Remove dwarf_decode_lines argumewant_line_info
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73
74 #include <fcntl.h>
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83 static unsigned int dwarf2_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf2_die_debug = 0;
87
88 /* When non-zero, cross-check physname against demangler. */
89 static int check_physname = 0;
90
91 /* When non-zero, do not reject deprecated .gdb_index sections. */
92 static int use_deprecated_index_sections = 0;
93
94 static const struct objfile_data *dwarf2_objfile_data_key;
95
96 /* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98 static int dwarf2_locexpr_index;
99 static int dwarf2_loclist_index;
100 static int dwarf2_locexpr_block_index;
101 static int dwarf2_loclist_block_index;
102
103 /* A descriptor for dwarf sections.
104
105 S.ASECTION, SIZE are typically initialized when the objfile is first
106 scanned. BUFFER, READIN are filled in later when the section is read.
107 If the section contained compressed data then SIZE is updated to record
108 the uncompressed size of the section.
109
110 DWP file format V2 introduces a wrinkle that is easiest to handle by
111 creating the concept of virtual sections contained within a real section.
112 In DWP V2 the sections of the input DWO files are concatenated together
113 into one section, but section offsets are kept relative to the original
114 input section.
115 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
116 the real section this "virtual" section is contained in, and BUFFER,SIZE
117 describe the virtual section. */
118
119 struct dwarf2_section_info
120 {
121 union
122 {
123 /* If this is a real section, the bfd section. */
124 asection *asection;
125 /* If this is a virtual section, pointer to the containing ("real")
126 section. */
127 struct dwarf2_section_info *containing_section;
128 } s;
129 /* Pointer to section data, only valid if readin. */
130 const gdb_byte *buffer;
131 /* The size of the section, real or virtual. */
132 bfd_size_type size;
133 /* If this is a virtual section, the offset in the real section.
134 Only valid if is_virtual. */
135 bfd_size_type virtual_offset;
136 /* True if we have tried to read this section. */
137 char readin;
138 /* True if this is a virtual section, False otherwise.
139 This specifies which of s.asection and s.containing_section to use. */
140 char is_virtual;
141 };
142
143 typedef struct dwarf2_section_info dwarf2_section_info_def;
144 DEF_VEC_O (dwarf2_section_info_def);
145
146 /* All offsets in the index are of this type. It must be
147 architecture-independent. */
148 typedef uint32_t offset_type;
149
150 DEF_VEC_I (offset_type);
151
152 /* Ensure only legit values are used. */
153 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
154 do { \
155 gdb_assert ((unsigned int) (value) <= 1); \
156 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
157 } while (0)
158
159 /* Ensure only legit values are used. */
160 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
161 do { \
162 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
163 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
164 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
165 } while (0)
166
167 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
168 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
169 do { \
170 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
171 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
172 } while (0)
173
174 /* A description of the mapped index. The file format is described in
175 a comment by the code that writes the index. */
176 struct mapped_index
177 {
178 /* Index data format version. */
179 int version;
180
181 /* The total length of the buffer. */
182 off_t total_size;
183
184 /* A pointer to the address table data. */
185 const gdb_byte *address_table;
186
187 /* Size of the address table data in bytes. */
188 offset_type address_table_size;
189
190 /* The symbol table, implemented as a hash table. */
191 const offset_type *symbol_table;
192
193 /* Size in slots, each slot is 2 offset_types. */
194 offset_type symbol_table_slots;
195
196 /* A pointer to the constant pool. */
197 const char *constant_pool;
198 };
199
200 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
201 DEF_VEC_P (dwarf2_per_cu_ptr);
202
203 /* Collection of data recorded per objfile.
204 This hangs off of dwarf2_objfile_data_key. */
205
206 struct dwarf2_per_objfile
207 {
208 struct dwarf2_section_info info;
209 struct dwarf2_section_info abbrev;
210 struct dwarf2_section_info line;
211 struct dwarf2_section_info loc;
212 struct dwarf2_section_info macinfo;
213 struct dwarf2_section_info macro;
214 struct dwarf2_section_info str;
215 struct dwarf2_section_info ranges;
216 struct dwarf2_section_info addr;
217 struct dwarf2_section_info frame;
218 struct dwarf2_section_info eh_frame;
219 struct dwarf2_section_info gdb_index;
220
221 VEC (dwarf2_section_info_def) *types;
222
223 /* Back link. */
224 struct objfile *objfile;
225
226 /* Table of all the compilation units. This is used to locate
227 the target compilation unit of a particular reference. */
228 struct dwarf2_per_cu_data **all_comp_units;
229
230 /* The number of compilation units in ALL_COMP_UNITS. */
231 int n_comp_units;
232
233 /* The number of .debug_types-related CUs. */
234 int n_type_units;
235
236 /* The number of elements allocated in all_type_units.
237 If there are skeleton-less TUs, we add them to all_type_units lazily. */
238 int n_allocated_type_units;
239
240 /* The .debug_types-related CUs (TUs).
241 This is stored in malloc space because we may realloc it. */
242 struct signatured_type **all_type_units;
243
244 /* Table of struct type_unit_group objects.
245 The hash key is the DW_AT_stmt_list value. */
246 htab_t type_unit_groups;
247
248 /* A table mapping .debug_types signatures to its signatured_type entry.
249 This is NULL if the .debug_types section hasn't been read in yet. */
250 htab_t signatured_types;
251
252 /* Type unit statistics, to see how well the scaling improvements
253 are doing. */
254 struct tu_stats
255 {
256 int nr_uniq_abbrev_tables;
257 int nr_symtabs;
258 int nr_symtab_sharers;
259 int nr_stmt_less_type_units;
260 int nr_all_type_units_reallocs;
261 } tu_stats;
262
263 /* A chain of compilation units that are currently read in, so that
264 they can be freed later. */
265 struct dwarf2_per_cu_data *read_in_chain;
266
267 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
268 This is NULL if the table hasn't been allocated yet. */
269 htab_t dwo_files;
270
271 /* Non-zero if we've check for whether there is a DWP file. */
272 int dwp_checked;
273
274 /* The DWP file if there is one, or NULL. */
275 struct dwp_file *dwp_file;
276
277 /* The shared '.dwz' file, if one exists. This is used when the
278 original data was compressed using 'dwz -m'. */
279 struct dwz_file *dwz_file;
280
281 /* A flag indicating wether this objfile has a section loaded at a
282 VMA of 0. */
283 int has_section_at_zero;
284
285 /* True if we are using the mapped index,
286 or we are faking it for OBJF_READNOW's sake. */
287 unsigned char using_index;
288
289 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
290 struct mapped_index *index_table;
291
292 /* When using index_table, this keeps track of all quick_file_names entries.
293 TUs typically share line table entries with a CU, so we maintain a
294 separate table of all line table entries to support the sharing.
295 Note that while there can be way more TUs than CUs, we've already
296 sorted all the TUs into "type unit groups", grouped by their
297 DW_AT_stmt_list value. Therefore the only sharing done here is with a
298 CU and its associated TU group if there is one. */
299 htab_t quick_file_names_table;
300
301 /* Set during partial symbol reading, to prevent queueing of full
302 symbols. */
303 int reading_partial_symbols;
304
305 /* Table mapping type DIEs to their struct type *.
306 This is NULL if not allocated yet.
307 The mapping is done via (CU/TU + DIE offset) -> type. */
308 htab_t die_type_hash;
309
310 /* The CUs we recently read. */
311 VEC (dwarf2_per_cu_ptr) *just_read_cus;
312 };
313
314 static struct dwarf2_per_objfile *dwarf2_per_objfile;
315
316 /* Default names of the debugging sections. */
317
318 /* Note that if the debugging section has been compressed, it might
319 have a name like .zdebug_info. */
320
321 static const struct dwarf2_debug_sections dwarf2_elf_names =
322 {
323 { ".debug_info", ".zdebug_info" },
324 { ".debug_abbrev", ".zdebug_abbrev" },
325 { ".debug_line", ".zdebug_line" },
326 { ".debug_loc", ".zdebug_loc" },
327 { ".debug_macinfo", ".zdebug_macinfo" },
328 { ".debug_macro", ".zdebug_macro" },
329 { ".debug_str", ".zdebug_str" },
330 { ".debug_ranges", ".zdebug_ranges" },
331 { ".debug_types", ".zdebug_types" },
332 { ".debug_addr", ".zdebug_addr" },
333 { ".debug_frame", ".zdebug_frame" },
334 { ".eh_frame", NULL },
335 { ".gdb_index", ".zgdb_index" },
336 23
337 };
338
339 /* List of DWO/DWP sections. */
340
341 static const struct dwop_section_names
342 {
343 struct dwarf2_section_names abbrev_dwo;
344 struct dwarf2_section_names info_dwo;
345 struct dwarf2_section_names line_dwo;
346 struct dwarf2_section_names loc_dwo;
347 struct dwarf2_section_names macinfo_dwo;
348 struct dwarf2_section_names macro_dwo;
349 struct dwarf2_section_names str_dwo;
350 struct dwarf2_section_names str_offsets_dwo;
351 struct dwarf2_section_names types_dwo;
352 struct dwarf2_section_names cu_index;
353 struct dwarf2_section_names tu_index;
354 }
355 dwop_section_names =
356 {
357 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
358 { ".debug_info.dwo", ".zdebug_info.dwo" },
359 { ".debug_line.dwo", ".zdebug_line.dwo" },
360 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
361 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
362 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
363 { ".debug_str.dwo", ".zdebug_str.dwo" },
364 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
365 { ".debug_types.dwo", ".zdebug_types.dwo" },
366 { ".debug_cu_index", ".zdebug_cu_index" },
367 { ".debug_tu_index", ".zdebug_tu_index" },
368 };
369
370 /* local data types */
371
372 /* The data in a compilation unit header, after target2host
373 translation, looks like this. */
374 struct comp_unit_head
375 {
376 unsigned int length;
377 short version;
378 unsigned char addr_size;
379 unsigned char signed_addr_p;
380 sect_offset abbrev_offset;
381
382 /* Size of file offsets; either 4 or 8. */
383 unsigned int offset_size;
384
385 /* Size of the length field; either 4 or 12. */
386 unsigned int initial_length_size;
387
388 /* Offset to the first byte of this compilation unit header in the
389 .debug_info section, for resolving relative reference dies. */
390 sect_offset offset;
391
392 /* Offset to first die in this cu from the start of the cu.
393 This will be the first byte following the compilation unit header. */
394 cu_offset first_die_offset;
395 };
396
397 /* Type used for delaying computation of method physnames.
398 See comments for compute_delayed_physnames. */
399 struct delayed_method_info
400 {
401 /* The type to which the method is attached, i.e., its parent class. */
402 struct type *type;
403
404 /* The index of the method in the type's function fieldlists. */
405 int fnfield_index;
406
407 /* The index of the method in the fieldlist. */
408 int index;
409
410 /* The name of the DIE. */
411 const char *name;
412
413 /* The DIE associated with this method. */
414 struct die_info *die;
415 };
416
417 typedef struct delayed_method_info delayed_method_info;
418 DEF_VEC_O (delayed_method_info);
419
420 /* Internal state when decoding a particular compilation unit. */
421 struct dwarf2_cu
422 {
423 /* The objfile containing this compilation unit. */
424 struct objfile *objfile;
425
426 /* The header of the compilation unit. */
427 struct comp_unit_head header;
428
429 /* Base address of this compilation unit. */
430 CORE_ADDR base_address;
431
432 /* Non-zero if base_address has been set. */
433 int base_known;
434
435 /* The language we are debugging. */
436 enum language language;
437 const struct language_defn *language_defn;
438
439 const char *producer;
440
441 /* The generic symbol table building routines have separate lists for
442 file scope symbols and all all other scopes (local scopes). So
443 we need to select the right one to pass to add_symbol_to_list().
444 We do it by keeping a pointer to the correct list in list_in_scope.
445
446 FIXME: The original dwarf code just treated the file scope as the
447 first local scope, and all other local scopes as nested local
448 scopes, and worked fine. Check to see if we really need to
449 distinguish these in buildsym.c. */
450 struct pending **list_in_scope;
451
452 /* The abbrev table for this CU.
453 Normally this points to the abbrev table in the objfile.
454 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
455 struct abbrev_table *abbrev_table;
456
457 /* Hash table holding all the loaded partial DIEs
458 with partial_die->offset.SECT_OFF as hash. */
459 htab_t partial_dies;
460
461 /* Storage for things with the same lifetime as this read-in compilation
462 unit, including partial DIEs. */
463 struct obstack comp_unit_obstack;
464
465 /* When multiple dwarf2_cu structures are living in memory, this field
466 chains them all together, so that they can be released efficiently.
467 We will probably also want a generation counter so that most-recently-used
468 compilation units are cached... */
469 struct dwarf2_per_cu_data *read_in_chain;
470
471 /* Backlink to our per_cu entry. */
472 struct dwarf2_per_cu_data *per_cu;
473
474 /* How many compilation units ago was this CU last referenced? */
475 int last_used;
476
477 /* A hash table of DIE cu_offset for following references with
478 die_info->offset.sect_off as hash. */
479 htab_t die_hash;
480
481 /* Full DIEs if read in. */
482 struct die_info *dies;
483
484 /* A set of pointers to dwarf2_per_cu_data objects for compilation
485 units referenced by this one. Only set during full symbol processing;
486 partial symbol tables do not have dependencies. */
487 htab_t dependencies;
488
489 /* Header data from the line table, during full symbol processing. */
490 struct line_header *line_header;
491
492 /* A list of methods which need to have physnames computed
493 after all type information has been read. */
494 VEC (delayed_method_info) *method_list;
495
496 /* To be copied to symtab->call_site_htab. */
497 htab_t call_site_htab;
498
499 /* Non-NULL if this CU came from a DWO file.
500 There is an invariant here that is important to remember:
501 Except for attributes copied from the top level DIE in the "main"
502 (or "stub") file in preparation for reading the DWO file
503 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
504 Either there isn't a DWO file (in which case this is NULL and the point
505 is moot), or there is and either we're not going to read it (in which
506 case this is NULL) or there is and we are reading it (in which case this
507 is non-NULL). */
508 struct dwo_unit *dwo_unit;
509
510 /* The DW_AT_addr_base attribute if present, zero otherwise
511 (zero is a valid value though).
512 Note this value comes from the Fission stub CU/TU's DIE. */
513 ULONGEST addr_base;
514
515 /* The DW_AT_ranges_base attribute if present, zero otherwise
516 (zero is a valid value though).
517 Note this value comes from the Fission stub CU/TU's DIE.
518 Also note that the value is zero in the non-DWO case so this value can
519 be used without needing to know whether DWO files are in use or not.
520 N.B. This does not apply to DW_AT_ranges appearing in
521 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
522 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
523 DW_AT_ranges_base *would* have to be applied, and we'd have to care
524 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
525 ULONGEST ranges_base;
526
527 /* Mark used when releasing cached dies. */
528 unsigned int mark : 1;
529
530 /* This CU references .debug_loc. See the symtab->locations_valid field.
531 This test is imperfect as there may exist optimized debug code not using
532 any location list and still facing inlining issues if handled as
533 unoptimized code. For a future better test see GCC PR other/32998. */
534 unsigned int has_loclist : 1;
535
536 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
537 if all the producer_is_* fields are valid. This information is cached
538 because profiling CU expansion showed excessive time spent in
539 producer_is_gxx_lt_4_6. */
540 unsigned int checked_producer : 1;
541 unsigned int producer_is_gxx_lt_4_6 : 1;
542 unsigned int producer_is_gcc_lt_4_3 : 1;
543 unsigned int producer_is_icc : 1;
544
545 /* When set, the file that we're processing is known to have
546 debugging info for C++ namespaces. GCC 3.3.x did not produce
547 this information, but later versions do. */
548
549 unsigned int processing_has_namespace_info : 1;
550 };
551
552 /* Persistent data held for a compilation unit, even when not
553 processing it. We put a pointer to this structure in the
554 read_symtab_private field of the psymtab. */
555
556 struct dwarf2_per_cu_data
557 {
558 /* The start offset and length of this compilation unit.
559 NOTE: Unlike comp_unit_head.length, this length includes
560 initial_length_size.
561 If the DIE refers to a DWO file, this is always of the original die,
562 not the DWO file. */
563 sect_offset offset;
564 unsigned int length;
565
566 /* Flag indicating this compilation unit will be read in before
567 any of the current compilation units are processed. */
568 unsigned int queued : 1;
569
570 /* This flag will be set when reading partial DIEs if we need to load
571 absolutely all DIEs for this compilation unit, instead of just the ones
572 we think are interesting. It gets set if we look for a DIE in the
573 hash table and don't find it. */
574 unsigned int load_all_dies : 1;
575
576 /* Non-zero if this CU is from .debug_types.
577 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
578 this is non-zero. */
579 unsigned int is_debug_types : 1;
580
581 /* Non-zero if this CU is from the .dwz file. */
582 unsigned int is_dwz : 1;
583
584 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
585 This flag is only valid if is_debug_types is true.
586 We can't read a CU directly from a DWO file: There are required
587 attributes in the stub. */
588 unsigned int reading_dwo_directly : 1;
589
590 /* Non-zero if the TU has been read.
591 This is used to assist the "Stay in DWO Optimization" for Fission:
592 When reading a DWO, it's faster to read TUs from the DWO instead of
593 fetching them from random other DWOs (due to comdat folding).
594 If the TU has already been read, the optimization is unnecessary
595 (and unwise - we don't want to change where gdb thinks the TU lives
596 "midflight").
597 This flag is only valid if is_debug_types is true. */
598 unsigned int tu_read : 1;
599
600 /* The section this CU/TU lives in.
601 If the DIE refers to a DWO file, this is always the original die,
602 not the DWO file. */
603 struct dwarf2_section_info *section;
604
605 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
606 of the CU cache it gets reset to NULL again. */
607 struct dwarf2_cu *cu;
608
609 /* The corresponding objfile.
610 Normally we can get the objfile from dwarf2_per_objfile.
611 However we can enter this file with just a "per_cu" handle. */
612 struct objfile *objfile;
613
614 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
615 is active. Otherwise, the 'psymtab' field is active. */
616 union
617 {
618 /* The partial symbol table associated with this compilation unit,
619 or NULL for unread partial units. */
620 struct partial_symtab *psymtab;
621
622 /* Data needed by the "quick" functions. */
623 struct dwarf2_per_cu_quick_data *quick;
624 } v;
625
626 /* The CUs we import using DW_TAG_imported_unit. This is filled in
627 while reading psymtabs, used to compute the psymtab dependencies,
628 and then cleared. Then it is filled in again while reading full
629 symbols, and only deleted when the objfile is destroyed.
630
631 This is also used to work around a difference between the way gold
632 generates .gdb_index version <=7 and the way gdb does. Arguably this
633 is a gold bug. For symbols coming from TUs, gold records in the index
634 the CU that includes the TU instead of the TU itself. This breaks
635 dw2_lookup_symbol: It assumes that if the index says symbol X lives
636 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
637 will find X. Alas TUs live in their own symtab, so after expanding CU Y
638 we need to look in TU Z to find X. Fortunately, this is akin to
639 DW_TAG_imported_unit, so we just use the same mechanism: For
640 .gdb_index version <=7 this also records the TUs that the CU referred
641 to. Concurrently with this change gdb was modified to emit version 8
642 indices so we only pay a price for gold generated indices.
643 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
644 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
645 };
646
647 /* Entry in the signatured_types hash table. */
648
649 struct signatured_type
650 {
651 /* The "per_cu" object of this type.
652 This struct is used iff per_cu.is_debug_types.
653 N.B.: This is the first member so that it's easy to convert pointers
654 between them. */
655 struct dwarf2_per_cu_data per_cu;
656
657 /* The type's signature. */
658 ULONGEST signature;
659
660 /* Offset in the TU of the type's DIE, as read from the TU header.
661 If this TU is a DWO stub and the definition lives in a DWO file
662 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
663 cu_offset type_offset_in_tu;
664
665 /* Offset in the section of the type's DIE.
666 If the definition lives in a DWO file, this is the offset in the
667 .debug_types.dwo section.
668 The value is zero until the actual value is known.
669 Zero is otherwise not a valid section offset. */
670 sect_offset type_offset_in_section;
671
672 /* Type units are grouped by their DW_AT_stmt_list entry so that they
673 can share them. This points to the containing symtab. */
674 struct type_unit_group *type_unit_group;
675
676 /* The type.
677 The first time we encounter this type we fully read it in and install it
678 in the symbol tables. Subsequent times we only need the type. */
679 struct type *type;
680
681 /* Containing DWO unit.
682 This field is valid iff per_cu.reading_dwo_directly. */
683 struct dwo_unit *dwo_unit;
684 };
685
686 typedef struct signatured_type *sig_type_ptr;
687 DEF_VEC_P (sig_type_ptr);
688
689 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
690 This includes type_unit_group and quick_file_names. */
691
692 struct stmt_list_hash
693 {
694 /* The DWO unit this table is from or NULL if there is none. */
695 struct dwo_unit *dwo_unit;
696
697 /* Offset in .debug_line or .debug_line.dwo. */
698 sect_offset line_offset;
699 };
700
701 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
702 an object of this type. */
703
704 struct type_unit_group
705 {
706 /* dwarf2read.c's main "handle" on a TU symtab.
707 To simplify things we create an artificial CU that "includes" all the
708 type units using this stmt_list so that the rest of the code still has
709 a "per_cu" handle on the symtab.
710 This PER_CU is recognized by having no section. */
711 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
712 struct dwarf2_per_cu_data per_cu;
713
714 /* The TUs that share this DW_AT_stmt_list entry.
715 This is added to while parsing type units to build partial symtabs,
716 and is deleted afterwards and not used again. */
717 VEC (sig_type_ptr) *tus;
718
719 /* The primary symtab.
720 Type units in a group needn't all be defined in the same source file,
721 so we create an essentially anonymous symtab as the primary symtab. */
722 struct symtab *primary_symtab;
723
724 /* The data used to construct the hash key. */
725 struct stmt_list_hash hash;
726
727 /* The number of symtabs from the line header.
728 The value here must match line_header.num_file_names. */
729 unsigned int num_symtabs;
730
731 /* The symbol tables for this TU (obtained from the files listed in
732 DW_AT_stmt_list).
733 WARNING: The order of entries here must match the order of entries
734 in the line header. After the first TU using this type_unit_group, the
735 line header for the subsequent TUs is recreated from this. This is done
736 because we need to use the same symtabs for each TU using the same
737 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
738 there's no guarantee the line header doesn't have duplicate entries. */
739 struct symtab **symtabs;
740 };
741
742 /* These sections are what may appear in a (real or virtual) DWO file. */
743
744 struct dwo_sections
745 {
746 struct dwarf2_section_info abbrev;
747 struct dwarf2_section_info line;
748 struct dwarf2_section_info loc;
749 struct dwarf2_section_info macinfo;
750 struct dwarf2_section_info macro;
751 struct dwarf2_section_info str;
752 struct dwarf2_section_info str_offsets;
753 /* In the case of a virtual DWO file, these two are unused. */
754 struct dwarf2_section_info info;
755 VEC (dwarf2_section_info_def) *types;
756 };
757
758 /* CUs/TUs in DWP/DWO files. */
759
760 struct dwo_unit
761 {
762 /* Backlink to the containing struct dwo_file. */
763 struct dwo_file *dwo_file;
764
765 /* The "id" that distinguishes this CU/TU.
766 .debug_info calls this "dwo_id", .debug_types calls this "signature".
767 Since signatures came first, we stick with it for consistency. */
768 ULONGEST signature;
769
770 /* The section this CU/TU lives in, in the DWO file. */
771 struct dwarf2_section_info *section;
772
773 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
774 sect_offset offset;
775 unsigned int length;
776
777 /* For types, offset in the type's DIE of the type defined by this TU. */
778 cu_offset type_offset_in_tu;
779 };
780
781 /* include/dwarf2.h defines the DWP section codes.
782 It defines a max value but it doesn't define a min value, which we
783 use for error checking, so provide one. */
784
785 enum dwp_v2_section_ids
786 {
787 DW_SECT_MIN = 1
788 };
789
790 /* Data for one DWO file.
791
792 This includes virtual DWO files (a virtual DWO file is a DWO file as it
793 appears in a DWP file). DWP files don't really have DWO files per se -
794 comdat folding of types "loses" the DWO file they came from, and from
795 a high level view DWP files appear to contain a mass of random types.
796 However, to maintain consistency with the non-DWP case we pretend DWP
797 files contain virtual DWO files, and we assign each TU with one virtual
798 DWO file (generally based on the line and abbrev section offsets -
799 a heuristic that seems to work in practice). */
800
801 struct dwo_file
802 {
803 /* The DW_AT_GNU_dwo_name attribute.
804 For virtual DWO files the name is constructed from the section offsets
805 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
806 from related CU+TUs. */
807 const char *dwo_name;
808
809 /* The DW_AT_comp_dir attribute. */
810 const char *comp_dir;
811
812 /* The bfd, when the file is open. Otherwise this is NULL.
813 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
814 bfd *dbfd;
815
816 /* The sections that make up this DWO file.
817 Remember that for virtual DWO files in DWP V2, these are virtual
818 sections (for lack of a better name). */
819 struct dwo_sections sections;
820
821 /* The CU in the file.
822 We only support one because having more than one requires hacking the
823 dwo_name of each to match, which is highly unlikely to happen.
824 Doing this means all TUs can share comp_dir: We also assume that
825 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
826 struct dwo_unit *cu;
827
828 /* Table of TUs in the file.
829 Each element is a struct dwo_unit. */
830 htab_t tus;
831 };
832
833 /* These sections are what may appear in a DWP file. */
834
835 struct dwp_sections
836 {
837 /* These are used by both DWP version 1 and 2. */
838 struct dwarf2_section_info str;
839 struct dwarf2_section_info cu_index;
840 struct dwarf2_section_info tu_index;
841
842 /* These are only used by DWP version 2 files.
843 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
844 sections are referenced by section number, and are not recorded here.
845 In DWP version 2 there is at most one copy of all these sections, each
846 section being (effectively) comprised of the concatenation of all of the
847 individual sections that exist in the version 1 format.
848 To keep the code simple we treat each of these concatenated pieces as a
849 section itself (a virtual section?). */
850 struct dwarf2_section_info abbrev;
851 struct dwarf2_section_info info;
852 struct dwarf2_section_info line;
853 struct dwarf2_section_info loc;
854 struct dwarf2_section_info macinfo;
855 struct dwarf2_section_info macro;
856 struct dwarf2_section_info str_offsets;
857 struct dwarf2_section_info types;
858 };
859
860 /* These sections are what may appear in a virtual DWO file in DWP version 1.
861 A virtual DWO file is a DWO file as it appears in a DWP file. */
862
863 struct virtual_v1_dwo_sections
864 {
865 struct dwarf2_section_info abbrev;
866 struct dwarf2_section_info line;
867 struct dwarf2_section_info loc;
868 struct dwarf2_section_info macinfo;
869 struct dwarf2_section_info macro;
870 struct dwarf2_section_info str_offsets;
871 /* Each DWP hash table entry records one CU or one TU.
872 That is recorded here, and copied to dwo_unit.section. */
873 struct dwarf2_section_info info_or_types;
874 };
875
876 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
877 In version 2, the sections of the DWO files are concatenated together
878 and stored in one section of that name. Thus each ELF section contains
879 several "virtual" sections. */
880
881 struct virtual_v2_dwo_sections
882 {
883 bfd_size_type abbrev_offset;
884 bfd_size_type abbrev_size;
885
886 bfd_size_type line_offset;
887 bfd_size_type line_size;
888
889 bfd_size_type loc_offset;
890 bfd_size_type loc_size;
891
892 bfd_size_type macinfo_offset;
893 bfd_size_type macinfo_size;
894
895 bfd_size_type macro_offset;
896 bfd_size_type macro_size;
897
898 bfd_size_type str_offsets_offset;
899 bfd_size_type str_offsets_size;
900
901 /* Each DWP hash table entry records one CU or one TU.
902 That is recorded here, and copied to dwo_unit.section. */
903 bfd_size_type info_or_types_offset;
904 bfd_size_type info_or_types_size;
905 };
906
907 /* Contents of DWP hash tables. */
908
909 struct dwp_hash_table
910 {
911 uint32_t version, nr_columns;
912 uint32_t nr_units, nr_slots;
913 const gdb_byte *hash_table, *unit_table;
914 union
915 {
916 struct
917 {
918 const gdb_byte *indices;
919 } v1;
920 struct
921 {
922 /* This is indexed by column number and gives the id of the section
923 in that column. */
924 #define MAX_NR_V2_DWO_SECTIONS \
925 (1 /* .debug_info or .debug_types */ \
926 + 1 /* .debug_abbrev */ \
927 + 1 /* .debug_line */ \
928 + 1 /* .debug_loc */ \
929 + 1 /* .debug_str_offsets */ \
930 + 1 /* .debug_macro or .debug_macinfo */)
931 int section_ids[MAX_NR_V2_DWO_SECTIONS];
932 const gdb_byte *offsets;
933 const gdb_byte *sizes;
934 } v2;
935 } section_pool;
936 };
937
938 /* Data for one DWP file. */
939
940 struct dwp_file
941 {
942 /* Name of the file. */
943 const char *name;
944
945 /* File format version. */
946 int version;
947
948 /* The bfd. */
949 bfd *dbfd;
950
951 /* Section info for this file. */
952 struct dwp_sections sections;
953
954 /* Table of CUs in the file. */
955 const struct dwp_hash_table *cus;
956
957 /* Table of TUs in the file. */
958 const struct dwp_hash_table *tus;
959
960 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
961 htab_t loaded_cus;
962 htab_t loaded_tus;
963
964 /* Table to map ELF section numbers to their sections.
965 This is only needed for the DWP V1 file format. */
966 unsigned int num_sections;
967 asection **elf_sections;
968 };
969
970 /* This represents a '.dwz' file. */
971
972 struct dwz_file
973 {
974 /* A dwz file can only contain a few sections. */
975 struct dwarf2_section_info abbrev;
976 struct dwarf2_section_info info;
977 struct dwarf2_section_info str;
978 struct dwarf2_section_info line;
979 struct dwarf2_section_info macro;
980 struct dwarf2_section_info gdb_index;
981
982 /* The dwz's BFD. */
983 bfd *dwz_bfd;
984 };
985
986 /* Struct used to pass misc. parameters to read_die_and_children, et
987 al. which are used for both .debug_info and .debug_types dies.
988 All parameters here are unchanging for the life of the call. This
989 struct exists to abstract away the constant parameters of die reading. */
990
991 struct die_reader_specs
992 {
993 /* The bfd of die_section. */
994 bfd* abfd;
995
996 /* The CU of the DIE we are parsing. */
997 struct dwarf2_cu *cu;
998
999 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1000 struct dwo_file *dwo_file;
1001
1002 /* The section the die comes from.
1003 This is either .debug_info or .debug_types, or the .dwo variants. */
1004 struct dwarf2_section_info *die_section;
1005
1006 /* die_section->buffer. */
1007 const gdb_byte *buffer;
1008
1009 /* The end of the buffer. */
1010 const gdb_byte *buffer_end;
1011
1012 /* The value of the DW_AT_comp_dir attribute. */
1013 const char *comp_dir;
1014 };
1015
1016 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1017 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1018 const gdb_byte *info_ptr,
1019 struct die_info *comp_unit_die,
1020 int has_children,
1021 void *data);
1022
1023 /* The line number information for a compilation unit (found in the
1024 .debug_line section) begins with a "statement program header",
1025 which contains the following information. */
1026 struct line_header
1027 {
1028 unsigned int total_length;
1029 unsigned short version;
1030 unsigned int header_length;
1031 unsigned char minimum_instruction_length;
1032 unsigned char maximum_ops_per_instruction;
1033 unsigned char default_is_stmt;
1034 int line_base;
1035 unsigned char line_range;
1036 unsigned char opcode_base;
1037
1038 /* standard_opcode_lengths[i] is the number of operands for the
1039 standard opcode whose value is i. This means that
1040 standard_opcode_lengths[0] is unused, and the last meaningful
1041 element is standard_opcode_lengths[opcode_base - 1]. */
1042 unsigned char *standard_opcode_lengths;
1043
1044 /* The include_directories table. NOTE! These strings are not
1045 allocated with xmalloc; instead, they are pointers into
1046 debug_line_buffer. If you try to free them, `free' will get
1047 indigestion. */
1048 unsigned int num_include_dirs, include_dirs_size;
1049 const char **include_dirs;
1050
1051 /* The file_names table. NOTE! These strings are not allocated
1052 with xmalloc; instead, they are pointers into debug_line_buffer.
1053 Don't try to free them directly. */
1054 unsigned int num_file_names, file_names_size;
1055 struct file_entry
1056 {
1057 const char *name;
1058 unsigned int dir_index;
1059 unsigned int mod_time;
1060 unsigned int length;
1061 int included_p; /* Non-zero if referenced by the Line Number Program. */
1062 struct symtab *symtab; /* The associated symbol table, if any. */
1063 } *file_names;
1064
1065 /* The start and end of the statement program following this
1066 header. These point into dwarf2_per_objfile->line_buffer. */
1067 const gdb_byte *statement_program_start, *statement_program_end;
1068 };
1069
1070 /* When we construct a partial symbol table entry we only
1071 need this much information. */
1072 struct partial_die_info
1073 {
1074 /* Offset of this DIE. */
1075 sect_offset offset;
1076
1077 /* DWARF-2 tag for this DIE. */
1078 ENUM_BITFIELD(dwarf_tag) tag : 16;
1079
1080 /* Assorted flags describing the data found in this DIE. */
1081 unsigned int has_children : 1;
1082 unsigned int is_external : 1;
1083 unsigned int is_declaration : 1;
1084 unsigned int has_type : 1;
1085 unsigned int has_specification : 1;
1086 unsigned int has_pc_info : 1;
1087 unsigned int may_be_inlined : 1;
1088
1089 /* Flag set if the SCOPE field of this structure has been
1090 computed. */
1091 unsigned int scope_set : 1;
1092
1093 /* Flag set if the DIE has a byte_size attribute. */
1094 unsigned int has_byte_size : 1;
1095
1096 /* Flag set if any of the DIE's children are template arguments. */
1097 unsigned int has_template_arguments : 1;
1098
1099 /* Flag set if fixup_partial_die has been called on this die. */
1100 unsigned int fixup_called : 1;
1101
1102 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1103 unsigned int is_dwz : 1;
1104
1105 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1106 unsigned int spec_is_dwz : 1;
1107
1108 /* The name of this DIE. Normally the value of DW_AT_name, but
1109 sometimes a default name for unnamed DIEs. */
1110 const char *name;
1111
1112 /* The linkage name, if present. */
1113 const char *linkage_name;
1114
1115 /* The scope to prepend to our children. This is generally
1116 allocated on the comp_unit_obstack, so will disappear
1117 when this compilation unit leaves the cache. */
1118 const char *scope;
1119
1120 /* Some data associated with the partial DIE. The tag determines
1121 which field is live. */
1122 union
1123 {
1124 /* The location description associated with this DIE, if any. */
1125 struct dwarf_block *locdesc;
1126 /* The offset of an import, for DW_TAG_imported_unit. */
1127 sect_offset offset;
1128 } d;
1129
1130 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1131 CORE_ADDR lowpc;
1132 CORE_ADDR highpc;
1133
1134 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1135 DW_AT_sibling, if any. */
1136 /* NOTE: This member isn't strictly necessary, read_partial_die could
1137 return DW_AT_sibling values to its caller load_partial_dies. */
1138 const gdb_byte *sibling;
1139
1140 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1141 DW_AT_specification (or DW_AT_abstract_origin or
1142 DW_AT_extension). */
1143 sect_offset spec_offset;
1144
1145 /* Pointers to this DIE's parent, first child, and next sibling,
1146 if any. */
1147 struct partial_die_info *die_parent, *die_child, *die_sibling;
1148 };
1149
1150 /* This data structure holds the information of an abbrev. */
1151 struct abbrev_info
1152 {
1153 unsigned int number; /* number identifying abbrev */
1154 enum dwarf_tag tag; /* dwarf tag */
1155 unsigned short has_children; /* boolean */
1156 unsigned short num_attrs; /* number of attributes */
1157 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1158 struct abbrev_info *next; /* next in chain */
1159 };
1160
1161 struct attr_abbrev
1162 {
1163 ENUM_BITFIELD(dwarf_attribute) name : 16;
1164 ENUM_BITFIELD(dwarf_form) form : 16;
1165 };
1166
1167 /* Size of abbrev_table.abbrev_hash_table. */
1168 #define ABBREV_HASH_SIZE 121
1169
1170 /* Top level data structure to contain an abbreviation table. */
1171
1172 struct abbrev_table
1173 {
1174 /* Where the abbrev table came from.
1175 This is used as a sanity check when the table is used. */
1176 sect_offset offset;
1177
1178 /* Storage for the abbrev table. */
1179 struct obstack abbrev_obstack;
1180
1181 /* Hash table of abbrevs.
1182 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1183 It could be statically allocated, but the previous code didn't so we
1184 don't either. */
1185 struct abbrev_info **abbrevs;
1186 };
1187
1188 /* Attributes have a name and a value. */
1189 struct attribute
1190 {
1191 ENUM_BITFIELD(dwarf_attribute) name : 16;
1192 ENUM_BITFIELD(dwarf_form) form : 15;
1193
1194 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1195 field should be in u.str (existing only for DW_STRING) but it is kept
1196 here for better struct attribute alignment. */
1197 unsigned int string_is_canonical : 1;
1198
1199 union
1200 {
1201 const char *str;
1202 struct dwarf_block *blk;
1203 ULONGEST unsnd;
1204 LONGEST snd;
1205 CORE_ADDR addr;
1206 ULONGEST signature;
1207 }
1208 u;
1209 };
1210
1211 /* This data structure holds a complete die structure. */
1212 struct die_info
1213 {
1214 /* DWARF-2 tag for this DIE. */
1215 ENUM_BITFIELD(dwarf_tag) tag : 16;
1216
1217 /* Number of attributes */
1218 unsigned char num_attrs;
1219
1220 /* True if we're presently building the full type name for the
1221 type derived from this DIE. */
1222 unsigned char building_fullname : 1;
1223
1224 /* True if this die is in process. PR 16581. */
1225 unsigned char in_process : 1;
1226
1227 /* Abbrev number */
1228 unsigned int abbrev;
1229
1230 /* Offset in .debug_info or .debug_types section. */
1231 sect_offset offset;
1232
1233 /* The dies in a compilation unit form an n-ary tree. PARENT
1234 points to this die's parent; CHILD points to the first child of
1235 this node; and all the children of a given node are chained
1236 together via their SIBLING fields. */
1237 struct die_info *child; /* Its first child, if any. */
1238 struct die_info *sibling; /* Its next sibling, if any. */
1239 struct die_info *parent; /* Its parent, if any. */
1240
1241 /* An array of attributes, with NUM_ATTRS elements. There may be
1242 zero, but it's not common and zero-sized arrays are not
1243 sufficiently portable C. */
1244 struct attribute attrs[1];
1245 };
1246
1247 /* Get at parts of an attribute structure. */
1248
1249 #define DW_STRING(attr) ((attr)->u.str)
1250 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1251 #define DW_UNSND(attr) ((attr)->u.unsnd)
1252 #define DW_BLOCK(attr) ((attr)->u.blk)
1253 #define DW_SND(attr) ((attr)->u.snd)
1254 #define DW_ADDR(attr) ((attr)->u.addr)
1255 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1256
1257 /* Blocks are a bunch of untyped bytes. */
1258 struct dwarf_block
1259 {
1260 size_t size;
1261
1262 /* Valid only if SIZE is not zero. */
1263 const gdb_byte *data;
1264 };
1265
1266 #ifndef ATTR_ALLOC_CHUNK
1267 #define ATTR_ALLOC_CHUNK 4
1268 #endif
1269
1270 /* Allocate fields for structs, unions and enums in this size. */
1271 #ifndef DW_FIELD_ALLOC_CHUNK
1272 #define DW_FIELD_ALLOC_CHUNK 4
1273 #endif
1274
1275 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1276 but this would require a corresponding change in unpack_field_as_long
1277 and friends. */
1278 static int bits_per_byte = 8;
1279
1280 /* The routines that read and process dies for a C struct or C++ class
1281 pass lists of data member fields and lists of member function fields
1282 in an instance of a field_info structure, as defined below. */
1283 struct field_info
1284 {
1285 /* List of data member and baseclasses fields. */
1286 struct nextfield
1287 {
1288 struct nextfield *next;
1289 int accessibility;
1290 int virtuality;
1291 struct field field;
1292 }
1293 *fields, *baseclasses;
1294
1295 /* Number of fields (including baseclasses). */
1296 int nfields;
1297
1298 /* Number of baseclasses. */
1299 int nbaseclasses;
1300
1301 /* Set if the accesibility of one of the fields is not public. */
1302 int non_public_fields;
1303
1304 /* Member function fields array, entries are allocated in the order they
1305 are encountered in the object file. */
1306 struct nextfnfield
1307 {
1308 struct nextfnfield *next;
1309 struct fn_field fnfield;
1310 }
1311 *fnfields;
1312
1313 /* Member function fieldlist array, contains name of possibly overloaded
1314 member function, number of overloaded member functions and a pointer
1315 to the head of the member function field chain. */
1316 struct fnfieldlist
1317 {
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321 }
1322 *fnfieldlists;
1323
1324 /* Number of entries in the fnfieldlists array. */
1325 int nfnfields;
1326
1327 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1328 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1329 struct typedef_field_list
1330 {
1331 struct typedef_field field;
1332 struct typedef_field_list *next;
1333 }
1334 *typedef_field_list;
1335 unsigned typedef_field_list_count;
1336 };
1337
1338 /* One item on the queue of compilation units to read in full symbols
1339 for. */
1340 struct dwarf2_queue_item
1341 {
1342 struct dwarf2_per_cu_data *per_cu;
1343 enum language pretend_language;
1344 struct dwarf2_queue_item *next;
1345 };
1346
1347 /* The current queue. */
1348 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1349
1350 /* Loaded secondary compilation units are kept in memory until they
1351 have not been referenced for the processing of this many
1352 compilation units. Set this to zero to disable caching. Cache
1353 sizes of up to at least twenty will improve startup time for
1354 typical inter-CU-reference binaries, at an obvious memory cost. */
1355 static int dwarf2_max_cache_age = 5;
1356 static void
1357 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1358 struct cmd_list_element *c, const char *value)
1359 {
1360 fprintf_filtered (file, _("The upper bound on the age of cached "
1361 "dwarf2 compilation units is %s.\n"),
1362 value);
1363 }
1364 \f
1365 /* local function prototypes */
1366
1367 static const char *get_section_name (const struct dwarf2_section_info *);
1368
1369 static const char *get_section_file_name (const struct dwarf2_section_info *);
1370
1371 static void dwarf2_locate_sections (bfd *, asection *, void *);
1372
1373 static void dwarf2_find_base_address (struct die_info *die,
1374 struct dwarf2_cu *cu);
1375
1376 static struct partial_symtab *create_partial_symtab
1377 (struct dwarf2_per_cu_data *per_cu, const char *name);
1378
1379 static void dwarf2_build_psymtabs_hard (struct objfile *);
1380
1381 static void scan_partial_symbols (struct partial_die_info *,
1382 CORE_ADDR *, CORE_ADDR *,
1383 int, struct dwarf2_cu *);
1384
1385 static void add_partial_symbol (struct partial_die_info *,
1386 struct dwarf2_cu *);
1387
1388 static void add_partial_namespace (struct partial_die_info *pdi,
1389 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1390 int set_addrmap, struct dwarf2_cu *cu);
1391
1392 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1393 CORE_ADDR *highpc, int set_addrmap,
1394 struct dwarf2_cu *cu);
1395
1396 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1397 struct dwarf2_cu *cu);
1398
1399 static void add_partial_subprogram (struct partial_die_info *pdi,
1400 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1401 int need_pc, struct dwarf2_cu *cu);
1402
1403 static void dwarf2_read_symtab (struct partial_symtab *,
1404 struct objfile *);
1405
1406 static void psymtab_to_symtab_1 (struct partial_symtab *);
1407
1408 static struct abbrev_info *abbrev_table_lookup_abbrev
1409 (const struct abbrev_table *, unsigned int);
1410
1411 static struct abbrev_table *abbrev_table_read_table
1412 (struct dwarf2_section_info *, sect_offset);
1413
1414 static void abbrev_table_free (struct abbrev_table *);
1415
1416 static void abbrev_table_free_cleanup (void *);
1417
1418 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1419 struct dwarf2_section_info *);
1420
1421 static void dwarf2_free_abbrev_table (void *);
1422
1423 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1424
1425 static struct partial_die_info *load_partial_dies
1426 (const struct die_reader_specs *, const gdb_byte *, int);
1427
1428 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1429 struct partial_die_info *,
1430 struct abbrev_info *,
1431 unsigned int,
1432 const gdb_byte *);
1433
1434 static struct partial_die_info *find_partial_die (sect_offset, int,
1435 struct dwarf2_cu *);
1436
1437 static void fixup_partial_die (struct partial_die_info *,
1438 struct dwarf2_cu *);
1439
1440 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1441 struct attribute *, struct attr_abbrev *,
1442 const gdb_byte *);
1443
1444 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1445
1446 static int read_1_signed_byte (bfd *, const gdb_byte *);
1447
1448 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1449
1450 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1451
1452 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1453
1454 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1455 unsigned int *);
1456
1457 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1458
1459 static LONGEST read_checked_initial_length_and_offset
1460 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1461 unsigned int *, unsigned int *);
1462
1463 static LONGEST read_offset (bfd *, const gdb_byte *,
1464 const struct comp_unit_head *,
1465 unsigned int *);
1466
1467 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1468
1469 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1470 sect_offset);
1471
1472 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1473
1474 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1475
1476 static const char *read_indirect_string (bfd *, const gdb_byte *,
1477 const struct comp_unit_head *,
1478 unsigned int *);
1479
1480 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1481
1482 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1483
1484 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1485
1486 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1487 const gdb_byte *,
1488 unsigned int *);
1489
1490 static const char *read_str_index (const struct die_reader_specs *reader,
1491 ULONGEST str_index);
1492
1493 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1494
1495 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1496 struct dwarf2_cu *);
1497
1498 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1499 unsigned int);
1500
1501 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1502 struct dwarf2_cu *cu);
1503
1504 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1505
1506 static struct die_info *die_specification (struct die_info *die,
1507 struct dwarf2_cu **);
1508
1509 static void free_line_header (struct line_header *lh);
1510
1511 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1512 struct dwarf2_cu *cu);
1513
1514 static void dwarf_decode_lines (struct line_header *, const char *,
1515 struct dwarf2_cu *, struct partial_symtab *);
1516
1517 static void dwarf2_start_subfile (const char *, const char *, const char *);
1518
1519 static void dwarf2_start_symtab (struct dwarf2_cu *,
1520 const char *, const char *, CORE_ADDR);
1521
1522 static struct symbol *new_symbol (struct die_info *, struct type *,
1523 struct dwarf2_cu *);
1524
1525 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1526 struct dwarf2_cu *, struct symbol *);
1527
1528 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1529 struct dwarf2_cu *);
1530
1531 static void dwarf2_const_value_attr (const struct attribute *attr,
1532 struct type *type,
1533 const char *name,
1534 struct obstack *obstack,
1535 struct dwarf2_cu *cu, LONGEST *value,
1536 const gdb_byte **bytes,
1537 struct dwarf2_locexpr_baton **baton);
1538
1539 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1540
1541 static int need_gnat_info (struct dwarf2_cu *);
1542
1543 static struct type *die_descriptive_type (struct die_info *,
1544 struct dwarf2_cu *);
1545
1546 static void set_descriptive_type (struct type *, struct die_info *,
1547 struct dwarf2_cu *);
1548
1549 static struct type *die_containing_type (struct die_info *,
1550 struct dwarf2_cu *);
1551
1552 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1553 struct dwarf2_cu *);
1554
1555 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1556
1557 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1558
1559 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1560
1561 static char *typename_concat (struct obstack *obs, const char *prefix,
1562 const char *suffix, int physname,
1563 struct dwarf2_cu *cu);
1564
1565 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1566
1567 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1568
1569 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1570
1571 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1572
1573 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1574
1575 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1576 struct dwarf2_cu *, struct partial_symtab *);
1577
1578 static int dwarf2_get_pc_bounds (struct die_info *,
1579 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1580 struct partial_symtab *);
1581
1582 static void get_scope_pc_bounds (struct die_info *,
1583 CORE_ADDR *, CORE_ADDR *,
1584 struct dwarf2_cu *);
1585
1586 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1587 CORE_ADDR, struct dwarf2_cu *);
1588
1589 static void dwarf2_add_field (struct field_info *, struct die_info *,
1590 struct dwarf2_cu *);
1591
1592 static void dwarf2_attach_fields_to_type (struct field_info *,
1593 struct type *, struct dwarf2_cu *);
1594
1595 static void dwarf2_add_member_fn (struct field_info *,
1596 struct die_info *, struct type *,
1597 struct dwarf2_cu *);
1598
1599 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1600 struct type *,
1601 struct dwarf2_cu *);
1602
1603 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1604
1605 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1606
1607 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1608
1609 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1610
1611 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1612
1613 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1614
1615 static struct type *read_module_type (struct die_info *die,
1616 struct dwarf2_cu *cu);
1617
1618 static const char *namespace_name (struct die_info *die,
1619 int *is_anonymous, struct dwarf2_cu *);
1620
1621 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1622
1623 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1624
1625 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1626 struct dwarf2_cu *);
1627
1628 static struct die_info *read_die_and_siblings_1
1629 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1630 struct die_info *);
1631
1632 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1633 const gdb_byte *info_ptr,
1634 const gdb_byte **new_info_ptr,
1635 struct die_info *parent);
1636
1637 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1638 struct die_info **, const gdb_byte *,
1639 int *, int);
1640
1641 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1642 struct die_info **, const gdb_byte *,
1643 int *);
1644
1645 static void process_die (struct die_info *, struct dwarf2_cu *);
1646
1647 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1648 struct obstack *);
1649
1650 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1651
1652 static const char *dwarf2_full_name (const char *name,
1653 struct die_info *die,
1654 struct dwarf2_cu *cu);
1655
1656 static const char *dwarf2_physname (const char *name, struct die_info *die,
1657 struct dwarf2_cu *cu);
1658
1659 static struct die_info *dwarf2_extension (struct die_info *die,
1660 struct dwarf2_cu **);
1661
1662 static const char *dwarf_tag_name (unsigned int);
1663
1664 static const char *dwarf_attr_name (unsigned int);
1665
1666 static const char *dwarf_form_name (unsigned int);
1667
1668 static char *dwarf_bool_name (unsigned int);
1669
1670 static const char *dwarf_type_encoding_name (unsigned int);
1671
1672 static struct die_info *sibling_die (struct die_info *);
1673
1674 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1675
1676 static void dump_die_for_error (struct die_info *);
1677
1678 static void dump_die_1 (struct ui_file *, int level, int max_level,
1679 struct die_info *);
1680
1681 /*static*/ void dump_die (struct die_info *, int max_level);
1682
1683 static void store_in_ref_table (struct die_info *,
1684 struct dwarf2_cu *);
1685
1686 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1687
1688 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1689
1690 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1691 const struct attribute *,
1692 struct dwarf2_cu **);
1693
1694 static struct die_info *follow_die_ref (struct die_info *,
1695 const struct attribute *,
1696 struct dwarf2_cu **);
1697
1698 static struct die_info *follow_die_sig (struct die_info *,
1699 const struct attribute *,
1700 struct dwarf2_cu **);
1701
1702 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1703 struct dwarf2_cu *);
1704
1705 static struct type *get_DW_AT_signature_type (struct die_info *,
1706 const struct attribute *,
1707 struct dwarf2_cu *);
1708
1709 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1710
1711 static void read_signatured_type (struct signatured_type *);
1712
1713 /* memory allocation interface */
1714
1715 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1716
1717 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1718
1719 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1720 const char *, int);
1721
1722 static int attr_form_is_block (const struct attribute *);
1723
1724 static int attr_form_is_section_offset (const struct attribute *);
1725
1726 static int attr_form_is_constant (const struct attribute *);
1727
1728 static int attr_form_is_ref (const struct attribute *);
1729
1730 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1731 struct dwarf2_loclist_baton *baton,
1732 const struct attribute *attr);
1733
1734 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1735 struct symbol *sym,
1736 struct dwarf2_cu *cu,
1737 int is_block);
1738
1739 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1740 const gdb_byte *info_ptr,
1741 struct abbrev_info *abbrev);
1742
1743 static void free_stack_comp_unit (void *);
1744
1745 static hashval_t partial_die_hash (const void *item);
1746
1747 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1748
1749 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1750 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1751
1752 static void init_one_comp_unit (struct dwarf2_cu *cu,
1753 struct dwarf2_per_cu_data *per_cu);
1754
1755 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1756 struct die_info *comp_unit_die,
1757 enum language pretend_language);
1758
1759 static void free_heap_comp_unit (void *);
1760
1761 static void free_cached_comp_units (void *);
1762
1763 static void age_cached_comp_units (void);
1764
1765 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1766
1767 static struct type *set_die_type (struct die_info *, struct type *,
1768 struct dwarf2_cu *);
1769
1770 static void create_all_comp_units (struct objfile *);
1771
1772 static int create_all_type_units (struct objfile *);
1773
1774 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1775 enum language);
1776
1777 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1778 enum language);
1779
1780 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1781 enum language);
1782
1783 static void dwarf2_add_dependence (struct dwarf2_cu *,
1784 struct dwarf2_per_cu_data *);
1785
1786 static void dwarf2_mark (struct dwarf2_cu *);
1787
1788 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1789
1790 static struct type *get_die_type_at_offset (sect_offset,
1791 struct dwarf2_per_cu_data *);
1792
1793 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1794
1795 static void dwarf2_release_queue (void *dummy);
1796
1797 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1798 enum language pretend_language);
1799
1800 static void process_queue (void);
1801
1802 static void find_file_and_directory (struct die_info *die,
1803 struct dwarf2_cu *cu,
1804 const char **name, const char **comp_dir);
1805
1806 static char *file_full_name (int file, struct line_header *lh,
1807 const char *comp_dir);
1808
1809 static const gdb_byte *read_and_check_comp_unit_head
1810 (struct comp_unit_head *header,
1811 struct dwarf2_section_info *section,
1812 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1813 int is_debug_types_section);
1814
1815 static void init_cutu_and_read_dies
1816 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1817 int use_existing_cu, int keep,
1818 die_reader_func_ftype *die_reader_func, void *data);
1819
1820 static void init_cutu_and_read_dies_simple
1821 (struct dwarf2_per_cu_data *this_cu,
1822 die_reader_func_ftype *die_reader_func, void *data);
1823
1824 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1825
1826 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1827
1828 static struct dwo_unit *lookup_dwo_unit_in_dwp
1829 (struct dwp_file *dwp_file, const char *comp_dir,
1830 ULONGEST signature, int is_debug_types);
1831
1832 static struct dwp_file *get_dwp_file (void);
1833
1834 static struct dwo_unit *lookup_dwo_comp_unit
1835 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1836
1837 static struct dwo_unit *lookup_dwo_type_unit
1838 (struct signatured_type *, const char *, const char *);
1839
1840 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1841
1842 static void free_dwo_file_cleanup (void *);
1843
1844 static void process_cu_includes (void);
1845
1846 static void check_producer (struct dwarf2_cu *cu);
1847 \f
1848 /* Various complaints about symbol reading that don't abort the process. */
1849
1850 static void
1851 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1852 {
1853 complaint (&symfile_complaints,
1854 _("statement list doesn't fit in .debug_line section"));
1855 }
1856
1857 static void
1858 dwarf2_debug_line_missing_file_complaint (void)
1859 {
1860 complaint (&symfile_complaints,
1861 _(".debug_line section has line data without a file"));
1862 }
1863
1864 static void
1865 dwarf2_debug_line_missing_end_sequence_complaint (void)
1866 {
1867 complaint (&symfile_complaints,
1868 _(".debug_line section has line "
1869 "program sequence without an end"));
1870 }
1871
1872 static void
1873 dwarf2_complex_location_expr_complaint (void)
1874 {
1875 complaint (&symfile_complaints, _("location expression too complex"));
1876 }
1877
1878 static void
1879 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1880 int arg3)
1881 {
1882 complaint (&symfile_complaints,
1883 _("const value length mismatch for '%s', got %d, expected %d"),
1884 arg1, arg2, arg3);
1885 }
1886
1887 static void
1888 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1889 {
1890 complaint (&symfile_complaints,
1891 _("debug info runs off end of %s section"
1892 " [in module %s]"),
1893 get_section_name (section),
1894 get_section_file_name (section));
1895 }
1896
1897 static void
1898 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1899 {
1900 complaint (&symfile_complaints,
1901 _("macro debug info contains a "
1902 "malformed macro definition:\n`%s'"),
1903 arg1);
1904 }
1905
1906 static void
1907 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1908 {
1909 complaint (&symfile_complaints,
1910 _("invalid attribute class or form for '%s' in '%s'"),
1911 arg1, arg2);
1912 }
1913 \f
1914 #if WORDS_BIGENDIAN
1915
1916 /* Convert VALUE between big- and little-endian. */
1917 static offset_type
1918 byte_swap (offset_type value)
1919 {
1920 offset_type result;
1921
1922 result = (value & 0xff) << 24;
1923 result |= (value & 0xff00) << 8;
1924 result |= (value & 0xff0000) >> 8;
1925 result |= (value & 0xff000000) >> 24;
1926 return result;
1927 }
1928
1929 #define MAYBE_SWAP(V) byte_swap (V)
1930
1931 #else
1932 #define MAYBE_SWAP(V) (V)
1933 #endif /* WORDS_BIGENDIAN */
1934
1935 /* Read the given attribute value as an address, taking the attribute's
1936 form into account. */
1937
1938 static CORE_ADDR
1939 attr_value_as_address (struct attribute *attr)
1940 {
1941 CORE_ADDR addr;
1942
1943 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1944 {
1945 /* Aside from a few clearly defined exceptions, attributes that
1946 contain an address must always be in DW_FORM_addr form.
1947 Unfortunately, some compilers happen to be violating this
1948 requirement by encoding addresses using other forms, such
1949 as DW_FORM_data4 for example. For those broken compilers,
1950 we try to do our best, without any guarantee of success,
1951 to interpret the address correctly. It would also be nice
1952 to generate a complaint, but that would require us to maintain
1953 a list of legitimate cases where a non-address form is allowed,
1954 as well as update callers to pass in at least the CU's DWARF
1955 version. This is more overhead than what we're willing to
1956 expand for a pretty rare case. */
1957 addr = DW_UNSND (attr);
1958 }
1959 else
1960 addr = DW_ADDR (attr);
1961
1962 return addr;
1963 }
1964
1965 /* The suffix for an index file. */
1966 #define INDEX_SUFFIX ".gdb-index"
1967
1968 /* Try to locate the sections we need for DWARF 2 debugging
1969 information and return true if we have enough to do something.
1970 NAMES points to the dwarf2 section names, or is NULL if the standard
1971 ELF names are used. */
1972
1973 int
1974 dwarf2_has_info (struct objfile *objfile,
1975 const struct dwarf2_debug_sections *names)
1976 {
1977 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1978 if (!dwarf2_per_objfile)
1979 {
1980 /* Initialize per-objfile state. */
1981 struct dwarf2_per_objfile *data
1982 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1983
1984 memset (data, 0, sizeof (*data));
1985 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1986 dwarf2_per_objfile = data;
1987
1988 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1989 (void *) names);
1990 dwarf2_per_objfile->objfile = objfile;
1991 }
1992 return (!dwarf2_per_objfile->info.is_virtual
1993 && dwarf2_per_objfile->info.s.asection != NULL
1994 && !dwarf2_per_objfile->abbrev.is_virtual
1995 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1996 }
1997
1998 /* Return the containing section of virtual section SECTION. */
1999
2000 static struct dwarf2_section_info *
2001 get_containing_section (const struct dwarf2_section_info *section)
2002 {
2003 gdb_assert (section->is_virtual);
2004 return section->s.containing_section;
2005 }
2006
2007 /* Return the bfd owner of SECTION. */
2008
2009 static struct bfd *
2010 get_section_bfd_owner (const struct dwarf2_section_info *section)
2011 {
2012 if (section->is_virtual)
2013 {
2014 section = get_containing_section (section);
2015 gdb_assert (!section->is_virtual);
2016 }
2017 return section->s.asection->owner;
2018 }
2019
2020 /* Return the bfd section of SECTION.
2021 Returns NULL if the section is not present. */
2022
2023 static asection *
2024 get_section_bfd_section (const struct dwarf2_section_info *section)
2025 {
2026 if (section->is_virtual)
2027 {
2028 section = get_containing_section (section);
2029 gdb_assert (!section->is_virtual);
2030 }
2031 return section->s.asection;
2032 }
2033
2034 /* Return the name of SECTION. */
2035
2036 static const char *
2037 get_section_name (const struct dwarf2_section_info *section)
2038 {
2039 asection *sectp = get_section_bfd_section (section);
2040
2041 gdb_assert (sectp != NULL);
2042 return bfd_section_name (get_section_bfd_owner (section), sectp);
2043 }
2044
2045 /* Return the name of the file SECTION is in. */
2046
2047 static const char *
2048 get_section_file_name (const struct dwarf2_section_info *section)
2049 {
2050 bfd *abfd = get_section_bfd_owner (section);
2051
2052 return bfd_get_filename (abfd);
2053 }
2054
2055 /* Return the id of SECTION.
2056 Returns 0 if SECTION doesn't exist. */
2057
2058 static int
2059 get_section_id (const struct dwarf2_section_info *section)
2060 {
2061 asection *sectp = get_section_bfd_section (section);
2062
2063 if (sectp == NULL)
2064 return 0;
2065 return sectp->id;
2066 }
2067
2068 /* Return the flags of SECTION.
2069 SECTION (or containing section if this is a virtual section) must exist. */
2070
2071 static int
2072 get_section_flags (const struct dwarf2_section_info *section)
2073 {
2074 asection *sectp = get_section_bfd_section (section);
2075
2076 gdb_assert (sectp != NULL);
2077 return bfd_get_section_flags (sectp->owner, sectp);
2078 }
2079
2080 /* When loading sections, we look either for uncompressed section or for
2081 compressed section names. */
2082
2083 static int
2084 section_is_p (const char *section_name,
2085 const struct dwarf2_section_names *names)
2086 {
2087 if (names->normal != NULL
2088 && strcmp (section_name, names->normal) == 0)
2089 return 1;
2090 if (names->compressed != NULL
2091 && strcmp (section_name, names->compressed) == 0)
2092 return 1;
2093 return 0;
2094 }
2095
2096 /* This function is mapped across the sections and remembers the
2097 offset and size of each of the debugging sections we are interested
2098 in. */
2099
2100 static void
2101 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2102 {
2103 const struct dwarf2_debug_sections *names;
2104 flagword aflag = bfd_get_section_flags (abfd, sectp);
2105
2106 if (vnames == NULL)
2107 names = &dwarf2_elf_names;
2108 else
2109 names = (const struct dwarf2_debug_sections *) vnames;
2110
2111 if ((aflag & SEC_HAS_CONTENTS) == 0)
2112 {
2113 }
2114 else if (section_is_p (sectp->name, &names->info))
2115 {
2116 dwarf2_per_objfile->info.s.asection = sectp;
2117 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2118 }
2119 else if (section_is_p (sectp->name, &names->abbrev))
2120 {
2121 dwarf2_per_objfile->abbrev.s.asection = sectp;
2122 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2123 }
2124 else if (section_is_p (sectp->name, &names->line))
2125 {
2126 dwarf2_per_objfile->line.s.asection = sectp;
2127 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2128 }
2129 else if (section_is_p (sectp->name, &names->loc))
2130 {
2131 dwarf2_per_objfile->loc.s.asection = sectp;
2132 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2133 }
2134 else if (section_is_p (sectp->name, &names->macinfo))
2135 {
2136 dwarf2_per_objfile->macinfo.s.asection = sectp;
2137 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2138 }
2139 else if (section_is_p (sectp->name, &names->macro))
2140 {
2141 dwarf2_per_objfile->macro.s.asection = sectp;
2142 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2143 }
2144 else if (section_is_p (sectp->name, &names->str))
2145 {
2146 dwarf2_per_objfile->str.s.asection = sectp;
2147 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2148 }
2149 else if (section_is_p (sectp->name, &names->addr))
2150 {
2151 dwarf2_per_objfile->addr.s.asection = sectp;
2152 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2153 }
2154 else if (section_is_p (sectp->name, &names->frame))
2155 {
2156 dwarf2_per_objfile->frame.s.asection = sectp;
2157 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2158 }
2159 else if (section_is_p (sectp->name, &names->eh_frame))
2160 {
2161 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2162 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2163 }
2164 else if (section_is_p (sectp->name, &names->ranges))
2165 {
2166 dwarf2_per_objfile->ranges.s.asection = sectp;
2167 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2168 }
2169 else if (section_is_p (sectp->name, &names->types))
2170 {
2171 struct dwarf2_section_info type_section;
2172
2173 memset (&type_section, 0, sizeof (type_section));
2174 type_section.s.asection = sectp;
2175 type_section.size = bfd_get_section_size (sectp);
2176
2177 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2178 &type_section);
2179 }
2180 else if (section_is_p (sectp->name, &names->gdb_index))
2181 {
2182 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2183 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2184 }
2185
2186 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2187 && bfd_section_vma (abfd, sectp) == 0)
2188 dwarf2_per_objfile->has_section_at_zero = 1;
2189 }
2190
2191 /* A helper function that decides whether a section is empty,
2192 or not present. */
2193
2194 static int
2195 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2196 {
2197 if (section->is_virtual)
2198 return section->size == 0;
2199 return section->s.asection == NULL || section->size == 0;
2200 }
2201
2202 /* Read the contents of the section INFO.
2203 OBJFILE is the main object file, but not necessarily the file where
2204 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2205 of the DWO file.
2206 If the section is compressed, uncompress it before returning. */
2207
2208 static void
2209 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2210 {
2211 asection *sectp;
2212 bfd *abfd;
2213 gdb_byte *buf, *retbuf;
2214
2215 if (info->readin)
2216 return;
2217 info->buffer = NULL;
2218 info->readin = 1;
2219
2220 if (dwarf2_section_empty_p (info))
2221 return;
2222
2223 sectp = get_section_bfd_section (info);
2224
2225 /* If this is a virtual section we need to read in the real one first. */
2226 if (info->is_virtual)
2227 {
2228 struct dwarf2_section_info *containing_section =
2229 get_containing_section (info);
2230
2231 gdb_assert (sectp != NULL);
2232 if ((sectp->flags & SEC_RELOC) != 0)
2233 {
2234 error (_("Dwarf Error: DWP format V2 with relocations is not"
2235 " supported in section %s [in module %s]"),
2236 get_section_name (info), get_section_file_name (info));
2237 }
2238 dwarf2_read_section (objfile, containing_section);
2239 /* Other code should have already caught virtual sections that don't
2240 fit. */
2241 gdb_assert (info->virtual_offset + info->size
2242 <= containing_section->size);
2243 /* If the real section is empty or there was a problem reading the
2244 section we shouldn't get here. */
2245 gdb_assert (containing_section->buffer != NULL);
2246 info->buffer = containing_section->buffer + info->virtual_offset;
2247 return;
2248 }
2249
2250 /* If the section has relocations, we must read it ourselves.
2251 Otherwise we attach it to the BFD. */
2252 if ((sectp->flags & SEC_RELOC) == 0)
2253 {
2254 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2255 return;
2256 }
2257
2258 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2259 info->buffer = buf;
2260
2261 /* When debugging .o files, we may need to apply relocations; see
2262 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2263 We never compress sections in .o files, so we only need to
2264 try this when the section is not compressed. */
2265 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2266 if (retbuf != NULL)
2267 {
2268 info->buffer = retbuf;
2269 return;
2270 }
2271
2272 abfd = get_section_bfd_owner (info);
2273 gdb_assert (abfd != NULL);
2274
2275 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2276 || bfd_bread (buf, info->size, abfd) != info->size)
2277 {
2278 error (_("Dwarf Error: Can't read DWARF data"
2279 " in section %s [in module %s]"),
2280 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2281 }
2282 }
2283
2284 /* A helper function that returns the size of a section in a safe way.
2285 If you are positive that the section has been read before using the
2286 size, then it is safe to refer to the dwarf2_section_info object's
2287 "size" field directly. In other cases, you must call this
2288 function, because for compressed sections the size field is not set
2289 correctly until the section has been read. */
2290
2291 static bfd_size_type
2292 dwarf2_section_size (struct objfile *objfile,
2293 struct dwarf2_section_info *info)
2294 {
2295 if (!info->readin)
2296 dwarf2_read_section (objfile, info);
2297 return info->size;
2298 }
2299
2300 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2301 SECTION_NAME. */
2302
2303 void
2304 dwarf2_get_section_info (struct objfile *objfile,
2305 enum dwarf2_section_enum sect,
2306 asection **sectp, const gdb_byte **bufp,
2307 bfd_size_type *sizep)
2308 {
2309 struct dwarf2_per_objfile *data
2310 = objfile_data (objfile, dwarf2_objfile_data_key);
2311 struct dwarf2_section_info *info;
2312
2313 /* We may see an objfile without any DWARF, in which case we just
2314 return nothing. */
2315 if (data == NULL)
2316 {
2317 *sectp = NULL;
2318 *bufp = NULL;
2319 *sizep = 0;
2320 return;
2321 }
2322 switch (sect)
2323 {
2324 case DWARF2_DEBUG_FRAME:
2325 info = &data->frame;
2326 break;
2327 case DWARF2_EH_FRAME:
2328 info = &data->eh_frame;
2329 break;
2330 default:
2331 gdb_assert_not_reached ("unexpected section");
2332 }
2333
2334 dwarf2_read_section (objfile, info);
2335
2336 *sectp = get_section_bfd_section (info);
2337 *bufp = info->buffer;
2338 *sizep = info->size;
2339 }
2340
2341 /* A helper function to find the sections for a .dwz file. */
2342
2343 static void
2344 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2345 {
2346 struct dwz_file *dwz_file = arg;
2347
2348 /* Note that we only support the standard ELF names, because .dwz
2349 is ELF-only (at the time of writing). */
2350 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2351 {
2352 dwz_file->abbrev.s.asection = sectp;
2353 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2356 {
2357 dwz_file->info.s.asection = sectp;
2358 dwz_file->info.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2361 {
2362 dwz_file->str.s.asection = sectp;
2363 dwz_file->str.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2366 {
2367 dwz_file->line.s.asection = sectp;
2368 dwz_file->line.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2371 {
2372 dwz_file->macro.s.asection = sectp;
2373 dwz_file->macro.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2376 {
2377 dwz_file->gdb_index.s.asection = sectp;
2378 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2379 }
2380 }
2381
2382 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2383 there is no .gnu_debugaltlink section in the file. Error if there
2384 is such a section but the file cannot be found. */
2385
2386 static struct dwz_file *
2387 dwarf2_get_dwz_file (void)
2388 {
2389 bfd *dwz_bfd;
2390 char *data;
2391 struct cleanup *cleanup;
2392 const char *filename;
2393 struct dwz_file *result;
2394 bfd_size_type buildid_len_arg;
2395 size_t buildid_len;
2396 bfd_byte *buildid;
2397
2398 if (dwarf2_per_objfile->dwz_file != NULL)
2399 return dwarf2_per_objfile->dwz_file;
2400
2401 bfd_set_error (bfd_error_no_error);
2402 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2403 &buildid_len_arg, &buildid);
2404 if (data == NULL)
2405 {
2406 if (bfd_get_error () == bfd_error_no_error)
2407 return NULL;
2408 error (_("could not read '.gnu_debugaltlink' section: %s"),
2409 bfd_errmsg (bfd_get_error ()));
2410 }
2411 cleanup = make_cleanup (xfree, data);
2412 make_cleanup (xfree, buildid);
2413
2414 buildid_len = (size_t) buildid_len_arg;
2415
2416 filename = (const char *) data;
2417 if (!IS_ABSOLUTE_PATH (filename))
2418 {
2419 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2420 char *rel;
2421
2422 make_cleanup (xfree, abs);
2423 abs = ldirname (abs);
2424 make_cleanup (xfree, abs);
2425
2426 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2427 make_cleanup (xfree, rel);
2428 filename = rel;
2429 }
2430
2431 /* First try the file name given in the section. If that doesn't
2432 work, try to use the build-id instead. */
2433 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2434 if (dwz_bfd != NULL)
2435 {
2436 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2437 {
2438 gdb_bfd_unref (dwz_bfd);
2439 dwz_bfd = NULL;
2440 }
2441 }
2442
2443 if (dwz_bfd == NULL)
2444 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2445
2446 if (dwz_bfd == NULL)
2447 error (_("could not find '.gnu_debugaltlink' file for %s"),
2448 objfile_name (dwarf2_per_objfile->objfile));
2449
2450 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2451 struct dwz_file);
2452 result->dwz_bfd = dwz_bfd;
2453
2454 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2455
2456 do_cleanups (cleanup);
2457
2458 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2459 dwarf2_per_objfile->dwz_file = result;
2460 return result;
2461 }
2462 \f
2463 /* DWARF quick_symbols_functions support. */
2464
2465 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2466 unique line tables, so we maintain a separate table of all .debug_line
2467 derived entries to support the sharing.
2468 All the quick functions need is the list of file names. We discard the
2469 line_header when we're done and don't need to record it here. */
2470 struct quick_file_names
2471 {
2472 /* The data used to construct the hash key. */
2473 struct stmt_list_hash hash;
2474
2475 /* The number of entries in file_names, real_names. */
2476 unsigned int num_file_names;
2477
2478 /* The file names from the line table, after being run through
2479 file_full_name. */
2480 const char **file_names;
2481
2482 /* The file names from the line table after being run through
2483 gdb_realpath. These are computed lazily. */
2484 const char **real_names;
2485 };
2486
2487 /* When using the index (and thus not using psymtabs), each CU has an
2488 object of this type. This is used to hold information needed by
2489 the various "quick" methods. */
2490 struct dwarf2_per_cu_quick_data
2491 {
2492 /* The file table. This can be NULL if there was no file table
2493 or it's currently not read in.
2494 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2495 struct quick_file_names *file_names;
2496
2497 /* The corresponding symbol table. This is NULL if symbols for this
2498 CU have not yet been read. */
2499 struct symtab *symtab;
2500
2501 /* A temporary mark bit used when iterating over all CUs in
2502 expand_symtabs_matching. */
2503 unsigned int mark : 1;
2504
2505 /* True if we've tried to read the file table and found there isn't one.
2506 There will be no point in trying to read it again next time. */
2507 unsigned int no_file_data : 1;
2508 };
2509
2510 /* Utility hash function for a stmt_list_hash. */
2511
2512 static hashval_t
2513 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2514 {
2515 hashval_t v = 0;
2516
2517 if (stmt_list_hash->dwo_unit != NULL)
2518 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2519 v += stmt_list_hash->line_offset.sect_off;
2520 return v;
2521 }
2522
2523 /* Utility equality function for a stmt_list_hash. */
2524
2525 static int
2526 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2527 const struct stmt_list_hash *rhs)
2528 {
2529 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2530 return 0;
2531 if (lhs->dwo_unit != NULL
2532 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2533 return 0;
2534
2535 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2536 }
2537
2538 /* Hash function for a quick_file_names. */
2539
2540 static hashval_t
2541 hash_file_name_entry (const void *e)
2542 {
2543 const struct quick_file_names *file_data = e;
2544
2545 return hash_stmt_list_entry (&file_data->hash);
2546 }
2547
2548 /* Equality function for a quick_file_names. */
2549
2550 static int
2551 eq_file_name_entry (const void *a, const void *b)
2552 {
2553 const struct quick_file_names *ea = a;
2554 const struct quick_file_names *eb = b;
2555
2556 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2557 }
2558
2559 /* Delete function for a quick_file_names. */
2560
2561 static void
2562 delete_file_name_entry (void *e)
2563 {
2564 struct quick_file_names *file_data = e;
2565 int i;
2566
2567 for (i = 0; i < file_data->num_file_names; ++i)
2568 {
2569 xfree ((void*) file_data->file_names[i]);
2570 if (file_data->real_names)
2571 xfree ((void*) file_data->real_names[i]);
2572 }
2573
2574 /* The space for the struct itself lives on objfile_obstack,
2575 so we don't free it here. */
2576 }
2577
2578 /* Create a quick_file_names hash table. */
2579
2580 static htab_t
2581 create_quick_file_names_table (unsigned int nr_initial_entries)
2582 {
2583 return htab_create_alloc (nr_initial_entries,
2584 hash_file_name_entry, eq_file_name_entry,
2585 delete_file_name_entry, xcalloc, xfree);
2586 }
2587
2588 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2589 have to be created afterwards. You should call age_cached_comp_units after
2590 processing PER_CU->CU. dw2_setup must have been already called. */
2591
2592 static void
2593 load_cu (struct dwarf2_per_cu_data *per_cu)
2594 {
2595 if (per_cu->is_debug_types)
2596 load_full_type_unit (per_cu);
2597 else
2598 load_full_comp_unit (per_cu, language_minimal);
2599
2600 gdb_assert (per_cu->cu != NULL);
2601
2602 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2603 }
2604
2605 /* Read in the symbols for PER_CU. */
2606
2607 static void
2608 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2609 {
2610 struct cleanup *back_to;
2611
2612 /* Skip type_unit_groups, reading the type units they contain
2613 is handled elsewhere. */
2614 if (IS_TYPE_UNIT_GROUP (per_cu))
2615 return;
2616
2617 back_to = make_cleanup (dwarf2_release_queue, NULL);
2618
2619 if (dwarf2_per_objfile->using_index
2620 ? per_cu->v.quick->symtab == NULL
2621 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2622 {
2623 queue_comp_unit (per_cu, language_minimal);
2624 load_cu (per_cu);
2625
2626 /* If we just loaded a CU from a DWO, and we're working with an index
2627 that may badly handle TUs, load all the TUs in that DWO as well.
2628 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2629 if (!per_cu->is_debug_types
2630 && per_cu->cu->dwo_unit != NULL
2631 && dwarf2_per_objfile->index_table != NULL
2632 && dwarf2_per_objfile->index_table->version <= 7
2633 /* DWP files aren't supported yet. */
2634 && get_dwp_file () == NULL)
2635 queue_and_load_all_dwo_tus (per_cu);
2636 }
2637
2638 process_queue ();
2639
2640 /* Age the cache, releasing compilation units that have not
2641 been used recently. */
2642 age_cached_comp_units ();
2643
2644 do_cleanups (back_to);
2645 }
2646
2647 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2648 the objfile from which this CU came. Returns the resulting symbol
2649 table. */
2650
2651 static struct symtab *
2652 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2653 {
2654 gdb_assert (dwarf2_per_objfile->using_index);
2655 if (!per_cu->v.quick->symtab)
2656 {
2657 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2658 increment_reading_symtab ();
2659 dw2_do_instantiate_symtab (per_cu);
2660 process_cu_includes ();
2661 do_cleanups (back_to);
2662 }
2663 return per_cu->v.quick->symtab;
2664 }
2665
2666 /* Return the CU/TU given its index.
2667
2668 This is intended for loops like:
2669
2670 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2671 + dwarf2_per_objfile->n_type_units); ++i)
2672 {
2673 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2674
2675 ...;
2676 }
2677 */
2678
2679 static struct dwarf2_per_cu_data *
2680 dw2_get_cutu (int index)
2681 {
2682 if (index >= dwarf2_per_objfile->n_comp_units)
2683 {
2684 index -= dwarf2_per_objfile->n_comp_units;
2685 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2686 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2687 }
2688
2689 return dwarf2_per_objfile->all_comp_units[index];
2690 }
2691
2692 /* Return the CU given its index.
2693 This differs from dw2_get_cutu in that it's for when you know INDEX
2694 refers to a CU. */
2695
2696 static struct dwarf2_per_cu_data *
2697 dw2_get_cu (int index)
2698 {
2699 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2700
2701 return dwarf2_per_objfile->all_comp_units[index];
2702 }
2703
2704 /* A helper for create_cus_from_index that handles a given list of
2705 CUs. */
2706
2707 static void
2708 create_cus_from_index_list (struct objfile *objfile,
2709 const gdb_byte *cu_list, offset_type n_elements,
2710 struct dwarf2_section_info *section,
2711 int is_dwz,
2712 int base_offset)
2713 {
2714 offset_type i;
2715
2716 for (i = 0; i < n_elements; i += 2)
2717 {
2718 struct dwarf2_per_cu_data *the_cu;
2719 ULONGEST offset, length;
2720
2721 gdb_static_assert (sizeof (ULONGEST) >= 8);
2722 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2723 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2724 cu_list += 2 * 8;
2725
2726 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2727 struct dwarf2_per_cu_data);
2728 the_cu->offset.sect_off = offset;
2729 the_cu->length = length;
2730 the_cu->objfile = objfile;
2731 the_cu->section = section;
2732 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2733 struct dwarf2_per_cu_quick_data);
2734 the_cu->is_dwz = is_dwz;
2735 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2736 }
2737 }
2738
2739 /* Read the CU list from the mapped index, and use it to create all
2740 the CU objects for this objfile. */
2741
2742 static void
2743 create_cus_from_index (struct objfile *objfile,
2744 const gdb_byte *cu_list, offset_type cu_list_elements,
2745 const gdb_byte *dwz_list, offset_type dwz_elements)
2746 {
2747 struct dwz_file *dwz;
2748
2749 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2750 dwarf2_per_objfile->all_comp_units
2751 = obstack_alloc (&objfile->objfile_obstack,
2752 dwarf2_per_objfile->n_comp_units
2753 * sizeof (struct dwarf2_per_cu_data *));
2754
2755 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2756 &dwarf2_per_objfile->info, 0, 0);
2757
2758 if (dwz_elements == 0)
2759 return;
2760
2761 dwz = dwarf2_get_dwz_file ();
2762 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2763 cu_list_elements / 2);
2764 }
2765
2766 /* Create the signatured type hash table from the index. */
2767
2768 static void
2769 create_signatured_type_table_from_index (struct objfile *objfile,
2770 struct dwarf2_section_info *section,
2771 const gdb_byte *bytes,
2772 offset_type elements)
2773 {
2774 offset_type i;
2775 htab_t sig_types_hash;
2776
2777 dwarf2_per_objfile->n_type_units
2778 = dwarf2_per_objfile->n_allocated_type_units
2779 = elements / 3;
2780 dwarf2_per_objfile->all_type_units
2781 = xmalloc (dwarf2_per_objfile->n_type_units
2782 * sizeof (struct signatured_type *));
2783
2784 sig_types_hash = allocate_signatured_type_table (objfile);
2785
2786 for (i = 0; i < elements; i += 3)
2787 {
2788 struct signatured_type *sig_type;
2789 ULONGEST offset, type_offset_in_tu, signature;
2790 void **slot;
2791
2792 gdb_static_assert (sizeof (ULONGEST) >= 8);
2793 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2794 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2795 BFD_ENDIAN_LITTLE);
2796 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2797 bytes += 3 * 8;
2798
2799 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2800 struct signatured_type);
2801 sig_type->signature = signature;
2802 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2803 sig_type->per_cu.is_debug_types = 1;
2804 sig_type->per_cu.section = section;
2805 sig_type->per_cu.offset.sect_off = offset;
2806 sig_type->per_cu.objfile = objfile;
2807 sig_type->per_cu.v.quick
2808 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2809 struct dwarf2_per_cu_quick_data);
2810
2811 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2812 *slot = sig_type;
2813
2814 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2815 }
2816
2817 dwarf2_per_objfile->signatured_types = sig_types_hash;
2818 }
2819
2820 /* Read the address map data from the mapped index, and use it to
2821 populate the objfile's psymtabs_addrmap. */
2822
2823 static void
2824 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2825 {
2826 const gdb_byte *iter, *end;
2827 struct obstack temp_obstack;
2828 struct addrmap *mutable_map;
2829 struct cleanup *cleanup;
2830 CORE_ADDR baseaddr;
2831
2832 obstack_init (&temp_obstack);
2833 cleanup = make_cleanup_obstack_free (&temp_obstack);
2834 mutable_map = addrmap_create_mutable (&temp_obstack);
2835
2836 iter = index->address_table;
2837 end = iter + index->address_table_size;
2838
2839 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2840
2841 while (iter < end)
2842 {
2843 ULONGEST hi, lo, cu_index;
2844 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2845 iter += 8;
2846 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2847 iter += 8;
2848 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2849 iter += 4;
2850
2851 if (lo > hi)
2852 {
2853 complaint (&symfile_complaints,
2854 _(".gdb_index address table has invalid range (%s - %s)"),
2855 hex_string (lo), hex_string (hi));
2856 continue;
2857 }
2858
2859 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2860 {
2861 complaint (&symfile_complaints,
2862 _(".gdb_index address table has invalid CU number %u"),
2863 (unsigned) cu_index);
2864 continue;
2865 }
2866
2867 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2868 dw2_get_cutu (cu_index));
2869 }
2870
2871 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2872 &objfile->objfile_obstack);
2873 do_cleanups (cleanup);
2874 }
2875
2876 /* The hash function for strings in the mapped index. This is the same as
2877 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2878 implementation. This is necessary because the hash function is tied to the
2879 format of the mapped index file. The hash values do not have to match with
2880 SYMBOL_HASH_NEXT.
2881
2882 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2883
2884 static hashval_t
2885 mapped_index_string_hash (int index_version, const void *p)
2886 {
2887 const unsigned char *str = (const unsigned char *) p;
2888 hashval_t r = 0;
2889 unsigned char c;
2890
2891 while ((c = *str++) != 0)
2892 {
2893 if (index_version >= 5)
2894 c = tolower (c);
2895 r = r * 67 + c - 113;
2896 }
2897
2898 return r;
2899 }
2900
2901 /* Find a slot in the mapped index INDEX for the object named NAME.
2902 If NAME is found, set *VEC_OUT to point to the CU vector in the
2903 constant pool and return 1. If NAME cannot be found, return 0. */
2904
2905 static int
2906 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2907 offset_type **vec_out)
2908 {
2909 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2910 offset_type hash;
2911 offset_type slot, step;
2912 int (*cmp) (const char *, const char *);
2913
2914 if (current_language->la_language == language_cplus
2915 || current_language->la_language == language_java
2916 || current_language->la_language == language_fortran)
2917 {
2918 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2919 not contain any. */
2920 const char *paren = strchr (name, '(');
2921
2922 if (paren)
2923 {
2924 char *dup;
2925
2926 dup = xmalloc (paren - name + 1);
2927 memcpy (dup, name, paren - name);
2928 dup[paren - name] = 0;
2929
2930 make_cleanup (xfree, dup);
2931 name = dup;
2932 }
2933 }
2934
2935 /* Index version 4 did not support case insensitive searches. But the
2936 indices for case insensitive languages are built in lowercase, therefore
2937 simulate our NAME being searched is also lowercased. */
2938 hash = mapped_index_string_hash ((index->version == 4
2939 && case_sensitivity == case_sensitive_off
2940 ? 5 : index->version),
2941 name);
2942
2943 slot = hash & (index->symbol_table_slots - 1);
2944 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2945 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2946
2947 for (;;)
2948 {
2949 /* Convert a slot number to an offset into the table. */
2950 offset_type i = 2 * slot;
2951 const char *str;
2952 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2953 {
2954 do_cleanups (back_to);
2955 return 0;
2956 }
2957
2958 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2959 if (!cmp (name, str))
2960 {
2961 *vec_out = (offset_type *) (index->constant_pool
2962 + MAYBE_SWAP (index->symbol_table[i + 1]));
2963 do_cleanups (back_to);
2964 return 1;
2965 }
2966
2967 slot = (slot + step) & (index->symbol_table_slots - 1);
2968 }
2969 }
2970
2971 /* A helper function that reads the .gdb_index from SECTION and fills
2972 in MAP. FILENAME is the name of the file containing the section;
2973 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2974 ok to use deprecated sections.
2975
2976 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2977 out parameters that are filled in with information about the CU and
2978 TU lists in the section.
2979
2980 Returns 1 if all went well, 0 otherwise. */
2981
2982 static int
2983 read_index_from_section (struct objfile *objfile,
2984 const char *filename,
2985 int deprecated_ok,
2986 struct dwarf2_section_info *section,
2987 struct mapped_index *map,
2988 const gdb_byte **cu_list,
2989 offset_type *cu_list_elements,
2990 const gdb_byte **types_list,
2991 offset_type *types_list_elements)
2992 {
2993 const gdb_byte *addr;
2994 offset_type version;
2995 offset_type *metadata;
2996 int i;
2997
2998 if (dwarf2_section_empty_p (section))
2999 return 0;
3000
3001 /* Older elfutils strip versions could keep the section in the main
3002 executable while splitting it for the separate debug info file. */
3003 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3004 return 0;
3005
3006 dwarf2_read_section (objfile, section);
3007
3008 addr = section->buffer;
3009 /* Version check. */
3010 version = MAYBE_SWAP (*(offset_type *) addr);
3011 /* Versions earlier than 3 emitted every copy of a psymbol. This
3012 causes the index to behave very poorly for certain requests. Version 3
3013 contained incomplete addrmap. So, it seems better to just ignore such
3014 indices. */
3015 if (version < 4)
3016 {
3017 static int warning_printed = 0;
3018 if (!warning_printed)
3019 {
3020 warning (_("Skipping obsolete .gdb_index section in %s."),
3021 filename);
3022 warning_printed = 1;
3023 }
3024 return 0;
3025 }
3026 /* Index version 4 uses a different hash function than index version
3027 5 and later.
3028
3029 Versions earlier than 6 did not emit psymbols for inlined
3030 functions. Using these files will cause GDB not to be able to
3031 set breakpoints on inlined functions by name, so we ignore these
3032 indices unless the user has done
3033 "set use-deprecated-index-sections on". */
3034 if (version < 6 && !deprecated_ok)
3035 {
3036 static int warning_printed = 0;
3037 if (!warning_printed)
3038 {
3039 warning (_("\
3040 Skipping deprecated .gdb_index section in %s.\n\
3041 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3042 to use the section anyway."),
3043 filename);
3044 warning_printed = 1;
3045 }
3046 return 0;
3047 }
3048 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3049 of the TU (for symbols coming from TUs),
3050 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3051 Plus gold-generated indices can have duplicate entries for global symbols,
3052 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3053 These are just performance bugs, and we can't distinguish gdb-generated
3054 indices from gold-generated ones, so issue no warning here. */
3055
3056 /* Indexes with higher version than the one supported by GDB may be no
3057 longer backward compatible. */
3058 if (version > 8)
3059 return 0;
3060
3061 map->version = version;
3062 map->total_size = section->size;
3063
3064 metadata = (offset_type *) (addr + sizeof (offset_type));
3065
3066 i = 0;
3067 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3068 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3069 / 8);
3070 ++i;
3071
3072 *types_list = addr + MAYBE_SWAP (metadata[i]);
3073 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3074 - MAYBE_SWAP (metadata[i]))
3075 / 8);
3076 ++i;
3077
3078 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3079 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3080 - MAYBE_SWAP (metadata[i]));
3081 ++i;
3082
3083 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3084 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3085 - MAYBE_SWAP (metadata[i]))
3086 / (2 * sizeof (offset_type)));
3087 ++i;
3088
3089 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3090
3091 return 1;
3092 }
3093
3094
3095 /* Read the index file. If everything went ok, initialize the "quick"
3096 elements of all the CUs and return 1. Otherwise, return 0. */
3097
3098 static int
3099 dwarf2_read_index (struct objfile *objfile)
3100 {
3101 struct mapped_index local_map, *map;
3102 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3103 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3104 struct dwz_file *dwz;
3105
3106 if (!read_index_from_section (objfile, objfile_name (objfile),
3107 use_deprecated_index_sections,
3108 &dwarf2_per_objfile->gdb_index, &local_map,
3109 &cu_list, &cu_list_elements,
3110 &types_list, &types_list_elements))
3111 return 0;
3112
3113 /* Don't use the index if it's empty. */
3114 if (local_map.symbol_table_slots == 0)
3115 return 0;
3116
3117 /* If there is a .dwz file, read it so we can get its CU list as
3118 well. */
3119 dwz = dwarf2_get_dwz_file ();
3120 if (dwz != NULL)
3121 {
3122 struct mapped_index dwz_map;
3123 const gdb_byte *dwz_types_ignore;
3124 offset_type dwz_types_elements_ignore;
3125
3126 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3127 1,
3128 &dwz->gdb_index, &dwz_map,
3129 &dwz_list, &dwz_list_elements,
3130 &dwz_types_ignore,
3131 &dwz_types_elements_ignore))
3132 {
3133 warning (_("could not read '.gdb_index' section from %s; skipping"),
3134 bfd_get_filename (dwz->dwz_bfd));
3135 return 0;
3136 }
3137 }
3138
3139 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3140 dwz_list_elements);
3141
3142 if (types_list_elements)
3143 {
3144 struct dwarf2_section_info *section;
3145
3146 /* We can only handle a single .debug_types when we have an
3147 index. */
3148 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3149 return 0;
3150
3151 section = VEC_index (dwarf2_section_info_def,
3152 dwarf2_per_objfile->types, 0);
3153
3154 create_signatured_type_table_from_index (objfile, section, types_list,
3155 types_list_elements);
3156 }
3157
3158 create_addrmap_from_index (objfile, &local_map);
3159
3160 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3161 *map = local_map;
3162
3163 dwarf2_per_objfile->index_table = map;
3164 dwarf2_per_objfile->using_index = 1;
3165 dwarf2_per_objfile->quick_file_names_table =
3166 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3167
3168 return 1;
3169 }
3170
3171 /* A helper for the "quick" functions which sets the global
3172 dwarf2_per_objfile according to OBJFILE. */
3173
3174 static void
3175 dw2_setup (struct objfile *objfile)
3176 {
3177 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3178 gdb_assert (dwarf2_per_objfile);
3179 }
3180
3181 /* die_reader_func for dw2_get_file_names. */
3182
3183 static void
3184 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3185 const gdb_byte *info_ptr,
3186 struct die_info *comp_unit_die,
3187 int has_children,
3188 void *data)
3189 {
3190 struct dwarf2_cu *cu = reader->cu;
3191 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3192 struct objfile *objfile = dwarf2_per_objfile->objfile;
3193 struct dwarf2_per_cu_data *lh_cu;
3194 struct line_header *lh;
3195 struct attribute *attr;
3196 int i;
3197 const char *name, *comp_dir;
3198 void **slot;
3199 struct quick_file_names *qfn;
3200 unsigned int line_offset;
3201
3202 gdb_assert (! this_cu->is_debug_types);
3203
3204 /* Our callers never want to match partial units -- instead they
3205 will match the enclosing full CU. */
3206 if (comp_unit_die->tag == DW_TAG_partial_unit)
3207 {
3208 this_cu->v.quick->no_file_data = 1;
3209 return;
3210 }
3211
3212 lh_cu = this_cu;
3213 lh = NULL;
3214 slot = NULL;
3215 line_offset = 0;
3216
3217 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3218 if (attr)
3219 {
3220 struct quick_file_names find_entry;
3221
3222 line_offset = DW_UNSND (attr);
3223
3224 /* We may have already read in this line header (TU line header sharing).
3225 If we have we're done. */
3226 find_entry.hash.dwo_unit = cu->dwo_unit;
3227 find_entry.hash.line_offset.sect_off = line_offset;
3228 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3229 &find_entry, INSERT);
3230 if (*slot != NULL)
3231 {
3232 lh_cu->v.quick->file_names = *slot;
3233 return;
3234 }
3235
3236 lh = dwarf_decode_line_header (line_offset, cu);
3237 }
3238 if (lh == NULL)
3239 {
3240 lh_cu->v.quick->no_file_data = 1;
3241 return;
3242 }
3243
3244 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3245 qfn->hash.dwo_unit = cu->dwo_unit;
3246 qfn->hash.line_offset.sect_off = line_offset;
3247 gdb_assert (slot != NULL);
3248 *slot = qfn;
3249
3250 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3251
3252 qfn->num_file_names = lh->num_file_names;
3253 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3254 lh->num_file_names * sizeof (char *));
3255 for (i = 0; i < lh->num_file_names; ++i)
3256 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3257 qfn->real_names = NULL;
3258
3259 free_line_header (lh);
3260
3261 lh_cu->v.quick->file_names = qfn;
3262 }
3263
3264 /* A helper for the "quick" functions which attempts to read the line
3265 table for THIS_CU. */
3266
3267 static struct quick_file_names *
3268 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3269 {
3270 /* This should never be called for TUs. */
3271 gdb_assert (! this_cu->is_debug_types);
3272 /* Nor type unit groups. */
3273 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3274
3275 if (this_cu->v.quick->file_names != NULL)
3276 return this_cu->v.quick->file_names;
3277 /* If we know there is no line data, no point in looking again. */
3278 if (this_cu->v.quick->no_file_data)
3279 return NULL;
3280
3281 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3282
3283 if (this_cu->v.quick->no_file_data)
3284 return NULL;
3285 return this_cu->v.quick->file_names;
3286 }
3287
3288 /* A helper for the "quick" functions which computes and caches the
3289 real path for a given file name from the line table. */
3290
3291 static const char *
3292 dw2_get_real_path (struct objfile *objfile,
3293 struct quick_file_names *qfn, int index)
3294 {
3295 if (qfn->real_names == NULL)
3296 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3297 qfn->num_file_names, const char *);
3298
3299 if (qfn->real_names[index] == NULL)
3300 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3301
3302 return qfn->real_names[index];
3303 }
3304
3305 static struct symtab *
3306 dw2_find_last_source_symtab (struct objfile *objfile)
3307 {
3308 int index;
3309
3310 dw2_setup (objfile);
3311 index = dwarf2_per_objfile->n_comp_units - 1;
3312 return dw2_instantiate_symtab (dw2_get_cutu (index));
3313 }
3314
3315 /* Traversal function for dw2_forget_cached_source_info. */
3316
3317 static int
3318 dw2_free_cached_file_names (void **slot, void *info)
3319 {
3320 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3321
3322 if (file_data->real_names)
3323 {
3324 int i;
3325
3326 for (i = 0; i < file_data->num_file_names; ++i)
3327 {
3328 xfree ((void*) file_data->real_names[i]);
3329 file_data->real_names[i] = NULL;
3330 }
3331 }
3332
3333 return 1;
3334 }
3335
3336 static void
3337 dw2_forget_cached_source_info (struct objfile *objfile)
3338 {
3339 dw2_setup (objfile);
3340
3341 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3342 dw2_free_cached_file_names, NULL);
3343 }
3344
3345 /* Helper function for dw2_map_symtabs_matching_filename that expands
3346 the symtabs and calls the iterator. */
3347
3348 static int
3349 dw2_map_expand_apply (struct objfile *objfile,
3350 struct dwarf2_per_cu_data *per_cu,
3351 const char *name, const char *real_path,
3352 int (*callback) (struct symtab *, void *),
3353 void *data)
3354 {
3355 struct symtab *last_made = objfile->symtabs;
3356
3357 /* Don't visit already-expanded CUs. */
3358 if (per_cu->v.quick->symtab)
3359 return 0;
3360
3361 /* This may expand more than one symtab, and we want to iterate over
3362 all of them. */
3363 dw2_instantiate_symtab (per_cu);
3364
3365 return iterate_over_some_symtabs (name, real_path, callback, data,
3366 objfile->symtabs, last_made);
3367 }
3368
3369 /* Implementation of the map_symtabs_matching_filename method. */
3370
3371 static int
3372 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3373 const char *real_path,
3374 int (*callback) (struct symtab *, void *),
3375 void *data)
3376 {
3377 int i;
3378 const char *name_basename = lbasename (name);
3379
3380 dw2_setup (objfile);
3381
3382 /* The rule is CUs specify all the files, including those used by
3383 any TU, so there's no need to scan TUs here. */
3384
3385 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3386 {
3387 int j;
3388 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3389 struct quick_file_names *file_data;
3390
3391 /* We only need to look at symtabs not already expanded. */
3392 if (per_cu->v.quick->symtab)
3393 continue;
3394
3395 file_data = dw2_get_file_names (per_cu);
3396 if (file_data == NULL)
3397 continue;
3398
3399 for (j = 0; j < file_data->num_file_names; ++j)
3400 {
3401 const char *this_name = file_data->file_names[j];
3402 const char *this_real_name;
3403
3404 if (compare_filenames_for_search (this_name, name))
3405 {
3406 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3407 callback, data))
3408 return 1;
3409 continue;
3410 }
3411
3412 /* Before we invoke realpath, which can get expensive when many
3413 files are involved, do a quick comparison of the basenames. */
3414 if (! basenames_may_differ
3415 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3416 continue;
3417
3418 this_real_name = dw2_get_real_path (objfile, file_data, j);
3419 if (compare_filenames_for_search (this_real_name, name))
3420 {
3421 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3422 callback, data))
3423 return 1;
3424 continue;
3425 }
3426
3427 if (real_path != NULL)
3428 {
3429 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3430 gdb_assert (IS_ABSOLUTE_PATH (name));
3431 if (this_real_name != NULL
3432 && FILENAME_CMP (real_path, this_real_name) == 0)
3433 {
3434 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3435 callback, data))
3436 return 1;
3437 continue;
3438 }
3439 }
3440 }
3441 }
3442
3443 return 0;
3444 }
3445
3446 /* Struct used to manage iterating over all CUs looking for a symbol. */
3447
3448 struct dw2_symtab_iterator
3449 {
3450 /* The internalized form of .gdb_index. */
3451 struct mapped_index *index;
3452 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3453 int want_specific_block;
3454 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3455 Unused if !WANT_SPECIFIC_BLOCK. */
3456 int block_index;
3457 /* The kind of symbol we're looking for. */
3458 domain_enum domain;
3459 /* The list of CUs from the index entry of the symbol,
3460 or NULL if not found. */
3461 offset_type *vec;
3462 /* The next element in VEC to look at. */
3463 int next;
3464 /* The number of elements in VEC, or zero if there is no match. */
3465 int length;
3466 /* Have we seen a global version of the symbol?
3467 If so we can ignore all further global instances.
3468 This is to work around gold/15646, inefficient gold-generated
3469 indices. */
3470 int global_seen;
3471 };
3472
3473 /* Initialize the index symtab iterator ITER.
3474 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3475 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3476
3477 static void
3478 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3479 struct mapped_index *index,
3480 int want_specific_block,
3481 int block_index,
3482 domain_enum domain,
3483 const char *name)
3484 {
3485 iter->index = index;
3486 iter->want_specific_block = want_specific_block;
3487 iter->block_index = block_index;
3488 iter->domain = domain;
3489 iter->next = 0;
3490 iter->global_seen = 0;
3491
3492 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3493 iter->length = MAYBE_SWAP (*iter->vec);
3494 else
3495 {
3496 iter->vec = NULL;
3497 iter->length = 0;
3498 }
3499 }
3500
3501 /* Return the next matching CU or NULL if there are no more. */
3502
3503 static struct dwarf2_per_cu_data *
3504 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3505 {
3506 for ( ; iter->next < iter->length; ++iter->next)
3507 {
3508 offset_type cu_index_and_attrs =
3509 MAYBE_SWAP (iter->vec[iter->next + 1]);
3510 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3511 struct dwarf2_per_cu_data *per_cu;
3512 int want_static = iter->block_index != GLOBAL_BLOCK;
3513 /* This value is only valid for index versions >= 7. */
3514 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3515 gdb_index_symbol_kind symbol_kind =
3516 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3517 /* Only check the symbol attributes if they're present.
3518 Indices prior to version 7 don't record them,
3519 and indices >= 7 may elide them for certain symbols
3520 (gold does this). */
3521 int attrs_valid =
3522 (iter->index->version >= 7
3523 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3524
3525 /* Don't crash on bad data. */
3526 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3527 + dwarf2_per_objfile->n_type_units))
3528 {
3529 complaint (&symfile_complaints,
3530 _(".gdb_index entry has bad CU index"
3531 " [in module %s]"),
3532 objfile_name (dwarf2_per_objfile->objfile));
3533 continue;
3534 }
3535
3536 per_cu = dw2_get_cutu (cu_index);
3537
3538 /* Skip if already read in. */
3539 if (per_cu->v.quick->symtab)
3540 continue;
3541
3542 /* Check static vs global. */
3543 if (attrs_valid)
3544 {
3545 if (iter->want_specific_block
3546 && want_static != is_static)
3547 continue;
3548 /* Work around gold/15646. */
3549 if (!is_static && iter->global_seen)
3550 continue;
3551 if (!is_static)
3552 iter->global_seen = 1;
3553 }
3554
3555 /* Only check the symbol's kind if it has one. */
3556 if (attrs_valid)
3557 {
3558 switch (iter->domain)
3559 {
3560 case VAR_DOMAIN:
3561 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3562 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3563 /* Some types are also in VAR_DOMAIN. */
3564 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3565 continue;
3566 break;
3567 case STRUCT_DOMAIN:
3568 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3569 continue;
3570 break;
3571 case LABEL_DOMAIN:
3572 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3573 continue;
3574 break;
3575 default:
3576 break;
3577 }
3578 }
3579
3580 ++iter->next;
3581 return per_cu;
3582 }
3583
3584 return NULL;
3585 }
3586
3587 static struct symtab *
3588 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3589 const char *name, domain_enum domain)
3590 {
3591 struct symtab *stab_best = NULL;
3592 struct mapped_index *index;
3593
3594 dw2_setup (objfile);
3595
3596 index = dwarf2_per_objfile->index_table;
3597
3598 /* index is NULL if OBJF_READNOW. */
3599 if (index)
3600 {
3601 struct dw2_symtab_iterator iter;
3602 struct dwarf2_per_cu_data *per_cu;
3603
3604 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3605
3606 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3607 {
3608 struct symbol *sym = NULL;
3609 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3610
3611 /* Some caution must be observed with overloaded functions
3612 and methods, since the index will not contain any overload
3613 information (but NAME might contain it). */
3614 if (stab->primary)
3615 {
3616 const struct blockvector *bv = BLOCKVECTOR (stab);
3617 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3618
3619 sym = lookup_block_symbol (block, name, domain);
3620 }
3621
3622 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3623 {
3624 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3625 return stab;
3626
3627 stab_best = stab;
3628 }
3629
3630 /* Keep looking through other CUs. */
3631 }
3632 }
3633
3634 return stab_best;
3635 }
3636
3637 static void
3638 dw2_print_stats (struct objfile *objfile)
3639 {
3640 int i, total, count;
3641
3642 dw2_setup (objfile);
3643 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3644 count = 0;
3645 for (i = 0; i < total; ++i)
3646 {
3647 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3648
3649 if (!per_cu->v.quick->symtab)
3650 ++count;
3651 }
3652 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3653 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3654 }
3655
3656 /* This dumps minimal information about the index.
3657 It is called via "mt print objfiles".
3658 One use is to verify .gdb_index has been loaded by the
3659 gdb.dwarf2/gdb-index.exp testcase. */
3660
3661 static void
3662 dw2_dump (struct objfile *objfile)
3663 {
3664 dw2_setup (objfile);
3665 gdb_assert (dwarf2_per_objfile->using_index);
3666 printf_filtered (".gdb_index:");
3667 if (dwarf2_per_objfile->index_table != NULL)
3668 {
3669 printf_filtered (" version %d\n",
3670 dwarf2_per_objfile->index_table->version);
3671 }
3672 else
3673 printf_filtered (" faked for \"readnow\"\n");
3674 printf_filtered ("\n");
3675 }
3676
3677 static void
3678 dw2_relocate (struct objfile *objfile,
3679 const struct section_offsets *new_offsets,
3680 const struct section_offsets *delta)
3681 {
3682 /* There's nothing to relocate here. */
3683 }
3684
3685 static void
3686 dw2_expand_symtabs_for_function (struct objfile *objfile,
3687 const char *func_name)
3688 {
3689 struct mapped_index *index;
3690
3691 dw2_setup (objfile);
3692
3693 index = dwarf2_per_objfile->index_table;
3694
3695 /* index is NULL if OBJF_READNOW. */
3696 if (index)
3697 {
3698 struct dw2_symtab_iterator iter;
3699 struct dwarf2_per_cu_data *per_cu;
3700
3701 /* Note: It doesn't matter what we pass for block_index here. */
3702 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3703 func_name);
3704
3705 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3706 dw2_instantiate_symtab (per_cu);
3707 }
3708 }
3709
3710 static void
3711 dw2_expand_all_symtabs (struct objfile *objfile)
3712 {
3713 int i;
3714
3715 dw2_setup (objfile);
3716
3717 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3718 + dwarf2_per_objfile->n_type_units); ++i)
3719 {
3720 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3721
3722 dw2_instantiate_symtab (per_cu);
3723 }
3724 }
3725
3726 static void
3727 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3728 const char *fullname)
3729 {
3730 int i;
3731
3732 dw2_setup (objfile);
3733
3734 /* We don't need to consider type units here.
3735 This is only called for examining code, e.g. expand_line_sal.
3736 There can be an order of magnitude (or more) more type units
3737 than comp units, and we avoid them if we can. */
3738
3739 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3740 {
3741 int j;
3742 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3743 struct quick_file_names *file_data;
3744
3745 /* We only need to look at symtabs not already expanded. */
3746 if (per_cu->v.quick->symtab)
3747 continue;
3748
3749 file_data = dw2_get_file_names (per_cu);
3750 if (file_data == NULL)
3751 continue;
3752
3753 for (j = 0; j < file_data->num_file_names; ++j)
3754 {
3755 const char *this_fullname = file_data->file_names[j];
3756
3757 if (filename_cmp (this_fullname, fullname) == 0)
3758 {
3759 dw2_instantiate_symtab (per_cu);
3760 break;
3761 }
3762 }
3763 }
3764 }
3765
3766 static void
3767 dw2_map_matching_symbols (struct objfile *objfile,
3768 const char * name, domain_enum namespace,
3769 int global,
3770 int (*callback) (struct block *,
3771 struct symbol *, void *),
3772 void *data, symbol_compare_ftype *match,
3773 symbol_compare_ftype *ordered_compare)
3774 {
3775 /* Currently unimplemented; used for Ada. The function can be called if the
3776 current language is Ada for a non-Ada objfile using GNU index. As Ada
3777 does not look for non-Ada symbols this function should just return. */
3778 }
3779
3780 static void
3781 dw2_expand_symtabs_matching
3782 (struct objfile *objfile,
3783 expand_symtabs_file_matcher_ftype *file_matcher,
3784 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3785 enum search_domain kind,
3786 void *data)
3787 {
3788 int i;
3789 offset_type iter;
3790 struct mapped_index *index;
3791
3792 dw2_setup (objfile);
3793
3794 /* index_table is NULL if OBJF_READNOW. */
3795 if (!dwarf2_per_objfile->index_table)
3796 return;
3797 index = dwarf2_per_objfile->index_table;
3798
3799 if (file_matcher != NULL)
3800 {
3801 struct cleanup *cleanup;
3802 htab_t visited_found, visited_not_found;
3803
3804 visited_found = htab_create_alloc (10,
3805 htab_hash_pointer, htab_eq_pointer,
3806 NULL, xcalloc, xfree);
3807 cleanup = make_cleanup_htab_delete (visited_found);
3808 visited_not_found = htab_create_alloc (10,
3809 htab_hash_pointer, htab_eq_pointer,
3810 NULL, xcalloc, xfree);
3811 make_cleanup_htab_delete (visited_not_found);
3812
3813 /* The rule is CUs specify all the files, including those used by
3814 any TU, so there's no need to scan TUs here. */
3815
3816 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3817 {
3818 int j;
3819 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3820 struct quick_file_names *file_data;
3821 void **slot;
3822
3823 per_cu->v.quick->mark = 0;
3824
3825 /* We only need to look at symtabs not already expanded. */
3826 if (per_cu->v.quick->symtab)
3827 continue;
3828
3829 file_data = dw2_get_file_names (per_cu);
3830 if (file_data == NULL)
3831 continue;
3832
3833 if (htab_find (visited_not_found, file_data) != NULL)
3834 continue;
3835 else if (htab_find (visited_found, file_data) != NULL)
3836 {
3837 per_cu->v.quick->mark = 1;
3838 continue;
3839 }
3840
3841 for (j = 0; j < file_data->num_file_names; ++j)
3842 {
3843 const char *this_real_name;
3844
3845 if (file_matcher (file_data->file_names[j], data, 0))
3846 {
3847 per_cu->v.quick->mark = 1;
3848 break;
3849 }
3850
3851 /* Before we invoke realpath, which can get expensive when many
3852 files are involved, do a quick comparison of the basenames. */
3853 if (!basenames_may_differ
3854 && !file_matcher (lbasename (file_data->file_names[j]),
3855 data, 1))
3856 continue;
3857
3858 this_real_name = dw2_get_real_path (objfile, file_data, j);
3859 if (file_matcher (this_real_name, data, 0))
3860 {
3861 per_cu->v.quick->mark = 1;
3862 break;
3863 }
3864 }
3865
3866 slot = htab_find_slot (per_cu->v.quick->mark
3867 ? visited_found
3868 : visited_not_found,
3869 file_data, INSERT);
3870 *slot = file_data;
3871 }
3872
3873 do_cleanups (cleanup);
3874 }
3875
3876 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3877 {
3878 offset_type idx = 2 * iter;
3879 const char *name;
3880 offset_type *vec, vec_len, vec_idx;
3881 int global_seen = 0;
3882
3883 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3884 continue;
3885
3886 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3887
3888 if (! (*symbol_matcher) (name, data))
3889 continue;
3890
3891 /* The name was matched, now expand corresponding CUs that were
3892 marked. */
3893 vec = (offset_type *) (index->constant_pool
3894 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3895 vec_len = MAYBE_SWAP (vec[0]);
3896 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3897 {
3898 struct dwarf2_per_cu_data *per_cu;
3899 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3900 /* This value is only valid for index versions >= 7. */
3901 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3902 gdb_index_symbol_kind symbol_kind =
3903 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3904 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3905 /* Only check the symbol attributes if they're present.
3906 Indices prior to version 7 don't record them,
3907 and indices >= 7 may elide them for certain symbols
3908 (gold does this). */
3909 int attrs_valid =
3910 (index->version >= 7
3911 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3912
3913 /* Work around gold/15646. */
3914 if (attrs_valid)
3915 {
3916 if (!is_static && global_seen)
3917 continue;
3918 if (!is_static)
3919 global_seen = 1;
3920 }
3921
3922 /* Only check the symbol's kind if it has one. */
3923 if (attrs_valid)
3924 {
3925 switch (kind)
3926 {
3927 case VARIABLES_DOMAIN:
3928 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3929 continue;
3930 break;
3931 case FUNCTIONS_DOMAIN:
3932 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3933 continue;
3934 break;
3935 case TYPES_DOMAIN:
3936 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3937 continue;
3938 break;
3939 default:
3940 break;
3941 }
3942 }
3943
3944 /* Don't crash on bad data. */
3945 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3946 + dwarf2_per_objfile->n_type_units))
3947 {
3948 complaint (&symfile_complaints,
3949 _(".gdb_index entry has bad CU index"
3950 " [in module %s]"), objfile_name (objfile));
3951 continue;
3952 }
3953
3954 per_cu = dw2_get_cutu (cu_index);
3955 if (file_matcher == NULL || per_cu->v.quick->mark)
3956 dw2_instantiate_symtab (per_cu);
3957 }
3958 }
3959 }
3960
3961 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3962 symtab. */
3963
3964 static struct symtab *
3965 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3966 {
3967 int i;
3968
3969 if (BLOCKVECTOR (symtab) != NULL
3970 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3971 return symtab;
3972
3973 if (symtab->includes == NULL)
3974 return NULL;
3975
3976 for (i = 0; symtab->includes[i]; ++i)
3977 {
3978 struct symtab *s = symtab->includes[i];
3979
3980 s = recursively_find_pc_sect_symtab (s, pc);
3981 if (s != NULL)
3982 return s;
3983 }
3984
3985 return NULL;
3986 }
3987
3988 static struct symtab *
3989 dw2_find_pc_sect_symtab (struct objfile *objfile,
3990 struct bound_minimal_symbol msymbol,
3991 CORE_ADDR pc,
3992 struct obj_section *section,
3993 int warn_if_readin)
3994 {
3995 struct dwarf2_per_cu_data *data;
3996 struct symtab *result;
3997
3998 dw2_setup (objfile);
3999
4000 if (!objfile->psymtabs_addrmap)
4001 return NULL;
4002
4003 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4004 if (!data)
4005 return NULL;
4006
4007 if (warn_if_readin && data->v.quick->symtab)
4008 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4009 paddress (get_objfile_arch (objfile), pc));
4010
4011 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4012 gdb_assert (result != NULL);
4013 return result;
4014 }
4015
4016 static void
4017 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4018 void *data, int need_fullname)
4019 {
4020 int i;
4021 struct cleanup *cleanup;
4022 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4023 NULL, xcalloc, xfree);
4024
4025 cleanup = make_cleanup_htab_delete (visited);
4026 dw2_setup (objfile);
4027
4028 /* The rule is CUs specify all the files, including those used by
4029 any TU, so there's no need to scan TUs here.
4030 We can ignore file names coming from already-expanded CUs. */
4031
4032 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4033 {
4034 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4035
4036 if (per_cu->v.quick->symtab)
4037 {
4038 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4039 INSERT);
4040
4041 *slot = per_cu->v.quick->file_names;
4042 }
4043 }
4044
4045 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4046 {
4047 int j;
4048 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4049 struct quick_file_names *file_data;
4050 void **slot;
4051
4052 /* We only need to look at symtabs not already expanded. */
4053 if (per_cu->v.quick->symtab)
4054 continue;
4055
4056 file_data = dw2_get_file_names (per_cu);
4057 if (file_data == NULL)
4058 continue;
4059
4060 slot = htab_find_slot (visited, file_data, INSERT);
4061 if (*slot)
4062 {
4063 /* Already visited. */
4064 continue;
4065 }
4066 *slot = file_data;
4067
4068 for (j = 0; j < file_data->num_file_names; ++j)
4069 {
4070 const char *this_real_name;
4071
4072 if (need_fullname)
4073 this_real_name = dw2_get_real_path (objfile, file_data, j);
4074 else
4075 this_real_name = NULL;
4076 (*fun) (file_data->file_names[j], this_real_name, data);
4077 }
4078 }
4079
4080 do_cleanups (cleanup);
4081 }
4082
4083 static int
4084 dw2_has_symbols (struct objfile *objfile)
4085 {
4086 return 1;
4087 }
4088
4089 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4090 {
4091 dw2_has_symbols,
4092 dw2_find_last_source_symtab,
4093 dw2_forget_cached_source_info,
4094 dw2_map_symtabs_matching_filename,
4095 dw2_lookup_symbol,
4096 dw2_print_stats,
4097 dw2_dump,
4098 dw2_relocate,
4099 dw2_expand_symtabs_for_function,
4100 dw2_expand_all_symtabs,
4101 dw2_expand_symtabs_with_fullname,
4102 dw2_map_matching_symbols,
4103 dw2_expand_symtabs_matching,
4104 dw2_find_pc_sect_symtab,
4105 dw2_map_symbol_filenames
4106 };
4107
4108 /* Initialize for reading DWARF for this objfile. Return 0 if this
4109 file will use psymtabs, or 1 if using the GNU index. */
4110
4111 int
4112 dwarf2_initialize_objfile (struct objfile *objfile)
4113 {
4114 /* If we're about to read full symbols, don't bother with the
4115 indices. In this case we also don't care if some other debug
4116 format is making psymtabs, because they are all about to be
4117 expanded anyway. */
4118 if ((objfile->flags & OBJF_READNOW))
4119 {
4120 int i;
4121
4122 dwarf2_per_objfile->using_index = 1;
4123 create_all_comp_units (objfile);
4124 create_all_type_units (objfile);
4125 dwarf2_per_objfile->quick_file_names_table =
4126 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4127
4128 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4129 + dwarf2_per_objfile->n_type_units); ++i)
4130 {
4131 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4132
4133 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4134 struct dwarf2_per_cu_quick_data);
4135 }
4136
4137 /* Return 1 so that gdb sees the "quick" functions. However,
4138 these functions will be no-ops because we will have expanded
4139 all symtabs. */
4140 return 1;
4141 }
4142
4143 if (dwarf2_read_index (objfile))
4144 return 1;
4145
4146 return 0;
4147 }
4148
4149 \f
4150
4151 /* Build a partial symbol table. */
4152
4153 void
4154 dwarf2_build_psymtabs (struct objfile *objfile)
4155 {
4156 volatile struct gdb_exception except;
4157
4158 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4159 {
4160 init_psymbol_list (objfile, 1024);
4161 }
4162
4163 TRY_CATCH (except, RETURN_MASK_ERROR)
4164 {
4165 /* This isn't really ideal: all the data we allocate on the
4166 objfile's obstack is still uselessly kept around. However,
4167 freeing it seems unsafe. */
4168 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4169
4170 dwarf2_build_psymtabs_hard (objfile);
4171 discard_cleanups (cleanups);
4172 }
4173 if (except.reason < 0)
4174 exception_print (gdb_stderr, except);
4175 }
4176
4177 /* Return the total length of the CU described by HEADER. */
4178
4179 static unsigned int
4180 get_cu_length (const struct comp_unit_head *header)
4181 {
4182 return header->initial_length_size + header->length;
4183 }
4184
4185 /* Return TRUE if OFFSET is within CU_HEADER. */
4186
4187 static inline int
4188 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4189 {
4190 sect_offset bottom = { cu_header->offset.sect_off };
4191 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4192
4193 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4194 }
4195
4196 /* Find the base address of the compilation unit for range lists and
4197 location lists. It will normally be specified by DW_AT_low_pc.
4198 In DWARF-3 draft 4, the base address could be overridden by
4199 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4200 compilation units with discontinuous ranges. */
4201
4202 static void
4203 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4204 {
4205 struct attribute *attr;
4206
4207 cu->base_known = 0;
4208 cu->base_address = 0;
4209
4210 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4211 if (attr)
4212 {
4213 cu->base_address = attr_value_as_address (attr);
4214 cu->base_known = 1;
4215 }
4216 else
4217 {
4218 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4219 if (attr)
4220 {
4221 cu->base_address = attr_value_as_address (attr);
4222 cu->base_known = 1;
4223 }
4224 }
4225 }
4226
4227 /* Read in the comp unit header information from the debug_info at info_ptr.
4228 NOTE: This leaves members offset, first_die_offset to be filled in
4229 by the caller. */
4230
4231 static const gdb_byte *
4232 read_comp_unit_head (struct comp_unit_head *cu_header,
4233 const gdb_byte *info_ptr, bfd *abfd)
4234 {
4235 int signed_addr;
4236 unsigned int bytes_read;
4237
4238 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4239 cu_header->initial_length_size = bytes_read;
4240 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4241 info_ptr += bytes_read;
4242 cu_header->version = read_2_bytes (abfd, info_ptr);
4243 info_ptr += 2;
4244 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4245 &bytes_read);
4246 info_ptr += bytes_read;
4247 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4248 info_ptr += 1;
4249 signed_addr = bfd_get_sign_extend_vma (abfd);
4250 if (signed_addr < 0)
4251 internal_error (__FILE__, __LINE__,
4252 _("read_comp_unit_head: dwarf from non elf file"));
4253 cu_header->signed_addr_p = signed_addr;
4254
4255 return info_ptr;
4256 }
4257
4258 /* Helper function that returns the proper abbrev section for
4259 THIS_CU. */
4260
4261 static struct dwarf2_section_info *
4262 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4263 {
4264 struct dwarf2_section_info *abbrev;
4265
4266 if (this_cu->is_dwz)
4267 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4268 else
4269 abbrev = &dwarf2_per_objfile->abbrev;
4270
4271 return abbrev;
4272 }
4273
4274 /* Subroutine of read_and_check_comp_unit_head and
4275 read_and_check_type_unit_head to simplify them.
4276 Perform various error checking on the header. */
4277
4278 static void
4279 error_check_comp_unit_head (struct comp_unit_head *header,
4280 struct dwarf2_section_info *section,
4281 struct dwarf2_section_info *abbrev_section)
4282 {
4283 bfd *abfd = get_section_bfd_owner (section);
4284 const char *filename = get_section_file_name (section);
4285
4286 if (header->version != 2 && header->version != 3 && header->version != 4)
4287 error (_("Dwarf Error: wrong version in compilation unit header "
4288 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4289 filename);
4290
4291 if (header->abbrev_offset.sect_off
4292 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4293 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4294 "(offset 0x%lx + 6) [in module %s]"),
4295 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4296 filename);
4297
4298 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4299 avoid potential 32-bit overflow. */
4300 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4301 > section->size)
4302 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4303 "(offset 0x%lx + 0) [in module %s]"),
4304 (long) header->length, (long) header->offset.sect_off,
4305 filename);
4306 }
4307
4308 /* Read in a CU/TU header and perform some basic error checking.
4309 The contents of the header are stored in HEADER.
4310 The result is a pointer to the start of the first DIE. */
4311
4312 static const gdb_byte *
4313 read_and_check_comp_unit_head (struct comp_unit_head *header,
4314 struct dwarf2_section_info *section,
4315 struct dwarf2_section_info *abbrev_section,
4316 const gdb_byte *info_ptr,
4317 int is_debug_types_section)
4318 {
4319 const gdb_byte *beg_of_comp_unit = info_ptr;
4320 bfd *abfd = get_section_bfd_owner (section);
4321
4322 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4323
4324 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4325
4326 /* If we're reading a type unit, skip over the signature and
4327 type_offset fields. */
4328 if (is_debug_types_section)
4329 info_ptr += 8 /*signature*/ + header->offset_size;
4330
4331 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4332
4333 error_check_comp_unit_head (header, section, abbrev_section);
4334
4335 return info_ptr;
4336 }
4337
4338 /* Read in the types comp unit header information from .debug_types entry at
4339 types_ptr. The result is a pointer to one past the end of the header. */
4340
4341 static const gdb_byte *
4342 read_and_check_type_unit_head (struct comp_unit_head *header,
4343 struct dwarf2_section_info *section,
4344 struct dwarf2_section_info *abbrev_section,
4345 const gdb_byte *info_ptr,
4346 ULONGEST *signature,
4347 cu_offset *type_offset_in_tu)
4348 {
4349 const gdb_byte *beg_of_comp_unit = info_ptr;
4350 bfd *abfd = get_section_bfd_owner (section);
4351
4352 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4353
4354 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4355
4356 /* If we're reading a type unit, skip over the signature and
4357 type_offset fields. */
4358 if (signature != NULL)
4359 *signature = read_8_bytes (abfd, info_ptr);
4360 info_ptr += 8;
4361 if (type_offset_in_tu != NULL)
4362 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4363 header->offset_size);
4364 info_ptr += header->offset_size;
4365
4366 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4367
4368 error_check_comp_unit_head (header, section, abbrev_section);
4369
4370 return info_ptr;
4371 }
4372
4373 /* Fetch the abbreviation table offset from a comp or type unit header. */
4374
4375 static sect_offset
4376 read_abbrev_offset (struct dwarf2_section_info *section,
4377 sect_offset offset)
4378 {
4379 bfd *abfd = get_section_bfd_owner (section);
4380 const gdb_byte *info_ptr;
4381 unsigned int length, initial_length_size, offset_size;
4382 sect_offset abbrev_offset;
4383
4384 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4385 info_ptr = section->buffer + offset.sect_off;
4386 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4387 offset_size = initial_length_size == 4 ? 4 : 8;
4388 info_ptr += initial_length_size + 2 /*version*/;
4389 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4390 return abbrev_offset;
4391 }
4392
4393 /* Allocate a new partial symtab for file named NAME and mark this new
4394 partial symtab as being an include of PST. */
4395
4396 static void
4397 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4398 struct objfile *objfile)
4399 {
4400 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4401
4402 if (!IS_ABSOLUTE_PATH (subpst->filename))
4403 {
4404 /* It shares objfile->objfile_obstack. */
4405 subpst->dirname = pst->dirname;
4406 }
4407
4408 subpst->section_offsets = pst->section_offsets;
4409 subpst->textlow = 0;
4410 subpst->texthigh = 0;
4411
4412 subpst->dependencies = (struct partial_symtab **)
4413 obstack_alloc (&objfile->objfile_obstack,
4414 sizeof (struct partial_symtab *));
4415 subpst->dependencies[0] = pst;
4416 subpst->number_of_dependencies = 1;
4417
4418 subpst->globals_offset = 0;
4419 subpst->n_global_syms = 0;
4420 subpst->statics_offset = 0;
4421 subpst->n_static_syms = 0;
4422 subpst->symtab = NULL;
4423 subpst->read_symtab = pst->read_symtab;
4424 subpst->readin = 0;
4425
4426 /* No private part is necessary for include psymtabs. This property
4427 can be used to differentiate between such include psymtabs and
4428 the regular ones. */
4429 subpst->read_symtab_private = NULL;
4430 }
4431
4432 /* Read the Line Number Program data and extract the list of files
4433 included by the source file represented by PST. Build an include
4434 partial symtab for each of these included files. */
4435
4436 static void
4437 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4438 struct die_info *die,
4439 struct partial_symtab *pst)
4440 {
4441 struct line_header *lh = NULL;
4442 struct attribute *attr;
4443
4444 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4445 if (attr)
4446 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4447 if (lh == NULL)
4448 return; /* No linetable, so no includes. */
4449
4450 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4451 dwarf_decode_lines (lh, pst->dirname, cu, pst);
4452
4453 free_line_header (lh);
4454 }
4455
4456 static hashval_t
4457 hash_signatured_type (const void *item)
4458 {
4459 const struct signatured_type *sig_type = item;
4460
4461 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4462 return sig_type->signature;
4463 }
4464
4465 static int
4466 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4467 {
4468 const struct signatured_type *lhs = item_lhs;
4469 const struct signatured_type *rhs = item_rhs;
4470
4471 return lhs->signature == rhs->signature;
4472 }
4473
4474 /* Allocate a hash table for signatured types. */
4475
4476 static htab_t
4477 allocate_signatured_type_table (struct objfile *objfile)
4478 {
4479 return htab_create_alloc_ex (41,
4480 hash_signatured_type,
4481 eq_signatured_type,
4482 NULL,
4483 &objfile->objfile_obstack,
4484 hashtab_obstack_allocate,
4485 dummy_obstack_deallocate);
4486 }
4487
4488 /* A helper function to add a signatured type CU to a table. */
4489
4490 static int
4491 add_signatured_type_cu_to_table (void **slot, void *datum)
4492 {
4493 struct signatured_type *sigt = *slot;
4494 struct signatured_type ***datap = datum;
4495
4496 **datap = sigt;
4497 ++*datap;
4498
4499 return 1;
4500 }
4501
4502 /* Create the hash table of all entries in the .debug_types
4503 (or .debug_types.dwo) section(s).
4504 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4505 otherwise it is NULL.
4506
4507 The result is a pointer to the hash table or NULL if there are no types.
4508
4509 Note: This function processes DWO files only, not DWP files. */
4510
4511 static htab_t
4512 create_debug_types_hash_table (struct dwo_file *dwo_file,
4513 VEC (dwarf2_section_info_def) *types)
4514 {
4515 struct objfile *objfile = dwarf2_per_objfile->objfile;
4516 htab_t types_htab = NULL;
4517 int ix;
4518 struct dwarf2_section_info *section;
4519 struct dwarf2_section_info *abbrev_section;
4520
4521 if (VEC_empty (dwarf2_section_info_def, types))
4522 return NULL;
4523
4524 abbrev_section = (dwo_file != NULL
4525 ? &dwo_file->sections.abbrev
4526 : &dwarf2_per_objfile->abbrev);
4527
4528 if (dwarf2_read_debug)
4529 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4530 dwo_file ? ".dwo" : "",
4531 get_section_file_name (abbrev_section));
4532
4533 for (ix = 0;
4534 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4535 ++ix)
4536 {
4537 bfd *abfd;
4538 const gdb_byte *info_ptr, *end_ptr;
4539
4540 dwarf2_read_section (objfile, section);
4541 info_ptr = section->buffer;
4542
4543 if (info_ptr == NULL)
4544 continue;
4545
4546 /* We can't set abfd until now because the section may be empty or
4547 not present, in which case the bfd is unknown. */
4548 abfd = get_section_bfd_owner (section);
4549
4550 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4551 because we don't need to read any dies: the signature is in the
4552 header. */
4553
4554 end_ptr = info_ptr + section->size;
4555 while (info_ptr < end_ptr)
4556 {
4557 sect_offset offset;
4558 cu_offset type_offset_in_tu;
4559 ULONGEST signature;
4560 struct signatured_type *sig_type;
4561 struct dwo_unit *dwo_tu;
4562 void **slot;
4563 const gdb_byte *ptr = info_ptr;
4564 struct comp_unit_head header;
4565 unsigned int length;
4566
4567 offset.sect_off = ptr - section->buffer;
4568
4569 /* We need to read the type's signature in order to build the hash
4570 table, but we don't need anything else just yet. */
4571
4572 ptr = read_and_check_type_unit_head (&header, section,
4573 abbrev_section, ptr,
4574 &signature, &type_offset_in_tu);
4575
4576 length = get_cu_length (&header);
4577
4578 /* Skip dummy type units. */
4579 if (ptr >= info_ptr + length
4580 || peek_abbrev_code (abfd, ptr) == 0)
4581 {
4582 info_ptr += length;
4583 continue;
4584 }
4585
4586 if (types_htab == NULL)
4587 {
4588 if (dwo_file)
4589 types_htab = allocate_dwo_unit_table (objfile);
4590 else
4591 types_htab = allocate_signatured_type_table (objfile);
4592 }
4593
4594 if (dwo_file)
4595 {
4596 sig_type = NULL;
4597 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4598 struct dwo_unit);
4599 dwo_tu->dwo_file = dwo_file;
4600 dwo_tu->signature = signature;
4601 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4602 dwo_tu->section = section;
4603 dwo_tu->offset = offset;
4604 dwo_tu->length = length;
4605 }
4606 else
4607 {
4608 /* N.B.: type_offset is not usable if this type uses a DWO file.
4609 The real type_offset is in the DWO file. */
4610 dwo_tu = NULL;
4611 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4612 struct signatured_type);
4613 sig_type->signature = signature;
4614 sig_type->type_offset_in_tu = type_offset_in_tu;
4615 sig_type->per_cu.objfile = objfile;
4616 sig_type->per_cu.is_debug_types = 1;
4617 sig_type->per_cu.section = section;
4618 sig_type->per_cu.offset = offset;
4619 sig_type->per_cu.length = length;
4620 }
4621
4622 slot = htab_find_slot (types_htab,
4623 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4624 INSERT);
4625 gdb_assert (slot != NULL);
4626 if (*slot != NULL)
4627 {
4628 sect_offset dup_offset;
4629
4630 if (dwo_file)
4631 {
4632 const struct dwo_unit *dup_tu = *slot;
4633
4634 dup_offset = dup_tu->offset;
4635 }
4636 else
4637 {
4638 const struct signatured_type *dup_tu = *slot;
4639
4640 dup_offset = dup_tu->per_cu.offset;
4641 }
4642
4643 complaint (&symfile_complaints,
4644 _("debug type entry at offset 0x%x is duplicate to"
4645 " the entry at offset 0x%x, signature %s"),
4646 offset.sect_off, dup_offset.sect_off,
4647 hex_string (signature));
4648 }
4649 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4650
4651 if (dwarf2_read_debug > 1)
4652 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4653 offset.sect_off,
4654 hex_string (signature));
4655
4656 info_ptr += length;
4657 }
4658 }
4659
4660 return types_htab;
4661 }
4662
4663 /* Create the hash table of all entries in the .debug_types section,
4664 and initialize all_type_units.
4665 The result is zero if there is an error (e.g. missing .debug_types section),
4666 otherwise non-zero. */
4667
4668 static int
4669 create_all_type_units (struct objfile *objfile)
4670 {
4671 htab_t types_htab;
4672 struct signatured_type **iter;
4673
4674 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4675 if (types_htab == NULL)
4676 {
4677 dwarf2_per_objfile->signatured_types = NULL;
4678 return 0;
4679 }
4680
4681 dwarf2_per_objfile->signatured_types = types_htab;
4682
4683 dwarf2_per_objfile->n_type_units
4684 = dwarf2_per_objfile->n_allocated_type_units
4685 = htab_elements (types_htab);
4686 dwarf2_per_objfile->all_type_units
4687 = xmalloc (dwarf2_per_objfile->n_type_units
4688 * sizeof (struct signatured_type *));
4689 iter = &dwarf2_per_objfile->all_type_units[0];
4690 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4691 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4692 == dwarf2_per_objfile->n_type_units);
4693
4694 return 1;
4695 }
4696
4697 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4698 If SLOT is non-NULL, it is the entry to use in the hash table.
4699 Otherwise we find one. */
4700
4701 static struct signatured_type *
4702 add_type_unit (ULONGEST sig, void **slot)
4703 {
4704 struct objfile *objfile = dwarf2_per_objfile->objfile;
4705 int n_type_units = dwarf2_per_objfile->n_type_units;
4706 struct signatured_type *sig_type;
4707
4708 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4709 ++n_type_units;
4710 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4711 {
4712 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4713 dwarf2_per_objfile->n_allocated_type_units = 1;
4714 dwarf2_per_objfile->n_allocated_type_units *= 2;
4715 dwarf2_per_objfile->all_type_units
4716 = xrealloc (dwarf2_per_objfile->all_type_units,
4717 dwarf2_per_objfile->n_allocated_type_units
4718 * sizeof (struct signatured_type *));
4719 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4720 }
4721 dwarf2_per_objfile->n_type_units = n_type_units;
4722
4723 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4724 struct signatured_type);
4725 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4726 sig_type->signature = sig;
4727 sig_type->per_cu.is_debug_types = 1;
4728 if (dwarf2_per_objfile->using_index)
4729 {
4730 sig_type->per_cu.v.quick =
4731 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4732 struct dwarf2_per_cu_quick_data);
4733 }
4734
4735 if (slot == NULL)
4736 {
4737 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4738 sig_type, INSERT);
4739 }
4740 gdb_assert (*slot == NULL);
4741 *slot = sig_type;
4742 /* The rest of sig_type must be filled in by the caller. */
4743 return sig_type;
4744 }
4745
4746 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4747 Fill in SIG_ENTRY with DWO_ENTRY. */
4748
4749 static void
4750 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4751 struct signatured_type *sig_entry,
4752 struct dwo_unit *dwo_entry)
4753 {
4754 /* Make sure we're not clobbering something we don't expect to. */
4755 gdb_assert (! sig_entry->per_cu.queued);
4756 gdb_assert (sig_entry->per_cu.cu == NULL);
4757 if (dwarf2_per_objfile->using_index)
4758 {
4759 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4760 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4761 }
4762 else
4763 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4764 gdb_assert (sig_entry->signature == dwo_entry->signature);
4765 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4766 gdb_assert (sig_entry->type_unit_group == NULL);
4767 gdb_assert (sig_entry->dwo_unit == NULL);
4768
4769 sig_entry->per_cu.section = dwo_entry->section;
4770 sig_entry->per_cu.offset = dwo_entry->offset;
4771 sig_entry->per_cu.length = dwo_entry->length;
4772 sig_entry->per_cu.reading_dwo_directly = 1;
4773 sig_entry->per_cu.objfile = objfile;
4774 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4775 sig_entry->dwo_unit = dwo_entry;
4776 }
4777
4778 /* Subroutine of lookup_signatured_type.
4779 If we haven't read the TU yet, create the signatured_type data structure
4780 for a TU to be read in directly from a DWO file, bypassing the stub.
4781 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4782 using .gdb_index, then when reading a CU we want to stay in the DWO file
4783 containing that CU. Otherwise we could end up reading several other DWO
4784 files (due to comdat folding) to process the transitive closure of all the
4785 mentioned TUs, and that can be slow. The current DWO file will have every
4786 type signature that it needs.
4787 We only do this for .gdb_index because in the psymtab case we already have
4788 to read all the DWOs to build the type unit groups. */
4789
4790 static struct signatured_type *
4791 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4792 {
4793 struct objfile *objfile = dwarf2_per_objfile->objfile;
4794 struct dwo_file *dwo_file;
4795 struct dwo_unit find_dwo_entry, *dwo_entry;
4796 struct signatured_type find_sig_entry, *sig_entry;
4797 void **slot;
4798
4799 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4800
4801 /* If TU skeletons have been removed then we may not have read in any
4802 TUs yet. */
4803 if (dwarf2_per_objfile->signatured_types == NULL)
4804 {
4805 dwarf2_per_objfile->signatured_types
4806 = allocate_signatured_type_table (objfile);
4807 }
4808
4809 /* We only ever need to read in one copy of a signatured type.
4810 Use the global signatured_types array to do our own comdat-folding
4811 of types. If this is the first time we're reading this TU, and
4812 the TU has an entry in .gdb_index, replace the recorded data from
4813 .gdb_index with this TU. */
4814
4815 find_sig_entry.signature = sig;
4816 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4817 &find_sig_entry, INSERT);
4818 sig_entry = *slot;
4819
4820 /* We can get here with the TU already read, *or* in the process of being
4821 read. Don't reassign the global entry to point to this DWO if that's
4822 the case. Also note that if the TU is already being read, it may not
4823 have come from a DWO, the program may be a mix of Fission-compiled
4824 code and non-Fission-compiled code. */
4825
4826 /* Have we already tried to read this TU?
4827 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4828 needn't exist in the global table yet). */
4829 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4830 return sig_entry;
4831
4832 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4833 dwo_unit of the TU itself. */
4834 dwo_file = cu->dwo_unit->dwo_file;
4835
4836 /* Ok, this is the first time we're reading this TU. */
4837 if (dwo_file->tus == NULL)
4838 return NULL;
4839 find_dwo_entry.signature = sig;
4840 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4841 if (dwo_entry == NULL)
4842 return NULL;
4843
4844 /* If the global table doesn't have an entry for this TU, add one. */
4845 if (sig_entry == NULL)
4846 sig_entry = add_type_unit (sig, slot);
4847
4848 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4849 sig_entry->per_cu.tu_read = 1;
4850 return sig_entry;
4851 }
4852
4853 /* Subroutine of lookup_signatured_type.
4854 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4855 then try the DWP file. If the TU stub (skeleton) has been removed then
4856 it won't be in .gdb_index. */
4857
4858 static struct signatured_type *
4859 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4860 {
4861 struct objfile *objfile = dwarf2_per_objfile->objfile;
4862 struct dwp_file *dwp_file = get_dwp_file ();
4863 struct dwo_unit *dwo_entry;
4864 struct signatured_type find_sig_entry, *sig_entry;
4865 void **slot;
4866
4867 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4868 gdb_assert (dwp_file != NULL);
4869
4870 /* If TU skeletons have been removed then we may not have read in any
4871 TUs yet. */
4872 if (dwarf2_per_objfile->signatured_types == NULL)
4873 {
4874 dwarf2_per_objfile->signatured_types
4875 = allocate_signatured_type_table (objfile);
4876 }
4877
4878 find_sig_entry.signature = sig;
4879 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4880 &find_sig_entry, INSERT);
4881 sig_entry = *slot;
4882
4883 /* Have we already tried to read this TU?
4884 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4885 needn't exist in the global table yet). */
4886 if (sig_entry != NULL)
4887 return sig_entry;
4888
4889 if (dwp_file->tus == NULL)
4890 return NULL;
4891 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4892 sig, 1 /* is_debug_types */);
4893 if (dwo_entry == NULL)
4894 return NULL;
4895
4896 sig_entry = add_type_unit (sig, slot);
4897 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4898
4899 return sig_entry;
4900 }
4901
4902 /* Lookup a signature based type for DW_FORM_ref_sig8.
4903 Returns NULL if signature SIG is not present in the table.
4904 It is up to the caller to complain about this. */
4905
4906 static struct signatured_type *
4907 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4908 {
4909 if (cu->dwo_unit
4910 && dwarf2_per_objfile->using_index)
4911 {
4912 /* We're in a DWO/DWP file, and we're using .gdb_index.
4913 These cases require special processing. */
4914 if (get_dwp_file () == NULL)
4915 return lookup_dwo_signatured_type (cu, sig);
4916 else
4917 return lookup_dwp_signatured_type (cu, sig);
4918 }
4919 else
4920 {
4921 struct signatured_type find_entry, *entry;
4922
4923 if (dwarf2_per_objfile->signatured_types == NULL)
4924 return NULL;
4925 find_entry.signature = sig;
4926 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4927 return entry;
4928 }
4929 }
4930 \f
4931 /* Low level DIE reading support. */
4932
4933 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4934
4935 static void
4936 init_cu_die_reader (struct die_reader_specs *reader,
4937 struct dwarf2_cu *cu,
4938 struct dwarf2_section_info *section,
4939 struct dwo_file *dwo_file)
4940 {
4941 gdb_assert (section->readin && section->buffer != NULL);
4942 reader->abfd = get_section_bfd_owner (section);
4943 reader->cu = cu;
4944 reader->dwo_file = dwo_file;
4945 reader->die_section = section;
4946 reader->buffer = section->buffer;
4947 reader->buffer_end = section->buffer + section->size;
4948 reader->comp_dir = NULL;
4949 }
4950
4951 /* Subroutine of init_cutu_and_read_dies to simplify it.
4952 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4953 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4954 already.
4955
4956 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4957 from it to the DIE in the DWO. If NULL we are skipping the stub.
4958 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4959 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4960 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4961 STUB_COMP_DIR may be non-NULL.
4962 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4963 are filled in with the info of the DIE from the DWO file.
4964 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4965 provided an abbrev table to use.
4966 The result is non-zero if a valid (non-dummy) DIE was found. */
4967
4968 static int
4969 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4970 struct dwo_unit *dwo_unit,
4971 int abbrev_table_provided,
4972 struct die_info *stub_comp_unit_die,
4973 const char *stub_comp_dir,
4974 struct die_reader_specs *result_reader,
4975 const gdb_byte **result_info_ptr,
4976 struct die_info **result_comp_unit_die,
4977 int *result_has_children)
4978 {
4979 struct objfile *objfile = dwarf2_per_objfile->objfile;
4980 struct dwarf2_cu *cu = this_cu->cu;
4981 struct dwarf2_section_info *section;
4982 bfd *abfd;
4983 const gdb_byte *begin_info_ptr, *info_ptr;
4984 ULONGEST signature; /* Or dwo_id. */
4985 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4986 int i,num_extra_attrs;
4987 struct dwarf2_section_info *dwo_abbrev_section;
4988 struct attribute *attr;
4989 struct die_info *comp_unit_die;
4990
4991 /* At most one of these may be provided. */
4992 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
4993
4994 /* These attributes aren't processed until later:
4995 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4996 DW_AT_comp_dir is used now, to find the DWO file, but it is also
4997 referenced later. However, these attributes are found in the stub
4998 which we won't have later. In order to not impose this complication
4999 on the rest of the code, we read them here and copy them to the
5000 DWO CU/TU die. */
5001
5002 stmt_list = NULL;
5003 low_pc = NULL;
5004 high_pc = NULL;
5005 ranges = NULL;
5006 comp_dir = NULL;
5007
5008 if (stub_comp_unit_die != NULL)
5009 {
5010 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5011 DWO file. */
5012 if (! this_cu->is_debug_types)
5013 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5014 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5015 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5016 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5017 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5018
5019 /* There should be a DW_AT_addr_base attribute here (if needed).
5020 We need the value before we can process DW_FORM_GNU_addr_index. */
5021 cu->addr_base = 0;
5022 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5023 if (attr)
5024 cu->addr_base = DW_UNSND (attr);
5025
5026 /* There should be a DW_AT_ranges_base attribute here (if needed).
5027 We need the value before we can process DW_AT_ranges. */
5028 cu->ranges_base = 0;
5029 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5030 if (attr)
5031 cu->ranges_base = DW_UNSND (attr);
5032 }
5033 else if (stub_comp_dir != NULL)
5034 {
5035 /* Reconstruct the comp_dir attribute to simplify the code below. */
5036 comp_dir = (struct attribute *)
5037 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5038 comp_dir->name = DW_AT_comp_dir;
5039 comp_dir->form = DW_FORM_string;
5040 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5041 DW_STRING (comp_dir) = stub_comp_dir;
5042 }
5043
5044 /* Set up for reading the DWO CU/TU. */
5045 cu->dwo_unit = dwo_unit;
5046 section = dwo_unit->section;
5047 dwarf2_read_section (objfile, section);
5048 abfd = get_section_bfd_owner (section);
5049 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5050 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5051 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5052
5053 if (this_cu->is_debug_types)
5054 {
5055 ULONGEST header_signature;
5056 cu_offset type_offset_in_tu;
5057 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5058
5059 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5060 dwo_abbrev_section,
5061 info_ptr,
5062 &header_signature,
5063 &type_offset_in_tu);
5064 /* This is not an assert because it can be caused by bad debug info. */
5065 if (sig_type->signature != header_signature)
5066 {
5067 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5068 " TU at offset 0x%x [in module %s]"),
5069 hex_string (sig_type->signature),
5070 hex_string (header_signature),
5071 dwo_unit->offset.sect_off,
5072 bfd_get_filename (abfd));
5073 }
5074 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5075 /* For DWOs coming from DWP files, we don't know the CU length
5076 nor the type's offset in the TU until now. */
5077 dwo_unit->length = get_cu_length (&cu->header);
5078 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5079
5080 /* Establish the type offset that can be used to lookup the type.
5081 For DWO files, we don't know it until now. */
5082 sig_type->type_offset_in_section.sect_off =
5083 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5084 }
5085 else
5086 {
5087 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5088 dwo_abbrev_section,
5089 info_ptr, 0);
5090 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5091 /* For DWOs coming from DWP files, we don't know the CU length
5092 until now. */
5093 dwo_unit->length = get_cu_length (&cu->header);
5094 }
5095
5096 /* Replace the CU's original abbrev table with the DWO's.
5097 Reminder: We can't read the abbrev table until we've read the header. */
5098 if (abbrev_table_provided)
5099 {
5100 /* Don't free the provided abbrev table, the caller of
5101 init_cutu_and_read_dies owns it. */
5102 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5103 /* Ensure the DWO abbrev table gets freed. */
5104 make_cleanup (dwarf2_free_abbrev_table, cu);
5105 }
5106 else
5107 {
5108 dwarf2_free_abbrev_table (cu);
5109 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5110 /* Leave any existing abbrev table cleanup as is. */
5111 }
5112
5113 /* Read in the die, but leave space to copy over the attributes
5114 from the stub. This has the benefit of simplifying the rest of
5115 the code - all the work to maintain the illusion of a single
5116 DW_TAG_{compile,type}_unit DIE is done here. */
5117 num_extra_attrs = ((stmt_list != NULL)
5118 + (low_pc != NULL)
5119 + (high_pc != NULL)
5120 + (ranges != NULL)
5121 + (comp_dir != NULL));
5122 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5123 result_has_children, num_extra_attrs);
5124
5125 /* Copy over the attributes from the stub to the DIE we just read in. */
5126 comp_unit_die = *result_comp_unit_die;
5127 i = comp_unit_die->num_attrs;
5128 if (stmt_list != NULL)
5129 comp_unit_die->attrs[i++] = *stmt_list;
5130 if (low_pc != NULL)
5131 comp_unit_die->attrs[i++] = *low_pc;
5132 if (high_pc != NULL)
5133 comp_unit_die->attrs[i++] = *high_pc;
5134 if (ranges != NULL)
5135 comp_unit_die->attrs[i++] = *ranges;
5136 if (comp_dir != NULL)
5137 comp_unit_die->attrs[i++] = *comp_dir;
5138 comp_unit_die->num_attrs += num_extra_attrs;
5139
5140 if (dwarf2_die_debug)
5141 {
5142 fprintf_unfiltered (gdb_stdlog,
5143 "Read die from %s@0x%x of %s:\n",
5144 get_section_name (section),
5145 (unsigned) (begin_info_ptr - section->buffer),
5146 bfd_get_filename (abfd));
5147 dump_die (comp_unit_die, dwarf2_die_debug);
5148 }
5149
5150 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5151 TUs by skipping the stub and going directly to the entry in the DWO file.
5152 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5153 to get it via circuitous means. Blech. */
5154 if (comp_dir != NULL)
5155 result_reader->comp_dir = DW_STRING (comp_dir);
5156
5157 /* Skip dummy compilation units. */
5158 if (info_ptr >= begin_info_ptr + dwo_unit->length
5159 || peek_abbrev_code (abfd, info_ptr) == 0)
5160 return 0;
5161
5162 *result_info_ptr = info_ptr;
5163 return 1;
5164 }
5165
5166 /* Subroutine of init_cutu_and_read_dies to simplify it.
5167 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5168 Returns NULL if the specified DWO unit cannot be found. */
5169
5170 static struct dwo_unit *
5171 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5172 struct die_info *comp_unit_die)
5173 {
5174 struct dwarf2_cu *cu = this_cu->cu;
5175 struct attribute *attr;
5176 ULONGEST signature;
5177 struct dwo_unit *dwo_unit;
5178 const char *comp_dir, *dwo_name;
5179
5180 gdb_assert (cu != NULL);
5181
5182 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5183 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5184 gdb_assert (attr != NULL);
5185 dwo_name = DW_STRING (attr);
5186 comp_dir = NULL;
5187 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5188 if (attr)
5189 comp_dir = DW_STRING (attr);
5190
5191 if (this_cu->is_debug_types)
5192 {
5193 struct signatured_type *sig_type;
5194
5195 /* Since this_cu is the first member of struct signatured_type,
5196 we can go from a pointer to one to a pointer to the other. */
5197 sig_type = (struct signatured_type *) this_cu;
5198 signature = sig_type->signature;
5199 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5200 }
5201 else
5202 {
5203 struct attribute *attr;
5204
5205 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5206 if (! attr)
5207 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5208 " [in module %s]"),
5209 dwo_name, objfile_name (this_cu->objfile));
5210 signature = DW_UNSND (attr);
5211 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5212 signature);
5213 }
5214
5215 return dwo_unit;
5216 }
5217
5218 /* Subroutine of init_cutu_and_read_dies to simplify it.
5219 See it for a description of the parameters.
5220 Read a TU directly from a DWO file, bypassing the stub.
5221
5222 Note: This function could be a little bit simpler if we shared cleanups
5223 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5224 to do, so we keep this function self-contained. Or we could move this
5225 into our caller, but it's complex enough already. */
5226
5227 static void
5228 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5229 int use_existing_cu, int keep,
5230 die_reader_func_ftype *die_reader_func,
5231 void *data)
5232 {
5233 struct dwarf2_cu *cu;
5234 struct signatured_type *sig_type;
5235 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5236 struct die_reader_specs reader;
5237 const gdb_byte *info_ptr;
5238 struct die_info *comp_unit_die;
5239 int has_children;
5240
5241 /* Verify we can do the following downcast, and that we have the
5242 data we need. */
5243 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5244 sig_type = (struct signatured_type *) this_cu;
5245 gdb_assert (sig_type->dwo_unit != NULL);
5246
5247 cleanups = make_cleanup (null_cleanup, NULL);
5248
5249 if (use_existing_cu && this_cu->cu != NULL)
5250 {
5251 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5252 cu = this_cu->cu;
5253 /* There's no need to do the rereading_dwo_cu handling that
5254 init_cutu_and_read_dies does since we don't read the stub. */
5255 }
5256 else
5257 {
5258 /* If !use_existing_cu, this_cu->cu must be NULL. */
5259 gdb_assert (this_cu->cu == NULL);
5260 cu = xmalloc (sizeof (*cu));
5261 init_one_comp_unit (cu, this_cu);
5262 /* If an error occurs while loading, release our storage. */
5263 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5264 }
5265
5266 /* A future optimization, if needed, would be to use an existing
5267 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5268 could share abbrev tables. */
5269
5270 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5271 0 /* abbrev_table_provided */,
5272 NULL /* stub_comp_unit_die */,
5273 sig_type->dwo_unit->dwo_file->comp_dir,
5274 &reader, &info_ptr,
5275 &comp_unit_die, &has_children) == 0)
5276 {
5277 /* Dummy die. */
5278 do_cleanups (cleanups);
5279 return;
5280 }
5281
5282 /* All the "real" work is done here. */
5283 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5284
5285 /* This duplicates the code in init_cutu_and_read_dies,
5286 but the alternative is making the latter more complex.
5287 This function is only for the special case of using DWO files directly:
5288 no point in overly complicating the general case just to handle this. */
5289 if (free_cu_cleanup != NULL)
5290 {
5291 if (keep)
5292 {
5293 /* We've successfully allocated this compilation unit. Let our
5294 caller clean it up when finished with it. */
5295 discard_cleanups (free_cu_cleanup);
5296
5297 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5298 So we have to manually free the abbrev table. */
5299 dwarf2_free_abbrev_table (cu);
5300
5301 /* Link this CU into read_in_chain. */
5302 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5303 dwarf2_per_objfile->read_in_chain = this_cu;
5304 }
5305 else
5306 do_cleanups (free_cu_cleanup);
5307 }
5308
5309 do_cleanups (cleanups);
5310 }
5311
5312 /* Initialize a CU (or TU) and read its DIEs.
5313 If the CU defers to a DWO file, read the DWO file as well.
5314
5315 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5316 Otherwise the table specified in the comp unit header is read in and used.
5317 This is an optimization for when we already have the abbrev table.
5318
5319 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5320 Otherwise, a new CU is allocated with xmalloc.
5321
5322 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5323 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5324
5325 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5326 linker) then DIE_READER_FUNC will not get called. */
5327
5328 static void
5329 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5330 struct abbrev_table *abbrev_table,
5331 int use_existing_cu, int keep,
5332 die_reader_func_ftype *die_reader_func,
5333 void *data)
5334 {
5335 struct objfile *objfile = dwarf2_per_objfile->objfile;
5336 struct dwarf2_section_info *section = this_cu->section;
5337 bfd *abfd = get_section_bfd_owner (section);
5338 struct dwarf2_cu *cu;
5339 const gdb_byte *begin_info_ptr, *info_ptr;
5340 struct die_reader_specs reader;
5341 struct die_info *comp_unit_die;
5342 int has_children;
5343 struct attribute *attr;
5344 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5345 struct signatured_type *sig_type = NULL;
5346 struct dwarf2_section_info *abbrev_section;
5347 /* Non-zero if CU currently points to a DWO file and we need to
5348 reread it. When this happens we need to reread the skeleton die
5349 before we can reread the DWO file (this only applies to CUs, not TUs). */
5350 int rereading_dwo_cu = 0;
5351
5352 if (dwarf2_die_debug)
5353 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5354 this_cu->is_debug_types ? "type" : "comp",
5355 this_cu->offset.sect_off);
5356
5357 if (use_existing_cu)
5358 gdb_assert (keep);
5359
5360 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5361 file (instead of going through the stub), short-circuit all of this. */
5362 if (this_cu->reading_dwo_directly)
5363 {
5364 /* Narrow down the scope of possibilities to have to understand. */
5365 gdb_assert (this_cu->is_debug_types);
5366 gdb_assert (abbrev_table == NULL);
5367 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5368 die_reader_func, data);
5369 return;
5370 }
5371
5372 cleanups = make_cleanup (null_cleanup, NULL);
5373
5374 /* This is cheap if the section is already read in. */
5375 dwarf2_read_section (objfile, section);
5376
5377 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5378
5379 abbrev_section = get_abbrev_section_for_cu (this_cu);
5380
5381 if (use_existing_cu && this_cu->cu != NULL)
5382 {
5383 cu = this_cu->cu;
5384 /* If this CU is from a DWO file we need to start over, we need to
5385 refetch the attributes from the skeleton CU.
5386 This could be optimized by retrieving those attributes from when we
5387 were here the first time: the previous comp_unit_die was stored in
5388 comp_unit_obstack. But there's no data yet that we need this
5389 optimization. */
5390 if (cu->dwo_unit != NULL)
5391 rereading_dwo_cu = 1;
5392 }
5393 else
5394 {
5395 /* If !use_existing_cu, this_cu->cu must be NULL. */
5396 gdb_assert (this_cu->cu == NULL);
5397 cu = xmalloc (sizeof (*cu));
5398 init_one_comp_unit (cu, this_cu);
5399 /* If an error occurs while loading, release our storage. */
5400 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5401 }
5402
5403 /* Get the header. */
5404 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5405 {
5406 /* We already have the header, there's no need to read it in again. */
5407 info_ptr += cu->header.first_die_offset.cu_off;
5408 }
5409 else
5410 {
5411 if (this_cu->is_debug_types)
5412 {
5413 ULONGEST signature;
5414 cu_offset type_offset_in_tu;
5415
5416 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5417 abbrev_section, info_ptr,
5418 &signature,
5419 &type_offset_in_tu);
5420
5421 /* Since per_cu is the first member of struct signatured_type,
5422 we can go from a pointer to one to a pointer to the other. */
5423 sig_type = (struct signatured_type *) this_cu;
5424 gdb_assert (sig_type->signature == signature);
5425 gdb_assert (sig_type->type_offset_in_tu.cu_off
5426 == type_offset_in_tu.cu_off);
5427 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5428
5429 /* LENGTH has not been set yet for type units if we're
5430 using .gdb_index. */
5431 this_cu->length = get_cu_length (&cu->header);
5432
5433 /* Establish the type offset that can be used to lookup the type. */
5434 sig_type->type_offset_in_section.sect_off =
5435 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5436 }
5437 else
5438 {
5439 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5440 abbrev_section,
5441 info_ptr, 0);
5442
5443 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5444 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5445 }
5446 }
5447
5448 /* Skip dummy compilation units. */
5449 if (info_ptr >= begin_info_ptr + this_cu->length
5450 || peek_abbrev_code (abfd, info_ptr) == 0)
5451 {
5452 do_cleanups (cleanups);
5453 return;
5454 }
5455
5456 /* If we don't have them yet, read the abbrevs for this compilation unit.
5457 And if we need to read them now, make sure they're freed when we're
5458 done. Note that it's important that if the CU had an abbrev table
5459 on entry we don't free it when we're done: Somewhere up the call stack
5460 it may be in use. */
5461 if (abbrev_table != NULL)
5462 {
5463 gdb_assert (cu->abbrev_table == NULL);
5464 gdb_assert (cu->header.abbrev_offset.sect_off
5465 == abbrev_table->offset.sect_off);
5466 cu->abbrev_table = abbrev_table;
5467 }
5468 else if (cu->abbrev_table == NULL)
5469 {
5470 dwarf2_read_abbrevs (cu, abbrev_section);
5471 make_cleanup (dwarf2_free_abbrev_table, cu);
5472 }
5473 else if (rereading_dwo_cu)
5474 {
5475 dwarf2_free_abbrev_table (cu);
5476 dwarf2_read_abbrevs (cu, abbrev_section);
5477 }
5478
5479 /* Read the top level CU/TU die. */
5480 init_cu_die_reader (&reader, cu, section, NULL);
5481 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5482
5483 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5484 from the DWO file.
5485 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5486 DWO CU, that this test will fail (the attribute will not be present). */
5487 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5488 if (attr)
5489 {
5490 struct dwo_unit *dwo_unit;
5491 struct die_info *dwo_comp_unit_die;
5492
5493 if (has_children)
5494 {
5495 complaint (&symfile_complaints,
5496 _("compilation unit with DW_AT_GNU_dwo_name"
5497 " has children (offset 0x%x) [in module %s]"),
5498 this_cu->offset.sect_off, bfd_get_filename (abfd));
5499 }
5500 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5501 if (dwo_unit != NULL)
5502 {
5503 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5504 abbrev_table != NULL,
5505 comp_unit_die, NULL,
5506 &reader, &info_ptr,
5507 &dwo_comp_unit_die, &has_children) == 0)
5508 {
5509 /* Dummy die. */
5510 do_cleanups (cleanups);
5511 return;
5512 }
5513 comp_unit_die = dwo_comp_unit_die;
5514 }
5515 else
5516 {
5517 /* Yikes, we couldn't find the rest of the DIE, we only have
5518 the stub. A complaint has already been logged. There's
5519 not much more we can do except pass on the stub DIE to
5520 die_reader_func. We don't want to throw an error on bad
5521 debug info. */
5522 }
5523 }
5524
5525 /* All of the above is setup for this call. Yikes. */
5526 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5527
5528 /* Done, clean up. */
5529 if (free_cu_cleanup != NULL)
5530 {
5531 if (keep)
5532 {
5533 /* We've successfully allocated this compilation unit. Let our
5534 caller clean it up when finished with it. */
5535 discard_cleanups (free_cu_cleanup);
5536
5537 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5538 So we have to manually free the abbrev table. */
5539 dwarf2_free_abbrev_table (cu);
5540
5541 /* Link this CU into read_in_chain. */
5542 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5543 dwarf2_per_objfile->read_in_chain = this_cu;
5544 }
5545 else
5546 do_cleanups (free_cu_cleanup);
5547 }
5548
5549 do_cleanups (cleanups);
5550 }
5551
5552 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5553 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5554 to have already done the lookup to find the DWO file).
5555
5556 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5557 THIS_CU->is_debug_types, but nothing else.
5558
5559 We fill in THIS_CU->length.
5560
5561 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5562 linker) then DIE_READER_FUNC will not get called.
5563
5564 THIS_CU->cu is always freed when done.
5565 This is done in order to not leave THIS_CU->cu in a state where we have
5566 to care whether it refers to the "main" CU or the DWO CU. */
5567
5568 static void
5569 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5570 struct dwo_file *dwo_file,
5571 die_reader_func_ftype *die_reader_func,
5572 void *data)
5573 {
5574 struct objfile *objfile = dwarf2_per_objfile->objfile;
5575 struct dwarf2_section_info *section = this_cu->section;
5576 bfd *abfd = get_section_bfd_owner (section);
5577 struct dwarf2_section_info *abbrev_section;
5578 struct dwarf2_cu cu;
5579 const gdb_byte *begin_info_ptr, *info_ptr;
5580 struct die_reader_specs reader;
5581 struct cleanup *cleanups;
5582 struct die_info *comp_unit_die;
5583 int has_children;
5584
5585 if (dwarf2_die_debug)
5586 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5587 this_cu->is_debug_types ? "type" : "comp",
5588 this_cu->offset.sect_off);
5589
5590 gdb_assert (this_cu->cu == NULL);
5591
5592 abbrev_section = (dwo_file != NULL
5593 ? &dwo_file->sections.abbrev
5594 : get_abbrev_section_for_cu (this_cu));
5595
5596 /* This is cheap if the section is already read in. */
5597 dwarf2_read_section (objfile, section);
5598
5599 init_one_comp_unit (&cu, this_cu);
5600
5601 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5602
5603 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5604 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5605 abbrev_section, info_ptr,
5606 this_cu->is_debug_types);
5607
5608 this_cu->length = get_cu_length (&cu.header);
5609
5610 /* Skip dummy compilation units. */
5611 if (info_ptr >= begin_info_ptr + this_cu->length
5612 || peek_abbrev_code (abfd, info_ptr) == 0)
5613 {
5614 do_cleanups (cleanups);
5615 return;
5616 }
5617
5618 dwarf2_read_abbrevs (&cu, abbrev_section);
5619 make_cleanup (dwarf2_free_abbrev_table, &cu);
5620
5621 init_cu_die_reader (&reader, &cu, section, dwo_file);
5622 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5623
5624 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5625
5626 do_cleanups (cleanups);
5627 }
5628
5629 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5630 does not lookup the specified DWO file.
5631 This cannot be used to read DWO files.
5632
5633 THIS_CU->cu is always freed when done.
5634 This is done in order to not leave THIS_CU->cu in a state where we have
5635 to care whether it refers to the "main" CU or the DWO CU.
5636 We can revisit this if the data shows there's a performance issue. */
5637
5638 static void
5639 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5640 die_reader_func_ftype *die_reader_func,
5641 void *data)
5642 {
5643 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5644 }
5645 \f
5646 /* Type Unit Groups.
5647
5648 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5649 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5650 so that all types coming from the same compilation (.o file) are grouped
5651 together. A future step could be to put the types in the same symtab as
5652 the CU the types ultimately came from. */
5653
5654 static hashval_t
5655 hash_type_unit_group (const void *item)
5656 {
5657 const struct type_unit_group *tu_group = item;
5658
5659 return hash_stmt_list_entry (&tu_group->hash);
5660 }
5661
5662 static int
5663 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5664 {
5665 const struct type_unit_group *lhs = item_lhs;
5666 const struct type_unit_group *rhs = item_rhs;
5667
5668 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5669 }
5670
5671 /* Allocate a hash table for type unit groups. */
5672
5673 static htab_t
5674 allocate_type_unit_groups_table (void)
5675 {
5676 return htab_create_alloc_ex (3,
5677 hash_type_unit_group,
5678 eq_type_unit_group,
5679 NULL,
5680 &dwarf2_per_objfile->objfile->objfile_obstack,
5681 hashtab_obstack_allocate,
5682 dummy_obstack_deallocate);
5683 }
5684
5685 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5686 partial symtabs. We combine several TUs per psymtab to not let the size
5687 of any one psymtab grow too big. */
5688 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5689 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5690
5691 /* Helper routine for get_type_unit_group.
5692 Create the type_unit_group object used to hold one or more TUs. */
5693
5694 static struct type_unit_group *
5695 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5696 {
5697 struct objfile *objfile = dwarf2_per_objfile->objfile;
5698 struct dwarf2_per_cu_data *per_cu;
5699 struct type_unit_group *tu_group;
5700
5701 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5702 struct type_unit_group);
5703 per_cu = &tu_group->per_cu;
5704 per_cu->objfile = objfile;
5705
5706 if (dwarf2_per_objfile->using_index)
5707 {
5708 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5709 struct dwarf2_per_cu_quick_data);
5710 }
5711 else
5712 {
5713 unsigned int line_offset = line_offset_struct.sect_off;
5714 struct partial_symtab *pst;
5715 char *name;
5716
5717 /* Give the symtab a useful name for debug purposes. */
5718 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5719 name = xstrprintf ("<type_units_%d>",
5720 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5721 else
5722 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5723
5724 pst = create_partial_symtab (per_cu, name);
5725 pst->anonymous = 1;
5726
5727 xfree (name);
5728 }
5729
5730 tu_group->hash.dwo_unit = cu->dwo_unit;
5731 tu_group->hash.line_offset = line_offset_struct;
5732
5733 return tu_group;
5734 }
5735
5736 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5737 STMT_LIST is a DW_AT_stmt_list attribute. */
5738
5739 static struct type_unit_group *
5740 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5741 {
5742 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5743 struct type_unit_group *tu_group;
5744 void **slot;
5745 unsigned int line_offset;
5746 struct type_unit_group type_unit_group_for_lookup;
5747
5748 if (dwarf2_per_objfile->type_unit_groups == NULL)
5749 {
5750 dwarf2_per_objfile->type_unit_groups =
5751 allocate_type_unit_groups_table ();
5752 }
5753
5754 /* Do we need to create a new group, or can we use an existing one? */
5755
5756 if (stmt_list)
5757 {
5758 line_offset = DW_UNSND (stmt_list);
5759 ++tu_stats->nr_symtab_sharers;
5760 }
5761 else
5762 {
5763 /* Ugh, no stmt_list. Rare, but we have to handle it.
5764 We can do various things here like create one group per TU or
5765 spread them over multiple groups to split up the expansion work.
5766 To avoid worst case scenarios (too many groups or too large groups)
5767 we, umm, group them in bunches. */
5768 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5769 | (tu_stats->nr_stmt_less_type_units
5770 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5771 ++tu_stats->nr_stmt_less_type_units;
5772 }
5773
5774 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5775 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5776 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5777 &type_unit_group_for_lookup, INSERT);
5778 if (*slot != NULL)
5779 {
5780 tu_group = *slot;
5781 gdb_assert (tu_group != NULL);
5782 }
5783 else
5784 {
5785 sect_offset line_offset_struct;
5786
5787 line_offset_struct.sect_off = line_offset;
5788 tu_group = create_type_unit_group (cu, line_offset_struct);
5789 *slot = tu_group;
5790 ++tu_stats->nr_symtabs;
5791 }
5792
5793 return tu_group;
5794 }
5795 \f
5796 /* Partial symbol tables. */
5797
5798 /* Create a psymtab named NAME and assign it to PER_CU.
5799
5800 The caller must fill in the following details:
5801 dirname, textlow, texthigh. */
5802
5803 static struct partial_symtab *
5804 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5805 {
5806 struct objfile *objfile = per_cu->objfile;
5807 struct partial_symtab *pst;
5808
5809 pst = start_psymtab_common (objfile, objfile->section_offsets,
5810 name, 0,
5811 objfile->global_psymbols.next,
5812 objfile->static_psymbols.next);
5813
5814 pst->psymtabs_addrmap_supported = 1;
5815
5816 /* This is the glue that links PST into GDB's symbol API. */
5817 pst->read_symtab_private = per_cu;
5818 pst->read_symtab = dwarf2_read_symtab;
5819 per_cu->v.psymtab = pst;
5820
5821 return pst;
5822 }
5823
5824 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5825 type. */
5826
5827 struct process_psymtab_comp_unit_data
5828 {
5829 /* True if we are reading a DW_TAG_partial_unit. */
5830
5831 int want_partial_unit;
5832
5833 /* The "pretend" language that is used if the CU doesn't declare a
5834 language. */
5835
5836 enum language pretend_language;
5837 };
5838
5839 /* die_reader_func for process_psymtab_comp_unit. */
5840
5841 static void
5842 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5843 const gdb_byte *info_ptr,
5844 struct die_info *comp_unit_die,
5845 int has_children,
5846 void *data)
5847 {
5848 struct dwarf2_cu *cu = reader->cu;
5849 struct objfile *objfile = cu->objfile;
5850 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5851 struct attribute *attr;
5852 CORE_ADDR baseaddr;
5853 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5854 struct partial_symtab *pst;
5855 int has_pc_info;
5856 const char *filename;
5857 struct process_psymtab_comp_unit_data *info = data;
5858
5859 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5860 return;
5861
5862 gdb_assert (! per_cu->is_debug_types);
5863
5864 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5865
5866 cu->list_in_scope = &file_symbols;
5867
5868 /* Allocate a new partial symbol table structure. */
5869 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5870 if (attr == NULL || !DW_STRING (attr))
5871 filename = "";
5872 else
5873 filename = DW_STRING (attr);
5874
5875 pst = create_partial_symtab (per_cu, filename);
5876
5877 /* This must be done before calling dwarf2_build_include_psymtabs. */
5878 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5879 if (attr != NULL)
5880 pst->dirname = DW_STRING (attr);
5881
5882 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5883
5884 dwarf2_find_base_address (comp_unit_die, cu);
5885
5886 /* Possibly set the default values of LOWPC and HIGHPC from
5887 `DW_AT_ranges'. */
5888 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5889 &best_highpc, cu, pst);
5890 if (has_pc_info == 1 && best_lowpc < best_highpc)
5891 /* Store the contiguous range if it is not empty; it can be empty for
5892 CUs with no code. */
5893 addrmap_set_empty (objfile->psymtabs_addrmap,
5894 best_lowpc + baseaddr,
5895 best_highpc + baseaddr - 1, pst);
5896
5897 /* Check if comp unit has_children.
5898 If so, read the rest of the partial symbols from this comp unit.
5899 If not, there's no more debug_info for this comp unit. */
5900 if (has_children)
5901 {
5902 struct partial_die_info *first_die;
5903 CORE_ADDR lowpc, highpc;
5904
5905 lowpc = ((CORE_ADDR) -1);
5906 highpc = ((CORE_ADDR) 0);
5907
5908 first_die = load_partial_dies (reader, info_ptr, 1);
5909
5910 scan_partial_symbols (first_die, &lowpc, &highpc,
5911 ! has_pc_info, cu);
5912
5913 /* If we didn't find a lowpc, set it to highpc to avoid
5914 complaints from `maint check'. */
5915 if (lowpc == ((CORE_ADDR) -1))
5916 lowpc = highpc;
5917
5918 /* If the compilation unit didn't have an explicit address range,
5919 then use the information extracted from its child dies. */
5920 if (! has_pc_info)
5921 {
5922 best_lowpc = lowpc;
5923 best_highpc = highpc;
5924 }
5925 }
5926 pst->textlow = best_lowpc + baseaddr;
5927 pst->texthigh = best_highpc + baseaddr;
5928
5929 pst->n_global_syms = objfile->global_psymbols.next -
5930 (objfile->global_psymbols.list + pst->globals_offset);
5931 pst->n_static_syms = objfile->static_psymbols.next -
5932 (objfile->static_psymbols.list + pst->statics_offset);
5933 sort_pst_symbols (objfile, pst);
5934
5935 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5936 {
5937 int i;
5938 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5939 struct dwarf2_per_cu_data *iter;
5940
5941 /* Fill in 'dependencies' here; we fill in 'users' in a
5942 post-pass. */
5943 pst->number_of_dependencies = len;
5944 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5945 len * sizeof (struct symtab *));
5946 for (i = 0;
5947 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5948 i, iter);
5949 ++i)
5950 pst->dependencies[i] = iter->v.psymtab;
5951
5952 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5953 }
5954
5955 /* Get the list of files included in the current compilation unit,
5956 and build a psymtab for each of them. */
5957 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5958
5959 if (dwarf2_read_debug)
5960 {
5961 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5962
5963 fprintf_unfiltered (gdb_stdlog,
5964 "Psymtab for %s unit @0x%x: %s - %s"
5965 ", %d global, %d static syms\n",
5966 per_cu->is_debug_types ? "type" : "comp",
5967 per_cu->offset.sect_off,
5968 paddress (gdbarch, pst->textlow),
5969 paddress (gdbarch, pst->texthigh),
5970 pst->n_global_syms, pst->n_static_syms);
5971 }
5972 }
5973
5974 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5975 Process compilation unit THIS_CU for a psymtab. */
5976
5977 static void
5978 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5979 int want_partial_unit,
5980 enum language pretend_language)
5981 {
5982 struct process_psymtab_comp_unit_data info;
5983
5984 /* If this compilation unit was already read in, free the
5985 cached copy in order to read it in again. This is
5986 necessary because we skipped some symbols when we first
5987 read in the compilation unit (see load_partial_dies).
5988 This problem could be avoided, but the benefit is unclear. */
5989 if (this_cu->cu != NULL)
5990 free_one_cached_comp_unit (this_cu);
5991
5992 gdb_assert (! this_cu->is_debug_types);
5993 info.want_partial_unit = want_partial_unit;
5994 info.pretend_language = pretend_language;
5995 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5996 process_psymtab_comp_unit_reader,
5997 &info);
5998
5999 /* Age out any secondary CUs. */
6000 age_cached_comp_units ();
6001 }
6002
6003 /* Reader function for build_type_psymtabs. */
6004
6005 static void
6006 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6007 const gdb_byte *info_ptr,
6008 struct die_info *type_unit_die,
6009 int has_children,
6010 void *data)
6011 {
6012 struct objfile *objfile = dwarf2_per_objfile->objfile;
6013 struct dwarf2_cu *cu = reader->cu;
6014 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6015 struct signatured_type *sig_type;
6016 struct type_unit_group *tu_group;
6017 struct attribute *attr;
6018 struct partial_die_info *first_die;
6019 CORE_ADDR lowpc, highpc;
6020 struct partial_symtab *pst;
6021
6022 gdb_assert (data == NULL);
6023 gdb_assert (per_cu->is_debug_types);
6024 sig_type = (struct signatured_type *) per_cu;
6025
6026 if (! has_children)
6027 return;
6028
6029 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6030 tu_group = get_type_unit_group (cu, attr);
6031
6032 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6033
6034 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6035 cu->list_in_scope = &file_symbols;
6036 pst = create_partial_symtab (per_cu, "");
6037 pst->anonymous = 1;
6038
6039 first_die = load_partial_dies (reader, info_ptr, 1);
6040
6041 lowpc = (CORE_ADDR) -1;
6042 highpc = (CORE_ADDR) 0;
6043 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6044
6045 pst->n_global_syms = objfile->global_psymbols.next -
6046 (objfile->global_psymbols.list + pst->globals_offset);
6047 pst->n_static_syms = objfile->static_psymbols.next -
6048 (objfile->static_psymbols.list + pst->statics_offset);
6049 sort_pst_symbols (objfile, pst);
6050 }
6051
6052 /* Struct used to sort TUs by their abbreviation table offset. */
6053
6054 struct tu_abbrev_offset
6055 {
6056 struct signatured_type *sig_type;
6057 sect_offset abbrev_offset;
6058 };
6059
6060 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6061
6062 static int
6063 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6064 {
6065 const struct tu_abbrev_offset * const *a = ap;
6066 const struct tu_abbrev_offset * const *b = bp;
6067 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6068 unsigned int boff = (*b)->abbrev_offset.sect_off;
6069
6070 return (aoff > boff) - (aoff < boff);
6071 }
6072
6073 /* Efficiently read all the type units.
6074 This does the bulk of the work for build_type_psymtabs.
6075
6076 The efficiency is because we sort TUs by the abbrev table they use and
6077 only read each abbrev table once. In one program there are 200K TUs
6078 sharing 8K abbrev tables.
6079
6080 The main purpose of this function is to support building the
6081 dwarf2_per_objfile->type_unit_groups table.
6082 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6083 can collapse the search space by grouping them by stmt_list.
6084 The savings can be significant, in the same program from above the 200K TUs
6085 share 8K stmt_list tables.
6086
6087 FUNC is expected to call get_type_unit_group, which will create the
6088 struct type_unit_group if necessary and add it to
6089 dwarf2_per_objfile->type_unit_groups. */
6090
6091 static void
6092 build_type_psymtabs_1 (void)
6093 {
6094 struct objfile *objfile = dwarf2_per_objfile->objfile;
6095 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6096 struct cleanup *cleanups;
6097 struct abbrev_table *abbrev_table;
6098 sect_offset abbrev_offset;
6099 struct tu_abbrev_offset *sorted_by_abbrev;
6100 struct type_unit_group **iter;
6101 int i;
6102
6103 /* It's up to the caller to not call us multiple times. */
6104 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6105
6106 if (dwarf2_per_objfile->n_type_units == 0)
6107 return;
6108
6109 /* TUs typically share abbrev tables, and there can be way more TUs than
6110 abbrev tables. Sort by abbrev table to reduce the number of times we
6111 read each abbrev table in.
6112 Alternatives are to punt or to maintain a cache of abbrev tables.
6113 This is simpler and efficient enough for now.
6114
6115 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6116 symtab to use). Typically TUs with the same abbrev offset have the same
6117 stmt_list value too so in practice this should work well.
6118
6119 The basic algorithm here is:
6120
6121 sort TUs by abbrev table
6122 for each TU with same abbrev table:
6123 read abbrev table if first user
6124 read TU top level DIE
6125 [IWBN if DWO skeletons had DW_AT_stmt_list]
6126 call FUNC */
6127
6128 if (dwarf2_read_debug)
6129 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6130
6131 /* Sort in a separate table to maintain the order of all_type_units
6132 for .gdb_index: TU indices directly index all_type_units. */
6133 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6134 dwarf2_per_objfile->n_type_units);
6135 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6136 {
6137 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6138
6139 sorted_by_abbrev[i].sig_type = sig_type;
6140 sorted_by_abbrev[i].abbrev_offset =
6141 read_abbrev_offset (sig_type->per_cu.section,
6142 sig_type->per_cu.offset);
6143 }
6144 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6145 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6146 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6147
6148 abbrev_offset.sect_off = ~(unsigned) 0;
6149 abbrev_table = NULL;
6150 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6151
6152 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6153 {
6154 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6155
6156 /* Switch to the next abbrev table if necessary. */
6157 if (abbrev_table == NULL
6158 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6159 {
6160 if (abbrev_table != NULL)
6161 {
6162 abbrev_table_free (abbrev_table);
6163 /* Reset to NULL in case abbrev_table_read_table throws
6164 an error: abbrev_table_free_cleanup will get called. */
6165 abbrev_table = NULL;
6166 }
6167 abbrev_offset = tu->abbrev_offset;
6168 abbrev_table =
6169 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6170 abbrev_offset);
6171 ++tu_stats->nr_uniq_abbrev_tables;
6172 }
6173
6174 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6175 build_type_psymtabs_reader, NULL);
6176 }
6177
6178 do_cleanups (cleanups);
6179 }
6180
6181 /* Print collected type unit statistics. */
6182
6183 static void
6184 print_tu_stats (void)
6185 {
6186 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6187
6188 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6189 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6190 dwarf2_per_objfile->n_type_units);
6191 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6192 tu_stats->nr_uniq_abbrev_tables);
6193 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6194 tu_stats->nr_symtabs);
6195 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6196 tu_stats->nr_symtab_sharers);
6197 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6198 tu_stats->nr_stmt_less_type_units);
6199 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6200 tu_stats->nr_all_type_units_reallocs);
6201 }
6202
6203 /* Traversal function for build_type_psymtabs. */
6204
6205 static int
6206 build_type_psymtab_dependencies (void **slot, void *info)
6207 {
6208 struct objfile *objfile = dwarf2_per_objfile->objfile;
6209 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6210 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6211 struct partial_symtab *pst = per_cu->v.psymtab;
6212 int len = VEC_length (sig_type_ptr, tu_group->tus);
6213 struct signatured_type *iter;
6214 int i;
6215
6216 gdb_assert (len > 0);
6217 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6218
6219 pst->number_of_dependencies = len;
6220 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6221 len * sizeof (struct psymtab *));
6222 for (i = 0;
6223 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6224 ++i)
6225 {
6226 gdb_assert (iter->per_cu.is_debug_types);
6227 pst->dependencies[i] = iter->per_cu.v.psymtab;
6228 iter->type_unit_group = tu_group;
6229 }
6230
6231 VEC_free (sig_type_ptr, tu_group->tus);
6232
6233 return 1;
6234 }
6235
6236 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6237 Build partial symbol tables for the .debug_types comp-units. */
6238
6239 static void
6240 build_type_psymtabs (struct objfile *objfile)
6241 {
6242 if (! create_all_type_units (objfile))
6243 return;
6244
6245 build_type_psymtabs_1 ();
6246 }
6247
6248 /* Traversal function for process_skeletonless_type_unit.
6249 Read a TU in a DWO file and build partial symbols for it. */
6250
6251 static int
6252 process_skeletonless_type_unit (void **slot, void *info)
6253 {
6254 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6255 struct objfile *objfile = info;
6256 struct signatured_type find_entry, *entry;
6257
6258 /* If this TU doesn't exist in the global table, add it and read it in. */
6259
6260 if (dwarf2_per_objfile->signatured_types == NULL)
6261 {
6262 dwarf2_per_objfile->signatured_types
6263 = allocate_signatured_type_table (objfile);
6264 }
6265
6266 find_entry.signature = dwo_unit->signature;
6267 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6268 INSERT);
6269 /* If we've already seen this type there's nothing to do. What's happening
6270 is we're doing our own version of comdat-folding here. */
6271 if (*slot != NULL)
6272 return 1;
6273
6274 /* This does the job that create_all_type_units would have done for
6275 this TU. */
6276 entry = add_type_unit (dwo_unit->signature, slot);
6277 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6278 *slot = entry;
6279
6280 /* This does the job that build_type_psymtabs_1 would have done. */
6281 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6282 build_type_psymtabs_reader, NULL);
6283
6284 return 1;
6285 }
6286
6287 /* Traversal function for process_skeletonless_type_units. */
6288
6289 static int
6290 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6291 {
6292 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6293
6294 if (dwo_file->tus != NULL)
6295 {
6296 htab_traverse_noresize (dwo_file->tus,
6297 process_skeletonless_type_unit, info);
6298 }
6299
6300 return 1;
6301 }
6302
6303 /* Scan all TUs of DWO files, verifying we've processed them.
6304 This is needed in case a TU was emitted without its skeleton.
6305 Note: This can't be done until we know what all the DWO files are. */
6306
6307 static void
6308 process_skeletonless_type_units (struct objfile *objfile)
6309 {
6310 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6311 if (get_dwp_file () == NULL
6312 && dwarf2_per_objfile->dwo_files != NULL)
6313 {
6314 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6315 process_dwo_file_for_skeletonless_type_units,
6316 objfile);
6317 }
6318 }
6319
6320 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6321
6322 static void
6323 psymtabs_addrmap_cleanup (void *o)
6324 {
6325 struct objfile *objfile = o;
6326
6327 objfile->psymtabs_addrmap = NULL;
6328 }
6329
6330 /* Compute the 'user' field for each psymtab in OBJFILE. */
6331
6332 static void
6333 set_partial_user (struct objfile *objfile)
6334 {
6335 int i;
6336
6337 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6338 {
6339 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6340 struct partial_symtab *pst = per_cu->v.psymtab;
6341 int j;
6342
6343 if (pst == NULL)
6344 continue;
6345
6346 for (j = 0; j < pst->number_of_dependencies; ++j)
6347 {
6348 /* Set the 'user' field only if it is not already set. */
6349 if (pst->dependencies[j]->user == NULL)
6350 pst->dependencies[j]->user = pst;
6351 }
6352 }
6353 }
6354
6355 /* Build the partial symbol table by doing a quick pass through the
6356 .debug_info and .debug_abbrev sections. */
6357
6358 static void
6359 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6360 {
6361 struct cleanup *back_to, *addrmap_cleanup;
6362 struct obstack temp_obstack;
6363 int i;
6364
6365 if (dwarf2_read_debug)
6366 {
6367 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6368 objfile_name (objfile));
6369 }
6370
6371 dwarf2_per_objfile->reading_partial_symbols = 1;
6372
6373 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6374
6375 /* Any cached compilation units will be linked by the per-objfile
6376 read_in_chain. Make sure to free them when we're done. */
6377 back_to = make_cleanup (free_cached_comp_units, NULL);
6378
6379 build_type_psymtabs (objfile);
6380
6381 create_all_comp_units (objfile);
6382
6383 /* Create a temporary address map on a temporary obstack. We later
6384 copy this to the final obstack. */
6385 obstack_init (&temp_obstack);
6386 make_cleanup_obstack_free (&temp_obstack);
6387 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6388 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6389
6390 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6391 {
6392 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6393
6394 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6395 }
6396
6397 /* This has to wait until we read the CUs, we need the list of DWOs. */
6398 process_skeletonless_type_units (objfile);
6399
6400 /* Now that all TUs have been processed we can fill in the dependencies. */
6401 if (dwarf2_per_objfile->type_unit_groups != NULL)
6402 {
6403 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6404 build_type_psymtab_dependencies, NULL);
6405 }
6406
6407 if (dwarf2_read_debug)
6408 print_tu_stats ();
6409
6410 set_partial_user (objfile);
6411
6412 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6413 &objfile->objfile_obstack);
6414 discard_cleanups (addrmap_cleanup);
6415
6416 do_cleanups (back_to);
6417
6418 if (dwarf2_read_debug)
6419 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6420 objfile_name (objfile));
6421 }
6422
6423 /* die_reader_func for load_partial_comp_unit. */
6424
6425 static void
6426 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6427 const gdb_byte *info_ptr,
6428 struct die_info *comp_unit_die,
6429 int has_children,
6430 void *data)
6431 {
6432 struct dwarf2_cu *cu = reader->cu;
6433
6434 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6435
6436 /* Check if comp unit has_children.
6437 If so, read the rest of the partial symbols from this comp unit.
6438 If not, there's no more debug_info for this comp unit. */
6439 if (has_children)
6440 load_partial_dies (reader, info_ptr, 0);
6441 }
6442
6443 /* Load the partial DIEs for a secondary CU into memory.
6444 This is also used when rereading a primary CU with load_all_dies. */
6445
6446 static void
6447 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6448 {
6449 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6450 load_partial_comp_unit_reader, NULL);
6451 }
6452
6453 static void
6454 read_comp_units_from_section (struct objfile *objfile,
6455 struct dwarf2_section_info *section,
6456 unsigned int is_dwz,
6457 int *n_allocated,
6458 int *n_comp_units,
6459 struct dwarf2_per_cu_data ***all_comp_units)
6460 {
6461 const gdb_byte *info_ptr;
6462 bfd *abfd = get_section_bfd_owner (section);
6463
6464 if (dwarf2_read_debug)
6465 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6466 get_section_name (section),
6467 get_section_file_name (section));
6468
6469 dwarf2_read_section (objfile, section);
6470
6471 info_ptr = section->buffer;
6472
6473 while (info_ptr < section->buffer + section->size)
6474 {
6475 unsigned int length, initial_length_size;
6476 struct dwarf2_per_cu_data *this_cu;
6477 sect_offset offset;
6478
6479 offset.sect_off = info_ptr - section->buffer;
6480
6481 /* Read just enough information to find out where the next
6482 compilation unit is. */
6483 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6484
6485 /* Save the compilation unit for later lookup. */
6486 this_cu = obstack_alloc (&objfile->objfile_obstack,
6487 sizeof (struct dwarf2_per_cu_data));
6488 memset (this_cu, 0, sizeof (*this_cu));
6489 this_cu->offset = offset;
6490 this_cu->length = length + initial_length_size;
6491 this_cu->is_dwz = is_dwz;
6492 this_cu->objfile = objfile;
6493 this_cu->section = section;
6494
6495 if (*n_comp_units == *n_allocated)
6496 {
6497 *n_allocated *= 2;
6498 *all_comp_units = xrealloc (*all_comp_units,
6499 *n_allocated
6500 * sizeof (struct dwarf2_per_cu_data *));
6501 }
6502 (*all_comp_units)[*n_comp_units] = this_cu;
6503 ++*n_comp_units;
6504
6505 info_ptr = info_ptr + this_cu->length;
6506 }
6507 }
6508
6509 /* Create a list of all compilation units in OBJFILE.
6510 This is only done for -readnow and building partial symtabs. */
6511
6512 static void
6513 create_all_comp_units (struct objfile *objfile)
6514 {
6515 int n_allocated;
6516 int n_comp_units;
6517 struct dwarf2_per_cu_data **all_comp_units;
6518 struct dwz_file *dwz;
6519
6520 n_comp_units = 0;
6521 n_allocated = 10;
6522 all_comp_units = xmalloc (n_allocated
6523 * sizeof (struct dwarf2_per_cu_data *));
6524
6525 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6526 &n_allocated, &n_comp_units, &all_comp_units);
6527
6528 dwz = dwarf2_get_dwz_file ();
6529 if (dwz != NULL)
6530 read_comp_units_from_section (objfile, &dwz->info, 1,
6531 &n_allocated, &n_comp_units,
6532 &all_comp_units);
6533
6534 dwarf2_per_objfile->all_comp_units
6535 = obstack_alloc (&objfile->objfile_obstack,
6536 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6537 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6538 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6539 xfree (all_comp_units);
6540 dwarf2_per_objfile->n_comp_units = n_comp_units;
6541 }
6542
6543 /* Process all loaded DIEs for compilation unit CU, starting at
6544 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6545 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6546 DW_AT_ranges). See the comments of add_partial_subprogram on how
6547 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6548
6549 static void
6550 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6551 CORE_ADDR *highpc, int set_addrmap,
6552 struct dwarf2_cu *cu)
6553 {
6554 struct partial_die_info *pdi;
6555
6556 /* Now, march along the PDI's, descending into ones which have
6557 interesting children but skipping the children of the other ones,
6558 until we reach the end of the compilation unit. */
6559
6560 pdi = first_die;
6561
6562 while (pdi != NULL)
6563 {
6564 fixup_partial_die (pdi, cu);
6565
6566 /* Anonymous namespaces or modules have no name but have interesting
6567 children, so we need to look at them. Ditto for anonymous
6568 enums. */
6569
6570 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6571 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6572 || pdi->tag == DW_TAG_imported_unit)
6573 {
6574 switch (pdi->tag)
6575 {
6576 case DW_TAG_subprogram:
6577 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6578 break;
6579 case DW_TAG_constant:
6580 case DW_TAG_variable:
6581 case DW_TAG_typedef:
6582 case DW_TAG_union_type:
6583 if (!pdi->is_declaration)
6584 {
6585 add_partial_symbol (pdi, cu);
6586 }
6587 break;
6588 case DW_TAG_class_type:
6589 case DW_TAG_interface_type:
6590 case DW_TAG_structure_type:
6591 if (!pdi->is_declaration)
6592 {
6593 add_partial_symbol (pdi, cu);
6594 }
6595 break;
6596 case DW_TAG_enumeration_type:
6597 if (!pdi->is_declaration)
6598 add_partial_enumeration (pdi, cu);
6599 break;
6600 case DW_TAG_base_type:
6601 case DW_TAG_subrange_type:
6602 /* File scope base type definitions are added to the partial
6603 symbol table. */
6604 add_partial_symbol (pdi, cu);
6605 break;
6606 case DW_TAG_namespace:
6607 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6608 break;
6609 case DW_TAG_module:
6610 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6611 break;
6612 case DW_TAG_imported_unit:
6613 {
6614 struct dwarf2_per_cu_data *per_cu;
6615
6616 /* For now we don't handle imported units in type units. */
6617 if (cu->per_cu->is_debug_types)
6618 {
6619 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6620 " supported in type units [in module %s]"),
6621 objfile_name (cu->objfile));
6622 }
6623
6624 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6625 pdi->is_dwz,
6626 cu->objfile);
6627
6628 /* Go read the partial unit, if needed. */
6629 if (per_cu->v.psymtab == NULL)
6630 process_psymtab_comp_unit (per_cu, 1, cu->language);
6631
6632 VEC_safe_push (dwarf2_per_cu_ptr,
6633 cu->per_cu->imported_symtabs, per_cu);
6634 }
6635 break;
6636 case DW_TAG_imported_declaration:
6637 add_partial_symbol (pdi, cu);
6638 break;
6639 default:
6640 break;
6641 }
6642 }
6643
6644 /* If the die has a sibling, skip to the sibling. */
6645
6646 pdi = pdi->die_sibling;
6647 }
6648 }
6649
6650 /* Functions used to compute the fully scoped name of a partial DIE.
6651
6652 Normally, this is simple. For C++, the parent DIE's fully scoped
6653 name is concatenated with "::" and the partial DIE's name. For
6654 Java, the same thing occurs except that "." is used instead of "::".
6655 Enumerators are an exception; they use the scope of their parent
6656 enumeration type, i.e. the name of the enumeration type is not
6657 prepended to the enumerator.
6658
6659 There are two complexities. One is DW_AT_specification; in this
6660 case "parent" means the parent of the target of the specification,
6661 instead of the direct parent of the DIE. The other is compilers
6662 which do not emit DW_TAG_namespace; in this case we try to guess
6663 the fully qualified name of structure types from their members'
6664 linkage names. This must be done using the DIE's children rather
6665 than the children of any DW_AT_specification target. We only need
6666 to do this for structures at the top level, i.e. if the target of
6667 any DW_AT_specification (if any; otherwise the DIE itself) does not
6668 have a parent. */
6669
6670 /* Compute the scope prefix associated with PDI's parent, in
6671 compilation unit CU. The result will be allocated on CU's
6672 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6673 field. NULL is returned if no prefix is necessary. */
6674 static const char *
6675 partial_die_parent_scope (struct partial_die_info *pdi,
6676 struct dwarf2_cu *cu)
6677 {
6678 const char *grandparent_scope;
6679 struct partial_die_info *parent, *real_pdi;
6680
6681 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6682 then this means the parent of the specification DIE. */
6683
6684 real_pdi = pdi;
6685 while (real_pdi->has_specification)
6686 real_pdi = find_partial_die (real_pdi->spec_offset,
6687 real_pdi->spec_is_dwz, cu);
6688
6689 parent = real_pdi->die_parent;
6690 if (parent == NULL)
6691 return NULL;
6692
6693 if (parent->scope_set)
6694 return parent->scope;
6695
6696 fixup_partial_die (parent, cu);
6697
6698 grandparent_scope = partial_die_parent_scope (parent, cu);
6699
6700 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6701 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6702 Work around this problem here. */
6703 if (cu->language == language_cplus
6704 && parent->tag == DW_TAG_namespace
6705 && strcmp (parent->name, "::") == 0
6706 && grandparent_scope == NULL)
6707 {
6708 parent->scope = NULL;
6709 parent->scope_set = 1;
6710 return NULL;
6711 }
6712
6713 if (pdi->tag == DW_TAG_enumerator)
6714 /* Enumerators should not get the name of the enumeration as a prefix. */
6715 parent->scope = grandparent_scope;
6716 else if (parent->tag == DW_TAG_namespace
6717 || parent->tag == DW_TAG_module
6718 || parent->tag == DW_TAG_structure_type
6719 || parent->tag == DW_TAG_class_type
6720 || parent->tag == DW_TAG_interface_type
6721 || parent->tag == DW_TAG_union_type
6722 || parent->tag == DW_TAG_enumeration_type)
6723 {
6724 if (grandparent_scope == NULL)
6725 parent->scope = parent->name;
6726 else
6727 parent->scope = typename_concat (&cu->comp_unit_obstack,
6728 grandparent_scope,
6729 parent->name, 0, cu);
6730 }
6731 else
6732 {
6733 /* FIXME drow/2004-04-01: What should we be doing with
6734 function-local names? For partial symbols, we should probably be
6735 ignoring them. */
6736 complaint (&symfile_complaints,
6737 _("unhandled containing DIE tag %d for DIE at %d"),
6738 parent->tag, pdi->offset.sect_off);
6739 parent->scope = grandparent_scope;
6740 }
6741
6742 parent->scope_set = 1;
6743 return parent->scope;
6744 }
6745
6746 /* Return the fully scoped name associated with PDI, from compilation unit
6747 CU. The result will be allocated with malloc. */
6748
6749 static char *
6750 partial_die_full_name (struct partial_die_info *pdi,
6751 struct dwarf2_cu *cu)
6752 {
6753 const char *parent_scope;
6754
6755 /* If this is a template instantiation, we can not work out the
6756 template arguments from partial DIEs. So, unfortunately, we have
6757 to go through the full DIEs. At least any work we do building
6758 types here will be reused if full symbols are loaded later. */
6759 if (pdi->has_template_arguments)
6760 {
6761 fixup_partial_die (pdi, cu);
6762
6763 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6764 {
6765 struct die_info *die;
6766 struct attribute attr;
6767 struct dwarf2_cu *ref_cu = cu;
6768
6769 /* DW_FORM_ref_addr is using section offset. */
6770 attr.name = 0;
6771 attr.form = DW_FORM_ref_addr;
6772 attr.u.unsnd = pdi->offset.sect_off;
6773 die = follow_die_ref (NULL, &attr, &ref_cu);
6774
6775 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6776 }
6777 }
6778
6779 parent_scope = partial_die_parent_scope (pdi, cu);
6780 if (parent_scope == NULL)
6781 return NULL;
6782 else
6783 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6784 }
6785
6786 static void
6787 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6788 {
6789 struct objfile *objfile = cu->objfile;
6790 CORE_ADDR addr = 0;
6791 const char *actual_name = NULL;
6792 CORE_ADDR baseaddr;
6793 char *built_actual_name;
6794
6795 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6796
6797 built_actual_name = partial_die_full_name (pdi, cu);
6798 if (built_actual_name != NULL)
6799 actual_name = built_actual_name;
6800
6801 if (actual_name == NULL)
6802 actual_name = pdi->name;
6803
6804 switch (pdi->tag)
6805 {
6806 case DW_TAG_subprogram:
6807 if (pdi->is_external || cu->language == language_ada)
6808 {
6809 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6810 of the global scope. But in Ada, we want to be able to access
6811 nested procedures globally. So all Ada subprograms are stored
6812 in the global scope. */
6813 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6814 mst_text, objfile); */
6815 add_psymbol_to_list (actual_name, strlen (actual_name),
6816 built_actual_name != NULL,
6817 VAR_DOMAIN, LOC_BLOCK,
6818 &objfile->global_psymbols,
6819 0, pdi->lowpc + baseaddr,
6820 cu->language, objfile);
6821 }
6822 else
6823 {
6824 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6825 mst_file_text, objfile); */
6826 add_psymbol_to_list (actual_name, strlen (actual_name),
6827 built_actual_name != NULL,
6828 VAR_DOMAIN, LOC_BLOCK,
6829 &objfile->static_psymbols,
6830 0, pdi->lowpc + baseaddr,
6831 cu->language, objfile);
6832 }
6833 break;
6834 case DW_TAG_constant:
6835 {
6836 struct psymbol_allocation_list *list;
6837
6838 if (pdi->is_external)
6839 list = &objfile->global_psymbols;
6840 else
6841 list = &objfile->static_psymbols;
6842 add_psymbol_to_list (actual_name, strlen (actual_name),
6843 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6844 list, 0, 0, cu->language, objfile);
6845 }
6846 break;
6847 case DW_TAG_variable:
6848 if (pdi->d.locdesc)
6849 addr = decode_locdesc (pdi->d.locdesc, cu);
6850
6851 if (pdi->d.locdesc
6852 && addr == 0
6853 && !dwarf2_per_objfile->has_section_at_zero)
6854 {
6855 /* A global or static variable may also have been stripped
6856 out by the linker if unused, in which case its address
6857 will be nullified; do not add such variables into partial
6858 symbol table then. */
6859 }
6860 else if (pdi->is_external)
6861 {
6862 /* Global Variable.
6863 Don't enter into the minimal symbol tables as there is
6864 a minimal symbol table entry from the ELF symbols already.
6865 Enter into partial symbol table if it has a location
6866 descriptor or a type.
6867 If the location descriptor is missing, new_symbol will create
6868 a LOC_UNRESOLVED symbol, the address of the variable will then
6869 be determined from the minimal symbol table whenever the variable
6870 is referenced.
6871 The address for the partial symbol table entry is not
6872 used by GDB, but it comes in handy for debugging partial symbol
6873 table building. */
6874
6875 if (pdi->d.locdesc || pdi->has_type)
6876 add_psymbol_to_list (actual_name, strlen (actual_name),
6877 built_actual_name != NULL,
6878 VAR_DOMAIN, LOC_STATIC,
6879 &objfile->global_psymbols,
6880 0, addr + baseaddr,
6881 cu->language, objfile);
6882 }
6883 else
6884 {
6885 /* Static Variable. Skip symbols without location descriptors. */
6886 if (pdi->d.locdesc == NULL)
6887 {
6888 xfree (built_actual_name);
6889 return;
6890 }
6891 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6892 mst_file_data, objfile); */
6893 add_psymbol_to_list (actual_name, strlen (actual_name),
6894 built_actual_name != NULL,
6895 VAR_DOMAIN, LOC_STATIC,
6896 &objfile->static_psymbols,
6897 0, addr + baseaddr,
6898 cu->language, objfile);
6899 }
6900 break;
6901 case DW_TAG_typedef:
6902 case DW_TAG_base_type:
6903 case DW_TAG_subrange_type:
6904 add_psymbol_to_list (actual_name, strlen (actual_name),
6905 built_actual_name != NULL,
6906 VAR_DOMAIN, LOC_TYPEDEF,
6907 &objfile->static_psymbols,
6908 0, (CORE_ADDR) 0, cu->language, objfile);
6909 break;
6910 case DW_TAG_imported_declaration:
6911 case DW_TAG_namespace:
6912 add_psymbol_to_list (actual_name, strlen (actual_name),
6913 built_actual_name != NULL,
6914 VAR_DOMAIN, LOC_TYPEDEF,
6915 &objfile->global_psymbols,
6916 0, (CORE_ADDR) 0, cu->language, objfile);
6917 break;
6918 case DW_TAG_module:
6919 add_psymbol_to_list (actual_name, strlen (actual_name),
6920 built_actual_name != NULL,
6921 MODULE_DOMAIN, LOC_TYPEDEF,
6922 &objfile->global_psymbols,
6923 0, (CORE_ADDR) 0, cu->language, objfile);
6924 break;
6925 case DW_TAG_class_type:
6926 case DW_TAG_interface_type:
6927 case DW_TAG_structure_type:
6928 case DW_TAG_union_type:
6929 case DW_TAG_enumeration_type:
6930 /* Skip external references. The DWARF standard says in the section
6931 about "Structure, Union, and Class Type Entries": "An incomplete
6932 structure, union or class type is represented by a structure,
6933 union or class entry that does not have a byte size attribute
6934 and that has a DW_AT_declaration attribute." */
6935 if (!pdi->has_byte_size && pdi->is_declaration)
6936 {
6937 xfree (built_actual_name);
6938 return;
6939 }
6940
6941 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6942 static vs. global. */
6943 add_psymbol_to_list (actual_name, strlen (actual_name),
6944 built_actual_name != NULL,
6945 STRUCT_DOMAIN, LOC_TYPEDEF,
6946 (cu->language == language_cplus
6947 || cu->language == language_java)
6948 ? &objfile->global_psymbols
6949 : &objfile->static_psymbols,
6950 0, (CORE_ADDR) 0, cu->language, objfile);
6951
6952 break;
6953 case DW_TAG_enumerator:
6954 add_psymbol_to_list (actual_name, strlen (actual_name),
6955 built_actual_name != NULL,
6956 VAR_DOMAIN, LOC_CONST,
6957 (cu->language == language_cplus
6958 || cu->language == language_java)
6959 ? &objfile->global_psymbols
6960 : &objfile->static_psymbols,
6961 0, (CORE_ADDR) 0, cu->language, objfile);
6962 break;
6963 default:
6964 break;
6965 }
6966
6967 xfree (built_actual_name);
6968 }
6969
6970 /* Read a partial die corresponding to a namespace; also, add a symbol
6971 corresponding to that namespace to the symbol table. NAMESPACE is
6972 the name of the enclosing namespace. */
6973
6974 static void
6975 add_partial_namespace (struct partial_die_info *pdi,
6976 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6977 int set_addrmap, struct dwarf2_cu *cu)
6978 {
6979 /* Add a symbol for the namespace. */
6980
6981 add_partial_symbol (pdi, cu);
6982
6983 /* Now scan partial symbols in that namespace. */
6984
6985 if (pdi->has_children)
6986 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
6987 }
6988
6989 /* Read a partial die corresponding to a Fortran module. */
6990
6991 static void
6992 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6993 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
6994 {
6995 /* Add a symbol for the namespace. */
6996
6997 add_partial_symbol (pdi, cu);
6998
6999 /* Now scan partial symbols in that module. */
7000
7001 if (pdi->has_children)
7002 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7003 }
7004
7005 /* Read a partial die corresponding to a subprogram and create a partial
7006 symbol for that subprogram. When the CU language allows it, this
7007 routine also defines a partial symbol for each nested subprogram
7008 that this subprogram contains. If SET_ADDRMAP is true, record the
7009 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7010 and highest PC values found in PDI.
7011
7012 PDI may also be a lexical block, in which case we simply search
7013 recursively for subprograms defined inside that lexical block.
7014 Again, this is only performed when the CU language allows this
7015 type of definitions. */
7016
7017 static void
7018 add_partial_subprogram (struct partial_die_info *pdi,
7019 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7020 int set_addrmap, struct dwarf2_cu *cu)
7021 {
7022 if (pdi->tag == DW_TAG_subprogram)
7023 {
7024 if (pdi->has_pc_info)
7025 {
7026 if (pdi->lowpc < *lowpc)
7027 *lowpc = pdi->lowpc;
7028 if (pdi->highpc > *highpc)
7029 *highpc = pdi->highpc;
7030 if (set_addrmap)
7031 {
7032 CORE_ADDR baseaddr;
7033 struct objfile *objfile = cu->objfile;
7034
7035 baseaddr = ANOFFSET (objfile->section_offsets,
7036 SECT_OFF_TEXT (objfile));
7037 addrmap_set_empty (objfile->psymtabs_addrmap,
7038 pdi->lowpc + baseaddr,
7039 pdi->highpc - 1 + baseaddr,
7040 cu->per_cu->v.psymtab);
7041 }
7042 }
7043
7044 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7045 {
7046 if (!pdi->is_declaration)
7047 /* Ignore subprogram DIEs that do not have a name, they are
7048 illegal. Do not emit a complaint at this point, we will
7049 do so when we convert this psymtab into a symtab. */
7050 if (pdi->name)
7051 add_partial_symbol (pdi, cu);
7052 }
7053 }
7054
7055 if (! pdi->has_children)
7056 return;
7057
7058 if (cu->language == language_ada)
7059 {
7060 pdi = pdi->die_child;
7061 while (pdi != NULL)
7062 {
7063 fixup_partial_die (pdi, cu);
7064 if (pdi->tag == DW_TAG_subprogram
7065 || pdi->tag == DW_TAG_lexical_block)
7066 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7067 pdi = pdi->die_sibling;
7068 }
7069 }
7070 }
7071
7072 /* Read a partial die corresponding to an enumeration type. */
7073
7074 static void
7075 add_partial_enumeration (struct partial_die_info *enum_pdi,
7076 struct dwarf2_cu *cu)
7077 {
7078 struct partial_die_info *pdi;
7079
7080 if (enum_pdi->name != NULL)
7081 add_partial_symbol (enum_pdi, cu);
7082
7083 pdi = enum_pdi->die_child;
7084 while (pdi)
7085 {
7086 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7087 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7088 else
7089 add_partial_symbol (pdi, cu);
7090 pdi = pdi->die_sibling;
7091 }
7092 }
7093
7094 /* Return the initial uleb128 in the die at INFO_PTR. */
7095
7096 static unsigned int
7097 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7098 {
7099 unsigned int bytes_read;
7100
7101 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7102 }
7103
7104 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7105 Return the corresponding abbrev, or NULL if the number is zero (indicating
7106 an empty DIE). In either case *BYTES_READ will be set to the length of
7107 the initial number. */
7108
7109 static struct abbrev_info *
7110 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7111 struct dwarf2_cu *cu)
7112 {
7113 bfd *abfd = cu->objfile->obfd;
7114 unsigned int abbrev_number;
7115 struct abbrev_info *abbrev;
7116
7117 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7118
7119 if (abbrev_number == 0)
7120 return NULL;
7121
7122 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7123 if (!abbrev)
7124 {
7125 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7126 abbrev_number, bfd_get_filename (abfd));
7127 }
7128
7129 return abbrev;
7130 }
7131
7132 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7133 Returns a pointer to the end of a series of DIEs, terminated by an empty
7134 DIE. Any children of the skipped DIEs will also be skipped. */
7135
7136 static const gdb_byte *
7137 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7138 {
7139 struct dwarf2_cu *cu = reader->cu;
7140 struct abbrev_info *abbrev;
7141 unsigned int bytes_read;
7142
7143 while (1)
7144 {
7145 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7146 if (abbrev == NULL)
7147 return info_ptr + bytes_read;
7148 else
7149 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7150 }
7151 }
7152
7153 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7154 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7155 abbrev corresponding to that skipped uleb128 should be passed in
7156 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7157 children. */
7158
7159 static const gdb_byte *
7160 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7161 struct abbrev_info *abbrev)
7162 {
7163 unsigned int bytes_read;
7164 struct attribute attr;
7165 bfd *abfd = reader->abfd;
7166 struct dwarf2_cu *cu = reader->cu;
7167 const gdb_byte *buffer = reader->buffer;
7168 const gdb_byte *buffer_end = reader->buffer_end;
7169 const gdb_byte *start_info_ptr = info_ptr;
7170 unsigned int form, i;
7171
7172 for (i = 0; i < abbrev->num_attrs; i++)
7173 {
7174 /* The only abbrev we care about is DW_AT_sibling. */
7175 if (abbrev->attrs[i].name == DW_AT_sibling)
7176 {
7177 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7178 if (attr.form == DW_FORM_ref_addr)
7179 complaint (&symfile_complaints,
7180 _("ignoring absolute DW_AT_sibling"));
7181 else
7182 {
7183 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7184 const gdb_byte *sibling_ptr = buffer + off;
7185
7186 if (sibling_ptr < info_ptr)
7187 complaint (&symfile_complaints,
7188 _("DW_AT_sibling points backwards"));
7189 else if (sibling_ptr > reader->buffer_end)
7190 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7191 else
7192 return sibling_ptr;
7193 }
7194 }
7195
7196 /* If it isn't DW_AT_sibling, skip this attribute. */
7197 form = abbrev->attrs[i].form;
7198 skip_attribute:
7199 switch (form)
7200 {
7201 case DW_FORM_ref_addr:
7202 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7203 and later it is offset sized. */
7204 if (cu->header.version == 2)
7205 info_ptr += cu->header.addr_size;
7206 else
7207 info_ptr += cu->header.offset_size;
7208 break;
7209 case DW_FORM_GNU_ref_alt:
7210 info_ptr += cu->header.offset_size;
7211 break;
7212 case DW_FORM_addr:
7213 info_ptr += cu->header.addr_size;
7214 break;
7215 case DW_FORM_data1:
7216 case DW_FORM_ref1:
7217 case DW_FORM_flag:
7218 info_ptr += 1;
7219 break;
7220 case DW_FORM_flag_present:
7221 break;
7222 case DW_FORM_data2:
7223 case DW_FORM_ref2:
7224 info_ptr += 2;
7225 break;
7226 case DW_FORM_data4:
7227 case DW_FORM_ref4:
7228 info_ptr += 4;
7229 break;
7230 case DW_FORM_data8:
7231 case DW_FORM_ref8:
7232 case DW_FORM_ref_sig8:
7233 info_ptr += 8;
7234 break;
7235 case DW_FORM_string:
7236 read_direct_string (abfd, info_ptr, &bytes_read);
7237 info_ptr += bytes_read;
7238 break;
7239 case DW_FORM_sec_offset:
7240 case DW_FORM_strp:
7241 case DW_FORM_GNU_strp_alt:
7242 info_ptr += cu->header.offset_size;
7243 break;
7244 case DW_FORM_exprloc:
7245 case DW_FORM_block:
7246 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7247 info_ptr += bytes_read;
7248 break;
7249 case DW_FORM_block1:
7250 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7251 break;
7252 case DW_FORM_block2:
7253 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7254 break;
7255 case DW_FORM_block4:
7256 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7257 break;
7258 case DW_FORM_sdata:
7259 case DW_FORM_udata:
7260 case DW_FORM_ref_udata:
7261 case DW_FORM_GNU_addr_index:
7262 case DW_FORM_GNU_str_index:
7263 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7264 break;
7265 case DW_FORM_indirect:
7266 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7267 info_ptr += bytes_read;
7268 /* We need to continue parsing from here, so just go back to
7269 the top. */
7270 goto skip_attribute;
7271
7272 default:
7273 error (_("Dwarf Error: Cannot handle %s "
7274 "in DWARF reader [in module %s]"),
7275 dwarf_form_name (form),
7276 bfd_get_filename (abfd));
7277 }
7278 }
7279
7280 if (abbrev->has_children)
7281 return skip_children (reader, info_ptr);
7282 else
7283 return info_ptr;
7284 }
7285
7286 /* Locate ORIG_PDI's sibling.
7287 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7288
7289 static const gdb_byte *
7290 locate_pdi_sibling (const struct die_reader_specs *reader,
7291 struct partial_die_info *orig_pdi,
7292 const gdb_byte *info_ptr)
7293 {
7294 /* Do we know the sibling already? */
7295
7296 if (orig_pdi->sibling)
7297 return orig_pdi->sibling;
7298
7299 /* Are there any children to deal with? */
7300
7301 if (!orig_pdi->has_children)
7302 return info_ptr;
7303
7304 /* Skip the children the long way. */
7305
7306 return skip_children (reader, info_ptr);
7307 }
7308
7309 /* Expand this partial symbol table into a full symbol table. SELF is
7310 not NULL. */
7311
7312 static void
7313 dwarf2_read_symtab (struct partial_symtab *self,
7314 struct objfile *objfile)
7315 {
7316 if (self->readin)
7317 {
7318 warning (_("bug: psymtab for %s is already read in."),
7319 self->filename);
7320 }
7321 else
7322 {
7323 if (info_verbose)
7324 {
7325 printf_filtered (_("Reading in symbols for %s..."),
7326 self->filename);
7327 gdb_flush (gdb_stdout);
7328 }
7329
7330 /* Restore our global data. */
7331 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7332
7333 /* If this psymtab is constructed from a debug-only objfile, the
7334 has_section_at_zero flag will not necessarily be correct. We
7335 can get the correct value for this flag by looking at the data
7336 associated with the (presumably stripped) associated objfile. */
7337 if (objfile->separate_debug_objfile_backlink)
7338 {
7339 struct dwarf2_per_objfile *dpo_backlink
7340 = objfile_data (objfile->separate_debug_objfile_backlink,
7341 dwarf2_objfile_data_key);
7342
7343 dwarf2_per_objfile->has_section_at_zero
7344 = dpo_backlink->has_section_at_zero;
7345 }
7346
7347 dwarf2_per_objfile->reading_partial_symbols = 0;
7348
7349 psymtab_to_symtab_1 (self);
7350
7351 /* Finish up the debug error message. */
7352 if (info_verbose)
7353 printf_filtered (_("done.\n"));
7354 }
7355
7356 process_cu_includes ();
7357 }
7358 \f
7359 /* Reading in full CUs. */
7360
7361 /* Add PER_CU to the queue. */
7362
7363 static void
7364 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7365 enum language pretend_language)
7366 {
7367 struct dwarf2_queue_item *item;
7368
7369 per_cu->queued = 1;
7370 item = xmalloc (sizeof (*item));
7371 item->per_cu = per_cu;
7372 item->pretend_language = pretend_language;
7373 item->next = NULL;
7374
7375 if (dwarf2_queue == NULL)
7376 dwarf2_queue = item;
7377 else
7378 dwarf2_queue_tail->next = item;
7379
7380 dwarf2_queue_tail = item;
7381 }
7382
7383 /* If PER_CU is not yet queued, add it to the queue.
7384 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7385 dependency.
7386 The result is non-zero if PER_CU was queued, otherwise the result is zero
7387 meaning either PER_CU is already queued or it is already loaded.
7388
7389 N.B. There is an invariant here that if a CU is queued then it is loaded.
7390 The caller is required to load PER_CU if we return non-zero. */
7391
7392 static int
7393 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7394 struct dwarf2_per_cu_data *per_cu,
7395 enum language pretend_language)
7396 {
7397 /* We may arrive here during partial symbol reading, if we need full
7398 DIEs to process an unusual case (e.g. template arguments). Do
7399 not queue PER_CU, just tell our caller to load its DIEs. */
7400 if (dwarf2_per_objfile->reading_partial_symbols)
7401 {
7402 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7403 return 1;
7404 return 0;
7405 }
7406
7407 /* Mark the dependence relation so that we don't flush PER_CU
7408 too early. */
7409 if (dependent_cu != NULL)
7410 dwarf2_add_dependence (dependent_cu, per_cu);
7411
7412 /* If it's already on the queue, we have nothing to do. */
7413 if (per_cu->queued)
7414 return 0;
7415
7416 /* If the compilation unit is already loaded, just mark it as
7417 used. */
7418 if (per_cu->cu != NULL)
7419 {
7420 per_cu->cu->last_used = 0;
7421 return 0;
7422 }
7423
7424 /* Add it to the queue. */
7425 queue_comp_unit (per_cu, pretend_language);
7426
7427 return 1;
7428 }
7429
7430 /* Process the queue. */
7431
7432 static void
7433 process_queue (void)
7434 {
7435 struct dwarf2_queue_item *item, *next_item;
7436
7437 if (dwarf2_read_debug)
7438 {
7439 fprintf_unfiltered (gdb_stdlog,
7440 "Expanding one or more symtabs of objfile %s ...\n",
7441 objfile_name (dwarf2_per_objfile->objfile));
7442 }
7443
7444 /* The queue starts out with one item, but following a DIE reference
7445 may load a new CU, adding it to the end of the queue. */
7446 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7447 {
7448 if (dwarf2_per_objfile->using_index
7449 ? !item->per_cu->v.quick->symtab
7450 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7451 {
7452 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7453 unsigned int debug_print_threshold;
7454 char buf[100];
7455
7456 if (per_cu->is_debug_types)
7457 {
7458 struct signatured_type *sig_type =
7459 (struct signatured_type *) per_cu;
7460
7461 sprintf (buf, "TU %s at offset 0x%x",
7462 hex_string (sig_type->signature),
7463 per_cu->offset.sect_off);
7464 /* There can be 100s of TUs.
7465 Only print them in verbose mode. */
7466 debug_print_threshold = 2;
7467 }
7468 else
7469 {
7470 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7471 debug_print_threshold = 1;
7472 }
7473
7474 if (dwarf2_read_debug >= debug_print_threshold)
7475 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7476
7477 if (per_cu->is_debug_types)
7478 process_full_type_unit (per_cu, item->pretend_language);
7479 else
7480 process_full_comp_unit (per_cu, item->pretend_language);
7481
7482 if (dwarf2_read_debug >= debug_print_threshold)
7483 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7484 }
7485
7486 item->per_cu->queued = 0;
7487 next_item = item->next;
7488 xfree (item);
7489 }
7490
7491 dwarf2_queue_tail = NULL;
7492
7493 if (dwarf2_read_debug)
7494 {
7495 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7496 objfile_name (dwarf2_per_objfile->objfile));
7497 }
7498 }
7499
7500 /* Free all allocated queue entries. This function only releases anything if
7501 an error was thrown; if the queue was processed then it would have been
7502 freed as we went along. */
7503
7504 static void
7505 dwarf2_release_queue (void *dummy)
7506 {
7507 struct dwarf2_queue_item *item, *last;
7508
7509 item = dwarf2_queue;
7510 while (item)
7511 {
7512 /* Anything still marked queued is likely to be in an
7513 inconsistent state, so discard it. */
7514 if (item->per_cu->queued)
7515 {
7516 if (item->per_cu->cu != NULL)
7517 free_one_cached_comp_unit (item->per_cu);
7518 item->per_cu->queued = 0;
7519 }
7520
7521 last = item;
7522 item = item->next;
7523 xfree (last);
7524 }
7525
7526 dwarf2_queue = dwarf2_queue_tail = NULL;
7527 }
7528
7529 /* Read in full symbols for PST, and anything it depends on. */
7530
7531 static void
7532 psymtab_to_symtab_1 (struct partial_symtab *pst)
7533 {
7534 struct dwarf2_per_cu_data *per_cu;
7535 int i;
7536
7537 if (pst->readin)
7538 return;
7539
7540 for (i = 0; i < pst->number_of_dependencies; i++)
7541 if (!pst->dependencies[i]->readin
7542 && pst->dependencies[i]->user == NULL)
7543 {
7544 /* Inform about additional files that need to be read in. */
7545 if (info_verbose)
7546 {
7547 /* FIXME: i18n: Need to make this a single string. */
7548 fputs_filtered (" ", gdb_stdout);
7549 wrap_here ("");
7550 fputs_filtered ("and ", gdb_stdout);
7551 wrap_here ("");
7552 printf_filtered ("%s...", pst->dependencies[i]->filename);
7553 wrap_here (""); /* Flush output. */
7554 gdb_flush (gdb_stdout);
7555 }
7556 psymtab_to_symtab_1 (pst->dependencies[i]);
7557 }
7558
7559 per_cu = pst->read_symtab_private;
7560
7561 if (per_cu == NULL)
7562 {
7563 /* It's an include file, no symbols to read for it.
7564 Everything is in the parent symtab. */
7565 pst->readin = 1;
7566 return;
7567 }
7568
7569 dw2_do_instantiate_symtab (per_cu);
7570 }
7571
7572 /* Trivial hash function for die_info: the hash value of a DIE
7573 is its offset in .debug_info for this objfile. */
7574
7575 static hashval_t
7576 die_hash (const void *item)
7577 {
7578 const struct die_info *die = item;
7579
7580 return die->offset.sect_off;
7581 }
7582
7583 /* Trivial comparison function for die_info structures: two DIEs
7584 are equal if they have the same offset. */
7585
7586 static int
7587 die_eq (const void *item_lhs, const void *item_rhs)
7588 {
7589 const struct die_info *die_lhs = item_lhs;
7590 const struct die_info *die_rhs = item_rhs;
7591
7592 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7593 }
7594
7595 /* die_reader_func for load_full_comp_unit.
7596 This is identical to read_signatured_type_reader,
7597 but is kept separate for now. */
7598
7599 static void
7600 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7601 const gdb_byte *info_ptr,
7602 struct die_info *comp_unit_die,
7603 int has_children,
7604 void *data)
7605 {
7606 struct dwarf2_cu *cu = reader->cu;
7607 enum language *language_ptr = data;
7608
7609 gdb_assert (cu->die_hash == NULL);
7610 cu->die_hash =
7611 htab_create_alloc_ex (cu->header.length / 12,
7612 die_hash,
7613 die_eq,
7614 NULL,
7615 &cu->comp_unit_obstack,
7616 hashtab_obstack_allocate,
7617 dummy_obstack_deallocate);
7618
7619 if (has_children)
7620 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7621 &info_ptr, comp_unit_die);
7622 cu->dies = comp_unit_die;
7623 /* comp_unit_die is not stored in die_hash, no need. */
7624
7625 /* We try not to read any attributes in this function, because not
7626 all CUs needed for references have been loaded yet, and symbol
7627 table processing isn't initialized. But we have to set the CU language,
7628 or we won't be able to build types correctly.
7629 Similarly, if we do not read the producer, we can not apply
7630 producer-specific interpretation. */
7631 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7632 }
7633
7634 /* Load the DIEs associated with PER_CU into memory. */
7635
7636 static void
7637 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7638 enum language pretend_language)
7639 {
7640 gdb_assert (! this_cu->is_debug_types);
7641
7642 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7643 load_full_comp_unit_reader, &pretend_language);
7644 }
7645
7646 /* Add a DIE to the delayed physname list. */
7647
7648 static void
7649 add_to_method_list (struct type *type, int fnfield_index, int index,
7650 const char *name, struct die_info *die,
7651 struct dwarf2_cu *cu)
7652 {
7653 struct delayed_method_info mi;
7654 mi.type = type;
7655 mi.fnfield_index = fnfield_index;
7656 mi.index = index;
7657 mi.name = name;
7658 mi.die = die;
7659 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7660 }
7661
7662 /* A cleanup for freeing the delayed method list. */
7663
7664 static void
7665 free_delayed_list (void *ptr)
7666 {
7667 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7668 if (cu->method_list != NULL)
7669 {
7670 VEC_free (delayed_method_info, cu->method_list);
7671 cu->method_list = NULL;
7672 }
7673 }
7674
7675 /* Compute the physnames of any methods on the CU's method list.
7676
7677 The computation of method physnames is delayed in order to avoid the
7678 (bad) condition that one of the method's formal parameters is of an as yet
7679 incomplete type. */
7680
7681 static void
7682 compute_delayed_physnames (struct dwarf2_cu *cu)
7683 {
7684 int i;
7685 struct delayed_method_info *mi;
7686 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7687 {
7688 const char *physname;
7689 struct fn_fieldlist *fn_flp
7690 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7691 physname = dwarf2_physname (mi->name, mi->die, cu);
7692 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7693 }
7694 }
7695
7696 /* Go objects should be embedded in a DW_TAG_module DIE,
7697 and it's not clear if/how imported objects will appear.
7698 To keep Go support simple until that's worked out,
7699 go back through what we've read and create something usable.
7700 We could do this while processing each DIE, and feels kinda cleaner,
7701 but that way is more invasive.
7702 This is to, for example, allow the user to type "p var" or "b main"
7703 without having to specify the package name, and allow lookups
7704 of module.object to work in contexts that use the expression
7705 parser. */
7706
7707 static void
7708 fixup_go_packaging (struct dwarf2_cu *cu)
7709 {
7710 char *package_name = NULL;
7711 struct pending *list;
7712 int i;
7713
7714 for (list = global_symbols; list != NULL; list = list->next)
7715 {
7716 for (i = 0; i < list->nsyms; ++i)
7717 {
7718 struct symbol *sym = list->symbol[i];
7719
7720 if (SYMBOL_LANGUAGE (sym) == language_go
7721 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7722 {
7723 char *this_package_name = go_symbol_package_name (sym);
7724
7725 if (this_package_name == NULL)
7726 continue;
7727 if (package_name == NULL)
7728 package_name = this_package_name;
7729 else
7730 {
7731 if (strcmp (package_name, this_package_name) != 0)
7732 complaint (&symfile_complaints,
7733 _("Symtab %s has objects from two different Go packages: %s and %s"),
7734 (SYMBOL_SYMTAB (sym)
7735 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7736 : objfile_name (cu->objfile)),
7737 this_package_name, package_name);
7738 xfree (this_package_name);
7739 }
7740 }
7741 }
7742 }
7743
7744 if (package_name != NULL)
7745 {
7746 struct objfile *objfile = cu->objfile;
7747 const char *saved_package_name
7748 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7749 package_name,
7750 strlen (package_name));
7751 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7752 saved_package_name, objfile);
7753 struct symbol *sym;
7754
7755 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7756
7757 sym = allocate_symbol (objfile);
7758 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7759 SYMBOL_SET_NAMES (sym, saved_package_name,
7760 strlen (saved_package_name), 0, objfile);
7761 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7762 e.g., "main" finds the "main" module and not C's main(). */
7763 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7764 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7765 SYMBOL_TYPE (sym) = type;
7766
7767 add_symbol_to_list (sym, &global_symbols);
7768
7769 xfree (package_name);
7770 }
7771 }
7772
7773 /* Return the symtab for PER_CU. This works properly regardless of
7774 whether we're using the index or psymtabs. */
7775
7776 static struct symtab *
7777 get_symtab (struct dwarf2_per_cu_data *per_cu)
7778 {
7779 return (dwarf2_per_objfile->using_index
7780 ? per_cu->v.quick->symtab
7781 : per_cu->v.psymtab->symtab);
7782 }
7783
7784 /* A helper function for computing the list of all symbol tables
7785 included by PER_CU. */
7786
7787 static void
7788 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7789 htab_t all_children, htab_t all_type_symtabs,
7790 struct dwarf2_per_cu_data *per_cu,
7791 struct symtab *immediate_parent)
7792 {
7793 void **slot;
7794 int ix;
7795 struct symtab *symtab;
7796 struct dwarf2_per_cu_data *iter;
7797
7798 slot = htab_find_slot (all_children, per_cu, INSERT);
7799 if (*slot != NULL)
7800 {
7801 /* This inclusion and its children have been processed. */
7802 return;
7803 }
7804
7805 *slot = per_cu;
7806 /* Only add a CU if it has a symbol table. */
7807 symtab = get_symtab (per_cu);
7808 if (symtab != NULL)
7809 {
7810 /* If this is a type unit only add its symbol table if we haven't
7811 seen it yet (type unit per_cu's can share symtabs). */
7812 if (per_cu->is_debug_types)
7813 {
7814 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7815 if (*slot == NULL)
7816 {
7817 *slot = symtab;
7818 VEC_safe_push (symtab_ptr, *result, symtab);
7819 if (symtab->user == NULL)
7820 symtab->user = immediate_parent;
7821 }
7822 }
7823 else
7824 {
7825 VEC_safe_push (symtab_ptr, *result, symtab);
7826 if (symtab->user == NULL)
7827 symtab->user = immediate_parent;
7828 }
7829 }
7830
7831 for (ix = 0;
7832 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7833 ++ix)
7834 {
7835 recursively_compute_inclusions (result, all_children,
7836 all_type_symtabs, iter, symtab);
7837 }
7838 }
7839
7840 /* Compute the symtab 'includes' fields for the symtab related to
7841 PER_CU. */
7842
7843 static void
7844 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7845 {
7846 gdb_assert (! per_cu->is_debug_types);
7847
7848 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7849 {
7850 int ix, len;
7851 struct dwarf2_per_cu_data *per_cu_iter;
7852 struct symtab *symtab_iter;
7853 VEC (symtab_ptr) *result_symtabs = NULL;
7854 htab_t all_children, all_type_symtabs;
7855 struct symtab *symtab = get_symtab (per_cu);
7856
7857 /* If we don't have a symtab, we can just skip this case. */
7858 if (symtab == NULL)
7859 return;
7860
7861 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7862 NULL, xcalloc, xfree);
7863 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7864 NULL, xcalloc, xfree);
7865
7866 for (ix = 0;
7867 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7868 ix, per_cu_iter);
7869 ++ix)
7870 {
7871 recursively_compute_inclusions (&result_symtabs, all_children,
7872 all_type_symtabs, per_cu_iter,
7873 symtab);
7874 }
7875
7876 /* Now we have a transitive closure of all the included symtabs. */
7877 len = VEC_length (symtab_ptr, result_symtabs);
7878 symtab->includes
7879 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7880 (len + 1) * sizeof (struct symtab *));
7881 for (ix = 0;
7882 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7883 ++ix)
7884 symtab->includes[ix] = symtab_iter;
7885 symtab->includes[len] = NULL;
7886
7887 VEC_free (symtab_ptr, result_symtabs);
7888 htab_delete (all_children);
7889 htab_delete (all_type_symtabs);
7890 }
7891 }
7892
7893 /* Compute the 'includes' field for the symtabs of all the CUs we just
7894 read. */
7895
7896 static void
7897 process_cu_includes (void)
7898 {
7899 int ix;
7900 struct dwarf2_per_cu_data *iter;
7901
7902 for (ix = 0;
7903 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7904 ix, iter);
7905 ++ix)
7906 {
7907 if (! iter->is_debug_types)
7908 compute_symtab_includes (iter);
7909 }
7910
7911 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7912 }
7913
7914 /* Generate full symbol information for PER_CU, whose DIEs have
7915 already been loaded into memory. */
7916
7917 static void
7918 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7919 enum language pretend_language)
7920 {
7921 struct dwarf2_cu *cu = per_cu->cu;
7922 struct objfile *objfile = per_cu->objfile;
7923 CORE_ADDR lowpc, highpc;
7924 struct symtab *symtab;
7925 struct cleanup *back_to, *delayed_list_cleanup;
7926 CORE_ADDR baseaddr;
7927 struct block *static_block;
7928
7929 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7930
7931 buildsym_init ();
7932 back_to = make_cleanup (really_free_pendings, NULL);
7933 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7934
7935 cu->list_in_scope = &file_symbols;
7936
7937 cu->language = pretend_language;
7938 cu->language_defn = language_def (cu->language);
7939
7940 /* Do line number decoding in read_file_scope () */
7941 process_die (cu->dies, cu);
7942
7943 /* For now fudge the Go package. */
7944 if (cu->language == language_go)
7945 fixup_go_packaging (cu);
7946
7947 /* Now that we have processed all the DIEs in the CU, all the types
7948 should be complete, and it should now be safe to compute all of the
7949 physnames. */
7950 compute_delayed_physnames (cu);
7951 do_cleanups (delayed_list_cleanup);
7952
7953 /* Some compilers don't define a DW_AT_high_pc attribute for the
7954 compilation unit. If the DW_AT_high_pc is missing, synthesize
7955 it, by scanning the DIE's below the compilation unit. */
7956 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7957
7958 static_block
7959 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7960
7961 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7962 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7963 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7964 addrmap to help ensure it has an accurate map of pc values belonging to
7965 this comp unit. */
7966 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7967
7968 symtab = end_symtab_from_static_block (static_block, objfile,
7969 SECT_OFF_TEXT (objfile), 0);
7970
7971 if (symtab != NULL)
7972 {
7973 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7974
7975 /* Set symtab language to language from DW_AT_language. If the
7976 compilation is from a C file generated by language preprocessors, do
7977 not set the language if it was already deduced by start_subfile. */
7978 if (!(cu->language == language_c && symtab->language != language_c))
7979 symtab->language = cu->language;
7980
7981 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7982 produce DW_AT_location with location lists but it can be possibly
7983 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7984 there were bugs in prologue debug info, fixed later in GCC-4.5
7985 by "unwind info for epilogues" patch (which is not directly related).
7986
7987 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7988 needed, it would be wrong due to missing DW_AT_producer there.
7989
7990 Still one can confuse GDB by using non-standard GCC compilation
7991 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7992 */
7993 if (cu->has_loclist && gcc_4_minor >= 5)
7994 symtab->locations_valid = 1;
7995
7996 if (gcc_4_minor >= 5)
7997 symtab->epilogue_unwind_valid = 1;
7998
7999 symtab->call_site_htab = cu->call_site_htab;
8000 }
8001
8002 if (dwarf2_per_objfile->using_index)
8003 per_cu->v.quick->symtab = symtab;
8004 else
8005 {
8006 struct partial_symtab *pst = per_cu->v.psymtab;
8007 pst->symtab = symtab;
8008 pst->readin = 1;
8009 }
8010
8011 /* Push it for inclusion processing later. */
8012 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8013
8014 do_cleanups (back_to);
8015 }
8016
8017 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8018 already been loaded into memory. */
8019
8020 static void
8021 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8022 enum language pretend_language)
8023 {
8024 struct dwarf2_cu *cu = per_cu->cu;
8025 struct objfile *objfile = per_cu->objfile;
8026 struct symtab *symtab;
8027 struct cleanup *back_to, *delayed_list_cleanup;
8028 struct signatured_type *sig_type;
8029
8030 gdb_assert (per_cu->is_debug_types);
8031 sig_type = (struct signatured_type *) per_cu;
8032
8033 buildsym_init ();
8034 back_to = make_cleanup (really_free_pendings, NULL);
8035 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8036
8037 cu->list_in_scope = &file_symbols;
8038
8039 cu->language = pretend_language;
8040 cu->language_defn = language_def (cu->language);
8041
8042 /* The symbol tables are set up in read_type_unit_scope. */
8043 process_die (cu->dies, cu);
8044
8045 /* For now fudge the Go package. */
8046 if (cu->language == language_go)
8047 fixup_go_packaging (cu);
8048
8049 /* Now that we have processed all the DIEs in the CU, all the types
8050 should be complete, and it should now be safe to compute all of the
8051 physnames. */
8052 compute_delayed_physnames (cu);
8053 do_cleanups (delayed_list_cleanup);
8054
8055 /* TUs share symbol tables.
8056 If this is the first TU to use this symtab, complete the construction
8057 of it with end_expandable_symtab. Otherwise, complete the addition of
8058 this TU's symbols to the existing symtab. */
8059 if (sig_type->type_unit_group->primary_symtab == NULL)
8060 {
8061 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
8062 sig_type->type_unit_group->primary_symtab = symtab;
8063
8064 if (symtab != NULL)
8065 {
8066 /* Set symtab language to language from DW_AT_language. If the
8067 compilation is from a C file generated by language preprocessors,
8068 do not set the language if it was already deduced by
8069 start_subfile. */
8070 if (!(cu->language == language_c && symtab->language != language_c))
8071 symtab->language = cu->language;
8072 }
8073 }
8074 else
8075 {
8076 augment_type_symtab (objfile,
8077 sig_type->type_unit_group->primary_symtab);
8078 symtab = sig_type->type_unit_group->primary_symtab;
8079 }
8080
8081 if (dwarf2_per_objfile->using_index)
8082 per_cu->v.quick->symtab = symtab;
8083 else
8084 {
8085 struct partial_symtab *pst = per_cu->v.psymtab;
8086 pst->symtab = symtab;
8087 pst->readin = 1;
8088 }
8089
8090 do_cleanups (back_to);
8091 }
8092
8093 /* Process an imported unit DIE. */
8094
8095 static void
8096 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8097 {
8098 struct attribute *attr;
8099
8100 /* For now we don't handle imported units in type units. */
8101 if (cu->per_cu->is_debug_types)
8102 {
8103 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8104 " supported in type units [in module %s]"),
8105 objfile_name (cu->objfile));
8106 }
8107
8108 attr = dwarf2_attr (die, DW_AT_import, cu);
8109 if (attr != NULL)
8110 {
8111 struct dwarf2_per_cu_data *per_cu;
8112 struct symtab *imported_symtab;
8113 sect_offset offset;
8114 int is_dwz;
8115
8116 offset = dwarf2_get_ref_die_offset (attr);
8117 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8118 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8119
8120 /* If necessary, add it to the queue and load its DIEs. */
8121 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8122 load_full_comp_unit (per_cu, cu->language);
8123
8124 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8125 per_cu);
8126 }
8127 }
8128
8129 /* Reset the in_process bit of a die. */
8130
8131 static void
8132 reset_die_in_process (void *arg)
8133 {
8134 struct die_info *die = arg;
8135
8136 die->in_process = 0;
8137 }
8138
8139 /* Process a die and its children. */
8140
8141 static void
8142 process_die (struct die_info *die, struct dwarf2_cu *cu)
8143 {
8144 struct cleanup *in_process;
8145
8146 /* We should only be processing those not already in process. */
8147 gdb_assert (!die->in_process);
8148
8149 die->in_process = 1;
8150 in_process = make_cleanup (reset_die_in_process,die);
8151
8152 switch (die->tag)
8153 {
8154 case DW_TAG_padding:
8155 break;
8156 case DW_TAG_compile_unit:
8157 case DW_TAG_partial_unit:
8158 read_file_scope (die, cu);
8159 break;
8160 case DW_TAG_type_unit:
8161 read_type_unit_scope (die, cu);
8162 break;
8163 case DW_TAG_subprogram:
8164 case DW_TAG_inlined_subroutine:
8165 read_func_scope (die, cu);
8166 break;
8167 case DW_TAG_lexical_block:
8168 case DW_TAG_try_block:
8169 case DW_TAG_catch_block:
8170 read_lexical_block_scope (die, cu);
8171 break;
8172 case DW_TAG_GNU_call_site:
8173 read_call_site_scope (die, cu);
8174 break;
8175 case DW_TAG_class_type:
8176 case DW_TAG_interface_type:
8177 case DW_TAG_structure_type:
8178 case DW_TAG_union_type:
8179 process_structure_scope (die, cu);
8180 break;
8181 case DW_TAG_enumeration_type:
8182 process_enumeration_scope (die, cu);
8183 break;
8184
8185 /* These dies have a type, but processing them does not create
8186 a symbol or recurse to process the children. Therefore we can
8187 read them on-demand through read_type_die. */
8188 case DW_TAG_subroutine_type:
8189 case DW_TAG_set_type:
8190 case DW_TAG_array_type:
8191 case DW_TAG_pointer_type:
8192 case DW_TAG_ptr_to_member_type:
8193 case DW_TAG_reference_type:
8194 case DW_TAG_string_type:
8195 break;
8196
8197 case DW_TAG_base_type:
8198 case DW_TAG_subrange_type:
8199 case DW_TAG_typedef:
8200 /* Add a typedef symbol for the type definition, if it has a
8201 DW_AT_name. */
8202 new_symbol (die, read_type_die (die, cu), cu);
8203 break;
8204 case DW_TAG_common_block:
8205 read_common_block (die, cu);
8206 break;
8207 case DW_TAG_common_inclusion:
8208 break;
8209 case DW_TAG_namespace:
8210 cu->processing_has_namespace_info = 1;
8211 read_namespace (die, cu);
8212 break;
8213 case DW_TAG_module:
8214 cu->processing_has_namespace_info = 1;
8215 read_module (die, cu);
8216 break;
8217 case DW_TAG_imported_declaration:
8218 cu->processing_has_namespace_info = 1;
8219 if (read_namespace_alias (die, cu))
8220 break;
8221 /* The declaration is not a global namespace alias: fall through. */
8222 case DW_TAG_imported_module:
8223 cu->processing_has_namespace_info = 1;
8224 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8225 || cu->language != language_fortran))
8226 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8227 dwarf_tag_name (die->tag));
8228 read_import_statement (die, cu);
8229 break;
8230
8231 case DW_TAG_imported_unit:
8232 process_imported_unit_die (die, cu);
8233 break;
8234
8235 default:
8236 new_symbol (die, NULL, cu);
8237 break;
8238 }
8239
8240 do_cleanups (in_process);
8241 }
8242 \f
8243 /* DWARF name computation. */
8244
8245 /* A helper function for dwarf2_compute_name which determines whether DIE
8246 needs to have the name of the scope prepended to the name listed in the
8247 die. */
8248
8249 static int
8250 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8251 {
8252 struct attribute *attr;
8253
8254 switch (die->tag)
8255 {
8256 case DW_TAG_namespace:
8257 case DW_TAG_typedef:
8258 case DW_TAG_class_type:
8259 case DW_TAG_interface_type:
8260 case DW_TAG_structure_type:
8261 case DW_TAG_union_type:
8262 case DW_TAG_enumeration_type:
8263 case DW_TAG_enumerator:
8264 case DW_TAG_subprogram:
8265 case DW_TAG_member:
8266 case DW_TAG_imported_declaration:
8267 return 1;
8268
8269 case DW_TAG_variable:
8270 case DW_TAG_constant:
8271 /* We only need to prefix "globally" visible variables. These include
8272 any variable marked with DW_AT_external or any variable that
8273 lives in a namespace. [Variables in anonymous namespaces
8274 require prefixing, but they are not DW_AT_external.] */
8275
8276 if (dwarf2_attr (die, DW_AT_specification, cu))
8277 {
8278 struct dwarf2_cu *spec_cu = cu;
8279
8280 return die_needs_namespace (die_specification (die, &spec_cu),
8281 spec_cu);
8282 }
8283
8284 attr = dwarf2_attr (die, DW_AT_external, cu);
8285 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8286 && die->parent->tag != DW_TAG_module)
8287 return 0;
8288 /* A variable in a lexical block of some kind does not need a
8289 namespace, even though in C++ such variables may be external
8290 and have a mangled name. */
8291 if (die->parent->tag == DW_TAG_lexical_block
8292 || die->parent->tag == DW_TAG_try_block
8293 || die->parent->tag == DW_TAG_catch_block
8294 || die->parent->tag == DW_TAG_subprogram)
8295 return 0;
8296 return 1;
8297
8298 default:
8299 return 0;
8300 }
8301 }
8302
8303 /* Retrieve the last character from a mem_file. */
8304
8305 static void
8306 do_ui_file_peek_last (void *object, const char *buffer, long length)
8307 {
8308 char *last_char_p = (char *) object;
8309
8310 if (length > 0)
8311 *last_char_p = buffer[length - 1];
8312 }
8313
8314 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8315 compute the physname for the object, which include a method's:
8316 - formal parameters (C++/Java),
8317 - receiver type (Go),
8318 - return type (Java).
8319
8320 The term "physname" is a bit confusing.
8321 For C++, for example, it is the demangled name.
8322 For Go, for example, it's the mangled name.
8323
8324 For Ada, return the DIE's linkage name rather than the fully qualified
8325 name. PHYSNAME is ignored..
8326
8327 The result is allocated on the objfile_obstack and canonicalized. */
8328
8329 static const char *
8330 dwarf2_compute_name (const char *name,
8331 struct die_info *die, struct dwarf2_cu *cu,
8332 int physname)
8333 {
8334 struct objfile *objfile = cu->objfile;
8335
8336 if (name == NULL)
8337 name = dwarf2_name (die, cu);
8338
8339 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8340 compute it by typename_concat inside GDB. */
8341 if (cu->language == language_ada
8342 || (cu->language == language_fortran && physname))
8343 {
8344 /* For Ada unit, we prefer the linkage name over the name, as
8345 the former contains the exported name, which the user expects
8346 to be able to reference. Ideally, we want the user to be able
8347 to reference this entity using either natural or linkage name,
8348 but we haven't started looking at this enhancement yet. */
8349 struct attribute *attr;
8350
8351 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8352 if (attr == NULL)
8353 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8354 if (attr && DW_STRING (attr))
8355 return DW_STRING (attr);
8356 }
8357
8358 /* These are the only languages we know how to qualify names in. */
8359 if (name != NULL
8360 && (cu->language == language_cplus || cu->language == language_java
8361 || cu->language == language_fortran))
8362 {
8363 if (die_needs_namespace (die, cu))
8364 {
8365 long length;
8366 const char *prefix;
8367 struct ui_file *buf;
8368 char *intermediate_name;
8369 const char *canonical_name = NULL;
8370
8371 prefix = determine_prefix (die, cu);
8372 buf = mem_fileopen ();
8373 if (*prefix != '\0')
8374 {
8375 char *prefixed_name = typename_concat (NULL, prefix, name,
8376 physname, cu);
8377
8378 fputs_unfiltered (prefixed_name, buf);
8379 xfree (prefixed_name);
8380 }
8381 else
8382 fputs_unfiltered (name, buf);
8383
8384 /* Template parameters may be specified in the DIE's DW_AT_name, or
8385 as children with DW_TAG_template_type_param or
8386 DW_TAG_value_type_param. If the latter, add them to the name
8387 here. If the name already has template parameters, then
8388 skip this step; some versions of GCC emit both, and
8389 it is more efficient to use the pre-computed name.
8390
8391 Something to keep in mind about this process: it is very
8392 unlikely, or in some cases downright impossible, to produce
8393 something that will match the mangled name of a function.
8394 If the definition of the function has the same debug info,
8395 we should be able to match up with it anyway. But fallbacks
8396 using the minimal symbol, for instance to find a method
8397 implemented in a stripped copy of libstdc++, will not work.
8398 If we do not have debug info for the definition, we will have to
8399 match them up some other way.
8400
8401 When we do name matching there is a related problem with function
8402 templates; two instantiated function templates are allowed to
8403 differ only by their return types, which we do not add here. */
8404
8405 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8406 {
8407 struct attribute *attr;
8408 struct die_info *child;
8409 int first = 1;
8410
8411 die->building_fullname = 1;
8412
8413 for (child = die->child; child != NULL; child = child->sibling)
8414 {
8415 struct type *type;
8416 LONGEST value;
8417 const gdb_byte *bytes;
8418 struct dwarf2_locexpr_baton *baton;
8419 struct value *v;
8420
8421 if (child->tag != DW_TAG_template_type_param
8422 && child->tag != DW_TAG_template_value_param)
8423 continue;
8424
8425 if (first)
8426 {
8427 fputs_unfiltered ("<", buf);
8428 first = 0;
8429 }
8430 else
8431 fputs_unfiltered (", ", buf);
8432
8433 attr = dwarf2_attr (child, DW_AT_type, cu);
8434 if (attr == NULL)
8435 {
8436 complaint (&symfile_complaints,
8437 _("template parameter missing DW_AT_type"));
8438 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8439 continue;
8440 }
8441 type = die_type (child, cu);
8442
8443 if (child->tag == DW_TAG_template_type_param)
8444 {
8445 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8446 continue;
8447 }
8448
8449 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8450 if (attr == NULL)
8451 {
8452 complaint (&symfile_complaints,
8453 _("template parameter missing "
8454 "DW_AT_const_value"));
8455 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8456 continue;
8457 }
8458
8459 dwarf2_const_value_attr (attr, type, name,
8460 &cu->comp_unit_obstack, cu,
8461 &value, &bytes, &baton);
8462
8463 if (TYPE_NOSIGN (type))
8464 /* GDB prints characters as NUMBER 'CHAR'. If that's
8465 changed, this can use value_print instead. */
8466 c_printchar (value, type, buf);
8467 else
8468 {
8469 struct value_print_options opts;
8470
8471 if (baton != NULL)
8472 v = dwarf2_evaluate_loc_desc (type, NULL,
8473 baton->data,
8474 baton->size,
8475 baton->per_cu);
8476 else if (bytes != NULL)
8477 {
8478 v = allocate_value (type);
8479 memcpy (value_contents_writeable (v), bytes,
8480 TYPE_LENGTH (type));
8481 }
8482 else
8483 v = value_from_longest (type, value);
8484
8485 /* Specify decimal so that we do not depend on
8486 the radix. */
8487 get_formatted_print_options (&opts, 'd');
8488 opts.raw = 1;
8489 value_print (v, buf, &opts);
8490 release_value (v);
8491 value_free (v);
8492 }
8493 }
8494
8495 die->building_fullname = 0;
8496
8497 if (!first)
8498 {
8499 /* Close the argument list, with a space if necessary
8500 (nested templates). */
8501 char last_char = '\0';
8502 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8503 if (last_char == '>')
8504 fputs_unfiltered (" >", buf);
8505 else
8506 fputs_unfiltered (">", buf);
8507 }
8508 }
8509
8510 /* For Java and C++ methods, append formal parameter type
8511 information, if PHYSNAME. */
8512
8513 if (physname && die->tag == DW_TAG_subprogram
8514 && (cu->language == language_cplus
8515 || cu->language == language_java))
8516 {
8517 struct type *type = read_type_die (die, cu);
8518
8519 c_type_print_args (type, buf, 1, cu->language,
8520 &type_print_raw_options);
8521
8522 if (cu->language == language_java)
8523 {
8524 /* For java, we must append the return type to method
8525 names. */
8526 if (die->tag == DW_TAG_subprogram)
8527 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8528 0, 0, &type_print_raw_options);
8529 }
8530 else if (cu->language == language_cplus)
8531 {
8532 /* Assume that an artificial first parameter is
8533 "this", but do not crash if it is not. RealView
8534 marks unnamed (and thus unused) parameters as
8535 artificial; there is no way to differentiate
8536 the two cases. */
8537 if (TYPE_NFIELDS (type) > 0
8538 && TYPE_FIELD_ARTIFICIAL (type, 0)
8539 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8540 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8541 0))))
8542 fputs_unfiltered (" const", buf);
8543 }
8544 }
8545
8546 intermediate_name = ui_file_xstrdup (buf, &length);
8547 ui_file_delete (buf);
8548
8549 if (cu->language == language_cplus)
8550 canonical_name
8551 = dwarf2_canonicalize_name (intermediate_name, cu,
8552 &objfile->per_bfd->storage_obstack);
8553
8554 /* If we only computed INTERMEDIATE_NAME, or if
8555 INTERMEDIATE_NAME is already canonical, then we need to
8556 copy it to the appropriate obstack. */
8557 if (canonical_name == NULL || canonical_name == intermediate_name)
8558 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8559 intermediate_name,
8560 strlen (intermediate_name));
8561 else
8562 name = canonical_name;
8563
8564 xfree (intermediate_name);
8565 }
8566 }
8567
8568 return name;
8569 }
8570
8571 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8572 If scope qualifiers are appropriate they will be added. The result
8573 will be allocated on the storage_obstack, or NULL if the DIE does
8574 not have a name. NAME may either be from a previous call to
8575 dwarf2_name or NULL.
8576
8577 The output string will be canonicalized (if C++/Java). */
8578
8579 static const char *
8580 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8581 {
8582 return dwarf2_compute_name (name, die, cu, 0);
8583 }
8584
8585 /* Construct a physname for the given DIE in CU. NAME may either be
8586 from a previous call to dwarf2_name or NULL. The result will be
8587 allocated on the objfile_objstack or NULL if the DIE does not have a
8588 name.
8589
8590 The output string will be canonicalized (if C++/Java). */
8591
8592 static const char *
8593 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8594 {
8595 struct objfile *objfile = cu->objfile;
8596 struct attribute *attr;
8597 const char *retval, *mangled = NULL, *canon = NULL;
8598 struct cleanup *back_to;
8599 int need_copy = 1;
8600
8601 /* In this case dwarf2_compute_name is just a shortcut not building anything
8602 on its own. */
8603 if (!die_needs_namespace (die, cu))
8604 return dwarf2_compute_name (name, die, cu, 1);
8605
8606 back_to = make_cleanup (null_cleanup, NULL);
8607
8608 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8609 if (!attr)
8610 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8611
8612 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8613 has computed. */
8614 if (attr && DW_STRING (attr))
8615 {
8616 char *demangled;
8617
8618 mangled = DW_STRING (attr);
8619
8620 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8621 type. It is easier for GDB users to search for such functions as
8622 `name(params)' than `long name(params)'. In such case the minimal
8623 symbol names do not match the full symbol names but for template
8624 functions there is never a need to look up their definition from their
8625 declaration so the only disadvantage remains the minimal symbol
8626 variant `long name(params)' does not have the proper inferior type.
8627 */
8628
8629 if (cu->language == language_go)
8630 {
8631 /* This is a lie, but we already lie to the caller new_symbol_full.
8632 new_symbol_full assumes we return the mangled name.
8633 This just undoes that lie until things are cleaned up. */
8634 demangled = NULL;
8635 }
8636 else
8637 {
8638 demangled = gdb_demangle (mangled,
8639 (DMGL_PARAMS | DMGL_ANSI
8640 | (cu->language == language_java
8641 ? DMGL_JAVA | DMGL_RET_POSTFIX
8642 : DMGL_RET_DROP)));
8643 }
8644 if (demangled)
8645 {
8646 make_cleanup (xfree, demangled);
8647 canon = demangled;
8648 }
8649 else
8650 {
8651 canon = mangled;
8652 need_copy = 0;
8653 }
8654 }
8655
8656 if (canon == NULL || check_physname)
8657 {
8658 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8659
8660 if (canon != NULL && strcmp (physname, canon) != 0)
8661 {
8662 /* It may not mean a bug in GDB. The compiler could also
8663 compute DW_AT_linkage_name incorrectly. But in such case
8664 GDB would need to be bug-to-bug compatible. */
8665
8666 complaint (&symfile_complaints,
8667 _("Computed physname <%s> does not match demangled <%s> "
8668 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8669 physname, canon, mangled, die->offset.sect_off,
8670 objfile_name (objfile));
8671
8672 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8673 is available here - over computed PHYSNAME. It is safer
8674 against both buggy GDB and buggy compilers. */
8675
8676 retval = canon;
8677 }
8678 else
8679 {
8680 retval = physname;
8681 need_copy = 0;
8682 }
8683 }
8684 else
8685 retval = canon;
8686
8687 if (need_copy)
8688 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8689 retval, strlen (retval));
8690
8691 do_cleanups (back_to);
8692 return retval;
8693 }
8694
8695 /* Inspect DIE in CU for a namespace alias. If one exists, record
8696 a new symbol for it.
8697
8698 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8699
8700 static int
8701 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8702 {
8703 struct attribute *attr;
8704
8705 /* If the die does not have a name, this is not a namespace
8706 alias. */
8707 attr = dwarf2_attr (die, DW_AT_name, cu);
8708 if (attr != NULL)
8709 {
8710 int num;
8711 struct die_info *d = die;
8712 struct dwarf2_cu *imported_cu = cu;
8713
8714 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8715 keep inspecting DIEs until we hit the underlying import. */
8716 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8717 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8718 {
8719 attr = dwarf2_attr (d, DW_AT_import, cu);
8720 if (attr == NULL)
8721 break;
8722
8723 d = follow_die_ref (d, attr, &imported_cu);
8724 if (d->tag != DW_TAG_imported_declaration)
8725 break;
8726 }
8727
8728 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8729 {
8730 complaint (&symfile_complaints,
8731 _("DIE at 0x%x has too many recursively imported "
8732 "declarations"), d->offset.sect_off);
8733 return 0;
8734 }
8735
8736 if (attr != NULL)
8737 {
8738 struct type *type;
8739 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8740
8741 type = get_die_type_at_offset (offset, cu->per_cu);
8742 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8743 {
8744 /* This declaration is a global namespace alias. Add
8745 a symbol for it whose type is the aliased namespace. */
8746 new_symbol (die, type, cu);
8747 return 1;
8748 }
8749 }
8750 }
8751
8752 return 0;
8753 }
8754
8755 /* Read the import statement specified by the given die and record it. */
8756
8757 static void
8758 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8759 {
8760 struct objfile *objfile = cu->objfile;
8761 struct attribute *import_attr;
8762 struct die_info *imported_die, *child_die;
8763 struct dwarf2_cu *imported_cu;
8764 const char *imported_name;
8765 const char *imported_name_prefix;
8766 const char *canonical_name;
8767 const char *import_alias;
8768 const char *imported_declaration = NULL;
8769 const char *import_prefix;
8770 VEC (const_char_ptr) *excludes = NULL;
8771 struct cleanup *cleanups;
8772
8773 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8774 if (import_attr == NULL)
8775 {
8776 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8777 dwarf_tag_name (die->tag));
8778 return;
8779 }
8780
8781 imported_cu = cu;
8782 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8783 imported_name = dwarf2_name (imported_die, imported_cu);
8784 if (imported_name == NULL)
8785 {
8786 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8787
8788 The import in the following code:
8789 namespace A
8790 {
8791 typedef int B;
8792 }
8793
8794 int main ()
8795 {
8796 using A::B;
8797 B b;
8798 return b;
8799 }
8800
8801 ...
8802 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8803 <52> DW_AT_decl_file : 1
8804 <53> DW_AT_decl_line : 6
8805 <54> DW_AT_import : <0x75>
8806 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8807 <59> DW_AT_name : B
8808 <5b> DW_AT_decl_file : 1
8809 <5c> DW_AT_decl_line : 2
8810 <5d> DW_AT_type : <0x6e>
8811 ...
8812 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8813 <76> DW_AT_byte_size : 4
8814 <77> DW_AT_encoding : 5 (signed)
8815
8816 imports the wrong die ( 0x75 instead of 0x58 ).
8817 This case will be ignored until the gcc bug is fixed. */
8818 return;
8819 }
8820
8821 /* Figure out the local name after import. */
8822 import_alias = dwarf2_name (die, cu);
8823
8824 /* Figure out where the statement is being imported to. */
8825 import_prefix = determine_prefix (die, cu);
8826
8827 /* Figure out what the scope of the imported die is and prepend it
8828 to the name of the imported die. */
8829 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8830
8831 if (imported_die->tag != DW_TAG_namespace
8832 && imported_die->tag != DW_TAG_module)
8833 {
8834 imported_declaration = imported_name;
8835 canonical_name = imported_name_prefix;
8836 }
8837 else if (strlen (imported_name_prefix) > 0)
8838 canonical_name = obconcat (&objfile->objfile_obstack,
8839 imported_name_prefix, "::", imported_name,
8840 (char *) NULL);
8841 else
8842 canonical_name = imported_name;
8843
8844 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8845
8846 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8847 for (child_die = die->child; child_die && child_die->tag;
8848 child_die = sibling_die (child_die))
8849 {
8850 /* DWARF-4: A Fortran use statement with a “rename list” may be
8851 represented by an imported module entry with an import attribute
8852 referring to the module and owned entries corresponding to those
8853 entities that are renamed as part of being imported. */
8854
8855 if (child_die->tag != DW_TAG_imported_declaration)
8856 {
8857 complaint (&symfile_complaints,
8858 _("child DW_TAG_imported_declaration expected "
8859 "- DIE at 0x%x [in module %s]"),
8860 child_die->offset.sect_off, objfile_name (objfile));
8861 continue;
8862 }
8863
8864 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8865 if (import_attr == NULL)
8866 {
8867 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8868 dwarf_tag_name (child_die->tag));
8869 continue;
8870 }
8871
8872 imported_cu = cu;
8873 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8874 &imported_cu);
8875 imported_name = dwarf2_name (imported_die, imported_cu);
8876 if (imported_name == NULL)
8877 {
8878 complaint (&symfile_complaints,
8879 _("child DW_TAG_imported_declaration has unknown "
8880 "imported name - DIE at 0x%x [in module %s]"),
8881 child_die->offset.sect_off, objfile_name (objfile));
8882 continue;
8883 }
8884
8885 VEC_safe_push (const_char_ptr, excludes, imported_name);
8886
8887 process_die (child_die, cu);
8888 }
8889
8890 cp_add_using_directive (import_prefix,
8891 canonical_name,
8892 import_alias,
8893 imported_declaration,
8894 excludes,
8895 0,
8896 &objfile->objfile_obstack);
8897
8898 do_cleanups (cleanups);
8899 }
8900
8901 /* Cleanup function for handle_DW_AT_stmt_list. */
8902
8903 static void
8904 free_cu_line_header (void *arg)
8905 {
8906 struct dwarf2_cu *cu = arg;
8907
8908 free_line_header (cu->line_header);
8909 cu->line_header = NULL;
8910 }
8911
8912 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8913 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8914 this, it was first present in GCC release 4.3.0. */
8915
8916 static int
8917 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8918 {
8919 if (!cu->checked_producer)
8920 check_producer (cu);
8921
8922 return cu->producer_is_gcc_lt_4_3;
8923 }
8924
8925 static void
8926 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8927 const char **name, const char **comp_dir)
8928 {
8929 struct attribute *attr;
8930
8931 *name = NULL;
8932 *comp_dir = NULL;
8933
8934 /* Find the filename. Do not use dwarf2_name here, since the filename
8935 is not a source language identifier. */
8936 attr = dwarf2_attr (die, DW_AT_name, cu);
8937 if (attr)
8938 {
8939 *name = DW_STRING (attr);
8940 }
8941
8942 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8943 if (attr)
8944 *comp_dir = DW_STRING (attr);
8945 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8946 && IS_ABSOLUTE_PATH (*name))
8947 {
8948 char *d = ldirname (*name);
8949
8950 *comp_dir = d;
8951 if (d != NULL)
8952 make_cleanup (xfree, d);
8953 }
8954 if (*comp_dir != NULL)
8955 {
8956 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8957 directory, get rid of it. */
8958 char *cp = strchr (*comp_dir, ':');
8959
8960 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8961 *comp_dir = cp + 1;
8962 }
8963
8964 if (*name == NULL)
8965 *name = "<unknown>";
8966 }
8967
8968 /* Handle DW_AT_stmt_list for a compilation unit.
8969 DIE is the DW_TAG_compile_unit die for CU.
8970 COMP_DIR is the compilation directory. */
8971
8972 static void
8973 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8974 const char *comp_dir) /* ARI: editCase function */
8975 {
8976 struct attribute *attr;
8977
8978 gdb_assert (! cu->per_cu->is_debug_types);
8979
8980 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8981 if (attr)
8982 {
8983 unsigned int line_offset = DW_UNSND (attr);
8984 struct line_header *line_header
8985 = dwarf_decode_line_header (line_offset, cu);
8986
8987 if (line_header)
8988 {
8989 cu->line_header = line_header;
8990 make_cleanup (free_cu_line_header, cu);
8991 dwarf_decode_lines (line_header, comp_dir, cu, NULL);
8992 }
8993 }
8994 }
8995
8996 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8997
8998 static void
8999 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9000 {
9001 struct objfile *objfile = dwarf2_per_objfile->objfile;
9002 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9003 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9004 CORE_ADDR highpc = ((CORE_ADDR) 0);
9005 struct attribute *attr;
9006 const char *name = NULL;
9007 const char *comp_dir = NULL;
9008 struct die_info *child_die;
9009 bfd *abfd = objfile->obfd;
9010 CORE_ADDR baseaddr;
9011
9012 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9013
9014 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9015
9016 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9017 from finish_block. */
9018 if (lowpc == ((CORE_ADDR) -1))
9019 lowpc = highpc;
9020 lowpc += baseaddr;
9021 highpc += baseaddr;
9022
9023 find_file_and_directory (die, cu, &name, &comp_dir);
9024
9025 prepare_one_comp_unit (cu, die, cu->language);
9026
9027 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9028 standardised yet. As a workaround for the language detection we fall
9029 back to the DW_AT_producer string. */
9030 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9031 cu->language = language_opencl;
9032
9033 /* Similar hack for Go. */
9034 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9035 set_cu_language (DW_LANG_Go, cu);
9036
9037 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9038
9039 /* Decode line number information if present. We do this before
9040 processing child DIEs, so that the line header table is available
9041 for DW_AT_decl_file. */
9042 handle_DW_AT_stmt_list (die, cu, comp_dir);
9043
9044 /* Process all dies in compilation unit. */
9045 if (die->child != NULL)
9046 {
9047 child_die = die->child;
9048 while (child_die && child_die->tag)
9049 {
9050 process_die (child_die, cu);
9051 child_die = sibling_die (child_die);
9052 }
9053 }
9054
9055 /* Decode macro information, if present. Dwarf 2 macro information
9056 refers to information in the line number info statement program
9057 header, so we can only read it if we've read the header
9058 successfully. */
9059 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9060 if (attr && cu->line_header)
9061 {
9062 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9063 complaint (&symfile_complaints,
9064 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9065
9066 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
9067 }
9068 else
9069 {
9070 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9071 if (attr && cu->line_header)
9072 {
9073 unsigned int macro_offset = DW_UNSND (attr);
9074
9075 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
9076 }
9077 }
9078
9079 do_cleanups (back_to);
9080 }
9081
9082 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9083 Create the set of symtabs used by this TU, or if this TU is sharing
9084 symtabs with another TU and the symtabs have already been created
9085 then restore those symtabs in the line header.
9086 We don't need the pc/line-number mapping for type units. */
9087
9088 static void
9089 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9090 {
9091 struct objfile *objfile = dwarf2_per_objfile->objfile;
9092 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9093 struct type_unit_group *tu_group;
9094 int first_time;
9095 struct line_header *lh;
9096 struct attribute *attr;
9097 unsigned int i, line_offset;
9098 struct signatured_type *sig_type;
9099
9100 gdb_assert (per_cu->is_debug_types);
9101 sig_type = (struct signatured_type *) per_cu;
9102
9103 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9104
9105 /* If we're using .gdb_index (includes -readnow) then
9106 per_cu->type_unit_group may not have been set up yet. */
9107 if (sig_type->type_unit_group == NULL)
9108 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9109 tu_group = sig_type->type_unit_group;
9110
9111 /* If we've already processed this stmt_list there's no real need to
9112 do it again, we could fake it and just recreate the part we need
9113 (file name,index -> symtab mapping). If data shows this optimization
9114 is useful we can do it then. */
9115 first_time = tu_group->primary_symtab == NULL;
9116
9117 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9118 debug info. */
9119 lh = NULL;
9120 if (attr != NULL)
9121 {
9122 line_offset = DW_UNSND (attr);
9123 lh = dwarf_decode_line_header (line_offset, cu);
9124 }
9125 if (lh == NULL)
9126 {
9127 if (first_time)
9128 dwarf2_start_symtab (cu, "", NULL, 0);
9129 else
9130 {
9131 gdb_assert (tu_group->symtabs == NULL);
9132 restart_symtab (0);
9133 }
9134 /* Note: The primary symtab will get allocated at the end. */
9135 return;
9136 }
9137
9138 cu->line_header = lh;
9139 make_cleanup (free_cu_line_header, cu);
9140
9141 if (first_time)
9142 {
9143 dwarf2_start_symtab (cu, "", NULL, 0);
9144
9145 tu_group->num_symtabs = lh->num_file_names;
9146 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9147
9148 for (i = 0; i < lh->num_file_names; ++i)
9149 {
9150 const char *dir = NULL;
9151 struct file_entry *fe = &lh->file_names[i];
9152
9153 if (fe->dir_index)
9154 dir = lh->include_dirs[fe->dir_index - 1];
9155 dwarf2_start_subfile (fe->name, dir, NULL);
9156
9157 /* Note: We don't have to watch for the main subfile here, type units
9158 don't have DW_AT_name. */
9159
9160 if (current_subfile->symtab == NULL)
9161 {
9162 /* NOTE: start_subfile will recognize when it's been passed
9163 a file it has already seen. So we can't assume there's a
9164 simple mapping from lh->file_names to subfiles,
9165 lh->file_names may contain dups. */
9166 current_subfile->symtab = allocate_symtab (current_subfile->name,
9167 objfile);
9168 }
9169
9170 fe->symtab = current_subfile->symtab;
9171 tu_group->symtabs[i] = fe->symtab;
9172 }
9173 }
9174 else
9175 {
9176 restart_symtab (0);
9177
9178 for (i = 0; i < lh->num_file_names; ++i)
9179 {
9180 struct file_entry *fe = &lh->file_names[i];
9181
9182 fe->symtab = tu_group->symtabs[i];
9183 }
9184 }
9185
9186 /* The main symtab is allocated last. Type units don't have DW_AT_name
9187 so they don't have a "real" (so to speak) symtab anyway.
9188 There is later code that will assign the main symtab to all symbols
9189 that don't have one. We need to handle the case of a symbol with a
9190 missing symtab (DW_AT_decl_file) anyway. */
9191 }
9192
9193 /* Process DW_TAG_type_unit.
9194 For TUs we want to skip the first top level sibling if it's not the
9195 actual type being defined by this TU. In this case the first top
9196 level sibling is there to provide context only. */
9197
9198 static void
9199 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9200 {
9201 struct die_info *child_die;
9202
9203 prepare_one_comp_unit (cu, die, language_minimal);
9204
9205 /* Initialize (or reinitialize) the machinery for building symtabs.
9206 We do this before processing child DIEs, so that the line header table
9207 is available for DW_AT_decl_file. */
9208 setup_type_unit_groups (die, cu);
9209
9210 if (die->child != NULL)
9211 {
9212 child_die = die->child;
9213 while (child_die && child_die->tag)
9214 {
9215 process_die (child_die, cu);
9216 child_die = sibling_die (child_die);
9217 }
9218 }
9219 }
9220 \f
9221 /* DWO/DWP files.
9222
9223 http://gcc.gnu.org/wiki/DebugFission
9224 http://gcc.gnu.org/wiki/DebugFissionDWP
9225
9226 To simplify handling of both DWO files ("object" files with the DWARF info)
9227 and DWP files (a file with the DWOs packaged up into one file), we treat
9228 DWP files as having a collection of virtual DWO files. */
9229
9230 static hashval_t
9231 hash_dwo_file (const void *item)
9232 {
9233 const struct dwo_file *dwo_file = item;
9234 hashval_t hash;
9235
9236 hash = htab_hash_string (dwo_file->dwo_name);
9237 if (dwo_file->comp_dir != NULL)
9238 hash += htab_hash_string (dwo_file->comp_dir);
9239 return hash;
9240 }
9241
9242 static int
9243 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9244 {
9245 const struct dwo_file *lhs = item_lhs;
9246 const struct dwo_file *rhs = item_rhs;
9247
9248 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9249 return 0;
9250 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9251 return lhs->comp_dir == rhs->comp_dir;
9252 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9253 }
9254
9255 /* Allocate a hash table for DWO files. */
9256
9257 static htab_t
9258 allocate_dwo_file_hash_table (void)
9259 {
9260 struct objfile *objfile = dwarf2_per_objfile->objfile;
9261
9262 return htab_create_alloc_ex (41,
9263 hash_dwo_file,
9264 eq_dwo_file,
9265 NULL,
9266 &objfile->objfile_obstack,
9267 hashtab_obstack_allocate,
9268 dummy_obstack_deallocate);
9269 }
9270
9271 /* Lookup DWO file DWO_NAME. */
9272
9273 static void **
9274 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9275 {
9276 struct dwo_file find_entry;
9277 void **slot;
9278
9279 if (dwarf2_per_objfile->dwo_files == NULL)
9280 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9281
9282 memset (&find_entry, 0, sizeof (find_entry));
9283 find_entry.dwo_name = dwo_name;
9284 find_entry.comp_dir = comp_dir;
9285 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9286
9287 return slot;
9288 }
9289
9290 static hashval_t
9291 hash_dwo_unit (const void *item)
9292 {
9293 const struct dwo_unit *dwo_unit = item;
9294
9295 /* This drops the top 32 bits of the id, but is ok for a hash. */
9296 return dwo_unit->signature;
9297 }
9298
9299 static int
9300 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9301 {
9302 const struct dwo_unit *lhs = item_lhs;
9303 const struct dwo_unit *rhs = item_rhs;
9304
9305 /* The signature is assumed to be unique within the DWO file.
9306 So while object file CU dwo_id's always have the value zero,
9307 that's OK, assuming each object file DWO file has only one CU,
9308 and that's the rule for now. */
9309 return lhs->signature == rhs->signature;
9310 }
9311
9312 /* Allocate a hash table for DWO CUs,TUs.
9313 There is one of these tables for each of CUs,TUs for each DWO file. */
9314
9315 static htab_t
9316 allocate_dwo_unit_table (struct objfile *objfile)
9317 {
9318 /* Start out with a pretty small number.
9319 Generally DWO files contain only one CU and maybe some TUs. */
9320 return htab_create_alloc_ex (3,
9321 hash_dwo_unit,
9322 eq_dwo_unit,
9323 NULL,
9324 &objfile->objfile_obstack,
9325 hashtab_obstack_allocate,
9326 dummy_obstack_deallocate);
9327 }
9328
9329 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9330
9331 struct create_dwo_cu_data
9332 {
9333 struct dwo_file *dwo_file;
9334 struct dwo_unit dwo_unit;
9335 };
9336
9337 /* die_reader_func for create_dwo_cu. */
9338
9339 static void
9340 create_dwo_cu_reader (const struct die_reader_specs *reader,
9341 const gdb_byte *info_ptr,
9342 struct die_info *comp_unit_die,
9343 int has_children,
9344 void *datap)
9345 {
9346 struct dwarf2_cu *cu = reader->cu;
9347 struct objfile *objfile = dwarf2_per_objfile->objfile;
9348 sect_offset offset = cu->per_cu->offset;
9349 struct dwarf2_section_info *section = cu->per_cu->section;
9350 struct create_dwo_cu_data *data = datap;
9351 struct dwo_file *dwo_file = data->dwo_file;
9352 struct dwo_unit *dwo_unit = &data->dwo_unit;
9353 struct attribute *attr;
9354
9355 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9356 if (attr == NULL)
9357 {
9358 complaint (&symfile_complaints,
9359 _("Dwarf Error: debug entry at offset 0x%x is missing"
9360 " its dwo_id [in module %s]"),
9361 offset.sect_off, dwo_file->dwo_name);
9362 return;
9363 }
9364
9365 dwo_unit->dwo_file = dwo_file;
9366 dwo_unit->signature = DW_UNSND (attr);
9367 dwo_unit->section = section;
9368 dwo_unit->offset = offset;
9369 dwo_unit->length = cu->per_cu->length;
9370
9371 if (dwarf2_read_debug)
9372 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9373 offset.sect_off, hex_string (dwo_unit->signature));
9374 }
9375
9376 /* Create the dwo_unit for the lone CU in DWO_FILE.
9377 Note: This function processes DWO files only, not DWP files. */
9378
9379 static struct dwo_unit *
9380 create_dwo_cu (struct dwo_file *dwo_file)
9381 {
9382 struct objfile *objfile = dwarf2_per_objfile->objfile;
9383 struct dwarf2_section_info *section = &dwo_file->sections.info;
9384 bfd *abfd;
9385 htab_t cu_htab;
9386 const gdb_byte *info_ptr, *end_ptr;
9387 struct create_dwo_cu_data create_dwo_cu_data;
9388 struct dwo_unit *dwo_unit;
9389
9390 dwarf2_read_section (objfile, section);
9391 info_ptr = section->buffer;
9392
9393 if (info_ptr == NULL)
9394 return NULL;
9395
9396 /* We can't set abfd until now because the section may be empty or
9397 not present, in which case section->asection will be NULL. */
9398 abfd = get_section_bfd_owner (section);
9399
9400 if (dwarf2_read_debug)
9401 {
9402 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9403 get_section_name (section),
9404 get_section_file_name (section));
9405 }
9406
9407 create_dwo_cu_data.dwo_file = dwo_file;
9408 dwo_unit = NULL;
9409
9410 end_ptr = info_ptr + section->size;
9411 while (info_ptr < end_ptr)
9412 {
9413 struct dwarf2_per_cu_data per_cu;
9414
9415 memset (&create_dwo_cu_data.dwo_unit, 0,
9416 sizeof (create_dwo_cu_data.dwo_unit));
9417 memset (&per_cu, 0, sizeof (per_cu));
9418 per_cu.objfile = objfile;
9419 per_cu.is_debug_types = 0;
9420 per_cu.offset.sect_off = info_ptr - section->buffer;
9421 per_cu.section = section;
9422
9423 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9424 create_dwo_cu_reader,
9425 &create_dwo_cu_data);
9426
9427 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9428 {
9429 /* If we've already found one, complain. We only support one
9430 because having more than one requires hacking the dwo_name of
9431 each to match, which is highly unlikely to happen. */
9432 if (dwo_unit != NULL)
9433 {
9434 complaint (&symfile_complaints,
9435 _("Multiple CUs in DWO file %s [in module %s]"),
9436 dwo_file->dwo_name, objfile_name (objfile));
9437 break;
9438 }
9439
9440 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9441 *dwo_unit = create_dwo_cu_data.dwo_unit;
9442 }
9443
9444 info_ptr += per_cu.length;
9445 }
9446
9447 return dwo_unit;
9448 }
9449
9450 /* DWP file .debug_{cu,tu}_index section format:
9451 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9452
9453 DWP Version 1:
9454
9455 Both index sections have the same format, and serve to map a 64-bit
9456 signature to a set of section numbers. Each section begins with a header,
9457 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9458 indexes, and a pool of 32-bit section numbers. The index sections will be
9459 aligned at 8-byte boundaries in the file.
9460
9461 The index section header consists of:
9462
9463 V, 32 bit version number
9464 -, 32 bits unused
9465 N, 32 bit number of compilation units or type units in the index
9466 M, 32 bit number of slots in the hash table
9467
9468 Numbers are recorded using the byte order of the application binary.
9469
9470 The hash table begins at offset 16 in the section, and consists of an array
9471 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9472 order of the application binary). Unused slots in the hash table are 0.
9473 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9474
9475 The parallel table begins immediately after the hash table
9476 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9477 array of 32-bit indexes (using the byte order of the application binary),
9478 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9479 table contains a 32-bit index into the pool of section numbers. For unused
9480 hash table slots, the corresponding entry in the parallel table will be 0.
9481
9482 The pool of section numbers begins immediately following the hash table
9483 (at offset 16 + 12 * M from the beginning of the section). The pool of
9484 section numbers consists of an array of 32-bit words (using the byte order
9485 of the application binary). Each item in the array is indexed starting
9486 from 0. The hash table entry provides the index of the first section
9487 number in the set. Additional section numbers in the set follow, and the
9488 set is terminated by a 0 entry (section number 0 is not used in ELF).
9489
9490 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9491 section must be the first entry in the set, and the .debug_abbrev.dwo must
9492 be the second entry. Other members of the set may follow in any order.
9493
9494 ---
9495
9496 DWP Version 2:
9497
9498 DWP Version 2 combines all the .debug_info, etc. sections into one,
9499 and the entries in the index tables are now offsets into these sections.
9500 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9501 section.
9502
9503 Index Section Contents:
9504 Header
9505 Hash Table of Signatures dwp_hash_table.hash_table
9506 Parallel Table of Indices dwp_hash_table.unit_table
9507 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9508 Table of Section Sizes dwp_hash_table.v2.sizes
9509
9510 The index section header consists of:
9511
9512 V, 32 bit version number
9513 L, 32 bit number of columns in the table of section offsets
9514 N, 32 bit number of compilation units or type units in the index
9515 M, 32 bit number of slots in the hash table
9516
9517 Numbers are recorded using the byte order of the application binary.
9518
9519 The hash table has the same format as version 1.
9520 The parallel table of indices has the same format as version 1,
9521 except that the entries are origin-1 indices into the table of sections
9522 offsets and the table of section sizes.
9523
9524 The table of offsets begins immediately following the parallel table
9525 (at offset 16 + 12 * M from the beginning of the section). The table is
9526 a two-dimensional array of 32-bit words (using the byte order of the
9527 application binary), with L columns and N+1 rows, in row-major order.
9528 Each row in the array is indexed starting from 0. The first row provides
9529 a key to the remaining rows: each column in this row provides an identifier
9530 for a debug section, and the offsets in the same column of subsequent rows
9531 refer to that section. The section identifiers are:
9532
9533 DW_SECT_INFO 1 .debug_info.dwo
9534 DW_SECT_TYPES 2 .debug_types.dwo
9535 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9536 DW_SECT_LINE 4 .debug_line.dwo
9537 DW_SECT_LOC 5 .debug_loc.dwo
9538 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9539 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9540 DW_SECT_MACRO 8 .debug_macro.dwo
9541
9542 The offsets provided by the CU and TU index sections are the base offsets
9543 for the contributions made by each CU or TU to the corresponding section
9544 in the package file. Each CU and TU header contains an abbrev_offset
9545 field, used to find the abbreviations table for that CU or TU within the
9546 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9547 be interpreted as relative to the base offset given in the index section.
9548 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9549 should be interpreted as relative to the base offset for .debug_line.dwo,
9550 and offsets into other debug sections obtained from DWARF attributes should
9551 also be interpreted as relative to the corresponding base offset.
9552
9553 The table of sizes begins immediately following the table of offsets.
9554 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9555 with L columns and N rows, in row-major order. Each row in the array is
9556 indexed starting from 1 (row 0 is shared by the two tables).
9557
9558 ---
9559
9560 Hash table lookup is handled the same in version 1 and 2:
9561
9562 We assume that N and M will not exceed 2^32 - 1.
9563 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9564
9565 Given a 64-bit compilation unit signature or a type signature S, an entry
9566 in the hash table is located as follows:
9567
9568 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9569 the low-order k bits all set to 1.
9570
9571 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9572
9573 3) If the hash table entry at index H matches the signature, use that
9574 entry. If the hash table entry at index H is unused (all zeroes),
9575 terminate the search: the signature is not present in the table.
9576
9577 4) Let H = (H + H') modulo M. Repeat at Step 3.
9578
9579 Because M > N and H' and M are relatively prime, the search is guaranteed
9580 to stop at an unused slot or find the match. */
9581
9582 /* Create a hash table to map DWO IDs to their CU/TU entry in
9583 .debug_{info,types}.dwo in DWP_FILE.
9584 Returns NULL if there isn't one.
9585 Note: This function processes DWP files only, not DWO files. */
9586
9587 static struct dwp_hash_table *
9588 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9589 {
9590 struct objfile *objfile = dwarf2_per_objfile->objfile;
9591 bfd *dbfd = dwp_file->dbfd;
9592 const gdb_byte *index_ptr, *index_end;
9593 struct dwarf2_section_info *index;
9594 uint32_t version, nr_columns, nr_units, nr_slots;
9595 struct dwp_hash_table *htab;
9596
9597 if (is_debug_types)
9598 index = &dwp_file->sections.tu_index;
9599 else
9600 index = &dwp_file->sections.cu_index;
9601
9602 if (dwarf2_section_empty_p (index))
9603 return NULL;
9604 dwarf2_read_section (objfile, index);
9605
9606 index_ptr = index->buffer;
9607 index_end = index_ptr + index->size;
9608
9609 version = read_4_bytes (dbfd, index_ptr);
9610 index_ptr += 4;
9611 if (version == 2)
9612 nr_columns = read_4_bytes (dbfd, index_ptr);
9613 else
9614 nr_columns = 0;
9615 index_ptr += 4;
9616 nr_units = read_4_bytes (dbfd, index_ptr);
9617 index_ptr += 4;
9618 nr_slots = read_4_bytes (dbfd, index_ptr);
9619 index_ptr += 4;
9620
9621 if (version != 1 && version != 2)
9622 {
9623 error (_("Dwarf Error: unsupported DWP file version (%s)"
9624 " [in module %s]"),
9625 pulongest (version), dwp_file->name);
9626 }
9627 if (nr_slots != (nr_slots & -nr_slots))
9628 {
9629 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9630 " is not power of 2 [in module %s]"),
9631 pulongest (nr_slots), dwp_file->name);
9632 }
9633
9634 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9635 htab->version = version;
9636 htab->nr_columns = nr_columns;
9637 htab->nr_units = nr_units;
9638 htab->nr_slots = nr_slots;
9639 htab->hash_table = index_ptr;
9640 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9641
9642 /* Exit early if the table is empty. */
9643 if (nr_slots == 0 || nr_units == 0
9644 || (version == 2 && nr_columns == 0))
9645 {
9646 /* All must be zero. */
9647 if (nr_slots != 0 || nr_units != 0
9648 || (version == 2 && nr_columns != 0))
9649 {
9650 complaint (&symfile_complaints,
9651 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9652 " all zero [in modules %s]"),
9653 dwp_file->name);
9654 }
9655 return htab;
9656 }
9657
9658 if (version == 1)
9659 {
9660 htab->section_pool.v1.indices =
9661 htab->unit_table + sizeof (uint32_t) * nr_slots;
9662 /* It's harder to decide whether the section is too small in v1.
9663 V1 is deprecated anyway so we punt. */
9664 }
9665 else
9666 {
9667 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9668 int *ids = htab->section_pool.v2.section_ids;
9669 /* Reverse map for error checking. */
9670 int ids_seen[DW_SECT_MAX + 1];
9671 int i;
9672
9673 if (nr_columns < 2)
9674 {
9675 error (_("Dwarf Error: bad DWP hash table, too few columns"
9676 " in section table [in module %s]"),
9677 dwp_file->name);
9678 }
9679 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9680 {
9681 error (_("Dwarf Error: bad DWP hash table, too many columns"
9682 " in section table [in module %s]"),
9683 dwp_file->name);
9684 }
9685 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9686 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9687 for (i = 0; i < nr_columns; ++i)
9688 {
9689 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9690
9691 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9692 {
9693 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9694 " in section table [in module %s]"),
9695 id, dwp_file->name);
9696 }
9697 if (ids_seen[id] != -1)
9698 {
9699 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9700 " id %d in section table [in module %s]"),
9701 id, dwp_file->name);
9702 }
9703 ids_seen[id] = i;
9704 ids[i] = id;
9705 }
9706 /* Must have exactly one info or types section. */
9707 if (((ids_seen[DW_SECT_INFO] != -1)
9708 + (ids_seen[DW_SECT_TYPES] != -1))
9709 != 1)
9710 {
9711 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9712 " DWO info/types section [in module %s]"),
9713 dwp_file->name);
9714 }
9715 /* Must have an abbrev section. */
9716 if (ids_seen[DW_SECT_ABBREV] == -1)
9717 {
9718 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9719 " section [in module %s]"),
9720 dwp_file->name);
9721 }
9722 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9723 htab->section_pool.v2.sizes =
9724 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9725 * nr_units * nr_columns);
9726 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9727 * nr_units * nr_columns))
9728 > index_end)
9729 {
9730 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9731 " [in module %s]"),
9732 dwp_file->name);
9733 }
9734 }
9735
9736 return htab;
9737 }
9738
9739 /* Update SECTIONS with the data from SECTP.
9740
9741 This function is like the other "locate" section routines that are
9742 passed to bfd_map_over_sections, but in this context the sections to
9743 read comes from the DWP V1 hash table, not the full ELF section table.
9744
9745 The result is non-zero for success, or zero if an error was found. */
9746
9747 static int
9748 locate_v1_virtual_dwo_sections (asection *sectp,
9749 struct virtual_v1_dwo_sections *sections)
9750 {
9751 const struct dwop_section_names *names = &dwop_section_names;
9752
9753 if (section_is_p (sectp->name, &names->abbrev_dwo))
9754 {
9755 /* There can be only one. */
9756 if (sections->abbrev.s.asection != NULL)
9757 return 0;
9758 sections->abbrev.s.asection = sectp;
9759 sections->abbrev.size = bfd_get_section_size (sectp);
9760 }
9761 else if (section_is_p (sectp->name, &names->info_dwo)
9762 || section_is_p (sectp->name, &names->types_dwo))
9763 {
9764 /* There can be only one. */
9765 if (sections->info_or_types.s.asection != NULL)
9766 return 0;
9767 sections->info_or_types.s.asection = sectp;
9768 sections->info_or_types.size = bfd_get_section_size (sectp);
9769 }
9770 else if (section_is_p (sectp->name, &names->line_dwo))
9771 {
9772 /* There can be only one. */
9773 if (sections->line.s.asection != NULL)
9774 return 0;
9775 sections->line.s.asection = sectp;
9776 sections->line.size = bfd_get_section_size (sectp);
9777 }
9778 else if (section_is_p (sectp->name, &names->loc_dwo))
9779 {
9780 /* There can be only one. */
9781 if (sections->loc.s.asection != NULL)
9782 return 0;
9783 sections->loc.s.asection = sectp;
9784 sections->loc.size = bfd_get_section_size (sectp);
9785 }
9786 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9787 {
9788 /* There can be only one. */
9789 if (sections->macinfo.s.asection != NULL)
9790 return 0;
9791 sections->macinfo.s.asection = sectp;
9792 sections->macinfo.size = bfd_get_section_size (sectp);
9793 }
9794 else if (section_is_p (sectp->name, &names->macro_dwo))
9795 {
9796 /* There can be only one. */
9797 if (sections->macro.s.asection != NULL)
9798 return 0;
9799 sections->macro.s.asection = sectp;
9800 sections->macro.size = bfd_get_section_size (sectp);
9801 }
9802 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9803 {
9804 /* There can be only one. */
9805 if (sections->str_offsets.s.asection != NULL)
9806 return 0;
9807 sections->str_offsets.s.asection = sectp;
9808 sections->str_offsets.size = bfd_get_section_size (sectp);
9809 }
9810 else
9811 {
9812 /* No other kind of section is valid. */
9813 return 0;
9814 }
9815
9816 return 1;
9817 }
9818
9819 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9820 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9821 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9822 This is for DWP version 1 files. */
9823
9824 static struct dwo_unit *
9825 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9826 uint32_t unit_index,
9827 const char *comp_dir,
9828 ULONGEST signature, int is_debug_types)
9829 {
9830 struct objfile *objfile = dwarf2_per_objfile->objfile;
9831 const struct dwp_hash_table *dwp_htab =
9832 is_debug_types ? dwp_file->tus : dwp_file->cus;
9833 bfd *dbfd = dwp_file->dbfd;
9834 const char *kind = is_debug_types ? "TU" : "CU";
9835 struct dwo_file *dwo_file;
9836 struct dwo_unit *dwo_unit;
9837 struct virtual_v1_dwo_sections sections;
9838 void **dwo_file_slot;
9839 char *virtual_dwo_name;
9840 struct dwarf2_section_info *cutu;
9841 struct cleanup *cleanups;
9842 int i;
9843
9844 gdb_assert (dwp_file->version == 1);
9845
9846 if (dwarf2_read_debug)
9847 {
9848 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9849 kind,
9850 pulongest (unit_index), hex_string (signature),
9851 dwp_file->name);
9852 }
9853
9854 /* Fetch the sections of this DWO unit.
9855 Put a limit on the number of sections we look for so that bad data
9856 doesn't cause us to loop forever. */
9857
9858 #define MAX_NR_V1_DWO_SECTIONS \
9859 (1 /* .debug_info or .debug_types */ \
9860 + 1 /* .debug_abbrev */ \
9861 + 1 /* .debug_line */ \
9862 + 1 /* .debug_loc */ \
9863 + 1 /* .debug_str_offsets */ \
9864 + 1 /* .debug_macro or .debug_macinfo */ \
9865 + 1 /* trailing zero */)
9866
9867 memset (&sections, 0, sizeof (sections));
9868 cleanups = make_cleanup (null_cleanup, 0);
9869
9870 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9871 {
9872 asection *sectp;
9873 uint32_t section_nr =
9874 read_4_bytes (dbfd,
9875 dwp_htab->section_pool.v1.indices
9876 + (unit_index + i) * sizeof (uint32_t));
9877
9878 if (section_nr == 0)
9879 break;
9880 if (section_nr >= dwp_file->num_sections)
9881 {
9882 error (_("Dwarf Error: bad DWP hash table, section number too large"
9883 " [in module %s]"),
9884 dwp_file->name);
9885 }
9886
9887 sectp = dwp_file->elf_sections[section_nr];
9888 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9889 {
9890 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9891 " [in module %s]"),
9892 dwp_file->name);
9893 }
9894 }
9895
9896 if (i < 2
9897 || dwarf2_section_empty_p (&sections.info_or_types)
9898 || dwarf2_section_empty_p (&sections.abbrev))
9899 {
9900 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9901 " [in module %s]"),
9902 dwp_file->name);
9903 }
9904 if (i == MAX_NR_V1_DWO_SECTIONS)
9905 {
9906 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9907 " [in module %s]"),
9908 dwp_file->name);
9909 }
9910
9911 /* It's easier for the rest of the code if we fake a struct dwo_file and
9912 have dwo_unit "live" in that. At least for now.
9913
9914 The DWP file can be made up of a random collection of CUs and TUs.
9915 However, for each CU + set of TUs that came from the same original DWO
9916 file, we can combine them back into a virtual DWO file to save space
9917 (fewer struct dwo_file objects to allocate). Remember that for really
9918 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9919
9920 virtual_dwo_name =
9921 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9922 get_section_id (&sections.abbrev),
9923 get_section_id (&sections.line),
9924 get_section_id (&sections.loc),
9925 get_section_id (&sections.str_offsets));
9926 make_cleanup (xfree, virtual_dwo_name);
9927 /* Can we use an existing virtual DWO file? */
9928 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9929 /* Create one if necessary. */
9930 if (*dwo_file_slot == NULL)
9931 {
9932 if (dwarf2_read_debug)
9933 {
9934 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9935 virtual_dwo_name);
9936 }
9937 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9938 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9939 virtual_dwo_name,
9940 strlen (virtual_dwo_name));
9941 dwo_file->comp_dir = comp_dir;
9942 dwo_file->sections.abbrev = sections.abbrev;
9943 dwo_file->sections.line = sections.line;
9944 dwo_file->sections.loc = sections.loc;
9945 dwo_file->sections.macinfo = sections.macinfo;
9946 dwo_file->sections.macro = sections.macro;
9947 dwo_file->sections.str_offsets = sections.str_offsets;
9948 /* The "str" section is global to the entire DWP file. */
9949 dwo_file->sections.str = dwp_file->sections.str;
9950 /* The info or types section is assigned below to dwo_unit,
9951 there's no need to record it in dwo_file.
9952 Also, we can't simply record type sections in dwo_file because
9953 we record a pointer into the vector in dwo_unit. As we collect more
9954 types we'll grow the vector and eventually have to reallocate space
9955 for it, invalidating all copies of pointers into the previous
9956 contents. */
9957 *dwo_file_slot = dwo_file;
9958 }
9959 else
9960 {
9961 if (dwarf2_read_debug)
9962 {
9963 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9964 virtual_dwo_name);
9965 }
9966 dwo_file = *dwo_file_slot;
9967 }
9968 do_cleanups (cleanups);
9969
9970 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9971 dwo_unit->dwo_file = dwo_file;
9972 dwo_unit->signature = signature;
9973 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9974 sizeof (struct dwarf2_section_info));
9975 *dwo_unit->section = sections.info_or_types;
9976 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9977
9978 return dwo_unit;
9979 }
9980
9981 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9982 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9983 piece within that section used by a TU/CU, return a virtual section
9984 of just that piece. */
9985
9986 static struct dwarf2_section_info
9987 create_dwp_v2_section (struct dwarf2_section_info *section,
9988 bfd_size_type offset, bfd_size_type size)
9989 {
9990 struct dwarf2_section_info result;
9991 asection *sectp;
9992
9993 gdb_assert (section != NULL);
9994 gdb_assert (!section->is_virtual);
9995
9996 memset (&result, 0, sizeof (result));
9997 result.s.containing_section = section;
9998 result.is_virtual = 1;
9999
10000 if (size == 0)
10001 return result;
10002
10003 sectp = get_section_bfd_section (section);
10004
10005 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10006 bounds of the real section. This is a pretty-rare event, so just
10007 flag an error (easier) instead of a warning and trying to cope. */
10008 if (sectp == NULL
10009 || offset + size > bfd_get_section_size (sectp))
10010 {
10011 bfd *abfd = sectp->owner;
10012
10013 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10014 " in section %s [in module %s]"),
10015 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10016 objfile_name (dwarf2_per_objfile->objfile));
10017 }
10018
10019 result.virtual_offset = offset;
10020 result.size = size;
10021 return result;
10022 }
10023
10024 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10025 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10026 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10027 This is for DWP version 2 files. */
10028
10029 static struct dwo_unit *
10030 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10031 uint32_t unit_index,
10032 const char *comp_dir,
10033 ULONGEST signature, int is_debug_types)
10034 {
10035 struct objfile *objfile = dwarf2_per_objfile->objfile;
10036 const struct dwp_hash_table *dwp_htab =
10037 is_debug_types ? dwp_file->tus : dwp_file->cus;
10038 bfd *dbfd = dwp_file->dbfd;
10039 const char *kind = is_debug_types ? "TU" : "CU";
10040 struct dwo_file *dwo_file;
10041 struct dwo_unit *dwo_unit;
10042 struct virtual_v2_dwo_sections sections;
10043 void **dwo_file_slot;
10044 char *virtual_dwo_name;
10045 struct dwarf2_section_info *cutu;
10046 struct cleanup *cleanups;
10047 int i;
10048
10049 gdb_assert (dwp_file->version == 2);
10050
10051 if (dwarf2_read_debug)
10052 {
10053 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10054 kind,
10055 pulongest (unit_index), hex_string (signature),
10056 dwp_file->name);
10057 }
10058
10059 /* Fetch the section offsets of this DWO unit. */
10060
10061 memset (&sections, 0, sizeof (sections));
10062 cleanups = make_cleanup (null_cleanup, 0);
10063
10064 for (i = 0; i < dwp_htab->nr_columns; ++i)
10065 {
10066 uint32_t offset = read_4_bytes (dbfd,
10067 dwp_htab->section_pool.v2.offsets
10068 + (((unit_index - 1) * dwp_htab->nr_columns
10069 + i)
10070 * sizeof (uint32_t)));
10071 uint32_t size = read_4_bytes (dbfd,
10072 dwp_htab->section_pool.v2.sizes
10073 + (((unit_index - 1) * dwp_htab->nr_columns
10074 + i)
10075 * sizeof (uint32_t)));
10076
10077 switch (dwp_htab->section_pool.v2.section_ids[i])
10078 {
10079 case DW_SECT_INFO:
10080 case DW_SECT_TYPES:
10081 sections.info_or_types_offset = offset;
10082 sections.info_or_types_size = size;
10083 break;
10084 case DW_SECT_ABBREV:
10085 sections.abbrev_offset = offset;
10086 sections.abbrev_size = size;
10087 break;
10088 case DW_SECT_LINE:
10089 sections.line_offset = offset;
10090 sections.line_size = size;
10091 break;
10092 case DW_SECT_LOC:
10093 sections.loc_offset = offset;
10094 sections.loc_size = size;
10095 break;
10096 case DW_SECT_STR_OFFSETS:
10097 sections.str_offsets_offset = offset;
10098 sections.str_offsets_size = size;
10099 break;
10100 case DW_SECT_MACINFO:
10101 sections.macinfo_offset = offset;
10102 sections.macinfo_size = size;
10103 break;
10104 case DW_SECT_MACRO:
10105 sections.macro_offset = offset;
10106 sections.macro_size = size;
10107 break;
10108 }
10109 }
10110
10111 /* It's easier for the rest of the code if we fake a struct dwo_file and
10112 have dwo_unit "live" in that. At least for now.
10113
10114 The DWP file can be made up of a random collection of CUs and TUs.
10115 However, for each CU + set of TUs that came from the same original DWO
10116 file, we can combine them back into a virtual DWO file to save space
10117 (fewer struct dwo_file objects to allocate). Remember that for really
10118 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10119
10120 virtual_dwo_name =
10121 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10122 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10123 (long) (sections.line_size ? sections.line_offset : 0),
10124 (long) (sections.loc_size ? sections.loc_offset : 0),
10125 (long) (sections.str_offsets_size
10126 ? sections.str_offsets_offset : 0));
10127 make_cleanup (xfree, virtual_dwo_name);
10128 /* Can we use an existing virtual DWO file? */
10129 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10130 /* Create one if necessary. */
10131 if (*dwo_file_slot == NULL)
10132 {
10133 if (dwarf2_read_debug)
10134 {
10135 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10136 virtual_dwo_name);
10137 }
10138 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10139 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10140 virtual_dwo_name,
10141 strlen (virtual_dwo_name));
10142 dwo_file->comp_dir = comp_dir;
10143 dwo_file->sections.abbrev =
10144 create_dwp_v2_section (&dwp_file->sections.abbrev,
10145 sections.abbrev_offset, sections.abbrev_size);
10146 dwo_file->sections.line =
10147 create_dwp_v2_section (&dwp_file->sections.line,
10148 sections.line_offset, sections.line_size);
10149 dwo_file->sections.loc =
10150 create_dwp_v2_section (&dwp_file->sections.loc,
10151 sections.loc_offset, sections.loc_size);
10152 dwo_file->sections.macinfo =
10153 create_dwp_v2_section (&dwp_file->sections.macinfo,
10154 sections.macinfo_offset, sections.macinfo_size);
10155 dwo_file->sections.macro =
10156 create_dwp_v2_section (&dwp_file->sections.macro,
10157 sections.macro_offset, sections.macro_size);
10158 dwo_file->sections.str_offsets =
10159 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10160 sections.str_offsets_offset,
10161 sections.str_offsets_size);
10162 /* The "str" section is global to the entire DWP file. */
10163 dwo_file->sections.str = dwp_file->sections.str;
10164 /* The info or types section is assigned below to dwo_unit,
10165 there's no need to record it in dwo_file.
10166 Also, we can't simply record type sections in dwo_file because
10167 we record a pointer into the vector in dwo_unit. As we collect more
10168 types we'll grow the vector and eventually have to reallocate space
10169 for it, invalidating all copies of pointers into the previous
10170 contents. */
10171 *dwo_file_slot = dwo_file;
10172 }
10173 else
10174 {
10175 if (dwarf2_read_debug)
10176 {
10177 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10178 virtual_dwo_name);
10179 }
10180 dwo_file = *dwo_file_slot;
10181 }
10182 do_cleanups (cleanups);
10183
10184 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10185 dwo_unit->dwo_file = dwo_file;
10186 dwo_unit->signature = signature;
10187 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10188 sizeof (struct dwarf2_section_info));
10189 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10190 ? &dwp_file->sections.types
10191 : &dwp_file->sections.info,
10192 sections.info_or_types_offset,
10193 sections.info_or_types_size);
10194 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10195
10196 return dwo_unit;
10197 }
10198
10199 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10200 Returns NULL if the signature isn't found. */
10201
10202 static struct dwo_unit *
10203 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10204 ULONGEST signature, int is_debug_types)
10205 {
10206 const struct dwp_hash_table *dwp_htab =
10207 is_debug_types ? dwp_file->tus : dwp_file->cus;
10208 bfd *dbfd = dwp_file->dbfd;
10209 uint32_t mask = dwp_htab->nr_slots - 1;
10210 uint32_t hash = signature & mask;
10211 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10212 unsigned int i;
10213 void **slot;
10214 struct dwo_unit find_dwo_cu, *dwo_cu;
10215
10216 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10217 find_dwo_cu.signature = signature;
10218 slot = htab_find_slot (is_debug_types
10219 ? dwp_file->loaded_tus
10220 : dwp_file->loaded_cus,
10221 &find_dwo_cu, INSERT);
10222
10223 if (*slot != NULL)
10224 return *slot;
10225
10226 /* Use a for loop so that we don't loop forever on bad debug info. */
10227 for (i = 0; i < dwp_htab->nr_slots; ++i)
10228 {
10229 ULONGEST signature_in_table;
10230
10231 signature_in_table =
10232 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10233 if (signature_in_table == signature)
10234 {
10235 uint32_t unit_index =
10236 read_4_bytes (dbfd,
10237 dwp_htab->unit_table + hash * sizeof (uint32_t));
10238
10239 if (dwp_file->version == 1)
10240 {
10241 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10242 comp_dir, signature,
10243 is_debug_types);
10244 }
10245 else
10246 {
10247 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10248 comp_dir, signature,
10249 is_debug_types);
10250 }
10251 return *slot;
10252 }
10253 if (signature_in_table == 0)
10254 return NULL;
10255 hash = (hash + hash2) & mask;
10256 }
10257
10258 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10259 " [in module %s]"),
10260 dwp_file->name);
10261 }
10262
10263 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10264 Open the file specified by FILE_NAME and hand it off to BFD for
10265 preliminary analysis. Return a newly initialized bfd *, which
10266 includes a canonicalized copy of FILE_NAME.
10267 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10268 SEARCH_CWD is true if the current directory is to be searched.
10269 It will be searched before debug-file-directory.
10270 If successful, the file is added to the bfd include table of the
10271 objfile's bfd (see gdb_bfd_record_inclusion).
10272 If unable to find/open the file, return NULL.
10273 NOTE: This function is derived from symfile_bfd_open. */
10274
10275 static bfd *
10276 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10277 {
10278 bfd *sym_bfd;
10279 int desc, flags;
10280 char *absolute_name;
10281 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10282 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10283 to debug_file_directory. */
10284 char *search_path;
10285 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10286
10287 if (search_cwd)
10288 {
10289 if (*debug_file_directory != '\0')
10290 search_path = concat (".", dirname_separator_string,
10291 debug_file_directory, NULL);
10292 else
10293 search_path = xstrdup (".");
10294 }
10295 else
10296 search_path = xstrdup (debug_file_directory);
10297
10298 flags = OPF_RETURN_REALPATH;
10299 if (is_dwp)
10300 flags |= OPF_SEARCH_IN_PATH;
10301 desc = openp (search_path, flags, file_name,
10302 O_RDONLY | O_BINARY, &absolute_name);
10303 xfree (search_path);
10304 if (desc < 0)
10305 return NULL;
10306
10307 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10308 xfree (absolute_name);
10309 if (sym_bfd == NULL)
10310 return NULL;
10311 bfd_set_cacheable (sym_bfd, 1);
10312
10313 if (!bfd_check_format (sym_bfd, bfd_object))
10314 {
10315 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10316 return NULL;
10317 }
10318
10319 /* Success. Record the bfd as having been included by the objfile's bfd.
10320 This is important because things like demangled_names_hash lives in the
10321 objfile's per_bfd space and may have references to things like symbol
10322 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10323 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10324
10325 return sym_bfd;
10326 }
10327
10328 /* Try to open DWO file FILE_NAME.
10329 COMP_DIR is the DW_AT_comp_dir attribute.
10330 The result is the bfd handle of the file.
10331 If there is a problem finding or opening the file, return NULL.
10332 Upon success, the canonicalized path of the file is stored in the bfd,
10333 same as symfile_bfd_open. */
10334
10335 static bfd *
10336 open_dwo_file (const char *file_name, const char *comp_dir)
10337 {
10338 bfd *abfd;
10339
10340 if (IS_ABSOLUTE_PATH (file_name))
10341 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10342
10343 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10344
10345 if (comp_dir != NULL)
10346 {
10347 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10348
10349 /* NOTE: If comp_dir is a relative path, this will also try the
10350 search path, which seems useful. */
10351 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10352 xfree (path_to_try);
10353 if (abfd != NULL)
10354 return abfd;
10355 }
10356
10357 /* That didn't work, try debug-file-directory, which, despite its name,
10358 is a list of paths. */
10359
10360 if (*debug_file_directory == '\0')
10361 return NULL;
10362
10363 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10364 }
10365
10366 /* This function is mapped across the sections and remembers the offset and
10367 size of each of the DWO debugging sections we are interested in. */
10368
10369 static void
10370 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10371 {
10372 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10373 const struct dwop_section_names *names = &dwop_section_names;
10374
10375 if (section_is_p (sectp->name, &names->abbrev_dwo))
10376 {
10377 dwo_sections->abbrev.s.asection = sectp;
10378 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10379 }
10380 else if (section_is_p (sectp->name, &names->info_dwo))
10381 {
10382 dwo_sections->info.s.asection = sectp;
10383 dwo_sections->info.size = bfd_get_section_size (sectp);
10384 }
10385 else if (section_is_p (sectp->name, &names->line_dwo))
10386 {
10387 dwo_sections->line.s.asection = sectp;
10388 dwo_sections->line.size = bfd_get_section_size (sectp);
10389 }
10390 else if (section_is_p (sectp->name, &names->loc_dwo))
10391 {
10392 dwo_sections->loc.s.asection = sectp;
10393 dwo_sections->loc.size = bfd_get_section_size (sectp);
10394 }
10395 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10396 {
10397 dwo_sections->macinfo.s.asection = sectp;
10398 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10399 }
10400 else if (section_is_p (sectp->name, &names->macro_dwo))
10401 {
10402 dwo_sections->macro.s.asection = sectp;
10403 dwo_sections->macro.size = bfd_get_section_size (sectp);
10404 }
10405 else if (section_is_p (sectp->name, &names->str_dwo))
10406 {
10407 dwo_sections->str.s.asection = sectp;
10408 dwo_sections->str.size = bfd_get_section_size (sectp);
10409 }
10410 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10411 {
10412 dwo_sections->str_offsets.s.asection = sectp;
10413 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10414 }
10415 else if (section_is_p (sectp->name, &names->types_dwo))
10416 {
10417 struct dwarf2_section_info type_section;
10418
10419 memset (&type_section, 0, sizeof (type_section));
10420 type_section.s.asection = sectp;
10421 type_section.size = bfd_get_section_size (sectp);
10422 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10423 &type_section);
10424 }
10425 }
10426
10427 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10428 by PER_CU. This is for the non-DWP case.
10429 The result is NULL if DWO_NAME can't be found. */
10430
10431 static struct dwo_file *
10432 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10433 const char *dwo_name, const char *comp_dir)
10434 {
10435 struct objfile *objfile = dwarf2_per_objfile->objfile;
10436 struct dwo_file *dwo_file;
10437 bfd *dbfd;
10438 struct cleanup *cleanups;
10439
10440 dbfd = open_dwo_file (dwo_name, comp_dir);
10441 if (dbfd == NULL)
10442 {
10443 if (dwarf2_read_debug)
10444 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10445 return NULL;
10446 }
10447 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10448 dwo_file->dwo_name = dwo_name;
10449 dwo_file->comp_dir = comp_dir;
10450 dwo_file->dbfd = dbfd;
10451
10452 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10453
10454 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10455
10456 dwo_file->cu = create_dwo_cu (dwo_file);
10457
10458 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10459 dwo_file->sections.types);
10460
10461 discard_cleanups (cleanups);
10462
10463 if (dwarf2_read_debug)
10464 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10465
10466 return dwo_file;
10467 }
10468
10469 /* This function is mapped across the sections and remembers the offset and
10470 size of each of the DWP debugging sections common to version 1 and 2 that
10471 we are interested in. */
10472
10473 static void
10474 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10475 void *dwp_file_ptr)
10476 {
10477 struct dwp_file *dwp_file = dwp_file_ptr;
10478 const struct dwop_section_names *names = &dwop_section_names;
10479 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10480
10481 /* Record the ELF section number for later lookup: this is what the
10482 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10483 gdb_assert (elf_section_nr < dwp_file->num_sections);
10484 dwp_file->elf_sections[elf_section_nr] = sectp;
10485
10486 /* Look for specific sections that we need. */
10487 if (section_is_p (sectp->name, &names->str_dwo))
10488 {
10489 dwp_file->sections.str.s.asection = sectp;
10490 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10491 }
10492 else if (section_is_p (sectp->name, &names->cu_index))
10493 {
10494 dwp_file->sections.cu_index.s.asection = sectp;
10495 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10496 }
10497 else if (section_is_p (sectp->name, &names->tu_index))
10498 {
10499 dwp_file->sections.tu_index.s.asection = sectp;
10500 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10501 }
10502 }
10503
10504 /* This function is mapped across the sections and remembers the offset and
10505 size of each of the DWP version 2 debugging sections that we are interested
10506 in. This is split into a separate function because we don't know if we
10507 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10508
10509 static void
10510 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10511 {
10512 struct dwp_file *dwp_file = dwp_file_ptr;
10513 const struct dwop_section_names *names = &dwop_section_names;
10514 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10515
10516 /* Record the ELF section number for later lookup: this is what the
10517 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10518 gdb_assert (elf_section_nr < dwp_file->num_sections);
10519 dwp_file->elf_sections[elf_section_nr] = sectp;
10520
10521 /* Look for specific sections that we need. */
10522 if (section_is_p (sectp->name, &names->abbrev_dwo))
10523 {
10524 dwp_file->sections.abbrev.s.asection = sectp;
10525 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10526 }
10527 else if (section_is_p (sectp->name, &names->info_dwo))
10528 {
10529 dwp_file->sections.info.s.asection = sectp;
10530 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10531 }
10532 else if (section_is_p (sectp->name, &names->line_dwo))
10533 {
10534 dwp_file->sections.line.s.asection = sectp;
10535 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10536 }
10537 else if (section_is_p (sectp->name, &names->loc_dwo))
10538 {
10539 dwp_file->sections.loc.s.asection = sectp;
10540 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10541 }
10542 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10543 {
10544 dwp_file->sections.macinfo.s.asection = sectp;
10545 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10546 }
10547 else if (section_is_p (sectp->name, &names->macro_dwo))
10548 {
10549 dwp_file->sections.macro.s.asection = sectp;
10550 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10551 }
10552 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10553 {
10554 dwp_file->sections.str_offsets.s.asection = sectp;
10555 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10556 }
10557 else if (section_is_p (sectp->name, &names->types_dwo))
10558 {
10559 dwp_file->sections.types.s.asection = sectp;
10560 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10561 }
10562 }
10563
10564 /* Hash function for dwp_file loaded CUs/TUs. */
10565
10566 static hashval_t
10567 hash_dwp_loaded_cutus (const void *item)
10568 {
10569 const struct dwo_unit *dwo_unit = item;
10570
10571 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10572 return dwo_unit->signature;
10573 }
10574
10575 /* Equality function for dwp_file loaded CUs/TUs. */
10576
10577 static int
10578 eq_dwp_loaded_cutus (const void *a, const void *b)
10579 {
10580 const struct dwo_unit *dua = a;
10581 const struct dwo_unit *dub = b;
10582
10583 return dua->signature == dub->signature;
10584 }
10585
10586 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10587
10588 static htab_t
10589 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10590 {
10591 return htab_create_alloc_ex (3,
10592 hash_dwp_loaded_cutus,
10593 eq_dwp_loaded_cutus,
10594 NULL,
10595 &objfile->objfile_obstack,
10596 hashtab_obstack_allocate,
10597 dummy_obstack_deallocate);
10598 }
10599
10600 /* Try to open DWP file FILE_NAME.
10601 The result is the bfd handle of the file.
10602 If there is a problem finding or opening the file, return NULL.
10603 Upon success, the canonicalized path of the file is stored in the bfd,
10604 same as symfile_bfd_open. */
10605
10606 static bfd *
10607 open_dwp_file (const char *file_name)
10608 {
10609 bfd *abfd;
10610
10611 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10612 if (abfd != NULL)
10613 return abfd;
10614
10615 /* Work around upstream bug 15652.
10616 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10617 [Whether that's a "bug" is debatable, but it is getting in our way.]
10618 We have no real idea where the dwp file is, because gdb's realpath-ing
10619 of the executable's path may have discarded the needed info.
10620 [IWBN if the dwp file name was recorded in the executable, akin to
10621 .gnu_debuglink, but that doesn't exist yet.]
10622 Strip the directory from FILE_NAME and search again. */
10623 if (*debug_file_directory != '\0')
10624 {
10625 /* Don't implicitly search the current directory here.
10626 If the user wants to search "." to handle this case,
10627 it must be added to debug-file-directory. */
10628 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10629 0 /*search_cwd*/);
10630 }
10631
10632 return NULL;
10633 }
10634
10635 /* Initialize the use of the DWP file for the current objfile.
10636 By convention the name of the DWP file is ${objfile}.dwp.
10637 The result is NULL if it can't be found. */
10638
10639 static struct dwp_file *
10640 open_and_init_dwp_file (void)
10641 {
10642 struct objfile *objfile = dwarf2_per_objfile->objfile;
10643 struct dwp_file *dwp_file;
10644 char *dwp_name;
10645 bfd *dbfd;
10646 struct cleanup *cleanups;
10647
10648 /* Try to find first .dwp for the binary file before any symbolic links
10649 resolving. */
10650 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10651 cleanups = make_cleanup (xfree, dwp_name);
10652
10653 dbfd = open_dwp_file (dwp_name);
10654 if (dbfd == NULL
10655 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10656 {
10657 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10658 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10659 make_cleanup (xfree, dwp_name);
10660 dbfd = open_dwp_file (dwp_name);
10661 }
10662
10663 if (dbfd == NULL)
10664 {
10665 if (dwarf2_read_debug)
10666 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10667 do_cleanups (cleanups);
10668 return NULL;
10669 }
10670 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10671 dwp_file->name = bfd_get_filename (dbfd);
10672 dwp_file->dbfd = dbfd;
10673 do_cleanups (cleanups);
10674
10675 /* +1: section 0 is unused */
10676 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10677 dwp_file->elf_sections =
10678 OBSTACK_CALLOC (&objfile->objfile_obstack,
10679 dwp_file->num_sections, asection *);
10680
10681 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10682
10683 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10684
10685 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10686
10687 /* The DWP file version is stored in the hash table. Oh well. */
10688 if (dwp_file->cus->version != dwp_file->tus->version)
10689 {
10690 /* Technically speaking, we should try to limp along, but this is
10691 pretty bizarre. We use pulongest here because that's the established
10692 portability solution (e.g, we cannot use %u for uint32_t). */
10693 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10694 " TU version %s [in DWP file %s]"),
10695 pulongest (dwp_file->cus->version),
10696 pulongest (dwp_file->tus->version), dwp_name);
10697 }
10698 dwp_file->version = dwp_file->cus->version;
10699
10700 if (dwp_file->version == 2)
10701 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10702
10703 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10704 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10705
10706 if (dwarf2_read_debug)
10707 {
10708 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10709 fprintf_unfiltered (gdb_stdlog,
10710 " %s CUs, %s TUs\n",
10711 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10712 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10713 }
10714
10715 return dwp_file;
10716 }
10717
10718 /* Wrapper around open_and_init_dwp_file, only open it once. */
10719
10720 static struct dwp_file *
10721 get_dwp_file (void)
10722 {
10723 if (! dwarf2_per_objfile->dwp_checked)
10724 {
10725 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10726 dwarf2_per_objfile->dwp_checked = 1;
10727 }
10728 return dwarf2_per_objfile->dwp_file;
10729 }
10730
10731 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10732 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10733 or in the DWP file for the objfile, referenced by THIS_UNIT.
10734 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10735 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10736
10737 This is called, for example, when wanting to read a variable with a
10738 complex location. Therefore we don't want to do file i/o for every call.
10739 Therefore we don't want to look for a DWO file on every call.
10740 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10741 then we check if we've already seen DWO_NAME, and only THEN do we check
10742 for a DWO file.
10743
10744 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10745 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10746
10747 static struct dwo_unit *
10748 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10749 const char *dwo_name, const char *comp_dir,
10750 ULONGEST signature, int is_debug_types)
10751 {
10752 struct objfile *objfile = dwarf2_per_objfile->objfile;
10753 const char *kind = is_debug_types ? "TU" : "CU";
10754 void **dwo_file_slot;
10755 struct dwo_file *dwo_file;
10756 struct dwp_file *dwp_file;
10757
10758 /* First see if there's a DWP file.
10759 If we have a DWP file but didn't find the DWO inside it, don't
10760 look for the original DWO file. It makes gdb behave differently
10761 depending on whether one is debugging in the build tree. */
10762
10763 dwp_file = get_dwp_file ();
10764 if (dwp_file != NULL)
10765 {
10766 const struct dwp_hash_table *dwp_htab =
10767 is_debug_types ? dwp_file->tus : dwp_file->cus;
10768
10769 if (dwp_htab != NULL)
10770 {
10771 struct dwo_unit *dwo_cutu =
10772 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10773 signature, is_debug_types);
10774
10775 if (dwo_cutu != NULL)
10776 {
10777 if (dwarf2_read_debug)
10778 {
10779 fprintf_unfiltered (gdb_stdlog,
10780 "Virtual DWO %s %s found: @%s\n",
10781 kind, hex_string (signature),
10782 host_address_to_string (dwo_cutu));
10783 }
10784 return dwo_cutu;
10785 }
10786 }
10787 }
10788 else
10789 {
10790 /* No DWP file, look for the DWO file. */
10791
10792 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10793 if (*dwo_file_slot == NULL)
10794 {
10795 /* Read in the file and build a table of the CUs/TUs it contains. */
10796 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10797 }
10798 /* NOTE: This will be NULL if unable to open the file. */
10799 dwo_file = *dwo_file_slot;
10800
10801 if (dwo_file != NULL)
10802 {
10803 struct dwo_unit *dwo_cutu = NULL;
10804
10805 if (is_debug_types && dwo_file->tus)
10806 {
10807 struct dwo_unit find_dwo_cutu;
10808
10809 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10810 find_dwo_cutu.signature = signature;
10811 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10812 }
10813 else if (!is_debug_types && dwo_file->cu)
10814 {
10815 if (signature == dwo_file->cu->signature)
10816 dwo_cutu = dwo_file->cu;
10817 }
10818
10819 if (dwo_cutu != NULL)
10820 {
10821 if (dwarf2_read_debug)
10822 {
10823 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10824 kind, dwo_name, hex_string (signature),
10825 host_address_to_string (dwo_cutu));
10826 }
10827 return dwo_cutu;
10828 }
10829 }
10830 }
10831
10832 /* We didn't find it. This could mean a dwo_id mismatch, or
10833 someone deleted the DWO/DWP file, or the search path isn't set up
10834 correctly to find the file. */
10835
10836 if (dwarf2_read_debug)
10837 {
10838 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10839 kind, dwo_name, hex_string (signature));
10840 }
10841
10842 /* This is a warning and not a complaint because it can be caused by
10843 pilot error (e.g., user accidentally deleting the DWO). */
10844 {
10845 /* Print the name of the DWP file if we looked there, helps the user
10846 better diagnose the problem. */
10847 char *dwp_text = NULL;
10848 struct cleanup *cleanups;
10849
10850 if (dwp_file != NULL)
10851 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10852 cleanups = make_cleanup (xfree, dwp_text);
10853
10854 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10855 " [in module %s]"),
10856 kind, dwo_name, hex_string (signature),
10857 dwp_text != NULL ? dwp_text : "",
10858 this_unit->is_debug_types ? "TU" : "CU",
10859 this_unit->offset.sect_off, objfile_name (objfile));
10860
10861 do_cleanups (cleanups);
10862 }
10863 return NULL;
10864 }
10865
10866 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10867 See lookup_dwo_cutu_unit for details. */
10868
10869 static struct dwo_unit *
10870 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10871 const char *dwo_name, const char *comp_dir,
10872 ULONGEST signature)
10873 {
10874 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10875 }
10876
10877 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10878 See lookup_dwo_cutu_unit for details. */
10879
10880 static struct dwo_unit *
10881 lookup_dwo_type_unit (struct signatured_type *this_tu,
10882 const char *dwo_name, const char *comp_dir)
10883 {
10884 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10885 }
10886
10887 /* Traversal function for queue_and_load_all_dwo_tus. */
10888
10889 static int
10890 queue_and_load_dwo_tu (void **slot, void *info)
10891 {
10892 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10893 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10894 ULONGEST signature = dwo_unit->signature;
10895 struct signatured_type *sig_type =
10896 lookup_dwo_signatured_type (per_cu->cu, signature);
10897
10898 if (sig_type != NULL)
10899 {
10900 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10901
10902 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10903 a real dependency of PER_CU on SIG_TYPE. That is detected later
10904 while processing PER_CU. */
10905 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10906 load_full_type_unit (sig_cu);
10907 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10908 }
10909
10910 return 1;
10911 }
10912
10913 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10914 The DWO may have the only definition of the type, though it may not be
10915 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10916 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10917
10918 static void
10919 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10920 {
10921 struct dwo_unit *dwo_unit;
10922 struct dwo_file *dwo_file;
10923
10924 gdb_assert (!per_cu->is_debug_types);
10925 gdb_assert (get_dwp_file () == NULL);
10926 gdb_assert (per_cu->cu != NULL);
10927
10928 dwo_unit = per_cu->cu->dwo_unit;
10929 gdb_assert (dwo_unit != NULL);
10930
10931 dwo_file = dwo_unit->dwo_file;
10932 if (dwo_file->tus != NULL)
10933 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10934 }
10935
10936 /* Free all resources associated with DWO_FILE.
10937 Close the DWO file and munmap the sections.
10938 All memory should be on the objfile obstack. */
10939
10940 static void
10941 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10942 {
10943 int ix;
10944 struct dwarf2_section_info *section;
10945
10946 /* Note: dbfd is NULL for virtual DWO files. */
10947 gdb_bfd_unref (dwo_file->dbfd);
10948
10949 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10950 }
10951
10952 /* Wrapper for free_dwo_file for use in cleanups. */
10953
10954 static void
10955 free_dwo_file_cleanup (void *arg)
10956 {
10957 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10958 struct objfile *objfile = dwarf2_per_objfile->objfile;
10959
10960 free_dwo_file (dwo_file, objfile);
10961 }
10962
10963 /* Traversal function for free_dwo_files. */
10964
10965 static int
10966 free_dwo_file_from_slot (void **slot, void *info)
10967 {
10968 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10969 struct objfile *objfile = (struct objfile *) info;
10970
10971 free_dwo_file (dwo_file, objfile);
10972
10973 return 1;
10974 }
10975
10976 /* Free all resources associated with DWO_FILES. */
10977
10978 static void
10979 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10980 {
10981 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10982 }
10983 \f
10984 /* Read in various DIEs. */
10985
10986 /* qsort helper for inherit_abstract_dies. */
10987
10988 static int
10989 unsigned_int_compar (const void *ap, const void *bp)
10990 {
10991 unsigned int a = *(unsigned int *) ap;
10992 unsigned int b = *(unsigned int *) bp;
10993
10994 return (a > b) - (b > a);
10995 }
10996
10997 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
10998 Inherit only the children of the DW_AT_abstract_origin DIE not being
10999 already referenced by DW_AT_abstract_origin from the children of the
11000 current DIE. */
11001
11002 static void
11003 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11004 {
11005 struct die_info *child_die;
11006 unsigned die_children_count;
11007 /* CU offsets which were referenced by children of the current DIE. */
11008 sect_offset *offsets;
11009 sect_offset *offsets_end, *offsetp;
11010 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11011 struct die_info *origin_die;
11012 /* Iterator of the ORIGIN_DIE children. */
11013 struct die_info *origin_child_die;
11014 struct cleanup *cleanups;
11015 struct attribute *attr;
11016 struct dwarf2_cu *origin_cu;
11017 struct pending **origin_previous_list_in_scope;
11018
11019 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11020 if (!attr)
11021 return;
11022
11023 /* Note that following die references may follow to a die in a
11024 different cu. */
11025
11026 origin_cu = cu;
11027 origin_die = follow_die_ref (die, attr, &origin_cu);
11028
11029 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11030 symbols in. */
11031 origin_previous_list_in_scope = origin_cu->list_in_scope;
11032 origin_cu->list_in_scope = cu->list_in_scope;
11033
11034 if (die->tag != origin_die->tag
11035 && !(die->tag == DW_TAG_inlined_subroutine
11036 && origin_die->tag == DW_TAG_subprogram))
11037 complaint (&symfile_complaints,
11038 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11039 die->offset.sect_off, origin_die->offset.sect_off);
11040
11041 child_die = die->child;
11042 die_children_count = 0;
11043 while (child_die && child_die->tag)
11044 {
11045 child_die = sibling_die (child_die);
11046 die_children_count++;
11047 }
11048 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11049 cleanups = make_cleanup (xfree, offsets);
11050
11051 offsets_end = offsets;
11052 child_die = die->child;
11053 while (child_die && child_die->tag)
11054 {
11055 /* For each CHILD_DIE, find the corresponding child of
11056 ORIGIN_DIE. If there is more than one layer of
11057 DW_AT_abstract_origin, follow them all; there shouldn't be,
11058 but GCC versions at least through 4.4 generate this (GCC PR
11059 40573). */
11060 struct die_info *child_origin_die = child_die;
11061 struct dwarf2_cu *child_origin_cu = cu;
11062
11063 while (1)
11064 {
11065 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11066 child_origin_cu);
11067 if (attr == NULL)
11068 break;
11069 child_origin_die = follow_die_ref (child_origin_die, attr,
11070 &child_origin_cu);
11071 }
11072
11073 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11074 counterpart may exist. */
11075 if (child_origin_die != child_die)
11076 {
11077 if (child_die->tag != child_origin_die->tag
11078 && !(child_die->tag == DW_TAG_inlined_subroutine
11079 && child_origin_die->tag == DW_TAG_subprogram))
11080 complaint (&symfile_complaints,
11081 _("Child DIE 0x%x and its abstract origin 0x%x have "
11082 "different tags"), child_die->offset.sect_off,
11083 child_origin_die->offset.sect_off);
11084 if (child_origin_die->parent != origin_die)
11085 complaint (&symfile_complaints,
11086 _("Child DIE 0x%x and its abstract origin 0x%x have "
11087 "different parents"), child_die->offset.sect_off,
11088 child_origin_die->offset.sect_off);
11089 else
11090 *offsets_end++ = child_origin_die->offset;
11091 }
11092 child_die = sibling_die (child_die);
11093 }
11094 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11095 unsigned_int_compar);
11096 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11097 if (offsetp[-1].sect_off == offsetp->sect_off)
11098 complaint (&symfile_complaints,
11099 _("Multiple children of DIE 0x%x refer "
11100 "to DIE 0x%x as their abstract origin"),
11101 die->offset.sect_off, offsetp->sect_off);
11102
11103 offsetp = offsets;
11104 origin_child_die = origin_die->child;
11105 while (origin_child_die && origin_child_die->tag)
11106 {
11107 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11108 while (offsetp < offsets_end
11109 && offsetp->sect_off < origin_child_die->offset.sect_off)
11110 offsetp++;
11111 if (offsetp >= offsets_end
11112 || offsetp->sect_off > origin_child_die->offset.sect_off)
11113 {
11114 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11115 Check whether we're already processing ORIGIN_CHILD_DIE.
11116 This can happen with mutually referenced abstract_origins.
11117 PR 16581. */
11118 if (!origin_child_die->in_process)
11119 process_die (origin_child_die, origin_cu);
11120 }
11121 origin_child_die = sibling_die (origin_child_die);
11122 }
11123 origin_cu->list_in_scope = origin_previous_list_in_scope;
11124
11125 do_cleanups (cleanups);
11126 }
11127
11128 static void
11129 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11130 {
11131 struct objfile *objfile = cu->objfile;
11132 struct context_stack *new;
11133 CORE_ADDR lowpc;
11134 CORE_ADDR highpc;
11135 struct die_info *child_die;
11136 struct attribute *attr, *call_line, *call_file;
11137 const char *name;
11138 CORE_ADDR baseaddr;
11139 struct block *block;
11140 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11141 VEC (symbolp) *template_args = NULL;
11142 struct template_symbol *templ_func = NULL;
11143
11144 if (inlined_func)
11145 {
11146 /* If we do not have call site information, we can't show the
11147 caller of this inlined function. That's too confusing, so
11148 only use the scope for local variables. */
11149 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11150 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11151 if (call_line == NULL || call_file == NULL)
11152 {
11153 read_lexical_block_scope (die, cu);
11154 return;
11155 }
11156 }
11157
11158 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11159
11160 name = dwarf2_name (die, cu);
11161
11162 /* Ignore functions with missing or empty names. These are actually
11163 illegal according to the DWARF standard. */
11164 if (name == NULL)
11165 {
11166 complaint (&symfile_complaints,
11167 _("missing name for subprogram DIE at %d"),
11168 die->offset.sect_off);
11169 return;
11170 }
11171
11172 /* Ignore functions with missing or invalid low and high pc attributes. */
11173 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11174 {
11175 attr = dwarf2_attr (die, DW_AT_external, cu);
11176 if (!attr || !DW_UNSND (attr))
11177 complaint (&symfile_complaints,
11178 _("cannot get low and high bounds "
11179 "for subprogram DIE at %d"),
11180 die->offset.sect_off);
11181 return;
11182 }
11183
11184 lowpc += baseaddr;
11185 highpc += baseaddr;
11186
11187 /* If we have any template arguments, then we must allocate a
11188 different sort of symbol. */
11189 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11190 {
11191 if (child_die->tag == DW_TAG_template_type_param
11192 || child_die->tag == DW_TAG_template_value_param)
11193 {
11194 templ_func = allocate_template_symbol (objfile);
11195 templ_func->base.is_cplus_template_function = 1;
11196 break;
11197 }
11198 }
11199
11200 new = push_context (0, lowpc);
11201 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11202 (struct symbol *) templ_func);
11203
11204 /* If there is a location expression for DW_AT_frame_base, record
11205 it. */
11206 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11207 if (attr)
11208 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11209
11210 cu->list_in_scope = &local_symbols;
11211
11212 if (die->child != NULL)
11213 {
11214 child_die = die->child;
11215 while (child_die && child_die->tag)
11216 {
11217 if (child_die->tag == DW_TAG_template_type_param
11218 || child_die->tag == DW_TAG_template_value_param)
11219 {
11220 struct symbol *arg = new_symbol (child_die, NULL, cu);
11221
11222 if (arg != NULL)
11223 VEC_safe_push (symbolp, template_args, arg);
11224 }
11225 else
11226 process_die (child_die, cu);
11227 child_die = sibling_die (child_die);
11228 }
11229 }
11230
11231 inherit_abstract_dies (die, cu);
11232
11233 /* If we have a DW_AT_specification, we might need to import using
11234 directives from the context of the specification DIE. See the
11235 comment in determine_prefix. */
11236 if (cu->language == language_cplus
11237 && dwarf2_attr (die, DW_AT_specification, cu))
11238 {
11239 struct dwarf2_cu *spec_cu = cu;
11240 struct die_info *spec_die = die_specification (die, &spec_cu);
11241
11242 while (spec_die)
11243 {
11244 child_die = spec_die->child;
11245 while (child_die && child_die->tag)
11246 {
11247 if (child_die->tag == DW_TAG_imported_module)
11248 process_die (child_die, spec_cu);
11249 child_die = sibling_die (child_die);
11250 }
11251
11252 /* In some cases, GCC generates specification DIEs that
11253 themselves contain DW_AT_specification attributes. */
11254 spec_die = die_specification (spec_die, &spec_cu);
11255 }
11256 }
11257
11258 new = pop_context ();
11259 /* Make a block for the local symbols within. */
11260 block = finish_block (new->name, &local_symbols, new->old_blocks,
11261 lowpc, highpc, objfile);
11262
11263 /* For C++, set the block's scope. */
11264 if ((cu->language == language_cplus || cu->language == language_fortran)
11265 && cu->processing_has_namespace_info)
11266 block_set_scope (block, determine_prefix (die, cu),
11267 &objfile->objfile_obstack);
11268
11269 /* If we have address ranges, record them. */
11270 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11271
11272 /* Attach template arguments to function. */
11273 if (! VEC_empty (symbolp, template_args))
11274 {
11275 gdb_assert (templ_func != NULL);
11276
11277 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11278 templ_func->template_arguments
11279 = obstack_alloc (&objfile->objfile_obstack,
11280 (templ_func->n_template_arguments
11281 * sizeof (struct symbol *)));
11282 memcpy (templ_func->template_arguments,
11283 VEC_address (symbolp, template_args),
11284 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11285 VEC_free (symbolp, template_args);
11286 }
11287
11288 /* In C++, we can have functions nested inside functions (e.g., when
11289 a function declares a class that has methods). This means that
11290 when we finish processing a function scope, we may need to go
11291 back to building a containing block's symbol lists. */
11292 local_symbols = new->locals;
11293 using_directives = new->using_directives;
11294
11295 /* If we've finished processing a top-level function, subsequent
11296 symbols go in the file symbol list. */
11297 if (outermost_context_p ())
11298 cu->list_in_scope = &file_symbols;
11299 }
11300
11301 /* Process all the DIES contained within a lexical block scope. Start
11302 a new scope, process the dies, and then close the scope. */
11303
11304 static void
11305 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11306 {
11307 struct objfile *objfile = cu->objfile;
11308 struct context_stack *new;
11309 CORE_ADDR lowpc, highpc;
11310 struct die_info *child_die;
11311 CORE_ADDR baseaddr;
11312
11313 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11314
11315 /* Ignore blocks with missing or invalid low and high pc attributes. */
11316 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11317 as multiple lexical blocks? Handling children in a sane way would
11318 be nasty. Might be easier to properly extend generic blocks to
11319 describe ranges. */
11320 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11321 return;
11322 lowpc += baseaddr;
11323 highpc += baseaddr;
11324
11325 push_context (0, lowpc);
11326 if (die->child != NULL)
11327 {
11328 child_die = die->child;
11329 while (child_die && child_die->tag)
11330 {
11331 process_die (child_die, cu);
11332 child_die = sibling_die (child_die);
11333 }
11334 }
11335 new = pop_context ();
11336
11337 if (local_symbols != NULL || using_directives != NULL)
11338 {
11339 struct block *block
11340 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11341 highpc, objfile);
11342
11343 /* Note that recording ranges after traversing children, as we
11344 do here, means that recording a parent's ranges entails
11345 walking across all its children's ranges as they appear in
11346 the address map, which is quadratic behavior.
11347
11348 It would be nicer to record the parent's ranges before
11349 traversing its children, simply overriding whatever you find
11350 there. But since we don't even decide whether to create a
11351 block until after we've traversed its children, that's hard
11352 to do. */
11353 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11354 }
11355 local_symbols = new->locals;
11356 using_directives = new->using_directives;
11357 }
11358
11359 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11360
11361 static void
11362 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11363 {
11364 struct objfile *objfile = cu->objfile;
11365 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11366 CORE_ADDR pc, baseaddr;
11367 struct attribute *attr;
11368 struct call_site *call_site, call_site_local;
11369 void **slot;
11370 int nparams;
11371 struct die_info *child_die;
11372
11373 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11374
11375 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11376 if (!attr)
11377 {
11378 complaint (&symfile_complaints,
11379 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11380 "DIE 0x%x [in module %s]"),
11381 die->offset.sect_off, objfile_name (objfile));
11382 return;
11383 }
11384 pc = attr_value_as_address (attr) + baseaddr;
11385
11386 if (cu->call_site_htab == NULL)
11387 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11388 NULL, &objfile->objfile_obstack,
11389 hashtab_obstack_allocate, NULL);
11390 call_site_local.pc = pc;
11391 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11392 if (*slot != NULL)
11393 {
11394 complaint (&symfile_complaints,
11395 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11396 "DIE 0x%x [in module %s]"),
11397 paddress (gdbarch, pc), die->offset.sect_off,
11398 objfile_name (objfile));
11399 return;
11400 }
11401
11402 /* Count parameters at the caller. */
11403
11404 nparams = 0;
11405 for (child_die = die->child; child_die && child_die->tag;
11406 child_die = sibling_die (child_die))
11407 {
11408 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11409 {
11410 complaint (&symfile_complaints,
11411 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11412 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11413 child_die->tag, child_die->offset.sect_off,
11414 objfile_name (objfile));
11415 continue;
11416 }
11417
11418 nparams++;
11419 }
11420
11421 call_site = obstack_alloc (&objfile->objfile_obstack,
11422 (sizeof (*call_site)
11423 + (sizeof (*call_site->parameter)
11424 * (nparams - 1))));
11425 *slot = call_site;
11426 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11427 call_site->pc = pc;
11428
11429 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11430 {
11431 struct die_info *func_die;
11432
11433 /* Skip also over DW_TAG_inlined_subroutine. */
11434 for (func_die = die->parent;
11435 func_die && func_die->tag != DW_TAG_subprogram
11436 && func_die->tag != DW_TAG_subroutine_type;
11437 func_die = func_die->parent);
11438
11439 /* DW_AT_GNU_all_call_sites is a superset
11440 of DW_AT_GNU_all_tail_call_sites. */
11441 if (func_die
11442 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11443 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11444 {
11445 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11446 not complete. But keep CALL_SITE for look ups via call_site_htab,
11447 both the initial caller containing the real return address PC and
11448 the final callee containing the current PC of a chain of tail
11449 calls do not need to have the tail call list complete. But any
11450 function candidate for a virtual tail call frame searched via
11451 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11452 determined unambiguously. */
11453 }
11454 else
11455 {
11456 struct type *func_type = NULL;
11457
11458 if (func_die)
11459 func_type = get_die_type (func_die, cu);
11460 if (func_type != NULL)
11461 {
11462 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11463
11464 /* Enlist this call site to the function. */
11465 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11466 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11467 }
11468 else
11469 complaint (&symfile_complaints,
11470 _("Cannot find function owning DW_TAG_GNU_call_site "
11471 "DIE 0x%x [in module %s]"),
11472 die->offset.sect_off, objfile_name (objfile));
11473 }
11474 }
11475
11476 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11477 if (attr == NULL)
11478 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11479 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11480 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11481 /* Keep NULL DWARF_BLOCK. */;
11482 else if (attr_form_is_block (attr))
11483 {
11484 struct dwarf2_locexpr_baton *dlbaton;
11485
11486 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11487 dlbaton->data = DW_BLOCK (attr)->data;
11488 dlbaton->size = DW_BLOCK (attr)->size;
11489 dlbaton->per_cu = cu->per_cu;
11490
11491 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11492 }
11493 else if (attr_form_is_ref (attr))
11494 {
11495 struct dwarf2_cu *target_cu = cu;
11496 struct die_info *target_die;
11497
11498 target_die = follow_die_ref (die, attr, &target_cu);
11499 gdb_assert (target_cu->objfile == objfile);
11500 if (die_is_declaration (target_die, target_cu))
11501 {
11502 const char *target_physname = NULL;
11503 struct attribute *target_attr;
11504
11505 /* Prefer the mangled name; otherwise compute the demangled one. */
11506 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11507 if (target_attr == NULL)
11508 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11509 target_cu);
11510 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11511 target_physname = DW_STRING (target_attr);
11512 else
11513 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11514 if (target_physname == NULL)
11515 complaint (&symfile_complaints,
11516 _("DW_AT_GNU_call_site_target target DIE has invalid "
11517 "physname, for referencing DIE 0x%x [in module %s]"),
11518 die->offset.sect_off, objfile_name (objfile));
11519 else
11520 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11521 }
11522 else
11523 {
11524 CORE_ADDR lowpc;
11525
11526 /* DW_AT_entry_pc should be preferred. */
11527 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11528 complaint (&symfile_complaints,
11529 _("DW_AT_GNU_call_site_target target DIE has invalid "
11530 "low pc, for referencing DIE 0x%x [in module %s]"),
11531 die->offset.sect_off, objfile_name (objfile));
11532 else
11533 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11534 }
11535 }
11536 else
11537 complaint (&symfile_complaints,
11538 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11539 "block nor reference, for DIE 0x%x [in module %s]"),
11540 die->offset.sect_off, objfile_name (objfile));
11541
11542 call_site->per_cu = cu->per_cu;
11543
11544 for (child_die = die->child;
11545 child_die && child_die->tag;
11546 child_die = sibling_die (child_die))
11547 {
11548 struct call_site_parameter *parameter;
11549 struct attribute *loc, *origin;
11550
11551 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11552 {
11553 /* Already printed the complaint above. */
11554 continue;
11555 }
11556
11557 gdb_assert (call_site->parameter_count < nparams);
11558 parameter = &call_site->parameter[call_site->parameter_count];
11559
11560 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11561 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11562 register is contained in DW_AT_GNU_call_site_value. */
11563
11564 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11565 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11566 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11567 {
11568 sect_offset offset;
11569
11570 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11571 offset = dwarf2_get_ref_die_offset (origin);
11572 if (!offset_in_cu_p (&cu->header, offset))
11573 {
11574 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11575 binding can be done only inside one CU. Such referenced DIE
11576 therefore cannot be even moved to DW_TAG_partial_unit. */
11577 complaint (&symfile_complaints,
11578 _("DW_AT_abstract_origin offset is not in CU for "
11579 "DW_TAG_GNU_call_site child DIE 0x%x "
11580 "[in module %s]"),
11581 child_die->offset.sect_off, objfile_name (objfile));
11582 continue;
11583 }
11584 parameter->u.param_offset.cu_off = (offset.sect_off
11585 - cu->header.offset.sect_off);
11586 }
11587 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11588 {
11589 complaint (&symfile_complaints,
11590 _("No DW_FORM_block* DW_AT_location for "
11591 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11592 child_die->offset.sect_off, objfile_name (objfile));
11593 continue;
11594 }
11595 else
11596 {
11597 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11598 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11599 if (parameter->u.dwarf_reg != -1)
11600 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11601 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11602 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11603 &parameter->u.fb_offset))
11604 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11605 else
11606 {
11607 complaint (&symfile_complaints,
11608 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11609 "for DW_FORM_block* DW_AT_location is supported for "
11610 "DW_TAG_GNU_call_site child DIE 0x%x "
11611 "[in module %s]"),
11612 child_die->offset.sect_off, objfile_name (objfile));
11613 continue;
11614 }
11615 }
11616
11617 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11618 if (!attr_form_is_block (attr))
11619 {
11620 complaint (&symfile_complaints,
11621 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11622 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11623 child_die->offset.sect_off, objfile_name (objfile));
11624 continue;
11625 }
11626 parameter->value = DW_BLOCK (attr)->data;
11627 parameter->value_size = DW_BLOCK (attr)->size;
11628
11629 /* Parameters are not pre-cleared by memset above. */
11630 parameter->data_value = NULL;
11631 parameter->data_value_size = 0;
11632 call_site->parameter_count++;
11633
11634 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11635 if (attr)
11636 {
11637 if (!attr_form_is_block (attr))
11638 complaint (&symfile_complaints,
11639 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11640 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11641 child_die->offset.sect_off, objfile_name (objfile));
11642 else
11643 {
11644 parameter->data_value = DW_BLOCK (attr)->data;
11645 parameter->data_value_size = DW_BLOCK (attr)->size;
11646 }
11647 }
11648 }
11649 }
11650
11651 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11652 Return 1 if the attributes are present and valid, otherwise, return 0.
11653 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11654
11655 static int
11656 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11657 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11658 struct partial_symtab *ranges_pst)
11659 {
11660 struct objfile *objfile = cu->objfile;
11661 struct comp_unit_head *cu_header = &cu->header;
11662 bfd *obfd = objfile->obfd;
11663 unsigned int addr_size = cu_header->addr_size;
11664 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11665 /* Base address selection entry. */
11666 CORE_ADDR base;
11667 int found_base;
11668 unsigned int dummy;
11669 const gdb_byte *buffer;
11670 CORE_ADDR marker;
11671 int low_set;
11672 CORE_ADDR low = 0;
11673 CORE_ADDR high = 0;
11674 CORE_ADDR baseaddr;
11675
11676 found_base = cu->base_known;
11677 base = cu->base_address;
11678
11679 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11680 if (offset >= dwarf2_per_objfile->ranges.size)
11681 {
11682 complaint (&symfile_complaints,
11683 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11684 offset);
11685 return 0;
11686 }
11687 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11688
11689 /* Read in the largest possible address. */
11690 marker = read_address (obfd, buffer, cu, &dummy);
11691 if ((marker & mask) == mask)
11692 {
11693 /* If we found the largest possible address, then
11694 read the base address. */
11695 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11696 buffer += 2 * addr_size;
11697 offset += 2 * addr_size;
11698 found_base = 1;
11699 }
11700
11701 low_set = 0;
11702
11703 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11704
11705 while (1)
11706 {
11707 CORE_ADDR range_beginning, range_end;
11708
11709 range_beginning = read_address (obfd, buffer, cu, &dummy);
11710 buffer += addr_size;
11711 range_end = read_address (obfd, buffer, cu, &dummy);
11712 buffer += addr_size;
11713 offset += 2 * addr_size;
11714
11715 /* An end of list marker is a pair of zero addresses. */
11716 if (range_beginning == 0 && range_end == 0)
11717 /* Found the end of list entry. */
11718 break;
11719
11720 /* Each base address selection entry is a pair of 2 values.
11721 The first is the largest possible address, the second is
11722 the base address. Check for a base address here. */
11723 if ((range_beginning & mask) == mask)
11724 {
11725 /* If we found the largest possible address, then
11726 read the base address. */
11727 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11728 found_base = 1;
11729 continue;
11730 }
11731
11732 if (!found_base)
11733 {
11734 /* We have no valid base address for the ranges
11735 data. */
11736 complaint (&symfile_complaints,
11737 _("Invalid .debug_ranges data (no base address)"));
11738 return 0;
11739 }
11740
11741 if (range_beginning > range_end)
11742 {
11743 /* Inverted range entries are invalid. */
11744 complaint (&symfile_complaints,
11745 _("Invalid .debug_ranges data (inverted range)"));
11746 return 0;
11747 }
11748
11749 /* Empty range entries have no effect. */
11750 if (range_beginning == range_end)
11751 continue;
11752
11753 range_beginning += base;
11754 range_end += base;
11755
11756 /* A not-uncommon case of bad debug info.
11757 Don't pollute the addrmap with bad data. */
11758 if (range_beginning + baseaddr == 0
11759 && !dwarf2_per_objfile->has_section_at_zero)
11760 {
11761 complaint (&symfile_complaints,
11762 _(".debug_ranges entry has start address of zero"
11763 " [in module %s]"), objfile_name (objfile));
11764 continue;
11765 }
11766
11767 if (ranges_pst != NULL)
11768 addrmap_set_empty (objfile->psymtabs_addrmap,
11769 range_beginning + baseaddr,
11770 range_end - 1 + baseaddr,
11771 ranges_pst);
11772
11773 /* FIXME: This is recording everything as a low-high
11774 segment of consecutive addresses. We should have a
11775 data structure for discontiguous block ranges
11776 instead. */
11777 if (! low_set)
11778 {
11779 low = range_beginning;
11780 high = range_end;
11781 low_set = 1;
11782 }
11783 else
11784 {
11785 if (range_beginning < low)
11786 low = range_beginning;
11787 if (range_end > high)
11788 high = range_end;
11789 }
11790 }
11791
11792 if (! low_set)
11793 /* If the first entry is an end-of-list marker, the range
11794 describes an empty scope, i.e. no instructions. */
11795 return 0;
11796
11797 if (low_return)
11798 *low_return = low;
11799 if (high_return)
11800 *high_return = high;
11801 return 1;
11802 }
11803
11804 /* Get low and high pc attributes from a die. Return 1 if the attributes
11805 are present and valid, otherwise, return 0. Return -1 if the range is
11806 discontinuous, i.e. derived from DW_AT_ranges information. */
11807
11808 static int
11809 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11810 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11811 struct partial_symtab *pst)
11812 {
11813 struct attribute *attr;
11814 struct attribute *attr_high;
11815 CORE_ADDR low = 0;
11816 CORE_ADDR high = 0;
11817 int ret = 0;
11818
11819 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11820 if (attr_high)
11821 {
11822 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11823 if (attr)
11824 {
11825 low = attr_value_as_address (attr);
11826 high = attr_value_as_address (attr_high);
11827 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11828 high += low;
11829 }
11830 else
11831 /* Found high w/o low attribute. */
11832 return 0;
11833
11834 /* Found consecutive range of addresses. */
11835 ret = 1;
11836 }
11837 else
11838 {
11839 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11840 if (attr != NULL)
11841 {
11842 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11843 We take advantage of the fact that DW_AT_ranges does not appear
11844 in DW_TAG_compile_unit of DWO files. */
11845 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11846 unsigned int ranges_offset = (DW_UNSND (attr)
11847 + (need_ranges_base
11848 ? cu->ranges_base
11849 : 0));
11850
11851 /* Value of the DW_AT_ranges attribute is the offset in the
11852 .debug_ranges section. */
11853 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11854 return 0;
11855 /* Found discontinuous range of addresses. */
11856 ret = -1;
11857 }
11858 }
11859
11860 /* read_partial_die has also the strict LOW < HIGH requirement. */
11861 if (high <= low)
11862 return 0;
11863
11864 /* When using the GNU linker, .gnu.linkonce. sections are used to
11865 eliminate duplicate copies of functions and vtables and such.
11866 The linker will arbitrarily choose one and discard the others.
11867 The AT_*_pc values for such functions refer to local labels in
11868 these sections. If the section from that file was discarded, the
11869 labels are not in the output, so the relocs get a value of 0.
11870 If this is a discarded function, mark the pc bounds as invalid,
11871 so that GDB will ignore it. */
11872 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11873 return 0;
11874
11875 *lowpc = low;
11876 if (highpc)
11877 *highpc = high;
11878 return ret;
11879 }
11880
11881 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11882 its low and high PC addresses. Do nothing if these addresses could not
11883 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11884 and HIGHPC to the high address if greater than HIGHPC. */
11885
11886 static void
11887 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11888 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11889 struct dwarf2_cu *cu)
11890 {
11891 CORE_ADDR low, high;
11892 struct die_info *child = die->child;
11893
11894 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11895 {
11896 *lowpc = min (*lowpc, low);
11897 *highpc = max (*highpc, high);
11898 }
11899
11900 /* If the language does not allow nested subprograms (either inside
11901 subprograms or lexical blocks), we're done. */
11902 if (cu->language != language_ada)
11903 return;
11904
11905 /* Check all the children of the given DIE. If it contains nested
11906 subprograms, then check their pc bounds. Likewise, we need to
11907 check lexical blocks as well, as they may also contain subprogram
11908 definitions. */
11909 while (child && child->tag)
11910 {
11911 if (child->tag == DW_TAG_subprogram
11912 || child->tag == DW_TAG_lexical_block)
11913 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11914 child = sibling_die (child);
11915 }
11916 }
11917
11918 /* Get the low and high pc's represented by the scope DIE, and store
11919 them in *LOWPC and *HIGHPC. If the correct values can't be
11920 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11921
11922 static void
11923 get_scope_pc_bounds (struct die_info *die,
11924 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11925 struct dwarf2_cu *cu)
11926 {
11927 CORE_ADDR best_low = (CORE_ADDR) -1;
11928 CORE_ADDR best_high = (CORE_ADDR) 0;
11929 CORE_ADDR current_low, current_high;
11930
11931 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11932 {
11933 best_low = current_low;
11934 best_high = current_high;
11935 }
11936 else
11937 {
11938 struct die_info *child = die->child;
11939
11940 while (child && child->tag)
11941 {
11942 switch (child->tag) {
11943 case DW_TAG_subprogram:
11944 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11945 break;
11946 case DW_TAG_namespace:
11947 case DW_TAG_module:
11948 /* FIXME: carlton/2004-01-16: Should we do this for
11949 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11950 that current GCC's always emit the DIEs corresponding
11951 to definitions of methods of classes as children of a
11952 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11953 the DIEs giving the declarations, which could be
11954 anywhere). But I don't see any reason why the
11955 standards says that they have to be there. */
11956 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11957
11958 if (current_low != ((CORE_ADDR) -1))
11959 {
11960 best_low = min (best_low, current_low);
11961 best_high = max (best_high, current_high);
11962 }
11963 break;
11964 default:
11965 /* Ignore. */
11966 break;
11967 }
11968
11969 child = sibling_die (child);
11970 }
11971 }
11972
11973 *lowpc = best_low;
11974 *highpc = best_high;
11975 }
11976
11977 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11978 in DIE. */
11979
11980 static void
11981 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11982 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11983 {
11984 struct objfile *objfile = cu->objfile;
11985 struct attribute *attr;
11986 struct attribute *attr_high;
11987
11988 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11989 if (attr_high)
11990 {
11991 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11992 if (attr)
11993 {
11994 CORE_ADDR low = attr_value_as_address (attr);
11995 CORE_ADDR high = attr_value_as_address (attr_high);
11996
11997 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11998 high += low;
11999
12000 record_block_range (block, baseaddr + low, baseaddr + high - 1);
12001 }
12002 }
12003
12004 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12005 if (attr)
12006 {
12007 bfd *obfd = objfile->obfd;
12008 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12009 We take advantage of the fact that DW_AT_ranges does not appear
12010 in DW_TAG_compile_unit of DWO files. */
12011 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12012
12013 /* The value of the DW_AT_ranges attribute is the offset of the
12014 address range list in the .debug_ranges section. */
12015 unsigned long offset = (DW_UNSND (attr)
12016 + (need_ranges_base ? cu->ranges_base : 0));
12017 const gdb_byte *buffer;
12018
12019 /* For some target architectures, but not others, the
12020 read_address function sign-extends the addresses it returns.
12021 To recognize base address selection entries, we need a
12022 mask. */
12023 unsigned int addr_size = cu->header.addr_size;
12024 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12025
12026 /* The base address, to which the next pair is relative. Note
12027 that this 'base' is a DWARF concept: most entries in a range
12028 list are relative, to reduce the number of relocs against the
12029 debugging information. This is separate from this function's
12030 'baseaddr' argument, which GDB uses to relocate debugging
12031 information from a shared library based on the address at
12032 which the library was loaded. */
12033 CORE_ADDR base = cu->base_address;
12034 int base_known = cu->base_known;
12035
12036 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12037 if (offset >= dwarf2_per_objfile->ranges.size)
12038 {
12039 complaint (&symfile_complaints,
12040 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12041 offset);
12042 return;
12043 }
12044 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12045
12046 for (;;)
12047 {
12048 unsigned int bytes_read;
12049 CORE_ADDR start, end;
12050
12051 start = read_address (obfd, buffer, cu, &bytes_read);
12052 buffer += bytes_read;
12053 end = read_address (obfd, buffer, cu, &bytes_read);
12054 buffer += bytes_read;
12055
12056 /* Did we find the end of the range list? */
12057 if (start == 0 && end == 0)
12058 break;
12059
12060 /* Did we find a base address selection entry? */
12061 else if ((start & base_select_mask) == base_select_mask)
12062 {
12063 base = end;
12064 base_known = 1;
12065 }
12066
12067 /* We found an ordinary address range. */
12068 else
12069 {
12070 if (!base_known)
12071 {
12072 complaint (&symfile_complaints,
12073 _("Invalid .debug_ranges data "
12074 "(no base address)"));
12075 return;
12076 }
12077
12078 if (start > end)
12079 {
12080 /* Inverted range entries are invalid. */
12081 complaint (&symfile_complaints,
12082 _("Invalid .debug_ranges data "
12083 "(inverted range)"));
12084 return;
12085 }
12086
12087 /* Empty range entries have no effect. */
12088 if (start == end)
12089 continue;
12090
12091 start += base + baseaddr;
12092 end += base + baseaddr;
12093
12094 /* A not-uncommon case of bad debug info.
12095 Don't pollute the addrmap with bad data. */
12096 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12097 {
12098 complaint (&symfile_complaints,
12099 _(".debug_ranges entry has start address of zero"
12100 " [in module %s]"), objfile_name (objfile));
12101 continue;
12102 }
12103
12104 record_block_range (block, start, end - 1);
12105 }
12106 }
12107 }
12108 }
12109
12110 /* Check whether the producer field indicates either of GCC < 4.6, or the
12111 Intel C/C++ compiler, and cache the result in CU. */
12112
12113 static void
12114 check_producer (struct dwarf2_cu *cu)
12115 {
12116 const char *cs;
12117 int major, minor, release;
12118
12119 if (cu->producer == NULL)
12120 {
12121 /* For unknown compilers expect their behavior is DWARF version
12122 compliant.
12123
12124 GCC started to support .debug_types sections by -gdwarf-4 since
12125 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12126 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12127 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12128 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12129 }
12130 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12131 {
12132 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12133
12134 cs = &cu->producer[strlen ("GNU ")];
12135 while (*cs && !isdigit (*cs))
12136 cs++;
12137 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12138 {
12139 /* Not recognized as GCC. */
12140 }
12141 else
12142 {
12143 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12144 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12145 }
12146 }
12147 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12148 cu->producer_is_icc = 1;
12149 else
12150 {
12151 /* For other non-GCC compilers, expect their behavior is DWARF version
12152 compliant. */
12153 }
12154
12155 cu->checked_producer = 1;
12156 }
12157
12158 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12159 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12160 during 4.6.0 experimental. */
12161
12162 static int
12163 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12164 {
12165 if (!cu->checked_producer)
12166 check_producer (cu);
12167
12168 return cu->producer_is_gxx_lt_4_6;
12169 }
12170
12171 /* Return the default accessibility type if it is not overriden by
12172 DW_AT_accessibility. */
12173
12174 static enum dwarf_access_attribute
12175 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12176 {
12177 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12178 {
12179 /* The default DWARF 2 accessibility for members is public, the default
12180 accessibility for inheritance is private. */
12181
12182 if (die->tag != DW_TAG_inheritance)
12183 return DW_ACCESS_public;
12184 else
12185 return DW_ACCESS_private;
12186 }
12187 else
12188 {
12189 /* DWARF 3+ defines the default accessibility a different way. The same
12190 rules apply now for DW_TAG_inheritance as for the members and it only
12191 depends on the container kind. */
12192
12193 if (die->parent->tag == DW_TAG_class_type)
12194 return DW_ACCESS_private;
12195 else
12196 return DW_ACCESS_public;
12197 }
12198 }
12199
12200 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12201 offset. If the attribute was not found return 0, otherwise return
12202 1. If it was found but could not properly be handled, set *OFFSET
12203 to 0. */
12204
12205 static int
12206 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12207 LONGEST *offset)
12208 {
12209 struct attribute *attr;
12210
12211 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12212 if (attr != NULL)
12213 {
12214 *offset = 0;
12215
12216 /* Note that we do not check for a section offset first here.
12217 This is because DW_AT_data_member_location is new in DWARF 4,
12218 so if we see it, we can assume that a constant form is really
12219 a constant and not a section offset. */
12220 if (attr_form_is_constant (attr))
12221 *offset = dwarf2_get_attr_constant_value (attr, 0);
12222 else if (attr_form_is_section_offset (attr))
12223 dwarf2_complex_location_expr_complaint ();
12224 else if (attr_form_is_block (attr))
12225 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12226 else
12227 dwarf2_complex_location_expr_complaint ();
12228
12229 return 1;
12230 }
12231
12232 return 0;
12233 }
12234
12235 /* Add an aggregate field to the field list. */
12236
12237 static void
12238 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12239 struct dwarf2_cu *cu)
12240 {
12241 struct objfile *objfile = cu->objfile;
12242 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12243 struct nextfield *new_field;
12244 struct attribute *attr;
12245 struct field *fp;
12246 const char *fieldname = "";
12247
12248 /* Allocate a new field list entry and link it in. */
12249 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12250 make_cleanup (xfree, new_field);
12251 memset (new_field, 0, sizeof (struct nextfield));
12252
12253 if (die->tag == DW_TAG_inheritance)
12254 {
12255 new_field->next = fip->baseclasses;
12256 fip->baseclasses = new_field;
12257 }
12258 else
12259 {
12260 new_field->next = fip->fields;
12261 fip->fields = new_field;
12262 }
12263 fip->nfields++;
12264
12265 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12266 if (attr)
12267 new_field->accessibility = DW_UNSND (attr);
12268 else
12269 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12270 if (new_field->accessibility != DW_ACCESS_public)
12271 fip->non_public_fields = 1;
12272
12273 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12274 if (attr)
12275 new_field->virtuality = DW_UNSND (attr);
12276 else
12277 new_field->virtuality = DW_VIRTUALITY_none;
12278
12279 fp = &new_field->field;
12280
12281 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12282 {
12283 LONGEST offset;
12284
12285 /* Data member other than a C++ static data member. */
12286
12287 /* Get type of field. */
12288 fp->type = die_type (die, cu);
12289
12290 SET_FIELD_BITPOS (*fp, 0);
12291
12292 /* Get bit size of field (zero if none). */
12293 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12294 if (attr)
12295 {
12296 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12297 }
12298 else
12299 {
12300 FIELD_BITSIZE (*fp) = 0;
12301 }
12302
12303 /* Get bit offset of field. */
12304 if (handle_data_member_location (die, cu, &offset))
12305 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12306 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12307 if (attr)
12308 {
12309 if (gdbarch_bits_big_endian (gdbarch))
12310 {
12311 /* For big endian bits, the DW_AT_bit_offset gives the
12312 additional bit offset from the MSB of the containing
12313 anonymous object to the MSB of the field. We don't
12314 have to do anything special since we don't need to
12315 know the size of the anonymous object. */
12316 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12317 }
12318 else
12319 {
12320 /* For little endian bits, compute the bit offset to the
12321 MSB of the anonymous object, subtract off the number of
12322 bits from the MSB of the field to the MSB of the
12323 object, and then subtract off the number of bits of
12324 the field itself. The result is the bit offset of
12325 the LSB of the field. */
12326 int anonymous_size;
12327 int bit_offset = DW_UNSND (attr);
12328
12329 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12330 if (attr)
12331 {
12332 /* The size of the anonymous object containing
12333 the bit field is explicit, so use the
12334 indicated size (in bytes). */
12335 anonymous_size = DW_UNSND (attr);
12336 }
12337 else
12338 {
12339 /* The size of the anonymous object containing
12340 the bit field must be inferred from the type
12341 attribute of the data member containing the
12342 bit field. */
12343 anonymous_size = TYPE_LENGTH (fp->type);
12344 }
12345 SET_FIELD_BITPOS (*fp,
12346 (FIELD_BITPOS (*fp)
12347 + anonymous_size * bits_per_byte
12348 - bit_offset - FIELD_BITSIZE (*fp)));
12349 }
12350 }
12351
12352 /* Get name of field. */
12353 fieldname = dwarf2_name (die, cu);
12354 if (fieldname == NULL)
12355 fieldname = "";
12356
12357 /* The name is already allocated along with this objfile, so we don't
12358 need to duplicate it for the type. */
12359 fp->name = fieldname;
12360
12361 /* Change accessibility for artificial fields (e.g. virtual table
12362 pointer or virtual base class pointer) to private. */
12363 if (dwarf2_attr (die, DW_AT_artificial, cu))
12364 {
12365 FIELD_ARTIFICIAL (*fp) = 1;
12366 new_field->accessibility = DW_ACCESS_private;
12367 fip->non_public_fields = 1;
12368 }
12369 }
12370 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12371 {
12372 /* C++ static member. */
12373
12374 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12375 is a declaration, but all versions of G++ as of this writing
12376 (so through at least 3.2.1) incorrectly generate
12377 DW_TAG_variable tags. */
12378
12379 const char *physname;
12380
12381 /* Get name of field. */
12382 fieldname = dwarf2_name (die, cu);
12383 if (fieldname == NULL)
12384 return;
12385
12386 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12387 if (attr
12388 /* Only create a symbol if this is an external value.
12389 new_symbol checks this and puts the value in the global symbol
12390 table, which we want. If it is not external, new_symbol
12391 will try to put the value in cu->list_in_scope which is wrong. */
12392 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12393 {
12394 /* A static const member, not much different than an enum as far as
12395 we're concerned, except that we can support more types. */
12396 new_symbol (die, NULL, cu);
12397 }
12398
12399 /* Get physical name. */
12400 physname = dwarf2_physname (fieldname, die, cu);
12401
12402 /* The name is already allocated along with this objfile, so we don't
12403 need to duplicate it for the type. */
12404 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12405 FIELD_TYPE (*fp) = die_type (die, cu);
12406 FIELD_NAME (*fp) = fieldname;
12407 }
12408 else if (die->tag == DW_TAG_inheritance)
12409 {
12410 LONGEST offset;
12411
12412 /* C++ base class field. */
12413 if (handle_data_member_location (die, cu, &offset))
12414 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12415 FIELD_BITSIZE (*fp) = 0;
12416 FIELD_TYPE (*fp) = die_type (die, cu);
12417 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12418 fip->nbaseclasses++;
12419 }
12420 }
12421
12422 /* Add a typedef defined in the scope of the FIP's class. */
12423
12424 static void
12425 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12426 struct dwarf2_cu *cu)
12427 {
12428 struct objfile *objfile = cu->objfile;
12429 struct typedef_field_list *new_field;
12430 struct attribute *attr;
12431 struct typedef_field *fp;
12432 char *fieldname = "";
12433
12434 /* Allocate a new field list entry and link it in. */
12435 new_field = xzalloc (sizeof (*new_field));
12436 make_cleanup (xfree, new_field);
12437
12438 gdb_assert (die->tag == DW_TAG_typedef);
12439
12440 fp = &new_field->field;
12441
12442 /* Get name of field. */
12443 fp->name = dwarf2_name (die, cu);
12444 if (fp->name == NULL)
12445 return;
12446
12447 fp->type = read_type_die (die, cu);
12448
12449 new_field->next = fip->typedef_field_list;
12450 fip->typedef_field_list = new_field;
12451 fip->typedef_field_list_count++;
12452 }
12453
12454 /* Create the vector of fields, and attach it to the type. */
12455
12456 static void
12457 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12458 struct dwarf2_cu *cu)
12459 {
12460 int nfields = fip->nfields;
12461
12462 /* Record the field count, allocate space for the array of fields,
12463 and create blank accessibility bitfields if necessary. */
12464 TYPE_NFIELDS (type) = nfields;
12465 TYPE_FIELDS (type) = (struct field *)
12466 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12467 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12468
12469 if (fip->non_public_fields && cu->language != language_ada)
12470 {
12471 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12472
12473 TYPE_FIELD_PRIVATE_BITS (type) =
12474 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12475 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12476
12477 TYPE_FIELD_PROTECTED_BITS (type) =
12478 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12479 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12480
12481 TYPE_FIELD_IGNORE_BITS (type) =
12482 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12483 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12484 }
12485
12486 /* If the type has baseclasses, allocate and clear a bit vector for
12487 TYPE_FIELD_VIRTUAL_BITS. */
12488 if (fip->nbaseclasses && cu->language != language_ada)
12489 {
12490 int num_bytes = B_BYTES (fip->nbaseclasses);
12491 unsigned char *pointer;
12492
12493 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12494 pointer = TYPE_ALLOC (type, num_bytes);
12495 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12496 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12497 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12498 }
12499
12500 /* Copy the saved-up fields into the field vector. Start from the head of
12501 the list, adding to the tail of the field array, so that they end up in
12502 the same order in the array in which they were added to the list. */
12503 while (nfields-- > 0)
12504 {
12505 struct nextfield *fieldp;
12506
12507 if (fip->fields)
12508 {
12509 fieldp = fip->fields;
12510 fip->fields = fieldp->next;
12511 }
12512 else
12513 {
12514 fieldp = fip->baseclasses;
12515 fip->baseclasses = fieldp->next;
12516 }
12517
12518 TYPE_FIELD (type, nfields) = fieldp->field;
12519 switch (fieldp->accessibility)
12520 {
12521 case DW_ACCESS_private:
12522 if (cu->language != language_ada)
12523 SET_TYPE_FIELD_PRIVATE (type, nfields);
12524 break;
12525
12526 case DW_ACCESS_protected:
12527 if (cu->language != language_ada)
12528 SET_TYPE_FIELD_PROTECTED (type, nfields);
12529 break;
12530
12531 case DW_ACCESS_public:
12532 break;
12533
12534 default:
12535 /* Unknown accessibility. Complain and treat it as public. */
12536 {
12537 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12538 fieldp->accessibility);
12539 }
12540 break;
12541 }
12542 if (nfields < fip->nbaseclasses)
12543 {
12544 switch (fieldp->virtuality)
12545 {
12546 case DW_VIRTUALITY_virtual:
12547 case DW_VIRTUALITY_pure_virtual:
12548 if (cu->language == language_ada)
12549 error (_("unexpected virtuality in component of Ada type"));
12550 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12551 break;
12552 }
12553 }
12554 }
12555 }
12556
12557 /* Return true if this member function is a constructor, false
12558 otherwise. */
12559
12560 static int
12561 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12562 {
12563 const char *fieldname;
12564 const char *typename;
12565 int len;
12566
12567 if (die->parent == NULL)
12568 return 0;
12569
12570 if (die->parent->tag != DW_TAG_structure_type
12571 && die->parent->tag != DW_TAG_union_type
12572 && die->parent->tag != DW_TAG_class_type)
12573 return 0;
12574
12575 fieldname = dwarf2_name (die, cu);
12576 typename = dwarf2_name (die->parent, cu);
12577 if (fieldname == NULL || typename == NULL)
12578 return 0;
12579
12580 len = strlen (fieldname);
12581 return (strncmp (fieldname, typename, len) == 0
12582 && (typename[len] == '\0' || typename[len] == '<'));
12583 }
12584
12585 /* Add a member function to the proper fieldlist. */
12586
12587 static void
12588 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12589 struct type *type, struct dwarf2_cu *cu)
12590 {
12591 struct objfile *objfile = cu->objfile;
12592 struct attribute *attr;
12593 struct fnfieldlist *flp;
12594 int i;
12595 struct fn_field *fnp;
12596 const char *fieldname;
12597 struct nextfnfield *new_fnfield;
12598 struct type *this_type;
12599 enum dwarf_access_attribute accessibility;
12600
12601 if (cu->language == language_ada)
12602 error (_("unexpected member function in Ada type"));
12603
12604 /* Get name of member function. */
12605 fieldname = dwarf2_name (die, cu);
12606 if (fieldname == NULL)
12607 return;
12608
12609 /* Look up member function name in fieldlist. */
12610 for (i = 0; i < fip->nfnfields; i++)
12611 {
12612 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12613 break;
12614 }
12615
12616 /* Create new list element if necessary. */
12617 if (i < fip->nfnfields)
12618 flp = &fip->fnfieldlists[i];
12619 else
12620 {
12621 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12622 {
12623 fip->fnfieldlists = (struct fnfieldlist *)
12624 xrealloc (fip->fnfieldlists,
12625 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12626 * sizeof (struct fnfieldlist));
12627 if (fip->nfnfields == 0)
12628 make_cleanup (free_current_contents, &fip->fnfieldlists);
12629 }
12630 flp = &fip->fnfieldlists[fip->nfnfields];
12631 flp->name = fieldname;
12632 flp->length = 0;
12633 flp->head = NULL;
12634 i = fip->nfnfields++;
12635 }
12636
12637 /* Create a new member function field and chain it to the field list
12638 entry. */
12639 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12640 make_cleanup (xfree, new_fnfield);
12641 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12642 new_fnfield->next = flp->head;
12643 flp->head = new_fnfield;
12644 flp->length++;
12645
12646 /* Fill in the member function field info. */
12647 fnp = &new_fnfield->fnfield;
12648
12649 /* Delay processing of the physname until later. */
12650 if (cu->language == language_cplus || cu->language == language_java)
12651 {
12652 add_to_method_list (type, i, flp->length - 1, fieldname,
12653 die, cu);
12654 }
12655 else
12656 {
12657 const char *physname = dwarf2_physname (fieldname, die, cu);
12658 fnp->physname = physname ? physname : "";
12659 }
12660
12661 fnp->type = alloc_type (objfile);
12662 this_type = read_type_die (die, cu);
12663 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12664 {
12665 int nparams = TYPE_NFIELDS (this_type);
12666
12667 /* TYPE is the domain of this method, and THIS_TYPE is the type
12668 of the method itself (TYPE_CODE_METHOD). */
12669 smash_to_method_type (fnp->type, type,
12670 TYPE_TARGET_TYPE (this_type),
12671 TYPE_FIELDS (this_type),
12672 TYPE_NFIELDS (this_type),
12673 TYPE_VARARGS (this_type));
12674
12675 /* Handle static member functions.
12676 Dwarf2 has no clean way to discern C++ static and non-static
12677 member functions. G++ helps GDB by marking the first
12678 parameter for non-static member functions (which is the this
12679 pointer) as artificial. We obtain this information from
12680 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12681 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12682 fnp->voffset = VOFFSET_STATIC;
12683 }
12684 else
12685 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12686 dwarf2_full_name (fieldname, die, cu));
12687
12688 /* Get fcontext from DW_AT_containing_type if present. */
12689 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12690 fnp->fcontext = die_containing_type (die, cu);
12691
12692 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12693 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12694
12695 /* Get accessibility. */
12696 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12697 if (attr)
12698 accessibility = DW_UNSND (attr);
12699 else
12700 accessibility = dwarf2_default_access_attribute (die, cu);
12701 switch (accessibility)
12702 {
12703 case DW_ACCESS_private:
12704 fnp->is_private = 1;
12705 break;
12706 case DW_ACCESS_protected:
12707 fnp->is_protected = 1;
12708 break;
12709 }
12710
12711 /* Check for artificial methods. */
12712 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12713 if (attr && DW_UNSND (attr) != 0)
12714 fnp->is_artificial = 1;
12715
12716 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12717
12718 /* Get index in virtual function table if it is a virtual member
12719 function. For older versions of GCC, this is an offset in the
12720 appropriate virtual table, as specified by DW_AT_containing_type.
12721 For everyone else, it is an expression to be evaluated relative
12722 to the object address. */
12723
12724 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12725 if (attr)
12726 {
12727 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12728 {
12729 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12730 {
12731 /* Old-style GCC. */
12732 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12733 }
12734 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12735 || (DW_BLOCK (attr)->size > 1
12736 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12737 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12738 {
12739 struct dwarf_block blk;
12740 int offset;
12741
12742 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12743 ? 1 : 2);
12744 blk.size = DW_BLOCK (attr)->size - offset;
12745 blk.data = DW_BLOCK (attr)->data + offset;
12746 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12747 if ((fnp->voffset % cu->header.addr_size) != 0)
12748 dwarf2_complex_location_expr_complaint ();
12749 else
12750 fnp->voffset /= cu->header.addr_size;
12751 fnp->voffset += 2;
12752 }
12753 else
12754 dwarf2_complex_location_expr_complaint ();
12755
12756 if (!fnp->fcontext)
12757 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12758 }
12759 else if (attr_form_is_section_offset (attr))
12760 {
12761 dwarf2_complex_location_expr_complaint ();
12762 }
12763 else
12764 {
12765 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12766 fieldname);
12767 }
12768 }
12769 else
12770 {
12771 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12772 if (attr && DW_UNSND (attr))
12773 {
12774 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12775 complaint (&symfile_complaints,
12776 _("Member function \"%s\" (offset %d) is virtual "
12777 "but the vtable offset is not specified"),
12778 fieldname, die->offset.sect_off);
12779 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12780 TYPE_CPLUS_DYNAMIC (type) = 1;
12781 }
12782 }
12783 }
12784
12785 /* Create the vector of member function fields, and attach it to the type. */
12786
12787 static void
12788 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12789 struct dwarf2_cu *cu)
12790 {
12791 struct fnfieldlist *flp;
12792 int i;
12793
12794 if (cu->language == language_ada)
12795 error (_("unexpected member functions in Ada type"));
12796
12797 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12798 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12799 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12800
12801 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12802 {
12803 struct nextfnfield *nfp = flp->head;
12804 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12805 int k;
12806
12807 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12808 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12809 fn_flp->fn_fields = (struct fn_field *)
12810 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12811 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12812 fn_flp->fn_fields[k] = nfp->fnfield;
12813 }
12814
12815 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12816 }
12817
12818 /* Returns non-zero if NAME is the name of a vtable member in CU's
12819 language, zero otherwise. */
12820 static int
12821 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12822 {
12823 static const char vptr[] = "_vptr";
12824 static const char vtable[] = "vtable";
12825
12826 /* Look for the C++ and Java forms of the vtable. */
12827 if ((cu->language == language_java
12828 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12829 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12830 && is_cplus_marker (name[sizeof (vptr) - 1])))
12831 return 1;
12832
12833 return 0;
12834 }
12835
12836 /* GCC outputs unnamed structures that are really pointers to member
12837 functions, with the ABI-specified layout. If TYPE describes
12838 such a structure, smash it into a member function type.
12839
12840 GCC shouldn't do this; it should just output pointer to member DIEs.
12841 This is GCC PR debug/28767. */
12842
12843 static void
12844 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12845 {
12846 struct type *pfn_type, *domain_type, *new_type;
12847
12848 /* Check for a structure with no name and two children. */
12849 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12850 return;
12851
12852 /* Check for __pfn and __delta members. */
12853 if (TYPE_FIELD_NAME (type, 0) == NULL
12854 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12855 || TYPE_FIELD_NAME (type, 1) == NULL
12856 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12857 return;
12858
12859 /* Find the type of the method. */
12860 pfn_type = TYPE_FIELD_TYPE (type, 0);
12861 if (pfn_type == NULL
12862 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12863 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12864 return;
12865
12866 /* Look for the "this" argument. */
12867 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12868 if (TYPE_NFIELDS (pfn_type) == 0
12869 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12870 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12871 return;
12872
12873 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12874 new_type = alloc_type (objfile);
12875 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12876 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12877 TYPE_VARARGS (pfn_type));
12878 smash_to_methodptr_type (type, new_type);
12879 }
12880
12881 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12882 (icc). */
12883
12884 static int
12885 producer_is_icc (struct dwarf2_cu *cu)
12886 {
12887 if (!cu->checked_producer)
12888 check_producer (cu);
12889
12890 return cu->producer_is_icc;
12891 }
12892
12893 /* Called when we find the DIE that starts a structure or union scope
12894 (definition) to create a type for the structure or union. Fill in
12895 the type's name and general properties; the members will not be
12896 processed until process_structure_scope. A symbol table entry for
12897 the type will also not be done until process_structure_scope (assuming
12898 the type has a name).
12899
12900 NOTE: we need to call these functions regardless of whether or not the
12901 DIE has a DW_AT_name attribute, since it might be an anonymous
12902 structure or union. This gets the type entered into our set of
12903 user defined types. */
12904
12905 static struct type *
12906 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12907 {
12908 struct objfile *objfile = cu->objfile;
12909 struct type *type;
12910 struct attribute *attr;
12911 const char *name;
12912
12913 /* If the definition of this type lives in .debug_types, read that type.
12914 Don't follow DW_AT_specification though, that will take us back up
12915 the chain and we want to go down. */
12916 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12917 if (attr)
12918 {
12919 type = get_DW_AT_signature_type (die, attr, cu);
12920
12921 /* The type's CU may not be the same as CU.
12922 Ensure TYPE is recorded with CU in die_type_hash. */
12923 return set_die_type (die, type, cu);
12924 }
12925
12926 type = alloc_type (objfile);
12927 INIT_CPLUS_SPECIFIC (type);
12928
12929 name = dwarf2_name (die, cu);
12930 if (name != NULL)
12931 {
12932 if (cu->language == language_cplus
12933 || cu->language == language_java)
12934 {
12935 const char *full_name = dwarf2_full_name (name, die, cu);
12936
12937 /* dwarf2_full_name might have already finished building the DIE's
12938 type. If so, there is no need to continue. */
12939 if (get_die_type (die, cu) != NULL)
12940 return get_die_type (die, cu);
12941
12942 TYPE_TAG_NAME (type) = full_name;
12943 if (die->tag == DW_TAG_structure_type
12944 || die->tag == DW_TAG_class_type)
12945 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12946 }
12947 else
12948 {
12949 /* The name is already allocated along with this objfile, so
12950 we don't need to duplicate it for the type. */
12951 TYPE_TAG_NAME (type) = name;
12952 if (die->tag == DW_TAG_class_type)
12953 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12954 }
12955 }
12956
12957 if (die->tag == DW_TAG_structure_type)
12958 {
12959 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12960 }
12961 else if (die->tag == DW_TAG_union_type)
12962 {
12963 TYPE_CODE (type) = TYPE_CODE_UNION;
12964 }
12965 else
12966 {
12967 TYPE_CODE (type) = TYPE_CODE_CLASS;
12968 }
12969
12970 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12971 TYPE_DECLARED_CLASS (type) = 1;
12972
12973 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12974 if (attr)
12975 {
12976 TYPE_LENGTH (type) = DW_UNSND (attr);
12977 }
12978 else
12979 {
12980 TYPE_LENGTH (type) = 0;
12981 }
12982
12983 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
12984 {
12985 /* ICC does not output the required DW_AT_declaration
12986 on incomplete types, but gives them a size of zero. */
12987 TYPE_STUB (type) = 1;
12988 }
12989 else
12990 TYPE_STUB_SUPPORTED (type) = 1;
12991
12992 if (die_is_declaration (die, cu))
12993 TYPE_STUB (type) = 1;
12994 else if (attr == NULL && die->child == NULL
12995 && producer_is_realview (cu->producer))
12996 /* RealView does not output the required DW_AT_declaration
12997 on incomplete types. */
12998 TYPE_STUB (type) = 1;
12999
13000 /* We need to add the type field to the die immediately so we don't
13001 infinitely recurse when dealing with pointers to the structure
13002 type within the structure itself. */
13003 set_die_type (die, type, cu);
13004
13005 /* set_die_type should be already done. */
13006 set_descriptive_type (type, die, cu);
13007
13008 return type;
13009 }
13010
13011 /* Finish creating a structure or union type, including filling in
13012 its members and creating a symbol for it. */
13013
13014 static void
13015 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13016 {
13017 struct objfile *objfile = cu->objfile;
13018 struct die_info *child_die = die->child;
13019 struct type *type;
13020
13021 type = get_die_type (die, cu);
13022 if (type == NULL)
13023 type = read_structure_type (die, cu);
13024
13025 if (die->child != NULL && ! die_is_declaration (die, cu))
13026 {
13027 struct field_info fi;
13028 struct die_info *child_die;
13029 VEC (symbolp) *template_args = NULL;
13030 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13031
13032 memset (&fi, 0, sizeof (struct field_info));
13033
13034 child_die = die->child;
13035
13036 while (child_die && child_die->tag)
13037 {
13038 if (child_die->tag == DW_TAG_member
13039 || child_die->tag == DW_TAG_variable)
13040 {
13041 /* NOTE: carlton/2002-11-05: A C++ static data member
13042 should be a DW_TAG_member that is a declaration, but
13043 all versions of G++ as of this writing (so through at
13044 least 3.2.1) incorrectly generate DW_TAG_variable
13045 tags for them instead. */
13046 dwarf2_add_field (&fi, child_die, cu);
13047 }
13048 else if (child_die->tag == DW_TAG_subprogram)
13049 {
13050 /* C++ member function. */
13051 dwarf2_add_member_fn (&fi, child_die, type, cu);
13052 }
13053 else if (child_die->tag == DW_TAG_inheritance)
13054 {
13055 /* C++ base class field. */
13056 dwarf2_add_field (&fi, child_die, cu);
13057 }
13058 else if (child_die->tag == DW_TAG_typedef)
13059 dwarf2_add_typedef (&fi, child_die, cu);
13060 else if (child_die->tag == DW_TAG_template_type_param
13061 || child_die->tag == DW_TAG_template_value_param)
13062 {
13063 struct symbol *arg = new_symbol (child_die, NULL, cu);
13064
13065 if (arg != NULL)
13066 VEC_safe_push (symbolp, template_args, arg);
13067 }
13068
13069 child_die = sibling_die (child_die);
13070 }
13071
13072 /* Attach template arguments to type. */
13073 if (! VEC_empty (symbolp, template_args))
13074 {
13075 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13076 TYPE_N_TEMPLATE_ARGUMENTS (type)
13077 = VEC_length (symbolp, template_args);
13078 TYPE_TEMPLATE_ARGUMENTS (type)
13079 = obstack_alloc (&objfile->objfile_obstack,
13080 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13081 * sizeof (struct symbol *)));
13082 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13083 VEC_address (symbolp, template_args),
13084 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13085 * sizeof (struct symbol *)));
13086 VEC_free (symbolp, template_args);
13087 }
13088
13089 /* Attach fields and member functions to the type. */
13090 if (fi.nfields)
13091 dwarf2_attach_fields_to_type (&fi, type, cu);
13092 if (fi.nfnfields)
13093 {
13094 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13095
13096 /* Get the type which refers to the base class (possibly this
13097 class itself) which contains the vtable pointer for the current
13098 class from the DW_AT_containing_type attribute. This use of
13099 DW_AT_containing_type is a GNU extension. */
13100
13101 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13102 {
13103 struct type *t = die_containing_type (die, cu);
13104
13105 TYPE_VPTR_BASETYPE (type) = t;
13106 if (type == t)
13107 {
13108 int i;
13109
13110 /* Our own class provides vtbl ptr. */
13111 for (i = TYPE_NFIELDS (t) - 1;
13112 i >= TYPE_N_BASECLASSES (t);
13113 --i)
13114 {
13115 const char *fieldname = TYPE_FIELD_NAME (t, i);
13116
13117 if (is_vtable_name (fieldname, cu))
13118 {
13119 TYPE_VPTR_FIELDNO (type) = i;
13120 break;
13121 }
13122 }
13123
13124 /* Complain if virtual function table field not found. */
13125 if (i < TYPE_N_BASECLASSES (t))
13126 complaint (&symfile_complaints,
13127 _("virtual function table pointer "
13128 "not found when defining class '%s'"),
13129 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13130 "");
13131 }
13132 else
13133 {
13134 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13135 }
13136 }
13137 else if (cu->producer
13138 && strncmp (cu->producer,
13139 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13140 {
13141 /* The IBM XLC compiler does not provide direct indication
13142 of the containing type, but the vtable pointer is
13143 always named __vfp. */
13144
13145 int i;
13146
13147 for (i = TYPE_NFIELDS (type) - 1;
13148 i >= TYPE_N_BASECLASSES (type);
13149 --i)
13150 {
13151 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13152 {
13153 TYPE_VPTR_FIELDNO (type) = i;
13154 TYPE_VPTR_BASETYPE (type) = type;
13155 break;
13156 }
13157 }
13158 }
13159 }
13160
13161 /* Copy fi.typedef_field_list linked list elements content into the
13162 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13163 if (fi.typedef_field_list)
13164 {
13165 int i = fi.typedef_field_list_count;
13166
13167 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13168 TYPE_TYPEDEF_FIELD_ARRAY (type)
13169 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13170 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13171
13172 /* Reverse the list order to keep the debug info elements order. */
13173 while (--i >= 0)
13174 {
13175 struct typedef_field *dest, *src;
13176
13177 dest = &TYPE_TYPEDEF_FIELD (type, i);
13178 src = &fi.typedef_field_list->field;
13179 fi.typedef_field_list = fi.typedef_field_list->next;
13180 *dest = *src;
13181 }
13182 }
13183
13184 do_cleanups (back_to);
13185
13186 if (HAVE_CPLUS_STRUCT (type))
13187 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13188 }
13189
13190 quirk_gcc_member_function_pointer (type, objfile);
13191
13192 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13193 snapshots) has been known to create a die giving a declaration
13194 for a class that has, as a child, a die giving a definition for a
13195 nested class. So we have to process our children even if the
13196 current die is a declaration. Normally, of course, a declaration
13197 won't have any children at all. */
13198
13199 while (child_die != NULL && child_die->tag)
13200 {
13201 if (child_die->tag == DW_TAG_member
13202 || child_die->tag == DW_TAG_variable
13203 || child_die->tag == DW_TAG_inheritance
13204 || child_die->tag == DW_TAG_template_value_param
13205 || child_die->tag == DW_TAG_template_type_param)
13206 {
13207 /* Do nothing. */
13208 }
13209 else
13210 process_die (child_die, cu);
13211
13212 child_die = sibling_die (child_die);
13213 }
13214
13215 /* Do not consider external references. According to the DWARF standard,
13216 these DIEs are identified by the fact that they have no byte_size
13217 attribute, and a declaration attribute. */
13218 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13219 || !die_is_declaration (die, cu))
13220 new_symbol (die, type, cu);
13221 }
13222
13223 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13224 update TYPE using some information only available in DIE's children. */
13225
13226 static void
13227 update_enumeration_type_from_children (struct die_info *die,
13228 struct type *type,
13229 struct dwarf2_cu *cu)
13230 {
13231 struct obstack obstack;
13232 struct die_info *child_die = die->child;
13233 int unsigned_enum = 1;
13234 int flag_enum = 1;
13235 ULONGEST mask = 0;
13236 struct cleanup *old_chain;
13237
13238 obstack_init (&obstack);
13239 old_chain = make_cleanup_obstack_free (&obstack);
13240
13241 while (child_die != NULL && child_die->tag)
13242 {
13243 struct attribute *attr;
13244 LONGEST value;
13245 const gdb_byte *bytes;
13246 struct dwarf2_locexpr_baton *baton;
13247 const char *name;
13248 if (child_die->tag != DW_TAG_enumerator)
13249 continue;
13250
13251 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13252 if (attr == NULL)
13253 continue;
13254
13255 name = dwarf2_name (child_die, cu);
13256 if (name == NULL)
13257 name = "<anonymous enumerator>";
13258
13259 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13260 &value, &bytes, &baton);
13261 if (value < 0)
13262 {
13263 unsigned_enum = 0;
13264 flag_enum = 0;
13265 }
13266 else if ((mask & value) != 0)
13267 flag_enum = 0;
13268 else
13269 mask |= value;
13270
13271 /* If we already know that the enum type is neither unsigned, nor
13272 a flag type, no need to look at the rest of the enumerates. */
13273 if (!unsigned_enum && !flag_enum)
13274 break;
13275 child_die = sibling_die (child_die);
13276 }
13277
13278 if (unsigned_enum)
13279 TYPE_UNSIGNED (type) = 1;
13280 if (flag_enum)
13281 TYPE_FLAG_ENUM (type) = 1;
13282
13283 do_cleanups (old_chain);
13284 }
13285
13286 /* Given a DW_AT_enumeration_type die, set its type. We do not
13287 complete the type's fields yet, or create any symbols. */
13288
13289 static struct type *
13290 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13291 {
13292 struct objfile *objfile = cu->objfile;
13293 struct type *type;
13294 struct attribute *attr;
13295 const char *name;
13296
13297 /* If the definition of this type lives in .debug_types, read that type.
13298 Don't follow DW_AT_specification though, that will take us back up
13299 the chain and we want to go down. */
13300 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13301 if (attr)
13302 {
13303 type = get_DW_AT_signature_type (die, attr, cu);
13304
13305 /* The type's CU may not be the same as CU.
13306 Ensure TYPE is recorded with CU in die_type_hash. */
13307 return set_die_type (die, type, cu);
13308 }
13309
13310 type = alloc_type (objfile);
13311
13312 TYPE_CODE (type) = TYPE_CODE_ENUM;
13313 name = dwarf2_full_name (NULL, die, cu);
13314 if (name != NULL)
13315 TYPE_TAG_NAME (type) = name;
13316
13317 attr = dwarf2_attr (die, DW_AT_type, cu);
13318 if (attr != NULL)
13319 {
13320 struct type *underlying_type = die_type (die, cu);
13321
13322 TYPE_TARGET_TYPE (type) = underlying_type;
13323 }
13324
13325 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13326 if (attr)
13327 {
13328 TYPE_LENGTH (type) = DW_UNSND (attr);
13329 }
13330 else
13331 {
13332 TYPE_LENGTH (type) = 0;
13333 }
13334
13335 /* The enumeration DIE can be incomplete. In Ada, any type can be
13336 declared as private in the package spec, and then defined only
13337 inside the package body. Such types are known as Taft Amendment
13338 Types. When another package uses such a type, an incomplete DIE
13339 may be generated by the compiler. */
13340 if (die_is_declaration (die, cu))
13341 TYPE_STUB (type) = 1;
13342
13343 /* Finish the creation of this type by using the enum's children.
13344 We must call this even when the underlying type has been provided
13345 so that we can determine if we're looking at a "flag" enum. */
13346 update_enumeration_type_from_children (die, type, cu);
13347
13348 /* If this type has an underlying type that is not a stub, then we
13349 may use its attributes. We always use the "unsigned" attribute
13350 in this situation, because ordinarily we guess whether the type
13351 is unsigned -- but the guess can be wrong and the underlying type
13352 can tell us the reality. However, we defer to a local size
13353 attribute if one exists, because this lets the compiler override
13354 the underlying type if needed. */
13355 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13356 {
13357 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13358 if (TYPE_LENGTH (type) == 0)
13359 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13360 }
13361
13362 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13363
13364 return set_die_type (die, type, cu);
13365 }
13366
13367 /* Given a pointer to a die which begins an enumeration, process all
13368 the dies that define the members of the enumeration, and create the
13369 symbol for the enumeration type.
13370
13371 NOTE: We reverse the order of the element list. */
13372
13373 static void
13374 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13375 {
13376 struct type *this_type;
13377
13378 this_type = get_die_type (die, cu);
13379 if (this_type == NULL)
13380 this_type = read_enumeration_type (die, cu);
13381
13382 if (die->child != NULL)
13383 {
13384 struct die_info *child_die;
13385 struct symbol *sym;
13386 struct field *fields = NULL;
13387 int num_fields = 0;
13388 const char *name;
13389
13390 child_die = die->child;
13391 while (child_die && child_die->tag)
13392 {
13393 if (child_die->tag != DW_TAG_enumerator)
13394 {
13395 process_die (child_die, cu);
13396 }
13397 else
13398 {
13399 name = dwarf2_name (child_die, cu);
13400 if (name)
13401 {
13402 sym = new_symbol (child_die, this_type, cu);
13403
13404 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13405 {
13406 fields = (struct field *)
13407 xrealloc (fields,
13408 (num_fields + DW_FIELD_ALLOC_CHUNK)
13409 * sizeof (struct field));
13410 }
13411
13412 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13413 FIELD_TYPE (fields[num_fields]) = NULL;
13414 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13415 FIELD_BITSIZE (fields[num_fields]) = 0;
13416
13417 num_fields++;
13418 }
13419 }
13420
13421 child_die = sibling_die (child_die);
13422 }
13423
13424 if (num_fields)
13425 {
13426 TYPE_NFIELDS (this_type) = num_fields;
13427 TYPE_FIELDS (this_type) = (struct field *)
13428 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13429 memcpy (TYPE_FIELDS (this_type), fields,
13430 sizeof (struct field) * num_fields);
13431 xfree (fields);
13432 }
13433 }
13434
13435 /* If we are reading an enum from a .debug_types unit, and the enum
13436 is a declaration, and the enum is not the signatured type in the
13437 unit, then we do not want to add a symbol for it. Adding a
13438 symbol would in some cases obscure the true definition of the
13439 enum, giving users an incomplete type when the definition is
13440 actually available. Note that we do not want to do this for all
13441 enums which are just declarations, because C++0x allows forward
13442 enum declarations. */
13443 if (cu->per_cu->is_debug_types
13444 && die_is_declaration (die, cu))
13445 {
13446 struct signatured_type *sig_type;
13447
13448 sig_type = (struct signatured_type *) cu->per_cu;
13449 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13450 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13451 return;
13452 }
13453
13454 new_symbol (die, this_type, cu);
13455 }
13456
13457 /* Extract all information from a DW_TAG_array_type DIE and put it in
13458 the DIE's type field. For now, this only handles one dimensional
13459 arrays. */
13460
13461 static struct type *
13462 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13463 {
13464 struct objfile *objfile = cu->objfile;
13465 struct die_info *child_die;
13466 struct type *type;
13467 struct type *element_type, *range_type, *index_type;
13468 struct type **range_types = NULL;
13469 struct attribute *attr;
13470 int ndim = 0;
13471 struct cleanup *back_to;
13472 const char *name;
13473 unsigned int bit_stride = 0;
13474
13475 element_type = die_type (die, cu);
13476
13477 /* The die_type call above may have already set the type for this DIE. */
13478 type = get_die_type (die, cu);
13479 if (type)
13480 return type;
13481
13482 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13483 if (attr != NULL)
13484 bit_stride = DW_UNSND (attr) * 8;
13485
13486 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13487 if (attr != NULL)
13488 bit_stride = DW_UNSND (attr);
13489
13490 /* Irix 6.2 native cc creates array types without children for
13491 arrays with unspecified length. */
13492 if (die->child == NULL)
13493 {
13494 index_type = objfile_type (objfile)->builtin_int;
13495 range_type = create_static_range_type (NULL, index_type, 0, -1);
13496 type = create_array_type_with_stride (NULL, element_type, range_type,
13497 bit_stride);
13498 return set_die_type (die, type, cu);
13499 }
13500
13501 back_to = make_cleanup (null_cleanup, NULL);
13502 child_die = die->child;
13503 while (child_die && child_die->tag)
13504 {
13505 if (child_die->tag == DW_TAG_subrange_type)
13506 {
13507 struct type *child_type = read_type_die (child_die, cu);
13508
13509 if (child_type != NULL)
13510 {
13511 /* The range type was succesfully read. Save it for the
13512 array type creation. */
13513 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13514 {
13515 range_types = (struct type **)
13516 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13517 * sizeof (struct type *));
13518 if (ndim == 0)
13519 make_cleanup (free_current_contents, &range_types);
13520 }
13521 range_types[ndim++] = child_type;
13522 }
13523 }
13524 child_die = sibling_die (child_die);
13525 }
13526
13527 /* Dwarf2 dimensions are output from left to right, create the
13528 necessary array types in backwards order. */
13529
13530 type = element_type;
13531
13532 if (read_array_order (die, cu) == DW_ORD_col_major)
13533 {
13534 int i = 0;
13535
13536 while (i < ndim)
13537 type = create_array_type_with_stride (NULL, type, range_types[i++],
13538 bit_stride);
13539 }
13540 else
13541 {
13542 while (ndim-- > 0)
13543 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13544 bit_stride);
13545 }
13546
13547 /* Understand Dwarf2 support for vector types (like they occur on
13548 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13549 array type. This is not part of the Dwarf2/3 standard yet, but a
13550 custom vendor extension. The main difference between a regular
13551 array and the vector variant is that vectors are passed by value
13552 to functions. */
13553 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13554 if (attr)
13555 make_vector_type (type);
13556
13557 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13558 implementation may choose to implement triple vectors using this
13559 attribute. */
13560 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13561 if (attr)
13562 {
13563 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13564 TYPE_LENGTH (type) = DW_UNSND (attr);
13565 else
13566 complaint (&symfile_complaints,
13567 _("DW_AT_byte_size for array type smaller "
13568 "than the total size of elements"));
13569 }
13570
13571 name = dwarf2_name (die, cu);
13572 if (name)
13573 TYPE_NAME (type) = name;
13574
13575 /* Install the type in the die. */
13576 set_die_type (die, type, cu);
13577
13578 /* set_die_type should be already done. */
13579 set_descriptive_type (type, die, cu);
13580
13581 do_cleanups (back_to);
13582
13583 return type;
13584 }
13585
13586 static enum dwarf_array_dim_ordering
13587 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13588 {
13589 struct attribute *attr;
13590
13591 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13592
13593 if (attr) return DW_SND (attr);
13594
13595 /* GNU F77 is a special case, as at 08/2004 array type info is the
13596 opposite order to the dwarf2 specification, but data is still
13597 laid out as per normal fortran.
13598
13599 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13600 version checking. */
13601
13602 if (cu->language == language_fortran
13603 && cu->producer && strstr (cu->producer, "GNU F77"))
13604 {
13605 return DW_ORD_row_major;
13606 }
13607
13608 switch (cu->language_defn->la_array_ordering)
13609 {
13610 case array_column_major:
13611 return DW_ORD_col_major;
13612 case array_row_major:
13613 default:
13614 return DW_ORD_row_major;
13615 };
13616 }
13617
13618 /* Extract all information from a DW_TAG_set_type DIE and put it in
13619 the DIE's type field. */
13620
13621 static struct type *
13622 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13623 {
13624 struct type *domain_type, *set_type;
13625 struct attribute *attr;
13626
13627 domain_type = die_type (die, cu);
13628
13629 /* The die_type call above may have already set the type for this DIE. */
13630 set_type = get_die_type (die, cu);
13631 if (set_type)
13632 return set_type;
13633
13634 set_type = create_set_type (NULL, domain_type);
13635
13636 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13637 if (attr)
13638 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13639
13640 return set_die_type (die, set_type, cu);
13641 }
13642
13643 /* A helper for read_common_block that creates a locexpr baton.
13644 SYM is the symbol which we are marking as computed.
13645 COMMON_DIE is the DIE for the common block.
13646 COMMON_LOC is the location expression attribute for the common
13647 block itself.
13648 MEMBER_LOC is the location expression attribute for the particular
13649 member of the common block that we are processing.
13650 CU is the CU from which the above come. */
13651
13652 static void
13653 mark_common_block_symbol_computed (struct symbol *sym,
13654 struct die_info *common_die,
13655 struct attribute *common_loc,
13656 struct attribute *member_loc,
13657 struct dwarf2_cu *cu)
13658 {
13659 struct objfile *objfile = dwarf2_per_objfile->objfile;
13660 struct dwarf2_locexpr_baton *baton;
13661 gdb_byte *ptr;
13662 unsigned int cu_off;
13663 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13664 LONGEST offset = 0;
13665
13666 gdb_assert (common_loc && member_loc);
13667 gdb_assert (attr_form_is_block (common_loc));
13668 gdb_assert (attr_form_is_block (member_loc)
13669 || attr_form_is_constant (member_loc));
13670
13671 baton = obstack_alloc (&objfile->objfile_obstack,
13672 sizeof (struct dwarf2_locexpr_baton));
13673 baton->per_cu = cu->per_cu;
13674 gdb_assert (baton->per_cu);
13675
13676 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13677
13678 if (attr_form_is_constant (member_loc))
13679 {
13680 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13681 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13682 }
13683 else
13684 baton->size += DW_BLOCK (member_loc)->size;
13685
13686 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13687 baton->data = ptr;
13688
13689 *ptr++ = DW_OP_call4;
13690 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13691 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13692 ptr += 4;
13693
13694 if (attr_form_is_constant (member_loc))
13695 {
13696 *ptr++ = DW_OP_addr;
13697 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13698 ptr += cu->header.addr_size;
13699 }
13700 else
13701 {
13702 /* We have to copy the data here, because DW_OP_call4 will only
13703 use a DW_AT_location attribute. */
13704 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13705 ptr += DW_BLOCK (member_loc)->size;
13706 }
13707
13708 *ptr++ = DW_OP_plus;
13709 gdb_assert (ptr - baton->data == baton->size);
13710
13711 SYMBOL_LOCATION_BATON (sym) = baton;
13712 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13713 }
13714
13715 /* Create appropriate locally-scoped variables for all the
13716 DW_TAG_common_block entries. Also create a struct common_block
13717 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13718 is used to sepate the common blocks name namespace from regular
13719 variable names. */
13720
13721 static void
13722 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13723 {
13724 struct attribute *attr;
13725
13726 attr = dwarf2_attr (die, DW_AT_location, cu);
13727 if (attr)
13728 {
13729 /* Support the .debug_loc offsets. */
13730 if (attr_form_is_block (attr))
13731 {
13732 /* Ok. */
13733 }
13734 else if (attr_form_is_section_offset (attr))
13735 {
13736 dwarf2_complex_location_expr_complaint ();
13737 attr = NULL;
13738 }
13739 else
13740 {
13741 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13742 "common block member");
13743 attr = NULL;
13744 }
13745 }
13746
13747 if (die->child != NULL)
13748 {
13749 struct objfile *objfile = cu->objfile;
13750 struct die_info *child_die;
13751 size_t n_entries = 0, size;
13752 struct common_block *common_block;
13753 struct symbol *sym;
13754
13755 for (child_die = die->child;
13756 child_die && child_die->tag;
13757 child_die = sibling_die (child_die))
13758 ++n_entries;
13759
13760 size = (sizeof (struct common_block)
13761 + (n_entries - 1) * sizeof (struct symbol *));
13762 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13763 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13764 common_block->n_entries = 0;
13765
13766 for (child_die = die->child;
13767 child_die && child_die->tag;
13768 child_die = sibling_die (child_die))
13769 {
13770 /* Create the symbol in the DW_TAG_common_block block in the current
13771 symbol scope. */
13772 sym = new_symbol (child_die, NULL, cu);
13773 if (sym != NULL)
13774 {
13775 struct attribute *member_loc;
13776
13777 common_block->contents[common_block->n_entries++] = sym;
13778
13779 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13780 cu);
13781 if (member_loc)
13782 {
13783 /* GDB has handled this for a long time, but it is
13784 not specified by DWARF. It seems to have been
13785 emitted by gfortran at least as recently as:
13786 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13787 complaint (&symfile_complaints,
13788 _("Variable in common block has "
13789 "DW_AT_data_member_location "
13790 "- DIE at 0x%x [in module %s]"),
13791 child_die->offset.sect_off,
13792 objfile_name (cu->objfile));
13793
13794 if (attr_form_is_section_offset (member_loc))
13795 dwarf2_complex_location_expr_complaint ();
13796 else if (attr_form_is_constant (member_loc)
13797 || attr_form_is_block (member_loc))
13798 {
13799 if (attr)
13800 mark_common_block_symbol_computed (sym, die, attr,
13801 member_loc, cu);
13802 }
13803 else
13804 dwarf2_complex_location_expr_complaint ();
13805 }
13806 }
13807 }
13808
13809 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13810 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13811 }
13812 }
13813
13814 /* Create a type for a C++ namespace. */
13815
13816 static struct type *
13817 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13818 {
13819 struct objfile *objfile = cu->objfile;
13820 const char *previous_prefix, *name;
13821 int is_anonymous;
13822 struct type *type;
13823
13824 /* For extensions, reuse the type of the original namespace. */
13825 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13826 {
13827 struct die_info *ext_die;
13828 struct dwarf2_cu *ext_cu = cu;
13829
13830 ext_die = dwarf2_extension (die, &ext_cu);
13831 type = read_type_die (ext_die, ext_cu);
13832
13833 /* EXT_CU may not be the same as CU.
13834 Ensure TYPE is recorded with CU in die_type_hash. */
13835 return set_die_type (die, type, cu);
13836 }
13837
13838 name = namespace_name (die, &is_anonymous, cu);
13839
13840 /* Now build the name of the current namespace. */
13841
13842 previous_prefix = determine_prefix (die, cu);
13843 if (previous_prefix[0] != '\0')
13844 name = typename_concat (&objfile->objfile_obstack,
13845 previous_prefix, name, 0, cu);
13846
13847 /* Create the type. */
13848 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13849 objfile);
13850 TYPE_NAME (type) = name;
13851 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13852
13853 return set_die_type (die, type, cu);
13854 }
13855
13856 /* Read a C++ namespace. */
13857
13858 static void
13859 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13860 {
13861 struct objfile *objfile = cu->objfile;
13862 int is_anonymous;
13863
13864 /* Add a symbol associated to this if we haven't seen the namespace
13865 before. Also, add a using directive if it's an anonymous
13866 namespace. */
13867
13868 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13869 {
13870 struct type *type;
13871
13872 type = read_type_die (die, cu);
13873 new_symbol (die, type, cu);
13874
13875 namespace_name (die, &is_anonymous, cu);
13876 if (is_anonymous)
13877 {
13878 const char *previous_prefix = determine_prefix (die, cu);
13879
13880 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13881 NULL, NULL, 0, &objfile->objfile_obstack);
13882 }
13883 }
13884
13885 if (die->child != NULL)
13886 {
13887 struct die_info *child_die = die->child;
13888
13889 while (child_die && child_die->tag)
13890 {
13891 process_die (child_die, cu);
13892 child_die = sibling_die (child_die);
13893 }
13894 }
13895 }
13896
13897 /* Read a Fortran module as type. This DIE can be only a declaration used for
13898 imported module. Still we need that type as local Fortran "use ... only"
13899 declaration imports depend on the created type in determine_prefix. */
13900
13901 static struct type *
13902 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13903 {
13904 struct objfile *objfile = cu->objfile;
13905 const char *module_name;
13906 struct type *type;
13907
13908 module_name = dwarf2_name (die, cu);
13909 if (!module_name)
13910 complaint (&symfile_complaints,
13911 _("DW_TAG_module has no name, offset 0x%x"),
13912 die->offset.sect_off);
13913 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13914
13915 /* determine_prefix uses TYPE_TAG_NAME. */
13916 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13917
13918 return set_die_type (die, type, cu);
13919 }
13920
13921 /* Read a Fortran module. */
13922
13923 static void
13924 read_module (struct die_info *die, struct dwarf2_cu *cu)
13925 {
13926 struct die_info *child_die = die->child;
13927 struct type *type;
13928
13929 type = read_type_die (die, cu);
13930 new_symbol (die, type, cu);
13931
13932 while (child_die && child_die->tag)
13933 {
13934 process_die (child_die, cu);
13935 child_die = sibling_die (child_die);
13936 }
13937 }
13938
13939 /* Return the name of the namespace represented by DIE. Set
13940 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13941 namespace. */
13942
13943 static const char *
13944 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13945 {
13946 struct die_info *current_die;
13947 const char *name = NULL;
13948
13949 /* Loop through the extensions until we find a name. */
13950
13951 for (current_die = die;
13952 current_die != NULL;
13953 current_die = dwarf2_extension (die, &cu))
13954 {
13955 name = dwarf2_name (current_die, cu);
13956 if (name != NULL)
13957 break;
13958 }
13959
13960 /* Is it an anonymous namespace? */
13961
13962 *is_anonymous = (name == NULL);
13963 if (*is_anonymous)
13964 name = CP_ANONYMOUS_NAMESPACE_STR;
13965
13966 return name;
13967 }
13968
13969 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13970 the user defined type vector. */
13971
13972 static struct type *
13973 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13974 {
13975 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13976 struct comp_unit_head *cu_header = &cu->header;
13977 struct type *type;
13978 struct attribute *attr_byte_size;
13979 struct attribute *attr_address_class;
13980 int byte_size, addr_class;
13981 struct type *target_type;
13982
13983 target_type = die_type (die, cu);
13984
13985 /* The die_type call above may have already set the type for this DIE. */
13986 type = get_die_type (die, cu);
13987 if (type)
13988 return type;
13989
13990 type = lookup_pointer_type (target_type);
13991
13992 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13993 if (attr_byte_size)
13994 byte_size = DW_UNSND (attr_byte_size);
13995 else
13996 byte_size = cu_header->addr_size;
13997
13998 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
13999 if (attr_address_class)
14000 addr_class = DW_UNSND (attr_address_class);
14001 else
14002 addr_class = DW_ADDR_none;
14003
14004 /* If the pointer size or address class is different than the
14005 default, create a type variant marked as such and set the
14006 length accordingly. */
14007 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14008 {
14009 if (gdbarch_address_class_type_flags_p (gdbarch))
14010 {
14011 int type_flags;
14012
14013 type_flags = gdbarch_address_class_type_flags
14014 (gdbarch, byte_size, addr_class);
14015 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14016 == 0);
14017 type = make_type_with_address_space (type, type_flags);
14018 }
14019 else if (TYPE_LENGTH (type) != byte_size)
14020 {
14021 complaint (&symfile_complaints,
14022 _("invalid pointer size %d"), byte_size);
14023 }
14024 else
14025 {
14026 /* Should we also complain about unhandled address classes? */
14027 }
14028 }
14029
14030 TYPE_LENGTH (type) = byte_size;
14031 return set_die_type (die, type, cu);
14032 }
14033
14034 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14035 the user defined type vector. */
14036
14037 static struct type *
14038 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14039 {
14040 struct type *type;
14041 struct type *to_type;
14042 struct type *domain;
14043
14044 to_type = die_type (die, cu);
14045 domain = die_containing_type (die, cu);
14046
14047 /* The calls above may have already set the type for this DIE. */
14048 type = get_die_type (die, cu);
14049 if (type)
14050 return type;
14051
14052 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14053 type = lookup_methodptr_type (to_type);
14054 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14055 {
14056 struct type *new_type = alloc_type (cu->objfile);
14057
14058 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14059 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14060 TYPE_VARARGS (to_type));
14061 type = lookup_methodptr_type (new_type);
14062 }
14063 else
14064 type = lookup_memberptr_type (to_type, domain);
14065
14066 return set_die_type (die, type, cu);
14067 }
14068
14069 /* Extract all information from a DW_TAG_reference_type DIE and add to
14070 the user defined type vector. */
14071
14072 static struct type *
14073 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14074 {
14075 struct comp_unit_head *cu_header = &cu->header;
14076 struct type *type, *target_type;
14077 struct attribute *attr;
14078
14079 target_type = die_type (die, cu);
14080
14081 /* The die_type call above may have already set the type for this DIE. */
14082 type = get_die_type (die, cu);
14083 if (type)
14084 return type;
14085
14086 type = lookup_reference_type (target_type);
14087 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14088 if (attr)
14089 {
14090 TYPE_LENGTH (type) = DW_UNSND (attr);
14091 }
14092 else
14093 {
14094 TYPE_LENGTH (type) = cu_header->addr_size;
14095 }
14096 return set_die_type (die, type, cu);
14097 }
14098
14099 /* Add the given cv-qualifiers to the element type of the array. GCC
14100 outputs DWARF type qualifiers that apply to an array, not the
14101 element type. But GDB relies on the array element type to carry
14102 the cv-qualifiers. This mimics section 6.7.3 of the C99
14103 specification. */
14104
14105 static struct type *
14106 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14107 struct type *base_type, int cnst, int voltl)
14108 {
14109 struct type *el_type, *inner_array;
14110
14111 base_type = copy_type (base_type);
14112 inner_array = base_type;
14113
14114 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14115 {
14116 TYPE_TARGET_TYPE (inner_array) =
14117 copy_type (TYPE_TARGET_TYPE (inner_array));
14118 inner_array = TYPE_TARGET_TYPE (inner_array);
14119 }
14120
14121 el_type = TYPE_TARGET_TYPE (inner_array);
14122 cnst |= TYPE_CONST (el_type);
14123 voltl |= TYPE_VOLATILE (el_type);
14124 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14125
14126 return set_die_type (die, base_type, cu);
14127 }
14128
14129 static struct type *
14130 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14131 {
14132 struct type *base_type, *cv_type;
14133
14134 base_type = die_type (die, cu);
14135
14136 /* The die_type call above may have already set the type for this DIE. */
14137 cv_type = get_die_type (die, cu);
14138 if (cv_type)
14139 return cv_type;
14140
14141 /* In case the const qualifier is applied to an array type, the element type
14142 is so qualified, not the array type (section 6.7.3 of C99). */
14143 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14144 return add_array_cv_type (die, cu, base_type, 1, 0);
14145
14146 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14147 return set_die_type (die, cv_type, cu);
14148 }
14149
14150 static struct type *
14151 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14152 {
14153 struct type *base_type, *cv_type;
14154
14155 base_type = die_type (die, cu);
14156
14157 /* The die_type call above may have already set the type for this DIE. */
14158 cv_type = get_die_type (die, cu);
14159 if (cv_type)
14160 return cv_type;
14161
14162 /* In case the volatile qualifier is applied to an array type, the
14163 element type is so qualified, not the array type (section 6.7.3
14164 of C99). */
14165 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14166 return add_array_cv_type (die, cu, base_type, 0, 1);
14167
14168 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14169 return set_die_type (die, cv_type, cu);
14170 }
14171
14172 /* Handle DW_TAG_restrict_type. */
14173
14174 static struct type *
14175 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14176 {
14177 struct type *base_type, *cv_type;
14178
14179 base_type = die_type (die, cu);
14180
14181 /* The die_type call above may have already set the type for this DIE. */
14182 cv_type = get_die_type (die, cu);
14183 if (cv_type)
14184 return cv_type;
14185
14186 cv_type = make_restrict_type (base_type);
14187 return set_die_type (die, cv_type, cu);
14188 }
14189
14190 /* Extract all information from a DW_TAG_string_type DIE and add to
14191 the user defined type vector. It isn't really a user defined type,
14192 but it behaves like one, with other DIE's using an AT_user_def_type
14193 attribute to reference it. */
14194
14195 static struct type *
14196 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14197 {
14198 struct objfile *objfile = cu->objfile;
14199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14200 struct type *type, *range_type, *index_type, *char_type;
14201 struct attribute *attr;
14202 unsigned int length;
14203
14204 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14205 if (attr)
14206 {
14207 length = DW_UNSND (attr);
14208 }
14209 else
14210 {
14211 /* Check for the DW_AT_byte_size attribute. */
14212 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14213 if (attr)
14214 {
14215 length = DW_UNSND (attr);
14216 }
14217 else
14218 {
14219 length = 1;
14220 }
14221 }
14222
14223 index_type = objfile_type (objfile)->builtin_int;
14224 range_type = create_static_range_type (NULL, index_type, 1, length);
14225 char_type = language_string_char_type (cu->language_defn, gdbarch);
14226 type = create_string_type (NULL, char_type, range_type);
14227
14228 return set_die_type (die, type, cu);
14229 }
14230
14231 /* Assuming that DIE corresponds to a function, returns nonzero
14232 if the function is prototyped. */
14233
14234 static int
14235 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14236 {
14237 struct attribute *attr;
14238
14239 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14240 if (attr && (DW_UNSND (attr) != 0))
14241 return 1;
14242
14243 /* The DWARF standard implies that the DW_AT_prototyped attribute
14244 is only meaninful for C, but the concept also extends to other
14245 languages that allow unprototyped functions (Eg: Objective C).
14246 For all other languages, assume that functions are always
14247 prototyped. */
14248 if (cu->language != language_c
14249 && cu->language != language_objc
14250 && cu->language != language_opencl)
14251 return 1;
14252
14253 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14254 prototyped and unprototyped functions; default to prototyped,
14255 since that is more common in modern code (and RealView warns
14256 about unprototyped functions). */
14257 if (producer_is_realview (cu->producer))
14258 return 1;
14259
14260 return 0;
14261 }
14262
14263 /* Handle DIES due to C code like:
14264
14265 struct foo
14266 {
14267 int (*funcp)(int a, long l);
14268 int b;
14269 };
14270
14271 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14272
14273 static struct type *
14274 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14275 {
14276 struct objfile *objfile = cu->objfile;
14277 struct type *type; /* Type that this function returns. */
14278 struct type *ftype; /* Function that returns above type. */
14279 struct attribute *attr;
14280
14281 type = die_type (die, cu);
14282
14283 /* The die_type call above may have already set the type for this DIE. */
14284 ftype = get_die_type (die, cu);
14285 if (ftype)
14286 return ftype;
14287
14288 ftype = lookup_function_type (type);
14289
14290 if (prototyped_function_p (die, cu))
14291 TYPE_PROTOTYPED (ftype) = 1;
14292
14293 /* Store the calling convention in the type if it's available in
14294 the subroutine die. Otherwise set the calling convention to
14295 the default value DW_CC_normal. */
14296 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14297 if (attr)
14298 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14299 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14300 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14301 else
14302 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14303
14304 /* We need to add the subroutine type to the die immediately so
14305 we don't infinitely recurse when dealing with parameters
14306 declared as the same subroutine type. */
14307 set_die_type (die, ftype, cu);
14308
14309 if (die->child != NULL)
14310 {
14311 struct type *void_type = objfile_type (objfile)->builtin_void;
14312 struct die_info *child_die;
14313 int nparams, iparams;
14314
14315 /* Count the number of parameters.
14316 FIXME: GDB currently ignores vararg functions, but knows about
14317 vararg member functions. */
14318 nparams = 0;
14319 child_die = die->child;
14320 while (child_die && child_die->tag)
14321 {
14322 if (child_die->tag == DW_TAG_formal_parameter)
14323 nparams++;
14324 else if (child_die->tag == DW_TAG_unspecified_parameters)
14325 TYPE_VARARGS (ftype) = 1;
14326 child_die = sibling_die (child_die);
14327 }
14328
14329 /* Allocate storage for parameters and fill them in. */
14330 TYPE_NFIELDS (ftype) = nparams;
14331 TYPE_FIELDS (ftype) = (struct field *)
14332 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14333
14334 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14335 even if we error out during the parameters reading below. */
14336 for (iparams = 0; iparams < nparams; iparams++)
14337 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14338
14339 iparams = 0;
14340 child_die = die->child;
14341 while (child_die && child_die->tag)
14342 {
14343 if (child_die->tag == DW_TAG_formal_parameter)
14344 {
14345 struct type *arg_type;
14346
14347 /* DWARF version 2 has no clean way to discern C++
14348 static and non-static member functions. G++ helps
14349 GDB by marking the first parameter for non-static
14350 member functions (which is the this pointer) as
14351 artificial. We pass this information to
14352 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14353
14354 DWARF version 3 added DW_AT_object_pointer, which GCC
14355 4.5 does not yet generate. */
14356 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14357 if (attr)
14358 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14359 else
14360 {
14361 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14362
14363 /* GCC/43521: In java, the formal parameter
14364 "this" is sometimes not marked with DW_AT_artificial. */
14365 if (cu->language == language_java)
14366 {
14367 const char *name = dwarf2_name (child_die, cu);
14368
14369 if (name && !strcmp (name, "this"))
14370 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14371 }
14372 }
14373 arg_type = die_type (child_die, cu);
14374
14375 /* RealView does not mark THIS as const, which the testsuite
14376 expects. GCC marks THIS as const in method definitions,
14377 but not in the class specifications (GCC PR 43053). */
14378 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14379 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14380 {
14381 int is_this = 0;
14382 struct dwarf2_cu *arg_cu = cu;
14383 const char *name = dwarf2_name (child_die, cu);
14384
14385 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14386 if (attr)
14387 {
14388 /* If the compiler emits this, use it. */
14389 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14390 is_this = 1;
14391 }
14392 else if (name && strcmp (name, "this") == 0)
14393 /* Function definitions will have the argument names. */
14394 is_this = 1;
14395 else if (name == NULL && iparams == 0)
14396 /* Declarations may not have the names, so like
14397 elsewhere in GDB, assume an artificial first
14398 argument is "this". */
14399 is_this = 1;
14400
14401 if (is_this)
14402 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14403 arg_type, 0);
14404 }
14405
14406 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14407 iparams++;
14408 }
14409 child_die = sibling_die (child_die);
14410 }
14411 }
14412
14413 return ftype;
14414 }
14415
14416 static struct type *
14417 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14418 {
14419 struct objfile *objfile = cu->objfile;
14420 const char *name = NULL;
14421 struct type *this_type, *target_type;
14422
14423 name = dwarf2_full_name (NULL, die, cu);
14424 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14425 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14426 TYPE_NAME (this_type) = name;
14427 set_die_type (die, this_type, cu);
14428 target_type = die_type (die, cu);
14429 if (target_type != this_type)
14430 TYPE_TARGET_TYPE (this_type) = target_type;
14431 else
14432 {
14433 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14434 spec and cause infinite loops in GDB. */
14435 complaint (&symfile_complaints,
14436 _("Self-referential DW_TAG_typedef "
14437 "- DIE at 0x%x [in module %s]"),
14438 die->offset.sect_off, objfile_name (objfile));
14439 TYPE_TARGET_TYPE (this_type) = NULL;
14440 }
14441 return this_type;
14442 }
14443
14444 /* Find a representation of a given base type and install
14445 it in the TYPE field of the die. */
14446
14447 static struct type *
14448 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14449 {
14450 struct objfile *objfile = cu->objfile;
14451 struct type *type;
14452 struct attribute *attr;
14453 int encoding = 0, size = 0;
14454 const char *name;
14455 enum type_code code = TYPE_CODE_INT;
14456 int type_flags = 0;
14457 struct type *target_type = NULL;
14458
14459 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14460 if (attr)
14461 {
14462 encoding = DW_UNSND (attr);
14463 }
14464 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14465 if (attr)
14466 {
14467 size = DW_UNSND (attr);
14468 }
14469 name = dwarf2_name (die, cu);
14470 if (!name)
14471 {
14472 complaint (&symfile_complaints,
14473 _("DW_AT_name missing from DW_TAG_base_type"));
14474 }
14475
14476 switch (encoding)
14477 {
14478 case DW_ATE_address:
14479 /* Turn DW_ATE_address into a void * pointer. */
14480 code = TYPE_CODE_PTR;
14481 type_flags |= TYPE_FLAG_UNSIGNED;
14482 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14483 break;
14484 case DW_ATE_boolean:
14485 code = TYPE_CODE_BOOL;
14486 type_flags |= TYPE_FLAG_UNSIGNED;
14487 break;
14488 case DW_ATE_complex_float:
14489 code = TYPE_CODE_COMPLEX;
14490 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14491 break;
14492 case DW_ATE_decimal_float:
14493 code = TYPE_CODE_DECFLOAT;
14494 break;
14495 case DW_ATE_float:
14496 code = TYPE_CODE_FLT;
14497 break;
14498 case DW_ATE_signed:
14499 break;
14500 case DW_ATE_unsigned:
14501 type_flags |= TYPE_FLAG_UNSIGNED;
14502 if (cu->language == language_fortran
14503 && name
14504 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14505 code = TYPE_CODE_CHAR;
14506 break;
14507 case DW_ATE_signed_char:
14508 if (cu->language == language_ada || cu->language == language_m2
14509 || cu->language == language_pascal
14510 || cu->language == language_fortran)
14511 code = TYPE_CODE_CHAR;
14512 break;
14513 case DW_ATE_unsigned_char:
14514 if (cu->language == language_ada || cu->language == language_m2
14515 || cu->language == language_pascal
14516 || cu->language == language_fortran)
14517 code = TYPE_CODE_CHAR;
14518 type_flags |= TYPE_FLAG_UNSIGNED;
14519 break;
14520 case DW_ATE_UTF:
14521 /* We just treat this as an integer and then recognize the
14522 type by name elsewhere. */
14523 break;
14524
14525 default:
14526 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14527 dwarf_type_encoding_name (encoding));
14528 break;
14529 }
14530
14531 type = init_type (code, size, type_flags, NULL, objfile);
14532 TYPE_NAME (type) = name;
14533 TYPE_TARGET_TYPE (type) = target_type;
14534
14535 if (name && strcmp (name, "char") == 0)
14536 TYPE_NOSIGN (type) = 1;
14537
14538 return set_die_type (die, type, cu);
14539 }
14540
14541 /* Parse dwarf attribute if it's a block, reference or constant and put the
14542 resulting value of the attribute into struct bound_prop.
14543 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14544
14545 static int
14546 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14547 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14548 {
14549 struct dwarf2_property_baton *baton;
14550 struct obstack *obstack = &cu->objfile->objfile_obstack;
14551
14552 if (attr == NULL || prop == NULL)
14553 return 0;
14554
14555 if (attr_form_is_block (attr))
14556 {
14557 baton = obstack_alloc (obstack, sizeof (*baton));
14558 baton->referenced_type = NULL;
14559 baton->locexpr.per_cu = cu->per_cu;
14560 baton->locexpr.size = DW_BLOCK (attr)->size;
14561 baton->locexpr.data = DW_BLOCK (attr)->data;
14562 prop->data.baton = baton;
14563 prop->kind = PROP_LOCEXPR;
14564 gdb_assert (prop->data.baton != NULL);
14565 }
14566 else if (attr_form_is_ref (attr))
14567 {
14568 struct dwarf2_cu *target_cu = cu;
14569 struct die_info *target_die;
14570 struct attribute *target_attr;
14571
14572 target_die = follow_die_ref (die, attr, &target_cu);
14573 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14574 if (target_attr == NULL)
14575 return 0;
14576
14577 if (attr_form_is_section_offset (target_attr))
14578 {
14579 baton = obstack_alloc (obstack, sizeof (*baton));
14580 baton->referenced_type = die_type (target_die, target_cu);
14581 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14582 prop->data.baton = baton;
14583 prop->kind = PROP_LOCLIST;
14584 gdb_assert (prop->data.baton != NULL);
14585 }
14586 else if (attr_form_is_block (target_attr))
14587 {
14588 baton = obstack_alloc (obstack, sizeof (*baton));
14589 baton->referenced_type = die_type (target_die, target_cu);
14590 baton->locexpr.per_cu = cu->per_cu;
14591 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14592 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14593 prop->data.baton = baton;
14594 prop->kind = PROP_LOCEXPR;
14595 gdb_assert (prop->data.baton != NULL);
14596 }
14597 else
14598 {
14599 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14600 "dynamic property");
14601 return 0;
14602 }
14603 }
14604 else if (attr_form_is_constant (attr))
14605 {
14606 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14607 prop->kind = PROP_CONST;
14608 }
14609 else
14610 {
14611 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14612 dwarf2_name (die, cu));
14613 return 0;
14614 }
14615
14616 return 1;
14617 }
14618
14619 /* Read the given DW_AT_subrange DIE. */
14620
14621 static struct type *
14622 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14623 {
14624 struct type *base_type, *orig_base_type;
14625 struct type *range_type;
14626 struct attribute *attr;
14627 struct dynamic_prop low, high;
14628 int low_default_is_valid;
14629 int high_bound_is_count = 0;
14630 const char *name;
14631 LONGEST negative_mask;
14632
14633 orig_base_type = die_type (die, cu);
14634 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14635 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14636 creating the range type, but we use the result of check_typedef
14637 when examining properties of the type. */
14638 base_type = check_typedef (orig_base_type);
14639
14640 /* The die_type call above may have already set the type for this DIE. */
14641 range_type = get_die_type (die, cu);
14642 if (range_type)
14643 return range_type;
14644
14645 low.kind = PROP_CONST;
14646 high.kind = PROP_CONST;
14647 high.data.const_val = 0;
14648
14649 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14650 omitting DW_AT_lower_bound. */
14651 switch (cu->language)
14652 {
14653 case language_c:
14654 case language_cplus:
14655 low.data.const_val = 0;
14656 low_default_is_valid = 1;
14657 break;
14658 case language_fortran:
14659 low.data.const_val = 1;
14660 low_default_is_valid = 1;
14661 break;
14662 case language_d:
14663 case language_java:
14664 case language_objc:
14665 low.data.const_val = 0;
14666 low_default_is_valid = (cu->header.version >= 4);
14667 break;
14668 case language_ada:
14669 case language_m2:
14670 case language_pascal:
14671 low.data.const_val = 1;
14672 low_default_is_valid = (cu->header.version >= 4);
14673 break;
14674 default:
14675 low.data.const_val = 0;
14676 low_default_is_valid = 0;
14677 break;
14678 }
14679
14680 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14681 if (attr)
14682 attr_to_dynamic_prop (attr, die, cu, &low);
14683 else if (!low_default_is_valid)
14684 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14685 "- DIE at 0x%x [in module %s]"),
14686 die->offset.sect_off, objfile_name (cu->objfile));
14687
14688 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14689 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14690 {
14691 attr = dwarf2_attr (die, DW_AT_count, cu);
14692 if (attr_to_dynamic_prop (attr, die, cu, &high))
14693 {
14694 /* If bounds are constant do the final calculation here. */
14695 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14696 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14697 else
14698 high_bound_is_count = 1;
14699 }
14700 }
14701
14702 /* Dwarf-2 specifications explicitly allows to create subrange types
14703 without specifying a base type.
14704 In that case, the base type must be set to the type of
14705 the lower bound, upper bound or count, in that order, if any of these
14706 three attributes references an object that has a type.
14707 If no base type is found, the Dwarf-2 specifications say that
14708 a signed integer type of size equal to the size of an address should
14709 be used.
14710 For the following C code: `extern char gdb_int [];'
14711 GCC produces an empty range DIE.
14712 FIXME: muller/2010-05-28: Possible references to object for low bound,
14713 high bound or count are not yet handled by this code. */
14714 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14715 {
14716 struct objfile *objfile = cu->objfile;
14717 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14718 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14719 struct type *int_type = objfile_type (objfile)->builtin_int;
14720
14721 /* Test "int", "long int", and "long long int" objfile types,
14722 and select the first one having a size above or equal to the
14723 architecture address size. */
14724 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14725 base_type = int_type;
14726 else
14727 {
14728 int_type = objfile_type (objfile)->builtin_long;
14729 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14730 base_type = int_type;
14731 else
14732 {
14733 int_type = objfile_type (objfile)->builtin_long_long;
14734 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14735 base_type = int_type;
14736 }
14737 }
14738 }
14739
14740 /* Normally, the DWARF producers are expected to use a signed
14741 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14742 But this is unfortunately not always the case, as witnessed
14743 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14744 is used instead. To work around that ambiguity, we treat
14745 the bounds as signed, and thus sign-extend their values, when
14746 the base type is signed. */
14747 negative_mask =
14748 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14749 if (low.kind == PROP_CONST
14750 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14751 low.data.const_val |= negative_mask;
14752 if (high.kind == PROP_CONST
14753 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14754 high.data.const_val |= negative_mask;
14755
14756 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14757
14758 if (high_bound_is_count)
14759 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14760
14761 /* Ada expects an empty array on no boundary attributes. */
14762 if (attr == NULL && cu->language != language_ada)
14763 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14764
14765 name = dwarf2_name (die, cu);
14766 if (name)
14767 TYPE_NAME (range_type) = name;
14768
14769 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14770 if (attr)
14771 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14772
14773 set_die_type (die, range_type, cu);
14774
14775 /* set_die_type should be already done. */
14776 set_descriptive_type (range_type, die, cu);
14777
14778 return range_type;
14779 }
14780
14781 static struct type *
14782 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14783 {
14784 struct type *type;
14785
14786 /* For now, we only support the C meaning of an unspecified type: void. */
14787
14788 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14789 TYPE_NAME (type) = dwarf2_name (die, cu);
14790
14791 return set_die_type (die, type, cu);
14792 }
14793
14794 /* Read a single die and all its descendents. Set the die's sibling
14795 field to NULL; set other fields in the die correctly, and set all
14796 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14797 location of the info_ptr after reading all of those dies. PARENT
14798 is the parent of the die in question. */
14799
14800 static struct die_info *
14801 read_die_and_children (const struct die_reader_specs *reader,
14802 const gdb_byte *info_ptr,
14803 const gdb_byte **new_info_ptr,
14804 struct die_info *parent)
14805 {
14806 struct die_info *die;
14807 const gdb_byte *cur_ptr;
14808 int has_children;
14809
14810 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14811 if (die == NULL)
14812 {
14813 *new_info_ptr = cur_ptr;
14814 return NULL;
14815 }
14816 store_in_ref_table (die, reader->cu);
14817
14818 if (has_children)
14819 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14820 else
14821 {
14822 die->child = NULL;
14823 *new_info_ptr = cur_ptr;
14824 }
14825
14826 die->sibling = NULL;
14827 die->parent = parent;
14828 return die;
14829 }
14830
14831 /* Read a die, all of its descendents, and all of its siblings; set
14832 all of the fields of all of the dies correctly. Arguments are as
14833 in read_die_and_children. */
14834
14835 static struct die_info *
14836 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14837 const gdb_byte *info_ptr,
14838 const gdb_byte **new_info_ptr,
14839 struct die_info *parent)
14840 {
14841 struct die_info *first_die, *last_sibling;
14842 const gdb_byte *cur_ptr;
14843
14844 cur_ptr = info_ptr;
14845 first_die = last_sibling = NULL;
14846
14847 while (1)
14848 {
14849 struct die_info *die
14850 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14851
14852 if (die == NULL)
14853 {
14854 *new_info_ptr = cur_ptr;
14855 return first_die;
14856 }
14857
14858 if (!first_die)
14859 first_die = die;
14860 else
14861 last_sibling->sibling = die;
14862
14863 last_sibling = die;
14864 }
14865 }
14866
14867 /* Read a die, all of its descendents, and all of its siblings; set
14868 all of the fields of all of the dies correctly. Arguments are as
14869 in read_die_and_children.
14870 This the main entry point for reading a DIE and all its children. */
14871
14872 static struct die_info *
14873 read_die_and_siblings (const struct die_reader_specs *reader,
14874 const gdb_byte *info_ptr,
14875 const gdb_byte **new_info_ptr,
14876 struct die_info *parent)
14877 {
14878 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14879 new_info_ptr, parent);
14880
14881 if (dwarf2_die_debug)
14882 {
14883 fprintf_unfiltered (gdb_stdlog,
14884 "Read die from %s@0x%x of %s:\n",
14885 get_section_name (reader->die_section),
14886 (unsigned) (info_ptr - reader->die_section->buffer),
14887 bfd_get_filename (reader->abfd));
14888 dump_die (die, dwarf2_die_debug);
14889 }
14890
14891 return die;
14892 }
14893
14894 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14895 attributes.
14896 The caller is responsible for filling in the extra attributes
14897 and updating (*DIEP)->num_attrs.
14898 Set DIEP to point to a newly allocated die with its information,
14899 except for its child, sibling, and parent fields.
14900 Set HAS_CHILDREN to tell whether the die has children or not. */
14901
14902 static const gdb_byte *
14903 read_full_die_1 (const struct die_reader_specs *reader,
14904 struct die_info **diep, const gdb_byte *info_ptr,
14905 int *has_children, int num_extra_attrs)
14906 {
14907 unsigned int abbrev_number, bytes_read, i;
14908 sect_offset offset;
14909 struct abbrev_info *abbrev;
14910 struct die_info *die;
14911 struct dwarf2_cu *cu = reader->cu;
14912 bfd *abfd = reader->abfd;
14913
14914 offset.sect_off = info_ptr - reader->buffer;
14915 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14916 info_ptr += bytes_read;
14917 if (!abbrev_number)
14918 {
14919 *diep = NULL;
14920 *has_children = 0;
14921 return info_ptr;
14922 }
14923
14924 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14925 if (!abbrev)
14926 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14927 abbrev_number,
14928 bfd_get_filename (abfd));
14929
14930 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14931 die->offset = offset;
14932 die->tag = abbrev->tag;
14933 die->abbrev = abbrev_number;
14934
14935 /* Make the result usable.
14936 The caller needs to update num_attrs after adding the extra
14937 attributes. */
14938 die->num_attrs = abbrev->num_attrs;
14939
14940 for (i = 0; i < abbrev->num_attrs; ++i)
14941 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14942 info_ptr);
14943
14944 *diep = die;
14945 *has_children = abbrev->has_children;
14946 return info_ptr;
14947 }
14948
14949 /* Read a die and all its attributes.
14950 Set DIEP to point to a newly allocated die with its information,
14951 except for its child, sibling, and parent fields.
14952 Set HAS_CHILDREN to tell whether the die has children or not. */
14953
14954 static const gdb_byte *
14955 read_full_die (const struct die_reader_specs *reader,
14956 struct die_info **diep, const gdb_byte *info_ptr,
14957 int *has_children)
14958 {
14959 const gdb_byte *result;
14960
14961 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14962
14963 if (dwarf2_die_debug)
14964 {
14965 fprintf_unfiltered (gdb_stdlog,
14966 "Read die from %s@0x%x of %s:\n",
14967 get_section_name (reader->die_section),
14968 (unsigned) (info_ptr - reader->die_section->buffer),
14969 bfd_get_filename (reader->abfd));
14970 dump_die (*diep, dwarf2_die_debug);
14971 }
14972
14973 return result;
14974 }
14975 \f
14976 /* Abbreviation tables.
14977
14978 In DWARF version 2, the description of the debugging information is
14979 stored in a separate .debug_abbrev section. Before we read any
14980 dies from a section we read in all abbreviations and install them
14981 in a hash table. */
14982
14983 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14984
14985 static struct abbrev_info *
14986 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14987 {
14988 struct abbrev_info *abbrev;
14989
14990 abbrev = (struct abbrev_info *)
14991 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14992 memset (abbrev, 0, sizeof (struct abbrev_info));
14993 return abbrev;
14994 }
14995
14996 /* Add an abbreviation to the table. */
14997
14998 static void
14999 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15000 unsigned int abbrev_number,
15001 struct abbrev_info *abbrev)
15002 {
15003 unsigned int hash_number;
15004
15005 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15006 abbrev->next = abbrev_table->abbrevs[hash_number];
15007 abbrev_table->abbrevs[hash_number] = abbrev;
15008 }
15009
15010 /* Look up an abbrev in the table.
15011 Returns NULL if the abbrev is not found. */
15012
15013 static struct abbrev_info *
15014 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15015 unsigned int abbrev_number)
15016 {
15017 unsigned int hash_number;
15018 struct abbrev_info *abbrev;
15019
15020 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15021 abbrev = abbrev_table->abbrevs[hash_number];
15022
15023 while (abbrev)
15024 {
15025 if (abbrev->number == abbrev_number)
15026 return abbrev;
15027 abbrev = abbrev->next;
15028 }
15029 return NULL;
15030 }
15031
15032 /* Read in an abbrev table. */
15033
15034 static struct abbrev_table *
15035 abbrev_table_read_table (struct dwarf2_section_info *section,
15036 sect_offset offset)
15037 {
15038 struct objfile *objfile = dwarf2_per_objfile->objfile;
15039 bfd *abfd = get_section_bfd_owner (section);
15040 struct abbrev_table *abbrev_table;
15041 const gdb_byte *abbrev_ptr;
15042 struct abbrev_info *cur_abbrev;
15043 unsigned int abbrev_number, bytes_read, abbrev_name;
15044 unsigned int abbrev_form;
15045 struct attr_abbrev *cur_attrs;
15046 unsigned int allocated_attrs;
15047
15048 abbrev_table = XNEW (struct abbrev_table);
15049 abbrev_table->offset = offset;
15050 obstack_init (&abbrev_table->abbrev_obstack);
15051 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15052 (ABBREV_HASH_SIZE
15053 * sizeof (struct abbrev_info *)));
15054 memset (abbrev_table->abbrevs, 0,
15055 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15056
15057 dwarf2_read_section (objfile, section);
15058 abbrev_ptr = section->buffer + offset.sect_off;
15059 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15060 abbrev_ptr += bytes_read;
15061
15062 allocated_attrs = ATTR_ALLOC_CHUNK;
15063 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15064
15065 /* Loop until we reach an abbrev number of 0. */
15066 while (abbrev_number)
15067 {
15068 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15069
15070 /* read in abbrev header */
15071 cur_abbrev->number = abbrev_number;
15072 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15073 abbrev_ptr += bytes_read;
15074 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15075 abbrev_ptr += 1;
15076
15077 /* now read in declarations */
15078 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15079 abbrev_ptr += bytes_read;
15080 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15081 abbrev_ptr += bytes_read;
15082 while (abbrev_name)
15083 {
15084 if (cur_abbrev->num_attrs == allocated_attrs)
15085 {
15086 allocated_attrs += ATTR_ALLOC_CHUNK;
15087 cur_attrs
15088 = xrealloc (cur_attrs, (allocated_attrs
15089 * sizeof (struct attr_abbrev)));
15090 }
15091
15092 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15093 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15094 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15095 abbrev_ptr += bytes_read;
15096 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15097 abbrev_ptr += bytes_read;
15098 }
15099
15100 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15101 (cur_abbrev->num_attrs
15102 * sizeof (struct attr_abbrev)));
15103 memcpy (cur_abbrev->attrs, cur_attrs,
15104 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15105
15106 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15107
15108 /* Get next abbreviation.
15109 Under Irix6 the abbreviations for a compilation unit are not
15110 always properly terminated with an abbrev number of 0.
15111 Exit loop if we encounter an abbreviation which we have
15112 already read (which means we are about to read the abbreviations
15113 for the next compile unit) or if the end of the abbreviation
15114 table is reached. */
15115 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15116 break;
15117 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15118 abbrev_ptr += bytes_read;
15119 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15120 break;
15121 }
15122
15123 xfree (cur_attrs);
15124 return abbrev_table;
15125 }
15126
15127 /* Free the resources held by ABBREV_TABLE. */
15128
15129 static void
15130 abbrev_table_free (struct abbrev_table *abbrev_table)
15131 {
15132 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15133 xfree (abbrev_table);
15134 }
15135
15136 /* Same as abbrev_table_free but as a cleanup.
15137 We pass in a pointer to the pointer to the table so that we can
15138 set the pointer to NULL when we're done. It also simplifies
15139 build_type_psymtabs_1. */
15140
15141 static void
15142 abbrev_table_free_cleanup (void *table_ptr)
15143 {
15144 struct abbrev_table **abbrev_table_ptr = table_ptr;
15145
15146 if (*abbrev_table_ptr != NULL)
15147 abbrev_table_free (*abbrev_table_ptr);
15148 *abbrev_table_ptr = NULL;
15149 }
15150
15151 /* Read the abbrev table for CU from ABBREV_SECTION. */
15152
15153 static void
15154 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15155 struct dwarf2_section_info *abbrev_section)
15156 {
15157 cu->abbrev_table =
15158 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15159 }
15160
15161 /* Release the memory used by the abbrev table for a compilation unit. */
15162
15163 static void
15164 dwarf2_free_abbrev_table (void *ptr_to_cu)
15165 {
15166 struct dwarf2_cu *cu = ptr_to_cu;
15167
15168 if (cu->abbrev_table != NULL)
15169 abbrev_table_free (cu->abbrev_table);
15170 /* Set this to NULL so that we SEGV if we try to read it later,
15171 and also because free_comp_unit verifies this is NULL. */
15172 cu->abbrev_table = NULL;
15173 }
15174 \f
15175 /* Returns nonzero if TAG represents a type that we might generate a partial
15176 symbol for. */
15177
15178 static int
15179 is_type_tag_for_partial (int tag)
15180 {
15181 switch (tag)
15182 {
15183 #if 0
15184 /* Some types that would be reasonable to generate partial symbols for,
15185 that we don't at present. */
15186 case DW_TAG_array_type:
15187 case DW_TAG_file_type:
15188 case DW_TAG_ptr_to_member_type:
15189 case DW_TAG_set_type:
15190 case DW_TAG_string_type:
15191 case DW_TAG_subroutine_type:
15192 #endif
15193 case DW_TAG_base_type:
15194 case DW_TAG_class_type:
15195 case DW_TAG_interface_type:
15196 case DW_TAG_enumeration_type:
15197 case DW_TAG_structure_type:
15198 case DW_TAG_subrange_type:
15199 case DW_TAG_typedef:
15200 case DW_TAG_union_type:
15201 return 1;
15202 default:
15203 return 0;
15204 }
15205 }
15206
15207 /* Load all DIEs that are interesting for partial symbols into memory. */
15208
15209 static struct partial_die_info *
15210 load_partial_dies (const struct die_reader_specs *reader,
15211 const gdb_byte *info_ptr, int building_psymtab)
15212 {
15213 struct dwarf2_cu *cu = reader->cu;
15214 struct objfile *objfile = cu->objfile;
15215 struct partial_die_info *part_die;
15216 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15217 struct abbrev_info *abbrev;
15218 unsigned int bytes_read;
15219 unsigned int load_all = 0;
15220 int nesting_level = 1;
15221
15222 parent_die = NULL;
15223 last_die = NULL;
15224
15225 gdb_assert (cu->per_cu != NULL);
15226 if (cu->per_cu->load_all_dies)
15227 load_all = 1;
15228
15229 cu->partial_dies
15230 = htab_create_alloc_ex (cu->header.length / 12,
15231 partial_die_hash,
15232 partial_die_eq,
15233 NULL,
15234 &cu->comp_unit_obstack,
15235 hashtab_obstack_allocate,
15236 dummy_obstack_deallocate);
15237
15238 part_die = obstack_alloc (&cu->comp_unit_obstack,
15239 sizeof (struct partial_die_info));
15240
15241 while (1)
15242 {
15243 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15244
15245 /* A NULL abbrev means the end of a series of children. */
15246 if (abbrev == NULL)
15247 {
15248 if (--nesting_level == 0)
15249 {
15250 /* PART_DIE was probably the last thing allocated on the
15251 comp_unit_obstack, so we could call obstack_free
15252 here. We don't do that because the waste is small,
15253 and will be cleaned up when we're done with this
15254 compilation unit. This way, we're also more robust
15255 against other users of the comp_unit_obstack. */
15256 return first_die;
15257 }
15258 info_ptr += bytes_read;
15259 last_die = parent_die;
15260 parent_die = parent_die->die_parent;
15261 continue;
15262 }
15263
15264 /* Check for template arguments. We never save these; if
15265 they're seen, we just mark the parent, and go on our way. */
15266 if (parent_die != NULL
15267 && cu->language == language_cplus
15268 && (abbrev->tag == DW_TAG_template_type_param
15269 || abbrev->tag == DW_TAG_template_value_param))
15270 {
15271 parent_die->has_template_arguments = 1;
15272
15273 if (!load_all)
15274 {
15275 /* We don't need a partial DIE for the template argument. */
15276 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15277 continue;
15278 }
15279 }
15280
15281 /* We only recurse into c++ subprograms looking for template arguments.
15282 Skip their other children. */
15283 if (!load_all
15284 && cu->language == language_cplus
15285 && parent_die != NULL
15286 && parent_die->tag == DW_TAG_subprogram)
15287 {
15288 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15289 continue;
15290 }
15291
15292 /* Check whether this DIE is interesting enough to save. Normally
15293 we would not be interested in members here, but there may be
15294 later variables referencing them via DW_AT_specification (for
15295 static members). */
15296 if (!load_all
15297 && !is_type_tag_for_partial (abbrev->tag)
15298 && abbrev->tag != DW_TAG_constant
15299 && abbrev->tag != DW_TAG_enumerator
15300 && abbrev->tag != DW_TAG_subprogram
15301 && abbrev->tag != DW_TAG_lexical_block
15302 && abbrev->tag != DW_TAG_variable
15303 && abbrev->tag != DW_TAG_namespace
15304 && abbrev->tag != DW_TAG_module
15305 && abbrev->tag != DW_TAG_member
15306 && abbrev->tag != DW_TAG_imported_unit
15307 && abbrev->tag != DW_TAG_imported_declaration)
15308 {
15309 /* Otherwise we skip to the next sibling, if any. */
15310 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15311 continue;
15312 }
15313
15314 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15315 info_ptr);
15316
15317 /* This two-pass algorithm for processing partial symbols has a
15318 high cost in cache pressure. Thus, handle some simple cases
15319 here which cover the majority of C partial symbols. DIEs
15320 which neither have specification tags in them, nor could have
15321 specification tags elsewhere pointing at them, can simply be
15322 processed and discarded.
15323
15324 This segment is also optional; scan_partial_symbols and
15325 add_partial_symbol will handle these DIEs if we chain
15326 them in normally. When compilers which do not emit large
15327 quantities of duplicate debug information are more common,
15328 this code can probably be removed. */
15329
15330 /* Any complete simple types at the top level (pretty much all
15331 of them, for a language without namespaces), can be processed
15332 directly. */
15333 if (parent_die == NULL
15334 && part_die->has_specification == 0
15335 && part_die->is_declaration == 0
15336 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15337 || part_die->tag == DW_TAG_base_type
15338 || part_die->tag == DW_TAG_subrange_type))
15339 {
15340 if (building_psymtab && part_die->name != NULL)
15341 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15342 VAR_DOMAIN, LOC_TYPEDEF,
15343 &objfile->static_psymbols,
15344 0, (CORE_ADDR) 0, cu->language, objfile);
15345 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15346 continue;
15347 }
15348
15349 /* The exception for DW_TAG_typedef with has_children above is
15350 a workaround of GCC PR debug/47510. In the case of this complaint
15351 type_name_no_tag_or_error will error on such types later.
15352
15353 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15354 it could not find the child DIEs referenced later, this is checked
15355 above. In correct DWARF DW_TAG_typedef should have no children. */
15356
15357 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15358 complaint (&symfile_complaints,
15359 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15360 "- DIE at 0x%x [in module %s]"),
15361 part_die->offset.sect_off, objfile_name (objfile));
15362
15363 /* If we're at the second level, and we're an enumerator, and
15364 our parent has no specification (meaning possibly lives in a
15365 namespace elsewhere), then we can add the partial symbol now
15366 instead of queueing it. */
15367 if (part_die->tag == DW_TAG_enumerator
15368 && parent_die != NULL
15369 && parent_die->die_parent == NULL
15370 && parent_die->tag == DW_TAG_enumeration_type
15371 && parent_die->has_specification == 0)
15372 {
15373 if (part_die->name == NULL)
15374 complaint (&symfile_complaints,
15375 _("malformed enumerator DIE ignored"));
15376 else if (building_psymtab)
15377 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15378 VAR_DOMAIN, LOC_CONST,
15379 (cu->language == language_cplus
15380 || cu->language == language_java)
15381 ? &objfile->global_psymbols
15382 : &objfile->static_psymbols,
15383 0, (CORE_ADDR) 0, cu->language, objfile);
15384
15385 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15386 continue;
15387 }
15388
15389 /* We'll save this DIE so link it in. */
15390 part_die->die_parent = parent_die;
15391 part_die->die_sibling = NULL;
15392 part_die->die_child = NULL;
15393
15394 if (last_die && last_die == parent_die)
15395 last_die->die_child = part_die;
15396 else if (last_die)
15397 last_die->die_sibling = part_die;
15398
15399 last_die = part_die;
15400
15401 if (first_die == NULL)
15402 first_die = part_die;
15403
15404 /* Maybe add the DIE to the hash table. Not all DIEs that we
15405 find interesting need to be in the hash table, because we
15406 also have the parent/sibling/child chains; only those that we
15407 might refer to by offset later during partial symbol reading.
15408
15409 For now this means things that might have be the target of a
15410 DW_AT_specification, DW_AT_abstract_origin, or
15411 DW_AT_extension. DW_AT_extension will refer only to
15412 namespaces; DW_AT_abstract_origin refers to functions (and
15413 many things under the function DIE, but we do not recurse
15414 into function DIEs during partial symbol reading) and
15415 possibly variables as well; DW_AT_specification refers to
15416 declarations. Declarations ought to have the DW_AT_declaration
15417 flag. It happens that GCC forgets to put it in sometimes, but
15418 only for functions, not for types.
15419
15420 Adding more things than necessary to the hash table is harmless
15421 except for the performance cost. Adding too few will result in
15422 wasted time in find_partial_die, when we reread the compilation
15423 unit with load_all_dies set. */
15424
15425 if (load_all
15426 || abbrev->tag == DW_TAG_constant
15427 || abbrev->tag == DW_TAG_subprogram
15428 || abbrev->tag == DW_TAG_variable
15429 || abbrev->tag == DW_TAG_namespace
15430 || part_die->is_declaration)
15431 {
15432 void **slot;
15433
15434 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15435 part_die->offset.sect_off, INSERT);
15436 *slot = part_die;
15437 }
15438
15439 part_die = obstack_alloc (&cu->comp_unit_obstack,
15440 sizeof (struct partial_die_info));
15441
15442 /* For some DIEs we want to follow their children (if any). For C
15443 we have no reason to follow the children of structures; for other
15444 languages we have to, so that we can get at method physnames
15445 to infer fully qualified class names, for DW_AT_specification,
15446 and for C++ template arguments. For C++, we also look one level
15447 inside functions to find template arguments (if the name of the
15448 function does not already contain the template arguments).
15449
15450 For Ada, we need to scan the children of subprograms and lexical
15451 blocks as well because Ada allows the definition of nested
15452 entities that could be interesting for the debugger, such as
15453 nested subprograms for instance. */
15454 if (last_die->has_children
15455 && (load_all
15456 || last_die->tag == DW_TAG_namespace
15457 || last_die->tag == DW_TAG_module
15458 || last_die->tag == DW_TAG_enumeration_type
15459 || (cu->language == language_cplus
15460 && last_die->tag == DW_TAG_subprogram
15461 && (last_die->name == NULL
15462 || strchr (last_die->name, '<') == NULL))
15463 || (cu->language != language_c
15464 && (last_die->tag == DW_TAG_class_type
15465 || last_die->tag == DW_TAG_interface_type
15466 || last_die->tag == DW_TAG_structure_type
15467 || last_die->tag == DW_TAG_union_type))
15468 || (cu->language == language_ada
15469 && (last_die->tag == DW_TAG_subprogram
15470 || last_die->tag == DW_TAG_lexical_block))))
15471 {
15472 nesting_level++;
15473 parent_die = last_die;
15474 continue;
15475 }
15476
15477 /* Otherwise we skip to the next sibling, if any. */
15478 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15479
15480 /* Back to the top, do it again. */
15481 }
15482 }
15483
15484 /* Read a minimal amount of information into the minimal die structure. */
15485
15486 static const gdb_byte *
15487 read_partial_die (const struct die_reader_specs *reader,
15488 struct partial_die_info *part_die,
15489 struct abbrev_info *abbrev, unsigned int abbrev_len,
15490 const gdb_byte *info_ptr)
15491 {
15492 struct dwarf2_cu *cu = reader->cu;
15493 struct objfile *objfile = cu->objfile;
15494 const gdb_byte *buffer = reader->buffer;
15495 unsigned int i;
15496 struct attribute attr;
15497 int has_low_pc_attr = 0;
15498 int has_high_pc_attr = 0;
15499 int high_pc_relative = 0;
15500
15501 memset (part_die, 0, sizeof (struct partial_die_info));
15502
15503 part_die->offset.sect_off = info_ptr - buffer;
15504
15505 info_ptr += abbrev_len;
15506
15507 if (abbrev == NULL)
15508 return info_ptr;
15509
15510 part_die->tag = abbrev->tag;
15511 part_die->has_children = abbrev->has_children;
15512
15513 for (i = 0; i < abbrev->num_attrs; ++i)
15514 {
15515 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15516
15517 /* Store the data if it is of an attribute we want to keep in a
15518 partial symbol table. */
15519 switch (attr.name)
15520 {
15521 case DW_AT_name:
15522 switch (part_die->tag)
15523 {
15524 case DW_TAG_compile_unit:
15525 case DW_TAG_partial_unit:
15526 case DW_TAG_type_unit:
15527 /* Compilation units have a DW_AT_name that is a filename, not
15528 a source language identifier. */
15529 case DW_TAG_enumeration_type:
15530 case DW_TAG_enumerator:
15531 /* These tags always have simple identifiers already; no need
15532 to canonicalize them. */
15533 part_die->name = DW_STRING (&attr);
15534 break;
15535 default:
15536 part_die->name
15537 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15538 &objfile->per_bfd->storage_obstack);
15539 break;
15540 }
15541 break;
15542 case DW_AT_linkage_name:
15543 case DW_AT_MIPS_linkage_name:
15544 /* Note that both forms of linkage name might appear. We
15545 assume they will be the same, and we only store the last
15546 one we see. */
15547 if (cu->language == language_ada)
15548 part_die->name = DW_STRING (&attr);
15549 part_die->linkage_name = DW_STRING (&attr);
15550 break;
15551 case DW_AT_low_pc:
15552 has_low_pc_attr = 1;
15553 part_die->lowpc = attr_value_as_address (&attr);
15554 break;
15555 case DW_AT_high_pc:
15556 has_high_pc_attr = 1;
15557 part_die->highpc = attr_value_as_address (&attr);
15558 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15559 high_pc_relative = 1;
15560 break;
15561 case DW_AT_location:
15562 /* Support the .debug_loc offsets. */
15563 if (attr_form_is_block (&attr))
15564 {
15565 part_die->d.locdesc = DW_BLOCK (&attr);
15566 }
15567 else if (attr_form_is_section_offset (&attr))
15568 {
15569 dwarf2_complex_location_expr_complaint ();
15570 }
15571 else
15572 {
15573 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15574 "partial symbol information");
15575 }
15576 break;
15577 case DW_AT_external:
15578 part_die->is_external = DW_UNSND (&attr);
15579 break;
15580 case DW_AT_declaration:
15581 part_die->is_declaration = DW_UNSND (&attr);
15582 break;
15583 case DW_AT_type:
15584 part_die->has_type = 1;
15585 break;
15586 case DW_AT_abstract_origin:
15587 case DW_AT_specification:
15588 case DW_AT_extension:
15589 part_die->has_specification = 1;
15590 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15591 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15592 || cu->per_cu->is_dwz);
15593 break;
15594 case DW_AT_sibling:
15595 /* Ignore absolute siblings, they might point outside of
15596 the current compile unit. */
15597 if (attr.form == DW_FORM_ref_addr)
15598 complaint (&symfile_complaints,
15599 _("ignoring absolute DW_AT_sibling"));
15600 else
15601 {
15602 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15603 const gdb_byte *sibling_ptr = buffer + off;
15604
15605 if (sibling_ptr < info_ptr)
15606 complaint (&symfile_complaints,
15607 _("DW_AT_sibling points backwards"));
15608 else if (sibling_ptr > reader->buffer_end)
15609 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15610 else
15611 part_die->sibling = sibling_ptr;
15612 }
15613 break;
15614 case DW_AT_byte_size:
15615 part_die->has_byte_size = 1;
15616 break;
15617 case DW_AT_calling_convention:
15618 /* DWARF doesn't provide a way to identify a program's source-level
15619 entry point. DW_AT_calling_convention attributes are only meant
15620 to describe functions' calling conventions.
15621
15622 However, because it's a necessary piece of information in
15623 Fortran, and because DW_CC_program is the only piece of debugging
15624 information whose definition refers to a 'main program' at all,
15625 several compilers have begun marking Fortran main programs with
15626 DW_CC_program --- even when those functions use the standard
15627 calling conventions.
15628
15629 So until DWARF specifies a way to provide this information and
15630 compilers pick up the new representation, we'll support this
15631 practice. */
15632 if (DW_UNSND (&attr) == DW_CC_program
15633 && cu->language == language_fortran)
15634 set_objfile_main_name (objfile, part_die->name, language_fortran);
15635 break;
15636 case DW_AT_inline:
15637 if (DW_UNSND (&attr) == DW_INL_inlined
15638 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15639 part_die->may_be_inlined = 1;
15640 break;
15641
15642 case DW_AT_import:
15643 if (part_die->tag == DW_TAG_imported_unit)
15644 {
15645 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15646 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15647 || cu->per_cu->is_dwz);
15648 }
15649 break;
15650
15651 default:
15652 break;
15653 }
15654 }
15655
15656 if (high_pc_relative)
15657 part_die->highpc += part_die->lowpc;
15658
15659 if (has_low_pc_attr && has_high_pc_attr)
15660 {
15661 /* When using the GNU linker, .gnu.linkonce. sections are used to
15662 eliminate duplicate copies of functions and vtables and such.
15663 The linker will arbitrarily choose one and discard the others.
15664 The AT_*_pc values for such functions refer to local labels in
15665 these sections. If the section from that file was discarded, the
15666 labels are not in the output, so the relocs get a value of 0.
15667 If this is a discarded function, mark the pc bounds as invalid,
15668 so that GDB will ignore it. */
15669 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15670 {
15671 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15672
15673 complaint (&symfile_complaints,
15674 _("DW_AT_low_pc %s is zero "
15675 "for DIE at 0x%x [in module %s]"),
15676 paddress (gdbarch, part_die->lowpc),
15677 part_die->offset.sect_off, objfile_name (objfile));
15678 }
15679 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15680 else if (part_die->lowpc >= part_die->highpc)
15681 {
15682 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15683
15684 complaint (&symfile_complaints,
15685 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15686 "for DIE at 0x%x [in module %s]"),
15687 paddress (gdbarch, part_die->lowpc),
15688 paddress (gdbarch, part_die->highpc),
15689 part_die->offset.sect_off, objfile_name (objfile));
15690 }
15691 else
15692 part_die->has_pc_info = 1;
15693 }
15694
15695 return info_ptr;
15696 }
15697
15698 /* Find a cached partial DIE at OFFSET in CU. */
15699
15700 static struct partial_die_info *
15701 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15702 {
15703 struct partial_die_info *lookup_die = NULL;
15704 struct partial_die_info part_die;
15705
15706 part_die.offset = offset;
15707 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15708 offset.sect_off);
15709
15710 return lookup_die;
15711 }
15712
15713 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15714 except in the case of .debug_types DIEs which do not reference
15715 outside their CU (they do however referencing other types via
15716 DW_FORM_ref_sig8). */
15717
15718 static struct partial_die_info *
15719 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15720 {
15721 struct objfile *objfile = cu->objfile;
15722 struct dwarf2_per_cu_data *per_cu = NULL;
15723 struct partial_die_info *pd = NULL;
15724
15725 if (offset_in_dwz == cu->per_cu->is_dwz
15726 && offset_in_cu_p (&cu->header, offset))
15727 {
15728 pd = find_partial_die_in_comp_unit (offset, cu);
15729 if (pd != NULL)
15730 return pd;
15731 /* We missed recording what we needed.
15732 Load all dies and try again. */
15733 per_cu = cu->per_cu;
15734 }
15735 else
15736 {
15737 /* TUs don't reference other CUs/TUs (except via type signatures). */
15738 if (cu->per_cu->is_debug_types)
15739 {
15740 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15741 " external reference to offset 0x%lx [in module %s].\n"),
15742 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15743 bfd_get_filename (objfile->obfd));
15744 }
15745 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15746 objfile);
15747
15748 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15749 load_partial_comp_unit (per_cu);
15750
15751 per_cu->cu->last_used = 0;
15752 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15753 }
15754
15755 /* If we didn't find it, and not all dies have been loaded,
15756 load them all and try again. */
15757
15758 if (pd == NULL && per_cu->load_all_dies == 0)
15759 {
15760 per_cu->load_all_dies = 1;
15761
15762 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15763 THIS_CU->cu may already be in use. So we can't just free it and
15764 replace its DIEs with the ones we read in. Instead, we leave those
15765 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15766 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15767 set. */
15768 load_partial_comp_unit (per_cu);
15769
15770 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15771 }
15772
15773 if (pd == NULL)
15774 internal_error (__FILE__, __LINE__,
15775 _("could not find partial DIE 0x%x "
15776 "in cache [from module %s]\n"),
15777 offset.sect_off, bfd_get_filename (objfile->obfd));
15778 return pd;
15779 }
15780
15781 /* See if we can figure out if the class lives in a namespace. We do
15782 this by looking for a member function; its demangled name will
15783 contain namespace info, if there is any. */
15784
15785 static void
15786 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15787 struct dwarf2_cu *cu)
15788 {
15789 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15790 what template types look like, because the demangler
15791 frequently doesn't give the same name as the debug info. We
15792 could fix this by only using the demangled name to get the
15793 prefix (but see comment in read_structure_type). */
15794
15795 struct partial_die_info *real_pdi;
15796 struct partial_die_info *child_pdi;
15797
15798 /* If this DIE (this DIE's specification, if any) has a parent, then
15799 we should not do this. We'll prepend the parent's fully qualified
15800 name when we create the partial symbol. */
15801
15802 real_pdi = struct_pdi;
15803 while (real_pdi->has_specification)
15804 real_pdi = find_partial_die (real_pdi->spec_offset,
15805 real_pdi->spec_is_dwz, cu);
15806
15807 if (real_pdi->die_parent != NULL)
15808 return;
15809
15810 for (child_pdi = struct_pdi->die_child;
15811 child_pdi != NULL;
15812 child_pdi = child_pdi->die_sibling)
15813 {
15814 if (child_pdi->tag == DW_TAG_subprogram
15815 && child_pdi->linkage_name != NULL)
15816 {
15817 char *actual_class_name
15818 = language_class_name_from_physname (cu->language_defn,
15819 child_pdi->linkage_name);
15820 if (actual_class_name != NULL)
15821 {
15822 struct_pdi->name
15823 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15824 actual_class_name,
15825 strlen (actual_class_name));
15826 xfree (actual_class_name);
15827 }
15828 break;
15829 }
15830 }
15831 }
15832
15833 /* Adjust PART_DIE before generating a symbol for it. This function
15834 may set the is_external flag or change the DIE's name. */
15835
15836 static void
15837 fixup_partial_die (struct partial_die_info *part_die,
15838 struct dwarf2_cu *cu)
15839 {
15840 /* Once we've fixed up a die, there's no point in doing so again.
15841 This also avoids a memory leak if we were to call
15842 guess_partial_die_structure_name multiple times. */
15843 if (part_die->fixup_called)
15844 return;
15845
15846 /* If we found a reference attribute and the DIE has no name, try
15847 to find a name in the referred to DIE. */
15848
15849 if (part_die->name == NULL && part_die->has_specification)
15850 {
15851 struct partial_die_info *spec_die;
15852
15853 spec_die = find_partial_die (part_die->spec_offset,
15854 part_die->spec_is_dwz, cu);
15855
15856 fixup_partial_die (spec_die, cu);
15857
15858 if (spec_die->name)
15859 {
15860 part_die->name = spec_die->name;
15861
15862 /* Copy DW_AT_external attribute if it is set. */
15863 if (spec_die->is_external)
15864 part_die->is_external = spec_die->is_external;
15865 }
15866 }
15867
15868 /* Set default names for some unnamed DIEs. */
15869
15870 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15871 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15872
15873 /* If there is no parent die to provide a namespace, and there are
15874 children, see if we can determine the namespace from their linkage
15875 name. */
15876 if (cu->language == language_cplus
15877 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15878 && part_die->die_parent == NULL
15879 && part_die->has_children
15880 && (part_die->tag == DW_TAG_class_type
15881 || part_die->tag == DW_TAG_structure_type
15882 || part_die->tag == DW_TAG_union_type))
15883 guess_partial_die_structure_name (part_die, cu);
15884
15885 /* GCC might emit a nameless struct or union that has a linkage
15886 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15887 if (part_die->name == NULL
15888 && (part_die->tag == DW_TAG_class_type
15889 || part_die->tag == DW_TAG_interface_type
15890 || part_die->tag == DW_TAG_structure_type
15891 || part_die->tag == DW_TAG_union_type)
15892 && part_die->linkage_name != NULL)
15893 {
15894 char *demangled;
15895
15896 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15897 if (demangled)
15898 {
15899 const char *base;
15900
15901 /* Strip any leading namespaces/classes, keep only the base name.
15902 DW_AT_name for named DIEs does not contain the prefixes. */
15903 base = strrchr (demangled, ':');
15904 if (base && base > demangled && base[-1] == ':')
15905 base++;
15906 else
15907 base = demangled;
15908
15909 part_die->name
15910 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15911 base, strlen (base));
15912 xfree (demangled);
15913 }
15914 }
15915
15916 part_die->fixup_called = 1;
15917 }
15918
15919 /* Read an attribute value described by an attribute form. */
15920
15921 static const gdb_byte *
15922 read_attribute_value (const struct die_reader_specs *reader,
15923 struct attribute *attr, unsigned form,
15924 const gdb_byte *info_ptr)
15925 {
15926 struct dwarf2_cu *cu = reader->cu;
15927 bfd *abfd = reader->abfd;
15928 struct comp_unit_head *cu_header = &cu->header;
15929 unsigned int bytes_read;
15930 struct dwarf_block *blk;
15931
15932 attr->form = form;
15933 switch (form)
15934 {
15935 case DW_FORM_ref_addr:
15936 if (cu->header.version == 2)
15937 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15938 else
15939 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15940 &cu->header, &bytes_read);
15941 info_ptr += bytes_read;
15942 break;
15943 case DW_FORM_GNU_ref_alt:
15944 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15945 info_ptr += bytes_read;
15946 break;
15947 case DW_FORM_addr:
15948 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15949 info_ptr += bytes_read;
15950 break;
15951 case DW_FORM_block2:
15952 blk = dwarf_alloc_block (cu);
15953 blk->size = read_2_bytes (abfd, info_ptr);
15954 info_ptr += 2;
15955 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15956 info_ptr += blk->size;
15957 DW_BLOCK (attr) = blk;
15958 break;
15959 case DW_FORM_block4:
15960 blk = dwarf_alloc_block (cu);
15961 blk->size = read_4_bytes (abfd, info_ptr);
15962 info_ptr += 4;
15963 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15964 info_ptr += blk->size;
15965 DW_BLOCK (attr) = blk;
15966 break;
15967 case DW_FORM_data2:
15968 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15969 info_ptr += 2;
15970 break;
15971 case DW_FORM_data4:
15972 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15973 info_ptr += 4;
15974 break;
15975 case DW_FORM_data8:
15976 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15977 info_ptr += 8;
15978 break;
15979 case DW_FORM_sec_offset:
15980 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15981 info_ptr += bytes_read;
15982 break;
15983 case DW_FORM_string:
15984 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15985 DW_STRING_IS_CANONICAL (attr) = 0;
15986 info_ptr += bytes_read;
15987 break;
15988 case DW_FORM_strp:
15989 if (!cu->per_cu->is_dwz)
15990 {
15991 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15992 &bytes_read);
15993 DW_STRING_IS_CANONICAL (attr) = 0;
15994 info_ptr += bytes_read;
15995 break;
15996 }
15997 /* FALLTHROUGH */
15998 case DW_FORM_GNU_strp_alt:
15999 {
16000 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16001 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16002 &bytes_read);
16003
16004 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16005 DW_STRING_IS_CANONICAL (attr) = 0;
16006 info_ptr += bytes_read;
16007 }
16008 break;
16009 case DW_FORM_exprloc:
16010 case DW_FORM_block:
16011 blk = dwarf_alloc_block (cu);
16012 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16013 info_ptr += bytes_read;
16014 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16015 info_ptr += blk->size;
16016 DW_BLOCK (attr) = blk;
16017 break;
16018 case DW_FORM_block1:
16019 blk = dwarf_alloc_block (cu);
16020 blk->size = read_1_byte (abfd, info_ptr);
16021 info_ptr += 1;
16022 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16023 info_ptr += blk->size;
16024 DW_BLOCK (attr) = blk;
16025 break;
16026 case DW_FORM_data1:
16027 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16028 info_ptr += 1;
16029 break;
16030 case DW_FORM_flag:
16031 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16032 info_ptr += 1;
16033 break;
16034 case DW_FORM_flag_present:
16035 DW_UNSND (attr) = 1;
16036 break;
16037 case DW_FORM_sdata:
16038 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16039 info_ptr += bytes_read;
16040 break;
16041 case DW_FORM_udata:
16042 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16043 info_ptr += bytes_read;
16044 break;
16045 case DW_FORM_ref1:
16046 DW_UNSND (attr) = (cu->header.offset.sect_off
16047 + read_1_byte (abfd, info_ptr));
16048 info_ptr += 1;
16049 break;
16050 case DW_FORM_ref2:
16051 DW_UNSND (attr) = (cu->header.offset.sect_off
16052 + read_2_bytes (abfd, info_ptr));
16053 info_ptr += 2;
16054 break;
16055 case DW_FORM_ref4:
16056 DW_UNSND (attr) = (cu->header.offset.sect_off
16057 + read_4_bytes (abfd, info_ptr));
16058 info_ptr += 4;
16059 break;
16060 case DW_FORM_ref8:
16061 DW_UNSND (attr) = (cu->header.offset.sect_off
16062 + read_8_bytes (abfd, info_ptr));
16063 info_ptr += 8;
16064 break;
16065 case DW_FORM_ref_sig8:
16066 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16067 info_ptr += 8;
16068 break;
16069 case DW_FORM_ref_udata:
16070 DW_UNSND (attr) = (cu->header.offset.sect_off
16071 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16072 info_ptr += bytes_read;
16073 break;
16074 case DW_FORM_indirect:
16075 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16076 info_ptr += bytes_read;
16077 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16078 break;
16079 case DW_FORM_GNU_addr_index:
16080 if (reader->dwo_file == NULL)
16081 {
16082 /* For now flag a hard error.
16083 Later we can turn this into a complaint. */
16084 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16085 dwarf_form_name (form),
16086 bfd_get_filename (abfd));
16087 }
16088 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16089 info_ptr += bytes_read;
16090 break;
16091 case DW_FORM_GNU_str_index:
16092 if (reader->dwo_file == NULL)
16093 {
16094 /* For now flag a hard error.
16095 Later we can turn this into a complaint if warranted. */
16096 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16097 dwarf_form_name (form),
16098 bfd_get_filename (abfd));
16099 }
16100 {
16101 ULONGEST str_index =
16102 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16103
16104 DW_STRING (attr) = read_str_index (reader, str_index);
16105 DW_STRING_IS_CANONICAL (attr) = 0;
16106 info_ptr += bytes_read;
16107 }
16108 break;
16109 default:
16110 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16111 dwarf_form_name (form),
16112 bfd_get_filename (abfd));
16113 }
16114
16115 /* Super hack. */
16116 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16117 attr->form = DW_FORM_GNU_ref_alt;
16118
16119 /* We have seen instances where the compiler tried to emit a byte
16120 size attribute of -1 which ended up being encoded as an unsigned
16121 0xffffffff. Although 0xffffffff is technically a valid size value,
16122 an object of this size seems pretty unlikely so we can relatively
16123 safely treat these cases as if the size attribute was invalid and
16124 treat them as zero by default. */
16125 if (attr->name == DW_AT_byte_size
16126 && form == DW_FORM_data4
16127 && DW_UNSND (attr) >= 0xffffffff)
16128 {
16129 complaint
16130 (&symfile_complaints,
16131 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16132 hex_string (DW_UNSND (attr)));
16133 DW_UNSND (attr) = 0;
16134 }
16135
16136 return info_ptr;
16137 }
16138
16139 /* Read an attribute described by an abbreviated attribute. */
16140
16141 static const gdb_byte *
16142 read_attribute (const struct die_reader_specs *reader,
16143 struct attribute *attr, struct attr_abbrev *abbrev,
16144 const gdb_byte *info_ptr)
16145 {
16146 attr->name = abbrev->name;
16147 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16148 }
16149
16150 /* Read dwarf information from a buffer. */
16151
16152 static unsigned int
16153 read_1_byte (bfd *abfd, const gdb_byte *buf)
16154 {
16155 return bfd_get_8 (abfd, buf);
16156 }
16157
16158 static int
16159 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16160 {
16161 return bfd_get_signed_8 (abfd, buf);
16162 }
16163
16164 static unsigned int
16165 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16166 {
16167 return bfd_get_16 (abfd, buf);
16168 }
16169
16170 static int
16171 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16172 {
16173 return bfd_get_signed_16 (abfd, buf);
16174 }
16175
16176 static unsigned int
16177 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16178 {
16179 return bfd_get_32 (abfd, buf);
16180 }
16181
16182 static int
16183 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16184 {
16185 return bfd_get_signed_32 (abfd, buf);
16186 }
16187
16188 static ULONGEST
16189 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16190 {
16191 return bfd_get_64 (abfd, buf);
16192 }
16193
16194 static CORE_ADDR
16195 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16196 unsigned int *bytes_read)
16197 {
16198 struct comp_unit_head *cu_header = &cu->header;
16199 CORE_ADDR retval = 0;
16200
16201 if (cu_header->signed_addr_p)
16202 {
16203 switch (cu_header->addr_size)
16204 {
16205 case 2:
16206 retval = bfd_get_signed_16 (abfd, buf);
16207 break;
16208 case 4:
16209 retval = bfd_get_signed_32 (abfd, buf);
16210 break;
16211 case 8:
16212 retval = bfd_get_signed_64 (abfd, buf);
16213 break;
16214 default:
16215 internal_error (__FILE__, __LINE__,
16216 _("read_address: bad switch, signed [in module %s]"),
16217 bfd_get_filename (abfd));
16218 }
16219 }
16220 else
16221 {
16222 switch (cu_header->addr_size)
16223 {
16224 case 2:
16225 retval = bfd_get_16 (abfd, buf);
16226 break;
16227 case 4:
16228 retval = bfd_get_32 (abfd, buf);
16229 break;
16230 case 8:
16231 retval = bfd_get_64 (abfd, buf);
16232 break;
16233 default:
16234 internal_error (__FILE__, __LINE__,
16235 _("read_address: bad switch, "
16236 "unsigned [in module %s]"),
16237 bfd_get_filename (abfd));
16238 }
16239 }
16240
16241 *bytes_read = cu_header->addr_size;
16242 return retval;
16243 }
16244
16245 /* Read the initial length from a section. The (draft) DWARF 3
16246 specification allows the initial length to take up either 4 bytes
16247 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16248 bytes describe the length and all offsets will be 8 bytes in length
16249 instead of 4.
16250
16251 An older, non-standard 64-bit format is also handled by this
16252 function. The older format in question stores the initial length
16253 as an 8-byte quantity without an escape value. Lengths greater
16254 than 2^32 aren't very common which means that the initial 4 bytes
16255 is almost always zero. Since a length value of zero doesn't make
16256 sense for the 32-bit format, this initial zero can be considered to
16257 be an escape value which indicates the presence of the older 64-bit
16258 format. As written, the code can't detect (old format) lengths
16259 greater than 4GB. If it becomes necessary to handle lengths
16260 somewhat larger than 4GB, we could allow other small values (such
16261 as the non-sensical values of 1, 2, and 3) to also be used as
16262 escape values indicating the presence of the old format.
16263
16264 The value returned via bytes_read should be used to increment the
16265 relevant pointer after calling read_initial_length().
16266
16267 [ Note: read_initial_length() and read_offset() are based on the
16268 document entitled "DWARF Debugging Information Format", revision
16269 3, draft 8, dated November 19, 2001. This document was obtained
16270 from:
16271
16272 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16273
16274 This document is only a draft and is subject to change. (So beware.)
16275
16276 Details regarding the older, non-standard 64-bit format were
16277 determined empirically by examining 64-bit ELF files produced by
16278 the SGI toolchain on an IRIX 6.5 machine.
16279
16280 - Kevin, July 16, 2002
16281 ] */
16282
16283 static LONGEST
16284 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16285 {
16286 LONGEST length = bfd_get_32 (abfd, buf);
16287
16288 if (length == 0xffffffff)
16289 {
16290 length = bfd_get_64 (abfd, buf + 4);
16291 *bytes_read = 12;
16292 }
16293 else if (length == 0)
16294 {
16295 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16296 length = bfd_get_64 (abfd, buf);
16297 *bytes_read = 8;
16298 }
16299 else
16300 {
16301 *bytes_read = 4;
16302 }
16303
16304 return length;
16305 }
16306
16307 /* Cover function for read_initial_length.
16308 Returns the length of the object at BUF, and stores the size of the
16309 initial length in *BYTES_READ and stores the size that offsets will be in
16310 *OFFSET_SIZE.
16311 If the initial length size is not equivalent to that specified in
16312 CU_HEADER then issue a complaint.
16313 This is useful when reading non-comp-unit headers. */
16314
16315 static LONGEST
16316 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16317 const struct comp_unit_head *cu_header,
16318 unsigned int *bytes_read,
16319 unsigned int *offset_size)
16320 {
16321 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16322
16323 gdb_assert (cu_header->initial_length_size == 4
16324 || cu_header->initial_length_size == 8
16325 || cu_header->initial_length_size == 12);
16326
16327 if (cu_header->initial_length_size != *bytes_read)
16328 complaint (&symfile_complaints,
16329 _("intermixed 32-bit and 64-bit DWARF sections"));
16330
16331 *offset_size = (*bytes_read == 4) ? 4 : 8;
16332 return length;
16333 }
16334
16335 /* Read an offset from the data stream. The size of the offset is
16336 given by cu_header->offset_size. */
16337
16338 static LONGEST
16339 read_offset (bfd *abfd, const gdb_byte *buf,
16340 const struct comp_unit_head *cu_header,
16341 unsigned int *bytes_read)
16342 {
16343 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16344
16345 *bytes_read = cu_header->offset_size;
16346 return offset;
16347 }
16348
16349 /* Read an offset from the data stream. */
16350
16351 static LONGEST
16352 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16353 {
16354 LONGEST retval = 0;
16355
16356 switch (offset_size)
16357 {
16358 case 4:
16359 retval = bfd_get_32 (abfd, buf);
16360 break;
16361 case 8:
16362 retval = bfd_get_64 (abfd, buf);
16363 break;
16364 default:
16365 internal_error (__FILE__, __LINE__,
16366 _("read_offset_1: bad switch [in module %s]"),
16367 bfd_get_filename (abfd));
16368 }
16369
16370 return retval;
16371 }
16372
16373 static const gdb_byte *
16374 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16375 {
16376 /* If the size of a host char is 8 bits, we can return a pointer
16377 to the buffer, otherwise we have to copy the data to a buffer
16378 allocated on the temporary obstack. */
16379 gdb_assert (HOST_CHAR_BIT == 8);
16380 return buf;
16381 }
16382
16383 static const char *
16384 read_direct_string (bfd *abfd, const gdb_byte *buf,
16385 unsigned int *bytes_read_ptr)
16386 {
16387 /* If the size of a host char is 8 bits, we can return a pointer
16388 to the string, otherwise we have to copy the string to a buffer
16389 allocated on the temporary obstack. */
16390 gdb_assert (HOST_CHAR_BIT == 8);
16391 if (*buf == '\0')
16392 {
16393 *bytes_read_ptr = 1;
16394 return NULL;
16395 }
16396 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16397 return (const char *) buf;
16398 }
16399
16400 static const char *
16401 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16402 {
16403 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16404 if (dwarf2_per_objfile->str.buffer == NULL)
16405 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16406 bfd_get_filename (abfd));
16407 if (str_offset >= dwarf2_per_objfile->str.size)
16408 error (_("DW_FORM_strp pointing outside of "
16409 ".debug_str section [in module %s]"),
16410 bfd_get_filename (abfd));
16411 gdb_assert (HOST_CHAR_BIT == 8);
16412 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16413 return NULL;
16414 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16415 }
16416
16417 /* Read a string at offset STR_OFFSET in the .debug_str section from
16418 the .dwz file DWZ. Throw an error if the offset is too large. If
16419 the string consists of a single NUL byte, return NULL; otherwise
16420 return a pointer to the string. */
16421
16422 static const char *
16423 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16424 {
16425 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16426
16427 if (dwz->str.buffer == NULL)
16428 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16429 "section [in module %s]"),
16430 bfd_get_filename (dwz->dwz_bfd));
16431 if (str_offset >= dwz->str.size)
16432 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16433 ".debug_str section [in module %s]"),
16434 bfd_get_filename (dwz->dwz_bfd));
16435 gdb_assert (HOST_CHAR_BIT == 8);
16436 if (dwz->str.buffer[str_offset] == '\0')
16437 return NULL;
16438 return (const char *) (dwz->str.buffer + str_offset);
16439 }
16440
16441 static const char *
16442 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16443 const struct comp_unit_head *cu_header,
16444 unsigned int *bytes_read_ptr)
16445 {
16446 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16447
16448 return read_indirect_string_at_offset (abfd, str_offset);
16449 }
16450
16451 static ULONGEST
16452 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16453 unsigned int *bytes_read_ptr)
16454 {
16455 ULONGEST result;
16456 unsigned int num_read;
16457 int i, shift;
16458 unsigned char byte;
16459
16460 result = 0;
16461 shift = 0;
16462 num_read = 0;
16463 i = 0;
16464 while (1)
16465 {
16466 byte = bfd_get_8 (abfd, buf);
16467 buf++;
16468 num_read++;
16469 result |= ((ULONGEST) (byte & 127) << shift);
16470 if ((byte & 128) == 0)
16471 {
16472 break;
16473 }
16474 shift += 7;
16475 }
16476 *bytes_read_ptr = num_read;
16477 return result;
16478 }
16479
16480 static LONGEST
16481 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16482 unsigned int *bytes_read_ptr)
16483 {
16484 LONGEST result;
16485 int i, shift, num_read;
16486 unsigned char byte;
16487
16488 result = 0;
16489 shift = 0;
16490 num_read = 0;
16491 i = 0;
16492 while (1)
16493 {
16494 byte = bfd_get_8 (abfd, buf);
16495 buf++;
16496 num_read++;
16497 result |= ((LONGEST) (byte & 127) << shift);
16498 shift += 7;
16499 if ((byte & 128) == 0)
16500 {
16501 break;
16502 }
16503 }
16504 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16505 result |= -(((LONGEST) 1) << shift);
16506 *bytes_read_ptr = num_read;
16507 return result;
16508 }
16509
16510 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16511 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16512 ADDR_SIZE is the size of addresses from the CU header. */
16513
16514 static CORE_ADDR
16515 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16516 {
16517 struct objfile *objfile = dwarf2_per_objfile->objfile;
16518 bfd *abfd = objfile->obfd;
16519 const gdb_byte *info_ptr;
16520
16521 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16522 if (dwarf2_per_objfile->addr.buffer == NULL)
16523 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16524 objfile_name (objfile));
16525 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16526 error (_("DW_FORM_addr_index pointing outside of "
16527 ".debug_addr section [in module %s]"),
16528 objfile_name (objfile));
16529 info_ptr = (dwarf2_per_objfile->addr.buffer
16530 + addr_base + addr_index * addr_size);
16531 if (addr_size == 4)
16532 return bfd_get_32 (abfd, info_ptr);
16533 else
16534 return bfd_get_64 (abfd, info_ptr);
16535 }
16536
16537 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16538
16539 static CORE_ADDR
16540 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16541 {
16542 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16543 }
16544
16545 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16546
16547 static CORE_ADDR
16548 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16549 unsigned int *bytes_read)
16550 {
16551 bfd *abfd = cu->objfile->obfd;
16552 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16553
16554 return read_addr_index (cu, addr_index);
16555 }
16556
16557 /* Data structure to pass results from dwarf2_read_addr_index_reader
16558 back to dwarf2_read_addr_index. */
16559
16560 struct dwarf2_read_addr_index_data
16561 {
16562 ULONGEST addr_base;
16563 int addr_size;
16564 };
16565
16566 /* die_reader_func for dwarf2_read_addr_index. */
16567
16568 static void
16569 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16570 const gdb_byte *info_ptr,
16571 struct die_info *comp_unit_die,
16572 int has_children,
16573 void *data)
16574 {
16575 struct dwarf2_cu *cu = reader->cu;
16576 struct dwarf2_read_addr_index_data *aidata =
16577 (struct dwarf2_read_addr_index_data *) data;
16578
16579 aidata->addr_base = cu->addr_base;
16580 aidata->addr_size = cu->header.addr_size;
16581 }
16582
16583 /* Given an index in .debug_addr, fetch the value.
16584 NOTE: This can be called during dwarf expression evaluation,
16585 long after the debug information has been read, and thus per_cu->cu
16586 may no longer exist. */
16587
16588 CORE_ADDR
16589 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16590 unsigned int addr_index)
16591 {
16592 struct objfile *objfile = per_cu->objfile;
16593 struct dwarf2_cu *cu = per_cu->cu;
16594 ULONGEST addr_base;
16595 int addr_size;
16596
16597 /* This is intended to be called from outside this file. */
16598 dw2_setup (objfile);
16599
16600 /* We need addr_base and addr_size.
16601 If we don't have PER_CU->cu, we have to get it.
16602 Nasty, but the alternative is storing the needed info in PER_CU,
16603 which at this point doesn't seem justified: it's not clear how frequently
16604 it would get used and it would increase the size of every PER_CU.
16605 Entry points like dwarf2_per_cu_addr_size do a similar thing
16606 so we're not in uncharted territory here.
16607 Alas we need to be a bit more complicated as addr_base is contained
16608 in the DIE.
16609
16610 We don't need to read the entire CU(/TU).
16611 We just need the header and top level die.
16612
16613 IWBN to use the aging mechanism to let us lazily later discard the CU.
16614 For now we skip this optimization. */
16615
16616 if (cu != NULL)
16617 {
16618 addr_base = cu->addr_base;
16619 addr_size = cu->header.addr_size;
16620 }
16621 else
16622 {
16623 struct dwarf2_read_addr_index_data aidata;
16624
16625 /* Note: We can't use init_cutu_and_read_dies_simple here,
16626 we need addr_base. */
16627 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16628 dwarf2_read_addr_index_reader, &aidata);
16629 addr_base = aidata.addr_base;
16630 addr_size = aidata.addr_size;
16631 }
16632
16633 return read_addr_index_1 (addr_index, addr_base, addr_size);
16634 }
16635
16636 /* Given a DW_FORM_GNU_str_index, fetch the string.
16637 This is only used by the Fission support. */
16638
16639 static const char *
16640 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16641 {
16642 struct objfile *objfile = dwarf2_per_objfile->objfile;
16643 const char *objf_name = objfile_name (objfile);
16644 bfd *abfd = objfile->obfd;
16645 struct dwarf2_cu *cu = reader->cu;
16646 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16647 struct dwarf2_section_info *str_offsets_section =
16648 &reader->dwo_file->sections.str_offsets;
16649 const gdb_byte *info_ptr;
16650 ULONGEST str_offset;
16651 static const char form_name[] = "DW_FORM_GNU_str_index";
16652
16653 dwarf2_read_section (objfile, str_section);
16654 dwarf2_read_section (objfile, str_offsets_section);
16655 if (str_section->buffer == NULL)
16656 error (_("%s used without .debug_str.dwo section"
16657 " in CU at offset 0x%lx [in module %s]"),
16658 form_name, (long) cu->header.offset.sect_off, objf_name);
16659 if (str_offsets_section->buffer == NULL)
16660 error (_("%s used without .debug_str_offsets.dwo section"
16661 " in CU at offset 0x%lx [in module %s]"),
16662 form_name, (long) cu->header.offset.sect_off, objf_name);
16663 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16664 error (_("%s pointing outside of .debug_str_offsets.dwo"
16665 " section in CU at offset 0x%lx [in module %s]"),
16666 form_name, (long) cu->header.offset.sect_off, objf_name);
16667 info_ptr = (str_offsets_section->buffer
16668 + str_index * cu->header.offset_size);
16669 if (cu->header.offset_size == 4)
16670 str_offset = bfd_get_32 (abfd, info_ptr);
16671 else
16672 str_offset = bfd_get_64 (abfd, info_ptr);
16673 if (str_offset >= str_section->size)
16674 error (_("Offset from %s pointing outside of"
16675 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16676 form_name, (long) cu->header.offset.sect_off, objf_name);
16677 return (const char *) (str_section->buffer + str_offset);
16678 }
16679
16680 /* Return the length of an LEB128 number in BUF. */
16681
16682 static int
16683 leb128_size (const gdb_byte *buf)
16684 {
16685 const gdb_byte *begin = buf;
16686 gdb_byte byte;
16687
16688 while (1)
16689 {
16690 byte = *buf++;
16691 if ((byte & 128) == 0)
16692 return buf - begin;
16693 }
16694 }
16695
16696 static void
16697 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16698 {
16699 switch (lang)
16700 {
16701 case DW_LANG_C89:
16702 case DW_LANG_C99:
16703 case DW_LANG_C:
16704 case DW_LANG_UPC:
16705 cu->language = language_c;
16706 break;
16707 case DW_LANG_C_plus_plus:
16708 cu->language = language_cplus;
16709 break;
16710 case DW_LANG_D:
16711 cu->language = language_d;
16712 break;
16713 case DW_LANG_Fortran77:
16714 case DW_LANG_Fortran90:
16715 case DW_LANG_Fortran95:
16716 cu->language = language_fortran;
16717 break;
16718 case DW_LANG_Go:
16719 cu->language = language_go;
16720 break;
16721 case DW_LANG_Mips_Assembler:
16722 cu->language = language_asm;
16723 break;
16724 case DW_LANG_Java:
16725 cu->language = language_java;
16726 break;
16727 case DW_LANG_Ada83:
16728 case DW_LANG_Ada95:
16729 cu->language = language_ada;
16730 break;
16731 case DW_LANG_Modula2:
16732 cu->language = language_m2;
16733 break;
16734 case DW_LANG_Pascal83:
16735 cu->language = language_pascal;
16736 break;
16737 case DW_LANG_ObjC:
16738 cu->language = language_objc;
16739 break;
16740 case DW_LANG_Cobol74:
16741 case DW_LANG_Cobol85:
16742 default:
16743 cu->language = language_minimal;
16744 break;
16745 }
16746 cu->language_defn = language_def (cu->language);
16747 }
16748
16749 /* Return the named attribute or NULL if not there. */
16750
16751 static struct attribute *
16752 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16753 {
16754 for (;;)
16755 {
16756 unsigned int i;
16757 struct attribute *spec = NULL;
16758
16759 for (i = 0; i < die->num_attrs; ++i)
16760 {
16761 if (die->attrs[i].name == name)
16762 return &die->attrs[i];
16763 if (die->attrs[i].name == DW_AT_specification
16764 || die->attrs[i].name == DW_AT_abstract_origin)
16765 spec = &die->attrs[i];
16766 }
16767
16768 if (!spec)
16769 break;
16770
16771 die = follow_die_ref (die, spec, &cu);
16772 }
16773
16774 return NULL;
16775 }
16776
16777 /* Return the named attribute or NULL if not there,
16778 but do not follow DW_AT_specification, etc.
16779 This is for use in contexts where we're reading .debug_types dies.
16780 Following DW_AT_specification, DW_AT_abstract_origin will take us
16781 back up the chain, and we want to go down. */
16782
16783 static struct attribute *
16784 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16785 {
16786 unsigned int i;
16787
16788 for (i = 0; i < die->num_attrs; ++i)
16789 if (die->attrs[i].name == name)
16790 return &die->attrs[i];
16791
16792 return NULL;
16793 }
16794
16795 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16796 and holds a non-zero value. This function should only be used for
16797 DW_FORM_flag or DW_FORM_flag_present attributes. */
16798
16799 static int
16800 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16801 {
16802 struct attribute *attr = dwarf2_attr (die, name, cu);
16803
16804 return (attr && DW_UNSND (attr));
16805 }
16806
16807 static int
16808 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16809 {
16810 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16811 which value is non-zero. However, we have to be careful with
16812 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16813 (via dwarf2_flag_true_p) follows this attribute. So we may
16814 end up accidently finding a declaration attribute that belongs
16815 to a different DIE referenced by the specification attribute,
16816 even though the given DIE does not have a declaration attribute. */
16817 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16818 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16819 }
16820
16821 /* Return the die giving the specification for DIE, if there is
16822 one. *SPEC_CU is the CU containing DIE on input, and the CU
16823 containing the return value on output. If there is no
16824 specification, but there is an abstract origin, that is
16825 returned. */
16826
16827 static struct die_info *
16828 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16829 {
16830 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16831 *spec_cu);
16832
16833 if (spec_attr == NULL)
16834 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16835
16836 if (spec_attr == NULL)
16837 return NULL;
16838 else
16839 return follow_die_ref (die, spec_attr, spec_cu);
16840 }
16841
16842 /* Free the line_header structure *LH, and any arrays and strings it
16843 refers to.
16844 NOTE: This is also used as a "cleanup" function. */
16845
16846 static void
16847 free_line_header (struct line_header *lh)
16848 {
16849 if (lh->standard_opcode_lengths)
16850 xfree (lh->standard_opcode_lengths);
16851
16852 /* Remember that all the lh->file_names[i].name pointers are
16853 pointers into debug_line_buffer, and don't need to be freed. */
16854 if (lh->file_names)
16855 xfree (lh->file_names);
16856
16857 /* Similarly for the include directory names. */
16858 if (lh->include_dirs)
16859 xfree (lh->include_dirs);
16860
16861 xfree (lh);
16862 }
16863
16864 /* Add an entry to LH's include directory table. */
16865
16866 static void
16867 add_include_dir (struct line_header *lh, const char *include_dir)
16868 {
16869 /* Grow the array if necessary. */
16870 if (lh->include_dirs_size == 0)
16871 {
16872 lh->include_dirs_size = 1; /* for testing */
16873 lh->include_dirs = xmalloc (lh->include_dirs_size
16874 * sizeof (*lh->include_dirs));
16875 }
16876 else if (lh->num_include_dirs >= lh->include_dirs_size)
16877 {
16878 lh->include_dirs_size *= 2;
16879 lh->include_dirs = xrealloc (lh->include_dirs,
16880 (lh->include_dirs_size
16881 * sizeof (*lh->include_dirs)));
16882 }
16883
16884 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16885 }
16886
16887 /* Add an entry to LH's file name table. */
16888
16889 static void
16890 add_file_name (struct line_header *lh,
16891 const char *name,
16892 unsigned int dir_index,
16893 unsigned int mod_time,
16894 unsigned int length)
16895 {
16896 struct file_entry *fe;
16897
16898 /* Grow the array if necessary. */
16899 if (lh->file_names_size == 0)
16900 {
16901 lh->file_names_size = 1; /* for testing */
16902 lh->file_names = xmalloc (lh->file_names_size
16903 * sizeof (*lh->file_names));
16904 }
16905 else if (lh->num_file_names >= lh->file_names_size)
16906 {
16907 lh->file_names_size *= 2;
16908 lh->file_names = xrealloc (lh->file_names,
16909 (lh->file_names_size
16910 * sizeof (*lh->file_names)));
16911 }
16912
16913 fe = &lh->file_names[lh->num_file_names++];
16914 fe->name = name;
16915 fe->dir_index = dir_index;
16916 fe->mod_time = mod_time;
16917 fe->length = length;
16918 fe->included_p = 0;
16919 fe->symtab = NULL;
16920 }
16921
16922 /* A convenience function to find the proper .debug_line section for a
16923 CU. */
16924
16925 static struct dwarf2_section_info *
16926 get_debug_line_section (struct dwarf2_cu *cu)
16927 {
16928 struct dwarf2_section_info *section;
16929
16930 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16931 DWO file. */
16932 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16933 section = &cu->dwo_unit->dwo_file->sections.line;
16934 else if (cu->per_cu->is_dwz)
16935 {
16936 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16937
16938 section = &dwz->line;
16939 }
16940 else
16941 section = &dwarf2_per_objfile->line;
16942
16943 return section;
16944 }
16945
16946 /* Read the statement program header starting at OFFSET in
16947 .debug_line, or .debug_line.dwo. Return a pointer
16948 to a struct line_header, allocated using xmalloc.
16949
16950 NOTE: the strings in the include directory and file name tables of
16951 the returned object point into the dwarf line section buffer,
16952 and must not be freed. */
16953
16954 static struct line_header *
16955 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16956 {
16957 struct cleanup *back_to;
16958 struct line_header *lh;
16959 const gdb_byte *line_ptr;
16960 unsigned int bytes_read, offset_size;
16961 int i;
16962 const char *cur_dir, *cur_file;
16963 struct dwarf2_section_info *section;
16964 bfd *abfd;
16965
16966 section = get_debug_line_section (cu);
16967 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16968 if (section->buffer == NULL)
16969 {
16970 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16971 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16972 else
16973 complaint (&symfile_complaints, _("missing .debug_line section"));
16974 return 0;
16975 }
16976
16977 /* We can't do this until we know the section is non-empty.
16978 Only then do we know we have such a section. */
16979 abfd = get_section_bfd_owner (section);
16980
16981 /* Make sure that at least there's room for the total_length field.
16982 That could be 12 bytes long, but we're just going to fudge that. */
16983 if (offset + 4 >= section->size)
16984 {
16985 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16986 return 0;
16987 }
16988
16989 lh = xmalloc (sizeof (*lh));
16990 memset (lh, 0, sizeof (*lh));
16991 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16992 (void *) lh);
16993
16994 line_ptr = section->buffer + offset;
16995
16996 /* Read in the header. */
16997 lh->total_length =
16998 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16999 &bytes_read, &offset_size);
17000 line_ptr += bytes_read;
17001 if (line_ptr + lh->total_length > (section->buffer + section->size))
17002 {
17003 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17004 do_cleanups (back_to);
17005 return 0;
17006 }
17007 lh->statement_program_end = line_ptr + lh->total_length;
17008 lh->version = read_2_bytes (abfd, line_ptr);
17009 line_ptr += 2;
17010 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17011 line_ptr += offset_size;
17012 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17013 line_ptr += 1;
17014 if (lh->version >= 4)
17015 {
17016 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17017 line_ptr += 1;
17018 }
17019 else
17020 lh->maximum_ops_per_instruction = 1;
17021
17022 if (lh->maximum_ops_per_instruction == 0)
17023 {
17024 lh->maximum_ops_per_instruction = 1;
17025 complaint (&symfile_complaints,
17026 _("invalid maximum_ops_per_instruction "
17027 "in `.debug_line' section"));
17028 }
17029
17030 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17031 line_ptr += 1;
17032 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17033 line_ptr += 1;
17034 lh->line_range = read_1_byte (abfd, line_ptr);
17035 line_ptr += 1;
17036 lh->opcode_base = read_1_byte (abfd, line_ptr);
17037 line_ptr += 1;
17038 lh->standard_opcode_lengths
17039 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17040
17041 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17042 for (i = 1; i < lh->opcode_base; ++i)
17043 {
17044 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17045 line_ptr += 1;
17046 }
17047
17048 /* Read directory table. */
17049 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17050 {
17051 line_ptr += bytes_read;
17052 add_include_dir (lh, cur_dir);
17053 }
17054 line_ptr += bytes_read;
17055
17056 /* Read file name table. */
17057 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17058 {
17059 unsigned int dir_index, mod_time, length;
17060
17061 line_ptr += bytes_read;
17062 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17063 line_ptr += bytes_read;
17064 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17065 line_ptr += bytes_read;
17066 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17067 line_ptr += bytes_read;
17068
17069 add_file_name (lh, cur_file, dir_index, mod_time, length);
17070 }
17071 line_ptr += bytes_read;
17072 lh->statement_program_start = line_ptr;
17073
17074 if (line_ptr > (section->buffer + section->size))
17075 complaint (&symfile_complaints,
17076 _("line number info header doesn't "
17077 "fit in `.debug_line' section"));
17078
17079 discard_cleanups (back_to);
17080 return lh;
17081 }
17082
17083 /* Subroutine of dwarf_decode_lines to simplify it.
17084 Return the file name of the psymtab for included file FILE_INDEX
17085 in line header LH of PST.
17086 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17087 If space for the result is malloc'd, it will be freed by a cleanup.
17088 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17089
17090 The function creates dangling cleanup registration. */
17091
17092 static const char *
17093 psymtab_include_file_name (const struct line_header *lh, int file_index,
17094 const struct partial_symtab *pst,
17095 const char *comp_dir)
17096 {
17097 const struct file_entry fe = lh->file_names [file_index];
17098 const char *include_name = fe.name;
17099 const char *include_name_to_compare = include_name;
17100 const char *dir_name = NULL;
17101 const char *pst_filename;
17102 char *copied_name = NULL;
17103 int file_is_pst;
17104
17105 if (fe.dir_index)
17106 dir_name = lh->include_dirs[fe.dir_index - 1];
17107
17108 if (!IS_ABSOLUTE_PATH (include_name)
17109 && (dir_name != NULL || comp_dir != NULL))
17110 {
17111 /* Avoid creating a duplicate psymtab for PST.
17112 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17113 Before we do the comparison, however, we need to account
17114 for DIR_NAME and COMP_DIR.
17115 First prepend dir_name (if non-NULL). If we still don't
17116 have an absolute path prepend comp_dir (if non-NULL).
17117 However, the directory we record in the include-file's
17118 psymtab does not contain COMP_DIR (to match the
17119 corresponding symtab(s)).
17120
17121 Example:
17122
17123 bash$ cd /tmp
17124 bash$ gcc -g ./hello.c
17125 include_name = "hello.c"
17126 dir_name = "."
17127 DW_AT_comp_dir = comp_dir = "/tmp"
17128 DW_AT_name = "./hello.c"
17129
17130 */
17131
17132 if (dir_name != NULL)
17133 {
17134 char *tem = concat (dir_name, SLASH_STRING,
17135 include_name, (char *)NULL);
17136
17137 make_cleanup (xfree, tem);
17138 include_name = tem;
17139 include_name_to_compare = include_name;
17140 }
17141 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17142 {
17143 char *tem = concat (comp_dir, SLASH_STRING,
17144 include_name, (char *)NULL);
17145
17146 make_cleanup (xfree, tem);
17147 include_name_to_compare = tem;
17148 }
17149 }
17150
17151 pst_filename = pst->filename;
17152 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17153 {
17154 copied_name = concat (pst->dirname, SLASH_STRING,
17155 pst_filename, (char *)NULL);
17156 pst_filename = copied_name;
17157 }
17158
17159 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17160
17161 if (copied_name != NULL)
17162 xfree (copied_name);
17163
17164 if (file_is_pst)
17165 return NULL;
17166 return include_name;
17167 }
17168
17169 /* Ignore this record_line request. */
17170
17171 static void
17172 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17173 {
17174 return;
17175 }
17176
17177 /* Return non-zero if we should add LINE to the line number table.
17178 LINE is the line to add, LAST_LINE is the last line that was added,
17179 LAST_SUBFILE is the subfile for LAST_LINE.
17180 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17181 had a non-zero discriminator.
17182
17183 We have to be careful in the presence of discriminators.
17184 E.g., for this line:
17185
17186 for (i = 0; i < 100000; i++);
17187
17188 clang can emit four line number entries for that one line,
17189 each with a different discriminator.
17190 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17191
17192 However, we want gdb to coalesce all four entries into one.
17193 Otherwise the user could stepi into the middle of the line and
17194 gdb would get confused about whether the pc really was in the
17195 middle of the line.
17196
17197 Things are further complicated by the fact that two consecutive
17198 line number entries for the same line is a heuristic used by gcc
17199 to denote the end of the prologue. So we can't just discard duplicate
17200 entries, we have to be selective about it. The heuristic we use is
17201 that we only collapse consecutive entries for the same line if at least
17202 one of those entries has a non-zero discriminator. PR 17276.
17203
17204 Note: Addresses in the line number state machine can never go backwards
17205 within one sequence, thus this coalescing is ok. */
17206
17207 static int
17208 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17209 int line_has_non_zero_discriminator,
17210 struct subfile *last_subfile)
17211 {
17212 if (current_subfile != last_subfile)
17213 return 1;
17214 if (line != last_line)
17215 return 1;
17216 /* Same line for the same file that we've seen already.
17217 As a last check, for pr 17276, only record the line if the line
17218 has never had a non-zero discriminator. */
17219 if (!line_has_non_zero_discriminator)
17220 return 1;
17221 return 0;
17222 }
17223
17224 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17225 in the line table of subfile SUBFILE. */
17226
17227 static void
17228 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17229 unsigned int line, CORE_ADDR address,
17230 record_line_ftype p_record_line)
17231 {
17232 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17233
17234 (*p_record_line) (subfile, line, addr);
17235 }
17236
17237 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17238 Mark the end of a set of line number records.
17239 The arguments are the same as for dwarf_record_line.
17240 If SUBFILE is NULL the request is ignored. */
17241
17242 static void
17243 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17244 CORE_ADDR address, record_line_ftype p_record_line)
17245 {
17246 if (subfile != NULL)
17247 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17248 }
17249
17250 /* Subroutine of dwarf_decode_lines to simplify it.
17251 Process the line number information in LH. */
17252
17253 static void
17254 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
17255 struct dwarf2_cu *cu, const int decode_for_pst_p)
17256 {
17257 const gdb_byte *line_ptr, *extended_end;
17258 const gdb_byte *line_end;
17259 unsigned int bytes_read, extended_len;
17260 unsigned char op_code, extended_op;
17261 CORE_ADDR baseaddr;
17262 struct objfile *objfile = cu->objfile;
17263 bfd *abfd = objfile->obfd;
17264 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17265 struct subfile *last_subfile = NULL;
17266 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17267 = record_line;
17268
17269 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17270
17271 line_ptr = lh->statement_program_start;
17272 line_end = lh->statement_program_end;
17273
17274 /* Read the statement sequences until there's nothing left. */
17275 while (line_ptr < line_end)
17276 {
17277 /* state machine registers */
17278 CORE_ADDR address = 0;
17279 unsigned int file = 1;
17280 unsigned int line = 1;
17281 int is_stmt = lh->default_is_stmt;
17282 int end_sequence = 0;
17283 unsigned char op_index = 0;
17284 unsigned int discriminator = 0;
17285 /* The last line number that was recorded, used to coalesce
17286 consecutive entries for the same line. This can happen, for
17287 example, when discriminators are present. PR 17276. */
17288 unsigned int last_line = 0;
17289 int line_has_non_zero_discriminator = 0;
17290
17291 if (!decode_for_pst_p && lh->num_file_names >= file)
17292 {
17293 /* Start a subfile for the current file of the state machine. */
17294 /* lh->include_dirs and lh->file_names are 0-based, but the
17295 directory and file name numbers in the statement program
17296 are 1-based. */
17297 struct file_entry *fe = &lh->file_names[file - 1];
17298 const char *dir = NULL;
17299
17300 if (fe->dir_index)
17301 dir = lh->include_dirs[fe->dir_index - 1];
17302
17303 dwarf2_start_subfile (fe->name, dir, comp_dir);
17304 }
17305
17306 /* Decode the table. */
17307 while (!end_sequence)
17308 {
17309 op_code = read_1_byte (abfd, line_ptr);
17310 line_ptr += 1;
17311 if (line_ptr > line_end)
17312 {
17313 dwarf2_debug_line_missing_end_sequence_complaint ();
17314 break;
17315 }
17316
17317 if (op_code >= lh->opcode_base)
17318 {
17319 /* Special opcode. */
17320 unsigned char adj_opcode;
17321 int line_delta;
17322
17323 adj_opcode = op_code - lh->opcode_base;
17324 address += (((op_index + (adj_opcode / lh->line_range))
17325 / lh->maximum_ops_per_instruction)
17326 * lh->minimum_instruction_length);
17327 op_index = ((op_index + (adj_opcode / lh->line_range))
17328 % lh->maximum_ops_per_instruction);
17329 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17330 line += line_delta;
17331 if (line_delta != 0)
17332 line_has_non_zero_discriminator = discriminator != 0;
17333 if (lh->num_file_names < file || file == 0)
17334 dwarf2_debug_line_missing_file_complaint ();
17335 /* For now we ignore lines not starting on an
17336 instruction boundary. */
17337 else if (op_index == 0)
17338 {
17339 lh->file_names[file - 1].included_p = 1;
17340 if (!decode_for_pst_p && is_stmt)
17341 {
17342 if (last_subfile != current_subfile)
17343 {
17344 dwarf_finish_line (gdbarch, last_subfile,
17345 address, p_record_line);
17346 }
17347 if (dwarf_record_line_p (line, last_line,
17348 line_has_non_zero_discriminator,
17349 last_subfile))
17350 {
17351 dwarf_record_line (gdbarch, current_subfile,
17352 line, address, p_record_line);
17353 }
17354 last_subfile = current_subfile;
17355 last_line = line;
17356 }
17357 }
17358 discriminator = 0;
17359 }
17360 else switch (op_code)
17361 {
17362 case DW_LNS_extended_op:
17363 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17364 &bytes_read);
17365 line_ptr += bytes_read;
17366 extended_end = line_ptr + extended_len;
17367 extended_op = read_1_byte (abfd, line_ptr);
17368 line_ptr += 1;
17369 switch (extended_op)
17370 {
17371 case DW_LNE_end_sequence:
17372 p_record_line = record_line;
17373 end_sequence = 1;
17374 break;
17375 case DW_LNE_set_address:
17376 address = read_address (abfd, line_ptr, cu, &bytes_read);
17377
17378 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
17379 {
17380 /* This line table is for a function which has been
17381 GCd by the linker. Ignore it. PR gdb/12528 */
17382
17383 long line_offset
17384 = line_ptr - get_debug_line_section (cu)->buffer;
17385
17386 complaint (&symfile_complaints,
17387 _(".debug_line address at offset 0x%lx is 0 "
17388 "[in module %s]"),
17389 line_offset, objfile_name (objfile));
17390 p_record_line = noop_record_line;
17391 /* Note: p_record_line is left as noop_record_line
17392 until we see DW_LNE_end_sequence. */
17393 }
17394
17395 op_index = 0;
17396 line_ptr += bytes_read;
17397 address += baseaddr;
17398 break;
17399 case DW_LNE_define_file:
17400 {
17401 const char *cur_file;
17402 unsigned int dir_index, mod_time, length;
17403
17404 cur_file = read_direct_string (abfd, line_ptr,
17405 &bytes_read);
17406 line_ptr += bytes_read;
17407 dir_index =
17408 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17409 line_ptr += bytes_read;
17410 mod_time =
17411 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17412 line_ptr += bytes_read;
17413 length =
17414 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17415 line_ptr += bytes_read;
17416 add_file_name (lh, cur_file, dir_index, mod_time, length);
17417 }
17418 break;
17419 case DW_LNE_set_discriminator:
17420 /* The discriminator is not interesting to the debugger;
17421 just ignore it. We still need to check its value though:
17422 if there are consecutive entries for the same
17423 (non-prologue) line we want to coalesce them.
17424 PR 17276. */
17425 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17426 &bytes_read);
17427 line_has_non_zero_discriminator |= discriminator != 0;
17428 line_ptr += bytes_read;
17429 break;
17430 default:
17431 complaint (&symfile_complaints,
17432 _("mangled .debug_line section"));
17433 return;
17434 }
17435 /* Make sure that we parsed the extended op correctly. If e.g.
17436 we expected a different address size than the producer used,
17437 we may have read the wrong number of bytes. */
17438 if (line_ptr != extended_end)
17439 {
17440 complaint (&symfile_complaints,
17441 _("mangled .debug_line section"));
17442 return;
17443 }
17444 break;
17445 case DW_LNS_copy:
17446 if (lh->num_file_names < file || file == 0)
17447 dwarf2_debug_line_missing_file_complaint ();
17448 else
17449 {
17450 lh->file_names[file - 1].included_p = 1;
17451 if (!decode_for_pst_p && is_stmt)
17452 {
17453 if (last_subfile != current_subfile)
17454 {
17455 dwarf_finish_line (gdbarch, last_subfile,
17456 address, p_record_line);
17457 }
17458 if (dwarf_record_line_p (line, last_line,
17459 line_has_non_zero_discriminator,
17460 last_subfile))
17461 {
17462 dwarf_record_line (gdbarch, current_subfile,
17463 line, address, p_record_line);
17464 }
17465 last_subfile = current_subfile;
17466 last_line = line;
17467 }
17468 }
17469 discriminator = 0;
17470 break;
17471 case DW_LNS_advance_pc:
17472 {
17473 CORE_ADDR adjust
17474 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17475
17476 address += (((op_index + adjust)
17477 / lh->maximum_ops_per_instruction)
17478 * lh->minimum_instruction_length);
17479 op_index = ((op_index + adjust)
17480 % lh->maximum_ops_per_instruction);
17481 line_ptr += bytes_read;
17482 }
17483 break;
17484 case DW_LNS_advance_line:
17485 {
17486 int line_delta
17487 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17488
17489 line += line_delta;
17490 if (line_delta != 0)
17491 line_has_non_zero_discriminator = discriminator != 0;
17492 line_ptr += bytes_read;
17493 }
17494 break;
17495 case DW_LNS_set_file:
17496 {
17497 /* The arrays lh->include_dirs and lh->file_names are
17498 0-based, but the directory and file name numbers in
17499 the statement program are 1-based. */
17500 struct file_entry *fe;
17501 const char *dir = NULL;
17502
17503 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17504 line_ptr += bytes_read;
17505 if (lh->num_file_names < file || file == 0)
17506 dwarf2_debug_line_missing_file_complaint ();
17507 else
17508 {
17509 fe = &lh->file_names[file - 1];
17510 if (fe->dir_index)
17511 dir = lh->include_dirs[fe->dir_index - 1];
17512 if (!decode_for_pst_p)
17513 {
17514 last_subfile = current_subfile;
17515 line_has_non_zero_discriminator = discriminator != 0;
17516 dwarf2_start_subfile (fe->name, dir, comp_dir);
17517 }
17518 }
17519 }
17520 break;
17521 case DW_LNS_set_column:
17522 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17523 line_ptr += bytes_read;
17524 break;
17525 case DW_LNS_negate_stmt:
17526 is_stmt = (!is_stmt);
17527 break;
17528 case DW_LNS_set_basic_block:
17529 break;
17530 /* Add to the address register of the state machine the
17531 address increment value corresponding to special opcode
17532 255. I.e., this value is scaled by the minimum
17533 instruction length since special opcode 255 would have
17534 scaled the increment. */
17535 case DW_LNS_const_add_pc:
17536 {
17537 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17538
17539 address += (((op_index + adjust)
17540 / lh->maximum_ops_per_instruction)
17541 * lh->minimum_instruction_length);
17542 op_index = ((op_index + adjust)
17543 % lh->maximum_ops_per_instruction);
17544 }
17545 break;
17546 case DW_LNS_fixed_advance_pc:
17547 address += read_2_bytes (abfd, line_ptr);
17548 op_index = 0;
17549 line_ptr += 2;
17550 break;
17551 default:
17552 {
17553 /* Unknown standard opcode, ignore it. */
17554 int i;
17555
17556 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17557 {
17558 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17559 line_ptr += bytes_read;
17560 }
17561 }
17562 }
17563 }
17564 if (lh->num_file_names < file || file == 0)
17565 dwarf2_debug_line_missing_file_complaint ();
17566 else
17567 {
17568 lh->file_names[file - 1].included_p = 1;
17569 if (!decode_for_pst_p)
17570 {
17571 dwarf_finish_line (gdbarch, current_subfile, address,
17572 p_record_line);
17573 }
17574 }
17575 }
17576 }
17577
17578 /* Decode the Line Number Program (LNP) for the given line_header
17579 structure and CU. The actual information extracted and the type
17580 of structures created from the LNP depends on the value of PST.
17581
17582 1. If PST is NULL, then this procedure uses the data from the program
17583 to create all necessary symbol tables, and their linetables.
17584
17585 2. If PST is not NULL, this procedure reads the program to determine
17586 the list of files included by the unit represented by PST, and
17587 builds all the associated partial symbol tables.
17588
17589 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17590 It is used for relative paths in the line table.
17591 NOTE: When processing partial symtabs (pst != NULL),
17592 comp_dir == pst->dirname.
17593
17594 NOTE: It is important that psymtabs have the same file name (via strcmp)
17595 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17596 symtab we don't use it in the name of the psymtabs we create.
17597 E.g. expand_line_sal requires this when finding psymtabs to expand.
17598 A good testcase for this is mb-inline.exp. */
17599
17600 static void
17601 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17602 struct dwarf2_cu *cu, struct partial_symtab *pst)
17603 {
17604 struct objfile *objfile = cu->objfile;
17605 const int decode_for_pst_p = (pst != NULL);
17606 struct subfile *first_subfile = current_subfile;
17607
17608 dwarf_decode_lines_1 (lh, comp_dir, cu, decode_for_pst_p);
17609
17610 if (decode_for_pst_p)
17611 {
17612 int file_index;
17613
17614 /* Now that we're done scanning the Line Header Program, we can
17615 create the psymtab of each included file. */
17616 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17617 if (lh->file_names[file_index].included_p == 1)
17618 {
17619 const char *include_name =
17620 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17621 if (include_name != NULL)
17622 dwarf2_create_include_psymtab (include_name, pst, objfile);
17623 }
17624 }
17625 else
17626 {
17627 /* Make sure a symtab is created for every file, even files
17628 which contain only variables (i.e. no code with associated
17629 line numbers). */
17630 int i;
17631
17632 for (i = 0; i < lh->num_file_names; i++)
17633 {
17634 const char *dir = NULL;
17635 struct file_entry *fe;
17636
17637 fe = &lh->file_names[i];
17638 if (fe->dir_index)
17639 dir = lh->include_dirs[fe->dir_index - 1];
17640 dwarf2_start_subfile (fe->name, dir, comp_dir);
17641
17642 /* Skip the main file; we don't need it, and it must be
17643 allocated last, so that it will show up before the
17644 non-primary symtabs in the objfile's symtab list. */
17645 if (current_subfile == first_subfile)
17646 continue;
17647
17648 if (current_subfile->symtab == NULL)
17649 current_subfile->symtab = allocate_symtab (current_subfile->name,
17650 objfile);
17651 fe->symtab = current_subfile->symtab;
17652 }
17653 }
17654 }
17655
17656 /* Start a subfile for DWARF. FILENAME is the name of the file and
17657 DIRNAME the name of the source directory which contains FILENAME
17658 or NULL if not known. COMP_DIR is the compilation directory for the
17659 linetable's compilation unit or NULL if not known.
17660 This routine tries to keep line numbers from identical absolute and
17661 relative file names in a common subfile.
17662
17663 Using the `list' example from the GDB testsuite, which resides in
17664 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17665 of /srcdir/list0.c yields the following debugging information for list0.c:
17666
17667 DW_AT_name: /srcdir/list0.c
17668 DW_AT_comp_dir: /compdir
17669 files.files[0].name: list0.h
17670 files.files[0].dir: /srcdir
17671 files.files[1].name: list0.c
17672 files.files[1].dir: /srcdir
17673
17674 The line number information for list0.c has to end up in a single
17675 subfile, so that `break /srcdir/list0.c:1' works as expected.
17676 start_subfile will ensure that this happens provided that we pass the
17677 concatenation of files.files[1].dir and files.files[1].name as the
17678 subfile's name. */
17679
17680 static void
17681 dwarf2_start_subfile (const char *filename, const char *dirname,
17682 const char *comp_dir)
17683 {
17684 char *copy = NULL;
17685
17686 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17687 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17688 second argument to start_subfile. To be consistent, we do the
17689 same here. In order not to lose the line information directory,
17690 we concatenate it to the filename when it makes sense.
17691 Note that the Dwarf3 standard says (speaking of filenames in line
17692 information): ``The directory index is ignored for file names
17693 that represent full path names''. Thus ignoring dirname in the
17694 `else' branch below isn't an issue. */
17695
17696 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17697 {
17698 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17699 filename = copy;
17700 }
17701
17702 start_subfile (filename, comp_dir);
17703
17704 if (copy != NULL)
17705 xfree (copy);
17706 }
17707
17708 /* Start a symtab for DWARF.
17709 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17710
17711 static void
17712 dwarf2_start_symtab (struct dwarf2_cu *cu,
17713 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17714 {
17715 start_symtab (name, comp_dir, low_pc);
17716 record_debugformat ("DWARF 2");
17717 record_producer (cu->producer);
17718
17719 /* We assume that we're processing GCC output. */
17720 processing_gcc_compilation = 2;
17721
17722 cu->processing_has_namespace_info = 0;
17723 }
17724
17725 static void
17726 var_decode_location (struct attribute *attr, struct symbol *sym,
17727 struct dwarf2_cu *cu)
17728 {
17729 struct objfile *objfile = cu->objfile;
17730 struct comp_unit_head *cu_header = &cu->header;
17731
17732 /* NOTE drow/2003-01-30: There used to be a comment and some special
17733 code here to turn a symbol with DW_AT_external and a
17734 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17735 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17736 with some versions of binutils) where shared libraries could have
17737 relocations against symbols in their debug information - the
17738 minimal symbol would have the right address, but the debug info
17739 would not. It's no longer necessary, because we will explicitly
17740 apply relocations when we read in the debug information now. */
17741
17742 /* A DW_AT_location attribute with no contents indicates that a
17743 variable has been optimized away. */
17744 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17745 {
17746 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17747 return;
17748 }
17749
17750 /* Handle one degenerate form of location expression specially, to
17751 preserve GDB's previous behavior when section offsets are
17752 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17753 then mark this symbol as LOC_STATIC. */
17754
17755 if (attr_form_is_block (attr)
17756 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17757 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17758 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17759 && (DW_BLOCK (attr)->size
17760 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17761 {
17762 unsigned int dummy;
17763
17764 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17765 SYMBOL_VALUE_ADDRESS (sym) =
17766 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17767 else
17768 SYMBOL_VALUE_ADDRESS (sym) =
17769 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17770 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17771 fixup_symbol_section (sym, objfile);
17772 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17773 SYMBOL_SECTION (sym));
17774 return;
17775 }
17776
17777 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17778 expression evaluator, and use LOC_COMPUTED only when necessary
17779 (i.e. when the value of a register or memory location is
17780 referenced, or a thread-local block, etc.). Then again, it might
17781 not be worthwhile. I'm assuming that it isn't unless performance
17782 or memory numbers show me otherwise. */
17783
17784 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17785
17786 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17787 cu->has_loclist = 1;
17788 }
17789
17790 /* Given a pointer to a DWARF information entry, figure out if we need
17791 to make a symbol table entry for it, and if so, create a new entry
17792 and return a pointer to it.
17793 If TYPE is NULL, determine symbol type from the die, otherwise
17794 used the passed type.
17795 If SPACE is not NULL, use it to hold the new symbol. If it is
17796 NULL, allocate a new symbol on the objfile's obstack. */
17797
17798 static struct symbol *
17799 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17800 struct symbol *space)
17801 {
17802 struct objfile *objfile = cu->objfile;
17803 struct symbol *sym = NULL;
17804 const char *name;
17805 struct attribute *attr = NULL;
17806 struct attribute *attr2 = NULL;
17807 CORE_ADDR baseaddr;
17808 struct pending **list_to_add = NULL;
17809
17810 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17811
17812 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17813
17814 name = dwarf2_name (die, cu);
17815 if (name)
17816 {
17817 const char *linkagename;
17818 int suppress_add = 0;
17819
17820 if (space)
17821 sym = space;
17822 else
17823 sym = allocate_symbol (objfile);
17824 OBJSTAT (objfile, n_syms++);
17825
17826 /* Cache this symbol's name and the name's demangled form (if any). */
17827 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17828 linkagename = dwarf2_physname (name, die, cu);
17829 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17830
17831 /* Fortran does not have mangling standard and the mangling does differ
17832 between gfortran, iFort etc. */
17833 if (cu->language == language_fortran
17834 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17835 symbol_set_demangled_name (&(sym->ginfo),
17836 dwarf2_full_name (name, die, cu),
17837 NULL);
17838
17839 /* Default assumptions.
17840 Use the passed type or decode it from the die. */
17841 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17842 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17843 if (type != NULL)
17844 SYMBOL_TYPE (sym) = type;
17845 else
17846 SYMBOL_TYPE (sym) = die_type (die, cu);
17847 attr = dwarf2_attr (die,
17848 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17849 cu);
17850 if (attr)
17851 {
17852 SYMBOL_LINE (sym) = DW_UNSND (attr);
17853 }
17854
17855 attr = dwarf2_attr (die,
17856 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17857 cu);
17858 if (attr)
17859 {
17860 int file_index = DW_UNSND (attr);
17861
17862 if (cu->line_header == NULL
17863 || file_index > cu->line_header->num_file_names)
17864 complaint (&symfile_complaints,
17865 _("file index out of range"));
17866 else if (file_index > 0)
17867 {
17868 struct file_entry *fe;
17869
17870 fe = &cu->line_header->file_names[file_index - 1];
17871 SYMBOL_SYMTAB (sym) = fe->symtab;
17872 }
17873 }
17874
17875 switch (die->tag)
17876 {
17877 case DW_TAG_label:
17878 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17879 if (attr)
17880 SYMBOL_VALUE_ADDRESS (sym)
17881 = attr_value_as_address (attr) + baseaddr;
17882 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17883 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17884 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17885 add_symbol_to_list (sym, cu->list_in_scope);
17886 break;
17887 case DW_TAG_subprogram:
17888 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17889 finish_block. */
17890 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17891 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17892 if ((attr2 && (DW_UNSND (attr2) != 0))
17893 || cu->language == language_ada)
17894 {
17895 /* Subprograms marked external are stored as a global symbol.
17896 Ada subprograms, whether marked external or not, are always
17897 stored as a global symbol, because we want to be able to
17898 access them globally. For instance, we want to be able
17899 to break on a nested subprogram without having to
17900 specify the context. */
17901 list_to_add = &global_symbols;
17902 }
17903 else
17904 {
17905 list_to_add = cu->list_in_scope;
17906 }
17907 break;
17908 case DW_TAG_inlined_subroutine:
17909 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17910 finish_block. */
17911 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17912 SYMBOL_INLINED (sym) = 1;
17913 list_to_add = cu->list_in_scope;
17914 break;
17915 case DW_TAG_template_value_param:
17916 suppress_add = 1;
17917 /* Fall through. */
17918 case DW_TAG_constant:
17919 case DW_TAG_variable:
17920 case DW_TAG_member:
17921 /* Compilation with minimal debug info may result in
17922 variables with missing type entries. Change the
17923 misleading `void' type to something sensible. */
17924 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17925 SYMBOL_TYPE (sym)
17926 = objfile_type (objfile)->nodebug_data_symbol;
17927
17928 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17929 /* In the case of DW_TAG_member, we should only be called for
17930 static const members. */
17931 if (die->tag == DW_TAG_member)
17932 {
17933 /* dwarf2_add_field uses die_is_declaration,
17934 so we do the same. */
17935 gdb_assert (die_is_declaration (die, cu));
17936 gdb_assert (attr);
17937 }
17938 if (attr)
17939 {
17940 dwarf2_const_value (attr, sym, cu);
17941 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17942 if (!suppress_add)
17943 {
17944 if (attr2 && (DW_UNSND (attr2) != 0))
17945 list_to_add = &global_symbols;
17946 else
17947 list_to_add = cu->list_in_scope;
17948 }
17949 break;
17950 }
17951 attr = dwarf2_attr (die, DW_AT_location, cu);
17952 if (attr)
17953 {
17954 var_decode_location (attr, sym, cu);
17955 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17956
17957 /* Fortran explicitly imports any global symbols to the local
17958 scope by DW_TAG_common_block. */
17959 if (cu->language == language_fortran && die->parent
17960 && die->parent->tag == DW_TAG_common_block)
17961 attr2 = NULL;
17962
17963 if (SYMBOL_CLASS (sym) == LOC_STATIC
17964 && SYMBOL_VALUE_ADDRESS (sym) == 0
17965 && !dwarf2_per_objfile->has_section_at_zero)
17966 {
17967 /* When a static variable is eliminated by the linker,
17968 the corresponding debug information is not stripped
17969 out, but the variable address is set to null;
17970 do not add such variables into symbol table. */
17971 }
17972 else if (attr2 && (DW_UNSND (attr2) != 0))
17973 {
17974 /* Workaround gfortran PR debug/40040 - it uses
17975 DW_AT_location for variables in -fPIC libraries which may
17976 get overriden by other libraries/executable and get
17977 a different address. Resolve it by the minimal symbol
17978 which may come from inferior's executable using copy
17979 relocation. Make this workaround only for gfortran as for
17980 other compilers GDB cannot guess the minimal symbol
17981 Fortran mangling kind. */
17982 if (cu->language == language_fortran && die->parent
17983 && die->parent->tag == DW_TAG_module
17984 && cu->producer
17985 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17986 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17987
17988 /* A variable with DW_AT_external is never static,
17989 but it may be block-scoped. */
17990 list_to_add = (cu->list_in_scope == &file_symbols
17991 ? &global_symbols : cu->list_in_scope);
17992 }
17993 else
17994 list_to_add = cu->list_in_scope;
17995 }
17996 else
17997 {
17998 /* We do not know the address of this symbol.
17999 If it is an external symbol and we have type information
18000 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18001 The address of the variable will then be determined from
18002 the minimal symbol table whenever the variable is
18003 referenced. */
18004 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18005
18006 /* Fortran explicitly imports any global symbols to the local
18007 scope by DW_TAG_common_block. */
18008 if (cu->language == language_fortran && die->parent
18009 && die->parent->tag == DW_TAG_common_block)
18010 {
18011 /* SYMBOL_CLASS doesn't matter here because
18012 read_common_block is going to reset it. */
18013 if (!suppress_add)
18014 list_to_add = cu->list_in_scope;
18015 }
18016 else if (attr2 && (DW_UNSND (attr2) != 0)
18017 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18018 {
18019 /* A variable with DW_AT_external is never static, but it
18020 may be block-scoped. */
18021 list_to_add = (cu->list_in_scope == &file_symbols
18022 ? &global_symbols : cu->list_in_scope);
18023
18024 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18025 }
18026 else if (!die_is_declaration (die, cu))
18027 {
18028 /* Use the default LOC_OPTIMIZED_OUT class. */
18029 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18030 if (!suppress_add)
18031 list_to_add = cu->list_in_scope;
18032 }
18033 }
18034 break;
18035 case DW_TAG_formal_parameter:
18036 /* If we are inside a function, mark this as an argument. If
18037 not, we might be looking at an argument to an inlined function
18038 when we do not have enough information to show inlined frames;
18039 pretend it's a local variable in that case so that the user can
18040 still see it. */
18041 if (context_stack_depth > 0
18042 && context_stack[context_stack_depth - 1].name != NULL)
18043 SYMBOL_IS_ARGUMENT (sym) = 1;
18044 attr = dwarf2_attr (die, DW_AT_location, cu);
18045 if (attr)
18046 {
18047 var_decode_location (attr, sym, cu);
18048 }
18049 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18050 if (attr)
18051 {
18052 dwarf2_const_value (attr, sym, cu);
18053 }
18054
18055 list_to_add = cu->list_in_scope;
18056 break;
18057 case DW_TAG_unspecified_parameters:
18058 /* From varargs functions; gdb doesn't seem to have any
18059 interest in this information, so just ignore it for now.
18060 (FIXME?) */
18061 break;
18062 case DW_TAG_template_type_param:
18063 suppress_add = 1;
18064 /* Fall through. */
18065 case DW_TAG_class_type:
18066 case DW_TAG_interface_type:
18067 case DW_TAG_structure_type:
18068 case DW_TAG_union_type:
18069 case DW_TAG_set_type:
18070 case DW_TAG_enumeration_type:
18071 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18072 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18073
18074 {
18075 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18076 really ever be static objects: otherwise, if you try
18077 to, say, break of a class's method and you're in a file
18078 which doesn't mention that class, it won't work unless
18079 the check for all static symbols in lookup_symbol_aux
18080 saves you. See the OtherFileClass tests in
18081 gdb.c++/namespace.exp. */
18082
18083 if (!suppress_add)
18084 {
18085 list_to_add = (cu->list_in_scope == &file_symbols
18086 && (cu->language == language_cplus
18087 || cu->language == language_java)
18088 ? &global_symbols : cu->list_in_scope);
18089
18090 /* The semantics of C++ state that "struct foo {
18091 ... }" also defines a typedef for "foo". A Java
18092 class declaration also defines a typedef for the
18093 class. */
18094 if (cu->language == language_cplus
18095 || cu->language == language_java
18096 || cu->language == language_ada)
18097 {
18098 /* The symbol's name is already allocated along
18099 with this objfile, so we don't need to
18100 duplicate it for the type. */
18101 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18102 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18103 }
18104 }
18105 }
18106 break;
18107 case DW_TAG_typedef:
18108 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18109 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18110 list_to_add = cu->list_in_scope;
18111 break;
18112 case DW_TAG_base_type:
18113 case DW_TAG_subrange_type:
18114 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18115 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18116 list_to_add = cu->list_in_scope;
18117 break;
18118 case DW_TAG_enumerator:
18119 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18120 if (attr)
18121 {
18122 dwarf2_const_value (attr, sym, cu);
18123 }
18124 {
18125 /* NOTE: carlton/2003-11-10: See comment above in the
18126 DW_TAG_class_type, etc. block. */
18127
18128 list_to_add = (cu->list_in_scope == &file_symbols
18129 && (cu->language == language_cplus
18130 || cu->language == language_java)
18131 ? &global_symbols : cu->list_in_scope);
18132 }
18133 break;
18134 case DW_TAG_imported_declaration:
18135 case DW_TAG_namespace:
18136 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18137 list_to_add = &global_symbols;
18138 break;
18139 case DW_TAG_module:
18140 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18141 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18142 list_to_add = &global_symbols;
18143 break;
18144 case DW_TAG_common_block:
18145 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18146 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18147 add_symbol_to_list (sym, cu->list_in_scope);
18148 break;
18149 default:
18150 /* Not a tag we recognize. Hopefully we aren't processing
18151 trash data, but since we must specifically ignore things
18152 we don't recognize, there is nothing else we should do at
18153 this point. */
18154 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18155 dwarf_tag_name (die->tag));
18156 break;
18157 }
18158
18159 if (suppress_add)
18160 {
18161 sym->hash_next = objfile->template_symbols;
18162 objfile->template_symbols = sym;
18163 list_to_add = NULL;
18164 }
18165
18166 if (list_to_add != NULL)
18167 add_symbol_to_list (sym, list_to_add);
18168
18169 /* For the benefit of old versions of GCC, check for anonymous
18170 namespaces based on the demangled name. */
18171 if (!cu->processing_has_namespace_info
18172 && cu->language == language_cplus)
18173 cp_scan_for_anonymous_namespaces (sym, objfile);
18174 }
18175 return (sym);
18176 }
18177
18178 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18179
18180 static struct symbol *
18181 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18182 {
18183 return new_symbol_full (die, type, cu, NULL);
18184 }
18185
18186 /* Given an attr with a DW_FORM_dataN value in host byte order,
18187 zero-extend it as appropriate for the symbol's type. The DWARF
18188 standard (v4) is not entirely clear about the meaning of using
18189 DW_FORM_dataN for a constant with a signed type, where the type is
18190 wider than the data. The conclusion of a discussion on the DWARF
18191 list was that this is unspecified. We choose to always zero-extend
18192 because that is the interpretation long in use by GCC. */
18193
18194 static gdb_byte *
18195 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18196 struct dwarf2_cu *cu, LONGEST *value, int bits)
18197 {
18198 struct objfile *objfile = cu->objfile;
18199 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18200 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18201 LONGEST l = DW_UNSND (attr);
18202
18203 if (bits < sizeof (*value) * 8)
18204 {
18205 l &= ((LONGEST) 1 << bits) - 1;
18206 *value = l;
18207 }
18208 else if (bits == sizeof (*value) * 8)
18209 *value = l;
18210 else
18211 {
18212 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18213 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18214 return bytes;
18215 }
18216
18217 return NULL;
18218 }
18219
18220 /* Read a constant value from an attribute. Either set *VALUE, or if
18221 the value does not fit in *VALUE, set *BYTES - either already
18222 allocated on the objfile obstack, or newly allocated on OBSTACK,
18223 or, set *BATON, if we translated the constant to a location
18224 expression. */
18225
18226 static void
18227 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18228 const char *name, struct obstack *obstack,
18229 struct dwarf2_cu *cu,
18230 LONGEST *value, const gdb_byte **bytes,
18231 struct dwarf2_locexpr_baton **baton)
18232 {
18233 struct objfile *objfile = cu->objfile;
18234 struct comp_unit_head *cu_header = &cu->header;
18235 struct dwarf_block *blk;
18236 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18237 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18238
18239 *value = 0;
18240 *bytes = NULL;
18241 *baton = NULL;
18242
18243 switch (attr->form)
18244 {
18245 case DW_FORM_addr:
18246 case DW_FORM_GNU_addr_index:
18247 {
18248 gdb_byte *data;
18249
18250 if (TYPE_LENGTH (type) != cu_header->addr_size)
18251 dwarf2_const_value_length_mismatch_complaint (name,
18252 cu_header->addr_size,
18253 TYPE_LENGTH (type));
18254 /* Symbols of this form are reasonably rare, so we just
18255 piggyback on the existing location code rather than writing
18256 a new implementation of symbol_computed_ops. */
18257 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18258 (*baton)->per_cu = cu->per_cu;
18259 gdb_assert ((*baton)->per_cu);
18260
18261 (*baton)->size = 2 + cu_header->addr_size;
18262 data = obstack_alloc (obstack, (*baton)->size);
18263 (*baton)->data = data;
18264
18265 data[0] = DW_OP_addr;
18266 store_unsigned_integer (&data[1], cu_header->addr_size,
18267 byte_order, DW_ADDR (attr));
18268 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18269 }
18270 break;
18271 case DW_FORM_string:
18272 case DW_FORM_strp:
18273 case DW_FORM_GNU_str_index:
18274 case DW_FORM_GNU_strp_alt:
18275 /* DW_STRING is already allocated on the objfile obstack, point
18276 directly to it. */
18277 *bytes = (const gdb_byte *) DW_STRING (attr);
18278 break;
18279 case DW_FORM_block1:
18280 case DW_FORM_block2:
18281 case DW_FORM_block4:
18282 case DW_FORM_block:
18283 case DW_FORM_exprloc:
18284 blk = DW_BLOCK (attr);
18285 if (TYPE_LENGTH (type) != blk->size)
18286 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18287 TYPE_LENGTH (type));
18288 *bytes = blk->data;
18289 break;
18290
18291 /* The DW_AT_const_value attributes are supposed to carry the
18292 symbol's value "represented as it would be on the target
18293 architecture." By the time we get here, it's already been
18294 converted to host endianness, so we just need to sign- or
18295 zero-extend it as appropriate. */
18296 case DW_FORM_data1:
18297 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18298 break;
18299 case DW_FORM_data2:
18300 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18301 break;
18302 case DW_FORM_data4:
18303 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18304 break;
18305 case DW_FORM_data8:
18306 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18307 break;
18308
18309 case DW_FORM_sdata:
18310 *value = DW_SND (attr);
18311 break;
18312
18313 case DW_FORM_udata:
18314 *value = DW_UNSND (attr);
18315 break;
18316
18317 default:
18318 complaint (&symfile_complaints,
18319 _("unsupported const value attribute form: '%s'"),
18320 dwarf_form_name (attr->form));
18321 *value = 0;
18322 break;
18323 }
18324 }
18325
18326
18327 /* Copy constant value from an attribute to a symbol. */
18328
18329 static void
18330 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18331 struct dwarf2_cu *cu)
18332 {
18333 struct objfile *objfile = cu->objfile;
18334 struct comp_unit_head *cu_header = &cu->header;
18335 LONGEST value;
18336 const gdb_byte *bytes;
18337 struct dwarf2_locexpr_baton *baton;
18338
18339 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18340 SYMBOL_PRINT_NAME (sym),
18341 &objfile->objfile_obstack, cu,
18342 &value, &bytes, &baton);
18343
18344 if (baton != NULL)
18345 {
18346 SYMBOL_LOCATION_BATON (sym) = baton;
18347 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18348 }
18349 else if (bytes != NULL)
18350 {
18351 SYMBOL_VALUE_BYTES (sym) = bytes;
18352 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18353 }
18354 else
18355 {
18356 SYMBOL_VALUE (sym) = value;
18357 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18358 }
18359 }
18360
18361 /* Return the type of the die in question using its DW_AT_type attribute. */
18362
18363 static struct type *
18364 die_type (struct die_info *die, struct dwarf2_cu *cu)
18365 {
18366 struct attribute *type_attr;
18367
18368 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18369 if (!type_attr)
18370 {
18371 /* A missing DW_AT_type represents a void type. */
18372 return objfile_type (cu->objfile)->builtin_void;
18373 }
18374
18375 return lookup_die_type (die, type_attr, cu);
18376 }
18377
18378 /* True iff CU's producer generates GNAT Ada auxiliary information
18379 that allows to find parallel types through that information instead
18380 of having to do expensive parallel lookups by type name. */
18381
18382 static int
18383 need_gnat_info (struct dwarf2_cu *cu)
18384 {
18385 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18386 of GNAT produces this auxiliary information, without any indication
18387 that it is produced. Part of enhancing the FSF version of GNAT
18388 to produce that information will be to put in place an indicator
18389 that we can use in order to determine whether the descriptive type
18390 info is available or not. One suggestion that has been made is
18391 to use a new attribute, attached to the CU die. For now, assume
18392 that the descriptive type info is not available. */
18393 return 0;
18394 }
18395
18396 /* Return the auxiliary type of the die in question using its
18397 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18398 attribute is not present. */
18399
18400 static struct type *
18401 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18402 {
18403 struct attribute *type_attr;
18404
18405 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18406 if (!type_attr)
18407 return NULL;
18408
18409 return lookup_die_type (die, type_attr, cu);
18410 }
18411
18412 /* If DIE has a descriptive_type attribute, then set the TYPE's
18413 descriptive type accordingly. */
18414
18415 static void
18416 set_descriptive_type (struct type *type, struct die_info *die,
18417 struct dwarf2_cu *cu)
18418 {
18419 struct type *descriptive_type = die_descriptive_type (die, cu);
18420
18421 if (descriptive_type)
18422 {
18423 ALLOCATE_GNAT_AUX_TYPE (type);
18424 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18425 }
18426 }
18427
18428 /* Return the containing type of the die in question using its
18429 DW_AT_containing_type attribute. */
18430
18431 static struct type *
18432 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18433 {
18434 struct attribute *type_attr;
18435
18436 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18437 if (!type_attr)
18438 error (_("Dwarf Error: Problem turning containing type into gdb type "
18439 "[in module %s]"), objfile_name (cu->objfile));
18440
18441 return lookup_die_type (die, type_attr, cu);
18442 }
18443
18444 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18445
18446 static struct type *
18447 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18448 {
18449 struct objfile *objfile = dwarf2_per_objfile->objfile;
18450 char *message, *saved;
18451
18452 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18453 objfile_name (objfile),
18454 cu->header.offset.sect_off,
18455 die->offset.sect_off);
18456 saved = obstack_copy0 (&objfile->objfile_obstack,
18457 message, strlen (message));
18458 xfree (message);
18459
18460 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18461 }
18462
18463 /* Look up the type of DIE in CU using its type attribute ATTR.
18464 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18465 DW_AT_containing_type.
18466 If there is no type substitute an error marker. */
18467
18468 static struct type *
18469 lookup_die_type (struct die_info *die, const struct attribute *attr,
18470 struct dwarf2_cu *cu)
18471 {
18472 struct objfile *objfile = cu->objfile;
18473 struct type *this_type;
18474
18475 gdb_assert (attr->name == DW_AT_type
18476 || attr->name == DW_AT_GNAT_descriptive_type
18477 || attr->name == DW_AT_containing_type);
18478
18479 /* First see if we have it cached. */
18480
18481 if (attr->form == DW_FORM_GNU_ref_alt)
18482 {
18483 struct dwarf2_per_cu_data *per_cu;
18484 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18485
18486 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18487 this_type = get_die_type_at_offset (offset, per_cu);
18488 }
18489 else if (attr_form_is_ref (attr))
18490 {
18491 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18492
18493 this_type = get_die_type_at_offset (offset, cu->per_cu);
18494 }
18495 else if (attr->form == DW_FORM_ref_sig8)
18496 {
18497 ULONGEST signature = DW_SIGNATURE (attr);
18498
18499 return get_signatured_type (die, signature, cu);
18500 }
18501 else
18502 {
18503 complaint (&symfile_complaints,
18504 _("Dwarf Error: Bad type attribute %s in DIE"
18505 " at 0x%x [in module %s]"),
18506 dwarf_attr_name (attr->name), die->offset.sect_off,
18507 objfile_name (objfile));
18508 return build_error_marker_type (cu, die);
18509 }
18510
18511 /* If not cached we need to read it in. */
18512
18513 if (this_type == NULL)
18514 {
18515 struct die_info *type_die = NULL;
18516 struct dwarf2_cu *type_cu = cu;
18517
18518 if (attr_form_is_ref (attr))
18519 type_die = follow_die_ref (die, attr, &type_cu);
18520 if (type_die == NULL)
18521 return build_error_marker_type (cu, die);
18522 /* If we find the type now, it's probably because the type came
18523 from an inter-CU reference and the type's CU got expanded before
18524 ours. */
18525 this_type = read_type_die (type_die, type_cu);
18526 }
18527
18528 /* If we still don't have a type use an error marker. */
18529
18530 if (this_type == NULL)
18531 return build_error_marker_type (cu, die);
18532
18533 return this_type;
18534 }
18535
18536 /* Return the type in DIE, CU.
18537 Returns NULL for invalid types.
18538
18539 This first does a lookup in die_type_hash,
18540 and only reads the die in if necessary.
18541
18542 NOTE: This can be called when reading in partial or full symbols. */
18543
18544 static struct type *
18545 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18546 {
18547 struct type *this_type;
18548
18549 this_type = get_die_type (die, cu);
18550 if (this_type)
18551 return this_type;
18552
18553 return read_type_die_1 (die, cu);
18554 }
18555
18556 /* Read the type in DIE, CU.
18557 Returns NULL for invalid types. */
18558
18559 static struct type *
18560 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18561 {
18562 struct type *this_type = NULL;
18563
18564 switch (die->tag)
18565 {
18566 case DW_TAG_class_type:
18567 case DW_TAG_interface_type:
18568 case DW_TAG_structure_type:
18569 case DW_TAG_union_type:
18570 this_type = read_structure_type (die, cu);
18571 break;
18572 case DW_TAG_enumeration_type:
18573 this_type = read_enumeration_type (die, cu);
18574 break;
18575 case DW_TAG_subprogram:
18576 case DW_TAG_subroutine_type:
18577 case DW_TAG_inlined_subroutine:
18578 this_type = read_subroutine_type (die, cu);
18579 break;
18580 case DW_TAG_array_type:
18581 this_type = read_array_type (die, cu);
18582 break;
18583 case DW_TAG_set_type:
18584 this_type = read_set_type (die, cu);
18585 break;
18586 case DW_TAG_pointer_type:
18587 this_type = read_tag_pointer_type (die, cu);
18588 break;
18589 case DW_TAG_ptr_to_member_type:
18590 this_type = read_tag_ptr_to_member_type (die, cu);
18591 break;
18592 case DW_TAG_reference_type:
18593 this_type = read_tag_reference_type (die, cu);
18594 break;
18595 case DW_TAG_const_type:
18596 this_type = read_tag_const_type (die, cu);
18597 break;
18598 case DW_TAG_volatile_type:
18599 this_type = read_tag_volatile_type (die, cu);
18600 break;
18601 case DW_TAG_restrict_type:
18602 this_type = read_tag_restrict_type (die, cu);
18603 break;
18604 case DW_TAG_string_type:
18605 this_type = read_tag_string_type (die, cu);
18606 break;
18607 case DW_TAG_typedef:
18608 this_type = read_typedef (die, cu);
18609 break;
18610 case DW_TAG_subrange_type:
18611 this_type = read_subrange_type (die, cu);
18612 break;
18613 case DW_TAG_base_type:
18614 this_type = read_base_type (die, cu);
18615 break;
18616 case DW_TAG_unspecified_type:
18617 this_type = read_unspecified_type (die, cu);
18618 break;
18619 case DW_TAG_namespace:
18620 this_type = read_namespace_type (die, cu);
18621 break;
18622 case DW_TAG_module:
18623 this_type = read_module_type (die, cu);
18624 break;
18625 default:
18626 complaint (&symfile_complaints,
18627 _("unexpected tag in read_type_die: '%s'"),
18628 dwarf_tag_name (die->tag));
18629 break;
18630 }
18631
18632 return this_type;
18633 }
18634
18635 /* See if we can figure out if the class lives in a namespace. We do
18636 this by looking for a member function; its demangled name will
18637 contain namespace info, if there is any.
18638 Return the computed name or NULL.
18639 Space for the result is allocated on the objfile's obstack.
18640 This is the full-die version of guess_partial_die_structure_name.
18641 In this case we know DIE has no useful parent. */
18642
18643 static char *
18644 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18645 {
18646 struct die_info *spec_die;
18647 struct dwarf2_cu *spec_cu;
18648 struct die_info *child;
18649
18650 spec_cu = cu;
18651 spec_die = die_specification (die, &spec_cu);
18652 if (spec_die != NULL)
18653 {
18654 die = spec_die;
18655 cu = spec_cu;
18656 }
18657
18658 for (child = die->child;
18659 child != NULL;
18660 child = child->sibling)
18661 {
18662 if (child->tag == DW_TAG_subprogram)
18663 {
18664 struct attribute *attr;
18665
18666 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18667 if (attr == NULL)
18668 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18669 if (attr != NULL)
18670 {
18671 char *actual_name
18672 = language_class_name_from_physname (cu->language_defn,
18673 DW_STRING (attr));
18674 char *name = NULL;
18675
18676 if (actual_name != NULL)
18677 {
18678 const char *die_name = dwarf2_name (die, cu);
18679
18680 if (die_name != NULL
18681 && strcmp (die_name, actual_name) != 0)
18682 {
18683 /* Strip off the class name from the full name.
18684 We want the prefix. */
18685 int die_name_len = strlen (die_name);
18686 int actual_name_len = strlen (actual_name);
18687
18688 /* Test for '::' as a sanity check. */
18689 if (actual_name_len > die_name_len + 2
18690 && actual_name[actual_name_len
18691 - die_name_len - 1] == ':')
18692 name =
18693 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18694 actual_name,
18695 actual_name_len - die_name_len - 2);
18696 }
18697 }
18698 xfree (actual_name);
18699 return name;
18700 }
18701 }
18702 }
18703
18704 return NULL;
18705 }
18706
18707 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18708 prefix part in such case. See
18709 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18710
18711 static char *
18712 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18713 {
18714 struct attribute *attr;
18715 char *base;
18716
18717 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18718 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18719 return NULL;
18720
18721 attr = dwarf2_attr (die, DW_AT_name, cu);
18722 if (attr != NULL && DW_STRING (attr) != NULL)
18723 return NULL;
18724
18725 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18726 if (attr == NULL)
18727 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18728 if (attr == NULL || DW_STRING (attr) == NULL)
18729 return NULL;
18730
18731 /* dwarf2_name had to be already called. */
18732 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18733
18734 /* Strip the base name, keep any leading namespaces/classes. */
18735 base = strrchr (DW_STRING (attr), ':');
18736 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18737 return "";
18738
18739 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18740 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18741 }
18742
18743 /* Return the name of the namespace/class that DIE is defined within,
18744 or "" if we can't tell. The caller should not xfree the result.
18745
18746 For example, if we're within the method foo() in the following
18747 code:
18748
18749 namespace N {
18750 class C {
18751 void foo () {
18752 }
18753 };
18754 }
18755
18756 then determine_prefix on foo's die will return "N::C". */
18757
18758 static const char *
18759 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18760 {
18761 struct die_info *parent, *spec_die;
18762 struct dwarf2_cu *spec_cu;
18763 struct type *parent_type;
18764 char *retval;
18765
18766 if (cu->language != language_cplus && cu->language != language_java
18767 && cu->language != language_fortran)
18768 return "";
18769
18770 retval = anonymous_struct_prefix (die, cu);
18771 if (retval)
18772 return retval;
18773
18774 /* We have to be careful in the presence of DW_AT_specification.
18775 For example, with GCC 3.4, given the code
18776
18777 namespace N {
18778 void foo() {
18779 // Definition of N::foo.
18780 }
18781 }
18782
18783 then we'll have a tree of DIEs like this:
18784
18785 1: DW_TAG_compile_unit
18786 2: DW_TAG_namespace // N
18787 3: DW_TAG_subprogram // declaration of N::foo
18788 4: DW_TAG_subprogram // definition of N::foo
18789 DW_AT_specification // refers to die #3
18790
18791 Thus, when processing die #4, we have to pretend that we're in
18792 the context of its DW_AT_specification, namely the contex of die
18793 #3. */
18794 spec_cu = cu;
18795 spec_die = die_specification (die, &spec_cu);
18796 if (spec_die == NULL)
18797 parent = die->parent;
18798 else
18799 {
18800 parent = spec_die->parent;
18801 cu = spec_cu;
18802 }
18803
18804 if (parent == NULL)
18805 return "";
18806 else if (parent->building_fullname)
18807 {
18808 const char *name;
18809 const char *parent_name;
18810
18811 /* It has been seen on RealView 2.2 built binaries,
18812 DW_TAG_template_type_param types actually _defined_ as
18813 children of the parent class:
18814
18815 enum E {};
18816 template class <class Enum> Class{};
18817 Class<enum E> class_e;
18818
18819 1: DW_TAG_class_type (Class)
18820 2: DW_TAG_enumeration_type (E)
18821 3: DW_TAG_enumerator (enum1:0)
18822 3: DW_TAG_enumerator (enum2:1)
18823 ...
18824 2: DW_TAG_template_type_param
18825 DW_AT_type DW_FORM_ref_udata (E)
18826
18827 Besides being broken debug info, it can put GDB into an
18828 infinite loop. Consider:
18829
18830 When we're building the full name for Class<E>, we'll start
18831 at Class, and go look over its template type parameters,
18832 finding E. We'll then try to build the full name of E, and
18833 reach here. We're now trying to build the full name of E,
18834 and look over the parent DIE for containing scope. In the
18835 broken case, if we followed the parent DIE of E, we'd again
18836 find Class, and once again go look at its template type
18837 arguments, etc., etc. Simply don't consider such parent die
18838 as source-level parent of this die (it can't be, the language
18839 doesn't allow it), and break the loop here. */
18840 name = dwarf2_name (die, cu);
18841 parent_name = dwarf2_name (parent, cu);
18842 complaint (&symfile_complaints,
18843 _("template param type '%s' defined within parent '%s'"),
18844 name ? name : "<unknown>",
18845 parent_name ? parent_name : "<unknown>");
18846 return "";
18847 }
18848 else
18849 switch (parent->tag)
18850 {
18851 case DW_TAG_namespace:
18852 parent_type = read_type_die (parent, cu);
18853 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18854 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18855 Work around this problem here. */
18856 if (cu->language == language_cplus
18857 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18858 return "";
18859 /* We give a name to even anonymous namespaces. */
18860 return TYPE_TAG_NAME (parent_type);
18861 case DW_TAG_class_type:
18862 case DW_TAG_interface_type:
18863 case DW_TAG_structure_type:
18864 case DW_TAG_union_type:
18865 case DW_TAG_module:
18866 parent_type = read_type_die (parent, cu);
18867 if (TYPE_TAG_NAME (parent_type) != NULL)
18868 return TYPE_TAG_NAME (parent_type);
18869 else
18870 /* An anonymous structure is only allowed non-static data
18871 members; no typedefs, no member functions, et cetera.
18872 So it does not need a prefix. */
18873 return "";
18874 case DW_TAG_compile_unit:
18875 case DW_TAG_partial_unit:
18876 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18877 if (cu->language == language_cplus
18878 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18879 && die->child != NULL
18880 && (die->tag == DW_TAG_class_type
18881 || die->tag == DW_TAG_structure_type
18882 || die->tag == DW_TAG_union_type))
18883 {
18884 char *name = guess_full_die_structure_name (die, cu);
18885 if (name != NULL)
18886 return name;
18887 }
18888 return "";
18889 case DW_TAG_enumeration_type:
18890 parent_type = read_type_die (parent, cu);
18891 if (TYPE_DECLARED_CLASS (parent_type))
18892 {
18893 if (TYPE_TAG_NAME (parent_type) != NULL)
18894 return TYPE_TAG_NAME (parent_type);
18895 return "";
18896 }
18897 /* Fall through. */
18898 default:
18899 return determine_prefix (parent, cu);
18900 }
18901 }
18902
18903 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18904 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18905 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18906 an obconcat, otherwise allocate storage for the result. The CU argument is
18907 used to determine the language and hence, the appropriate separator. */
18908
18909 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18910
18911 static char *
18912 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18913 int physname, struct dwarf2_cu *cu)
18914 {
18915 const char *lead = "";
18916 const char *sep;
18917
18918 if (suffix == NULL || suffix[0] == '\0'
18919 || prefix == NULL || prefix[0] == '\0')
18920 sep = "";
18921 else if (cu->language == language_java)
18922 sep = ".";
18923 else if (cu->language == language_fortran && physname)
18924 {
18925 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18926 DW_AT_MIPS_linkage_name is preferred and used instead. */
18927
18928 lead = "__";
18929 sep = "_MOD_";
18930 }
18931 else
18932 sep = "::";
18933
18934 if (prefix == NULL)
18935 prefix = "";
18936 if (suffix == NULL)
18937 suffix = "";
18938
18939 if (obs == NULL)
18940 {
18941 char *retval
18942 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18943
18944 strcpy (retval, lead);
18945 strcat (retval, prefix);
18946 strcat (retval, sep);
18947 strcat (retval, suffix);
18948 return retval;
18949 }
18950 else
18951 {
18952 /* We have an obstack. */
18953 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18954 }
18955 }
18956
18957 /* Return sibling of die, NULL if no sibling. */
18958
18959 static struct die_info *
18960 sibling_die (struct die_info *die)
18961 {
18962 return die->sibling;
18963 }
18964
18965 /* Get name of a die, return NULL if not found. */
18966
18967 static const char *
18968 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18969 struct obstack *obstack)
18970 {
18971 if (name && cu->language == language_cplus)
18972 {
18973 char *canon_name = cp_canonicalize_string (name);
18974
18975 if (canon_name != NULL)
18976 {
18977 if (strcmp (canon_name, name) != 0)
18978 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18979 xfree (canon_name);
18980 }
18981 }
18982
18983 return name;
18984 }
18985
18986 /* Get name of a die, return NULL if not found. */
18987
18988 static const char *
18989 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18990 {
18991 struct attribute *attr;
18992
18993 attr = dwarf2_attr (die, DW_AT_name, cu);
18994 if ((!attr || !DW_STRING (attr))
18995 && die->tag != DW_TAG_class_type
18996 && die->tag != DW_TAG_interface_type
18997 && die->tag != DW_TAG_structure_type
18998 && die->tag != DW_TAG_union_type)
18999 return NULL;
19000
19001 switch (die->tag)
19002 {
19003 case DW_TAG_compile_unit:
19004 case DW_TAG_partial_unit:
19005 /* Compilation units have a DW_AT_name that is a filename, not
19006 a source language identifier. */
19007 case DW_TAG_enumeration_type:
19008 case DW_TAG_enumerator:
19009 /* These tags always have simple identifiers already; no need
19010 to canonicalize them. */
19011 return DW_STRING (attr);
19012
19013 case DW_TAG_subprogram:
19014 /* Java constructors will all be named "<init>", so return
19015 the class name when we see this special case. */
19016 if (cu->language == language_java
19017 && DW_STRING (attr) != NULL
19018 && strcmp (DW_STRING (attr), "<init>") == 0)
19019 {
19020 struct dwarf2_cu *spec_cu = cu;
19021 struct die_info *spec_die;
19022
19023 /* GCJ will output '<init>' for Java constructor names.
19024 For this special case, return the name of the parent class. */
19025
19026 /* GCJ may output subprogram DIEs with AT_specification set.
19027 If so, use the name of the specified DIE. */
19028 spec_die = die_specification (die, &spec_cu);
19029 if (spec_die != NULL)
19030 return dwarf2_name (spec_die, spec_cu);
19031
19032 do
19033 {
19034 die = die->parent;
19035 if (die->tag == DW_TAG_class_type)
19036 return dwarf2_name (die, cu);
19037 }
19038 while (die->tag != DW_TAG_compile_unit
19039 && die->tag != DW_TAG_partial_unit);
19040 }
19041 break;
19042
19043 case DW_TAG_class_type:
19044 case DW_TAG_interface_type:
19045 case DW_TAG_structure_type:
19046 case DW_TAG_union_type:
19047 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19048 structures or unions. These were of the form "._%d" in GCC 4.1,
19049 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19050 and GCC 4.4. We work around this problem by ignoring these. */
19051 if (attr && DW_STRING (attr)
19052 && (strncmp (DW_STRING (attr), "._", 2) == 0
19053 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
19054 return NULL;
19055
19056 /* GCC might emit a nameless typedef that has a linkage name. See
19057 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19058 if (!attr || DW_STRING (attr) == NULL)
19059 {
19060 char *demangled = NULL;
19061
19062 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19063 if (attr == NULL)
19064 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19065
19066 if (attr == NULL || DW_STRING (attr) == NULL)
19067 return NULL;
19068
19069 /* Avoid demangling DW_STRING (attr) the second time on a second
19070 call for the same DIE. */
19071 if (!DW_STRING_IS_CANONICAL (attr))
19072 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19073
19074 if (demangled)
19075 {
19076 char *base;
19077
19078 /* FIXME: we already did this for the partial symbol... */
19079 DW_STRING (attr)
19080 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19081 demangled, strlen (demangled));
19082 DW_STRING_IS_CANONICAL (attr) = 1;
19083 xfree (demangled);
19084
19085 /* Strip any leading namespaces/classes, keep only the base name.
19086 DW_AT_name for named DIEs does not contain the prefixes. */
19087 base = strrchr (DW_STRING (attr), ':');
19088 if (base && base > DW_STRING (attr) && base[-1] == ':')
19089 return &base[1];
19090 else
19091 return DW_STRING (attr);
19092 }
19093 }
19094 break;
19095
19096 default:
19097 break;
19098 }
19099
19100 if (!DW_STRING_IS_CANONICAL (attr))
19101 {
19102 DW_STRING (attr)
19103 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19104 &cu->objfile->per_bfd->storage_obstack);
19105 DW_STRING_IS_CANONICAL (attr) = 1;
19106 }
19107 return DW_STRING (attr);
19108 }
19109
19110 /* Return the die that this die in an extension of, or NULL if there
19111 is none. *EXT_CU is the CU containing DIE on input, and the CU
19112 containing the return value on output. */
19113
19114 static struct die_info *
19115 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19116 {
19117 struct attribute *attr;
19118
19119 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19120 if (attr == NULL)
19121 return NULL;
19122
19123 return follow_die_ref (die, attr, ext_cu);
19124 }
19125
19126 /* Convert a DIE tag into its string name. */
19127
19128 static const char *
19129 dwarf_tag_name (unsigned tag)
19130 {
19131 const char *name = get_DW_TAG_name (tag);
19132
19133 if (name == NULL)
19134 return "DW_TAG_<unknown>";
19135
19136 return name;
19137 }
19138
19139 /* Convert a DWARF attribute code into its string name. */
19140
19141 static const char *
19142 dwarf_attr_name (unsigned attr)
19143 {
19144 const char *name;
19145
19146 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19147 if (attr == DW_AT_MIPS_fde)
19148 return "DW_AT_MIPS_fde";
19149 #else
19150 if (attr == DW_AT_HP_block_index)
19151 return "DW_AT_HP_block_index";
19152 #endif
19153
19154 name = get_DW_AT_name (attr);
19155
19156 if (name == NULL)
19157 return "DW_AT_<unknown>";
19158
19159 return name;
19160 }
19161
19162 /* Convert a DWARF value form code into its string name. */
19163
19164 static const char *
19165 dwarf_form_name (unsigned form)
19166 {
19167 const char *name = get_DW_FORM_name (form);
19168
19169 if (name == NULL)
19170 return "DW_FORM_<unknown>";
19171
19172 return name;
19173 }
19174
19175 static char *
19176 dwarf_bool_name (unsigned mybool)
19177 {
19178 if (mybool)
19179 return "TRUE";
19180 else
19181 return "FALSE";
19182 }
19183
19184 /* Convert a DWARF type code into its string name. */
19185
19186 static const char *
19187 dwarf_type_encoding_name (unsigned enc)
19188 {
19189 const char *name = get_DW_ATE_name (enc);
19190
19191 if (name == NULL)
19192 return "DW_ATE_<unknown>";
19193
19194 return name;
19195 }
19196
19197 static void
19198 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19199 {
19200 unsigned int i;
19201
19202 print_spaces (indent, f);
19203 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19204 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19205
19206 if (die->parent != NULL)
19207 {
19208 print_spaces (indent, f);
19209 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19210 die->parent->offset.sect_off);
19211 }
19212
19213 print_spaces (indent, f);
19214 fprintf_unfiltered (f, " has children: %s\n",
19215 dwarf_bool_name (die->child != NULL));
19216
19217 print_spaces (indent, f);
19218 fprintf_unfiltered (f, " attributes:\n");
19219
19220 for (i = 0; i < die->num_attrs; ++i)
19221 {
19222 print_spaces (indent, f);
19223 fprintf_unfiltered (f, " %s (%s) ",
19224 dwarf_attr_name (die->attrs[i].name),
19225 dwarf_form_name (die->attrs[i].form));
19226
19227 switch (die->attrs[i].form)
19228 {
19229 case DW_FORM_addr:
19230 case DW_FORM_GNU_addr_index:
19231 fprintf_unfiltered (f, "address: ");
19232 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19233 break;
19234 case DW_FORM_block2:
19235 case DW_FORM_block4:
19236 case DW_FORM_block:
19237 case DW_FORM_block1:
19238 fprintf_unfiltered (f, "block: size %s",
19239 pulongest (DW_BLOCK (&die->attrs[i])->size));
19240 break;
19241 case DW_FORM_exprloc:
19242 fprintf_unfiltered (f, "expression: size %s",
19243 pulongest (DW_BLOCK (&die->attrs[i])->size));
19244 break;
19245 case DW_FORM_ref_addr:
19246 fprintf_unfiltered (f, "ref address: ");
19247 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19248 break;
19249 case DW_FORM_GNU_ref_alt:
19250 fprintf_unfiltered (f, "alt ref address: ");
19251 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19252 break;
19253 case DW_FORM_ref1:
19254 case DW_FORM_ref2:
19255 case DW_FORM_ref4:
19256 case DW_FORM_ref8:
19257 case DW_FORM_ref_udata:
19258 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19259 (long) (DW_UNSND (&die->attrs[i])));
19260 break;
19261 case DW_FORM_data1:
19262 case DW_FORM_data2:
19263 case DW_FORM_data4:
19264 case DW_FORM_data8:
19265 case DW_FORM_udata:
19266 case DW_FORM_sdata:
19267 fprintf_unfiltered (f, "constant: %s",
19268 pulongest (DW_UNSND (&die->attrs[i])));
19269 break;
19270 case DW_FORM_sec_offset:
19271 fprintf_unfiltered (f, "section offset: %s",
19272 pulongest (DW_UNSND (&die->attrs[i])));
19273 break;
19274 case DW_FORM_ref_sig8:
19275 fprintf_unfiltered (f, "signature: %s",
19276 hex_string (DW_SIGNATURE (&die->attrs[i])));
19277 break;
19278 case DW_FORM_string:
19279 case DW_FORM_strp:
19280 case DW_FORM_GNU_str_index:
19281 case DW_FORM_GNU_strp_alt:
19282 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19283 DW_STRING (&die->attrs[i])
19284 ? DW_STRING (&die->attrs[i]) : "",
19285 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19286 break;
19287 case DW_FORM_flag:
19288 if (DW_UNSND (&die->attrs[i]))
19289 fprintf_unfiltered (f, "flag: TRUE");
19290 else
19291 fprintf_unfiltered (f, "flag: FALSE");
19292 break;
19293 case DW_FORM_flag_present:
19294 fprintf_unfiltered (f, "flag: TRUE");
19295 break;
19296 case DW_FORM_indirect:
19297 /* The reader will have reduced the indirect form to
19298 the "base form" so this form should not occur. */
19299 fprintf_unfiltered (f,
19300 "unexpected attribute form: DW_FORM_indirect");
19301 break;
19302 default:
19303 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19304 die->attrs[i].form);
19305 break;
19306 }
19307 fprintf_unfiltered (f, "\n");
19308 }
19309 }
19310
19311 static void
19312 dump_die_for_error (struct die_info *die)
19313 {
19314 dump_die_shallow (gdb_stderr, 0, die);
19315 }
19316
19317 static void
19318 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19319 {
19320 int indent = level * 4;
19321
19322 gdb_assert (die != NULL);
19323
19324 if (level >= max_level)
19325 return;
19326
19327 dump_die_shallow (f, indent, die);
19328
19329 if (die->child != NULL)
19330 {
19331 print_spaces (indent, f);
19332 fprintf_unfiltered (f, " Children:");
19333 if (level + 1 < max_level)
19334 {
19335 fprintf_unfiltered (f, "\n");
19336 dump_die_1 (f, level + 1, max_level, die->child);
19337 }
19338 else
19339 {
19340 fprintf_unfiltered (f,
19341 " [not printed, max nesting level reached]\n");
19342 }
19343 }
19344
19345 if (die->sibling != NULL && level > 0)
19346 {
19347 dump_die_1 (f, level, max_level, die->sibling);
19348 }
19349 }
19350
19351 /* This is called from the pdie macro in gdbinit.in.
19352 It's not static so gcc will keep a copy callable from gdb. */
19353
19354 void
19355 dump_die (struct die_info *die, int max_level)
19356 {
19357 dump_die_1 (gdb_stdlog, 0, max_level, die);
19358 }
19359
19360 static void
19361 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19362 {
19363 void **slot;
19364
19365 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19366 INSERT);
19367
19368 *slot = die;
19369 }
19370
19371 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19372 required kind. */
19373
19374 static sect_offset
19375 dwarf2_get_ref_die_offset (const struct attribute *attr)
19376 {
19377 sect_offset retval = { DW_UNSND (attr) };
19378
19379 if (attr_form_is_ref (attr))
19380 return retval;
19381
19382 retval.sect_off = 0;
19383 complaint (&symfile_complaints,
19384 _("unsupported die ref attribute form: '%s'"),
19385 dwarf_form_name (attr->form));
19386 return retval;
19387 }
19388
19389 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19390 * the value held by the attribute is not constant. */
19391
19392 static LONGEST
19393 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19394 {
19395 if (attr->form == DW_FORM_sdata)
19396 return DW_SND (attr);
19397 else if (attr->form == DW_FORM_udata
19398 || attr->form == DW_FORM_data1
19399 || attr->form == DW_FORM_data2
19400 || attr->form == DW_FORM_data4
19401 || attr->form == DW_FORM_data8)
19402 return DW_UNSND (attr);
19403 else
19404 {
19405 complaint (&symfile_complaints,
19406 _("Attribute value is not a constant (%s)"),
19407 dwarf_form_name (attr->form));
19408 return default_value;
19409 }
19410 }
19411
19412 /* Follow reference or signature attribute ATTR of SRC_DIE.
19413 On entry *REF_CU is the CU of SRC_DIE.
19414 On exit *REF_CU is the CU of the result. */
19415
19416 static struct die_info *
19417 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19418 struct dwarf2_cu **ref_cu)
19419 {
19420 struct die_info *die;
19421
19422 if (attr_form_is_ref (attr))
19423 die = follow_die_ref (src_die, attr, ref_cu);
19424 else if (attr->form == DW_FORM_ref_sig8)
19425 die = follow_die_sig (src_die, attr, ref_cu);
19426 else
19427 {
19428 dump_die_for_error (src_die);
19429 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19430 objfile_name ((*ref_cu)->objfile));
19431 }
19432
19433 return die;
19434 }
19435
19436 /* Follow reference OFFSET.
19437 On entry *REF_CU is the CU of the source die referencing OFFSET.
19438 On exit *REF_CU is the CU of the result.
19439 Returns NULL if OFFSET is invalid. */
19440
19441 static struct die_info *
19442 follow_die_offset (sect_offset offset, int offset_in_dwz,
19443 struct dwarf2_cu **ref_cu)
19444 {
19445 struct die_info temp_die;
19446 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19447
19448 gdb_assert (cu->per_cu != NULL);
19449
19450 target_cu = cu;
19451
19452 if (cu->per_cu->is_debug_types)
19453 {
19454 /* .debug_types CUs cannot reference anything outside their CU.
19455 If they need to, they have to reference a signatured type via
19456 DW_FORM_ref_sig8. */
19457 if (! offset_in_cu_p (&cu->header, offset))
19458 return NULL;
19459 }
19460 else if (offset_in_dwz != cu->per_cu->is_dwz
19461 || ! offset_in_cu_p (&cu->header, offset))
19462 {
19463 struct dwarf2_per_cu_data *per_cu;
19464
19465 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19466 cu->objfile);
19467
19468 /* If necessary, add it to the queue and load its DIEs. */
19469 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19470 load_full_comp_unit (per_cu, cu->language);
19471
19472 target_cu = per_cu->cu;
19473 }
19474 else if (cu->dies == NULL)
19475 {
19476 /* We're loading full DIEs during partial symbol reading. */
19477 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19478 load_full_comp_unit (cu->per_cu, language_minimal);
19479 }
19480
19481 *ref_cu = target_cu;
19482 temp_die.offset = offset;
19483 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19484 }
19485
19486 /* Follow reference attribute ATTR of SRC_DIE.
19487 On entry *REF_CU is the CU of SRC_DIE.
19488 On exit *REF_CU is the CU of the result. */
19489
19490 static struct die_info *
19491 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19492 struct dwarf2_cu **ref_cu)
19493 {
19494 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19495 struct dwarf2_cu *cu = *ref_cu;
19496 struct die_info *die;
19497
19498 die = follow_die_offset (offset,
19499 (attr->form == DW_FORM_GNU_ref_alt
19500 || cu->per_cu->is_dwz),
19501 ref_cu);
19502 if (!die)
19503 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19504 "at 0x%x [in module %s]"),
19505 offset.sect_off, src_die->offset.sect_off,
19506 objfile_name (cu->objfile));
19507
19508 return die;
19509 }
19510
19511 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19512 Returned value is intended for DW_OP_call*. Returned
19513 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19514
19515 struct dwarf2_locexpr_baton
19516 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19517 struct dwarf2_per_cu_data *per_cu,
19518 CORE_ADDR (*get_frame_pc) (void *baton),
19519 void *baton)
19520 {
19521 struct dwarf2_cu *cu;
19522 struct die_info *die;
19523 struct attribute *attr;
19524 struct dwarf2_locexpr_baton retval;
19525
19526 dw2_setup (per_cu->objfile);
19527
19528 if (per_cu->cu == NULL)
19529 load_cu (per_cu);
19530 cu = per_cu->cu;
19531
19532 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19533 if (!die)
19534 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19535 offset.sect_off, objfile_name (per_cu->objfile));
19536
19537 attr = dwarf2_attr (die, DW_AT_location, cu);
19538 if (!attr)
19539 {
19540 /* DWARF: "If there is no such attribute, then there is no effect.".
19541 DATA is ignored if SIZE is 0. */
19542
19543 retval.data = NULL;
19544 retval.size = 0;
19545 }
19546 else if (attr_form_is_section_offset (attr))
19547 {
19548 struct dwarf2_loclist_baton loclist_baton;
19549 CORE_ADDR pc = (*get_frame_pc) (baton);
19550 size_t size;
19551
19552 fill_in_loclist_baton (cu, &loclist_baton, attr);
19553
19554 retval.data = dwarf2_find_location_expression (&loclist_baton,
19555 &size, pc);
19556 retval.size = size;
19557 }
19558 else
19559 {
19560 if (!attr_form_is_block (attr))
19561 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19562 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19563 offset.sect_off, objfile_name (per_cu->objfile));
19564
19565 retval.data = DW_BLOCK (attr)->data;
19566 retval.size = DW_BLOCK (attr)->size;
19567 }
19568 retval.per_cu = cu->per_cu;
19569
19570 age_cached_comp_units ();
19571
19572 return retval;
19573 }
19574
19575 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19576 offset. */
19577
19578 struct dwarf2_locexpr_baton
19579 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19580 struct dwarf2_per_cu_data *per_cu,
19581 CORE_ADDR (*get_frame_pc) (void *baton),
19582 void *baton)
19583 {
19584 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19585
19586 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19587 }
19588
19589 /* Write a constant of a given type as target-ordered bytes into
19590 OBSTACK. */
19591
19592 static const gdb_byte *
19593 write_constant_as_bytes (struct obstack *obstack,
19594 enum bfd_endian byte_order,
19595 struct type *type,
19596 ULONGEST value,
19597 LONGEST *len)
19598 {
19599 gdb_byte *result;
19600
19601 *len = TYPE_LENGTH (type);
19602 result = obstack_alloc (obstack, *len);
19603 store_unsigned_integer (result, *len, byte_order, value);
19604
19605 return result;
19606 }
19607
19608 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19609 pointer to the constant bytes and set LEN to the length of the
19610 data. If memory is needed, allocate it on OBSTACK. If the DIE
19611 does not have a DW_AT_const_value, return NULL. */
19612
19613 const gdb_byte *
19614 dwarf2_fetch_constant_bytes (sect_offset offset,
19615 struct dwarf2_per_cu_data *per_cu,
19616 struct obstack *obstack,
19617 LONGEST *len)
19618 {
19619 struct dwarf2_cu *cu;
19620 struct die_info *die;
19621 struct attribute *attr;
19622 const gdb_byte *result = NULL;
19623 struct type *type;
19624 LONGEST value;
19625 enum bfd_endian byte_order;
19626
19627 dw2_setup (per_cu->objfile);
19628
19629 if (per_cu->cu == NULL)
19630 load_cu (per_cu);
19631 cu = per_cu->cu;
19632
19633 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19634 if (!die)
19635 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19636 offset.sect_off, objfile_name (per_cu->objfile));
19637
19638
19639 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19640 if (attr == NULL)
19641 return NULL;
19642
19643 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19644 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19645
19646 switch (attr->form)
19647 {
19648 case DW_FORM_addr:
19649 case DW_FORM_GNU_addr_index:
19650 {
19651 gdb_byte *tem;
19652
19653 *len = cu->header.addr_size;
19654 tem = obstack_alloc (obstack, *len);
19655 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19656 result = tem;
19657 }
19658 break;
19659 case DW_FORM_string:
19660 case DW_FORM_strp:
19661 case DW_FORM_GNU_str_index:
19662 case DW_FORM_GNU_strp_alt:
19663 /* DW_STRING is already allocated on the objfile obstack, point
19664 directly to it. */
19665 result = (const gdb_byte *) DW_STRING (attr);
19666 *len = strlen (DW_STRING (attr));
19667 break;
19668 case DW_FORM_block1:
19669 case DW_FORM_block2:
19670 case DW_FORM_block4:
19671 case DW_FORM_block:
19672 case DW_FORM_exprloc:
19673 result = DW_BLOCK (attr)->data;
19674 *len = DW_BLOCK (attr)->size;
19675 break;
19676
19677 /* The DW_AT_const_value attributes are supposed to carry the
19678 symbol's value "represented as it would be on the target
19679 architecture." By the time we get here, it's already been
19680 converted to host endianness, so we just need to sign- or
19681 zero-extend it as appropriate. */
19682 case DW_FORM_data1:
19683 type = die_type (die, cu);
19684 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19685 if (result == NULL)
19686 result = write_constant_as_bytes (obstack, byte_order,
19687 type, value, len);
19688 break;
19689 case DW_FORM_data2:
19690 type = die_type (die, cu);
19691 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19692 if (result == NULL)
19693 result = write_constant_as_bytes (obstack, byte_order,
19694 type, value, len);
19695 break;
19696 case DW_FORM_data4:
19697 type = die_type (die, cu);
19698 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19699 if (result == NULL)
19700 result = write_constant_as_bytes (obstack, byte_order,
19701 type, value, len);
19702 break;
19703 case DW_FORM_data8:
19704 type = die_type (die, cu);
19705 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19706 if (result == NULL)
19707 result = write_constant_as_bytes (obstack, byte_order,
19708 type, value, len);
19709 break;
19710
19711 case DW_FORM_sdata:
19712 type = die_type (die, cu);
19713 result = write_constant_as_bytes (obstack, byte_order,
19714 type, DW_SND (attr), len);
19715 break;
19716
19717 case DW_FORM_udata:
19718 type = die_type (die, cu);
19719 result = write_constant_as_bytes (obstack, byte_order,
19720 type, DW_UNSND (attr), len);
19721 break;
19722
19723 default:
19724 complaint (&symfile_complaints,
19725 _("unsupported const value attribute form: '%s'"),
19726 dwarf_form_name (attr->form));
19727 break;
19728 }
19729
19730 return result;
19731 }
19732
19733 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19734 PER_CU. */
19735
19736 struct type *
19737 dwarf2_get_die_type (cu_offset die_offset,
19738 struct dwarf2_per_cu_data *per_cu)
19739 {
19740 sect_offset die_offset_sect;
19741
19742 dw2_setup (per_cu->objfile);
19743
19744 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19745 return get_die_type_at_offset (die_offset_sect, per_cu);
19746 }
19747
19748 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19749 On entry *REF_CU is the CU of SRC_DIE.
19750 On exit *REF_CU is the CU of the result.
19751 Returns NULL if the referenced DIE isn't found. */
19752
19753 static struct die_info *
19754 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19755 struct dwarf2_cu **ref_cu)
19756 {
19757 struct objfile *objfile = (*ref_cu)->objfile;
19758 struct die_info temp_die;
19759 struct dwarf2_cu *sig_cu;
19760 struct die_info *die;
19761
19762 /* While it might be nice to assert sig_type->type == NULL here,
19763 we can get here for DW_AT_imported_declaration where we need
19764 the DIE not the type. */
19765
19766 /* If necessary, add it to the queue and load its DIEs. */
19767
19768 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19769 read_signatured_type (sig_type);
19770
19771 sig_cu = sig_type->per_cu.cu;
19772 gdb_assert (sig_cu != NULL);
19773 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19774 temp_die.offset = sig_type->type_offset_in_section;
19775 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19776 temp_die.offset.sect_off);
19777 if (die)
19778 {
19779 /* For .gdb_index version 7 keep track of included TUs.
19780 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19781 if (dwarf2_per_objfile->index_table != NULL
19782 && dwarf2_per_objfile->index_table->version <= 7)
19783 {
19784 VEC_safe_push (dwarf2_per_cu_ptr,
19785 (*ref_cu)->per_cu->imported_symtabs,
19786 sig_cu->per_cu);
19787 }
19788
19789 *ref_cu = sig_cu;
19790 return die;
19791 }
19792
19793 return NULL;
19794 }
19795
19796 /* Follow signatured type referenced by ATTR in SRC_DIE.
19797 On entry *REF_CU is the CU of SRC_DIE.
19798 On exit *REF_CU is the CU of the result.
19799 The result is the DIE of the type.
19800 If the referenced type cannot be found an error is thrown. */
19801
19802 static struct die_info *
19803 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19804 struct dwarf2_cu **ref_cu)
19805 {
19806 ULONGEST signature = DW_SIGNATURE (attr);
19807 struct signatured_type *sig_type;
19808 struct die_info *die;
19809
19810 gdb_assert (attr->form == DW_FORM_ref_sig8);
19811
19812 sig_type = lookup_signatured_type (*ref_cu, signature);
19813 /* sig_type will be NULL if the signatured type is missing from
19814 the debug info. */
19815 if (sig_type == NULL)
19816 {
19817 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19818 " from DIE at 0x%x [in module %s]"),
19819 hex_string (signature), src_die->offset.sect_off,
19820 objfile_name ((*ref_cu)->objfile));
19821 }
19822
19823 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19824 if (die == NULL)
19825 {
19826 dump_die_for_error (src_die);
19827 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19828 " from DIE at 0x%x [in module %s]"),
19829 hex_string (signature), src_die->offset.sect_off,
19830 objfile_name ((*ref_cu)->objfile));
19831 }
19832
19833 return die;
19834 }
19835
19836 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19837 reading in and processing the type unit if necessary. */
19838
19839 static struct type *
19840 get_signatured_type (struct die_info *die, ULONGEST signature,
19841 struct dwarf2_cu *cu)
19842 {
19843 struct signatured_type *sig_type;
19844 struct dwarf2_cu *type_cu;
19845 struct die_info *type_die;
19846 struct type *type;
19847
19848 sig_type = lookup_signatured_type (cu, signature);
19849 /* sig_type will be NULL if the signatured type is missing from
19850 the debug info. */
19851 if (sig_type == NULL)
19852 {
19853 complaint (&symfile_complaints,
19854 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19855 " from DIE at 0x%x [in module %s]"),
19856 hex_string (signature), die->offset.sect_off,
19857 objfile_name (dwarf2_per_objfile->objfile));
19858 return build_error_marker_type (cu, die);
19859 }
19860
19861 /* If we already know the type we're done. */
19862 if (sig_type->type != NULL)
19863 return sig_type->type;
19864
19865 type_cu = cu;
19866 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19867 if (type_die != NULL)
19868 {
19869 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19870 is created. This is important, for example, because for c++ classes
19871 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19872 type = read_type_die (type_die, type_cu);
19873 if (type == NULL)
19874 {
19875 complaint (&symfile_complaints,
19876 _("Dwarf Error: Cannot build signatured type %s"
19877 " referenced from DIE at 0x%x [in module %s]"),
19878 hex_string (signature), die->offset.sect_off,
19879 objfile_name (dwarf2_per_objfile->objfile));
19880 type = build_error_marker_type (cu, die);
19881 }
19882 }
19883 else
19884 {
19885 complaint (&symfile_complaints,
19886 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19887 " from DIE at 0x%x [in module %s]"),
19888 hex_string (signature), die->offset.sect_off,
19889 objfile_name (dwarf2_per_objfile->objfile));
19890 type = build_error_marker_type (cu, die);
19891 }
19892 sig_type->type = type;
19893
19894 return type;
19895 }
19896
19897 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19898 reading in and processing the type unit if necessary. */
19899
19900 static struct type *
19901 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19902 struct dwarf2_cu *cu) /* ARI: editCase function */
19903 {
19904 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19905 if (attr_form_is_ref (attr))
19906 {
19907 struct dwarf2_cu *type_cu = cu;
19908 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19909
19910 return read_type_die (type_die, type_cu);
19911 }
19912 else if (attr->form == DW_FORM_ref_sig8)
19913 {
19914 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19915 }
19916 else
19917 {
19918 complaint (&symfile_complaints,
19919 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19920 " at 0x%x [in module %s]"),
19921 dwarf_form_name (attr->form), die->offset.sect_off,
19922 objfile_name (dwarf2_per_objfile->objfile));
19923 return build_error_marker_type (cu, die);
19924 }
19925 }
19926
19927 /* Load the DIEs associated with type unit PER_CU into memory. */
19928
19929 static void
19930 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19931 {
19932 struct signatured_type *sig_type;
19933
19934 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19935 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19936
19937 /* We have the per_cu, but we need the signatured_type.
19938 Fortunately this is an easy translation. */
19939 gdb_assert (per_cu->is_debug_types);
19940 sig_type = (struct signatured_type *) per_cu;
19941
19942 gdb_assert (per_cu->cu == NULL);
19943
19944 read_signatured_type (sig_type);
19945
19946 gdb_assert (per_cu->cu != NULL);
19947 }
19948
19949 /* die_reader_func for read_signatured_type.
19950 This is identical to load_full_comp_unit_reader,
19951 but is kept separate for now. */
19952
19953 static void
19954 read_signatured_type_reader (const struct die_reader_specs *reader,
19955 const gdb_byte *info_ptr,
19956 struct die_info *comp_unit_die,
19957 int has_children,
19958 void *data)
19959 {
19960 struct dwarf2_cu *cu = reader->cu;
19961
19962 gdb_assert (cu->die_hash == NULL);
19963 cu->die_hash =
19964 htab_create_alloc_ex (cu->header.length / 12,
19965 die_hash,
19966 die_eq,
19967 NULL,
19968 &cu->comp_unit_obstack,
19969 hashtab_obstack_allocate,
19970 dummy_obstack_deallocate);
19971
19972 if (has_children)
19973 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19974 &info_ptr, comp_unit_die);
19975 cu->dies = comp_unit_die;
19976 /* comp_unit_die is not stored in die_hash, no need. */
19977
19978 /* We try not to read any attributes in this function, because not
19979 all CUs needed for references have been loaded yet, and symbol
19980 table processing isn't initialized. But we have to set the CU language,
19981 or we won't be able to build types correctly.
19982 Similarly, if we do not read the producer, we can not apply
19983 producer-specific interpretation. */
19984 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19985 }
19986
19987 /* Read in a signatured type and build its CU and DIEs.
19988 If the type is a stub for the real type in a DWO file,
19989 read in the real type from the DWO file as well. */
19990
19991 static void
19992 read_signatured_type (struct signatured_type *sig_type)
19993 {
19994 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19995
19996 gdb_assert (per_cu->is_debug_types);
19997 gdb_assert (per_cu->cu == NULL);
19998
19999 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20000 read_signatured_type_reader, NULL);
20001 sig_type->per_cu.tu_read = 1;
20002 }
20003
20004 /* Decode simple location descriptions.
20005 Given a pointer to a dwarf block that defines a location, compute
20006 the location and return the value.
20007
20008 NOTE drow/2003-11-18: This function is called in two situations
20009 now: for the address of static or global variables (partial symbols
20010 only) and for offsets into structures which are expected to be
20011 (more or less) constant. The partial symbol case should go away,
20012 and only the constant case should remain. That will let this
20013 function complain more accurately. A few special modes are allowed
20014 without complaint for global variables (for instance, global
20015 register values and thread-local values).
20016
20017 A location description containing no operations indicates that the
20018 object is optimized out. The return value is 0 for that case.
20019 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20020 callers will only want a very basic result and this can become a
20021 complaint.
20022
20023 Note that stack[0] is unused except as a default error return. */
20024
20025 static CORE_ADDR
20026 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20027 {
20028 struct objfile *objfile = cu->objfile;
20029 size_t i;
20030 size_t size = blk->size;
20031 const gdb_byte *data = blk->data;
20032 CORE_ADDR stack[64];
20033 int stacki;
20034 unsigned int bytes_read, unsnd;
20035 gdb_byte op;
20036
20037 i = 0;
20038 stacki = 0;
20039 stack[stacki] = 0;
20040 stack[++stacki] = 0;
20041
20042 while (i < size)
20043 {
20044 op = data[i++];
20045 switch (op)
20046 {
20047 case DW_OP_lit0:
20048 case DW_OP_lit1:
20049 case DW_OP_lit2:
20050 case DW_OP_lit3:
20051 case DW_OP_lit4:
20052 case DW_OP_lit5:
20053 case DW_OP_lit6:
20054 case DW_OP_lit7:
20055 case DW_OP_lit8:
20056 case DW_OP_lit9:
20057 case DW_OP_lit10:
20058 case DW_OP_lit11:
20059 case DW_OP_lit12:
20060 case DW_OP_lit13:
20061 case DW_OP_lit14:
20062 case DW_OP_lit15:
20063 case DW_OP_lit16:
20064 case DW_OP_lit17:
20065 case DW_OP_lit18:
20066 case DW_OP_lit19:
20067 case DW_OP_lit20:
20068 case DW_OP_lit21:
20069 case DW_OP_lit22:
20070 case DW_OP_lit23:
20071 case DW_OP_lit24:
20072 case DW_OP_lit25:
20073 case DW_OP_lit26:
20074 case DW_OP_lit27:
20075 case DW_OP_lit28:
20076 case DW_OP_lit29:
20077 case DW_OP_lit30:
20078 case DW_OP_lit31:
20079 stack[++stacki] = op - DW_OP_lit0;
20080 break;
20081
20082 case DW_OP_reg0:
20083 case DW_OP_reg1:
20084 case DW_OP_reg2:
20085 case DW_OP_reg3:
20086 case DW_OP_reg4:
20087 case DW_OP_reg5:
20088 case DW_OP_reg6:
20089 case DW_OP_reg7:
20090 case DW_OP_reg8:
20091 case DW_OP_reg9:
20092 case DW_OP_reg10:
20093 case DW_OP_reg11:
20094 case DW_OP_reg12:
20095 case DW_OP_reg13:
20096 case DW_OP_reg14:
20097 case DW_OP_reg15:
20098 case DW_OP_reg16:
20099 case DW_OP_reg17:
20100 case DW_OP_reg18:
20101 case DW_OP_reg19:
20102 case DW_OP_reg20:
20103 case DW_OP_reg21:
20104 case DW_OP_reg22:
20105 case DW_OP_reg23:
20106 case DW_OP_reg24:
20107 case DW_OP_reg25:
20108 case DW_OP_reg26:
20109 case DW_OP_reg27:
20110 case DW_OP_reg28:
20111 case DW_OP_reg29:
20112 case DW_OP_reg30:
20113 case DW_OP_reg31:
20114 stack[++stacki] = op - DW_OP_reg0;
20115 if (i < size)
20116 dwarf2_complex_location_expr_complaint ();
20117 break;
20118
20119 case DW_OP_regx:
20120 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20121 i += bytes_read;
20122 stack[++stacki] = unsnd;
20123 if (i < size)
20124 dwarf2_complex_location_expr_complaint ();
20125 break;
20126
20127 case DW_OP_addr:
20128 stack[++stacki] = read_address (objfile->obfd, &data[i],
20129 cu, &bytes_read);
20130 i += bytes_read;
20131 break;
20132
20133 case DW_OP_const1u:
20134 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20135 i += 1;
20136 break;
20137
20138 case DW_OP_const1s:
20139 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20140 i += 1;
20141 break;
20142
20143 case DW_OP_const2u:
20144 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20145 i += 2;
20146 break;
20147
20148 case DW_OP_const2s:
20149 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20150 i += 2;
20151 break;
20152
20153 case DW_OP_const4u:
20154 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20155 i += 4;
20156 break;
20157
20158 case DW_OP_const4s:
20159 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20160 i += 4;
20161 break;
20162
20163 case DW_OP_const8u:
20164 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20165 i += 8;
20166 break;
20167
20168 case DW_OP_constu:
20169 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20170 &bytes_read);
20171 i += bytes_read;
20172 break;
20173
20174 case DW_OP_consts:
20175 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20176 i += bytes_read;
20177 break;
20178
20179 case DW_OP_dup:
20180 stack[stacki + 1] = stack[stacki];
20181 stacki++;
20182 break;
20183
20184 case DW_OP_plus:
20185 stack[stacki - 1] += stack[stacki];
20186 stacki--;
20187 break;
20188
20189 case DW_OP_plus_uconst:
20190 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20191 &bytes_read);
20192 i += bytes_read;
20193 break;
20194
20195 case DW_OP_minus:
20196 stack[stacki - 1] -= stack[stacki];
20197 stacki--;
20198 break;
20199
20200 case DW_OP_deref:
20201 /* If we're not the last op, then we definitely can't encode
20202 this using GDB's address_class enum. This is valid for partial
20203 global symbols, although the variable's address will be bogus
20204 in the psymtab. */
20205 if (i < size)
20206 dwarf2_complex_location_expr_complaint ();
20207 break;
20208
20209 case DW_OP_GNU_push_tls_address:
20210 /* The top of the stack has the offset from the beginning
20211 of the thread control block at which the variable is located. */
20212 /* Nothing should follow this operator, so the top of stack would
20213 be returned. */
20214 /* This is valid for partial global symbols, but the variable's
20215 address will be bogus in the psymtab. Make it always at least
20216 non-zero to not look as a variable garbage collected by linker
20217 which have DW_OP_addr 0. */
20218 if (i < size)
20219 dwarf2_complex_location_expr_complaint ();
20220 stack[stacki]++;
20221 break;
20222
20223 case DW_OP_GNU_uninit:
20224 break;
20225
20226 case DW_OP_GNU_addr_index:
20227 case DW_OP_GNU_const_index:
20228 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20229 &bytes_read);
20230 i += bytes_read;
20231 break;
20232
20233 default:
20234 {
20235 const char *name = get_DW_OP_name (op);
20236
20237 if (name)
20238 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20239 name);
20240 else
20241 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20242 op);
20243 }
20244
20245 return (stack[stacki]);
20246 }
20247
20248 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20249 outside of the allocated space. Also enforce minimum>0. */
20250 if (stacki >= ARRAY_SIZE (stack) - 1)
20251 {
20252 complaint (&symfile_complaints,
20253 _("location description stack overflow"));
20254 return 0;
20255 }
20256
20257 if (stacki <= 0)
20258 {
20259 complaint (&symfile_complaints,
20260 _("location description stack underflow"));
20261 return 0;
20262 }
20263 }
20264 return (stack[stacki]);
20265 }
20266
20267 /* memory allocation interface */
20268
20269 static struct dwarf_block *
20270 dwarf_alloc_block (struct dwarf2_cu *cu)
20271 {
20272 struct dwarf_block *blk;
20273
20274 blk = (struct dwarf_block *)
20275 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20276 return (blk);
20277 }
20278
20279 static struct die_info *
20280 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20281 {
20282 struct die_info *die;
20283 size_t size = sizeof (struct die_info);
20284
20285 if (num_attrs > 1)
20286 size += (num_attrs - 1) * sizeof (struct attribute);
20287
20288 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20289 memset (die, 0, sizeof (struct die_info));
20290 return (die);
20291 }
20292
20293 \f
20294 /* Macro support. */
20295
20296 /* Return file name relative to the compilation directory of file number I in
20297 *LH's file name table. The result is allocated using xmalloc; the caller is
20298 responsible for freeing it. */
20299
20300 static char *
20301 file_file_name (int file, struct line_header *lh)
20302 {
20303 /* Is the file number a valid index into the line header's file name
20304 table? Remember that file numbers start with one, not zero. */
20305 if (1 <= file && file <= lh->num_file_names)
20306 {
20307 struct file_entry *fe = &lh->file_names[file - 1];
20308
20309 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20310 return xstrdup (fe->name);
20311 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20312 fe->name, NULL);
20313 }
20314 else
20315 {
20316 /* The compiler produced a bogus file number. We can at least
20317 record the macro definitions made in the file, even if we
20318 won't be able to find the file by name. */
20319 char fake_name[80];
20320
20321 xsnprintf (fake_name, sizeof (fake_name),
20322 "<bad macro file number %d>", file);
20323
20324 complaint (&symfile_complaints,
20325 _("bad file number in macro information (%d)"),
20326 file);
20327
20328 return xstrdup (fake_name);
20329 }
20330 }
20331
20332 /* Return the full name of file number I in *LH's file name table.
20333 Use COMP_DIR as the name of the current directory of the
20334 compilation. The result is allocated using xmalloc; the caller is
20335 responsible for freeing it. */
20336 static char *
20337 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20338 {
20339 /* Is the file number a valid index into the line header's file name
20340 table? Remember that file numbers start with one, not zero. */
20341 if (1 <= file && file <= lh->num_file_names)
20342 {
20343 char *relative = file_file_name (file, lh);
20344
20345 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20346 return relative;
20347 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20348 }
20349 else
20350 return file_file_name (file, lh);
20351 }
20352
20353
20354 static struct macro_source_file *
20355 macro_start_file (int file, int line,
20356 struct macro_source_file *current_file,
20357 const char *comp_dir,
20358 struct line_header *lh, struct objfile *objfile)
20359 {
20360 /* File name relative to the compilation directory of this source file. */
20361 char *file_name = file_file_name (file, lh);
20362
20363 if (! current_file)
20364 {
20365 /* Note: We don't create a macro table for this compilation unit
20366 at all until we actually get a filename. */
20367 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20368
20369 /* If we have no current file, then this must be the start_file
20370 directive for the compilation unit's main source file. */
20371 current_file = macro_set_main (macro_table, file_name);
20372 macro_define_special (macro_table);
20373 }
20374 else
20375 current_file = macro_include (current_file, line, file_name);
20376
20377 xfree (file_name);
20378
20379 return current_file;
20380 }
20381
20382
20383 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20384 followed by a null byte. */
20385 static char *
20386 copy_string (const char *buf, int len)
20387 {
20388 char *s = xmalloc (len + 1);
20389
20390 memcpy (s, buf, len);
20391 s[len] = '\0';
20392 return s;
20393 }
20394
20395
20396 static const char *
20397 consume_improper_spaces (const char *p, const char *body)
20398 {
20399 if (*p == ' ')
20400 {
20401 complaint (&symfile_complaints,
20402 _("macro definition contains spaces "
20403 "in formal argument list:\n`%s'"),
20404 body);
20405
20406 while (*p == ' ')
20407 p++;
20408 }
20409
20410 return p;
20411 }
20412
20413
20414 static void
20415 parse_macro_definition (struct macro_source_file *file, int line,
20416 const char *body)
20417 {
20418 const char *p;
20419
20420 /* The body string takes one of two forms. For object-like macro
20421 definitions, it should be:
20422
20423 <macro name> " " <definition>
20424
20425 For function-like macro definitions, it should be:
20426
20427 <macro name> "() " <definition>
20428 or
20429 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20430
20431 Spaces may appear only where explicitly indicated, and in the
20432 <definition>.
20433
20434 The Dwarf 2 spec says that an object-like macro's name is always
20435 followed by a space, but versions of GCC around March 2002 omit
20436 the space when the macro's definition is the empty string.
20437
20438 The Dwarf 2 spec says that there should be no spaces between the
20439 formal arguments in a function-like macro's formal argument list,
20440 but versions of GCC around March 2002 include spaces after the
20441 commas. */
20442
20443
20444 /* Find the extent of the macro name. The macro name is terminated
20445 by either a space or null character (for an object-like macro) or
20446 an opening paren (for a function-like macro). */
20447 for (p = body; *p; p++)
20448 if (*p == ' ' || *p == '(')
20449 break;
20450
20451 if (*p == ' ' || *p == '\0')
20452 {
20453 /* It's an object-like macro. */
20454 int name_len = p - body;
20455 char *name = copy_string (body, name_len);
20456 const char *replacement;
20457
20458 if (*p == ' ')
20459 replacement = body + name_len + 1;
20460 else
20461 {
20462 dwarf2_macro_malformed_definition_complaint (body);
20463 replacement = body + name_len;
20464 }
20465
20466 macro_define_object (file, line, name, replacement);
20467
20468 xfree (name);
20469 }
20470 else if (*p == '(')
20471 {
20472 /* It's a function-like macro. */
20473 char *name = copy_string (body, p - body);
20474 int argc = 0;
20475 int argv_size = 1;
20476 char **argv = xmalloc (argv_size * sizeof (*argv));
20477
20478 p++;
20479
20480 p = consume_improper_spaces (p, body);
20481
20482 /* Parse the formal argument list. */
20483 while (*p && *p != ')')
20484 {
20485 /* Find the extent of the current argument name. */
20486 const char *arg_start = p;
20487
20488 while (*p && *p != ',' && *p != ')' && *p != ' ')
20489 p++;
20490
20491 if (! *p || p == arg_start)
20492 dwarf2_macro_malformed_definition_complaint (body);
20493 else
20494 {
20495 /* Make sure argv has room for the new argument. */
20496 if (argc >= argv_size)
20497 {
20498 argv_size *= 2;
20499 argv = xrealloc (argv, argv_size * sizeof (*argv));
20500 }
20501
20502 argv[argc++] = copy_string (arg_start, p - arg_start);
20503 }
20504
20505 p = consume_improper_spaces (p, body);
20506
20507 /* Consume the comma, if present. */
20508 if (*p == ',')
20509 {
20510 p++;
20511
20512 p = consume_improper_spaces (p, body);
20513 }
20514 }
20515
20516 if (*p == ')')
20517 {
20518 p++;
20519
20520 if (*p == ' ')
20521 /* Perfectly formed definition, no complaints. */
20522 macro_define_function (file, line, name,
20523 argc, (const char **) argv,
20524 p + 1);
20525 else if (*p == '\0')
20526 {
20527 /* Complain, but do define it. */
20528 dwarf2_macro_malformed_definition_complaint (body);
20529 macro_define_function (file, line, name,
20530 argc, (const char **) argv,
20531 p);
20532 }
20533 else
20534 /* Just complain. */
20535 dwarf2_macro_malformed_definition_complaint (body);
20536 }
20537 else
20538 /* Just complain. */
20539 dwarf2_macro_malformed_definition_complaint (body);
20540
20541 xfree (name);
20542 {
20543 int i;
20544
20545 for (i = 0; i < argc; i++)
20546 xfree (argv[i]);
20547 }
20548 xfree (argv);
20549 }
20550 else
20551 dwarf2_macro_malformed_definition_complaint (body);
20552 }
20553
20554 /* Skip some bytes from BYTES according to the form given in FORM.
20555 Returns the new pointer. */
20556
20557 static const gdb_byte *
20558 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20559 enum dwarf_form form,
20560 unsigned int offset_size,
20561 struct dwarf2_section_info *section)
20562 {
20563 unsigned int bytes_read;
20564
20565 switch (form)
20566 {
20567 case DW_FORM_data1:
20568 case DW_FORM_flag:
20569 ++bytes;
20570 break;
20571
20572 case DW_FORM_data2:
20573 bytes += 2;
20574 break;
20575
20576 case DW_FORM_data4:
20577 bytes += 4;
20578 break;
20579
20580 case DW_FORM_data8:
20581 bytes += 8;
20582 break;
20583
20584 case DW_FORM_string:
20585 read_direct_string (abfd, bytes, &bytes_read);
20586 bytes += bytes_read;
20587 break;
20588
20589 case DW_FORM_sec_offset:
20590 case DW_FORM_strp:
20591 case DW_FORM_GNU_strp_alt:
20592 bytes += offset_size;
20593 break;
20594
20595 case DW_FORM_block:
20596 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20597 bytes += bytes_read;
20598 break;
20599
20600 case DW_FORM_block1:
20601 bytes += 1 + read_1_byte (abfd, bytes);
20602 break;
20603 case DW_FORM_block2:
20604 bytes += 2 + read_2_bytes (abfd, bytes);
20605 break;
20606 case DW_FORM_block4:
20607 bytes += 4 + read_4_bytes (abfd, bytes);
20608 break;
20609
20610 case DW_FORM_sdata:
20611 case DW_FORM_udata:
20612 case DW_FORM_GNU_addr_index:
20613 case DW_FORM_GNU_str_index:
20614 bytes = gdb_skip_leb128 (bytes, buffer_end);
20615 if (bytes == NULL)
20616 {
20617 dwarf2_section_buffer_overflow_complaint (section);
20618 return NULL;
20619 }
20620 break;
20621
20622 default:
20623 {
20624 complain:
20625 complaint (&symfile_complaints,
20626 _("invalid form 0x%x in `%s'"),
20627 form, get_section_name (section));
20628 return NULL;
20629 }
20630 }
20631
20632 return bytes;
20633 }
20634
20635 /* A helper for dwarf_decode_macros that handles skipping an unknown
20636 opcode. Returns an updated pointer to the macro data buffer; or,
20637 on error, issues a complaint and returns NULL. */
20638
20639 static const gdb_byte *
20640 skip_unknown_opcode (unsigned int opcode,
20641 const gdb_byte **opcode_definitions,
20642 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20643 bfd *abfd,
20644 unsigned int offset_size,
20645 struct dwarf2_section_info *section)
20646 {
20647 unsigned int bytes_read, i;
20648 unsigned long arg;
20649 const gdb_byte *defn;
20650
20651 if (opcode_definitions[opcode] == NULL)
20652 {
20653 complaint (&symfile_complaints,
20654 _("unrecognized DW_MACFINO opcode 0x%x"),
20655 opcode);
20656 return NULL;
20657 }
20658
20659 defn = opcode_definitions[opcode];
20660 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20661 defn += bytes_read;
20662
20663 for (i = 0; i < arg; ++i)
20664 {
20665 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20666 section);
20667 if (mac_ptr == NULL)
20668 {
20669 /* skip_form_bytes already issued the complaint. */
20670 return NULL;
20671 }
20672 }
20673
20674 return mac_ptr;
20675 }
20676
20677 /* A helper function which parses the header of a macro section.
20678 If the macro section is the extended (for now called "GNU") type,
20679 then this updates *OFFSET_SIZE. Returns a pointer to just after
20680 the header, or issues a complaint and returns NULL on error. */
20681
20682 static const gdb_byte *
20683 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20684 bfd *abfd,
20685 const gdb_byte *mac_ptr,
20686 unsigned int *offset_size,
20687 int section_is_gnu)
20688 {
20689 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20690
20691 if (section_is_gnu)
20692 {
20693 unsigned int version, flags;
20694
20695 version = read_2_bytes (abfd, mac_ptr);
20696 if (version != 4)
20697 {
20698 complaint (&symfile_complaints,
20699 _("unrecognized version `%d' in .debug_macro section"),
20700 version);
20701 return NULL;
20702 }
20703 mac_ptr += 2;
20704
20705 flags = read_1_byte (abfd, mac_ptr);
20706 ++mac_ptr;
20707 *offset_size = (flags & 1) ? 8 : 4;
20708
20709 if ((flags & 2) != 0)
20710 /* We don't need the line table offset. */
20711 mac_ptr += *offset_size;
20712
20713 /* Vendor opcode descriptions. */
20714 if ((flags & 4) != 0)
20715 {
20716 unsigned int i, count;
20717
20718 count = read_1_byte (abfd, mac_ptr);
20719 ++mac_ptr;
20720 for (i = 0; i < count; ++i)
20721 {
20722 unsigned int opcode, bytes_read;
20723 unsigned long arg;
20724
20725 opcode = read_1_byte (abfd, mac_ptr);
20726 ++mac_ptr;
20727 opcode_definitions[opcode] = mac_ptr;
20728 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20729 mac_ptr += bytes_read;
20730 mac_ptr += arg;
20731 }
20732 }
20733 }
20734
20735 return mac_ptr;
20736 }
20737
20738 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20739 including DW_MACRO_GNU_transparent_include. */
20740
20741 static void
20742 dwarf_decode_macro_bytes (bfd *abfd,
20743 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20744 struct macro_source_file *current_file,
20745 struct line_header *lh, const char *comp_dir,
20746 struct dwarf2_section_info *section,
20747 int section_is_gnu, int section_is_dwz,
20748 unsigned int offset_size,
20749 struct objfile *objfile,
20750 htab_t include_hash)
20751 {
20752 enum dwarf_macro_record_type macinfo_type;
20753 int at_commandline;
20754 const gdb_byte *opcode_definitions[256];
20755
20756 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20757 &offset_size, section_is_gnu);
20758 if (mac_ptr == NULL)
20759 {
20760 /* We already issued a complaint. */
20761 return;
20762 }
20763
20764 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20765 GDB is still reading the definitions from command line. First
20766 DW_MACINFO_start_file will need to be ignored as it was already executed
20767 to create CURRENT_FILE for the main source holding also the command line
20768 definitions. On first met DW_MACINFO_start_file this flag is reset to
20769 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20770
20771 at_commandline = 1;
20772
20773 do
20774 {
20775 /* Do we at least have room for a macinfo type byte? */
20776 if (mac_ptr >= mac_end)
20777 {
20778 dwarf2_section_buffer_overflow_complaint (section);
20779 break;
20780 }
20781
20782 macinfo_type = read_1_byte (abfd, mac_ptr);
20783 mac_ptr++;
20784
20785 /* Note that we rely on the fact that the corresponding GNU and
20786 DWARF constants are the same. */
20787 switch (macinfo_type)
20788 {
20789 /* A zero macinfo type indicates the end of the macro
20790 information. */
20791 case 0:
20792 break;
20793
20794 case DW_MACRO_GNU_define:
20795 case DW_MACRO_GNU_undef:
20796 case DW_MACRO_GNU_define_indirect:
20797 case DW_MACRO_GNU_undef_indirect:
20798 case DW_MACRO_GNU_define_indirect_alt:
20799 case DW_MACRO_GNU_undef_indirect_alt:
20800 {
20801 unsigned int bytes_read;
20802 int line;
20803 const char *body;
20804 int is_define;
20805
20806 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20807 mac_ptr += bytes_read;
20808
20809 if (macinfo_type == DW_MACRO_GNU_define
20810 || macinfo_type == DW_MACRO_GNU_undef)
20811 {
20812 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20813 mac_ptr += bytes_read;
20814 }
20815 else
20816 {
20817 LONGEST str_offset;
20818
20819 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20820 mac_ptr += offset_size;
20821
20822 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20823 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20824 || section_is_dwz)
20825 {
20826 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20827
20828 body = read_indirect_string_from_dwz (dwz, str_offset);
20829 }
20830 else
20831 body = read_indirect_string_at_offset (abfd, str_offset);
20832 }
20833
20834 is_define = (macinfo_type == DW_MACRO_GNU_define
20835 || macinfo_type == DW_MACRO_GNU_define_indirect
20836 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20837 if (! current_file)
20838 {
20839 /* DWARF violation as no main source is present. */
20840 complaint (&symfile_complaints,
20841 _("debug info with no main source gives macro %s "
20842 "on line %d: %s"),
20843 is_define ? _("definition") : _("undefinition"),
20844 line, body);
20845 break;
20846 }
20847 if ((line == 0 && !at_commandline)
20848 || (line != 0 && at_commandline))
20849 complaint (&symfile_complaints,
20850 _("debug info gives %s macro %s with %s line %d: %s"),
20851 at_commandline ? _("command-line") : _("in-file"),
20852 is_define ? _("definition") : _("undefinition"),
20853 line == 0 ? _("zero") : _("non-zero"), line, body);
20854
20855 if (is_define)
20856 parse_macro_definition (current_file, line, body);
20857 else
20858 {
20859 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20860 || macinfo_type == DW_MACRO_GNU_undef_indirect
20861 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20862 macro_undef (current_file, line, body);
20863 }
20864 }
20865 break;
20866
20867 case DW_MACRO_GNU_start_file:
20868 {
20869 unsigned int bytes_read;
20870 int line, file;
20871
20872 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20873 mac_ptr += bytes_read;
20874 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20875 mac_ptr += bytes_read;
20876
20877 if ((line == 0 && !at_commandline)
20878 || (line != 0 && at_commandline))
20879 complaint (&symfile_complaints,
20880 _("debug info gives source %d included "
20881 "from %s at %s line %d"),
20882 file, at_commandline ? _("command-line") : _("file"),
20883 line == 0 ? _("zero") : _("non-zero"), line);
20884
20885 if (at_commandline)
20886 {
20887 /* This DW_MACRO_GNU_start_file was executed in the
20888 pass one. */
20889 at_commandline = 0;
20890 }
20891 else
20892 current_file = macro_start_file (file, line,
20893 current_file, comp_dir,
20894 lh, objfile);
20895 }
20896 break;
20897
20898 case DW_MACRO_GNU_end_file:
20899 if (! current_file)
20900 complaint (&symfile_complaints,
20901 _("macro debug info has an unmatched "
20902 "`close_file' directive"));
20903 else
20904 {
20905 current_file = current_file->included_by;
20906 if (! current_file)
20907 {
20908 enum dwarf_macro_record_type next_type;
20909
20910 /* GCC circa March 2002 doesn't produce the zero
20911 type byte marking the end of the compilation
20912 unit. Complain if it's not there, but exit no
20913 matter what. */
20914
20915 /* Do we at least have room for a macinfo type byte? */
20916 if (mac_ptr >= mac_end)
20917 {
20918 dwarf2_section_buffer_overflow_complaint (section);
20919 return;
20920 }
20921
20922 /* We don't increment mac_ptr here, so this is just
20923 a look-ahead. */
20924 next_type = read_1_byte (abfd, mac_ptr);
20925 if (next_type != 0)
20926 complaint (&symfile_complaints,
20927 _("no terminating 0-type entry for "
20928 "macros in `.debug_macinfo' section"));
20929
20930 return;
20931 }
20932 }
20933 break;
20934
20935 case DW_MACRO_GNU_transparent_include:
20936 case DW_MACRO_GNU_transparent_include_alt:
20937 {
20938 LONGEST offset;
20939 void **slot;
20940 bfd *include_bfd = abfd;
20941 struct dwarf2_section_info *include_section = section;
20942 struct dwarf2_section_info alt_section;
20943 const gdb_byte *include_mac_end = mac_end;
20944 int is_dwz = section_is_dwz;
20945 const gdb_byte *new_mac_ptr;
20946
20947 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20948 mac_ptr += offset_size;
20949
20950 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20951 {
20952 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20953
20954 dwarf2_read_section (dwarf2_per_objfile->objfile,
20955 &dwz->macro);
20956
20957 include_section = &dwz->macro;
20958 include_bfd = get_section_bfd_owner (include_section);
20959 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20960 is_dwz = 1;
20961 }
20962
20963 new_mac_ptr = include_section->buffer + offset;
20964 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20965
20966 if (*slot != NULL)
20967 {
20968 /* This has actually happened; see
20969 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20970 complaint (&symfile_complaints,
20971 _("recursive DW_MACRO_GNU_transparent_include in "
20972 ".debug_macro section"));
20973 }
20974 else
20975 {
20976 *slot = (void *) new_mac_ptr;
20977
20978 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20979 include_mac_end, current_file,
20980 lh, comp_dir,
20981 section, section_is_gnu, is_dwz,
20982 offset_size, objfile, include_hash);
20983
20984 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20985 }
20986 }
20987 break;
20988
20989 case DW_MACINFO_vendor_ext:
20990 if (!section_is_gnu)
20991 {
20992 unsigned int bytes_read;
20993 int constant;
20994
20995 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20996 mac_ptr += bytes_read;
20997 read_direct_string (abfd, mac_ptr, &bytes_read);
20998 mac_ptr += bytes_read;
20999
21000 /* We don't recognize any vendor extensions. */
21001 break;
21002 }
21003 /* FALLTHROUGH */
21004
21005 default:
21006 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21007 mac_ptr, mac_end, abfd, offset_size,
21008 section);
21009 if (mac_ptr == NULL)
21010 return;
21011 break;
21012 }
21013 } while (macinfo_type != 0);
21014 }
21015
21016 static void
21017 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21018 const char *comp_dir, int section_is_gnu)
21019 {
21020 struct objfile *objfile = dwarf2_per_objfile->objfile;
21021 struct line_header *lh = cu->line_header;
21022 bfd *abfd;
21023 const gdb_byte *mac_ptr, *mac_end;
21024 struct macro_source_file *current_file = 0;
21025 enum dwarf_macro_record_type macinfo_type;
21026 unsigned int offset_size = cu->header.offset_size;
21027 const gdb_byte *opcode_definitions[256];
21028 struct cleanup *cleanup;
21029 htab_t include_hash;
21030 void **slot;
21031 struct dwarf2_section_info *section;
21032 const char *section_name;
21033
21034 if (cu->dwo_unit != NULL)
21035 {
21036 if (section_is_gnu)
21037 {
21038 section = &cu->dwo_unit->dwo_file->sections.macro;
21039 section_name = ".debug_macro.dwo";
21040 }
21041 else
21042 {
21043 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21044 section_name = ".debug_macinfo.dwo";
21045 }
21046 }
21047 else
21048 {
21049 if (section_is_gnu)
21050 {
21051 section = &dwarf2_per_objfile->macro;
21052 section_name = ".debug_macro";
21053 }
21054 else
21055 {
21056 section = &dwarf2_per_objfile->macinfo;
21057 section_name = ".debug_macinfo";
21058 }
21059 }
21060
21061 dwarf2_read_section (objfile, section);
21062 if (section->buffer == NULL)
21063 {
21064 complaint (&symfile_complaints, _("missing %s section"), section_name);
21065 return;
21066 }
21067 abfd = get_section_bfd_owner (section);
21068
21069 /* First pass: Find the name of the base filename.
21070 This filename is needed in order to process all macros whose definition
21071 (or undefinition) comes from the command line. These macros are defined
21072 before the first DW_MACINFO_start_file entry, and yet still need to be
21073 associated to the base file.
21074
21075 To determine the base file name, we scan the macro definitions until we
21076 reach the first DW_MACINFO_start_file entry. We then initialize
21077 CURRENT_FILE accordingly so that any macro definition found before the
21078 first DW_MACINFO_start_file can still be associated to the base file. */
21079
21080 mac_ptr = section->buffer + offset;
21081 mac_end = section->buffer + section->size;
21082
21083 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21084 &offset_size, section_is_gnu);
21085 if (mac_ptr == NULL)
21086 {
21087 /* We already issued a complaint. */
21088 return;
21089 }
21090
21091 do
21092 {
21093 /* Do we at least have room for a macinfo type byte? */
21094 if (mac_ptr >= mac_end)
21095 {
21096 /* Complaint is printed during the second pass as GDB will probably
21097 stop the first pass earlier upon finding
21098 DW_MACINFO_start_file. */
21099 break;
21100 }
21101
21102 macinfo_type = read_1_byte (abfd, mac_ptr);
21103 mac_ptr++;
21104
21105 /* Note that we rely on the fact that the corresponding GNU and
21106 DWARF constants are the same. */
21107 switch (macinfo_type)
21108 {
21109 /* A zero macinfo type indicates the end of the macro
21110 information. */
21111 case 0:
21112 break;
21113
21114 case DW_MACRO_GNU_define:
21115 case DW_MACRO_GNU_undef:
21116 /* Only skip the data by MAC_PTR. */
21117 {
21118 unsigned int bytes_read;
21119
21120 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21121 mac_ptr += bytes_read;
21122 read_direct_string (abfd, mac_ptr, &bytes_read);
21123 mac_ptr += bytes_read;
21124 }
21125 break;
21126
21127 case DW_MACRO_GNU_start_file:
21128 {
21129 unsigned int bytes_read;
21130 int line, file;
21131
21132 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21133 mac_ptr += bytes_read;
21134 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21135 mac_ptr += bytes_read;
21136
21137 current_file = macro_start_file (file, line, current_file,
21138 comp_dir, lh, objfile);
21139 }
21140 break;
21141
21142 case DW_MACRO_GNU_end_file:
21143 /* No data to skip by MAC_PTR. */
21144 break;
21145
21146 case DW_MACRO_GNU_define_indirect:
21147 case DW_MACRO_GNU_undef_indirect:
21148 case DW_MACRO_GNU_define_indirect_alt:
21149 case DW_MACRO_GNU_undef_indirect_alt:
21150 {
21151 unsigned int bytes_read;
21152
21153 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21154 mac_ptr += bytes_read;
21155 mac_ptr += offset_size;
21156 }
21157 break;
21158
21159 case DW_MACRO_GNU_transparent_include:
21160 case DW_MACRO_GNU_transparent_include_alt:
21161 /* Note that, according to the spec, a transparent include
21162 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21163 skip this opcode. */
21164 mac_ptr += offset_size;
21165 break;
21166
21167 case DW_MACINFO_vendor_ext:
21168 /* Only skip the data by MAC_PTR. */
21169 if (!section_is_gnu)
21170 {
21171 unsigned int bytes_read;
21172
21173 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21174 mac_ptr += bytes_read;
21175 read_direct_string (abfd, mac_ptr, &bytes_read);
21176 mac_ptr += bytes_read;
21177 }
21178 /* FALLTHROUGH */
21179
21180 default:
21181 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21182 mac_ptr, mac_end, abfd, offset_size,
21183 section);
21184 if (mac_ptr == NULL)
21185 return;
21186 break;
21187 }
21188 } while (macinfo_type != 0 && current_file == NULL);
21189
21190 /* Second pass: Process all entries.
21191
21192 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21193 command-line macro definitions/undefinitions. This flag is unset when we
21194 reach the first DW_MACINFO_start_file entry. */
21195
21196 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21197 NULL, xcalloc, xfree);
21198 cleanup = make_cleanup_htab_delete (include_hash);
21199 mac_ptr = section->buffer + offset;
21200 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21201 *slot = (void *) mac_ptr;
21202 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21203 current_file, lh, comp_dir, section,
21204 section_is_gnu, 0,
21205 offset_size, objfile, include_hash);
21206 do_cleanups (cleanup);
21207 }
21208
21209 /* Check if the attribute's form is a DW_FORM_block*
21210 if so return true else false. */
21211
21212 static int
21213 attr_form_is_block (const struct attribute *attr)
21214 {
21215 return (attr == NULL ? 0 :
21216 attr->form == DW_FORM_block1
21217 || attr->form == DW_FORM_block2
21218 || attr->form == DW_FORM_block4
21219 || attr->form == DW_FORM_block
21220 || attr->form == DW_FORM_exprloc);
21221 }
21222
21223 /* Return non-zero if ATTR's value is a section offset --- classes
21224 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21225 You may use DW_UNSND (attr) to retrieve such offsets.
21226
21227 Section 7.5.4, "Attribute Encodings", explains that no attribute
21228 may have a value that belongs to more than one of these classes; it
21229 would be ambiguous if we did, because we use the same forms for all
21230 of them. */
21231
21232 static int
21233 attr_form_is_section_offset (const struct attribute *attr)
21234 {
21235 return (attr->form == DW_FORM_data4
21236 || attr->form == DW_FORM_data8
21237 || attr->form == DW_FORM_sec_offset);
21238 }
21239
21240 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21241 zero otherwise. When this function returns true, you can apply
21242 dwarf2_get_attr_constant_value to it.
21243
21244 However, note that for some attributes you must check
21245 attr_form_is_section_offset before using this test. DW_FORM_data4
21246 and DW_FORM_data8 are members of both the constant class, and of
21247 the classes that contain offsets into other debug sections
21248 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21249 that, if an attribute's can be either a constant or one of the
21250 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21251 taken as section offsets, not constants. */
21252
21253 static int
21254 attr_form_is_constant (const struct attribute *attr)
21255 {
21256 switch (attr->form)
21257 {
21258 case DW_FORM_sdata:
21259 case DW_FORM_udata:
21260 case DW_FORM_data1:
21261 case DW_FORM_data2:
21262 case DW_FORM_data4:
21263 case DW_FORM_data8:
21264 return 1;
21265 default:
21266 return 0;
21267 }
21268 }
21269
21270
21271 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21272 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21273
21274 static int
21275 attr_form_is_ref (const struct attribute *attr)
21276 {
21277 switch (attr->form)
21278 {
21279 case DW_FORM_ref_addr:
21280 case DW_FORM_ref1:
21281 case DW_FORM_ref2:
21282 case DW_FORM_ref4:
21283 case DW_FORM_ref8:
21284 case DW_FORM_ref_udata:
21285 case DW_FORM_GNU_ref_alt:
21286 return 1;
21287 default:
21288 return 0;
21289 }
21290 }
21291
21292 /* Return the .debug_loc section to use for CU.
21293 For DWO files use .debug_loc.dwo. */
21294
21295 static struct dwarf2_section_info *
21296 cu_debug_loc_section (struct dwarf2_cu *cu)
21297 {
21298 if (cu->dwo_unit)
21299 return &cu->dwo_unit->dwo_file->sections.loc;
21300 return &dwarf2_per_objfile->loc;
21301 }
21302
21303 /* A helper function that fills in a dwarf2_loclist_baton. */
21304
21305 static void
21306 fill_in_loclist_baton (struct dwarf2_cu *cu,
21307 struct dwarf2_loclist_baton *baton,
21308 const struct attribute *attr)
21309 {
21310 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21311
21312 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21313
21314 baton->per_cu = cu->per_cu;
21315 gdb_assert (baton->per_cu);
21316 /* We don't know how long the location list is, but make sure we
21317 don't run off the edge of the section. */
21318 baton->size = section->size - DW_UNSND (attr);
21319 baton->data = section->buffer + DW_UNSND (attr);
21320 baton->base_address = cu->base_address;
21321 baton->from_dwo = cu->dwo_unit != NULL;
21322 }
21323
21324 static void
21325 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21326 struct dwarf2_cu *cu, int is_block)
21327 {
21328 struct objfile *objfile = dwarf2_per_objfile->objfile;
21329 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21330
21331 if (attr_form_is_section_offset (attr)
21332 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21333 the section. If so, fall through to the complaint in the
21334 other branch. */
21335 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21336 {
21337 struct dwarf2_loclist_baton *baton;
21338
21339 baton = obstack_alloc (&objfile->objfile_obstack,
21340 sizeof (struct dwarf2_loclist_baton));
21341
21342 fill_in_loclist_baton (cu, baton, attr);
21343
21344 if (cu->base_known == 0)
21345 complaint (&symfile_complaints,
21346 _("Location list used without "
21347 "specifying the CU base address."));
21348
21349 SYMBOL_ACLASS_INDEX (sym) = (is_block
21350 ? dwarf2_loclist_block_index
21351 : dwarf2_loclist_index);
21352 SYMBOL_LOCATION_BATON (sym) = baton;
21353 }
21354 else
21355 {
21356 struct dwarf2_locexpr_baton *baton;
21357
21358 baton = obstack_alloc (&objfile->objfile_obstack,
21359 sizeof (struct dwarf2_locexpr_baton));
21360 baton->per_cu = cu->per_cu;
21361 gdb_assert (baton->per_cu);
21362
21363 if (attr_form_is_block (attr))
21364 {
21365 /* Note that we're just copying the block's data pointer
21366 here, not the actual data. We're still pointing into the
21367 info_buffer for SYM's objfile; right now we never release
21368 that buffer, but when we do clean up properly this may
21369 need to change. */
21370 baton->size = DW_BLOCK (attr)->size;
21371 baton->data = DW_BLOCK (attr)->data;
21372 }
21373 else
21374 {
21375 dwarf2_invalid_attrib_class_complaint ("location description",
21376 SYMBOL_NATURAL_NAME (sym));
21377 baton->size = 0;
21378 }
21379
21380 SYMBOL_ACLASS_INDEX (sym) = (is_block
21381 ? dwarf2_locexpr_block_index
21382 : dwarf2_locexpr_index);
21383 SYMBOL_LOCATION_BATON (sym) = baton;
21384 }
21385 }
21386
21387 /* Return the OBJFILE associated with the compilation unit CU. If CU
21388 came from a separate debuginfo file, then the master objfile is
21389 returned. */
21390
21391 struct objfile *
21392 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21393 {
21394 struct objfile *objfile = per_cu->objfile;
21395
21396 /* Return the master objfile, so that we can report and look up the
21397 correct file containing this variable. */
21398 if (objfile->separate_debug_objfile_backlink)
21399 objfile = objfile->separate_debug_objfile_backlink;
21400
21401 return objfile;
21402 }
21403
21404 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21405 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21406 CU_HEADERP first. */
21407
21408 static const struct comp_unit_head *
21409 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21410 struct dwarf2_per_cu_data *per_cu)
21411 {
21412 const gdb_byte *info_ptr;
21413
21414 if (per_cu->cu)
21415 return &per_cu->cu->header;
21416
21417 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21418
21419 memset (cu_headerp, 0, sizeof (*cu_headerp));
21420 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21421
21422 return cu_headerp;
21423 }
21424
21425 /* Return the address size given in the compilation unit header for CU. */
21426
21427 int
21428 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21429 {
21430 struct comp_unit_head cu_header_local;
21431 const struct comp_unit_head *cu_headerp;
21432
21433 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21434
21435 return cu_headerp->addr_size;
21436 }
21437
21438 /* Return the offset size given in the compilation unit header for CU. */
21439
21440 int
21441 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21442 {
21443 struct comp_unit_head cu_header_local;
21444 const struct comp_unit_head *cu_headerp;
21445
21446 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21447
21448 return cu_headerp->offset_size;
21449 }
21450
21451 /* See its dwarf2loc.h declaration. */
21452
21453 int
21454 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21455 {
21456 struct comp_unit_head cu_header_local;
21457 const struct comp_unit_head *cu_headerp;
21458
21459 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21460
21461 if (cu_headerp->version == 2)
21462 return cu_headerp->addr_size;
21463 else
21464 return cu_headerp->offset_size;
21465 }
21466
21467 /* Return the text offset of the CU. The returned offset comes from
21468 this CU's objfile. If this objfile came from a separate debuginfo
21469 file, then the offset may be different from the corresponding
21470 offset in the parent objfile. */
21471
21472 CORE_ADDR
21473 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21474 {
21475 struct objfile *objfile = per_cu->objfile;
21476
21477 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21478 }
21479
21480 /* Locate the .debug_info compilation unit from CU's objfile which contains
21481 the DIE at OFFSET. Raises an error on failure. */
21482
21483 static struct dwarf2_per_cu_data *
21484 dwarf2_find_containing_comp_unit (sect_offset offset,
21485 unsigned int offset_in_dwz,
21486 struct objfile *objfile)
21487 {
21488 struct dwarf2_per_cu_data *this_cu;
21489 int low, high;
21490 const sect_offset *cu_off;
21491
21492 low = 0;
21493 high = dwarf2_per_objfile->n_comp_units - 1;
21494 while (high > low)
21495 {
21496 struct dwarf2_per_cu_data *mid_cu;
21497 int mid = low + (high - low) / 2;
21498
21499 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21500 cu_off = &mid_cu->offset;
21501 if (mid_cu->is_dwz > offset_in_dwz
21502 || (mid_cu->is_dwz == offset_in_dwz
21503 && cu_off->sect_off >= offset.sect_off))
21504 high = mid;
21505 else
21506 low = mid + 1;
21507 }
21508 gdb_assert (low == high);
21509 this_cu = dwarf2_per_objfile->all_comp_units[low];
21510 cu_off = &this_cu->offset;
21511 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21512 {
21513 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21514 error (_("Dwarf Error: could not find partial DIE containing "
21515 "offset 0x%lx [in module %s]"),
21516 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21517
21518 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21519 <= offset.sect_off);
21520 return dwarf2_per_objfile->all_comp_units[low-1];
21521 }
21522 else
21523 {
21524 this_cu = dwarf2_per_objfile->all_comp_units[low];
21525 if (low == dwarf2_per_objfile->n_comp_units - 1
21526 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21527 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21528 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21529 return this_cu;
21530 }
21531 }
21532
21533 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21534
21535 static void
21536 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21537 {
21538 memset (cu, 0, sizeof (*cu));
21539 per_cu->cu = cu;
21540 cu->per_cu = per_cu;
21541 cu->objfile = per_cu->objfile;
21542 obstack_init (&cu->comp_unit_obstack);
21543 }
21544
21545 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21546
21547 static void
21548 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21549 enum language pretend_language)
21550 {
21551 struct attribute *attr;
21552
21553 /* Set the language we're debugging. */
21554 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21555 if (attr)
21556 set_cu_language (DW_UNSND (attr), cu);
21557 else
21558 {
21559 cu->language = pretend_language;
21560 cu->language_defn = language_def (cu->language);
21561 }
21562
21563 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21564 if (attr)
21565 cu->producer = DW_STRING (attr);
21566 }
21567
21568 /* Release one cached compilation unit, CU. We unlink it from the tree
21569 of compilation units, but we don't remove it from the read_in_chain;
21570 the caller is responsible for that.
21571 NOTE: DATA is a void * because this function is also used as a
21572 cleanup routine. */
21573
21574 static void
21575 free_heap_comp_unit (void *data)
21576 {
21577 struct dwarf2_cu *cu = data;
21578
21579 gdb_assert (cu->per_cu != NULL);
21580 cu->per_cu->cu = NULL;
21581 cu->per_cu = NULL;
21582
21583 obstack_free (&cu->comp_unit_obstack, NULL);
21584
21585 xfree (cu);
21586 }
21587
21588 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21589 when we're finished with it. We can't free the pointer itself, but be
21590 sure to unlink it from the cache. Also release any associated storage. */
21591
21592 static void
21593 free_stack_comp_unit (void *data)
21594 {
21595 struct dwarf2_cu *cu = data;
21596
21597 gdb_assert (cu->per_cu != NULL);
21598 cu->per_cu->cu = NULL;
21599 cu->per_cu = NULL;
21600
21601 obstack_free (&cu->comp_unit_obstack, NULL);
21602 cu->partial_dies = NULL;
21603 }
21604
21605 /* Free all cached compilation units. */
21606
21607 static void
21608 free_cached_comp_units (void *data)
21609 {
21610 struct dwarf2_per_cu_data *per_cu, **last_chain;
21611
21612 per_cu = dwarf2_per_objfile->read_in_chain;
21613 last_chain = &dwarf2_per_objfile->read_in_chain;
21614 while (per_cu != NULL)
21615 {
21616 struct dwarf2_per_cu_data *next_cu;
21617
21618 next_cu = per_cu->cu->read_in_chain;
21619
21620 free_heap_comp_unit (per_cu->cu);
21621 *last_chain = next_cu;
21622
21623 per_cu = next_cu;
21624 }
21625 }
21626
21627 /* Increase the age counter on each cached compilation unit, and free
21628 any that are too old. */
21629
21630 static void
21631 age_cached_comp_units (void)
21632 {
21633 struct dwarf2_per_cu_data *per_cu, **last_chain;
21634
21635 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21636 per_cu = dwarf2_per_objfile->read_in_chain;
21637 while (per_cu != NULL)
21638 {
21639 per_cu->cu->last_used ++;
21640 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21641 dwarf2_mark (per_cu->cu);
21642 per_cu = per_cu->cu->read_in_chain;
21643 }
21644
21645 per_cu = dwarf2_per_objfile->read_in_chain;
21646 last_chain = &dwarf2_per_objfile->read_in_chain;
21647 while (per_cu != NULL)
21648 {
21649 struct dwarf2_per_cu_data *next_cu;
21650
21651 next_cu = per_cu->cu->read_in_chain;
21652
21653 if (!per_cu->cu->mark)
21654 {
21655 free_heap_comp_unit (per_cu->cu);
21656 *last_chain = next_cu;
21657 }
21658 else
21659 last_chain = &per_cu->cu->read_in_chain;
21660
21661 per_cu = next_cu;
21662 }
21663 }
21664
21665 /* Remove a single compilation unit from the cache. */
21666
21667 static void
21668 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21669 {
21670 struct dwarf2_per_cu_data *per_cu, **last_chain;
21671
21672 per_cu = dwarf2_per_objfile->read_in_chain;
21673 last_chain = &dwarf2_per_objfile->read_in_chain;
21674 while (per_cu != NULL)
21675 {
21676 struct dwarf2_per_cu_data *next_cu;
21677
21678 next_cu = per_cu->cu->read_in_chain;
21679
21680 if (per_cu == target_per_cu)
21681 {
21682 free_heap_comp_unit (per_cu->cu);
21683 per_cu->cu = NULL;
21684 *last_chain = next_cu;
21685 break;
21686 }
21687 else
21688 last_chain = &per_cu->cu->read_in_chain;
21689
21690 per_cu = next_cu;
21691 }
21692 }
21693
21694 /* Release all extra memory associated with OBJFILE. */
21695
21696 void
21697 dwarf2_free_objfile (struct objfile *objfile)
21698 {
21699 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21700
21701 if (dwarf2_per_objfile == NULL)
21702 return;
21703
21704 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21705 free_cached_comp_units (NULL);
21706
21707 if (dwarf2_per_objfile->quick_file_names_table)
21708 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21709
21710 /* Everything else should be on the objfile obstack. */
21711 }
21712
21713 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21714 We store these in a hash table separate from the DIEs, and preserve them
21715 when the DIEs are flushed out of cache.
21716
21717 The CU "per_cu" pointer is needed because offset alone is not enough to
21718 uniquely identify the type. A file may have multiple .debug_types sections,
21719 or the type may come from a DWO file. Furthermore, while it's more logical
21720 to use per_cu->section+offset, with Fission the section with the data is in
21721 the DWO file but we don't know that section at the point we need it.
21722 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21723 because we can enter the lookup routine, get_die_type_at_offset, from
21724 outside this file, and thus won't necessarily have PER_CU->cu.
21725 Fortunately, PER_CU is stable for the life of the objfile. */
21726
21727 struct dwarf2_per_cu_offset_and_type
21728 {
21729 const struct dwarf2_per_cu_data *per_cu;
21730 sect_offset offset;
21731 struct type *type;
21732 };
21733
21734 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21735
21736 static hashval_t
21737 per_cu_offset_and_type_hash (const void *item)
21738 {
21739 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21740
21741 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21742 }
21743
21744 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21745
21746 static int
21747 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21748 {
21749 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21750 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21751
21752 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21753 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21754 }
21755
21756 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21757 table if necessary. For convenience, return TYPE.
21758
21759 The DIEs reading must have careful ordering to:
21760 * Not cause infite loops trying to read in DIEs as a prerequisite for
21761 reading current DIE.
21762 * Not trying to dereference contents of still incompletely read in types
21763 while reading in other DIEs.
21764 * Enable referencing still incompletely read in types just by a pointer to
21765 the type without accessing its fields.
21766
21767 Therefore caller should follow these rules:
21768 * Try to fetch any prerequisite types we may need to build this DIE type
21769 before building the type and calling set_die_type.
21770 * After building type call set_die_type for current DIE as soon as
21771 possible before fetching more types to complete the current type.
21772 * Make the type as complete as possible before fetching more types. */
21773
21774 static struct type *
21775 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21776 {
21777 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21778 struct objfile *objfile = cu->objfile;
21779 struct attribute *attr;
21780 struct dynamic_prop prop;
21781
21782 /* For Ada types, make sure that the gnat-specific data is always
21783 initialized (if not already set). There are a few types where
21784 we should not be doing so, because the type-specific area is
21785 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21786 where the type-specific area is used to store the floatformat).
21787 But this is not a problem, because the gnat-specific information
21788 is actually not needed for these types. */
21789 if (need_gnat_info (cu)
21790 && TYPE_CODE (type) != TYPE_CODE_FUNC
21791 && TYPE_CODE (type) != TYPE_CODE_FLT
21792 && !HAVE_GNAT_AUX_INFO (type))
21793 INIT_GNAT_SPECIFIC (type);
21794
21795 /* Read DW_AT_data_location and set in type. */
21796 attr = dwarf2_attr (die, DW_AT_data_location, cu);
21797 if (attr_to_dynamic_prop (attr, die, cu, &prop))
21798 {
21799 TYPE_DATA_LOCATION (type)
21800 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
21801 *TYPE_DATA_LOCATION (type) = prop;
21802 }
21803
21804 if (dwarf2_per_objfile->die_type_hash == NULL)
21805 {
21806 dwarf2_per_objfile->die_type_hash =
21807 htab_create_alloc_ex (127,
21808 per_cu_offset_and_type_hash,
21809 per_cu_offset_and_type_eq,
21810 NULL,
21811 &objfile->objfile_obstack,
21812 hashtab_obstack_allocate,
21813 dummy_obstack_deallocate);
21814 }
21815
21816 ofs.per_cu = cu->per_cu;
21817 ofs.offset = die->offset;
21818 ofs.type = type;
21819 slot = (struct dwarf2_per_cu_offset_and_type **)
21820 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21821 if (*slot)
21822 complaint (&symfile_complaints,
21823 _("A problem internal to GDB: DIE 0x%x has type already set"),
21824 die->offset.sect_off);
21825 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21826 **slot = ofs;
21827 return type;
21828 }
21829
21830 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21831 or return NULL if the die does not have a saved type. */
21832
21833 static struct type *
21834 get_die_type_at_offset (sect_offset offset,
21835 struct dwarf2_per_cu_data *per_cu)
21836 {
21837 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21838
21839 if (dwarf2_per_objfile->die_type_hash == NULL)
21840 return NULL;
21841
21842 ofs.per_cu = per_cu;
21843 ofs.offset = offset;
21844 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21845 if (slot)
21846 return slot->type;
21847 else
21848 return NULL;
21849 }
21850
21851 /* Look up the type for DIE in CU in die_type_hash,
21852 or return NULL if DIE does not have a saved type. */
21853
21854 static struct type *
21855 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21856 {
21857 return get_die_type_at_offset (die->offset, cu->per_cu);
21858 }
21859
21860 /* Add a dependence relationship from CU to REF_PER_CU. */
21861
21862 static void
21863 dwarf2_add_dependence (struct dwarf2_cu *cu,
21864 struct dwarf2_per_cu_data *ref_per_cu)
21865 {
21866 void **slot;
21867
21868 if (cu->dependencies == NULL)
21869 cu->dependencies
21870 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21871 NULL, &cu->comp_unit_obstack,
21872 hashtab_obstack_allocate,
21873 dummy_obstack_deallocate);
21874
21875 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21876 if (*slot == NULL)
21877 *slot = ref_per_cu;
21878 }
21879
21880 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21881 Set the mark field in every compilation unit in the
21882 cache that we must keep because we are keeping CU. */
21883
21884 static int
21885 dwarf2_mark_helper (void **slot, void *data)
21886 {
21887 struct dwarf2_per_cu_data *per_cu;
21888
21889 per_cu = (struct dwarf2_per_cu_data *) *slot;
21890
21891 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21892 reading of the chain. As such dependencies remain valid it is not much
21893 useful to track and undo them during QUIT cleanups. */
21894 if (per_cu->cu == NULL)
21895 return 1;
21896
21897 if (per_cu->cu->mark)
21898 return 1;
21899 per_cu->cu->mark = 1;
21900
21901 if (per_cu->cu->dependencies != NULL)
21902 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21903
21904 return 1;
21905 }
21906
21907 /* Set the mark field in CU and in every other compilation unit in the
21908 cache that we must keep because we are keeping CU. */
21909
21910 static void
21911 dwarf2_mark (struct dwarf2_cu *cu)
21912 {
21913 if (cu->mark)
21914 return;
21915 cu->mark = 1;
21916 if (cu->dependencies != NULL)
21917 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21918 }
21919
21920 static void
21921 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21922 {
21923 while (per_cu)
21924 {
21925 per_cu->cu->mark = 0;
21926 per_cu = per_cu->cu->read_in_chain;
21927 }
21928 }
21929
21930 /* Trivial hash function for partial_die_info: the hash value of a DIE
21931 is its offset in .debug_info for this objfile. */
21932
21933 static hashval_t
21934 partial_die_hash (const void *item)
21935 {
21936 const struct partial_die_info *part_die = item;
21937
21938 return part_die->offset.sect_off;
21939 }
21940
21941 /* Trivial comparison function for partial_die_info structures: two DIEs
21942 are equal if they have the same offset. */
21943
21944 static int
21945 partial_die_eq (const void *item_lhs, const void *item_rhs)
21946 {
21947 const struct partial_die_info *part_die_lhs = item_lhs;
21948 const struct partial_die_info *part_die_rhs = item_rhs;
21949
21950 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21951 }
21952
21953 static struct cmd_list_element *set_dwarf2_cmdlist;
21954 static struct cmd_list_element *show_dwarf2_cmdlist;
21955
21956 static void
21957 set_dwarf2_cmd (char *args, int from_tty)
21958 {
21959 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
21960 gdb_stdout);
21961 }
21962
21963 static void
21964 show_dwarf2_cmd (char *args, int from_tty)
21965 {
21966 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21967 }
21968
21969 /* Free data associated with OBJFILE, if necessary. */
21970
21971 static void
21972 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21973 {
21974 struct dwarf2_per_objfile *data = d;
21975 int ix;
21976
21977 /* Make sure we don't accidentally use dwarf2_per_objfile while
21978 cleaning up. */
21979 dwarf2_per_objfile = NULL;
21980
21981 for (ix = 0; ix < data->n_comp_units; ++ix)
21982 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21983
21984 for (ix = 0; ix < data->n_type_units; ++ix)
21985 VEC_free (dwarf2_per_cu_ptr,
21986 data->all_type_units[ix]->per_cu.imported_symtabs);
21987 xfree (data->all_type_units);
21988
21989 VEC_free (dwarf2_section_info_def, data->types);
21990
21991 if (data->dwo_files)
21992 free_dwo_files (data->dwo_files, objfile);
21993 if (data->dwp_file)
21994 gdb_bfd_unref (data->dwp_file->dbfd);
21995
21996 if (data->dwz_file && data->dwz_file->dwz_bfd)
21997 gdb_bfd_unref (data->dwz_file->dwz_bfd);
21998 }
21999
22000 \f
22001 /* The "save gdb-index" command. */
22002
22003 /* The contents of the hash table we create when building the string
22004 table. */
22005 struct strtab_entry
22006 {
22007 offset_type offset;
22008 const char *str;
22009 };
22010
22011 /* Hash function for a strtab_entry.
22012
22013 Function is used only during write_hash_table so no index format backward
22014 compatibility is needed. */
22015
22016 static hashval_t
22017 hash_strtab_entry (const void *e)
22018 {
22019 const struct strtab_entry *entry = e;
22020 return mapped_index_string_hash (INT_MAX, entry->str);
22021 }
22022
22023 /* Equality function for a strtab_entry. */
22024
22025 static int
22026 eq_strtab_entry (const void *a, const void *b)
22027 {
22028 const struct strtab_entry *ea = a;
22029 const struct strtab_entry *eb = b;
22030 return !strcmp (ea->str, eb->str);
22031 }
22032
22033 /* Create a strtab_entry hash table. */
22034
22035 static htab_t
22036 create_strtab (void)
22037 {
22038 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22039 xfree, xcalloc, xfree);
22040 }
22041
22042 /* Add a string to the constant pool. Return the string's offset in
22043 host order. */
22044
22045 static offset_type
22046 add_string (htab_t table, struct obstack *cpool, const char *str)
22047 {
22048 void **slot;
22049 struct strtab_entry entry;
22050 struct strtab_entry *result;
22051
22052 entry.str = str;
22053 slot = htab_find_slot (table, &entry, INSERT);
22054 if (*slot)
22055 result = *slot;
22056 else
22057 {
22058 result = XNEW (struct strtab_entry);
22059 result->offset = obstack_object_size (cpool);
22060 result->str = str;
22061 obstack_grow_str0 (cpool, str);
22062 *slot = result;
22063 }
22064 return result->offset;
22065 }
22066
22067 /* An entry in the symbol table. */
22068 struct symtab_index_entry
22069 {
22070 /* The name of the symbol. */
22071 const char *name;
22072 /* The offset of the name in the constant pool. */
22073 offset_type index_offset;
22074 /* A sorted vector of the indices of all the CUs that hold an object
22075 of this name. */
22076 VEC (offset_type) *cu_indices;
22077 };
22078
22079 /* The symbol table. This is a power-of-2-sized hash table. */
22080 struct mapped_symtab
22081 {
22082 offset_type n_elements;
22083 offset_type size;
22084 struct symtab_index_entry **data;
22085 };
22086
22087 /* Hash function for a symtab_index_entry. */
22088
22089 static hashval_t
22090 hash_symtab_entry (const void *e)
22091 {
22092 const struct symtab_index_entry *entry = e;
22093 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22094 sizeof (offset_type) * VEC_length (offset_type,
22095 entry->cu_indices),
22096 0);
22097 }
22098
22099 /* Equality function for a symtab_index_entry. */
22100
22101 static int
22102 eq_symtab_entry (const void *a, const void *b)
22103 {
22104 const struct symtab_index_entry *ea = a;
22105 const struct symtab_index_entry *eb = b;
22106 int len = VEC_length (offset_type, ea->cu_indices);
22107 if (len != VEC_length (offset_type, eb->cu_indices))
22108 return 0;
22109 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22110 VEC_address (offset_type, eb->cu_indices),
22111 sizeof (offset_type) * len);
22112 }
22113
22114 /* Destroy a symtab_index_entry. */
22115
22116 static void
22117 delete_symtab_entry (void *p)
22118 {
22119 struct symtab_index_entry *entry = p;
22120 VEC_free (offset_type, entry->cu_indices);
22121 xfree (entry);
22122 }
22123
22124 /* Create a hash table holding symtab_index_entry objects. */
22125
22126 static htab_t
22127 create_symbol_hash_table (void)
22128 {
22129 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22130 delete_symtab_entry, xcalloc, xfree);
22131 }
22132
22133 /* Create a new mapped symtab object. */
22134
22135 static struct mapped_symtab *
22136 create_mapped_symtab (void)
22137 {
22138 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22139 symtab->n_elements = 0;
22140 symtab->size = 1024;
22141 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22142 return symtab;
22143 }
22144
22145 /* Destroy a mapped_symtab. */
22146
22147 static void
22148 cleanup_mapped_symtab (void *p)
22149 {
22150 struct mapped_symtab *symtab = p;
22151 /* The contents of the array are freed when the other hash table is
22152 destroyed. */
22153 xfree (symtab->data);
22154 xfree (symtab);
22155 }
22156
22157 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22158 the slot.
22159
22160 Function is used only during write_hash_table so no index format backward
22161 compatibility is needed. */
22162
22163 static struct symtab_index_entry **
22164 find_slot (struct mapped_symtab *symtab, const char *name)
22165 {
22166 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22167
22168 index = hash & (symtab->size - 1);
22169 step = ((hash * 17) & (symtab->size - 1)) | 1;
22170
22171 for (;;)
22172 {
22173 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22174 return &symtab->data[index];
22175 index = (index + step) & (symtab->size - 1);
22176 }
22177 }
22178
22179 /* Expand SYMTAB's hash table. */
22180
22181 static void
22182 hash_expand (struct mapped_symtab *symtab)
22183 {
22184 offset_type old_size = symtab->size;
22185 offset_type i;
22186 struct symtab_index_entry **old_entries = symtab->data;
22187
22188 symtab->size *= 2;
22189 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22190
22191 for (i = 0; i < old_size; ++i)
22192 {
22193 if (old_entries[i])
22194 {
22195 struct symtab_index_entry **slot = find_slot (symtab,
22196 old_entries[i]->name);
22197 *slot = old_entries[i];
22198 }
22199 }
22200
22201 xfree (old_entries);
22202 }
22203
22204 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22205 CU_INDEX is the index of the CU in which the symbol appears.
22206 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22207
22208 static void
22209 add_index_entry (struct mapped_symtab *symtab, const char *name,
22210 int is_static, gdb_index_symbol_kind kind,
22211 offset_type cu_index)
22212 {
22213 struct symtab_index_entry **slot;
22214 offset_type cu_index_and_attrs;
22215
22216 ++symtab->n_elements;
22217 if (4 * symtab->n_elements / 3 >= symtab->size)
22218 hash_expand (symtab);
22219
22220 slot = find_slot (symtab, name);
22221 if (!*slot)
22222 {
22223 *slot = XNEW (struct symtab_index_entry);
22224 (*slot)->name = name;
22225 /* index_offset is set later. */
22226 (*slot)->cu_indices = NULL;
22227 }
22228
22229 cu_index_and_attrs = 0;
22230 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22231 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22232 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22233
22234 /* We don't want to record an index value twice as we want to avoid the
22235 duplication.
22236 We process all global symbols and then all static symbols
22237 (which would allow us to avoid the duplication by only having to check
22238 the last entry pushed), but a symbol could have multiple kinds in one CU.
22239 To keep things simple we don't worry about the duplication here and
22240 sort and uniqufy the list after we've processed all symbols. */
22241 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22242 }
22243
22244 /* qsort helper routine for uniquify_cu_indices. */
22245
22246 static int
22247 offset_type_compare (const void *ap, const void *bp)
22248 {
22249 offset_type a = *(offset_type *) ap;
22250 offset_type b = *(offset_type *) bp;
22251
22252 return (a > b) - (b > a);
22253 }
22254
22255 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22256
22257 static void
22258 uniquify_cu_indices (struct mapped_symtab *symtab)
22259 {
22260 int i;
22261
22262 for (i = 0; i < symtab->size; ++i)
22263 {
22264 struct symtab_index_entry *entry = symtab->data[i];
22265
22266 if (entry
22267 && entry->cu_indices != NULL)
22268 {
22269 unsigned int next_to_insert, next_to_check;
22270 offset_type last_value;
22271
22272 qsort (VEC_address (offset_type, entry->cu_indices),
22273 VEC_length (offset_type, entry->cu_indices),
22274 sizeof (offset_type), offset_type_compare);
22275
22276 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22277 next_to_insert = 1;
22278 for (next_to_check = 1;
22279 next_to_check < VEC_length (offset_type, entry->cu_indices);
22280 ++next_to_check)
22281 {
22282 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22283 != last_value)
22284 {
22285 last_value = VEC_index (offset_type, entry->cu_indices,
22286 next_to_check);
22287 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22288 last_value);
22289 ++next_to_insert;
22290 }
22291 }
22292 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22293 }
22294 }
22295 }
22296
22297 /* Add a vector of indices to the constant pool. */
22298
22299 static offset_type
22300 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22301 struct symtab_index_entry *entry)
22302 {
22303 void **slot;
22304
22305 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22306 if (!*slot)
22307 {
22308 offset_type len = VEC_length (offset_type, entry->cu_indices);
22309 offset_type val = MAYBE_SWAP (len);
22310 offset_type iter;
22311 int i;
22312
22313 *slot = entry;
22314 entry->index_offset = obstack_object_size (cpool);
22315
22316 obstack_grow (cpool, &val, sizeof (val));
22317 for (i = 0;
22318 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22319 ++i)
22320 {
22321 val = MAYBE_SWAP (iter);
22322 obstack_grow (cpool, &val, sizeof (val));
22323 }
22324 }
22325 else
22326 {
22327 struct symtab_index_entry *old_entry = *slot;
22328 entry->index_offset = old_entry->index_offset;
22329 entry = old_entry;
22330 }
22331 return entry->index_offset;
22332 }
22333
22334 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22335 constant pool entries going into the obstack CPOOL. */
22336
22337 static void
22338 write_hash_table (struct mapped_symtab *symtab,
22339 struct obstack *output, struct obstack *cpool)
22340 {
22341 offset_type i;
22342 htab_t symbol_hash_table;
22343 htab_t str_table;
22344
22345 symbol_hash_table = create_symbol_hash_table ();
22346 str_table = create_strtab ();
22347
22348 /* We add all the index vectors to the constant pool first, to
22349 ensure alignment is ok. */
22350 for (i = 0; i < symtab->size; ++i)
22351 {
22352 if (symtab->data[i])
22353 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22354 }
22355
22356 /* Now write out the hash table. */
22357 for (i = 0; i < symtab->size; ++i)
22358 {
22359 offset_type str_off, vec_off;
22360
22361 if (symtab->data[i])
22362 {
22363 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22364 vec_off = symtab->data[i]->index_offset;
22365 }
22366 else
22367 {
22368 /* While 0 is a valid constant pool index, it is not valid
22369 to have 0 for both offsets. */
22370 str_off = 0;
22371 vec_off = 0;
22372 }
22373
22374 str_off = MAYBE_SWAP (str_off);
22375 vec_off = MAYBE_SWAP (vec_off);
22376
22377 obstack_grow (output, &str_off, sizeof (str_off));
22378 obstack_grow (output, &vec_off, sizeof (vec_off));
22379 }
22380
22381 htab_delete (str_table);
22382 htab_delete (symbol_hash_table);
22383 }
22384
22385 /* Struct to map psymtab to CU index in the index file. */
22386 struct psymtab_cu_index_map
22387 {
22388 struct partial_symtab *psymtab;
22389 unsigned int cu_index;
22390 };
22391
22392 static hashval_t
22393 hash_psymtab_cu_index (const void *item)
22394 {
22395 const struct psymtab_cu_index_map *map = item;
22396
22397 return htab_hash_pointer (map->psymtab);
22398 }
22399
22400 static int
22401 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22402 {
22403 const struct psymtab_cu_index_map *lhs = item_lhs;
22404 const struct psymtab_cu_index_map *rhs = item_rhs;
22405
22406 return lhs->psymtab == rhs->psymtab;
22407 }
22408
22409 /* Helper struct for building the address table. */
22410 struct addrmap_index_data
22411 {
22412 struct objfile *objfile;
22413 struct obstack *addr_obstack;
22414 htab_t cu_index_htab;
22415
22416 /* Non-zero if the previous_* fields are valid.
22417 We can't write an entry until we see the next entry (since it is only then
22418 that we know the end of the entry). */
22419 int previous_valid;
22420 /* Index of the CU in the table of all CUs in the index file. */
22421 unsigned int previous_cu_index;
22422 /* Start address of the CU. */
22423 CORE_ADDR previous_cu_start;
22424 };
22425
22426 /* Write an address entry to OBSTACK. */
22427
22428 static void
22429 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22430 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22431 {
22432 offset_type cu_index_to_write;
22433 gdb_byte addr[8];
22434 CORE_ADDR baseaddr;
22435
22436 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22437
22438 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22439 obstack_grow (obstack, addr, 8);
22440 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22441 obstack_grow (obstack, addr, 8);
22442 cu_index_to_write = MAYBE_SWAP (cu_index);
22443 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22444 }
22445
22446 /* Worker function for traversing an addrmap to build the address table. */
22447
22448 static int
22449 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22450 {
22451 struct addrmap_index_data *data = datap;
22452 struct partial_symtab *pst = obj;
22453
22454 if (data->previous_valid)
22455 add_address_entry (data->objfile, data->addr_obstack,
22456 data->previous_cu_start, start_addr,
22457 data->previous_cu_index);
22458
22459 data->previous_cu_start = start_addr;
22460 if (pst != NULL)
22461 {
22462 struct psymtab_cu_index_map find_map, *map;
22463 find_map.psymtab = pst;
22464 map = htab_find (data->cu_index_htab, &find_map);
22465 gdb_assert (map != NULL);
22466 data->previous_cu_index = map->cu_index;
22467 data->previous_valid = 1;
22468 }
22469 else
22470 data->previous_valid = 0;
22471
22472 return 0;
22473 }
22474
22475 /* Write OBJFILE's address map to OBSTACK.
22476 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22477 in the index file. */
22478
22479 static void
22480 write_address_map (struct objfile *objfile, struct obstack *obstack,
22481 htab_t cu_index_htab)
22482 {
22483 struct addrmap_index_data addrmap_index_data;
22484
22485 /* When writing the address table, we have to cope with the fact that
22486 the addrmap iterator only provides the start of a region; we have to
22487 wait until the next invocation to get the start of the next region. */
22488
22489 addrmap_index_data.objfile = objfile;
22490 addrmap_index_data.addr_obstack = obstack;
22491 addrmap_index_data.cu_index_htab = cu_index_htab;
22492 addrmap_index_data.previous_valid = 0;
22493
22494 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22495 &addrmap_index_data);
22496
22497 /* It's highly unlikely the last entry (end address = 0xff...ff)
22498 is valid, but we should still handle it.
22499 The end address is recorded as the start of the next region, but that
22500 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22501 anyway. */
22502 if (addrmap_index_data.previous_valid)
22503 add_address_entry (objfile, obstack,
22504 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22505 addrmap_index_data.previous_cu_index);
22506 }
22507
22508 /* Return the symbol kind of PSYM. */
22509
22510 static gdb_index_symbol_kind
22511 symbol_kind (struct partial_symbol *psym)
22512 {
22513 domain_enum domain = PSYMBOL_DOMAIN (psym);
22514 enum address_class aclass = PSYMBOL_CLASS (psym);
22515
22516 switch (domain)
22517 {
22518 case VAR_DOMAIN:
22519 switch (aclass)
22520 {
22521 case LOC_BLOCK:
22522 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22523 case LOC_TYPEDEF:
22524 return GDB_INDEX_SYMBOL_KIND_TYPE;
22525 case LOC_COMPUTED:
22526 case LOC_CONST_BYTES:
22527 case LOC_OPTIMIZED_OUT:
22528 case LOC_STATIC:
22529 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22530 case LOC_CONST:
22531 /* Note: It's currently impossible to recognize psyms as enum values
22532 short of reading the type info. For now punt. */
22533 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22534 default:
22535 /* There are other LOC_FOO values that one might want to classify
22536 as variables, but dwarf2read.c doesn't currently use them. */
22537 return GDB_INDEX_SYMBOL_KIND_OTHER;
22538 }
22539 case STRUCT_DOMAIN:
22540 return GDB_INDEX_SYMBOL_KIND_TYPE;
22541 default:
22542 return GDB_INDEX_SYMBOL_KIND_OTHER;
22543 }
22544 }
22545
22546 /* Add a list of partial symbols to SYMTAB. */
22547
22548 static void
22549 write_psymbols (struct mapped_symtab *symtab,
22550 htab_t psyms_seen,
22551 struct partial_symbol **psymp,
22552 int count,
22553 offset_type cu_index,
22554 int is_static)
22555 {
22556 for (; count-- > 0; ++psymp)
22557 {
22558 struct partial_symbol *psym = *psymp;
22559 void **slot;
22560
22561 if (SYMBOL_LANGUAGE (psym) == language_ada)
22562 error (_("Ada is not currently supported by the index"));
22563
22564 /* Only add a given psymbol once. */
22565 slot = htab_find_slot (psyms_seen, psym, INSERT);
22566 if (!*slot)
22567 {
22568 gdb_index_symbol_kind kind = symbol_kind (psym);
22569
22570 *slot = psym;
22571 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22572 is_static, kind, cu_index);
22573 }
22574 }
22575 }
22576
22577 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22578 exception if there is an error. */
22579
22580 static void
22581 write_obstack (FILE *file, struct obstack *obstack)
22582 {
22583 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22584 file)
22585 != obstack_object_size (obstack))
22586 error (_("couldn't data write to file"));
22587 }
22588
22589 /* Unlink a file if the argument is not NULL. */
22590
22591 static void
22592 unlink_if_set (void *p)
22593 {
22594 char **filename = p;
22595 if (*filename)
22596 unlink (*filename);
22597 }
22598
22599 /* A helper struct used when iterating over debug_types. */
22600 struct signatured_type_index_data
22601 {
22602 struct objfile *objfile;
22603 struct mapped_symtab *symtab;
22604 struct obstack *types_list;
22605 htab_t psyms_seen;
22606 int cu_index;
22607 };
22608
22609 /* A helper function that writes a single signatured_type to an
22610 obstack. */
22611
22612 static int
22613 write_one_signatured_type (void **slot, void *d)
22614 {
22615 struct signatured_type_index_data *info = d;
22616 struct signatured_type *entry = (struct signatured_type *) *slot;
22617 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22618 gdb_byte val[8];
22619
22620 write_psymbols (info->symtab,
22621 info->psyms_seen,
22622 info->objfile->global_psymbols.list
22623 + psymtab->globals_offset,
22624 psymtab->n_global_syms, info->cu_index,
22625 0);
22626 write_psymbols (info->symtab,
22627 info->psyms_seen,
22628 info->objfile->static_psymbols.list
22629 + psymtab->statics_offset,
22630 psymtab->n_static_syms, info->cu_index,
22631 1);
22632
22633 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22634 entry->per_cu.offset.sect_off);
22635 obstack_grow (info->types_list, val, 8);
22636 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22637 entry->type_offset_in_tu.cu_off);
22638 obstack_grow (info->types_list, val, 8);
22639 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22640 obstack_grow (info->types_list, val, 8);
22641
22642 ++info->cu_index;
22643
22644 return 1;
22645 }
22646
22647 /* Recurse into all "included" dependencies and write their symbols as
22648 if they appeared in this psymtab. */
22649
22650 static void
22651 recursively_write_psymbols (struct objfile *objfile,
22652 struct partial_symtab *psymtab,
22653 struct mapped_symtab *symtab,
22654 htab_t psyms_seen,
22655 offset_type cu_index)
22656 {
22657 int i;
22658
22659 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22660 if (psymtab->dependencies[i]->user != NULL)
22661 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22662 symtab, psyms_seen, cu_index);
22663
22664 write_psymbols (symtab,
22665 psyms_seen,
22666 objfile->global_psymbols.list + psymtab->globals_offset,
22667 psymtab->n_global_syms, cu_index,
22668 0);
22669 write_psymbols (symtab,
22670 psyms_seen,
22671 objfile->static_psymbols.list + psymtab->statics_offset,
22672 psymtab->n_static_syms, cu_index,
22673 1);
22674 }
22675
22676 /* Create an index file for OBJFILE in the directory DIR. */
22677
22678 static void
22679 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22680 {
22681 struct cleanup *cleanup;
22682 char *filename, *cleanup_filename;
22683 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22684 struct obstack cu_list, types_cu_list;
22685 int i;
22686 FILE *out_file;
22687 struct mapped_symtab *symtab;
22688 offset_type val, size_of_contents, total_len;
22689 struct stat st;
22690 htab_t psyms_seen;
22691 htab_t cu_index_htab;
22692 struct psymtab_cu_index_map *psymtab_cu_index_map;
22693
22694 if (dwarf2_per_objfile->using_index)
22695 error (_("Cannot use an index to create the index"));
22696
22697 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22698 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22699
22700 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22701 return;
22702
22703 if (stat (objfile_name (objfile), &st) < 0)
22704 perror_with_name (objfile_name (objfile));
22705
22706 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22707 INDEX_SUFFIX, (char *) NULL);
22708 cleanup = make_cleanup (xfree, filename);
22709
22710 out_file = gdb_fopen_cloexec (filename, "wb");
22711 if (!out_file)
22712 error (_("Can't open `%s' for writing"), filename);
22713
22714 cleanup_filename = filename;
22715 make_cleanup (unlink_if_set, &cleanup_filename);
22716
22717 symtab = create_mapped_symtab ();
22718 make_cleanup (cleanup_mapped_symtab, symtab);
22719
22720 obstack_init (&addr_obstack);
22721 make_cleanup_obstack_free (&addr_obstack);
22722
22723 obstack_init (&cu_list);
22724 make_cleanup_obstack_free (&cu_list);
22725
22726 obstack_init (&types_cu_list);
22727 make_cleanup_obstack_free (&types_cu_list);
22728
22729 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22730 NULL, xcalloc, xfree);
22731 make_cleanup_htab_delete (psyms_seen);
22732
22733 /* While we're scanning CU's create a table that maps a psymtab pointer
22734 (which is what addrmap records) to its index (which is what is recorded
22735 in the index file). This will later be needed to write the address
22736 table. */
22737 cu_index_htab = htab_create_alloc (100,
22738 hash_psymtab_cu_index,
22739 eq_psymtab_cu_index,
22740 NULL, xcalloc, xfree);
22741 make_cleanup_htab_delete (cu_index_htab);
22742 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22743 xmalloc (sizeof (struct psymtab_cu_index_map)
22744 * dwarf2_per_objfile->n_comp_units);
22745 make_cleanup (xfree, psymtab_cu_index_map);
22746
22747 /* The CU list is already sorted, so we don't need to do additional
22748 work here. Also, the debug_types entries do not appear in
22749 all_comp_units, but only in their own hash table. */
22750 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22751 {
22752 struct dwarf2_per_cu_data *per_cu
22753 = dwarf2_per_objfile->all_comp_units[i];
22754 struct partial_symtab *psymtab = per_cu->v.psymtab;
22755 gdb_byte val[8];
22756 struct psymtab_cu_index_map *map;
22757 void **slot;
22758
22759 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22760 It may be referenced from a local scope but in such case it does not
22761 need to be present in .gdb_index. */
22762 if (psymtab == NULL)
22763 continue;
22764
22765 if (psymtab->user == NULL)
22766 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22767
22768 map = &psymtab_cu_index_map[i];
22769 map->psymtab = psymtab;
22770 map->cu_index = i;
22771 slot = htab_find_slot (cu_index_htab, map, INSERT);
22772 gdb_assert (slot != NULL);
22773 gdb_assert (*slot == NULL);
22774 *slot = map;
22775
22776 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22777 per_cu->offset.sect_off);
22778 obstack_grow (&cu_list, val, 8);
22779 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22780 obstack_grow (&cu_list, val, 8);
22781 }
22782
22783 /* Dump the address map. */
22784 write_address_map (objfile, &addr_obstack, cu_index_htab);
22785
22786 /* Write out the .debug_type entries, if any. */
22787 if (dwarf2_per_objfile->signatured_types)
22788 {
22789 struct signatured_type_index_data sig_data;
22790
22791 sig_data.objfile = objfile;
22792 sig_data.symtab = symtab;
22793 sig_data.types_list = &types_cu_list;
22794 sig_data.psyms_seen = psyms_seen;
22795 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22796 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22797 write_one_signatured_type, &sig_data);
22798 }
22799
22800 /* Now that we've processed all symbols we can shrink their cu_indices
22801 lists. */
22802 uniquify_cu_indices (symtab);
22803
22804 obstack_init (&constant_pool);
22805 make_cleanup_obstack_free (&constant_pool);
22806 obstack_init (&symtab_obstack);
22807 make_cleanup_obstack_free (&symtab_obstack);
22808 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22809
22810 obstack_init (&contents);
22811 make_cleanup_obstack_free (&contents);
22812 size_of_contents = 6 * sizeof (offset_type);
22813 total_len = size_of_contents;
22814
22815 /* The version number. */
22816 val = MAYBE_SWAP (8);
22817 obstack_grow (&contents, &val, sizeof (val));
22818
22819 /* The offset of the CU list from the start of the file. */
22820 val = MAYBE_SWAP (total_len);
22821 obstack_grow (&contents, &val, sizeof (val));
22822 total_len += obstack_object_size (&cu_list);
22823
22824 /* The offset of the types CU list from the start of the file. */
22825 val = MAYBE_SWAP (total_len);
22826 obstack_grow (&contents, &val, sizeof (val));
22827 total_len += obstack_object_size (&types_cu_list);
22828
22829 /* The offset of the address table from the start of the file. */
22830 val = MAYBE_SWAP (total_len);
22831 obstack_grow (&contents, &val, sizeof (val));
22832 total_len += obstack_object_size (&addr_obstack);
22833
22834 /* The offset of the symbol table from the start of the file. */
22835 val = MAYBE_SWAP (total_len);
22836 obstack_grow (&contents, &val, sizeof (val));
22837 total_len += obstack_object_size (&symtab_obstack);
22838
22839 /* The offset of the constant pool from the start of the file. */
22840 val = MAYBE_SWAP (total_len);
22841 obstack_grow (&contents, &val, sizeof (val));
22842 total_len += obstack_object_size (&constant_pool);
22843
22844 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22845
22846 write_obstack (out_file, &contents);
22847 write_obstack (out_file, &cu_list);
22848 write_obstack (out_file, &types_cu_list);
22849 write_obstack (out_file, &addr_obstack);
22850 write_obstack (out_file, &symtab_obstack);
22851 write_obstack (out_file, &constant_pool);
22852
22853 fclose (out_file);
22854
22855 /* We want to keep the file, so we set cleanup_filename to NULL
22856 here. See unlink_if_set. */
22857 cleanup_filename = NULL;
22858
22859 do_cleanups (cleanup);
22860 }
22861
22862 /* Implementation of the `save gdb-index' command.
22863
22864 Note that the file format used by this command is documented in the
22865 GDB manual. Any changes here must be documented there. */
22866
22867 static void
22868 save_gdb_index_command (char *arg, int from_tty)
22869 {
22870 struct objfile *objfile;
22871
22872 if (!arg || !*arg)
22873 error (_("usage: save gdb-index DIRECTORY"));
22874
22875 ALL_OBJFILES (objfile)
22876 {
22877 struct stat st;
22878
22879 /* If the objfile does not correspond to an actual file, skip it. */
22880 if (stat (objfile_name (objfile), &st) < 0)
22881 continue;
22882
22883 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22884 if (dwarf2_per_objfile)
22885 {
22886 volatile struct gdb_exception except;
22887
22888 TRY_CATCH (except, RETURN_MASK_ERROR)
22889 {
22890 write_psymtabs_to_index (objfile, arg);
22891 }
22892 if (except.reason < 0)
22893 exception_fprintf (gdb_stderr, except,
22894 _("Error while writing index for `%s': "),
22895 objfile_name (objfile));
22896 }
22897 }
22898 }
22899
22900 \f
22901
22902 int dwarf2_always_disassemble;
22903
22904 static void
22905 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22906 struct cmd_list_element *c, const char *value)
22907 {
22908 fprintf_filtered (file,
22909 _("Whether to always disassemble "
22910 "DWARF expressions is %s.\n"),
22911 value);
22912 }
22913
22914 static void
22915 show_check_physname (struct ui_file *file, int from_tty,
22916 struct cmd_list_element *c, const char *value)
22917 {
22918 fprintf_filtered (file,
22919 _("Whether to check \"physname\" is %s.\n"),
22920 value);
22921 }
22922
22923 void _initialize_dwarf2_read (void);
22924
22925 void
22926 _initialize_dwarf2_read (void)
22927 {
22928 struct cmd_list_element *c;
22929
22930 dwarf2_objfile_data_key
22931 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22932
22933 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22934 Set DWARF 2 specific variables.\n\
22935 Configure DWARF 2 variables such as the cache size"),
22936 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22937 0/*allow-unknown*/, &maintenance_set_cmdlist);
22938
22939 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22940 Show DWARF 2 specific variables\n\
22941 Show DWARF 2 variables such as the cache size"),
22942 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22943 0/*allow-unknown*/, &maintenance_show_cmdlist);
22944
22945 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22946 &dwarf2_max_cache_age, _("\
22947 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22948 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22949 A higher limit means that cached compilation units will be stored\n\
22950 in memory longer, and more total memory will be used. Zero disables\n\
22951 caching, which can slow down startup."),
22952 NULL,
22953 show_dwarf2_max_cache_age,
22954 &set_dwarf2_cmdlist,
22955 &show_dwarf2_cmdlist);
22956
22957 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22958 &dwarf2_always_disassemble, _("\
22959 Set whether `info address' always disassembles DWARF expressions."), _("\
22960 Show whether `info address' always disassembles DWARF expressions."), _("\
22961 When enabled, DWARF expressions are always printed in an assembly-like\n\
22962 syntax. When disabled, expressions will be printed in a more\n\
22963 conversational style, when possible."),
22964 NULL,
22965 show_dwarf2_always_disassemble,
22966 &set_dwarf2_cmdlist,
22967 &show_dwarf2_cmdlist);
22968
22969 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22970 Set debugging of the dwarf2 reader."), _("\
22971 Show debugging of the dwarf2 reader."), _("\
22972 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22973 reading and symtab expansion. A value of 1 (one) provides basic\n\
22974 information. A value greater than 1 provides more verbose information."),
22975 NULL,
22976 NULL,
22977 &setdebuglist, &showdebuglist);
22978
22979 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22980 Set debugging of the dwarf2 DIE reader."), _("\
22981 Show debugging of the dwarf2 DIE reader."), _("\
22982 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22983 The value is the maximum depth to print."),
22984 NULL,
22985 NULL,
22986 &setdebuglist, &showdebuglist);
22987
22988 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22989 Set cross-checking of \"physname\" code against demangler."), _("\
22990 Show cross-checking of \"physname\" code against demangler."), _("\
22991 When enabled, GDB's internal \"physname\" code is checked against\n\
22992 the demangler."),
22993 NULL, show_check_physname,
22994 &setdebuglist, &showdebuglist);
22995
22996 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22997 no_class, &use_deprecated_index_sections, _("\
22998 Set whether to use deprecated gdb_index sections."), _("\
22999 Show whether to use deprecated gdb_index sections."), _("\
23000 When enabled, deprecated .gdb_index sections are used anyway.\n\
23001 Normally they are ignored either because of a missing feature or\n\
23002 performance issue.\n\
23003 Warning: This option must be enabled before gdb reads the file."),
23004 NULL,
23005 NULL,
23006 &setlist, &showlist);
23007
23008 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23009 _("\
23010 Save a gdb-index file.\n\
23011 Usage: save gdb-index DIRECTORY"),
23012 &save_cmdlist);
23013 set_cmd_completer (c, filename_completer);
23014
23015 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23016 &dwarf2_locexpr_funcs);
23017 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23018 &dwarf2_loclist_funcs);
23019
23020 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23021 &dwarf2_block_frame_base_locexpr_funcs);
23022 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23023 &dwarf2_block_frame_base_loclist_funcs);
23024 }