chain. */
4673 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4674 dwarf2_per_objfile->read_in_chain = this_cu;
4675 }
4676 else
4677 do_cleanups (free_cu_cleanup);
4678 }
4679
4680 do_cleanups (cleanups);
4681 }
4682
4683 /* Read CU/TU THIS_CU in section SECTION,
4684 but do not follow DW_AT_GNU_dwo_name if present.
4685 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4686 to have already done the lookup to find the DWO/DWP file).
4687
4688 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4689 THIS_CU->is_debug_types, but nothing else.
4690
4691 We fill in THIS_CU->length.
4692
4693 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4694 linker) then DIE_READER_FUNC will not get called.
4695
4696 THIS_CU->cu is always freed when done.
4697 This is done in order to not leave THIS_CU->cu in a state where we have
4698 to care whether it refers to the "main" CU or the DWO CU. */
4699
4700 static void
4701 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4702 struct dwarf2_section_info *abbrev_section,
4703 struct dwo_file *dwo_file,
4704 die_reader_func_ftype *die_reader_func,
4705 void *data)
4706 {
4707 struct objfile *objfile = dwarf2_per_objfile->objfile;
4708 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4709 bfd *abfd = section->asection->owner;
4710 struct dwarf2_cu cu;
4711 gdb_byte *begin_info_ptr, *info_ptr;
4712 struct die_reader_specs reader;
4713 struct cleanup *cleanups;
4714 struct die_info *comp_unit_die;
4715 int has_children;
4716
4717 if (dwarf2_die_debug)
4718 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4719 this_cu->is_debug_types ? "type" : "comp",
4720 this_cu->offset.sect_off);
4721
4722 gdb_assert (this_cu->cu == NULL);
4723
4724 /* This is cheap if the section is already read in. */
4725 dwarf2_read_section (objfile, section);
4726
4727 init_one_comp_unit (&cu, this_cu);
4728
4729 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4730
4731 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4732 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4733 abbrev_section, info_ptr,
4734 this_cu->is_debug_types);
4735
4736 this_cu->length = get_cu_length (&cu.header);
4737
4738 /* Skip dummy compilation units. */
4739 if (info_ptr >= begin_info_ptr + this_cu->length
4740 || peek_abbrev_code (abfd, info_ptr) == 0)
4741 {
4742 do_cleanups (cleanups);
4743 return;
4744 }
4745
4746 dwarf2_read_abbrevs (&cu, abbrev_section);
4747 make_cleanup (dwarf2_free_abbrev_table, &cu);
4748
4749 init_cu_die_reader (&reader, &cu, section, dwo_file);
4750 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4751
4752 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4753
4754 do_cleanups (cleanups);
4755 }
4756
4757 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4758 does not lookup the specified DWO file.
4759 This cannot be used to read DWO files.
4760
4761 THIS_CU->cu is always freed when done.
4762 This is done in order to not leave THIS_CU->cu in a state where we have
4763 to care whether it refers to the "main" CU or the DWO CU.
4764 We can revisit this if the data shows there's a performance issue. */
4765
4766 static void
4767 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4768 die_reader_func_ftype *die_reader_func,
4769 void *data)
4770 {
4771 init_cutu_and_read_dies_no_follow (this_cu,
4772 get_abbrev_section_for_cu (this_cu),
4773 NULL,
4774 die_reader_func, data);
4775 }
4776
4777 /* Create a psymtab named NAME and assign it to PER_CU.
4778
4779 The caller must fill in the following details:
4780 dirname, textlow, texthigh. */
4781
4782 static struct partial_symtab *
4783 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
4784 {
4785 struct objfile *objfile = per_cu->objfile;
4786 struct partial_symtab *pst;
4787
4788 pst = start_psymtab_common (objfile, objfile->section_offsets,
4789 name, 0,
4790 objfile->global_psymbols.next,
4791 objfile->static_psymbols.next);
4792
4793 pst->psymtabs_addrmap_supported = 1;
4794
4795 /* This is the glue that links PST into GDB's symbol API. */
4796 pst->read_symtab_private = per_cu;
4797 pst->read_symtab = dwarf2_psymtab_to_symtab;
4798 per_cu->v.psymtab = pst;
4799
4800 return pst;
4801 }
4802
4803 /* die_reader_func for process_psymtab_comp_unit. */
4804
4805 static void
4806 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4807 gdb_byte *info_ptr,
4808 struct die_info *comp_unit_die,
4809 int has_children,
4810 void *data)
4811 {
4812 struct dwarf2_cu *cu = reader->cu;
4813 struct objfile *objfile = cu->objfile;
4814 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
4815 struct attribute *attr;
4816 CORE_ADDR baseaddr;
4817 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4818 struct partial_symtab *pst;
4819 int has_pc_info;
4820 const char *filename;
4821 int *want_partial_unit_ptr = data;
4822
4823 if (comp_unit_die->tag == DW_TAG_partial_unit
4824 && (want_partial_unit_ptr == NULL
4825 || !*want_partial_unit_ptr))
4826 return;
4827
4828 gdb_assert (! per_cu->is_debug_types);
4829
4830 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
4831
4832 cu->list_in_scope = &file_symbols;
4833
4834 /* Allocate a new partial symbol table structure. */
4835 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
4836 if (attr == NULL || !DW_STRING (attr))
4837 filename = "";
4838 else
4839 filename = DW_STRING (attr);
4840
4841 pst = create_partial_symtab (per_cu, filename);
4842
4843 /* This must be done before calling dwarf2_build_include_psymtabs. */
4844 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4845 if (attr != NULL)
4846 pst->dirname = DW_STRING (attr);
4847
4848 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4849
4850 dwarf2_find_base_address (comp_unit_die, cu);
4851
4852 /* Possibly set the default values of LOWPC and HIGHPC from
4853 `DW_AT_ranges'. */
4854 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
4855 &best_highpc, cu, pst);
4856 if (has_pc_info == 1 && best_lowpc < best_highpc)
4857 /* Store the contiguous range if it is not empty; it can be empty for
4858 CUs with no code. */
4859 addrmap_set_empty (objfile->psymtabs_addrmap,
4860 best_lowpc + baseaddr,
4861 best_highpc + baseaddr - 1, pst);
4862
4863 /* Check if comp unit has_children.
4864 If so, read the rest of the partial symbols from this comp unit.
4865 If not, there's no more debug_info for this comp unit. */
4866 if (has_children)
4867 {
4868 struct partial_die_info *first_die;
4869 CORE_ADDR lowpc, highpc;
4870
4871 lowpc = ((CORE_ADDR) -1);
4872 highpc = ((CORE_ADDR) 0);
4873
4874 first_die = load_partial_dies (reader, info_ptr, 1);
4875
4876 scan_partial_symbols (first_die, &lowpc, &highpc,
4877 ! has_pc_info, cu);
4878
4879 /* If we didn't find a lowpc, set it to highpc to avoid
4880 complaints from `maint check'. */
4881 if (lowpc == ((CORE_ADDR) -1))
4882 lowpc = highpc;
4883
4884 /* If the compilation unit didn't have an explicit address range,
4885 then use the information extracted from its child dies. */
4886 if (! has_pc_info)
4887 {
4888 best_lowpc = lowpc;
4889 best_highpc = highpc;
4890 }
4891 }
4892 pst->textlow = best_lowpc + baseaddr;
4893 pst->texthigh = best_highpc + baseaddr;
4894
4895 pst->n_global_syms = objfile->global_psymbols.next -
4896 (objfile->global_psymbols.list + pst->globals_offset);
4897 pst->n_static_syms = objfile->static_psymbols.next -
4898 (objfile->static_psymbols.list + pst->statics_offset);
4899 sort_pst_symbols (pst);
4900
4901 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs))
4902 {
4903 int i;
4904 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
4905 struct dwarf2_per_cu_data *iter;
4906
4907 /* Fill in 'dependencies' here; we fill in 'users' in a
4908 post-pass. */
4909 pst->number_of_dependencies = len;
4910 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
4911 len * sizeof (struct symtab *));
4912 for (i = 0;
4913 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
4914 i, iter);
4915 ++i)
4916 pst->dependencies[i] = iter->v.psymtab;
4917
4918 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
4919 }
4920
4921 /* Get the list of files included in the current compilation unit,
4922 and build a psymtab for each of them. */
4923 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
4924
4925 if (dwarf2_read_debug)
4926 {
4927 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4928
4929 fprintf_unfiltered (gdb_stdlog,
4930 "Psymtab for %s unit @0x%x: %s - %s"
4931 ", %d global, %d static syms\n",
4932 per_cu->is_debug_types ? "type" : "comp",
4933 per_cu->offset.sect_off,
4934 paddress (gdbarch, pst->textlow),
4935 paddress (gdbarch, pst->texthigh),
4936 pst->n_global_syms, pst->n_static_syms);
4937 }
4938 }
4939
4940 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
4941 Process compilation unit THIS_CU for a psymtab. */
4942
4943 static void
4944 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
4945 int want_partial_unit)
4946 {
4947 /* If this compilation unit was already read in, free the
4948 cached copy in order to read it in again. This is
4949 necessary because we skipped some symbols when we first
4950 read in the compilation unit (see load_partial_dies).
4951 This problem could be avoided, but the benefit is unclear. */
4952 if (this_cu->cu != NULL)
4953 free_one_cached_comp_unit (this_cu);
4954
4955 gdb_assert (! this_cu->is_debug_types);
4956 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
4957 process_psymtab_comp_unit_reader,
4958 &want_partial_unit);
4959
4960 /* Age out any secondary CUs. */
4961 age_cached_comp_units ();
4962 }
4963
4964 static hashval_t
4965 hash_type_unit_group (const void *item)
4966 {
4967 const struct type_unit_group *tu_group = item;
4968
4969 return hash_stmt_list_entry (&tu_group->hash);
4970 }
4971
4972 static int
4973 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
4974 {
4975 const struct type_unit_group *lhs = item_lhs;
4976 const struct type_unit_group *rhs = item_rhs;
4977
4978 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
4979 }
4980
4981 /* Allocate a hash table for type unit groups. */
4982
4983 static htab_t
4984 allocate_type_unit_groups_table (void)
4985 {
4986 return htab_create_alloc_ex (3,
4987 hash_type_unit_group,
4988 eq_type_unit_group,
4989 NULL,
4990 &dwarf2_per_objfile->objfile->objfile_obstack,
4991 hashtab_obstack_allocate,
4992 dummy_obstack_deallocate);
4993 }
4994
4995 /* Type units that don't have DW_AT_stmt_list are grouped into their own
4996 partial symtabs. We combine several TUs per psymtab to not let the size
4997 of any one psymtab grow too big. */
4998 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
4999 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5000
5001 /* Helper routine for get_type_unit_group.
5002 Create the type_unit_group object used to hold one or more TUs. */
5003
5004 static struct type_unit_group *
5005 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5006 {
5007 struct objfile *objfile = dwarf2_per_objfile->objfile;
5008 struct dwarf2_per_cu_data *per_cu;
5009 struct type_unit_group *tu_group;
5010
5011 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5012 struct type_unit_group);
5013 per_cu = &tu_group->per_cu;
5014 per_cu->objfile = objfile;
5015 per_cu->is_debug_types = 1;
5016 per_cu->s.type_unit_group = tu_group;
5017
5018 if (dwarf2_per_objfile->using_index)
5019 {
5020 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5021 struct dwarf2_per_cu_quick_data);
5022 tu_group->t.first_tu = cu->per_cu;
5023 }
5024 else
5025 {
5026 unsigned int line_offset = line_offset_struct.sect_off;
5027 struct partial_symtab *pst;
5028 char *name;
5029
5030 /* Give the symtab a useful name for debug purposes. */
5031 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5032 name = xstrprintf ("<type_units_%d>",
5033 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5034 else
5035 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5036
5037 pst = create_partial_symtab (per_cu, name);
5038 pst->anonymous = 1;
5039
5040 xfree (name);
5041 }
5042
5043 tu_group->hash.dwo_unit = cu->dwo_unit;
5044 tu_group->hash.line_offset = line_offset_struct;
5045
5046 return tu_group;
5047 }
5048
5049 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5050 STMT_LIST is a DW_AT_stmt_list attribute. */
5051
5052 static struct type_unit_group *
5053 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5054 {
5055 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5056 struct type_unit_group *tu_group;
5057 void **slot;
5058 unsigned int line_offset;
5059 struct type_unit_group type_unit_group_for_lookup;
5060
5061 if (dwarf2_per_objfile->type_unit_groups == NULL)
5062 {
5063 dwarf2_per_objfile->type_unit_groups =
5064 allocate_type_unit_groups_table ();
5065 }
5066
5067 /* Do we need to create a new group, or can we use an existing one? */
5068
5069 if (stmt_list)
5070 {
5071 line_offset = DW_UNSND (stmt_list);
5072 ++tu_stats->nr_symtab_sharers;
5073 }
5074 else
5075 {
5076 /* Ugh, no stmt_list. Rare, but we have to handle it.
5077 We can do various things here like create one group per TU or
5078 spread them over multiple groups to split up the expansion work.
5079 To avoid worst case scenarios (too many groups or too large groups)
5080 we, umm, group them in bunches. */
5081 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5082 | (tu_stats->nr_stmt_less_type_units
5083 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5084 ++tu_stats->nr_stmt_less_type_units;
5085 }
5086
5087 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5088 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5089 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5090 &type_unit_group_for_lookup, INSERT);
5091 if (*slot != NULL)
5092 {
5093 tu_group = *slot;
5094 gdb_assert (tu_group != NULL);
5095 }
5096 else
5097 {
5098 sect_offset line_offset_struct;
5099
5100 line_offset_struct.sect_off = line_offset;
5101 tu_group = create_type_unit_group (cu, line_offset_struct);
5102 *slot = tu_group;
5103 ++tu_stats->nr_symtabs;
5104 }
5105
5106 return tu_group;
5107 }
5108
5109 /* Struct used to sort TUs by their abbreviation table offset. */
5110
5111 struct tu_abbrev_offset
5112 {
5113 struct signatured_type *sig_type;
5114 sect_offset abbrev_offset;
5115 };
5116
5117 /* Helper routine for build_type_unit_groups, passed to qsort. */
5118
5119 static int
5120 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5121 {
5122 const struct tu_abbrev_offset * const *a = ap;
5123 const struct tu_abbrev_offset * const *b = bp;
5124 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5125 unsigned int boff = (*b)->abbrev_offset.sect_off;
5126
5127 return (aoff > boff) - (aoff < boff);
5128 }
5129
5130 /* A helper function to add a type_unit_group to a table. */
5131
5132 static int
5133 add_type_unit_group_to_table (void **slot, void *datum)
5134 {
5135 struct type_unit_group *tu_group = *slot;
5136 struct type_unit_group ***datap = datum;
5137
5138 **datap = tu_group;
5139 ++*datap;
5140
5141 return 1;
5142 }
5143
5144 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5145 each one passing FUNC,DATA.
5146
5147 The efficiency is because we sort TUs by the abbrev table they use and
5148 only read each abbrev table once. In one program there are 200K TUs
5149 sharing 8K abbrev tables.
5150
5151 The main purpose of this function is to support building the
5152 dwarf2_per_objfile->type_unit_groups table.
5153 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5154 can collapse the search space by grouping them by stmt_list.
5155 The savings can be significant, in the same program from above the 200K TUs
5156 share 8K stmt_list tables.
5157
5158 FUNC is expected to call get_type_unit_group, which will create the
5159 struct type_unit_group if necessary and add it to
5160 dwarf2_per_objfile->type_unit_groups. */
5161
5162 static void
5163 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5164 {
5165 struct objfile *objfile = dwarf2_per_objfile->objfile;
5166 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5167 struct cleanup *cleanups;
5168 struct abbrev_table *abbrev_table;
5169 sect_offset abbrev_offset;
5170 struct tu_abbrev_offset *sorted_by_abbrev;
5171 struct type_unit_group **iter;
5172 int i;
5173
5174 /* It's up to the caller to not call us multiple times. */
5175 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5176
5177 if (dwarf2_per_objfile->n_type_units == 0)
5178 return;
5179
5180 /* TUs typically share abbrev tables, and there can be way more TUs than
5181 abbrev tables. Sort by abbrev table to reduce the number of times we
5182 read each abbrev table in.
5183 Alternatives are to punt or to maintain a cache of abbrev tables.
5184 This is simpler and efficient enough for now.
5185
5186 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5187 symtab to use). Typically TUs with the same abbrev offset have the same
5188 stmt_list value too so in practice this should work well.
5189
5190 The basic algorithm here is:
5191
5192 sort TUs by abbrev table
5193 for each TU with same abbrev table:
5194 read abbrev table if first user
5195 read TU top level DIE
5196 [IWBN if DWO skeletons had DW_AT_stmt_list]
5197 call FUNC */
5198
5199 if (dwarf2_read_debug)
5200 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5201
5202 /* Sort in a separate table to maintain the order of all_type_units
5203 for .gdb_index: TU indices directly index all_type_units. */
5204 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5205 dwarf2_per_objfile->n_type_units);
5206 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5207 {
5208 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5209
5210 sorted_by_abbrev[i].sig_type = sig_type;
5211 sorted_by_abbrev[i].abbrev_offset =
5212 read_abbrev_offset (sig_type->per_cu.info_or_types_section,
5213 sig_type->per_cu.offset);
5214 }
5215 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5216 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5217 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5218
5219 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5220 called any number of times, so we don't reset tu_stats here. */
5221
5222 abbrev_offset.sect_off = ~(unsigned) 0;
5223 abbrev_table = NULL;
5224 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5225
5226 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5227 {
5228 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5229
5230 /* Switch to the next abbrev table if necessary. */
5231 if (abbrev_table == NULL
5232 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5233 {
5234 if (abbrev_table != NULL)
5235 {
5236 abbrev_table_free (abbrev_table);
5237 /* Reset to NULL in case abbrev_table_read_table throws
5238 an error: abbrev_table_free_cleanup will get called. */
5239 abbrev_table = NULL;
5240 }
5241 abbrev_offset = tu->abbrev_offset;
5242 abbrev_table =
5243 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5244 abbrev_offset);
5245 ++tu_stats->nr_uniq_abbrev_tables;
5246 }
5247
5248 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5249 func, data);
5250 }
5251
5252 /* Create a vector of pointers to primary type units to make it easy to
5253 iterate over them and CUs. See dw2_get_primary_cu. */
5254 dwarf2_per_objfile->n_type_unit_groups =
5255 htab_elements (dwarf2_per_objfile->type_unit_groups);
5256 dwarf2_per_objfile->all_type_unit_groups =
5257 obstack_alloc (&objfile->objfile_obstack,
5258 dwarf2_per_objfile->n_type_unit_groups
5259 * sizeof (struct type_unit_group *));
5260 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5261 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5262 add_type_unit_group_to_table, &iter);
5263 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5264 == dwarf2_per_objfile->n_type_unit_groups);
5265
5266 do_cleanups (cleanups);
5267
5268 if (dwarf2_read_debug)
5269 {
5270 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5271 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5272 dwarf2_per_objfile->n_type_units);
5273 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5274 tu_stats->nr_uniq_abbrev_tables);
5275 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5276 tu_stats->nr_symtabs);
5277 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5278 tu_stats->nr_symtab_sharers);
5279 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5280 tu_stats->nr_stmt_less_type_units);
5281 }
5282 }
5283
5284 /* Reader function for build_type_psymtabs. */
5285
5286 static void
5287 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5288 gdb_byte *info_ptr,
5289 struct die_info *type_unit_die,
5290 int has_children,
5291 void *data)
5292 {
5293 struct objfile *objfile = dwarf2_per_objfile->objfile;
5294 struct dwarf2_cu *cu = reader->cu;
5295 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5296 struct type_unit_group *tu_group;
5297 struct attribute *attr;
5298 struct partial_die_info *first_die;
5299 CORE_ADDR lowpc, highpc;
5300 struct partial_symtab *pst;
5301
5302 gdb_assert (data == NULL);
5303
5304 if (! has_children)
5305 return;
5306
5307 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5308 tu_group = get_type_unit_group (cu, attr);
5309
5310 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
5311
5312 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5313 cu->list_in_scope = &file_symbols;
5314 pst = create_partial_symtab (per_cu, "");
5315 pst->anonymous = 1;
5316
5317 first_die = load_partial_dies (reader, info_ptr, 1);
5318
5319 lowpc = (CORE_ADDR) -1;
5320 highpc = (CORE_ADDR) 0;
5321 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5322
5323 pst->n_global_syms = objfile->global_psymbols.next -
5324 (objfile->global_psymbols.list + pst->globals_offset);
5325 pst->n_static_syms = objfile->static_psymbols.next -
5326 (objfile->static_psymbols.list + pst->statics_offset);
5327 sort_pst_symbols (pst);
5328 }
5329
5330 /* Traversal function for build_type_psymtabs. */
5331
5332 static int
5333 build_type_psymtab_dependencies (void **slot, void *info)
5334 {
5335 struct objfile *objfile = dwarf2_per_objfile->objfile;
5336 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5337 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5338 struct partial_symtab *pst = per_cu->v.psymtab;
5339 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
5340 struct dwarf2_per_cu_data *iter;
5341 int i;
5342
5343 gdb_assert (len > 0);
5344
5345 pst->number_of_dependencies = len;
5346 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5347 len * sizeof (struct psymtab *));
5348 for (i = 0;
5349 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
5350 ++i)
5351 {
5352 pst->dependencies[i] = iter->v.psymtab;
5353 iter->s.type_unit_group = tu_group;
5354 }
5355
5356 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
5357
5358 return 1;
5359 }
5360
5361 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5362 Build partial symbol tables for the .debug_types comp-units. */
5363
5364 static void
5365 build_type_psymtabs (struct objfile *objfile)
5366 {
5367 if (! create_all_type_units (objfile))
5368 return;
5369
5370 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5371
5372 /* Now that all TUs have been processed we can fill in the dependencies. */
5373 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5374 build_type_psymtab_dependencies, NULL);
5375 }
5376
5377 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5378
5379 static void
5380 psymtabs_addrmap_cleanup (void *o)
5381 {
5382 struct objfile *objfile = o;
5383
5384 objfile->psymtabs_addrmap = NULL;
5385 }
5386
5387 /* Compute the 'user' field for each psymtab in OBJFILE. */
5388
5389 static void
5390 set_partial_user (struct objfile *objfile)
5391 {
5392 int i;
5393
5394 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5395 {
5396 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5397 struct partial_symtab *pst = per_cu->v.psymtab;
5398 int j;
5399
5400 if (pst == NULL)
5401 continue;
5402
5403 for (j = 0; j < pst->number_of_dependencies; ++j)
5404 {
5405 /* Set the 'user' field only if it is not already set. */
5406 if (pst->dependencies[j]->user == NULL)
5407 pst->dependencies[j]->user = pst;
5408 }
5409 }
5410 }
5411
5412 /* Build the partial symbol table by doing a quick pass through the
5413 .debug_info and .debug_abbrev sections. */
5414
5415 static void
5416 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5417 {
5418 struct cleanup *back_to, *addrmap_cleanup;
5419 struct obstack temp_obstack;
5420 int i;
5421
5422 if (dwarf2_read_debug)
5423 {
5424 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5425 objfile->name);
5426 }
5427
5428 dwarf2_per_objfile->reading_partial_symbols = 1;
5429
5430 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5431
5432 /* Any cached compilation units will be linked by the per-objfile
5433 read_in_chain. Make sure to free them when we're done. */
5434 back_to = make_cleanup (free_cached_comp_units, NULL);
5435
5436 build_type_psymtabs (objfile);
5437
5438 create_all_comp_units (objfile);
5439
5440 /* Create a temporary address map on a temporary obstack. We later
5441 copy this to the final obstack. */
5442 obstack_init (&temp_obstack);
5443 make_cleanup_obstack_free (&temp_obstack);
5444 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5445 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5446
5447 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5448 {
5449 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5450
5451 process_psymtab_comp_unit (per_cu, 0);
5452 }
5453
5454 set_partial_user (objfile);
5455
5456 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5457 &objfile->objfile_obstack);
5458 discard_cleanups (addrmap_cleanup);
5459
5460 do_cleanups (back_to);
5461
5462 if (dwarf2_read_debug)
5463 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5464 objfile->name);
5465 }
5466
5467 /* die_reader_func for load_partial_comp_unit. */
5468
5469 static void
5470 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5471 gdb_byte *info_ptr,
5472 struct die_info *comp_unit_die,
5473 int has_children,
5474 void *data)
5475 {
5476 struct dwarf2_cu *cu = reader->cu;
5477
5478 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5479
5480 /* Check if comp unit has_children.
5481 If so, read the rest of the partial symbols from this comp unit.
5482 If not, there's no more debug_info for this comp unit. */
5483 if (has_children)
5484 load_partial_dies (reader, info_ptr, 0);
5485 }
5486
5487 /* Load the partial DIEs for a secondary CU into memory.
5488 This is also used when rereading a primary CU with load_all_dies. */
5489
5490 static void
5491 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5492 {
5493 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5494 load_partial_comp_unit_reader, NULL);
5495 }
5496
5497 static void
5498 read_comp_units_from_section (struct objfile *objfile,
5499 struct dwarf2_section_info *section,
5500 unsigned int is_dwz,
5501 int *n_allocated,
5502 int *n_comp_units,
5503 struct dwarf2_per_cu_data ***all_comp_units)
5504 {
5505 gdb_byte *info_ptr;
5506 bfd *abfd = section->asection->owner;
5507
5508 dwarf2_read_section (objfile, section);
5509
5510 info_ptr = section->buffer;
5511
5512 while (info_ptr < section->buffer + section->size)
5513 {
5514 unsigned int length, initial_length_size;
5515 struct dwarf2_per_cu_data *this_cu;
5516 sect_offset offset;
5517
5518 offset.sect_off = info_ptr - section->buffer;
5519
5520 /* Read just enough information to find out where the next
5521 compilation unit is. */
5522 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5523
5524 /* Save the compilation unit for later lookup. */
5525 this_cu = obstack_alloc (&objfile->objfile_obstack,
5526 sizeof (struct dwarf2_per_cu_data));
5527 memset (this_cu, 0, sizeof (*this_cu));
5528 this_cu->offset = offset;
5529 this_cu->length = length + initial_length_size;
5530 this_cu->is_dwz = is_dwz;
5531 this_cu->objfile = objfile;
5532 this_cu->info_or_types_section = section;
5533
5534 if (*n_comp_units == *n_allocated)
5535 {
5536 *n_allocated *= 2;
5537 *all_comp_units = xrealloc (*all_comp_units,
5538 *n_allocated
5539 * sizeof (struct dwarf2_per_cu_data *));
5540 }
5541 (*all_comp_units)[*n_comp_units] = this_cu;
5542 ++*n_comp_units;
5543
5544 info_ptr = info_ptr + this_cu->length;
5545 }
5546 }
5547
5548 /* Create a list of all compilation units in OBJFILE.
5549 This is only done for -readnow and building partial symtabs. */
5550
5551 static void
5552 create_all_comp_units (struct objfile *objfile)
5553 {
5554 int n_allocated;
5555 int n_comp_units;
5556 struct dwarf2_per_cu_data **all_comp_units;
5557
5558 n_comp_units = 0;
5559 n_allocated = 10;
5560 all_comp_units = xmalloc (n_allocated
5561 * sizeof (struct dwarf2_per_cu_data *));
5562
5563 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5564 &n_allocated, &n_comp_units, &all_comp_units);
5565
5566 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5567 {
5568 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5569
5570 read_comp_units_from_section (objfile, &dwz->info, 1,
5571 &n_allocated, &n_comp_units,
5572 &all_comp_units);
5573 }
5574
5575 dwarf2_per_objfile->all_comp_units
5576 = obstack_alloc (&objfile->objfile_obstack,
5577 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5578 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5579 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5580 xfree (all_comp_units);
5581 dwarf2_per_objfile->n_comp_units = n_comp_units;
5582 }
5583
5584 /* Process all loaded DIEs for compilation unit CU, starting at
5585 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5586 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5587 DW_AT_ranges). If NEED_PC is set, then this function will set
5588 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5589 and record the covered ranges in the addrmap. */
5590
5591 static void
5592 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5593 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5594 {
5595 struct partial_die_info *pdi;
5596
5597 /* Now, march along the PDI's, descending into ones which have
5598 interesting children but skipping the children of the other ones,
5599 until we reach the end of the compilation unit. */
5600
5601 pdi = first_die;
5602
5603 while (pdi != NULL)
5604 {
5605 fixup_partial_die (pdi, cu);
5606
5607 /* Anonymous namespaces or modules have no name but have interesting
5608 children, so we need to look at them. Ditto for anonymous
5609 enums. */
5610
5611 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5612 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5613 || pdi->tag == DW_TAG_imported_unit)
5614 {
5615 switch (pdi->tag)
5616 {
5617 case DW_TAG_subprogram:
5618 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5619 break;
5620 case DW_TAG_constant:
5621 case DW_TAG_variable:
5622 case DW_TAG_typedef:
5623 case DW_TAG_union_type:
5624 if (!pdi->is_declaration)
5625 {
5626 add_partial_symbol (pdi, cu);
5627 }
5628 break;
5629 case DW_TAG_class_type:
5630 case DW_TAG_interface_type:
5631 case DW_TAG_structure_type:
5632 if (!pdi->is_declaration)
5633 {
5634 add_partial_symbol (pdi, cu);
5635 }
5636 break;
5637 case DW_TAG_enumeration_type:
5638 if (!pdi->is_declaration)
5639 add_partial_enumeration (pdi, cu);
5640 break;
5641 case DW_TAG_base_type:
5642 case DW_TAG_subrange_type:
5643 /* File scope base type definitions are added to the partial
5644 symbol table. */
5645 add_partial_symbol (pdi, cu);
5646 break;
5647 case DW_TAG_namespace:
5648 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5649 break;
5650 case DW_TAG_module:
5651 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5652 break;
5653 case DW_TAG_imported_unit:
5654 {
5655 struct dwarf2_per_cu_data *per_cu;
5656
5657 /* For now we don't handle imported units in type units. */
5658 if (cu->per_cu->is_debug_types)
5659 {
5660 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5661 " supported in type units [in module %s]"),
5662 cu->objfile->name);
5663 }
5664
5665 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5666 pdi->is_dwz,
5667 cu->objfile);
5668
5669 /* Go read the partial unit, if needed. */
5670 if (per_cu->v.psymtab == NULL)
5671 process_psymtab_comp_unit (per_cu, 1);
5672
5673 VEC_safe_push (dwarf2_per_cu_ptr,
5674 cu->per_cu->s.imported_symtabs, per_cu);
5675 }
5676 break;
5677 default:
5678 break;
5679 }
5680 }
5681
5682 /* If the die has a sibling, skip to the sibling. */
5683
5684 pdi = pdi->die_sibling;
5685 }
5686 }
5687
5688 /* Functions used to compute the fully scoped name of a partial DIE.
5689
5690 Normally, this is simple. For C++, the parent DIE's fully scoped
5691 name is concatenated with "::" and the partial DIE's name. For
5692 Java, the same thing occurs except that "." is used instead of "::".
5693 Enumerators are an exception; they use the scope of their parent
5694 enumeration type, i.e. the name of the enumeration type is not
5695 prepended to the enumerator.
5696
5697 There are two complexities. One is DW_AT_specification; in this
5698 case "parent" means the parent of the target of the specification,
5699 instead of the direct parent of the DIE. The other is compilers
5700 which do not emit DW_TAG_namespace; in this case we try to guess
5701 the fully qualified name of structure types from their members'
5702 linkage names. This must be done using the DIE's children rather
5703 than the children of any DW_AT_specification target. We only need
5704 to do this for structures at the top level, i.e. if the target of
5705 any DW_AT_specification (if any; otherwise the DIE itself) does not
5706 have a parent. */
5707
5708 /* Compute the scope prefix associated with PDI's parent, in
5709 compilation unit CU. The result will be allocated on CU's
5710 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5711 field. NULL is returned if no prefix is necessary. */
5712 static char *
5713 partial_die_parent_scope (struct partial_die_info *pdi,
5714 struct dwarf2_cu *cu)
5715 {
5716 char *grandparent_scope;
5717 struct partial_die_info *parent, *real_pdi;
5718
5719 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5720 then this means the parent of the specification DIE. */
5721
5722 real_pdi = pdi;
5723 while (real_pdi->has_specification)
5724 real_pdi = find_partial_die (real_pdi->spec_offset,
5725 real_pdi->spec_is_dwz, cu);
5726
5727 parent = real_pdi->die_parent;
5728 if (parent == NULL)
5729 return NULL;
5730
5731 if (parent->scope_set)
5732 return parent->scope;
5733
5734 fixup_partial_die (parent, cu);
5735
5736 grandparent_scope = partial_die_parent_scope (parent, cu);
5737
5738 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5739 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5740 Work around this problem here. */
5741 if (cu->language == language_cplus
5742 && parent->tag == DW_TAG_namespace
5743 && strcmp (parent->name, "::") == 0
5744 && grandparent_scope == NULL)
5745 {
5746 parent->scope = NULL;
5747 parent->scope_set = 1;
5748 return NULL;
5749 }
5750
5751 if (pdi->tag == DW_TAG_enumerator)
5752 /* Enumerators should not get the name of the enumeration as a prefix. */
5753 parent->scope = grandparent_scope;
5754 else if (parent->tag == DW_TAG_namespace
5755 || parent->tag == DW_TAG_module
5756 || parent->tag == DW_TAG_structure_type
5757 || parent->tag == DW_TAG_class_type
5758 || parent->tag == DW_TAG_interface_type
5759 || parent->tag == DW_TAG_union_type
5760 || parent->tag == DW_TAG_enumeration_type)
5761 {
5762 if (grandparent_scope == NULL)
5763 parent->scope = parent->name;
5764 else
5765 parent->scope = typename_concat (&cu->comp_unit_obstack,
5766 grandparent_scope,
5767 parent->name, 0, cu);
5768 }
5769 else
5770 {
5771 /* FIXME drow/2004-04-01: What should we be doing with
5772 function-local names? For partial symbols, we should probably be
5773 ignoring them. */
5774 complaint (&symfile_complaints,
5775 _("unhandled containing DIE tag %d for DIE at %d"),
5776 parent->tag, pdi->offset.sect_off);
5777 parent->scope = grandparent_scope;
5778 }
5779
5780 parent->scope_set = 1;
5781 return parent->scope;
5782 }
5783
5784 /* Return the fully scoped name associated with PDI, from compilation unit
5785 CU. The result will be allocated with malloc. */
5786
5787 static char *
5788 partial_die_full_name (struct partial_die_info *pdi,
5789 struct dwarf2_cu *cu)
5790 {
5791 char *parent_scope;
5792
5793 /* If this is a template instantiation, we can not work out the
5794 template arguments from partial DIEs. So, unfortunately, we have
5795 to go through the full DIEs. At least any work we do building
5796 types here will be reused if full symbols are loaded later. */
5797 if (pdi->has_template_arguments)
5798 {
5799 fixup_partial_die (pdi, cu);
5800
5801 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5802 {
5803 struct die_info *die;
5804 struct attribute attr;
5805 struct dwarf2_cu *ref_cu = cu;
5806
5807 /* DW_FORM_ref_addr is using section offset. */
5808 attr.name = 0;
5809 attr.form = DW_FORM_ref_addr;
5810 attr.u.unsnd = pdi->offset.sect_off;
5811 die = follow_die_ref (NULL, &attr, &ref_cu);
5812
5813 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5814 }
5815 }
5816
5817 parent_scope = partial_die_parent_scope (pdi, cu);
5818 if (parent_scope == NULL)
5819 return NULL;
5820 else
5821 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
5822 }
5823
5824 static void
5825 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
5826 {
5827 struct objfile *objfile = cu->objfile;
5828 CORE_ADDR addr = 0;
5829 char *actual_name = NULL;
5830 CORE_ADDR baseaddr;
5831 int built_actual_name = 0;
5832
5833 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5834
5835 actual_name = partial_die_full_name (pdi, cu);
5836 if (actual_name)
5837 built_actual_name = 1;
5838
5839 if (actual_name == NULL)
5840 actual_name = pdi->name;
5841
5842 switch (pdi->tag)
5843 {
5844 case DW_TAG_subprogram:
5845 if (pdi->is_external || cu->language == language_ada)
5846 {
5847 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5848 of the global scope. But in Ada, we want to be able to access
5849 nested procedures globally. So all Ada subprograms are stored
5850 in the global scope. */
5851 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5852 mst_text, objfile); */
5853 add_psymbol_to_list (actual_name, strlen (actual_name),
5854 built_actual_name,
5855 VAR_DOMAIN, LOC_BLOCK,
5856 &objfile->global_psymbols,
5857 0, pdi->lowpc + baseaddr,
5858 cu->language, objfile);
5859 }
5860 else
5861 {
5862 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5863 mst_file_text, objfile); */
5864 add_psymbol_to_list (actual_name, strlen (actual_name),
5865 built_actual_name,
5866 VAR_DOMAIN, LOC_BLOCK,
5867 &objfile->static_psymbols,
5868 0, pdi->lowpc + baseaddr,
5869 cu->language, objfile);
5870 }
5871 break;
5872 case DW_TAG_constant:
5873 {
5874 struct psymbol_allocation_list *list;
5875
5876 if (pdi->is_external)
5877 list = &objfile->global_psymbols;
5878 else
5879 list = &objfile->static_psymbols;
5880 add_psymbol_to_list (actual_name, strlen (actual_name),
5881 built_actual_name, VAR_DOMAIN, LOC_STATIC,
5882 list, 0, 0, cu->language, objfile);
5883 }
5884 break;
5885 case DW_TAG_variable:
5886 if (pdi->d.locdesc)
5887 addr = decode_locdesc (pdi->d.locdesc, cu);
5888
5889 if (pdi->d.locdesc
5890 && addr == 0
5891 && !dwarf2_per_objfile->has_section_at_zero)
5892 {
5893 /* A global or static variable may also have been stripped
5894 out by the linker if unused, in which case its address
5895 will be nullified; do not add such variables into partial
5896 symbol table then. */
5897 }
5898 else if (pdi->is_external)
5899 {
5900 /* Global Variable.
5901 Don't enter into the minimal symbol tables as there is
5902 a minimal symbol table entry from the ELF symbols already.
5903 Enter into partial symbol table if it has a location
5904 descriptor or a type.
5905 If the location descriptor is missing, new_symbol will create
5906 a LOC_UNRESOLVED symbol, the address of the variable will then
5907 be determined from the minimal symbol table whenever the variable
5908 is referenced.
5909 The address for the partial symbol table entry is not
5910 used by GDB, but it comes in handy for debugging partial symbol
5911 table building. */
5912
5913 if (pdi->d.locdesc || pdi->has_type)
5914 add_psymbol_to_list (actual_name, strlen (actual_name),
5915 built_actual_name,
5916 VAR_DOMAIN, LOC_STATIC,
5917 &objfile->global_psymbols,
5918 0, addr + baseaddr,
5919 cu->language, objfile);
5920 }
5921 else
5922 {
5923 /* Static Variable. Skip symbols without location descriptors. */
5924 if (pdi->d.locdesc == NULL)
5925 {
5926 if (built_actual_name)
5927 xfree (actual_name);
5928 return;
5929 }
5930 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
5931 mst_file_data, objfile); */
5932 add_psymbol_to_list (actual_name, strlen (actual_name),
5933 built_actual_name,
5934 VAR_DOMAIN, LOC_STATIC,
5935 &objfile->static_psymbols,
5936 0, addr + baseaddr,
5937 cu->language, objfile);
5938 }
5939 break;
5940 case DW_TAG_typedef:
5941 case DW_TAG_base_type:
5942 case DW_TAG_subrange_type:
5943 add_psymbol_to_list (actual_name, strlen (actual_name),
5944 built_actual_name,
5945 VAR_DOMAIN, LOC_TYPEDEF,
5946 &objfile->static_psymbols,
5947 0, (CORE_ADDR) 0, cu->language, objfile);
5948 break;
5949 case DW_TAG_namespace:
5950 add_psymbol_to_list (actual_name, strlen (actual_name),
5951 built_actual_name,
5952 VAR_DOMAIN, LOC_TYPEDEF,
5953 &objfile->global_psymbols,
5954 0, (CORE_ADDR) 0, cu->language, objfile);
5955 break;
5956 case DW_TAG_class_type:
5957 case DW_TAG_interface_type:
5958 case DW_TAG_structure_type:
5959 case DW_TAG_union_type:
5960 case DW_TAG_enumeration_type:
5961 /* Skip external references. The DWARF standard says in the section
5962 about "Structure, Union, and Class Type Entries": "An incomplete
5963 structure, union or class type is represented by a structure,
5964 union or class entry that does not have a byte size attribute
5965 and that has a DW_AT_declaration attribute." */
5966 if (!pdi->has_byte_size && pdi->is_declaration)
5967 {
5968 if (built_actual_name)
5969 xfree (actual_name);
5970 return;
5971 }
5972
5973 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
5974 static vs. global. */
5975 add_psymbol_to_list (actual_name, strlen (actual_name),
5976 built_actual_name,
5977 STRUCT_DOMAIN, LOC_TYPEDEF,
5978 (cu->language == language_cplus
5979 || cu->language == language_java)
5980 ? &objfile->global_psymbols
5981 : &objfile->static_psymbols,
5982 0, (CORE_ADDR) 0, cu->language, objfile);
5983
5984 break;
5985 case DW_TAG_enumerator:
5986 add_psymbol_to_list (actual_name, strlen (actual_name),
5987 built_actual_name,
5988 VAR_DOMAIN, LOC_CONST,
5989 (cu->language == language_cplus
5990 || cu->language == language_java)
5991 ? &objfile->global_psymbols
5992 : &objfile->static_psymbols,
5993 0, (CORE_ADDR) 0, cu->language, objfile);
5994 break;
5995 default:
5996 break;
5997 }
5998
5999 if (built_actual_name)
6000 xfree (actual_name);
6001 }
6002
6003 /* Read a partial die corresponding to a namespace; also, add a symbol
6004 corresponding to that namespace to the symbol table. NAMESPACE is
6005 the name of the enclosing namespace. */
6006
6007 static void
6008 add_partial_namespace (struct partial_die_info *pdi,
6009 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6010 int need_pc, struct dwarf2_cu *cu)
6011 {
6012 /* Add a symbol for the namespace. */
6013
6014 add_partial_symbol (pdi, cu);
6015
6016 /* Now scan partial symbols in that namespace. */
6017
6018 if (pdi->has_children)
6019 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6020 }
6021
6022 /* Read a partial die corresponding to a Fortran module. */
6023
6024 static void
6025 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6026 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6027 {
6028 /* Now scan partial symbols in that module. */
6029
6030 if (pdi->has_children)
6031 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6032 }
6033
6034 /* Read a partial die corresponding to a subprogram and create a partial
6035 symbol for that subprogram. When the CU language allows it, this
6036 routine also defines a partial symbol for each nested subprogram
6037 that this subprogram contains.
6038
6039 DIE my also be a lexical block, in which case we simply search
6040 recursively for suprograms defined inside that lexical block.
6041 Again, this is only performed when the CU language allows this
6042 type of definitions. */
6043
6044 static void
6045 add_partial_subprogram (struct partial_die_info *pdi,
6046 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6047 int need_pc, struct dwarf2_cu *cu)
6048 {
6049 if (pdi->tag == DW_TAG_subprogram)
6050 {
6051 if (pdi->has_pc_info)
6052 {
6053 if (pdi->lowpc < *lowpc)
6054 *lowpc = pdi->lowpc;
6055 if (pdi->highpc > *highpc)
6056 *highpc = pdi->highpc;
6057 if (need_pc)
6058 {
6059 CORE_ADDR baseaddr;
6060 struct objfile *objfile = cu->objfile;
6061
6062 baseaddr = ANOFFSET (objfile->section_offsets,
6063 SECT_OFF_TEXT (objfile));
6064 addrmap_set_empty (objfile->psymtabs_addrmap,
6065 pdi->lowpc + baseaddr,
6066 pdi->highpc - 1 + baseaddr,
6067 cu->per_cu->v.psymtab);
6068 }
6069 }
6070
6071 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6072 {
6073 if (!pdi->is_declaration)
6074 /* Ignore subprogram DIEs that do not have a name, they are
6075 illegal. Do not emit a complaint at this point, we will
6076 do so when we convert this psymtab into a symtab. */
6077 if (pdi->name)
6078 add_partial_symbol (pdi, cu);
6079 }
6080 }
6081
6082 if (! pdi->has_children)
6083 return;
6084
6085 if (cu->language == language_ada)
6086 {
6087 pdi = pdi->die_child;
6088 while (pdi != NULL)
6089 {
6090 fixup_partial_die (pdi, cu);
6091 if (pdi->tag == DW_TAG_subprogram
6092 || pdi->tag == DW_TAG_lexical_block)
6093 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6094 pdi = pdi->die_sibling;
6095 }
6096 }
6097 }
6098
6099 /* Read a partial die corresponding to an enumeration type. */
6100
6101 static void
6102 add_partial_enumeration (struct partial_die_info *enum_pdi,
6103 struct dwarf2_cu *cu)
6104 {
6105 struct partial_die_info *pdi;
6106
6107 if (enum_pdi->name != NULL)
6108 add_partial_symbol (enum_pdi, cu);
6109
6110 pdi = enum_pdi->die_child;
6111 while (pdi)
6112 {
6113 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6114 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6115 else
6116 add_partial_symbol (pdi, cu);
6117 pdi = pdi->die_sibling;
6118 }
6119 }
6120
6121 /* Return the initial uleb128 in the die at INFO_PTR. */
6122
6123 static unsigned int
6124 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6125 {
6126 unsigned int bytes_read;
6127
6128 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6129 }
6130
6131 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6132 Return the corresponding abbrev, or NULL if the number is zero (indicating
6133 an empty DIE). In either case *BYTES_READ will be set to the length of
6134 the initial number. */
6135
6136 static struct abbrev_info *
6137 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
6138 struct dwarf2_cu *cu)
6139 {
6140 bfd *abfd = cu->objfile->obfd;
6141 unsigned int abbrev_number;
6142 struct abbrev_info *abbrev;
6143
6144 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6145
6146 if (abbrev_number == 0)
6147 return NULL;
6148
6149 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6150 if (!abbrev)
6151 {
6152 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6153 abbrev_number, bfd_get_filename (abfd));
6154 }
6155
6156 return abbrev;
6157 }
6158
6159 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6160 Returns a pointer to the end of a series of DIEs, terminated by an empty
6161 DIE. Any children of the skipped DIEs will also be skipped. */
6162
6163 static gdb_byte *
6164 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
6165 {
6166 struct dwarf2_cu *cu = reader->cu;
6167 struct abbrev_info *abbrev;
6168 unsigned int bytes_read;
6169
6170 while (1)
6171 {
6172 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6173 if (abbrev == NULL)
6174 return info_ptr + bytes_read;
6175 else
6176 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6177 }
6178 }
6179
6180 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6181 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6182 abbrev corresponding to that skipped uleb128 should be passed in
6183 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6184 children. */
6185
6186 static gdb_byte *
6187 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6188 struct abbrev_info *abbrev)
6189 {
6190 unsigned int bytes_read;
6191 struct attribute attr;
6192 bfd *abfd = reader->abfd;
6193 struct dwarf2_cu *cu = reader->cu;
6194 gdb_byte *buffer = reader->buffer;
6195 const gdb_byte *buffer_end = reader->buffer_end;
6196 gdb_byte *start_info_ptr = info_ptr;
6197 unsigned int form, i;
6198
6199 for (i = 0; i < abbrev->num_attrs; i++)
6200 {
6201 /* The only abbrev we care about is DW_AT_sibling. */
6202 if (abbrev->attrs[i].name == DW_AT_sibling)
6203 {
6204 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6205 if (attr.form == DW_FORM_ref_addr)
6206 complaint (&symfile_complaints,
6207 _("ignoring absolute DW_AT_sibling"));
6208 else
6209 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6210 }
6211
6212 /* If it isn't DW_AT_sibling, skip this attribute. */
6213 form = abbrev->attrs[i].form;
6214 skip_attribute:
6215 switch (form)
6216 {
6217 case DW_FORM_ref_addr:
6218 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6219 and later it is offset sized. */
6220 if (cu->header.version == 2)
6221 info_ptr += cu->header.addr_size;
6222 else
6223 info_ptr += cu->header.offset_size;
6224 break;
6225 case DW_FORM_GNU_ref_alt:
6226 info_ptr += cu->header.offset_size;
6227 break;
6228 case DW_FORM_addr:
6229 info_ptr += cu->header.addr_size;
6230 break;
6231 case DW_FORM_data1:
6232 case DW_FORM_ref1:
6233 case DW_FORM_flag:
6234 info_ptr += 1;
6235 break;
6236 case DW_FORM_flag_present:
6237 break;
6238 case DW_FORM_data2:
6239 case DW_FORM_ref2:
6240 info_ptr += 2;
6241 break;
6242 case DW_FORM_data4:
6243 case DW_FORM_ref4:
6244 info_ptr += 4;
6245 break;
6246 case DW_FORM_data8:
6247 case DW_FORM_ref8:
6248 case DW_FORM_ref_sig8:
6249 info_ptr += 8;
6250 break;
6251 case DW_FORM_string:
6252 read_direct_string (abfd, info_ptr, &bytes_read);
6253 info_ptr += bytes_read;
6254 break;
6255 case DW_FORM_sec_offset:
6256 case DW_FORM_strp:
6257 case DW_FORM_GNU_strp_alt:
6258 info_ptr += cu->header.offset_size;
6259 break;
6260 case DW_FORM_exprloc:
6261 case DW_FORM_block:
6262 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6263 info_ptr += bytes_read;
6264 break;
6265 case DW_FORM_block1:
6266 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6267 break;
6268 case DW_FORM_block2:
6269 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6270 break;
6271 case DW_FORM_block4:
6272 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6273 break;
6274 case DW_FORM_sdata:
6275 case DW_FORM_udata:
6276 case DW_FORM_ref_udata:
6277 case DW_FORM_GNU_addr_index:
6278 case DW_FORM_GNU_str_index:
6279 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
6280 break;
6281 case DW_FORM_indirect:
6282 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6283 info_ptr += bytes_read;
6284 /* We need to continue parsing from here, so just go back to
6285 the top. */
6286 goto skip_attribute;
6287
6288 default:
6289 error (_("Dwarf Error: Cannot handle %s "
6290 "in DWARF reader [in module %s]"),
6291 dwarf_form_name (form),
6292 bfd_get_filename (abfd));
6293 }
6294 }
6295
6296 if (abbrev->has_children)
6297 return skip_children (reader, info_ptr);
6298 else
6299 return info_ptr;
6300 }
6301
6302 /* Locate ORIG_PDI's sibling.
6303 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6304
6305 static gdb_byte *
6306 locate_pdi_sibling (const struct die_reader_specs *reader,
6307 struct partial_die_info *orig_pdi,
6308 gdb_byte *info_ptr)
6309 {
6310 /* Do we know the sibling already? */
6311
6312 if (orig_pdi->sibling)
6313 return orig_pdi->sibling;
6314
6315 /* Are there any children to deal with? */
6316
6317 if (!orig_pdi->has_children)
6318 return info_ptr;
6319
6320 /* Skip the children the long way. */
6321
6322 return skip_children (reader, info_ptr);
6323 }
6324
6325 /* Expand this partial symbol table into a full symbol table. */
6326
6327 static void
6328 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
6329 {
6330 if (pst != NULL)
6331 {
6332 if (pst->readin)
6333 {
6334 warning (_("bug: psymtab for %s is already read in."),
6335 pst->filename);
6336 }
6337 else
6338 {
6339 if (info_verbose)
6340 {
6341 printf_filtered (_("Reading in symbols for %s..."),
6342 pst->filename);
6343 gdb_flush (gdb_stdout);
6344 }
6345
6346 /* Restore our global data. */
6347 dwarf2_per_objfile = objfile_data (pst->objfile,
6348 dwarf2_objfile_data_key);
6349
6350 /* If this psymtab is constructed from a debug-only objfile, the
6351 has_section_at_zero flag will not necessarily be correct. We
6352 can get the correct value for this flag by looking at the data
6353 associated with the (presumably stripped) associated objfile. */
6354 if (pst->objfile->separate_debug_objfile_backlink)
6355 {
6356 struct dwarf2_per_objfile *dpo_backlink
6357 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
6358 dwarf2_objfile_data_key);
6359
6360 dwarf2_per_objfile->has_section_at_zero
6361 = dpo_backlink->has_section_at_zero;
6362 }
6363
6364 dwarf2_per_objfile->reading_partial_symbols = 0;
6365
6366 psymtab_to_symtab_1 (pst);
6367
6368 /* Finish up the debug error message. */
6369 if (info_verbose)
6370 printf_filtered (_("done.\n"));
6371 }
6372 }
6373
6374 process_cu_includes ();
6375 }
6376 \f
6377 /* Reading in full CUs. */
6378
6379 /* Add PER_CU to the queue. */
6380
6381 static void
6382 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6383 enum language pretend_language)
6384 {
6385 struct dwarf2_queue_item *item;
6386
6387 per_cu->queued = 1;
6388 item = xmalloc (sizeof (*item));
6389 item->per_cu = per_cu;
6390 item->pretend_language = pretend_language;
6391 item->next = NULL;
6392
6393 if (dwarf2_queue == NULL)
6394 dwarf2_queue = item;
6395 else
6396 dwarf2_queue_tail->next = item;
6397
6398 dwarf2_queue_tail = item;
6399 }
6400
6401 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6402 unit and add it to our queue.
6403 The result is non-zero if PER_CU was queued, otherwise the result is zero
6404 meaning either PER_CU is already queued or it is already loaded. */
6405
6406 static int
6407 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6408 struct dwarf2_per_cu_data *per_cu,
6409 enum language pretend_language)
6410 {
6411 /* We may arrive here during partial symbol reading, if we need full
6412 DIEs to process an unusual case (e.g. template arguments). Do
6413 not queue PER_CU, just tell our caller to load its DIEs. */
6414 if (dwarf2_per_objfile->reading_partial_symbols)
6415 {
6416 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6417 return 1;
6418 return 0;
6419 }
6420
6421 /* Mark the dependence relation so that we don't flush PER_CU
6422 too early. */
6423 dwarf2_add_dependence (this_cu, per_cu);
6424
6425 /* If it's already on the queue, we have nothing to do. */
6426 if (per_cu->queued)
6427 return 0;
6428
6429 /* If the compilation unit is already loaded, just mark it as
6430 used. */
6431 if (per_cu->cu != NULL)
6432 {
6433 per_cu->cu->last_used = 0;
6434 return 0;
6435 }
6436
6437 /* Add it to the queue. */
6438 queue_comp_unit (per_cu, pretend_language);
6439
6440 return 1;
6441 }
6442
6443 /* Process the queue. */
6444
6445 static void
6446 process_queue (void)
6447 {
6448 struct dwarf2_queue_item *item, *next_item;
6449
6450 if (dwarf2_read_debug)
6451 {
6452 fprintf_unfiltered (gdb_stdlog,
6453 "Expanding one or more symtabs of objfile %s ...\n",
6454 dwarf2_per_objfile->objfile->name);
6455 }
6456
6457 /* The queue starts out with one item, but following a DIE reference
6458 may load a new CU, adding it to the end of the queue. */
6459 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6460 {
6461 if (dwarf2_per_objfile->using_index
6462 ? !item->per_cu->v.quick->symtab
6463 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6464 {
6465 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6466
6467 if (dwarf2_read_debug)
6468 {
6469 fprintf_unfiltered (gdb_stdlog,
6470 "Expanding symtab of %s at offset 0x%x\n",
6471 per_cu->is_debug_types ? "TU" : "CU",
6472 per_cu->offset.sect_off);
6473 }
6474
6475 if (per_cu->is_debug_types)
6476 process_full_type_unit (per_cu, item->pretend_language);
6477 else
6478 process_full_comp_unit (per_cu, item->pretend_language);
6479
6480 if (dwarf2_read_debug)
6481 {
6482 fprintf_unfiltered (gdb_stdlog,
6483 "Done expanding %s at offset 0x%x\n",
6484 per_cu->is_debug_types ? "TU" : "CU",
6485 per_cu->offset.sect_off);
6486 }
6487 }
6488
6489 item->per_cu->queued = 0;
6490 next_item = item->next;
6491 xfree (item);
6492 }
6493
6494 dwarf2_queue_tail = NULL;
6495
6496 if (dwarf2_read_debug)
6497 {
6498 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6499 dwarf2_per_objfile->objfile->name);
6500 }
6501 }
6502
6503 /* Free all allocated queue entries. This function only releases anything if
6504 an error was thrown; if the queue was processed then it would have been
6505 freed as we went along. */
6506
6507 static void
6508 dwarf2_release_queue (void *dummy)
6509 {
6510 struct dwarf2_queue_item *item, *last;
6511
6512 item = dwarf2_queue;
6513 while (item)
6514 {
6515 /* Anything still marked queued is likely to be in an
6516 inconsistent state, so discard it. */
6517 if (item->per_cu->queued)
6518 {
6519 if (item->per_cu->cu != NULL)
6520 free_one_cached_comp_unit (item->per_cu);
6521 item->per_cu->queued = 0;
6522 }
6523
6524 last = item;
6525 item = item->next;
6526 xfree (last);
6527 }
6528
6529 dwarf2_queue = dwarf2_queue_tail = NULL;
6530 }
6531
6532 /* Read in full symbols for PST, and anything it depends on. */
6533
6534 static void
6535 psymtab_to_symtab_1 (struct partial_symtab *pst)
6536 {
6537 struct dwarf2_per_cu_data *per_cu;
6538 int i;
6539
6540 if (pst->readin)
6541 return;
6542
6543 for (i = 0; i < pst->number_of_dependencies; i++)
6544 if (!pst->dependencies[i]->readin
6545 && pst->dependencies[i]->user == NULL)
6546 {
6547 /* Inform about additional files that need to be read in. */
6548 if (info_verbose)
6549 {
6550 /* FIXME: i18n: Need to make this a single string. */
6551 fputs_filtered (" ", gdb_stdout);
6552 wrap_here ("");
6553 fputs_filtered ("and ", gdb_stdout);
6554 wrap_here ("");
6555 printf_filtered ("%s...", pst->dependencies[i]->filename);
6556 wrap_here (""); /* Flush output. */
6557 gdb_flush (gdb_stdout);
6558 }
6559 psymtab_to_symtab_1 (pst->dependencies[i]);
6560 }
6561
6562 per_cu = pst->read_symtab_private;
6563
6564 if (per_cu == NULL)
6565 {
6566 /* It's an include file, no symbols to read for it.
6567 Everything is in the parent symtab. */
6568 pst->readin = 1;
6569 return;
6570 }
6571
6572 dw2_do_instantiate_symtab (per_cu);
6573 }
6574
6575 /* Trivial hash function for die_info: the hash value of a DIE
6576 is its offset in .debug_info for this objfile. */
6577
6578 static hashval_t
6579 die_hash (const void *item)
6580 {
6581 const struct die_info *die = item;
6582
6583 return die->offset.sect_off;
6584 }
6585
6586 /* Trivial comparison function for die_info structures: two DIEs
6587 are equal if they have the same offset. */
6588
6589 static int
6590 die_eq (const void *item_lhs, const void *item_rhs)
6591 {
6592 const struct die_info *die_lhs = item_lhs;
6593 const struct die_info *die_rhs = item_rhs;
6594
6595 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6596 }
6597
6598 /* die_reader_func for load_full_comp_unit.
6599 This is identical to read_signatured_type_reader,
6600 but is kept separate for now. */
6601
6602 static void
6603 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6604 gdb_byte *info_ptr,
6605 struct die_info *comp_unit_die,
6606 int has_children,
6607 void *data)
6608 {
6609 struct dwarf2_cu *cu = reader->cu;
6610 enum language *language_ptr = data;
6611
6612 gdb_assert (cu->die_hash == NULL);
6613 cu->die_hash =
6614 htab_create_alloc_ex (cu->header.length / 12,
6615 die_hash,
6616 die_eq,
6617 NULL,
6618 &cu->comp_unit_obstack,
6619 hashtab_obstack_allocate,
6620 dummy_obstack_deallocate);
6621
6622 if (has_children)
6623 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6624 &info_ptr, comp_unit_die);
6625 cu->dies = comp_unit_die;
6626 /* comp_unit_die is not stored in die_hash, no need. */
6627
6628 /* We try not to read any attributes in this function, because not
6629 all CUs needed for references have been loaded yet, and symbol
6630 table processing isn't initialized. But we have to set the CU language,
6631 or we won't be able to build types correctly.
6632 Similarly, if we do not read the producer, we can not apply
6633 producer-specific interpretation. */
6634 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6635 }
6636
6637 /* Load the DIEs associated with PER_CU into memory. */
6638
6639 static void
6640 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6641 enum language pretend_language)
6642 {
6643 gdb_assert (! this_cu->is_debug_types);
6644
6645 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6646 load_full_comp_unit_reader, &pretend_language);
6647 }
6648
6649 /* Add a DIE to the delayed physname list. */
6650
6651 static void
6652 add_to_method_list (struct type *type, int fnfield_index, int index,
6653 const char *name, struct die_info *die,
6654 struct dwarf2_cu *cu)
6655 {
6656 struct delayed_method_info mi;
6657 mi.type = type;
6658 mi.fnfield_index = fnfield_index;
6659 mi.index = index;
6660 mi.name = name;
6661 mi.die = die;
6662 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6663 }
6664
6665 /* A cleanup for freeing the delayed method list. */
6666
6667 static void
6668 free_delayed_list (void *ptr)
6669 {
6670 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6671 if (cu->method_list != NULL)
6672 {
6673 VEC_free (delayed_method_info, cu->method_list);
6674 cu->method_list = NULL;
6675 }
6676 }
6677
6678 /* Compute the physnames of any methods on the CU's method list.
6679
6680 The computation of method physnames is delayed in order to avoid the
6681 (bad) condition that one of the method's formal parameters is of an as yet
6682 incomplete type. */
6683
6684 static void
6685 compute_delayed_physnames (struct dwarf2_cu *cu)
6686 {
6687 int i;
6688 struct delayed_method_info *mi;
6689 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6690 {
6691 const char *physname;
6692 struct fn_fieldlist *fn_flp
6693 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6694 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
6695 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6696 }
6697 }
6698
6699 /* Go objects should be embedded in a DW_TAG_module DIE,
6700 and it's not clear if/how imported objects will appear.
6701 To keep Go support simple until that's worked out,
6702 go back through what we've read and create something usable.
6703 We could do this while processing each DIE, and feels kinda cleaner,
6704 but that way is more invasive.
6705 This is to, for example, allow the user to type "p var" or "b main"
6706 without having to specify the package name, and allow lookups
6707 of module.object to work in contexts that use the expression
6708 parser. */
6709
6710 static void
6711 fixup_go_packaging (struct dwarf2_cu *cu)
6712 {
6713 char *package_name = NULL;
6714 struct pending *list;
6715 int i;
6716
6717 for (list = global_symbols; list != NULL; list = list->next)
6718 {
6719 for (i = 0; i < list->nsyms; ++i)
6720 {
6721 struct symbol *sym = list->symbol[i];
6722
6723 if (SYMBOL_LANGUAGE (sym) == language_go
6724 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6725 {
6726 char *this_package_name = go_symbol_package_name (sym);
6727
6728 if (this_package_name == NULL)
6729 continue;
6730 if (package_name == NULL)
6731 package_name = this_package_name;
6732 else
6733 {
6734 if (strcmp (package_name, this_package_name) != 0)
6735 complaint (&symfile_complaints,
6736 _("Symtab %s has objects from two different Go packages: %s and %s"),
6737 (SYMBOL_SYMTAB (sym)
6738 && SYMBOL_SYMTAB (sym)->filename
6739 ? SYMBOL_SYMTAB (sym)->filename
6740 : cu->objfile->name),
6741 this_package_name, package_name);
6742 xfree (this_package_name);
6743 }
6744 }
6745 }
6746 }
6747
6748 if (package_name != NULL)
6749 {
6750 struct objfile *objfile = cu->objfile;
6751 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6752 package_name, objfile);
6753 struct symbol *sym;
6754
6755 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6756
6757 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6758 SYMBOL_SET_LANGUAGE (sym, language_go);
6759 SYMBOL_SET_NAMES (sym, package_name, strlen (package_name), 1, objfile);
6760 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6761 e.g., "main" finds the "main" module and not C's main(). */
6762 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6763 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6764 SYMBOL_TYPE (sym) = type;
6765
6766 add_symbol_to_list (sym, &global_symbols);
6767
6768 xfree (package_name);
6769 }
6770 }
6771
6772 static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
6773
6774 /* Return the symtab for PER_CU. This works properly regardless of
6775 whether we're using the index or psymtabs. */
6776
6777 static struct symtab *
6778 get_symtab (struct dwarf2_per_cu_data *per_cu)
6779 {
6780 return (dwarf2_per_objfile->using_index
6781 ? per_cu->v.quick->symtab
6782 : per_cu->v.psymtab->symtab);
6783 }
6784
6785 /* A helper function for computing the list of all symbol tables
6786 included by PER_CU. */
6787
6788 static void
6789 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6790 htab_t all_children,
6791 struct dwarf2_per_cu_data *per_cu)
6792 {
6793 void **slot;
6794 int ix;
6795 struct dwarf2_per_cu_data *iter;
6796
6797 slot = htab_find_slot (all_children, per_cu, INSERT);
6798 if (*slot != NULL)
6799 {
6800 /* This inclusion and its children have been processed. */
6801 return;
6802 }
6803
6804 *slot = per_cu;
6805 /* Only add a CU if it has a symbol table. */
6806 if (get_symtab (per_cu) != NULL)
6807 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6808
6809 for (ix = 0;
6810 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs, ix, iter);
6811 ++ix)
6812 recursively_compute_inclusions (result, all_children, iter);
6813 }
6814
6815 /* Compute the symtab 'includes' fields for the symtab related to
6816 PER_CU. */
6817
6818 static void
6819 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6820 {
6821 gdb_assert (! per_cu->is_debug_types);
6822
6823 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs))
6824 {
6825 int ix, len;
6826 struct dwarf2_per_cu_data *iter;
6827 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6828 htab_t all_children;
6829 struct symtab *symtab = get_symtab (per_cu);
6830
6831 /* If we don't have a symtab, we can just skip this case. */
6832 if (symtab == NULL)
6833 return;
6834
6835 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6836 NULL, xcalloc, xfree);
6837
6838 for (ix = 0;
6839 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs,
6840 ix, iter);
6841 ++ix)
6842 recursively_compute_inclusions (&result_children, all_children, iter);
6843
6844 /* Now we have a transitive closure of all the included CUs, so
6845 we can convert it to a list of symtabs. */
6846 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6847 symtab->includes
6848 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6849 (len + 1) * sizeof (struct symtab *));
6850 for (ix = 0;
6851 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6852 ++ix)
6853 symtab->includes[ix] = get_symtab (iter);
6854 symtab->includes[len] = NULL;
6855
6856 VEC_free (dwarf2_per_cu_ptr, result_children);
6857 htab_delete (all_children);
6858 }
6859 }
6860
6861 /* Compute the 'includes' field for the symtabs of all the CUs we just
6862 read. */
6863
6864 static void
6865 process_cu_includes (void)
6866 {
6867 int ix;
6868 struct dwarf2_per_cu_data *iter;
6869
6870 for (ix = 0;
6871 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6872 ix, iter);
6873 ++ix)
6874 {
6875 if (! iter->is_debug_types)
6876 compute_symtab_includes (iter);
6877 }
6878
6879 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6880 }
6881
6882 /* Generate full symbol information for PER_CU, whose DIEs have
6883 already been loaded into memory. */
6884
6885 static void
6886 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
6887 enum language pretend_language)
6888 {
6889 struct dwarf2_cu *cu = per_cu->cu;
6890 struct objfile *objfile = per_cu->objfile;
6891 CORE_ADDR lowpc, highpc;
6892 struct symtab *symtab;
6893 struct cleanup *back_to, *delayed_list_cleanup;
6894 CORE_ADDR baseaddr;
6895 struct block *static_block;
6896
6897 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6898
6899 buildsym_init ();
6900 back_to = make_cleanup (really_free_pendings, NULL);
6901 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6902
6903 cu->list_in_scope = &file_symbols;
6904
6905 cu->language = pretend_language;
6906 cu->language_defn = language_def (cu->language);
6907
6908 /* Do line number decoding in read_file_scope () */
6909 process_die (cu->dies, cu);
6910
6911 /* For now fudge the Go package. */
6912 if (cu->language == language_go)
6913 fixup_go_packaging (cu);
6914
6915 /* Now that we have processed all the DIEs in the CU, all the types
6916 should be complete, and it should now be safe to compute all of the
6917 physnames. */
6918 compute_delayed_physnames (cu);
6919 do_cleanups (delayed_list_cleanup);
6920
6921 /* Some compilers don't define a DW_AT_high_pc attribute for the
6922 compilation unit. If the DW_AT_high_pc is missing, synthesize
6923 it, by scanning the DIE's below the compilation unit. */
6924 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
6925
6926 static_block
6927 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
6928 per_cu->s.imported_symtabs != NULL);
6929
6930 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
6931 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
6932 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
6933 addrmap to help ensure it has an accurate map of pc values belonging to
6934 this comp unit. */
6935 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
6936
6937 symtab = end_symtab_from_static_block (static_block, objfile,
6938 SECT_OFF_TEXT (objfile), 0);
6939
6940 if (symtab != NULL)
6941 {
6942 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
6943
6944 /* Set symtab language to language from DW_AT_language. If the
6945 compilation is from a C file generated by language preprocessors, do
6946 not set the language if it was already deduced by start_subfile. */
6947 if (!(cu->language == language_c && symtab->language != language_c))
6948 symtab->language = cu->language;
6949
6950 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
6951 produce DW_AT_location with location lists but it can be possibly
6952 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
6953 there were bugs in prologue debug info, fixed later in GCC-4.5
6954 by "unwind info for epilogues" patch (which is not directly related).
6955
6956 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
6957 needed, it would be wrong due to missing DW_AT_producer there.
6958
6959 Still one can confuse GDB by using non-standard GCC compilation
6960 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
6961 */
6962 if (cu->has_loclist && gcc_4_minor >= 5)
6963 symtab->locations_valid = 1;
6964
6965 if (gcc_4_minor >= 5)
6966 symtab->epilogue_unwind_valid = 1;
6967
6968 symtab->call_site_htab = cu->call_site_htab;
6969 }
6970
6971 if (dwarf2_per_objfile->using_index)
6972 per_cu->v.quick->symtab = symtab;
6973 else
6974 {
6975 struct partial_symtab *pst = per_cu->v.psymtab;
6976 pst->symtab = symtab;
6977 pst->readin = 1;
6978 }
6979
6980 /* Push it for inclusion processing later. */
6981 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
6982
6983 do_cleanups (back_to);
6984 }
6985
6986 /* Generate full symbol information for type unit PER_CU, whose DIEs have
6987 already been loaded into memory. */
6988
6989 static void
6990 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
6991 enum language pretend_language)
6992 {
6993 struct dwarf2_cu *cu = per_cu->cu;
6994 struct objfile *objfile = per_cu->objfile;
6995 struct symtab *symtab;
6996 struct cleanup *back_to, *delayed_list_cleanup;
6997
6998 buildsym_init ();
6999 back_to = make_cleanup (really_free_pendings, NULL);
7000 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7001
7002 cu->list_in_scope = &file_symbols;
7003
7004 cu->language = pretend_language;
7005 cu->language_defn = language_def (cu->language);
7006
7007 /* The symbol tables are set up in read_type_unit_scope. */
7008 process_die (cu->dies, cu);
7009
7010 /* For now fudge the Go package. */
7011 if (cu->language == language_go)
7012 fixup_go_packaging (cu);
7013
7014 /* Now that we have processed all the DIEs in the CU, all the types
7015 should be complete, and it should now be safe to compute all of the
7016 physnames. */
7017 compute_delayed_physnames (cu);
7018 do_cleanups (delayed_list_cleanup);
7019
7020 /* TUs share symbol tables.
7021 If this is the first TU to use this symtab, complete the construction
7022 of it with end_expandable_symtab. Otherwise, complete the addition of
7023 this TU's symbols to the existing symtab. */
7024 if (per_cu->s.type_unit_group->primary_symtab == NULL)
7025 {
7026 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7027 per_cu->s.type_unit_group->primary_symtab = symtab;
7028
7029 if (symtab != NULL)
7030 {
7031 /* Set symtab language to language from DW_AT_language. If the
7032 compilation is from a C file generated by language preprocessors,
7033 do not set the language if it was already deduced by
7034 start_subfile. */
7035 if (!(cu->language == language_c && symtab->language != language_c))
7036 symtab->language = cu->language;
7037 }
7038 }
7039 else
7040 {
7041 augment_type_symtab (objfile,
7042 per_cu->s.type_unit_group->primary_symtab);
7043 symtab = per_cu->s.type_unit_group->primary_symtab;
7044 }
7045
7046 if (dwarf2_per_objfile->using_index)
7047 per_cu->v.quick->symtab = symtab;
7048 else
7049 {
7050 struct partial_symtab *pst = per_cu->v.psymtab;
7051 pst->symtab = symtab;
7052 pst->readin = 1;
7053 }
7054
7055 do_cleanups (back_to);
7056 }
7057
7058 /* Process an imported unit DIE. */
7059
7060 static void
7061 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7062 {
7063 struct attribute *attr;
7064
7065 /* For now we don't handle imported units in type units. */
7066 if (cu->per_cu->is_debug_types)
7067 {
7068 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7069 " supported in type units [in module %s]"),
7070 cu->objfile->name);
7071 }
7072
7073 attr = dwarf2_attr (die, DW_AT_import, cu);
7074 if (attr != NULL)
7075 {
7076 struct dwarf2_per_cu_data *per_cu;
7077 struct symtab *imported_symtab;
7078 sect_offset offset;
7079 int is_dwz;
7080
7081 offset = dwarf2_get_ref_die_offset (attr);
7082 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7083 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7084
7085 /* Queue the unit, if needed. */
7086 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7087 load_full_comp_unit (per_cu, cu->language);
7088
7089 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
7090 per_cu);
7091 }
7092 }
7093
7094 /* Process a die and its children. */
7095
7096 static void
7097 process_die (struct die_info *die, struct dwarf2_cu *cu)
7098 {
7099 switch (die->tag)
7100 {
7101 case DW_TAG_padding:
7102 break;
7103 case DW_TAG_compile_unit:
7104 case DW_TAG_partial_unit:
7105 read_file_scope (die, cu);
7106 break;
7107 case DW_TAG_type_unit:
7108 read_type_unit_scope (die, cu);
7109 break;
7110 case DW_TAG_subprogram:
7111 case DW_TAG_inlined_subroutine:
7112 read_func_scope (die, cu);
7113 break;
7114 case DW_TAG_lexical_block:
7115 case DW_TAG_try_block:
7116 case DW_TAG_catch_block:
7117 read_lexical_block_scope (die, cu);
7118 break;
7119 case DW_TAG_GNU_call_site:
7120 read_call_site_scope (die, cu);
7121 break;
7122 case DW_TAG_class_type:
7123 case DW_TAG_interface_type:
7124 case DW_TAG_structure_type:
7125 case DW_TAG_union_type:
7126 process_structure_scope (die, cu);
7127 break;
7128 case DW_TAG_enumeration_type:
7129 process_enumeration_scope (die, cu);
7130 break;
7131
7132 /* These dies have a type, but processing them does not create
7133 a symbol or recurse to process the children. Therefore we can
7134 read them on-demand through read_type_die. */
7135 case DW_TAG_subroutine_type:
7136 case DW_TAG_set_type:
7137 case DW_TAG_array_type:
7138 case DW_TAG_pointer_type:
7139 case DW_TAG_ptr_to_member_type:
7140 case DW_TAG_reference_type:
7141 case DW_TAG_string_type:
7142 break;
7143
7144 case DW_TAG_base_type:
7145 case DW_TAG_subrange_type:
7146 case DW_TAG_typedef:
7147 /* Add a typedef symbol for the type definition, if it has a
7148 DW_AT_name. */
7149 new_symbol (die, read_type_die (die, cu), cu);
7150 break;
7151 case DW_TAG_common_block:
7152 read_common_block (die, cu);
7153 break;
7154 case DW_TAG_common_inclusion:
7155 break;
7156 case DW_TAG_namespace:
7157 processing_has_namespace_info = 1;
7158 read_namespace (die, cu);
7159 break;
7160 case DW_TAG_module:
7161 processing_has_namespace_info = 1;
7162 read_module (die, cu);
7163 break;
7164 case DW_TAG_imported_declaration:
7165 case DW_TAG_imported_module:
7166 processing_has_namespace_info = 1;
7167 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7168 || cu->language != language_fortran))
7169 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7170 dwarf_tag_name (die->tag));
7171 read_import_statement (die, cu);
7172 break;
7173
7174 case DW_TAG_imported_unit:
7175 process_imported_unit_die (die, cu);
7176 break;
7177
7178 default:
7179 new_symbol (die, NULL, cu);
7180 break;
7181 }
7182 }
7183
7184 /* A helper function for dwarf2_compute_name which determines whether DIE
7185 needs to have the name of the scope prepended to the name listed in the
7186 die. */
7187
7188 static int
7189 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7190 {
7191 struct attribute *attr;
7192
7193 switch (die->tag)
7194 {
7195 case DW_TAG_namespace:
7196 case DW_TAG_typedef:
7197 case DW_TAG_class_type:
7198 case DW_TAG_interface_type:
7199 case DW_TAG_structure_type:
7200 case DW_TAG_union_type:
7201 case DW_TAG_enumeration_type:
7202 case DW_TAG_enumerator:
7203 case DW_TAG_subprogram:
7204 case DW_TAG_member:
7205 return 1;
7206
7207 case DW_TAG_variable:
7208 case DW_TAG_constant:
7209 /* We only need to prefix "globally" visible variables. These include
7210 any variable marked with DW_AT_external or any variable that
7211 lives in a namespace. [Variables in anonymous namespaces
7212 require prefixing, but they are not DW_AT_external.] */
7213
7214 if (dwarf2_attr (die, DW_AT_specification, cu))
7215 {
7216 struct dwarf2_cu *spec_cu = cu;
7217
7218 return die_needs_namespace (die_specification (die, &spec_cu),
7219 spec_cu);
7220 }
7221
7222 attr = dwarf2_attr (die, DW_AT_external, cu);
7223 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7224 && die->parent->tag != DW_TAG_module)
7225 return 0;
7226 /* A variable in a lexical block of some kind does not need a
7227 namespace, even though in C++ such variables may be external
7228 and have a mangled name. */
7229 if (die->parent->tag == DW_TAG_lexical_block
7230 || die->parent->tag == DW_TAG_try_block
7231 || die->parent->tag == DW_TAG_catch_block
7232 || die->parent->tag == DW_TAG_subprogram)
7233 return 0;
7234 return 1;
7235
7236 default:
7237 return 0;
7238 }
7239 }
7240
7241 /* Retrieve the last character from a mem_file. */
7242
7243 static void
7244 do_ui_file_peek_last (void *object, const char *buffer, long length)
7245 {
7246 char *last_char_p = (char *) object;
7247
7248 if (length > 0)
7249 *last_char_p = buffer[length - 1];
7250 }
7251
7252 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7253 compute the physname for the object, which include a method's:
7254 - formal parameters (C++/Java),
7255 - receiver type (Go),
7256 - return type (Java).
7257
7258 The term "physname" is a bit confusing.
7259 For C++, for example, it is the demangled name.
7260 For Go, for example, it's the mangled name.
7261
7262 For Ada, return the DIE's linkage name rather than the fully qualified
7263 name. PHYSNAME is ignored..
7264
7265 The result is allocated on the objfile_obstack and canonicalized. */
7266
7267 static const char *
7268 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
7269 int physname)
7270 {
7271 struct objfile *objfile = cu->objfile;
7272
7273 if (name == NULL)
7274 name = dwarf2_name (die, cu);
7275
7276 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7277 compute it by typename_concat inside GDB. */
7278 if (cu->language == language_ada
7279 || (cu->language == language_fortran && physname))
7280 {
7281 /* For Ada unit, we prefer the linkage name over the name, as
7282 the former contains the exported name, which the user expects
7283 to be able to reference. Ideally, we want the user to be able
7284 to reference this entity using either natural or linkage name,
7285 but we haven't started looking at this enhancement yet. */
7286 struct attribute *attr;
7287
7288 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7289 if (attr == NULL)
7290 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7291 if (attr && DW_STRING (attr))
7292 return DW_STRING (attr);
7293 }
7294
7295 /* These are the only languages we know how to qualify names in. */
7296 if (name != NULL
7297 && (cu->language == language_cplus || cu->language == language_java
7298 || cu->language == language_fortran))
7299 {
7300 if (die_needs_namespace (die, cu))
7301 {
7302 long length;
7303 const char *prefix;
7304 struct ui_file *buf;
7305
7306 prefix = determine_prefix (die, cu);
7307 buf = mem_fileopen ();
7308 if (*prefix != '\0')
7309 {
7310 char *prefixed_name = typename_concat (NULL, prefix, name,
7311 physname, cu);
7312
7313 fputs_unfiltered (prefixed_name, buf);
7314 xfree (prefixed_name);
7315 }
7316 else
7317 fputs_unfiltered (name, buf);
7318
7319 /* Template parameters may be specified in the DIE's DW_AT_name, or
7320 as children with DW_TAG_template_type_param or
7321 DW_TAG_value_type_param. If the latter, add them to the name
7322 here. If the name already has template parameters, then
7323 skip this step; some versions of GCC emit both, and
7324 it is more efficient to use the pre-computed name.
7325
7326 Something to keep in mind about this process: it is very
7327 unlikely, or in some cases downright impossible, to produce
7328 something that will match the mangled name of a function.
7329 If the definition of the function has the same debug info,
7330 we should be able to match up with it anyway. But fallbacks
7331 using the minimal symbol, for instance to find a method
7332 implemented in a stripped copy of libstdc++, will not work.
7333 If we do not have debug info for the definition, we will have to
7334 match them up some other way.
7335
7336 When we do name matching there is a related problem with function
7337 templates; two instantiated function templates are allowed to
7338 differ only by their return types, which we do not add here. */
7339
7340 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7341 {
7342 struct attribute *attr;
7343 struct die_info *child;
7344 int first = 1;
7345
7346 die->building_fullname = 1;
7347
7348 for (child = die->child; child != NULL; child = child->sibling)
7349 {
7350 struct type *type;
7351 LONGEST value;
7352 gdb_byte *bytes;
7353 struct dwarf2_locexpr_baton *baton;
7354 struct value *v;
7355
7356 if (child->tag != DW_TAG_template_type_param
7357 && child->tag != DW_TAG_template_value_param)
7358 continue;
7359
7360 if (first)
7361 {
7362 fputs_unfiltered ("<", buf);
7363 first = 0;
7364 }
7365 else
7366 fputs_unfiltered (", ", buf);
7367
7368 attr = dwarf2_attr (child, DW_AT_type, cu);
7369 if (attr == NULL)
7370 {
7371 complaint (&symfile_complaints,
7372 _("template parameter missing DW_AT_type"));
7373 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7374 continue;
7375 }
7376 type = die_type (child, cu);
7377
7378 if (child->tag == DW_TAG_template_type_param)
7379 {
7380 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7381 continue;
7382 }
7383
7384 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7385 if (attr == NULL)
7386 {
7387 complaint (&symfile_complaints,
7388 _("template parameter missing "
7389 "DW_AT_const_value"));
7390 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7391 continue;
7392 }
7393
7394 dwarf2_const_value_attr (attr, type, name,
7395 &cu->comp_unit_obstack, cu,
7396 &value, &bytes, &baton);
7397
7398 if (TYPE_NOSIGN (type))
7399 /* GDB prints characters as NUMBER 'CHAR'. If that's
7400 changed, this can use value_print instead. */
7401 c_printchar (value, type, buf);
7402 else
7403 {
7404 struct value_print_options opts;
7405
7406 if (baton != NULL)
7407 v = dwarf2_evaluate_loc_desc (type, NULL,
7408 baton->data,
7409 baton->size,
7410 baton->per_cu);
7411 else if (bytes != NULL)
7412 {
7413 v = allocate_value (type);
7414 memcpy (value_contents_writeable (v), bytes,
7415 TYPE_LENGTH (type));
7416 }
7417 else
7418 v = value_from_longest (type, value);
7419
7420 /* Specify decimal so that we do not depend on
7421 the radix. */
7422 get_formatted_print_options (&opts, 'd');
7423 opts.raw = 1;
7424 value_print (v, buf, &opts);
7425 release_value (v);
7426 value_free (v);
7427 }
7428 }
7429
7430 die->building_fullname = 0;
7431
7432 if (!first)
7433 {
7434 /* Close the argument list, with a space if necessary
7435 (nested templates). */
7436 char last_char = '\0';
7437 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7438 if (last_char == '>')
7439 fputs_unfiltered (" >", buf);
7440 else
7441 fputs_unfiltered (">", buf);
7442 }
7443 }
7444
7445 /* For Java and C++ methods, append formal parameter type
7446 information, if PHYSNAME. */
7447
7448 if (physname && die->tag == DW_TAG_subprogram
7449 && (cu->language == language_cplus
7450 || cu->language == language_java))
7451 {
7452 struct type *type = read_type_die (die, cu);
7453
7454 c_type_print_args (type, buf, 1, cu->language,
7455 &type_print_raw_options);
7456
7457 if (cu->language == language_java)
7458 {
7459 /* For java, we must append the return type to method
7460 names. */
7461 if (die->tag == DW_TAG_subprogram)
7462 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7463 0, 0, &type_print_raw_options);
7464 }
7465 else if (cu->language == language_cplus)
7466 {
7467 /* Assume that an artificial first parameter is
7468 "this", but do not crash if it is not. RealView
7469 marks unnamed (and thus unused) parameters as
7470 artificial; there is no way to differentiate
7471 the two cases. */
7472 if (TYPE_NFIELDS (type) > 0
7473 && TYPE_FIELD_ARTIFICIAL (type, 0)
7474 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7475 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7476 0))))
7477 fputs_unfiltered (" const", buf);
7478 }
7479 }
7480
7481 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7482 &length);
7483 ui_file_delete (buf);
7484
7485 if (cu->language == language_cplus)
7486 {
7487 char *cname
7488 = dwarf2_canonicalize_name (name, cu,
7489 &objfile->objfile_obstack);
7490
7491 if (cname != NULL)
7492 name = cname;
7493 }
7494 }
7495 }
7496
7497 return name;
7498 }
7499
7500 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7501 If scope qualifiers are appropriate they will be added. The result
7502 will be allocated on the objfile_obstack, or NULL if the DIE does
7503 not have a name. NAME may either be from a previous call to
7504 dwarf2_name or NULL.
7505
7506 The output string will be canonicalized (if C++/Java). */
7507
7508 static const char *
7509 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
7510 {
7511 return dwarf2_compute_name (name, die, cu, 0);
7512 }
7513
7514 /* Construct a physname for the given DIE in CU. NAME may either be
7515 from a previous call to dwarf2_name or NULL. The result will be
7516 allocated on the objfile_objstack or NULL if the DIE does not have a
7517 name.
7518
7519 The output string will be canonicalized (if C++/Java). */
7520
7521 static const char *
7522 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
7523 {
7524 struct objfile *objfile = cu->objfile;
7525 struct attribute *attr;
7526 const char *retval, *mangled = NULL, *canon = NULL;
7527 struct cleanup *back_to;
7528 int need_copy = 1;
7529
7530 /* In this case dwarf2_compute_name is just a shortcut not building anything
7531 on its own. */
7532 if (!die_needs_namespace (die, cu))
7533 return dwarf2_compute_name (name, die, cu, 1);
7534
7535 back_to = make_cleanup (null_cleanup, NULL);
7536
7537 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7538 if (!attr)
7539 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7540
7541 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7542 has computed. */
7543 if (attr && DW_STRING (attr))
7544 {
7545 char *demangled;
7546
7547 mangled = DW_STRING (attr);
7548
7549 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7550 type. It is easier for GDB users to search for such functions as
7551 `name(params)' than `long name(params)'. In such case the minimal
7552 symbol names do not match the full symbol names but for template
7553 functions there is never a need to look up their definition from their
7554 declaration so the only disadvantage remains the minimal symbol
7555 variant `long name(params)' does not have the proper inferior type.
7556 */
7557
7558 if (cu->language == language_go)
7559 {
7560 /* This is a lie, but we already lie to the caller new_symbol_full.
7561 new_symbol_full assumes we return the mangled name.
7562 This just undoes that lie until things are cleaned up. */
7563 demangled = NULL;
7564 }
7565 else
7566 {
7567 demangled = cplus_demangle (mangled,
7568 (DMGL_PARAMS | DMGL_ANSI
7569 | (cu->language == language_java
7570 ? DMGL_JAVA | DMGL_RET_POSTFIX
7571 : DMGL_RET_DROP)));
7572 }
7573 if (demangled)
7574 {
7575 make_cleanup (xfree, demangled);
7576 canon = demangled;
7577 }
7578 else
7579 {
7580 canon = mangled;
7581 need_copy = 0;
7582 }
7583 }
7584
7585 if (canon == NULL || check_physname)
7586 {
7587 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7588
7589 if (canon != NULL && strcmp (physname, canon) != 0)
7590 {
7591 /* It may not mean a bug in GDB. The compiler could also
7592 compute DW_AT_linkage_name incorrectly. But in such case
7593 GDB would need to be bug-to-bug compatible. */
7594
7595 complaint (&symfile_complaints,
7596 _("Computed physname <%s> does not match demangled <%s> "
7597 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7598 physname, canon, mangled, die->offset.sect_off, objfile->name);
7599
7600 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7601 is available here - over computed PHYSNAME. It is safer
7602 against both buggy GDB and buggy compilers. */
7603
7604 retval = canon;
7605 }
7606 else
7607 {
7608 retval = physname;
7609 need_copy = 0;
7610 }
7611 }
7612 else
7613 retval = canon;
7614
7615 if (need_copy)
7616 retval = obsavestring (retval, strlen (retval),
7617 &objfile->objfile_obstack);
7618
7619 do_cleanups (back_to);
7620 return retval;
7621 }
7622
7623 /* Read the import statement specified by the given die and record it. */
7624
7625 static void
7626 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7627 {
7628 struct objfile *objfile = cu->objfile;
7629 struct attribute *import_attr;
7630 struct die_info *imported_die, *child_die;
7631 struct dwarf2_cu *imported_cu;
7632 const char *imported_name;
7633 const char *imported_name_prefix;
7634 const char *canonical_name;
7635 const char *import_alias;
7636 const char *imported_declaration = NULL;
7637 const char *import_prefix;
7638 VEC (const_char_ptr) *excludes = NULL;
7639 struct cleanup *cleanups;
7640
7641 char *temp;
7642
7643 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7644 if (import_attr == NULL)
7645 {
7646 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7647 dwarf_tag_name (die->tag));
7648 return;
7649 }
7650
7651 imported_cu = cu;
7652 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7653 imported_name = dwarf2_name (imported_die, imported_cu);
7654 if (imported_name == NULL)
7655 {
7656 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7657
7658 The import in the following code:
7659 namespace A
7660 {
7661 typedef int B;
7662 }
7663
7664 int main ()
7665 {
7666 using A::B;
7667 B b;
7668 return b;
7669 }
7670
7671 ...
7672 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7673 <52> DW_AT_decl_file : 1
7674 <53> DW_AT_decl_line : 6
7675 <54> DW_AT_import : <0x75>
7676 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7677 <59> DW_AT_name : B
7678 <5b> DW_AT_decl_file : 1
7679 <5c> DW_AT_decl_line : 2
7680 <5d> DW_AT_type : <0x6e>
7681 ...
7682 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7683 <76> DW_AT_byte_size : 4
7684 <77> DW_AT_encoding : 5 (signed)
7685
7686 imports the wrong die ( 0x75 instead of 0x58 ).
7687 This case will be ignored until the gcc bug is fixed. */
7688 return;
7689 }
7690
7691 /* Figure out the local name after import. */
7692 import_alias = dwarf2_name (die, cu);
7693
7694 /* Figure out where the statement is being imported to. */
7695 import_prefix = determine_prefix (die, cu);
7696
7697 /* Figure out what the scope of the imported die is and prepend it
7698 to the name of the imported die. */
7699 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7700
7701 if (imported_die->tag != DW_TAG_namespace
7702 && imported_die->tag != DW_TAG_module)
7703 {
7704 imported_declaration = imported_name;
7705 canonical_name = imported_name_prefix;
7706 }
7707 else if (strlen (imported_name_prefix) > 0)
7708 {
7709 temp = alloca (strlen (imported_name_prefix)
7710 + 2 + strlen (imported_name) + 1);
7711 strcpy (temp, imported_name_prefix);
7712 strcat (temp, "::");
7713 strcat (temp, imported_name);
7714 canonical_name = temp;
7715 }
7716 else
7717 canonical_name = imported_name;
7718
7719 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7720
7721 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7722 for (child_die = die->child; child_die && child_die->tag;
7723 child_die = sibling_die (child_die))
7724 {
7725 /* DWARF-4: A Fortran use statement with a “rename list” may be
7726 represented by an imported module entry with an import attribute
7727 referring to the module and owned entries corresponding to those
7728 entities that are renamed as part of being imported. */
7729
7730 if (child_die->tag != DW_TAG_imported_declaration)
7731 {
7732 complaint (&symfile_complaints,
7733 _("child DW_TAG_imported_declaration expected "
7734 "- DIE at 0x%x [in module %s]"),
7735 child_die->offset.sect_off, objfile->name);
7736 continue;
7737 }
7738
7739 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7740 if (import_attr == NULL)
7741 {
7742 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7743 dwarf_tag_name (child_die->tag));
7744 continue;
7745 }
7746
7747 imported_cu = cu;
7748 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7749 &imported_cu);
7750 imported_name = dwarf2_name (imported_die, imported_cu);
7751 if (imported_name == NULL)
7752 {
7753 complaint (&symfile_complaints,
7754 _("child DW_TAG_imported_declaration has unknown "
7755 "imported name - DIE at 0x%x [in module %s]"),
7756 child_die->offset.sect_off, objfile->name);
7757 continue;
7758 }
7759
7760 VEC_safe_push (const_char_ptr, excludes, imported_name);
7761
7762 process_die (child_die, cu);
7763 }
7764
7765 cp_add_using_directive (import_prefix,
7766 canonical_name,
7767 import_alias,
7768 imported_declaration,
7769 excludes,
7770 &objfile->objfile_obstack);
7771
7772 do_cleanups (cleanups);
7773 }
7774
7775 /* Cleanup function for handle_DW_AT_stmt_list. */
7776
7777 static void
7778 free_cu_line_header (void *arg)
7779 {
7780 struct dwarf2_cu *cu = arg;
7781
7782 free_line_header (cu->line_header);
7783 cu->line_header = NULL;
7784 }
7785
7786 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
7787 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
7788 this, it was first present in GCC release 4.3.0. */
7789
7790 static int
7791 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
7792 {
7793 if (!cu->checked_producer)
7794 check_producer (cu);
7795
7796 return cu->producer_is_gcc_lt_4_3;
7797 }
7798
7799 static void
7800 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7801 char **name, char **comp_dir)
7802 {
7803 struct attribute *attr;
7804
7805 *name = NULL;
7806 *comp_dir = NULL;
7807
7808 /* Find the filename. Do not use dwarf2_name here, since the filename
7809 is not a source language identifier. */
7810 attr = dwarf2_attr (die, DW_AT_name, cu);
7811 if (attr)
7812 {
7813 *name = DW_STRING (attr);
7814 }
7815
7816 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7817 if (attr)
7818 *comp_dir = DW_STRING (attr);
7819 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
7820 && IS_ABSOLUTE_PATH (*name))
7821 {
7822 *comp_dir = ldirname (*name);
7823 if (*comp_dir != NULL)
7824 make_cleanup (xfree, *comp_dir);
7825 }
7826 if (*comp_dir != NULL)
7827 {
7828 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7829 directory, get rid of it. */
7830 char *cp = strchr (*comp_dir, ':');
7831
7832 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7833 *comp_dir = cp + 1;
7834 }
7835
7836 if (*name == NULL)
7837 *name = "<unknown>";
7838 }
7839
7840 /* Handle DW_AT_stmt_list for a compilation unit.
7841 DIE is the DW_TAG_compile_unit die for CU.
7842 COMP_DIR is the compilation directory.
7843 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
7844
7845 static void
7846 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
7847 const char *comp_dir)
7848 {
7849 struct attribute *attr;
7850
7851 gdb_assert (! cu->per_cu->is_debug_types);
7852
7853 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7854 if (attr)
7855 {
7856 unsigned int line_offset = DW_UNSND (attr);
7857 struct line_header *line_header
7858 = dwarf_decode_line_header (line_offset, cu);
7859
7860 if (line_header)
7861 {
7862 cu->line_header = line_header;
7863 make_cleanup (free_cu_line_header, cu);
7864 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
7865 }
7866 }
7867 }
7868
7869 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
7870
7871 static void
7872 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
7873 {
7874 struct objfile *objfile = dwarf2_per_objfile->objfile;
7875 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7876 CORE_ADDR lowpc = ((CORE_ADDR) -1);
7877 CORE_ADDR highpc = ((CORE_ADDR) 0);
7878 struct attribute *attr;
7879 char *name = NULL;
7880 char *comp_dir = NULL;
7881 struct die_info *child_die;
7882 bfd *abfd = objfile->obfd;
7883 CORE_ADDR baseaddr;
7884
7885 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7886
7887 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
7888
7889 /* If we didn't find a lowpc, set it to highpc to avoid complaints
7890 from finish_block. */
7891 if (lowpc == ((CORE_ADDR) -1))
7892 lowpc = highpc;
7893 lowpc += baseaddr;
7894 highpc += baseaddr;
7895
7896 find_file_and_directory (die, cu, &name, &comp_dir);
7897
7898 prepare_one_comp_unit (cu, die, cu->language);
7899
7900 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
7901 standardised yet. As a workaround for the language detection we fall
7902 back to the DW_AT_producer string. */
7903 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
7904 cu->language = language_opencl;
7905
7906 /* Similar hack for Go. */
7907 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
7908 set_cu_language (DW_LANG_Go, cu);
7909
7910 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
7911
7912 /* Decode line number information if present. We do this before
7913 processing child DIEs, so that the line header table is available
7914 for DW_AT_decl_file. */
7915 handle_DW_AT_stmt_list (die, cu, comp_dir);
7916
7917 /* Process all dies in compilation unit. */
7918 if (die->child != NULL)
7919 {
7920 child_die = die->child;
7921 while (child_die && child_die->tag)
7922 {
7923 process_die (child_die, cu);
7924 child_die = sibling_die (child_die);
7925 }
7926 }
7927
7928 /* Decode macro information, if present. Dwarf 2 macro information
7929 refers to information in the line number info statement program
7930 header, so we can only read it if we've read the header
7931 successfully. */
7932 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
7933 if (attr && cu->line_header)
7934 {
7935 if (dwarf2_attr (die, DW_AT_macro_info, cu))
7936 complaint (&symfile_complaints,
7937 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
7938
7939 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
7940 }
7941 else
7942 {
7943 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
7944 if (attr && cu->line_header)
7945 {
7946 unsigned int macro_offset = DW_UNSND (attr);
7947
7948 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
7949 }
7950 }
7951
7952 do_cleanups (back_to);
7953 }
7954
7955 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
7956 Create the set of symtabs used by this TU, or if this TU is sharing
7957 symtabs with another TU and the symtabs have already been created
7958 then restore those symtabs in the line header.
7959 We don't need the pc/line-number mapping for type units. */
7960
7961 static void
7962 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
7963 {
7964 struct objfile *objfile = dwarf2_per_objfile->objfile;
7965 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7966 struct type_unit_group *tu_group;
7967 int first_time;
7968 struct line_header *lh;
7969 struct attribute *attr;
7970 unsigned int i, line_offset;
7971
7972 gdb_assert (per_cu->is_debug_types);
7973
7974 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7975
7976 /* If we're using .gdb_index (includes -readnow) then
7977 per_cu->s.type_unit_group may not have been set up yet. */
7978 if (per_cu->s.type_unit_group == NULL)
7979 per_cu->s.type_unit_group = get_type_unit_group (cu, attr);
7980 tu_group = per_cu->s.type_unit_group;
7981
7982 /* If we've already processed this stmt_list there's no real need to
7983 do it again, we could fake it and just recreate the part we need
7984 (file name,index -> symtab mapping). If data shows this optimization
7985 is useful we can do it then. */
7986 first_time = tu_group->primary_symtab == NULL;
7987
7988 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
7989 debug info. */
7990 lh = NULL;
7991 if (attr != NULL)
7992 {
7993 line_offset = DW_UNSND (attr);
7994 lh = dwarf_decode_line_header (line_offset, cu);
7995 }
7996 if (lh == NULL)
7997 {
7998 if (first_time)
7999 dwarf2_start_symtab (cu, "", NULL, 0);
8000 else
8001 {
8002 gdb_assert (tu_group->symtabs == NULL);
8003 restart_symtab (0);
8004 }
8005 /* Note: The primary symtab will get allocated at the end. */
8006 return;
8007 }
8008
8009 cu->line_header = lh;
8010 make_cleanup (free_cu_line_header, cu);
8011
8012 if (first_time)
8013 {
8014 dwarf2_start_symtab (cu, "", NULL, 0);
8015
8016 tu_group->num_symtabs = lh->num_file_names;
8017 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8018
8019 for (i = 0; i < lh->num_file_names; ++i)
8020 {
8021 char *dir = NULL;
8022 struct file_entry *fe = &lh->file_names[i];
8023
8024 if (fe->dir_index)
8025 dir = lh->include_dirs[fe->dir_index - 1];
8026 dwarf2_start_subfile (fe->name, dir, NULL);
8027
8028 /* Note: We don't have to watch for the main subfile here, type units
8029 don't have DW_AT_name. */
8030
8031 if (current_subfile->symtab == NULL)
8032 {
8033 /* NOTE: start_subfile will recognize when it's been passed
8034 a file it has already seen. So we can't assume there's a
8035 simple mapping from lh->file_names to subfiles,
8036 lh->file_names may contain dups. */
8037 current_subfile->symtab = allocate_symtab (current_subfile->name,
8038 objfile);
8039 }
8040
8041 fe->symtab = current_subfile->symtab;
8042 tu_group->symtabs[i] = fe->symtab;
8043 }
8044 }
8045 else
8046 {
8047 restart_symtab (0);
8048
8049 for (i = 0; i < lh->num_file_names; ++i)
8050 {
8051 struct file_entry *fe = &lh->file_names[i];
8052
8053 fe->symtab = tu_group->symtabs[i];
8054 }
8055 }
8056
8057 /* The main symtab is allocated last. Type units don't have DW_AT_name
8058 so they don't have a "real" (so to speak) symtab anyway.
8059 There is later code that will assign the main symtab to all symbols
8060 that don't have one. We need to handle the case of a symbol with a
8061 missing symtab (DW_AT_decl_file) anyway. */
8062 }
8063
8064 /* Process DW_TAG_type_unit.
8065 For TUs we want to skip the first top level sibling if it's not the
8066 actual type being defined by this TU. In this case the first top
8067 level sibling is there to provide context only. */
8068
8069 static void
8070 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8071 {
8072 struct die_info *child_die;
8073
8074 prepare_one_comp_unit (cu, die, language_minimal);
8075
8076 /* Initialize (or reinitialize) the machinery for building symtabs.
8077 We do this before processing child DIEs, so that the line header table
8078 is available for DW_AT_decl_file. */
8079 setup_type_unit_groups (die, cu);
8080
8081 if (die->child != NULL)
8082 {
8083 child_die = die->child;
8084 while (child_die && child_die->tag)
8085 {
8086 process_die (child_die, cu);
8087 child_die = sibling_die (child_die);
8088 }
8089 }
8090 }
8091 \f
8092 /* DWO/DWP files.
8093
8094 http://gcc.gnu.org/wiki/DebugFission
8095 http://gcc.gnu.org/wiki/DebugFissionDWP
8096
8097 To simplify handling of both DWO files ("object" files with the DWARF info)
8098 and DWP files (a file with the DWOs packaged up into one file), we treat
8099 DWP files as having a collection of virtual DWO files. */
8100
8101 static hashval_t
8102 hash_dwo_file (const void *item)
8103 {
8104 const struct dwo_file *dwo_file = item;
8105
8106 return htab_hash_string (dwo_file->name);
8107 }
8108
8109 static int
8110 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8111 {
8112 const struct dwo_file *lhs = item_lhs;
8113 const struct dwo_file *rhs = item_rhs;
8114
8115 return strcmp (lhs->name, rhs->name) == 0;
8116 }
8117
8118 /* Allocate a hash table for DWO files. */
8119
8120 static htab_t
8121 allocate_dwo_file_hash_table (void)
8122 {
8123 struct objfile *objfile = dwarf2_per_objfile->objfile;
8124
8125 return htab_create_alloc_ex (41,
8126 hash_dwo_file,
8127 eq_dwo_file,
8128 NULL,
8129 &objfile->objfile_obstack,
8130 hashtab_obstack_allocate,
8131 dummy_obstack_deallocate);
8132 }
8133
8134 /* Lookup DWO file DWO_NAME. */
8135
8136 static void **
8137 lookup_dwo_file_slot (const char *dwo_name)
8138 {
8139 struct dwo_file find_entry;
8140 void **slot;
8141
8142 if (dwarf2_per_objfile->dwo_files == NULL)
8143 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8144
8145 memset (&find_entry, 0, sizeof (find_entry));
8146 find_entry.name = dwo_name;
8147 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8148
8149 return slot;
8150 }
8151
8152 static hashval_t
8153 hash_dwo_unit (const void *item)
8154 {
8155 const struct dwo_unit *dwo_unit = item;
8156
8157 /* This drops the top 32 bits of the id, but is ok for a hash. */
8158 return dwo_unit->signature;
8159 }
8160
8161 static int
8162 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8163 {
8164 const struct dwo_unit *lhs = item_lhs;
8165 const struct dwo_unit *rhs = item_rhs;
8166
8167 /* The signature is assumed to be unique within the DWO file.
8168 So while object file CU dwo_id's always have the value zero,
8169 that's OK, assuming each object file DWO file has only one CU,
8170 and that's the rule for now. */
8171 return lhs->signature == rhs->signature;
8172 }
8173
8174 /* Allocate a hash table for DWO CUs,TUs.
8175 There is one of these tables for each of CUs,TUs for each DWO file. */
8176
8177 static htab_t
8178 allocate_dwo_unit_table (struct objfile *objfile)
8179 {
8180 /* Start out with a pretty small number.
8181 Generally DWO files contain only one CU and maybe some TUs. */
8182 return htab_create_alloc_ex (3,
8183 hash_dwo_unit,
8184 eq_dwo_unit,
8185 NULL,
8186 &objfile->objfile_obstack,
8187 hashtab_obstack_allocate,
8188 dummy_obstack_deallocate);
8189 }
8190
8191 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8192
8193 struct create_dwo_info_table_data
8194 {
8195 struct dwo_file *dwo_file;
8196 htab_t cu_htab;
8197 };
8198
8199 /* die_reader_func for create_dwo_debug_info_hash_table. */
8200
8201 static void
8202 create_dwo_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8203 gdb_byte *info_ptr,
8204 struct die_info *comp_unit_die,
8205 int has_children,
8206 void *datap)
8207 {
8208 struct dwarf2_cu *cu = reader->cu;
8209 struct objfile *objfile = dwarf2_per_objfile->objfile;
8210 sect_offset offset = cu->per_cu->offset;
8211 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
8212 struct create_dwo_info_table_data *data = datap;
8213 struct dwo_file *dwo_file = data->dwo_file;
8214 htab_t cu_htab = data->cu_htab;
8215 void **slot;
8216 struct attribute *attr;
8217 struct dwo_unit *dwo_unit;
8218
8219 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8220 if (attr == NULL)
8221 {
8222 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8223 " its dwo_id [in module %s]"),
8224 offset.sect_off, dwo_file->name);
8225 return;
8226 }
8227
8228 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8229 dwo_unit->dwo_file = dwo_file;
8230 dwo_unit->signature = DW_UNSND (attr);
8231 dwo_unit->info_or_types_section = section;
8232 dwo_unit->offset = offset;
8233 dwo_unit->length = cu->per_cu->length;
8234
8235 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8236 gdb_assert (slot != NULL);
8237 if (*slot != NULL)
8238 {
8239 const struct dwo_unit *dup_dwo_unit = *slot;
8240
8241 complaint (&symfile_complaints,
8242 _("debug entry at offset 0x%x is duplicate to the entry at"
8243 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8244 offset.sect_off, dup_dwo_unit->offset.sect_off,
8245 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
8246 dwo_file->name);
8247 }
8248 else
8249 *slot = dwo_unit;
8250
8251 if (dwarf2_read_debug)
8252 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8253 offset.sect_off,
8254 phex (dwo_unit->signature,
8255 sizeof (dwo_unit->signature)));
8256 }
8257
8258 /* Create a hash table to map DWO IDs to their CU entry in
8259 .debug_info.dwo in DWO_FILE.
8260 Note: This function processes DWO files only, not DWP files. */
8261
8262 static htab_t
8263 create_dwo_debug_info_hash_table (struct dwo_file *dwo_file)
8264 {
8265 struct objfile *objfile = dwarf2_per_objfile->objfile;
8266 struct dwarf2_section_info *section = &dwo_file->sections.info;
8267 bfd *abfd;
8268 htab_t cu_htab;
8269 gdb_byte *info_ptr, *end_ptr;
8270 struct create_dwo_info_table_data create_dwo_info_table_data;
8271
8272 dwarf2_read_section (objfile, section);
8273 info_ptr = section->buffer;
8274
8275 if (info_ptr == NULL)
8276 return NULL;
8277
8278 /* We can't set abfd until now because the section may be empty or
8279 not present, in which case section->asection will be NULL. */
8280 abfd = section->asection->owner;
8281
8282 if (dwarf2_read_debug)
8283 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8284 bfd_get_filename (abfd));
8285
8286 cu_htab = allocate_dwo_unit_table (objfile);
8287
8288 create_dwo_info_table_data.dwo_file = dwo_file;
8289 create_dwo_info_table_data.cu_htab = cu_htab;
8290
8291 end_ptr = info_ptr + section->size;
8292 while (info_ptr < end_ptr)
8293 {
8294 struct dwarf2_per_cu_data per_cu;
8295
8296 memset (&per_cu, 0, sizeof (per_cu));
8297 per_cu.objfile = objfile;
8298 per_cu.is_debug_types = 0;
8299 per_cu.offset.sect_off = info_ptr - section->buffer;
8300 per_cu.info_or_types_section = section;
8301
8302 init_cutu_and_read_dies_no_follow (&per_cu,
8303 &dwo_file->sections.abbrev,
8304 dwo_file,
8305 create_dwo_debug_info_hash_table_reader,
8306 &create_dwo_info_table_data);
8307
8308 info_ptr += per_cu.length;
8309 }
8310
8311 return cu_htab;
8312 }
8313
8314 /* DWP file .debug_{cu,tu}_index section format:
8315 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8316
8317 Both index sections have the same format, and serve to map a 64-bit
8318 signature to a set of section numbers. Each section begins with a header,
8319 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8320 indexes, and a pool of 32-bit section numbers. The index sections will be
8321 aligned at 8-byte boundaries in the file.
8322
8323 The index section header contains two unsigned 32-bit values (using the
8324 byte order of the application binary):
8325
8326 N, the number of compilation units or type units in the index
8327 M, the number of slots in the hash table
8328
8329 (We assume that N and M will not exceed 2^32 - 1.)
8330
8331 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8332
8333 The hash table begins at offset 8 in the section, and consists of an array
8334 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8335 order of the application binary). Unused slots in the hash table are 0.
8336 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8337
8338 The parallel table begins immediately after the hash table
8339 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8340 array of 32-bit indexes (using the byte order of the application binary),
8341 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8342 table contains a 32-bit index into the pool of section numbers. For unused
8343 hash table slots, the corresponding entry in the parallel table will be 0.
8344
8345 Given a 64-bit compilation unit signature or a type signature S, an entry
8346 in the hash table is located as follows:
8347
8348 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8349 the low-order k bits all set to 1.
8350
8351 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8352
8353 3) If the hash table entry at index H matches the signature, use that
8354 entry. If the hash table entry at index H is unused (all zeroes),
8355 terminate the search: the signature is not present in the table.
8356
8357 4) Let H = (H + H') modulo M. Repeat at Step 3.
8358
8359 Because M > N and H' and M are relatively prime, the search is guaranteed
8360 to stop at an unused slot or find the match.
8361
8362 The pool of section numbers begins immediately following the hash table
8363 (at offset 8 + 12 * M from the beginning of the section). The pool of
8364 section numbers consists of an array of 32-bit words (using the byte order
8365 of the application binary). Each item in the array is indexed starting
8366 from 0. The hash table entry provides the index of the first section
8367 number in the set. Additional section numbers in the set follow, and the
8368 set is terminated by a 0 entry (section number 0 is not used in ELF).
8369
8370 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8371 section must be the first entry in the set, and the .debug_abbrev.dwo must
8372 be the second entry. Other members of the set may follow in any order. */
8373
8374 /* Create a hash table to map DWO IDs to their CU/TU entry in
8375 .debug_{info,types}.dwo in DWP_FILE.
8376 Returns NULL if there isn't one.
8377 Note: This function processes DWP files only, not DWO files. */
8378
8379 static struct dwp_hash_table *
8380 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8381 {
8382 struct objfile *objfile = dwarf2_per_objfile->objfile;
8383 bfd *dbfd = dwp_file->dbfd;
8384 char *index_ptr, *index_end;
8385 struct dwarf2_section_info *index;
8386 uint32_t version, nr_units, nr_slots;
8387 struct dwp_hash_table *htab;
8388
8389 if (is_debug_types)
8390 index = &dwp_file->sections.tu_index;
8391 else
8392 index = &dwp_file->sections.cu_index;
8393
8394 if (dwarf2_section_empty_p (index))
8395 return NULL;
8396 dwarf2_read_section (objfile, index);
8397
8398 index_ptr = index->buffer;
8399 index_end = index_ptr + index->size;
8400
8401 version = read_4_bytes (dbfd, index_ptr);
8402 index_ptr += 8; /* Skip the unused word. */
8403 nr_units = read_4_bytes (dbfd, index_ptr);
8404 index_ptr += 4;
8405 nr_slots = read_4_bytes (dbfd, index_ptr);
8406 index_ptr += 4;
8407
8408 if (version != 1)
8409 {
8410 error (_("Dwarf Error: unsupported DWP file version (%u)"
8411 " [in module %s]"),
8412 version, dwp_file->name);
8413 }
8414 if (nr_slots != (nr_slots & -nr_slots))
8415 {
8416 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8417 " is not power of 2 [in module %s]"),
8418 nr_slots, dwp_file->name);
8419 }
8420
8421 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8422 htab->nr_units = nr_units;
8423 htab->nr_slots = nr_slots;
8424 htab->hash_table = index_ptr;
8425 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8426 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8427
8428 return htab;
8429 }
8430
8431 /* Update SECTIONS with the data from SECTP.
8432
8433 This function is like the other "locate" section routines that are
8434 passed to bfd_map_over_sections, but in this context the sections to
8435 read comes from the DWP hash table, not the full ELF section table.
8436
8437 The result is non-zero for success, or zero if an error was found. */
8438
8439 static int
8440 locate_virtual_dwo_sections (asection *sectp,
8441 struct virtual_dwo_sections *sections)
8442 {
8443 const struct dwop_section_names *names = &dwop_section_names;
8444
8445 if (section_is_p (sectp->name, &names->abbrev_dwo))
8446 {
8447 /* There can be only one. */
8448 if (sections->abbrev.asection != NULL)
8449 return 0;
8450 sections->abbrev.asection = sectp;
8451 sections->abbrev.size = bfd_get_section_size (sectp);
8452 }
8453 else if (section_is_p (sectp->name, &names->info_dwo)
8454 || section_is_p (sectp->name, &names->types_dwo))
8455 {
8456 /* There can be only one. */
8457 if (sections->info_or_types.asection != NULL)
8458 return 0;
8459 sections->info_or_types.asection = sectp;
8460 sections->info_or_types.size = bfd_get_section_size (sectp);
8461 }
8462 else if (section_is_p (sectp->name, &names->line_dwo))
8463 {
8464 /* There can be only one. */
8465 if (sections->line.asection != NULL)
8466 return 0;
8467 sections->line.asection = sectp;
8468 sections->line.size = bfd_get_section_size (sectp);
8469 }
8470 else if (section_is_p (sectp->name, &names->loc_dwo))
8471 {
8472 /* There can be only one. */
8473 if (sections->loc.asection != NULL)
8474 return 0;
8475 sections->loc.asection = sectp;
8476 sections->loc.size = bfd_get_section_size (sectp);
8477 }
8478 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8479 {
8480 /* There can be only one. */
8481 if (sections->macinfo.asection != NULL)
8482 return 0;
8483 sections->macinfo.asection = sectp;
8484 sections->macinfo.size = bfd_get_section_size (sectp);
8485 }
8486 else if (section_is_p (sectp->name, &names->macro_dwo))
8487 {
8488 /* There can be only one. */
8489 if (sections->macro.asection != NULL)
8490 return 0;
8491 sections->macro.asection = sectp;
8492 sections->macro.size = bfd_get_section_size (sectp);
8493 }
8494 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8495 {
8496 /* There can be only one. */
8497 if (sections->str_offsets.asection != NULL)
8498 return 0;
8499 sections->str_offsets.asection = sectp;
8500 sections->str_offsets.size = bfd_get_section_size (sectp);
8501 }
8502 else
8503 {
8504 /* No other kind of section is valid. */
8505 return 0;
8506 }
8507
8508 return 1;
8509 }
8510
8511 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
8512 HTAB is the hash table from the DWP file.
8513 SECTION_INDEX is the index of the DWO in HTAB. */
8514
8515 static struct dwo_unit *
8516 create_dwo_in_dwp (struct dwp_file *dwp_file,
8517 const struct dwp_hash_table *htab,
8518 uint32_t section_index,
8519 ULONGEST signature, int is_debug_types)
8520 {
8521 struct objfile *objfile = dwarf2_per_objfile->objfile;
8522 bfd *dbfd = dwp_file->dbfd;
8523 const char *kind = is_debug_types ? "TU" : "CU";
8524 struct dwo_file *dwo_file;
8525 struct dwo_unit *dwo_unit;
8526 struct virtual_dwo_sections sections;
8527 void **dwo_file_slot;
8528 char *virtual_dwo_name;
8529 struct dwarf2_section_info *cutu;
8530 struct cleanup *cleanups;
8531 int i;
8532
8533 if (dwarf2_read_debug)
8534 {
8535 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/0x%s in DWP file: %s\n",
8536 kind,
8537 section_index, phex (signature, sizeof (signature)),
8538 dwp_file->name);
8539 }
8540
8541 /* Fetch the sections of this DWO.
8542 Put a limit on the number of sections we look for so that bad data
8543 doesn't cause us to loop forever. */
8544
8545 #define MAX_NR_DWO_SECTIONS \
8546 (1 /* .debug_info or .debug_types */ \
8547 + 1 /* .debug_abbrev */ \
8548 + 1 /* .debug_line */ \
8549 + 1 /* .debug_loc */ \
8550 + 1 /* .debug_str_offsets */ \
8551 + 1 /* .debug_macro */ \
8552 + 1 /* .debug_macinfo */ \
8553 + 1 /* trailing zero */)
8554
8555 memset (&sections, 0, sizeof (sections));
8556 cleanups = make_cleanup (null_cleanup, 0);
8557
8558 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8559 {
8560 asection *sectp;
8561 uint32_t section_nr =
8562 read_4_bytes (dbfd,
8563 htab->section_pool
8564 + (section_index + i) * sizeof (uint32_t));
8565
8566 if (section_nr == 0)
8567 break;
8568 if (section_nr >= dwp_file->num_sections)
8569 {
8570 error (_("Dwarf Error: bad DWP hash table, section number too large"
8571 " [in module %s]"),
8572 dwp_file->name);
8573 }
8574
8575 sectp = dwp_file->elf_sections[section_nr];
8576 if (! locate_virtual_dwo_sections (sectp, &sections))
8577 {
8578 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8579 " [in module %s]"),
8580 dwp_file->name);
8581 }
8582 }
8583
8584 if (i < 2
8585 || sections.info_or_types.asection == NULL
8586 || sections.abbrev.asection == NULL)
8587 {
8588 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8589 " [in module %s]"),
8590 dwp_file->name);
8591 }
8592 if (i == MAX_NR_DWO_SECTIONS)
8593 {
8594 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8595 " [in module %s]"),
8596 dwp_file->name);
8597 }
8598
8599 /* It's easier for the rest of the code if we fake a struct dwo_file and
8600 have dwo_unit "live" in that. At least for now.
8601
8602 The DWP file can be made up of a random collection of CUs and TUs.
8603 However, for each CU + set of TUs that came from the same original DWO
8604 file, we want to combine them back into a virtual DWO file to save space
8605 (fewer struct dwo_file objects to allocated). Remember that for really
8606 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8607
8608 virtual_dwo_name =
8609 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8610 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8611 sections.line.asection ? sections.line.asection->id : 0,
8612 sections.loc.asection ? sections.loc.asection->id : 0,
8613 (sections.str_offsets.asection
8614 ? sections.str_offsets.asection->id
8615 : 0));
8616 make_cleanup (xfree, virtual_dwo_name);
8617 /* Can we use an existing virtual DWO file? */
8618 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name);
8619 /* Create one if necessary. */
8620 if (*dwo_file_slot == NULL)
8621 {
8622 if (dwarf2_read_debug)
8623 {
8624 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8625 virtual_dwo_name);
8626 }
8627 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8628 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8629 virtual_dwo_name,
8630 strlen (virtual_dwo_name));
8631 dwo_file->sections.abbrev = sections.abbrev;
8632 dwo_file->sections.line = sections.line;
8633 dwo_file->sections.loc = sections.loc;
8634 dwo_file->sections.macinfo = sections.macinfo;
8635 dwo_file->sections.macro = sections.macro;
8636 dwo_file->sections.str_offsets = sections.str_offsets;
8637 /* The "str" section is global to the entire DWP file. */
8638 dwo_file->sections.str = dwp_file->sections.str;
8639 /* The info or types section is assigned later to dwo_unit,
8640 there's no need to record it in dwo_file.
8641 Also, we can't simply record type sections in dwo_file because
8642 we record a pointer into the vector in dwo_unit. As we collect more
8643 types we'll grow the vector and eventually have to reallocate space
8644 for it, invalidating all the pointers into the current copy. */
8645 *dwo_file_slot = dwo_file;
8646 }
8647 else
8648 {
8649 if (dwarf2_read_debug)
8650 {
8651 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8652 virtual_dwo_name);
8653 }
8654 dwo_file = *dwo_file_slot;
8655 }
8656 do_cleanups (cleanups);
8657
8658 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8659 dwo_unit->dwo_file = dwo_file;
8660 dwo_unit->signature = signature;
8661 dwo_unit->info_or_types_section =
8662 obstack_alloc (&objfile->objfile_obstack,
8663 sizeof (struct dwarf2_section_info));
8664 *dwo_unit->info_or_types_section = sections.info_or_types;
8665 /* offset, length, type_offset_in_tu are set later. */
8666
8667 return dwo_unit;
8668 }
8669
8670 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
8671
8672 static struct dwo_unit *
8673 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8674 const struct dwp_hash_table *htab,
8675 ULONGEST signature, int is_debug_types)
8676 {
8677 bfd *dbfd = dwp_file->dbfd;
8678 uint32_t mask = htab->nr_slots - 1;
8679 uint32_t hash = signature & mask;
8680 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8681 unsigned int i;
8682 void **slot;
8683 struct dwo_unit find_dwo_cu, *dwo_cu;
8684
8685 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8686 find_dwo_cu.signature = signature;
8687 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8688
8689 if (*slot != NULL)
8690 return *slot;
8691
8692 /* Use a for loop so that we don't loop forever on bad debug info. */
8693 for (i = 0; i < htab->nr_slots; ++i)
8694 {
8695 ULONGEST signature_in_table;
8696
8697 signature_in_table =
8698 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8699 if (signature_in_table == signature)
8700 {
8701 uint32_t section_index =
8702 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8703
8704 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8705 signature, is_debug_types);
8706 return *slot;
8707 }
8708 if (signature_in_table == 0)
8709 return NULL;
8710 hash = (hash + hash2) & mask;
8711 }
8712
8713 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8714 " [in module %s]"),
8715 dwp_file->name);
8716 }
8717
8718 /* Subroutine of open_dwop_file to simplify it.
8719 Open the file specified by FILE_NAME and hand it off to BFD for
8720 preliminary analysis. Return a newly initialized bfd *, which
8721 includes a canonicalized copy of FILE_NAME.
8722 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8723 In case of trouble, return NULL.
8724 NOTE: This function is derived from symfile_bfd_open. */
8725
8726 static bfd *
8727 try_open_dwop_file (const char *file_name, int is_dwp)
8728 {
8729 bfd *sym_bfd;
8730 int desc, flags;
8731 char *absolute_name;
8732
8733 flags = OPF_TRY_CWD_FIRST;
8734 if (is_dwp)
8735 flags |= OPF_SEARCH_IN_PATH;
8736 desc = openp (debug_file_directory, flags, file_name,
8737 O_RDONLY | O_BINARY, &absolute_name);
8738 if (desc < 0)
8739 return NULL;
8740
8741 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8742 if (!sym_bfd)
8743 {
8744 xfree (absolute_name);
8745 return NULL;
8746 }
8747 xfree (absolute_name);
8748 bfd_set_cacheable (sym_bfd, 1);
8749
8750 if (!bfd_check_format (sym_bfd, bfd_object))
8751 {
8752 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8753 return NULL;
8754 }
8755
8756 return sym_bfd;
8757 }
8758
8759 /* Try to open DWO/DWP file FILE_NAME.
8760 COMP_DIR is the DW_AT_comp_dir attribute.
8761 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8762 The result is the bfd handle of the file.
8763 If there is a problem finding or opening the file, return NULL.
8764 Upon success, the canonicalized path of the file is stored in the bfd,
8765 same as symfile_bfd_open. */
8766
8767 static bfd *
8768 open_dwop_file (const char *file_name, const char *comp_dir, int is_dwp)
8769 {
8770 bfd *abfd;
8771
8772 if (IS_ABSOLUTE_PATH (file_name))
8773 return try_open_dwop_file (file_name, is_dwp);
8774
8775 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8776
8777 if (comp_dir != NULL)
8778 {
8779 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
8780
8781 /* NOTE: If comp_dir is a relative path, this will also try the
8782 search path, which seems useful. */
8783 abfd = try_open_dwop_file (path_to_try, is_dwp);
8784 xfree (path_to_try);
8785 if (abfd != NULL)
8786 return abfd;
8787 }
8788
8789 /* That didn't work, try debug-file-directory, which, despite its name,
8790 is a list of paths. */
8791
8792 if (*debug_file_directory == '\0')
8793 return NULL;
8794
8795 return try_open_dwop_file (file_name, is_dwp);
8796 }
8797
8798 /* This function is mapped across the sections and remembers the offset and
8799 size of each of the DWO debugging sections we are interested in. */
8800
8801 static void
8802 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
8803 {
8804 struct dwo_sections *dwo_sections = dwo_sections_ptr;
8805 const struct dwop_section_names *names = &dwop_section_names;
8806
8807 if (section_is_p (sectp->name, &names->abbrev_dwo))
8808 {
8809 dwo_sections->abbrev.asection = sectp;
8810 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
8811 }
8812 else if (section_is_p (sectp->name, &names->info_dwo))
8813 {
8814 dwo_sections->info.asection = sectp;
8815 dwo_sections->info.size = bfd_get_section_size (sectp);
8816 }
8817 else if (section_is_p (sectp->name, &names->line_dwo))
8818 {
8819 dwo_sections->line.asection = sectp;
8820 dwo_sections->line.size = bfd_get_section_size (sectp);
8821 }
8822 else if (section_is_p (sectp->name, &names->loc_dwo))
8823 {
8824 dwo_sections->loc.asection = sectp;
8825 dwo_sections->loc.size = bfd_get_section_size (sectp);
8826 }
8827 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8828 {
8829 dwo_sections->macinfo.asection = sectp;
8830 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
8831 }
8832 else if (section_is_p (sectp->name, &names->macro_dwo))
8833 {
8834 dwo_sections->macro.asection = sectp;
8835 dwo_sections->macro.size = bfd_get_section_size (sectp);
8836 }
8837 else if (section_is_p (sectp->name, &names->str_dwo))
8838 {
8839 dwo_sections->str.asection = sectp;
8840 dwo_sections->str.size = bfd_get_section_size (sectp);
8841 }
8842 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8843 {
8844 dwo_sections->str_offsets.asection = sectp;
8845 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
8846 }
8847 else if (section_is_p (sectp->name, &names->types_dwo))
8848 {
8849 struct dwarf2_section_info type_section;
8850
8851 memset (&type_section, 0, sizeof (type_section));
8852 type_section.asection = sectp;
8853 type_section.size = bfd_get_section_size (sectp);
8854 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
8855 &type_section);
8856 }
8857 }
8858
8859 /* Initialize the use of the DWO file specified by DWO_NAME.
8860 The result is NULL if DWO_NAME can't be found. */
8861
8862 static struct dwo_file *
8863 open_and_init_dwo_file (const char *dwo_name, const char *comp_dir)
8864 {
8865 struct objfile *objfile = dwarf2_per_objfile->objfile;
8866 struct dwo_file *dwo_file;
8867 bfd *dbfd;
8868 struct cleanup *cleanups;
8869
8870 dbfd = open_dwop_file (dwo_name, comp_dir, 0);
8871 if (dbfd == NULL)
8872 {
8873 if (dwarf2_read_debug)
8874 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
8875 return NULL;
8876 }
8877 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8878 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8879 dwo_name, strlen (dwo_name));
8880 dwo_file->dbfd = dbfd;
8881
8882 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8883
8884 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
8885
8886 dwo_file->cus = create_dwo_debug_info_hash_table (dwo_file);
8887
8888 dwo_file->tus = create_debug_types_hash_table (dwo_file,
8889 dwo_file->sections.types);
8890
8891 discard_cleanups (cleanups);
8892
8893 if (dwarf2_read_debug)
8894 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
8895
8896 return dwo_file;
8897 }
8898
8899 /* This function is mapped across the sections and remembers the offset and
8900 size of each of the DWP debugging sections we are interested in. */
8901
8902 static void
8903 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
8904 {
8905 struct dwp_file *dwp_file = dwp_file_ptr;
8906 const struct dwop_section_names *names = &dwop_section_names;
8907 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
8908
8909 /* Record the ELF section number for later lookup: this is what the
8910 .debug_cu_index,.debug_tu_index tables use. */
8911 gdb_assert (elf_section_nr < dwp_file->num_sections);
8912 dwp_file->elf_sections[elf_section_nr] = sectp;
8913
8914 /* Look for specific sections that we need. */
8915 if (section_is_p (sectp->name, &names->str_dwo))
8916 {
8917 dwp_file->sections.str.asection = sectp;
8918 dwp_file->sections.str.size = bfd_get_section_size (sectp);
8919 }
8920 else if (section_is_p (sectp->name, &names->cu_index))
8921 {
8922 dwp_file->sections.cu_index.asection = sectp;
8923 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
8924 }
8925 else if (section_is_p (sectp->name, &names->tu_index))
8926 {
8927 dwp_file->sections.tu_index.asection = sectp;
8928 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
8929 }
8930 }
8931
8932 /* Hash function for dwp_file loaded CUs/TUs. */
8933
8934 static hashval_t
8935 hash_dwp_loaded_cutus (const void *item)
8936 {
8937 const struct dwo_unit *dwo_unit = item;
8938
8939 /* This drops the top 32 bits of the signature, but is ok for a hash. */
8940 return dwo_unit->signature;
8941 }
8942
8943 /* Equality function for dwp_file loaded CUs/TUs. */
8944
8945 static int
8946 eq_dwp_loaded_cutus (const void *a, const void *b)
8947 {
8948 const struct dwo_unit *dua = a;
8949 const struct dwo_unit *dub = b;
8950
8951 return dua->signature == dub->signature;
8952 }
8953
8954 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
8955
8956 static htab_t
8957 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
8958 {
8959 return htab_create_alloc_ex (3,
8960 hash_dwp_loaded_cutus,
8961 eq_dwp_loaded_cutus,
8962 NULL,
8963 &objfile->objfile_obstack,
8964 hashtab_obstack_allocate,
8965 dummy_obstack_deallocate);
8966 }
8967
8968 /* Initialize the use of the DWP file for the current objfile.
8969 By convention the name of the DWP file is ${objfile}.dwp.
8970 The result is NULL if it can't be found. */
8971
8972 static struct dwp_file *
8973 open_and_init_dwp_file (const char *comp_dir)
8974 {
8975 struct objfile *objfile = dwarf2_per_objfile->objfile;
8976 struct dwp_file *dwp_file;
8977 char *dwp_name;
8978 bfd *dbfd;
8979 struct cleanup *cleanups;
8980
8981 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
8982 cleanups = make_cleanup (xfree, dwp_name);
8983
8984 dbfd = open_dwop_file (dwp_name, comp_dir, 1);
8985 if (dbfd == NULL)
8986 {
8987 if (dwarf2_read_debug)
8988 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
8989 do_cleanups (cleanups);
8990 return NULL;
8991 }
8992 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
8993 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
8994 dwp_name, strlen (dwp_name));
8995 dwp_file->dbfd = dbfd;
8996 do_cleanups (cleanups);
8997
8998 cleanups = make_cleanup (free_dwo_file_cleanup, dwp_file);
8999
9000 /* +1: section 0 is unused */
9001 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9002 dwp_file->elf_sections =
9003 OBSTACK_CALLOC (&objfile->objfile_obstack,
9004 dwp_file->num_sections, asection *);
9005
9006 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9007
9008 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9009
9010 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9011
9012 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9013
9014 discard_cleanups (cleanups);
9015
9016 if (dwarf2_read_debug)
9017 {
9018 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9019 fprintf_unfiltered (gdb_stdlog,
9020 " %u CUs, %u TUs\n",
9021 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9022 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9023 }
9024
9025 return dwp_file;
9026 }
9027
9028 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9029 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9030 or in the DWP file for the objfile, referenced by THIS_UNIT.
9031 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9032 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9033
9034 This is called, for example, when wanting to read a variable with a
9035 complex location. Therefore we don't want to do file i/o for every call.
9036 Therefore we don't want to look for a DWO file on every call.
9037 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9038 then we check if we've already seen DWO_NAME, and only THEN do we check
9039 for a DWO file.
9040
9041 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9042 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9043
9044 static struct dwo_unit *
9045 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9046 const char *dwo_name, const char *comp_dir,
9047 ULONGEST signature, int is_debug_types)
9048 {
9049 struct objfile *objfile = dwarf2_per_objfile->objfile;
9050 const char *kind = is_debug_types ? "TU" : "CU";
9051 void **dwo_file_slot;
9052 struct dwo_file *dwo_file;
9053 struct dwp_file *dwp_file;
9054
9055 /* Have we already read SIGNATURE from a DWP file? */
9056
9057 if (! dwarf2_per_objfile->dwp_checked)
9058 {
9059 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file (comp_dir);
9060 dwarf2_per_objfile->dwp_checked = 1;
9061 }
9062 dwp_file = dwarf2_per_objfile->dwp_file;
9063
9064 if (dwp_file != NULL)
9065 {
9066 const struct dwp_hash_table *dwp_htab =
9067 is_debug_types ? dwp_file->tus : dwp_file->cus;
9068
9069 if (dwp_htab != NULL)
9070 {
9071 struct dwo_unit *dwo_cutu =
9072 lookup_dwo_in_dwp (dwp_file, dwp_htab, signature, is_debug_types);
9073
9074 if (dwo_cutu != NULL)
9075 {
9076 if (dwarf2_read_debug)
9077 {
9078 fprintf_unfiltered (gdb_stdlog,
9079 "Virtual DWO %s %s found: @%s\n",
9080 kind, hex_string (signature),
9081 host_address_to_string (dwo_cutu));
9082 }
9083 return dwo_cutu;
9084 }
9085 }
9086 }
9087
9088 /* Have we already seen DWO_NAME? */
9089
9090 dwo_file_slot = lookup_dwo_file_slot (dwo_name);
9091 if (*dwo_file_slot == NULL)
9092 {
9093 /* Read in the file and build a table of the DWOs it contains. */
9094 *dwo_file_slot = open_and_init_dwo_file (dwo_name, comp_dir);
9095 }
9096 /* NOTE: This will be NULL if unable to open the file. */
9097 dwo_file = *dwo_file_slot;
9098
9099 if (dwo_file != NULL)
9100 {
9101 htab_t htab = is_debug_types ? dwo_file->tus : dwo_file->cus;
9102
9103 if (htab != NULL)
9104 {
9105 struct dwo_unit find_dwo_cutu, *dwo_cutu;
9106
9107 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9108 find_dwo_cutu.signature = signature;
9109 dwo_cutu = htab_find (htab, &find_dwo_cutu);
9110
9111 if (dwo_cutu != NULL)
9112 {
9113 if (dwarf2_read_debug)
9114 {
9115 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9116 kind, dwo_name, hex_string (signature),
9117 host_address_to_string (dwo_cutu));
9118 }
9119 return dwo_cutu;
9120 }
9121 }
9122 }
9123
9124 /* We didn't find it. This could mean a dwo_id mismatch, or
9125 someone deleted the DWO/DWP file, or the search path isn't set up
9126 correctly to find the file. */
9127
9128 if (dwarf2_read_debug)
9129 {
9130 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9131 kind, dwo_name, hex_string (signature));
9132 }
9133
9134 complaint (&symfile_complaints,
9135 _("Could not find DWO CU referenced by CU at offset 0x%x"
9136 " [in module %s]"),
9137 this_unit->offset.sect_off, objfile->name);
9138 return NULL;
9139 }
9140
9141 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9142 See lookup_dwo_cutu_unit for details. */
9143
9144 static struct dwo_unit *
9145 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9146 const char *dwo_name, const char *comp_dir,
9147 ULONGEST signature)
9148 {
9149 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9150 }
9151
9152 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9153 See lookup_dwo_cutu_unit for details. */
9154
9155 static struct dwo_unit *
9156 lookup_dwo_type_unit (struct signatured_type *this_tu,
9157 const char *dwo_name, const char *comp_dir)
9158 {
9159 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9160 }
9161
9162 /* Free all resources associated with DWO_FILE.
9163 Close the DWO file and munmap the sections.
9164 All memory should be on the objfile obstack. */
9165
9166 static void
9167 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9168 {
9169 int ix;
9170 struct dwarf2_section_info *section;
9171
9172 gdb_assert (dwo_file->dbfd != objfile->obfd);
9173 gdb_bfd_unref (dwo_file->dbfd);
9174
9175 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9176 }
9177
9178 /* Wrapper for free_dwo_file for use in cleanups. */
9179
9180 static void
9181 free_dwo_file_cleanup (void *arg)
9182 {
9183 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9184 struct objfile *objfile = dwarf2_per_objfile->objfile;
9185
9186 free_dwo_file (dwo_file, objfile);
9187 }
9188
9189 /* Traversal function for free_dwo_files. */
9190
9191 static int
9192 free_dwo_file_from_slot (void **slot, void *info)
9193 {
9194 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9195 struct objfile *objfile = (struct objfile *) info;
9196
9197 free_dwo_file (dwo_file, objfile);
9198
9199 return 1;
9200 }
9201
9202 /* Free all resources associated with DWO_FILES. */
9203
9204 static void
9205 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9206 {
9207 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9208 }
9209 \f
9210 /* Read in various DIEs. */
9211
9212 /* qsort helper for inherit_abstract_dies. */
9213
9214 static int
9215 unsigned_int_compar (const void *ap, const void *bp)
9216 {
9217 unsigned int a = *(unsigned int *) ap;
9218 unsigned int b = *(unsigned int *) bp;
9219
9220 return (a > b) - (b > a);
9221 }
9222
9223 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9224 Inherit only the children of the DW_AT_abstract_origin DIE not being
9225 already referenced by DW_AT_abstract_origin from the children of the
9226 current DIE. */
9227
9228 static void
9229 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9230 {
9231 struct die_info *child_die;
9232 unsigned die_children_count;
9233 /* CU offsets which were referenced by children of the current DIE. */
9234 sect_offset *offsets;
9235 sect_offset *offsets_end, *offsetp;
9236 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9237 struct die_info *origin_die;
9238 /* Iterator of the ORIGIN_DIE children. */
9239 struct die_info *origin_child_die;
9240 struct cleanup *cleanups;
9241 struct attribute *attr;
9242 struct dwarf2_cu *origin_cu;
9243 struct pending **origin_previous_list_in_scope;
9244
9245 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9246 if (!attr)
9247 return;
9248
9249 /* Note that following die references may follow to a die in a
9250 different cu. */
9251
9252 origin_cu = cu;
9253 origin_die = follow_die_ref (die, attr, &origin_cu);
9254
9255 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9256 symbols in. */
9257 origin_previous_list_in_scope = origin_cu->list_in_scope;
9258 origin_cu->list_in_scope = cu->list_in_scope;
9259
9260 if (die->tag != origin_die->tag
9261 && !(die->tag == DW_TAG_inlined_subroutine
9262 && origin_die->tag == DW_TAG_subprogram))
9263 complaint (&symfile_complaints,
9264 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9265 die->offset.sect_off, origin_die->offset.sect_off);
9266
9267 child_die = die->child;
9268 die_children_count = 0;
9269 while (child_die && child_die->tag)
9270 {
9271 child_die = sibling_die (child_die);
9272 die_children_count++;
9273 }
9274 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9275 cleanups = make_cleanup (xfree, offsets);
9276
9277 offsets_end = offsets;
9278 child_die = die->child;
9279 while (child_die && child_die->tag)
9280 {
9281 /* For each CHILD_DIE, find the corresponding child of
9282 ORIGIN_DIE. If there is more than one layer of
9283 DW_AT_abstract_origin, follow them all; there shouldn't be,
9284 but GCC versions at least through 4.4 generate this (GCC PR
9285 40573). */
9286 struct die_info *child_origin_die = child_die;
9287 struct dwarf2_cu *child_origin_cu = cu;
9288
9289 while (1)
9290 {
9291 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9292 child_origin_cu);
9293 if (attr == NULL)
9294 break;
9295 child_origin_die = follow_die_ref (child_origin_die, attr,
9296 &child_origin_cu);
9297 }
9298
9299 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9300 counterpart may exist. */
9301 if (child_origin_die != child_die)
9302 {
9303 if (child_die->tag != child_origin_die->tag
9304 && !(child_die->tag == DW_TAG_inlined_subroutine
9305 && child_origin_die->tag == DW_TAG_subprogram))
9306 complaint (&symfile_complaints,
9307 _("Child DIE 0x%x and its abstract origin 0x%x have "
9308 "different tags"), child_die->offset.sect_off,
9309 child_origin_die->offset.sect_off);
9310 if (child_origin_die->parent != origin_die)
9311 complaint (&symfile_complaints,
9312 _("Child DIE 0x%x and its abstract origin 0x%x have "
9313 "different parents"), child_die->offset.sect_off,
9314 child_origin_die->offset.sect_off);
9315 else
9316 *offsets_end++ = child_origin_die->offset;
9317 }
9318 child_die = sibling_die (child_die);
9319 }
9320 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9321 unsigned_int_compar);
9322 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9323 if (offsetp[-1].sect_off == offsetp->sect_off)
9324 complaint (&symfile_complaints,
9325 _("Multiple children of DIE 0x%x refer "
9326 "to DIE 0x%x as their abstract origin"),
9327 die->offset.sect_off, offsetp->sect_off);
9328
9329 offsetp = offsets;
9330 origin_child_die = origin_die->child;
9331 while (origin_child_die && origin_child_die->tag)
9332 {
9333 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9334 while (offsetp < offsets_end
9335 && offsetp->sect_off < origin_child_die->offset.sect_off)
9336 offsetp++;
9337 if (offsetp >= offsets_end
9338 || offsetp->sect_off > origin_child_die->offset.sect_off)
9339 {
9340 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9341 process_die (origin_child_die, origin_cu);
9342 }
9343 origin_child_die = sibling_die (origin_child_die);
9344 }
9345 origin_cu->list_in_scope = origin_previous_list_in_scope;
9346
9347 do_cleanups (cleanups);
9348 }
9349
9350 static void
9351 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9352 {
9353 struct objfile *objfile = cu->objfile;
9354 struct context_stack *new;
9355 CORE_ADDR lowpc;
9356 CORE_ADDR highpc;
9357 struct die_info *child_die;
9358 struct attribute *attr, *call_line, *call_file;
9359 char *name;
9360 CORE_ADDR baseaddr;
9361 struct block *block;
9362 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9363 VEC (symbolp) *template_args = NULL;
9364 struct template_symbol *templ_func = NULL;
9365
9366 if (inlined_func)
9367 {
9368 /* If we do not have call site information, we can't show the
9369 caller of this inlined function. That's too confusing, so
9370 only use the scope for local variables. */
9371 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9372 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9373 if (call_line == NULL || call_file == NULL)
9374 {
9375 read_lexical_block_scope (die, cu);
9376 return;
9377 }
9378 }
9379
9380 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9381
9382 name = dwarf2_name (die, cu);
9383
9384 /* Ignore functions with missing or empty names. These are actually
9385 illegal according to the DWARF standard. */
9386 if (name == NULL)
9387 {
9388 complaint (&symfile_complaints,
9389 _("missing name for subprogram DIE at %d"),
9390 die->offset.sect_off);
9391 return;
9392 }
9393
9394 /* Ignore functions with missing or invalid low and high pc attributes. */
9395 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9396 {
9397 attr = dwarf2_attr (die, DW_AT_external, cu);
9398 if (!attr || !DW_UNSND (attr))
9399 complaint (&symfile_complaints,
9400 _("cannot get low and high bounds "
9401 "for subprogram DIE at %d"),
9402 die->offset.sect_off);
9403 return;
9404 }
9405
9406 lowpc += baseaddr;
9407 highpc += baseaddr;
9408
9409 /* If we have any template arguments, then we must allocate a
9410 different sort of symbol. */
9411 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9412 {
9413 if (child_die->tag == DW_TAG_template_type_param
9414 || child_die->tag == DW_TAG_template_value_param)
9415 {
9416 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
9417 struct template_symbol);
9418 templ_func->base.is_cplus_template_function = 1;
9419 break;
9420 }
9421 }
9422
9423 new = push_context (0, lowpc);
9424 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9425 (struct symbol *) templ_func);
9426
9427 /* If there is a location expression for DW_AT_frame_base, record
9428 it. */
9429 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
9430 if (attr)
9431 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
9432 expression is being recorded directly in the function's symbol
9433 and not in a separate frame-base object. I guess this hack is
9434 to avoid adding some sort of frame-base adjunct/annex to the
9435 function's symbol :-(. The problem with doing this is that it
9436 results in a function symbol with a location expression that
9437 has nothing to do with the location of the function, ouch! The
9438 relationship should be: a function's symbol has-a frame base; a
9439 frame-base has-a location expression. */
9440 dwarf2_symbol_mark_computed (attr, new->name, cu);
9441
9442 cu->list_in_scope = &local_symbols;
9443
9444 if (die->child != NULL)
9445 {
9446 child_die = die->child;
9447 while (child_die && child_die->tag)
9448 {
9449 if (child_die->tag == DW_TAG_template_type_param
9450 || child_die->tag == DW_TAG_template_value_param)
9451 {
9452 struct symbol *arg = new_symbol (child_die, NULL, cu);
9453
9454 if (arg != NULL)
9455 VEC_safe_push (symbolp, template_args, arg);
9456 }
9457 else
9458 process_die (child_die, cu);
9459 child_die = sibling_die (child_die);
9460 }
9461 }
9462
9463 inherit_abstract_dies (die, cu);
9464
9465 /* If we have a DW_AT_specification, we might need to import using
9466 directives from the context of the specification DIE. See the
9467 comment in determine_prefix. */
9468 if (cu->language == language_cplus
9469 && dwarf2_attr (die, DW_AT_specification, cu))
9470 {
9471 struct dwarf2_cu *spec_cu = cu;
9472 struct die_info *spec_die = die_specification (die, &spec_cu);
9473
9474 while (spec_die)
9475 {
9476 child_die = spec_die->child;
9477 while (child_die && child_die->tag)
9478 {
9479 if (child_die->tag == DW_TAG_imported_module)
9480 process_die (child_die, spec_cu);
9481 child_die = sibling_die (child_die);
9482 }
9483
9484 /* In some cases, GCC generates specification DIEs that
9485 themselves contain DW_AT_specification attributes. */
9486 spec_die = die_specification (spec_die, &spec_cu);
9487 }
9488 }
9489
9490 new = pop_context ();
9491 /* Make a block for the local symbols within. */
9492 block = finish_block (new->name, &local_symbols, new->old_blocks,
9493 lowpc, highpc, objfile);
9494
9495 /* For C++, set the block's scope. */
9496 if (cu->language == language_cplus || cu->language == language_fortran)
9497 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
9498 determine_prefix (die, cu),
9499 processing_has_namespace_info);
9500
9501 /* If we have address ranges, record them. */
9502 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9503
9504 /* Attach template arguments to function. */
9505 if (! VEC_empty (symbolp, template_args))
9506 {
9507 gdb_assert (templ_func != NULL);
9508
9509 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9510 templ_func->template_arguments
9511 = obstack_alloc (&objfile->objfile_obstack,
9512 (templ_func->n_template_arguments
9513 * sizeof (struct symbol *)));
9514 memcpy (templ_func->template_arguments,
9515 VEC_address (symbolp, template_args),
9516 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9517 VEC_free (symbolp, template_args);
9518 }
9519
9520 /* In C++, we can have functions nested inside functions (e.g., when
9521 a function declares a class that has methods). This means that
9522 when we finish processing a function scope, we may need to go
9523 back to building a containing block's symbol lists. */
9524 local_symbols = new->locals;
9525 using_directives = new->using_directives;
9526
9527 /* If we've finished processing a top-level function, subsequent
9528 symbols go in the file symbol list. */
9529 if (outermost_context_p ())
9530 cu->list_in_scope = &file_symbols;
9531 }
9532
9533 /* Process all the DIES contained within a lexical block scope. Start
9534 a new scope, process the dies, and then close the scope. */
9535
9536 static void
9537 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
9538 {
9539 struct objfile *objfile = cu->objfile;
9540 struct context_stack *new;
9541 CORE_ADDR lowpc, highpc;
9542 struct die_info *child_die;
9543 CORE_ADDR baseaddr;
9544
9545 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9546
9547 /* Ignore blocks with missing or invalid low and high pc attributes. */
9548 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9549 as multiple lexical blocks? Handling children in a sane way would
9550 be nasty. Might be easier to properly extend generic blocks to
9551 describe ranges. */
9552 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9553 return;
9554 lowpc += baseaddr;
9555 highpc += baseaddr;
9556
9557 push_context (0, lowpc);
9558 if (die->child != NULL)
9559 {
9560 child_die = die->child;
9561 while (child_die && child_die->tag)
9562 {
9563 process_die (child_die, cu);
9564 child_die = sibling_die (child_die);
9565 }
9566 }
9567 new = pop_context ();
9568
9569 if (local_symbols != NULL || using_directives != NULL)
9570 {
9571 struct block *block
9572 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9573 highpc, objfile);
9574
9575 /* Note that recording ranges after traversing children, as we
9576 do here, means that recording a parent's ranges entails
9577 walking across all its children's ranges as they appear in
9578 the address map, which is quadratic behavior.
9579
9580 It would be nicer to record the parent's ranges before
9581 traversing its children, simply overriding whatever you find
9582 there. But since we don't even decide whether to create a
9583 block until after we've traversed its children, that's hard
9584 to do. */
9585 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9586 }
9587 local_symbols = new->locals;
9588 using_directives = new->using_directives;
9589 }
9590
9591 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9592
9593 static void
9594 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9595 {
9596 struct objfile *objfile = cu->objfile;
9597 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9598 CORE_ADDR pc, baseaddr;
9599 struct attribute *attr;
9600 struct call_site *call_site, call_site_local;
9601 void **slot;
9602 int nparams;
9603 struct die_info *child_die;
9604
9605 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9606
9607 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9608 if (!attr)
9609 {
9610 complaint (&symfile_complaints,
9611 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9612 "DIE 0x%x [in module %s]"),
9613 die->offset.sect_off, objfile->name);
9614 return;
9615 }
9616 pc = DW_ADDR (attr) + baseaddr;
9617
9618 if (cu->call_site_htab == NULL)
9619 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9620 NULL, &objfile->objfile_obstack,
9621 hashtab_obstack_allocate, NULL);
9622 call_site_local.pc = pc;
9623 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9624 if (*slot != NULL)
9625 {
9626 complaint (&symfile_complaints,
9627 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9628 "DIE 0x%x [in module %s]"),
9629 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
9630 return;
9631 }
9632
9633 /* Count parameters at the caller. */
9634
9635 nparams = 0;
9636 for (child_die = die->child; child_die && child_die->tag;
9637 child_die = sibling_die (child_die))
9638 {
9639 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9640 {
9641 complaint (&symfile_complaints,
9642 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9643 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9644 child_die->tag, child_die->offset.sect_off, objfile->name);
9645 continue;
9646 }
9647
9648 nparams++;
9649 }
9650
9651 call_site = obstack_alloc (&objfile->objfile_obstack,
9652 (sizeof (*call_site)
9653 + (sizeof (*call_site->parameter)
9654 * (nparams - 1))));
9655 *slot = call_site;
9656 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9657 call_site->pc = pc;
9658
9659 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9660 {
9661 struct die_info *func_die;
9662
9663 /* Skip also over DW_TAG_inlined_subroutine. */
9664 for (func_die = die->parent;
9665 func_die && func_die->tag != DW_TAG_subprogram
9666 && func_die->tag != DW_TAG_subroutine_type;
9667 func_die = func_die->parent);
9668
9669 /* DW_AT_GNU_all_call_sites is a superset
9670 of DW_AT_GNU_all_tail_call_sites. */
9671 if (func_die
9672 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9673 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9674 {
9675 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9676 not complete. But keep CALL_SITE for look ups via call_site_htab,
9677 both the initial caller containing the real return address PC and
9678 the final callee containing the current PC of a chain of tail
9679 calls do not need to have the tail call list complete. But any
9680 function candidate for a virtual tail call frame searched via
9681 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9682 determined unambiguously. */
9683 }
9684 else
9685 {
9686 struct type *func_type = NULL;
9687
9688 if (func_die)
9689 func_type = get_die_type (func_die, cu);
9690 if (func_type != NULL)
9691 {
9692 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9693
9694 /* Enlist this call site to the function. */
9695 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9696 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9697 }
9698 else
9699 complaint (&symfile_complaints,
9700 _("Cannot find function owning DW_TAG_GNU_call_site "
9701 "DIE 0x%x [in module %s]"),
9702 die->offset.sect_off, objfile->name);
9703 }
9704 }
9705
9706 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9707 if (attr == NULL)
9708 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9709 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9710 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9711 /* Keep NULL DWARF_BLOCK. */;
9712 else if (attr_form_is_block (attr))
9713 {
9714 struct dwarf2_locexpr_baton *dlbaton;
9715
9716 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9717 dlbaton->data = DW_BLOCK (attr)->data;
9718 dlbaton->size = DW_BLOCK (attr)->size;
9719 dlbaton->per_cu = cu->per_cu;
9720
9721 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9722 }
9723 else if (is_ref_attr (attr))
9724 {
9725 struct dwarf2_cu *target_cu = cu;
9726 struct die_info *target_die;
9727
9728 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9729 gdb_assert (target_cu->objfile == objfile);
9730 if (die_is_declaration (target_die, target_cu))
9731 {
9732 const char *target_physname;
9733
9734 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9735 if (target_physname == NULL)
9736 complaint (&symfile_complaints,
9737 _("DW_AT_GNU_call_site_target target DIE has invalid "
9738 "physname, for referencing DIE 0x%x [in module %s]"),
9739 die->offset.sect_off, objfile->name);
9740 else
9741 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
9742 }
9743 else
9744 {
9745 CORE_ADDR lowpc;
9746
9747 /* DW_AT_entry_pc should be preferred. */
9748 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9749 complaint (&symfile_complaints,
9750 _("DW_AT_GNU_call_site_target target DIE has invalid "
9751 "low pc, for referencing DIE 0x%x [in module %s]"),
9752 die->offset.sect_off, objfile->name);
9753 else
9754 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9755 }
9756 }
9757 else
9758 complaint (&symfile_complaints,
9759 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9760 "block nor reference, for DIE 0x%x [in module %s]"),
9761 die->offset.sect_off, objfile->name);
9762
9763 call_site->per_cu = cu->per_cu;
9764
9765 for (child_die = die->child;
9766 child_die && child_die->tag;
9767 child_die = sibling_die (child_die))
9768 {
9769 struct call_site_parameter *parameter;
9770 struct attribute *loc, *origin;
9771
9772 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9773 {
9774 /* Already printed the complaint above. */
9775 continue;
9776 }
9777
9778 gdb_assert (call_site->parameter_count < nparams);
9779 parameter = &call_site->parameter[call_site->parameter_count];
9780
9781 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
9782 specifies DW_TAG_formal_parameter. Value of the data assumed for the
9783 register is contained in DW_AT_GNU_call_site_value. */
9784
9785 loc = dwarf2_attr (child_die, DW_AT_location, cu);
9786 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
9787 if (loc == NULL && origin != NULL && is_ref_attr (origin))
9788 {
9789 sect_offset offset;
9790
9791 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9792 offset = dwarf2_get_ref_die_offset (origin);
9793 if (!offset_in_cu_p (&cu->header, offset))
9794 {
9795 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
9796 binding can be done only inside one CU. Such referenced DIE
9797 therefore cannot be even moved to DW_TAG_partial_unit. */
9798 complaint (&symfile_complaints,
9799 _("DW_AT_abstract_origin offset is not in CU for "
9800 "DW_TAG_GNU_call_site child DIE 0x%x "
9801 "[in module %s]"),
9802 child_die->offset.sect_off, objfile->name);
9803 continue;
9804 }
9805 parameter->u.param_offset.cu_off = (offset.sect_off
9806 - cu->header.offset.sect_off);
9807 }
9808 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
9809 {
9810 complaint (&symfile_complaints,
9811 _("No DW_FORM_block* DW_AT_location for "
9812 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9813 child_die->offset.sect_off, objfile->name);
9814 continue;
9815 }
9816 else
9817 {
9818 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
9819 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
9820 if (parameter->u.dwarf_reg != -1)
9821 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
9822 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
9823 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
9824 &parameter->u.fb_offset))
9825 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
9826 else
9827 {
9828 complaint (&symfile_complaints,
9829 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
9830 "for DW_FORM_block* DW_AT_location is supported for "
9831 "DW_TAG_GNU_call_site child DIE 0x%x "
9832 "[in module %s]"),
9833 child_die->offset.sect_off, objfile->name);
9834 continue;
9835 }
9836 }
9837
9838 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
9839 if (!attr_form_is_block (attr))
9840 {
9841 complaint (&symfile_complaints,
9842 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
9843 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9844 child_die->offset.sect_off, objfile->name);
9845 continue;
9846 }
9847 parameter->value = DW_BLOCK (attr)->data;
9848 parameter->value_size = DW_BLOCK (attr)->size;
9849
9850 /* Parameters are not pre-cleared by memset above. */
9851 parameter->data_value = NULL;
9852 parameter->data_value_size = 0;
9853 call_site->parameter_count++;
9854
9855 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
9856 if (attr)
9857 {
9858 if (!attr_form_is_block (attr))
9859 complaint (&symfile_complaints,
9860 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
9861 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9862 child_die->offset.sect_off, objfile->name);
9863 else
9864 {
9865 parameter->data_value = DW_BLOCK (attr)->data;
9866 parameter->data_value_size = DW_BLOCK (attr)->size;
9867 }
9868 }
9869 }
9870 }
9871
9872 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
9873 Return 1 if the attributes are present and valid, otherwise, return 0.
9874 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
9875
9876 static int
9877 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
9878 CORE_ADDR *high_return, struct dwarf2_cu *cu,
9879 struct partial_symtab *ranges_pst)
9880 {
9881 struct objfile *objfile = cu->objfile;
9882 struct comp_unit_head *cu_header = &cu->header;
9883 bfd *obfd = objfile->obfd;
9884 unsigned int addr_size = cu_header->addr_size;
9885 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9886 /* Base address selection entry. */
9887 CORE_ADDR base;
9888 int found_base;
9889 unsigned int dummy;
9890 gdb_byte *buffer;
9891 CORE_ADDR marker;
9892 int low_set;
9893 CORE_ADDR low = 0;
9894 CORE_ADDR high = 0;
9895 CORE_ADDR baseaddr;
9896
9897 found_base = cu->base_known;
9898 base = cu->base_address;
9899
9900 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
9901 if (offset >= dwarf2_per_objfile->ranges.size)
9902 {
9903 complaint (&symfile_complaints,
9904 _("Offset %d out of bounds for DW_AT_ranges attribute"),
9905 offset);
9906 return 0;
9907 }
9908 buffer = dwarf2_per_objfile->ranges.buffer + offset;
9909
9910 /* Read in the largest possible address. */
9911 marker = read_address (obfd, buffer, cu, &dummy);
9912 if ((marker & mask) == mask)
9913 {
9914 /* If we found the largest possible address, then
9915 read the base address. */
9916 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9917 buffer += 2 * addr_size;
9918 offset += 2 * addr_size;
9919 found_base = 1;
9920 }
9921
9922 low_set = 0;
9923
9924 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9925
9926 while (1)
9927 {
9928 CORE_ADDR range_beginning, range_end;
9929
9930 range_beginning = read_address (obfd, buffer, cu, &dummy);
9931 buffer += addr_size;
9932 range_end = read_address (obfd, buffer, cu, &dummy);
9933 buffer += addr_size;
9934 offset += 2 * addr_size;
9935
9936 /* An end of list marker is a pair of zero addresses. */
9937 if (range_beginning == 0 && range_end == 0)
9938 /* Found the end of list entry. */
9939 break;
9940
9941 /* Each base address selection entry is a pair of 2 values.
9942 The first is the largest possible address, the second is
9943 the base address. Check for a base address here. */
9944 if ((range_beginning & mask) == mask)
9945 {
9946 /* If we found the largest possible address, then
9947 read the base address. */
9948 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9949 found_base = 1;
9950 continue;
9951 }
9952
9953 if (!found_base)
9954 {
9955 /* We have no valid base address for the ranges
9956 data. */
9957 complaint (&symfile_complaints,
9958 _("Invalid .debug_ranges data (no base address)"));
9959 return 0;
9960 }
9961
9962 if (range_beginning > range_end)
9963 {
9964 /* Inverted range entries are invalid. */
9965 complaint (&symfile_complaints,
9966 _("Invalid .debug_ranges data (inverted range)"));
9967 return 0;
9968 }
9969
9970 /* Empty range entries have no effect. */
9971 if (range_beginning == range_end)
9972 continue;
9973
9974 range_beginning += base;
9975 range_end += base;
9976
9977 /* A not-uncommon case of bad debug info.
9978 Don't pollute the addrmap with bad data. */
9979 if (range_beginning + baseaddr == 0
9980 && !dwarf2_per_objfile->has_section_at_zero)
9981 {
9982 complaint (&symfile_complaints,
9983 _(".debug_ranges entry has start address of zero"
9984 " [in module %s]"), objfile->name);
9985 continue;
9986 }
9987
9988 if (ranges_pst != NULL)
9989 addrmap_set_empty (objfile->psymtabs_addrmap,
9990 range_beginning + baseaddr,
9991 range_end - 1 + baseaddr,
9992 ranges_pst);
9993
9994 /* FIXME: This is recording everything as a low-high
9995 segment of consecutive addresses. We should have a
9996 data structure for discontiguous block ranges
9997 instead. */
9998 if (! low_set)
9999 {
10000 low = range_beginning;
10001 high = range_end;
10002 low_set = 1;
10003 }
10004 else
10005 {
10006 if (range_beginning < low)
10007 low = range_beginning;
10008 if (range_end > high)
10009 high = range_end;
10010 }
10011 }
10012
10013 if (! low_set)
10014 /* If the first entry is an end-of-list marker, the range
10015 describes an empty scope, i.e. no instructions. */
10016 return 0;
10017
10018 if (low_return)
10019 *low_return = low;
10020 if (high_return)
10021 *high_return = high;
10022 return 1;
10023 }
10024
10025 /* Get low and high pc attributes from a die. Return 1 if the attributes
10026 are present and valid, otherwise, return 0. Return -1 if the range is
10027 discontinuous, i.e. derived from DW_AT_ranges information. */
10028
10029 static int
10030 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10031 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10032 struct partial_symtab *pst)
10033 {
10034 struct attribute *attr;
10035 struct attribute *attr_high;
10036 CORE_ADDR low = 0;
10037 CORE_ADDR high = 0;
10038 int ret = 0;
10039
10040 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10041 if (attr_high)
10042 {
10043 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10044 if (attr)
10045 {
10046 low = DW_ADDR (attr);
10047 if (attr_high->form == DW_FORM_addr
10048 || attr_high->form == DW_FORM_GNU_addr_index)
10049 high = DW_ADDR (attr_high);
10050 else
10051 high = low + DW_UNSND (attr_high);
10052 }
10053 else
10054 /* Found high w/o low attribute. */
10055 return 0;
10056
10057 /* Found consecutive range of addresses. */
10058 ret = 1;
10059 }
10060 else
10061 {
10062 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10063 if (attr != NULL)
10064 {
10065 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10066 We take advantage of the fact that DW_AT_ranges does not appear
10067 in DW_TAG_compile_unit of DWO files. */
10068 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10069 unsigned int ranges_offset = (DW_UNSND (attr)
10070 + (need_ranges_base
10071 ? cu->ranges_base
10072 : 0));
10073
10074 /* Value of the DW_AT_ranges attribute is the offset in the
10075 .debug_ranges section. */
10076 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10077 return 0;
10078 /* Found discontinuous range of addresses. */
10079 ret = -1;
10080 }
10081 }
10082
10083 /* read_partial_die has also the strict LOW < HIGH requirement. */
10084 if (high <= low)
10085 return 0;
10086
10087 /* When using the GNU linker, .gnu.linkonce. sections are used to
10088 eliminate duplicate copies of functions and vtables and such.
10089 The linker will arbitrarily choose one and discard the others.
10090 The AT_*_pc values for such functions refer to local labels in
10091 these sections. If the section from that file was discarded, the
10092 labels are not in the output, so the relocs get a value of 0.
10093 If this is a discarded function, mark the pc bounds as invalid,
10094 so that GDB will ignore it. */
10095 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10096 return 0;
10097
10098 *lowpc = low;
10099 if (highpc)
10100 *highpc = high;
10101 return ret;
10102 }
10103
10104 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10105 its low and high PC addresses. Do nothing if these addresses could not
10106 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10107 and HIGHPC to the high address if greater than HIGHPC. */
10108
10109 static void
10110 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10111 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10112 struct dwarf2_cu *cu)
10113 {
10114 CORE_ADDR low, high;
10115 struct die_info *child = die->child;
10116
10117 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10118 {
10119 *lowpc = min (*lowpc, low);
10120 *highpc = max (*highpc, high);
10121 }
10122
10123 /* If the language does not allow nested subprograms (either inside
10124 subprograms or lexical blocks), we're done. */
10125 if (cu->language != language_ada)
10126 return;
10127
10128 /* Check all the children of the given DIE. If it contains nested
10129 subprograms, then check their pc bounds. Likewise, we need to
10130 check lexical blocks as well, as they may also contain subprogram
10131 definitions. */
10132 while (child && child->tag)
10133 {
10134 if (child->tag == DW_TAG_subprogram
10135 || child->tag == DW_TAG_lexical_block)
10136 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10137 child = sibling_die (child);
10138 }
10139 }
10140
10141 /* Get the low and high pc's represented by the scope DIE, and store
10142 them in *LOWPC and *HIGHPC. If the correct values can't be
10143 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10144
10145 static void
10146 get_scope_pc_bounds (struct die_info *die,
10147 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10148 struct dwarf2_cu *cu)
10149 {
10150 CORE_ADDR best_low = (CORE_ADDR) -1;
10151 CORE_ADDR best_high = (CORE_ADDR) 0;
10152 CORE_ADDR current_low, current_high;
10153
10154 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10155 {
10156 best_low = current_low;
10157 best_high = current_high;
10158 }
10159 else
10160 {
10161 struct die_info *child = die->child;
10162
10163 while (child && child->tag)
10164 {
10165 switch (child->tag) {
10166 case DW_TAG_subprogram:
10167 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10168 break;
10169 case DW_TAG_namespace:
10170 case DW_TAG_module:
10171 /* FIXME: carlton/2004-01-16: Should we do this for
10172 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10173 that current GCC's always emit the DIEs corresponding
10174 to definitions of methods of classes as children of a
10175 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10176 the DIEs giving the declarations, which could be
10177 anywhere). But I don't see any reason why the
10178 standards says that they have to be there. */
10179 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10180
10181 if (current_low != ((CORE_ADDR) -1))
10182 {
10183 best_low = min (best_low, current_low);
10184 best_high = max (best_high, current_high);
10185 }
10186 break;
10187 default:
10188 /* Ignore. */
10189 break;
10190 }
10191
10192 child = sibling_die (child);
10193 }
10194 }
10195
10196 *lowpc = best_low;
10197 *highpc = best_high;
10198 }
10199
10200 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10201 in DIE. */
10202
10203 static void
10204 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10205 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10206 {
10207 struct objfile *objfile = cu->objfile;
10208 struct attribute *attr;
10209 struct attribute *attr_high;
10210
10211 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10212 if (attr_high)
10213 {
10214 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10215 if (attr)
10216 {
10217 CORE_ADDR low = DW_ADDR (attr);
10218 CORE_ADDR high;
10219 if (attr_high->form == DW_FORM_addr
10220 || attr_high->form == DW_FORM_GNU_addr_index)
10221 high = DW_ADDR (attr_high);
10222 else
10223 high = low + DW_UNSND (attr_high);
10224
10225 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10226 }
10227 }
10228
10229 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10230 if (attr)
10231 {
10232 bfd *obfd = objfile->obfd;
10233 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10234 We take advantage of the fact that DW_AT_ranges does not appear
10235 in DW_TAG_compile_unit of DWO files. */
10236 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10237
10238 /* The value of the DW_AT_ranges attribute is the offset of the
10239 address range list in the .debug_ranges section. */
10240 unsigned long offset = (DW_UNSND (attr)
10241 + (need_ranges_base ? cu->ranges_base : 0));
10242 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
10243
10244 /* For some target architectures, but not others, the
10245 read_address function sign-extends the addresses it returns.
10246 To recognize base address selection entries, we need a
10247 mask. */
10248 unsigned int addr_size = cu->header.addr_size;
10249 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10250
10251 /* The base address, to which the next pair is relative. Note
10252 that this 'base' is a DWARF concept: most entries in a range
10253 list are relative, to reduce the number of relocs against the
10254 debugging information. This is separate from this function's
10255 'baseaddr' argument, which GDB uses to relocate debugging
10256 information from a shared library based on the address at
10257 which the library was loaded. */
10258 CORE_ADDR base = cu->base_address;
10259 int base_known = cu->base_known;
10260
10261 gdb_assert (dwarf2_per_objfile->ranges.readin);
10262 if (offset >= dwarf2_per_objfile->ranges.size)
10263 {
10264 complaint (&symfile_complaints,
10265 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10266 offset);
10267 return;
10268 }
10269
10270 for (;;)
10271 {
10272 unsigned int bytes_read;
10273 CORE_ADDR start, end;
10274
10275 start = read_address (obfd, buffer, cu, &bytes_read);
10276 buffer += bytes_read;
10277 end = read_address (obfd, buffer, cu, &bytes_read);
10278 buffer += bytes_read;
10279
10280 /* Did we find the end of the range list? */
10281 if (start == 0 && end == 0)
10282 break;
10283
10284 /* Did we find a base address selection entry? */
10285 else if ((start & base_select_mask) == base_select_mask)
10286 {
10287 base = end;
10288 base_known = 1;
10289 }
10290
10291 /* We found an ordinary address range. */
10292 else
10293 {
10294 if (!base_known)
10295 {
10296 complaint (&symfile_complaints,
10297 _("Invalid .debug_ranges data "
10298 "(no base address)"));
10299 return;
10300 }
10301
10302 if (start > end)
10303 {
10304 /* Inverted range entries are invalid. */
10305 complaint (&symfile_complaints,
10306 _("Invalid .debug_ranges data "
10307 "(inverted range)"));
10308 return;
10309 }
10310
10311 /* Empty range entries have no effect. */
10312 if (start == end)
10313 continue;
10314
10315 start += base + baseaddr;
10316 end += base + baseaddr;
10317
10318 /* A not-uncommon case of bad debug info.
10319 Don't pollute the addrmap with bad data. */
10320 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10321 {
10322 complaint (&symfile_complaints,
10323 _(".debug_ranges entry has start address of zero"
10324 " [in module %s]"), objfile->name);
10325 continue;
10326 }
10327
10328 record_block_range (block, start, end - 1);
10329 }
10330 }
10331 }
10332 }
10333
10334 /* Check whether the producer field indicates either of GCC < 4.6, or the
10335 Intel C/C++ compiler, and cache the result in CU. */
10336
10337 static void
10338 check_producer (struct dwarf2_cu *cu)
10339 {
10340 const char *cs;
10341 int major, minor, release;
10342
10343 if (cu->producer == NULL)
10344 {
10345 /* For unknown compilers expect their behavior is DWARF version
10346 compliant.
10347
10348 GCC started to support .debug_types sections by -gdwarf-4 since
10349 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10350 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10351 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10352 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10353 }
10354 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10355 {
10356 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10357
10358 cs = &cu->producer[strlen ("GNU ")];
10359 while (*cs && !isdigit (*cs))
10360 cs++;
10361 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10362 {
10363 /* Not recognized as GCC. */
10364 }
10365 else
10366 {
10367 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10368 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10369 }
10370 }
10371 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10372 cu->producer_is_icc = 1;
10373 else
10374 {
10375 /* For other non-GCC compilers, expect their behavior is DWARF version
10376 compliant. */
10377 }
10378
10379 cu->checked_producer = 1;
10380 }
10381
10382 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10383 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10384 during 4.6.0 experimental. */
10385
10386 static int
10387 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10388 {
10389 if (!cu->checked_producer)
10390 check_producer (cu);
10391
10392 return cu->producer_is_gxx_lt_4_6;
10393 }
10394
10395 /* Return the default accessibility type if it is not overriden by
10396 DW_AT_accessibility. */
10397
10398 static enum dwarf_access_attribute
10399 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10400 {
10401 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10402 {
10403 /* The default DWARF 2 accessibility for members is public, the default
10404 accessibility for inheritance is private. */
10405
10406 if (die->tag != DW_TAG_inheritance)
10407 return DW_ACCESS_public;
10408 else
10409 return DW_ACCESS_private;
10410 }
10411 else
10412 {
10413 /* DWARF 3+ defines the default accessibility a different way. The same
10414 rules apply now for DW_TAG_inheritance as for the members and it only
10415 depends on the container kind. */
10416
10417 if (die->parent->tag == DW_TAG_class_type)
10418 return DW_ACCESS_private;
10419 else
10420 return DW_ACCESS_public;
10421 }
10422 }
10423
10424 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10425 offset. If the attribute was not found return 0, otherwise return
10426 1. If it was found but could not properly be handled, set *OFFSET
10427 to 0. */
10428
10429 static int
10430 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10431 LONGEST *offset)
10432 {
10433 struct attribute *attr;
10434
10435 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10436 if (attr != NULL)
10437 {
10438 *offset = 0;
10439
10440 /* Note that we do not check for a section offset first here.
10441 This is because DW_AT_data_member_location is new in DWARF 4,
10442 so if we see it, we can assume that a constant form is really
10443 a constant and not a section offset. */
10444 if (attr_form_is_constant (attr))
10445 *offset = dwarf2_get_attr_constant_value (attr, 0);
10446 else if (attr_form_is_section_offset (attr))
10447 dwarf2_complex_location_expr_complaint ();
10448 else if (attr_form_is_block (attr))
10449 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10450 else
10451 dwarf2_complex_location_expr_complaint ();
10452
10453 return 1;
10454 }
10455
10456 return 0;
10457 }
10458
10459 /* Add an aggregate field to the field list. */
10460
10461 static void
10462 dwarf2_add_field (struct field_info *fip, struct die_info *die,
10463 struct dwarf2_cu *cu)
10464 {
10465 struct objfile *objfile = cu->objfile;
10466 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10467 struct nextfield *new_field;
10468 struct attribute *attr;
10469 struct field *fp;
10470 char *fieldname = "";
10471
10472 /* Allocate a new field list entry and link it in. */
10473 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
10474 make_cleanup (xfree, new_field);
10475 memset (new_field, 0, sizeof (struct nextfield));
10476
10477 if (die->tag == DW_TAG_inheritance)
10478 {
10479 new_field->next = fip->baseclasses;
10480 fip->baseclasses = new_field;
10481 }
10482 else
10483 {
10484 new_field->next = fip->fields;
10485 fip->fields = new_field;
10486 }
10487 fip->nfields++;
10488
10489 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10490 if (attr)
10491 new_field->accessibility = DW_UNSND (attr);
10492 else
10493 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
10494 if (new_field->accessibility != DW_ACCESS_public)
10495 fip->non_public_fields = 1;
10496
10497 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10498 if (attr)
10499 new_field->virtuality = DW_UNSND (attr);
10500 else
10501 new_field->virtuality = DW_VIRTUALITY_none;
10502
10503 fp = &new_field->field;
10504
10505 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
10506 {
10507 LONGEST offset;
10508
10509 /* Data member other than a C++ static data member. */
10510
10511 /* Get type of field. */
10512 fp->type = die_type (die, cu);
10513
10514 SET_FIELD_BITPOS (*fp, 0);
10515
10516 /* Get bit size of field (zero if none). */
10517 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
10518 if (attr)
10519 {
10520 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10521 }
10522 else
10523 {
10524 FIELD_BITSIZE (*fp) = 0;
10525 }
10526
10527 /* Get bit offset of field. */
10528 if (handle_data_member_location (die, cu, &offset))
10529 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10530 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
10531 if (attr)
10532 {
10533 if (gdbarch_bits_big_endian (gdbarch))
10534 {
10535 /* For big endian bits, the DW_AT_bit_offset gives the
10536 additional bit offset from the MSB of the containing
10537 anonymous object to the MSB of the field. We don't
10538 have to do anything special since we don't need to
10539 know the size of the anonymous object. */
10540 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
10541 }
10542 else
10543 {
10544 /* For little endian bits, compute the bit offset to the
10545 MSB of the anonymous object, subtract off the number of
10546 bits from the MSB of the field to the MSB of the
10547 object, and then subtract off the number of bits of
10548 the field itself. The result is the bit offset of
10549 the LSB of the field. */
10550 int anonymous_size;
10551 int bit_offset = DW_UNSND (attr);
10552
10553 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10554 if (attr)
10555 {
10556 /* The size of the anonymous object containing
10557 the bit field is explicit, so use the
10558 indicated size (in bytes). */
10559 anonymous_size = DW_UNSND (attr);
10560 }
10561 else
10562 {
10563 /* The size of the anonymous object containing
10564 the bit field must be inferred from the type
10565 attribute of the data member containing the
10566 bit field. */
10567 anonymous_size = TYPE_LENGTH (fp->type);
10568 }
10569 SET_FIELD_BITPOS (*fp,
10570 (FIELD_BITPOS (*fp)
10571 + anonymous_size * bits_per_byte
10572 - bit_offset - FIELD_BITSIZE (*fp)));
10573 }
10574 }
10575
10576 /* Get name of field. */
10577 fieldname = dwarf2_name (die, cu);
10578 if (fieldname == NULL)
10579 fieldname = "";
10580
10581 /* The name is already allocated along with this objfile, so we don't
10582 need to duplicate it for the type. */
10583 fp->name = fieldname;
10584
10585 /* Change accessibility for artificial fields (e.g. virtual table
10586 pointer or virtual base class pointer) to private. */
10587 if (dwarf2_attr (die, DW_AT_artificial, cu))
10588 {
10589 FIELD_ARTIFICIAL (*fp) = 1;
10590 new_field->accessibility = DW_ACCESS_private;
10591 fip->non_public_fields = 1;
10592 }
10593 }
10594 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
10595 {
10596 /* C++ static member. */
10597
10598 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10599 is a declaration, but all versions of G++ as of this writing
10600 (so through at least 3.2.1) incorrectly generate
10601 DW_TAG_variable tags. */
10602
10603 const char *physname;
10604
10605 /* Get name of field. */
10606 fieldname = dwarf2_name (die, cu);
10607 if (fieldname == NULL)
10608 return;
10609
10610 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10611 if (attr
10612 /* Only create a symbol if this is an external value.
10613 new_symbol checks this and puts the value in the global symbol
10614 table, which we want. If it is not external, new_symbol
10615 will try to put the value in cu->list_in_scope which is wrong. */
10616 && dwarf2_flag_true_p (die, DW_AT_external, cu))
10617 {
10618 /* A static const member, not much different than an enum as far as
10619 we're concerned, except that we can support more types. */
10620 new_symbol (die, NULL, cu);
10621 }
10622
10623 /* Get physical name. */
10624 physname = dwarf2_physname (fieldname, die, cu);
10625
10626 /* The name is already allocated along with this objfile, so we don't
10627 need to duplicate it for the type. */
10628 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
10629 FIELD_TYPE (*fp) = die_type (die, cu);
10630 FIELD_NAME (*fp) = fieldname;
10631 }
10632 else if (die->tag == DW_TAG_inheritance)
10633 {
10634 LONGEST offset;
10635
10636 /* C++ base class field. */
10637 if (handle_data_member_location (die, cu, &offset))
10638 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10639 FIELD_BITSIZE (*fp) = 0;
10640 FIELD_TYPE (*fp) = die_type (die, cu);
10641 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10642 fip->nbaseclasses++;
10643 }
10644 }
10645
10646 /* Add a typedef defined in the scope of the FIP's class. */
10647
10648 static void
10649 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10650 struct dwarf2_cu *cu)
10651 {
10652 struct objfile *objfile = cu->objfile;
10653 struct typedef_field_list *new_field;
10654 struct attribute *attr;
10655 struct typedef_field *fp;
10656 char *fieldname = "";
10657
10658 /* Allocate a new field list entry and link it in. */
10659 new_field = xzalloc (sizeof (*new_field));
10660 make_cleanup (xfree, new_field);
10661
10662 gdb_assert (die->tag == DW_TAG_typedef);
10663
10664 fp = &new_field->field;
10665
10666 /* Get name of field. */
10667 fp->name = dwarf2_name (die, cu);
10668 if (fp->name == NULL)
10669 return;
10670
10671 fp->type = read_type_die (die, cu);
10672
10673 new_field->next = fip->typedef_field_list;
10674 fip->typedef_field_list = new_field;
10675 fip->typedef_field_list_count++;
10676 }
10677
10678 /* Create the vector of fields, and attach it to the type. */
10679
10680 static void
10681 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
10682 struct dwarf2_cu *cu)
10683 {
10684 int nfields = fip->nfields;
10685
10686 /* Record the field count, allocate space for the array of fields,
10687 and create blank accessibility bitfields if necessary. */
10688 TYPE_NFIELDS (type) = nfields;
10689 TYPE_FIELDS (type) = (struct field *)
10690 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10691 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10692
10693 if (fip->non_public_fields && cu->language != language_ada)
10694 {
10695 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10696
10697 TYPE_FIELD_PRIVATE_BITS (type) =
10698 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10699 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10700
10701 TYPE_FIELD_PROTECTED_BITS (type) =
10702 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10703 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10704
10705 TYPE_FIELD_IGNORE_BITS (type) =
10706 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10707 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10708 }
10709
10710 /* If the type has baseclasses, allocate and clear a bit vector for
10711 TYPE_FIELD_VIRTUAL_BITS. */
10712 if (fip->nbaseclasses && cu->language != language_ada)
10713 {
10714 int num_bytes = B_BYTES (fip->nbaseclasses);
10715 unsigned char *pointer;
10716
10717 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10718 pointer = TYPE_ALLOC (type, num_bytes);
10719 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10720 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10721 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10722 }
10723
10724 /* Copy the saved-up fields into the field vector. Start from the head of
10725 the list, adding to the tail of the field array, so that they end up in
10726 the same order in the array in which they were added to the list. */
10727 while (nfields-- > 0)
10728 {
10729 struct nextfield *fieldp;
10730
10731 if (fip->fields)
10732 {
10733 fieldp = fip->fields;
10734 fip->fields = fieldp->next;
10735 }
10736 else
10737 {
10738 fieldp = fip->baseclasses;
10739 fip->baseclasses = fieldp->next;
10740 }
10741
10742 TYPE_FIELD (type, nfields) = fieldp->field;
10743 switch (fieldp->accessibility)
10744 {
10745 case DW_ACCESS_private:
10746 if (cu->language != language_ada)
10747 SET_TYPE_FIELD_PRIVATE (type, nfields);
10748 break;
10749
10750 case DW_ACCESS_protected:
10751 if (cu->language != language_ada)
10752 SET_TYPE_FIELD_PROTECTED (type, nfields);
10753 break;
10754
10755 case DW_ACCESS_public:
10756 break;
10757
10758 default:
10759 /* Unknown accessibility. Complain and treat it as public. */
10760 {
10761 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10762 fieldp->accessibility);
10763 }
10764 break;
10765 }
10766 if (nfields < fip->nbaseclasses)
10767 {
10768 switch (fieldp->virtuality)
10769 {
10770 case DW_VIRTUALITY_virtual:
10771 case DW_VIRTUALITY_pure_virtual:
10772 if (cu->language == language_ada)
10773 error (_("unexpected virtuality in component of Ada type"));
10774 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10775 break;
10776 }
10777 }
10778 }
10779 }
10780
10781 /* Add a member function to the proper fieldlist. */
10782
10783 static void
10784 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
10785 struct type *type, struct dwarf2_cu *cu)
10786 {
10787 struct objfile *objfile = cu->objfile;
10788 struct attribute *attr;
10789 struct fnfieldlist *flp;
10790 int i;
10791 struct fn_field *fnp;
10792 char *fieldname;
10793 struct nextfnfield *new_fnfield;
10794 struct type *this_type;
10795 enum dwarf_access_attribute accessibility;
10796
10797 if (cu->language == language_ada)
10798 error (_("unexpected member function in Ada type"));
10799
10800 /* Get name of member function. */
10801 fieldname = dwarf2_name (die, cu);
10802 if (fieldname == NULL)
10803 return;
10804
10805 /* Look up member function name in fieldlist. */
10806 for (i = 0; i < fip->nfnfields; i++)
10807 {
10808 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
10809 break;
10810 }
10811
10812 /* Create new list element if necessary. */
10813 if (i < fip->nfnfields)
10814 flp = &fip->fnfieldlists[i];
10815 else
10816 {
10817 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
10818 {
10819 fip->fnfieldlists = (struct fnfieldlist *)
10820 xrealloc (fip->fnfieldlists,
10821 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
10822 * sizeof (struct fnfieldlist));
10823 if (fip->nfnfields == 0)
10824 make_cleanup (free_current_contents, &fip->fnfieldlists);
10825 }
10826 flp = &fip->fnfieldlists[fip->nfnfields];
10827 flp->name = fieldname;
10828 flp->length = 0;
10829 flp->head = NULL;
10830 i = fip->nfnfields++;
10831 }
10832
10833 /* Create a new member function field and chain it to the field list
10834 entry. */
10835 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
10836 make_cleanup (xfree, new_fnfield);
10837 memset (new_fnfield, 0, sizeof (struct nextfnfield));
10838 new_fnfield->next = flp->head;
10839 flp->head = new_fnfield;
10840 flp->length++;
10841
10842 /* Fill in the member function field info. */
10843 fnp = &new_fnfield->fnfield;
10844
10845 /* Delay processing of the physname until later. */
10846 if (cu->language == language_cplus || cu->language == language_java)
10847 {
10848 add_to_method_list (type, i, flp->length - 1, fieldname,
10849 die, cu);
10850 }
10851 else
10852 {
10853 const char *physname = dwarf2_physname (fieldname, die, cu);
10854 fnp->physname = physname ? physname : "";
10855 }
10856
10857 fnp->type = alloc_type (objfile);
10858 this_type = read_type_die (die, cu);
10859 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
10860 {
10861 int nparams = TYPE_NFIELDS (this_type);
10862
10863 /* TYPE is the domain of this method, and THIS_TYPE is the type
10864 of the method itself (TYPE_CODE_METHOD). */
10865 smash_to_method_type (fnp->type, type,
10866 TYPE_TARGET_TYPE (this_type),
10867 TYPE_FIELDS (this_type),
10868 TYPE_NFIELDS (this_type),
10869 TYPE_VARARGS (this_type));
10870
10871 /* Handle static member functions.
10872 Dwarf2 has no clean way to discern C++ static and non-static
10873 member functions. G++ helps GDB by marking the first
10874 parameter for non-static member functions (which is the this
10875 pointer) as artificial. We obtain this information from
10876 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
10877 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
10878 fnp->voffset = VOFFSET_STATIC;
10879 }
10880 else
10881 complaint (&symfile_complaints, _("member function type missing for '%s'"),
10882 dwarf2_full_name (fieldname, die, cu));
10883
10884 /* Get fcontext from DW_AT_containing_type if present. */
10885 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
10886 fnp->fcontext = die_containing_type (die, cu);
10887
10888 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
10889 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
10890
10891 /* Get accessibility. */
10892 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10893 if (attr)
10894 accessibility = DW_UNSND (attr);
10895 else
10896 accessibility = dwarf2_default_access_attribute (die, cu);
10897 switch (accessibility)
10898 {
10899 case DW_ACCESS_private:
10900 fnp->is_private = 1;
10901 break;
10902 case DW_ACCESS_protected:
10903 fnp->is_protected = 1;
10904 break;
10905 }
10906
10907 /* Check for artificial methods. */
10908 attr = dwarf2_attr (die, DW_AT_artificial, cu);
10909 if (attr && DW_UNSND (attr) != 0)
10910 fnp->is_artificial = 1;
10911
10912 /* Get index in virtual function table if it is a virtual member
10913 function. For older versions of GCC, this is an offset in the
10914 appropriate virtual table, as specified by DW_AT_containing_type.
10915 For everyone else, it is an expression to be evaluated relative
10916 to the object address. */
10917
10918 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
10919 if (attr)
10920 {
10921 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
10922 {
10923 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
10924 {
10925 /* Old-style GCC. */
10926 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
10927 }
10928 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
10929 || (DW_BLOCK (attr)->size > 1
10930 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
10931 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
10932 {
10933 struct dwarf_block blk;
10934 int offset;
10935
10936 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
10937 ? 1 : 2);
10938 blk.size = DW_BLOCK (attr)->size - offset;
10939 blk.data = DW_BLOCK (attr)->data + offset;
10940 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
10941 if ((fnp->voffset % cu->header.addr_size) != 0)
10942 dwarf2_complex_location_expr_complaint ();
10943 else
10944 fnp->voffset /= cu->header.addr_size;
10945 fnp->voffset += 2;
10946 }
10947 else
10948 dwarf2_complex_location_expr_complaint ();
10949
10950 if (!fnp->fcontext)
10951 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
10952 }
10953 else if (attr_form_is_section_offset (attr))
10954 {
10955 dwarf2_complex_location_expr_complaint ();
10956 }
10957 else
10958 {
10959 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
10960 fieldname);
10961 }
10962 }
10963 else
10964 {
10965 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10966 if (attr && DW_UNSND (attr))
10967 {
10968 /* GCC does this, as of 2008-08-25; PR debug/37237. */
10969 complaint (&symfile_complaints,
10970 _("Member function \"%s\" (offset %d) is virtual "
10971 "but the vtable offset is not specified"),
10972 fieldname, die->offset.sect_off);
10973 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10974 TYPE_CPLUS_DYNAMIC (type) = 1;
10975 }
10976 }
10977 }
10978
10979 /* Create the vector of member function fields, and attach it to the type. */
10980
10981 static void
10982 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
10983 struct dwarf2_cu *cu)
10984 {
10985 struct fnfieldlist *flp;
10986 int i;
10987
10988 if (cu->language == language_ada)
10989 error (_("unexpected member functions in Ada type"));
10990
10991 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10992 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
10993 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
10994
10995 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
10996 {
10997 struct nextfnfield *nfp = flp->head;
10998 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
10999 int k;
11000
11001 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11002 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11003 fn_flp->fn_fields = (struct fn_field *)
11004 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11005 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11006 fn_flp->fn_fields[k] = nfp->fnfield;
11007 }
11008
11009 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11010 }
11011
11012 /* Returns non-zero if NAME is the name of a vtable member in CU's
11013 language, zero otherwise. */
11014 static int
11015 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11016 {
11017 static const char vptr[] = "_vptr";
11018 static const char vtable[] = "vtable";
11019
11020 /* Look for the C++ and Java forms of the vtable. */
11021 if ((cu->language == language_java
11022 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11023 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11024 && is_cplus_marker (name[sizeof (vptr) - 1])))
11025 return 1;
11026
11027 return 0;
11028 }
11029
11030 /* GCC outputs unnamed structures that are really pointers to member
11031 functions, with the ABI-specified layout. If TYPE describes
11032 such a structure, smash it into a member function type.
11033
11034 GCC shouldn't do this; it should just output pointer to member DIEs.
11035 This is GCC PR debug/28767. */
11036
11037 static void
11038 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11039 {
11040 struct type *pfn_type, *domain_type, *new_type;
11041
11042 /* Check for a structure with no name and two children. */
11043 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11044 return;
11045
11046 /* Check for __pfn and __delta members. */
11047 if (TYPE_FIELD_NAME (type, 0) == NULL
11048 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11049 || TYPE_FIELD_NAME (type, 1) == NULL
11050 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11051 return;
11052
11053 /* Find the type of the method. */
11054 pfn_type = TYPE_FIELD_TYPE (type, 0);
11055 if (pfn_type == NULL
11056 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11057 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11058 return;
11059
11060 /* Look for the "this" argument. */
11061 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11062 if (TYPE_NFIELDS (pfn_type) == 0
11063 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11064 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11065 return;
11066
11067 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11068 new_type = alloc_type (objfile);
11069 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11070 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11071 TYPE_VARARGS (pfn_type));
11072 smash_to_methodptr_type (type, new_type);
11073 }
11074
11075 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11076 (icc). */
11077
11078 static int
11079 producer_is_icc (struct dwarf2_cu *cu)
11080 {
11081 if (!cu->checked_producer)
11082 check_producer (cu);
11083
11084 return cu->producer_is_icc;
11085 }
11086
11087 /* Called when we find the DIE that starts a structure or union scope
11088 (definition) to create a type for the structure or union. Fill in
11089 the type's name and general properties; the members will not be
11090 processed until process_structure_type.
11091
11092 NOTE: we need to call these functions regardless of whether or not the
11093 DIE has a DW_AT_name attribute, since it might be an anonymous
11094 structure or union. This gets the type entered into our set of
11095 user defined types.
11096
11097 However, if the structure is incomplete (an opaque struct/union)
11098 then suppress creating a symbol table entry for it since gdb only
11099 wants to find the one with the complete definition. Note that if
11100 it is complete, we just call new_symbol, which does it's own
11101 checking about whether the struct/union is anonymous or not (and
11102 suppresses creating a symbol table entry itself). */
11103
11104 static struct type *
11105 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11106 {
11107 struct objfile *objfile = cu->objfile;
11108 struct type *type;
11109 struct attribute *attr;
11110 char *name;
11111
11112 /* If the definition of this type lives in .debug_types, read that type.
11113 Don't follow DW_AT_specification though, that will take us back up
11114 the chain and we want to go down. */
11115 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11116 if (attr)
11117 {
11118 struct dwarf2_cu *type_cu = cu;
11119 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11120
11121 /* We could just recurse on read_structure_type, but we need to call
11122 get_die_type to ensure only one type for this DIE is created.
11123 This is important, for example, because for c++ classes we need
11124 TYPE_NAME set which is only done by new_symbol. Blech. */
11125 type = read_type_die (type_die, type_cu);
11126
11127 /* TYPE_CU may not be the same as CU.
11128 Ensure TYPE is recorded in CU's type_hash table. */
11129 return set_die_type (die, type, cu);
11130 }
11131
11132 type = alloc_type (objfile);
11133 INIT_CPLUS_SPECIFIC (type);
11134
11135 name = dwarf2_name (die, cu);
11136 if (name != NULL)
11137 {
11138 if (cu->language == language_cplus
11139 || cu->language == language_java)
11140 {
11141 char *full_name = (char *) dwarf2_full_name (name, die, cu);
11142
11143 /* dwarf2_full_name might have already finished building the DIE's
11144 type. If so, there is no need to continue. */
11145 if (get_die_type (die, cu) != NULL)
11146 return get_die_type (die, cu);
11147
11148 TYPE_TAG_NAME (type) = full_name;
11149 if (die->tag == DW_TAG_structure_type
11150 || die->tag == DW_TAG_class_type)
11151 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11152 }
11153 else
11154 {
11155 /* The name is already allocated along with this objfile, so
11156 we don't need to duplicate it for the type. */
11157 TYPE_TAG_NAME (type) = (char *) name;
11158 if (die->tag == DW_TAG_class_type)
11159 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11160 }
11161 }
11162
11163 if (die->tag == DW_TAG_structure_type)
11164 {
11165 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11166 }
11167 else if (die->tag == DW_TAG_union_type)
11168 {
11169 TYPE_CODE (type) = TYPE_CODE_UNION;
11170 }
11171 else
11172 {
11173 TYPE_CODE (type) = TYPE_CODE_CLASS;
11174 }
11175
11176 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11177 TYPE_DECLARED_CLASS (type) = 1;
11178
11179 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11180 if (attr)
11181 {
11182 TYPE_LENGTH (type) = DW_UNSND (attr);
11183 }
11184 else
11185 {
11186 TYPE_LENGTH (type) = 0;
11187 }
11188
11189 if (producer_is_icc (cu))
11190 {
11191 /* ICC does not output the required DW_AT_declaration
11192 on incomplete types, but gives them a size of zero. */
11193 }
11194 else
11195 TYPE_STUB_SUPPORTED (type) = 1;
11196
11197 if (die_is_declaration (die, cu))
11198 TYPE_STUB (type) = 1;
11199 else if (attr == NULL && die->child == NULL
11200 && producer_is_realview (cu->producer))
11201 /* RealView does not output the required DW_AT_declaration
11202 on incomplete types. */
11203 TYPE_STUB (type) = 1;
11204
11205 /* We need to add the type field to the die immediately so we don't
11206 infinitely recurse when dealing with pointers to the structure
11207 type within the structure itself. */
11208 set_die_type (die, type, cu);
11209
11210 /* set_die_type should be already done. */
11211 set_descriptive_type (type, die, cu);
11212
11213 return type;
11214 }
11215
11216 /* Finish creating a structure or union type, including filling in
11217 its members and creating a symbol for it. */
11218
11219 static void
11220 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11221 {
11222 struct objfile *objfile = cu->objfile;
11223 struct die_info *child_die = die->child;
11224 struct type *type;
11225
11226 type = get_die_type (die, cu);
11227 if (type == NULL)
11228 type = read_structure_type (die, cu);
11229
11230 if (die->child != NULL && ! die_is_declaration (die, cu))
11231 {
11232 struct field_info fi;
11233 struct die_info *child_die;
11234 VEC (symbolp) *template_args = NULL;
11235 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11236
11237 memset (&fi, 0, sizeof (struct field_info));
11238
11239 child_die = die->child;
11240
11241 while (child_die && child_die->tag)
11242 {
11243 if (child_die->tag == DW_TAG_member
11244 || child_die->tag == DW_TAG_variable)
11245 {
11246 /* NOTE: carlton/2002-11-05: A C++ static data member
11247 should be a DW_TAG_member that is a declaration, but
11248 all versions of G++ as of this writing (so through at
11249 least 3.2.1) incorrectly generate DW_TAG_variable
11250 tags for them instead. */
11251 dwarf2_add_field (&fi, child_die, cu);
11252 }
11253 else if (child_die->tag == DW_TAG_subprogram)
11254 {
11255 /* C++ member function. */
11256 dwarf2_add_member_fn (&fi, child_die, type, cu);
11257 }
11258 else if (child_die->tag == DW_TAG_inheritance)
11259 {
11260 /* C++ base class field. */
11261 dwarf2_add_field (&fi, child_die, cu);
11262 }
11263 else if (child_die->tag == DW_TAG_typedef)
11264 dwarf2_add_typedef (&fi, child_die, cu);
11265 else if (child_die->tag == DW_TAG_template_type_param
11266 || child_die->tag == DW_TAG_template_value_param)
11267 {
11268 struct symbol *arg = new_symbol (child_die, NULL, cu);
11269
11270 if (arg != NULL)
11271 VEC_safe_push (symbolp, template_args, arg);
11272 }
11273
11274 child_die = sibling_die (child_die);
11275 }
11276
11277 /* Attach template arguments to type. */
11278 if (! VEC_empty (symbolp, template_args))
11279 {
11280 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11281 TYPE_N_TEMPLATE_ARGUMENTS (type)
11282 = VEC_length (symbolp, template_args);
11283 TYPE_TEMPLATE_ARGUMENTS (type)
11284 = obstack_alloc (&objfile->objfile_obstack,
11285 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11286 * sizeof (struct symbol *)));
11287 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11288 VEC_address (symbolp, template_args),
11289 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11290 * sizeof (struct symbol *)));
11291 VEC_free (symbolp, template_args);
11292 }
11293
11294 /* Attach fields and member functions to the type. */
11295 if (fi.nfields)
11296 dwarf2_attach_fields_to_type (&fi, type, cu);
11297 if (fi.nfnfields)
11298 {
11299 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11300
11301 /* Get the type which refers to the base class (possibly this
11302 class itself) which contains the vtable pointer for the current
11303 class from the DW_AT_containing_type attribute. This use of
11304 DW_AT_containing_type is a GNU extension. */
11305
11306 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11307 {
11308 struct type *t = die_containing_type (die, cu);
11309
11310 TYPE_VPTR_BASETYPE (type) = t;
11311 if (type == t)
11312 {
11313 int i;
11314
11315 /* Our own class provides vtbl ptr. */
11316 for (i = TYPE_NFIELDS (t) - 1;
11317 i >= TYPE_N_BASECLASSES (t);
11318 --i)
11319 {
11320 const char *fieldname = TYPE_FIELD_NAME (t, i);
11321
11322 if (is_vtable_name (fieldname, cu))
11323 {
11324 TYPE_VPTR_FIELDNO (type) = i;
11325 break;
11326 }
11327 }
11328
11329 /* Complain if virtual function table field not found. */
11330 if (i < TYPE_N_BASECLASSES (t))
11331 complaint (&symfile_complaints,
11332 _("virtual function table pointer "
11333 "not found when defining class '%s'"),
11334 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11335 "");
11336 }
11337 else
11338 {
11339 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11340 }
11341 }
11342 else if (cu->producer
11343 && strncmp (cu->producer,
11344 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11345 {
11346 /* The IBM XLC compiler does not provide direct indication
11347 of the containing type, but the vtable pointer is
11348 always named __vfp. */
11349
11350 int i;
11351
11352 for (i = TYPE_NFIELDS (type) - 1;
11353 i >= TYPE_N_BASECLASSES (type);
11354 --i)
11355 {
11356 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11357 {
11358 TYPE_VPTR_FIELDNO (type) = i;
11359 TYPE_VPTR_BASETYPE (type) = type;
11360 break;
11361 }
11362 }
11363 }
11364 }
11365
11366 /* Copy fi.typedef_field_list linked list elements content into the
11367 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11368 if (fi.typedef_field_list)
11369 {
11370 int i = fi.typedef_field_list_count;
11371
11372 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11373 TYPE_TYPEDEF_FIELD_ARRAY (type)
11374 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11375 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11376
11377 /* Reverse the list order to keep the debug info elements order. */
11378 while (--i >= 0)
11379 {
11380 struct typedef_field *dest, *src;
11381
11382 dest = &TYPE_TYPEDEF_FIELD (type, i);
11383 src = &fi.typedef_field_list->field;
11384 fi.typedef_field_list = fi.typedef_field_list->next;
11385 *dest = *src;
11386 }
11387 }
11388
11389 do_cleanups (back_to);
11390
11391 if (HAVE_CPLUS_STRUCT (type))
11392 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
11393 }
11394
11395 quirk_gcc_member_function_pointer (type, objfile);
11396
11397 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11398 snapshots) has been known to create a die giving a declaration
11399 for a class that has, as a child, a die giving a definition for a
11400 nested class. So we have to process our children even if the
11401 current die is a declaration. Normally, of course, a declaration
11402 won't have any children at all. */
11403
11404 while (child_die != NULL && child_die->tag)
11405 {
11406 if (child_die->tag == DW_TAG_member
11407 || child_die->tag == DW_TAG_variable
11408 || child_die->tag == DW_TAG_inheritance
11409 || child_die->tag == DW_TAG_template_value_param
11410 || child_die->tag == DW_TAG_template_type_param)
11411 {
11412 /* Do nothing. */
11413 }
11414 else
11415 process_die (child_die, cu);
11416
11417 child_die = sibling_die (child_die);
11418 }
11419
11420 /* Do not consider external references. According to the DWARF standard,
11421 these DIEs are identified by the fact that they have no byte_size
11422 attribute, and a declaration attribute. */
11423 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11424 || !die_is_declaration (die, cu))
11425 new_symbol (die, type, cu);
11426 }
11427
11428 /* Given a DW_AT_enumeration_type die, set its type. We do not
11429 complete the type's fields yet, or create any symbols. */
11430
11431 static struct type *
11432 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
11433 {
11434 struct objfile *objfile = cu->objfile;
11435 struct type *type;
11436 struct attribute *attr;
11437 const char *name;
11438
11439 /* If the definition of this type lives in .debug_types, read that type.
11440 Don't follow DW_AT_specification though, that will take us back up
11441 the chain and we want to go down. */
11442 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11443 if (attr)
11444 {
11445 struct dwarf2_cu *type_cu = cu;
11446 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11447
11448 type = read_type_die (type_die, type_cu);
11449
11450 /* TYPE_CU may not be the same as CU.
11451 Ensure TYPE is recorded in CU's type_hash table. */
11452 return set_die_type (die, type, cu);
11453 }
11454
11455 type = alloc_type (objfile);
11456
11457 TYPE_CODE (type) = TYPE_CODE_ENUM;
11458 name = dwarf2_full_name (NULL, die, cu);
11459 if (name != NULL)
11460 TYPE_TAG_NAME (type) = (char *) name;
11461
11462 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11463 if (attr)
11464 {
11465 TYPE_LENGTH (type) = DW_UNSND (attr);
11466 }
11467 else
11468 {
11469 TYPE_LENGTH (type) = 0;
11470 }
11471
11472 /* The enumeration DIE can be incomplete. In Ada, any type can be
11473 declared as private in the package spec, and then defined only
11474 inside the package body. Such types are known as Taft Amendment
11475 Types. When another package uses such a type, an incomplete DIE
11476 may be generated by the compiler. */
11477 if (die_is_declaration (die, cu))
11478 TYPE_STUB (type) = 1;
11479
11480 return set_die_type (die, type, cu);
11481 }
11482
11483 /* Given a pointer to a die which begins an enumeration, process all
11484 the dies that define the members of the enumeration, and create the
11485 symbol for the enumeration type.
11486
11487 NOTE: We reverse the order of the element list. */
11488
11489 static void
11490 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11491 {
11492 struct type *this_type;
11493
11494 this_type = get_die_type (die, cu);
11495 if (this_type == NULL)
11496 this_type = read_enumeration_type (die, cu);
11497
11498 if (die->child != NULL)
11499 {
11500 struct die_info *child_die;
11501 struct symbol *sym;
11502 struct field *fields = NULL;
11503 int num_fields = 0;
11504 int unsigned_enum = 1;
11505 char *name;
11506 int flag_enum = 1;
11507 ULONGEST mask = 0;
11508
11509 child_die = die->child;
11510 while (child_die && child_die->tag)
11511 {
11512 if (child_die->tag != DW_TAG_enumerator)
11513 {
11514 process_die (child_die, cu);
11515 }
11516 else
11517 {
11518 name = dwarf2_name (child_die, cu);
11519 if (name)
11520 {
11521 sym = new_symbol (child_die, this_type, cu);
11522 if (SYMBOL_VALUE (sym) < 0)
11523 {
11524 unsigned_enum = 0;
11525 flag_enum = 0;
11526 }
11527 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11528 flag_enum = 0;
11529 else
11530 mask |= SYMBOL_VALUE (sym);
11531
11532 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11533 {
11534 fields = (struct field *)
11535 xrealloc (fields,
11536 (num_fields + DW_FIELD_ALLOC_CHUNK)
11537 * sizeof (struct field));
11538 }
11539
11540 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
11541 FIELD_TYPE (fields[num_fields]) = NULL;
11542 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
11543 FIELD_BITSIZE (fields[num_fields]) = 0;
11544
11545 num_fields++;
11546 }
11547 }
11548
11549 child_die = sibling_die (child_die);
11550 }
11551
11552 if (num_fields)
11553 {
11554 TYPE_NFIELDS (this_type) = num_fields;
11555 TYPE_FIELDS (this_type) = (struct field *)
11556 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11557 memcpy (TYPE_FIELDS (this_type), fields,
11558 sizeof (struct field) * num_fields);
11559 xfree (fields);
11560 }
11561 if (unsigned_enum)
11562 TYPE_UNSIGNED (this_type) = 1;
11563 if (flag_enum)
11564 TYPE_FLAG_ENUM (this_type) = 1;
11565 }
11566
11567 /* If we are reading an enum from a .debug_types unit, and the enum
11568 is a declaration, and the enum is not the signatured type in the
11569 unit, then we do not want to add a symbol for it. Adding a
11570 symbol would in some cases obscure the true definition of the
11571 enum, giving users an incomplete type when the definition is
11572 actually available. Note that we do not want to do this for all
11573 enums which are just declarations, because C++0x allows forward
11574 enum declarations. */
11575 if (cu->per_cu->is_debug_types
11576 && die_is_declaration (die, cu))
11577 {
11578 struct signatured_type *sig_type;
11579
11580 sig_type
11581 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
11582 cu->per_cu->info_or_types_section,
11583 cu->per_cu->offset);
11584 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11585 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
11586 return;
11587 }
11588
11589 new_symbol (die, this_type, cu);
11590 }
11591
11592 /* Extract all information from a DW_TAG_array_type DIE and put it in
11593 the DIE's type field. For now, this only handles one dimensional
11594 arrays. */
11595
11596 static struct type *
11597 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
11598 {
11599 struct objfile *objfile = cu->objfile;
11600 struct die_info *child_die;
11601 struct type *type;
11602 struct type *element_type, *range_type, *index_type;
11603 struct type **range_types = NULL;
11604 struct attribute *attr;
11605 int ndim = 0;
11606 struct cleanup *back_to;
11607 char *name;
11608
11609 element_type = die_type (die, cu);
11610
11611 /* The die_type call above may have already set the type for this DIE. */
11612 type = get_die_type (die, cu);
11613 if (type)
11614 return type;
11615
11616 /* Irix 6.2 native cc creates array types without children for
11617 arrays with unspecified length. */
11618 if (die->child == NULL)
11619 {
11620 index_type = objfile_type (objfile)->builtin_int;
11621 range_type = create_range_type (NULL, index_type, 0, -1);
11622 type = create_array_type (NULL, element_type, range_type);
11623 return set_die_type (die, type, cu);
11624 }
11625
11626 back_to = make_cleanup (null_cleanup, NULL);
11627 child_die = die->child;
11628 while (child_die && child_die->tag)
11629 {
11630 if (child_die->tag == DW_TAG_subrange_type)
11631 {
11632 struct type *child_type = read_type_die (child_die, cu);
11633
11634 if (child_type != NULL)
11635 {
11636 /* The range type was succesfully read. Save it for the
11637 array type creation. */
11638 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11639 {
11640 range_types = (struct type **)
11641 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11642 * sizeof (struct type *));
11643 if (ndim == 0)
11644 make_cleanup (free_current_contents, &range_types);
11645 }
11646 range_types[ndim++] = child_type;
11647 }
11648 }
11649 child_die = sibling_die (child_die);
11650 }
11651
11652 /* Dwarf2 dimensions are output from left to right, create the
11653 necessary array types in backwards order. */
11654
11655 type = element_type;
11656
11657 if (read_array_order (die, cu) == DW_ORD_col_major)
11658 {
11659 int i = 0;
11660
11661 while (i < ndim)
11662 type = create_array_type (NULL, type, range_types[i++]);
11663 }
11664 else
11665 {
11666 while (ndim-- > 0)
11667 type = create_array_type (NULL, type, range_types[ndim]);
11668 }
11669
11670 /* Understand Dwarf2 support for vector types (like they occur on
11671 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11672 array type. This is not part of the Dwarf2/3 standard yet, but a
11673 custom vendor extension. The main difference between a regular
11674 array and the vector variant is that vectors are passed by value
11675 to functions. */
11676 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
11677 if (attr)
11678 make_vector_type (type);
11679
11680 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11681 implementation may choose to implement triple vectors using this
11682 attribute. */
11683 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11684 if (attr)
11685 {
11686 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11687 TYPE_LENGTH (type) = DW_UNSND (attr);
11688 else
11689 complaint (&symfile_complaints,
11690 _("DW_AT_byte_size for array type smaller "
11691 "than the total size of elements"));
11692 }
11693
11694 name = dwarf2_name (die, cu);
11695 if (name)
11696 TYPE_NAME (type) = name;
11697
11698 /* Install the type in the die. */
11699 set_die_type (die, type, cu);
11700
11701 /* set_die_type should be already done. */
11702 set_descriptive_type (type, die, cu);
11703
11704 do_cleanups (back_to);
11705
11706 return type;
11707 }
11708
11709 static enum dwarf_array_dim_ordering
11710 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11711 {
11712 struct attribute *attr;
11713
11714 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11715
11716 if (attr) return DW_SND (attr);
11717
11718 /* GNU F77 is a special case, as at 08/2004 array type info is the
11719 opposite order to the dwarf2 specification, but data is still
11720 laid out as per normal fortran.
11721
11722 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11723 version checking. */
11724
11725 if (cu->language == language_fortran
11726 && cu->producer && strstr (cu->producer, "GNU F77"))
11727 {
11728 return DW_ORD_row_major;
11729 }
11730
11731 switch (cu->language_defn->la_array_ordering)
11732 {
11733 case array_column_major:
11734 return DW_ORD_col_major;
11735 case array_row_major:
11736 default:
11737 return DW_ORD_row_major;
11738 };
11739 }
11740
11741 /* Extract all information from a DW_TAG_set_type DIE and put it in
11742 the DIE's type field. */
11743
11744 static struct type *
11745 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11746 {
11747 struct type *domain_type, *set_type;
11748 struct attribute *attr;
11749
11750 domain_type = die_type (die, cu);
11751
11752 /* The die_type call above may have already set the type for this DIE. */
11753 set_type = get_die_type (die, cu);
11754 if (set_type)
11755 return set_type;
11756
11757 set_type = create_set_type (NULL, domain_type);
11758
11759 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11760 if (attr)
11761 TYPE_LENGTH (set_type) = DW_UNSND (attr);
11762
11763 return set_die_type (die, set_type, cu);
11764 }
11765
11766 /* A helper for read_common_block that creates a locexpr baton.
11767 SYM is the symbol which we are marking as computed.
11768 COMMON_DIE is the DIE for the common block.
11769 COMMON_LOC is the location expression attribute for the common
11770 block itself.
11771 MEMBER_LOC is the location expression attribute for the particular
11772 member of the common block that we are processing.
11773 CU is the CU from which the above come. */
11774
11775 static void
11776 mark_common_block_symbol_computed (struct symbol *sym,
11777 struct die_info *common_die,
11778 struct attribute *common_loc,
11779 struct attribute *member_loc,
11780 struct dwarf2_cu *cu)
11781 {
11782 struct objfile *objfile = dwarf2_per_objfile->objfile;
11783 struct dwarf2_locexpr_baton *baton;
11784 gdb_byte *ptr;
11785 unsigned int cu_off;
11786 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
11787 LONGEST offset = 0;
11788
11789 gdb_assert (common_loc && member_loc);
11790 gdb_assert (attr_form_is_block (common_loc));
11791 gdb_assert (attr_form_is_block (member_loc)
11792 || attr_form_is_constant (member_loc));
11793
11794 baton = obstack_alloc (&objfile->objfile_obstack,
11795 sizeof (struct dwarf2_locexpr_baton));
11796 baton->per_cu = cu->per_cu;
11797 gdb_assert (baton->per_cu);
11798
11799 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
11800
11801 if (attr_form_is_constant (member_loc))
11802 {
11803 offset = dwarf2_get_attr_constant_value (member_loc, 0);
11804 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
11805 }
11806 else
11807 baton->size += DW_BLOCK (member_loc)->size;
11808
11809 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
11810 baton->data = ptr;
11811
11812 *ptr++ = DW_OP_call4;
11813 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
11814 store_unsigned_integer (ptr, 4, byte_order, cu_off);
11815 ptr += 4;
11816
11817 if (attr_form_is_constant (member_loc))
11818 {
11819 *ptr++ = DW_OP_addr;
11820 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
11821 ptr += cu->header.addr_size;
11822 }
11823 else
11824 {
11825 /* We have to copy the data here, because DW_OP_call4 will only
11826 use a DW_AT_location attribute. */
11827 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
11828 ptr += DW_BLOCK (member_loc)->size;
11829 }
11830
11831 *ptr++ = DW_OP_plus;
11832 gdb_assert (ptr - baton->data == baton->size);
11833
11834 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11835 SYMBOL_LOCATION_BATON (sym) = baton;
11836 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11837 }
11838
11839 /* Create appropriate locally-scoped variables for all the
11840 DW_TAG_common_block entries. Also create a struct common_block
11841 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
11842 is used to sepate the common blocks name namespace from regular
11843 variable names. */
11844
11845 static void
11846 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
11847 {
11848 struct attribute *attr;
11849
11850 attr = dwarf2_attr (die, DW_AT_location, cu);
11851 if (attr)
11852 {
11853 /* Support the .debug_loc offsets. */
11854 if (attr_form_is_block (attr))
11855 {
11856 /* Ok. */
11857 }
11858 else if (attr_form_is_section_offset (attr))
11859 {
11860 dwarf2_complex_location_expr_complaint ();
11861 attr = NULL;
11862 }
11863 else
11864 {
11865 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11866 "common block member");
11867 attr = NULL;
11868 }
11869 }
11870
11871 if (die->child != NULL)
11872 {
11873 struct objfile *objfile = cu->objfile;
11874 struct die_info *child_die;
11875 size_t n_entries = 0, size;
11876 struct common_block *common_block;
11877 struct symbol *sym;
11878
11879 for (child_die = die->child;
11880 child_die && child_die->tag;
11881 child_die = sibling_die (child_die))
11882 ++n_entries;
11883
11884 size = (sizeof (struct common_block)
11885 + (n_entries - 1) * sizeof (struct symbol *));
11886 common_block = obstack_alloc (&objfile->objfile_obstack, size);
11887 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
11888 common_block->n_entries = 0;
11889
11890 for (child_die = die->child;
11891 child_die && child_die->tag;
11892 child_die = sibling_die (child_die))
11893 {
11894 /* Create the symbol in the DW_TAG_common_block block in the current
11895 symbol scope. */
11896 sym = new_symbol (child_die, NULL, cu);
11897 if (sym != NULL)
11898 {
11899 struct attribute *member_loc;
11900
11901 common_block->contents[common_block->n_entries++] = sym;
11902
11903 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
11904 cu);
11905 if (member_loc)
11906 {
11907 /* GDB has handled this for a long time, but it is
11908 not specified by DWARF. It seems to have been
11909 emitted by gfortran at least as recently as:
11910 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
11911 complaint (&symfile_complaints,
11912 _("Variable in common block has "
11913 "DW_AT_data_member_location "
11914 "- DIE at 0x%x [in module %s]"),
11915 child_die->offset.sect_off, cu->objfile->name);
11916
11917 if (attr_form_is_section_offset (member_loc))
11918 dwarf2_complex_location_expr_complaint ();
11919 else if (attr_form_is_constant (member_loc)
11920 || attr_form_is_block (member_loc))
11921 {
11922 if (attr)
11923 mark_common_block_symbol_computed (sym, die, attr,
11924 member_loc, cu);
11925 }
11926 else
11927 dwarf2_complex_location_expr_complaint ();
11928 }
11929 }
11930 }
11931
11932 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
11933 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
11934 }
11935 }
11936
11937 /* Create a type for a C++ namespace. */
11938
11939 static struct type *
11940 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
11941 {
11942 struct objfile *objfile = cu->objfile;
11943 const char *previous_prefix, *name;
11944 int is_anonymous;
11945 struct type *type;
11946
11947 /* For extensions, reuse the type of the original namespace. */
11948 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
11949 {
11950 struct die_info *ext_die;
11951 struct dwarf2_cu *ext_cu = cu;
11952
11953 ext_die = dwarf2_extension (die, &ext_cu);
11954 type = read_type_die (ext_die, ext_cu);
11955
11956 /* EXT_CU may not be the same as CU.
11957 Ensure TYPE is recorded in CU's type_hash table. */
11958 return set_die_type (die, type, cu);
11959 }
11960
11961 name = namespace_name (die, &is_anonymous, cu);
11962
11963 /* Now build the name of the current namespace. */
11964
11965 previous_prefix = determine_prefix (die, cu);
11966 if (previous_prefix[0] != '\0')
11967 name = typename_concat (&objfile->objfile_obstack,
11968 previous_prefix, name, 0, cu);
11969
11970 /* Create the type. */
11971 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
11972 objfile);
11973 TYPE_NAME (type) = (char *) name;
11974 TYPE_TAG_NAME (type) = TYPE_NAME (type);
11975
11976 return set_die_type (die, type, cu);
11977 }
11978
11979 /* Read a C++ namespace. */
11980
11981 static void
11982 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
11983 {
11984 struct objfile *objfile = cu->objfile;
11985 int is_anonymous;
11986
11987 /* Add a symbol associated to this if we haven't seen the namespace
11988 before. Also, add a using directive if it's an anonymous
11989 namespace. */
11990
11991 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
11992 {
11993 struct type *type;
11994
11995 type = read_type_die (die, cu);
11996 new_symbol (die, type, cu);
11997
11998 namespace_name (die, &is_anonymous, cu);
11999 if (is_anonymous)
12000 {
12001 const char *previous_prefix = determine_prefix (die, cu);
12002
12003 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12004 NULL, NULL, &objfile->objfile_obstack);
12005 }
12006 }
12007
12008 if (die->child != NULL)
12009 {
12010 struct die_info *child_die = die->child;
12011
12012 while (child_die && child_die->tag)
12013 {
12014 process_die (child_die, cu);
12015 child_die = sibling_die (child_die);
12016 }
12017 }
12018 }
12019
12020 /* Read a Fortran module as type. This DIE can be only a declaration used for
12021 imported module. Still we need that type as local Fortran "use ... only"
12022 declaration imports depend on the created type in determine_prefix. */
12023
12024 static struct type *
12025 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12026 {
12027 struct objfile *objfile = cu->objfile;
12028 char *module_name;
12029 struct type *type;
12030
12031 module_name = dwarf2_name (die, cu);
12032 if (!module_name)
12033 complaint (&symfile_complaints,
12034 _("DW_TAG_module has no name, offset 0x%x"),
12035 die->offset.sect_off);
12036 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12037
12038 /* determine_prefix uses TYPE_TAG_NAME. */
12039 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12040
12041 return set_die_type (die, type, cu);
12042 }
12043
12044 /* Read a Fortran module. */
12045
12046 static void
12047 read_module (struct die_info *die, struct dwarf2_cu *cu)
12048 {
12049 struct die_info *child_die = die->child;
12050
12051 while (child_die && child_die->tag)
12052 {
12053 process_die (child_die, cu);
12054 child_die = sibling_die (child_die);
12055 }
12056 }
12057
12058 /* Return the name of the namespace represented by DIE. Set
12059 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12060 namespace. */
12061
12062 static const char *
12063 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12064 {
12065 struct die_info *current_die;
12066 const char *name = NULL;
12067
12068 /* Loop through the extensions until we find a name. */
12069
12070 for (current_die = die;
12071 current_die != NULL;
12072 current_die = dwarf2_extension (die, &cu))
12073 {
12074 name = dwarf2_name (current_die, cu);
12075 if (name != NULL)
12076 break;
12077 }
12078
12079 /* Is it an anonymous namespace? */
12080
12081 *is_anonymous = (name == NULL);
12082 if (*is_anonymous)
12083 name = CP_ANONYMOUS_NAMESPACE_STR;
12084
12085 return name;
12086 }
12087
12088 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12089 the user defined type vector. */
12090
12091 static struct type *
12092 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12093 {
12094 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12095 struct comp_unit_head *cu_header = &cu->header;
12096 struct type *type;
12097 struct attribute *attr_byte_size;
12098 struct attribute *attr_address_class;
12099 int byte_size, addr_class;
12100 struct type *target_type;
12101
12102 target_type = die_type (die, cu);
12103
12104 /* The die_type call above may have already set the type for this DIE. */
12105 type = get_die_type (die, cu);
12106 if (type)
12107 return type;
12108
12109 type = lookup_pointer_type (target_type);
12110
12111 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12112 if (attr_byte_size)
12113 byte_size = DW_UNSND (attr_byte_size);
12114 else
12115 byte_size = cu_header->addr_size;
12116
12117 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12118 if (attr_address_class)
12119 addr_class = DW_UNSND (attr_address_class);
12120 else
12121 addr_class = DW_ADDR_none;
12122
12123 /* If the pointer size or address class is different than the
12124 default, create a type variant marked as such and set the
12125 length accordingly. */
12126 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12127 {
12128 if (gdbarch_address_class_type_flags_p (gdbarch))
12129 {
12130 int type_flags;
12131
12132 type_flags = gdbarch_address_class_type_flags
12133 (gdbarch, byte_size, addr_class);
12134 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12135 == 0);
12136 type = make_type_with_address_space (type, type_flags);
12137 }
12138 else if (TYPE_LENGTH (type) != byte_size)
12139 {
12140 complaint (&symfile_complaints,
12141 _("invalid pointer size %d"), byte_size);
12142 }
12143 else
12144 {
12145 /* Should we also complain about unhandled address classes? */
12146 }
12147 }
12148
12149 TYPE_LENGTH (type) = byte_size;
12150 return set_die_type (die, type, cu);
12151 }
12152
12153 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12154 the user defined type vector. */
12155
12156 static struct type *
12157 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12158 {
12159 struct type *type;
12160 struct type *to_type;
12161 struct type *domain;
12162
12163 to_type = die_type (die, cu);
12164 domain = die_containing_type (die, cu);
12165
12166 /* The calls above may have already set the type for this DIE. */
12167 type = get_die_type (die, cu);
12168 if (type)
12169 return type;
12170
12171 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12172 type = lookup_methodptr_type (to_type);
12173 else
12174 type = lookup_memberptr_type (to_type, domain);
12175
12176 return set_die_type (die, type, cu);
12177 }
12178
12179 /* Extract all information from a DW_TAG_reference_type DIE and add to
12180 the user defined type vector. */
12181
12182 static struct type *
12183 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12184 {
12185 struct comp_unit_head *cu_header = &cu->header;
12186 struct type *type, *target_type;
12187 struct attribute *attr;
12188
12189 target_type = die_type (die, cu);
12190
12191 /* The die_type call above may have already set the type for this DIE. */
12192 type = get_die_type (die, cu);
12193 if (type)
12194 return type;
12195
12196 type = lookup_reference_type (target_type);
12197 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12198 if (attr)
12199 {
12200 TYPE_LENGTH (type) = DW_UNSND (attr);
12201 }
12202 else
12203 {
12204 TYPE_LENGTH (type) = cu_header->addr_size;
12205 }
12206 return set_die_type (die, type, cu);
12207 }
12208
12209 static struct type *
12210 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12211 {
12212 struct type *base_type, *cv_type;
12213
12214 base_type = die_type (die, cu);
12215
12216 /* The die_type call above may have already set the type for this DIE. */
12217 cv_type = get_die_type (die, cu);
12218 if (cv_type)
12219 return cv_type;
12220
12221 /* In case the const qualifier is applied to an array type, the element type
12222 is so qualified, not the array type (section 6.7.3 of C99). */
12223 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12224 {
12225 struct type *el_type, *inner_array;
12226
12227 base_type = copy_type (base_type);
12228 inner_array = base_type;
12229
12230 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12231 {
12232 TYPE_TARGET_TYPE (inner_array) =
12233 copy_type (TYPE_TARGET_TYPE (inner_array));
12234 inner_array = TYPE_TARGET_TYPE (inner_array);
12235 }
12236
12237 el_type = TYPE_TARGET_TYPE (inner_array);
12238 TYPE_TARGET_TYPE (inner_array) =
12239 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12240
12241 return set_die_type (die, base_type, cu);
12242 }
12243
12244 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12245 return set_die_type (die, cv_type, cu);
12246 }
12247
12248 static struct type *
12249 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12250 {
12251 struct type *base_type, *cv_type;
12252
12253 base_type = die_type (die, cu);
12254
12255 /* The die_type call above may have already set the type for this DIE. */
12256 cv_type = get_die_type (die, cu);
12257 if (cv_type)
12258 return cv_type;
12259
12260 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12261 return set_die_type (die, cv_type, cu);
12262 }
12263
12264 /* Extract all information from a DW_TAG_string_type DIE and add to
12265 the user defined type vector. It isn't really a user defined type,
12266 but it behaves like one, with other DIE's using an AT_user_def_type
12267 attribute to reference it. */
12268
12269 static struct type *
12270 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12271 {
12272 struct objfile *objfile = cu->objfile;
12273 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12274 struct type *type, *range_type, *index_type, *char_type;
12275 struct attribute *attr;
12276 unsigned int length;
12277
12278 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12279 if (attr)
12280 {
12281 length = DW_UNSND (attr);
12282 }
12283 else
12284 {
12285 /* Check for the DW_AT_byte_size attribute. */
12286 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12287 if (attr)
12288 {
12289 length = DW_UNSND (attr);
12290 }
12291 else
12292 {
12293 length = 1;
12294 }
12295 }
12296
12297 index_type = objfile_type (objfile)->builtin_int;
12298 range_type = create_range_type (NULL, index_type, 1, length);
12299 char_type = language_string_char_type (cu->language_defn, gdbarch);
12300 type = create_string_type (NULL, char_type, range_type);
12301
12302 return set_die_type (die, type, cu);
12303 }
12304
12305 /* Handle DIES due to C code like:
12306
12307 struct foo
12308 {
12309 int (*funcp)(int a, long l);
12310 int b;
12311 };
12312
12313 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12314
12315 static struct type *
12316 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12317 {
12318 struct objfile *objfile = cu->objfile;
12319 struct type *type; /* Type that this function returns. */
12320 struct type *ftype; /* Function that returns above type. */
12321 struct attribute *attr;
12322
12323 type = die_type (die, cu);
12324
12325 /* The die_type call above may have already set the type for this DIE. */
12326 ftype = get_die_type (die, cu);
12327 if (ftype)
12328 return ftype;
12329
12330 ftype = lookup_function_type (type);
12331
12332 /* All functions in C++, Pascal and Java have prototypes. */
12333 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12334 if ((attr && (DW_UNSND (attr) != 0))
12335 || cu->language == language_cplus
12336 || cu->language == language_java
12337 || cu->language == language_pascal)
12338 TYPE_PROTOTYPED (ftype) = 1;
12339 else if (producer_is_realview (cu->producer))
12340 /* RealView does not emit DW_AT_prototyped. We can not
12341 distinguish prototyped and unprototyped functions; default to
12342 prototyped, since that is more common in modern code (and
12343 RealView warns about unprototyped functions). */
12344 TYPE_PROTOTYPED (ftype) = 1;
12345
12346 /* Store the calling convention in the type if it's available in
12347 the subroutine die. Otherwise set the calling convention to
12348 the default value DW_CC_normal. */
12349 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12350 if (attr)
12351 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12352 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12353 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12354 else
12355 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
12356
12357 /* We need to add the subroutine type to the die immediately so
12358 we don't infinitely recurse when dealing with parameters
12359 declared as the same subroutine type. */
12360 set_die_type (die, ftype, cu);
12361
12362 if (die->child != NULL)
12363 {
12364 struct type *void_type = objfile_type (objfile)->builtin_void;
12365 struct die_info *child_die;
12366 int nparams, iparams;
12367
12368 /* Count the number of parameters.
12369 FIXME: GDB currently ignores vararg functions, but knows about
12370 vararg member functions. */
12371 nparams = 0;
12372 child_die = die->child;
12373 while (child_die && child_die->tag)
12374 {
12375 if (child_die->tag == DW_TAG_formal_parameter)
12376 nparams++;
12377 else if (child_die->tag == DW_TAG_unspecified_parameters)
12378 TYPE_VARARGS (ftype) = 1;
12379 child_die = sibling_die (child_die);
12380 }
12381
12382 /* Allocate storage for parameters and fill them in. */
12383 TYPE_NFIELDS (ftype) = nparams;
12384 TYPE_FIELDS (ftype) = (struct field *)
12385 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
12386
12387 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12388 even if we error out during the parameters reading below. */
12389 for (iparams = 0; iparams < nparams; iparams++)
12390 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12391
12392 iparams = 0;
12393 child_die = die->child;
12394 while (child_die && child_die->tag)
12395 {
12396 if (child_die->tag == DW_TAG_formal_parameter)
12397 {
12398 struct type *arg_type;
12399
12400 /* DWARF version 2 has no clean way to discern C++
12401 static and non-static member functions. G++ helps
12402 GDB by marking the first parameter for non-static
12403 member functions (which is the this pointer) as
12404 artificial. We pass this information to
12405 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12406
12407 DWARF version 3 added DW_AT_object_pointer, which GCC
12408 4.5 does not yet generate. */
12409 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
12410 if (attr)
12411 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12412 else
12413 {
12414 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12415
12416 /* GCC/43521: In java, the formal parameter
12417 "this" is sometimes not marked with DW_AT_artificial. */
12418 if (cu->language == language_java)
12419 {
12420 const char *name = dwarf2_name (child_die, cu);
12421
12422 if (name && !strcmp (name, "this"))
12423 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12424 }
12425 }
12426 arg_type = die_type (child_die, cu);
12427
12428 /* RealView does not mark THIS as const, which the testsuite
12429 expects. GCC marks THIS as const in method definitions,
12430 but not in the class specifications (GCC PR 43053). */
12431 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12432 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12433 {
12434 int is_this = 0;
12435 struct dwarf2_cu *arg_cu = cu;
12436 const char *name = dwarf2_name (child_die, cu);
12437
12438 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12439 if (attr)
12440 {
12441 /* If the compiler emits this, use it. */
12442 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12443 is_this = 1;
12444 }
12445 else if (name && strcmp (name, "this") == 0)
12446 /* Function definitions will have the argument names. */
12447 is_this = 1;
12448 else if (name == NULL && iparams == 0)
12449 /* Declarations may not have the names, so like
12450 elsewhere in GDB, assume an artificial first
12451 argument is "this". */
12452 is_this = 1;
12453
12454 if (is_this)
12455 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12456 arg_type, 0);
12457 }
12458
12459 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
12460 iparams++;
12461 }
12462 child_die = sibling_die (child_die);
12463 }
12464 }
12465
12466 return ftype;
12467 }
12468
12469 static struct type *
12470 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
12471 {
12472 struct objfile *objfile = cu->objfile;
12473 const char *name = NULL;
12474 struct type *this_type, *target_type;
12475
12476 name = dwarf2_full_name (NULL, die, cu);
12477 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
12478 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12479 TYPE_NAME (this_type) = (char *) name;
12480 set_die_type (die, this_type, cu);
12481 target_type = die_type (die, cu);
12482 if (target_type != this_type)
12483 TYPE_TARGET_TYPE (this_type) = target_type;
12484 else
12485 {
12486 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12487 spec and cause infinite loops in GDB. */
12488 complaint (&symfile_complaints,
12489 _("Self-referential DW_TAG_typedef "
12490 "- DIE at 0x%x [in module %s]"),
12491 die->offset.sect_off, objfile->name);
12492 TYPE_TARGET_TYPE (this_type) = NULL;
12493 }
12494 return this_type;
12495 }
12496
12497 /* Find a representation of a given base type and install
12498 it in the TYPE field of the die. */
12499
12500 static struct type *
12501 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
12502 {
12503 struct objfile *objfile = cu->objfile;
12504 struct type *type;
12505 struct attribute *attr;
12506 int encoding = 0, size = 0;
12507 char *name;
12508 enum type_code code = TYPE_CODE_INT;
12509 int type_flags = 0;
12510 struct type *target_type = NULL;
12511
12512 attr = dwarf2_attr (die, DW_AT_encoding, cu);
12513 if (attr)
12514 {
12515 encoding = DW_UNSND (attr);
12516 }
12517 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12518 if (attr)
12519 {
12520 size = DW_UNSND (attr);
12521 }
12522 name = dwarf2_name (die, cu);
12523 if (!name)
12524 {
12525 complaint (&symfile_complaints,
12526 _("DW_AT_name missing from DW_TAG_base_type"));
12527 }
12528
12529 switch (encoding)
12530 {
12531 case DW_ATE_address:
12532 /* Turn DW_ATE_address into a void * pointer. */
12533 code = TYPE_CODE_PTR;
12534 type_flags |= TYPE_FLAG_UNSIGNED;
12535 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12536 break;
12537 case DW_ATE_boolean:
12538 code = TYPE_CODE_BOOL;
12539 type_flags |= TYPE_FLAG_UNSIGNED;
12540 break;
12541 case DW_ATE_complex_float:
12542 code = TYPE_CODE_COMPLEX;
12543 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12544 break;
12545 case DW_ATE_decimal_float:
12546 code = TYPE_CODE_DECFLOAT;
12547 break;
12548 case DW_ATE_float:
12549 code = TYPE_CODE_FLT;
12550 break;
12551 case DW_ATE_signed:
12552 break;
12553 case DW_ATE_unsigned:
12554 type_flags |= TYPE_FLAG_UNSIGNED;
12555 if (cu->language == language_fortran
12556 && name
12557 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12558 code = TYPE_CODE_CHAR;
12559 break;
12560 case DW_ATE_signed_char:
12561 if (cu->language == language_ada || cu->language == language_m2
12562 || cu->language == language_pascal
12563 || cu->language == language_fortran)
12564 code = TYPE_CODE_CHAR;
12565 break;
12566 case DW_ATE_unsigned_char:
12567 if (cu->language == language_ada || cu->language == language_m2
12568 || cu->language == language_pascal
12569 || cu->language == language_fortran)
12570 code = TYPE_CODE_CHAR;
12571 type_flags |= TYPE_FLAG_UNSIGNED;
12572 break;
12573 case DW_ATE_UTF:
12574 /* We just treat this as an integer and then recognize the
12575 type by name elsewhere. */
12576 break;
12577
12578 default:
12579 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12580 dwarf_type_encoding_name (encoding));
12581 break;
12582 }
12583
12584 type = init_type (code, size, type_flags, NULL, objfile);
12585 TYPE_NAME (type) = name;
12586 TYPE_TARGET_TYPE (type) = target_type;
12587
12588 if (name && strcmp (name, "char") == 0)
12589 TYPE_NOSIGN (type) = 1;
12590
12591 return set_die_type (die, type, cu);
12592 }
12593
12594 /* Read the given DW_AT_subrange DIE. */
12595
12596 static struct type *
12597 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12598 {
12599 struct type *base_type;
12600 struct type *range_type;
12601 struct attribute *attr;
12602 LONGEST low, high;
12603 int low_default_is_valid;
12604 char *name;
12605 LONGEST negative_mask;
12606
12607 base_type = die_type (die, cu);
12608 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
12609 check_typedef (base_type);
12610
12611 /* The die_type call above may have already set the type for this DIE. */
12612 range_type = get_die_type (die, cu);
12613 if (range_type)
12614 return range_type;
12615
12616 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12617 omitting DW_AT_lower_bound. */
12618 switch (cu->language)
12619 {
12620 case language_c:
12621 case language_cplus:
12622 low = 0;
12623 low_default_is_valid = 1;
12624 break;
12625 case language_fortran:
12626 low = 1;
12627 low_default_is_valid = 1;
12628 break;
12629 case language_d:
12630 case language_java:
12631 case language_objc:
12632 low = 0;
12633 low_default_is_valid = (cu->header.version >= 4);
12634 break;
12635 case language_ada:
12636 case language_m2:
12637 case language_pascal:
12638 low = 1;
12639 low_default_is_valid = (cu->header.version >= 4);
12640 break;
12641 default:
12642 low = 0;
12643 low_default_is_valid = 0;
12644 break;
12645 }
12646
12647 /* FIXME: For variable sized arrays either of these could be
12648 a variable rather than a constant value. We'll allow it,
12649 but we don't know how to handle it. */
12650 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
12651 if (attr)
12652 low = dwarf2_get_attr_constant_value (attr, low);
12653 else if (!low_default_is_valid)
12654 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12655 "- DIE at 0x%x [in module %s]"),
12656 die->offset.sect_off, cu->objfile->name);
12657
12658 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
12659 if (attr)
12660 {
12661 if (attr_form_is_block (attr) || is_ref_attr (attr))
12662 {
12663 /* GCC encodes arrays with unspecified or dynamic length
12664 with a DW_FORM_block1 attribute or a reference attribute.
12665 FIXME: GDB does not yet know how to handle dynamic
12666 arrays properly, treat them as arrays with unspecified
12667 length for now.
12668
12669 FIXME: jimb/2003-09-22: GDB does not really know
12670 how to handle arrays of unspecified length
12671 either; we just represent them as zero-length
12672 arrays. Choose an appropriate upper bound given
12673 the lower bound we've computed above. */
12674 high = low - 1;
12675 }
12676 else
12677 high = dwarf2_get_attr_constant_value (attr, 1);
12678 }
12679 else
12680 {
12681 attr = dwarf2_attr (die, DW_AT_count, cu);
12682 if (attr)
12683 {
12684 int count = dwarf2_get_attr_constant_value (attr, 1);
12685 high = low + count - 1;
12686 }
12687 else
12688 {
12689 /* Unspecified array length. */
12690 high = low - 1;
12691 }
12692 }
12693
12694 /* Dwarf-2 specifications explicitly allows to create subrange types
12695 without specifying a base type.
12696 In that case, the base type must be set to the type of
12697 the lower bound, upper bound or count, in that order, if any of these
12698 three attributes references an object that has a type.
12699 If no base type is found, the Dwarf-2 specifications say that
12700 a signed integer type of size equal to the size of an address should
12701 be used.
12702 For the following C code: `extern char gdb_int [];'
12703 GCC produces an empty range DIE.
12704 FIXME: muller/2010-05-28: Possible references to object for low bound,
12705 high bound or count are not yet handled by this code. */
12706 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12707 {
12708 struct objfile *objfile = cu->objfile;
12709 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12710 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12711 struct type *int_type = objfile_type (objfile)->builtin_int;
12712
12713 /* Test "int", "long int", and "long long int" objfile types,
12714 and select the first one having a size above or equal to the
12715 architecture address size. */
12716 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12717 base_type = int_type;
12718 else
12719 {
12720 int_type = objfile_type (objfile)->builtin_long;
12721 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12722 base_type = int_type;
12723 else
12724 {
12725 int_type = objfile_type (objfile)->builtin_long_long;
12726 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12727 base_type = int_type;
12728 }
12729 }
12730 }
12731
12732 negative_mask =
12733 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
12734 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
12735 low |= negative_mask;
12736 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
12737 high |= negative_mask;
12738
12739 range_type = create_range_type (NULL, base_type, low, high);
12740
12741 /* Mark arrays with dynamic length at least as an array of unspecified
12742 length. GDB could check the boundary but before it gets implemented at
12743 least allow accessing the array elements. */
12744 if (attr && attr_form_is_block (attr))
12745 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12746
12747 /* Ada expects an empty array on no boundary attributes. */
12748 if (attr == NULL && cu->language != language_ada)
12749 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12750
12751 name = dwarf2_name (die, cu);
12752 if (name)
12753 TYPE_NAME (range_type) = name;
12754
12755 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12756 if (attr)
12757 TYPE_LENGTH (range_type) = DW_UNSND (attr);
12758
12759 set_die_type (die, range_type, cu);
12760
12761 /* set_die_type should be already done. */
12762 set_descriptive_type (range_type, die, cu);
12763
12764 return range_type;
12765 }
12766
12767 static struct type *
12768 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
12769 {
12770 struct type *type;
12771
12772 /* For now, we only support the C meaning of an unspecified type: void. */
12773
12774 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
12775 TYPE_NAME (type) = dwarf2_name (die, cu);
12776
12777 return set_die_type (die, type, cu);
12778 }
12779
12780 /* Read a single die and all its descendents. Set the die's sibling
12781 field to NULL; set other fields in the die correctly, and set all
12782 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
12783 location of the info_ptr after reading all of those dies. PARENT
12784 is the parent of the die in question. */
12785
12786 static struct die_info *
12787 read_die_and_children (const struct die_reader_specs *reader,
12788 gdb_byte *info_ptr,
12789 gdb_byte **new_info_ptr,
12790 struct die_info *parent)
12791 {
12792 struct die_info *die;
12793 gdb_byte *cur_ptr;
12794 int has_children;
12795
12796 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
12797 if (die == NULL)
12798 {
12799 *new_info_ptr = cur_ptr;
12800 return NULL;
12801 }
12802 store_in_ref_table (die, reader->cu);
12803
12804 if (has_children)
12805 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
12806 else
12807 {
12808 die->child = NULL;
12809 *new_info_ptr = cur_ptr;
12810 }
12811
12812 die->sibling = NULL;
12813 die->parent = parent;
12814 return die;
12815 }
12816
12817 /* Read a die, all of its descendents, and all of its siblings; set
12818 all of the fields of all of the dies correctly. Arguments are as
12819 in read_die_and_children. */
12820
12821 static struct die_info *
12822 read_die_and_siblings (const struct die_reader_specs *reader,
12823 gdb_byte *info_ptr,
12824 gdb_byte **new_info_ptr,
12825 struct die_info *parent)
12826 {
12827 struct die_info *first_die, *last_sibling;
12828 gdb_byte *cur_ptr;
12829
12830 cur_ptr = info_ptr;
12831 first_die = last_sibling = NULL;
12832
12833 while (1)
12834 {
12835 struct die_info *die
12836 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
12837
12838 if (die == NULL)
12839 {
12840 *new_info_ptr = cur_ptr;
12841 return first_die;
12842 }
12843
12844 if (!first_die)
12845 first_die = die;
12846 else
12847 last_sibling->sibling = die;
12848
12849 last_sibling = die;
12850 }
12851 }
12852
12853 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
12854 attributes.
12855 The caller is responsible for filling in the extra attributes
12856 and updating (*DIEP)->num_attrs.
12857 Set DIEP to point to a newly allocated die with its information,
12858 except for its child, sibling, and parent fields.
12859 Set HAS_CHILDREN to tell whether the die has children or not. */
12860
12861 static gdb_byte *
12862 read_full_die_1 (const struct die_reader_specs *reader,
12863 struct die_info **diep, gdb_byte *info_ptr,
12864 int *has_children, int num_extra_attrs)
12865 {
12866 unsigned int abbrev_number, bytes_read, i;
12867 sect_offset offset;
12868 struct abbrev_info *abbrev;
12869 struct die_info *die;
12870 struct dwarf2_cu *cu = reader->cu;
12871 bfd *abfd = reader->abfd;
12872
12873 offset.sect_off = info_ptr - reader->buffer;
12874 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
12875 info_ptr += bytes_read;
12876 if (!abbrev_number)
12877 {
12878 *diep = NULL;
12879 *has_children = 0;
12880 return info_ptr;
12881 }
12882
12883 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
12884 if (!abbrev)
12885 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
12886 abbrev_number,
12887 bfd_get_filename (abfd));
12888
12889 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
12890 die->offset = offset;
12891 die->tag = abbrev->tag;
12892 die->abbrev = abbrev_number;
12893
12894 /* Make the result usable.
12895 The caller needs to update num_attrs after adding the extra
12896 attributes. */
12897 die->num_attrs = abbrev->num_attrs;
12898
12899 for (i = 0; i < abbrev->num_attrs; ++i)
12900 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
12901 info_ptr);
12902
12903 *diep = die;
12904 *has_children = abbrev->has_children;
12905 return info_ptr;
12906 }
12907
12908 /* Read a die and all its attributes.
12909 Set DIEP to point to a newly allocated die with its information,
12910 except for its child, sibling, and parent fields.
12911 Set HAS_CHILDREN to tell whether the die has children or not. */
12912
12913 static gdb_byte *
12914 read_full_die (const struct die_reader_specs *reader,
12915 struct die_info **diep, gdb_byte *info_ptr,
12916 int *has_children)
12917 {
12918 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
12919 }
12920 \f
12921 /* Abbreviation tables.
12922
12923 In DWARF version 2, the description of the debugging information is
12924 stored in a separate .debug_abbrev section. Before we read any
12925 dies from a section we read in all abbreviations and install them
12926 in a hash table. */
12927
12928 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
12929
12930 static struct abbrev_info *
12931 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
12932 {
12933 struct abbrev_info *abbrev;
12934
12935 abbrev = (struct abbrev_info *)
12936 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
12937 memset (abbrev, 0, sizeof (struct abbrev_info));
12938 return abbrev;
12939 }
12940
12941 /* Add an abbreviation to the table. */
12942
12943 static void
12944 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
12945 unsigned int abbrev_number,
12946 struct abbrev_info *abbrev)
12947 {
12948 unsigned int hash_number;
12949
12950 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12951 abbrev->next = abbrev_table->abbrevs[hash_number];
12952 abbrev_table->abbrevs[hash_number] = abbrev;
12953 }
12954
12955 /* Look up an abbrev in the table.
12956 Returns NULL if the abbrev is not found. */
12957
12958 static struct abbrev_info *
12959 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
12960 unsigned int abbrev_number)
12961 {
12962 unsigned int hash_number;
12963 struct abbrev_info *abbrev;
12964
12965 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12966 abbrev = abbrev_table->abbrevs[hash_number];
12967
12968 while (abbrev)
12969 {
12970 if (abbrev->number == abbrev_number)
12971 return abbrev;
12972 abbrev = abbrev->next;
12973 }
12974 return NULL;
12975 }
12976
12977 /* Read in an abbrev table. */
12978
12979 static struct abbrev_table *
12980 abbrev_table_read_table (struct dwarf2_section_info *section,
12981 sect_offset offset)
12982 {
12983 struct objfile *objfile = dwarf2_per_objfile->objfile;
12984 bfd *abfd = section->asection->owner;
12985 struct abbrev_table *abbrev_table;
12986 gdb_byte *abbrev_ptr;
12987 struct abbrev_info *cur_abbrev;
12988 unsigned int abbrev_number, bytes_read, abbrev_name;
12989 unsigned int abbrev_form;
12990 struct attr_abbrev *cur_attrs;
12991 unsigned int allocated_attrs;
12992
12993 abbrev_table = XMALLOC (struct abbrev_table);
12994 abbrev_table->offset = offset;
12995 obstack_init (&abbrev_table->abbrev_obstack);
12996 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
12997 (ABBREV_HASH_SIZE
12998 * sizeof (struct abbrev_info *)));
12999 memset (abbrev_table->abbrevs, 0,
13000 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13001
13002 dwarf2_read_section (objfile, section);
13003 abbrev_ptr = section->buffer + offset.sect_off;
13004 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13005 abbrev_ptr += bytes_read;
13006
13007 allocated_attrs = ATTR_ALLOC_CHUNK;
13008 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13009
13010 /* Loop until we reach an abbrev number of 0. */
13011 while (abbrev_number)
13012 {
13013 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13014
13015 /* read in abbrev header */
13016 cur_abbrev->number = abbrev_number;
13017 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13018 abbrev_ptr += bytes_read;
13019 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13020 abbrev_ptr += 1;
13021
13022 /* now read in declarations */
13023 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13024 abbrev_ptr += bytes_read;
13025 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13026 abbrev_ptr += bytes_read;
13027 while (abbrev_name)
13028 {
13029 if (cur_abbrev->num_attrs == allocated_attrs)
13030 {
13031 allocated_attrs += ATTR_ALLOC_CHUNK;
13032 cur_attrs
13033 = xrealloc (cur_attrs, (allocated_attrs
13034 * sizeof (struct attr_abbrev)));
13035 }
13036
13037 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13038 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13039 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13040 abbrev_ptr += bytes_read;
13041 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13042 abbrev_ptr += bytes_read;
13043 }
13044
13045 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13046 (cur_abbrev->num_attrs
13047 * sizeof (struct attr_abbrev)));
13048 memcpy (cur_abbrev->attrs, cur_attrs,
13049 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13050
13051 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13052
13053 /* Get next abbreviation.
13054 Under Irix6 the abbreviations for a compilation unit are not
13055 always properly terminated with an abbrev number of 0.
13056 Exit loop if we encounter an abbreviation which we have
13057 already read (which means we are about to read the abbreviations
13058 for the next compile unit) or if the end of the abbreviation
13059 table is reached. */
13060 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13061 break;
13062 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13063 abbrev_ptr += bytes_read;
13064 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13065 break;
13066 }
13067
13068 xfree (cur_attrs);
13069 return abbrev_table;
13070 }
13071
13072 /* Free the resources held by ABBREV_TABLE. */
13073
13074 static void
13075 abbrev_table_free (struct abbrev_table *abbrev_table)
13076 {
13077 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13078 xfree (abbrev_table);
13079 }
13080
13081 /* Same as abbrev_table_free but as a cleanup.
13082 We pass in a pointer to the pointer to the table so that we can
13083 set the pointer to NULL when we're done. It also simplifies
13084 build_type_unit_groups. */
13085
13086 static void
13087 abbrev_table_free_cleanup (void *table_ptr)
13088 {
13089 struct abbrev_table **abbrev_table_ptr = table_ptr;
13090
13091 if (*abbrev_table_ptr != NULL)
13092 abbrev_table_free (*abbrev_table_ptr);
13093 *abbrev_table_ptr = NULL;
13094 }
13095
13096 /* Read the abbrev table for CU from ABBREV_SECTION. */
13097
13098 static void
13099 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13100 struct dwarf2_section_info *abbrev_section)
13101 {
13102 cu->abbrev_table =
13103 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13104 }
13105
13106 /* Release the memory used by the abbrev table for a compilation unit. */
13107
13108 static void
13109 dwarf2_free_abbrev_table (void *ptr_to_cu)
13110 {
13111 struct dwarf2_cu *cu = ptr_to_cu;
13112
13113 abbrev_table_free (cu->abbrev_table);
13114 /* Set this to NULL so that we SEGV if we try to read it later,
13115 and also because free_comp_unit verifies this is NULL. */
13116 cu->abbrev_table = NULL;
13117 }
13118 \f
13119 /* Returns nonzero if TAG represents a type that we might generate a partial
13120 symbol for. */
13121
13122 static int
13123 is_type_tag_for_partial (int tag)
13124 {
13125 switch (tag)
13126 {
13127 #if 0
13128 /* Some types that would be reasonable to generate partial symbols for,
13129 that we don't at present. */
13130 case DW_TAG_array_type:
13131 case DW_TAG_file_type:
13132 case DW_TAG_ptr_to_member_type:
13133 case DW_TAG_set_type:
13134 case DW_TAG_string_type:
13135 case DW_TAG_subroutine_type:
13136 #endif
13137 case DW_TAG_base_type:
13138 case DW_TAG_class_type:
13139 case DW_TAG_interface_type:
13140 case DW_TAG_enumeration_type:
13141 case DW_TAG_structure_type:
13142 case DW_TAG_subrange_type:
13143 case DW_TAG_typedef:
13144 case DW_TAG_union_type:
13145 return 1;
13146 default:
13147 return 0;
13148 }
13149 }
13150
13151 /* Load all DIEs that are interesting for partial symbols into memory. */
13152
13153 static struct partial_die_info *
13154 load_partial_dies (const struct die_reader_specs *reader,
13155 gdb_byte *info_ptr, int building_psymtab)
13156 {
13157 struct dwarf2_cu *cu = reader->cu;
13158 struct objfile *objfile = cu->objfile;
13159 struct partial_die_info *part_die;
13160 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13161 struct abbrev_info *abbrev;
13162 unsigned int bytes_read;
13163 unsigned int load_all = 0;
13164 int nesting_level = 1;
13165
13166 parent_die = NULL;
13167 last_die = NULL;
13168
13169 gdb_assert (cu->per_cu != NULL);
13170 if (cu->per_cu->load_all_dies)
13171 load_all = 1;
13172
13173 cu->partial_dies
13174 = htab_create_alloc_ex (cu->header.length / 12,
13175 partial_die_hash,
13176 partial_die_eq,
13177 NULL,
13178 &cu->comp_unit_obstack,
13179 hashtab_obstack_allocate,
13180 dummy_obstack_deallocate);
13181
13182 part_die = obstack_alloc (&cu->comp_unit_obstack,
13183 sizeof (struct partial_die_info));
13184
13185 while (1)
13186 {
13187 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13188
13189 /* A NULL abbrev means the end of a series of children. */
13190 if (abbrev == NULL)
13191 {
13192 if (--nesting_level == 0)
13193 {
13194 /* PART_DIE was probably the last thing allocated on the
13195 comp_unit_obstack, so we could call obstack_free
13196 here. We don't do that because the waste is small,
13197 and will be cleaned up when we're done with this
13198 compilation unit. This way, we're also more robust
13199 against other users of the comp_unit_obstack. */
13200 return first_die;
13201 }
13202 info_ptr += bytes_read;
13203 last_die = parent_die;
13204 parent_die = parent_die->die_parent;
13205 continue;
13206 }
13207
13208 /* Check for template arguments. We never save these; if
13209 they're seen, we just mark the parent, and go on our way. */
13210 if (parent_die != NULL
13211 && cu->language == language_cplus
13212 && (abbrev->tag == DW_TAG_template_type_param
13213 || abbrev->tag == DW_TAG_template_value_param))
13214 {
13215 parent_die->has_template_arguments = 1;
13216
13217 if (!load_all)
13218 {
13219 /* We don't need a partial DIE for the template argument. */
13220 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13221 continue;
13222 }
13223 }
13224
13225 /* We only recurse into c++ subprograms looking for template arguments.
13226 Skip their other children. */
13227 if (!load_all
13228 && cu->language == language_cplus
13229 && parent_die != NULL
13230 && parent_die->tag == DW_TAG_subprogram)
13231 {
13232 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13233 continue;
13234 }
13235
13236 /* Check whether this DIE is interesting enough to save. Normally
13237 we would not be interested in members here, but there may be
13238 later variables referencing them via DW_AT_specification (for
13239 static members). */
13240 if (!load_all
13241 && !is_type_tag_for_partial (abbrev->tag)
13242 && abbrev->tag != DW_TAG_constant
13243 && abbrev->tag != DW_TAG_enumerator
13244 && abbrev->tag != DW_TAG_subprogram
13245 && abbrev->tag != DW_TAG_lexical_block
13246 && abbrev->tag != DW_TAG_variable
13247 && abbrev->tag != DW_TAG_namespace
13248 && abbrev->tag != DW_TAG_module
13249 && abbrev->tag != DW_TAG_member
13250 && abbrev->tag != DW_TAG_imported_unit)
13251 {
13252 /* Otherwise we skip to the next sibling, if any. */
13253 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13254 continue;
13255 }
13256
13257 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13258 info_ptr);
13259
13260 /* This two-pass algorithm for processing partial symbols has a
13261 high cost in cache pressure. Thus, handle some simple cases
13262 here which cover the majority of C partial symbols. DIEs
13263 which neither have specification tags in them, nor could have
13264 specification tags elsewhere pointing at them, can simply be
13265 processed and discarded.
13266
13267 This segment is also optional; scan_partial_symbols and
13268 add_partial_symbol will handle these DIEs if we chain
13269 them in normally. When compilers which do not emit large
13270 quantities of duplicate debug information are more common,
13271 this code can probably be removed. */
13272
13273 /* Any complete simple types at the top level (pretty much all
13274 of them, for a language without namespaces), can be processed
13275 directly. */
13276 if (parent_die == NULL
13277 && part_die->has_specification == 0
13278 && part_die->is_declaration == 0
13279 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13280 || part_die->tag == DW_TAG_base_type
13281 || part_die->tag == DW_TAG_subrange_type))
13282 {
13283 if (building_psymtab && part_die->name != NULL)
13284 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13285 VAR_DOMAIN, LOC_TYPEDEF,
13286 &objfile->static_psymbols,
13287 0, (CORE_ADDR) 0, cu->language, objfile);
13288 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13289 continue;
13290 }
13291
13292 /* The exception for DW_TAG_typedef with has_children above is
13293 a workaround of GCC PR debug/47510. In the case of this complaint
13294 type_name_no_tag_or_error will error on such types later.
13295
13296 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13297 it could not find the child DIEs referenced later, this is checked
13298 above. In correct DWARF DW_TAG_typedef should have no children. */
13299
13300 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13301 complaint (&symfile_complaints,
13302 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13303 "- DIE at 0x%x [in module %s]"),
13304 part_die->offset.sect_off, objfile->name);
13305
13306 /* If we're at the second level, and we're an enumerator, and
13307 our parent has no specification (meaning possibly lives in a
13308 namespace elsewhere), then we can add the partial symbol now
13309 instead of queueing it. */
13310 if (part_die->tag == DW_TAG_enumerator
13311 && parent_die != NULL
13312 && parent_die->die_parent == NULL
13313 && parent_die->tag == DW_TAG_enumeration_type
13314 && parent_die->has_specification == 0)
13315 {
13316 if (part_die->name == NULL)
13317 complaint (&symfile_complaints,
13318 _("malformed enumerator DIE ignored"));
13319 else if (building_psymtab)
13320 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13321 VAR_DOMAIN, LOC_CONST,
13322 (cu->language == language_cplus
13323 || cu->language == language_java)
13324 ? &objfile->global_psymbols
13325 : &objfile->static_psymbols,
13326 0, (CORE_ADDR) 0, cu->language, objfile);
13327
13328 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13329 continue;
13330 }
13331
13332 /* We'll save this DIE so link it in. */
13333 part_die->die_parent = parent_die;
13334 part_die->die_sibling = NULL;
13335 part_die->die_child = NULL;
13336
13337 if (last_die && last_die == parent_die)
13338 last_die->die_child = part_die;
13339 else if (last_die)
13340 last_die->die_sibling = part_die;
13341
13342 last_die = part_die;
13343
13344 if (first_die == NULL)
13345 first_die = part_die;
13346
13347 /* Maybe add the DIE to the hash table. Not all DIEs that we
13348 find interesting need to be in the hash table, because we
13349 also have the parent/sibling/child chains; only those that we
13350 might refer to by offset later during partial symbol reading.
13351
13352 For now this means things that might have be the target of a
13353 DW_AT_specification, DW_AT_abstract_origin, or
13354 DW_AT_extension. DW_AT_extension will refer only to
13355 namespaces; DW_AT_abstract_origin refers to functions (and
13356 many things under the function DIE, but we do not recurse
13357 into function DIEs during partial symbol reading) and
13358 possibly variables as well; DW_AT_specification refers to
13359 declarations. Declarations ought to have the DW_AT_declaration
13360 flag. It happens that GCC forgets to put it in sometimes, but
13361 only for functions, not for types.
13362
13363 Adding more things than necessary to the hash table is harmless
13364 except for the performance cost. Adding too few will result in
13365 wasted time in find_partial_die, when we reread the compilation
13366 unit with load_all_dies set. */
13367
13368 if (load_all
13369 || abbrev->tag == DW_TAG_constant
13370 || abbrev->tag == DW_TAG_subprogram
13371 || abbrev->tag == DW_TAG_variable
13372 || abbrev->tag == DW_TAG_namespace
13373 || part_die->is_declaration)
13374 {
13375 void **slot;
13376
13377 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
13378 part_die->offset.sect_off, INSERT);
13379 *slot = part_die;
13380 }
13381
13382 part_die = obstack_alloc (&cu->comp_unit_obstack,
13383 sizeof (struct partial_die_info));
13384
13385 /* For some DIEs we want to follow their children (if any). For C
13386 we have no reason to follow the children of structures; for other
13387 languages we have to, so that we can get at method physnames
13388 to infer fully qualified class names, for DW_AT_specification,
13389 and for C++ template arguments. For C++, we also look one level
13390 inside functions to find template arguments (if the name of the
13391 function does not already contain the template arguments).
13392
13393 For Ada, we need to scan the children of subprograms and lexical
13394 blocks as well because Ada allows the definition of nested
13395 entities that could be interesting for the debugger, such as
13396 nested subprograms for instance. */
13397 if (last_die->has_children
13398 && (load_all
13399 || last_die->tag == DW_TAG_namespace
13400 || last_die->tag == DW_TAG_module
13401 || last_die->tag == DW_TAG_enumeration_type
13402 || (cu->language == language_cplus
13403 && last_die->tag == DW_TAG_subprogram
13404 && (last_die->name == NULL
13405 || strchr (last_die->name, '<') == NULL))
13406 || (cu->language != language_c
13407 && (last_die->tag == DW_TAG_class_type
13408 || last_die->tag == DW_TAG_interface_type
13409 || last_die->tag == DW_TAG_structure_type
13410 || last_die->tag == DW_TAG_union_type))
13411 || (cu->language == language_ada
13412 && (last_die->tag == DW_TAG_subprogram
13413 || last_die->tag == DW_TAG_lexical_block))))
13414 {
13415 nesting_level++;
13416 parent_die = last_die;
13417 continue;
13418 }
13419
13420 /* Otherwise we skip to the next sibling, if any. */
13421 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
13422
13423 /* Back to the top, do it again. */
13424 }
13425 }
13426
13427 /* Read a minimal amount of information into the minimal die structure. */
13428
13429 static gdb_byte *
13430 read_partial_die (const struct die_reader_specs *reader,
13431 struct partial_die_info *part_die,
13432 struct abbrev_info *abbrev, unsigned int abbrev_len,
13433 gdb_byte *info_ptr)
13434 {
13435 struct dwarf2_cu *cu = reader->cu;
13436 struct objfile *objfile = cu->objfile;
13437 gdb_byte *buffer = reader->buffer;
13438 unsigned int i;
13439 struct attribute attr;
13440 int has_low_pc_attr = 0;
13441 int has_high_pc_attr = 0;
13442 int high_pc_relative = 0;
13443
13444 memset (part_die, 0, sizeof (struct partial_die_info));
13445
13446 part_die->offset.sect_off = info_ptr - buffer;
13447
13448 info_ptr += abbrev_len;
13449
13450 if (abbrev == NULL)
13451 return info_ptr;
13452
13453 part_die->tag = abbrev->tag;
13454 part_die->has_children = abbrev->has_children;
13455
13456 for (i = 0; i < abbrev->num_attrs; ++i)
13457 {
13458 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
13459
13460 /* Store the data if it is of an attribute we want to keep in a
13461 partial symbol table. */
13462 switch (attr.name)
13463 {
13464 case DW_AT_name:
13465 switch (part_die->tag)
13466 {
13467 case DW_TAG_compile_unit:
13468 case DW_TAG_partial_unit:
13469 case DW_TAG_type_unit:
13470 /* Compilation units have a DW_AT_name that is a filename, not
13471 a source language identifier. */
13472 case DW_TAG_enumeration_type:
13473 case DW_TAG_enumerator:
13474 /* These tags always have simple identifiers already; no need
13475 to canonicalize them. */
13476 part_die->name = DW_STRING (&attr);
13477 break;
13478 default:
13479 part_die->name
13480 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
13481 &objfile->objfile_obstack);
13482 break;
13483 }
13484 break;
13485 case DW_AT_linkage_name:
13486 case DW_AT_MIPS_linkage_name:
13487 /* Note that both forms of linkage name might appear. We
13488 assume they will be the same, and we only store the last
13489 one we see. */
13490 if (cu->language == language_ada)
13491 part_die->name = DW_STRING (&attr);
13492 part_die->linkage_name = DW_STRING (&attr);
13493 break;
13494 case DW_AT_low_pc:
13495 has_low_pc_attr = 1;
13496 part_die->lowpc = DW_ADDR (&attr);
13497 break;
13498 case DW_AT_high_pc:
13499 has_high_pc_attr = 1;
13500 if (attr.form == DW_FORM_addr
13501 || attr.form == DW_FORM_GNU_addr_index)
13502 part_die->highpc = DW_ADDR (&attr);
13503 else
13504 {
13505 high_pc_relative = 1;
13506 part_die->highpc = DW_UNSND (&attr);
13507 }
13508 break;
13509 case DW_AT_location:
13510 /* Support the .debug_loc offsets. */
13511 if (attr_form_is_block (&attr))
13512 {
13513 part_die->d.locdesc = DW_BLOCK (&attr);
13514 }
13515 else if (attr_form_is_section_offset (&attr))
13516 {
13517 dwarf2_complex_location_expr_complaint ();
13518 }
13519 else
13520 {
13521 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13522 "partial symbol information");
13523 }
13524 break;
13525 case DW_AT_external:
13526 part_die->is_external = DW_UNSND (&attr);
13527 break;
13528 case DW_AT_declaration:
13529 part_die->is_declaration = DW_UNSND (&attr);
13530 break;
13531 case DW_AT_type:
13532 part_die->has_type = 1;
13533 break;
13534 case DW_AT_abstract_origin:
13535 case DW_AT_specification:
13536 case DW_AT_extension:
13537 part_die->has_specification = 1;
13538 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
13539 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13540 || cu->per_cu->is_dwz);
13541 break;
13542 case DW_AT_sibling:
13543 /* Ignore absolute siblings, they might point outside of
13544 the current compile unit. */
13545 if (attr.form == DW_FORM_ref_addr)
13546 complaint (&symfile_complaints,
13547 _("ignoring absolute DW_AT_sibling"));
13548 else
13549 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
13550 break;
13551 case DW_AT_byte_size:
13552 part_die->has_byte_size = 1;
13553 break;
13554 case DW_AT_calling_convention:
13555 /* DWARF doesn't provide a way to identify a program's source-level
13556 entry point. DW_AT_calling_convention attributes are only meant
13557 to describe functions' calling conventions.
13558
13559 However, because it's a necessary piece of information in
13560 Fortran, and because DW_CC_program is the only piece of debugging
13561 information whose definition refers to a 'main program' at all,
13562 several compilers have begun marking Fortran main programs with
13563 DW_CC_program --- even when those functions use the standard
13564 calling conventions.
13565
13566 So until DWARF specifies a way to provide this information and
13567 compilers pick up the new representation, we'll support this
13568 practice. */
13569 if (DW_UNSND (&attr) == DW_CC_program
13570 && cu->language == language_fortran)
13571 {
13572 set_main_name (part_die->name);
13573
13574 /* As this DIE has a static linkage the name would be difficult
13575 to look up later. */
13576 language_of_main = language_fortran;
13577 }
13578 break;
13579 case DW_AT_inline:
13580 if (DW_UNSND (&attr) == DW_INL_inlined
13581 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13582 part_die->may_be_inlined = 1;
13583 break;
13584
13585 case DW_AT_import:
13586 if (part_die->tag == DW_TAG_imported_unit)
13587 {
13588 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13589 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13590 || cu->per_cu->is_dwz);
13591 }
13592 break;
13593
13594 default:
13595 break;
13596 }
13597 }
13598
13599 if (high_pc_relative)
13600 part_die->highpc += part_die->lowpc;
13601
13602 if (has_low_pc_attr && has_high_pc_attr)
13603 {
13604 /* When using the GNU linker, .gnu.linkonce. sections are used to
13605 eliminate duplicate copies of functions and vtables and such.
13606 The linker will arbitrarily choose one and discard the others.
13607 The AT_*_pc values for such functions refer to local labels in
13608 these sections. If the section from that file was discarded, the
13609 labels are not in the output, so the relocs get a value of 0.
13610 If this is a discarded function, mark the pc bounds as invalid,
13611 so that GDB will ignore it. */
13612 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13613 {
13614 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13615
13616 complaint (&symfile_complaints,
13617 _("DW_AT_low_pc %s is zero "
13618 "for DIE at 0x%x [in module %s]"),
13619 paddress (gdbarch, part_die->lowpc),
13620 part_die->offset.sect_off, objfile->name);
13621 }
13622 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13623 else if (part_die->lowpc >= part_die->highpc)
13624 {
13625 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13626
13627 complaint (&symfile_complaints,
13628 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13629 "for DIE at 0x%x [in module %s]"),
13630 paddress (gdbarch, part_die->lowpc),
13631 paddress (gdbarch, part_die->highpc),
13632 part_die->offset.sect_off, objfile->name);
13633 }
13634 else
13635 part_die->has_pc_info = 1;
13636 }
13637
13638 return info_ptr;
13639 }
13640
13641 /* Find a cached partial DIE at OFFSET in CU. */
13642
13643 static struct partial_die_info *
13644 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
13645 {
13646 struct partial_die_info *lookup_die = NULL;
13647 struct partial_die_info part_die;
13648
13649 part_die.offset = offset;
13650 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13651 offset.sect_off);
13652
13653 return lookup_die;
13654 }
13655
13656 /* Find a partial DIE at OFFSET, which may or may not be in CU,
13657 except in the case of .debug_types DIEs which do not reference
13658 outside their CU (they do however referencing other types via
13659 DW_FORM_ref_sig8). */
13660
13661 static struct partial_die_info *
13662 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
13663 {
13664 struct objfile *objfile = cu->objfile;
13665 struct dwarf2_per_cu_data *per_cu = NULL;
13666 struct partial_die_info *pd = NULL;
13667
13668 if (offset_in_dwz == cu->per_cu->is_dwz
13669 && offset_in_cu_p (&cu->header, offset))
13670 {
13671 pd = find_partial_die_in_comp_unit (offset, cu);
13672 if (pd != NULL)
13673 return pd;
13674 /* We missed recording what we needed.
13675 Load all dies and try again. */
13676 per_cu = cu->per_cu;
13677 }
13678 else
13679 {
13680 /* TUs don't reference other CUs/TUs (except via type signatures). */
13681 if (cu->per_cu->is_debug_types)
13682 {
13683 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
13684 " external reference to offset 0x%lx [in module %s].\n"),
13685 (long) cu->header.offset.sect_off, (long) offset.sect_off,
13686 bfd_get_filename (objfile->obfd));
13687 }
13688 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
13689 objfile);
13690
13691 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
13692 load_partial_comp_unit (per_cu);
13693
13694 per_cu->cu->last_used = 0;
13695 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13696 }
13697
13698 /* If we didn't find it, and not all dies have been loaded,
13699 load them all and try again. */
13700
13701 if (pd == NULL && per_cu->load_all_dies == 0)
13702 {
13703 per_cu->load_all_dies = 1;
13704
13705 /* This is nasty. When we reread the DIEs, somewhere up the call chain
13706 THIS_CU->cu may already be in use. So we can't just free it and
13707 replace its DIEs with the ones we read in. Instead, we leave those
13708 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
13709 and clobber THIS_CU->cu->partial_dies with the hash table for the new
13710 set. */
13711 load_partial_comp_unit (per_cu);
13712
13713 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13714 }
13715
13716 if (pd == NULL)
13717 internal_error (__FILE__, __LINE__,
13718 _("could not find partial DIE 0x%x "
13719 "in cache [from module %s]\n"),
13720 offset.sect_off, bfd_get_filename (objfile->obfd));
13721 return pd;
13722 }
13723
13724 /* See if we can figure out if the class lives in a namespace. We do
13725 this by looking for a member function; its demangled name will
13726 contain namespace info, if there is any. */
13727
13728 static void
13729 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
13730 struct dwarf2_cu *cu)
13731 {
13732 /* NOTE: carlton/2003-10-07: Getting the info this way changes
13733 what template types look like, because the demangler
13734 frequently doesn't give the same name as the debug info. We
13735 could fix this by only using the demangled name to get the
13736 prefix (but see comment in read_structure_type). */
13737
13738 struct partial_die_info *real_pdi;
13739 struct partial_die_info *child_pdi;
13740
13741 /* If this DIE (this DIE's specification, if any) has a parent, then
13742 we should not do this. We'll prepend the parent's fully qualified
13743 name when we create the partial symbol. */
13744
13745 real_pdi = struct_pdi;
13746 while (real_pdi->has_specification)
13747 real_pdi = find_partial_die (real_pdi->spec_offset,
13748 real_pdi->spec_is_dwz, cu);
13749
13750 if (real_pdi->die_parent != NULL)
13751 return;
13752
13753 for (child_pdi = struct_pdi->die_child;
13754 child_pdi != NULL;
13755 child_pdi = child_pdi->die_sibling)
13756 {
13757 if (child_pdi->tag == DW_TAG_subprogram
13758 && child_pdi->linkage_name != NULL)
13759 {
13760 char *actual_class_name
13761 = language_class_name_from_physname (cu->language_defn,
13762 child_pdi->linkage_name);
13763 if (actual_class_name != NULL)
13764 {
13765 struct_pdi->name
13766 = obsavestring (actual_class_name,
13767 strlen (actual_class_name),
13768 &cu->objfile->objfile_obstack);
13769 xfree (actual_class_name);
13770 }
13771 break;
13772 }
13773 }
13774 }
13775
13776 /* Adjust PART_DIE before generating a symbol for it. This function
13777 may set the is_external flag or change the DIE's name. */
13778
13779 static void
13780 fixup_partial_die (struct partial_die_info *part_die,
13781 struct dwarf2_cu *cu)
13782 {
13783 /* Once we've fixed up a die, there's no point in doing so again.
13784 This also avoids a memory leak if we were to call
13785 guess_partial_die_structure_name multiple times. */
13786 if (part_die->fixup_called)
13787 return;
13788
13789 /* If we found a reference attribute and the DIE has no name, try
13790 to find a name in the referred to DIE. */
13791
13792 if (part_die->name == NULL && part_die->has_specification)
13793 {
13794 struct partial_die_info *spec_die;
13795
13796 spec_die = find_partial_die (part_die->spec_offset,
13797 part_die->spec_is_dwz, cu);
13798
13799 fixup_partial_die (spec_die, cu);
13800
13801 if (spec_die->name)
13802 {
13803 part_die->name = spec_die->name;
13804
13805 /* Copy DW_AT_external attribute if it is set. */
13806 if (spec_die->is_external)
13807 part_die->is_external = spec_die->is_external;
13808 }
13809 }
13810
13811 /* Set default names for some unnamed DIEs. */
13812
13813 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
13814 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
13815
13816 /* If there is no parent die to provide a namespace, and there are
13817 children, see if we can determine the namespace from their linkage
13818 name. */
13819 if (cu->language == language_cplus
13820 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
13821 && part_die->die_parent == NULL
13822 && part_die->has_children
13823 && (part_die->tag == DW_TAG_class_type
13824 || part_die->tag == DW_TAG_structure_type
13825 || part_die->tag == DW_TAG_union_type))
13826 guess_partial_die_structure_name (part_die, cu);
13827
13828 /* GCC might emit a nameless struct or union that has a linkage
13829 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
13830 if (part_die->name == NULL
13831 && (part_die->tag == DW_TAG_class_type
13832 || part_die->tag == DW_TAG_interface_type
13833 || part_die->tag == DW_TAG_structure_type
13834 || part_die->tag == DW_TAG_union_type)
13835 && part_die->linkage_name != NULL)
13836 {
13837 char *demangled;
13838
13839 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
13840 if (demangled)
13841 {
13842 const char *base;
13843
13844 /* Strip any leading namespaces/classes, keep only the base name.
13845 DW_AT_name for named DIEs does not contain the prefixes. */
13846 base = strrchr (demangled, ':');
13847 if (base && base > demangled && base[-1] == ':')
13848 base++;
13849 else
13850 base = demangled;
13851
13852 part_die->name = obsavestring (base, strlen (base),
13853 &cu->objfile->objfile_obstack);
13854 xfree (demangled);
13855 }
13856 }
13857
13858 part_die->fixup_called = 1;
13859 }
13860
13861 /* Read an attribute value described by an attribute form. */
13862
13863 static gdb_byte *
13864 read_attribute_value (const struct die_reader_specs *reader,
13865 struct attribute *attr, unsigned form,
13866 gdb_byte *info_ptr)
13867 {
13868 struct dwarf2_cu *cu = reader->cu;
13869 bfd *abfd = reader->abfd;
13870 struct comp_unit_head *cu_header = &cu->header;
13871 unsigned int bytes_read;
13872 struct dwarf_block *blk;
13873
13874 attr->form = form;
13875 switch (form)
13876 {
13877 case DW_FORM_ref_addr:
13878 if (cu->header.version == 2)
13879 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
13880 else
13881 DW_UNSND (attr) = read_offset (abfd, info_ptr,
13882 &cu->header, &bytes_read);
13883 info_ptr += bytes_read;
13884 break;
13885 case DW_FORM_GNU_ref_alt:
13886 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13887 info_ptr += bytes_read;
13888 break;
13889 case DW_FORM_addr:
13890 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
13891 info_ptr += bytes_read;
13892 break;
13893 case DW_FORM_block2:
13894 blk = dwarf_alloc_block (cu);
13895 blk->size = read_2_bytes (abfd, info_ptr);
13896 info_ptr += 2;
13897 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13898 info_ptr += blk->size;
13899 DW_BLOCK (attr) = blk;
13900 break;
13901 case DW_FORM_block4:
13902 blk = dwarf_alloc_block (cu);
13903 blk->size = read_4_bytes (abfd, info_ptr);
13904 info_ptr += 4;
13905 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13906 info_ptr += blk->size;
13907 DW_BLOCK (attr) = blk;
13908 break;
13909 case DW_FORM_data2:
13910 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
13911 info_ptr += 2;
13912 break;
13913 case DW_FORM_data4:
13914 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
13915 info_ptr += 4;
13916 break;
13917 case DW_FORM_data8:
13918 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
13919 info_ptr += 8;
13920 break;
13921 case DW_FORM_sec_offset:
13922 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13923 info_ptr += bytes_read;
13924 break;
13925 case DW_FORM_string:
13926 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
13927 DW_STRING_IS_CANONICAL (attr) = 0;
13928 info_ptr += bytes_read;
13929 break;
13930 case DW_FORM_strp:
13931 if (!cu->per_cu->is_dwz)
13932 {
13933 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
13934 &bytes_read);
13935 DW_STRING_IS_CANONICAL (attr) = 0;
13936 info_ptr += bytes_read;
13937 break;
13938 }
13939 /* FALLTHROUGH */
13940 case DW_FORM_GNU_strp_alt:
13941 {
13942 struct dwz_file *dwz = dwarf2_get_dwz_file ();
13943 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
13944 &bytes_read);
13945
13946 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
13947 DW_STRING_IS_CANONICAL (attr) = 0;
13948 info_ptr += bytes_read;
13949 }
13950 break;
13951 case DW_FORM_exprloc:
13952 case DW_FORM_block:
13953 blk = dwarf_alloc_block (cu);
13954 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13955 info_ptr += bytes_read;
13956 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13957 info_ptr += blk->size;
13958 DW_BLOCK (attr) = blk;
13959 break;
13960 case DW_FORM_block1:
13961 blk = dwarf_alloc_block (cu);
13962 blk->size = read_1_byte (abfd, info_ptr);
13963 info_ptr += 1;
13964 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13965 info_ptr += blk->size;
13966 DW_BLOCK (attr) = blk;
13967 break;
13968 case DW_FORM_data1:
13969 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
13970 info_ptr += 1;
13971 break;
13972 case DW_FORM_flag:
13973 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
13974 info_ptr += 1;
13975 break;
13976 case DW_FORM_flag_present:
13977 DW_UNSND (attr) = 1;
13978 break;
13979 case DW_FORM_sdata:
13980 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
13981 info_ptr += bytes_read;
13982 break;
13983 case DW_FORM_udata:
13984 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13985 info_ptr += bytes_read;
13986 break;
13987 case DW_FORM_ref1:
13988 DW_UNSND (attr) = (cu->header.offset.sect_off
13989 + read_1_byte (abfd, info_ptr));
13990 info_ptr += 1;
13991 break;
13992 case DW_FORM_ref2:
13993 DW_UNSND (attr) = (cu->header.offset.sect_off
13994 + read_2_bytes (abfd, info_ptr));
13995 info_ptr += 2;
13996 break;
13997 case DW_FORM_ref4:
13998 DW_UNSND (attr) = (cu->header.offset.sect_off
13999 + read_4_bytes (abfd, info_ptr));
14000 info_ptr += 4;
14001 break;
14002 case DW_FORM_ref8:
14003 DW_UNSND (attr) = (cu->header.offset.sect_off
14004 + read_8_bytes (abfd, info_ptr));
14005 info_ptr += 8;
14006 break;
14007 case DW_FORM_ref_sig8:
14008 /* Convert the signature to something we can record in DW_UNSND
14009 for later lookup.
14010 NOTE: This is NULL if the type wasn't found. */
14011 DW_SIGNATURED_TYPE (attr) =
14012 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
14013 info_ptr += 8;
14014 break;
14015 case DW_FORM_ref_udata:
14016 DW_UNSND (attr) = (cu->header.offset.sect_off
14017 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14018 info_ptr += bytes_read;
14019 break;
14020 case DW_FORM_indirect:
14021 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14022 info_ptr += bytes_read;
14023 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14024 break;
14025 case DW_FORM_GNU_addr_index:
14026 if (reader->dwo_file == NULL)
14027 {
14028 /* For now flag a hard error.
14029 Later we can turn this into a complaint. */
14030 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14031 dwarf_form_name (form),
14032 bfd_get_filename (abfd));
14033 }
14034 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14035 info_ptr += bytes_read;
14036 break;
14037 case DW_FORM_GNU_str_index:
14038 if (reader->dwo_file == NULL)
14039 {
14040 /* For now flag a hard error.
14041 Later we can turn this into a complaint if warranted. */
14042 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14043 dwarf_form_name (form),
14044 bfd_get_filename (abfd));
14045 }
14046 {
14047 ULONGEST str_index =
14048 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14049
14050 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14051 DW_STRING_IS_CANONICAL (attr) = 0;
14052 info_ptr += bytes_read;
14053 }
14054 break;
14055 default:
14056 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14057 dwarf_form_name (form),
14058 bfd_get_filename (abfd));
14059 }
14060
14061 /* Super hack. */
14062 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14063 attr->form = DW_FORM_GNU_ref_alt;
14064
14065 /* We have seen instances where the compiler tried to emit a byte
14066 size attribute of -1 which ended up being encoded as an unsigned
14067 0xffffffff. Although 0xffffffff is technically a valid size value,
14068 an object of this size seems pretty unlikely so we can relatively
14069 safely treat these cases as if the size attribute was invalid and
14070 treat them as zero by default. */
14071 if (attr->name == DW_AT_byte_size
14072 && form == DW_FORM_data4
14073 && DW_UNSND (attr) >= 0xffffffff)
14074 {
14075 complaint
14076 (&symfile_complaints,
14077 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14078 hex_string (DW_UNSND (attr)));
14079 DW_UNSND (attr) = 0;
14080 }
14081
14082 return info_ptr;
14083 }
14084
14085 /* Read an attribute described by an abbreviated attribute. */
14086
14087 static gdb_byte *
14088 read_attribute (const struct die_reader_specs *reader,
14089 struct attribute *attr, struct attr_abbrev *abbrev,
14090 gdb_byte *info_ptr)
14091 {
14092 attr->name = abbrev->name;
14093 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14094 }
14095
14096 /* Read dwarf information from a buffer. */
14097
14098 static unsigned int
14099 read_1_byte (bfd *abfd, const gdb_byte *buf)
14100 {
14101 return bfd_get_8 (abfd, buf);
14102 }
14103
14104 static int
14105 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14106 {
14107 return bfd_get_signed_8 (abfd, buf);
14108 }
14109
14110 static unsigned int
14111 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14112 {
14113 return bfd_get_16 (abfd, buf);
14114 }
14115
14116 static int
14117 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14118 {
14119 return bfd_get_signed_16 (abfd, buf);
14120 }
14121
14122 static unsigned int
14123 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14124 {
14125 return bfd_get_32 (abfd, buf);
14126 }
14127
14128 static int
14129 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14130 {
14131 return bfd_get_signed_32 (abfd, buf);
14132 }
14133
14134 static ULONGEST
14135 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14136 {
14137 return bfd_get_64 (abfd, buf);
14138 }
14139
14140 static CORE_ADDR
14141 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
14142 unsigned int *bytes_read)
14143 {
14144 struct comp_unit_head *cu_header = &cu->header;
14145 CORE_ADDR retval = 0;
14146
14147 if (cu_header->signed_addr_p)
14148 {
14149 switch (cu_header->addr_size)
14150 {
14151 case 2:
14152 retval = bfd_get_signed_16 (abfd, buf);
14153 break;
14154 case 4:
14155 retval = bfd_get_signed_32 (abfd, buf);
14156 break;
14157 case 8:
14158 retval = bfd_get_signed_64 (abfd, buf);
14159 break;
14160 default:
14161 internal_error (__FILE__, __LINE__,
14162 _("read_address: bad switch, signed [in module %s]"),
14163 bfd_get_filename (abfd));
14164 }
14165 }
14166 else
14167 {
14168 switch (cu_header->addr_size)
14169 {
14170 case 2:
14171 retval = bfd_get_16 (abfd, buf);
14172 break;
14173 case 4:
14174 retval = bfd_get_32 (abfd, buf);
14175 break;
14176 case 8:
14177 retval = bfd_get_64 (abfd, buf);
14178 break;
14179 default:
14180 internal_error (__FILE__, __LINE__,
14181 _("read_address: bad switch, "
14182 "unsigned [in module %s]"),
14183 bfd_get_filename (abfd));
14184 }
14185 }
14186
14187 *bytes_read = cu_header->addr_size;
14188 return retval;
14189 }
14190
14191 /* Read the initial length from a section. The (draft) DWARF 3
14192 specification allows the initial length to take up either 4 bytes
14193 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14194 bytes describe the length and all offsets will be 8 bytes in length
14195 instead of 4.
14196
14197 An older, non-standard 64-bit format is also handled by this
14198 function. The older format in question stores the initial length
14199 as an 8-byte quantity without an escape value. Lengths greater
14200 than 2^32 aren't very common which means that the initial 4 bytes
14201 is almost always zero. Since a length value of zero doesn't make
14202 sense for the 32-bit format, this initial zero can be considered to
14203 be an escape value which indicates the presence of the older 64-bit
14204 format. As written, the code can't detect (old format) lengths
14205 greater than 4GB. If it becomes necessary to handle lengths
14206 somewhat larger than 4GB, we could allow other small values (such
14207 as the non-sensical values of 1, 2, and 3) to also be used as
14208 escape values indicating the presence of the old format.
14209
14210 The value returned via bytes_read should be used to increment the
14211 relevant pointer after calling read_initial_length().
14212
14213 [ Note: read_initial_length() and read_offset() are based on the
14214 document entitled "DWARF Debugging Information Format", revision
14215 3, draft 8, dated November 19, 2001. This document was obtained
14216 from:
14217
14218 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14219
14220 This document is only a draft and is subject to change. (So beware.)
14221
14222 Details regarding the older, non-standard 64-bit format were
14223 determined empirically by examining 64-bit ELF files produced by
14224 the SGI toolchain on an IRIX 6.5 machine.
14225
14226 - Kevin, July 16, 2002
14227 ] */
14228
14229 static LONGEST
14230 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
14231 {
14232 LONGEST length = bfd_get_32 (abfd, buf);
14233
14234 if (length == 0xffffffff)
14235 {
14236 length = bfd_get_64 (abfd, buf + 4);
14237 *bytes_read = 12;
14238 }
14239 else if (length == 0)
14240 {
14241 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14242 length = bfd_get_64 (abfd, buf);
14243 *bytes_read = 8;
14244 }
14245 else
14246 {
14247 *bytes_read = 4;
14248 }
14249
14250 return length;
14251 }
14252
14253 /* Cover function for read_initial_length.
14254 Returns the length of the object at BUF, and stores the size of the
14255 initial length in *BYTES_READ and stores the size that offsets will be in
14256 *OFFSET_SIZE.
14257 If the initial length size is not equivalent to that specified in
14258 CU_HEADER then issue a complaint.
14259 This is useful when reading non-comp-unit headers. */
14260
14261 static LONGEST
14262 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
14263 const struct comp_unit_head *cu_header,
14264 unsigned int *bytes_read,
14265 unsigned int *offset_size)
14266 {
14267 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14268
14269 gdb_assert (cu_header->initial_length_size == 4
14270 || cu_header->initial_length_size == 8
14271 || cu_header->initial_length_size == 12);
14272
14273 if (cu_header->initial_length_size != *bytes_read)
14274 complaint (&symfile_complaints,
14275 _("intermixed 32-bit and 64-bit DWARF sections"));
14276
14277 *offset_size = (*bytes_read == 4) ? 4 : 8;
14278 return length;
14279 }
14280
14281 /* Read an offset from the data stream. The size of the offset is
14282 given by cu_header->offset_size. */
14283
14284 static LONGEST
14285 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
14286 unsigned int *bytes_read)
14287 {
14288 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14289
14290 *bytes_read = cu_header->offset_size;
14291 return offset;
14292 }
14293
14294 /* Read an offset from the data stream. */
14295
14296 static LONGEST
14297 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
14298 {
14299 LONGEST retval = 0;
14300
14301 switch (offset_size)
14302 {
14303 case 4:
14304 retval = bfd_get_32 (abfd, buf);
14305 break;
14306 case 8:
14307 retval = bfd_get_64 (abfd, buf);
14308 break;
14309 default:
14310 internal_error (__FILE__, __LINE__,
14311 _("read_offset_1: bad switch [in module %s]"),
14312 bfd_get_filename (abfd));
14313 }
14314
14315 return retval;
14316 }
14317
14318 static gdb_byte *
14319 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
14320 {
14321 /* If the size of a host char is 8 bits, we can return a pointer
14322 to the buffer, otherwise we have to copy the data to a buffer
14323 allocated on the temporary obstack. */
14324 gdb_assert (HOST_CHAR_BIT == 8);
14325 return buf;
14326 }
14327
14328 static char *
14329 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14330 {
14331 /* If the size of a host char is 8 bits, we can return a pointer
14332 to the string, otherwise we have to copy the string to a buffer
14333 allocated on the temporary obstack. */
14334 gdb_assert (HOST_CHAR_BIT == 8);
14335 if (*buf == '\0')
14336 {
14337 *bytes_read_ptr = 1;
14338 return NULL;
14339 }
14340 *bytes_read_ptr = strlen ((char *) buf) + 1;
14341 return (char *) buf;
14342 }
14343
14344 static char *
14345 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
14346 {
14347 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
14348 if (dwarf2_per_objfile->str.buffer == NULL)
14349 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14350 bfd_get_filename (abfd));
14351 if (str_offset >= dwarf2_per_objfile->str.size)
14352 error (_("DW_FORM_strp pointing outside of "
14353 ".debug_str section [in module %s]"),
14354 bfd_get_filename (abfd));
14355 gdb_assert (HOST_CHAR_BIT == 8);
14356 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
14357 return NULL;
14358 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
14359 }
14360
14361 /* Read a string at offset STR_OFFSET in the .debug_str section from
14362 the .dwz file DWZ. Throw an error if the offset is too large. If
14363 the string consists of a single NUL byte, return NULL; otherwise
14364 return a pointer to the string. */
14365
14366 static char *
14367 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14368 {
14369 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14370
14371 if (dwz->str.buffer == NULL)
14372 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14373 "section [in module %s]"),
14374 bfd_get_filename (dwz->dwz_bfd));
14375 if (str_offset >= dwz->str.size)
14376 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14377 ".debug_str section [in module %s]"),
14378 bfd_get_filename (dwz->dwz_bfd));
14379 gdb_assert (HOST_CHAR_BIT == 8);
14380 if (dwz->str.buffer[str_offset] == '\0')
14381 return NULL;
14382 return (char *) (dwz->str.buffer + str_offset);
14383 }
14384
14385 static char *
14386 read_indirect_string (bfd *abfd, gdb_byte *buf,
14387 const struct comp_unit_head *cu_header,
14388 unsigned int *bytes_read_ptr)
14389 {
14390 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14391
14392 return read_indirect_string_at_offset (abfd, str_offset);
14393 }
14394
14395 static ULONGEST
14396 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14397 {
14398 ULONGEST result;
14399 unsigned int num_read;
14400 int i, shift;
14401 unsigned char byte;
14402
14403 result = 0;
14404 shift = 0;
14405 num_read = 0;
14406 i = 0;
14407 while (1)
14408 {
14409 byte = bfd_get_8 (abfd, buf);
14410 buf++;
14411 num_read++;
14412 result |= ((ULONGEST) (byte & 127) << shift);
14413 if ((byte & 128) == 0)
14414 {
14415 break;
14416 }
14417 shift += 7;
14418 }
14419 *bytes_read_ptr = num_read;
14420 return result;
14421 }
14422
14423 static LONGEST
14424 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14425 {
14426 LONGEST result;
14427 int i, shift, num_read;
14428 unsigned char byte;
14429
14430 result = 0;
14431 shift = 0;
14432 num_read = 0;
14433 i = 0;
14434 while (1)
14435 {
14436 byte = bfd_get_8 (abfd, buf);
14437 buf++;
14438 num_read++;
14439 result |= ((LONGEST) (byte & 127) << shift);
14440 shift += 7;
14441 if ((byte & 128) == 0)
14442 {
14443 break;
14444 }
14445 }
14446 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
14447 result |= -(((LONGEST) 1) << shift);
14448 *bytes_read_ptr = num_read;
14449 return result;
14450 }
14451
14452 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
14453 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14454 ADDR_SIZE is the size of addresses from the CU header. */
14455
14456 static CORE_ADDR
14457 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14458 {
14459 struct objfile *objfile = dwarf2_per_objfile->objfile;
14460 bfd *abfd = objfile->obfd;
14461 const gdb_byte *info_ptr;
14462
14463 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14464 if (dwarf2_per_objfile->addr.buffer == NULL)
14465 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14466 objfile->name);
14467 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14468 error (_("DW_FORM_addr_index pointing outside of "
14469 ".debug_addr section [in module %s]"),
14470 objfile->name);
14471 info_ptr = (dwarf2_per_objfile->addr.buffer
14472 + addr_base + addr_index * addr_size);
14473 if (addr_size == 4)
14474 return bfd_get_32 (abfd, info_ptr);
14475 else
14476 return bfd_get_64 (abfd, info_ptr);
14477 }
14478
14479 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14480
14481 static CORE_ADDR
14482 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14483 {
14484 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14485 }
14486
14487 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14488
14489 static CORE_ADDR
14490 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
14491 unsigned int *bytes_read)
14492 {
14493 bfd *abfd = cu->objfile->obfd;
14494 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14495
14496 return read_addr_index (cu, addr_index);
14497 }
14498
14499 /* Data structure to pass results from dwarf2_read_addr_index_reader
14500 back to dwarf2_read_addr_index. */
14501
14502 struct dwarf2_read_addr_index_data
14503 {
14504 ULONGEST addr_base;
14505 int addr_size;
14506 };
14507
14508 /* die_reader_func for dwarf2_read_addr_index. */
14509
14510 static void
14511 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14512 gdb_byte *info_ptr,
14513 struct die_info *comp_unit_die,
14514 int has_children,
14515 void *data)
14516 {
14517 struct dwarf2_cu *cu = reader->cu;
14518 struct dwarf2_read_addr_index_data *aidata =
14519 (struct dwarf2_read_addr_index_data *) data;
14520
14521 aidata->addr_base = cu->addr_base;
14522 aidata->addr_size = cu->header.addr_size;
14523 }
14524
14525 /* Given an index in .debug_addr, fetch the value.
14526 NOTE: This can be called during dwarf expression evaluation,
14527 long after the debug information has been read, and thus per_cu->cu
14528 may no longer exist. */
14529
14530 CORE_ADDR
14531 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14532 unsigned int addr_index)
14533 {
14534 struct objfile *objfile = per_cu->objfile;
14535 struct dwarf2_cu *cu = per_cu->cu;
14536 ULONGEST addr_base;
14537 int addr_size;
14538
14539 /* This is intended to be called from outside this file. */
14540 dw2_setup (objfile);
14541
14542 /* We need addr_base and addr_size.
14543 If we don't have PER_CU->cu, we have to get it.
14544 Nasty, but the alternative is storing the needed info in PER_CU,
14545 which at this point doesn't seem justified: it's not clear how frequently
14546 it would get used and it would increase the size of every PER_CU.
14547 Entry points like dwarf2_per_cu_addr_size do a similar thing
14548 so we're not in uncharted territory here.
14549 Alas we need to be a bit more complicated as addr_base is contained
14550 in the DIE.
14551
14552 We don't need to read the entire CU(/TU).
14553 We just need the header and top level die.
14554
14555 IWBN to use the aging mechanism to let us lazily later discard the CU.
14556 For now we skip this optimization. */
14557
14558 if (cu != NULL)
14559 {
14560 addr_base = cu->addr_base;
14561 addr_size = cu->header.addr_size;
14562 }
14563 else
14564 {
14565 struct dwarf2_read_addr_index_data aidata;
14566
14567 /* Note: We can't use init_cutu_and_read_dies_simple here,
14568 we need addr_base. */
14569 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14570 dwarf2_read_addr_index_reader, &aidata);
14571 addr_base = aidata.addr_base;
14572 addr_size = aidata.addr_size;
14573 }
14574
14575 return read_addr_index_1 (addr_index, addr_base, addr_size);
14576 }
14577
14578 /* Given a DW_AT_str_index, fetch the string. */
14579
14580 static char *
14581 read_str_index (const struct die_reader_specs *reader,
14582 struct dwarf2_cu *cu, ULONGEST str_index)
14583 {
14584 struct objfile *objfile = dwarf2_per_objfile->objfile;
14585 const char *dwo_name = objfile->name;
14586 bfd *abfd = objfile->obfd;
14587 struct dwo_sections *sections = &reader->dwo_file->sections;
14588 gdb_byte *info_ptr;
14589 ULONGEST str_offset;
14590
14591 dwarf2_read_section (objfile, &sections->str);
14592 dwarf2_read_section (objfile, &sections->str_offsets);
14593 if (sections->str.buffer == NULL)
14594 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14595 " in CU at offset 0x%lx [in module %s]"),
14596 (long) cu->header.offset.sect_off, dwo_name);
14597 if (sections->str_offsets.buffer == NULL)
14598 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14599 " in CU at offset 0x%lx [in module %s]"),
14600 (long) cu->header.offset.sect_off, dwo_name);
14601 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14602 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14603 " section in CU at offset 0x%lx [in module %s]"),
14604 (long) cu->header.offset.sect_off, dwo_name);
14605 info_ptr = (sections->str_offsets.buffer
14606 + str_index * cu->header.offset_size);
14607 if (cu->header.offset_size == 4)
14608 str_offset = bfd_get_32 (abfd, info_ptr);
14609 else
14610 str_offset = bfd_get_64 (abfd, info_ptr);
14611 if (str_offset >= sections->str.size)
14612 error (_("Offset from DW_FORM_str_index pointing outside of"
14613 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14614 (long) cu->header.offset.sect_off, dwo_name);
14615 return (char *) (sections->str.buffer + str_offset);
14616 }
14617
14618 /* Return the length of an LEB128 number in BUF. */
14619
14620 static int
14621 leb128_size (const gdb_byte *buf)
14622 {
14623 const gdb_byte *begin = buf;
14624 gdb_byte byte;
14625
14626 while (1)
14627 {
14628 byte = *buf++;
14629 if ((byte & 128) == 0)
14630 return buf - begin;
14631 }
14632 }
14633
14634 static void
14635 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
14636 {
14637 switch (lang)
14638 {
14639 case DW_LANG_C89:
14640 case DW_LANG_C99:
14641 case DW_LANG_C:
14642 cu->language = language_c;
14643 break;
14644 case DW_LANG_C_plus_plus:
14645 cu->language = language_cplus;
14646 break;
14647 case DW_LANG_D:
14648 cu->language = language_d;
14649 break;
14650 case DW_LANG_Fortran77:
14651 case DW_LANG_Fortran90:
14652 case DW_LANG_Fortran95:
14653 cu->language = language_fortran;
14654 break;
14655 case DW_LANG_Go:
14656 cu->language = language_go;
14657 break;
14658 case DW_LANG_Mips_Assembler:
14659 cu->language = language_asm;
14660 break;
14661 case DW_LANG_Java:
14662 cu->language = language_java;
14663 break;
14664 case DW_LANG_Ada83:
14665 case DW_LANG_Ada95:
14666 cu->language = language_ada;
14667 break;
14668 case DW_LANG_Modula2:
14669 cu->language = language_m2;
14670 break;
14671 case DW_LANG_Pascal83:
14672 cu->language = language_pascal;
14673 break;
14674 case DW_LANG_ObjC:
14675 cu->language = language_objc;
14676 break;
14677 case DW_LANG_Cobol74:
14678 case DW_LANG_Cobol85:
14679 default:
14680 cu->language = language_minimal;
14681 break;
14682 }
14683 cu->language_defn = language_def (cu->language);
14684 }
14685
14686 /* Return the named attribute or NULL if not there. */
14687
14688 static struct attribute *
14689 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
14690 {
14691 for (;;)
14692 {
14693 unsigned int i;
14694 struct attribute *spec = NULL;
14695
14696 for (i = 0; i < die->num_attrs; ++i)
14697 {
14698 if (die->attrs[i].name == name)
14699 return &die->attrs[i];
14700 if (die->attrs[i].name == DW_AT_specification
14701 || die->attrs[i].name == DW_AT_abstract_origin)
14702 spec = &die->attrs[i];
14703 }
14704
14705 if (!spec)
14706 break;
14707
14708 die = follow_die_ref (die, spec, &cu);
14709 }
14710
14711 return NULL;
14712 }
14713
14714 /* Return the named attribute or NULL if not there,
14715 but do not follow DW_AT_specification, etc.
14716 This is for use in contexts where we're reading .debug_types dies.
14717 Following DW_AT_specification, DW_AT_abstract_origin will take us
14718 back up the chain, and we want to go down. */
14719
14720 static struct attribute *
14721 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
14722 {
14723 unsigned int i;
14724
14725 for (i = 0; i < die->num_attrs; ++i)
14726 if (die->attrs[i].name == name)
14727 return &die->attrs[i];
14728
14729 return NULL;
14730 }
14731
14732 /* Return non-zero iff the attribute NAME is defined for the given DIE,
14733 and holds a non-zero value. This function should only be used for
14734 DW_FORM_flag or DW_FORM_flag_present attributes. */
14735
14736 static int
14737 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
14738 {
14739 struct attribute *attr = dwarf2_attr (die, name, cu);
14740
14741 return (attr && DW_UNSND (attr));
14742 }
14743
14744 static int
14745 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
14746 {
14747 /* A DIE is a declaration if it has a DW_AT_declaration attribute
14748 which value is non-zero. However, we have to be careful with
14749 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
14750 (via dwarf2_flag_true_p) follows this attribute. So we may
14751 end up accidently finding a declaration attribute that belongs
14752 to a different DIE referenced by the specification attribute,
14753 even though the given DIE does not have a declaration attribute. */
14754 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
14755 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
14756 }
14757
14758 /* Return the die giving the specification for DIE, if there is
14759 one. *SPEC_CU is the CU containing DIE on input, and the CU
14760 containing the return value on output. If there is no
14761 specification, but there is an abstract origin, that is
14762 returned. */
14763
14764 static struct die_info *
14765 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
14766 {
14767 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
14768 *spec_cu);
14769
14770 if (spec_attr == NULL)
14771 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
14772
14773 if (spec_attr == NULL)
14774 return NULL;
14775 else
14776 return follow_die_ref (die, spec_attr, spec_cu);
14777 }
14778
14779 /* Free the line_header structure *LH, and any arrays and strings it
14780 refers to.
14781 NOTE: This is also used as a "cleanup" function. */
14782
14783 static void
14784 free_line_header (struct line_header *lh)
14785 {
14786 if (lh->standard_opcode_lengths)
14787 xfree (lh->standard_opcode_lengths);
14788
14789 /* Remember that all the lh->file_names[i].name pointers are
14790 pointers into debug_line_buffer, and don't need to be freed. */
14791 if (lh->file_names)
14792 xfree (lh->file_names);
14793
14794 /* Similarly for the include directory names. */
14795 if (lh->include_dirs)
14796 xfree (lh->include_dirs);
14797
14798 xfree (lh);
14799 }
14800
14801 /* Add an entry to LH's include directory table. */
14802
14803 static void
14804 add_include_dir (struct line_header *lh, char *include_dir)
14805 {
14806 /* Grow the array if necessary. */
14807 if (lh->include_dirs_size == 0)
14808 {
14809 lh->include_dirs_size = 1; /* for testing */
14810 lh->include_dirs = xmalloc (lh->include_dirs_size
14811 * sizeof (*lh->include_dirs));
14812 }
14813 else if (lh->num_include_dirs >= lh->include_dirs_size)
14814 {
14815 lh->include_dirs_size *= 2;
14816 lh->include_dirs = xrealloc (lh->include_dirs,
14817 (lh->include_dirs_size
14818 * sizeof (*lh->include_dirs)));
14819 }
14820
14821 lh->include_dirs[lh->num_include_dirs++] = include_dir;
14822 }
14823
14824 /* Add an entry to LH's file name table. */
14825
14826 static void
14827 add_file_name (struct line_header *lh,
14828 char *name,
14829 unsigned int dir_index,
14830 unsigned int mod_time,
14831 unsigned int length)
14832 {
14833 struct file_entry *fe;
14834
14835 /* Grow the array if necessary. */
14836 if (lh->file_names_size == 0)
14837 {
14838 lh->file_names_size = 1; /* for testing */
14839 lh->file_names = xmalloc (lh->file_names_size
14840 * sizeof (*lh->file_names));
14841 }
14842 else if (lh->num_file_names >= lh->file_names_size)
14843 {
14844 lh->file_names_size *= 2;
14845 lh->file_names = xrealloc (lh->file_names,
14846 (lh->file_names_size
14847 * sizeof (*lh->file_names)));
14848 }
14849
14850 fe = &lh->file_names[lh->num_file_names++];
14851 fe->name = name;
14852 fe->dir_index = dir_index;
14853 fe->mod_time = mod_time;
14854 fe->length = length;
14855 fe->included_p = 0;
14856 fe->symtab = NULL;
14857 }
14858
14859 /* A convenience function to find the proper .debug_line section for a
14860 CU. */
14861
14862 static struct dwarf2_section_info *
14863 get_debug_line_section (struct dwarf2_cu *cu)
14864 {
14865 struct dwarf2_section_info *section;
14866
14867 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
14868 DWO file. */
14869 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14870 section = &cu->dwo_unit->dwo_file->sections.line;
14871 else if (cu->per_cu->is_dwz)
14872 {
14873 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14874
14875 section = &dwz->line;
14876 }
14877 else
14878 section = &dwarf2_per_objfile->line;
14879
14880 return section;
14881 }
14882
14883 /* Read the statement program header starting at OFFSET in
14884 .debug_line, or .debug_line.dwo. Return a pointer
14885 to a struct line_header, allocated using xmalloc.
14886
14887 NOTE: the strings in the include directory and file name tables of
14888 the returned object point into the dwarf line section buffer,
14889 and must not be freed. */
14890
14891 static struct line_header *
14892 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
14893 {
14894 struct cleanup *back_to;
14895 struct line_header *lh;
14896 gdb_byte *line_ptr;
14897 unsigned int bytes_read, offset_size;
14898 int i;
14899 char *cur_dir, *cur_file;
14900 struct dwarf2_section_info *section;
14901 bfd *abfd;
14902
14903 section = get_debug_line_section (cu);
14904 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
14905 if (section->buffer == NULL)
14906 {
14907 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14908 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
14909 else
14910 complaint (&symfile_complaints, _("missing .debug_line section"));
14911 return 0;
14912 }
14913
14914 /* We can't do this until we know the section is non-empty.
14915 Only then do we know we have such a section. */
14916 abfd = section->asection->owner;
14917
14918 /* Make sure that at least there's room for the total_length field.
14919 That could be 12 bytes long, but we're just going to fudge that. */
14920 if (offset + 4 >= section->size)
14921 {
14922 dwarf2_statement_list_fits_in_line_number_section_complaint ();
14923 return 0;
14924 }
14925
14926 lh = xmalloc (sizeof (*lh));
14927 memset (lh, 0, sizeof (*lh));
14928 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
14929 (void *) lh);
14930
14931 line_ptr = section->buffer + offset;
14932
14933 /* Read in the header. */
14934 lh->total_length =
14935 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
14936 &bytes_read, &offset_size);
14937 line_ptr += bytes_read;
14938 if (line_ptr + lh->total_length > (section->buffer + section->size))
14939 {
14940 dwarf2_statement_list_fits_in_line_number_section_complaint ();
14941 return 0;
14942 }
14943 lh->statement_program_end = line_ptr + lh->total_length;
14944 lh->version = read_2_bytes (abfd, line_ptr);
14945 line_ptr += 2;
14946 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
14947 line_ptr += offset_size;
14948 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
14949 line_ptr += 1;
14950 if (lh->version >= 4)
14951 {
14952 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
14953 line_ptr += 1;
14954 }
14955 else
14956 lh->maximum_ops_per_instruction = 1;
14957
14958 if (lh->maximum_ops_per_instruction == 0)
14959 {
14960 lh->maximum_ops_per_instruction = 1;
14961 complaint (&symfile_complaints,
14962 _("invalid maximum_ops_per_instruction "
14963 "in `.debug_line' section"));
14964 }
14965
14966 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
14967 line_ptr += 1;
14968 lh->line_base = read_1_signed_byte (abfd, line_ptr);
14969 line_ptr += 1;
14970 lh->line_range = read_1_byte (abfd, line_ptr);
14971 line_ptr += 1;
14972 lh->opcode_base = read_1_byte (abfd, line_ptr);
14973 line_ptr += 1;
14974 lh->standard_opcode_lengths
14975 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
14976
14977 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
14978 for (i = 1; i < lh->opcode_base; ++i)
14979 {
14980 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
14981 line_ptr += 1;
14982 }
14983
14984 /* Read directory table. */
14985 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
14986 {
14987 line_ptr += bytes_read;
14988 add_include_dir (lh, cur_dir);
14989 }
14990 line_ptr += bytes_read;
14991
14992 /* Read file name table. */
14993 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
14994 {
14995 unsigned int dir_index, mod_time, length;
14996
14997 line_ptr += bytes_read;
14998 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14999 line_ptr += bytes_read;
15000 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15001 line_ptr += bytes_read;
15002 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15003 line_ptr += bytes_read;
15004
15005 add_file_name (lh, cur_file, dir_index, mod_time, length);
15006 }
15007 line_ptr += bytes_read;
15008 lh->statement_program_start = line_ptr;
15009
15010 if (line_ptr > (section->buffer + section->size))
15011 complaint (&symfile_complaints,
15012 _("line number info header doesn't "
15013 "fit in `.debug_line' section"));
15014
15015 discard_cleanups (back_to);
15016 return lh;
15017 }
15018
15019 /* Subroutine of dwarf_decode_lines to simplify it.
15020 Return the file name of the psymtab for included file FILE_INDEX
15021 in line header LH of PST.
15022 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15023 If space for the result is malloc'd, it will be freed by a cleanup.
15024 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
15025
15026 static char *
15027 psymtab_include_file_name (const struct line_header *lh, int file_index,
15028 const struct partial_symtab *pst,
15029 const char *comp_dir)
15030 {
15031 const struct file_entry fe = lh->file_names [file_index];
15032 char *include_name = fe.name;
15033 char *include_name_to_compare = include_name;
15034 char *dir_name = NULL;
15035 const char *pst_filename;
15036 char *copied_name = NULL;
15037 int file_is_pst;
15038
15039 if (fe.dir_index)
15040 dir_name = lh->include_dirs[fe.dir_index - 1];
15041
15042 if (!IS_ABSOLUTE_PATH (include_name)
15043 && (dir_name != NULL || comp_dir != NULL))
15044 {
15045 /* Avoid creating a duplicate psymtab for PST.
15046 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15047 Before we do the comparison, however, we need to account
15048 for DIR_NAME and COMP_DIR.
15049 First prepend dir_name (if non-NULL). If we still don't
15050 have an absolute path prepend comp_dir (if non-NULL).
15051 However, the directory we record in the include-file's
15052 psymtab does not contain COMP_DIR (to match the
15053 corresponding symtab(s)).
15054
15055 Example:
15056
15057 bash$ cd /tmp
15058 bash$ gcc -g ./hello.c
15059 include_name = "hello.c"
15060 dir_name = "."
15061 DW_AT_comp_dir = comp_dir = "/tmp"
15062 DW_AT_name = "./hello.c" */
15063
15064 if (dir_name != NULL)
15065 {
15066 include_name = concat (dir_name, SLASH_STRING,
15067 include_name, (char *)NULL);
15068 include_name_to_compare = include_name;
15069 make_cleanup (xfree, include_name);
15070 }
15071 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15072 {
15073 include_name_to_compare = concat (comp_dir, SLASH_STRING,
15074 include_name, (char *)NULL);
15075 }
15076 }
15077
15078 pst_filename = pst->filename;
15079 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15080 {
15081 copied_name = concat (pst->dirname, SLASH_STRING,
15082 pst_filename, (char *)NULL);
15083 pst_filename = copied_name;
15084 }
15085
15086 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15087
15088 if (include_name_to_compare != include_name)
15089 xfree (include_name_to_compare);
15090 if (copied_name != NULL)
15091 xfree (copied_name);
15092
15093 if (file_is_pst)
15094 return NULL;
15095 return include_name;
15096 }
15097
15098 /* Ignore this record_line request. */
15099
15100 static void
15101 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15102 {
15103 return;
15104 }
15105
15106 /* Subroutine of dwarf_decode_lines to simplify it.
15107 Process the line number information in LH. */
15108
15109 static void
15110 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15111 struct dwarf2_cu *cu, struct partial_symtab *pst)
15112 {
15113 gdb_byte *line_ptr, *extended_end;
15114 gdb_byte *line_end;
15115 unsigned int bytes_read, extended_len;
15116 unsigned char op_code, extended_op, adj_opcode;
15117 CORE_ADDR baseaddr;
15118 struct objfile *objfile = cu->objfile;
15119 bfd *abfd = objfile->obfd;
15120 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15121 const int decode_for_pst_p = (pst != NULL);
15122 struct subfile *last_subfile = NULL;
15123 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15124 = record_line;
15125
15126 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15127
15128 line_ptr = lh->statement_program_start;
15129 line_end = lh->statement_program_end;
15130
15131 /* Read the statement sequences until there's nothing left. */
15132 while (line_ptr < line_end)
15133 {
15134 /* state machine registers */
15135 CORE_ADDR address = 0;
15136 unsigned int file = 1;
15137 unsigned int line = 1;
15138 unsigned int column = 0;
15139 int is_stmt = lh->default_is_stmt;
15140 int basic_block = 0;
15141 int end_sequence = 0;
15142 CORE_ADDR addr;
15143 unsigned char op_index = 0;
15144
15145 if (!decode_for_pst_p && lh->num_file_names >= file)
15146 {
15147 /* Start a subfile for the current file of the state machine. */
15148 /* lh->include_dirs and lh->file_names are 0-based, but the
15149 directory and file name numbers in the statement program
15150 are 1-based. */
15151 struct file_entry *fe = &lh->file_names[file - 1];
15152 char *dir = NULL;
15153
15154 if (fe->dir_index)
15155 dir = lh->include_dirs[fe->dir_index - 1];
15156
15157 dwarf2_start_subfile (fe->name, dir, comp_dir);
15158 }
15159
15160 /* Decode the table. */
15161 while (!end_sequence)
15162 {
15163 op_code = read_1_byte (abfd, line_ptr);
15164 line_ptr += 1;
15165 if (line_ptr > line_end)
15166 {
15167 dwarf2_debug_line_missing_end_sequence_complaint ();
15168 break;
15169 }
15170
15171 if (op_code >= lh->opcode_base)
15172 {
15173 /* Special operand. */
15174 adj_opcode = op_code - lh->opcode_base;
15175 address += (((op_index + (adj_opcode / lh->line_range))
15176 / lh->maximum_ops_per_instruction)
15177 * lh->minimum_instruction_length);
15178 op_index = ((op_index + (adj_opcode / lh->line_range))
15179 % lh->maximum_ops_per_instruction);
15180 line += lh->line_base + (adj_opcode % lh->line_range);
15181 if (lh->num_file_names < file || file == 0)
15182 dwarf2_debug_line_missing_file_complaint ();
15183 /* For now we ignore lines not starting on an
15184 instruction boundary. */
15185 else if (op_index == 0)
15186 {
15187 lh->file_names[file - 1].included_p = 1;
15188 if (!decode_for_pst_p && is_stmt)
15189 {
15190 if (last_subfile != current_subfile)
15191 {
15192 addr = gdbarch_addr_bits_remove (gdbarch, address);
15193 if (last_subfile)
15194 (*p_record_line) (last_subfile, 0, addr);
15195 last_subfile = current_subfile;
15196 }
15197 /* Append row to matrix using current values. */
15198 addr = gdbarch_addr_bits_remove (gdbarch, address);
15199 (*p_record_line) (current_subfile, line, addr);
15200 }
15201 }
15202 basic_block = 0;
15203 }
15204 else switch (op_code)
15205 {
15206 case DW_LNS_extended_op:
15207 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15208 &bytes_read);
15209 line_ptr += bytes_read;
15210 extended_end = line_ptr + extended_len;
15211 extended_op = read_1_byte (abfd, line_ptr);
15212 line_ptr += 1;
15213 switch (extended_op)
15214 {
15215 case DW_LNE_end_sequence:
15216 p_record_line = record_line;
15217 end_sequence = 1;
15218 break;
15219 case DW_LNE_set_address:
15220 address = read_address (abfd, line_ptr, cu, &bytes_read);
15221
15222 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15223 {
15224 /* This line table is for a function which has been
15225 GCd by the linker. Ignore it. PR gdb/12528 */
15226
15227 long line_offset
15228 = line_ptr - get_debug_line_section (cu)->buffer;
15229
15230 complaint (&symfile_complaints,
15231 _(".debug_line address at offset 0x%lx is 0 "
15232 "[in module %s]"),
15233 line_offset, objfile->name);
15234 p_record_line = noop_record_line;
15235 }
15236
15237 op_index = 0;
15238 line_ptr += bytes_read;
15239 address += baseaddr;
15240 break;
15241 case DW_LNE_define_file:
15242 {
15243 char *cur_file;
15244 unsigned int dir_index, mod_time, length;
15245
15246 cur_file = read_direct_string (abfd, line_ptr,
15247 &bytes_read);
15248 line_ptr += bytes_read;
15249 dir_index =
15250 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15251 line_ptr += bytes_read;
15252 mod_time =
15253 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15254 line_ptr += bytes_read;
15255 length =
15256 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15257 line_ptr += bytes_read;
15258 add_file_name (lh, cur_file, dir_index, mod_time, length);
15259 }
15260 break;
15261 case DW_LNE_set_discriminator:
15262 /* The discriminator is not interesting to the debugger;
15263 just ignore it. */
15264 line_ptr = extended_end;
15265 break;
15266 default:
15267 complaint (&symfile_complaints,
15268 _("mangled .debug_line section"));
15269 return;
15270 }
15271 /* Make sure that we parsed the extended op correctly. If e.g.
15272 we expected a different address size than the producer used,
15273 we may have read the wrong number of bytes. */
15274 if (line_ptr != extended_end)
15275 {
15276 complaint (&symfile_complaints,
15277 _("mangled .debug_line section"));
15278 return;
15279 }
15280 break;
15281 case DW_LNS_copy:
15282 if (lh->num_file_names < file || file == 0)
15283 dwarf2_debug_line_missing_file_complaint ();
15284 else
15285 {
15286 lh->file_names[file - 1].included_p = 1;
15287 if (!decode_for_pst_p && is_stmt)
15288 {
15289 if (last_subfile != current_subfile)
15290 {
15291 addr = gdbarch_addr_bits_remove (gdbarch, address);
15292 if (last_subfile)
15293 (*p_record_line) (last_subfile, 0, addr);
15294 last_subfile = current_subfile;
15295 }
15296 addr = gdbarch_addr_bits_remove (gdbarch, address);
15297 (*p_record_line) (current_subfile, line, addr);
15298 }
15299 }
15300 basic_block = 0;
15301 break;
15302 case DW_LNS_advance_pc:
15303 {
15304 CORE_ADDR adjust
15305 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15306
15307 address += (((op_index + adjust)
15308 / lh->maximum_ops_per_instruction)
15309 * lh->minimum_instruction_length);
15310 op_index = ((op_index + adjust)
15311 % lh->maximum_ops_per_instruction);
15312 line_ptr += bytes_read;
15313 }
15314 break;
15315 case DW_LNS_advance_line:
15316 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15317 line_ptr += bytes_read;
15318 break;
15319 case DW_LNS_set_file:
15320 {
15321 /* The arrays lh->include_dirs and lh->file_names are
15322 0-based, but the directory and file name numbers in
15323 the statement program are 1-based. */
15324 struct file_entry *fe;
15325 char *dir = NULL;
15326
15327 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15328 line_ptr += bytes_read;
15329 if (lh->num_file_names < file || file == 0)
15330 dwarf2_debug_line_missing_file_complaint ();
15331 else
15332 {
15333 fe = &lh->file_names[file - 1];
15334 if (fe->dir_index)
15335 dir = lh->include_dirs[fe->dir_index - 1];
15336 if (!decode_for_pst_p)
15337 {
15338 last_subfile = current_subfile;
15339 dwarf2_start_subfile (fe->name, dir, comp_dir);
15340 }
15341 }
15342 }
15343 break;
15344 case DW_LNS_set_column:
15345 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15346 line_ptr += bytes_read;
15347 break;
15348 case DW_LNS_negate_stmt:
15349 is_stmt = (!is_stmt);
15350 break;
15351 case DW_LNS_set_basic_block:
15352 basic_block = 1;
15353 break;
15354 /* Add to the address register of the state machine the
15355 address increment value corresponding to special opcode
15356 255. I.e., this value is scaled by the minimum
15357 instruction length since special opcode 255 would have
15358 scaled the increment. */
15359 case DW_LNS_const_add_pc:
15360 {
15361 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15362
15363 address += (((op_index + adjust)
15364 / lh->maximum_ops_per_instruction)
15365 * lh->minimum_instruction_length);
15366 op_index = ((op_index + adjust)
15367 % lh->maximum_ops_per_instruction);
15368 }
15369 break;
15370 case DW_LNS_fixed_advance_pc:
15371 address += read_2_bytes (abfd, line_ptr);
15372 op_index = 0;
15373 line_ptr += 2;
15374 break;
15375 default:
15376 {
15377 /* Unknown standard opcode, ignore it. */
15378 int i;
15379
15380 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
15381 {
15382 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15383 line_ptr += bytes_read;
15384 }
15385 }
15386 }
15387 }
15388 if (lh->num_file_names < file || file == 0)
15389 dwarf2_debug_line_missing_file_complaint ();
15390 else
15391 {
15392 lh->file_names[file - 1].included_p = 1;
15393 if (!decode_for_pst_p)
15394 {
15395 addr = gdbarch_addr_bits_remove (gdbarch, address);
15396 (*p_record_line) (current_subfile, 0, addr);
15397 }
15398 }
15399 }
15400 }
15401
15402 /* Decode the Line Number Program (LNP) for the given line_header
15403 structure and CU. The actual information extracted and the type
15404 of structures created from the LNP depends on the value of PST.
15405
15406 1. If PST is NULL, then this procedure uses the data from the program
15407 to create all necessary symbol tables, and their linetables.
15408
15409 2. If PST is not NULL, this procedure reads the program to determine
15410 the list of files included by the unit represented by PST, and
15411 builds all the associated partial symbol tables.
15412
15413 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15414 It is used for relative paths in the line table.
15415 NOTE: When processing partial symtabs (pst != NULL),
15416 comp_dir == pst->dirname.
15417
15418 NOTE: It is important that psymtabs have the same file name (via strcmp)
15419 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15420 symtab we don't use it in the name of the psymtabs we create.
15421 E.g. expand_line_sal requires this when finding psymtabs to expand.
15422 A good testcase for this is mb-inline.exp. */
15423
15424 static void
15425 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15426 struct dwarf2_cu *cu, struct partial_symtab *pst,
15427 int want_line_info)
15428 {
15429 struct objfile *objfile = cu->objfile;
15430 const int decode_for_pst_p = (pst != NULL);
15431 struct subfile *first_subfile = current_subfile;
15432
15433 if (want_line_info)
15434 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
15435
15436 if (decode_for_pst_p)
15437 {
15438 int file_index;
15439
15440 /* Now that we're done scanning the Line Header Program, we can
15441 create the psymtab of each included file. */
15442 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15443 if (lh->file_names[file_index].included_p == 1)
15444 {
15445 char *include_name =
15446 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15447 if (include_name != NULL)
15448 dwarf2_create_include_psymtab (include_name, pst, objfile);
15449 }
15450 }
15451 else
15452 {
15453 /* Make sure a symtab is created for every file, even files
15454 which contain only variables (i.e. no code with associated
15455 line numbers). */
15456 int i;
15457
15458 for (i = 0; i < lh->num_file_names; i++)
15459 {
15460 char *dir = NULL;
15461 struct file_entry *fe;
15462
15463 fe = &lh->file_names[i];
15464 if (fe->dir_index)
15465 dir = lh->include_dirs[fe->dir_index - 1];
15466 dwarf2_start_subfile (fe->name, dir, comp_dir);
15467
15468 /* Skip the main file; we don't need it, and it must be
15469 allocated last, so that it will show up before the
15470 non-primary symtabs in the objfile's symtab list. */
15471 if (current_subfile == first_subfile)
15472 continue;
15473
15474 if (current_subfile->symtab == NULL)
15475 current_subfile->symtab = allocate_symtab (current_subfile->name,
15476 objfile);
15477 fe->symtab = current_subfile->symtab;
15478 }
15479 }
15480 }
15481
15482 /* Start a subfile for DWARF. FILENAME is the name of the file and
15483 DIRNAME the name of the source directory which contains FILENAME
15484 or NULL if not known. COMP_DIR is the compilation directory for the
15485 linetable's compilation unit or NULL if not known.
15486 This routine tries to keep line numbers from identical absolute and
15487 relative file names in a common subfile.
15488
15489 Using the `list' example from the GDB testsuite, which resides in
15490 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15491 of /srcdir/list0.c yields the following debugging information for list0.c:
15492
15493 DW_AT_name: /srcdir/list0.c
15494 DW_AT_comp_dir: /compdir
15495 files.files[0].name: list0.h
15496 files.files[0].dir: /srcdir
15497 files.files[1].name: list0.c
15498 files.files[1].dir: /srcdir
15499
15500 The line number information for list0.c has to end up in a single
15501 subfile, so that `break /srcdir/list0.c:1' works as expected.
15502 start_subfile will ensure that this happens provided that we pass the
15503 concatenation of files.files[1].dir and files.files[1].name as the
15504 subfile's name. */
15505
15506 static void
15507 dwarf2_start_subfile (char *filename, const char *dirname,
15508 const char *comp_dir)
15509 {
15510 char *fullname;
15511
15512 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15513 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15514 second argument to start_subfile. To be consistent, we do the
15515 same here. In order not to lose the line information directory,
15516 we concatenate it to the filename when it makes sense.
15517 Note that the Dwarf3 standard says (speaking of filenames in line
15518 information): ``The directory index is ignored for file names
15519 that represent full path names''. Thus ignoring dirname in the
15520 `else' branch below isn't an issue. */
15521
15522 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
15523 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15524 else
15525 fullname = filename;
15526
15527 start_subfile (fullname, comp_dir);
15528
15529 if (fullname != filename)
15530 xfree (fullname);
15531 }
15532
15533 /* Start a symtab for DWARF.
15534 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15535
15536 static void
15537 dwarf2_start_symtab (struct dwarf2_cu *cu,
15538 char *name, char *comp_dir, CORE_ADDR low_pc)
15539 {
15540 start_symtab (name, comp_dir, low_pc);
15541 record_debugformat ("DWARF 2");
15542 record_producer (cu->producer);
15543
15544 /* We assume that we're processing GCC output. */
15545 processing_gcc_compilation = 2;
15546
15547 processing_has_namespace_info = 0;
15548 }
15549
15550 static void
15551 var_decode_location (struct attribute *attr, struct symbol *sym,
15552 struct dwarf2_cu *cu)
15553 {
15554 struct objfile *objfile = cu->objfile;
15555 struct comp_unit_head *cu_header = &cu->header;
15556
15557 /* NOTE drow/2003-01-30: There used to be a comment and some special
15558 code here to turn a symbol with DW_AT_external and a
15559 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15560 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15561 with some versions of binutils) where shared libraries could have
15562 relocations against symbols in their debug information - the
15563 minimal symbol would have the right address, but the debug info
15564 would not. It's no longer necessary, because we will explicitly
15565 apply relocations when we read in the debug information now. */
15566
15567 /* A DW_AT_location attribute with no contents indicates that a
15568 variable has been optimized away. */
15569 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15570 {
15571 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15572 return;
15573 }
15574
15575 /* Handle one degenerate form of location expression specially, to
15576 preserve GDB's previous behavior when section offsets are
15577 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15578 then mark this symbol as LOC_STATIC. */
15579
15580 if (attr_form_is_block (attr)
15581 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15582 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15583 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15584 && (DW_BLOCK (attr)->size
15585 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
15586 {
15587 unsigned int dummy;
15588
15589 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15590 SYMBOL_VALUE_ADDRESS (sym) =
15591 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15592 else
15593 SYMBOL_VALUE_ADDRESS (sym) =
15594 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
15595 SYMBOL_CLASS (sym) = LOC_STATIC;
15596 fixup_symbol_section (sym, objfile);
15597 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15598 SYMBOL_SECTION (sym));
15599 return;
15600 }
15601
15602 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15603 expression evaluator, and use LOC_COMPUTED only when necessary
15604 (i.e. when the value of a register or memory location is
15605 referenced, or a thread-local block, etc.). Then again, it might
15606 not be worthwhile. I'm assuming that it isn't unless performance
15607 or memory numbers show me otherwise. */
15608
15609 dwarf2_symbol_mark_computed (attr, sym, cu);
15610 SYMBOL_CLASS (sym) = LOC_COMPUTED;
15611
15612 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
15613 cu->has_loclist = 1;
15614 }
15615
15616 /* Given a pointer to a DWARF information entry, figure out if we need
15617 to make a symbol table entry for it, and if so, create a new entry
15618 and return a pointer to it.
15619 If TYPE is NULL, determine symbol type from the die, otherwise
15620 used the passed type.
15621 If SPACE is not NULL, use it to hold the new symbol. If it is
15622 NULL, allocate a new symbol on the objfile's obstack. */
15623
15624 static struct symbol *
15625 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15626 struct symbol *space)
15627 {
15628 struct objfile *objfile = cu->objfile;
15629 struct symbol *sym = NULL;
15630 char *name;
15631 struct attribute *attr = NULL;
15632 struct attribute *attr2 = NULL;
15633 CORE_ADDR baseaddr;
15634 struct pending **list_to_add = NULL;
15635
15636 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
15637
15638 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15639
15640 name = dwarf2_name (die, cu);
15641 if (name)
15642 {
15643 const char *linkagename;
15644 int suppress_add = 0;
15645
15646 if (space)
15647 sym = space;
15648 else
15649 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
15650 OBJSTAT (objfile, n_syms++);
15651
15652 /* Cache this symbol's name and the name's demangled form (if any). */
15653 SYMBOL_SET_LANGUAGE (sym, cu->language);
15654 linkagename = dwarf2_physname (name, die, cu);
15655 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
15656
15657 /* Fortran does not have mangling standard and the mangling does differ
15658 between gfortran, iFort etc. */
15659 if (cu->language == language_fortran
15660 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
15661 symbol_set_demangled_name (&(sym->ginfo),
15662 (char *) dwarf2_full_name (name, die, cu),
15663 NULL);
15664
15665 /* Default assumptions.
15666 Use the passed type or decode it from the die. */
15667 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15668 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15669 if (type != NULL)
15670 SYMBOL_TYPE (sym) = type;
15671 else
15672 SYMBOL_TYPE (sym) = die_type (die, cu);
15673 attr = dwarf2_attr (die,
15674 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
15675 cu);
15676 if (attr)
15677 {
15678 SYMBOL_LINE (sym) = DW_UNSND (attr);
15679 }
15680
15681 attr = dwarf2_attr (die,
15682 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
15683 cu);
15684 if (attr)
15685 {
15686 int file_index = DW_UNSND (attr);
15687
15688 if (cu->line_header == NULL
15689 || file_index > cu->line_header->num_file_names)
15690 complaint (&symfile_complaints,
15691 _("file index out of range"));
15692 else if (file_index > 0)
15693 {
15694 struct file_entry *fe;
15695
15696 fe = &cu->line_header->file_names[file_index - 1];
15697 SYMBOL_SYMTAB (sym) = fe->symtab;
15698 }
15699 }
15700
15701 switch (die->tag)
15702 {
15703 case DW_TAG_label:
15704 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15705 if (attr)
15706 {
15707 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
15708 }
15709 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
15710 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
15711 SYMBOL_CLASS (sym) = LOC_LABEL;
15712 add_symbol_to_list (sym, cu->list_in_scope);
15713 break;
15714 case DW_TAG_subprogram:
15715 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15716 finish_block. */
15717 SYMBOL_CLASS (sym) = LOC_BLOCK;
15718 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15719 if ((attr2 && (DW_UNSND (attr2) != 0))
15720 || cu->language == language_ada)
15721 {
15722 /* Subprograms marked external are stored as a global symbol.
15723 Ada subprograms, whether marked external or not, are always
15724 stored as a global symbol, because we want to be able to
15725 access them globally. For instance, we want to be able
15726 to break on a nested subprogram without having to
15727 specify the context. */
15728 list_to_add = &global_symbols;
15729 }
15730 else
15731 {
15732 list_to_add = cu->list_in_scope;
15733 }
15734 break;
15735 case DW_TAG_inlined_subroutine:
15736 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15737 finish_block. */
15738 SYMBOL_CLASS (sym) = LOC_BLOCK;
15739 SYMBOL_INLINED (sym) = 1;
15740 list_to_add = cu->list_in_scope;
15741 break;
15742 case DW_TAG_template_value_param:
15743 suppress_add = 1;
15744 /* Fall through. */
15745 case DW_TAG_constant:
15746 case DW_TAG_variable:
15747 case DW_TAG_member:
15748 /* Compilation with minimal debug info may result in
15749 variables with missing type entries. Change the
15750 misleading `void' type to something sensible. */
15751 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
15752 SYMBOL_TYPE (sym)
15753 = objfile_type (objfile)->nodebug_data_symbol;
15754
15755 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15756 /* In the case of DW_TAG_member, we should only be called for
15757 static const members. */
15758 if (die->tag == DW_TAG_member)
15759 {
15760 /* dwarf2_add_field uses die_is_declaration,
15761 so we do the same. */
15762 gdb_assert (die_is_declaration (die, cu));
15763 gdb_assert (attr);
15764 }
15765 if (attr)
15766 {
15767 dwarf2_const_value (attr, sym, cu);
15768 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15769 if (!suppress_add)
15770 {
15771 if (attr2 && (DW_UNSND (attr2) != 0))
15772 list_to_add = &global_symbols;
15773 else
15774 list_to_add = cu->list_in_scope;
15775 }
15776 break;
15777 }
15778 attr = dwarf2_attr (die, DW_AT_location, cu);
15779 if (attr)
15780 {
15781 var_decode_location (attr, sym, cu);
15782 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15783
15784 /* Fortran explicitly imports any global symbols to the local
15785 scope by DW_TAG_common_block. */
15786 if (cu->language == language_fortran && die->parent
15787 && die->parent->tag == DW_TAG_common_block)
15788 attr2 = NULL;
15789
15790 if (SYMBOL_CLASS (sym) == LOC_STATIC
15791 && SYMBOL_VALUE_ADDRESS (sym) == 0
15792 && !dwarf2_per_objfile->has_section_at_zero)
15793 {
15794 /* When a static variable is eliminated by the linker,
15795 the corresponding debug information is not stripped
15796 out, but the variable address is set to null;
15797 do not add such variables into symbol table. */
15798 }
15799 else if (attr2 && (DW_UNSND (attr2) != 0))
15800 {
15801 /* Workaround gfortran PR debug/40040 - it uses
15802 DW_AT_location for variables in -fPIC libraries which may
15803 get overriden by other libraries/executable and get
15804 a different address. Resolve it by the minimal symbol
15805 which may come from inferior's executable using copy
15806 relocation. Make this workaround only for gfortran as for
15807 other compilers GDB cannot guess the minimal symbol
15808 Fortran mangling kind. */
15809 if (cu->language == language_fortran && die->parent
15810 && die->parent->tag == DW_TAG_module
15811 && cu->producer
15812 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
15813 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15814
15815 /* A variable with DW_AT_external is never static,
15816 but it may be block-scoped. */
15817 list_to_add = (cu->list_in_scope == &file_symbols
15818 ? &global_symbols : cu->list_in_scope);
15819 }
15820 else
15821 list_to_add = cu->list_in_scope;
15822 }
15823 else
15824 {
15825 /* We do not know the address of this symbol.
15826 If it is an external symbol and we have type information
15827 for it, enter the symbol as a LOC_UNRESOLVED symbol.
15828 The address of the variable will then be determined from
15829 the minimal symbol table whenever the variable is
15830 referenced. */
15831 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15832
15833 /* Fortran explicitly imports any global symbols to the local
15834 scope by DW_TAG_common_block. */
15835 if (cu->language == language_fortran && die->parent
15836 && die->parent->tag == DW_TAG_common_block)
15837 {
15838 /* SYMBOL_CLASS doesn't matter here because
15839 read_common_block is going to reset it. */
15840 if (!suppress_add)
15841 list_to_add = cu->list_in_scope;
15842 }
15843 else if (attr2 && (DW_UNSND (attr2) != 0)
15844 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
15845 {
15846 /* A variable with DW_AT_external is never static, but it
15847 may be block-scoped. */
15848 list_to_add = (cu->list_in_scope == &file_symbols
15849 ? &global_symbols : cu->list_in_scope);
15850
15851 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15852 }
15853 else if (!die_is_declaration (die, cu))
15854 {
15855 /* Use the default LOC_OPTIMIZED_OUT class. */
15856 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
15857 if (!suppress_add)
15858 list_to_add = cu->list_in_scope;
15859 }
15860 }
15861 break;
15862 case DW_TAG_formal_parameter:
15863 /* If we are inside a function, mark this as an argument. If
15864 not, we might be looking at an argument to an inlined function
15865 when we do not have enough information to show inlined frames;
15866 pretend it's a local variable in that case so that the user can
15867 still see it. */
15868 if (context_stack_depth > 0
15869 && context_stack[context_stack_depth - 1].name != NULL)
15870 SYMBOL_IS_ARGUMENT (sym) = 1;
15871 attr = dwarf2_attr (die, DW_AT_location, cu);
15872 if (attr)
15873 {
15874 var_decode_location (attr, sym, cu);
15875 }
15876 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15877 if (attr)
15878 {
15879 dwarf2_const_value (attr, sym, cu);
15880 }
15881
15882 list_to_add = cu->list_in_scope;
15883 break;
15884 case DW_TAG_unspecified_parameters:
15885 /* From varargs functions; gdb doesn't seem to have any
15886 interest in this information, so just ignore it for now.
15887 (FIXME?) */
15888 break;
15889 case DW_TAG_template_type_param:
15890 suppress_add = 1;
15891 /* Fall through. */
15892 case DW_TAG_class_type:
15893 case DW_TAG_interface_type:
15894 case DW_TAG_structure_type:
15895 case DW_TAG_union_type:
15896 case DW_TAG_set_type:
15897 case DW_TAG_enumeration_type:
15898 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15899 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
15900
15901 {
15902 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
15903 really ever be static objects: otherwise, if you try
15904 to, say, break of a class's method and you're in a file
15905 which doesn't mention that class, it won't work unless
15906 the check for all static symbols in lookup_symbol_aux
15907 saves you. See the OtherFileClass tests in
15908 gdb.c++/namespace.exp. */
15909
15910 if (!suppress_add)
15911 {
15912 list_to_add = (cu->list_in_scope == &file_symbols
15913 && (cu->language == language_cplus
15914 || cu->language == language_java)
15915 ? &global_symbols : cu->list_in_scope);
15916
15917 /* The semantics of C++ state that "struct foo {
15918 ... }" also defines a typedef for "foo". A Java
15919 class declaration also defines a typedef for the
15920 class. */
15921 if (cu->language == language_cplus
15922 || cu->language == language_java
15923 || cu->language == language_ada)
15924 {
15925 /* The symbol's name is already allocated along
15926 with this objfile, so we don't need to
15927 duplicate it for the type. */
15928 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
15929 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
15930 }
15931 }
15932 }
15933 break;
15934 case DW_TAG_typedef:
15935 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15936 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15937 list_to_add = cu->list_in_scope;
15938 break;
15939 case DW_TAG_base_type:
15940 case DW_TAG_subrange_type:
15941 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15942 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15943 list_to_add = cu->list_in_scope;
15944 break;
15945 case DW_TAG_enumerator:
15946 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15947 if (attr)
15948 {
15949 dwarf2_const_value (attr, sym, cu);
15950 }
15951 {
15952 /* NOTE: carlton/2003-11-10: See comment above in the
15953 DW_TAG_class_type, etc. block. */
15954
15955 list_to_add = (cu->list_in_scope == &file_symbols
15956 && (cu->language == language_cplus
15957 || cu->language == language_java)
15958 ? &global_symbols : cu->list_in_scope);
15959 }
15960 break;
15961 case DW_TAG_namespace:
15962 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15963 list_to_add = &global_symbols;
15964 break;
15965 case DW_TAG_common_block:
15966 SYMBOL_CLASS (sym) = LOC_STATIC;
15967 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
15968 add_symbol_to_list (sym, cu->list_in_scope);
15969 break;
15970 default:
15971 /* Not a tag we recognize. Hopefully we aren't processing
15972 trash data, but since we must specifically ignore things
15973 we don't recognize, there is nothing else we should do at
15974 this point. */
15975 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
15976 dwarf_tag_name (die->tag));
15977 break;
15978 }
15979
15980 if (suppress_add)
15981 {
15982 sym->hash_next = objfile->template_symbols;
15983 objfile->template_symbols = sym;
15984 list_to_add = NULL;
15985 }
15986
15987 if (list_to_add != NULL)
15988 add_symbol_to_list (sym, list_to_add);
15989
15990 /* For the benefit of old versions of GCC, check for anonymous
15991 namespaces based on the demangled name. */
15992 if (!processing_has_namespace_info
15993 && cu->language == language_cplus)
15994 cp_scan_for_anonymous_namespaces (sym, objfile);
15995 }
15996 return (sym);
15997 }
15998
15999 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16000
16001 static struct symbol *
16002 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16003 {
16004 return new_symbol_full (die, type, cu, NULL);
16005 }
16006
16007 /* Given an attr with a DW_FORM_dataN value in host byte order,
16008 zero-extend it as appropriate for the symbol's type. The DWARF
16009 standard (v4) is not entirely clear about the meaning of using
16010 DW_FORM_dataN for a constant with a signed type, where the type is
16011 wider than the data. The conclusion of a discussion on the DWARF
16012 list was that this is unspecified. We choose to always zero-extend
16013 because that is the interpretation long in use by GCC. */
16014
16015 static gdb_byte *
16016 dwarf2_const_value_data (struct attribute *attr, struct type *type,
16017 const char *name, struct obstack *obstack,
16018 struct dwarf2_cu *cu, LONGEST *value, int bits)
16019 {
16020 struct objfile *objfile = cu->objfile;
16021 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16022 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16023 LONGEST l = DW_UNSND (attr);
16024
16025 if (bits < sizeof (*value) * 8)
16026 {
16027 l &= ((LONGEST) 1 << bits) - 1;
16028 *value = l;
16029 }
16030 else if (bits == sizeof (*value) * 8)
16031 *value = l;
16032 else
16033 {
16034 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16035 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16036 return bytes;
16037 }
16038
16039 return NULL;
16040 }
16041
16042 /* Read a constant value from an attribute. Either set *VALUE, or if
16043 the value does not fit in *VALUE, set *BYTES - either already
16044 allocated on the objfile obstack, or newly allocated on OBSTACK,
16045 or, set *BATON, if we translated the constant to a location
16046 expression. */
16047
16048 static void
16049 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16050 const char *name, struct obstack *obstack,
16051 struct dwarf2_cu *cu,
16052 LONGEST *value, gdb_byte **bytes,
16053 struct dwarf2_locexpr_baton **baton)
16054 {
16055 struct objfile *objfile = cu->objfile;
16056 struct comp_unit_head *cu_header = &cu->header;
16057 struct dwarf_block *blk;
16058 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16059 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16060
16061 *value = 0;
16062 *bytes = NULL;
16063 *baton = NULL;
16064
16065 switch (attr->form)
16066 {
16067 case DW_FORM_addr:
16068 case DW_FORM_GNU_addr_index:
16069 {
16070 gdb_byte *data;
16071
16072 if (TYPE_LENGTH (type) != cu_header->addr_size)
16073 dwarf2_const_value_length_mismatch_complaint (name,
16074 cu_header->addr_size,
16075 TYPE_LENGTH (type));
16076 /* Symbols of this form are reasonably rare, so we just
16077 piggyback on the existing location code rather than writing
16078 a new implementation of symbol_computed_ops. */
16079 *baton = obstack_alloc (&objfile->objfile_obstack,
16080 sizeof (struct dwarf2_locexpr_baton));
16081 (*baton)->per_cu = cu->per_cu;
16082 gdb_assert ((*baton)->per_cu);
16083
16084 (*baton)->size = 2 + cu_header->addr_size;
16085 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16086 (*baton)->data = data;
16087
16088 data[0] = DW_OP_addr;
16089 store_unsigned_integer (&data[1], cu_header->addr_size,
16090 byte_order, DW_ADDR (attr));
16091 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16092 }
16093 break;
16094 case DW_FORM_string:
16095 case DW_FORM_strp:
16096 case DW_FORM_GNU_str_index:
16097 case DW_FORM_GNU_strp_alt:
16098 /* DW_STRING is already allocated on the objfile obstack, point
16099 directly to it. */
16100 *bytes = (gdb_byte *) DW_STRING (attr);
16101 break;
16102 case DW_FORM_block1:
16103 case DW_FORM_block2:
16104 case DW_FORM_block4:
16105 case DW_FORM_block:
16106 case DW_FORM_exprloc:
16107 blk = DW_BLOCK (attr);
16108 if (TYPE_LENGTH (type) != blk->size)
16109 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16110 TYPE_LENGTH (type));
16111 *bytes = blk->data;
16112 break;
16113
16114 /* The DW_AT_const_value attributes are supposed to carry the
16115 symbol's value "represented as it would be on the target
16116 architecture." By the time we get here, it's already been
16117 converted to host endianness, so we just need to sign- or
16118 zero-extend it as appropriate. */
16119 case DW_FORM_data1:
16120 *bytes = dwarf2_const_value_data (attr, type, name,
16121 obstack, cu, value, 8);
16122 break;
16123 case DW_FORM_data2:
16124 *bytes = dwarf2_const_value_data (attr, type, name,
16125 obstack, cu, value, 16);
16126 break;
16127 case DW_FORM_data4:
16128 *bytes = dwarf2_const_value_data (attr, type, name,
16129 obstack, cu, value, 32);
16130 break;
16131 case DW_FORM_data8:
16132 *bytes = dwarf2_const_value_data (attr, type, name,
16133 obstack, cu, value, 64);
16134 break;
16135
16136 case DW_FORM_sdata:
16137 *value = DW_SND (attr);
16138 break;
16139
16140 case DW_FORM_udata:
16141 *value = DW_UNSND (attr);
16142 break;
16143
16144 default:
16145 complaint (&symfile_complaints,
16146 _("unsupported const value attribute form: '%s'"),
16147 dwarf_form_name (attr->form));
16148 *value = 0;
16149 break;
16150 }
16151 }
16152
16153
16154 /* Copy constant value from an attribute to a symbol. */
16155
16156 static void
16157 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16158 struct dwarf2_cu *cu)
16159 {
16160 struct objfile *objfile = cu->objfile;
16161 struct comp_unit_head *cu_header = &cu->header;
16162 LONGEST value;
16163 gdb_byte *bytes;
16164 struct dwarf2_locexpr_baton *baton;
16165
16166 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16167 SYMBOL_PRINT_NAME (sym),
16168 &objfile->objfile_obstack, cu,
16169 &value, &bytes, &baton);
16170
16171 if (baton != NULL)
16172 {
16173 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
16174 SYMBOL_LOCATION_BATON (sym) = baton;
16175 SYMBOL_CLASS (sym) = LOC_COMPUTED;
16176 }
16177 else if (bytes != NULL)
16178 {
16179 SYMBOL_VALUE_BYTES (sym) = bytes;
16180 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
16181 }
16182 else
16183 {
16184 SYMBOL_VALUE (sym) = value;
16185 SYMBOL_CLASS (sym) = LOC_CONST;
16186 }
16187 }
16188
16189 /* Return the type of the die in question using its DW_AT_type attribute. */
16190
16191 static struct type *
16192 die_type (struct die_info *die, struct dwarf2_cu *cu)
16193 {
16194 struct attribute *type_attr;
16195
16196 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16197 if (!type_attr)
16198 {
16199 /* A missing DW_AT_type represents a void type. */
16200 return objfile_type (cu->objfile)->builtin_void;
16201 }
16202
16203 return lookup_die_type (die, type_attr, cu);
16204 }
16205
16206 /* True iff CU's producer generates GNAT Ada auxiliary information
16207 that allows to find parallel types through that information instead
16208 of having to do expensive parallel lookups by type name. */
16209
16210 static int
16211 need_gnat_info (struct dwarf2_cu *cu)
16212 {
16213 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16214 of GNAT produces this auxiliary information, without any indication
16215 that it is produced. Part of enhancing the FSF version of GNAT
16216 to produce that information will be to put in place an indicator
16217 that we can use in order to determine whether the descriptive type
16218 info is available or not. One suggestion that has been made is
16219 to use a new attribute, attached to the CU die. For now, assume
16220 that the descriptive type info is not available. */
16221 return 0;
16222 }
16223
16224 /* Return the auxiliary type of the die in question using its
16225 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16226 attribute is not present. */
16227
16228 static struct type *
16229 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16230 {
16231 struct attribute *type_attr;
16232
16233 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16234 if (!type_attr)
16235 return NULL;
16236
16237 return lookup_die_type (die, type_attr, cu);
16238 }
16239
16240 /* If DIE has a descriptive_type attribute, then set the TYPE's
16241 descriptive type accordingly. */
16242
16243 static void
16244 set_descriptive_type (struct type *type, struct die_info *die,
16245 struct dwarf2_cu *cu)
16246 {
16247 struct type *descriptive_type = die_descriptive_type (die, cu);
16248
16249 if (descriptive_type)
16250 {
16251 ALLOCATE_GNAT_AUX_TYPE (type);
16252 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16253 }
16254 }
16255
16256 /* Return the containing type of the die in question using its
16257 DW_AT_containing_type attribute. */
16258
16259 static struct type *
16260 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16261 {
16262 struct attribute *type_attr;
16263
16264 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16265 if (!type_attr)
16266 error (_("Dwarf Error: Problem turning containing type into gdb type "
16267 "[in module %s]"), cu->objfile->name);
16268
16269 return lookup_die_type (die, type_attr, cu);
16270 }
16271
16272 /* Look up the type of DIE in CU using its type attribute ATTR.
16273 If there is no type substitute an error marker. */
16274
16275 static struct type *
16276 lookup_die_type (struct die_info *die, struct attribute *attr,
16277 struct dwarf2_cu *cu)
16278 {
16279 struct objfile *objfile = cu->objfile;
16280 struct type *this_type;
16281
16282 /* First see if we have it cached. */
16283
16284 if (attr->form == DW_FORM_GNU_ref_alt)
16285 {
16286 struct dwarf2_per_cu_data *per_cu;
16287 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16288
16289 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16290 this_type = get_die_type_at_offset (offset, per_cu);
16291 }
16292 else if (is_ref_attr (attr))
16293 {
16294 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16295
16296 this_type = get_die_type_at_offset (offset, cu->per_cu);
16297 }
16298 else if (attr->form == DW_FORM_ref_sig8)
16299 {
16300 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16301
16302 /* sig_type will be NULL if the signatured type is missing from
16303 the debug info. */
16304 if (sig_type == NULL)
16305 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16306 "at 0x%x [in module %s]"),
16307 die->offset.sect_off, objfile->name);
16308
16309 gdb_assert (sig_type->per_cu.is_debug_types);
16310 /* If we haven't filled in type_offset_in_section yet, then we
16311 haven't read the type in yet. */
16312 this_type = NULL;
16313 if (sig_type->type_offset_in_section.sect_off != 0)
16314 {
16315 this_type =
16316 get_die_type_at_offset (sig_type->type_offset_in_section,
16317 &sig_type->per_cu);
16318 }
16319 }
16320 else
16321 {
16322 dump_die_for_error (die);
16323 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
16324 dwarf_attr_name (attr->name), objfile->name);
16325 }
16326
16327 /* If not cached we need to read it in. */
16328
16329 if (this_type == NULL)
16330 {
16331 struct die_info *type_die;
16332 struct dwarf2_cu *type_cu = cu;
16333
16334 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
16335 /* If we found the type now, it's probably because the type came
16336 from an inter-CU reference and the type's CU got expanded before
16337 ours. */
16338 this_type = get_die_type (type_die, type_cu);
16339 if (this_type == NULL)
16340 this_type = read_type_die_1 (type_die, type_cu);
16341 }
16342
16343 /* If we still don't have a type use an error marker. */
16344
16345 if (this_type == NULL)
16346 {
16347 char *message, *saved;
16348
16349 /* read_type_die already issued a complaint. */
16350 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16351 objfile->name,
16352 cu->header.offset.sect_off,
16353 die->offset.sect_off);
16354 saved = obstack_copy0 (&objfile->objfile_obstack,
16355 message, strlen (message));
16356 xfree (message);
16357
16358 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16359 }
16360
16361 return this_type;
16362 }
16363
16364 /* Return the type in DIE, CU.
16365 Returns NULL for invalid types.
16366
16367 This first does a lookup in the appropriate type_hash table,
16368 and only reads the die in if necessary.
16369
16370 NOTE: This can be called when reading in partial or full symbols. */
16371
16372 static struct type *
16373 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
16374 {
16375 struct type *this_type;
16376
16377 this_type = get_die_type (die, cu);
16378 if (this_type)
16379 return this_type;
16380
16381 return read_type_die_1 (die, cu);
16382 }
16383
16384 /* Read the type in DIE, CU.
16385 Returns NULL for invalid types. */
16386
16387 static struct type *
16388 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16389 {
16390 struct type *this_type = NULL;
16391
16392 switch (die->tag)
16393 {
16394 case DW_TAG_class_type:
16395 case DW_TAG_interface_type:
16396 case DW_TAG_structure_type:
16397 case DW_TAG_union_type:
16398 this_type = read_structure_type (die, cu);
16399 break;
16400 case DW_TAG_enumeration_type:
16401 this_type = read_enumeration_type (die, cu);
16402 break;
16403 case DW_TAG_subprogram:
16404 case DW_TAG_subroutine_type:
16405 case DW_TAG_inlined_subroutine:
16406 this_type = read_subroutine_type (die, cu);
16407 break;
16408 case DW_TAG_array_type:
16409 this_type = read_array_type (die, cu);
16410 break;
16411 case DW_TAG_set_type:
16412 this_type = read_set_type (die, cu);
16413 break;
16414 case DW_TAG_pointer_type:
16415 this_type = read_tag_pointer_type (die, cu);
16416 break;
16417 case DW_TAG_ptr_to_member_type:
16418 this_type = read_tag_ptr_to_member_type (die, cu);
16419 break;
16420 case DW_TAG_reference_type:
16421 this_type = read_tag_reference_type (die, cu);
16422 break;
16423 case DW_TAG_const_type:
16424 this_type = read_tag_const_type (die, cu);
16425 break;
16426 case DW_TAG_volatile_type:
16427 this_type = read_tag_volatile_type (die, cu);
16428 break;
16429 case DW_TAG_string_type:
16430 this_type = read_tag_string_type (die, cu);
16431 break;
16432 case DW_TAG_typedef:
16433 this_type = read_typedef (die, cu);
16434 break;
16435 case DW_TAG_subrange_type:
16436 this_type = read_subrange_type (die, cu);
16437 break;
16438 case DW_TAG_base_type:
16439 this_type = read_base_type (die, cu);
16440 break;
16441 case DW_TAG_unspecified_type:
16442 this_type = read_unspecified_type (die, cu);
16443 break;
16444 case DW_TAG_namespace:
16445 this_type = read_namespace_type (die, cu);
16446 break;
16447 case DW_TAG_module:
16448 this_type = read_module_type (die, cu);
16449 break;
16450 default:
16451 complaint (&symfile_complaints,
16452 _("unexpected tag in read_type_die: '%s'"),
16453 dwarf_tag_name (die->tag));
16454 break;
16455 }
16456
16457 return this_type;
16458 }
16459
16460 /* See if we can figure out if the class lives in a namespace. We do
16461 this by looking for a member function; its demangled name will
16462 contain namespace info, if there is any.
16463 Return the computed name or NULL.
16464 Space for the result is allocated on the objfile's obstack.
16465 This is the full-die version of guess_partial_die_structure_name.
16466 In this case we know DIE has no useful parent. */
16467
16468 static char *
16469 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16470 {
16471 struct die_info *spec_die;
16472 struct dwarf2_cu *spec_cu;
16473 struct die_info *child;
16474
16475 spec_cu = cu;
16476 spec_die = die_specification (die, &spec_cu);
16477 if (spec_die != NULL)
16478 {
16479 die = spec_die;
16480 cu = spec_cu;
16481 }
16482
16483 for (child = die->child;
16484 child != NULL;
16485 child = child->sibling)
16486 {
16487 if (child->tag == DW_TAG_subprogram)
16488 {
16489 struct attribute *attr;
16490
16491 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16492 if (attr == NULL)
16493 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16494 if (attr != NULL)
16495 {
16496 char *actual_name
16497 = language_class_name_from_physname (cu->language_defn,
16498 DW_STRING (attr));
16499 char *name = NULL;
16500
16501 if (actual_name != NULL)
16502 {
16503 char *die_name = dwarf2_name (die, cu);
16504
16505 if (die_name != NULL
16506 && strcmp (die_name, actual_name) != 0)
16507 {
16508 /* Strip off the class name from the full name.
16509 We want the prefix. */
16510 int die_name_len = strlen (die_name);
16511 int actual_name_len = strlen (actual_name);
16512
16513 /* Test for '::' as a sanity check. */
16514 if (actual_name_len > die_name_len + 2
16515 && actual_name[actual_name_len
16516 - die_name_len - 1] == ':')
16517 name =
16518 obsavestring (actual_name,
16519 actual_name_len - die_name_len - 2,
16520 &cu->objfile->objfile_obstack);
16521 }
16522 }
16523 xfree (actual_name);
16524 return name;
16525 }
16526 }
16527 }
16528
16529 return NULL;
16530 }
16531
16532 /* GCC might emit a nameless typedef that has a linkage name. Determine the
16533 prefix part in such case. See
16534 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16535
16536 static char *
16537 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16538 {
16539 struct attribute *attr;
16540 char *base;
16541
16542 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16543 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16544 return NULL;
16545
16546 attr = dwarf2_attr (die, DW_AT_name, cu);
16547 if (attr != NULL && DW_STRING (attr) != NULL)
16548 return NULL;
16549
16550 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16551 if (attr == NULL)
16552 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16553 if (attr == NULL || DW_STRING (attr) == NULL)
16554 return NULL;
16555
16556 /* dwarf2_name had to be already called. */
16557 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16558
16559 /* Strip the base name, keep any leading namespaces/classes. */
16560 base = strrchr (DW_STRING (attr), ':');
16561 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16562 return "";
16563
16564 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
16565 &cu->objfile->objfile_obstack);
16566 }
16567
16568 /* Return the name of the namespace/class that DIE is defined within,
16569 or "" if we can't tell. The caller should not xfree the result.
16570
16571 For example, if we're within the method foo() in the following
16572 code:
16573
16574 namespace N {
16575 class C {
16576 void foo () {
16577 }
16578 };
16579 }
16580
16581 then determine_prefix on foo's die will return "N::C". */
16582
16583 static const char *
16584 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
16585 {
16586 struct die_info *parent, *spec_die;
16587 struct dwarf2_cu *spec_cu;
16588 struct type *parent_type;
16589 char *retval;
16590
16591 if (cu->language != language_cplus && cu->language != language_java
16592 && cu->language != language_fortran)
16593 return "";
16594
16595 retval = anonymous_struct_prefix (die, cu);
16596 if (retval)
16597 return retval;
16598
16599 /* We have to be careful in the presence of DW_AT_specification.
16600 For example, with GCC 3.4, given the code
16601
16602 namespace N {
16603 void foo() {
16604 // Definition of N::foo.
16605 }
16606 }
16607
16608 then we'll have a tree of DIEs like this:
16609
16610 1: DW_TAG_compile_unit
16611 2: DW_TAG_namespace // N
16612 3: DW_TAG_subprogram // declaration of N::foo
16613 4: DW_TAG_subprogram // definition of N::foo
16614 DW_AT_specification // refers to die #3
16615
16616 Thus, when processing die #4, we have to pretend that we're in
16617 the context of its DW_AT_specification, namely the contex of die
16618 #3. */
16619 spec_cu = cu;
16620 spec_die = die_specification (die, &spec_cu);
16621 if (spec_die == NULL)
16622 parent = die->parent;
16623 else
16624 {
16625 parent = spec_die->parent;
16626 cu = spec_cu;
16627 }
16628
16629 if (parent == NULL)
16630 return "";
16631 else if (parent->building_fullname)
16632 {
16633 const char *name;
16634 const char *parent_name;
16635
16636 /* It has been seen on RealView 2.2 built binaries,
16637 DW_TAG_template_type_param types actually _defined_ as
16638 children of the parent class:
16639
16640 enum E {};
16641 template class <class Enum> Class{};
16642 Class<enum E> class_e;
16643
16644 1: DW_TAG_class_type (Class)
16645 2: DW_TAG_enumeration_type (E)
16646 3: DW_TAG_enumerator (enum1:0)
16647 3: DW_TAG_enumerator (enum2:1)
16648 ...
16649 2: DW_TAG_template_type_param
16650 DW_AT_type DW_FORM_ref_udata (E)
16651
16652 Besides being broken debug info, it can put GDB into an
16653 infinite loop. Consider:
16654
16655 When we're building the full name for Class<E>, we'll start
16656 at Class, and go look over its template type parameters,
16657 finding E. We'll then try to build the full name of E, and
16658 reach here. We're now trying to build the full name of E,
16659 and look over the parent DIE for containing scope. In the
16660 broken case, if we followed the parent DIE of E, we'd again
16661 find Class, and once again go look at its template type
16662 arguments, etc., etc. Simply don't consider such parent die
16663 as source-level parent of this die (it can't be, the language
16664 doesn't allow it), and break the loop here. */
16665 name = dwarf2_name (die, cu);
16666 parent_name = dwarf2_name (parent, cu);
16667 complaint (&symfile_complaints,
16668 _("template param type '%s' defined within parent '%s'"),
16669 name ? name : "<unknown>",
16670 parent_name ? parent_name : "<unknown>");
16671 return "";
16672 }
16673 else
16674 switch (parent->tag)
16675 {
16676 case DW_TAG_namespace:
16677 parent_type = read_type_die (parent, cu);
16678 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
16679 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
16680 Work around this problem here. */
16681 if (cu->language == language_cplus
16682 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
16683 return "";
16684 /* We give a name to even anonymous namespaces. */
16685 return TYPE_TAG_NAME (parent_type);
16686 case DW_TAG_class_type:
16687 case DW_TAG_interface_type:
16688 case DW_TAG_structure_type:
16689 case DW_TAG_union_type:
16690 case DW_TAG_module:
16691 parent_type = read_type_die (parent, cu);
16692 if (TYPE_TAG_NAME (parent_type) != NULL)
16693 return TYPE_TAG_NAME (parent_type);
16694 else
16695 /* An anonymous structure is only allowed non-static data
16696 members; no typedefs, no member functions, et cetera.
16697 So it does not need a prefix. */
16698 return "";
16699 case DW_TAG_compile_unit:
16700 case DW_TAG_partial_unit:
16701 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
16702 if (cu->language == language_cplus
16703 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16704 && die->child != NULL
16705 && (die->tag == DW_TAG_class_type
16706 || die->tag == DW_TAG_structure_type
16707 || die->tag == DW_TAG_union_type))
16708 {
16709 char *name = guess_full_die_structure_name (die, cu);
16710 if (name != NULL)
16711 return name;
16712 }
16713 return "";
16714 default:
16715 return determine_prefix (parent, cu);
16716 }
16717 }
16718
16719 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
16720 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
16721 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
16722 an obconcat, otherwise allocate storage for the result. The CU argument is
16723 used to determine the language and hence, the appropriate separator. */
16724
16725 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
16726
16727 static char *
16728 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
16729 int physname, struct dwarf2_cu *cu)
16730 {
16731 const char *lead = "";
16732 const char *sep;
16733
16734 if (suffix == NULL || suffix[0] == '\0'
16735 || prefix == NULL || prefix[0] == '\0')
16736 sep = "";
16737 else if (cu->language == language_java)
16738 sep = ".";
16739 else if (cu->language == language_fortran && physname)
16740 {
16741 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
16742 DW_AT_MIPS_linkage_name is preferred and used instead. */
16743
16744 lead = "__";
16745 sep = "_MOD_";
16746 }
16747 else
16748 sep = "::";
16749
16750 if (prefix == NULL)
16751 prefix = "";
16752 if (suffix == NULL)
16753 suffix = "";
16754
16755 if (obs == NULL)
16756 {
16757 char *retval
16758 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
16759
16760 strcpy (retval, lead);
16761 strcat (retval, prefix);
16762 strcat (retval, sep);
16763 strcat (retval, suffix);
16764 return retval;
16765 }
16766 else
16767 {
16768 /* We have an obstack. */
16769 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
16770 }
16771 }
16772
16773 /* Return sibling of die, NULL if no sibling. */
16774
16775 static struct die_info *
16776 sibling_die (struct die_info *die)
16777 {
16778 return die->sibling;
16779 }
16780
16781 /* Get name of a die, return NULL if not found. */
16782
16783 static char *
16784 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
16785 struct obstack *obstack)
16786 {
16787 if (name && cu->language == language_cplus)
16788 {
16789 char *canon_name = cp_canonicalize_string (name);
16790
16791 if (canon_name != NULL)
16792 {
16793 if (strcmp (canon_name, name) != 0)
16794 name = obsavestring (canon_name, strlen (canon_name),
16795 obstack);
16796 xfree (canon_name);
16797 }
16798 }
16799
16800 return name;
16801 }
16802
16803 /* Get name of a die, return NULL if not found. */
16804
16805 static char *
16806 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
16807 {
16808 struct attribute *attr;
16809
16810 attr = dwarf2_attr (die, DW_AT_name, cu);
16811 if ((!attr || !DW_STRING (attr))
16812 && die->tag != DW_TAG_class_type
16813 && die->tag != DW_TAG_interface_type
16814 && die->tag != DW_TAG_structure_type
16815 && die->tag != DW_TAG_union_type)
16816 return NULL;
16817
16818 switch (die->tag)
16819 {
16820 case DW_TAG_compile_unit:
16821 case DW_TAG_partial_unit:
16822 /* Compilation units have a DW_AT_name that is a filename, not
16823 a source language identifier. */
16824 case DW_TAG_enumeration_type:
16825 case DW_TAG_enumerator:
16826 /* These tags always have simple identifiers already; no need
16827 to canonicalize them. */
16828 return DW_STRING (attr);
16829
16830 case DW_TAG_subprogram:
16831 /* Java constructors will all be named "<init>", so return
16832 the class name when we see this special case. */
16833 if (cu->language == language_java
16834 && DW_STRING (attr) != NULL
16835 && strcmp (DW_STRING (attr), "<init>") == 0)
16836 {
16837 struct dwarf2_cu *spec_cu = cu;
16838 struct die_info *spec_die;
16839
16840 /* GCJ will output '<init>' for Java constructor names.
16841 For this special case, return the name of the parent class. */
16842
16843 /* GCJ may output suprogram DIEs with AT_specification set.
16844 If so, use the name of the specified DIE. */
16845 spec_die = die_specification (die, &spec_cu);
16846 if (spec_die != NULL)
16847 return dwarf2_name (spec_die, spec_cu);
16848
16849 do
16850 {
16851 die = die->parent;
16852 if (die->tag == DW_TAG_class_type)
16853 return dwarf2_name (die, cu);
16854 }
16855 while (die->tag != DW_TAG_compile_unit
16856 && die->tag != DW_TAG_partial_unit);
16857 }
16858 break;
16859
16860 case DW_TAG_class_type:
16861 case DW_TAG_interface_type:
16862 case DW_TAG_structure_type:
16863 case DW_TAG_union_type:
16864 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
16865 structures or unions. These were of the form "._%d" in GCC 4.1,
16866 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
16867 and GCC 4.4. We work around this problem by ignoring these. */
16868 if (attr && DW_STRING (attr)
16869 && (strncmp (DW_STRING (attr), "._", 2) == 0
16870 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
16871 return NULL;
16872
16873 /* GCC might emit a nameless typedef that has a linkage name. See
16874 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16875 if (!attr || DW_STRING (attr) == NULL)
16876 {
16877 char *demangled = NULL;
16878
16879 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16880 if (attr == NULL)
16881 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16882
16883 if (attr == NULL || DW_STRING (attr) == NULL)
16884 return NULL;
16885
16886 /* Avoid demangling DW_STRING (attr) the second time on a second
16887 call for the same DIE. */
16888 if (!DW_STRING_IS_CANONICAL (attr))
16889 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
16890
16891 if (demangled)
16892 {
16893 char *base;
16894
16895 /* FIXME: we already did this for the partial symbol... */
16896 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
16897 &cu->objfile->objfile_obstack);
16898 DW_STRING_IS_CANONICAL (attr) = 1;
16899 xfree (demangled);
16900
16901 /* Strip any leading namespaces/classes, keep only the base name.
16902 DW_AT_name for named DIEs does not contain the prefixes. */
16903 base = strrchr (DW_STRING (attr), ':');
16904 if (base && base > DW_STRING (attr) && base[-1] == ':')
16905 return &base[1];
16906 else
16907 return DW_STRING (attr);
16908 }
16909 }
16910 break;
16911
16912 default:
16913 break;
16914 }
16915
16916 if (!DW_STRING_IS_CANONICAL (attr))
16917 {
16918 DW_STRING (attr)
16919 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
16920 &cu->objfile->objfile_obstack);
16921 DW_STRING_IS_CANONICAL (attr) = 1;
16922 }
16923 return DW_STRING (attr);
16924 }
16925
16926 /* Return the die that this die in an extension of, or NULL if there
16927 is none. *EXT_CU is the CU containing DIE on input, and the CU
16928 containing the return value on output. */
16929
16930 static struct die_info *
16931 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
16932 {
16933 struct attribute *attr;
16934
16935 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
16936 if (attr == NULL)
16937 return NULL;
16938
16939 return follow_die_ref (die, attr, ext_cu);
16940 }
16941
16942 /* Convert a DIE tag into its string name. */
16943
16944 static const char *
16945 dwarf_tag_name (unsigned tag)
16946 {
16947 const char *name = get_DW_TAG_name (tag);
16948
16949 if (name == NULL)
16950 return "DW_TAG_<unknown>";
16951
16952 return name;
16953 }
16954
16955 /* Convert a DWARF attribute code into its string name. */
16956
16957 static const char *
16958 dwarf_attr_name (unsigned attr)
16959 {
16960 const char *name;
16961
16962 #ifdef MIPS /* collides with DW_AT_HP_block_index */
16963 if (attr == DW_AT_MIPS_fde)
16964 return "DW_AT_MIPS_fde";
16965 #else
16966 if (attr == DW_AT_HP_block_index)
16967 return "DW_AT_HP_block_index";
16968 #endif
16969
16970 name = get_DW_AT_name (attr);
16971
16972 if (name == NULL)
16973 return "DW_AT_<unknown>";
16974
16975 return name;
16976 }
16977
16978 /* Convert a DWARF value form code into its string name. */
16979
16980 static const char *
16981 dwarf_form_name (unsigned form)
16982 {
16983 const char *name = get_DW_FORM_name (form);
16984
16985 if (name == NULL)
16986 return "DW_FORM_<unknown>";
16987
16988 return name;
16989 }
16990
16991 static char *
16992 dwarf_bool_name (unsigned mybool)
16993 {
16994 if (mybool)
16995 return "TRUE";
16996 else
16997 return "FALSE";
16998 }
16999
17000 /* Convert a DWARF type code into its string name. */
17001
17002 static const char *
17003 dwarf_type_encoding_name (unsigned enc)
17004 {
17005 const char *name = get_DW_ATE_name (enc);
17006
17007 if (name == NULL)
17008 return "DW_ATE_<unknown>";
17009
17010 return name;
17011 }
17012
17013 static void
17014 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17015 {
17016 unsigned int i;
17017
17018 print_spaces (indent, f);
17019 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17020 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17021
17022 if (die->parent != NULL)
17023 {
17024 print_spaces (indent, f);
17025 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17026 die->parent->offset.sect_off);
17027 }
17028
17029 print_spaces (indent, f);
17030 fprintf_unfiltered (f, " has children: %s\n",
17031 dwarf_bool_name (die->child != NULL));
17032
17033 print_spaces (indent, f);
17034 fprintf_unfiltered (f, " attributes:\n");
17035
17036 for (i = 0; i < die->num_attrs; ++i)
17037 {
17038 print_spaces (indent, f);
17039 fprintf_unfiltered (f, " %s (%s) ",
17040 dwarf_attr_name (die->attrs[i].name),
17041 dwarf_form_name (die->attrs[i].form));
17042
17043 switch (die->attrs[i].form)
17044 {
17045 case DW_FORM_addr:
17046 case DW_FORM_GNU_addr_index:
17047 fprintf_unfiltered (f, "address: ");
17048 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17049 break;
17050 case DW_FORM_block2:
17051 case DW_FORM_block4:
17052 case DW_FORM_block:
17053 case DW_FORM_block1:
17054 fprintf_unfiltered (f, "block: size %s",
17055 pulongest (DW_BLOCK (&die->attrs[i])->size));
17056 break;
17057 case DW_FORM_exprloc:
17058 fprintf_unfiltered (f, "expression: size %s",
17059 pulongest (DW_BLOCK (&die->attrs[i])->size));
17060 break;
17061 case DW_FORM_ref_addr:
17062 fprintf_unfiltered (f, "ref address: ");
17063 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17064 break;
17065 case DW_FORM_GNU_ref_alt:
17066 fprintf_unfiltered (f, "alt ref address: ");
17067 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17068 break;
17069 case DW_FORM_ref1:
17070 case DW_FORM_ref2:
17071 case DW_FORM_ref4:
17072 case DW_FORM_ref8:
17073 case DW_FORM_ref_udata:
17074 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17075 (long) (DW_UNSND (&die->attrs[i])));
17076 break;
17077 case DW_FORM_data1:
17078 case DW_FORM_data2:
17079 case DW_FORM_data4:
17080 case DW_FORM_data8:
17081 case DW_FORM_udata:
17082 case DW_FORM_sdata:
17083 fprintf_unfiltered (f, "constant: %s",
17084 pulongest (DW_UNSND (&die->attrs[i])));
17085 break;
17086 case DW_FORM_sec_offset:
17087 fprintf_unfiltered (f, "section offset: %s",
17088 pulongest (DW_UNSND (&die->attrs[i])));
17089 break;
17090 case DW_FORM_ref_sig8:
17091 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
17092 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
17093 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
17094 else
17095 fprintf_unfiltered (f, "signatured type, offset: unknown");
17096 break;
17097 case DW_FORM_string:
17098 case DW_FORM_strp:
17099 case DW_FORM_GNU_str_index:
17100 case DW_FORM_GNU_strp_alt:
17101 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17102 DW_STRING (&die->attrs[i])
17103 ? DW_STRING (&die->attrs[i]) : "",
17104 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17105 break;
17106 case DW_FORM_flag:
17107 if (DW_UNSND (&die->attrs[i]))
17108 fprintf_unfiltered (f, "flag: TRUE");
17109 else
17110 fprintf_unfiltered (f, "flag: FALSE");
17111 break;
17112 case DW_FORM_flag_present:
17113 fprintf_unfiltered (f, "flag: TRUE");
17114 break;
17115 case DW_FORM_indirect:
17116 /* The reader will have reduced the indirect form to
17117 the "base form" so this form should not occur. */
17118 fprintf_unfiltered (f,
17119 "unexpected attribute form: DW_FORM_indirect");
17120 break;
17121 default:
17122 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17123 die->attrs[i].form);
17124 break;
17125 }
17126 fprintf_unfiltered (f, "\n");
17127 }
17128 }
17129
17130 static void
17131 dump_die_for_error (struct die_info *die)
17132 {
17133 dump_die_shallow (gdb_stderr, 0, die);
17134 }
17135
17136 static void
17137 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17138 {
17139 int indent = level * 4;
17140
17141 gdb_assert (die != NULL);
17142
17143 if (level >= max_level)
17144 return;
17145
17146 dump_die_shallow (f, indent, die);
17147
17148 if (die->child != NULL)
17149 {
17150 print_spaces (indent, f);
17151 fprintf_unfiltered (f, " Children:");
17152 if (level + 1 < max_level)
17153 {
17154 fprintf_unfiltered (f, "\n");
17155 dump_die_1 (f, level + 1, max_level, die->child);
17156 }
17157 else
17158 {
17159 fprintf_unfiltered (f,
17160 " [not printed, max nesting level reached]\n");
17161 }
17162 }
17163
17164 if (die->sibling != NULL && level > 0)
17165 {
17166 dump_die_1 (f, level, max_level, die->sibling);
17167 }
17168 }
17169
17170 /* This is called from the pdie macro in gdbinit.in.
17171 It's not static so gcc will keep a copy callable from gdb. */
17172
17173 void
17174 dump_die (struct die_info *die, int max_level)
17175 {
17176 dump_die_1 (gdb_stdlog, 0, max_level, die);
17177 }
17178
17179 static void
17180 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17181 {
17182 void **slot;
17183
17184 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17185 INSERT);
17186
17187 *slot = die;
17188 }
17189
17190 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17191 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17192
17193 static int
17194 is_ref_attr (struct attribute *attr)
17195 {
17196 switch (attr->form)
17197 {
17198 case DW_FORM_ref_addr:
17199 case DW_FORM_ref1:
17200 case DW_FORM_ref2:
17201 case DW_FORM_ref4:
17202 case DW_FORM_ref8:
17203 case DW_FORM_ref_udata:
17204 case DW_FORM_GNU_ref_alt:
17205 return 1;
17206 default:
17207 return 0;
17208 }
17209 }
17210
17211 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17212 required kind. */
17213
17214 static sect_offset
17215 dwarf2_get_ref_die_offset (struct attribute *attr)
17216 {
17217 sect_offset retval = { DW_UNSND (attr) };
17218
17219 if (is_ref_attr (attr))
17220 return retval;
17221
17222 retval.sect_off = 0;
17223 complaint (&symfile_complaints,
17224 _("unsupported die ref attribute form: '%s'"),
17225 dwarf_form_name (attr->form));
17226 return retval;
17227 }
17228
17229 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17230 * the value held by the attribute is not constant. */
17231
17232 static LONGEST
17233 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17234 {
17235 if (attr->form == DW_FORM_sdata)
17236 return DW_SND (attr);
17237 else if (attr->form == DW_FORM_udata
17238 || attr->form == DW_FORM_data1
17239 || attr->form == DW_FORM_data2
17240 || attr->form == DW_FORM_data4
17241 || attr->form == DW_FORM_data8)
17242 return DW_UNSND (attr);
17243 else
17244 {
17245 complaint (&symfile_complaints,
17246 _("Attribute value is not a constant (%s)"),
17247 dwarf_form_name (attr->form));
17248 return default_value;
17249 }
17250 }
17251
17252 /* Follow reference or signature attribute ATTR of SRC_DIE.
17253 On entry *REF_CU is the CU of SRC_DIE.
17254 On exit *REF_CU is the CU of the result. */
17255
17256 static struct die_info *
17257 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17258 struct dwarf2_cu **ref_cu)
17259 {
17260 struct die_info *die;
17261
17262 if (is_ref_attr (attr))
17263 die = follow_die_ref (src_die, attr, ref_cu);
17264 else if (attr->form == DW_FORM_ref_sig8)
17265 die = follow_die_sig (src_die, attr, ref_cu);
17266 else
17267 {
17268 dump_die_for_error (src_die);
17269 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17270 (*ref_cu)->objfile->name);
17271 }
17272
17273 return die;
17274 }
17275
17276 /* Follow reference OFFSET.
17277 On entry *REF_CU is the CU of the source die referencing OFFSET.
17278 On exit *REF_CU is the CU of the result.
17279 Returns NULL if OFFSET is invalid. */
17280
17281 static struct die_info *
17282 follow_die_offset (sect_offset offset, int offset_in_dwz,
17283 struct dwarf2_cu **ref_cu)
17284 {
17285 struct die_info temp_die;
17286 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17287
17288 gdb_assert (cu->per_cu != NULL);
17289
17290 target_cu = cu;
17291
17292 if (cu->per_cu->is_debug_types)
17293 {
17294 /* .debug_types CUs cannot reference anything outside their CU.
17295 If they need to, they have to reference a signatured type via
17296 DW_FORM_ref_sig8. */
17297 if (! offset_in_cu_p (&cu->header, offset))
17298 return NULL;
17299 }
17300 else if (offset_in_dwz != cu->per_cu->is_dwz
17301 || ! offset_in_cu_p (&cu->header, offset))
17302 {
17303 struct dwarf2_per_cu_data *per_cu;
17304
17305 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17306 cu->objfile);
17307
17308 /* If necessary, add it to the queue and load its DIEs. */
17309 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17310 load_full_comp_unit (per_cu, cu->language);
17311
17312 target_cu = per_cu->cu;
17313 }
17314 else if (cu->dies == NULL)
17315 {
17316 /* We're loading full DIEs during partial symbol reading. */
17317 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
17318 load_full_comp_unit (cu->per_cu, language_minimal);
17319 }
17320
17321 *ref_cu = target_cu;
17322 temp_die.offset = offset;
17323 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
17324 }
17325
17326 /* Follow reference attribute ATTR of SRC_DIE.
17327 On entry *REF_CU is the CU of SRC_DIE.
17328 On exit *REF_CU is the CU of the result. */
17329
17330 static struct die_info *
17331 follow_die_ref (struct die_info *src_die, struct attribute *attr,
17332 struct dwarf2_cu **ref_cu)
17333 {
17334 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17335 struct dwarf2_cu *cu = *ref_cu;
17336 struct die_info *die;
17337
17338 die = follow_die_offset (offset,
17339 (attr->form == DW_FORM_GNU_ref_alt
17340 || cu->per_cu->is_dwz),
17341 ref_cu);
17342 if (!die)
17343 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17344 "at 0x%x [in module %s]"),
17345 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
17346
17347 return die;
17348 }
17349
17350 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17351 Returned value is intended for DW_OP_call*. Returned
17352 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
17353
17354 struct dwarf2_locexpr_baton
17355 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
17356 struct dwarf2_per_cu_data *per_cu,
17357 CORE_ADDR (*get_frame_pc) (void *baton),
17358 void *baton)
17359 {
17360 struct dwarf2_cu *cu;
17361 struct die_info *die;
17362 struct attribute *attr;
17363 struct dwarf2_locexpr_baton retval;
17364
17365 dw2_setup (per_cu->objfile);
17366
17367 if (per_cu->cu == NULL)
17368 load_cu (per_cu);
17369 cu = per_cu->cu;
17370
17371 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
17372 if (!die)
17373 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
17374 offset.sect_off, per_cu->objfile->name);
17375
17376 attr = dwarf2_attr (die, DW_AT_location, cu);
17377 if (!attr)
17378 {
17379 /* DWARF: "If there is no such attribute, then there is no effect.".
17380 DATA is ignored if SIZE is 0. */
17381
17382 retval.data = NULL;
17383 retval.size = 0;
17384 }
17385 else if (attr_form_is_section_offset (attr))
17386 {
17387 struct dwarf2_loclist_baton loclist_baton;
17388 CORE_ADDR pc = (*get_frame_pc) (baton);
17389 size_t size;
17390
17391 fill_in_loclist_baton (cu, &loclist_baton, attr);
17392
17393 retval.data = dwarf2_find_location_expression (&loclist_baton,
17394 &size, pc);
17395 retval.size = size;
17396 }
17397 else
17398 {
17399 if (!attr_form_is_block (attr))
17400 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17401 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
17402 offset.sect_off, per_cu->objfile->name);
17403
17404 retval.data = DW_BLOCK (attr)->data;
17405 retval.size = DW_BLOCK (attr)->size;
17406 }
17407 retval.per_cu = cu->per_cu;
17408
17409 age_cached_comp_units ();
17410
17411 return retval;
17412 }
17413
17414 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
17415 offset. */
17416
17417 struct dwarf2_locexpr_baton
17418 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
17419 struct dwarf2_per_cu_data *per_cu,
17420 CORE_ADDR (*get_frame_pc) (void *baton),
17421 void *baton)
17422 {
17423 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17424
17425 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
17426 }
17427
17428 /* Return the type of the DIE at DIE_OFFSET in the CU named by
17429 PER_CU. */
17430
17431 struct type *
17432 dwarf2_get_die_type (cu_offset die_offset,
17433 struct dwarf2_per_cu_data *per_cu)
17434 {
17435 sect_offset die_offset_sect;
17436
17437 dw2_setup (per_cu->objfile);
17438
17439 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17440 return get_die_type_at_offset (die_offset_sect, per_cu);
17441 }
17442
17443 /* Follow the signature attribute ATTR in SRC_DIE.
17444 On entry *REF_CU is the CU of SRC_DIE.
17445 On exit *REF_CU is the CU of the result. */
17446
17447 static struct die_info *
17448 follow_die_sig (struct die_info *src_die, struct attribute *attr,
17449 struct dwarf2_cu **ref_cu)
17450 {
17451 struct objfile *objfile = (*ref_cu)->objfile;
17452 struct die_info temp_die;
17453 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
17454 struct dwarf2_cu *sig_cu;
17455 struct die_info *die;
17456
17457 /* sig_type will be NULL if the signatured type is missing from
17458 the debug info. */
17459 if (sig_type == NULL)
17460 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
17461 "at 0x%x [in module %s]"),
17462 src_die->offset.sect_off, objfile->name);
17463
17464 /* If necessary, add it to the queue and load its DIEs. */
17465
17466 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
17467 read_signatured_type (sig_type);
17468
17469 gdb_assert (sig_type->per_cu.cu != NULL);
17470
17471 sig_cu = sig_type->per_cu.cu;
17472 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17473 temp_die.offset = sig_type->type_offset_in_section;
17474 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17475 temp_die.offset.sect_off);
17476 if (die)
17477 {
17478 *ref_cu = sig_cu;
17479 return die;
17480 }
17481
17482 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
17483 "from DIE at 0x%x [in module %s]"),
17484 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
17485 }
17486
17487 /* Given an offset of a signatured type, return its signatured_type. */
17488
17489 static struct signatured_type *
17490 lookup_signatured_type_at_offset (struct objfile *objfile,
17491 struct dwarf2_section_info *section,
17492 sect_offset offset)
17493 {
17494 gdb_byte *info_ptr = section->buffer + offset.sect_off;
17495 unsigned int length, initial_length_size;
17496 unsigned int sig_offset;
17497 struct signatured_type find_entry, *sig_type;
17498
17499 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
17500 sig_offset = (initial_length_size
17501 + 2 /*version*/
17502 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
17503 + 1 /*address_size*/);
17504 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
17505 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
17506
17507 /* This is only used to lookup previously recorded types.
17508 If we didn't find it, it's our bug. */
17509 gdb_assert (sig_type != NULL);
17510 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
17511
17512 return sig_type;
17513 }
17514
17515 /* Load the DIEs associated with type unit PER_CU into memory. */
17516
17517 static void
17518 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
17519 {
17520 struct signatured_type *sig_type;
17521
17522 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17523 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17524
17525 /* We have the per_cu, but we need the signatured_type.
17526 Fortunately this is an easy translation. */
17527 gdb_assert (per_cu->is_debug_types);
17528 sig_type = (struct signatured_type *) per_cu;
17529
17530 gdb_assert (per_cu->cu == NULL);
17531
17532 read_signatured_type (sig_type);
17533
17534 gdb_assert (per_cu->cu != NULL);
17535 }
17536
17537 /* die_reader_func for read_signatured_type.
17538 This is identical to load_full_comp_unit_reader,
17539 but is kept separate for now. */
17540
17541 static void
17542 read_signatured_type_reader (const struct die_reader_specs *reader,
17543 gdb_byte *info_ptr,
17544 struct die_info *comp_unit_die,
17545 int has_children,
17546 void *data)
17547 {
17548 struct dwarf2_cu *cu = reader->cu;
17549
17550 gdb_assert (cu->die_hash == NULL);
17551 cu->die_hash =
17552 htab_create_alloc_ex (cu->header.length / 12,
17553 die_hash,
17554 die_eq,
17555 NULL,
17556 &cu->comp_unit_obstack,
17557 hashtab_obstack_allocate,
17558 dummy_obstack_deallocate);
17559
17560 if (has_children)
17561 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
17562 &info_ptr, comp_unit_die);
17563 cu->dies = comp_unit_die;
17564 /* comp_unit_die is not stored in die_hash, no need. */
17565
17566 /* We try not to read any attributes in this function, because not
17567 all CUs needed for references have been loaded yet, and symbol
17568 table processing isn't initialized. But we have to set the CU language,
17569 or we won't be able to build types correctly.
17570 Similarly, if we do not read the producer, we can not apply
17571 producer-specific interpretation. */
17572 prepare_one_comp_unit (cu, cu->dies, language_minimal);
17573 }
17574
17575 /* Read in a signatured type and build its CU and DIEs.
17576 If the type is a stub for the real type in a DWO file,
17577 read in the real type from the DWO file as well. */
17578
17579 static void
17580 read_signatured_type (struct signatured_type *sig_type)
17581 {
17582 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
17583
17584 gdb_assert (per_cu->is_debug_types);
17585 gdb_assert (per_cu->cu == NULL);
17586
17587 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
17588 read_signatured_type_reader, NULL);
17589 }
17590
17591 /* Decode simple location descriptions.
17592 Given a pointer to a dwarf block that defines a location, compute
17593 the location and return the value.
17594
17595 NOTE drow/2003-11-18: This function is called in two situations
17596 now: for the address of static or global variables (partial symbols
17597 only) and for offsets into structures which are expected to be
17598 (more or less) constant. The partial symbol case should go away,
17599 and only the constant case should remain. That will let this
17600 function complain more accurately. A few special modes are allowed
17601 without complaint for global variables (for instance, global
17602 register values and thread-local values).
17603
17604 A location description containing no operations indicates that the
17605 object is optimized out. The return value is 0 for that case.
17606 FIXME drow/2003-11-16: No callers check for this case any more; soon all
17607 callers will only want a very basic result and this can become a
17608 complaint.
17609
17610 Note that stack[0] is unused except as a default error return. */
17611
17612 static CORE_ADDR
17613 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
17614 {
17615 struct objfile *objfile = cu->objfile;
17616 size_t i;
17617 size_t size = blk->size;
17618 gdb_byte *data = blk->data;
17619 CORE_ADDR stack[64];
17620 int stacki;
17621 unsigned int bytes_read, unsnd;
17622 gdb_byte op;
17623
17624 i = 0;
17625 stacki = 0;
17626 stack[stacki] = 0;
17627 stack[++stacki] = 0;
17628
17629 while (i < size)
17630 {
17631 op = data[i++];
17632 switch (op)
17633 {
17634 case DW_OP_lit0:
17635 case DW_OP_lit1:
17636 case DW_OP_lit2:
17637 case DW_OP_lit3:
17638 case DW_OP_lit4:
17639 case DW_OP_lit5:
17640 case DW_OP_lit6:
17641 case DW_OP_lit7:
17642 case DW_OP_lit8:
17643 case DW_OP_lit9:
17644 case DW_OP_lit10:
17645 case DW_OP_lit11:
17646 case DW_OP_lit12:
17647 case DW_OP_lit13:
17648 case DW_OP_lit14:
17649 case DW_OP_lit15:
17650 case DW_OP_lit16:
17651 case DW_OP_lit17:
17652 case DW_OP_lit18:
17653 case DW_OP_lit19:
17654 case DW_OP_lit20:
17655 case DW_OP_lit21:
17656 case DW_OP_lit22:
17657 case DW_OP_lit23:
17658 case DW_OP_lit24:
17659 case DW_OP_lit25:
17660 case DW_OP_lit26:
17661 case DW_OP_lit27:
17662 case DW_OP_lit28:
17663 case DW_OP_lit29:
17664 case DW_OP_lit30:
17665 case DW_OP_lit31:
17666 stack[++stacki] = op - DW_OP_lit0;
17667 break;
17668
17669 case DW_OP_reg0:
17670 case DW_OP_reg1:
17671 case DW_OP_reg2:
17672 case DW_OP_reg3:
17673 case DW_OP_reg4:
17674 case DW_OP_reg5:
17675 case DW_OP_reg6:
17676 case DW_OP_reg7:
17677 case DW_OP_reg8:
17678 case DW_OP_reg9:
17679 case DW_OP_reg10:
17680 case DW_OP_reg11:
17681 case DW_OP_reg12:
17682 case DW_OP_reg13:
17683 case DW_OP_reg14:
17684 case DW_OP_reg15:
17685 case DW_OP_reg16:
17686 case DW_OP_reg17:
17687 case DW_OP_reg18:
17688 case DW_OP_reg19:
17689 case DW_OP_reg20:
17690 case DW_OP_reg21:
17691 case DW_OP_reg22:
17692 case DW_OP_reg23:
17693 case DW_OP_reg24:
17694 case DW_OP_reg25:
17695 case DW_OP_reg26:
17696 case DW_OP_reg27:
17697 case DW_OP_reg28:
17698 case DW_OP_reg29:
17699 case DW_OP_reg30:
17700 case DW_OP_reg31:
17701 stack[++stacki] = op - DW_OP_reg0;
17702 if (i < size)
17703 dwarf2_complex_location_expr_complaint ();
17704 break;
17705
17706 case DW_OP_regx:
17707 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
17708 i += bytes_read;
17709 stack[++stacki] = unsnd;
17710 if (i < size)
17711 dwarf2_complex_location_expr_complaint ();
17712 break;
17713
17714 case DW_OP_addr:
17715 stack[++stacki] = read_address (objfile->obfd, &data[i],
17716 cu, &bytes_read);
17717 i += bytes_read;
17718 break;
17719
17720 case DW_OP_const1u:
17721 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
17722 i += 1;
17723 break;
17724
17725 case DW_OP_const1s:
17726 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
17727 i += 1;
17728 break;
17729
17730 case DW_OP_const2u:
17731 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
17732 i += 2;
17733 break;
17734
17735 case DW_OP_const2s:
17736 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
17737 i += 2;
17738 break;
17739
17740 case DW_OP_const4u:
17741 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
17742 i += 4;
17743 break;
17744
17745 case DW_OP_const4s:
17746 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
17747 i += 4;
17748 break;
17749
17750 case DW_OP_const8u:
17751 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
17752 i += 8;
17753 break;
17754
17755 case DW_OP_constu:
17756 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
17757 &bytes_read);
17758 i += bytes_read;
17759 break;
17760
17761 case DW_OP_consts:
17762 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
17763 i += bytes_read;
17764 break;
17765
17766 case DW_OP_dup:
17767 stack[stacki + 1] = stack[stacki];
17768 stacki++;
17769 break;
17770
17771 case DW_OP_plus:
17772 stack[stacki - 1] += stack[stacki];
17773 stacki--;
17774 break;
17775
17776 case DW_OP_plus_uconst:
17777 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
17778 &bytes_read);
17779 i += bytes_read;
17780 break;
17781
17782 case DW_OP_minus:
17783 stack[stacki - 1] -= stack[stacki];
17784 stacki--;
17785 break;
17786
17787 case DW_OP_deref:
17788 /* If we're not the last op, then we definitely can't encode
17789 this using GDB's address_class enum. This is valid for partial
17790 global symbols, although the variable's address will be bogus
17791 in the psymtab. */
17792 if (i < size)
17793 dwarf2_complex_location_expr_complaint ();
17794 break;
17795
17796 case DW_OP_GNU_push_tls_address:
17797 /* The top of the stack has the offset from the beginning
17798 of the thread control block at which the variable is located. */
17799 /* Nothing should follow this operator, so the top of stack would
17800 be returned. */
17801 /* This is valid for partial global symbols, but the variable's
17802 address will be bogus in the psymtab. Make it always at least
17803 non-zero to not look as a variable garbage collected by linker
17804 which have DW_OP_addr 0. */
17805 if (i < size)
17806 dwarf2_complex_location_expr_complaint ();
17807 stack[stacki]++;
17808 break;
17809
17810 case DW_OP_GNU_uninit:
17811 break;
17812
17813 case DW_OP_GNU_addr_index:
17814 case DW_OP_GNU_const_index:
17815 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
17816 &bytes_read);
17817 i += bytes_read;
17818 break;
17819
17820 default:
17821 {
17822 const char *name = get_DW_OP_name (op);
17823
17824 if (name)
17825 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
17826 name);
17827 else
17828 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
17829 op);
17830 }
17831
17832 return (stack[stacki]);
17833 }
17834
17835 /* Enforce maximum stack depth of SIZE-1 to avoid writing
17836 outside of the allocated space. Also enforce minimum>0. */
17837 if (stacki >= ARRAY_SIZE (stack) - 1)
17838 {
17839 complaint (&symfile_complaints,
17840 _("location description stack overflow"));
17841 return 0;
17842 }
17843
17844 if (stacki <= 0)
17845 {
17846 complaint (&symfile_complaints,
17847 _("location description stack underflow"));
17848 return 0;
17849 }
17850 }
17851 return (stack[stacki]);
17852 }
17853
17854 /* memory allocation interface */
17855
17856 static struct dwarf_block *
17857 dwarf_alloc_block (struct dwarf2_cu *cu)
17858 {
17859 struct dwarf_block *blk;
17860
17861 blk = (struct dwarf_block *)
17862 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
17863 return (blk);
17864 }
17865
17866 static struct die_info *
17867 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
17868 {
17869 struct die_info *die;
17870 size_t size = sizeof (struct die_info);
17871
17872 if (num_attrs > 1)
17873 size += (num_attrs - 1) * sizeof (struct attribute);
17874
17875 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
17876 memset (die, 0, sizeof (struct die_info));
17877 return (die);
17878 }
17879
17880 \f
17881 /* Macro support. */
17882
17883 /* Return the full name of file number I in *LH's file name table.
17884 Use COMP_DIR as the name of the current directory of the
17885 compilation. The result is allocated using xmalloc; the caller is
17886 responsible for freeing it. */
17887 static char *
17888 file_full_name (int file, struct line_header *lh, const char *comp_dir)
17889 {
17890 /* Is the file number a valid index into the line header's file name
17891 table? Remember that file numbers start with one, not zero. */
17892 if (1 <= file && file <= lh->num_file_names)
17893 {
17894 struct file_entry *fe = &lh->file_names[file - 1];
17895
17896 if (IS_ABSOLUTE_PATH (fe->name))
17897 return xstrdup (fe->name);
17898 else
17899 {
17900 const char *dir;
17901 int dir_len;
17902 char *full_name;
17903
17904 if (fe->dir_index)
17905 dir = lh->include_dirs[fe->dir_index - 1];
17906 else
17907 dir = comp_dir;
17908
17909 if (dir)
17910 {
17911 dir_len = strlen (dir);
17912 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
17913 strcpy (full_name, dir);
17914 full_name[dir_len] = '/';
17915 strcpy (full_name + dir_len + 1, fe->name);
17916 return full_name;
17917 }
17918 else
17919 return xstrdup (fe->name);
17920 }
17921 }
17922 else
17923 {
17924 /* The compiler produced a bogus file number. We can at least
17925 record the macro definitions made in the file, even if we
17926 won't be able to find the file by name. */
17927 char fake_name[80];
17928
17929 xsnprintf (fake_name, sizeof (fake_name),
17930 "<bad macro file number %d>", file);
17931
17932 complaint (&symfile_complaints,
17933 _("bad file number in macro information (%d)"),
17934 file);
17935
17936 return xstrdup (fake_name);
17937 }
17938 }
17939
17940
17941 static struct macro_source_file *
17942 macro_start_file (int file, int line,
17943 struct macro_source_file *current_file,
17944 const char *comp_dir,
17945 struct line_header *lh, struct objfile *objfile)
17946 {
17947 /* The full name of this source file. */
17948 char *full_name = file_full_name (file, lh, comp_dir);
17949
17950 /* We don't create a macro table for this compilation unit
17951 at all until we actually get a filename. */
17952 if (! pending_macros)
17953 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
17954 objfile->per_bfd->macro_cache);
17955
17956 if (! current_file)
17957 {
17958 /* If we have no current file, then this must be the start_file
17959 directive for the compilation unit's main source file. */
17960 current_file = macro_set_main (pending_macros, full_name);
17961 macro_define_special (pending_macros);
17962 }
17963 else
17964 current_file = macro_include (current_file, line, full_name);
17965
17966 xfree (full_name);
17967
17968 return current_file;
17969 }
17970
17971
17972 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
17973 followed by a null byte. */
17974 static char *
17975 copy_string (const char *buf, int len)
17976 {
17977 char *s = xmalloc (len + 1);
17978
17979 memcpy (s, buf, len);
17980 s[len] = '\0';
17981 return s;
17982 }
17983
17984
17985 static const char *
17986 consume_improper_spaces (const char *p, const char *body)
17987 {
17988 if (*p == ' ')
17989 {
17990 complaint (&symfile_complaints,
17991 _("macro definition contains spaces "
17992 "in formal argument list:\n`%s'"),
17993 body);
17994
17995 while (*p == ' ')
17996 p++;
17997 }
17998
17999 return p;
18000 }
18001
18002
18003 static void
18004 parse_macro_definition (struct macro_source_file *file, int line,
18005 const char *body)
18006 {
18007 const char *p;
18008
18009 /* The body string takes one of two forms. For object-like macro
18010 definitions, it should be:
18011
18012 <macro name> " " <definition>
18013
18014 For function-like macro definitions, it should be:
18015
18016 <macro name> "() " <definition>
18017 or
18018 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18019
18020 Spaces may appear only where explicitly indicated, and in the
18021 <definition>.
18022
18023 The Dwarf 2 spec says that an object-like macro's name is always
18024 followed by a space, but versions of GCC around March 2002 omit
18025 the space when the macro's definition is the empty string.
18026
18027 The Dwarf 2 spec says that there should be no spaces between the
18028 formal arguments in a function-like macro's formal argument list,
18029 but versions of GCC around March 2002 include spaces after the
18030 commas. */
18031
18032
18033 /* Find the extent of the macro name. The macro name is terminated
18034 by either a space or null character (for an object-like macro) or
18035 an opening paren (for a function-like macro). */
18036 for (p = body; *p; p++)
18037 if (*p == ' ' || *p == '(')
18038 break;
18039
18040 if (*p == ' ' || *p == '\0')
18041 {
18042 /* It's an object-like macro. */
18043 int name_len = p - body;
18044 char *name = copy_string (body, name_len);
18045 const char *replacement;
18046
18047 if (*p == ' ')
18048 replacement = body + name_len + 1;
18049 else
18050 {
18051 dwarf2_macro_malformed_definition_complaint (body);
18052 replacement = body + name_len;
18053 }
18054
18055 macro_define_object (file, line, name, replacement);
18056
18057 xfree (name);
18058 }
18059 else if (*p == '(')
18060 {
18061 /* It's a function-like macro. */
18062 char *name = copy_string (body, p - body);
18063 int argc = 0;
18064 int argv_size = 1;
18065 char **argv = xmalloc (argv_size * sizeof (*argv));
18066
18067 p++;
18068
18069 p = consume_improper_spaces (p, body);
18070
18071 /* Parse the formal argument list. */
18072 while (*p && *p != ')')
18073 {
18074 /* Find the extent of the current argument name. */
18075 const char *arg_start = p;
18076
18077 while (*p && *p != ',' && *p != ')' && *p != ' ')
18078 p++;
18079
18080 if (! *p || p == arg_start)
18081 dwarf2_macro_malformed_definition_complaint (body);
18082 else
18083 {
18084 /* Make sure argv has room for the new argument. */
18085 if (argc >= argv_size)
18086 {
18087 argv_size *= 2;
18088 argv = xrealloc (argv, argv_size * sizeof (*argv));
18089 }
18090
18091 argv[argc++] = copy_string (arg_start, p - arg_start);
18092 }
18093
18094 p = consume_improper_spaces (p, body);
18095
18096 /* Consume the comma, if present. */
18097 if (*p == ',')
18098 {
18099 p++;
18100
18101 p = consume_improper_spaces (p, body);
18102 }
18103 }
18104
18105 if (*p == ')')
18106 {
18107 p++;
18108
18109 if (*p == ' ')
18110 /* Perfectly formed definition, no complaints. */
18111 macro_define_function (file, line, name,
18112 argc, (const char **) argv,
18113 p + 1);
18114 else if (*p == '\0')
18115 {
18116 /* Complain, but do define it. */
18117 dwarf2_macro_malformed_definition_complaint (body);
18118 macro_define_function (file, line, name,
18119 argc, (const char **) argv,
18120 p);
18121 }
18122 else
18123 /* Just complain. */
18124 dwarf2_macro_malformed_definition_complaint (body);
18125 }
18126 else
18127 /* Just complain. */
18128 dwarf2_macro_malformed_definition_complaint (body);
18129
18130 xfree (name);
18131 {
18132 int i;
18133
18134 for (i = 0; i < argc; i++)
18135 xfree (argv[i]);
18136 }
18137 xfree (argv);
18138 }
18139 else
18140 dwarf2_macro_malformed_definition_complaint (body);
18141 }
18142
18143 /* Skip some bytes from BYTES according to the form given in FORM.
18144 Returns the new pointer. */
18145
18146 static gdb_byte *
18147 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
18148 enum dwarf_form form,
18149 unsigned int offset_size,
18150 struct dwarf2_section_info *section)
18151 {
18152 unsigned int bytes_read;
18153
18154 switch (form)
18155 {
18156 case DW_FORM_data1:
18157 case DW_FORM_flag:
18158 ++bytes;
18159 break;
18160
18161 case DW_FORM_data2:
18162 bytes += 2;
18163 break;
18164
18165 case DW_FORM_data4:
18166 bytes += 4;
18167 break;
18168
18169 case DW_FORM_data8:
18170 bytes += 8;
18171 break;
18172
18173 case DW_FORM_string:
18174 read_direct_string (abfd, bytes, &bytes_read);
18175 bytes += bytes_read;
18176 break;
18177
18178 case DW_FORM_sec_offset:
18179 case DW_FORM_strp:
18180 case DW_FORM_GNU_strp_alt:
18181 bytes += offset_size;
18182 break;
18183
18184 case DW_FORM_block:
18185 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18186 bytes += bytes_read;
18187 break;
18188
18189 case DW_FORM_block1:
18190 bytes += 1 + read_1_byte (abfd, bytes);
18191 break;
18192 case DW_FORM_block2:
18193 bytes += 2 + read_2_bytes (abfd, bytes);
18194 break;
18195 case DW_FORM_block4:
18196 bytes += 4 + read_4_bytes (abfd, bytes);
18197 break;
18198
18199 case DW_FORM_sdata:
18200 case DW_FORM_udata:
18201 case DW_FORM_GNU_addr_index:
18202 case DW_FORM_GNU_str_index:
18203 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
18204 if (bytes == NULL)
18205 {
18206 dwarf2_section_buffer_overflow_complaint (section);
18207 return NULL;
18208 }
18209 break;
18210
18211 default:
18212 {
18213 complain:
18214 complaint (&symfile_complaints,
18215 _("invalid form 0x%x in `%s'"),
18216 form,
18217 section->asection->name);
18218 return NULL;
18219 }
18220 }
18221
18222 return bytes;
18223 }
18224
18225 /* A helper for dwarf_decode_macros that handles skipping an unknown
18226 opcode. Returns an updated pointer to the macro data buffer; or,
18227 on error, issues a complaint and returns NULL. */
18228
18229 static gdb_byte *
18230 skip_unknown_opcode (unsigned int opcode,
18231 gdb_byte **opcode_definitions,
18232 gdb_byte *mac_ptr, gdb_byte *mac_end,
18233 bfd *abfd,
18234 unsigned int offset_size,
18235 struct dwarf2_section_info *section)
18236 {
18237 unsigned int bytes_read, i;
18238 unsigned long arg;
18239 gdb_byte *defn;
18240
18241 if (opcode_definitions[opcode] == NULL)
18242 {
18243 complaint (&symfile_complaints,
18244 _("unrecognized DW_MACFINO opcode 0x%x"),
18245 opcode);
18246 return NULL;
18247 }
18248
18249 defn = opcode_definitions[opcode];
18250 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18251 defn += bytes_read;
18252
18253 for (i = 0; i < arg; ++i)
18254 {
18255 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18256 section);
18257 if (mac_ptr == NULL)
18258 {
18259 /* skip_form_bytes already issued the complaint. */
18260 return NULL;
18261 }
18262 }
18263
18264 return mac_ptr;
18265 }
18266
18267 /* A helper function which parses the header of a macro section.
18268 If the macro section is the extended (for now called "GNU") type,
18269 then this updates *OFFSET_SIZE. Returns a pointer to just after
18270 the header, or issues a complaint and returns NULL on error. */
18271
18272 static gdb_byte *
18273 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
18274 bfd *abfd,
18275 gdb_byte *mac_ptr,
18276 unsigned int *offset_size,
18277 int section_is_gnu)
18278 {
18279 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
18280
18281 if (section_is_gnu)
18282 {
18283 unsigned int version, flags;
18284
18285 version = read_2_bytes (abfd, mac_ptr);
18286 if (version != 4)
18287 {
18288 complaint (&symfile_complaints,
18289 _("unrecognized version `%d' in .debug_macro section"),
18290 version);
18291 return NULL;
18292 }
18293 mac_ptr += 2;
18294
18295 flags = read_1_byte (abfd, mac_ptr);
18296 ++mac_ptr;
18297 *offset_size = (flags & 1) ? 8 : 4;
18298
18299 if ((flags & 2) != 0)
18300 /* We don't need the line table offset. */
18301 mac_ptr += *offset_size;
18302
18303 /* Vendor opcode descriptions. */
18304 if ((flags & 4) != 0)
18305 {
18306 unsigned int i, count;
18307
18308 count = read_1_byte (abfd, mac_ptr);
18309 ++mac_ptr;
18310 for (i = 0; i < count; ++i)
18311 {
18312 unsigned int opcode, bytes_read;
18313 unsigned long arg;
18314
18315 opcode = read_1_byte (abfd, mac_ptr);
18316 ++mac_ptr;
18317 opcode_definitions[opcode] = mac_ptr;
18318 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18319 mac_ptr += bytes_read;
18320 mac_ptr += arg;
18321 }
18322 }
18323 }
18324
18325 return mac_ptr;
18326 }
18327
18328 /* A helper for dwarf_decode_macros that handles the GNU extensions,
18329 including DW_MACRO_GNU_transparent_include. */
18330
18331 static void
18332 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
18333 struct macro_source_file *current_file,
18334 struct line_header *lh, char *comp_dir,
18335 struct dwarf2_section_info *section,
18336 int section_is_gnu, int section_is_dwz,
18337 unsigned int offset_size,
18338 struct objfile *objfile,
18339 htab_t include_hash)
18340 {
18341 enum dwarf_macro_record_type macinfo_type;
18342 int at_commandline;
18343 gdb_byte *opcode_definitions[256];
18344
18345 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18346 &offset_size, section_is_gnu);
18347 if (mac_ptr == NULL)
18348 {
18349 /* We already issued a complaint. */
18350 return;
18351 }
18352
18353 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18354 GDB is still reading the definitions from command line. First
18355 DW_MACINFO_start_file will need to be ignored as it was already executed
18356 to create CURRENT_FILE for the main source holding also the command line
18357 definitions. On first met DW_MACINFO_start_file this flag is reset to
18358 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18359
18360 at_commandline = 1;
18361
18362 do
18363 {
18364 /* Do we at least have room for a macinfo type byte? */
18365 if (mac_ptr >= mac_end)
18366 {
18367 dwarf2_section_buffer_overflow_complaint (section);
18368 break;
18369 }
18370
18371 macinfo_type = read_1_byte (abfd, mac_ptr);
18372 mac_ptr++;
18373
18374 /* Note that we rely on the fact that the corresponding GNU and
18375 DWARF constants are the same. */
18376 switch (macinfo_type)
18377 {
18378 /* A zero macinfo type indicates the end of the macro
18379 information. */
18380 case 0:
18381 break;
18382
18383 case DW_MACRO_GNU_define:
18384 case DW_MACRO_GNU_undef:
18385 case DW_MACRO_GNU_define_indirect:
18386 case DW_MACRO_GNU_undef_indirect:
18387 case DW_MACRO_GNU_define_indirect_alt:
18388 case DW_MACRO_GNU_undef_indirect_alt:
18389 {
18390 unsigned int bytes_read;
18391 int line;
18392 char *body;
18393 int is_define;
18394
18395 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18396 mac_ptr += bytes_read;
18397
18398 if (macinfo_type == DW_MACRO_GNU_define
18399 || macinfo_type == DW_MACRO_GNU_undef)
18400 {
18401 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18402 mac_ptr += bytes_read;
18403 }
18404 else
18405 {
18406 LONGEST str_offset;
18407
18408 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18409 mac_ptr += offset_size;
18410
18411 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
18412 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18413 || section_is_dwz)
18414 {
18415 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18416
18417 body = read_indirect_string_from_dwz (dwz, str_offset);
18418 }
18419 else
18420 body = read_indirect_string_at_offset (abfd, str_offset);
18421 }
18422
18423 is_define = (macinfo_type == DW_MACRO_GNU_define
18424 || macinfo_type == DW_MACRO_GNU_define_indirect
18425 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
18426 if (! current_file)
18427 {
18428 /* DWARF violation as no main source is present. */
18429 complaint (&symfile_complaints,
18430 _("debug info with no main source gives macro %s "
18431 "on line %d: %s"),
18432 is_define ? _("definition") : _("undefinition"),
18433 line, body);
18434 break;
18435 }
18436 if ((line == 0 && !at_commandline)
18437 || (line != 0 && at_commandline))
18438 complaint (&symfile_complaints,
18439 _("debug info gives %s macro %s with %s line %d: %s"),
18440 at_commandline ? _("command-line") : _("in-file"),
18441 is_define ? _("definition") : _("undefinition"),
18442 line == 0 ? _("zero") : _("non-zero"), line, body);
18443
18444 if (is_define)
18445 parse_macro_definition (current_file, line, body);
18446 else
18447 {
18448 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
18449 || macinfo_type == DW_MACRO_GNU_undef_indirect
18450 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
18451 macro_undef (current_file, line, body);
18452 }
18453 }
18454 break;
18455
18456 case DW_MACRO_GNU_start_file:
18457 {
18458 unsigned int bytes_read;
18459 int line, file;
18460
18461 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18462 mac_ptr += bytes_read;
18463 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18464 mac_ptr += bytes_read;
18465
18466 if ((line == 0 && !at_commandline)
18467 || (line != 0 && at_commandline))
18468 complaint (&symfile_complaints,
18469 _("debug info gives source %d included "
18470 "from %s at %s line %d"),
18471 file, at_commandline ? _("command-line") : _("file"),
18472 line == 0 ? _("zero") : _("non-zero"), line);
18473
18474 if (at_commandline)
18475 {
18476 /* This DW_MACRO_GNU_start_file was executed in the
18477 pass one. */
18478 at_commandline = 0;
18479 }
18480 else
18481 current_file = macro_start_file (file, line,
18482 current_file, comp_dir,
18483 lh, objfile);
18484 }
18485 break;
18486
18487 case DW_MACRO_GNU_end_file:
18488 if (! current_file)
18489 complaint (&symfile_complaints,
18490 _("macro debug info has an unmatched "
18491 "`close_file' directive"));
18492 else
18493 {
18494 current_file = current_file->included_by;
18495 if (! current_file)
18496 {
18497 enum dwarf_macro_record_type next_type;
18498
18499 /* GCC circa March 2002 doesn't produce the zero
18500 type byte marking the end of the compilation
18501 unit. Complain if it's not there, but exit no
18502 matter what. */
18503
18504 /* Do we at least have room for a macinfo type byte? */
18505 if (mac_ptr >= mac_end)
18506 {
18507 dwarf2_section_buffer_overflow_complaint (section);
18508 return;
18509 }
18510
18511 /* We don't increment mac_ptr here, so this is just
18512 a look-ahead. */
18513 next_type = read_1_byte (abfd, mac_ptr);
18514 if (next_type != 0)
18515 complaint (&symfile_complaints,
18516 _("no terminating 0-type entry for "
18517 "macros in `.debug_macinfo' section"));
18518
18519 return;
18520 }
18521 }
18522 break;
18523
18524 case DW_MACRO_GNU_transparent_include:
18525 case DW_MACRO_GNU_transparent_include_alt:
18526 {
18527 LONGEST offset;
18528 void **slot;
18529 bfd *include_bfd = abfd;
18530 struct dwarf2_section_info *include_section = section;
18531 struct dwarf2_section_info alt_section;
18532 gdb_byte *include_mac_end = mac_end;
18533 int is_dwz = section_is_dwz;
18534 gdb_byte *new_mac_ptr;
18535
18536 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18537 mac_ptr += offset_size;
18538
18539 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18540 {
18541 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18542
18543 dwarf2_read_section (dwarf2_per_objfile->objfile,
18544 &dwz->macro);
18545
18546 include_bfd = dwz->macro.asection->owner;
18547 include_section = &dwz->macro;
18548 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18549 is_dwz = 1;
18550 }
18551
18552 new_mac_ptr = include_section->buffer + offset;
18553 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18554
18555 if (*slot != NULL)
18556 {
18557 /* This has actually happened; see
18558 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18559 complaint (&symfile_complaints,
18560 _("recursive DW_MACRO_GNU_transparent_include in "
18561 ".debug_macro section"));
18562 }
18563 else
18564 {
18565 *slot = new_mac_ptr;
18566
18567 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
18568 include_mac_end, current_file,
18569 lh, comp_dir,
18570 section, section_is_gnu, is_dwz,
18571 offset_size, objfile, include_hash);
18572
18573 htab_remove_elt (include_hash, new_mac_ptr);
18574 }
18575 }
18576 break;
18577
18578 case DW_MACINFO_vendor_ext:
18579 if (!section_is_gnu)
18580 {
18581 unsigned int bytes_read;
18582 int constant;
18583
18584 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18585 mac_ptr += bytes_read;
18586 read_direct_string (abfd, mac_ptr, &bytes_read);
18587 mac_ptr += bytes_read;
18588
18589 /* We don't recognize any vendor extensions. */
18590 break;
18591 }
18592 /* FALLTHROUGH */
18593
18594 default:
18595 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18596 mac_ptr, mac_end, abfd, offset_size,
18597 section);
18598 if (mac_ptr == NULL)
18599 return;
18600 break;
18601 }
18602 } while (macinfo_type != 0);
18603 }
18604
18605 static void
18606 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
18607 char *comp_dir, int section_is_gnu)
18608 {
18609 struct objfile *objfile = dwarf2_per_objfile->objfile;
18610 struct line_header *lh = cu->line_header;
18611 bfd *abfd;
18612 gdb_byte *mac_ptr, *mac_end;
18613 struct macro_source_file *current_file = 0;
18614 enum dwarf_macro_record_type macinfo_type;
18615 unsigned int offset_size = cu->header.offset_size;
18616 gdb_byte *opcode_definitions[256];
18617 struct cleanup *cleanup;
18618 htab_t include_hash;
18619 void **slot;
18620 struct dwarf2_section_info *section;
18621 const char *section_name;
18622
18623 if (cu->dwo_unit != NULL)
18624 {
18625 if (section_is_gnu)
18626 {
18627 section = &cu->dwo_unit->dwo_file->sections.macro;
18628 section_name = ".debug_macro.dwo";
18629 }
18630 else
18631 {
18632 section = &cu->dwo_unit->dwo_file->sections.macinfo;
18633 section_name = ".debug_macinfo.dwo";
18634 }
18635 }
18636 else
18637 {
18638 if (section_is_gnu)
18639 {
18640 section = &dwarf2_per_objfile->macro;
18641 section_name = ".debug_macro";
18642 }
18643 else
18644 {
18645 section = &dwarf2_per_objfile->macinfo;
18646 section_name = ".debug_macinfo";
18647 }
18648 }
18649
18650 dwarf2_read_section (objfile, section);
18651 if (section->buffer == NULL)
18652 {
18653 complaint (&symfile_complaints, _("missing %s section"), section_name);
18654 return;
18655 }
18656 abfd = section->asection->owner;
18657
18658 /* First pass: Find the name of the base filename.
18659 This filename is needed in order to process all macros whose definition
18660 (or undefinition) comes from the command line. These macros are defined
18661 before the first DW_MACINFO_start_file entry, and yet still need to be
18662 associated to the base file.
18663
18664 To determine the base file name, we scan the macro definitions until we
18665 reach the first DW_MACINFO_start_file entry. We then initialize
18666 CURRENT_FILE accordingly so that any macro definition found before the
18667 first DW_MACINFO_start_file can still be associated to the base file. */
18668
18669 mac_ptr = section->buffer + offset;
18670 mac_end = section->buffer + section->size;
18671
18672 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18673 &offset_size, section_is_gnu);
18674 if (mac_ptr == NULL)
18675 {
18676 /* We already issued a complaint. */
18677 return;
18678 }
18679
18680 do
18681 {
18682 /* Do we at least have room for a macinfo type byte? */
18683 if (mac_ptr >= mac_end)
18684 {
18685 /* Complaint is printed during the second pass as GDB will probably
18686 stop the first pass earlier upon finding
18687 DW_MACINFO_start_file. */
18688 break;
18689 }
18690
18691 macinfo_type = read_1_byte (abfd, mac_ptr);
18692 mac_ptr++;
18693
18694 /* Note that we rely on the fact that the corresponding GNU and
18695 DWARF constants are the same. */
18696 switch (macinfo_type)
18697 {
18698 /* A zero macinfo type indicates the end of the macro
18699 information. */
18700 case 0:
18701 break;
18702
18703 case DW_MACRO_GNU_define:
18704 case DW_MACRO_GNU_undef:
18705 /* Only skip the data by MAC_PTR. */
18706 {
18707 unsigned int bytes_read;
18708
18709 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18710 mac_ptr += bytes_read;
18711 read_direct_string (abfd, mac_ptr, &bytes_read);
18712 mac_ptr += bytes_read;
18713 }
18714 break;
18715
18716 case DW_MACRO_GNU_start_file:
18717 {
18718 unsigned int bytes_read;
18719 int line, file;
18720
18721 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18722 mac_ptr += bytes_read;
18723 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18724 mac_ptr += bytes_read;
18725
18726 current_file = macro_start_file (file, line, current_file,
18727 comp_dir, lh, objfile);
18728 }
18729 break;
18730
18731 case DW_MACRO_GNU_end_file:
18732 /* No data to skip by MAC_PTR. */
18733 break;
18734
18735 case DW_MACRO_GNU_define_indirect:
18736 case DW_MACRO_GNU_undef_indirect:
18737 case DW_MACRO_GNU_define_indirect_alt:
18738 case DW_MACRO_GNU_undef_indirect_alt:
18739 {
18740 unsigned int bytes_read;
18741
18742 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18743 mac_ptr += bytes_read;
18744 mac_ptr += offset_size;
18745 }
18746 break;
18747
18748 case DW_MACRO_GNU_transparent_include:
18749 case DW_MACRO_GNU_transparent_include_alt:
18750 /* Note that, according to the spec, a transparent include
18751 chain cannot call DW_MACRO_GNU_start_file. So, we can just
18752 skip this opcode. */
18753 mac_ptr += offset_size;
18754 break;
18755
18756 case DW_MACINFO_vendor_ext:
18757 /* Only skip the data by MAC_PTR. */
18758 if (!section_is_gnu)
18759 {
18760 unsigned int bytes_read;
18761
18762 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18763 mac_ptr += bytes_read;
18764 read_direct_string (abfd, mac_ptr, &bytes_read);
18765 mac_ptr += bytes_read;
18766 }
18767 /* FALLTHROUGH */
18768
18769 default:
18770 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18771 mac_ptr, mac_end, abfd, offset_size,
18772 section);
18773 if (mac_ptr == NULL)
18774 return;
18775 break;
18776 }
18777 } while (macinfo_type != 0 && current_file == NULL);
18778
18779 /* Second pass: Process all entries.
18780
18781 Use the AT_COMMAND_LINE flag to determine whether we are still processing
18782 command-line macro definitions/undefinitions. This flag is unset when we
18783 reach the first DW_MACINFO_start_file entry. */
18784
18785 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
18786 NULL, xcalloc, xfree);
18787 cleanup = make_cleanup_htab_delete (include_hash);
18788 mac_ptr = section->buffer + offset;
18789 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
18790 *slot = mac_ptr;
18791 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
18792 current_file, lh, comp_dir, section,
18793 section_is_gnu, 0,
18794 offset_size, objfile, include_hash);
18795 do_cleanups (cleanup);
18796 }
18797
18798 /* Check if the attribute's form is a DW_FORM_block*
18799 if so return true else false. */
18800
18801 static int
18802 attr_form_is_block (struct attribute *attr)
18803 {
18804 return (attr == NULL ? 0 :
18805 attr->form == DW_FORM_block1
18806 || attr->form == DW_FORM_block2
18807 || attr->form == DW_FORM_block4
18808 || attr->form == DW_FORM_block
18809 || attr->form == DW_FORM_exprloc);
18810 }
18811
18812 /* Return non-zero if ATTR's value is a section offset --- classes
18813 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
18814 You may use DW_UNSND (attr) to retrieve such offsets.
18815
18816 Section 7.5.4, "Attribute Encodings", explains that no attribute
18817 may have a value that belongs to more than one of these classes; it
18818 would be ambiguous if we did, because we use the same forms for all
18819 of them. */
18820
18821 static int
18822 attr_form_is_section_offset (struct attribute *attr)
18823 {
18824 return (attr->form == DW_FORM_data4
18825 || attr->form == DW_FORM_data8
18826 || attr->form == DW_FORM_sec_offset);
18827 }
18828
18829 /* Return non-zero if ATTR's value falls in the 'constant' class, or
18830 zero otherwise. When this function returns true, you can apply
18831 dwarf2_get_attr_constant_value to it.
18832
18833 However, note that for some attributes you must check
18834 attr_form_is_section_offset before using this test. DW_FORM_data4
18835 and DW_FORM_data8 are members of both the constant class, and of
18836 the classes that contain offsets into other debug sections
18837 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
18838 that, if an attribute's can be either a constant or one of the
18839 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
18840 taken as section offsets, not constants. */
18841
18842 static int
18843 attr_form_is_constant (struct attribute *attr)
18844 {
18845 switch (attr->form)
18846 {
18847 case DW_FORM_sdata:
18848 case DW_FORM_udata:
18849 case DW_FORM_data1:
18850 case DW_FORM_data2:
18851 case DW_FORM_data4:
18852 case DW_FORM_data8:
18853 return 1;
18854 default:
18855 return 0;
18856 }
18857 }
18858
18859 /* Return the .debug_loc section to use for CU.
18860 For DWO files use .debug_loc.dwo. */
18861
18862 static struct dwarf2_section_info *
18863 cu_debug_loc_section (struct dwarf2_cu *cu)
18864 {
18865 if (cu->dwo_unit)
18866 return &cu->dwo_unit->dwo_file->sections.loc;
18867 return &dwarf2_per_objfile->loc;
18868 }
18869
18870 /* A helper function that fills in a dwarf2_loclist_baton. */
18871
18872 static void
18873 fill_in_loclist_baton (struct dwarf2_cu *cu,
18874 struct dwarf2_loclist_baton *baton,
18875 struct attribute *attr)
18876 {
18877 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18878
18879 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
18880
18881 baton->per_cu = cu->per_cu;
18882 gdb_assert (baton->per_cu);
18883 /* We don't know how long the location list is, but make sure we
18884 don't run off the edge of the section. */
18885 baton->size = section->size - DW_UNSND (attr);
18886 baton->data = section->buffer + DW_UNSND (attr);
18887 baton->base_address = cu->base_address;
18888 baton->from_dwo = cu->dwo_unit != NULL;
18889 }
18890
18891 static void
18892 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
18893 struct dwarf2_cu *cu)
18894 {
18895 struct objfile *objfile = dwarf2_per_objfile->objfile;
18896 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18897
18898 if (attr_form_is_section_offset (attr)
18899 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
18900 the section. If so, fall through to the complaint in the
18901 other branch. */
18902 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
18903 {
18904 struct dwarf2_loclist_baton *baton;
18905
18906 baton = obstack_alloc (&objfile->objfile_obstack,
18907 sizeof (struct dwarf2_loclist_baton));
18908
18909 fill_in_loclist_baton (cu, baton, attr);
18910
18911 if (cu->base_known == 0)
18912 complaint (&symfile_complaints,
18913 _("Location list used without "
18914 "specifying the CU base address."));
18915
18916 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
18917 SYMBOL_LOCATION_BATON (sym) = baton;
18918 }
18919 else
18920 {
18921 struct dwarf2_locexpr_baton *baton;
18922
18923 baton = obstack_alloc (&objfile->objfile_obstack,
18924 sizeof (struct dwarf2_locexpr_baton));
18925 baton->per_cu = cu->per_cu;
18926 gdb_assert (baton->per_cu);
18927
18928 if (attr_form_is_block (attr))
18929 {
18930 /* Note that we're just copying the block's data pointer
18931 here, not the actual data. We're still pointing into the
18932 info_buffer for SYM's objfile; right now we never release
18933 that buffer, but when we do clean up properly this may
18934 need to change. */
18935 baton->size = DW_BLOCK (attr)->size;
18936 baton->data = DW_BLOCK (attr)->data;
18937 }
18938 else
18939 {
18940 dwarf2_invalid_attrib_class_complaint ("location description",
18941 SYMBOL_NATURAL_NAME (sym));
18942 baton->size = 0;
18943 }
18944
18945 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
18946 SYMBOL_LOCATION_BATON (sym) = baton;
18947 }
18948 }
18949
18950 /* Return the OBJFILE associated with the compilation unit CU. If CU
18951 came from a separate debuginfo file, then the master objfile is
18952 returned. */
18953
18954 struct objfile *
18955 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
18956 {
18957 struct objfile *objfile = per_cu->objfile;
18958
18959 /* Return the master objfile, so that we can report and look up the
18960 correct file containing this variable. */
18961 if (objfile->separate_debug_objfile_backlink)
18962 objfile = objfile->separate_debug_objfile_backlink;
18963
18964 return objfile;
18965 }
18966
18967 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
18968 (CU_HEADERP is unused in such case) or prepare a temporary copy at
18969 CU_HEADERP first. */
18970
18971 static const struct comp_unit_head *
18972 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
18973 struct dwarf2_per_cu_data *per_cu)
18974 {
18975 gdb_byte *info_ptr;
18976
18977 if (per_cu->cu)
18978 return &per_cu->cu->header;
18979
18980 info_ptr = per_cu->info_or_types_section->buffer + per_cu->offset.sect_off;
18981
18982 memset (cu_headerp, 0, sizeof (*cu_headerp));
18983 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
18984
18985 return cu_headerp;
18986 }
18987
18988 /* Return the address size given in the compilation unit header for CU. */
18989
18990 int
18991 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
18992 {
18993 struct comp_unit_head cu_header_local;
18994 const struct comp_unit_head *cu_headerp;
18995
18996 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
18997
18998 return cu_headerp->addr_size;
18999 }
19000
19001 /* Return the offset size given in the compilation unit header for CU. */
19002
19003 int
19004 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19005 {
19006 struct comp_unit_head cu_header_local;
19007 const struct comp_unit_head *cu_headerp;
19008
19009 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19010
19011 return cu_headerp->offset_size;
19012 }
19013
19014 /* See its dwarf2loc.h declaration. */
19015
19016 int
19017 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19018 {
19019 struct comp_unit_head cu_header_local;
19020 const struct comp_unit_head *cu_headerp;
19021
19022 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19023
19024 if (cu_headerp->version == 2)
19025 return cu_headerp->addr_size;
19026 else
19027 return cu_headerp->offset_size;
19028 }
19029
19030 /* Return the text offset of the CU. The returned offset comes from
19031 this CU's objfile. If this objfile came from a separate debuginfo
19032 file, then the offset may be different from the corresponding
19033 offset in the parent objfile. */
19034
19035 CORE_ADDR
19036 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19037 {
19038 struct objfile *objfile = per_cu->objfile;
19039
19040 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19041 }
19042
19043 /* Locate the .debug_info compilation unit from CU's objfile which contains
19044 the DIE at OFFSET. Raises an error on failure. */
19045
19046 static struct dwarf2_per_cu_data *
19047 dwarf2_find_containing_comp_unit (sect_offset offset,
19048 unsigned int offset_in_dwz,
19049 struct objfile *objfile)
19050 {
19051 struct dwarf2_per_cu_data *this_cu;
19052 int low, high;
19053 const sect_offset *cu_off;
19054
19055 low = 0;
19056 high = dwarf2_per_objfile->n_comp_units - 1;
19057 while (high > low)
19058 {
19059 struct dwarf2_per_cu_data *mid_cu;
19060 int mid = low + (high - low) / 2;
19061
19062 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19063 cu_off = &mid_cu->offset;
19064 if (mid_cu->is_dwz > offset_in_dwz
19065 || (mid_cu->is_dwz == offset_in_dwz
19066 && cu_off->sect_off >= offset.sect_off))
19067 high = mid;
19068 else
19069 low = mid + 1;
19070 }
19071 gdb_assert (low == high);
19072 this_cu = dwarf2_per_objfile->all_comp_units[low];
19073 cu_off = &this_cu->offset;
19074 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
19075 {
19076 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
19077 error (_("Dwarf Error: could not find partial DIE containing "
19078 "offset 0x%lx [in module %s]"),
19079 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
19080
19081 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19082 <= offset.sect_off);
19083 return dwarf2_per_objfile->all_comp_units[low-1];
19084 }
19085 else
19086 {
19087 this_cu = dwarf2_per_objfile->all_comp_units[low];
19088 if (low == dwarf2_per_objfile->n_comp_units - 1
19089 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19090 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19091 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
19092 return this_cu;
19093 }
19094 }
19095
19096 /* Initialize dwarf2_cu CU, owned by PER_CU. */
19097
19098 static void
19099 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
19100 {
19101 memset (cu, 0, sizeof (*cu));
19102 per_cu->cu = cu;
19103 cu->per_cu = per_cu;
19104 cu->objfile = per_cu->objfile;
19105 obstack_init (&cu->comp_unit_obstack);
19106 }
19107
19108 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19109
19110 static void
19111 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19112 enum language pretend_language)
19113 {
19114 struct attribute *attr;
19115
19116 /* Set the language we're debugging. */
19117 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19118 if (attr)
19119 set_cu_language (DW_UNSND (attr), cu);
19120 else
19121 {
19122 cu->language = pretend_language;
19123 cu->language_defn = language_def (cu->language);
19124 }
19125
19126 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19127 if (attr)
19128 cu->producer = DW_STRING (attr);
19129 }
19130
19131 /* Release one cached compilation unit, CU. We unlink it from the tree
19132 of compilation units, but we don't remove it from the read_in_chain;
19133 the caller is responsible for that.
19134 NOTE: DATA is a void * because this function is also used as a
19135 cleanup routine. */
19136
19137 static void
19138 free_heap_comp_unit (void *data)
19139 {
19140 struct dwarf2_cu *cu = data;
19141
19142 gdb_assert (cu->per_cu != NULL);
19143 cu->per_cu->cu = NULL;
19144 cu->per_cu = NULL;
19145
19146 obstack_free (&cu->comp_unit_obstack, NULL);
19147
19148 xfree (cu);
19149 }
19150
19151 /* This cleanup function is passed the address of a dwarf2_cu on the stack
19152 when we're finished with it. We can't free the pointer itself, but be
19153 sure to unlink it from the cache. Also release any associated storage. */
19154
19155 static void
19156 free_stack_comp_unit (void *data)
19157 {
19158 struct dwarf2_cu *cu = data;
19159
19160 gdb_assert (cu->per_cu != NULL);
19161 cu->per_cu->cu = NULL;
19162 cu->per_cu = NULL;
19163
19164 obstack_free (&cu->comp_unit_obstack, NULL);
19165 cu->partial_dies = NULL;
19166 }
19167
19168 /* Free all cached compilation units. */
19169
19170 static void
19171 free_cached_comp_units (void *data)
19172 {
19173 struct dwarf2_per_cu_data *per_cu, **last_chain;
19174
19175 per_cu = dwarf2_per_objfile->read_in_chain;
19176 last_chain = &dwarf2_per_objfile->read_in_chain;
19177 while (per_cu != NULL)
19178 {
19179 struct dwarf2_per_cu_data *next_cu;
19180
19181 next_cu = per_cu->cu->read_in_chain;
19182
19183 free_heap_comp_unit (per_cu->cu);
19184 *last_chain = next_cu;
19185
19186 per_cu = next_cu;
19187 }
19188 }
19189
19190 /* Increase the age counter on each cached compilation unit, and free
19191 any that are too old. */
19192
19193 static void
19194 age_cached_comp_units (void)
19195 {
19196 struct dwarf2_per_cu_data *per_cu, **last_chain;
19197
19198 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19199 per_cu = dwarf2_per_objfile->read_in_chain;
19200 while (per_cu != NULL)
19201 {
19202 per_cu->cu->last_used ++;
19203 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19204 dwarf2_mark (per_cu->cu);
19205 per_cu = per_cu->cu->read_in_chain;
19206 }
19207
19208 per_cu = dwarf2_per_objfile->read_in_chain;
19209 last_chain = &dwarf2_per_objfile->read_in_chain;
19210 while (per_cu != NULL)
19211 {
19212 struct dwarf2_per_cu_data *next_cu;
19213
19214 next_cu = per_cu->cu->read_in_chain;
19215
19216 if (!per_cu->cu->mark)
19217 {
19218 free_heap_comp_unit (per_cu->cu);
19219 *last_chain = next_cu;
19220 }
19221 else
19222 last_chain = &per_cu->cu->read_in_chain;
19223
19224 per_cu = next_cu;
19225 }
19226 }
19227
19228 /* Remove a single compilation unit from the cache. */
19229
19230 static void
19231 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
19232 {
19233 struct dwarf2_per_cu_data *per_cu, **last_chain;
19234
19235 per_cu = dwarf2_per_objfile->read_in_chain;
19236 last_chain = &dwarf2_per_objfile->read_in_chain;
19237 while (per_cu != NULL)
19238 {
19239 struct dwarf2_per_cu_data *next_cu;
19240
19241 next_cu = per_cu->cu->read_in_chain;
19242
19243 if (per_cu == target_per_cu)
19244 {
19245 free_heap_comp_unit (per_cu->cu);
19246 per_cu->cu = NULL;
19247 *last_chain = next_cu;
19248 break;
19249 }
19250 else
19251 last_chain = &per_cu->cu->read_in_chain;
19252
19253 per_cu = next_cu;
19254 }
19255 }
19256
19257 /* Release all extra memory associated with OBJFILE. */
19258
19259 void
19260 dwarf2_free_objfile (struct objfile *objfile)
19261 {
19262 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19263
19264 if (dwarf2_per_objfile == NULL)
19265 return;
19266
19267 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19268 free_cached_comp_units (NULL);
19269
19270 if (dwarf2_per_objfile->quick_file_names_table)
19271 htab_delete (dwarf2_per_objfile->quick_file_names_table);
19272
19273 /* Everything else should be on the objfile obstack. */
19274 }
19275
19276 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19277 We store these in a hash table separate from the DIEs, and preserve them
19278 when the DIEs are flushed out of cache.
19279
19280 The CU "per_cu" pointer is needed because offset alone is not enough to
19281 uniquely identify the type. A file may have multiple .debug_types sections,
19282 or the type may come from a DWO file. We have to use something in
19283 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
19284 routine, get_die_type_at_offset, from outside this file, and thus won't
19285 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
19286 of the objfile. */
19287
19288 struct dwarf2_per_cu_offset_and_type
19289 {
19290 const struct dwarf2_per_cu_data *per_cu;
19291 sect_offset offset;
19292 struct type *type;
19293 };
19294
19295 /* Hash function for a dwarf2_per_cu_offset_and_type. */
19296
19297 static hashval_t
19298 per_cu_offset_and_type_hash (const void *item)
19299 {
19300 const struct dwarf2_per_cu_offset_and_type *ofs = item;
19301
19302 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
19303 }
19304
19305 /* Equality function for a dwarf2_per_cu_offset_and_type. */
19306
19307 static int
19308 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
19309 {
19310 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19311 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
19312
19313 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19314 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
19315 }
19316
19317 /* Set the type associated with DIE to TYPE. Save it in CU's hash
19318 table if necessary. For convenience, return TYPE.
19319
19320 The DIEs reading must have careful ordering to:
19321 * Not cause infite loops trying to read in DIEs as a prerequisite for
19322 reading current DIE.
19323 * Not trying to dereference contents of still incompletely read in types
19324 while reading in other DIEs.
19325 * Enable referencing still incompletely read in types just by a pointer to
19326 the type without accessing its fields.
19327
19328 Therefore caller should follow these rules:
19329 * Try to fetch any prerequisite types we may need to build this DIE type
19330 before building the type and calling set_die_type.
19331 * After building type call set_die_type for current DIE as soon as
19332 possible before fetching more types to complete the current type.
19333 * Make the type as complete as possible before fetching more types. */
19334
19335 static struct type *
19336 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19337 {
19338 struct dwarf2_per_cu_offset_and_type **slot, ofs;
19339 struct objfile *objfile = cu->objfile;
19340
19341 /* For Ada types, make sure that the gnat-specific data is always
19342 initialized (if not already set). There are a few types where
19343 we should not be doing so, because the type-specific area is
19344 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19345 where the type-specific area is used to store the floatformat).
19346 But this is not a problem, because the gnat-specific information
19347 is actually not needed for these types. */
19348 if (need_gnat_info (cu)
19349 && TYPE_CODE (type) != TYPE_CODE_FUNC
19350 && TYPE_CODE (type) != TYPE_CODE_FLT
19351 && !HAVE_GNAT_AUX_INFO (type))
19352 INIT_GNAT_SPECIFIC (type);
19353
19354 if (dwarf2_per_objfile->die_type_hash == NULL)
19355 {
19356 dwarf2_per_objfile->die_type_hash =
19357 htab_create_alloc_ex (127,
19358 per_cu_offset_and_type_hash,
19359 per_cu_offset_and_type_eq,
19360 NULL,
19361 &objfile->objfile_obstack,
19362 hashtab_obstack_allocate,
19363 dummy_obstack_deallocate);
19364 }
19365
19366 ofs.per_cu = cu->per_cu;
19367 ofs.offset = die->offset;
19368 ofs.type = type;
19369 slot = (struct dwarf2_per_cu_offset_and_type **)
19370 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
19371 if (*slot)
19372 complaint (&symfile_complaints,
19373 _("A problem internal to GDB: DIE 0x%x has type already set"),
19374 die->offset.sect_off);
19375 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
19376 **slot = ofs;
19377 return type;
19378 }
19379
19380 /* Look up the type for the die at OFFSET in the appropriate type_hash
19381 table, or return NULL if the die does not have a saved type. */
19382
19383 static struct type *
19384 get_die_type_at_offset (sect_offset offset,
19385 struct dwarf2_per_cu_data *per_cu)
19386 {
19387 struct dwarf2_per_cu_offset_and_type *slot, ofs;
19388
19389 if (dwarf2_per_objfile->die_type_hash == NULL)
19390 return NULL;
19391
19392 ofs.per_cu = per_cu;
19393 ofs.offset = offset;
19394 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
19395 if (slot)
19396 return slot->type;
19397 else
19398 return NULL;
19399 }
19400
19401 /* Look up the type for DIE in the appropriate type_hash table,
19402 or return NULL if DIE does not have a saved type. */
19403
19404 static struct type *
19405 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19406 {
19407 return get_die_type_at_offset (die->offset, cu->per_cu);
19408 }
19409
19410 /* Add a dependence relationship from CU to REF_PER_CU. */
19411
19412 static void
19413 dwarf2_add_dependence (struct dwarf2_cu *cu,
19414 struct dwarf2_per_cu_data *ref_per_cu)
19415 {
19416 void **slot;
19417
19418 if (cu->dependencies == NULL)
19419 cu->dependencies
19420 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19421 NULL, &cu->comp_unit_obstack,
19422 hashtab_obstack_allocate,
19423 dummy_obstack_deallocate);
19424
19425 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19426 if (*slot == NULL)
19427 *slot = ref_per_cu;
19428 }
19429
19430 /* Subroutine of dwarf2_mark to pass to htab_traverse.
19431 Set the mark field in every compilation unit in the
19432 cache that we must keep because we are keeping CU. */
19433
19434 static int
19435 dwarf2_mark_helper (void **slot, void *data)
19436 {
19437 struct dwarf2_per_cu_data *per_cu;
19438
19439 per_cu = (struct dwarf2_per_cu_data *) *slot;
19440
19441 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19442 reading of the chain. As such dependencies remain valid it is not much
19443 useful to track and undo them during QUIT cleanups. */
19444 if (per_cu->cu == NULL)
19445 return 1;
19446
19447 if (per_cu->cu->mark)
19448 return 1;
19449 per_cu->cu->mark = 1;
19450
19451 if (per_cu->cu->dependencies != NULL)
19452 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19453
19454 return 1;
19455 }
19456
19457 /* Set the mark field in CU and in every other compilation unit in the
19458 cache that we must keep because we are keeping CU. */
19459
19460 static void
19461 dwarf2_mark (struct dwarf2_cu *cu)
19462 {
19463 if (cu->mark)
19464 return;
19465 cu->mark = 1;
19466 if (cu->dependencies != NULL)
19467 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
19468 }
19469
19470 static void
19471 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19472 {
19473 while (per_cu)
19474 {
19475 per_cu->cu->mark = 0;
19476 per_cu = per_cu->cu->read_in_chain;
19477 }
19478 }
19479
19480 /* Trivial hash function for partial_die_info: the hash value of a DIE
19481 is its offset in .debug_info for this objfile. */
19482
19483 static hashval_t
19484 partial_die_hash (const void *item)
19485 {
19486 const struct partial_die_info *part_die = item;
19487
19488 return part_die->offset.sect_off;
19489 }
19490
19491 /* Trivial comparison function for partial_die_info structures: two DIEs
19492 are equal if they have the same offset. */
19493
19494 static int
19495 partial_die_eq (const void *item_lhs, const void *item_rhs)
19496 {
19497 const struct partial_die_info *part_die_lhs = item_lhs;
19498 const struct partial_die_info *part_die_rhs = item_rhs;
19499
19500 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
19501 }
19502
19503 static struct cmd_list_element *set_dwarf2_cmdlist;
19504 static struct cmd_list_element *show_dwarf2_cmdlist;
19505
19506 static void
19507 set_dwarf2_cmd (char *args, int from_tty)
19508 {
19509 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19510 }
19511
19512 static void
19513 show_dwarf2_cmd (char *args, int from_tty)
19514 {
19515 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19516 }
19517
19518 /* Free data associated with OBJFILE, if necessary. */
19519
19520 static void
19521 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
19522 {
19523 struct dwarf2_per_objfile *data = d;
19524 int ix;
19525
19526 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19527 VEC_free (dwarf2_per_cu_ptr,
19528 dwarf2_per_objfile->all_comp_units[ix]->s.imported_symtabs);
19529
19530 VEC_free (dwarf2_section_info_def, data->types);
19531
19532 if (data->dwo_files)
19533 free_dwo_files (data->dwo_files, objfile);
19534
19535 if (data->dwz_file && data->dwz_file->dwz_bfd)
19536 gdb_bfd_unref (data->dwz_file->dwz_bfd);
19537 }
19538
19539 \f
19540 /* The "save gdb-index" command. */
19541
19542 /* The contents of the hash table we create when building the string
19543 table. */
19544 struct strtab_entry
19545 {
19546 offset_type offset;
19547 const char *str;
19548 };
19549
19550 /* Hash function for a strtab_entry.
19551
19552 Function is used only during write_hash_table so no index format backward
19553 compatibility is needed. */
19554
19555 static hashval_t
19556 hash_strtab_entry (const void *e)
19557 {
19558 const struct strtab_entry *entry = e;
19559 return mapped_index_string_hash (INT_MAX, entry->str);
19560 }
19561
19562 /* Equality function for a strtab_entry. */
19563
19564 static int
19565 eq_strtab_entry (const void *a, const void *b)
19566 {
19567 const struct strtab_entry *ea = a;
19568 const struct strtab_entry *eb = b;
19569 return !strcmp (ea->str, eb->str);
19570 }
19571
19572 /* Create a strtab_entry hash table. */
19573
19574 static htab_t
19575 create_strtab (void)
19576 {
19577 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
19578 xfree, xcalloc, xfree);
19579 }
19580
19581 /* Add a string to the constant pool. Return the string's offset in
19582 host order. */
19583
19584 static offset_type
19585 add_string (htab_t table, struct obstack *cpool, const char *str)
19586 {
19587 void **slot;
19588 struct strtab_entry entry;
19589 struct strtab_entry *result;
19590
19591 entry.str = str;
19592 slot = htab_find_slot (table, &entry, INSERT);
19593 if (*slot)
19594 result = *slot;
19595 else
19596 {
19597 result = XNEW (struct strtab_entry);
19598 result->offset = obstack_object_size (cpool);
19599 result->str = str;
19600 obstack_grow_str0 (cpool, str);
19601 *slot = result;
19602 }
19603 return result->offset;
19604 }
19605
19606 /* An entry in the symbol table. */
19607 struct symtab_index_entry
19608 {
19609 /* The name of the symbol. */
19610 const char *name;
19611 /* The offset of the name in the constant pool. */
19612 offset_type index_offset;
19613 /* A sorted vector of the indices of all the CUs that hold an object
19614 of this name. */
19615 VEC (offset_type) *cu_indices;
19616 };
19617
19618 /* The symbol table. This is a power-of-2-sized hash table. */
19619 struct mapped_symtab
19620 {
19621 offset_type n_elements;
19622 offset_type size;
19623 struct symtab_index_entry **data;
19624 };
19625
19626 /* Hash function for a symtab_index_entry. */
19627
19628 static hashval_t
19629 hash_symtab_entry (const void *e)
19630 {
19631 const struct symtab_index_entry *entry = e;
19632 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
19633 sizeof (offset_type) * VEC_length (offset_type,
19634 entry->cu_indices),
19635 0);
19636 }
19637
19638 /* Equality function for a symtab_index_entry. */
19639
19640 static int
19641 eq_symtab_entry (const void *a, const void *b)
19642 {
19643 const struct symtab_index_entry *ea = a;
19644 const struct symtab_index_entry *eb = b;
19645 int len = VEC_length (offset_type, ea->cu_indices);
19646 if (len != VEC_length (offset_type, eb->cu_indices))
19647 return 0;
19648 return !memcmp (VEC_address (offset_type, ea->cu_indices),
19649 VEC_address (offset_type, eb->cu_indices),
19650 sizeof (offset_type) * len);
19651 }
19652
19653 /* Destroy a symtab_index_entry. */
19654
19655 static void
19656 delete_symtab_entry (void *p)
19657 {
19658 struct symtab_index_entry *entry = p;
19659 VEC_free (offset_type, entry->cu_indices);
19660 xfree (entry);
19661 }
19662
19663 /* Create a hash table holding symtab_index_entry objects. */
19664
19665 static htab_t
19666 create_symbol_hash_table (void)
19667 {
19668 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
19669 delete_symtab_entry, xcalloc, xfree);
19670 }
19671
19672 /* Create a new mapped symtab object. */
19673
19674 static struct mapped_symtab *
19675 create_mapped_symtab (void)
19676 {
19677 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
19678 symtab->n_elements = 0;
19679 symtab->size = 1024;
19680 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19681 return symtab;
19682 }
19683
19684 /* Destroy a mapped_symtab. */
19685
19686 static void
19687 cleanup_mapped_symtab (void *p)
19688 {
19689 struct mapped_symtab *symtab = p;
19690 /* The contents of the array are freed when the other hash table is
19691 destroyed. */
19692 xfree (symtab->data);
19693 xfree (symtab);
19694 }
19695
19696 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
19697 the slot.
19698
19699 Function is used only during write_hash_table so no index format backward
19700 compatibility is needed. */
19701
19702 static struct symtab_index_entry **
19703 find_slot (struct mapped_symtab *symtab, const char *name)
19704 {
19705 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
19706
19707 index = hash & (symtab->size - 1);
19708 step = ((hash * 17) & (symtab->size - 1)) | 1;
19709
19710 for (;;)
19711 {
19712 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
19713 return &symtab->data[index];
19714 index = (index + step) & (symtab->size - 1);
19715 }
19716 }
19717
19718 /* Expand SYMTAB's hash table. */
19719
19720 static void
19721 hash_expand (struct mapped_symtab *symtab)
19722 {
19723 offset_type old_size = symtab->size;
19724 offset_type i;
19725 struct symtab_index_entry **old_entries = symtab->data;
19726
19727 symtab->size *= 2;
19728 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19729
19730 for (i = 0; i < old_size; ++i)
19731 {
19732 if (old_entries[i])
19733 {
19734 struct symtab_index_entry **slot = find_slot (symtab,
19735 old_entries[i]->name);
19736 *slot = old_entries[i];
19737 }
19738 }
19739
19740 xfree (old_entries);
19741 }
19742
19743 /* Add an entry to SYMTAB. NAME is the name of the symbol.
19744 CU_INDEX is the index of the CU in which the symbol appears.
19745 IS_STATIC is one if the symbol is static, otherwise zero (global). */
19746
19747 static void
19748 add_index_entry (struct mapped_symtab *symtab, const char *name,
19749 int is_static, gdb_index_symbol_kind kind,
19750 offset_type cu_index)
19751 {
19752 struct symtab_index_entry **slot;
19753 offset_type cu_index_and_attrs;
19754
19755 ++symtab->n_elements;
19756 if (4 * symtab->n_elements / 3 >= symtab->size)
19757 hash_expand (symtab);
19758
19759 slot = find_slot (symtab, name);
19760 if (!*slot)
19761 {
19762 *slot = XNEW (struct symtab_index_entry);
19763 (*slot)->name = name;
19764 /* index_offset is set later. */
19765 (*slot)->cu_indices = NULL;
19766 }
19767
19768 cu_index_and_attrs = 0;
19769 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
19770 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
19771 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
19772
19773 /* We don't want to record an index value twice as we want to avoid the
19774 duplication.
19775 We process all global symbols and then all static symbols
19776 (which would allow us to avoid the duplication by only having to check
19777 the last entry pushed), but a symbol could have multiple kinds in one CU.
19778 To keep things simple we don't worry about the duplication here and
19779 sort and uniqufy the list after we've processed all symbols. */
19780 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
19781 }
19782
19783 /* qsort helper routine for uniquify_cu_indices. */
19784
19785 static int
19786 offset_type_compare (const void *ap, const void *bp)
19787 {
19788 offset_type a = *(offset_type *) ap;
19789 offset_type b = *(offset_type *) bp;
19790
19791 return (a > b) - (b > a);
19792 }
19793
19794 /* Sort and remove duplicates of all symbols' cu_indices lists. */
19795
19796 static void
19797 uniquify_cu_indices (struct mapped_symtab *symtab)
19798 {
19799 int i;
19800
19801 for (i = 0; i < symtab->size; ++i)
19802 {
19803 struct symtab_index_entry *entry = symtab->data[i];
19804
19805 if (entry
19806 && entry->cu_indices != NULL)
19807 {
19808 unsigned int next_to_insert, next_to_check;
19809 offset_type last_value;
19810
19811 qsort (VEC_address (offset_type, entry->cu_indices),
19812 VEC_length (offset_type, entry->cu_indices),
19813 sizeof (offset_type), offset_type_compare);
19814
19815 last_value = VEC_index (offset_type, entry->cu_indices, 0);
19816 next_to_insert = 1;
19817 for (next_to_check = 1;
19818 next_to_check < VEC_length (offset_type, entry->cu_indices);
19819 ++next_to_check)
19820 {
19821 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
19822 != last_value)
19823 {
19824 last_value = VEC_index (offset_type, entry->cu_indices,
19825 next_to_check);
19826 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
19827 last_value);
19828 ++next_to_insert;
19829 }
19830 }
19831 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
19832 }
19833 }
19834 }
19835
19836 /* Add a vector of indices to the constant pool. */
19837
19838 static offset_type
19839 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
19840 struct symtab_index_entry *entry)
19841 {
19842 void **slot;
19843
19844 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
19845 if (!*slot)
19846 {
19847 offset_type len = VEC_length (offset_type, entry->cu_indices);
19848 offset_type val = MAYBE_SWAP (len);
19849 offset_type iter;
19850 int i;
19851
19852 *slot = entry;
19853 entry->index_offset = obstack_object_size (cpool);
19854
19855 obstack_grow (cpool, &val, sizeof (val));
19856 for (i = 0;
19857 VEC_iterate (offset_type, entry->cu_indices, i, iter);
19858 ++i)
19859 {
19860 val = MAYBE_SWAP (iter);
19861 obstack_grow (cpool, &val, sizeof (val));
19862 }
19863 }
19864 else
19865 {
19866 struct symtab_index_entry *old_entry = *slot;
19867 entry->index_offset = old_entry->index_offset;
19868 entry = old_entry;
19869 }
19870 return entry->index_offset;
19871 }
19872
19873 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
19874 constant pool entries going into the obstack CPOOL. */
19875
19876 static void
19877 write_hash_table (struct mapped_symtab *symtab,
19878 struct obstack *output, struct obstack *cpool)
19879 {
19880 offset_type i;
19881 htab_t symbol_hash_table;
19882 htab_t str_table;
19883
19884 symbol_hash_table = create_symbol_hash_table ();
19885 str_table = create_strtab ();
19886
19887 /* We add all the index vectors to the constant pool first, to
19888 ensure alignment is ok. */
19889 for (i = 0; i < symtab->size; ++i)
19890 {
19891 if (symtab->data[i])
19892 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
19893 }
19894
19895 /* Now write out the hash table. */
19896 for (i = 0; i < symtab->size; ++i)
19897 {
19898 offset_type str_off, vec_off;
19899
19900 if (symtab->data[i])
19901 {
19902 str_off = add_string (str_table, cpool, symtab->data[i]->name);
19903 vec_off = symtab->data[i]->index_offset;
19904 }
19905 else
19906 {
19907 /* While 0 is a valid constant pool index, it is not valid
19908 to have 0 for both offsets. */
19909 str_off = 0;
19910 vec_off = 0;
19911 }
19912
19913 str_off = MAYBE_SWAP (str_off);
19914 vec_off = MAYBE_SWAP (vec_off);
19915
19916 obstack_grow (output, &str_off, sizeof (str_off));
19917 obstack_grow (output, &vec_off, sizeof (vec_off));
19918 }
19919
19920 htab_delete (str_table);
19921 htab_delete (symbol_hash_table);
19922 }
19923
19924 /* Struct to map psymtab to CU index in the index file. */
19925 struct psymtab_cu_index_map
19926 {
19927 struct partial_symtab *psymtab;
19928 unsigned int cu_index;
19929 };
19930
19931 static hashval_t
19932 hash_psymtab_cu_index (const void *item)
19933 {
19934 const struct psymtab_cu_index_map *map = item;
19935
19936 return htab_hash_pointer (map->psymtab);
19937 }
19938
19939 static int
19940 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
19941 {
19942 const struct psymtab_cu_index_map *lhs = item_lhs;
19943 const struct psymtab_cu_index_map *rhs = item_rhs;
19944
19945 return lhs->psymtab == rhs->psymtab;
19946 }
19947
19948 /* Helper struct for building the address table. */
19949 struct addrmap_index_data
19950 {
19951 struct objfile *objfile;
19952 struct obstack *addr_obstack;
19953 htab_t cu_index_htab;
19954
19955 /* Non-zero if the previous_* fields are valid.
19956 We can't write an entry until we see the next entry (since it is only then
19957 that we know the end of the entry). */
19958 int previous_valid;
19959 /* Index of the CU in the table of all CUs in the index file. */
19960 unsigned int previous_cu_index;
19961 /* Start address of the CU. */
19962 CORE_ADDR previous_cu_start;
19963 };
19964
19965 /* Write an address entry to OBSTACK. */
19966
19967 static void
19968 add_address_entry (struct objfile *objfile, struct obstack *obstack,
19969 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
19970 {
19971 offset_type cu_index_to_write;
19972 char addr[8];
19973 CORE_ADDR baseaddr;
19974
19975 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19976
19977 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
19978 obstack_grow (obstack, addr, 8);
19979 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
19980 obstack_grow (obstack, addr, 8);
19981 cu_index_to_write = MAYBE_SWAP (cu_index);
19982 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
19983 }
19984
19985 /* Worker function for traversing an addrmap to build the address table. */
19986
19987 static int
19988 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
19989 {
19990 struct addrmap_index_data *data = datap;
19991 struct partial_symtab *pst = obj;
19992
19993 if (data->previous_valid)
19994 add_address_entry (data->objfile, data->addr_obstack,
19995 data->previous_cu_start, start_addr,
19996 data->previous_cu_index);
19997
19998 data->previous_cu_start = start_addr;
19999 if (pst != NULL)
20000 {
20001 struct psymtab_cu_index_map find_map, *map;
20002 find_map.psymtab = pst;
20003 map = htab_find (data->cu_index_htab, &find_map);
20004 gdb_assert (map != NULL);
20005 data->previous_cu_index = map->cu_index;
20006 data->previous_valid = 1;
20007 }
20008 else
20009 data->previous_valid = 0;
20010
20011 return 0;
20012 }
20013
20014 /* Write OBJFILE's address map to OBSTACK.
20015 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20016 in the index file. */
20017
20018 static void
20019 write_address_map (struct objfile *objfile, struct obstack *obstack,
20020 htab_t cu_index_htab)
20021 {
20022 struct addrmap_index_data addrmap_index_data;
20023
20024 /* When writing the address table, we have to cope with the fact that
20025 the addrmap iterator only provides the start of a region; we have to
20026 wait until the next invocation to get the start of the next region. */
20027
20028 addrmap_index_data.objfile = objfile;
20029 addrmap_index_data.addr_obstack = obstack;
20030 addrmap_index_data.cu_index_htab = cu_index_htab;
20031 addrmap_index_data.previous_valid = 0;
20032
20033 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20034 &addrmap_index_data);
20035
20036 /* It's highly unlikely the last entry (end address = 0xff...ff)
20037 is valid, but we should still handle it.
20038 The end address is recorded as the start of the next region, but that
20039 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20040 anyway. */
20041 if (addrmap_index_data.previous_valid)
20042 add_address_entry (objfile, obstack,
20043 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20044 addrmap_index_data.previous_cu_index);
20045 }
20046
20047 /* Return the symbol kind of PSYM. */
20048
20049 static gdb_index_symbol_kind
20050 symbol_kind (struct partial_symbol *psym)
20051 {
20052 domain_enum domain = PSYMBOL_DOMAIN (psym);
20053 enum address_class aclass = PSYMBOL_CLASS (psym);
20054
20055 switch (domain)
20056 {
20057 case VAR_DOMAIN:
20058 switch (aclass)
20059 {
20060 case LOC_BLOCK:
20061 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20062 case LOC_TYPEDEF:
20063 return GDB_INDEX_SYMBOL_KIND_TYPE;
20064 case LOC_COMPUTED:
20065 case LOC_CONST_BYTES:
20066 case LOC_OPTIMIZED_OUT:
20067 case LOC_STATIC:
20068 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20069 case LOC_CONST:
20070 /* Note: It's currently impossible to recognize psyms as enum values
20071 short of reading the type info. For now punt. */
20072 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20073 default:
20074 /* There are other LOC_FOO values that one might want to classify
20075 as variables, but dwarf2read.c doesn't currently use them. */
20076 return GDB_INDEX_SYMBOL_KIND_OTHER;
20077 }
20078 case STRUCT_DOMAIN:
20079 return GDB_INDEX_SYMBOL_KIND_TYPE;
20080 default:
20081 return GDB_INDEX_SYMBOL_KIND_OTHER;
20082 }
20083 }
20084
20085 /* Add a list of partial symbols to SYMTAB. */
20086
20087 static void
20088 write_psymbols (struct mapped_symtab *symtab,
20089 htab_t psyms_seen,
20090 struct partial_symbol **psymp,
20091 int count,
20092 offset_type cu_index,
20093 int is_static)
20094 {
20095 for (; count-- > 0; ++psymp)
20096 {
20097 struct partial_symbol *psym = *psymp;
20098 void **slot;
20099
20100 if (SYMBOL_LANGUAGE (psym) == language_ada)
20101 error (_("Ada is not currently supported by the index"));
20102
20103 /* Only add a given psymbol once. */
20104 slot = htab_find_slot (psyms_seen, psym, INSERT);
20105 if (!*slot)
20106 {
20107 gdb_index_symbol_kind kind = symbol_kind (psym);
20108
20109 *slot = psym;
20110 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20111 is_static, kind, cu_index);
20112 }
20113 }
20114 }
20115
20116 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
20117 exception if there is an error. */
20118
20119 static void
20120 write_obstack (FILE *file, struct obstack *obstack)
20121 {
20122 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20123 file)
20124 != obstack_object_size (obstack))
20125 error (_("couldn't data write to file"));
20126 }
20127
20128 /* Unlink a file if the argument is not NULL. */
20129
20130 static void
20131 unlink_if_set (void *p)
20132 {
20133 char **filename = p;
20134 if (*filename)
20135 unlink (*filename);
20136 }
20137
20138 /* A helper struct used when iterating over debug_types. */
20139 struct signatured_type_index_data
20140 {
20141 struct objfile *objfile;
20142 struct mapped_symtab *symtab;
20143 struct obstack *types_list;
20144 htab_t psyms_seen;
20145 int cu_index;
20146 };
20147
20148 /* A helper function that writes a single signatured_type to an
20149 obstack. */
20150
20151 static int
20152 write_one_signatured_type (void **slot, void *d)
20153 {
20154 struct signatured_type_index_data *info = d;
20155 struct signatured_type *entry = (struct signatured_type *) *slot;
20156 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
20157 struct partial_symtab *psymtab = per_cu->v.psymtab;
20158 gdb_byte val[8];
20159
20160 write_psymbols (info->symtab,
20161 info->psyms_seen,
20162 info->objfile->global_psymbols.list
20163 + psymtab->globals_offset,
20164 psymtab->n_global_syms, info->cu_index,
20165 0);
20166 write_psymbols (info->symtab,
20167 info->psyms_seen,
20168 info->objfile->static_psymbols.list
20169 + psymtab->statics_offset,
20170 psymtab->n_static_syms, info->cu_index,
20171 1);
20172
20173 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20174 entry->per_cu.offset.sect_off);
20175 obstack_grow (info->types_list, val, 8);
20176 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20177 entry->type_offset_in_tu.cu_off);
20178 obstack_grow (info->types_list, val, 8);
20179 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20180 obstack_grow (info->types_list, val, 8);
20181
20182 ++info->cu_index;
20183
20184 return 1;
20185 }
20186
20187 /* Recurse into all "included" dependencies and write their symbols as
20188 if they appeared in this psymtab. */
20189
20190 static void
20191 recursively_write_psymbols (struct objfile *objfile,
20192 struct partial_symtab *psymtab,
20193 struct mapped_symtab *symtab,
20194 htab_t psyms_seen,
20195 offset_type cu_index)
20196 {
20197 int i;
20198
20199 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20200 if (psymtab->dependencies[i]->user != NULL)
20201 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20202 symtab, psyms_seen, cu_index);
20203
20204 write_psymbols (symtab,
20205 psyms_seen,
20206 objfile->global_psymbols.list + psymtab->globals_offset,
20207 psymtab->n_global_syms, cu_index,
20208 0);
20209 write_psymbols (symtab,
20210 psyms_seen,
20211 objfile->static_psymbols.list + psymtab->statics_offset,
20212 psymtab->n_static_syms, cu_index,
20213 1);
20214 }
20215
20216 /* Create an index file for OBJFILE in the directory DIR. */
20217
20218 static void
20219 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20220 {
20221 struct cleanup *cleanup;
20222 char *filename, *cleanup_filename;
20223 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20224 struct obstack cu_list, types_cu_list;
20225 int i;
20226 FILE *out_file;
20227 struct mapped_symtab *symtab;
20228 offset_type val, size_of_contents, total_len;
20229 struct stat st;
20230 htab_t psyms_seen;
20231 htab_t cu_index_htab;
20232 struct psymtab_cu_index_map *psymtab_cu_index_map;
20233
20234 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
20235 return;
20236
20237 if (dwarf2_per_objfile->using_index)
20238 error (_("Cannot use an index to create the index"));
20239
20240 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20241 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20242
20243 if (stat (objfile->name, &st) < 0)
20244 perror_with_name (objfile->name);
20245
20246 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20247 INDEX_SUFFIX, (char *) NULL);
20248 cleanup = make_cleanup (xfree, filename);
20249
20250 out_file = fopen (filename, "wb");
20251 if (!out_file)
20252 error (_("Can't open `%s' for writing"), filename);
20253
20254 cleanup_filename = filename;
20255 make_cleanup (unlink_if_set, &cleanup_filename);
20256
20257 symtab = create_mapped_symtab ();
20258 make_cleanup (cleanup_mapped_symtab, symtab);
20259
20260 obstack_init (&addr_obstack);
20261 make_cleanup_obstack_free (&addr_obstack);
20262
20263 obstack_init (&cu_list);
20264 make_cleanup_obstack_free (&cu_list);
20265
20266 obstack_init (&types_cu_list);
20267 make_cleanup_obstack_free (&types_cu_list);
20268
20269 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20270 NULL, xcalloc, xfree);
20271 make_cleanup_htab_delete (psyms_seen);
20272
20273 /* While we're scanning CU's create a table that maps a psymtab pointer
20274 (which is what addrmap records) to its index (which is what is recorded
20275 in the index file). This will later be needed to write the address
20276 table. */
20277 cu_index_htab = htab_create_alloc (100,
20278 hash_psymtab_cu_index,
20279 eq_psymtab_cu_index,
20280 NULL, xcalloc, xfree);
20281 make_cleanup_htab_delete (cu_index_htab);
20282 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20283 xmalloc (sizeof (struct psymtab_cu_index_map)
20284 * dwarf2_per_objfile->n_comp_units);
20285 make_cleanup (xfree, psymtab_cu_index_map);
20286
20287 /* The CU list is already sorted, so we don't need to do additional
20288 work here. Also, the debug_types entries do not appear in
20289 all_comp_units, but only in their own hash table. */
20290 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20291 {
20292 struct dwarf2_per_cu_data *per_cu
20293 = dwarf2_per_objfile->all_comp_units[i];
20294 struct partial_symtab *psymtab = per_cu->v.psymtab;
20295 gdb_byte val[8];
20296 struct psymtab_cu_index_map *map;
20297 void **slot;
20298
20299 if (psymtab->user == NULL)
20300 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
20301
20302 map = &psymtab_cu_index_map[i];
20303 map->psymtab = psymtab;
20304 map->cu_index = i;
20305 slot = htab_find_slot (cu_index_htab, map, INSERT);
20306 gdb_assert (slot != NULL);
20307 gdb_assert (*slot == NULL);
20308 *slot = map;
20309
20310 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20311 per_cu->offset.sect_off);
20312 obstack_grow (&cu_list, val, 8);
20313 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
20314 obstack_grow (&cu_list, val, 8);
20315 }
20316
20317 /* Dump the address map. */
20318 write_address_map (objfile, &addr_obstack, cu_index_htab);
20319
20320 /* Write out the .debug_type entries, if any. */
20321 if (dwarf2_per_objfile->signatured_types)
20322 {
20323 struct signatured_type_index_data sig_data;
20324
20325 sig_data.objfile = objfile;
20326 sig_data.symtab = symtab;
20327 sig_data.types_list = &types_cu_list;
20328 sig_data.psyms_seen = psyms_seen;
20329 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20330 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20331 write_one_signatured_type, &sig_data);
20332 }
20333
20334 /* Now that we've processed all symbols we can shrink their cu_indices
20335 lists. */
20336 uniquify_cu_indices (symtab);
20337
20338 obstack_init (&constant_pool);
20339 make_cleanup_obstack_free (&constant_pool);
20340 obstack_init (&symtab_obstack);
20341 make_cleanup_obstack_free (&symtab_obstack);
20342 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20343
20344 obstack_init (&contents);
20345 make_cleanup_obstack_free (&contents);
20346 size_of_contents = 6 * sizeof (offset_type);
20347 total_len = size_of_contents;
20348
20349 /* The version number. */
20350 val = MAYBE_SWAP (7);
20351 obstack_grow (&contents, &val, sizeof (val));
20352
20353 /* The offset of the CU list from the start of the file. */
20354 val = MAYBE_SWAP (total_len);
20355 obstack_grow (&contents, &val, sizeof (val));
20356 total_len += obstack_object_size (&cu_list);
20357
20358 /* The offset of the types CU list from the start of the file. */
20359 val = MAYBE_SWAP (total_len);
20360 obstack_grow (&contents, &val, sizeof (val));
20361 total_len += obstack_object_size (&types_cu_list);
20362
20363 /* The offset of the address table from the start of the file. */
20364 val = MAYBE_SWAP (total_len);
20365 obstack_grow (&contents, &val, sizeof (val));
20366 total_len += obstack_object_size (&addr_obstack);
20367
20368 /* The offset of the symbol table from the start of the file. */
20369 val = MAYBE_SWAP (total_len);
20370 obstack_grow (&contents, &val, sizeof (val));
20371 total_len += obstack_object_size (&symtab_obstack);
20372
20373 /* The offset of the constant pool from the start of the file. */
20374 val = MAYBE_SWAP (total_len);
20375 obstack_grow (&contents, &val, sizeof (val));
20376 total_len += obstack_object_size (&constant_pool);
20377
20378 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20379
20380 write_obstack (out_file, &contents);
20381 write_obstack (out_file, &cu_list);
20382 write_obstack (out_file, &types_cu_list);
20383 write_obstack (out_file, &addr_obstack);
20384 write_obstack (out_file, &symtab_obstack);
20385 write_obstack (out_file, &constant_pool);
20386
20387 fclose (out_file);
20388
20389 /* We want to keep the file, so we set cleanup_filename to NULL
20390 here. See unlink_if_set. */
20391 cleanup_filename = NULL;
20392
20393 do_cleanups (cleanup);
20394 }
20395
20396 /* Implementation of the `save gdb-index' command.
20397
20398 Note that the file format used by this command is documented in the
20399 GDB manual. Any changes here must be documented there. */
20400
20401 static void
20402 save_gdb_index_command (char *arg, int from_tty)
20403 {
20404 struct objfile *objfile;
20405
20406 if (!arg || !*arg)
20407 error (_("usage: save gdb-index DIRECTORY"));
20408
20409 ALL_OBJFILES (objfile)
20410 {
20411 struct stat st;
20412
20413 /* If the objfile does not correspond to an actual file, skip it. */
20414 if (stat (objfile->name, &st) < 0)
20415 continue;
20416
20417 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20418 if (dwarf2_per_objfile)
20419 {
20420 volatile struct gdb_exception except;
20421
20422 TRY_CATCH (except, RETURN_MASK_ERROR)
20423 {
20424 write_psymtabs_to_index (objfile, arg);
20425 }
20426 if (except.reason < 0)
20427 exception_fprintf (gdb_stderr, except,
20428 _("Error while writing index for `%s': "),
20429 objfile->name);
20430 }
20431 }
20432 }
20433
20434 \f
20435
20436 int dwarf2_always_disassemble;
20437
20438 static void
20439 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20440 struct cmd_list_element *c, const char *value)
20441 {
20442 fprintf_filtered (file,
20443 _("Whether to always disassemble "
20444 "DWARF expressions is %s.\n"),
20445 value);
20446 }
20447
20448 static void
20449 show_check_physname (struct ui_file *file, int from_tty,
20450 struct cmd_list_element *c, const char *value)
20451 {
20452 fprintf_filtered (file,
20453 _("Whether to check \"physname\" is %s.\n"),
20454 value);
20455 }
20456
20457 void _initialize_dwarf2_read (void);
20458
20459 void
20460 _initialize_dwarf2_read (void)
20461 {
20462 struct cmd_list_element *c;
20463
20464 dwarf2_objfile_data_key
20465 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
20466
20467 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20468 Set DWARF 2 specific variables.\n\
20469 Configure DWARF 2 variables such as the cache size"),
20470 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20471 0/*allow-unknown*/, &maintenance_set_cmdlist);
20472
20473 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20474 Show DWARF 2 specific variables\n\
20475 Show DWARF 2 variables such as the cache size"),
20476 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20477 0/*allow-unknown*/, &maintenance_show_cmdlist);
20478
20479 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
20480 &dwarf2_max_cache_age, _("\
20481 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20482 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20483 A higher limit means that cached compilation units will be stored\n\
20484 in memory longer, and more total memory will be used. Zero disables\n\
20485 caching, which can slow down startup."),
20486 NULL,
20487 show_dwarf2_max_cache_age,
20488 &set_dwarf2_cmdlist,
20489 &show_dwarf2_cmdlist);
20490
20491 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20492 &dwarf2_always_disassemble, _("\
20493 Set whether `info address' always disassembles DWARF expressions."), _("\
20494 Show whether `info address' always disassembles DWARF expressions."), _("\
20495 When enabled, DWARF expressions are always printed in an assembly-like\n\
20496 syntax. When disabled, expressions will be printed in a more\n\
20497 conversational style, when possible."),
20498 NULL,
20499 show_dwarf2_always_disassemble,
20500 &set_dwarf2_cmdlist,
20501 &show_dwarf2_cmdlist);
20502
20503 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20504 Set debugging of the dwarf2 reader."), _("\
20505 Show debugging of the dwarf2 reader."), _("\
20506 When enabled, debugging messages are printed during dwarf2 reading\n\
20507 and symtab expansion."),
20508 NULL,
20509 NULL,
20510 &setdebuglist, &showdebuglist);
20511
20512 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
20513 Set debugging of the dwarf2 DIE reader."), _("\
20514 Show debugging of the dwarf2 DIE reader."), _("\
20515 When enabled (non-zero), DIEs are dumped after they are read in.\n\
20516 The value is the maximum depth to print."),
20517 NULL,
20518 NULL,
20519 &setdebuglist, &showdebuglist);
20520
20521 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20522 Set cross-checking of \"physname\" code against demangler."), _("\
20523 Show cross-checking of \"physname\" code against demangler."), _("\
20524 When enabled, GDB's internal \"physname\" code is checked against\n\
20525 the demangler."),
20526 NULL, show_check_physname,
20527 &setdebuglist, &showdebuglist);
20528
20529 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20530 no_class, &use_deprecated_index_sections, _("\
20531 Set whether to use deprecated gdb_index sections."), _("\
20532 Show whether to use deprecated gdb_index sections."), _("\
20533 When enabled, deprecated .gdb_index sections are used anyway.\n\
20534 Normally they are ignored either because of a missing feature or\n\
20535 performance issue.\n\
20536 Warning: This option must be enabled before gdb reads the file."),
20537 NULL,
20538 NULL,
20539 &setlist, &showlist);
20540
20541 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
20542 _("\
20543 Save a gdb-index file.\n\
20544 Usage: save gdb-index DIRECTORY"),
20545 &save_cmdlist);
20546 set_cmd_completer (c, filename_completer);
20547 }