* dwarf2read.c (dwarf2_cu): Enhance comment.
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70
71 #include <fcntl.h>
72 #include "gdb_string.h"
73 #include "gdb_assert.h"
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When non-zero, print basic high level tracing messages.
80 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
81 static int dwarf2_read_debug = 0;
82
83 /* When non-zero, dump DIEs after they are read in. */
84 static unsigned int dwarf2_die_debug = 0;
85
86 /* When non-zero, cross-check physname against demangler. */
87 static int check_physname = 0;
88
89 /* When non-zero, do not reject deprecated .gdb_index sections. */
90 static int use_deprecated_index_sections = 0;
91
92 /* When set, the file that we're processing is known to have debugging
93 info for C++ namespaces. GCC 3.3.x did not produce this information,
94 but later versions do. */
95
96 static int processing_has_namespace_info;
97
98 static const struct objfile_data *dwarf2_objfile_data_key;
99
100 struct dwarf2_section_info
101 {
102 asection *asection;
103 gdb_byte *buffer;
104 bfd_size_type size;
105 /* True if we have tried to read this section. */
106 int readin;
107 };
108
109 typedef struct dwarf2_section_info dwarf2_section_info_def;
110 DEF_VEC_O (dwarf2_section_info_def);
111
112 /* All offsets in the index are of this type. It must be
113 architecture-independent. */
114 typedef uint32_t offset_type;
115
116 DEF_VEC_I (offset_type);
117
118 /* Ensure only legit values are used. */
119 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
120 do { \
121 gdb_assert ((unsigned int) (value) <= 1); \
122 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
123 } while (0)
124
125 /* Ensure only legit values are used. */
126 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
127 do { \
128 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
129 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
130 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
131 } while (0)
132
133 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
134 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
135 do { \
136 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
137 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
138 } while (0)
139
140 /* A description of the mapped index. The file format is described in
141 a comment by the code that writes the index. */
142 struct mapped_index
143 {
144 /* Index data format version. */
145 int version;
146
147 /* The total length of the buffer. */
148 off_t total_size;
149
150 /* A pointer to the address table data. */
151 const gdb_byte *address_table;
152
153 /* Size of the address table data in bytes. */
154 offset_type address_table_size;
155
156 /* The symbol table, implemented as a hash table. */
157 const offset_type *symbol_table;
158
159 /* Size in slots, each slot is 2 offset_types. */
160 offset_type symbol_table_slots;
161
162 /* A pointer to the constant pool. */
163 const char *constant_pool;
164 };
165
166 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
167 DEF_VEC_P (dwarf2_per_cu_ptr);
168
169 /* Collection of data recorded per objfile.
170 This hangs off of dwarf2_objfile_data_key. */
171
172 struct dwarf2_per_objfile
173 {
174 struct dwarf2_section_info info;
175 struct dwarf2_section_info abbrev;
176 struct dwarf2_section_info line;
177 struct dwarf2_section_info loc;
178 struct dwarf2_section_info macinfo;
179 struct dwarf2_section_info macro;
180 struct dwarf2_section_info str;
181 struct dwarf2_section_info ranges;
182 struct dwarf2_section_info addr;
183 struct dwarf2_section_info frame;
184 struct dwarf2_section_info eh_frame;
185 struct dwarf2_section_info gdb_index;
186
187 VEC (dwarf2_section_info_def) *types;
188
189 /* Back link. */
190 struct objfile *objfile;
191
192 /* Table of all the compilation units. This is used to locate
193 the target compilation unit of a particular reference. */
194 struct dwarf2_per_cu_data **all_comp_units;
195
196 /* The number of compilation units in ALL_COMP_UNITS. */
197 int n_comp_units;
198
199 /* The number of .debug_types-related CUs. */
200 int n_type_units;
201
202 /* The .debug_types-related CUs (TUs). */
203 struct signatured_type **all_type_units;
204
205 /* The number of entries in all_type_unit_groups. */
206 int n_type_unit_groups;
207
208 /* Table of type unit groups.
209 This exists to make it easy to iterate over all CUs and TU groups. */
210 struct type_unit_group **all_type_unit_groups;
211
212 /* Table of struct type_unit_group objects.
213 The hash key is the DW_AT_stmt_list value. */
214 htab_t type_unit_groups;
215
216 /* A table mapping .debug_types signatures to its signatured_type entry.
217 This is NULL if the .debug_types section hasn't been read in yet. */
218 htab_t signatured_types;
219
220 /* Type unit statistics, to see how well the scaling improvements
221 are doing. */
222 struct tu_stats
223 {
224 int nr_uniq_abbrev_tables;
225 int nr_symtabs;
226 int nr_symtab_sharers;
227 int nr_stmt_less_type_units;
228 } tu_stats;
229
230 /* A chain of compilation units that are currently read in, so that
231 they can be freed later. */
232 struct dwarf2_per_cu_data *read_in_chain;
233
234 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
235 This is NULL if the table hasn't been allocated yet. */
236 htab_t dwo_files;
237
238 /* Non-zero if we've check for whether there is a DWP file. */
239 int dwp_checked;
240
241 /* The DWP file if there is one, or NULL. */
242 struct dwp_file *dwp_file;
243
244 /* The shared '.dwz' file, if one exists. This is used when the
245 original data was compressed using 'dwz -m'. */
246 struct dwz_file *dwz_file;
247
248 /* A flag indicating wether this objfile has a section loaded at a
249 VMA of 0. */
250 int has_section_at_zero;
251
252 /* True if we are using the mapped index,
253 or we are faking it for OBJF_READNOW's sake. */
254 unsigned char using_index;
255
256 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
257 struct mapped_index *index_table;
258
259 /* When using index_table, this keeps track of all quick_file_names entries.
260 TUs typically share line table entries with a CU, so we maintain a
261 separate table of all line table entries to support the sharing.
262 Note that while there can be way more TUs than CUs, we've already
263 sorted all the TUs into "type unit groups", grouped by their
264 DW_AT_stmt_list value. Therefore the only sharing done here is with a
265 CU and its associated TU group if there is one. */
266 htab_t quick_file_names_table;
267
268 /* Set during partial symbol reading, to prevent queueing of full
269 symbols. */
270 int reading_partial_symbols;
271
272 /* Table mapping type DIEs to their struct type *.
273 This is NULL if not allocated yet.
274 The mapping is done via (CU/TU signature + DIE offset) -> type. */
275 htab_t die_type_hash;
276
277 /* The CUs we recently read. */
278 VEC (dwarf2_per_cu_ptr) *just_read_cus;
279 };
280
281 static struct dwarf2_per_objfile *dwarf2_per_objfile;
282
283 /* Default names of the debugging sections. */
284
285 /* Note that if the debugging section has been compressed, it might
286 have a name like .zdebug_info. */
287
288 static const struct dwarf2_debug_sections dwarf2_elf_names =
289 {
290 { ".debug_info", ".zdebug_info" },
291 { ".debug_abbrev", ".zdebug_abbrev" },
292 { ".debug_line", ".zdebug_line" },
293 { ".debug_loc", ".zdebug_loc" },
294 { ".debug_macinfo", ".zdebug_macinfo" },
295 { ".debug_macro", ".zdebug_macro" },
296 { ".debug_str", ".zdebug_str" },
297 { ".debug_ranges", ".zdebug_ranges" },
298 { ".debug_types", ".zdebug_types" },
299 { ".debug_addr", ".zdebug_addr" },
300 { ".debug_frame", ".zdebug_frame" },
301 { ".eh_frame", NULL },
302 { ".gdb_index", ".zgdb_index" },
303 23
304 };
305
306 /* List of DWO/DWP sections. */
307
308 static const struct dwop_section_names
309 {
310 struct dwarf2_section_names abbrev_dwo;
311 struct dwarf2_section_names info_dwo;
312 struct dwarf2_section_names line_dwo;
313 struct dwarf2_section_names loc_dwo;
314 struct dwarf2_section_names macinfo_dwo;
315 struct dwarf2_section_names macro_dwo;
316 struct dwarf2_section_names str_dwo;
317 struct dwarf2_section_names str_offsets_dwo;
318 struct dwarf2_section_names types_dwo;
319 struct dwarf2_section_names cu_index;
320 struct dwarf2_section_names tu_index;
321 }
322 dwop_section_names =
323 {
324 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
325 { ".debug_info.dwo", ".zdebug_info.dwo" },
326 { ".debug_line.dwo", ".zdebug_line.dwo" },
327 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
328 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
329 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
330 { ".debug_str.dwo", ".zdebug_str.dwo" },
331 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
332 { ".debug_types.dwo", ".zdebug_types.dwo" },
333 { ".debug_cu_index", ".zdebug_cu_index" },
334 { ".debug_tu_index", ".zdebug_tu_index" },
335 };
336
337 /* local data types */
338
339 /* The data in a compilation unit header, after target2host
340 translation, looks like this. */
341 struct comp_unit_head
342 {
343 unsigned int length;
344 short version;
345 unsigned char addr_size;
346 unsigned char signed_addr_p;
347 sect_offset abbrev_offset;
348
349 /* Size of file offsets; either 4 or 8. */
350 unsigned int offset_size;
351
352 /* Size of the length field; either 4 or 12. */
353 unsigned int initial_length_size;
354
355 /* Offset to the first byte of this compilation unit header in the
356 .debug_info section, for resolving relative reference dies. */
357 sect_offset offset;
358
359 /* Offset to first die in this cu from the start of the cu.
360 This will be the first byte following the compilation unit header. */
361 cu_offset first_die_offset;
362 };
363
364 /* Type used for delaying computation of method physnames.
365 See comments for compute_delayed_physnames. */
366 struct delayed_method_info
367 {
368 /* The type to which the method is attached, i.e., its parent class. */
369 struct type *type;
370
371 /* The index of the method in the type's function fieldlists. */
372 int fnfield_index;
373
374 /* The index of the method in the fieldlist. */
375 int index;
376
377 /* The name of the DIE. */
378 const char *name;
379
380 /* The DIE associated with this method. */
381 struct die_info *die;
382 };
383
384 typedef struct delayed_method_info delayed_method_info;
385 DEF_VEC_O (delayed_method_info);
386
387 /* Internal state when decoding a particular compilation unit. */
388 struct dwarf2_cu
389 {
390 /* The objfile containing this compilation unit. */
391 struct objfile *objfile;
392
393 /* The header of the compilation unit. */
394 struct comp_unit_head header;
395
396 /* Base address of this compilation unit. */
397 CORE_ADDR base_address;
398
399 /* Non-zero if base_address has been set. */
400 int base_known;
401
402 /* The language we are debugging. */
403 enum language language;
404 const struct language_defn *language_defn;
405
406 const char *producer;
407
408 /* The generic symbol table building routines have separate lists for
409 file scope symbols and all all other scopes (local scopes). So
410 we need to select the right one to pass to add_symbol_to_list().
411 We do it by keeping a pointer to the correct list in list_in_scope.
412
413 FIXME: The original dwarf code just treated the file scope as the
414 first local scope, and all other local scopes as nested local
415 scopes, and worked fine. Check to see if we really need to
416 distinguish these in buildsym.c. */
417 struct pending **list_in_scope;
418
419 /* The abbrev table for this CU.
420 Normally this points to the abbrev table in the objfile.
421 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
422 struct abbrev_table *abbrev_table;
423
424 /* Hash table holding all the loaded partial DIEs
425 with partial_die->offset.SECT_OFF as hash. */
426 htab_t partial_dies;
427
428 /* Storage for things with the same lifetime as this read-in compilation
429 unit, including partial DIEs. */
430 struct obstack comp_unit_obstack;
431
432 /* When multiple dwarf2_cu structures are living in memory, this field
433 chains them all together, so that they can be released efficiently.
434 We will probably also want a generation counter so that most-recently-used
435 compilation units are cached... */
436 struct dwarf2_per_cu_data *read_in_chain;
437
438 /* Backchain to our per_cu entry if the tree has been built. */
439 struct dwarf2_per_cu_data *per_cu;
440
441 /* How many compilation units ago was this CU last referenced? */
442 int last_used;
443
444 /* A hash table of DIE cu_offset for following references with
445 die_info->offset.sect_off as hash. */
446 htab_t die_hash;
447
448 /* Full DIEs if read in. */
449 struct die_info *dies;
450
451 /* A set of pointers to dwarf2_per_cu_data objects for compilation
452 units referenced by this one. Only set during full symbol processing;
453 partial symbol tables do not have dependencies. */
454 htab_t dependencies;
455
456 /* Header data from the line table, during full symbol processing. */
457 struct line_header *line_header;
458
459 /* A list of methods which need to have physnames computed
460 after all type information has been read. */
461 VEC (delayed_method_info) *method_list;
462
463 /* To be copied to symtab->call_site_htab. */
464 htab_t call_site_htab;
465
466 /* Non-NULL if this CU came from a DWO file.
467 There is an invariant here that is important to remember:
468 Except for attributes copied from the top level DIE in the "main"
469 (or "stub") file in preparation for reading the DWO file
470 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
471 Either there isn't a DWO file (in which case this is NULL and the point
472 is moot), or there is and either we're not going to read it (in which
473 case this is NULL) or there is and we are reading it (in which case this
474 is non-NULL). */
475 struct dwo_unit *dwo_unit;
476
477 /* The DW_AT_addr_base attribute if present, zero otherwise
478 (zero is a valid value though).
479 Note this value comes from the stub CU/TU's DIE. */
480 ULONGEST addr_base;
481
482 /* The DW_AT_ranges_base attribute if present, zero otherwise
483 (zero is a valid value though).
484 Note this value comes from the stub CU/TU's DIE.
485 Also note that the value is zero in the non-DWO case so this value can
486 be used without needing to know whether DWO files are in use or not.
487 N.B. This does not apply to DW_AT_ranges appearing in
488 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
489 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
490 DW_AT_ranges_base *would* have to be applied, and we'd have to care
491 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
492 ULONGEST ranges_base;
493
494 /* Mark used when releasing cached dies. */
495 unsigned int mark : 1;
496
497 /* This CU references .debug_loc. See the symtab->locations_valid field.
498 This test is imperfect as there may exist optimized debug code not using
499 any location list and still facing inlining issues if handled as
500 unoptimized code. For a future better test see GCC PR other/32998. */
501 unsigned int has_loclist : 1;
502
503 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
504 if all the producer_is_* fields are valid. This information is cached
505 because profiling CU expansion showed excessive time spent in
506 producer_is_gxx_lt_4_6. */
507 unsigned int checked_producer : 1;
508 unsigned int producer_is_gxx_lt_4_6 : 1;
509 unsigned int producer_is_gcc_lt_4_3 : 1;
510 unsigned int producer_is_icc : 1;
511 };
512
513 /* Persistent data held for a compilation unit, even when not
514 processing it. We put a pointer to this structure in the
515 read_symtab_private field of the psymtab. */
516
517 struct dwarf2_per_cu_data
518 {
519 /* The start offset and length of this compilation unit.
520 NOTE: Unlike comp_unit_head.length, this length includes
521 initial_length_size.
522 If the DIE refers to a DWO file, this is always of the original die,
523 not the DWO file. */
524 sect_offset offset;
525 unsigned int length;
526
527 /* Flag indicating this compilation unit will be read in before
528 any of the current compilation units are processed. */
529 unsigned int queued : 1;
530
531 /* This flag will be set when reading partial DIEs if we need to load
532 absolutely all DIEs for this compilation unit, instead of just the ones
533 we think are interesting. It gets set if we look for a DIE in the
534 hash table and don't find it. */
535 unsigned int load_all_dies : 1;
536
537 /* Non-zero if this CU is from .debug_types. */
538 unsigned int is_debug_types : 1;
539
540 /* Non-zero if this CU is from the .dwz file. */
541 unsigned int is_dwz : 1;
542
543 /* The section this CU/TU lives in.
544 If the DIE refers to a DWO file, this is always the original die,
545 not the DWO file. */
546 struct dwarf2_section_info *info_or_types_section;
547
548 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
549 of the CU cache it gets reset to NULL again. */
550 struct dwarf2_cu *cu;
551
552 /* The corresponding objfile.
553 Normally we can get the objfile from dwarf2_per_objfile.
554 However we can enter this file with just a "per_cu" handle. */
555 struct objfile *objfile;
556
557 /* When using partial symbol tables, the 'psymtab' field is active.
558 Otherwise the 'quick' field is active. */
559 union
560 {
561 /* The partial symbol table associated with this compilation unit,
562 or NULL for unread partial units. */
563 struct partial_symtab *psymtab;
564
565 /* Data needed by the "quick" functions. */
566 struct dwarf2_per_cu_quick_data *quick;
567 } v;
568
569 union
570 {
571 /* The CUs we import using DW_TAG_imported_unit. This is filled in
572 while reading psymtabs, used to compute the psymtab dependencies,
573 and then cleared. Then it is filled in again while reading full
574 symbols, and only deleted when the objfile is destroyed. */
575 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
576
577 /* Type units are grouped by their DW_AT_stmt_list entry so that they
578 can share them. If this is a TU, this points to the containing
579 symtab. */
580 struct type_unit_group *type_unit_group;
581 } s;
582 };
583
584 /* Entry in the signatured_types hash table. */
585
586 struct signatured_type
587 {
588 /* The "per_cu" object of this type.
589 N.B.: This is the first member so that it's easy to convert pointers
590 between them. */
591 struct dwarf2_per_cu_data per_cu;
592
593 /* The type's signature. */
594 ULONGEST signature;
595
596 /* Offset in the TU of the type's DIE, as read from the TU header.
597 If the definition lives in a DWO file, this value is unusable. */
598 cu_offset type_offset_in_tu;
599
600 /* Offset in the section of the type's DIE.
601 If the definition lives in a DWO file, this is the offset in the
602 .debug_types.dwo section.
603 The value is zero until the actual value is known.
604 Zero is otherwise not a valid section offset. */
605 sect_offset type_offset_in_section;
606 };
607
608 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
609 This includes type_unit_group and quick_file_names. */
610
611 struct stmt_list_hash
612 {
613 /* The DWO unit this table is from or NULL if there is none. */
614 struct dwo_unit *dwo_unit;
615
616 /* Offset in .debug_line or .debug_line.dwo. */
617 sect_offset line_offset;
618 };
619
620 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
621 an object of this type. */
622
623 struct type_unit_group
624 {
625 /* dwarf2read.c's main "handle" on the symtab.
626 To simplify things we create an artificial CU that "includes" all the
627 type units using this stmt_list so that the rest of the code still has
628 a "per_cu" handle on the symtab.
629 This PER_CU is recognized by having no section. */
630 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->info_or_types_section == NULL)
631 struct dwarf2_per_cu_data per_cu;
632
633 union
634 {
635 /* The TUs that share this DW_AT_stmt_list entry.
636 This is added to while parsing type units to build partial symtabs,
637 and is deleted afterwards and not used again. */
638 VEC (dwarf2_per_cu_ptr) *tus;
639
640 /* When reading the line table in "quick" functions, we need a real TU.
641 Any will do, we know they all share the same DW_AT_stmt_list entry.
642 For simplicity's sake, we pick the first one. */
643 struct dwarf2_per_cu_data *first_tu;
644 } t;
645
646 /* The primary symtab.
647 Type units in a group needn't all be defined in the same source file,
648 so we create an essentially anonymous symtab as the primary symtab. */
649 struct symtab *primary_symtab;
650
651 /* The data used to construct the hash key. */
652 struct stmt_list_hash hash;
653
654 /* The number of symtabs from the line header.
655 The value here must match line_header.num_file_names. */
656 unsigned int num_symtabs;
657
658 /* The symbol tables for this TU (obtained from the files listed in
659 DW_AT_stmt_list).
660 WARNING: The order of entries here must match the order of entries
661 in the line header. After the first TU using this type_unit_group, the
662 line header for the subsequent TUs is recreated from this. This is done
663 because we need to use the same symtabs for each TU using the same
664 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
665 there's no guarantee the line header doesn't have duplicate entries. */
666 struct symtab **symtabs;
667 };
668
669 /* These sections are what may appear in a DWO file. */
670
671 struct dwo_sections
672 {
673 struct dwarf2_section_info abbrev;
674 struct dwarf2_section_info line;
675 struct dwarf2_section_info loc;
676 struct dwarf2_section_info macinfo;
677 struct dwarf2_section_info macro;
678 struct dwarf2_section_info str;
679 struct dwarf2_section_info str_offsets;
680 /* In the case of a virtual DWO file, these two are unused. */
681 struct dwarf2_section_info info;
682 VEC (dwarf2_section_info_def) *types;
683 };
684
685 /* Common bits of DWO CUs/TUs. */
686
687 struct dwo_unit
688 {
689 /* Backlink to the containing struct dwo_file. */
690 struct dwo_file *dwo_file;
691
692 /* The "id" that distinguishes this CU/TU.
693 .debug_info calls this "dwo_id", .debug_types calls this "signature".
694 Since signatures came first, we stick with it for consistency. */
695 ULONGEST signature;
696
697 /* The section this CU/TU lives in, in the DWO file. */
698 struct dwarf2_section_info *info_or_types_section;
699
700 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
701 sect_offset offset;
702 unsigned int length;
703
704 /* For types, offset in the type's DIE of the type defined by this TU. */
705 cu_offset type_offset_in_tu;
706 };
707
708 /* Data for one DWO file.
709 This includes virtual DWO files that have been packaged into a
710 DWP file. */
711
712 struct dwo_file
713 {
714 /* The DW_AT_GNU_dwo_name attribute. This is the hash key.
715 For virtual DWO files the name is constructed from the section offsets
716 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
717 from related CU+TUs. */
718 const char *name;
719
720 /* The bfd, when the file is open. Otherwise this is NULL.
721 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
722 bfd *dbfd;
723
724 /* Section info for this file. */
725 struct dwo_sections sections;
726
727 /* Table of CUs in the file.
728 Each element is a struct dwo_unit. */
729 htab_t cus;
730
731 /* Table of TUs in the file.
732 Each element is a struct dwo_unit. */
733 htab_t tus;
734 };
735
736 /* These sections are what may appear in a DWP file. */
737
738 struct dwp_sections
739 {
740 struct dwarf2_section_info str;
741 struct dwarf2_section_info cu_index;
742 struct dwarf2_section_info tu_index;
743 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
744 by section number. We don't need to record them here. */
745 };
746
747 /* These sections are what may appear in a virtual DWO file. */
748
749 struct virtual_dwo_sections
750 {
751 struct dwarf2_section_info abbrev;
752 struct dwarf2_section_info line;
753 struct dwarf2_section_info loc;
754 struct dwarf2_section_info macinfo;
755 struct dwarf2_section_info macro;
756 struct dwarf2_section_info str_offsets;
757 /* Each DWP hash table entry records one CU or one TU.
758 That is recorded here, and copied to dwo_unit.info_or_types_section. */
759 struct dwarf2_section_info info_or_types;
760 };
761
762 /* Contents of DWP hash tables. */
763
764 struct dwp_hash_table
765 {
766 uint32_t nr_units, nr_slots;
767 const gdb_byte *hash_table, *unit_table, *section_pool;
768 };
769
770 /* Data for one DWP file. */
771
772 struct dwp_file
773 {
774 /* Name of the file. */
775 const char *name;
776
777 /* The bfd, when the file is open. Otherwise this is NULL. */
778 bfd *dbfd;
779
780 /* Section info for this file. */
781 struct dwp_sections sections;
782
783 /* Table of CUs in the file. */
784 const struct dwp_hash_table *cus;
785
786 /* Table of TUs in the file. */
787 const struct dwp_hash_table *tus;
788
789 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
790 htab_t loaded_cutus;
791
792 /* Table to map ELF section numbers to their sections. */
793 unsigned int num_sections;
794 asection **elf_sections;
795 };
796
797 /* This represents a '.dwz' file. */
798
799 struct dwz_file
800 {
801 /* A dwz file can only contain a few sections. */
802 struct dwarf2_section_info abbrev;
803 struct dwarf2_section_info info;
804 struct dwarf2_section_info str;
805 struct dwarf2_section_info line;
806 struct dwarf2_section_info macro;
807 struct dwarf2_section_info gdb_index;
808
809 /* The dwz's BFD. */
810 bfd *dwz_bfd;
811 };
812
813 /* Struct used to pass misc. parameters to read_die_and_children, et
814 al. which are used for both .debug_info and .debug_types dies.
815 All parameters here are unchanging for the life of the call. This
816 struct exists to abstract away the constant parameters of die reading. */
817
818 struct die_reader_specs
819 {
820 /* die_section->asection->owner. */
821 bfd* abfd;
822
823 /* The CU of the DIE we are parsing. */
824 struct dwarf2_cu *cu;
825
826 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
827 struct dwo_file *dwo_file;
828
829 /* The section the die comes from.
830 This is either .debug_info or .debug_types, or the .dwo variants. */
831 struct dwarf2_section_info *die_section;
832
833 /* die_section->buffer. */
834 gdb_byte *buffer;
835
836 /* The end of the buffer. */
837 const gdb_byte *buffer_end;
838 };
839
840 /* Type of function passed to init_cutu_and_read_dies, et.al. */
841 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
842 gdb_byte *info_ptr,
843 struct die_info *comp_unit_die,
844 int has_children,
845 void *data);
846
847 /* The line number information for a compilation unit (found in the
848 .debug_line section) begins with a "statement program header",
849 which contains the following information. */
850 struct line_header
851 {
852 unsigned int total_length;
853 unsigned short version;
854 unsigned int header_length;
855 unsigned char minimum_instruction_length;
856 unsigned char maximum_ops_per_instruction;
857 unsigned char default_is_stmt;
858 int line_base;
859 unsigned char line_range;
860 unsigned char opcode_base;
861
862 /* standard_opcode_lengths[i] is the number of operands for the
863 standard opcode whose value is i. This means that
864 standard_opcode_lengths[0] is unused, and the last meaningful
865 element is standard_opcode_lengths[opcode_base - 1]. */
866 unsigned char *standard_opcode_lengths;
867
868 /* The include_directories table. NOTE! These strings are not
869 allocated with xmalloc; instead, they are pointers into
870 debug_line_buffer. If you try to free them, `free' will get
871 indigestion. */
872 unsigned int num_include_dirs, include_dirs_size;
873 char **include_dirs;
874
875 /* The file_names table. NOTE! These strings are not allocated
876 with xmalloc; instead, they are pointers into debug_line_buffer.
877 Don't try to free them directly. */
878 unsigned int num_file_names, file_names_size;
879 struct file_entry
880 {
881 char *name;
882 unsigned int dir_index;
883 unsigned int mod_time;
884 unsigned int length;
885 int included_p; /* Non-zero if referenced by the Line Number Program. */
886 struct symtab *symtab; /* The associated symbol table, if any. */
887 } *file_names;
888
889 /* The start and end of the statement program following this
890 header. These point into dwarf2_per_objfile->line_buffer. */
891 gdb_byte *statement_program_start, *statement_program_end;
892 };
893
894 /* When we construct a partial symbol table entry we only
895 need this much information. */
896 struct partial_die_info
897 {
898 /* Offset of this DIE. */
899 sect_offset offset;
900
901 /* DWARF-2 tag for this DIE. */
902 ENUM_BITFIELD(dwarf_tag) tag : 16;
903
904 /* Assorted flags describing the data found in this DIE. */
905 unsigned int has_children : 1;
906 unsigned int is_external : 1;
907 unsigned int is_declaration : 1;
908 unsigned int has_type : 1;
909 unsigned int has_specification : 1;
910 unsigned int has_pc_info : 1;
911 unsigned int may_be_inlined : 1;
912
913 /* Flag set if the SCOPE field of this structure has been
914 computed. */
915 unsigned int scope_set : 1;
916
917 /* Flag set if the DIE has a byte_size attribute. */
918 unsigned int has_byte_size : 1;
919
920 /* Flag set if any of the DIE's children are template arguments. */
921 unsigned int has_template_arguments : 1;
922
923 /* Flag set if fixup_partial_die has been called on this die. */
924 unsigned int fixup_called : 1;
925
926 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
927 unsigned int is_dwz : 1;
928
929 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
930 unsigned int spec_is_dwz : 1;
931
932 /* The name of this DIE. Normally the value of DW_AT_name, but
933 sometimes a default name for unnamed DIEs. */
934 char *name;
935
936 /* The linkage name, if present. */
937 const char *linkage_name;
938
939 /* The scope to prepend to our children. This is generally
940 allocated on the comp_unit_obstack, so will disappear
941 when this compilation unit leaves the cache. */
942 char *scope;
943
944 /* Some data associated with the partial DIE. The tag determines
945 which field is live. */
946 union
947 {
948 /* The location description associated with this DIE, if any. */
949 struct dwarf_block *locdesc;
950 /* The offset of an import, for DW_TAG_imported_unit. */
951 sect_offset offset;
952 } d;
953
954 /* If HAS_PC_INFO, the PC range associated with this DIE. */
955 CORE_ADDR lowpc;
956 CORE_ADDR highpc;
957
958 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
959 DW_AT_sibling, if any. */
960 /* NOTE: This member isn't strictly necessary, read_partial_die could
961 return DW_AT_sibling values to its caller load_partial_dies. */
962 gdb_byte *sibling;
963
964 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
965 DW_AT_specification (or DW_AT_abstract_origin or
966 DW_AT_extension). */
967 sect_offset spec_offset;
968
969 /* Pointers to this DIE's parent, first child, and next sibling,
970 if any. */
971 struct partial_die_info *die_parent, *die_child, *die_sibling;
972 };
973
974 /* This data structure holds the information of an abbrev. */
975 struct abbrev_info
976 {
977 unsigned int number; /* number identifying abbrev */
978 enum dwarf_tag tag; /* dwarf tag */
979 unsigned short has_children; /* boolean */
980 unsigned short num_attrs; /* number of attributes */
981 struct attr_abbrev *attrs; /* an array of attribute descriptions */
982 struct abbrev_info *next; /* next in chain */
983 };
984
985 struct attr_abbrev
986 {
987 ENUM_BITFIELD(dwarf_attribute) name : 16;
988 ENUM_BITFIELD(dwarf_form) form : 16;
989 };
990
991 /* Size of abbrev_table.abbrev_hash_table. */
992 #define ABBREV_HASH_SIZE 121
993
994 /* Top level data structure to contain an abbreviation table. */
995
996 struct abbrev_table
997 {
998 /* Where the abbrev table came from.
999 This is used as a sanity check when the table is used. */
1000 sect_offset offset;
1001
1002 /* Storage for the abbrev table. */
1003 struct obstack abbrev_obstack;
1004
1005 /* Hash table of abbrevs.
1006 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1007 It could be statically allocated, but the previous code didn't so we
1008 don't either. */
1009 struct abbrev_info **abbrevs;
1010 };
1011
1012 /* Attributes have a name and a value. */
1013 struct attribute
1014 {
1015 ENUM_BITFIELD(dwarf_attribute) name : 16;
1016 ENUM_BITFIELD(dwarf_form) form : 15;
1017
1018 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1019 field should be in u.str (existing only for DW_STRING) but it is kept
1020 here for better struct attribute alignment. */
1021 unsigned int string_is_canonical : 1;
1022
1023 union
1024 {
1025 char *str;
1026 struct dwarf_block *blk;
1027 ULONGEST unsnd;
1028 LONGEST snd;
1029 CORE_ADDR addr;
1030 struct signatured_type *signatured_type;
1031 }
1032 u;
1033 };
1034
1035 /* This data structure holds a complete die structure. */
1036 struct die_info
1037 {
1038 /* DWARF-2 tag for this DIE. */
1039 ENUM_BITFIELD(dwarf_tag) tag : 16;
1040
1041 /* Number of attributes */
1042 unsigned char num_attrs;
1043
1044 /* True if we're presently building the full type name for the
1045 type derived from this DIE. */
1046 unsigned char building_fullname : 1;
1047
1048 /* Abbrev number */
1049 unsigned int abbrev;
1050
1051 /* Offset in .debug_info or .debug_types section. */
1052 sect_offset offset;
1053
1054 /* The dies in a compilation unit form an n-ary tree. PARENT
1055 points to this die's parent; CHILD points to the first child of
1056 this node; and all the children of a given node are chained
1057 together via their SIBLING fields. */
1058 struct die_info *child; /* Its first child, if any. */
1059 struct die_info *sibling; /* Its next sibling, if any. */
1060 struct die_info *parent; /* Its parent, if any. */
1061
1062 /* An array of attributes, with NUM_ATTRS elements. There may be
1063 zero, but it's not common and zero-sized arrays are not
1064 sufficiently portable C. */
1065 struct attribute attrs[1];
1066 };
1067
1068 /* Get at parts of an attribute structure. */
1069
1070 #define DW_STRING(attr) ((attr)->u.str)
1071 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1072 #define DW_UNSND(attr) ((attr)->u.unsnd)
1073 #define DW_BLOCK(attr) ((attr)->u.blk)
1074 #define DW_SND(attr) ((attr)->u.snd)
1075 #define DW_ADDR(attr) ((attr)->u.addr)
1076 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
1077
1078 /* Blocks are a bunch of untyped bytes. */
1079 struct dwarf_block
1080 {
1081 size_t size;
1082
1083 /* Valid only if SIZE is not zero. */
1084 gdb_byte *data;
1085 };
1086
1087 #ifndef ATTR_ALLOC_CHUNK
1088 #define ATTR_ALLOC_CHUNK 4
1089 #endif
1090
1091 /* Allocate fields for structs, unions and enums in this size. */
1092 #ifndef DW_FIELD_ALLOC_CHUNK
1093 #define DW_FIELD_ALLOC_CHUNK 4
1094 #endif
1095
1096 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1097 but this would require a corresponding change in unpack_field_as_long
1098 and friends. */
1099 static int bits_per_byte = 8;
1100
1101 /* The routines that read and process dies for a C struct or C++ class
1102 pass lists of data member fields and lists of member function fields
1103 in an instance of a field_info structure, as defined below. */
1104 struct field_info
1105 {
1106 /* List of data member and baseclasses fields. */
1107 struct nextfield
1108 {
1109 struct nextfield *next;
1110 int accessibility;
1111 int virtuality;
1112 struct field field;
1113 }
1114 *fields, *baseclasses;
1115
1116 /* Number of fields (including baseclasses). */
1117 int nfields;
1118
1119 /* Number of baseclasses. */
1120 int nbaseclasses;
1121
1122 /* Set if the accesibility of one of the fields is not public. */
1123 int non_public_fields;
1124
1125 /* Member function fields array, entries are allocated in the order they
1126 are encountered in the object file. */
1127 struct nextfnfield
1128 {
1129 struct nextfnfield *next;
1130 struct fn_field fnfield;
1131 }
1132 *fnfields;
1133
1134 /* Member function fieldlist array, contains name of possibly overloaded
1135 member function, number of overloaded member functions and a pointer
1136 to the head of the member function field chain. */
1137 struct fnfieldlist
1138 {
1139 char *name;
1140 int length;
1141 struct nextfnfield *head;
1142 }
1143 *fnfieldlists;
1144
1145 /* Number of entries in the fnfieldlists array. */
1146 int nfnfields;
1147
1148 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1149 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1150 struct typedef_field_list
1151 {
1152 struct typedef_field field;
1153 struct typedef_field_list *next;
1154 }
1155 *typedef_field_list;
1156 unsigned typedef_field_list_count;
1157 };
1158
1159 /* One item on the queue of compilation units to read in full symbols
1160 for. */
1161 struct dwarf2_queue_item
1162 {
1163 struct dwarf2_per_cu_data *per_cu;
1164 enum language pretend_language;
1165 struct dwarf2_queue_item *next;
1166 };
1167
1168 /* The current queue. */
1169 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1170
1171 /* Loaded secondary compilation units are kept in memory until they
1172 have not been referenced for the processing of this many
1173 compilation units. Set this to zero to disable caching. Cache
1174 sizes of up to at least twenty will improve startup time for
1175 typical inter-CU-reference binaries, at an obvious memory cost. */
1176 static int dwarf2_max_cache_age = 5;
1177 static void
1178 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1179 struct cmd_list_element *c, const char *value)
1180 {
1181 fprintf_filtered (file, _("The upper bound on the age of cached "
1182 "dwarf2 compilation units is %s.\n"),
1183 value);
1184 }
1185
1186
1187 /* Various complaints about symbol reading that don't abort the process. */
1188
1189 static void
1190 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1191 {
1192 complaint (&symfile_complaints,
1193 _("statement list doesn't fit in .debug_line section"));
1194 }
1195
1196 static void
1197 dwarf2_debug_line_missing_file_complaint (void)
1198 {
1199 complaint (&symfile_complaints,
1200 _(".debug_line section has line data without a file"));
1201 }
1202
1203 static void
1204 dwarf2_debug_line_missing_end_sequence_complaint (void)
1205 {
1206 complaint (&symfile_complaints,
1207 _(".debug_line section has line "
1208 "program sequence without an end"));
1209 }
1210
1211 static void
1212 dwarf2_complex_location_expr_complaint (void)
1213 {
1214 complaint (&symfile_complaints, _("location expression too complex"));
1215 }
1216
1217 static void
1218 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1219 int arg3)
1220 {
1221 complaint (&symfile_complaints,
1222 _("const value length mismatch for '%s', got %d, expected %d"),
1223 arg1, arg2, arg3);
1224 }
1225
1226 static void
1227 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1228 {
1229 complaint (&symfile_complaints,
1230 _("debug info runs off end of %s section"
1231 " [in module %s]"),
1232 section->asection->name,
1233 bfd_get_filename (section->asection->owner));
1234 }
1235
1236 static void
1237 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1238 {
1239 complaint (&symfile_complaints,
1240 _("macro debug info contains a "
1241 "malformed macro definition:\n`%s'"),
1242 arg1);
1243 }
1244
1245 static void
1246 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1247 {
1248 complaint (&symfile_complaints,
1249 _("invalid attribute class or form for '%s' in '%s'"),
1250 arg1, arg2);
1251 }
1252
1253 /* local function prototypes */
1254
1255 static void dwarf2_locate_sections (bfd *, asection *, void *);
1256
1257 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1258 struct objfile *);
1259
1260 static void dwarf2_find_base_address (struct die_info *die,
1261 struct dwarf2_cu *cu);
1262
1263 static void dwarf2_build_psymtabs_hard (struct objfile *);
1264
1265 static void scan_partial_symbols (struct partial_die_info *,
1266 CORE_ADDR *, CORE_ADDR *,
1267 int, struct dwarf2_cu *);
1268
1269 static void add_partial_symbol (struct partial_die_info *,
1270 struct dwarf2_cu *);
1271
1272 static void add_partial_namespace (struct partial_die_info *pdi,
1273 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1274 int need_pc, struct dwarf2_cu *cu);
1275
1276 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1277 CORE_ADDR *highpc, int need_pc,
1278 struct dwarf2_cu *cu);
1279
1280 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1281 struct dwarf2_cu *cu);
1282
1283 static void add_partial_subprogram (struct partial_die_info *pdi,
1284 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1285 int need_pc, struct dwarf2_cu *cu);
1286
1287 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
1288
1289 static void psymtab_to_symtab_1 (struct partial_symtab *);
1290
1291 static struct abbrev_info *abbrev_table_lookup_abbrev
1292 (const struct abbrev_table *, unsigned int);
1293
1294 static struct abbrev_table *abbrev_table_read_table
1295 (struct dwarf2_section_info *, sect_offset);
1296
1297 static void abbrev_table_free (struct abbrev_table *);
1298
1299 static void abbrev_table_free_cleanup (void *);
1300
1301 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1302 struct dwarf2_section_info *);
1303
1304 static void dwarf2_free_abbrev_table (void *);
1305
1306 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1307
1308 static struct partial_die_info *load_partial_dies
1309 (const struct die_reader_specs *, gdb_byte *, int);
1310
1311 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1312 struct partial_die_info *,
1313 struct abbrev_info *,
1314 unsigned int,
1315 gdb_byte *);
1316
1317 static struct partial_die_info *find_partial_die (sect_offset, int,
1318 struct dwarf2_cu *);
1319
1320 static void fixup_partial_die (struct partial_die_info *,
1321 struct dwarf2_cu *);
1322
1323 static gdb_byte *read_attribute (const struct die_reader_specs *,
1324 struct attribute *, struct attr_abbrev *,
1325 gdb_byte *);
1326
1327 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1328
1329 static int read_1_signed_byte (bfd *, const gdb_byte *);
1330
1331 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1332
1333 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1334
1335 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1336
1337 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1338 unsigned int *);
1339
1340 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1341
1342 static LONGEST read_checked_initial_length_and_offset
1343 (bfd *, gdb_byte *, const struct comp_unit_head *,
1344 unsigned int *, unsigned int *);
1345
1346 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1347 unsigned int *);
1348
1349 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1350
1351 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1352 sect_offset);
1353
1354 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1355
1356 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1357
1358 static char *read_indirect_string (bfd *, gdb_byte *,
1359 const struct comp_unit_head *,
1360 unsigned int *);
1361
1362 static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1363
1364 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1365
1366 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1367
1368 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1369 unsigned int *);
1370
1371 static char *read_str_index (const struct die_reader_specs *reader,
1372 struct dwarf2_cu *cu, ULONGEST str_index);
1373
1374 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1375
1376 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1377 struct dwarf2_cu *);
1378
1379 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1380 unsigned int);
1381
1382 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1383 struct dwarf2_cu *cu);
1384
1385 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1386
1387 static struct die_info *die_specification (struct die_info *die,
1388 struct dwarf2_cu **);
1389
1390 static void free_line_header (struct line_header *lh);
1391
1392 static void add_file_name (struct line_header *, char *, unsigned int,
1393 unsigned int, unsigned int);
1394
1395 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1396 struct dwarf2_cu *cu);
1397
1398 static void dwarf_decode_lines (struct line_header *, const char *,
1399 struct dwarf2_cu *, struct partial_symtab *,
1400 int);
1401
1402 static void dwarf2_start_subfile (char *, const char *, const char *);
1403
1404 static void dwarf2_start_symtab (struct dwarf2_cu *,
1405 char *, char *, CORE_ADDR);
1406
1407 static struct symbol *new_symbol (struct die_info *, struct type *,
1408 struct dwarf2_cu *);
1409
1410 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1411 struct dwarf2_cu *, struct symbol *);
1412
1413 static void dwarf2_const_value (struct attribute *, struct symbol *,
1414 struct dwarf2_cu *);
1415
1416 static void dwarf2_const_value_attr (struct attribute *attr,
1417 struct type *type,
1418 const char *name,
1419 struct obstack *obstack,
1420 struct dwarf2_cu *cu, LONGEST *value,
1421 gdb_byte **bytes,
1422 struct dwarf2_locexpr_baton **baton);
1423
1424 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1425
1426 static int need_gnat_info (struct dwarf2_cu *);
1427
1428 static struct type *die_descriptive_type (struct die_info *,
1429 struct dwarf2_cu *);
1430
1431 static void set_descriptive_type (struct type *, struct die_info *,
1432 struct dwarf2_cu *);
1433
1434 static struct type *die_containing_type (struct die_info *,
1435 struct dwarf2_cu *);
1436
1437 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1438 struct dwarf2_cu *);
1439
1440 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1441
1442 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1443
1444 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1445
1446 static char *typename_concat (struct obstack *obs, const char *prefix,
1447 const char *suffix, int physname,
1448 struct dwarf2_cu *cu);
1449
1450 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1451
1452 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1453
1454 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1455
1456 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1457
1458 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1459
1460 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1461 struct dwarf2_cu *, struct partial_symtab *);
1462
1463 static int dwarf2_get_pc_bounds (struct die_info *,
1464 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1465 struct partial_symtab *);
1466
1467 static void get_scope_pc_bounds (struct die_info *,
1468 CORE_ADDR *, CORE_ADDR *,
1469 struct dwarf2_cu *);
1470
1471 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1472 CORE_ADDR, struct dwarf2_cu *);
1473
1474 static void dwarf2_add_field (struct field_info *, struct die_info *,
1475 struct dwarf2_cu *);
1476
1477 static void dwarf2_attach_fields_to_type (struct field_info *,
1478 struct type *, struct dwarf2_cu *);
1479
1480 static void dwarf2_add_member_fn (struct field_info *,
1481 struct die_info *, struct type *,
1482 struct dwarf2_cu *);
1483
1484 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1485 struct type *,
1486 struct dwarf2_cu *);
1487
1488 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1489
1490 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1491
1492 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1493
1494 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1495
1496 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1497
1498 static struct type *read_module_type (struct die_info *die,
1499 struct dwarf2_cu *cu);
1500
1501 static const char *namespace_name (struct die_info *die,
1502 int *is_anonymous, struct dwarf2_cu *);
1503
1504 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1505
1506 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1507
1508 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1509 struct dwarf2_cu *);
1510
1511 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1512 gdb_byte *info_ptr,
1513 gdb_byte **new_info_ptr,
1514 struct die_info *parent);
1515
1516 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1517 gdb_byte *info_ptr,
1518 gdb_byte **new_info_ptr,
1519 struct die_info *parent);
1520
1521 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1522 struct die_info **, gdb_byte *, int *, int);
1523
1524 static gdb_byte *read_full_die (const struct die_reader_specs *,
1525 struct die_info **, gdb_byte *, int *);
1526
1527 static void process_die (struct die_info *, struct dwarf2_cu *);
1528
1529 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1530 struct obstack *);
1531
1532 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1533
1534 static const char *dwarf2_full_name (char *name,
1535 struct die_info *die,
1536 struct dwarf2_cu *cu);
1537
1538 static struct die_info *dwarf2_extension (struct die_info *die,
1539 struct dwarf2_cu **);
1540
1541 static const char *dwarf_tag_name (unsigned int);
1542
1543 static const char *dwarf_attr_name (unsigned int);
1544
1545 static const char *dwarf_form_name (unsigned int);
1546
1547 static char *dwarf_bool_name (unsigned int);
1548
1549 static const char *dwarf_type_encoding_name (unsigned int);
1550
1551 static struct die_info *sibling_die (struct die_info *);
1552
1553 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1554
1555 static void dump_die_for_error (struct die_info *);
1556
1557 static void dump_die_1 (struct ui_file *, int level, int max_level,
1558 struct die_info *);
1559
1560 /*static*/ void dump_die (struct die_info *, int max_level);
1561
1562 static void store_in_ref_table (struct die_info *,
1563 struct dwarf2_cu *);
1564
1565 static int is_ref_attr (struct attribute *);
1566
1567 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1568
1569 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1570
1571 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1572 struct attribute *,
1573 struct dwarf2_cu **);
1574
1575 static struct die_info *follow_die_ref (struct die_info *,
1576 struct attribute *,
1577 struct dwarf2_cu **);
1578
1579 static struct die_info *follow_die_sig (struct die_info *,
1580 struct attribute *,
1581 struct dwarf2_cu **);
1582
1583 static struct signatured_type *lookup_signatured_type_at_offset
1584 (struct objfile *objfile,
1585 struct dwarf2_section_info *section, sect_offset offset);
1586
1587 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1588
1589 static void read_signatured_type (struct signatured_type *);
1590
1591 static struct type_unit_group *get_type_unit_group
1592 (struct dwarf2_cu *, struct attribute *);
1593
1594 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1595
1596 /* memory allocation interface */
1597
1598 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1599
1600 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1601
1602 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1603 char *, int);
1604
1605 static int attr_form_is_block (struct attribute *);
1606
1607 static int attr_form_is_section_offset (struct attribute *);
1608
1609 static int attr_form_is_constant (struct attribute *);
1610
1611 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1612 struct dwarf2_loclist_baton *baton,
1613 struct attribute *attr);
1614
1615 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1616 struct symbol *sym,
1617 struct dwarf2_cu *cu);
1618
1619 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1620 gdb_byte *info_ptr,
1621 struct abbrev_info *abbrev);
1622
1623 static void free_stack_comp_unit (void *);
1624
1625 static hashval_t partial_die_hash (const void *item);
1626
1627 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1628
1629 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1630 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1631
1632 static void init_one_comp_unit (struct dwarf2_cu *cu,
1633 struct dwarf2_per_cu_data *per_cu);
1634
1635 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1636 struct die_info *comp_unit_die,
1637 enum language pretend_language);
1638
1639 static void free_heap_comp_unit (void *);
1640
1641 static void free_cached_comp_units (void *);
1642
1643 static void age_cached_comp_units (void);
1644
1645 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1646
1647 static struct type *set_die_type (struct die_info *, struct type *,
1648 struct dwarf2_cu *);
1649
1650 static void create_all_comp_units (struct objfile *);
1651
1652 static int create_all_type_units (struct objfile *);
1653
1654 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1655 enum language);
1656
1657 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1658 enum language);
1659
1660 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1661 enum language);
1662
1663 static void dwarf2_add_dependence (struct dwarf2_cu *,
1664 struct dwarf2_per_cu_data *);
1665
1666 static void dwarf2_mark (struct dwarf2_cu *);
1667
1668 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1669
1670 static struct type *get_die_type_at_offset (sect_offset,
1671 struct dwarf2_per_cu_data *per_cu);
1672
1673 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1674
1675 static void dwarf2_release_queue (void *dummy);
1676
1677 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1678 enum language pretend_language);
1679
1680 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1681 struct dwarf2_per_cu_data *per_cu,
1682 enum language pretend_language);
1683
1684 static void process_queue (void);
1685
1686 static void find_file_and_directory (struct die_info *die,
1687 struct dwarf2_cu *cu,
1688 char **name, char **comp_dir);
1689
1690 static char *file_full_name (int file, struct line_header *lh,
1691 const char *comp_dir);
1692
1693 static gdb_byte *read_and_check_comp_unit_head
1694 (struct comp_unit_head *header,
1695 struct dwarf2_section_info *section,
1696 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1697 int is_debug_types_section);
1698
1699 static void init_cutu_and_read_dies
1700 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1701 int use_existing_cu, int keep,
1702 die_reader_func_ftype *die_reader_func, void *data);
1703
1704 static void init_cutu_and_read_dies_simple
1705 (struct dwarf2_per_cu_data *this_cu,
1706 die_reader_func_ftype *die_reader_func, void *data);
1707
1708 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1709
1710 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1711
1712 static struct dwo_unit *lookup_dwo_comp_unit
1713 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1714
1715 static struct dwo_unit *lookup_dwo_type_unit
1716 (struct signatured_type *, const char *, const char *);
1717
1718 static void free_dwo_file_cleanup (void *);
1719
1720 static void process_cu_includes (void);
1721
1722 static void check_producer (struct dwarf2_cu *cu);
1723
1724 #if WORDS_BIGENDIAN
1725
1726 /* Convert VALUE between big- and little-endian. */
1727 static offset_type
1728 byte_swap (offset_type value)
1729 {
1730 offset_type result;
1731
1732 result = (value & 0xff) << 24;
1733 result |= (value & 0xff00) << 8;
1734 result |= (value & 0xff0000) >> 8;
1735 result |= (value & 0xff000000) >> 24;
1736 return result;
1737 }
1738
1739 #define MAYBE_SWAP(V) byte_swap (V)
1740
1741 #else
1742 #define MAYBE_SWAP(V) (V)
1743 #endif /* WORDS_BIGENDIAN */
1744
1745 /* The suffix for an index file. */
1746 #define INDEX_SUFFIX ".gdb-index"
1747
1748 static const char *dwarf2_physname (char *name, struct die_info *die,
1749 struct dwarf2_cu *cu);
1750
1751 /* Try to locate the sections we need for DWARF 2 debugging
1752 information and return true if we have enough to do something.
1753 NAMES points to the dwarf2 section names, or is NULL if the standard
1754 ELF names are used. */
1755
1756 int
1757 dwarf2_has_info (struct objfile *objfile,
1758 const struct dwarf2_debug_sections *names)
1759 {
1760 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1761 if (!dwarf2_per_objfile)
1762 {
1763 /* Initialize per-objfile state. */
1764 struct dwarf2_per_objfile *data
1765 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1766
1767 memset (data, 0, sizeof (*data));
1768 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1769 dwarf2_per_objfile = data;
1770
1771 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1772 (void *) names);
1773 dwarf2_per_objfile->objfile = objfile;
1774 }
1775 return (dwarf2_per_objfile->info.asection != NULL
1776 && dwarf2_per_objfile->abbrev.asection != NULL);
1777 }
1778
1779 /* When loading sections, we look either for uncompressed section or for
1780 compressed section names. */
1781
1782 static int
1783 section_is_p (const char *section_name,
1784 const struct dwarf2_section_names *names)
1785 {
1786 if (names->normal != NULL
1787 && strcmp (section_name, names->normal) == 0)
1788 return 1;
1789 if (names->compressed != NULL
1790 && strcmp (section_name, names->compressed) == 0)
1791 return 1;
1792 return 0;
1793 }
1794
1795 /* This function is mapped across the sections and remembers the
1796 offset and size of each of the debugging sections we are interested
1797 in. */
1798
1799 static void
1800 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1801 {
1802 const struct dwarf2_debug_sections *names;
1803 flagword aflag = bfd_get_section_flags (abfd, sectp);
1804
1805 if (vnames == NULL)
1806 names = &dwarf2_elf_names;
1807 else
1808 names = (const struct dwarf2_debug_sections *) vnames;
1809
1810 if ((aflag & SEC_HAS_CONTENTS) == 0)
1811 {
1812 }
1813 else if (section_is_p (sectp->name, &names->info))
1814 {
1815 dwarf2_per_objfile->info.asection = sectp;
1816 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1817 }
1818 else if (section_is_p (sectp->name, &names->abbrev))
1819 {
1820 dwarf2_per_objfile->abbrev.asection = sectp;
1821 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1822 }
1823 else if (section_is_p (sectp->name, &names->line))
1824 {
1825 dwarf2_per_objfile->line.asection = sectp;
1826 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1827 }
1828 else if (section_is_p (sectp->name, &names->loc))
1829 {
1830 dwarf2_per_objfile->loc.asection = sectp;
1831 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1832 }
1833 else if (section_is_p (sectp->name, &names->macinfo))
1834 {
1835 dwarf2_per_objfile->macinfo.asection = sectp;
1836 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1837 }
1838 else if (section_is_p (sectp->name, &names->macro))
1839 {
1840 dwarf2_per_objfile->macro.asection = sectp;
1841 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1842 }
1843 else if (section_is_p (sectp->name, &names->str))
1844 {
1845 dwarf2_per_objfile->str.asection = sectp;
1846 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1847 }
1848 else if (section_is_p (sectp->name, &names->addr))
1849 {
1850 dwarf2_per_objfile->addr.asection = sectp;
1851 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1852 }
1853 else if (section_is_p (sectp->name, &names->frame))
1854 {
1855 dwarf2_per_objfile->frame.asection = sectp;
1856 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1857 }
1858 else if (section_is_p (sectp->name, &names->eh_frame))
1859 {
1860 dwarf2_per_objfile->eh_frame.asection = sectp;
1861 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1862 }
1863 else if (section_is_p (sectp->name, &names->ranges))
1864 {
1865 dwarf2_per_objfile->ranges.asection = sectp;
1866 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1867 }
1868 else if (section_is_p (sectp->name, &names->types))
1869 {
1870 struct dwarf2_section_info type_section;
1871
1872 memset (&type_section, 0, sizeof (type_section));
1873 type_section.asection = sectp;
1874 type_section.size = bfd_get_section_size (sectp);
1875
1876 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1877 &type_section);
1878 }
1879 else if (section_is_p (sectp->name, &names->gdb_index))
1880 {
1881 dwarf2_per_objfile->gdb_index.asection = sectp;
1882 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1883 }
1884
1885 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1886 && bfd_section_vma (abfd, sectp) == 0)
1887 dwarf2_per_objfile->has_section_at_zero = 1;
1888 }
1889
1890 /* A helper function that decides whether a section is empty,
1891 or not present. */
1892
1893 static int
1894 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1895 {
1896 return info->asection == NULL || info->size == 0;
1897 }
1898
1899 /* Read the contents of the section INFO.
1900 OBJFILE is the main object file, but not necessarily the file where
1901 the section comes from. E.g., for DWO files INFO->asection->owner
1902 is the bfd of the DWO file.
1903 If the section is compressed, uncompress it before returning. */
1904
1905 static void
1906 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1907 {
1908 asection *sectp = info->asection;
1909 bfd *abfd;
1910 gdb_byte *buf, *retbuf;
1911 unsigned char header[4];
1912
1913 if (info->readin)
1914 return;
1915 info->buffer = NULL;
1916 info->readin = 1;
1917
1918 if (dwarf2_section_empty_p (info))
1919 return;
1920
1921 abfd = sectp->owner;
1922
1923 /* If the section has relocations, we must read it ourselves.
1924 Otherwise we attach it to the BFD. */
1925 if ((sectp->flags & SEC_RELOC) == 0)
1926 {
1927 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
1928
1929 /* We have to cast away const here for historical reasons.
1930 Fixing dwarf2read to be const-correct would be quite nice. */
1931 info->buffer = (gdb_byte *) bytes;
1932 return;
1933 }
1934
1935 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1936 info->buffer = buf;
1937
1938 /* When debugging .o files, we may need to apply relocations; see
1939 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1940 We never compress sections in .o files, so we only need to
1941 try this when the section is not compressed. */
1942 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1943 if (retbuf != NULL)
1944 {
1945 info->buffer = retbuf;
1946 return;
1947 }
1948
1949 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1950 || bfd_bread (buf, info->size, abfd) != info->size)
1951 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1952 bfd_get_filename (abfd));
1953 }
1954
1955 /* A helper function that returns the size of a section in a safe way.
1956 If you are positive that the section has been read before using the
1957 size, then it is safe to refer to the dwarf2_section_info object's
1958 "size" field directly. In other cases, you must call this
1959 function, because for compressed sections the size field is not set
1960 correctly until the section has been read. */
1961
1962 static bfd_size_type
1963 dwarf2_section_size (struct objfile *objfile,
1964 struct dwarf2_section_info *info)
1965 {
1966 if (!info->readin)
1967 dwarf2_read_section (objfile, info);
1968 return info->size;
1969 }
1970
1971 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1972 SECTION_NAME. */
1973
1974 void
1975 dwarf2_get_section_info (struct objfile *objfile,
1976 enum dwarf2_section_enum sect,
1977 asection **sectp, gdb_byte **bufp,
1978 bfd_size_type *sizep)
1979 {
1980 struct dwarf2_per_objfile *data
1981 = objfile_data (objfile, dwarf2_objfile_data_key);
1982 struct dwarf2_section_info *info;
1983
1984 /* We may see an objfile without any DWARF, in which case we just
1985 return nothing. */
1986 if (data == NULL)
1987 {
1988 *sectp = NULL;
1989 *bufp = NULL;
1990 *sizep = 0;
1991 return;
1992 }
1993 switch (sect)
1994 {
1995 case DWARF2_DEBUG_FRAME:
1996 info = &data->frame;
1997 break;
1998 case DWARF2_EH_FRAME:
1999 info = &data->eh_frame;
2000 break;
2001 default:
2002 gdb_assert_not_reached ("unexpected section");
2003 }
2004
2005 dwarf2_read_section (objfile, info);
2006
2007 *sectp = info->asection;
2008 *bufp = info->buffer;
2009 *sizep = info->size;
2010 }
2011
2012 /* A helper function to find the sections for a .dwz file. */
2013
2014 static void
2015 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2016 {
2017 struct dwz_file *dwz_file = arg;
2018
2019 /* Note that we only support the standard ELF names, because .dwz
2020 is ELF-only (at the time of writing). */
2021 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2022 {
2023 dwz_file->abbrev.asection = sectp;
2024 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2025 }
2026 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2027 {
2028 dwz_file->info.asection = sectp;
2029 dwz_file->info.size = bfd_get_section_size (sectp);
2030 }
2031 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2032 {
2033 dwz_file->str.asection = sectp;
2034 dwz_file->str.size = bfd_get_section_size (sectp);
2035 }
2036 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2037 {
2038 dwz_file->line.asection = sectp;
2039 dwz_file->line.size = bfd_get_section_size (sectp);
2040 }
2041 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2042 {
2043 dwz_file->macro.asection = sectp;
2044 dwz_file->macro.size = bfd_get_section_size (sectp);
2045 }
2046 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2047 {
2048 dwz_file->gdb_index.asection = sectp;
2049 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2050 }
2051 }
2052
2053 /* Open the separate '.dwz' debug file, if needed. Error if the file
2054 cannot be found. */
2055
2056 static struct dwz_file *
2057 dwarf2_get_dwz_file (void)
2058 {
2059 bfd *abfd, *dwz_bfd;
2060 asection *section;
2061 gdb_byte *data;
2062 struct cleanup *cleanup;
2063 const char *filename;
2064 struct dwz_file *result;
2065
2066 if (dwarf2_per_objfile->dwz_file != NULL)
2067 return dwarf2_per_objfile->dwz_file;
2068
2069 abfd = dwarf2_per_objfile->objfile->obfd;
2070 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2071 if (section == NULL)
2072 error (_("could not find '.gnu_debugaltlink' section"));
2073 if (!bfd_malloc_and_get_section (abfd, section, &data))
2074 error (_("could not read '.gnu_debugaltlink' section: %s"),
2075 bfd_errmsg (bfd_get_error ()));
2076 cleanup = make_cleanup (xfree, data);
2077
2078 filename = data;
2079 if (!IS_ABSOLUTE_PATH (filename))
2080 {
2081 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2082 char *rel;
2083
2084 make_cleanup (xfree, abs);
2085 abs = ldirname (abs);
2086 make_cleanup (xfree, abs);
2087
2088 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2089 make_cleanup (xfree, rel);
2090 filename = rel;
2091 }
2092
2093 /* The format is just a NUL-terminated file name, followed by the
2094 build-id. For now, though, we ignore the build-id. */
2095 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2096 if (dwz_bfd == NULL)
2097 error (_("could not read '%s': %s"), filename,
2098 bfd_errmsg (bfd_get_error ()));
2099
2100 if (!bfd_check_format (dwz_bfd, bfd_object))
2101 {
2102 gdb_bfd_unref (dwz_bfd);
2103 error (_("file '%s' was not usable: %s"), filename,
2104 bfd_errmsg (bfd_get_error ()));
2105 }
2106
2107 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2108 struct dwz_file);
2109 result->dwz_bfd = dwz_bfd;
2110
2111 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2112
2113 do_cleanups (cleanup);
2114
2115 return result;
2116 }
2117 \f
2118 /* DWARF quick_symbols_functions support. */
2119
2120 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2121 unique line tables, so we maintain a separate table of all .debug_line
2122 derived entries to support the sharing.
2123 All the quick functions need is the list of file names. We discard the
2124 line_header when we're done and don't need to record it here. */
2125 struct quick_file_names
2126 {
2127 /* The data used to construct the hash key. */
2128 struct stmt_list_hash hash;
2129
2130 /* The number of entries in file_names, real_names. */
2131 unsigned int num_file_names;
2132
2133 /* The file names from the line table, after being run through
2134 file_full_name. */
2135 const char **file_names;
2136
2137 /* The file names from the line table after being run through
2138 gdb_realpath. These are computed lazily. */
2139 const char **real_names;
2140 };
2141
2142 /* When using the index (and thus not using psymtabs), each CU has an
2143 object of this type. This is used to hold information needed by
2144 the various "quick" methods. */
2145 struct dwarf2_per_cu_quick_data
2146 {
2147 /* The file table. This can be NULL if there was no file table
2148 or it's currently not read in.
2149 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2150 struct quick_file_names *file_names;
2151
2152 /* The corresponding symbol table. This is NULL if symbols for this
2153 CU have not yet been read. */
2154 struct symtab *symtab;
2155
2156 /* A temporary mark bit used when iterating over all CUs in
2157 expand_symtabs_matching. */
2158 unsigned int mark : 1;
2159
2160 /* True if we've tried to read the file table and found there isn't one.
2161 There will be no point in trying to read it again next time. */
2162 unsigned int no_file_data : 1;
2163 };
2164
2165 /* Utility hash function for a stmt_list_hash. */
2166
2167 static hashval_t
2168 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2169 {
2170 hashval_t v = 0;
2171
2172 if (stmt_list_hash->dwo_unit != NULL)
2173 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2174 v += stmt_list_hash->line_offset.sect_off;
2175 return v;
2176 }
2177
2178 /* Utility equality function for a stmt_list_hash. */
2179
2180 static int
2181 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2182 const struct stmt_list_hash *rhs)
2183 {
2184 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2185 return 0;
2186 if (lhs->dwo_unit != NULL
2187 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2188 return 0;
2189
2190 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2191 }
2192
2193 /* Hash function for a quick_file_names. */
2194
2195 static hashval_t
2196 hash_file_name_entry (const void *e)
2197 {
2198 const struct quick_file_names *file_data = e;
2199
2200 return hash_stmt_list_entry (&file_data->hash);
2201 }
2202
2203 /* Equality function for a quick_file_names. */
2204
2205 static int
2206 eq_file_name_entry (const void *a, const void *b)
2207 {
2208 const struct quick_file_names *ea = a;
2209 const struct quick_file_names *eb = b;
2210
2211 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2212 }
2213
2214 /* Delete function for a quick_file_names. */
2215
2216 static void
2217 delete_file_name_entry (void *e)
2218 {
2219 struct quick_file_names *file_data = e;
2220 int i;
2221
2222 for (i = 0; i < file_data->num_file_names; ++i)
2223 {
2224 xfree ((void*) file_data->file_names[i]);
2225 if (file_data->real_names)
2226 xfree ((void*) file_data->real_names[i]);
2227 }
2228
2229 /* The space for the struct itself lives on objfile_obstack,
2230 so we don't free it here. */
2231 }
2232
2233 /* Create a quick_file_names hash table. */
2234
2235 static htab_t
2236 create_quick_file_names_table (unsigned int nr_initial_entries)
2237 {
2238 return htab_create_alloc (nr_initial_entries,
2239 hash_file_name_entry, eq_file_name_entry,
2240 delete_file_name_entry, xcalloc, xfree);
2241 }
2242
2243 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2244 have to be created afterwards. You should call age_cached_comp_units after
2245 processing PER_CU->CU. dw2_setup must have been already called. */
2246
2247 static void
2248 load_cu (struct dwarf2_per_cu_data *per_cu)
2249 {
2250 if (per_cu->is_debug_types)
2251 load_full_type_unit (per_cu);
2252 else
2253 load_full_comp_unit (per_cu, language_minimal);
2254
2255 gdb_assert (per_cu->cu != NULL);
2256
2257 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2258 }
2259
2260 /* Read in the symbols for PER_CU. */
2261
2262 static void
2263 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2264 {
2265 struct cleanup *back_to;
2266
2267 /* Skip type_unit_groups, reading the type units they contain
2268 is handled elsewhere. */
2269 if (IS_TYPE_UNIT_GROUP (per_cu))
2270 return;
2271
2272 back_to = make_cleanup (dwarf2_release_queue, NULL);
2273
2274 if (dwarf2_per_objfile->using_index
2275 ? per_cu->v.quick->symtab == NULL
2276 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2277 {
2278 queue_comp_unit (per_cu, language_minimal);
2279 load_cu (per_cu);
2280 }
2281
2282 process_queue ();
2283
2284 /* Age the cache, releasing compilation units that have not
2285 been used recently. */
2286 age_cached_comp_units ();
2287
2288 do_cleanups (back_to);
2289 }
2290
2291 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2292 the objfile from which this CU came. Returns the resulting symbol
2293 table. */
2294
2295 static struct symtab *
2296 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2297 {
2298 gdb_assert (dwarf2_per_objfile->using_index);
2299 if (!per_cu->v.quick->symtab)
2300 {
2301 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2302 increment_reading_symtab ();
2303 dw2_do_instantiate_symtab (per_cu);
2304 process_cu_includes ();
2305 do_cleanups (back_to);
2306 }
2307 return per_cu->v.quick->symtab;
2308 }
2309
2310 /* Return the CU given its index.
2311
2312 This is intended for loops like:
2313
2314 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2315 + dwarf2_per_objfile->n_type_units); ++i)
2316 {
2317 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2318
2319 ...;
2320 }
2321 */
2322
2323 static struct dwarf2_per_cu_data *
2324 dw2_get_cu (int index)
2325 {
2326 if (index >= dwarf2_per_objfile->n_comp_units)
2327 {
2328 index -= dwarf2_per_objfile->n_comp_units;
2329 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2330 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2331 }
2332
2333 return dwarf2_per_objfile->all_comp_units[index];
2334 }
2335
2336 /* Return the primary CU given its index.
2337 The difference between this function and dw2_get_cu is in the handling
2338 of type units (TUs). Here we return the type_unit_group object.
2339
2340 This is intended for loops like:
2341
2342 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2343 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2344 {
2345 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2346
2347 ...;
2348 }
2349 */
2350
2351 static struct dwarf2_per_cu_data *
2352 dw2_get_primary_cu (int index)
2353 {
2354 if (index >= dwarf2_per_objfile->n_comp_units)
2355 {
2356 index -= dwarf2_per_objfile->n_comp_units;
2357 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2358 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2359 }
2360
2361 return dwarf2_per_objfile->all_comp_units[index];
2362 }
2363
2364 /* A helper for create_cus_from_index that handles a given list of
2365 CUs. */
2366
2367 static void
2368 create_cus_from_index_list (struct objfile *objfile,
2369 const gdb_byte *cu_list, offset_type n_elements,
2370 struct dwarf2_section_info *section,
2371 int is_dwz,
2372 int base_offset)
2373 {
2374 offset_type i;
2375
2376 for (i = 0; i < n_elements; i += 2)
2377 {
2378 struct dwarf2_per_cu_data *the_cu;
2379 ULONGEST offset, length;
2380
2381 gdb_static_assert (sizeof (ULONGEST) >= 8);
2382 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2383 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2384 cu_list += 2 * 8;
2385
2386 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2387 struct dwarf2_per_cu_data);
2388 the_cu->offset.sect_off = offset;
2389 the_cu->length = length;
2390 the_cu->objfile = objfile;
2391 the_cu->info_or_types_section = section;
2392 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2393 struct dwarf2_per_cu_quick_data);
2394 the_cu->is_dwz = is_dwz;
2395 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2396 }
2397 }
2398
2399 /* Read the CU list from the mapped index, and use it to create all
2400 the CU objects for this objfile. */
2401
2402 static void
2403 create_cus_from_index (struct objfile *objfile,
2404 const gdb_byte *cu_list, offset_type cu_list_elements,
2405 const gdb_byte *dwz_list, offset_type dwz_elements)
2406 {
2407 struct dwz_file *dwz;
2408
2409 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2410 dwarf2_per_objfile->all_comp_units
2411 = obstack_alloc (&objfile->objfile_obstack,
2412 dwarf2_per_objfile->n_comp_units
2413 * sizeof (struct dwarf2_per_cu_data *));
2414
2415 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2416 &dwarf2_per_objfile->info, 0, 0);
2417
2418 if (dwz_elements == 0)
2419 return;
2420
2421 dwz = dwarf2_get_dwz_file ();
2422 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2423 cu_list_elements / 2);
2424 }
2425
2426 /* Create the signatured type hash table from the index. */
2427
2428 static void
2429 create_signatured_type_table_from_index (struct objfile *objfile,
2430 struct dwarf2_section_info *section,
2431 const gdb_byte *bytes,
2432 offset_type elements)
2433 {
2434 offset_type i;
2435 htab_t sig_types_hash;
2436
2437 dwarf2_per_objfile->n_type_units = elements / 3;
2438 dwarf2_per_objfile->all_type_units
2439 = obstack_alloc (&objfile->objfile_obstack,
2440 dwarf2_per_objfile->n_type_units
2441 * sizeof (struct signatured_type *));
2442
2443 sig_types_hash = allocate_signatured_type_table (objfile);
2444
2445 for (i = 0; i < elements; i += 3)
2446 {
2447 struct signatured_type *sig_type;
2448 ULONGEST offset, type_offset_in_tu, signature;
2449 void **slot;
2450
2451 gdb_static_assert (sizeof (ULONGEST) >= 8);
2452 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2453 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2454 BFD_ENDIAN_LITTLE);
2455 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2456 bytes += 3 * 8;
2457
2458 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2459 struct signatured_type);
2460 sig_type->signature = signature;
2461 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2462 sig_type->per_cu.is_debug_types = 1;
2463 sig_type->per_cu.info_or_types_section = section;
2464 sig_type->per_cu.offset.sect_off = offset;
2465 sig_type->per_cu.objfile = objfile;
2466 sig_type->per_cu.v.quick
2467 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2468 struct dwarf2_per_cu_quick_data);
2469
2470 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2471 *slot = sig_type;
2472
2473 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2474 }
2475
2476 dwarf2_per_objfile->signatured_types = sig_types_hash;
2477 }
2478
2479 /* Read the address map data from the mapped index, and use it to
2480 populate the objfile's psymtabs_addrmap. */
2481
2482 static void
2483 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2484 {
2485 const gdb_byte *iter, *end;
2486 struct obstack temp_obstack;
2487 struct addrmap *mutable_map;
2488 struct cleanup *cleanup;
2489 CORE_ADDR baseaddr;
2490
2491 obstack_init (&temp_obstack);
2492 cleanup = make_cleanup_obstack_free (&temp_obstack);
2493 mutable_map = addrmap_create_mutable (&temp_obstack);
2494
2495 iter = index->address_table;
2496 end = iter + index->address_table_size;
2497
2498 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2499
2500 while (iter < end)
2501 {
2502 ULONGEST hi, lo, cu_index;
2503 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2504 iter += 8;
2505 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2506 iter += 8;
2507 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2508 iter += 4;
2509
2510 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2511 dw2_get_cu (cu_index));
2512 }
2513
2514 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2515 &objfile->objfile_obstack);
2516 do_cleanups (cleanup);
2517 }
2518
2519 /* The hash function for strings in the mapped index. This is the same as
2520 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2521 implementation. This is necessary because the hash function is tied to the
2522 format of the mapped index file. The hash values do not have to match with
2523 SYMBOL_HASH_NEXT.
2524
2525 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2526
2527 static hashval_t
2528 mapped_index_string_hash (int index_version, const void *p)
2529 {
2530 const unsigned char *str = (const unsigned char *) p;
2531 hashval_t r = 0;
2532 unsigned char c;
2533
2534 while ((c = *str++) != 0)
2535 {
2536 if (index_version >= 5)
2537 c = tolower (c);
2538 r = r * 67 + c - 113;
2539 }
2540
2541 return r;
2542 }
2543
2544 /* Find a slot in the mapped index INDEX for the object named NAME.
2545 If NAME is found, set *VEC_OUT to point to the CU vector in the
2546 constant pool and return 1. If NAME cannot be found, return 0. */
2547
2548 static int
2549 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2550 offset_type **vec_out)
2551 {
2552 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2553 offset_type hash;
2554 offset_type slot, step;
2555 int (*cmp) (const char *, const char *);
2556
2557 if (current_language->la_language == language_cplus
2558 || current_language->la_language == language_java
2559 || current_language->la_language == language_fortran)
2560 {
2561 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2562 not contain any. */
2563 const char *paren = strchr (name, '(');
2564
2565 if (paren)
2566 {
2567 char *dup;
2568
2569 dup = xmalloc (paren - name + 1);
2570 memcpy (dup, name, paren - name);
2571 dup[paren - name] = 0;
2572
2573 make_cleanup (xfree, dup);
2574 name = dup;
2575 }
2576 }
2577
2578 /* Index version 4 did not support case insensitive searches. But the
2579 indices for case insensitive languages are built in lowercase, therefore
2580 simulate our NAME being searched is also lowercased. */
2581 hash = mapped_index_string_hash ((index->version == 4
2582 && case_sensitivity == case_sensitive_off
2583 ? 5 : index->version),
2584 name);
2585
2586 slot = hash & (index->symbol_table_slots - 1);
2587 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2588 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2589
2590 for (;;)
2591 {
2592 /* Convert a slot number to an offset into the table. */
2593 offset_type i = 2 * slot;
2594 const char *str;
2595 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2596 {
2597 do_cleanups (back_to);
2598 return 0;
2599 }
2600
2601 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2602 if (!cmp (name, str))
2603 {
2604 *vec_out = (offset_type *) (index->constant_pool
2605 + MAYBE_SWAP (index->symbol_table[i + 1]));
2606 do_cleanups (back_to);
2607 return 1;
2608 }
2609
2610 slot = (slot + step) & (index->symbol_table_slots - 1);
2611 }
2612 }
2613
2614 /* A helper function that reads the .gdb_index from SECTION and fills
2615 in MAP. FILENAME is the name of the file containing the section;
2616 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2617 ok to use deprecated sections.
2618
2619 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2620 out parameters that are filled in with information about the CU and
2621 TU lists in the section.
2622
2623 Returns 1 if all went well, 0 otherwise. */
2624
2625 static int
2626 read_index_from_section (struct objfile *objfile,
2627 const char *filename,
2628 int deprecated_ok,
2629 struct dwarf2_section_info *section,
2630 struct mapped_index *map,
2631 const gdb_byte **cu_list,
2632 offset_type *cu_list_elements,
2633 const gdb_byte **types_list,
2634 offset_type *types_list_elements)
2635 {
2636 char *addr;
2637 offset_type version;
2638 offset_type *metadata;
2639 int i;
2640
2641 if (dwarf2_section_empty_p (section))
2642 return 0;
2643
2644 /* Older elfutils strip versions could keep the section in the main
2645 executable while splitting it for the separate debug info file. */
2646 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2647 return 0;
2648
2649 dwarf2_read_section (objfile, section);
2650
2651 addr = section->buffer;
2652 /* Version check. */
2653 version = MAYBE_SWAP (*(offset_type *) addr);
2654 /* Versions earlier than 3 emitted every copy of a psymbol. This
2655 causes the index to behave very poorly for certain requests. Version 3
2656 contained incomplete addrmap. So, it seems better to just ignore such
2657 indices. */
2658 if (version < 4)
2659 {
2660 static int warning_printed = 0;
2661 if (!warning_printed)
2662 {
2663 warning (_("Skipping obsolete .gdb_index section in %s."),
2664 filename);
2665 warning_printed = 1;
2666 }
2667 return 0;
2668 }
2669 /* Index version 4 uses a different hash function than index version
2670 5 and later.
2671
2672 Versions earlier than 6 did not emit psymbols for inlined
2673 functions. Using these files will cause GDB not to be able to
2674 set breakpoints on inlined functions by name, so we ignore these
2675 indices unless the user has done
2676 "set use-deprecated-index-sections on". */
2677 if (version < 6 && !deprecated_ok)
2678 {
2679 static int warning_printed = 0;
2680 if (!warning_printed)
2681 {
2682 warning (_("\
2683 Skipping deprecated .gdb_index section in %s.\n\
2684 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2685 to use the section anyway."),
2686 filename);
2687 warning_printed = 1;
2688 }
2689 return 0;
2690 }
2691 /* Indexes with higher version than the one supported by GDB may be no
2692 longer backward compatible. */
2693 if (version > 7)
2694 return 0;
2695
2696 map->version = version;
2697 map->total_size = section->size;
2698
2699 metadata = (offset_type *) (addr + sizeof (offset_type));
2700
2701 i = 0;
2702 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2703 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2704 / 8);
2705 ++i;
2706
2707 *types_list = addr + MAYBE_SWAP (metadata[i]);
2708 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2709 - MAYBE_SWAP (metadata[i]))
2710 / 8);
2711 ++i;
2712
2713 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2714 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2715 - MAYBE_SWAP (metadata[i]));
2716 ++i;
2717
2718 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2719 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2720 - MAYBE_SWAP (metadata[i]))
2721 / (2 * sizeof (offset_type)));
2722 ++i;
2723
2724 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2725
2726 return 1;
2727 }
2728
2729
2730 /* Read the index file. If everything went ok, initialize the "quick"
2731 elements of all the CUs and return 1. Otherwise, return 0. */
2732
2733 static int
2734 dwarf2_read_index (struct objfile *objfile)
2735 {
2736 struct mapped_index local_map, *map;
2737 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2738 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2739
2740 if (!read_index_from_section (objfile, objfile->name,
2741 use_deprecated_index_sections,
2742 &dwarf2_per_objfile->gdb_index, &local_map,
2743 &cu_list, &cu_list_elements,
2744 &types_list, &types_list_elements))
2745 return 0;
2746
2747 /* Don't use the index if it's empty. */
2748 if (local_map.symbol_table_slots == 0)
2749 return 0;
2750
2751 /* If there is a .dwz file, read it so we can get its CU list as
2752 well. */
2753 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2754 {
2755 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2756 struct mapped_index dwz_map;
2757 const gdb_byte *dwz_types_ignore;
2758 offset_type dwz_types_elements_ignore;
2759
2760 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2761 1,
2762 &dwz->gdb_index, &dwz_map,
2763 &dwz_list, &dwz_list_elements,
2764 &dwz_types_ignore,
2765 &dwz_types_elements_ignore))
2766 {
2767 warning (_("could not read '.gdb_index' section from %s; skipping"),
2768 bfd_get_filename (dwz->dwz_bfd));
2769 return 0;
2770 }
2771 }
2772
2773 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2774 dwz_list_elements);
2775
2776 if (types_list_elements)
2777 {
2778 struct dwarf2_section_info *section;
2779
2780 /* We can only handle a single .debug_types when we have an
2781 index. */
2782 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2783 return 0;
2784
2785 section = VEC_index (dwarf2_section_info_def,
2786 dwarf2_per_objfile->types, 0);
2787
2788 create_signatured_type_table_from_index (objfile, section, types_list,
2789 types_list_elements);
2790 }
2791
2792 create_addrmap_from_index (objfile, &local_map);
2793
2794 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2795 *map = local_map;
2796
2797 dwarf2_per_objfile->index_table = map;
2798 dwarf2_per_objfile->using_index = 1;
2799 dwarf2_per_objfile->quick_file_names_table =
2800 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2801
2802 return 1;
2803 }
2804
2805 /* A helper for the "quick" functions which sets the global
2806 dwarf2_per_objfile according to OBJFILE. */
2807
2808 static void
2809 dw2_setup (struct objfile *objfile)
2810 {
2811 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2812 gdb_assert (dwarf2_per_objfile);
2813 }
2814
2815 /* Reader function for dw2_build_type_unit_groups. */
2816
2817 static void
2818 dw2_build_type_unit_groups_reader (const struct die_reader_specs *reader,
2819 gdb_byte *info_ptr,
2820 struct die_info *type_unit_die,
2821 int has_children,
2822 void *data)
2823 {
2824 struct dwarf2_cu *cu = reader->cu;
2825 struct attribute *attr;
2826 struct type_unit_group *tu_group;
2827
2828 gdb_assert (data == NULL);
2829
2830 if (! has_children)
2831 return;
2832
2833 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
2834 /* Call this for its side-effect of creating the associated
2835 struct type_unit_group if it doesn't already exist. */
2836 tu_group = get_type_unit_group (cu, attr);
2837 }
2838
2839 /* Build dwarf2_per_objfile->type_unit_groups.
2840 This function may be called multiple times. */
2841
2842 static void
2843 dw2_build_type_unit_groups (void)
2844 {
2845 if (dwarf2_per_objfile->type_unit_groups == NULL)
2846 build_type_unit_groups (dw2_build_type_unit_groups_reader, NULL);
2847 }
2848
2849 /* die_reader_func for dw2_get_file_names. */
2850
2851 static void
2852 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2853 gdb_byte *info_ptr,
2854 struct die_info *comp_unit_die,
2855 int has_children,
2856 void *data)
2857 {
2858 struct dwarf2_cu *cu = reader->cu;
2859 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2860 struct objfile *objfile = dwarf2_per_objfile->objfile;
2861 struct dwarf2_per_cu_data *lh_cu;
2862 struct line_header *lh;
2863 struct attribute *attr;
2864 int i;
2865 char *name, *comp_dir;
2866 void **slot;
2867 struct quick_file_names *qfn;
2868 unsigned int line_offset;
2869
2870 /* Our callers never want to match partial units -- instead they
2871 will match the enclosing full CU. */
2872 if (comp_unit_die->tag == DW_TAG_partial_unit)
2873 {
2874 this_cu->v.quick->no_file_data = 1;
2875 return;
2876 }
2877
2878 /* If we're reading the line header for TUs, store it in the "per_cu"
2879 for tu_group. */
2880 if (this_cu->is_debug_types)
2881 {
2882 struct type_unit_group *tu_group = data;
2883
2884 gdb_assert (tu_group != NULL);
2885 lh_cu = &tu_group->per_cu;
2886 }
2887 else
2888 lh_cu = this_cu;
2889
2890 lh = NULL;
2891 slot = NULL;
2892 line_offset = 0;
2893
2894 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2895 if (attr)
2896 {
2897 struct quick_file_names find_entry;
2898
2899 line_offset = DW_UNSND (attr);
2900
2901 /* We may have already read in this line header (TU line header sharing).
2902 If we have we're done. */
2903 find_entry.hash.dwo_unit = cu->dwo_unit;
2904 find_entry.hash.line_offset.sect_off = line_offset;
2905 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2906 &find_entry, INSERT);
2907 if (*slot != NULL)
2908 {
2909 lh_cu->v.quick->file_names = *slot;
2910 return;
2911 }
2912
2913 lh = dwarf_decode_line_header (line_offset, cu);
2914 }
2915 if (lh == NULL)
2916 {
2917 lh_cu->v.quick->no_file_data = 1;
2918 return;
2919 }
2920
2921 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2922 qfn->hash.dwo_unit = cu->dwo_unit;
2923 qfn->hash.line_offset.sect_off = line_offset;
2924 gdb_assert (slot != NULL);
2925 *slot = qfn;
2926
2927 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2928
2929 qfn->num_file_names = lh->num_file_names;
2930 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2931 lh->num_file_names * sizeof (char *));
2932 for (i = 0; i < lh->num_file_names; ++i)
2933 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2934 qfn->real_names = NULL;
2935
2936 free_line_header (lh);
2937
2938 lh_cu->v.quick->file_names = qfn;
2939 }
2940
2941 /* A helper for the "quick" functions which attempts to read the line
2942 table for THIS_CU. */
2943
2944 static struct quick_file_names *
2945 dw2_get_file_names (struct objfile *objfile,
2946 struct dwarf2_per_cu_data *this_cu)
2947 {
2948 /* For TUs this should only be called on the parent group. */
2949 if (this_cu->is_debug_types)
2950 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2951
2952 if (this_cu->v.quick->file_names != NULL)
2953 return this_cu->v.quick->file_names;
2954 /* If we know there is no line data, no point in looking again. */
2955 if (this_cu->v.quick->no_file_data)
2956 return NULL;
2957
2958 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2959 in the stub for CUs, there's is no need to lookup the DWO file.
2960 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2961 DWO file. */
2962 if (this_cu->is_debug_types)
2963 {
2964 struct type_unit_group *tu_group = this_cu->s.type_unit_group;
2965
2966 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2967 dw2_get_file_names_reader, tu_group);
2968 }
2969 else
2970 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2971
2972 if (this_cu->v.quick->no_file_data)
2973 return NULL;
2974 return this_cu->v.quick->file_names;
2975 }
2976
2977 /* A helper for the "quick" functions which computes and caches the
2978 real path for a given file name from the line table. */
2979
2980 static const char *
2981 dw2_get_real_path (struct objfile *objfile,
2982 struct quick_file_names *qfn, int index)
2983 {
2984 if (qfn->real_names == NULL)
2985 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2986 qfn->num_file_names, sizeof (char *));
2987
2988 if (qfn->real_names[index] == NULL)
2989 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2990
2991 return qfn->real_names[index];
2992 }
2993
2994 static struct symtab *
2995 dw2_find_last_source_symtab (struct objfile *objfile)
2996 {
2997 int index;
2998
2999 dw2_setup (objfile);
3000 index = dwarf2_per_objfile->n_comp_units - 1;
3001 return dw2_instantiate_symtab (dw2_get_cu (index));
3002 }
3003
3004 /* Traversal function for dw2_forget_cached_source_info. */
3005
3006 static int
3007 dw2_free_cached_file_names (void **slot, void *info)
3008 {
3009 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3010
3011 if (file_data->real_names)
3012 {
3013 int i;
3014
3015 for (i = 0; i < file_data->num_file_names; ++i)
3016 {
3017 xfree ((void*) file_data->real_names[i]);
3018 file_data->real_names[i] = NULL;
3019 }
3020 }
3021
3022 return 1;
3023 }
3024
3025 static void
3026 dw2_forget_cached_source_info (struct objfile *objfile)
3027 {
3028 dw2_setup (objfile);
3029
3030 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3031 dw2_free_cached_file_names, NULL);
3032 }
3033
3034 /* Helper function for dw2_map_symtabs_matching_filename that expands
3035 the symtabs and calls the iterator. */
3036
3037 static int
3038 dw2_map_expand_apply (struct objfile *objfile,
3039 struct dwarf2_per_cu_data *per_cu,
3040 const char *name,
3041 const char *full_path, const char *real_path,
3042 int (*callback) (struct symtab *, void *),
3043 void *data)
3044 {
3045 struct symtab *last_made = objfile->symtabs;
3046
3047 /* Don't visit already-expanded CUs. */
3048 if (per_cu->v.quick->symtab)
3049 return 0;
3050
3051 /* This may expand more than one symtab, and we want to iterate over
3052 all of them. */
3053 dw2_instantiate_symtab (per_cu);
3054
3055 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
3056 objfile->symtabs, last_made);
3057 }
3058
3059 /* Implementation of the map_symtabs_matching_filename method. */
3060
3061 static int
3062 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3063 const char *full_path, const char *real_path,
3064 int (*callback) (struct symtab *, void *),
3065 void *data)
3066 {
3067 int i;
3068 const char *name_basename = lbasename (name);
3069 int name_len = strlen (name);
3070 int is_abs = IS_ABSOLUTE_PATH (name);
3071
3072 dw2_setup (objfile);
3073
3074 dw2_build_type_unit_groups ();
3075
3076 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3077 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3078 {
3079 int j;
3080 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3081 struct quick_file_names *file_data;
3082
3083 /* We only need to look at symtabs not already expanded. */
3084 if (per_cu->v.quick->symtab)
3085 continue;
3086
3087 file_data = dw2_get_file_names (objfile, per_cu);
3088 if (file_data == NULL)
3089 continue;
3090
3091 for (j = 0; j < file_data->num_file_names; ++j)
3092 {
3093 const char *this_name = file_data->file_names[j];
3094
3095 if (FILENAME_CMP (name, this_name) == 0
3096 || (!is_abs && compare_filenames_for_search (this_name,
3097 name, name_len)))
3098 {
3099 if (dw2_map_expand_apply (objfile, per_cu,
3100 name, full_path, real_path,
3101 callback, data))
3102 return 1;
3103 }
3104
3105 /* Before we invoke realpath, which can get expensive when many
3106 files are involved, do a quick comparison of the basenames. */
3107 if (! basenames_may_differ
3108 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3109 continue;
3110
3111 if (full_path != NULL)
3112 {
3113 const char *this_real_name = dw2_get_real_path (objfile,
3114 file_data, j);
3115
3116 if (this_real_name != NULL
3117 && (FILENAME_CMP (full_path, this_real_name) == 0
3118 || (!is_abs
3119 && compare_filenames_for_search (this_real_name,
3120 name, name_len))))
3121 {
3122 if (dw2_map_expand_apply (objfile, per_cu,
3123 name, full_path, real_path,
3124 callback, data))
3125 return 1;
3126 }
3127 }
3128
3129 if (real_path != NULL)
3130 {
3131 const char *this_real_name = dw2_get_real_path (objfile,
3132 file_data, j);
3133
3134 if (this_real_name != NULL
3135 && (FILENAME_CMP (real_path, this_real_name) == 0
3136 || (!is_abs
3137 && compare_filenames_for_search (this_real_name,
3138 name, name_len))))
3139 {
3140 if (dw2_map_expand_apply (objfile, per_cu,
3141 name, full_path, real_path,
3142 callback, data))
3143 return 1;
3144 }
3145 }
3146 }
3147 }
3148
3149 return 0;
3150 }
3151
3152 static struct symtab *
3153 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3154 const char *name, domain_enum domain)
3155 {
3156 /* We do all the work in the pre_expand_symtabs_matching hook
3157 instead. */
3158 return NULL;
3159 }
3160
3161 /* A helper function that expands all symtabs that hold an object
3162 named NAME. If WANT_SPECIFIC_BLOCK is non-zero, only look for
3163 symbols in block BLOCK_KIND. */
3164
3165 static void
3166 dw2_do_expand_symtabs_matching (struct objfile *objfile,
3167 int want_specific_block,
3168 enum block_enum block_kind,
3169 const char *name, domain_enum domain)
3170 {
3171 struct mapped_index *index;
3172
3173 dw2_setup (objfile);
3174
3175 index = dwarf2_per_objfile->index_table;
3176
3177 /* index_table is NULL if OBJF_READNOW. */
3178 if (index)
3179 {
3180 offset_type *vec;
3181
3182 if (find_slot_in_mapped_hash (index, name, &vec))
3183 {
3184 offset_type i, len = MAYBE_SWAP (*vec);
3185 for (i = 0; i < len; ++i)
3186 {
3187 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[i + 1]);
3188 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3189 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3190 int want_static = block_kind != GLOBAL_BLOCK;
3191 /* This value is only valid for index versions >= 7. */
3192 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3193 gdb_index_symbol_kind symbol_kind =
3194 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3195 /* Only check the symbol attributes if they're present.
3196 Indices prior to version 7 don't record them,
3197 and indices >= 7 may elide them for certain symbols
3198 (gold does this). */
3199 int attrs_valid =
3200 (index->version >= 7
3201 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3202
3203 if (attrs_valid
3204 && want_specific_block
3205 && want_static != is_static)
3206 continue;
3207
3208 /* Only check the symbol's kind if it has one. */
3209 if (attrs_valid)
3210 {
3211 switch (domain)
3212 {
3213 case VAR_DOMAIN:
3214 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3215 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3216 /* Some types are also in VAR_DOMAIN. */
3217 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3218 continue;
3219 break;
3220 case STRUCT_DOMAIN:
3221 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3222 continue;
3223 break;
3224 case LABEL_DOMAIN:
3225 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3226 continue;
3227 break;
3228 default:
3229 break;
3230 }
3231 }
3232
3233 dw2_instantiate_symtab (per_cu);
3234 }
3235 }
3236 }
3237 }
3238
3239 static void
3240 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
3241 enum block_enum block_kind, const char *name,
3242 domain_enum domain)
3243 {
3244 dw2_do_expand_symtabs_matching (objfile, 1, block_kind, name, domain);
3245 }
3246
3247 static void
3248 dw2_print_stats (struct objfile *objfile)
3249 {
3250 int i, count;
3251
3252 dw2_setup (objfile);
3253 count = 0;
3254 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3255 + dwarf2_per_objfile->n_type_units); ++i)
3256 {
3257 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3258
3259 if (!per_cu->v.quick->symtab)
3260 ++count;
3261 }
3262 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3263 }
3264
3265 static void
3266 dw2_dump (struct objfile *objfile)
3267 {
3268 /* Nothing worth printing. */
3269 }
3270
3271 static void
3272 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3273 struct section_offsets *delta)
3274 {
3275 /* There's nothing to relocate here. */
3276 }
3277
3278 static void
3279 dw2_expand_symtabs_for_function (struct objfile *objfile,
3280 const char *func_name)
3281 {
3282 /* Note: It doesn't matter what we pass for block_kind here. */
3283 dw2_do_expand_symtabs_matching (objfile, 0, GLOBAL_BLOCK, func_name,
3284 VAR_DOMAIN);
3285 }
3286
3287 static void
3288 dw2_expand_all_symtabs (struct objfile *objfile)
3289 {
3290 int i;
3291
3292 dw2_setup (objfile);
3293
3294 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3295 + dwarf2_per_objfile->n_type_units); ++i)
3296 {
3297 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3298
3299 dw2_instantiate_symtab (per_cu);
3300 }
3301 }
3302
3303 static void
3304 dw2_expand_symtabs_with_filename (struct objfile *objfile,
3305 const char *filename)
3306 {
3307 int i;
3308
3309 dw2_setup (objfile);
3310
3311 /* We don't need to consider type units here.
3312 This is only called for examining code, e.g. expand_line_sal.
3313 There can be an order of magnitude (or more) more type units
3314 than comp units, and we avoid them if we can. */
3315
3316 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3317 {
3318 int j;
3319 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3320 struct quick_file_names *file_data;
3321
3322 /* We only need to look at symtabs not already expanded. */
3323 if (per_cu->v.quick->symtab)
3324 continue;
3325
3326 file_data = dw2_get_file_names (objfile, per_cu);
3327 if (file_data == NULL)
3328 continue;
3329
3330 for (j = 0; j < file_data->num_file_names; ++j)
3331 {
3332 const char *this_name = file_data->file_names[j];
3333 if (FILENAME_CMP (this_name, filename) == 0)
3334 {
3335 dw2_instantiate_symtab (per_cu);
3336 break;
3337 }
3338 }
3339 }
3340 }
3341
3342 /* A helper function for dw2_find_symbol_file that finds the primary
3343 file name for a given CU. This is a die_reader_func. */
3344
3345 static void
3346 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3347 gdb_byte *info_ptr,
3348 struct die_info *comp_unit_die,
3349 int has_children,
3350 void *data)
3351 {
3352 const char **result_ptr = data;
3353 struct dwarf2_cu *cu = reader->cu;
3354 struct attribute *attr;
3355
3356 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3357 if (attr == NULL)
3358 *result_ptr = NULL;
3359 else
3360 *result_ptr = DW_STRING (attr);
3361 }
3362
3363 static const char *
3364 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3365 {
3366 struct dwarf2_per_cu_data *per_cu;
3367 offset_type *vec;
3368 const char *filename;
3369
3370 dw2_setup (objfile);
3371
3372 /* index_table is NULL if OBJF_READNOW. */
3373 if (!dwarf2_per_objfile->index_table)
3374 {
3375 struct symtab *s;
3376
3377 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3378 {
3379 struct blockvector *bv = BLOCKVECTOR (s);
3380 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3381 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3382
3383 if (sym)
3384 return SYMBOL_SYMTAB (sym)->filename;
3385 }
3386 return NULL;
3387 }
3388
3389 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3390 name, &vec))
3391 return NULL;
3392
3393 /* Note that this just looks at the very first one named NAME -- but
3394 actually we are looking for a function. find_main_filename
3395 should be rewritten so that it doesn't require a custom hook. It
3396 could just use the ordinary symbol tables. */
3397 /* vec[0] is the length, which must always be >0. */
3398 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3399
3400 if (per_cu->v.quick->symtab != NULL)
3401 return per_cu->v.quick->symtab->filename;
3402
3403 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3404 dw2_get_primary_filename_reader, &filename);
3405
3406 return filename;
3407 }
3408
3409 static void
3410 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3411 struct objfile *objfile, int global,
3412 int (*callback) (struct block *,
3413 struct symbol *, void *),
3414 void *data, symbol_compare_ftype *match,
3415 symbol_compare_ftype *ordered_compare)
3416 {
3417 /* Currently unimplemented; used for Ada. The function can be called if the
3418 current language is Ada for a non-Ada objfile using GNU index. As Ada
3419 does not look for non-Ada symbols this function should just return. */
3420 }
3421
3422 static void
3423 dw2_expand_symtabs_matching
3424 (struct objfile *objfile,
3425 int (*file_matcher) (const char *, void *),
3426 int (*name_matcher) (const char *, void *),
3427 enum search_domain kind,
3428 void *data)
3429 {
3430 int i;
3431 offset_type iter;
3432 struct mapped_index *index;
3433
3434 dw2_setup (objfile);
3435
3436 /* index_table is NULL if OBJF_READNOW. */
3437 if (!dwarf2_per_objfile->index_table)
3438 return;
3439 index = dwarf2_per_objfile->index_table;
3440
3441 if (file_matcher != NULL)
3442 {
3443 struct cleanup *cleanup;
3444 htab_t visited_found, visited_not_found;
3445
3446 dw2_build_type_unit_groups ();
3447
3448 visited_found = htab_create_alloc (10,
3449 htab_hash_pointer, htab_eq_pointer,
3450 NULL, xcalloc, xfree);
3451 cleanup = make_cleanup_htab_delete (visited_found);
3452 visited_not_found = htab_create_alloc (10,
3453 htab_hash_pointer, htab_eq_pointer,
3454 NULL, xcalloc, xfree);
3455 make_cleanup_htab_delete (visited_not_found);
3456
3457 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3458 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3459 {
3460 int j;
3461 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3462 struct quick_file_names *file_data;
3463 void **slot;
3464
3465 per_cu->v.quick->mark = 0;
3466
3467 /* We only need to look at symtabs not already expanded. */
3468 if (per_cu->v.quick->symtab)
3469 continue;
3470
3471 file_data = dw2_get_file_names (objfile, per_cu);
3472 if (file_data == NULL)
3473 continue;
3474
3475 if (htab_find (visited_not_found, file_data) != NULL)
3476 continue;
3477 else if (htab_find (visited_found, file_data) != NULL)
3478 {
3479 per_cu->v.quick->mark = 1;
3480 continue;
3481 }
3482
3483 for (j = 0; j < file_data->num_file_names; ++j)
3484 {
3485 if (file_matcher (file_data->file_names[j], data))
3486 {
3487 per_cu->v.quick->mark = 1;
3488 break;
3489 }
3490 }
3491
3492 slot = htab_find_slot (per_cu->v.quick->mark
3493 ? visited_found
3494 : visited_not_found,
3495 file_data, INSERT);
3496 *slot = file_data;
3497 }
3498
3499 do_cleanups (cleanup);
3500 }
3501
3502 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3503 {
3504 offset_type idx = 2 * iter;
3505 const char *name;
3506 offset_type *vec, vec_len, vec_idx;
3507
3508 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3509 continue;
3510
3511 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3512
3513 if (! (*name_matcher) (name, data))
3514 continue;
3515
3516 /* The name was matched, now expand corresponding CUs that were
3517 marked. */
3518 vec = (offset_type *) (index->constant_pool
3519 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3520 vec_len = MAYBE_SWAP (vec[0]);
3521 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3522 {
3523 struct dwarf2_per_cu_data *per_cu;
3524 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3525 gdb_index_symbol_kind symbol_kind =
3526 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3527 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3528
3529 /* Don't crash on bad data. */
3530 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3531 + dwarf2_per_objfile->n_type_units))
3532 continue;
3533
3534 /* Only check the symbol's kind if it has one.
3535 Indices prior to version 7 don't record it. */
3536 if (index->version >= 7)
3537 {
3538 switch (kind)
3539 {
3540 case VARIABLES_DOMAIN:
3541 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3542 continue;
3543 break;
3544 case FUNCTIONS_DOMAIN:
3545 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3546 continue;
3547 break;
3548 case TYPES_DOMAIN:
3549 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3550 continue;
3551 break;
3552 default:
3553 break;
3554 }
3555 }
3556
3557 per_cu = dw2_get_cu (cu_index);
3558 if (file_matcher == NULL || per_cu->v.quick->mark)
3559 dw2_instantiate_symtab (per_cu);
3560 }
3561 }
3562 }
3563
3564 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3565 symtab. */
3566
3567 static struct symtab *
3568 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3569 {
3570 int i;
3571
3572 if (BLOCKVECTOR (symtab) != NULL
3573 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3574 return symtab;
3575
3576 if (symtab->includes == NULL)
3577 return NULL;
3578
3579 for (i = 0; symtab->includes[i]; ++i)
3580 {
3581 struct symtab *s = symtab->includes[i];
3582
3583 s = recursively_find_pc_sect_symtab (s, pc);
3584 if (s != NULL)
3585 return s;
3586 }
3587
3588 return NULL;
3589 }
3590
3591 static struct symtab *
3592 dw2_find_pc_sect_symtab (struct objfile *objfile,
3593 struct minimal_symbol *msymbol,
3594 CORE_ADDR pc,
3595 struct obj_section *section,
3596 int warn_if_readin)
3597 {
3598 struct dwarf2_per_cu_data *data;
3599 struct symtab *result;
3600
3601 dw2_setup (objfile);
3602
3603 if (!objfile->psymtabs_addrmap)
3604 return NULL;
3605
3606 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3607 if (!data)
3608 return NULL;
3609
3610 if (warn_if_readin && data->v.quick->symtab)
3611 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3612 paddress (get_objfile_arch (objfile), pc));
3613
3614 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3615 gdb_assert (result != NULL);
3616 return result;
3617 }
3618
3619 static void
3620 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3621 void *data, int need_fullname)
3622 {
3623 int i;
3624 struct cleanup *cleanup;
3625 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3626 NULL, xcalloc, xfree);
3627
3628 cleanup = make_cleanup_htab_delete (visited);
3629 dw2_setup (objfile);
3630
3631 dw2_build_type_unit_groups ();
3632
3633 /* We can ignore file names coming from already-expanded CUs. */
3634 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3635 + dwarf2_per_objfile->n_type_units); ++i)
3636 {
3637 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3638
3639 if (per_cu->v.quick->symtab)
3640 {
3641 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3642 INSERT);
3643
3644 *slot = per_cu->v.quick->file_names;
3645 }
3646 }
3647
3648 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3649 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3650 {
3651 int j;
3652 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3653 struct quick_file_names *file_data;
3654 void **slot;
3655
3656 /* We only need to look at symtabs not already expanded. */
3657 if (per_cu->v.quick->symtab)
3658 continue;
3659
3660 file_data = dw2_get_file_names (objfile, per_cu);
3661 if (file_data == NULL)
3662 continue;
3663
3664 slot = htab_find_slot (visited, file_data, INSERT);
3665 if (*slot)
3666 {
3667 /* Already visited. */
3668 continue;
3669 }
3670 *slot = file_data;
3671
3672 for (j = 0; j < file_data->num_file_names; ++j)
3673 {
3674 const char *this_real_name;
3675
3676 if (need_fullname)
3677 this_real_name = dw2_get_real_path (objfile, file_data, j);
3678 else
3679 this_real_name = NULL;
3680 (*fun) (file_data->file_names[j], this_real_name, data);
3681 }
3682 }
3683
3684 do_cleanups (cleanup);
3685 }
3686
3687 static int
3688 dw2_has_symbols (struct objfile *objfile)
3689 {
3690 return 1;
3691 }
3692
3693 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3694 {
3695 dw2_has_symbols,
3696 dw2_find_last_source_symtab,
3697 dw2_forget_cached_source_info,
3698 dw2_map_symtabs_matching_filename,
3699 dw2_lookup_symbol,
3700 dw2_pre_expand_symtabs_matching,
3701 dw2_print_stats,
3702 dw2_dump,
3703 dw2_relocate,
3704 dw2_expand_symtabs_for_function,
3705 dw2_expand_all_symtabs,
3706 dw2_expand_symtabs_with_filename,
3707 dw2_find_symbol_file,
3708 dw2_map_matching_symbols,
3709 dw2_expand_symtabs_matching,
3710 dw2_find_pc_sect_symtab,
3711 dw2_map_symbol_filenames
3712 };
3713
3714 /* Initialize for reading DWARF for this objfile. Return 0 if this
3715 file will use psymtabs, or 1 if using the GNU index. */
3716
3717 int
3718 dwarf2_initialize_objfile (struct objfile *objfile)
3719 {
3720 /* If we're about to read full symbols, don't bother with the
3721 indices. In this case we also don't care if some other debug
3722 format is making psymtabs, because they are all about to be
3723 expanded anyway. */
3724 if ((objfile->flags & OBJF_READNOW))
3725 {
3726 int i;
3727
3728 dwarf2_per_objfile->using_index = 1;
3729 create_all_comp_units (objfile);
3730 create_all_type_units (objfile);
3731 dwarf2_per_objfile->quick_file_names_table =
3732 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3733
3734 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3735 + dwarf2_per_objfile->n_type_units); ++i)
3736 {
3737 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3738
3739 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3740 struct dwarf2_per_cu_quick_data);
3741 }
3742
3743 /* Return 1 so that gdb sees the "quick" functions. However,
3744 these functions will be no-ops because we will have expanded
3745 all symtabs. */
3746 return 1;
3747 }
3748
3749 if (dwarf2_read_index (objfile))
3750 return 1;
3751
3752 return 0;
3753 }
3754
3755 \f
3756
3757 /* Build a partial symbol table. */
3758
3759 void
3760 dwarf2_build_psymtabs (struct objfile *objfile)
3761 {
3762 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3763 {
3764 init_psymbol_list (objfile, 1024);
3765 }
3766
3767 dwarf2_build_psymtabs_hard (objfile);
3768 }
3769
3770 /* Return the total length of the CU described by HEADER. */
3771
3772 static unsigned int
3773 get_cu_length (const struct comp_unit_head *header)
3774 {
3775 return header->initial_length_size + header->length;
3776 }
3777
3778 /* Return TRUE if OFFSET is within CU_HEADER. */
3779
3780 static inline int
3781 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3782 {
3783 sect_offset bottom = { cu_header->offset.sect_off };
3784 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3785
3786 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3787 }
3788
3789 /* Find the base address of the compilation unit for range lists and
3790 location lists. It will normally be specified by DW_AT_low_pc.
3791 In DWARF-3 draft 4, the base address could be overridden by
3792 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3793 compilation units with discontinuous ranges. */
3794
3795 static void
3796 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3797 {
3798 struct attribute *attr;
3799
3800 cu->base_known = 0;
3801 cu->base_address = 0;
3802
3803 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3804 if (attr)
3805 {
3806 cu->base_address = DW_ADDR (attr);
3807 cu->base_known = 1;
3808 }
3809 else
3810 {
3811 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3812 if (attr)
3813 {
3814 cu->base_address = DW_ADDR (attr);
3815 cu->base_known = 1;
3816 }
3817 }
3818 }
3819
3820 /* Read in the comp unit header information from the debug_info at info_ptr.
3821 NOTE: This leaves members offset, first_die_offset to be filled in
3822 by the caller. */
3823
3824 static gdb_byte *
3825 read_comp_unit_head (struct comp_unit_head *cu_header,
3826 gdb_byte *info_ptr, bfd *abfd)
3827 {
3828 int signed_addr;
3829 unsigned int bytes_read;
3830
3831 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3832 cu_header->initial_length_size = bytes_read;
3833 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3834 info_ptr += bytes_read;
3835 cu_header->version = read_2_bytes (abfd, info_ptr);
3836 info_ptr += 2;
3837 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3838 &bytes_read);
3839 info_ptr += bytes_read;
3840 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3841 info_ptr += 1;
3842 signed_addr = bfd_get_sign_extend_vma (abfd);
3843 if (signed_addr < 0)
3844 internal_error (__FILE__, __LINE__,
3845 _("read_comp_unit_head: dwarf from non elf file"));
3846 cu_header->signed_addr_p = signed_addr;
3847
3848 return info_ptr;
3849 }
3850
3851 /* Helper function that returns the proper abbrev section for
3852 THIS_CU. */
3853
3854 static struct dwarf2_section_info *
3855 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3856 {
3857 struct dwarf2_section_info *abbrev;
3858
3859 if (this_cu->is_dwz)
3860 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3861 else
3862 abbrev = &dwarf2_per_objfile->abbrev;
3863
3864 return abbrev;
3865 }
3866
3867 /* Subroutine of read_and_check_comp_unit_head and
3868 read_and_check_type_unit_head to simplify them.
3869 Perform various error checking on the header. */
3870
3871 static void
3872 error_check_comp_unit_head (struct comp_unit_head *header,
3873 struct dwarf2_section_info *section,
3874 struct dwarf2_section_info *abbrev_section)
3875 {
3876 bfd *abfd = section->asection->owner;
3877 const char *filename = bfd_get_filename (abfd);
3878
3879 if (header->version != 2 && header->version != 3 && header->version != 4)
3880 error (_("Dwarf Error: wrong version in compilation unit header "
3881 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3882 filename);
3883
3884 if (header->abbrev_offset.sect_off
3885 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3886 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3887 "(offset 0x%lx + 6) [in module %s]"),
3888 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3889 filename);
3890
3891 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3892 avoid potential 32-bit overflow. */
3893 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3894 > section->size)
3895 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3896 "(offset 0x%lx + 0) [in module %s]"),
3897 (long) header->length, (long) header->offset.sect_off,
3898 filename);
3899 }
3900
3901 /* Read in a CU/TU header and perform some basic error checking.
3902 The contents of the header are stored in HEADER.
3903 The result is a pointer to the start of the first DIE. */
3904
3905 static gdb_byte *
3906 read_and_check_comp_unit_head (struct comp_unit_head *header,
3907 struct dwarf2_section_info *section,
3908 struct dwarf2_section_info *abbrev_section,
3909 gdb_byte *info_ptr,
3910 int is_debug_types_section)
3911 {
3912 gdb_byte *beg_of_comp_unit = info_ptr;
3913 bfd *abfd = section->asection->owner;
3914
3915 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3916
3917 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3918
3919 /* If we're reading a type unit, skip over the signature and
3920 type_offset fields. */
3921 if (is_debug_types_section)
3922 info_ptr += 8 /*signature*/ + header->offset_size;
3923
3924 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3925
3926 error_check_comp_unit_head (header, section, abbrev_section);
3927
3928 return info_ptr;
3929 }
3930
3931 /* Read in the types comp unit header information from .debug_types entry at
3932 types_ptr. The result is a pointer to one past the end of the header. */
3933
3934 static gdb_byte *
3935 read_and_check_type_unit_head (struct comp_unit_head *header,
3936 struct dwarf2_section_info *section,
3937 struct dwarf2_section_info *abbrev_section,
3938 gdb_byte *info_ptr,
3939 ULONGEST *signature,
3940 cu_offset *type_offset_in_tu)
3941 {
3942 gdb_byte *beg_of_comp_unit = info_ptr;
3943 bfd *abfd = section->asection->owner;
3944
3945 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3946
3947 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3948
3949 /* If we're reading a type unit, skip over the signature and
3950 type_offset fields. */
3951 if (signature != NULL)
3952 *signature = read_8_bytes (abfd, info_ptr);
3953 info_ptr += 8;
3954 if (type_offset_in_tu != NULL)
3955 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
3956 header->offset_size);
3957 info_ptr += header->offset_size;
3958
3959 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3960
3961 error_check_comp_unit_head (header, section, abbrev_section);
3962
3963 return info_ptr;
3964 }
3965
3966 /* Fetch the abbreviation table offset from a comp or type unit header. */
3967
3968 static sect_offset
3969 read_abbrev_offset (struct dwarf2_section_info *section,
3970 sect_offset offset)
3971 {
3972 bfd *abfd = section->asection->owner;
3973 gdb_byte *info_ptr;
3974 unsigned int length, initial_length_size, offset_size;
3975 sect_offset abbrev_offset;
3976
3977 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
3978 info_ptr = section->buffer + offset.sect_off;
3979 length = read_initial_length (abfd, info_ptr, &initial_length_size);
3980 offset_size = initial_length_size == 4 ? 4 : 8;
3981 info_ptr += initial_length_size + 2 /*version*/;
3982 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
3983 return abbrev_offset;
3984 }
3985
3986 /* Allocate a new partial symtab for file named NAME and mark this new
3987 partial symtab as being an include of PST. */
3988
3989 static void
3990 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3991 struct objfile *objfile)
3992 {
3993 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3994
3995 subpst->section_offsets = pst->section_offsets;
3996 subpst->textlow = 0;
3997 subpst->texthigh = 0;
3998
3999 subpst->dependencies = (struct partial_symtab **)
4000 obstack_alloc (&objfile->objfile_obstack,
4001 sizeof (struct partial_symtab *));
4002 subpst->dependencies[0] = pst;
4003 subpst->number_of_dependencies = 1;
4004
4005 subpst->globals_offset = 0;
4006 subpst->n_global_syms = 0;
4007 subpst->statics_offset = 0;
4008 subpst->n_static_syms = 0;
4009 subpst->symtab = NULL;
4010 subpst->read_symtab = pst->read_symtab;
4011 subpst->readin = 0;
4012
4013 /* No private part is necessary for include psymtabs. This property
4014 can be used to differentiate between such include psymtabs and
4015 the regular ones. */
4016 subpst->read_symtab_private = NULL;
4017 }
4018
4019 /* Read the Line Number Program data and extract the list of files
4020 included by the source file represented by PST. Build an include
4021 partial symtab for each of these included files. */
4022
4023 static void
4024 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4025 struct die_info *die,
4026 struct partial_symtab *pst)
4027 {
4028 struct line_header *lh = NULL;
4029 struct attribute *attr;
4030
4031 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4032 if (attr)
4033 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4034 if (lh == NULL)
4035 return; /* No linetable, so no includes. */
4036
4037 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4038 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4039
4040 free_line_header (lh);
4041 }
4042
4043 static hashval_t
4044 hash_signatured_type (const void *item)
4045 {
4046 const struct signatured_type *sig_type = item;
4047
4048 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4049 return sig_type->signature;
4050 }
4051
4052 static int
4053 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4054 {
4055 const struct signatured_type *lhs = item_lhs;
4056 const struct signatured_type *rhs = item_rhs;
4057
4058 return lhs->signature == rhs->signature;
4059 }
4060
4061 /* Allocate a hash table for signatured types. */
4062
4063 static htab_t
4064 allocate_signatured_type_table (struct objfile *objfile)
4065 {
4066 return htab_create_alloc_ex (41,
4067 hash_signatured_type,
4068 eq_signatured_type,
4069 NULL,
4070 &objfile->objfile_obstack,
4071 hashtab_obstack_allocate,
4072 dummy_obstack_deallocate);
4073 }
4074
4075 /* A helper function to add a signatured type CU to a table. */
4076
4077 static int
4078 add_signatured_type_cu_to_table (void **slot, void *datum)
4079 {
4080 struct signatured_type *sigt = *slot;
4081 struct signatured_type ***datap = datum;
4082
4083 **datap = sigt;
4084 ++*datap;
4085
4086 return 1;
4087 }
4088
4089 /* Create the hash table of all entries in the .debug_types section.
4090 DWO_FILE is a pointer to the DWO file for .debug_types.dwo,
4091 NULL otherwise.
4092 Note: This function processes DWO files only, not DWP files.
4093 The result is a pointer to the hash table or NULL if there are
4094 no types. */
4095
4096 static htab_t
4097 create_debug_types_hash_table (struct dwo_file *dwo_file,
4098 VEC (dwarf2_section_info_def) *types)
4099 {
4100 struct objfile *objfile = dwarf2_per_objfile->objfile;
4101 htab_t types_htab = NULL;
4102 int ix;
4103 struct dwarf2_section_info *section;
4104 struct dwarf2_section_info *abbrev_section;
4105
4106 if (VEC_empty (dwarf2_section_info_def, types))
4107 return NULL;
4108
4109 abbrev_section = (dwo_file != NULL
4110 ? &dwo_file->sections.abbrev
4111 : &dwarf2_per_objfile->abbrev);
4112
4113 if (dwarf2_read_debug)
4114 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4115 dwo_file ? ".dwo" : "",
4116 bfd_get_filename (abbrev_section->asection->owner));
4117
4118 for (ix = 0;
4119 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4120 ++ix)
4121 {
4122 bfd *abfd;
4123 gdb_byte *info_ptr, *end_ptr;
4124 struct dwarf2_section_info *abbrev_section;
4125
4126 dwarf2_read_section (objfile, section);
4127 info_ptr = section->buffer;
4128
4129 if (info_ptr == NULL)
4130 continue;
4131
4132 /* We can't set abfd until now because the section may be empty or
4133 not present, in which case section->asection will be NULL. */
4134 abfd = section->asection->owner;
4135
4136 if (dwo_file)
4137 abbrev_section = &dwo_file->sections.abbrev;
4138 else
4139 abbrev_section = &dwarf2_per_objfile->abbrev;
4140
4141 if (types_htab == NULL)
4142 {
4143 if (dwo_file)
4144 types_htab = allocate_dwo_unit_table (objfile);
4145 else
4146 types_htab = allocate_signatured_type_table (objfile);
4147 }
4148
4149 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4150 because we don't need to read any dies: the signature is in the
4151 header. */
4152
4153 end_ptr = info_ptr + section->size;
4154 while (info_ptr < end_ptr)
4155 {
4156 sect_offset offset;
4157 cu_offset type_offset_in_tu;
4158 ULONGEST signature;
4159 struct signatured_type *sig_type;
4160 struct dwo_unit *dwo_tu;
4161 void **slot;
4162 gdb_byte *ptr = info_ptr;
4163 struct comp_unit_head header;
4164 unsigned int length;
4165
4166 offset.sect_off = ptr - section->buffer;
4167
4168 /* We need to read the type's signature in order to build the hash
4169 table, but we don't need anything else just yet. */
4170
4171 ptr = read_and_check_type_unit_head (&header, section,
4172 abbrev_section, ptr,
4173 &signature, &type_offset_in_tu);
4174
4175 length = get_cu_length (&header);
4176
4177 /* Skip dummy type units. */
4178 if (ptr >= info_ptr + length
4179 || peek_abbrev_code (abfd, ptr) == 0)
4180 {
4181 info_ptr += length;
4182 continue;
4183 }
4184
4185 if (dwo_file)
4186 {
4187 sig_type = NULL;
4188 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4189 struct dwo_unit);
4190 dwo_tu->dwo_file = dwo_file;
4191 dwo_tu->signature = signature;
4192 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4193 dwo_tu->info_or_types_section = section;
4194 dwo_tu->offset = offset;
4195 dwo_tu->length = length;
4196 }
4197 else
4198 {
4199 /* N.B.: type_offset is not usable if this type uses a DWO file.
4200 The real type_offset is in the DWO file. */
4201 dwo_tu = NULL;
4202 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4203 struct signatured_type);
4204 sig_type->signature = signature;
4205 sig_type->type_offset_in_tu = type_offset_in_tu;
4206 sig_type->per_cu.objfile = objfile;
4207 sig_type->per_cu.is_debug_types = 1;
4208 sig_type->per_cu.info_or_types_section = section;
4209 sig_type->per_cu.offset = offset;
4210 sig_type->per_cu.length = length;
4211 }
4212
4213 slot = htab_find_slot (types_htab,
4214 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4215 INSERT);
4216 gdb_assert (slot != NULL);
4217 if (*slot != NULL)
4218 {
4219 sect_offset dup_offset;
4220
4221 if (dwo_file)
4222 {
4223 const struct dwo_unit *dup_tu = *slot;
4224
4225 dup_offset = dup_tu->offset;
4226 }
4227 else
4228 {
4229 const struct signatured_type *dup_tu = *slot;
4230
4231 dup_offset = dup_tu->per_cu.offset;
4232 }
4233
4234 complaint (&symfile_complaints,
4235 _("debug type entry at offset 0x%x is duplicate to the "
4236 "entry at offset 0x%x, signature 0x%s"),
4237 offset.sect_off, dup_offset.sect_off,
4238 phex (signature, sizeof (signature)));
4239 }
4240 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4241
4242 if (dwarf2_read_debug)
4243 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
4244 offset.sect_off,
4245 phex (signature, sizeof (signature)));
4246
4247 info_ptr += length;
4248 }
4249 }
4250
4251 return types_htab;
4252 }
4253
4254 /* Create the hash table of all entries in the .debug_types section,
4255 and initialize all_type_units.
4256 The result is zero if there is an error (e.g. missing .debug_types section),
4257 otherwise non-zero. */
4258
4259 static int
4260 create_all_type_units (struct objfile *objfile)
4261 {
4262 htab_t types_htab;
4263 struct signatured_type **iter;
4264
4265 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4266 if (types_htab == NULL)
4267 {
4268 dwarf2_per_objfile->signatured_types = NULL;
4269 return 0;
4270 }
4271
4272 dwarf2_per_objfile->signatured_types = types_htab;
4273
4274 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4275 dwarf2_per_objfile->all_type_units
4276 = obstack_alloc (&objfile->objfile_obstack,
4277 dwarf2_per_objfile->n_type_units
4278 * sizeof (struct signatured_type *));
4279 iter = &dwarf2_per_objfile->all_type_units[0];
4280 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4281 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4282 == dwarf2_per_objfile->n_type_units);
4283
4284 return 1;
4285 }
4286
4287 /* Lookup a signature based type for DW_FORM_ref_sig8.
4288 Returns NULL if signature SIG is not present in the table. */
4289
4290 static struct signatured_type *
4291 lookup_signatured_type (ULONGEST sig)
4292 {
4293 struct signatured_type find_entry, *entry;
4294
4295 if (dwarf2_per_objfile->signatured_types == NULL)
4296 {
4297 complaint (&symfile_complaints,
4298 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
4299 return NULL;
4300 }
4301
4302 find_entry.signature = sig;
4303 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4304 return entry;
4305 }
4306 \f
4307 /* Low level DIE reading support. */
4308
4309 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4310
4311 static void
4312 init_cu_die_reader (struct die_reader_specs *reader,
4313 struct dwarf2_cu *cu,
4314 struct dwarf2_section_info *section,
4315 struct dwo_file *dwo_file)
4316 {
4317 gdb_assert (section->readin && section->buffer != NULL);
4318 reader->abfd = section->asection->owner;
4319 reader->cu = cu;
4320 reader->dwo_file = dwo_file;
4321 reader->die_section = section;
4322 reader->buffer = section->buffer;
4323 reader->buffer_end = section->buffer + section->size;
4324 }
4325
4326 /* Initialize a CU (or TU) and read its DIEs.
4327 If the CU defers to a DWO file, read the DWO file as well.
4328
4329 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4330 Otherwise the table specified in the comp unit header is read in and used.
4331 This is an optimization for when we already have the abbrev table.
4332
4333 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4334 Otherwise, a new CU is allocated with xmalloc.
4335
4336 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4337 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4338
4339 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4340 linker) then DIE_READER_FUNC will not get called. */
4341
4342 static void
4343 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4344 struct abbrev_table *abbrev_table,
4345 int use_existing_cu, int keep,
4346 die_reader_func_ftype *die_reader_func,
4347 void *data)
4348 {
4349 struct objfile *objfile = dwarf2_per_objfile->objfile;
4350 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4351 bfd *abfd = section->asection->owner;
4352 struct dwarf2_cu *cu;
4353 gdb_byte *begin_info_ptr, *info_ptr;
4354 struct die_reader_specs reader;
4355 struct die_info *comp_unit_die;
4356 int has_children;
4357 struct attribute *attr;
4358 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4359 struct signatured_type *sig_type = NULL;
4360 struct dwarf2_section_info *abbrev_section;
4361 /* Non-zero if CU currently points to a DWO file and we need to
4362 reread it. When this happens we need to reread the skeleton die
4363 before we can reread the DWO file. */
4364 int rereading_dwo_cu = 0;
4365
4366 if (dwarf2_die_debug)
4367 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4368 this_cu->is_debug_types ? "type" : "comp",
4369 this_cu->offset.sect_off);
4370
4371 if (use_existing_cu)
4372 gdb_assert (keep);
4373
4374 cleanups = make_cleanup (null_cleanup, NULL);
4375
4376 /* This is cheap if the section is already read in. */
4377 dwarf2_read_section (objfile, section);
4378
4379 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4380
4381 abbrev_section = get_abbrev_section_for_cu (this_cu);
4382
4383 if (use_existing_cu && this_cu->cu != NULL)
4384 {
4385 cu = this_cu->cu;
4386
4387 /* If this CU is from a DWO file we need to start over, we need to
4388 refetch the attributes from the skeleton CU.
4389 This could be optimized by retrieving those attributes from when we
4390 were here the first time: the previous comp_unit_die was stored in
4391 comp_unit_obstack. But there's no data yet that we need this
4392 optimization. */
4393 if (cu->dwo_unit != NULL)
4394 rereading_dwo_cu = 1;
4395 }
4396 else
4397 {
4398 /* If !use_existing_cu, this_cu->cu must be NULL. */
4399 gdb_assert (this_cu->cu == NULL);
4400
4401 cu = xmalloc (sizeof (*cu));
4402 init_one_comp_unit (cu, this_cu);
4403
4404 /* If an error occurs while loading, release our storage. */
4405 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4406 }
4407
4408 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4409 {
4410 /* We already have the header, there's no need to read it in again. */
4411 info_ptr += cu->header.first_die_offset.cu_off;
4412 }
4413 else
4414 {
4415 if (this_cu->is_debug_types)
4416 {
4417 ULONGEST signature;
4418 cu_offset type_offset_in_tu;
4419
4420 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4421 abbrev_section, info_ptr,
4422 &signature,
4423 &type_offset_in_tu);
4424
4425 /* Since per_cu is the first member of struct signatured_type,
4426 we can go from a pointer to one to a pointer to the other. */
4427 sig_type = (struct signatured_type *) this_cu;
4428 gdb_assert (sig_type->signature == signature);
4429 gdb_assert (sig_type->type_offset_in_tu.cu_off
4430 == type_offset_in_tu.cu_off);
4431 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4432
4433 /* LENGTH has not been set yet for type units if we're
4434 using .gdb_index. */
4435 this_cu->length = get_cu_length (&cu->header);
4436
4437 /* Establish the type offset that can be used to lookup the type. */
4438 sig_type->type_offset_in_section.sect_off =
4439 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4440 }
4441 else
4442 {
4443 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4444 abbrev_section,
4445 info_ptr, 0);
4446
4447 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4448 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4449 }
4450 }
4451
4452 /* Skip dummy compilation units. */
4453 if (info_ptr >= begin_info_ptr + this_cu->length
4454 || peek_abbrev_code (abfd, info_ptr) == 0)
4455 {
4456 do_cleanups (cleanups);
4457 return;
4458 }
4459
4460 /* If we don't have them yet, read the abbrevs for this compilation unit.
4461 And if we need to read them now, make sure they're freed when we're
4462 done. Note that it's important that if the CU had an abbrev table
4463 on entry we don't free it when we're done: Somewhere up the call stack
4464 it may be in use. */
4465 if (abbrev_table != NULL)
4466 {
4467 gdb_assert (cu->abbrev_table == NULL);
4468 gdb_assert (cu->header.abbrev_offset.sect_off
4469 == abbrev_table->offset.sect_off);
4470 cu->abbrev_table = abbrev_table;
4471 }
4472 else if (cu->abbrev_table == NULL)
4473 {
4474 dwarf2_read_abbrevs (cu, abbrev_section);
4475 make_cleanup (dwarf2_free_abbrev_table, cu);
4476 }
4477 else if (rereading_dwo_cu)
4478 {
4479 dwarf2_free_abbrev_table (cu);
4480 dwarf2_read_abbrevs (cu, abbrev_section);
4481 }
4482
4483 /* Read the top level CU/TU die. */
4484 init_cu_die_reader (&reader, cu, section, NULL);
4485 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4486
4487 /* If we have a DWO stub, process it and then read in the DWO file.
4488 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4489 a DWO CU, that this test will fail. */
4490 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4491 if (attr)
4492 {
4493 char *dwo_name = DW_STRING (attr);
4494 const char *comp_dir_string;
4495 struct dwo_unit *dwo_unit;
4496 ULONGEST signature; /* Or dwo_id. */
4497 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4498 int i,num_extra_attrs;
4499 struct dwarf2_section_info *dwo_abbrev_section;
4500
4501 if (has_children)
4502 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4503 " has children (offset 0x%x) [in module %s]"),
4504 this_cu->offset.sect_off, bfd_get_filename (abfd));
4505
4506 /* These attributes aren't processed until later:
4507 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4508 However, the attribute is found in the stub which we won't have later.
4509 In order to not impose this complication on the rest of the code,
4510 we read them here and copy them to the DWO CU/TU die. */
4511
4512 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4513 DWO file. */
4514 stmt_list = NULL;
4515 if (! this_cu->is_debug_types)
4516 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4517 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4518 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4519 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
4520 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4521
4522 /* There should be a DW_AT_addr_base attribute here (if needed).
4523 We need the value before we can process DW_FORM_GNU_addr_index. */
4524 cu->addr_base = 0;
4525 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4526 if (attr)
4527 cu->addr_base = DW_UNSND (attr);
4528
4529 /* There should be a DW_AT_ranges_base attribute here (if needed).
4530 We need the value before we can process DW_AT_ranges. */
4531 cu->ranges_base = 0;
4532 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4533 if (attr)
4534 cu->ranges_base = DW_UNSND (attr);
4535
4536 if (this_cu->is_debug_types)
4537 {
4538 gdb_assert (sig_type != NULL);
4539 signature = sig_type->signature;
4540 }
4541 else
4542 {
4543 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4544 if (! attr)
4545 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4546 dwo_name);
4547 signature = DW_UNSND (attr);
4548 }
4549
4550 /* We may need the comp_dir in order to find the DWO file. */
4551 comp_dir_string = NULL;
4552 if (comp_dir)
4553 comp_dir_string = DW_STRING (comp_dir);
4554
4555 if (this_cu->is_debug_types)
4556 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
4557 else
4558 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
4559 signature);
4560
4561 if (dwo_unit == NULL)
4562 {
4563 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4564 " with ID %s [in module %s]"),
4565 this_cu->offset.sect_off,
4566 phex (signature, sizeof (signature)),
4567 objfile->name);
4568 }
4569
4570 /* Set up for reading the DWO CU/TU. */
4571 cu->dwo_unit = dwo_unit;
4572 section = dwo_unit->info_or_types_section;
4573 dwarf2_read_section (objfile, section);
4574 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4575 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4576 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4577
4578 if (this_cu->is_debug_types)
4579 {
4580 ULONGEST signature;
4581 cu_offset type_offset_in_tu;
4582
4583 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4584 dwo_abbrev_section,
4585 info_ptr,
4586 &signature,
4587 &type_offset_in_tu);
4588 gdb_assert (sig_type->signature == signature);
4589 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4590 /* For DWOs coming from DWP files, we don't know the CU length
4591 nor the type's offset in the TU until now. */
4592 dwo_unit->length = get_cu_length (&cu->header);
4593 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4594
4595 /* Establish the type offset that can be used to lookup the type.
4596 For DWO files, we don't know it until now. */
4597 sig_type->type_offset_in_section.sect_off =
4598 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4599 }
4600 else
4601 {
4602 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4603 dwo_abbrev_section,
4604 info_ptr, 0);
4605 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4606 /* For DWOs coming from DWP files, we don't know the CU length
4607 until now. */
4608 dwo_unit->length = get_cu_length (&cu->header);
4609 }
4610
4611 /* Discard the original CU's abbrev table, and read the DWO's. */
4612 if (abbrev_table == NULL)
4613 {
4614 dwarf2_free_abbrev_table (cu);
4615 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4616 }
4617 else
4618 {
4619 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4620 make_cleanup (dwarf2_free_abbrev_table, cu);
4621 }
4622
4623 /* Read in the die, but leave space to copy over the attributes
4624 from the stub. This has the benefit of simplifying the rest of
4625 the code - all the real work is done here. */
4626 num_extra_attrs = ((stmt_list != NULL)
4627 + (low_pc != NULL)
4628 + (high_pc != NULL)
4629 + (ranges != NULL)
4630 + (comp_dir != NULL));
4631 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4632 &has_children, num_extra_attrs);
4633
4634 /* Copy over the attributes from the stub to the DWO die. */
4635 i = comp_unit_die->num_attrs;
4636 if (stmt_list != NULL)
4637 comp_unit_die->attrs[i++] = *stmt_list;
4638 if (low_pc != NULL)
4639 comp_unit_die->attrs[i++] = *low_pc;
4640 if (high_pc != NULL)
4641 comp_unit_die->attrs[i++] = *high_pc;
4642 if (ranges != NULL)
4643 comp_unit_die->attrs[i++] = *ranges;
4644 if (comp_dir != NULL)
4645 comp_unit_die->attrs[i++] = *comp_dir;
4646 comp_unit_die->num_attrs += num_extra_attrs;
4647
4648 /* Skip dummy compilation units. */
4649 if (info_ptr >= begin_info_ptr + dwo_unit->length
4650 || peek_abbrev_code (abfd, info_ptr) == 0)
4651 {
4652 do_cleanups (cleanups);
4653 return;
4654 }
4655 }
4656
4657 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4658
4659 if (free_cu_cleanup != NULL)
4660 {
4661 if (keep)
4662 {
4663 /* We've successfully allocated this compilation unit. Let our
4664 caller clean it up when finished with it. */
4665 discard_cleanups (free_cu_cleanup);
4666
4667 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4668 So we have to manually free the abbrev table. */
4669 dwarf2_free_abbrev_table (cu);
4670
4671 /* Link this CU into read_in_chain. */
4672 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4673 dwarf2_per_objfile->read_in_chain = this_cu;
4674 }
4675 else
4676 do_cleanups (free_cu_cleanup);
4677 }
4678
4679 do_cleanups (cleanups);
4680 }
4681
4682 /* Read CU/TU THIS_CU in section SECTION,
4683 but do not follow DW_AT_GNU_dwo_name if present.
4684 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4685 to have already done the lookup to find the DWO/DWP file).
4686
4687 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4688 THIS_CU->is_debug_types, but nothing else.
4689
4690 We fill in THIS_CU->length.
4691
4692 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4693 linker) then DIE_READER_FUNC will not get called.
4694
4695 THIS_CU->cu is always freed when done.
4696 This is done in order to not leave THIS_CU->cu in a state where we have
4697 to care whether it refers to the "main" CU or the DWO CU. */
4698
4699 static void
4700 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4701 struct dwarf2_section_info *abbrev_section,
4702 struct dwo_file *dwo_file,
4703 die_reader_func_ftype *die_reader_func,
4704 void *data)
4705 {
4706 struct objfile *objfile = dwarf2_per_objfile->objfile;
4707 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4708 bfd *abfd = section->asection->owner;
4709 struct dwarf2_cu cu;
4710 gdb_byte *begin_info_ptr, *info_ptr;
4711 struct die_reader_specs reader;
4712 struct cleanup *cleanups;
4713 struct die_info *comp_unit_die;
4714 int has_children;
4715
4716 if (dwarf2_die_debug)
4717 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4718 this_cu->is_debug_types ? "type" : "comp",
4719 this_cu->offset.sect_off);
4720
4721 gdb_assert (this_cu->cu == NULL);
4722
4723 /* This is cheap if the section is already read in. */
4724 dwarf2_read_section (objfile, section);
4725
4726 init_one_comp_unit (&cu, this_cu);
4727
4728 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4729
4730 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4731 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4732 abbrev_section, info_ptr,
4733 this_cu->is_debug_types);
4734
4735 this_cu->length = get_cu_length (&cu.header);
4736
4737 /* Skip dummy compilation units. */
4738 if (info_ptr >= begin_info_ptr + this_cu->length
4739 || peek_abbrev_code (abfd, info_ptr) == 0)
4740 {
4741 do_cleanups (cleanups);
4742 return;
4743 }
4744
4745 dwarf2_read_abbrevs (&cu, abbrev_section);
4746 make_cleanup (dwarf2_free_abbrev_table, &cu);
4747
4748 init_cu_die_reader (&reader, &cu, section, dwo_file);
4749 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4750
4751 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4752
4753 do_cleanups (cleanups);
4754 }
4755
4756 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4757 does not lookup the specified DWO file.
4758 This cannot be used to read DWO files.
4759
4760 THIS_CU->cu is always freed when done.
4761 This is done in order to not leave THIS_CU->cu in a state where we have
4762 to care whether it refers to the "main" CU or the DWO CU.
4763 We can revisit this if the data shows there's a performance issue. */
4764
4765 static void
4766 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4767 die_reader_func_ftype *die_reader_func,
4768 void *data)
4769 {
4770 init_cutu_and_read_dies_no_follow (this_cu,
4771 get_abbrev_section_for_cu (this_cu),
4772 NULL,
4773 die_reader_func, data);
4774 }
4775
4776 /* Create a psymtab named NAME and assign it to PER_CU.
4777
4778 The caller must fill in the following details:
4779 dirname, textlow, texthigh. */
4780
4781 static struct partial_symtab *
4782 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
4783 {
4784 struct objfile *objfile = per_cu->objfile;
4785 struct partial_symtab *pst;
4786
4787 pst = start_psymtab_common (objfile, objfile->section_offsets,
4788 name, 0,
4789 objfile->global_psymbols.next,
4790 objfile->static_psymbols.next);
4791
4792 pst->psymtabs_addrmap_supported = 1;
4793
4794 /* This is the glue that links PST into GDB's symbol API. */
4795 pst->read_symtab_private = per_cu;
4796 pst->read_symtab = dwarf2_psymtab_to_symtab;
4797 per_cu->v.psymtab = pst;
4798
4799 return pst;
4800 }
4801
4802 /* die_reader_func for process_psymtab_comp_unit. */
4803
4804 static void
4805 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4806 gdb_byte *info_ptr,
4807 struct die_info *comp_unit_die,
4808 int has_children,
4809 void *data)
4810 {
4811 struct dwarf2_cu *cu = reader->cu;
4812 struct objfile *objfile = cu->objfile;
4813 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
4814 struct attribute *attr;
4815 CORE_ADDR baseaddr;
4816 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4817 struct partial_symtab *pst;
4818 int has_pc_info;
4819 const char *filename;
4820 int *want_partial_unit_ptr = data;
4821
4822 if (comp_unit_die->tag == DW_TAG_partial_unit
4823 && (want_partial_unit_ptr == NULL
4824 || !*want_partial_unit_ptr))
4825 return;
4826
4827 gdb_assert (! per_cu->is_debug_types);
4828
4829 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
4830
4831 cu->list_in_scope = &file_symbols;
4832
4833 /* Allocate a new partial symbol table structure. */
4834 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
4835 if (attr == NULL || !DW_STRING (attr))
4836 filename = "";
4837 else
4838 filename = DW_STRING (attr);
4839
4840 pst = create_partial_symtab (per_cu, filename);
4841
4842 /* This must be done before calling dwarf2_build_include_psymtabs. */
4843 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4844 if (attr != NULL)
4845 pst->dirname = DW_STRING (attr);
4846
4847 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4848
4849 dwarf2_find_base_address (comp_unit_die, cu);
4850
4851 /* Possibly set the default values of LOWPC and HIGHPC from
4852 `DW_AT_ranges'. */
4853 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
4854 &best_highpc, cu, pst);
4855 if (has_pc_info == 1 && best_lowpc < best_highpc)
4856 /* Store the contiguous range if it is not empty; it can be empty for
4857 CUs with no code. */
4858 addrmap_set_empty (objfile->psymtabs_addrmap,
4859 best_lowpc + baseaddr,
4860 best_highpc + baseaddr - 1, pst);
4861
4862 /* Check if comp unit has_children.
4863 If so, read the rest of the partial symbols from this comp unit.
4864 If not, there's no more debug_info for this comp unit. */
4865 if (has_children)
4866 {
4867 struct partial_die_info *first_die;
4868 CORE_ADDR lowpc, highpc;
4869
4870 lowpc = ((CORE_ADDR) -1);
4871 highpc = ((CORE_ADDR) 0);
4872
4873 first_die = load_partial_dies (reader, info_ptr, 1);
4874
4875 scan_partial_symbols (first_die, &lowpc, &highpc,
4876 ! has_pc_info, cu);
4877
4878 /* If we didn't find a lowpc, set it to highpc to avoid
4879 complaints from `maint check'. */
4880 if (lowpc == ((CORE_ADDR) -1))
4881 lowpc = highpc;
4882
4883 /* If the compilation unit didn't have an explicit address range,
4884 then use the information extracted from its child dies. */
4885 if (! has_pc_info)
4886 {
4887 best_lowpc = lowpc;
4888 best_highpc = highpc;
4889 }
4890 }
4891 pst->textlow = best_lowpc + baseaddr;
4892 pst->texthigh = best_highpc + baseaddr;
4893
4894 pst->n_global_syms = objfile->global_psymbols.next -
4895 (objfile->global_psymbols.list + pst->globals_offset);
4896 pst->n_static_syms = objfile->static_psymbols.next -
4897 (objfile->static_psymbols.list + pst->statics_offset);
4898 sort_pst_symbols (pst);
4899
4900 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs))
4901 {
4902 int i;
4903 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
4904 struct dwarf2_per_cu_data *iter;
4905
4906 /* Fill in 'dependencies' here; we fill in 'users' in a
4907 post-pass. */
4908 pst->number_of_dependencies = len;
4909 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
4910 len * sizeof (struct symtab *));
4911 for (i = 0;
4912 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
4913 i, iter);
4914 ++i)
4915 pst->dependencies[i] = iter->v.psymtab;
4916
4917 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
4918 }
4919
4920 /* Get the list of files included in the current compilation unit,
4921 and build a psymtab for each of them. */
4922 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
4923
4924 if (dwarf2_read_debug)
4925 {
4926 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4927
4928 fprintf_unfiltered (gdb_stdlog,
4929 "Psymtab for %s unit @0x%x: %s - %s"
4930 ", %d global, %d static syms\n",
4931 per_cu->is_debug_types ? "type" : "comp",
4932 per_cu->offset.sect_off,
4933 paddress (gdbarch, pst->textlow),
4934 paddress (gdbarch, pst->texthigh),
4935 pst->n_global_syms, pst->n_static_syms);
4936 }
4937 }
4938
4939 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
4940 Process compilation unit THIS_CU for a psymtab. */
4941
4942 static void
4943 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
4944 int want_partial_unit)
4945 {
4946 /* If this compilation unit was already read in, free the
4947 cached copy in order to read it in again. This is
4948 necessary because we skipped some symbols when we first
4949 read in the compilation unit (see load_partial_dies).
4950 This problem could be avoided, but the benefit is unclear. */
4951 if (this_cu->cu != NULL)
4952 free_one_cached_comp_unit (this_cu);
4953
4954 gdb_assert (! this_cu->is_debug_types);
4955 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
4956 process_psymtab_comp_unit_reader,
4957 &want_partial_unit);
4958
4959 /* Age out any secondary CUs. */
4960 age_cached_comp_units ();
4961 }
4962
4963 static hashval_t
4964 hash_type_unit_group (const void *item)
4965 {
4966 const struct type_unit_group *tu_group = item;
4967
4968 return hash_stmt_list_entry (&tu_group->hash);
4969 }
4970
4971 static int
4972 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
4973 {
4974 const struct type_unit_group *lhs = item_lhs;
4975 const struct type_unit_group *rhs = item_rhs;
4976
4977 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
4978 }
4979
4980 /* Allocate a hash table for type unit groups. */
4981
4982 static htab_t
4983 allocate_type_unit_groups_table (void)
4984 {
4985 return htab_create_alloc_ex (3,
4986 hash_type_unit_group,
4987 eq_type_unit_group,
4988 NULL,
4989 &dwarf2_per_objfile->objfile->objfile_obstack,
4990 hashtab_obstack_allocate,
4991 dummy_obstack_deallocate);
4992 }
4993
4994 /* Type units that don't have DW_AT_stmt_list are grouped into their own
4995 partial symtabs. We combine several TUs per psymtab to not let the size
4996 of any one psymtab grow too big. */
4997 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
4998 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
4999
5000 /* Helper routine for get_type_unit_group.
5001 Create the type_unit_group object used to hold one or more TUs. */
5002
5003 static struct type_unit_group *
5004 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5005 {
5006 struct objfile *objfile = dwarf2_per_objfile->objfile;
5007 struct dwarf2_per_cu_data *per_cu;
5008 struct type_unit_group *tu_group;
5009
5010 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5011 struct type_unit_group);
5012 per_cu = &tu_group->per_cu;
5013 per_cu->objfile = objfile;
5014 per_cu->is_debug_types = 1;
5015 per_cu->s.type_unit_group = tu_group;
5016
5017 if (dwarf2_per_objfile->using_index)
5018 {
5019 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5020 struct dwarf2_per_cu_quick_data);
5021 tu_group->t.first_tu = cu->per_cu;
5022 }
5023 else
5024 {
5025 unsigned int line_offset = line_offset_struct.sect_off;
5026 struct partial_symtab *pst;
5027 char *name;
5028
5029 /* Give the symtab a useful name for debug purposes. */
5030 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5031 name = xstrprintf ("<type_units_%d>",
5032 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5033 else
5034 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5035
5036 pst = create_partial_symtab (per_cu, name);
5037 pst->anonymous = 1;
5038
5039 xfree (name);
5040 }
5041
5042 tu_group->hash.dwo_unit = cu->dwo_unit;
5043 tu_group->hash.line_offset = line_offset_struct;
5044
5045 return tu_group;
5046 }
5047
5048 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5049 STMT_LIST is a DW_AT_stmt_list attribute. */
5050
5051 static struct type_unit_group *
5052 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5053 {
5054 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5055 struct type_unit_group *tu_group;
5056 void **slot;
5057 unsigned int line_offset;
5058 struct type_unit_group type_unit_group_for_lookup;
5059
5060 if (dwarf2_per_objfile->type_unit_groups == NULL)
5061 {
5062 dwarf2_per_objfile->type_unit_groups =
5063 allocate_type_unit_groups_table ();
5064 }
5065
5066 /* Do we need to create a new group, or can we use an existing one? */
5067
5068 if (stmt_list)
5069 {
5070 line_offset = DW_UNSND (stmt_list);
5071 ++tu_stats->nr_symtab_sharers;
5072 }
5073 else
5074 {
5075 /* Ugh, no stmt_list. Rare, but we have to handle it.
5076 We can do various things here like create one group per TU or
5077 spread them over multiple groups to split up the expansion work.
5078 To avoid worst case scenarios (too many groups or too large groups)
5079 we, umm, group them in bunches. */
5080 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5081 | (tu_stats->nr_stmt_less_type_units
5082 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5083 ++tu_stats->nr_stmt_less_type_units;
5084 }
5085
5086 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5087 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5088 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5089 &type_unit_group_for_lookup, INSERT);
5090 if (*slot != NULL)
5091 {
5092 tu_group = *slot;
5093 gdb_assert (tu_group != NULL);
5094 }
5095 else
5096 {
5097 sect_offset line_offset_struct;
5098
5099 line_offset_struct.sect_off = line_offset;
5100 tu_group = create_type_unit_group (cu, line_offset_struct);
5101 *slot = tu_group;
5102 ++tu_stats->nr_symtabs;
5103 }
5104
5105 return tu_group;
5106 }
5107
5108 /* Struct used to sort TUs by their abbreviation table offset. */
5109
5110 struct tu_abbrev_offset
5111 {
5112 struct signatured_type *sig_type;
5113 sect_offset abbrev_offset;
5114 };
5115
5116 /* Helper routine for build_type_unit_groups, passed to qsort. */
5117
5118 static int
5119 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5120 {
5121 const struct tu_abbrev_offset * const *a = ap;
5122 const struct tu_abbrev_offset * const *b = bp;
5123 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5124 unsigned int boff = (*b)->abbrev_offset.sect_off;
5125
5126 return (aoff > boff) - (aoff < boff);
5127 }
5128
5129 /* A helper function to add a type_unit_group to a table. */
5130
5131 static int
5132 add_type_unit_group_to_table (void **slot, void *datum)
5133 {
5134 struct type_unit_group *tu_group = *slot;
5135 struct type_unit_group ***datap = datum;
5136
5137 **datap = tu_group;
5138 ++*datap;
5139
5140 return 1;
5141 }
5142
5143 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5144 each one passing FUNC,DATA.
5145
5146 The efficiency is because we sort TUs by the abbrev table they use and
5147 only read each abbrev table once. In one program there are 200K TUs
5148 sharing 8K abbrev tables.
5149
5150 The main purpose of this function is to support building the
5151 dwarf2_per_objfile->type_unit_groups table.
5152 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5153 can collapse the search space by grouping them by stmt_list.
5154 The savings can be significant, in the same program from above the 200K TUs
5155 share 8K stmt_list tables.
5156
5157 FUNC is expected to call get_type_unit_group, which will create the
5158 struct type_unit_group if necessary and add it to
5159 dwarf2_per_objfile->type_unit_groups. */
5160
5161 static void
5162 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5163 {
5164 struct objfile *objfile = dwarf2_per_objfile->objfile;
5165 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5166 struct cleanup *cleanups;
5167 struct abbrev_table *abbrev_table;
5168 sect_offset abbrev_offset;
5169 struct tu_abbrev_offset *sorted_by_abbrev;
5170 struct type_unit_group **iter;
5171 int i;
5172
5173 /* It's up to the caller to not call us multiple times. */
5174 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5175
5176 if (dwarf2_per_objfile->n_type_units == 0)
5177 return;
5178
5179 /* TUs typically share abbrev tables, and there can be way more TUs than
5180 abbrev tables. Sort by abbrev table to reduce the number of times we
5181 read each abbrev table in.
5182 Alternatives are to punt or to maintain a cache of abbrev tables.
5183 This is simpler and efficient enough for now.
5184
5185 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5186 symtab to use). Typically TUs with the same abbrev offset have the same
5187 stmt_list value too so in practice this should work well.
5188
5189 The basic algorithm here is:
5190
5191 sort TUs by abbrev table
5192 for each TU with same abbrev table:
5193 read abbrev table if first user
5194 read TU top level DIE
5195 [IWBN if DWO skeletons had DW_AT_stmt_list]
5196 call FUNC */
5197
5198 if (dwarf2_read_debug)
5199 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5200
5201 /* Sort in a separate table to maintain the order of all_type_units
5202 for .gdb_index: TU indices directly index all_type_units. */
5203 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5204 dwarf2_per_objfile->n_type_units);
5205 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5206 {
5207 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5208
5209 sorted_by_abbrev[i].sig_type = sig_type;
5210 sorted_by_abbrev[i].abbrev_offset =
5211 read_abbrev_offset (sig_type->per_cu.info_or_types_section,
5212 sig_type->per_cu.offset);
5213 }
5214 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5215 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5216 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5217
5218 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5219 called any number of times, so we don't reset tu_stats here. */
5220
5221 abbrev_offset.sect_off = ~(unsigned) 0;
5222 abbrev_table = NULL;
5223 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5224
5225 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5226 {
5227 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5228
5229 /* Switch to the next abbrev table if necessary. */
5230 if (abbrev_table == NULL
5231 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5232 {
5233 if (abbrev_table != NULL)
5234 {
5235 abbrev_table_free (abbrev_table);
5236 /* Reset to NULL in case abbrev_table_read_table throws
5237 an error: abbrev_table_free_cleanup will get called. */
5238 abbrev_table = NULL;
5239 }
5240 abbrev_offset = tu->abbrev_offset;
5241 abbrev_table =
5242 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5243 abbrev_offset);
5244 ++tu_stats->nr_uniq_abbrev_tables;
5245 }
5246
5247 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5248 func, data);
5249 }
5250
5251 /* Create a vector of pointers to primary type units to make it easy to
5252 iterate over them and CUs. See dw2_get_primary_cu. */
5253 dwarf2_per_objfile->n_type_unit_groups =
5254 htab_elements (dwarf2_per_objfile->type_unit_groups);
5255 dwarf2_per_objfile->all_type_unit_groups =
5256 obstack_alloc (&objfile->objfile_obstack,
5257 dwarf2_per_objfile->n_type_unit_groups
5258 * sizeof (struct type_unit_group *));
5259 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5260 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5261 add_type_unit_group_to_table, &iter);
5262 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5263 == dwarf2_per_objfile->n_type_unit_groups);
5264
5265 do_cleanups (cleanups);
5266
5267 if (dwarf2_read_debug)
5268 {
5269 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5270 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5271 dwarf2_per_objfile->n_type_units);
5272 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5273 tu_stats->nr_uniq_abbrev_tables);
5274 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5275 tu_stats->nr_symtabs);
5276 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5277 tu_stats->nr_symtab_sharers);
5278 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5279 tu_stats->nr_stmt_less_type_units);
5280 }
5281 }
5282
5283 /* Reader function for build_type_psymtabs. */
5284
5285 static void
5286 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5287 gdb_byte *info_ptr,
5288 struct die_info *type_unit_die,
5289 int has_children,
5290 void *data)
5291 {
5292 struct objfile *objfile = dwarf2_per_objfile->objfile;
5293 struct dwarf2_cu *cu = reader->cu;
5294 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5295 struct type_unit_group *tu_group;
5296 struct attribute *attr;
5297 struct partial_die_info *first_die;
5298 CORE_ADDR lowpc, highpc;
5299 struct partial_symtab *pst;
5300
5301 gdb_assert (data == NULL);
5302
5303 if (! has_children)
5304 return;
5305
5306 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5307 tu_group = get_type_unit_group (cu, attr);
5308
5309 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
5310
5311 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5312 cu->list_in_scope = &file_symbols;
5313 pst = create_partial_symtab (per_cu, "");
5314 pst->anonymous = 1;
5315
5316 first_die = load_partial_dies (reader, info_ptr, 1);
5317
5318 lowpc = (CORE_ADDR) -1;
5319 highpc = (CORE_ADDR) 0;
5320 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5321
5322 pst->n_global_syms = objfile->global_psymbols.next -
5323 (objfile->global_psymbols.list + pst->globals_offset);
5324 pst->n_static_syms = objfile->static_psymbols.next -
5325 (objfile->static_psymbols.list + pst->statics_offset);
5326 sort_pst_symbols (pst);
5327 }
5328
5329 /* Traversal function for build_type_psymtabs. */
5330
5331 static int
5332 build_type_psymtab_dependencies (void **slot, void *info)
5333 {
5334 struct objfile *objfile = dwarf2_per_objfile->objfile;
5335 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5336 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5337 struct partial_symtab *pst = per_cu->v.psymtab;
5338 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
5339 struct dwarf2_per_cu_data *iter;
5340 int i;
5341
5342 gdb_assert (len > 0);
5343
5344 pst->number_of_dependencies = len;
5345 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5346 len * sizeof (struct psymtab *));
5347 for (i = 0;
5348 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
5349 ++i)
5350 {
5351 pst->dependencies[i] = iter->v.psymtab;
5352 iter->s.type_unit_group = tu_group;
5353 }
5354
5355 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
5356
5357 return 1;
5358 }
5359
5360 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5361 Build partial symbol tables for the .debug_types comp-units. */
5362
5363 static void
5364 build_type_psymtabs (struct objfile *objfile)
5365 {
5366 if (! create_all_type_units (objfile))
5367 return;
5368
5369 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5370
5371 /* Now that all TUs have been processed we can fill in the dependencies. */
5372 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5373 build_type_psymtab_dependencies, NULL);
5374 }
5375
5376 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5377
5378 static void
5379 psymtabs_addrmap_cleanup (void *o)
5380 {
5381 struct objfile *objfile = o;
5382
5383 objfile->psymtabs_addrmap = NULL;
5384 }
5385
5386 /* Compute the 'user' field for each psymtab in OBJFILE. */
5387
5388 static void
5389 set_partial_user (struct objfile *objfile)
5390 {
5391 int i;
5392
5393 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5394 {
5395 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5396 struct partial_symtab *pst = per_cu->v.psymtab;
5397 int j;
5398
5399 if (pst == NULL)
5400 continue;
5401
5402 for (j = 0; j < pst->number_of_dependencies; ++j)
5403 {
5404 /* Set the 'user' field only if it is not already set. */
5405 if (pst->dependencies[j]->user == NULL)
5406 pst->dependencies[j]->user = pst;
5407 }
5408 }
5409 }
5410
5411 /* Build the partial symbol table by doing a quick pass through the
5412 .debug_info and .debug_abbrev sections. */
5413
5414 static void
5415 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5416 {
5417 struct cleanup *back_to, *addrmap_cleanup;
5418 struct obstack temp_obstack;
5419 int i;
5420
5421 if (dwarf2_read_debug)
5422 {
5423 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5424 objfile->name);
5425 }
5426
5427 dwarf2_per_objfile->reading_partial_symbols = 1;
5428
5429 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5430
5431 /* Any cached compilation units will be linked by the per-objfile
5432 read_in_chain. Make sure to free them when we're done. */
5433 back_to = make_cleanup (free_cached_comp_units, NULL);
5434
5435 build_type_psymtabs (objfile);
5436
5437 create_all_comp_units (objfile);
5438
5439 /* Create a temporary address map on a temporary obstack. We later
5440 copy this to the final obstack. */
5441 obstack_init (&temp_obstack);
5442 make_cleanup_obstack_free (&temp_obstack);
5443 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5444 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5445
5446 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5447 {
5448 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5449
5450 process_psymtab_comp_unit (per_cu, 0);
5451 }
5452
5453 set_partial_user (objfile);
5454
5455 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5456 &objfile->objfile_obstack);
5457 discard_cleanups (addrmap_cleanup);
5458
5459 do_cleanups (back_to);
5460
5461 if (dwarf2_read_debug)
5462 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5463 objfile->name);
5464 }
5465
5466 /* die_reader_func for load_partial_comp_unit. */
5467
5468 static void
5469 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5470 gdb_byte *info_ptr,
5471 struct die_info *comp_unit_die,
5472 int has_children,
5473 void *data)
5474 {
5475 struct dwarf2_cu *cu = reader->cu;
5476
5477 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5478
5479 /* Check if comp unit has_children.
5480 If so, read the rest of the partial symbols from this comp unit.
5481 If not, there's no more debug_info for this comp unit. */
5482 if (has_children)
5483 load_partial_dies (reader, info_ptr, 0);
5484 }
5485
5486 /* Load the partial DIEs for a secondary CU into memory.
5487 This is also used when rereading a primary CU with load_all_dies. */
5488
5489 static void
5490 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5491 {
5492 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5493 load_partial_comp_unit_reader, NULL);
5494 }
5495
5496 static void
5497 read_comp_units_from_section (struct objfile *objfile,
5498 struct dwarf2_section_info *section,
5499 unsigned int is_dwz,
5500 int *n_allocated,
5501 int *n_comp_units,
5502 struct dwarf2_per_cu_data ***all_comp_units)
5503 {
5504 gdb_byte *info_ptr;
5505 bfd *abfd = section->asection->owner;
5506
5507 dwarf2_read_section (objfile, section);
5508
5509 info_ptr = section->buffer;
5510
5511 while (info_ptr < section->buffer + section->size)
5512 {
5513 unsigned int length, initial_length_size;
5514 struct dwarf2_per_cu_data *this_cu;
5515 sect_offset offset;
5516
5517 offset.sect_off = info_ptr - section->buffer;
5518
5519 /* Read just enough information to find out where the next
5520 compilation unit is. */
5521 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5522
5523 /* Save the compilation unit for later lookup. */
5524 this_cu = obstack_alloc (&objfile->objfile_obstack,
5525 sizeof (struct dwarf2_per_cu_data));
5526 memset (this_cu, 0, sizeof (*this_cu));
5527 this_cu->offset = offset;
5528 this_cu->length = length + initial_length_size;
5529 this_cu->is_dwz = is_dwz;
5530 this_cu->objfile = objfile;
5531 this_cu->info_or_types_section = section;
5532
5533 if (*n_comp_units == *n_allocated)
5534 {
5535 *n_allocated *= 2;
5536 *all_comp_units = xrealloc (*all_comp_units,
5537 *n_allocated
5538 * sizeof (struct dwarf2_per_cu_data *));
5539 }
5540 (*all_comp_units)[*n_comp_units] = this_cu;
5541 ++*n_comp_units;
5542
5543 info_ptr = info_ptr + this_cu->length;
5544 }
5545 }
5546
5547 /* Create a list of all compilation units in OBJFILE.
5548 This is only done for -readnow and building partial symtabs. */
5549
5550 static void
5551 create_all_comp_units (struct objfile *objfile)
5552 {
5553 int n_allocated;
5554 int n_comp_units;
5555 struct dwarf2_per_cu_data **all_comp_units;
5556
5557 n_comp_units = 0;
5558 n_allocated = 10;
5559 all_comp_units = xmalloc (n_allocated
5560 * sizeof (struct dwarf2_per_cu_data *));
5561
5562 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5563 &n_allocated, &n_comp_units, &all_comp_units);
5564
5565 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5566 {
5567 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5568
5569 read_comp_units_from_section (objfile, &dwz->info, 1,
5570 &n_allocated, &n_comp_units,
5571 &all_comp_units);
5572 }
5573
5574 dwarf2_per_objfile->all_comp_units
5575 = obstack_alloc (&objfile->objfile_obstack,
5576 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5577 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5578 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5579 xfree (all_comp_units);
5580 dwarf2_per_objfile->n_comp_units = n_comp_units;
5581 }
5582
5583 /* Process all loaded DIEs for compilation unit CU, starting at
5584 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5585 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5586 DW_AT_ranges). If NEED_PC is set, then this function will set
5587 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5588 and record the covered ranges in the addrmap. */
5589
5590 static void
5591 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5592 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5593 {
5594 struct partial_die_info *pdi;
5595
5596 /* Now, march along the PDI's, descending into ones which have
5597 interesting children but skipping the children of the other ones,
5598 until we reach the end of the compilation unit. */
5599
5600 pdi = first_die;
5601
5602 while (pdi != NULL)
5603 {
5604 fixup_partial_die (pdi, cu);
5605
5606 /* Anonymous namespaces or modules have no name but have interesting
5607 children, so we need to look at them. Ditto for anonymous
5608 enums. */
5609
5610 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5611 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5612 || pdi->tag == DW_TAG_imported_unit)
5613 {
5614 switch (pdi->tag)
5615 {
5616 case DW_TAG_subprogram:
5617 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5618 break;
5619 case DW_TAG_constant:
5620 case DW_TAG_variable:
5621 case DW_TAG_typedef:
5622 case DW_TAG_union_type:
5623 if (!pdi->is_declaration)
5624 {
5625 add_partial_symbol (pdi, cu);
5626 }
5627 break;
5628 case DW_TAG_class_type:
5629 case DW_TAG_interface_type:
5630 case DW_TAG_structure_type:
5631 if (!pdi->is_declaration)
5632 {
5633 add_partial_symbol (pdi, cu);
5634 }
5635 break;
5636 case DW_TAG_enumeration_type:
5637 if (!pdi->is_declaration)
5638 add_partial_enumeration (pdi, cu);
5639 break;
5640 case DW_TAG_base_type:
5641 case DW_TAG_subrange_type:
5642 /* File scope base type definitions are added to the partial
5643 symbol table. */
5644 add_partial_symbol (pdi, cu);
5645 break;
5646 case DW_TAG_namespace:
5647 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5648 break;
5649 case DW_TAG_module:
5650 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5651 break;
5652 case DW_TAG_imported_unit:
5653 {
5654 struct dwarf2_per_cu_data *per_cu;
5655
5656 /* For now we don't handle imported units in type units. */
5657 if (cu->per_cu->is_debug_types)
5658 {
5659 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5660 " supported in type units [in module %s]"),
5661 cu->objfile->name);
5662 }
5663
5664 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5665 pdi->is_dwz,
5666 cu->objfile);
5667
5668 /* Go read the partial unit, if needed. */
5669 if (per_cu->v.psymtab == NULL)
5670 process_psymtab_comp_unit (per_cu, 1);
5671
5672 VEC_safe_push (dwarf2_per_cu_ptr,
5673 cu->per_cu->s.imported_symtabs, per_cu);
5674 }
5675 break;
5676 default:
5677 break;
5678 }
5679 }
5680
5681 /* If the die has a sibling, skip to the sibling. */
5682
5683 pdi = pdi->die_sibling;
5684 }
5685 }
5686
5687 /* Functions used to compute the fully scoped name of a partial DIE.
5688
5689 Normally, this is simple. For C++, the parent DIE's fully scoped
5690 name is concatenated with "::" and the partial DIE's name. For
5691 Java, the same thing occurs except that "." is used instead of "::".
5692 Enumerators are an exception; they use the scope of their parent
5693 enumeration type, i.e. the name of the enumeration type is not
5694 prepended to the enumerator.
5695
5696 There are two complexities. One is DW_AT_specification; in this
5697 case "parent" means the parent of the target of the specification,
5698 instead of the direct parent of the DIE. The other is compilers
5699 which do not emit DW_TAG_namespace; in this case we try to guess
5700 the fully qualified name of structure types from their members'
5701 linkage names. This must be done using the DIE's children rather
5702 than the children of any DW_AT_specification target. We only need
5703 to do this for structures at the top level, i.e. if the target of
5704 any DW_AT_specification (if any; otherwise the DIE itself) does not
5705 have a parent. */
5706
5707 /* Compute the scope prefix associated with PDI's parent, in
5708 compilation unit CU. The result will be allocated on CU's
5709 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5710 field. NULL is returned if no prefix is necessary. */
5711 static char *
5712 partial_die_parent_scope (struct partial_die_info *pdi,
5713 struct dwarf2_cu *cu)
5714 {
5715 char *grandparent_scope;
5716 struct partial_die_info *parent, *real_pdi;
5717
5718 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5719 then this means the parent of the specification DIE. */
5720
5721 real_pdi = pdi;
5722 while (real_pdi->has_specification)
5723 real_pdi = find_partial_die (real_pdi->spec_offset,
5724 real_pdi->spec_is_dwz, cu);
5725
5726 parent = real_pdi->die_parent;
5727 if (parent == NULL)
5728 return NULL;
5729
5730 if (parent->scope_set)
5731 return parent->scope;
5732
5733 fixup_partial_die (parent, cu);
5734
5735 grandparent_scope = partial_die_parent_scope (parent, cu);
5736
5737 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5738 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5739 Work around this problem here. */
5740 if (cu->language == language_cplus
5741 && parent->tag == DW_TAG_namespace
5742 && strcmp (parent->name, "::") == 0
5743 && grandparent_scope == NULL)
5744 {
5745 parent->scope = NULL;
5746 parent->scope_set = 1;
5747 return NULL;
5748 }
5749
5750 if (pdi->tag == DW_TAG_enumerator)
5751 /* Enumerators should not get the name of the enumeration as a prefix. */
5752 parent->scope = grandparent_scope;
5753 else if (parent->tag == DW_TAG_namespace
5754 || parent->tag == DW_TAG_module
5755 || parent->tag == DW_TAG_structure_type
5756 || parent->tag == DW_TAG_class_type
5757 || parent->tag == DW_TAG_interface_type
5758 || parent->tag == DW_TAG_union_type
5759 || parent->tag == DW_TAG_enumeration_type)
5760 {
5761 if (grandparent_scope == NULL)
5762 parent->scope = parent->name;
5763 else
5764 parent->scope = typename_concat (&cu->comp_unit_obstack,
5765 grandparent_scope,
5766 parent->name, 0, cu);
5767 }
5768 else
5769 {
5770 /* FIXME drow/2004-04-01: What should we be doing with
5771 function-local names? For partial symbols, we should probably be
5772 ignoring them. */
5773 complaint (&symfile_complaints,
5774 _("unhandled containing DIE tag %d for DIE at %d"),
5775 parent->tag, pdi->offset.sect_off);
5776 parent->scope = grandparent_scope;
5777 }
5778
5779 parent->scope_set = 1;
5780 return parent->scope;
5781 }
5782
5783 /* Return the fully scoped name associated with PDI, from compilation unit
5784 CU. The result will be allocated with malloc. */
5785
5786 static char *
5787 partial_die_full_name (struct partial_die_info *pdi,
5788 struct dwarf2_cu *cu)
5789 {
5790 char *parent_scope;
5791
5792 /* If this is a template instantiation, we can not work out the
5793 template arguments from partial DIEs. So, unfortunately, we have
5794 to go through the full DIEs. At least any work we do building
5795 types here will be reused if full symbols are loaded later. */
5796 if (pdi->has_template_arguments)
5797 {
5798 fixup_partial_die (pdi, cu);
5799
5800 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5801 {
5802 struct die_info *die;
5803 struct attribute attr;
5804 struct dwarf2_cu *ref_cu = cu;
5805
5806 /* DW_FORM_ref_addr is using section offset. */
5807 attr.name = 0;
5808 attr.form = DW_FORM_ref_addr;
5809 attr.u.unsnd = pdi->offset.sect_off;
5810 die = follow_die_ref (NULL, &attr, &ref_cu);
5811
5812 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5813 }
5814 }
5815
5816 parent_scope = partial_die_parent_scope (pdi, cu);
5817 if (parent_scope == NULL)
5818 return NULL;
5819 else
5820 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
5821 }
5822
5823 static void
5824 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
5825 {
5826 struct objfile *objfile = cu->objfile;
5827 CORE_ADDR addr = 0;
5828 char *actual_name = NULL;
5829 CORE_ADDR baseaddr;
5830 int built_actual_name = 0;
5831
5832 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5833
5834 actual_name = partial_die_full_name (pdi, cu);
5835 if (actual_name)
5836 built_actual_name = 1;
5837
5838 if (actual_name == NULL)
5839 actual_name = pdi->name;
5840
5841 switch (pdi->tag)
5842 {
5843 case DW_TAG_subprogram:
5844 if (pdi->is_external || cu->language == language_ada)
5845 {
5846 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5847 of the global scope. But in Ada, we want to be able to access
5848 nested procedures globally. So all Ada subprograms are stored
5849 in the global scope. */
5850 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5851 mst_text, objfile); */
5852 add_psymbol_to_list (actual_name, strlen (actual_name),
5853 built_actual_name,
5854 VAR_DOMAIN, LOC_BLOCK,
5855 &objfile->global_psymbols,
5856 0, pdi->lowpc + baseaddr,
5857 cu->language, objfile);
5858 }
5859 else
5860 {
5861 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5862 mst_file_text, objfile); */
5863 add_psymbol_to_list (actual_name, strlen (actual_name),
5864 built_actual_name,
5865 VAR_DOMAIN, LOC_BLOCK,
5866 &objfile->static_psymbols,
5867 0, pdi->lowpc + baseaddr,
5868 cu->language, objfile);
5869 }
5870 break;
5871 case DW_TAG_constant:
5872 {
5873 struct psymbol_allocation_list *list;
5874
5875 if (pdi->is_external)
5876 list = &objfile->global_psymbols;
5877 else
5878 list = &objfile->static_psymbols;
5879 add_psymbol_to_list (actual_name, strlen (actual_name),
5880 built_actual_name, VAR_DOMAIN, LOC_STATIC,
5881 list, 0, 0, cu->language, objfile);
5882 }
5883 break;
5884 case DW_TAG_variable:
5885 if (pdi->d.locdesc)
5886 addr = decode_locdesc (pdi->d.locdesc, cu);
5887
5888 if (pdi->d.locdesc
5889 && addr == 0
5890 && !dwarf2_per_objfile->has_section_at_zero)
5891 {
5892 /* A global or static variable may also have been stripped
5893 out by the linker if unused, in which case its address
5894 will be nullified; do not add such variables into partial
5895 symbol table then. */
5896 }
5897 else if (pdi->is_external)
5898 {
5899 /* Global Variable.
5900 Don't enter into the minimal symbol tables as there is
5901 a minimal symbol table entry from the ELF symbols already.
5902 Enter into partial symbol table if it has a location
5903 descriptor or a type.
5904 If the location descriptor is missing, new_symbol will create
5905 a LOC_UNRESOLVED symbol, the address of the variable will then
5906 be determined from the minimal symbol table whenever the variable
5907 is referenced.
5908 The address for the partial symbol table entry is not
5909 used by GDB, but it comes in handy for debugging partial symbol
5910 table building. */
5911
5912 if (pdi->d.locdesc || pdi->has_type)
5913 add_psymbol_to_list (actual_name, strlen (actual_name),
5914 built_actual_name,
5915 VAR_DOMAIN, LOC_STATIC,
5916 &objfile->global_psymbols,
5917 0, addr + baseaddr,
5918 cu->language, objfile);
5919 }
5920 else
5921 {
5922 /* Static Variable. Skip symbols without location descriptors. */
5923 if (pdi->d.locdesc == NULL)
5924 {
5925 if (built_actual_name)
5926 xfree (actual_name);
5927 return;
5928 }
5929 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
5930 mst_file_data, objfile); */
5931 add_psymbol_to_list (actual_name, strlen (actual_name),
5932 built_actual_name,
5933 VAR_DOMAIN, LOC_STATIC,
5934 &objfile->static_psymbols,
5935 0, addr + baseaddr,
5936 cu->language, objfile);
5937 }
5938 break;
5939 case DW_TAG_typedef:
5940 case DW_TAG_base_type:
5941 case DW_TAG_subrange_type:
5942 add_psymbol_to_list (actual_name, strlen (actual_name),
5943 built_actual_name,
5944 VAR_DOMAIN, LOC_TYPEDEF,
5945 &objfile->static_psymbols,
5946 0, (CORE_ADDR) 0, cu->language, objfile);
5947 break;
5948 case DW_TAG_namespace:
5949 add_psymbol_to_list (actual_name, strlen (actual_name),
5950 built_actual_name,
5951 VAR_DOMAIN, LOC_TYPEDEF,
5952 &objfile->global_psymbols,
5953 0, (CORE_ADDR) 0, cu->language, objfile);
5954 break;
5955 case DW_TAG_class_type:
5956 case DW_TAG_interface_type:
5957 case DW_TAG_structure_type:
5958 case DW_TAG_union_type:
5959 case DW_TAG_enumeration_type:
5960 /* Skip external references. The DWARF standard says in the section
5961 about "Structure, Union, and Class Type Entries": "An incomplete
5962 structure, union or class type is represented by a structure,
5963 union or class entry that does not have a byte size attribute
5964 and that has a DW_AT_declaration attribute." */
5965 if (!pdi->has_byte_size && pdi->is_declaration)
5966 {
5967 if (built_actual_name)
5968 xfree (actual_name);
5969 return;
5970 }
5971
5972 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
5973 static vs. global. */
5974 add_psymbol_to_list (actual_name, strlen (actual_name),
5975 built_actual_name,
5976 STRUCT_DOMAIN, LOC_TYPEDEF,
5977 (cu->language == language_cplus
5978 || cu->language == language_java)
5979 ? &objfile->global_psymbols
5980 : &objfile->static_psymbols,
5981 0, (CORE_ADDR) 0, cu->language, objfile);
5982
5983 break;
5984 case DW_TAG_enumerator:
5985 add_psymbol_to_list (actual_name, strlen (actual_name),
5986 built_actual_name,
5987 VAR_DOMAIN, LOC_CONST,
5988 (cu->language == language_cplus
5989 || cu->language == language_java)
5990 ? &objfile->global_psymbols
5991 : &objfile->static_psymbols,
5992 0, (CORE_ADDR) 0, cu->language, objfile);
5993 break;
5994 default:
5995 break;
5996 }
5997
5998 if (built_actual_name)
5999 xfree (actual_name);
6000 }
6001
6002 /* Read a partial die corresponding to a namespace; also, add a symbol
6003 corresponding to that namespace to the symbol table. NAMESPACE is
6004 the name of the enclosing namespace. */
6005
6006 static void
6007 add_partial_namespace (struct partial_die_info *pdi,
6008 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6009 int need_pc, struct dwarf2_cu *cu)
6010 {
6011 /* Add a symbol for the namespace. */
6012
6013 add_partial_symbol (pdi, cu);
6014
6015 /* Now scan partial symbols in that namespace. */
6016
6017 if (pdi->has_children)
6018 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6019 }
6020
6021 /* Read a partial die corresponding to a Fortran module. */
6022
6023 static void
6024 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6025 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6026 {
6027 /* Now scan partial symbols in that module. */
6028
6029 if (pdi->has_children)
6030 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6031 }
6032
6033 /* Read a partial die corresponding to a subprogram and create a partial
6034 symbol for that subprogram. When the CU language allows it, this
6035 routine also defines a partial symbol for each nested subprogram
6036 that this subprogram contains.
6037
6038 DIE my also be a lexical block, in which case we simply search
6039 recursively for suprograms defined inside that lexical block.
6040 Again, this is only performed when the CU language allows this
6041 type of definitions. */
6042
6043 static void
6044 add_partial_subprogram (struct partial_die_info *pdi,
6045 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6046 int need_pc, struct dwarf2_cu *cu)
6047 {
6048 if (pdi->tag == DW_TAG_subprogram)
6049 {
6050 if (pdi->has_pc_info)
6051 {
6052 if (pdi->lowpc < *lowpc)
6053 *lowpc = pdi->lowpc;
6054 if (pdi->highpc > *highpc)
6055 *highpc = pdi->highpc;
6056 if (need_pc)
6057 {
6058 CORE_ADDR baseaddr;
6059 struct objfile *objfile = cu->objfile;
6060
6061 baseaddr = ANOFFSET (objfile->section_offsets,
6062 SECT_OFF_TEXT (objfile));
6063 addrmap_set_empty (objfile->psymtabs_addrmap,
6064 pdi->lowpc + baseaddr,
6065 pdi->highpc - 1 + baseaddr,
6066 cu->per_cu->v.psymtab);
6067 }
6068 }
6069
6070 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6071 {
6072 if (!pdi->is_declaration)
6073 /* Ignore subprogram DIEs that do not have a name, they are
6074 illegal. Do not emit a complaint at this point, we will
6075 do so when we convert this psymtab into a symtab. */
6076 if (pdi->name)
6077 add_partial_symbol (pdi, cu);
6078 }
6079 }
6080
6081 if (! pdi->has_children)
6082 return;
6083
6084 if (cu->language == language_ada)
6085 {
6086 pdi = pdi->die_child;
6087 while (pdi != NULL)
6088 {
6089 fixup_partial_die (pdi, cu);
6090 if (pdi->tag == DW_TAG_subprogram
6091 || pdi->tag == DW_TAG_lexical_block)
6092 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6093 pdi = pdi->die_sibling;
6094 }
6095 }
6096 }
6097
6098 /* Read a partial die corresponding to an enumeration type. */
6099
6100 static void
6101 add_partial_enumeration (struct partial_die_info *enum_pdi,
6102 struct dwarf2_cu *cu)
6103 {
6104 struct partial_die_info *pdi;
6105
6106 if (enum_pdi->name != NULL)
6107 add_partial_symbol (enum_pdi, cu);
6108
6109 pdi = enum_pdi->die_child;
6110 while (pdi)
6111 {
6112 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6113 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6114 else
6115 add_partial_symbol (pdi, cu);
6116 pdi = pdi->die_sibling;
6117 }
6118 }
6119
6120 /* Return the initial uleb128 in the die at INFO_PTR. */
6121
6122 static unsigned int
6123 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6124 {
6125 unsigned int bytes_read;
6126
6127 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6128 }
6129
6130 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6131 Return the corresponding abbrev, or NULL if the number is zero (indicating
6132 an empty DIE). In either case *BYTES_READ will be set to the length of
6133 the initial number. */
6134
6135 static struct abbrev_info *
6136 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
6137 struct dwarf2_cu *cu)
6138 {
6139 bfd *abfd = cu->objfile->obfd;
6140 unsigned int abbrev_number;
6141 struct abbrev_info *abbrev;
6142
6143 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6144
6145 if (abbrev_number == 0)
6146 return NULL;
6147
6148 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6149 if (!abbrev)
6150 {
6151 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6152 abbrev_number, bfd_get_filename (abfd));
6153 }
6154
6155 return abbrev;
6156 }
6157
6158 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6159 Returns a pointer to the end of a series of DIEs, terminated by an empty
6160 DIE. Any children of the skipped DIEs will also be skipped. */
6161
6162 static gdb_byte *
6163 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
6164 {
6165 struct dwarf2_cu *cu = reader->cu;
6166 struct abbrev_info *abbrev;
6167 unsigned int bytes_read;
6168
6169 while (1)
6170 {
6171 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6172 if (abbrev == NULL)
6173 return info_ptr + bytes_read;
6174 else
6175 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6176 }
6177 }
6178
6179 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6180 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6181 abbrev corresponding to that skipped uleb128 should be passed in
6182 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6183 children. */
6184
6185 static gdb_byte *
6186 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6187 struct abbrev_info *abbrev)
6188 {
6189 unsigned int bytes_read;
6190 struct attribute attr;
6191 bfd *abfd = reader->abfd;
6192 struct dwarf2_cu *cu = reader->cu;
6193 gdb_byte *buffer = reader->buffer;
6194 const gdb_byte *buffer_end = reader->buffer_end;
6195 gdb_byte *start_info_ptr = info_ptr;
6196 unsigned int form, i;
6197
6198 for (i = 0; i < abbrev->num_attrs; i++)
6199 {
6200 /* The only abbrev we care about is DW_AT_sibling. */
6201 if (abbrev->attrs[i].name == DW_AT_sibling)
6202 {
6203 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6204 if (attr.form == DW_FORM_ref_addr)
6205 complaint (&symfile_complaints,
6206 _("ignoring absolute DW_AT_sibling"));
6207 else
6208 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6209 }
6210
6211 /* If it isn't DW_AT_sibling, skip this attribute. */
6212 form = abbrev->attrs[i].form;
6213 skip_attribute:
6214 switch (form)
6215 {
6216 case DW_FORM_ref_addr:
6217 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6218 and later it is offset sized. */
6219 if (cu->header.version == 2)
6220 info_ptr += cu->header.addr_size;
6221 else
6222 info_ptr += cu->header.offset_size;
6223 break;
6224 case DW_FORM_GNU_ref_alt:
6225 info_ptr += cu->header.offset_size;
6226 break;
6227 case DW_FORM_addr:
6228 info_ptr += cu->header.addr_size;
6229 break;
6230 case DW_FORM_data1:
6231 case DW_FORM_ref1:
6232 case DW_FORM_flag:
6233 info_ptr += 1;
6234 break;
6235 case DW_FORM_flag_present:
6236 break;
6237 case DW_FORM_data2:
6238 case DW_FORM_ref2:
6239 info_ptr += 2;
6240 break;
6241 case DW_FORM_data4:
6242 case DW_FORM_ref4:
6243 info_ptr += 4;
6244 break;
6245 case DW_FORM_data8:
6246 case DW_FORM_ref8:
6247 case DW_FORM_ref_sig8:
6248 info_ptr += 8;
6249 break;
6250 case DW_FORM_string:
6251 read_direct_string (abfd, info_ptr, &bytes_read);
6252 info_ptr += bytes_read;
6253 break;
6254 case DW_FORM_sec_offset:
6255 case DW_FORM_strp:
6256 case DW_FORM_GNU_strp_alt:
6257 info_ptr += cu->header.offset_size;
6258 break;
6259 case DW_FORM_exprloc:
6260 case DW_FORM_block:
6261 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6262 info_ptr += bytes_read;
6263 break;
6264 case DW_FORM_block1:
6265 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6266 break;
6267 case DW_FORM_block2:
6268 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6269 break;
6270 case DW_FORM_block4:
6271 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6272 break;
6273 case DW_FORM_sdata:
6274 case DW_FORM_udata:
6275 case DW_FORM_ref_udata:
6276 case DW_FORM_GNU_addr_index:
6277 case DW_FORM_GNU_str_index:
6278 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
6279 break;
6280 case DW_FORM_indirect:
6281 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6282 info_ptr += bytes_read;
6283 /* We need to continue parsing from here, so just go back to
6284 the top. */
6285 goto skip_attribute;
6286
6287 default:
6288 error (_("Dwarf Error: Cannot handle %s "
6289 "in DWARF reader [in module %s]"),
6290 dwarf_form_name (form),
6291 bfd_get_filename (abfd));
6292 }
6293 }
6294
6295 if (abbrev->has_children)
6296 return skip_children (reader, info_ptr);
6297 else
6298 return info_ptr;
6299 }
6300
6301 /* Locate ORIG_PDI's sibling.
6302 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6303
6304 static gdb_byte *
6305 locate_pdi_sibling (const struct die_reader_specs *reader,
6306 struct partial_die_info *orig_pdi,
6307 gdb_byte *info_ptr)
6308 {
6309 /* Do we know the sibling already? */
6310
6311 if (orig_pdi->sibling)
6312 return orig_pdi->sibling;
6313
6314 /* Are there any children to deal with? */
6315
6316 if (!orig_pdi->has_children)
6317 return info_ptr;
6318
6319 /* Skip the children the long way. */
6320
6321 return skip_children (reader, info_ptr);
6322 }
6323
6324 /* Expand this partial symbol table into a full symbol table. */
6325
6326 static void
6327 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
6328 {
6329 if (pst != NULL)
6330 {
6331 if (pst->readin)
6332 {
6333 warning (_("bug: psymtab for %s is already read in."),
6334 pst->filename);
6335 }
6336 else
6337 {
6338 if (info_verbose)
6339 {
6340 printf_filtered (_("Reading in symbols for %s..."),
6341 pst->filename);
6342 gdb_flush (gdb_stdout);
6343 }
6344
6345 /* Restore our global data. */
6346 dwarf2_per_objfile = objfile_data (pst->objfile,
6347 dwarf2_objfile_data_key);
6348
6349 /* If this psymtab is constructed from a debug-only objfile, the
6350 has_section_at_zero flag will not necessarily be correct. We
6351 can get the correct value for this flag by looking at the data
6352 associated with the (presumably stripped) associated objfile. */
6353 if (pst->objfile->separate_debug_objfile_backlink)
6354 {
6355 struct dwarf2_per_objfile *dpo_backlink
6356 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
6357 dwarf2_objfile_data_key);
6358
6359 dwarf2_per_objfile->has_section_at_zero
6360 = dpo_backlink->has_section_at_zero;
6361 }
6362
6363 dwarf2_per_objfile->reading_partial_symbols = 0;
6364
6365 psymtab_to_symtab_1 (pst);
6366
6367 /* Finish up the debug error message. */
6368 if (info_verbose)
6369 printf_filtered (_("done.\n"));
6370 }
6371 }
6372
6373 process_cu_includes ();
6374 }
6375 \f
6376 /* Reading in full CUs. */
6377
6378 /* Add PER_CU to the queue. */
6379
6380 static void
6381 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6382 enum language pretend_language)
6383 {
6384 struct dwarf2_queue_item *item;
6385
6386 per_cu->queued = 1;
6387 item = xmalloc (sizeof (*item));
6388 item->per_cu = per_cu;
6389 item->pretend_language = pretend_language;
6390 item->next = NULL;
6391
6392 if (dwarf2_queue == NULL)
6393 dwarf2_queue = item;
6394 else
6395 dwarf2_queue_tail->next = item;
6396
6397 dwarf2_queue_tail = item;
6398 }
6399
6400 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6401 unit and add it to our queue.
6402 The result is non-zero if PER_CU was queued, otherwise the result is zero
6403 meaning either PER_CU is already queued or it is already loaded. */
6404
6405 static int
6406 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6407 struct dwarf2_per_cu_data *per_cu,
6408 enum language pretend_language)
6409 {
6410 /* We may arrive here during partial symbol reading, if we need full
6411 DIEs to process an unusual case (e.g. template arguments). Do
6412 not queue PER_CU, just tell our caller to load its DIEs. */
6413 if (dwarf2_per_objfile->reading_partial_symbols)
6414 {
6415 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6416 return 1;
6417 return 0;
6418 }
6419
6420 /* Mark the dependence relation so that we don't flush PER_CU
6421 too early. */
6422 dwarf2_add_dependence (this_cu, per_cu);
6423
6424 /* If it's already on the queue, we have nothing to do. */
6425 if (per_cu->queued)
6426 return 0;
6427
6428 /* If the compilation unit is already loaded, just mark it as
6429 used. */
6430 if (per_cu->cu != NULL)
6431 {
6432 per_cu->cu->last_used = 0;
6433 return 0;
6434 }
6435
6436 /* Add it to the queue. */
6437 queue_comp_unit (per_cu, pretend_language);
6438
6439 return 1;
6440 }
6441
6442 /* Process the queue. */
6443
6444 static void
6445 process_queue (void)
6446 {
6447 struct dwarf2_queue_item *item, *next_item;
6448
6449 if (dwarf2_read_debug)
6450 {
6451 fprintf_unfiltered (gdb_stdlog,
6452 "Expanding one or more symtabs of objfile %s ...\n",
6453 dwarf2_per_objfile->objfile->name);
6454 }
6455
6456 /* The queue starts out with one item, but following a DIE reference
6457 may load a new CU, adding it to the end of the queue. */
6458 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6459 {
6460 if (dwarf2_per_objfile->using_index
6461 ? !item->per_cu->v.quick->symtab
6462 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6463 {
6464 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6465
6466 if (dwarf2_read_debug)
6467 {
6468 fprintf_unfiltered (gdb_stdlog,
6469 "Expanding symtab of %s at offset 0x%x\n",
6470 per_cu->is_debug_types ? "TU" : "CU",
6471 per_cu->offset.sect_off);
6472 }
6473
6474 if (per_cu->is_debug_types)
6475 process_full_type_unit (per_cu, item->pretend_language);
6476 else
6477 process_full_comp_unit (per_cu, item->pretend_language);
6478
6479 if (dwarf2_read_debug)
6480 {
6481 fprintf_unfiltered (gdb_stdlog,
6482 "Done expanding %s at offset 0x%x\n",
6483 per_cu->is_debug_types ? "TU" : "CU",
6484 per_cu->offset.sect_off);
6485 }
6486 }
6487
6488 item->per_cu->queued = 0;
6489 next_item = item->next;
6490 xfree (item);
6491 }
6492
6493 dwarf2_queue_tail = NULL;
6494
6495 if (dwarf2_read_debug)
6496 {
6497 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6498 dwarf2_per_objfile->objfile->name);
6499 }
6500 }
6501
6502 /* Free all allocated queue entries. This function only releases anything if
6503 an error was thrown; if the queue was processed then it would have been
6504 freed as we went along. */
6505
6506 static void
6507 dwarf2_release_queue (void *dummy)
6508 {
6509 struct dwarf2_queue_item *item, *last;
6510
6511 item = dwarf2_queue;
6512 while (item)
6513 {
6514 /* Anything still marked queued is likely to be in an
6515 inconsistent state, so discard it. */
6516 if (item->per_cu->queued)
6517 {
6518 if (item->per_cu->cu != NULL)
6519 free_one_cached_comp_unit (item->per_cu);
6520 item->per_cu->queued = 0;
6521 }
6522
6523 last = item;
6524 item = item->next;
6525 xfree (last);
6526 }
6527
6528 dwarf2_queue = dwarf2_queue_tail = NULL;
6529 }
6530
6531 /* Read in full symbols for PST, and anything it depends on. */
6532
6533 static void
6534 psymtab_to_symtab_1 (struct partial_symtab *pst)
6535 {
6536 struct dwarf2_per_cu_data *per_cu;
6537 int i;
6538
6539 if (pst->readin)
6540 return;
6541
6542 for (i = 0; i < pst->number_of_dependencies; i++)
6543 if (!pst->dependencies[i]->readin
6544 && pst->dependencies[i]->user == NULL)
6545 {
6546 /* Inform about additional files that need to be read in. */
6547 if (info_verbose)
6548 {
6549 /* FIXME: i18n: Need to make this a single string. */
6550 fputs_filtered (" ", gdb_stdout);
6551 wrap_here ("");
6552 fputs_filtered ("and ", gdb_stdout);
6553 wrap_here ("");
6554 printf_filtered ("%s...", pst->dependencies[i]->filename);
6555 wrap_here (""); /* Flush output. */
6556 gdb_flush (gdb_stdout);
6557 }
6558 psymtab_to_symtab_1 (pst->dependencies[i]);
6559 }
6560
6561 per_cu = pst->read_symtab_private;
6562
6563 if (per_cu == NULL)
6564 {
6565 /* It's an include file, no symbols to read for it.
6566 Everything is in the parent symtab. */
6567 pst->readin = 1;
6568 return;
6569 }
6570
6571 dw2_do_instantiate_symtab (per_cu);
6572 }
6573
6574 /* Trivial hash function for die_info: the hash value of a DIE
6575 is its offset in .debug_info for this objfile. */
6576
6577 static hashval_t
6578 die_hash (const void *item)
6579 {
6580 const struct die_info *die = item;
6581
6582 return die->offset.sect_off;
6583 }
6584
6585 /* Trivial comparison function for die_info structures: two DIEs
6586 are equal if they have the same offset. */
6587
6588 static int
6589 die_eq (const void *item_lhs, const void *item_rhs)
6590 {
6591 const struct die_info *die_lhs = item_lhs;
6592 const struct die_info *die_rhs = item_rhs;
6593
6594 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6595 }
6596
6597 /* die_reader_func for load_full_comp_unit.
6598 This is identical to read_signatured_type_reader,
6599 but is kept separate for now. */
6600
6601 static void
6602 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6603 gdb_byte *info_ptr,
6604 struct die_info *comp_unit_die,
6605 int has_children,
6606 void *data)
6607 {
6608 struct dwarf2_cu *cu = reader->cu;
6609 enum language *language_ptr = data;
6610
6611 gdb_assert (cu->die_hash == NULL);
6612 cu->die_hash =
6613 htab_create_alloc_ex (cu->header.length / 12,
6614 die_hash,
6615 die_eq,
6616 NULL,
6617 &cu->comp_unit_obstack,
6618 hashtab_obstack_allocate,
6619 dummy_obstack_deallocate);
6620
6621 if (has_children)
6622 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6623 &info_ptr, comp_unit_die);
6624 cu->dies = comp_unit_die;
6625 /* comp_unit_die is not stored in die_hash, no need. */
6626
6627 /* We try not to read any attributes in this function, because not
6628 all CUs needed for references have been loaded yet, and symbol
6629 table processing isn't initialized. But we have to set the CU language,
6630 or we won't be able to build types correctly.
6631 Similarly, if we do not read the producer, we can not apply
6632 producer-specific interpretation. */
6633 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6634 }
6635
6636 /* Load the DIEs associated with PER_CU into memory. */
6637
6638 static void
6639 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6640 enum language pretend_language)
6641 {
6642 gdb_assert (! this_cu->is_debug_types);
6643
6644 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6645 load_full_comp_unit_reader, &pretend_language);
6646 }
6647
6648 /* Add a DIE to the delayed physname list. */
6649
6650 static void
6651 add_to_method_list (struct type *type, int fnfield_index, int index,
6652 const char *name, struct die_info *die,
6653 struct dwarf2_cu *cu)
6654 {
6655 struct delayed_method_info mi;
6656 mi.type = type;
6657 mi.fnfield_index = fnfield_index;
6658 mi.index = index;
6659 mi.name = name;
6660 mi.die = die;
6661 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6662 }
6663
6664 /* A cleanup for freeing the delayed method list. */
6665
6666 static void
6667 free_delayed_list (void *ptr)
6668 {
6669 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6670 if (cu->method_list != NULL)
6671 {
6672 VEC_free (delayed_method_info, cu->method_list);
6673 cu->method_list = NULL;
6674 }
6675 }
6676
6677 /* Compute the physnames of any methods on the CU's method list.
6678
6679 The computation of method physnames is delayed in order to avoid the
6680 (bad) condition that one of the method's formal parameters is of an as yet
6681 incomplete type. */
6682
6683 static void
6684 compute_delayed_physnames (struct dwarf2_cu *cu)
6685 {
6686 int i;
6687 struct delayed_method_info *mi;
6688 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6689 {
6690 const char *physname;
6691 struct fn_fieldlist *fn_flp
6692 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6693 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
6694 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6695 }
6696 }
6697
6698 /* Go objects should be embedded in a DW_TAG_module DIE,
6699 and it's not clear if/how imported objects will appear.
6700 To keep Go support simple until that's worked out,
6701 go back through what we've read and create something usable.
6702 We could do this while processing each DIE, and feels kinda cleaner,
6703 but that way is more invasive.
6704 This is to, for example, allow the user to type "p var" or "b main"
6705 without having to specify the package name, and allow lookups
6706 of module.object to work in contexts that use the expression
6707 parser. */
6708
6709 static void
6710 fixup_go_packaging (struct dwarf2_cu *cu)
6711 {
6712 char *package_name = NULL;
6713 struct pending *list;
6714 int i;
6715
6716 for (list = global_symbols; list != NULL; list = list->next)
6717 {
6718 for (i = 0; i < list->nsyms; ++i)
6719 {
6720 struct symbol *sym = list->symbol[i];
6721
6722 if (SYMBOL_LANGUAGE (sym) == language_go
6723 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6724 {
6725 char *this_package_name = go_symbol_package_name (sym);
6726
6727 if (this_package_name == NULL)
6728 continue;
6729 if (package_name == NULL)
6730 package_name = this_package_name;
6731 else
6732 {
6733 if (strcmp (package_name, this_package_name) != 0)
6734 complaint (&symfile_complaints,
6735 _("Symtab %s has objects from two different Go packages: %s and %s"),
6736 (SYMBOL_SYMTAB (sym)
6737 && SYMBOL_SYMTAB (sym)->filename
6738 ? SYMBOL_SYMTAB (sym)->filename
6739 : cu->objfile->name),
6740 this_package_name, package_name);
6741 xfree (this_package_name);
6742 }
6743 }
6744 }
6745 }
6746
6747 if (package_name != NULL)
6748 {
6749 struct objfile *objfile = cu->objfile;
6750 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6751 package_name, objfile);
6752 struct symbol *sym;
6753
6754 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6755
6756 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6757 SYMBOL_SET_LANGUAGE (sym, language_go);
6758 SYMBOL_SET_NAMES (sym, package_name, strlen (package_name), 1, objfile);
6759 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6760 e.g., "main" finds the "main" module and not C's main(). */
6761 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6762 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6763 SYMBOL_TYPE (sym) = type;
6764
6765 add_symbol_to_list (sym, &global_symbols);
6766
6767 xfree (package_name);
6768 }
6769 }
6770
6771 static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
6772
6773 /* Return the symtab for PER_CU. This works properly regardless of
6774 whether we're using the index or psymtabs. */
6775
6776 static struct symtab *
6777 get_symtab (struct dwarf2_per_cu_data *per_cu)
6778 {
6779 return (dwarf2_per_objfile->using_index
6780 ? per_cu->v.quick->symtab
6781 : per_cu->v.psymtab->symtab);
6782 }
6783
6784 /* A helper function for computing the list of all symbol tables
6785 included by PER_CU. */
6786
6787 static void
6788 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6789 htab_t all_children,
6790 struct dwarf2_per_cu_data *per_cu)
6791 {
6792 void **slot;
6793 int ix;
6794 struct dwarf2_per_cu_data *iter;
6795
6796 slot = htab_find_slot (all_children, per_cu, INSERT);
6797 if (*slot != NULL)
6798 {
6799 /* This inclusion and its children have been processed. */
6800 return;
6801 }
6802
6803 *slot = per_cu;
6804 /* Only add a CU if it has a symbol table. */
6805 if (get_symtab (per_cu) != NULL)
6806 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6807
6808 for (ix = 0;
6809 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs, ix, iter);
6810 ++ix)
6811 recursively_compute_inclusions (result, all_children, iter);
6812 }
6813
6814 /* Compute the symtab 'includes' fields for the symtab related to
6815 PER_CU. */
6816
6817 static void
6818 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6819 {
6820 gdb_assert (! per_cu->is_debug_types);
6821
6822 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs))
6823 {
6824 int ix, len;
6825 struct dwarf2_per_cu_data *iter;
6826 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6827 htab_t all_children;
6828 struct symtab *symtab = get_symtab (per_cu);
6829
6830 /* If we don't have a symtab, we can just skip this case. */
6831 if (symtab == NULL)
6832 return;
6833
6834 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6835 NULL, xcalloc, xfree);
6836
6837 for (ix = 0;
6838 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs,
6839 ix, iter);
6840 ++ix)
6841 recursively_compute_inclusions (&result_children, all_children, iter);
6842
6843 /* Now we have a transitive closure of all the included CUs, so
6844 we can convert it to a list of symtabs. */
6845 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6846 symtab->includes
6847 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6848 (len + 1) * sizeof (struct symtab *));
6849 for (ix = 0;
6850 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6851 ++ix)
6852 symtab->includes[ix] = get_symtab (iter);
6853 symtab->includes[len] = NULL;
6854
6855 VEC_free (dwarf2_per_cu_ptr, result_children);
6856 htab_delete (all_children);
6857 }
6858 }
6859
6860 /* Compute the 'includes' field for the symtabs of all the CUs we just
6861 read. */
6862
6863 static void
6864 process_cu_includes (void)
6865 {
6866 int ix;
6867 struct dwarf2_per_cu_data *iter;
6868
6869 for (ix = 0;
6870 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6871 ix, iter);
6872 ++ix)
6873 {
6874 if (! iter->is_debug_types)
6875 compute_symtab_includes (iter);
6876 }
6877
6878 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6879 }
6880
6881 /* Generate full symbol information for PER_CU, whose DIEs have
6882 already been loaded into memory. */
6883
6884 static void
6885 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
6886 enum language pretend_language)
6887 {
6888 struct dwarf2_cu *cu = per_cu->cu;
6889 struct objfile *objfile = per_cu->objfile;
6890 CORE_ADDR lowpc, highpc;
6891 struct symtab *symtab;
6892 struct cleanup *back_to, *delayed_list_cleanup;
6893 CORE_ADDR baseaddr;
6894 struct block *static_block;
6895
6896 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6897
6898 buildsym_init ();
6899 back_to = make_cleanup (really_free_pendings, NULL);
6900 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6901
6902 cu->list_in_scope = &file_symbols;
6903
6904 cu->language = pretend_language;
6905 cu->language_defn = language_def (cu->language);
6906
6907 /* Do line number decoding in read_file_scope () */
6908 process_die (cu->dies, cu);
6909
6910 /* For now fudge the Go package. */
6911 if (cu->language == language_go)
6912 fixup_go_packaging (cu);
6913
6914 /* Now that we have processed all the DIEs in the CU, all the types
6915 should be complete, and it should now be safe to compute all of the
6916 physnames. */
6917 compute_delayed_physnames (cu);
6918 do_cleanups (delayed_list_cleanup);
6919
6920 /* Some compilers don't define a DW_AT_high_pc attribute for the
6921 compilation unit. If the DW_AT_high_pc is missing, synthesize
6922 it, by scanning the DIE's below the compilation unit. */
6923 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
6924
6925 static_block
6926 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
6927 per_cu->s.imported_symtabs != NULL);
6928
6929 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
6930 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
6931 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
6932 addrmap to help ensure it has an accurate map of pc values belonging to
6933 this comp unit. */
6934 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
6935
6936 symtab = end_symtab_from_static_block (static_block, objfile,
6937 SECT_OFF_TEXT (objfile), 0);
6938
6939 if (symtab != NULL)
6940 {
6941 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
6942
6943 /* Set symtab language to language from DW_AT_language. If the
6944 compilation is from a C file generated by language preprocessors, do
6945 not set the language if it was already deduced by start_subfile. */
6946 if (!(cu->language == language_c && symtab->language != language_c))
6947 symtab->language = cu->language;
6948
6949 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
6950 produce DW_AT_location with location lists but it can be possibly
6951 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
6952 there were bugs in prologue debug info, fixed later in GCC-4.5
6953 by "unwind info for epilogues" patch (which is not directly related).
6954
6955 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
6956 needed, it would be wrong due to missing DW_AT_producer there.
6957
6958 Still one can confuse GDB by using non-standard GCC compilation
6959 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
6960 */
6961 if (cu->has_loclist && gcc_4_minor >= 5)
6962 symtab->locations_valid = 1;
6963
6964 if (gcc_4_minor >= 5)
6965 symtab->epilogue_unwind_valid = 1;
6966
6967 symtab->call_site_htab = cu->call_site_htab;
6968 }
6969
6970 if (dwarf2_per_objfile->using_index)
6971 per_cu->v.quick->symtab = symtab;
6972 else
6973 {
6974 struct partial_symtab *pst = per_cu->v.psymtab;
6975 pst->symtab = symtab;
6976 pst->readin = 1;
6977 }
6978
6979 /* Push it for inclusion processing later. */
6980 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
6981
6982 do_cleanups (back_to);
6983 }
6984
6985 /* Generate full symbol information for type unit PER_CU, whose DIEs have
6986 already been loaded into memory. */
6987
6988 static void
6989 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
6990 enum language pretend_language)
6991 {
6992 struct dwarf2_cu *cu = per_cu->cu;
6993 struct objfile *objfile = per_cu->objfile;
6994 struct symtab *symtab;
6995 struct cleanup *back_to, *delayed_list_cleanup;
6996
6997 buildsym_init ();
6998 back_to = make_cleanup (really_free_pendings, NULL);
6999 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7000
7001 cu->list_in_scope = &file_symbols;
7002
7003 cu->language = pretend_language;
7004 cu->language_defn = language_def (cu->language);
7005
7006 /* The symbol tables are set up in read_type_unit_scope. */
7007 process_die (cu->dies, cu);
7008
7009 /* For now fudge the Go package. */
7010 if (cu->language == language_go)
7011 fixup_go_packaging (cu);
7012
7013 /* Now that we have processed all the DIEs in the CU, all the types
7014 should be complete, and it should now be safe to compute all of the
7015 physnames. */
7016 compute_delayed_physnames (cu);
7017 do_cleanups (delayed_list_cleanup);
7018
7019 /* TUs share symbol tables.
7020 If this is the first TU to use this symtab, complete the construction
7021 of it with end_expandable_symtab. Otherwise, complete the addition of
7022 this TU's symbols to the existing symtab. */
7023 if (per_cu->s.type_unit_group->primary_symtab == NULL)
7024 {
7025 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7026 per_cu->s.type_unit_group->primary_symtab = symtab;
7027
7028 if (symtab != NULL)
7029 {
7030 /* Set symtab language to language from DW_AT_language. If the
7031 compilation is from a C file generated by language preprocessors,
7032 do not set the language if it was already deduced by
7033 start_subfile. */
7034 if (!(cu->language == language_c && symtab->language != language_c))
7035 symtab->language = cu->language;
7036 }
7037 }
7038 else
7039 {
7040 augment_type_symtab (objfile,
7041 per_cu->s.type_unit_group->primary_symtab);
7042 symtab = per_cu->s.type_unit_group->primary_symtab;
7043 }
7044
7045 if (dwarf2_per_objfile->using_index)
7046 per_cu->v.quick->symtab = symtab;
7047 else
7048 {
7049 struct partial_symtab *pst = per_cu->v.psymtab;
7050 pst->symtab = symtab;
7051 pst->readin = 1;
7052 }
7053
7054 do_cleanups (back_to);
7055 }
7056
7057 /* Process an imported unit DIE. */
7058
7059 static void
7060 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7061 {
7062 struct attribute *attr;
7063
7064 /* For now we don't handle imported units in type units. */
7065 if (cu->per_cu->is_debug_types)
7066 {
7067 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7068 " supported in type units [in module %s]"),
7069 cu->objfile->name);
7070 }
7071
7072 attr = dwarf2_attr (die, DW_AT_import, cu);
7073 if (attr != NULL)
7074 {
7075 struct dwarf2_per_cu_data *per_cu;
7076 struct symtab *imported_symtab;
7077 sect_offset offset;
7078 int is_dwz;
7079
7080 offset = dwarf2_get_ref_die_offset (attr);
7081 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7082 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7083
7084 /* Queue the unit, if needed. */
7085 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7086 load_full_comp_unit (per_cu, cu->language);
7087
7088 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
7089 per_cu);
7090 }
7091 }
7092
7093 /* Process a die and its children. */
7094
7095 static void
7096 process_die (struct die_info *die, struct dwarf2_cu *cu)
7097 {
7098 switch (die->tag)
7099 {
7100 case DW_TAG_padding:
7101 break;
7102 case DW_TAG_compile_unit:
7103 case DW_TAG_partial_unit:
7104 read_file_scope (die, cu);
7105 break;
7106 case DW_TAG_type_unit:
7107 read_type_unit_scope (die, cu);
7108 break;
7109 case DW_TAG_subprogram:
7110 case DW_TAG_inlined_subroutine:
7111 read_func_scope (die, cu);
7112 break;
7113 case DW_TAG_lexical_block:
7114 case DW_TAG_try_block:
7115 case DW_TAG_catch_block:
7116 read_lexical_block_scope (die, cu);
7117 break;
7118 case DW_TAG_GNU_call_site:
7119 read_call_site_scope (die, cu);
7120 break;
7121 case DW_TAG_class_type:
7122 case DW_TAG_interface_type:
7123 case DW_TAG_structure_type:
7124 case DW_TAG_union_type:
7125 process_structure_scope (die, cu);
7126 break;
7127 case DW_TAG_enumeration_type:
7128 process_enumeration_scope (die, cu);
7129 break;
7130
7131 /* These dies have a type, but processing them does not create
7132 a symbol or recurse to process the children. Therefore we can
7133 read them on-demand through read_type_die. */
7134 case DW_TAG_subroutine_type:
7135 case DW_TAG_set_type:
7136 case DW_TAG_array_type:
7137 case DW_TAG_pointer_type:
7138 case DW_TAG_ptr_to_member_type:
7139 case DW_TAG_reference_type:
7140 case DW_TAG_string_type:
7141 break;
7142
7143 case DW_TAG_base_type:
7144 case DW_TAG_subrange_type:
7145 case DW_TAG_typedef:
7146 /* Add a typedef symbol for the type definition, if it has a
7147 DW_AT_name. */
7148 new_symbol (die, read_type_die (die, cu), cu);
7149 break;
7150 case DW_TAG_common_block:
7151 read_common_block (die, cu);
7152 break;
7153 case DW_TAG_common_inclusion:
7154 break;
7155 case DW_TAG_namespace:
7156 processing_has_namespace_info = 1;
7157 read_namespace (die, cu);
7158 break;
7159 case DW_TAG_module:
7160 processing_has_namespace_info = 1;
7161 read_module (die, cu);
7162 break;
7163 case DW_TAG_imported_declaration:
7164 case DW_TAG_imported_module:
7165 processing_has_namespace_info = 1;
7166 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7167 || cu->language != language_fortran))
7168 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7169 dwarf_tag_name (die->tag));
7170 read_import_statement (die, cu);
7171 break;
7172
7173 case DW_TAG_imported_unit:
7174 process_imported_unit_die (die, cu);
7175 break;
7176
7177 default:
7178 new_symbol (die, NULL, cu);
7179 break;
7180 }
7181 }
7182
7183 /* A helper function for dwarf2_compute_name which determines whether DIE
7184 needs to have the name of the scope prepended to the name listed in the
7185 die. */
7186
7187 static int
7188 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7189 {
7190 struct attribute *attr;
7191
7192 switch (die->tag)
7193 {
7194 case DW_TAG_namespace:
7195 case DW_TAG_typedef:
7196 case DW_TAG_class_type:
7197 case DW_TAG_interface_type:
7198 case DW_TAG_structure_type:
7199 case DW_TAG_union_type:
7200 case DW_TAG_enumeration_type:
7201 case DW_TAG_enumerator:
7202 case DW_TAG_subprogram:
7203 case DW_TAG_member:
7204 return 1;
7205
7206 case DW_TAG_variable:
7207 case DW_TAG_constant:
7208 /* We only need to prefix "globally" visible variables. These include
7209 any variable marked with DW_AT_external or any variable that
7210 lives in a namespace. [Variables in anonymous namespaces
7211 require prefixing, but they are not DW_AT_external.] */
7212
7213 if (dwarf2_attr (die, DW_AT_specification, cu))
7214 {
7215 struct dwarf2_cu *spec_cu = cu;
7216
7217 return die_needs_namespace (die_specification (die, &spec_cu),
7218 spec_cu);
7219 }
7220
7221 attr = dwarf2_attr (die, DW_AT_external, cu);
7222 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7223 && die->parent->tag != DW_TAG_module)
7224 return 0;
7225 /* A variable in a lexical block of some kind does not need a
7226 namespace, even though in C++ such variables may be external
7227 and have a mangled name. */
7228 if (die->parent->tag == DW_TAG_lexical_block
7229 || die->parent->tag == DW_TAG_try_block
7230 || die->parent->tag == DW_TAG_catch_block
7231 || die->parent->tag == DW_TAG_subprogram)
7232 return 0;
7233 return 1;
7234
7235 default:
7236 return 0;
7237 }
7238 }
7239
7240 /* Retrieve the last character from a mem_file. */
7241
7242 static void
7243 do_ui_file_peek_last (void *object, const char *buffer, long length)
7244 {
7245 char *last_char_p = (char *) object;
7246
7247 if (length > 0)
7248 *last_char_p = buffer[length - 1];
7249 }
7250
7251 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7252 compute the physname for the object, which include a method's:
7253 - formal parameters (C++/Java),
7254 - receiver type (Go),
7255 - return type (Java).
7256
7257 The term "physname" is a bit confusing.
7258 For C++, for example, it is the demangled name.
7259 For Go, for example, it's the mangled name.
7260
7261 For Ada, return the DIE's linkage name rather than the fully qualified
7262 name. PHYSNAME is ignored..
7263
7264 The result is allocated on the objfile_obstack and canonicalized. */
7265
7266 static const char *
7267 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
7268 int physname)
7269 {
7270 struct objfile *objfile = cu->objfile;
7271
7272 if (name == NULL)
7273 name = dwarf2_name (die, cu);
7274
7275 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7276 compute it by typename_concat inside GDB. */
7277 if (cu->language == language_ada
7278 || (cu->language == language_fortran && physname))
7279 {
7280 /* For Ada unit, we prefer the linkage name over the name, as
7281 the former contains the exported name, which the user expects
7282 to be able to reference. Ideally, we want the user to be able
7283 to reference this entity using either natural or linkage name,
7284 but we haven't started looking at this enhancement yet. */
7285 struct attribute *attr;
7286
7287 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7288 if (attr == NULL)
7289 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7290 if (attr && DW_STRING (attr))
7291 return DW_STRING (attr);
7292 }
7293
7294 /* These are the only languages we know how to qualify names in. */
7295 if (name != NULL
7296 && (cu->language == language_cplus || cu->language == language_java
7297 || cu->language == language_fortran))
7298 {
7299 if (die_needs_namespace (die, cu))
7300 {
7301 long length;
7302 const char *prefix;
7303 struct ui_file *buf;
7304
7305 prefix = determine_prefix (die, cu);
7306 buf = mem_fileopen ();
7307 if (*prefix != '\0')
7308 {
7309 char *prefixed_name = typename_concat (NULL, prefix, name,
7310 physname, cu);
7311
7312 fputs_unfiltered (prefixed_name, buf);
7313 xfree (prefixed_name);
7314 }
7315 else
7316 fputs_unfiltered (name, buf);
7317
7318 /* Template parameters may be specified in the DIE's DW_AT_name, or
7319 as children with DW_TAG_template_type_param or
7320 DW_TAG_value_type_param. If the latter, add them to the name
7321 here. If the name already has template parameters, then
7322 skip this step; some versions of GCC emit both, and
7323 it is more efficient to use the pre-computed name.
7324
7325 Something to keep in mind about this process: it is very
7326 unlikely, or in some cases downright impossible, to produce
7327 something that will match the mangled name of a function.
7328 If the definition of the function has the same debug info,
7329 we should be able to match up with it anyway. But fallbacks
7330 using the minimal symbol, for instance to find a method
7331 implemented in a stripped copy of libstdc++, will not work.
7332 If we do not have debug info for the definition, we will have to
7333 match them up some other way.
7334
7335 When we do name matching there is a related problem with function
7336 templates; two instantiated function templates are allowed to
7337 differ only by their return types, which we do not add here. */
7338
7339 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7340 {
7341 struct attribute *attr;
7342 struct die_info *child;
7343 int first = 1;
7344
7345 die->building_fullname = 1;
7346
7347 for (child = die->child; child != NULL; child = child->sibling)
7348 {
7349 struct type *type;
7350 LONGEST value;
7351 gdb_byte *bytes;
7352 struct dwarf2_locexpr_baton *baton;
7353 struct value *v;
7354
7355 if (child->tag != DW_TAG_template_type_param
7356 && child->tag != DW_TAG_template_value_param)
7357 continue;
7358
7359 if (first)
7360 {
7361 fputs_unfiltered ("<", buf);
7362 first = 0;
7363 }
7364 else
7365 fputs_unfiltered (", ", buf);
7366
7367 attr = dwarf2_attr (child, DW_AT_type, cu);
7368 if (attr == NULL)
7369 {
7370 complaint (&symfile_complaints,
7371 _("template parameter missing DW_AT_type"));
7372 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7373 continue;
7374 }
7375 type = die_type (child, cu);
7376
7377 if (child->tag == DW_TAG_template_type_param)
7378 {
7379 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7380 continue;
7381 }
7382
7383 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7384 if (attr == NULL)
7385 {
7386 complaint (&symfile_complaints,
7387 _("template parameter missing "
7388 "DW_AT_const_value"));
7389 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7390 continue;
7391 }
7392
7393 dwarf2_const_value_attr (attr, type, name,
7394 &cu->comp_unit_obstack, cu,
7395 &value, &bytes, &baton);
7396
7397 if (TYPE_NOSIGN (type))
7398 /* GDB prints characters as NUMBER 'CHAR'. If that's
7399 changed, this can use value_print instead. */
7400 c_printchar (value, type, buf);
7401 else
7402 {
7403 struct value_print_options opts;
7404
7405 if (baton != NULL)
7406 v = dwarf2_evaluate_loc_desc (type, NULL,
7407 baton->data,
7408 baton->size,
7409 baton->per_cu);
7410 else if (bytes != NULL)
7411 {
7412 v = allocate_value (type);
7413 memcpy (value_contents_writeable (v), bytes,
7414 TYPE_LENGTH (type));
7415 }
7416 else
7417 v = value_from_longest (type, value);
7418
7419 /* Specify decimal so that we do not depend on
7420 the radix. */
7421 get_formatted_print_options (&opts, 'd');
7422 opts.raw = 1;
7423 value_print (v, buf, &opts);
7424 release_value (v);
7425 value_free (v);
7426 }
7427 }
7428
7429 die->building_fullname = 0;
7430
7431 if (!first)
7432 {
7433 /* Close the argument list, with a space if necessary
7434 (nested templates). */
7435 char last_char = '\0';
7436 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7437 if (last_char == '>')
7438 fputs_unfiltered (" >", buf);
7439 else
7440 fputs_unfiltered (">", buf);
7441 }
7442 }
7443
7444 /* For Java and C++ methods, append formal parameter type
7445 information, if PHYSNAME. */
7446
7447 if (physname && die->tag == DW_TAG_subprogram
7448 && (cu->language == language_cplus
7449 || cu->language == language_java))
7450 {
7451 struct type *type = read_type_die (die, cu);
7452
7453 c_type_print_args (type, buf, 1, cu->language,
7454 &type_print_raw_options);
7455
7456 if (cu->language == language_java)
7457 {
7458 /* For java, we must append the return type to method
7459 names. */
7460 if (die->tag == DW_TAG_subprogram)
7461 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7462 0, 0, &type_print_raw_options);
7463 }
7464 else if (cu->language == language_cplus)
7465 {
7466 /* Assume that an artificial first parameter is
7467 "this", but do not crash if it is not. RealView
7468 marks unnamed (and thus unused) parameters as
7469 artificial; there is no way to differentiate
7470 the two cases. */
7471 if (TYPE_NFIELDS (type) > 0
7472 && TYPE_FIELD_ARTIFICIAL (type, 0)
7473 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7474 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7475 0))))
7476 fputs_unfiltered (" const", buf);
7477 }
7478 }
7479
7480 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7481 &length);
7482 ui_file_delete (buf);
7483
7484 if (cu->language == language_cplus)
7485 {
7486 char *cname
7487 = dwarf2_canonicalize_name (name, cu,
7488 &objfile->objfile_obstack);
7489
7490 if (cname != NULL)
7491 name = cname;
7492 }
7493 }
7494 }
7495
7496 return name;
7497 }
7498
7499 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7500 If scope qualifiers are appropriate they will be added. The result
7501 will be allocated on the objfile_obstack, or NULL if the DIE does
7502 not have a name. NAME may either be from a previous call to
7503 dwarf2_name or NULL.
7504
7505 The output string will be canonicalized (if C++/Java). */
7506
7507 static const char *
7508 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
7509 {
7510 return dwarf2_compute_name (name, die, cu, 0);
7511 }
7512
7513 /* Construct a physname for the given DIE in CU. NAME may either be
7514 from a previous call to dwarf2_name or NULL. The result will be
7515 allocated on the objfile_objstack or NULL if the DIE does not have a
7516 name.
7517
7518 The output string will be canonicalized (if C++/Java). */
7519
7520 static const char *
7521 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
7522 {
7523 struct objfile *objfile = cu->objfile;
7524 struct attribute *attr;
7525 const char *retval, *mangled = NULL, *canon = NULL;
7526 struct cleanup *back_to;
7527 int need_copy = 1;
7528
7529 /* In this case dwarf2_compute_name is just a shortcut not building anything
7530 on its own. */
7531 if (!die_needs_namespace (die, cu))
7532 return dwarf2_compute_name (name, die, cu, 1);
7533
7534 back_to = make_cleanup (null_cleanup, NULL);
7535
7536 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7537 if (!attr)
7538 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7539
7540 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7541 has computed. */
7542 if (attr && DW_STRING (attr))
7543 {
7544 char *demangled;
7545
7546 mangled = DW_STRING (attr);
7547
7548 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7549 type. It is easier for GDB users to search for such functions as
7550 `name(params)' than `long name(params)'. In such case the minimal
7551 symbol names do not match the full symbol names but for template
7552 functions there is never a need to look up their definition from their
7553 declaration so the only disadvantage remains the minimal symbol
7554 variant `long name(params)' does not have the proper inferior type.
7555 */
7556
7557 if (cu->language == language_go)
7558 {
7559 /* This is a lie, but we already lie to the caller new_symbol_full.
7560 new_symbol_full assumes we return the mangled name.
7561 This just undoes that lie until things are cleaned up. */
7562 demangled = NULL;
7563 }
7564 else
7565 {
7566 demangled = cplus_demangle (mangled,
7567 (DMGL_PARAMS | DMGL_ANSI
7568 | (cu->language == language_java
7569 ? DMGL_JAVA | DMGL_RET_POSTFIX
7570 : DMGL_RET_DROP)));
7571 }
7572 if (demangled)
7573 {
7574 make_cleanup (xfree, demangled);
7575 canon = demangled;
7576 }
7577 else
7578 {
7579 canon = mangled;
7580 need_copy = 0;
7581 }
7582 }
7583
7584 if (canon == NULL || check_physname)
7585 {
7586 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7587
7588 if (canon != NULL && strcmp (physname, canon) != 0)
7589 {
7590 /* It may not mean a bug in GDB. The compiler could also
7591 compute DW_AT_linkage_name incorrectly. But in such case
7592 GDB would need to be bug-to-bug compatible. */
7593
7594 complaint (&symfile_complaints,
7595 _("Computed physname <%s> does not match demangled <%s> "
7596 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7597 physname, canon, mangled, die->offset.sect_off, objfile->name);
7598
7599 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7600 is available here - over computed PHYSNAME. It is safer
7601 against both buggy GDB and buggy compilers. */
7602
7603 retval = canon;
7604 }
7605 else
7606 {
7607 retval = physname;
7608 need_copy = 0;
7609 }
7610 }
7611 else
7612 retval = canon;
7613
7614 if (need_copy)
7615 retval = obsavestring (retval, strlen (retval),
7616 &objfile->objfile_obstack);
7617
7618 do_cleanups (back_to);
7619 return retval;
7620 }
7621
7622 /* Read the import statement specified by the given die and record it. */
7623
7624 static void
7625 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7626 {
7627 struct objfile *objfile = cu->objfile;
7628 struct attribute *import_attr;
7629 struct die_info *imported_die, *child_die;
7630 struct dwarf2_cu *imported_cu;
7631 const char *imported_name;
7632 const char *imported_name_prefix;
7633 const char *canonical_name;
7634 const char *import_alias;
7635 const char *imported_declaration = NULL;
7636 const char *import_prefix;
7637 VEC (const_char_ptr) *excludes = NULL;
7638 struct cleanup *cleanups;
7639
7640 char *temp;
7641
7642 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7643 if (import_attr == NULL)
7644 {
7645 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7646 dwarf_tag_name (die->tag));
7647 return;
7648 }
7649
7650 imported_cu = cu;
7651 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7652 imported_name = dwarf2_name (imported_die, imported_cu);
7653 if (imported_name == NULL)
7654 {
7655 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7656
7657 The import in the following code:
7658 namespace A
7659 {
7660 typedef int B;
7661 }
7662
7663 int main ()
7664 {
7665 using A::B;
7666 B b;
7667 return b;
7668 }
7669
7670 ...
7671 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7672 <52> DW_AT_decl_file : 1
7673 <53> DW_AT_decl_line : 6
7674 <54> DW_AT_import : <0x75>
7675 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7676 <59> DW_AT_name : B
7677 <5b> DW_AT_decl_file : 1
7678 <5c> DW_AT_decl_line : 2
7679 <5d> DW_AT_type : <0x6e>
7680 ...
7681 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7682 <76> DW_AT_byte_size : 4
7683 <77> DW_AT_encoding : 5 (signed)
7684
7685 imports the wrong die ( 0x75 instead of 0x58 ).
7686 This case will be ignored until the gcc bug is fixed. */
7687 return;
7688 }
7689
7690 /* Figure out the local name after import. */
7691 import_alias = dwarf2_name (die, cu);
7692
7693 /* Figure out where the statement is being imported to. */
7694 import_prefix = determine_prefix (die, cu);
7695
7696 /* Figure out what the scope of the imported die is and prepend it
7697 to the name of the imported die. */
7698 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7699
7700 if (imported_die->tag != DW_TAG_namespace
7701 && imported_die->tag != DW_TAG_module)
7702 {
7703 imported_declaration = imported_name;
7704 canonical_name = imported_name_prefix;
7705 }
7706 else if (strlen (imported_name_prefix) > 0)
7707 {
7708 temp = alloca (strlen (imported_name_prefix)
7709 + 2 + strlen (imported_name) + 1);
7710 strcpy (temp, imported_name_prefix);
7711 strcat (temp, "::");
7712 strcat (temp, imported_name);
7713 canonical_name = temp;
7714 }
7715 else
7716 canonical_name = imported_name;
7717
7718 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7719
7720 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7721 for (child_die = die->child; child_die && child_die->tag;
7722 child_die = sibling_die (child_die))
7723 {
7724 /* DWARF-4: A Fortran use statement with a “rename list” may be
7725 represented by an imported module entry with an import attribute
7726 referring to the module and owned entries corresponding to those
7727 entities that are renamed as part of being imported. */
7728
7729 if (child_die->tag != DW_TAG_imported_declaration)
7730 {
7731 complaint (&symfile_complaints,
7732 _("child DW_TAG_imported_declaration expected "
7733 "- DIE at 0x%x [in module %s]"),
7734 child_die->offset.sect_off, objfile->name);
7735 continue;
7736 }
7737
7738 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7739 if (import_attr == NULL)
7740 {
7741 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7742 dwarf_tag_name (child_die->tag));
7743 continue;
7744 }
7745
7746 imported_cu = cu;
7747 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7748 &imported_cu);
7749 imported_name = dwarf2_name (imported_die, imported_cu);
7750 if (imported_name == NULL)
7751 {
7752 complaint (&symfile_complaints,
7753 _("child DW_TAG_imported_declaration has unknown "
7754 "imported name - DIE at 0x%x [in module %s]"),
7755 child_die->offset.sect_off, objfile->name);
7756 continue;
7757 }
7758
7759 VEC_safe_push (const_char_ptr, excludes, imported_name);
7760
7761 process_die (child_die, cu);
7762 }
7763
7764 cp_add_using_directive (import_prefix,
7765 canonical_name,
7766 import_alias,
7767 imported_declaration,
7768 excludes,
7769 &objfile->objfile_obstack);
7770
7771 do_cleanups (cleanups);
7772 }
7773
7774 /* Cleanup function for handle_DW_AT_stmt_list. */
7775
7776 static void
7777 free_cu_line_header (void *arg)
7778 {
7779 struct dwarf2_cu *cu = arg;
7780
7781 free_line_header (cu->line_header);
7782 cu->line_header = NULL;
7783 }
7784
7785 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
7786 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
7787 this, it was first present in GCC release 4.3.0. */
7788
7789 static int
7790 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
7791 {
7792 if (!cu->checked_producer)
7793 check_producer (cu);
7794
7795 return cu->producer_is_gcc_lt_4_3;
7796 }
7797
7798 static void
7799 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7800 char **name, char **comp_dir)
7801 {
7802 struct attribute *attr;
7803
7804 *name = NULL;
7805 *comp_dir = NULL;
7806
7807 /* Find the filename. Do not use dwarf2_name here, since the filename
7808 is not a source language identifier. */
7809 attr = dwarf2_attr (die, DW_AT_name, cu);
7810 if (attr)
7811 {
7812 *name = DW_STRING (attr);
7813 }
7814
7815 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7816 if (attr)
7817 *comp_dir = DW_STRING (attr);
7818 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
7819 && IS_ABSOLUTE_PATH (*name))
7820 {
7821 *comp_dir = ldirname (*name);
7822 if (*comp_dir != NULL)
7823 make_cleanup (xfree, *comp_dir);
7824 }
7825 if (*comp_dir != NULL)
7826 {
7827 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7828 directory, get rid of it. */
7829 char *cp = strchr (*comp_dir, ':');
7830
7831 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7832 *comp_dir = cp + 1;
7833 }
7834
7835 if (*name == NULL)
7836 *name = "<unknown>";
7837 }
7838
7839 /* Handle DW_AT_stmt_list for a compilation unit.
7840 DIE is the DW_TAG_compile_unit die for CU.
7841 COMP_DIR is the compilation directory.
7842 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
7843
7844 static void
7845 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
7846 const char *comp_dir)
7847 {
7848 struct attribute *attr;
7849
7850 gdb_assert (! cu->per_cu->is_debug_types);
7851
7852 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7853 if (attr)
7854 {
7855 unsigned int line_offset = DW_UNSND (attr);
7856 struct line_header *line_header
7857 = dwarf_decode_line_header (line_offset, cu);
7858
7859 if (line_header)
7860 {
7861 cu->line_header = line_header;
7862 make_cleanup (free_cu_line_header, cu);
7863 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
7864 }
7865 }
7866 }
7867
7868 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
7869
7870 static void
7871 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
7872 {
7873 struct objfile *objfile = dwarf2_per_objfile->objfile;
7874 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7875 CORE_ADDR lowpc = ((CORE_ADDR) -1);
7876 CORE_ADDR highpc = ((CORE_ADDR) 0);
7877 struct attribute *attr;
7878 char *name = NULL;
7879 char *comp_dir = NULL;
7880 struct die_info *child_die;
7881 bfd *abfd = objfile->obfd;
7882 CORE_ADDR baseaddr;
7883
7884 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7885
7886 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
7887
7888 /* If we didn't find a lowpc, set it to highpc to avoid complaints
7889 from finish_block. */
7890 if (lowpc == ((CORE_ADDR) -1))
7891 lowpc = highpc;
7892 lowpc += baseaddr;
7893 highpc += baseaddr;
7894
7895 find_file_and_directory (die, cu, &name, &comp_dir);
7896
7897 prepare_one_comp_unit (cu, die, cu->language);
7898
7899 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
7900 standardised yet. As a workaround for the language detection we fall
7901 back to the DW_AT_producer string. */
7902 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
7903 cu->language = language_opencl;
7904
7905 /* Similar hack for Go. */
7906 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
7907 set_cu_language (DW_LANG_Go, cu);
7908
7909 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
7910
7911 /* Decode line number information if present. We do this before
7912 processing child DIEs, so that the line header table is available
7913 for DW_AT_decl_file. */
7914 handle_DW_AT_stmt_list (die, cu, comp_dir);
7915
7916 /* Process all dies in compilation unit. */
7917 if (die->child != NULL)
7918 {
7919 child_die = die->child;
7920 while (child_die && child_die->tag)
7921 {
7922 process_die (child_die, cu);
7923 child_die = sibling_die (child_die);
7924 }
7925 }
7926
7927 /* Decode macro information, if present. Dwarf 2 macro information
7928 refers to information in the line number info statement program
7929 header, so we can only read it if we've read the header
7930 successfully. */
7931 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
7932 if (attr && cu->line_header)
7933 {
7934 if (dwarf2_attr (die, DW_AT_macro_info, cu))
7935 complaint (&symfile_complaints,
7936 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
7937
7938 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
7939 }
7940 else
7941 {
7942 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
7943 if (attr && cu->line_header)
7944 {
7945 unsigned int macro_offset = DW_UNSND (attr);
7946
7947 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
7948 }
7949 }
7950
7951 do_cleanups (back_to);
7952 }
7953
7954 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
7955 Create the set of symtabs used by this TU, or if this TU is sharing
7956 symtabs with another TU and the symtabs have already been created
7957 then restore those symtabs in the line header.
7958 We don't need the pc/line-number mapping for type units. */
7959
7960 static void
7961 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
7962 {
7963 struct objfile *objfile = dwarf2_per_objfile->objfile;
7964 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7965 struct type_unit_group *tu_group;
7966 int first_time;
7967 struct line_header *lh;
7968 struct attribute *attr;
7969 unsigned int i, line_offset;
7970
7971 gdb_assert (per_cu->is_debug_types);
7972
7973 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7974
7975 /* If we're using .gdb_index (includes -readnow) then
7976 per_cu->s.type_unit_group may not have been set up yet. */
7977 if (per_cu->s.type_unit_group == NULL)
7978 per_cu->s.type_unit_group = get_type_unit_group (cu, attr);
7979 tu_group = per_cu->s.type_unit_group;
7980
7981 /* If we've already processed this stmt_list there's no real need to
7982 do it again, we could fake it and just recreate the part we need
7983 (file name,index -> symtab mapping). If data shows this optimization
7984 is useful we can do it then. */
7985 first_time = tu_group->primary_symtab == NULL;
7986
7987 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
7988 debug info. */
7989 lh = NULL;
7990 if (attr != NULL)
7991 {
7992 line_offset = DW_UNSND (attr);
7993 lh = dwarf_decode_line_header (line_offset, cu);
7994 }
7995 if (lh == NULL)
7996 {
7997 if (first_time)
7998 dwarf2_start_symtab (cu, "", NULL, 0);
7999 else
8000 {
8001 gdb_assert (tu_group->symtabs == NULL);
8002 restart_symtab (0);
8003 }
8004 /* Note: The primary symtab will get allocated at the end. */
8005 return;
8006 }
8007
8008 cu->line_header = lh;
8009 make_cleanup (free_cu_line_header, cu);
8010
8011 if (first_time)
8012 {
8013 dwarf2_start_symtab (cu, "", NULL, 0);
8014
8015 tu_group->num_symtabs = lh->num_file_names;
8016 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8017
8018 for (i = 0; i < lh->num_file_names; ++i)
8019 {
8020 char *dir = NULL;
8021 struct file_entry *fe = &lh->file_names[i];
8022
8023 if (fe->dir_index)
8024 dir = lh->include_dirs[fe->dir_index - 1];
8025 dwarf2_start_subfile (fe->name, dir, NULL);
8026
8027 /* Note: We don't have to watch for the main subfile here, type units
8028 don't have DW_AT_name. */
8029
8030 if (current_subfile->symtab == NULL)
8031 {
8032 /* NOTE: start_subfile will recognize when it's been passed
8033 a file it has already seen. So we can't assume there's a
8034 simple mapping from lh->file_names to subfiles,
8035 lh->file_names may contain dups. */
8036 current_subfile->symtab = allocate_symtab (current_subfile->name,
8037 objfile);
8038 }
8039
8040 fe->symtab = current_subfile->symtab;
8041 tu_group->symtabs[i] = fe->symtab;
8042 }
8043 }
8044 else
8045 {
8046 restart_symtab (0);
8047
8048 for (i = 0; i < lh->num_file_names; ++i)
8049 {
8050 struct file_entry *fe = &lh->file_names[i];
8051
8052 fe->symtab = tu_group->symtabs[i];
8053 }
8054 }
8055
8056 /* The main symtab is allocated last. Type units don't have DW_AT_name
8057 so they don't have a "real" (so to speak) symtab anyway.
8058 There is later code that will assign the main symtab to all symbols
8059 that don't have one. We need to handle the case of a symbol with a
8060 missing symtab (DW_AT_decl_file) anyway. */
8061 }
8062
8063 /* Process DW_TAG_type_unit.
8064 For TUs we want to skip the first top level sibling if it's not the
8065 actual type being defined by this TU. In this case the first top
8066 level sibling is there to provide context only. */
8067
8068 static void
8069 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8070 {
8071 struct die_info *child_die;
8072
8073 prepare_one_comp_unit (cu, die, language_minimal);
8074
8075 /* Initialize (or reinitialize) the machinery for building symtabs.
8076 We do this before processing child DIEs, so that the line header table
8077 is available for DW_AT_decl_file. */
8078 setup_type_unit_groups (die, cu);
8079
8080 if (die->child != NULL)
8081 {
8082 child_die = die->child;
8083 while (child_die && child_die->tag)
8084 {
8085 process_die (child_die, cu);
8086 child_die = sibling_die (child_die);
8087 }
8088 }
8089 }
8090 \f
8091 /* DWO/DWP files.
8092
8093 http://gcc.gnu.org/wiki/DebugFission
8094 http://gcc.gnu.org/wiki/DebugFissionDWP
8095
8096 To simplify handling of both DWO files ("object" files with the DWARF info)
8097 and DWP files (a file with the DWOs packaged up into one file), we treat
8098 DWP files as having a collection of virtual DWO files. */
8099
8100 static hashval_t
8101 hash_dwo_file (const void *item)
8102 {
8103 const struct dwo_file *dwo_file = item;
8104
8105 return htab_hash_string (dwo_file->name);
8106 }
8107
8108 static int
8109 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8110 {
8111 const struct dwo_file *lhs = item_lhs;
8112 const struct dwo_file *rhs = item_rhs;
8113
8114 return strcmp (lhs->name, rhs->name) == 0;
8115 }
8116
8117 /* Allocate a hash table for DWO files. */
8118
8119 static htab_t
8120 allocate_dwo_file_hash_table (void)
8121 {
8122 struct objfile *objfile = dwarf2_per_objfile->objfile;
8123
8124 return htab_create_alloc_ex (41,
8125 hash_dwo_file,
8126 eq_dwo_file,
8127 NULL,
8128 &objfile->objfile_obstack,
8129 hashtab_obstack_allocate,
8130 dummy_obstack_deallocate);
8131 }
8132
8133 /* Lookup DWO file DWO_NAME. */
8134
8135 static void **
8136 lookup_dwo_file_slot (const char *dwo_name)
8137 {
8138 struct dwo_file find_entry;
8139 void **slot;
8140
8141 if (dwarf2_per_objfile->dwo_files == NULL)
8142 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8143
8144 memset (&find_entry, 0, sizeof (find_entry));
8145 find_entry.name = dwo_name;
8146 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8147
8148 return slot;
8149 }
8150
8151 static hashval_t
8152 hash_dwo_unit (const void *item)
8153 {
8154 const struct dwo_unit *dwo_unit = item;
8155
8156 /* This drops the top 32 bits of the id, but is ok for a hash. */
8157 return dwo_unit->signature;
8158 }
8159
8160 static int
8161 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8162 {
8163 const struct dwo_unit *lhs = item_lhs;
8164 const struct dwo_unit *rhs = item_rhs;
8165
8166 /* The signature is assumed to be unique within the DWO file.
8167 So while object file CU dwo_id's always have the value zero,
8168 that's OK, assuming each object file DWO file has only one CU,
8169 and that's the rule for now. */
8170 return lhs->signature == rhs->signature;
8171 }
8172
8173 /* Allocate a hash table for DWO CUs,TUs.
8174 There is one of these tables for each of CUs,TUs for each DWO file. */
8175
8176 static htab_t
8177 allocate_dwo_unit_table (struct objfile *objfile)
8178 {
8179 /* Start out with a pretty small number.
8180 Generally DWO files contain only one CU and maybe some TUs. */
8181 return htab_create_alloc_ex (3,
8182 hash_dwo_unit,
8183 eq_dwo_unit,
8184 NULL,
8185 &objfile->objfile_obstack,
8186 hashtab_obstack_allocate,
8187 dummy_obstack_deallocate);
8188 }
8189
8190 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8191
8192 struct create_dwo_info_table_data
8193 {
8194 struct dwo_file *dwo_file;
8195 htab_t cu_htab;
8196 };
8197
8198 /* die_reader_func for create_dwo_debug_info_hash_table. */
8199
8200 static void
8201 create_dwo_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8202 gdb_byte *info_ptr,
8203 struct die_info *comp_unit_die,
8204 int has_children,
8205 void *datap)
8206 {
8207 struct dwarf2_cu *cu = reader->cu;
8208 struct objfile *objfile = dwarf2_per_objfile->objfile;
8209 sect_offset offset = cu->per_cu->offset;
8210 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
8211 struct create_dwo_info_table_data *data = datap;
8212 struct dwo_file *dwo_file = data->dwo_file;
8213 htab_t cu_htab = data->cu_htab;
8214 void **slot;
8215 struct attribute *attr;
8216 struct dwo_unit *dwo_unit;
8217
8218 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8219 if (attr == NULL)
8220 {
8221 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8222 " its dwo_id [in module %s]"),
8223 offset.sect_off, dwo_file->name);
8224 return;
8225 }
8226
8227 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8228 dwo_unit->dwo_file = dwo_file;
8229 dwo_unit->signature = DW_UNSND (attr);
8230 dwo_unit->info_or_types_section = section;
8231 dwo_unit->offset = offset;
8232 dwo_unit->length = cu->per_cu->length;
8233
8234 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8235 gdb_assert (slot != NULL);
8236 if (*slot != NULL)
8237 {
8238 const struct dwo_unit *dup_dwo_unit = *slot;
8239
8240 complaint (&symfile_complaints,
8241 _("debug entry at offset 0x%x is duplicate to the entry at"
8242 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8243 offset.sect_off, dup_dwo_unit->offset.sect_off,
8244 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
8245 dwo_file->name);
8246 }
8247 else
8248 *slot = dwo_unit;
8249
8250 if (dwarf2_read_debug)
8251 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8252 offset.sect_off,
8253 phex (dwo_unit->signature,
8254 sizeof (dwo_unit->signature)));
8255 }
8256
8257 /* Create a hash table to map DWO IDs to their CU entry in
8258 .debug_info.dwo in DWO_FILE.
8259 Note: This function processes DWO files only, not DWP files. */
8260
8261 static htab_t
8262 create_dwo_debug_info_hash_table (struct dwo_file *dwo_file)
8263 {
8264 struct objfile *objfile = dwarf2_per_objfile->objfile;
8265 struct dwarf2_section_info *section = &dwo_file->sections.info;
8266 bfd *abfd;
8267 htab_t cu_htab;
8268 gdb_byte *info_ptr, *end_ptr;
8269 struct create_dwo_info_table_data create_dwo_info_table_data;
8270
8271 dwarf2_read_section (objfile, section);
8272 info_ptr = section->buffer;
8273
8274 if (info_ptr == NULL)
8275 return NULL;
8276
8277 /* We can't set abfd until now because the section may be empty or
8278 not present, in which case section->asection will be NULL. */
8279 abfd = section->asection->owner;
8280
8281 if (dwarf2_read_debug)
8282 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8283 bfd_get_filename (abfd));
8284
8285 cu_htab = allocate_dwo_unit_table (objfile);
8286
8287 create_dwo_info_table_data.dwo_file = dwo_file;
8288 create_dwo_info_table_data.cu_htab = cu_htab;
8289
8290 end_ptr = info_ptr + section->size;
8291 while (info_ptr < end_ptr)
8292 {
8293 struct dwarf2_per_cu_data per_cu;
8294
8295 memset (&per_cu, 0, sizeof (per_cu));
8296 per_cu.objfile = objfile;
8297 per_cu.is_debug_types = 0;
8298 per_cu.offset.sect_off = info_ptr - section->buffer;
8299 per_cu.info_or_types_section = section;
8300
8301 init_cutu_and_read_dies_no_follow (&per_cu,
8302 &dwo_file->sections.abbrev,
8303 dwo_file,
8304 create_dwo_debug_info_hash_table_reader,
8305 &create_dwo_info_table_data);
8306
8307 info_ptr += per_cu.length;
8308 }
8309
8310 return cu_htab;
8311 }
8312
8313 /* DWP file .debug_{cu,tu}_index section format:
8314 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8315
8316 Both index sections have the same format, and serve to map a 64-bit
8317 signature to a set of section numbers. Each section begins with a header,
8318 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8319 indexes, and a pool of 32-bit section numbers. The index sections will be
8320 aligned at 8-byte boundaries in the file.
8321
8322 The index section header contains two unsigned 32-bit values (using the
8323 byte order of the application binary):
8324
8325 N, the number of compilation units or type units in the index
8326 M, the number of slots in the hash table
8327
8328 (We assume that N and M will not exceed 2^32 - 1.)
8329
8330 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8331
8332 The hash table begins at offset 8 in the section, and consists of an array
8333 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8334 order of the application binary). Unused slots in the hash table are 0.
8335 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8336
8337 The parallel table begins immediately after the hash table
8338 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8339 array of 32-bit indexes (using the byte order of the application binary),
8340 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8341 table contains a 32-bit index into the pool of section numbers. For unused
8342 hash table slots, the corresponding entry in the parallel table will be 0.
8343
8344 Given a 64-bit compilation unit signature or a type signature S, an entry
8345 in the hash table is located as follows:
8346
8347 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8348 the low-order k bits all set to 1.
8349
8350 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8351
8352 3) If the hash table entry at index H matches the signature, use that
8353 entry. If the hash table entry at index H is unused (all zeroes),
8354 terminate the search: the signature is not present in the table.
8355
8356 4) Let H = (H + H') modulo M. Repeat at Step 3.
8357
8358 Because M > N and H' and M are relatively prime, the search is guaranteed
8359 to stop at an unused slot or find the match.
8360
8361 The pool of section numbers begins immediately following the hash table
8362 (at offset 8 + 12 * M from the beginning of the section). The pool of
8363 section numbers consists of an array of 32-bit words (using the byte order
8364 of the application binary). Each item in the array is indexed starting
8365 from 0. The hash table entry provides the index of the first section
8366 number in the set. Additional section numbers in the set follow, and the
8367 set is terminated by a 0 entry (section number 0 is not used in ELF).
8368
8369 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8370 section must be the first entry in the set, and the .debug_abbrev.dwo must
8371 be the second entry. Other members of the set may follow in any order. */
8372
8373 /* Create a hash table to map DWO IDs to their CU/TU entry in
8374 .debug_{info,types}.dwo in DWP_FILE.
8375 Returns NULL if there isn't one.
8376 Note: This function processes DWP files only, not DWO files. */
8377
8378 static struct dwp_hash_table *
8379 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8380 {
8381 struct objfile *objfile = dwarf2_per_objfile->objfile;
8382 bfd *dbfd = dwp_file->dbfd;
8383 char *index_ptr, *index_end;
8384 struct dwarf2_section_info *index;
8385 uint32_t version, nr_units, nr_slots;
8386 struct dwp_hash_table *htab;
8387
8388 if (is_debug_types)
8389 index = &dwp_file->sections.tu_index;
8390 else
8391 index = &dwp_file->sections.cu_index;
8392
8393 if (dwarf2_section_empty_p (index))
8394 return NULL;
8395 dwarf2_read_section (objfile, index);
8396
8397 index_ptr = index->buffer;
8398 index_end = index_ptr + index->size;
8399
8400 version = read_4_bytes (dbfd, index_ptr);
8401 index_ptr += 8; /* Skip the unused word. */
8402 nr_units = read_4_bytes (dbfd, index_ptr);
8403 index_ptr += 4;
8404 nr_slots = read_4_bytes (dbfd, index_ptr);
8405 index_ptr += 4;
8406
8407 if (version != 1)
8408 {
8409 error (_("Dwarf Error: unsupported DWP file version (%u)"
8410 " [in module %s]"),
8411 version, dwp_file->name);
8412 }
8413 if (nr_slots != (nr_slots & -nr_slots))
8414 {
8415 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8416 " is not power of 2 [in module %s]"),
8417 nr_slots, dwp_file->name);
8418 }
8419
8420 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8421 htab->nr_units = nr_units;
8422 htab->nr_slots = nr_slots;
8423 htab->hash_table = index_ptr;
8424 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8425 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8426
8427 return htab;
8428 }
8429
8430 /* Update SECTIONS with the data from SECTP.
8431
8432 This function is like the other "locate" section routines that are
8433 passed to bfd_map_over_sections, but in this context the sections to
8434 read comes from the DWP hash table, not the full ELF section table.
8435
8436 The result is non-zero for success, or zero if an error was found. */
8437
8438 static int
8439 locate_virtual_dwo_sections (asection *sectp,
8440 struct virtual_dwo_sections *sections)
8441 {
8442 const struct dwop_section_names *names = &dwop_section_names;
8443
8444 if (section_is_p (sectp->name, &names->abbrev_dwo))
8445 {
8446 /* There can be only one. */
8447 if (sections->abbrev.asection != NULL)
8448 return 0;
8449 sections->abbrev.asection = sectp;
8450 sections->abbrev.size = bfd_get_section_size (sectp);
8451 }
8452 else if (section_is_p (sectp->name, &names->info_dwo)
8453 || section_is_p (sectp->name, &names->types_dwo))
8454 {
8455 /* There can be only one. */
8456 if (sections->info_or_types.asection != NULL)
8457 return 0;
8458 sections->info_or_types.asection = sectp;
8459 sections->info_or_types.size = bfd_get_section_size (sectp);
8460 }
8461 else if (section_is_p (sectp->name, &names->line_dwo))
8462 {
8463 /* There can be only one. */
8464 if (sections->line.asection != NULL)
8465 return 0;
8466 sections->line.asection = sectp;
8467 sections->line.size = bfd_get_section_size (sectp);
8468 }
8469 else if (section_is_p (sectp->name, &names->loc_dwo))
8470 {
8471 /* There can be only one. */
8472 if (sections->loc.asection != NULL)
8473 return 0;
8474 sections->loc.asection = sectp;
8475 sections->loc.size = bfd_get_section_size (sectp);
8476 }
8477 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8478 {
8479 /* There can be only one. */
8480 if (sections->macinfo.asection != NULL)
8481 return 0;
8482 sections->macinfo.asection = sectp;
8483 sections->macinfo.size = bfd_get_section_size (sectp);
8484 }
8485 else if (section_is_p (sectp->name, &names->macro_dwo))
8486 {
8487 /* There can be only one. */
8488 if (sections->macro.asection != NULL)
8489 return 0;
8490 sections->macro.asection = sectp;
8491 sections->macro.size = bfd_get_section_size (sectp);
8492 }
8493 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8494 {
8495 /* There can be only one. */
8496 if (sections->str_offsets.asection != NULL)
8497 return 0;
8498 sections->str_offsets.asection = sectp;
8499 sections->str_offsets.size = bfd_get_section_size (sectp);
8500 }
8501 else
8502 {
8503 /* No other kind of section is valid. */
8504 return 0;
8505 }
8506
8507 return 1;
8508 }
8509
8510 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
8511 HTAB is the hash table from the DWP file.
8512 SECTION_INDEX is the index of the DWO in HTAB. */
8513
8514 static struct dwo_unit *
8515 create_dwo_in_dwp (struct dwp_file *dwp_file,
8516 const struct dwp_hash_table *htab,
8517 uint32_t section_index,
8518 ULONGEST signature, int is_debug_types)
8519 {
8520 struct objfile *objfile = dwarf2_per_objfile->objfile;
8521 bfd *dbfd = dwp_file->dbfd;
8522 const char *kind = is_debug_types ? "TU" : "CU";
8523 struct dwo_file *dwo_file;
8524 struct dwo_unit *dwo_unit;
8525 struct virtual_dwo_sections sections;
8526 void **dwo_file_slot;
8527 char *virtual_dwo_name;
8528 struct dwarf2_section_info *cutu;
8529 struct cleanup *cleanups;
8530 int i;
8531
8532 if (dwarf2_read_debug)
8533 {
8534 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/0x%s in DWP file: %s\n",
8535 kind,
8536 section_index, phex (signature, sizeof (signature)),
8537 dwp_file->name);
8538 }
8539
8540 /* Fetch the sections of this DWO.
8541 Put a limit on the number of sections we look for so that bad data
8542 doesn't cause us to loop forever. */
8543
8544 #define MAX_NR_DWO_SECTIONS \
8545 (1 /* .debug_info or .debug_types */ \
8546 + 1 /* .debug_abbrev */ \
8547 + 1 /* .debug_line */ \
8548 + 1 /* .debug_loc */ \
8549 + 1 /* .debug_str_offsets */ \
8550 + 1 /* .debug_macro */ \
8551 + 1 /* .debug_macinfo */ \
8552 + 1 /* trailing zero */)
8553
8554 memset (&sections, 0, sizeof (sections));
8555 cleanups = make_cleanup (null_cleanup, 0);
8556
8557 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8558 {
8559 asection *sectp;
8560 uint32_t section_nr =
8561 read_4_bytes (dbfd,
8562 htab->section_pool
8563 + (section_index + i) * sizeof (uint32_t));
8564
8565 if (section_nr == 0)
8566 break;
8567 if (section_nr >= dwp_file->num_sections)
8568 {
8569 error (_("Dwarf Error: bad DWP hash table, section number too large"
8570 " [in module %s]"),
8571 dwp_file->name);
8572 }
8573
8574 sectp = dwp_file->elf_sections[section_nr];
8575 if (! locate_virtual_dwo_sections (sectp, &sections))
8576 {
8577 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8578 " [in module %s]"),
8579 dwp_file->name);
8580 }
8581 }
8582
8583 if (i < 2
8584 || sections.info_or_types.asection == NULL
8585 || sections.abbrev.asection == NULL)
8586 {
8587 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8588 " [in module %s]"),
8589 dwp_file->name);
8590 }
8591 if (i == MAX_NR_DWO_SECTIONS)
8592 {
8593 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8594 " [in module %s]"),
8595 dwp_file->name);
8596 }
8597
8598 /* It's easier for the rest of the code if we fake a struct dwo_file and
8599 have dwo_unit "live" in that. At least for now.
8600
8601 The DWP file can be made up of a random collection of CUs and TUs.
8602 However, for each CU + set of TUs that came from the same original DWO
8603 file, we want to combine them back into a virtual DWO file to save space
8604 (fewer struct dwo_file objects to allocated). Remember that for really
8605 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8606
8607 virtual_dwo_name =
8608 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8609 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8610 sections.line.asection ? sections.line.asection->id : 0,
8611 sections.loc.asection ? sections.loc.asection->id : 0,
8612 (sections.str_offsets.asection
8613 ? sections.str_offsets.asection->id
8614 : 0));
8615 make_cleanup (xfree, virtual_dwo_name);
8616 /* Can we use an existing virtual DWO file? */
8617 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name);
8618 /* Create one if necessary. */
8619 if (*dwo_file_slot == NULL)
8620 {
8621 if (dwarf2_read_debug)
8622 {
8623 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8624 virtual_dwo_name);
8625 }
8626 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8627 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8628 virtual_dwo_name,
8629 strlen (virtual_dwo_name));
8630 dwo_file->sections.abbrev = sections.abbrev;
8631 dwo_file->sections.line = sections.line;
8632 dwo_file->sections.loc = sections.loc;
8633 dwo_file->sections.macinfo = sections.macinfo;
8634 dwo_file->sections.macro = sections.macro;
8635 dwo_file->sections.str_offsets = sections.str_offsets;
8636 /* The "str" section is global to the entire DWP file. */
8637 dwo_file->sections.str = dwp_file->sections.str;
8638 /* The info or types section is assigned later to dwo_unit,
8639 there's no need to record it in dwo_file.
8640 Also, we can't simply record type sections in dwo_file because
8641 we record a pointer into the vector in dwo_unit. As we collect more
8642 types we'll grow the vector and eventually have to reallocate space
8643 for it, invalidating all the pointers into the current copy. */
8644 *dwo_file_slot = dwo_file;
8645 }
8646 else
8647 {
8648 if (dwarf2_read_debug)
8649 {
8650 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8651 virtual_dwo_name);
8652 }
8653 dwo_file = *dwo_file_slot;
8654 }
8655 do_cleanups (cleanups);
8656
8657 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8658 dwo_unit->dwo_file = dwo_file;
8659 dwo_unit->signature = signature;
8660 dwo_unit->info_or_types_section =
8661 obstack_alloc (&objfile->objfile_obstack,
8662 sizeof (struct dwarf2_section_info));
8663 *dwo_unit->info_or_types_section = sections.info_or_types;
8664 /* offset, length, type_offset_in_tu are set later. */
8665
8666 return dwo_unit;
8667 }
8668
8669 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
8670
8671 static struct dwo_unit *
8672 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8673 const struct dwp_hash_table *htab,
8674 ULONGEST signature, int is_debug_types)
8675 {
8676 bfd *dbfd = dwp_file->dbfd;
8677 uint32_t mask = htab->nr_slots - 1;
8678 uint32_t hash = signature & mask;
8679 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8680 unsigned int i;
8681 void **slot;
8682 struct dwo_unit find_dwo_cu, *dwo_cu;
8683
8684 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8685 find_dwo_cu.signature = signature;
8686 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8687
8688 if (*slot != NULL)
8689 return *slot;
8690
8691 /* Use a for loop so that we don't loop forever on bad debug info. */
8692 for (i = 0; i < htab->nr_slots; ++i)
8693 {
8694 ULONGEST signature_in_table;
8695
8696 signature_in_table =
8697 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8698 if (signature_in_table == signature)
8699 {
8700 uint32_t section_index =
8701 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8702
8703 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8704 signature, is_debug_types);
8705 return *slot;
8706 }
8707 if (signature_in_table == 0)
8708 return NULL;
8709 hash = (hash + hash2) & mask;
8710 }
8711
8712 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8713 " [in module %s]"),
8714 dwp_file->name);
8715 }
8716
8717 /* Subroutine of open_dwop_file to simplify it.
8718 Open the file specified by FILE_NAME and hand it off to BFD for
8719 preliminary analysis. Return a newly initialized bfd *, which
8720 includes a canonicalized copy of FILE_NAME.
8721 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8722 In case of trouble, return NULL.
8723 NOTE: This function is derived from symfile_bfd_open. */
8724
8725 static bfd *
8726 try_open_dwop_file (const char *file_name, int is_dwp)
8727 {
8728 bfd *sym_bfd;
8729 int desc, flags;
8730 char *absolute_name;
8731
8732 flags = OPF_TRY_CWD_FIRST;
8733 if (is_dwp)
8734 flags |= OPF_SEARCH_IN_PATH;
8735 desc = openp (debug_file_directory, flags, file_name,
8736 O_RDONLY | O_BINARY, &absolute_name);
8737 if (desc < 0)
8738 return NULL;
8739
8740 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8741 if (!sym_bfd)
8742 {
8743 xfree (absolute_name);
8744 return NULL;
8745 }
8746 xfree (absolute_name);
8747 bfd_set_cacheable (sym_bfd, 1);
8748
8749 if (!bfd_check_format (sym_bfd, bfd_object))
8750 {
8751 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8752 return NULL;
8753 }
8754
8755 return sym_bfd;
8756 }
8757
8758 /* Try to open DWO/DWP file FILE_NAME.
8759 COMP_DIR is the DW_AT_comp_dir attribute.
8760 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8761 The result is the bfd handle of the file.
8762 If there is a problem finding or opening the file, return NULL.
8763 Upon success, the canonicalized path of the file is stored in the bfd,
8764 same as symfile_bfd_open. */
8765
8766 static bfd *
8767 open_dwop_file (const char *file_name, const char *comp_dir, int is_dwp)
8768 {
8769 bfd *abfd;
8770
8771 if (IS_ABSOLUTE_PATH (file_name))
8772 return try_open_dwop_file (file_name, is_dwp);
8773
8774 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8775
8776 if (comp_dir != NULL)
8777 {
8778 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
8779
8780 /* NOTE: If comp_dir is a relative path, this will also try the
8781 search path, which seems useful. */
8782 abfd = try_open_dwop_file (path_to_try, is_dwp);
8783 xfree (path_to_try);
8784 if (abfd != NULL)
8785 return abfd;
8786 }
8787
8788 /* That didn't work, try debug-file-directory, which, despite its name,
8789 is a list of paths. */
8790
8791 if (*debug_file_directory == '\0')
8792 return NULL;
8793
8794 return try_open_dwop_file (file_name, is_dwp);
8795 }
8796
8797 /* This function is mapped across the sections and remembers the offset and
8798 size of each of the DWO debugging sections we are interested in. */
8799
8800 static void
8801 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
8802 {
8803 struct dwo_sections *dwo_sections = dwo_sections_ptr;
8804 const struct dwop_section_names *names = &dwop_section_names;
8805
8806 if (section_is_p (sectp->name, &names->abbrev_dwo))
8807 {
8808 dwo_sections->abbrev.asection = sectp;
8809 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
8810 }
8811 else if (section_is_p (sectp->name, &names->info_dwo))
8812 {
8813 dwo_sections->info.asection = sectp;
8814 dwo_sections->info.size = bfd_get_section_size (sectp);
8815 }
8816 else if (section_is_p (sectp->name, &names->line_dwo))
8817 {
8818 dwo_sections->line.asection = sectp;
8819 dwo_sections->line.size = bfd_get_section_size (sectp);
8820 }
8821 else if (section_is_p (sectp->name, &names->loc_dwo))
8822 {
8823 dwo_sections->loc.asection = sectp;
8824 dwo_sections->loc.size = bfd_get_section_size (sectp);
8825 }
8826 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8827 {
8828 dwo_sections->macinfo.asection = sectp;
8829 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
8830 }
8831 else if (section_is_p (sectp->name, &names->macro_dwo))
8832 {
8833 dwo_sections->macro.asection = sectp;
8834 dwo_sections->macro.size = bfd_get_section_size (sectp);
8835 }
8836 else if (section_is_p (sectp->name, &names->str_dwo))
8837 {
8838 dwo_sections->str.asection = sectp;
8839 dwo_sections->str.size = bfd_get_section_size (sectp);
8840 }
8841 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8842 {
8843 dwo_sections->str_offsets.asection = sectp;
8844 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
8845 }
8846 else if (section_is_p (sectp->name, &names->types_dwo))
8847 {
8848 struct dwarf2_section_info type_section;
8849
8850 memset (&type_section, 0, sizeof (type_section));
8851 type_section.asection = sectp;
8852 type_section.size = bfd_get_section_size (sectp);
8853 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
8854 &type_section);
8855 }
8856 }
8857
8858 /* Initialize the use of the DWO file specified by DWO_NAME.
8859 The result is NULL if DWO_NAME can't be found. */
8860
8861 static struct dwo_file *
8862 open_and_init_dwo_file (const char *dwo_name, const char *comp_dir)
8863 {
8864 struct objfile *objfile = dwarf2_per_objfile->objfile;
8865 struct dwo_file *dwo_file;
8866 bfd *dbfd;
8867 struct cleanup *cleanups;
8868
8869 dbfd = open_dwop_file (dwo_name, comp_dir, 0);
8870 if (dbfd == NULL)
8871 {
8872 if (dwarf2_read_debug)
8873 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
8874 return NULL;
8875 }
8876 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8877 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8878 dwo_name, strlen (dwo_name));
8879 dwo_file->dbfd = dbfd;
8880
8881 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8882
8883 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
8884
8885 dwo_file->cus = create_dwo_debug_info_hash_table (dwo_file);
8886
8887 dwo_file->tus = create_debug_types_hash_table (dwo_file,
8888 dwo_file->sections.types);
8889
8890 discard_cleanups (cleanups);
8891
8892 if (dwarf2_read_debug)
8893 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
8894
8895 return dwo_file;
8896 }
8897
8898 /* This function is mapped across the sections and remembers the offset and
8899 size of each of the DWP debugging sections we are interested in. */
8900
8901 static void
8902 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
8903 {
8904 struct dwp_file *dwp_file = dwp_file_ptr;
8905 const struct dwop_section_names *names = &dwop_section_names;
8906 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
8907
8908 /* Record the ELF section number for later lookup: this is what the
8909 .debug_cu_index,.debug_tu_index tables use. */
8910 gdb_assert (elf_section_nr < dwp_file->num_sections);
8911 dwp_file->elf_sections[elf_section_nr] = sectp;
8912
8913 /* Look for specific sections that we need. */
8914 if (section_is_p (sectp->name, &names->str_dwo))
8915 {
8916 dwp_file->sections.str.asection = sectp;
8917 dwp_file->sections.str.size = bfd_get_section_size (sectp);
8918 }
8919 else if (section_is_p (sectp->name, &names->cu_index))
8920 {
8921 dwp_file->sections.cu_index.asection = sectp;
8922 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
8923 }
8924 else if (section_is_p (sectp->name, &names->tu_index))
8925 {
8926 dwp_file->sections.tu_index.asection = sectp;
8927 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
8928 }
8929 }
8930
8931 /* Hash function for dwp_file loaded CUs/TUs. */
8932
8933 static hashval_t
8934 hash_dwp_loaded_cutus (const void *item)
8935 {
8936 const struct dwo_unit *dwo_unit = item;
8937
8938 /* This drops the top 32 bits of the signature, but is ok for a hash. */
8939 return dwo_unit->signature;
8940 }
8941
8942 /* Equality function for dwp_file loaded CUs/TUs. */
8943
8944 static int
8945 eq_dwp_loaded_cutus (const void *a, const void *b)
8946 {
8947 const struct dwo_unit *dua = a;
8948 const struct dwo_unit *dub = b;
8949
8950 return dua->signature == dub->signature;
8951 }
8952
8953 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
8954
8955 static htab_t
8956 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
8957 {
8958 return htab_create_alloc_ex (3,
8959 hash_dwp_loaded_cutus,
8960 eq_dwp_loaded_cutus,
8961 NULL,
8962 &objfile->objfile_obstack,
8963 hashtab_obstack_allocate,
8964 dummy_obstack_deallocate);
8965 }
8966
8967 /* Initialize the use of the DWP file for the current objfile.
8968 By convention the name of the DWP file is ${objfile}.dwp.
8969 The result is NULL if it can't be found. */
8970
8971 static struct dwp_file *
8972 open_and_init_dwp_file (const char *comp_dir)
8973 {
8974 struct objfile *objfile = dwarf2_per_objfile->objfile;
8975 struct dwp_file *dwp_file;
8976 char *dwp_name;
8977 bfd *dbfd;
8978 struct cleanup *cleanups;
8979
8980 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
8981 cleanups = make_cleanup (xfree, dwp_name);
8982
8983 dbfd = open_dwop_file (dwp_name, comp_dir, 1);
8984 if (dbfd == NULL)
8985 {
8986 if (dwarf2_read_debug)
8987 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
8988 do_cleanups (cleanups);
8989 return NULL;
8990 }
8991 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
8992 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
8993 dwp_name, strlen (dwp_name));
8994 dwp_file->dbfd = dbfd;
8995 do_cleanups (cleanups);
8996
8997 cleanups = make_cleanup (free_dwo_file_cleanup, dwp_file);
8998
8999 /* +1: section 0 is unused */
9000 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9001 dwp_file->elf_sections =
9002 OBSTACK_CALLOC (&objfile->objfile_obstack,
9003 dwp_file->num_sections, asection *);
9004
9005 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9006
9007 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9008
9009 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9010
9011 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9012
9013 discard_cleanups (cleanups);
9014
9015 if (dwarf2_read_debug)
9016 {
9017 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9018 fprintf_unfiltered (gdb_stdlog,
9019 " %u CUs, %u TUs\n",
9020 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9021 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9022 }
9023
9024 return dwp_file;
9025 }
9026
9027 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9028 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9029 or in the DWP file for the objfile, referenced by THIS_UNIT.
9030 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9031 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9032
9033 This is called, for example, when wanting to read a variable with a
9034 complex location. Therefore we don't want to do file i/o for every call.
9035 Therefore we don't want to look for a DWO file on every call.
9036 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9037 then we check if we've already seen DWO_NAME, and only THEN do we check
9038 for a DWO file.
9039
9040 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9041 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9042
9043 static struct dwo_unit *
9044 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9045 const char *dwo_name, const char *comp_dir,
9046 ULONGEST signature, int is_debug_types)
9047 {
9048 struct objfile *objfile = dwarf2_per_objfile->objfile;
9049 const char *kind = is_debug_types ? "TU" : "CU";
9050 void **dwo_file_slot;
9051 struct dwo_file *dwo_file;
9052 struct dwp_file *dwp_file;
9053
9054 /* Have we already read SIGNATURE from a DWP file? */
9055
9056 if (! dwarf2_per_objfile->dwp_checked)
9057 {
9058 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file (comp_dir);
9059 dwarf2_per_objfile->dwp_checked = 1;
9060 }
9061 dwp_file = dwarf2_per_objfile->dwp_file;
9062
9063 if (dwp_file != NULL)
9064 {
9065 const struct dwp_hash_table *dwp_htab =
9066 is_debug_types ? dwp_file->tus : dwp_file->cus;
9067
9068 if (dwp_htab != NULL)
9069 {
9070 struct dwo_unit *dwo_cutu =
9071 lookup_dwo_in_dwp (dwp_file, dwp_htab, signature, is_debug_types);
9072
9073 if (dwo_cutu != NULL)
9074 {
9075 if (dwarf2_read_debug)
9076 {
9077 fprintf_unfiltered (gdb_stdlog,
9078 "Virtual DWO %s %s found: @%s\n",
9079 kind, hex_string (signature),
9080 host_address_to_string (dwo_cutu));
9081 }
9082 return dwo_cutu;
9083 }
9084 }
9085 }
9086
9087 /* Have we already seen DWO_NAME? */
9088
9089 dwo_file_slot = lookup_dwo_file_slot (dwo_name);
9090 if (*dwo_file_slot == NULL)
9091 {
9092 /* Read in the file and build a table of the DWOs it contains. */
9093 *dwo_file_slot = open_and_init_dwo_file (dwo_name, comp_dir);
9094 }
9095 /* NOTE: This will be NULL if unable to open the file. */
9096 dwo_file = *dwo_file_slot;
9097
9098 if (dwo_file != NULL)
9099 {
9100 htab_t htab = is_debug_types ? dwo_file->tus : dwo_file->cus;
9101
9102 if (htab != NULL)
9103 {
9104 struct dwo_unit find_dwo_cutu, *dwo_cutu;
9105
9106 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9107 find_dwo_cutu.signature = signature;
9108 dwo_cutu = htab_find (htab, &find_dwo_cutu);
9109
9110 if (dwo_cutu != NULL)
9111 {
9112 if (dwarf2_read_debug)
9113 {
9114 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9115 kind, dwo_name, hex_string (signature),
9116 host_address_to_string (dwo_cutu));
9117 }
9118 return dwo_cutu;
9119 }
9120 }
9121 }
9122
9123 /* We didn't find it. This could mean a dwo_id mismatch, or
9124 someone deleted the DWO/DWP file, or the search path isn't set up
9125 correctly to find the file. */
9126
9127 if (dwarf2_read_debug)
9128 {
9129 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9130 kind, dwo_name, hex_string (signature));
9131 }
9132
9133 complaint (&symfile_complaints,
9134 _("Could not find DWO CU referenced by CU at offset 0x%x"
9135 " [in module %s]"),
9136 this_unit->offset.sect_off, objfile->name);
9137 return NULL;
9138 }
9139
9140 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9141 See lookup_dwo_cutu_unit for details. */
9142
9143 static struct dwo_unit *
9144 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9145 const char *dwo_name, const char *comp_dir,
9146 ULONGEST signature)
9147 {
9148 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9149 }
9150
9151 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9152 See lookup_dwo_cutu_unit for details. */
9153
9154 static struct dwo_unit *
9155 lookup_dwo_type_unit (struct signatured_type *this_tu,
9156 const char *dwo_name, const char *comp_dir)
9157 {
9158 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9159 }
9160
9161 /* Free all resources associated with DWO_FILE.
9162 Close the DWO file and munmap the sections.
9163 All memory should be on the objfile obstack. */
9164
9165 static void
9166 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9167 {
9168 int ix;
9169 struct dwarf2_section_info *section;
9170
9171 gdb_assert (dwo_file->dbfd != objfile->obfd);
9172 gdb_bfd_unref (dwo_file->dbfd);
9173
9174 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9175 }
9176
9177 /* Wrapper for free_dwo_file for use in cleanups. */
9178
9179 static void
9180 free_dwo_file_cleanup (void *arg)
9181 {
9182 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9183 struct objfile *objfile = dwarf2_per_objfile->objfile;
9184
9185 free_dwo_file (dwo_file, objfile);
9186 }
9187
9188 /* Traversal function for free_dwo_files. */
9189
9190 static int
9191 free_dwo_file_from_slot (void **slot, void *info)
9192 {
9193 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9194 struct objfile *objfile = (struct objfile *) info;
9195
9196 free_dwo_file (dwo_file, objfile);
9197
9198 return 1;
9199 }
9200
9201 /* Free all resources associated with DWO_FILES. */
9202
9203 static void
9204 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9205 {
9206 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9207 }
9208 \f
9209 /* Read in various DIEs. */
9210
9211 /* qsort helper for inherit_abstract_dies. */
9212
9213 static int
9214 unsigned_int_compar (const void *ap, const void *bp)
9215 {
9216 unsigned int a = *(unsigned int *) ap;
9217 unsigned int b = *(unsigned int *) bp;
9218
9219 return (a > b) - (b > a);
9220 }
9221
9222 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9223 Inherit only the children of the DW_AT_abstract_origin DIE not being
9224 already referenced by DW_AT_abstract_origin from the children of the
9225 current DIE. */
9226
9227 static void
9228 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9229 {
9230 struct die_info *child_die;
9231 unsigned die_children_count;
9232 /* CU offsets which were referenced by children of the current DIE. */
9233 sect_offset *offsets;
9234 sect_offset *offsets_end, *offsetp;
9235 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9236 struct die_info *origin_die;
9237 /* Iterator of the ORIGIN_DIE children. */
9238 struct die_info *origin_child_die;
9239 struct cleanup *cleanups;
9240 struct attribute *attr;
9241 struct dwarf2_cu *origin_cu;
9242 struct pending **origin_previous_list_in_scope;
9243
9244 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9245 if (!attr)
9246 return;
9247
9248 /* Note that following die references may follow to a die in a
9249 different cu. */
9250
9251 origin_cu = cu;
9252 origin_die = follow_die_ref (die, attr, &origin_cu);
9253
9254 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9255 symbols in. */
9256 origin_previous_list_in_scope = origin_cu->list_in_scope;
9257 origin_cu->list_in_scope = cu->list_in_scope;
9258
9259 if (die->tag != origin_die->tag
9260 && !(die->tag == DW_TAG_inlined_subroutine
9261 && origin_die->tag == DW_TAG_subprogram))
9262 complaint (&symfile_complaints,
9263 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9264 die->offset.sect_off, origin_die->offset.sect_off);
9265
9266 child_die = die->child;
9267 die_children_count = 0;
9268 while (child_die && child_die->tag)
9269 {
9270 child_die = sibling_die (child_die);
9271 die_children_count++;
9272 }
9273 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9274 cleanups = make_cleanup (xfree, offsets);
9275
9276 offsets_end = offsets;
9277 child_die = die->child;
9278 while (child_die && child_die->tag)
9279 {
9280 /* For each CHILD_DIE, find the corresponding child of
9281 ORIGIN_DIE. If there is more than one layer of
9282 DW_AT_abstract_origin, follow them all; there shouldn't be,
9283 but GCC versions at least through 4.4 generate this (GCC PR
9284 40573). */
9285 struct die_info *child_origin_die = child_die;
9286 struct dwarf2_cu *child_origin_cu = cu;
9287
9288 while (1)
9289 {
9290 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9291 child_origin_cu);
9292 if (attr == NULL)
9293 break;
9294 child_origin_die = follow_die_ref (child_origin_die, attr,
9295 &child_origin_cu);
9296 }
9297
9298 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9299 counterpart may exist. */
9300 if (child_origin_die != child_die)
9301 {
9302 if (child_die->tag != child_origin_die->tag
9303 && !(child_die->tag == DW_TAG_inlined_subroutine
9304 && child_origin_die->tag == DW_TAG_subprogram))
9305 complaint (&symfile_complaints,
9306 _("Child DIE 0x%x and its abstract origin 0x%x have "
9307 "different tags"), child_die->offset.sect_off,
9308 child_origin_die->offset.sect_off);
9309 if (child_origin_die->parent != origin_die)
9310 complaint (&symfile_complaints,
9311 _("Child DIE 0x%x and its abstract origin 0x%x have "
9312 "different parents"), child_die->offset.sect_off,
9313 child_origin_die->offset.sect_off);
9314 else
9315 *offsets_end++ = child_origin_die->offset;
9316 }
9317 child_die = sibling_die (child_die);
9318 }
9319 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9320 unsigned_int_compar);
9321 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9322 if (offsetp[-1].sect_off == offsetp->sect_off)
9323 complaint (&symfile_complaints,
9324 _("Multiple children of DIE 0x%x refer "
9325 "to DIE 0x%x as their abstract origin"),
9326 die->offset.sect_off, offsetp->sect_off);
9327
9328 offsetp = offsets;
9329 origin_child_die = origin_die->child;
9330 while (origin_child_die && origin_child_die->tag)
9331 {
9332 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9333 while (offsetp < offsets_end
9334 && offsetp->sect_off < origin_child_die->offset.sect_off)
9335 offsetp++;
9336 if (offsetp >= offsets_end
9337 || offsetp->sect_off > origin_child_die->offset.sect_off)
9338 {
9339 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9340 process_die (origin_child_die, origin_cu);
9341 }
9342 origin_child_die = sibling_die (origin_child_die);
9343 }
9344 origin_cu->list_in_scope = origin_previous_list_in_scope;
9345
9346 do_cleanups (cleanups);
9347 }
9348
9349 static void
9350 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9351 {
9352 struct objfile *objfile = cu->objfile;
9353 struct context_stack *new;
9354 CORE_ADDR lowpc;
9355 CORE_ADDR highpc;
9356 struct die_info *child_die;
9357 struct attribute *attr, *call_line, *call_file;
9358 char *name;
9359 CORE_ADDR baseaddr;
9360 struct block *block;
9361 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9362 VEC (symbolp) *template_args = NULL;
9363 struct template_symbol *templ_func = NULL;
9364
9365 if (inlined_func)
9366 {
9367 /* If we do not have call site information, we can't show the
9368 caller of this inlined function. That's too confusing, so
9369 only use the scope for local variables. */
9370 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9371 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9372 if (call_line == NULL || call_file == NULL)
9373 {
9374 read_lexical_block_scope (die, cu);
9375 return;
9376 }
9377 }
9378
9379 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9380
9381 name = dwarf2_name (die, cu);
9382
9383 /* Ignore functions with missing or empty names. These are actually
9384 illegal according to the DWARF standard. */
9385 if (name == NULL)
9386 {
9387 complaint (&symfile_complaints,
9388 _("missing name for subprogram DIE at %d"),
9389 die->offset.sect_off);
9390 return;
9391 }
9392
9393 /* Ignore functions with missing or invalid low and high pc attributes. */
9394 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9395 {
9396 attr = dwarf2_attr (die, DW_AT_external, cu);
9397 if (!attr || !DW_UNSND (attr))
9398 complaint (&symfile_complaints,
9399 _("cannot get low and high bounds "
9400 "for subprogram DIE at %d"),
9401 die->offset.sect_off);
9402 return;
9403 }
9404
9405 lowpc += baseaddr;
9406 highpc += baseaddr;
9407
9408 /* If we have any template arguments, then we must allocate a
9409 different sort of symbol. */
9410 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9411 {
9412 if (child_die->tag == DW_TAG_template_type_param
9413 || child_die->tag == DW_TAG_template_value_param)
9414 {
9415 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
9416 struct template_symbol);
9417 templ_func->base.is_cplus_template_function = 1;
9418 break;
9419 }
9420 }
9421
9422 new = push_context (0, lowpc);
9423 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9424 (struct symbol *) templ_func);
9425
9426 /* If there is a location expression for DW_AT_frame_base, record
9427 it. */
9428 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
9429 if (attr)
9430 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
9431 expression is being recorded directly in the function's symbol
9432 and not in a separate frame-base object. I guess this hack is
9433 to avoid adding some sort of frame-base adjunct/annex to the
9434 function's symbol :-(. The problem with doing this is that it
9435 results in a function symbol with a location expression that
9436 has nothing to do with the location of the function, ouch! The
9437 relationship should be: a function's symbol has-a frame base; a
9438 frame-base has-a location expression. */
9439 dwarf2_symbol_mark_computed (attr, new->name, cu);
9440
9441 cu->list_in_scope = &local_symbols;
9442
9443 if (die->child != NULL)
9444 {
9445 child_die = die->child;
9446 while (child_die && child_die->tag)
9447 {
9448 if (child_die->tag == DW_TAG_template_type_param
9449 || child_die->tag == DW_TAG_template_value_param)
9450 {
9451 struct symbol *arg = new_symbol (child_die, NULL, cu);
9452
9453 if (arg != NULL)
9454 VEC_safe_push (symbolp, template_args, arg);
9455 }
9456 else
9457 process_die (child_die, cu);
9458 child_die = sibling_die (child_die);
9459 }
9460 }
9461
9462 inherit_abstract_dies (die, cu);
9463
9464 /* If we have a DW_AT_specification, we might need to import using
9465 directives from the context of the specification DIE. See the
9466 comment in determine_prefix. */
9467 if (cu->language == language_cplus
9468 && dwarf2_attr (die, DW_AT_specification, cu))
9469 {
9470 struct dwarf2_cu *spec_cu = cu;
9471 struct die_info *spec_die = die_specification (die, &spec_cu);
9472
9473 while (spec_die)
9474 {
9475 child_die = spec_die->child;
9476 while (child_die && child_die->tag)
9477 {
9478 if (child_die->tag == DW_TAG_imported_module)
9479 process_die (child_die, spec_cu);
9480 child_die = sibling_die (child_die);
9481 }
9482
9483 /* In some cases, GCC generates specification DIEs that
9484 themselves contain DW_AT_specification attributes. */
9485 spec_die = die_specification (spec_die, &spec_cu);
9486 }
9487 }
9488
9489 new = pop_context ();
9490 /* Make a block for the local symbols within. */
9491 block = finish_block (new->name, &local_symbols, new->old_blocks,
9492 lowpc, highpc, objfile);
9493
9494 /* For C++, set the block's scope. */
9495 if (cu->language == language_cplus || cu->language == language_fortran)
9496 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
9497 determine_prefix (die, cu),
9498 processing_has_namespace_info);
9499
9500 /* If we have address ranges, record them. */
9501 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9502
9503 /* Attach template arguments to function. */
9504 if (! VEC_empty (symbolp, template_args))
9505 {
9506 gdb_assert (templ_func != NULL);
9507
9508 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9509 templ_func->template_arguments
9510 = obstack_alloc (&objfile->objfile_obstack,
9511 (templ_func->n_template_arguments
9512 * sizeof (struct symbol *)));
9513 memcpy (templ_func->template_arguments,
9514 VEC_address (symbolp, template_args),
9515 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9516 VEC_free (symbolp, template_args);
9517 }
9518
9519 /* In C++, we can have functions nested inside functions (e.g., when
9520 a function declares a class that has methods). This means that
9521 when we finish processing a function scope, we may need to go
9522 back to building a containing block's symbol lists. */
9523 local_symbols = new->locals;
9524 using_directives = new->using_directives;
9525
9526 /* If we've finished processing a top-level function, subsequent
9527 symbols go in the file symbol list. */
9528 if (outermost_context_p ())
9529 cu->list_in_scope = &file_symbols;
9530 }
9531
9532 /* Process all the DIES contained within a lexical block scope. Start
9533 a new scope, process the dies, and then close the scope. */
9534
9535 static void
9536 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
9537 {
9538 struct objfile *objfile = cu->objfile;
9539 struct context_stack *new;
9540 CORE_ADDR lowpc, highpc;
9541 struct die_info *child_die;
9542 CORE_ADDR baseaddr;
9543
9544 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9545
9546 /* Ignore blocks with missing or invalid low and high pc attributes. */
9547 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9548 as multiple lexical blocks? Handling children in a sane way would
9549 be nasty. Might be easier to properly extend generic blocks to
9550 describe ranges. */
9551 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9552 return;
9553 lowpc += baseaddr;
9554 highpc += baseaddr;
9555
9556 push_context (0, lowpc);
9557 if (die->child != NULL)
9558 {
9559 child_die = die->child;
9560 while (child_die && child_die->tag)
9561 {
9562 process_die (child_die, cu);
9563 child_die = sibling_die (child_die);
9564 }
9565 }
9566 new = pop_context ();
9567
9568 if (local_symbols != NULL || using_directives != NULL)
9569 {
9570 struct block *block
9571 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9572 highpc, objfile);
9573
9574 /* Note that recording ranges after traversing children, as we
9575 do here, means that recording a parent's ranges entails
9576 walking across all its children's ranges as they appear in
9577 the address map, which is quadratic behavior.
9578
9579 It would be nicer to record the parent's ranges before
9580 traversing its children, simply overriding whatever you find
9581 there. But since we don't even decide whether to create a
9582 block until after we've traversed its children, that's hard
9583 to do. */
9584 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9585 }
9586 local_symbols = new->locals;
9587 using_directives = new->using_directives;
9588 }
9589
9590 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9591
9592 static void
9593 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9594 {
9595 struct objfile *objfile = cu->objfile;
9596 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9597 CORE_ADDR pc, baseaddr;
9598 struct attribute *attr;
9599 struct call_site *call_site, call_site_local;
9600 void **slot;
9601 int nparams;
9602 struct die_info *child_die;
9603
9604 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9605
9606 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9607 if (!attr)
9608 {
9609 complaint (&symfile_complaints,
9610 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9611 "DIE 0x%x [in module %s]"),
9612 die->offset.sect_off, objfile->name);
9613 return;
9614 }
9615 pc = DW_ADDR (attr) + baseaddr;
9616
9617 if (cu->call_site_htab == NULL)
9618 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9619 NULL, &objfile->objfile_obstack,
9620 hashtab_obstack_allocate, NULL);
9621 call_site_local.pc = pc;
9622 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9623 if (*slot != NULL)
9624 {
9625 complaint (&symfile_complaints,
9626 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9627 "DIE 0x%x [in module %s]"),
9628 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
9629 return;
9630 }
9631
9632 /* Count parameters at the caller. */
9633
9634 nparams = 0;
9635 for (child_die = die->child; child_die && child_die->tag;
9636 child_die = sibling_die (child_die))
9637 {
9638 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9639 {
9640 complaint (&symfile_complaints,
9641 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9642 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9643 child_die->tag, child_die->offset.sect_off, objfile->name);
9644 continue;
9645 }
9646
9647 nparams++;
9648 }
9649
9650 call_site = obstack_alloc (&objfile->objfile_obstack,
9651 (sizeof (*call_site)
9652 + (sizeof (*call_site->parameter)
9653 * (nparams - 1))));
9654 *slot = call_site;
9655 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9656 call_site->pc = pc;
9657
9658 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9659 {
9660 struct die_info *func_die;
9661
9662 /* Skip also over DW_TAG_inlined_subroutine. */
9663 for (func_die = die->parent;
9664 func_die && func_die->tag != DW_TAG_subprogram
9665 && func_die->tag != DW_TAG_subroutine_type;
9666 func_die = func_die->parent);
9667
9668 /* DW_AT_GNU_all_call_sites is a superset
9669 of DW_AT_GNU_all_tail_call_sites. */
9670 if (func_die
9671 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9672 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9673 {
9674 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9675 not complete. But keep CALL_SITE for look ups via call_site_htab,
9676 both the initial caller containing the real return address PC and
9677 the final callee containing the current PC of a chain of tail
9678 calls do not need to have the tail call list complete. But any
9679 function candidate for a virtual tail call frame searched via
9680 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9681 determined unambiguously. */
9682 }
9683 else
9684 {
9685 struct type *func_type = NULL;
9686
9687 if (func_die)
9688 func_type = get_die_type (func_die, cu);
9689 if (func_type != NULL)
9690 {
9691 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9692
9693 /* Enlist this call site to the function. */
9694 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9695 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9696 }
9697 else
9698 complaint (&symfile_complaints,
9699 _("Cannot find function owning DW_TAG_GNU_call_site "
9700 "DIE 0x%x [in module %s]"),
9701 die->offset.sect_off, objfile->name);
9702 }
9703 }
9704
9705 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9706 if (attr == NULL)
9707 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9708 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9709 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9710 /* Keep NULL DWARF_BLOCK. */;
9711 else if (attr_form_is_block (attr))
9712 {
9713 struct dwarf2_locexpr_baton *dlbaton;
9714
9715 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9716 dlbaton->data = DW_BLOCK (attr)->data;
9717 dlbaton->size = DW_BLOCK (attr)->size;
9718 dlbaton->per_cu = cu->per_cu;
9719
9720 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9721 }
9722 else if (is_ref_attr (attr))
9723 {
9724 struct dwarf2_cu *target_cu = cu;
9725 struct die_info *target_die;
9726
9727 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9728 gdb_assert (target_cu->objfile == objfile);
9729 if (die_is_declaration (target_die, target_cu))
9730 {
9731 const char *target_physname;
9732
9733 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9734 if (target_physname == NULL)
9735 complaint (&symfile_complaints,
9736 _("DW_AT_GNU_call_site_target target DIE has invalid "
9737 "physname, for referencing DIE 0x%x [in module %s]"),
9738 die->offset.sect_off, objfile->name);
9739 else
9740 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
9741 }
9742 else
9743 {
9744 CORE_ADDR lowpc;
9745
9746 /* DW_AT_entry_pc should be preferred. */
9747 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9748 complaint (&symfile_complaints,
9749 _("DW_AT_GNU_call_site_target target DIE has invalid "
9750 "low pc, for referencing DIE 0x%x [in module %s]"),
9751 die->offset.sect_off, objfile->name);
9752 else
9753 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9754 }
9755 }
9756 else
9757 complaint (&symfile_complaints,
9758 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9759 "block nor reference, for DIE 0x%x [in module %s]"),
9760 die->offset.sect_off, objfile->name);
9761
9762 call_site->per_cu = cu->per_cu;
9763
9764 for (child_die = die->child;
9765 child_die && child_die->tag;
9766 child_die = sibling_die (child_die))
9767 {
9768 struct call_site_parameter *parameter;
9769 struct attribute *loc, *origin;
9770
9771 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9772 {
9773 /* Already printed the complaint above. */
9774 continue;
9775 }
9776
9777 gdb_assert (call_site->parameter_count < nparams);
9778 parameter = &call_site->parameter[call_site->parameter_count];
9779
9780 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
9781 specifies DW_TAG_formal_parameter. Value of the data assumed for the
9782 register is contained in DW_AT_GNU_call_site_value. */
9783
9784 loc = dwarf2_attr (child_die, DW_AT_location, cu);
9785 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
9786 if (loc == NULL && origin != NULL && is_ref_attr (origin))
9787 {
9788 sect_offset offset;
9789
9790 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9791 offset = dwarf2_get_ref_die_offset (origin);
9792 if (!offset_in_cu_p (&cu->header, offset))
9793 {
9794 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
9795 binding can be done only inside one CU. Such referenced DIE
9796 therefore cannot be even moved to DW_TAG_partial_unit. */
9797 complaint (&symfile_complaints,
9798 _("DW_AT_abstract_origin offset is not in CU for "
9799 "DW_TAG_GNU_call_site child DIE 0x%x "
9800 "[in module %s]"),
9801 child_die->offset.sect_off, objfile->name);
9802 continue;
9803 }
9804 parameter->u.param_offset.cu_off = (offset.sect_off
9805 - cu->header.offset.sect_off);
9806 }
9807 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
9808 {
9809 complaint (&symfile_complaints,
9810 _("No DW_FORM_block* DW_AT_location for "
9811 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9812 child_die->offset.sect_off, objfile->name);
9813 continue;
9814 }
9815 else
9816 {
9817 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
9818 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
9819 if (parameter->u.dwarf_reg != -1)
9820 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
9821 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
9822 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
9823 &parameter->u.fb_offset))
9824 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
9825 else
9826 {
9827 complaint (&symfile_complaints,
9828 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
9829 "for DW_FORM_block* DW_AT_location is supported for "
9830 "DW_TAG_GNU_call_site child DIE 0x%x "
9831 "[in module %s]"),
9832 child_die->offset.sect_off, objfile->name);
9833 continue;
9834 }
9835 }
9836
9837 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
9838 if (!attr_form_is_block (attr))
9839 {
9840 complaint (&symfile_complaints,
9841 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
9842 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9843 child_die->offset.sect_off, objfile->name);
9844 continue;
9845 }
9846 parameter->value = DW_BLOCK (attr)->data;
9847 parameter->value_size = DW_BLOCK (attr)->size;
9848
9849 /* Parameters are not pre-cleared by memset above. */
9850 parameter->data_value = NULL;
9851 parameter->data_value_size = 0;
9852 call_site->parameter_count++;
9853
9854 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
9855 if (attr)
9856 {
9857 if (!attr_form_is_block (attr))
9858 complaint (&symfile_complaints,
9859 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
9860 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9861 child_die->offset.sect_off, objfile->name);
9862 else
9863 {
9864 parameter->data_value = DW_BLOCK (attr)->data;
9865 parameter->data_value_size = DW_BLOCK (attr)->size;
9866 }
9867 }
9868 }
9869 }
9870
9871 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
9872 Return 1 if the attributes are present and valid, otherwise, return 0.
9873 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
9874
9875 static int
9876 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
9877 CORE_ADDR *high_return, struct dwarf2_cu *cu,
9878 struct partial_symtab *ranges_pst)
9879 {
9880 struct objfile *objfile = cu->objfile;
9881 struct comp_unit_head *cu_header = &cu->header;
9882 bfd *obfd = objfile->obfd;
9883 unsigned int addr_size = cu_header->addr_size;
9884 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9885 /* Base address selection entry. */
9886 CORE_ADDR base;
9887 int found_base;
9888 unsigned int dummy;
9889 gdb_byte *buffer;
9890 CORE_ADDR marker;
9891 int low_set;
9892 CORE_ADDR low = 0;
9893 CORE_ADDR high = 0;
9894 CORE_ADDR baseaddr;
9895
9896 found_base = cu->base_known;
9897 base = cu->base_address;
9898
9899 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
9900 if (offset >= dwarf2_per_objfile->ranges.size)
9901 {
9902 complaint (&symfile_complaints,
9903 _("Offset %d out of bounds for DW_AT_ranges attribute"),
9904 offset);
9905 return 0;
9906 }
9907 buffer = dwarf2_per_objfile->ranges.buffer + offset;
9908
9909 /* Read in the largest possible address. */
9910 marker = read_address (obfd, buffer, cu, &dummy);
9911 if ((marker & mask) == mask)
9912 {
9913 /* If we found the largest possible address, then
9914 read the base address. */
9915 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9916 buffer += 2 * addr_size;
9917 offset += 2 * addr_size;
9918 found_base = 1;
9919 }
9920
9921 low_set = 0;
9922
9923 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9924
9925 while (1)
9926 {
9927 CORE_ADDR range_beginning, range_end;
9928
9929 range_beginning = read_address (obfd, buffer, cu, &dummy);
9930 buffer += addr_size;
9931 range_end = read_address (obfd, buffer, cu, &dummy);
9932 buffer += addr_size;
9933 offset += 2 * addr_size;
9934
9935 /* An end of list marker is a pair of zero addresses. */
9936 if (range_beginning == 0 && range_end == 0)
9937 /* Found the end of list entry. */
9938 break;
9939
9940 /* Each base address selection entry is a pair of 2 values.
9941 The first is the largest possible address, the second is
9942 the base address. Check for a base address here. */
9943 if ((range_beginning & mask) == mask)
9944 {
9945 /* If we found the largest possible address, then
9946 read the base address. */
9947 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9948 found_base = 1;
9949 continue;
9950 }
9951
9952 if (!found_base)
9953 {
9954 /* We have no valid base address for the ranges
9955 data. */
9956 complaint (&symfile_complaints,
9957 _("Invalid .debug_ranges data (no base address)"));
9958 return 0;
9959 }
9960
9961 if (range_beginning > range_end)
9962 {
9963 /* Inverted range entries are invalid. */
9964 complaint (&symfile_complaints,
9965 _("Invalid .debug_ranges data (inverted range)"));
9966 return 0;
9967 }
9968
9969 /* Empty range entries have no effect. */
9970 if (range_beginning == range_end)
9971 continue;
9972
9973 range_beginning += base;
9974 range_end += base;
9975
9976 /* A not-uncommon case of bad debug info.
9977 Don't pollute the addrmap with bad data. */
9978 if (range_beginning + baseaddr == 0
9979 && !dwarf2_per_objfile->has_section_at_zero)
9980 {
9981 complaint (&symfile_complaints,
9982 _(".debug_ranges entry has start address of zero"
9983 " [in module %s]"), objfile->name);
9984 continue;
9985 }
9986
9987 if (ranges_pst != NULL)
9988 addrmap_set_empty (objfile->psymtabs_addrmap,
9989 range_beginning + baseaddr,
9990 range_end - 1 + baseaddr,
9991 ranges_pst);
9992
9993 /* FIXME: This is recording everything as a low-high
9994 segment of consecutive addresses. We should have a
9995 data structure for discontiguous block ranges
9996 instead. */
9997 if (! low_set)
9998 {
9999 low = range_beginning;
10000 high = range_end;
10001 low_set = 1;
10002 }
10003 else
10004 {
10005 if (range_beginning < low)
10006 low = range_beginning;
10007 if (range_end > high)
10008 high = range_end;
10009 }
10010 }
10011
10012 if (! low_set)
10013 /* If the first entry is an end-of-list marker, the range
10014 describes an empty scope, i.e. no instructions. */
10015 return 0;
10016
10017 if (low_return)
10018 *low_return = low;
10019 if (high_return)
10020 *high_return = high;
10021 return 1;
10022 }
10023
10024 /* Get low and high pc attributes from a die. Return 1 if the attributes
10025 are present and valid, otherwise, return 0. Return -1 if the range is
10026 discontinuous, i.e. derived from DW_AT_ranges information. */
10027
10028 static int
10029 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10030 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10031 struct partial_symtab *pst)
10032 {
10033 struct attribute *attr;
10034 struct attribute *attr_high;
10035 CORE_ADDR low = 0;
10036 CORE_ADDR high = 0;
10037 int ret = 0;
10038
10039 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10040 if (attr_high)
10041 {
10042 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10043 if (attr)
10044 {
10045 low = DW_ADDR (attr);
10046 if (attr_high->form == DW_FORM_addr
10047 || attr_high->form == DW_FORM_GNU_addr_index)
10048 high = DW_ADDR (attr_high);
10049 else
10050 high = low + DW_UNSND (attr_high);
10051 }
10052 else
10053 /* Found high w/o low attribute. */
10054 return 0;
10055
10056 /* Found consecutive range of addresses. */
10057 ret = 1;
10058 }
10059 else
10060 {
10061 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10062 if (attr != NULL)
10063 {
10064 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10065 We take advantage of the fact that DW_AT_ranges does not appear
10066 in DW_TAG_compile_unit of DWO files. */
10067 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10068 unsigned int ranges_offset = (DW_UNSND (attr)
10069 + (need_ranges_base
10070 ? cu->ranges_base
10071 : 0));
10072
10073 /* Value of the DW_AT_ranges attribute is the offset in the
10074 .debug_ranges section. */
10075 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10076 return 0;
10077 /* Found discontinuous range of addresses. */
10078 ret = -1;
10079 }
10080 }
10081
10082 /* read_partial_die has also the strict LOW < HIGH requirement. */
10083 if (high <= low)
10084 return 0;
10085
10086 /* When using the GNU linker, .gnu.linkonce. sections are used to
10087 eliminate duplicate copies of functions and vtables and such.
10088 The linker will arbitrarily choose one and discard the others.
10089 The AT_*_pc values for such functions refer to local labels in
10090 these sections. If the section from that file was discarded, the
10091 labels are not in the output, so the relocs get a value of 0.
10092 If this is a discarded function, mark the pc bounds as invalid,
10093 so that GDB will ignore it. */
10094 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10095 return 0;
10096
10097 *lowpc = low;
10098 if (highpc)
10099 *highpc = high;
10100 return ret;
10101 }
10102
10103 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10104 its low and high PC addresses. Do nothing if these addresses could not
10105 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10106 and HIGHPC to the high address if greater than HIGHPC. */
10107
10108 static void
10109 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10110 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10111 struct dwarf2_cu *cu)
10112 {
10113 CORE_ADDR low, high;
10114 struct die_info *child = die->child;
10115
10116 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10117 {
10118 *lowpc = min (*lowpc, low);
10119 *highpc = max (*highpc, high);
10120 }
10121
10122 /* If the language does not allow nested subprograms (either inside
10123 subprograms or lexical blocks), we're done. */
10124 if (cu->language != language_ada)
10125 return;
10126
10127 /* Check all the children of the given DIE. If it contains nested
10128 subprograms, then check their pc bounds. Likewise, we need to
10129 check lexical blocks as well, as they may also contain subprogram
10130 definitions. */
10131 while (child && child->tag)
10132 {
10133 if (child->tag == DW_TAG_subprogram
10134 || child->tag == DW_TAG_lexical_block)
10135 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10136 child = sibling_die (child);
10137 }
10138 }
10139
10140 /* Get the low and high pc's represented by the scope DIE, and store
10141 them in *LOWPC and *HIGHPC. If the correct values can't be
10142 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10143
10144 static void
10145 get_scope_pc_bounds (struct die_info *die,
10146 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10147 struct dwarf2_cu *cu)
10148 {
10149 CORE_ADDR best_low = (CORE_ADDR) -1;
10150 CORE_ADDR best_high = (CORE_ADDR) 0;
10151 CORE_ADDR current_low, current_high;
10152
10153 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10154 {
10155 best_low = current_low;
10156 best_high = current_high;
10157 }
10158 else
10159 {
10160 struct die_info *child = die->child;
10161
10162 while (child && child->tag)
10163 {
10164 switch (child->tag) {
10165 case DW_TAG_subprogram:
10166 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10167 break;
10168 case DW_TAG_namespace:
10169 case DW_TAG_module:
10170 /* FIXME: carlton/2004-01-16: Should we do this for
10171 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10172 that current GCC's always emit the DIEs corresponding
10173 to definitions of methods of classes as children of a
10174 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10175 the DIEs giving the declarations, which could be
10176 anywhere). But I don't see any reason why the
10177 standards says that they have to be there. */
10178 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10179
10180 if (current_low != ((CORE_ADDR) -1))
10181 {
10182 best_low = min (best_low, current_low);
10183 best_high = max (best_high, current_high);
10184 }
10185 break;
10186 default:
10187 /* Ignore. */
10188 break;
10189 }
10190
10191 child = sibling_die (child);
10192 }
10193 }
10194
10195 *lowpc = best_low;
10196 *highpc = best_high;
10197 }
10198
10199 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10200 in DIE. */
10201
10202 static void
10203 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10204 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10205 {
10206 struct objfile *objfile = cu->objfile;
10207 struct attribute *attr;
10208 struct attribute *attr_high;
10209
10210 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10211 if (attr_high)
10212 {
10213 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10214 if (attr)
10215 {
10216 CORE_ADDR low = DW_ADDR (attr);
10217 CORE_ADDR high;
10218 if (attr_high->form == DW_FORM_addr
10219 || attr_high->form == DW_FORM_GNU_addr_index)
10220 high = DW_ADDR (attr_high);
10221 else
10222 high = low + DW_UNSND (attr_high);
10223
10224 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10225 }
10226 }
10227
10228 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10229 if (attr)
10230 {
10231 bfd *obfd = objfile->obfd;
10232 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10233 We take advantage of the fact that DW_AT_ranges does not appear
10234 in DW_TAG_compile_unit of DWO files. */
10235 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10236
10237 /* The value of the DW_AT_ranges attribute is the offset of the
10238 address range list in the .debug_ranges section. */
10239 unsigned long offset = (DW_UNSND (attr)
10240 + (need_ranges_base ? cu->ranges_base : 0));
10241 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
10242
10243 /* For some target architectures, but not others, the
10244 read_address function sign-extends the addresses it returns.
10245 To recognize base address selection entries, we need a
10246 mask. */
10247 unsigned int addr_size = cu->header.addr_size;
10248 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10249
10250 /* The base address, to which the next pair is relative. Note
10251 that this 'base' is a DWARF concept: most entries in a range
10252 list are relative, to reduce the number of relocs against the
10253 debugging information. This is separate from this function's
10254 'baseaddr' argument, which GDB uses to relocate debugging
10255 information from a shared library based on the address at
10256 which the library was loaded. */
10257 CORE_ADDR base = cu->base_address;
10258 int base_known = cu->base_known;
10259
10260 gdb_assert (dwarf2_per_objfile->ranges.readin);
10261 if (offset >= dwarf2_per_objfile->ranges.size)
10262 {
10263 complaint (&symfile_complaints,
10264 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10265 offset);
10266 return;
10267 }
10268
10269 for (;;)
10270 {
10271 unsigned int bytes_read;
10272 CORE_ADDR start, end;
10273
10274 start = read_address (obfd, buffer, cu, &bytes_read);
10275 buffer += bytes_read;
10276 end = read_address (obfd, buffer, cu, &bytes_read);
10277 buffer += bytes_read;
10278
10279 /* Did we find the end of the range list? */
10280 if (start == 0 && end == 0)
10281 break;
10282
10283 /* Did we find a base address selection entry? */
10284 else if ((start & base_select_mask) == base_select_mask)
10285 {
10286 base = end;
10287 base_known = 1;
10288 }
10289
10290 /* We found an ordinary address range. */
10291 else
10292 {
10293 if (!base_known)
10294 {
10295 complaint (&symfile_complaints,
10296 _("Invalid .debug_ranges data "
10297 "(no base address)"));
10298 return;
10299 }
10300
10301 if (start > end)
10302 {
10303 /* Inverted range entries are invalid. */
10304 complaint (&symfile_complaints,
10305 _("Invalid .debug_ranges data "
10306 "(inverted range)"));
10307 return;
10308 }
10309
10310 /* Empty range entries have no effect. */
10311 if (start == end)
10312 continue;
10313
10314 start += base + baseaddr;
10315 end += base + baseaddr;
10316
10317 /* A not-uncommon case of bad debug info.
10318 Don't pollute the addrmap with bad data. */
10319 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10320 {
10321 complaint (&symfile_complaints,
10322 _(".debug_ranges entry has start address of zero"
10323 " [in module %s]"), objfile->name);
10324 continue;
10325 }
10326
10327 record_block_range (block, start, end - 1);
10328 }
10329 }
10330 }
10331 }
10332
10333 /* Check whether the producer field indicates either of GCC < 4.6, or the
10334 Intel C/C++ compiler, and cache the result in CU. */
10335
10336 static void
10337 check_producer (struct dwarf2_cu *cu)
10338 {
10339 const char *cs;
10340 int major, minor, release;
10341
10342 if (cu->producer == NULL)
10343 {
10344 /* For unknown compilers expect their behavior is DWARF version
10345 compliant.
10346
10347 GCC started to support .debug_types sections by -gdwarf-4 since
10348 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10349 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10350 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10351 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10352 }
10353 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10354 {
10355 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10356
10357 cs = &cu->producer[strlen ("GNU ")];
10358 while (*cs && !isdigit (*cs))
10359 cs++;
10360 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10361 {
10362 /* Not recognized as GCC. */
10363 }
10364 else
10365 {
10366 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10367 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10368 }
10369 }
10370 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10371 cu->producer_is_icc = 1;
10372 else
10373 {
10374 /* For other non-GCC compilers, expect their behavior is DWARF version
10375 compliant. */
10376 }
10377
10378 cu->checked_producer = 1;
10379 }
10380
10381 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10382 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10383 during 4.6.0 experimental. */
10384
10385 static int
10386 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10387 {
10388 if (!cu->checked_producer)
10389 check_producer (cu);
10390
10391 return cu->producer_is_gxx_lt_4_6;
10392 }
10393
10394 /* Return the default accessibility type if it is not overriden by
10395 DW_AT_accessibility. */
10396
10397 static enum dwarf_access_attribute
10398 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10399 {
10400 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10401 {
10402 /* The default DWARF 2 accessibility for members is public, the default
10403 accessibility for inheritance is private. */
10404
10405 if (die->tag != DW_TAG_inheritance)
10406 return DW_ACCESS_public;
10407 else
10408 return DW_ACCESS_private;
10409 }
10410 else
10411 {
10412 /* DWARF 3+ defines the default accessibility a different way. The same
10413 rules apply now for DW_TAG_inheritance as for the members and it only
10414 depends on the container kind. */
10415
10416 if (die->parent->tag == DW_TAG_class_type)
10417 return DW_ACCESS_private;
10418 else
10419 return DW_ACCESS_public;
10420 }
10421 }
10422
10423 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10424 offset. If the attribute was not found return 0, otherwise return
10425 1. If it was found but could not properly be handled, set *OFFSET
10426 to 0. */
10427
10428 static int
10429 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10430 LONGEST *offset)
10431 {
10432 struct attribute *attr;
10433
10434 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10435 if (attr != NULL)
10436 {
10437 *offset = 0;
10438
10439 /* Note that we do not check for a section offset first here.
10440 This is because DW_AT_data_member_location is new in DWARF 4,
10441 so if we see it, we can assume that a constant form is really
10442 a constant and not a section offset. */
10443 if (attr_form_is_constant (attr))
10444 *offset = dwarf2_get_attr_constant_value (attr, 0);
10445 else if (attr_form_is_section_offset (attr))
10446 dwarf2_complex_location_expr_complaint ();
10447 else if (attr_form_is_block (attr))
10448 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10449 else
10450 dwarf2_complex_location_expr_complaint ();
10451
10452 return 1;
10453 }
10454
10455 return 0;
10456 }
10457
10458 /* Add an aggregate field to the field list. */
10459
10460 static void
10461 dwarf2_add_field (struct field_info *fip, struct die_info *die,
10462 struct dwarf2_cu *cu)
10463 {
10464 struct objfile *objfile = cu->objfile;
10465 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10466 struct nextfield *new_field;
10467 struct attribute *attr;
10468 struct field *fp;
10469 char *fieldname = "";
10470
10471 /* Allocate a new field list entry and link it in. */
10472 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
10473 make_cleanup (xfree, new_field);
10474 memset (new_field, 0, sizeof (struct nextfield));
10475
10476 if (die->tag == DW_TAG_inheritance)
10477 {
10478 new_field->next = fip->baseclasses;
10479 fip->baseclasses = new_field;
10480 }
10481 else
10482 {
10483 new_field->next = fip->fields;
10484 fip->fields = new_field;
10485 }
10486 fip->nfields++;
10487
10488 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10489 if (attr)
10490 new_field->accessibility = DW_UNSND (attr);
10491 else
10492 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
10493 if (new_field->accessibility != DW_ACCESS_public)
10494 fip->non_public_fields = 1;
10495
10496 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10497 if (attr)
10498 new_field->virtuality = DW_UNSND (attr);
10499 else
10500 new_field->virtuality = DW_VIRTUALITY_none;
10501
10502 fp = &new_field->field;
10503
10504 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
10505 {
10506 LONGEST offset;
10507
10508 /* Data member other than a C++ static data member. */
10509
10510 /* Get type of field. */
10511 fp->type = die_type (die, cu);
10512
10513 SET_FIELD_BITPOS (*fp, 0);
10514
10515 /* Get bit size of field (zero if none). */
10516 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
10517 if (attr)
10518 {
10519 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10520 }
10521 else
10522 {
10523 FIELD_BITSIZE (*fp) = 0;
10524 }
10525
10526 /* Get bit offset of field. */
10527 if (handle_data_member_location (die, cu, &offset))
10528 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10529 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
10530 if (attr)
10531 {
10532 if (gdbarch_bits_big_endian (gdbarch))
10533 {
10534 /* For big endian bits, the DW_AT_bit_offset gives the
10535 additional bit offset from the MSB of the containing
10536 anonymous object to the MSB of the field. We don't
10537 have to do anything special since we don't need to
10538 know the size of the anonymous object. */
10539 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
10540 }
10541 else
10542 {
10543 /* For little endian bits, compute the bit offset to the
10544 MSB of the anonymous object, subtract off the number of
10545 bits from the MSB of the field to the MSB of the
10546 object, and then subtract off the number of bits of
10547 the field itself. The result is the bit offset of
10548 the LSB of the field. */
10549 int anonymous_size;
10550 int bit_offset = DW_UNSND (attr);
10551
10552 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10553 if (attr)
10554 {
10555 /* The size of the anonymous object containing
10556 the bit field is explicit, so use the
10557 indicated size (in bytes). */
10558 anonymous_size = DW_UNSND (attr);
10559 }
10560 else
10561 {
10562 /* The size of the anonymous object containing
10563 the bit field must be inferred from the type
10564 attribute of the data member containing the
10565 bit field. */
10566 anonymous_size = TYPE_LENGTH (fp->type);
10567 }
10568 SET_FIELD_BITPOS (*fp,
10569 (FIELD_BITPOS (*fp)
10570 + anonymous_size * bits_per_byte
10571 - bit_offset - FIELD_BITSIZE (*fp)));
10572 }
10573 }
10574
10575 /* Get name of field. */
10576 fieldname = dwarf2_name (die, cu);
10577 if (fieldname == NULL)
10578 fieldname = "";
10579
10580 /* The name is already allocated along with this objfile, so we don't
10581 need to duplicate it for the type. */
10582 fp->name = fieldname;
10583
10584 /* Change accessibility for artificial fields (e.g. virtual table
10585 pointer or virtual base class pointer) to private. */
10586 if (dwarf2_attr (die, DW_AT_artificial, cu))
10587 {
10588 FIELD_ARTIFICIAL (*fp) = 1;
10589 new_field->accessibility = DW_ACCESS_private;
10590 fip->non_public_fields = 1;
10591 }
10592 }
10593 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
10594 {
10595 /* C++ static member. */
10596
10597 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10598 is a declaration, but all versions of G++ as of this writing
10599 (so through at least 3.2.1) incorrectly generate
10600 DW_TAG_variable tags. */
10601
10602 const char *physname;
10603
10604 /* Get name of field. */
10605 fieldname = dwarf2_name (die, cu);
10606 if (fieldname == NULL)
10607 return;
10608
10609 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10610 if (attr
10611 /* Only create a symbol if this is an external value.
10612 new_symbol checks this and puts the value in the global symbol
10613 table, which we want. If it is not external, new_symbol
10614 will try to put the value in cu->list_in_scope which is wrong. */
10615 && dwarf2_flag_true_p (die, DW_AT_external, cu))
10616 {
10617 /* A static const member, not much different than an enum as far as
10618 we're concerned, except that we can support more types. */
10619 new_symbol (die, NULL, cu);
10620 }
10621
10622 /* Get physical name. */
10623 physname = dwarf2_physname (fieldname, die, cu);
10624
10625 /* The name is already allocated along with this objfile, so we don't
10626 need to duplicate it for the type. */
10627 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
10628 FIELD_TYPE (*fp) = die_type (die, cu);
10629 FIELD_NAME (*fp) = fieldname;
10630 }
10631 else if (die->tag == DW_TAG_inheritance)
10632 {
10633 LONGEST offset;
10634
10635 /* C++ base class field. */
10636 if (handle_data_member_location (die, cu, &offset))
10637 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10638 FIELD_BITSIZE (*fp) = 0;
10639 FIELD_TYPE (*fp) = die_type (die, cu);
10640 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10641 fip->nbaseclasses++;
10642 }
10643 }
10644
10645 /* Add a typedef defined in the scope of the FIP's class. */
10646
10647 static void
10648 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10649 struct dwarf2_cu *cu)
10650 {
10651 struct objfile *objfile = cu->objfile;
10652 struct typedef_field_list *new_field;
10653 struct attribute *attr;
10654 struct typedef_field *fp;
10655 char *fieldname = "";
10656
10657 /* Allocate a new field list entry and link it in. */
10658 new_field = xzalloc (sizeof (*new_field));
10659 make_cleanup (xfree, new_field);
10660
10661 gdb_assert (die->tag == DW_TAG_typedef);
10662
10663 fp = &new_field->field;
10664
10665 /* Get name of field. */
10666 fp->name = dwarf2_name (die, cu);
10667 if (fp->name == NULL)
10668 return;
10669
10670 fp->type = read_type_die (die, cu);
10671
10672 new_field->next = fip->typedef_field_list;
10673 fip->typedef_field_list = new_field;
10674 fip->typedef_field_list_count++;
10675 }
10676
10677 /* Create the vector of fields, and attach it to the type. */
10678
10679 static void
10680 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
10681 struct dwarf2_cu *cu)
10682 {
10683 int nfields = fip->nfields;
10684
10685 /* Record the field count, allocate space for the array of fields,
10686 and create blank accessibility bitfields if necessary. */
10687 TYPE_NFIELDS (type) = nfields;
10688 TYPE_FIELDS (type) = (struct field *)
10689 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10690 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10691
10692 if (fip->non_public_fields && cu->language != language_ada)
10693 {
10694 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10695
10696 TYPE_FIELD_PRIVATE_BITS (type) =
10697 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10698 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10699
10700 TYPE_FIELD_PROTECTED_BITS (type) =
10701 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10702 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10703
10704 TYPE_FIELD_IGNORE_BITS (type) =
10705 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10706 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10707 }
10708
10709 /* If the type has baseclasses, allocate and clear a bit vector for
10710 TYPE_FIELD_VIRTUAL_BITS. */
10711 if (fip->nbaseclasses && cu->language != language_ada)
10712 {
10713 int num_bytes = B_BYTES (fip->nbaseclasses);
10714 unsigned char *pointer;
10715
10716 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10717 pointer = TYPE_ALLOC (type, num_bytes);
10718 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10719 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10720 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10721 }
10722
10723 /* Copy the saved-up fields into the field vector. Start from the head of
10724 the list, adding to the tail of the field array, so that they end up in
10725 the same order in the array in which they were added to the list. */
10726 while (nfields-- > 0)
10727 {
10728 struct nextfield *fieldp;
10729
10730 if (fip->fields)
10731 {
10732 fieldp = fip->fields;
10733 fip->fields = fieldp->next;
10734 }
10735 else
10736 {
10737 fieldp = fip->baseclasses;
10738 fip->baseclasses = fieldp->next;
10739 }
10740
10741 TYPE_FIELD (type, nfields) = fieldp->field;
10742 switch (fieldp->accessibility)
10743 {
10744 case DW_ACCESS_private:
10745 if (cu->language != language_ada)
10746 SET_TYPE_FIELD_PRIVATE (type, nfields);
10747 break;
10748
10749 case DW_ACCESS_protected:
10750 if (cu->language != language_ada)
10751 SET_TYPE_FIELD_PROTECTED (type, nfields);
10752 break;
10753
10754 case DW_ACCESS_public:
10755 break;
10756
10757 default:
10758 /* Unknown accessibility. Complain and treat it as public. */
10759 {
10760 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10761 fieldp->accessibility);
10762 }
10763 break;
10764 }
10765 if (nfields < fip->nbaseclasses)
10766 {
10767 switch (fieldp->virtuality)
10768 {
10769 case DW_VIRTUALITY_virtual:
10770 case DW_VIRTUALITY_pure_virtual:
10771 if (cu->language == language_ada)
10772 error (_("unexpected virtuality in component of Ada type"));
10773 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10774 break;
10775 }
10776 }
10777 }
10778 }
10779
10780 /* Add a member function to the proper fieldlist. */
10781
10782 static void
10783 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
10784 struct type *type, struct dwarf2_cu *cu)
10785 {
10786 struct objfile *objfile = cu->objfile;
10787 struct attribute *attr;
10788 struct fnfieldlist *flp;
10789 int i;
10790 struct fn_field *fnp;
10791 char *fieldname;
10792 struct nextfnfield *new_fnfield;
10793 struct type *this_type;
10794 enum dwarf_access_attribute accessibility;
10795
10796 if (cu->language == language_ada)
10797 error (_("unexpected member function in Ada type"));
10798
10799 /* Get name of member function. */
10800 fieldname = dwarf2_name (die, cu);
10801 if (fieldname == NULL)
10802 return;
10803
10804 /* Look up member function name in fieldlist. */
10805 for (i = 0; i < fip->nfnfields; i++)
10806 {
10807 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
10808 break;
10809 }
10810
10811 /* Create new list element if necessary. */
10812 if (i < fip->nfnfields)
10813 flp = &fip->fnfieldlists[i];
10814 else
10815 {
10816 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
10817 {
10818 fip->fnfieldlists = (struct fnfieldlist *)
10819 xrealloc (fip->fnfieldlists,
10820 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
10821 * sizeof (struct fnfieldlist));
10822 if (fip->nfnfields == 0)
10823 make_cleanup (free_current_contents, &fip->fnfieldlists);
10824 }
10825 flp = &fip->fnfieldlists[fip->nfnfields];
10826 flp->name = fieldname;
10827 flp->length = 0;
10828 flp->head = NULL;
10829 i = fip->nfnfields++;
10830 }
10831
10832 /* Create a new member function field and chain it to the field list
10833 entry. */
10834 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
10835 make_cleanup (xfree, new_fnfield);
10836 memset (new_fnfield, 0, sizeof (struct nextfnfield));
10837 new_fnfield->next = flp->head;
10838 flp->head = new_fnfield;
10839 flp->length++;
10840
10841 /* Fill in the member function field info. */
10842 fnp = &new_fnfield->fnfield;
10843
10844 /* Delay processing of the physname until later. */
10845 if (cu->language == language_cplus || cu->language == language_java)
10846 {
10847 add_to_method_list (type, i, flp->length - 1, fieldname,
10848 die, cu);
10849 }
10850 else
10851 {
10852 const char *physname = dwarf2_physname (fieldname, die, cu);
10853 fnp->physname = physname ? physname : "";
10854 }
10855
10856 fnp->type = alloc_type (objfile);
10857 this_type = read_type_die (die, cu);
10858 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
10859 {
10860 int nparams = TYPE_NFIELDS (this_type);
10861
10862 /* TYPE is the domain of this method, and THIS_TYPE is the type
10863 of the method itself (TYPE_CODE_METHOD). */
10864 smash_to_method_type (fnp->type, type,
10865 TYPE_TARGET_TYPE (this_type),
10866 TYPE_FIELDS (this_type),
10867 TYPE_NFIELDS (this_type),
10868 TYPE_VARARGS (this_type));
10869
10870 /* Handle static member functions.
10871 Dwarf2 has no clean way to discern C++ static and non-static
10872 member functions. G++ helps GDB by marking the first
10873 parameter for non-static member functions (which is the this
10874 pointer) as artificial. We obtain this information from
10875 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
10876 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
10877 fnp->voffset = VOFFSET_STATIC;
10878 }
10879 else
10880 complaint (&symfile_complaints, _("member function type missing for '%s'"),
10881 dwarf2_full_name (fieldname, die, cu));
10882
10883 /* Get fcontext from DW_AT_containing_type if present. */
10884 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
10885 fnp->fcontext = die_containing_type (die, cu);
10886
10887 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
10888 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
10889
10890 /* Get accessibility. */
10891 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10892 if (attr)
10893 accessibility = DW_UNSND (attr);
10894 else
10895 accessibility = dwarf2_default_access_attribute (die, cu);
10896 switch (accessibility)
10897 {
10898 case DW_ACCESS_private:
10899 fnp->is_private = 1;
10900 break;
10901 case DW_ACCESS_protected:
10902 fnp->is_protected = 1;
10903 break;
10904 }
10905
10906 /* Check for artificial methods. */
10907 attr = dwarf2_attr (die, DW_AT_artificial, cu);
10908 if (attr && DW_UNSND (attr) != 0)
10909 fnp->is_artificial = 1;
10910
10911 /* Get index in virtual function table if it is a virtual member
10912 function. For older versions of GCC, this is an offset in the
10913 appropriate virtual table, as specified by DW_AT_containing_type.
10914 For everyone else, it is an expression to be evaluated relative
10915 to the object address. */
10916
10917 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
10918 if (attr)
10919 {
10920 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
10921 {
10922 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
10923 {
10924 /* Old-style GCC. */
10925 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
10926 }
10927 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
10928 || (DW_BLOCK (attr)->size > 1
10929 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
10930 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
10931 {
10932 struct dwarf_block blk;
10933 int offset;
10934
10935 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
10936 ? 1 : 2);
10937 blk.size = DW_BLOCK (attr)->size - offset;
10938 blk.data = DW_BLOCK (attr)->data + offset;
10939 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
10940 if ((fnp->voffset % cu->header.addr_size) != 0)
10941 dwarf2_complex_location_expr_complaint ();
10942 else
10943 fnp->voffset /= cu->header.addr_size;
10944 fnp->voffset += 2;
10945 }
10946 else
10947 dwarf2_complex_location_expr_complaint ();
10948
10949 if (!fnp->fcontext)
10950 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
10951 }
10952 else if (attr_form_is_section_offset (attr))
10953 {
10954 dwarf2_complex_location_expr_complaint ();
10955 }
10956 else
10957 {
10958 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
10959 fieldname);
10960 }
10961 }
10962 else
10963 {
10964 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10965 if (attr && DW_UNSND (attr))
10966 {
10967 /* GCC does this, as of 2008-08-25; PR debug/37237. */
10968 complaint (&symfile_complaints,
10969 _("Member function \"%s\" (offset %d) is virtual "
10970 "but the vtable offset is not specified"),
10971 fieldname, die->offset.sect_off);
10972 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10973 TYPE_CPLUS_DYNAMIC (type) = 1;
10974 }
10975 }
10976 }
10977
10978 /* Create the vector of member function fields, and attach it to the type. */
10979
10980 static void
10981 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
10982 struct dwarf2_cu *cu)
10983 {
10984 struct fnfieldlist *flp;
10985 int i;
10986
10987 if (cu->language == language_ada)
10988 error (_("unexpected member functions in Ada type"));
10989
10990 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10991 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
10992 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
10993
10994 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
10995 {
10996 struct nextfnfield *nfp = flp->head;
10997 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
10998 int k;
10999
11000 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11001 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11002 fn_flp->fn_fields = (struct fn_field *)
11003 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11004 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11005 fn_flp->fn_fields[k] = nfp->fnfield;
11006 }
11007
11008 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11009 }
11010
11011 /* Returns non-zero if NAME is the name of a vtable member in CU's
11012 language, zero otherwise. */
11013 static int
11014 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11015 {
11016 static const char vptr[] = "_vptr";
11017 static const char vtable[] = "vtable";
11018
11019 /* Look for the C++ and Java forms of the vtable. */
11020 if ((cu->language == language_java
11021 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11022 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11023 && is_cplus_marker (name[sizeof (vptr) - 1])))
11024 return 1;
11025
11026 return 0;
11027 }
11028
11029 /* GCC outputs unnamed structures that are really pointers to member
11030 functions, with the ABI-specified layout. If TYPE describes
11031 such a structure, smash it into a member function type.
11032
11033 GCC shouldn't do this; it should just output pointer to member DIEs.
11034 This is GCC PR debug/28767. */
11035
11036 static void
11037 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11038 {
11039 struct type *pfn_type, *domain_type, *new_type;
11040
11041 /* Check for a structure with no name and two children. */
11042 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11043 return;
11044
11045 /* Check for __pfn and __delta members. */
11046 if (TYPE_FIELD_NAME (type, 0) == NULL
11047 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11048 || TYPE_FIELD_NAME (type, 1) == NULL
11049 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11050 return;
11051
11052 /* Find the type of the method. */
11053 pfn_type = TYPE_FIELD_TYPE (type, 0);
11054 if (pfn_type == NULL
11055 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11056 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11057 return;
11058
11059 /* Look for the "this" argument. */
11060 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11061 if (TYPE_NFIELDS (pfn_type) == 0
11062 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11063 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11064 return;
11065
11066 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11067 new_type = alloc_type (objfile);
11068 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11069 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11070 TYPE_VARARGS (pfn_type));
11071 smash_to_methodptr_type (type, new_type);
11072 }
11073
11074 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11075 (icc). */
11076
11077 static int
11078 producer_is_icc (struct dwarf2_cu *cu)
11079 {
11080 if (!cu->checked_producer)
11081 check_producer (cu);
11082
11083 return cu->producer_is_icc;
11084 }
11085
11086 /* Called when we find the DIE that starts a structure or union scope
11087 (definition) to create a type for the structure or union. Fill in
11088 the type's name and general properties; the members will not be
11089 processed until process_structure_type.
11090
11091 NOTE: we need to call these functions regardless of whether or not the
11092 DIE has a DW_AT_name attribute, since it might be an anonymous
11093 structure or union. This gets the type entered into our set of
11094 user defined types.
11095
11096 However, if the structure is incomplete (an opaque struct/union)
11097 then suppress creating a symbol table entry for it since gdb only
11098 wants to find the one with the complete definition. Note that if
11099 it is complete, we just call new_symbol, which does it's own
11100 checking about whether the struct/union is anonymous or not (and
11101 suppresses creating a symbol table entry itself). */
11102
11103 static struct type *
11104 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11105 {
11106 struct objfile *objfile = cu->objfile;
11107 struct type *type;
11108 struct attribute *attr;
11109 char *name;
11110
11111 /* If the definition of this type lives in .debug_types, read that type.
11112 Don't follow DW_AT_specification though, that will take us back up
11113 the chain and we want to go down. */
11114 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11115 if (attr)
11116 {
11117 struct dwarf2_cu *type_cu = cu;
11118 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11119
11120 /* We could just recurse on read_structure_type, but we need to call
11121 get_die_type to ensure only one type for this DIE is created.
11122 This is important, for example, because for c++ classes we need
11123 TYPE_NAME set which is only done by new_symbol. Blech. */
11124 type = read_type_die (type_die, type_cu);
11125
11126 /* TYPE_CU may not be the same as CU.
11127 Ensure TYPE is recorded in CU's type_hash table. */
11128 return set_die_type (die, type, cu);
11129 }
11130
11131 type = alloc_type (objfile);
11132 INIT_CPLUS_SPECIFIC (type);
11133
11134 name = dwarf2_name (die, cu);
11135 if (name != NULL)
11136 {
11137 if (cu->language == language_cplus
11138 || cu->language == language_java)
11139 {
11140 char *full_name = (char *) dwarf2_full_name (name, die, cu);
11141
11142 /* dwarf2_full_name might have already finished building the DIE's
11143 type. If so, there is no need to continue. */
11144 if (get_die_type (die, cu) != NULL)
11145 return get_die_type (die, cu);
11146
11147 TYPE_TAG_NAME (type) = full_name;
11148 if (die->tag == DW_TAG_structure_type
11149 || die->tag == DW_TAG_class_type)
11150 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11151 }
11152 else
11153 {
11154 /* The name is already allocated along with this objfile, so
11155 we don't need to duplicate it for the type. */
11156 TYPE_TAG_NAME (type) = (char *) name;
11157 if (die->tag == DW_TAG_class_type)
11158 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11159 }
11160 }
11161
11162 if (die->tag == DW_TAG_structure_type)
11163 {
11164 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11165 }
11166 else if (die->tag == DW_TAG_union_type)
11167 {
11168 TYPE_CODE (type) = TYPE_CODE_UNION;
11169 }
11170 else
11171 {
11172 TYPE_CODE (type) = TYPE_CODE_CLASS;
11173 }
11174
11175 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11176 TYPE_DECLARED_CLASS (type) = 1;
11177
11178 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11179 if (attr)
11180 {
11181 TYPE_LENGTH (type) = DW_UNSND (attr);
11182 }
11183 else
11184 {
11185 TYPE_LENGTH (type) = 0;
11186 }
11187
11188 if (producer_is_icc (cu))
11189 {
11190 /* ICC does not output the required DW_AT_declaration
11191 on incomplete types, but gives them a size of zero. */
11192 }
11193 else
11194 TYPE_STUB_SUPPORTED (type) = 1;
11195
11196 if (die_is_declaration (die, cu))
11197 TYPE_STUB (type) = 1;
11198 else if (attr == NULL && die->child == NULL
11199 && producer_is_realview (cu->producer))
11200 /* RealView does not output the required DW_AT_declaration
11201 on incomplete types. */
11202 TYPE_STUB (type) = 1;
11203
11204 /* We need to add the type field to the die immediately so we don't
11205 infinitely recurse when dealing with pointers to the structure
11206 type within the structure itself. */
11207 set_die_type (die, type, cu);
11208
11209 /* set_die_type should be already done. */
11210 set_descriptive_type (type, die, cu);
11211
11212 return type;
11213 }
11214
11215 /* Finish creating a structure or union type, including filling in
11216 its members and creating a symbol for it. */
11217
11218 static void
11219 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11220 {
11221 struct objfile *objfile = cu->objfile;
11222 struct die_info *child_die = die->child;
11223 struct type *type;
11224
11225 type = get_die_type (die, cu);
11226 if (type == NULL)
11227 type = read_structure_type (die, cu);
11228
11229 if (die->child != NULL && ! die_is_declaration (die, cu))
11230 {
11231 struct field_info fi;
11232 struct die_info *child_die;
11233 VEC (symbolp) *template_args = NULL;
11234 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11235
11236 memset (&fi, 0, sizeof (struct field_info));
11237
11238 child_die = die->child;
11239
11240 while (child_die && child_die->tag)
11241 {
11242 if (child_die->tag == DW_TAG_member
11243 || child_die->tag == DW_TAG_variable)
11244 {
11245 /* NOTE: carlton/2002-11-05: A C++ static data member
11246 should be a DW_TAG_member that is a declaration, but
11247 all versions of G++ as of this writing (so through at
11248 least 3.2.1) incorrectly generate DW_TAG_variable
11249 tags for them instead. */
11250 dwarf2_add_field (&fi, child_die, cu);
11251 }
11252 else if (child_die->tag == DW_TAG_subprogram)
11253 {
11254 /* C++ member function. */
11255 dwarf2_add_member_fn (&fi, child_die, type, cu);
11256 }
11257 else if (child_die->tag == DW_TAG_inheritance)
11258 {
11259 /* C++ base class field. */
11260 dwarf2_add_field (&fi, child_die, cu);
11261 }
11262 else if (child_die->tag == DW_TAG_typedef)
11263 dwarf2_add_typedef (&fi, child_die, cu);
11264 else if (child_die->tag == DW_TAG_template_type_param
11265 || child_die->tag == DW_TAG_template_value_param)
11266 {
11267 struct symbol *arg = new_symbol (child_die, NULL, cu);
11268
11269 if (arg != NULL)
11270 VEC_safe_push (symbolp, template_args, arg);
11271 }
11272
11273 child_die = sibling_die (child_die);
11274 }
11275
11276 /* Attach template arguments to type. */
11277 if (! VEC_empty (symbolp, template_args))
11278 {
11279 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11280 TYPE_N_TEMPLATE_ARGUMENTS (type)
11281 = VEC_length (symbolp, template_args);
11282 TYPE_TEMPLATE_ARGUMENTS (type)
11283 = obstack_alloc (&objfile->objfile_obstack,
11284 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11285 * sizeof (struct symbol *)));
11286 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11287 VEC_address (symbolp, template_args),
11288 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11289 * sizeof (struct symbol *)));
11290 VEC_free (symbolp, template_args);
11291 }
11292
11293 /* Attach fields and member functions to the type. */
11294 if (fi.nfields)
11295 dwarf2_attach_fields_to_type (&fi, type, cu);
11296 if (fi.nfnfields)
11297 {
11298 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11299
11300 /* Get the type which refers to the base class (possibly this
11301 class itself) which contains the vtable pointer for the current
11302 class from the DW_AT_containing_type attribute. This use of
11303 DW_AT_containing_type is a GNU extension. */
11304
11305 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11306 {
11307 struct type *t = die_containing_type (die, cu);
11308
11309 TYPE_VPTR_BASETYPE (type) = t;
11310 if (type == t)
11311 {
11312 int i;
11313
11314 /* Our own class provides vtbl ptr. */
11315 for (i = TYPE_NFIELDS (t) - 1;
11316 i >= TYPE_N_BASECLASSES (t);
11317 --i)
11318 {
11319 const char *fieldname = TYPE_FIELD_NAME (t, i);
11320
11321 if (is_vtable_name (fieldname, cu))
11322 {
11323 TYPE_VPTR_FIELDNO (type) = i;
11324 break;
11325 }
11326 }
11327
11328 /* Complain if virtual function table field not found. */
11329 if (i < TYPE_N_BASECLASSES (t))
11330 complaint (&symfile_complaints,
11331 _("virtual function table pointer "
11332 "not found when defining class '%s'"),
11333 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11334 "");
11335 }
11336 else
11337 {
11338 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11339 }
11340 }
11341 else if (cu->producer
11342 && strncmp (cu->producer,
11343 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11344 {
11345 /* The IBM XLC compiler does not provide direct indication
11346 of the containing type, but the vtable pointer is
11347 always named __vfp. */
11348
11349 int i;
11350
11351 for (i = TYPE_NFIELDS (type) - 1;
11352 i >= TYPE_N_BASECLASSES (type);
11353 --i)
11354 {
11355 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11356 {
11357 TYPE_VPTR_FIELDNO (type) = i;
11358 TYPE_VPTR_BASETYPE (type) = type;
11359 break;
11360 }
11361 }
11362 }
11363 }
11364
11365 /* Copy fi.typedef_field_list linked list elements content into the
11366 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11367 if (fi.typedef_field_list)
11368 {
11369 int i = fi.typedef_field_list_count;
11370
11371 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11372 TYPE_TYPEDEF_FIELD_ARRAY (type)
11373 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11374 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11375
11376 /* Reverse the list order to keep the debug info elements order. */
11377 while (--i >= 0)
11378 {
11379 struct typedef_field *dest, *src;
11380
11381 dest = &TYPE_TYPEDEF_FIELD (type, i);
11382 src = &fi.typedef_field_list->field;
11383 fi.typedef_field_list = fi.typedef_field_list->next;
11384 *dest = *src;
11385 }
11386 }
11387
11388 do_cleanups (back_to);
11389
11390 if (HAVE_CPLUS_STRUCT (type))
11391 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
11392 }
11393
11394 quirk_gcc_member_function_pointer (type, objfile);
11395
11396 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11397 snapshots) has been known to create a die giving a declaration
11398 for a class that has, as a child, a die giving a definition for a
11399 nested class. So we have to process our children even if the
11400 current die is a declaration. Normally, of course, a declaration
11401 won't have any children at all. */
11402
11403 while (child_die != NULL && child_die->tag)
11404 {
11405 if (child_die->tag == DW_TAG_member
11406 || child_die->tag == DW_TAG_variable
11407 || child_die->tag == DW_TAG_inheritance
11408 || child_die->tag == DW_TAG_template_value_param
11409 || child_die->tag == DW_TAG_template_type_param)
11410 {
11411 /* Do nothing. */
11412 }
11413 else
11414 process_die (child_die, cu);
11415
11416 child_die = sibling_die (child_die);
11417 }
11418
11419 /* Do not consider external references. According to the DWARF standard,
11420 these DIEs are identified by the fact that they have no byte_size
11421 attribute, and a declaration attribute. */
11422 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11423 || !die_is_declaration (die, cu))
11424 new_symbol (die, type, cu);
11425 }
11426
11427 /* Given a DW_AT_enumeration_type die, set its type. We do not
11428 complete the type's fields yet, or create any symbols. */
11429
11430 static struct type *
11431 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
11432 {
11433 struct objfile *objfile = cu->objfile;
11434 struct type *type;
11435 struct attribute *attr;
11436 const char *name;
11437
11438 /* If the definition of this type lives in .debug_types, read that type.
11439 Don't follow DW_AT_specification though, that will take us back up
11440 the chain and we want to go down. */
11441 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11442 if (attr)
11443 {
11444 struct dwarf2_cu *type_cu = cu;
11445 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11446
11447 type = read_type_die (type_die, type_cu);
11448
11449 /* TYPE_CU may not be the same as CU.
11450 Ensure TYPE is recorded in CU's type_hash table. */
11451 return set_die_type (die, type, cu);
11452 }
11453
11454 type = alloc_type (objfile);
11455
11456 TYPE_CODE (type) = TYPE_CODE_ENUM;
11457 name = dwarf2_full_name (NULL, die, cu);
11458 if (name != NULL)
11459 TYPE_TAG_NAME (type) = (char *) name;
11460
11461 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11462 if (attr)
11463 {
11464 TYPE_LENGTH (type) = DW_UNSND (attr);
11465 }
11466 else
11467 {
11468 TYPE_LENGTH (type) = 0;
11469 }
11470
11471 /* The enumeration DIE can be incomplete. In Ada, any type can be
11472 declared as private in the package spec, and then defined only
11473 inside the package body. Such types are known as Taft Amendment
11474 Types. When another package uses such a type, an incomplete DIE
11475 may be generated by the compiler. */
11476 if (die_is_declaration (die, cu))
11477 TYPE_STUB (type) = 1;
11478
11479 return set_die_type (die, type, cu);
11480 }
11481
11482 /* Given a pointer to a die which begins an enumeration, process all
11483 the dies that define the members of the enumeration, and create the
11484 symbol for the enumeration type.
11485
11486 NOTE: We reverse the order of the element list. */
11487
11488 static void
11489 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11490 {
11491 struct type *this_type;
11492
11493 this_type = get_die_type (die, cu);
11494 if (this_type == NULL)
11495 this_type = read_enumeration_type (die, cu);
11496
11497 if (die->child != NULL)
11498 {
11499 struct die_info *child_die;
11500 struct symbol *sym;
11501 struct field *fields = NULL;
11502 int num_fields = 0;
11503 int unsigned_enum = 1;
11504 char *name;
11505 int flag_enum = 1;
11506 ULONGEST mask = 0;
11507
11508 child_die = die->child;
11509 while (child_die && child_die->tag)
11510 {
11511 if (child_die->tag != DW_TAG_enumerator)
11512 {
11513 process_die (child_die, cu);
11514 }
11515 else
11516 {
11517 name = dwarf2_name (child_die, cu);
11518 if (name)
11519 {
11520 sym = new_symbol (child_die, this_type, cu);
11521 if (SYMBOL_VALUE (sym) < 0)
11522 {
11523 unsigned_enum = 0;
11524 flag_enum = 0;
11525 }
11526 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11527 flag_enum = 0;
11528 else
11529 mask |= SYMBOL_VALUE (sym);
11530
11531 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11532 {
11533 fields = (struct field *)
11534 xrealloc (fields,
11535 (num_fields + DW_FIELD_ALLOC_CHUNK)
11536 * sizeof (struct field));
11537 }
11538
11539 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
11540 FIELD_TYPE (fields[num_fields]) = NULL;
11541 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
11542 FIELD_BITSIZE (fields[num_fields]) = 0;
11543
11544 num_fields++;
11545 }
11546 }
11547
11548 child_die = sibling_die (child_die);
11549 }
11550
11551 if (num_fields)
11552 {
11553 TYPE_NFIELDS (this_type) = num_fields;
11554 TYPE_FIELDS (this_type) = (struct field *)
11555 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11556 memcpy (TYPE_FIELDS (this_type), fields,
11557 sizeof (struct field) * num_fields);
11558 xfree (fields);
11559 }
11560 if (unsigned_enum)
11561 TYPE_UNSIGNED (this_type) = 1;
11562 if (flag_enum)
11563 TYPE_FLAG_ENUM (this_type) = 1;
11564 }
11565
11566 /* If we are reading an enum from a .debug_types unit, and the enum
11567 is a declaration, and the enum is not the signatured type in the
11568 unit, then we do not want to add a symbol for it. Adding a
11569 symbol would in some cases obscure the true definition of the
11570 enum, giving users an incomplete type when the definition is
11571 actually available. Note that we do not want to do this for all
11572 enums which are just declarations, because C++0x allows forward
11573 enum declarations. */
11574 if (cu->per_cu->is_debug_types
11575 && die_is_declaration (die, cu))
11576 {
11577 struct signatured_type *sig_type;
11578
11579 sig_type
11580 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
11581 cu->per_cu->info_or_types_section,
11582 cu->per_cu->offset);
11583 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11584 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
11585 return;
11586 }
11587
11588 new_symbol (die, this_type, cu);
11589 }
11590
11591 /* Extract all information from a DW_TAG_array_type DIE and put it in
11592 the DIE's type field. For now, this only handles one dimensional
11593 arrays. */
11594
11595 static struct type *
11596 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
11597 {
11598 struct objfile *objfile = cu->objfile;
11599 struct die_info *child_die;
11600 struct type *type;
11601 struct type *element_type, *range_type, *index_type;
11602 struct type **range_types = NULL;
11603 struct attribute *attr;
11604 int ndim = 0;
11605 struct cleanup *back_to;
11606 char *name;
11607
11608 element_type = die_type (die, cu);
11609
11610 /* The die_type call above may have already set the type for this DIE. */
11611 type = get_die_type (die, cu);
11612 if (type)
11613 return type;
11614
11615 /* Irix 6.2 native cc creates array types without children for
11616 arrays with unspecified length. */
11617 if (die->child == NULL)
11618 {
11619 index_type = objfile_type (objfile)->builtin_int;
11620 range_type = create_range_type (NULL, index_type, 0, -1);
11621 type = create_array_type (NULL, element_type, range_type);
11622 return set_die_type (die, type, cu);
11623 }
11624
11625 back_to = make_cleanup (null_cleanup, NULL);
11626 child_die = die->child;
11627 while (child_die && child_die->tag)
11628 {
11629 if (child_die->tag == DW_TAG_subrange_type)
11630 {
11631 struct type *child_type = read_type_die (child_die, cu);
11632
11633 if (child_type != NULL)
11634 {
11635 /* The range type was succesfully read. Save it for the
11636 array type creation. */
11637 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11638 {
11639 range_types = (struct type **)
11640 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11641 * sizeof (struct type *));
11642 if (ndim == 0)
11643 make_cleanup (free_current_contents, &range_types);
11644 }
11645 range_types[ndim++] = child_type;
11646 }
11647 }
11648 child_die = sibling_die (child_die);
11649 }
11650
11651 /* Dwarf2 dimensions are output from left to right, create the
11652 necessary array types in backwards order. */
11653
11654 type = element_type;
11655
11656 if (read_array_order (die, cu) == DW_ORD_col_major)
11657 {
11658 int i = 0;
11659
11660 while (i < ndim)
11661 type = create_array_type (NULL, type, range_types[i++]);
11662 }
11663 else
11664 {
11665 while (ndim-- > 0)
11666 type = create_array_type (NULL, type, range_types[ndim]);
11667 }
11668
11669 /* Understand Dwarf2 support for vector types (like they occur on
11670 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11671 array type. This is not part of the Dwarf2/3 standard yet, but a
11672 custom vendor extension. The main difference between a regular
11673 array and the vector variant is that vectors are passed by value
11674 to functions. */
11675 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
11676 if (attr)
11677 make_vector_type (type);
11678
11679 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11680 implementation may choose to implement triple vectors using this
11681 attribute. */
11682 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11683 if (attr)
11684 {
11685 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11686 TYPE_LENGTH (type) = DW_UNSND (attr);
11687 else
11688 complaint (&symfile_complaints,
11689 _("DW_AT_byte_size for array type smaller "
11690 "than the total size of elements"));
11691 }
11692
11693 name = dwarf2_name (die, cu);
11694 if (name)
11695 TYPE_NAME (type) = name;
11696
11697 /* Install the type in the die. */
11698 set_die_type (die, type, cu);
11699
11700 /* set_die_type should be already done. */
11701 set_descriptive_type (type, die, cu);
11702
11703 do_cleanups (back_to);
11704
11705 return type;
11706 }
11707
11708 static enum dwarf_array_dim_ordering
11709 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11710 {
11711 struct attribute *attr;
11712
11713 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11714
11715 if (attr) return DW_SND (attr);
11716
11717 /* GNU F77 is a special case, as at 08/2004 array type info is the
11718 opposite order to the dwarf2 specification, but data is still
11719 laid out as per normal fortran.
11720
11721 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11722 version checking. */
11723
11724 if (cu->language == language_fortran
11725 && cu->producer && strstr (cu->producer, "GNU F77"))
11726 {
11727 return DW_ORD_row_major;
11728 }
11729
11730 switch (cu->language_defn->la_array_ordering)
11731 {
11732 case array_column_major:
11733 return DW_ORD_col_major;
11734 case array_row_major:
11735 default:
11736 return DW_ORD_row_major;
11737 };
11738 }
11739
11740 /* Extract all information from a DW_TAG_set_type DIE and put it in
11741 the DIE's type field. */
11742
11743 static struct type *
11744 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11745 {
11746 struct type *domain_type, *set_type;
11747 struct attribute *attr;
11748
11749 domain_type = die_type (die, cu);
11750
11751 /* The die_type call above may have already set the type for this DIE. */
11752 set_type = get_die_type (die, cu);
11753 if (set_type)
11754 return set_type;
11755
11756 set_type = create_set_type (NULL, domain_type);
11757
11758 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11759 if (attr)
11760 TYPE_LENGTH (set_type) = DW_UNSND (attr);
11761
11762 return set_die_type (die, set_type, cu);
11763 }
11764
11765 /* A helper for read_common_block that creates a locexpr baton.
11766 SYM is the symbol which we are marking as computed.
11767 COMMON_DIE is the DIE for the common block.
11768 COMMON_LOC is the location expression attribute for the common
11769 block itself.
11770 MEMBER_LOC is the location expression attribute for the particular
11771 member of the common block that we are processing.
11772 CU is the CU from which the above come. */
11773
11774 static void
11775 mark_common_block_symbol_computed (struct symbol *sym,
11776 struct die_info *common_die,
11777 struct attribute *common_loc,
11778 struct attribute *member_loc,
11779 struct dwarf2_cu *cu)
11780 {
11781 struct objfile *objfile = dwarf2_per_objfile->objfile;
11782 struct dwarf2_locexpr_baton *baton;
11783 gdb_byte *ptr;
11784 unsigned int cu_off;
11785 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
11786 LONGEST offset = 0;
11787
11788 gdb_assert (common_loc && member_loc);
11789 gdb_assert (attr_form_is_block (common_loc));
11790 gdb_assert (attr_form_is_block (member_loc)
11791 || attr_form_is_constant (member_loc));
11792
11793 baton = obstack_alloc (&objfile->objfile_obstack,
11794 sizeof (struct dwarf2_locexpr_baton));
11795 baton->per_cu = cu->per_cu;
11796 gdb_assert (baton->per_cu);
11797
11798 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
11799
11800 if (attr_form_is_constant (member_loc))
11801 {
11802 offset = dwarf2_get_attr_constant_value (member_loc, 0);
11803 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
11804 }
11805 else
11806 baton->size += DW_BLOCK (member_loc)->size;
11807
11808 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
11809 baton->data = ptr;
11810
11811 *ptr++ = DW_OP_call4;
11812 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
11813 store_unsigned_integer (ptr, 4, byte_order, cu_off);
11814 ptr += 4;
11815
11816 if (attr_form_is_constant (member_loc))
11817 {
11818 *ptr++ = DW_OP_addr;
11819 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
11820 ptr += cu->header.addr_size;
11821 }
11822 else
11823 {
11824 /* We have to copy the data here, because DW_OP_call4 will only
11825 use a DW_AT_location attribute. */
11826 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
11827 ptr += DW_BLOCK (member_loc)->size;
11828 }
11829
11830 *ptr++ = DW_OP_plus;
11831 gdb_assert (ptr - baton->data == baton->size);
11832
11833 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11834 SYMBOL_LOCATION_BATON (sym) = baton;
11835 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11836 }
11837
11838 /* Create appropriate locally-scoped variables for all the
11839 DW_TAG_common_block entries. Also create a struct common_block
11840 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
11841 is used to sepate the common blocks name namespace from regular
11842 variable names. */
11843
11844 static void
11845 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
11846 {
11847 struct attribute *attr;
11848
11849 attr = dwarf2_attr (die, DW_AT_location, cu);
11850 if (attr)
11851 {
11852 /* Support the .debug_loc offsets. */
11853 if (attr_form_is_block (attr))
11854 {
11855 /* Ok. */
11856 }
11857 else if (attr_form_is_section_offset (attr))
11858 {
11859 dwarf2_complex_location_expr_complaint ();
11860 attr = NULL;
11861 }
11862 else
11863 {
11864 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11865 "common block member");
11866 attr = NULL;
11867 }
11868 }
11869
11870 if (die->child != NULL)
11871 {
11872 struct objfile *objfile = cu->objfile;
11873 struct die_info *child_die;
11874 size_t n_entries = 0, size;
11875 struct common_block *common_block;
11876 struct symbol *sym;
11877
11878 for (child_die = die->child;
11879 child_die && child_die->tag;
11880 child_die = sibling_die (child_die))
11881 ++n_entries;
11882
11883 size = (sizeof (struct common_block)
11884 + (n_entries - 1) * sizeof (struct symbol *));
11885 common_block = obstack_alloc (&objfile->objfile_obstack, size);
11886 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
11887 common_block->n_entries = 0;
11888
11889 for (child_die = die->child;
11890 child_die && child_die->tag;
11891 child_die = sibling_die (child_die))
11892 {
11893 /* Create the symbol in the DW_TAG_common_block block in the current
11894 symbol scope. */
11895 sym = new_symbol (child_die, NULL, cu);
11896 if (sym != NULL)
11897 {
11898 struct attribute *member_loc;
11899
11900 common_block->contents[common_block->n_entries++] = sym;
11901
11902 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
11903 cu);
11904 if (member_loc)
11905 {
11906 /* GDB has handled this for a long time, but it is
11907 not specified by DWARF. It seems to have been
11908 emitted by gfortran at least as recently as:
11909 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
11910 complaint (&symfile_complaints,
11911 _("Variable in common block has "
11912 "DW_AT_data_member_location "
11913 "- DIE at 0x%x [in module %s]"),
11914 child_die->offset.sect_off, cu->objfile->name);
11915
11916 if (attr_form_is_section_offset (member_loc))
11917 dwarf2_complex_location_expr_complaint ();
11918 else if (attr_form_is_constant (member_loc)
11919 || attr_form_is_block (member_loc))
11920 {
11921 if (attr)
11922 mark_common_block_symbol_computed (sym, die, attr,
11923 member_loc, cu);
11924 }
11925 else
11926 dwarf2_complex_location_expr_complaint ();
11927 }
11928 }
11929 }
11930
11931 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
11932 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
11933 }
11934 }
11935
11936 /* Create a type for a C++ namespace. */
11937
11938 static struct type *
11939 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
11940 {
11941 struct objfile *objfile = cu->objfile;
11942 const char *previous_prefix, *name;
11943 int is_anonymous;
11944 struct type *type;
11945
11946 /* For extensions, reuse the type of the original namespace. */
11947 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
11948 {
11949 struct die_info *ext_die;
11950 struct dwarf2_cu *ext_cu = cu;
11951
11952 ext_die = dwarf2_extension (die, &ext_cu);
11953 type = read_type_die (ext_die, ext_cu);
11954
11955 /* EXT_CU may not be the same as CU.
11956 Ensure TYPE is recorded in CU's type_hash table. */
11957 return set_die_type (die, type, cu);
11958 }
11959
11960 name = namespace_name (die, &is_anonymous, cu);
11961
11962 /* Now build the name of the current namespace. */
11963
11964 previous_prefix = determine_prefix (die, cu);
11965 if (previous_prefix[0] != '\0')
11966 name = typename_concat (&objfile->objfile_obstack,
11967 previous_prefix, name, 0, cu);
11968
11969 /* Create the type. */
11970 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
11971 objfile);
11972 TYPE_NAME (type) = (char *) name;
11973 TYPE_TAG_NAME (type) = TYPE_NAME (type);
11974
11975 return set_die_type (die, type, cu);
11976 }
11977
11978 /* Read a C++ namespace. */
11979
11980 static void
11981 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
11982 {
11983 struct objfile *objfile = cu->objfile;
11984 int is_anonymous;
11985
11986 /* Add a symbol associated to this if we haven't seen the namespace
11987 before. Also, add a using directive if it's an anonymous
11988 namespace. */
11989
11990 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
11991 {
11992 struct type *type;
11993
11994 type = read_type_die (die, cu);
11995 new_symbol (die, type, cu);
11996
11997 namespace_name (die, &is_anonymous, cu);
11998 if (is_anonymous)
11999 {
12000 const char *previous_prefix = determine_prefix (die, cu);
12001
12002 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12003 NULL, NULL, &objfile->objfile_obstack);
12004 }
12005 }
12006
12007 if (die->child != NULL)
12008 {
12009 struct die_info *child_die = die->child;
12010
12011 while (child_die && child_die->tag)
12012 {
12013 process_die (child_die, cu);
12014 child_die = sibling_die (child_die);
12015 }
12016 }
12017 }
12018
12019 /* Read a Fortran module as type. This DIE can be only a declaration used for
12020 imported module. Still we need that type as local Fortran "use ... only"
12021 declaration imports depend on the created type in determine_prefix. */
12022
12023 static struct type *
12024 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12025 {
12026 struct objfile *objfile = cu->objfile;
12027 char *module_name;
12028 struct type *type;
12029
12030 module_name = dwarf2_name (die, cu);
12031 if (!module_name)
12032 complaint (&symfile_complaints,
12033 _("DW_TAG_module has no name, offset 0x%x"),
12034 die->offset.sect_off);
12035 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12036
12037 /* determine_prefix uses TYPE_TAG_NAME. */
12038 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12039
12040 return set_die_type (die, type, cu);
12041 }
12042
12043 /* Read a Fortran module. */
12044
12045 static void
12046 read_module (struct die_info *die, struct dwarf2_cu *cu)
12047 {
12048 struct die_info *child_die = die->child;
12049
12050 while (child_die && child_die->tag)
12051 {
12052 process_die (child_die, cu);
12053 child_die = sibling_die (child_die);
12054 }
12055 }
12056
12057 /* Return the name of the namespace represented by DIE. Set
12058 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12059 namespace. */
12060
12061 static const char *
12062 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12063 {
12064 struct die_info *current_die;
12065 const char *name = NULL;
12066
12067 /* Loop through the extensions until we find a name. */
12068
12069 for (current_die = die;
12070 current_die != NULL;
12071 current_die = dwarf2_extension (die, &cu))
12072 {
12073 name = dwarf2_name (current_die, cu);
12074 if (name != NULL)
12075 break;
12076 }
12077
12078 /* Is it an anonymous namespace? */
12079
12080 *is_anonymous = (name == NULL);
12081 if (*is_anonymous)
12082 name = CP_ANONYMOUS_NAMESPACE_STR;
12083
12084 return name;
12085 }
12086
12087 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12088 the user defined type vector. */
12089
12090 static struct type *
12091 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12092 {
12093 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12094 struct comp_unit_head *cu_header = &cu->header;
12095 struct type *type;
12096 struct attribute *attr_byte_size;
12097 struct attribute *attr_address_class;
12098 int byte_size, addr_class;
12099 struct type *target_type;
12100
12101 target_type = die_type (die, cu);
12102
12103 /* The die_type call above may have already set the type for this DIE. */
12104 type = get_die_type (die, cu);
12105 if (type)
12106 return type;
12107
12108 type = lookup_pointer_type (target_type);
12109
12110 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12111 if (attr_byte_size)
12112 byte_size = DW_UNSND (attr_byte_size);
12113 else
12114 byte_size = cu_header->addr_size;
12115
12116 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12117 if (attr_address_class)
12118 addr_class = DW_UNSND (attr_address_class);
12119 else
12120 addr_class = DW_ADDR_none;
12121
12122 /* If the pointer size or address class is different than the
12123 default, create a type variant marked as such and set the
12124 length accordingly. */
12125 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12126 {
12127 if (gdbarch_address_class_type_flags_p (gdbarch))
12128 {
12129 int type_flags;
12130
12131 type_flags = gdbarch_address_class_type_flags
12132 (gdbarch, byte_size, addr_class);
12133 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12134 == 0);
12135 type = make_type_with_address_space (type, type_flags);
12136 }
12137 else if (TYPE_LENGTH (type) != byte_size)
12138 {
12139 complaint (&symfile_complaints,
12140 _("invalid pointer size %d"), byte_size);
12141 }
12142 else
12143 {
12144 /* Should we also complain about unhandled address classes? */
12145 }
12146 }
12147
12148 TYPE_LENGTH (type) = byte_size;
12149 return set_die_type (die, type, cu);
12150 }
12151
12152 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12153 the user defined type vector. */
12154
12155 static struct type *
12156 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12157 {
12158 struct type *type;
12159 struct type *to_type;
12160 struct type *domain;
12161
12162 to_type = die_type (die, cu);
12163 domain = die_containing_type (die, cu);
12164
12165 /* The calls above may have already set the type for this DIE. */
12166 type = get_die_type (die, cu);
12167 if (type)
12168 return type;
12169
12170 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12171 type = lookup_methodptr_type (to_type);
12172 else
12173 type = lookup_memberptr_type (to_type, domain);
12174
12175 return set_die_type (die, type, cu);
12176 }
12177
12178 /* Extract all information from a DW_TAG_reference_type DIE and add to
12179 the user defined type vector. */
12180
12181 static struct type *
12182 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12183 {
12184 struct comp_unit_head *cu_header = &cu->header;
12185 struct type *type, *target_type;
12186 struct attribute *attr;
12187
12188 target_type = die_type (die, cu);
12189
12190 /* The die_type call above may have already set the type for this DIE. */
12191 type = get_die_type (die, cu);
12192 if (type)
12193 return type;
12194
12195 type = lookup_reference_type (target_type);
12196 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12197 if (attr)
12198 {
12199 TYPE_LENGTH (type) = DW_UNSND (attr);
12200 }
12201 else
12202 {
12203 TYPE_LENGTH (type) = cu_header->addr_size;
12204 }
12205 return set_die_type (die, type, cu);
12206 }
12207
12208 static struct type *
12209 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12210 {
12211 struct type *base_type, *cv_type;
12212
12213 base_type = die_type (die, cu);
12214
12215 /* The die_type call above may have already set the type for this DIE. */
12216 cv_type = get_die_type (die, cu);
12217 if (cv_type)
12218 return cv_type;
12219
12220 /* In case the const qualifier is applied to an array type, the element type
12221 is so qualified, not the array type (section 6.7.3 of C99). */
12222 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12223 {
12224 struct type *el_type, *inner_array;
12225
12226 base_type = copy_type (base_type);
12227 inner_array = base_type;
12228
12229 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12230 {
12231 TYPE_TARGET_TYPE (inner_array) =
12232 copy_type (TYPE_TARGET_TYPE (inner_array));
12233 inner_array = TYPE_TARGET_TYPE (inner_array);
12234 }
12235
12236 el_type = TYPE_TARGET_TYPE (inner_array);
12237 TYPE_TARGET_TYPE (inner_array) =
12238 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12239
12240 return set_die_type (die, base_type, cu);
12241 }
12242
12243 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12244 return set_die_type (die, cv_type, cu);
12245 }
12246
12247 static struct type *
12248 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12249 {
12250 struct type *base_type, *cv_type;
12251
12252 base_type = die_type (die, cu);
12253
12254 /* The die_type call above may have already set the type for this DIE. */
12255 cv_type = get_die_type (die, cu);
12256 if (cv_type)
12257 return cv_type;
12258
12259 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12260 return set_die_type (die, cv_type, cu);
12261 }
12262
12263 /* Extract all information from a DW_TAG_string_type DIE and add to
12264 the user defined type vector. It isn't really a user defined type,
12265 but it behaves like one, with other DIE's using an AT_user_def_type
12266 attribute to reference it. */
12267
12268 static struct type *
12269 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12270 {
12271 struct objfile *objfile = cu->objfile;
12272 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12273 struct type *type, *range_type, *index_type, *char_type;
12274 struct attribute *attr;
12275 unsigned int length;
12276
12277 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12278 if (attr)
12279 {
12280 length = DW_UNSND (attr);
12281 }
12282 else
12283 {
12284 /* Check for the DW_AT_byte_size attribute. */
12285 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12286 if (attr)
12287 {
12288 length = DW_UNSND (attr);
12289 }
12290 else
12291 {
12292 length = 1;
12293 }
12294 }
12295
12296 index_type = objfile_type (objfile)->builtin_int;
12297 range_type = create_range_type (NULL, index_type, 1, length);
12298 char_type = language_string_char_type (cu->language_defn, gdbarch);
12299 type = create_string_type (NULL, char_type, range_type);
12300
12301 return set_die_type (die, type, cu);
12302 }
12303
12304 /* Handle DIES due to C code like:
12305
12306 struct foo
12307 {
12308 int (*funcp)(int a, long l);
12309 int b;
12310 };
12311
12312 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12313
12314 static struct type *
12315 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12316 {
12317 struct objfile *objfile = cu->objfile;
12318 struct type *type; /* Type that this function returns. */
12319 struct type *ftype; /* Function that returns above type. */
12320 struct attribute *attr;
12321
12322 type = die_type (die, cu);
12323
12324 /* The die_type call above may have already set the type for this DIE. */
12325 ftype = get_die_type (die, cu);
12326 if (ftype)
12327 return ftype;
12328
12329 ftype = lookup_function_type (type);
12330
12331 /* All functions in C++, Pascal and Java have prototypes. */
12332 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12333 if ((attr && (DW_UNSND (attr) != 0))
12334 || cu->language == language_cplus
12335 || cu->language == language_java
12336 || cu->language == language_pascal)
12337 TYPE_PROTOTYPED (ftype) = 1;
12338 else if (producer_is_realview (cu->producer))
12339 /* RealView does not emit DW_AT_prototyped. We can not
12340 distinguish prototyped and unprototyped functions; default to
12341 prototyped, since that is more common in modern code (and
12342 RealView warns about unprototyped functions). */
12343 TYPE_PROTOTYPED (ftype) = 1;
12344
12345 /* Store the calling convention in the type if it's available in
12346 the subroutine die. Otherwise set the calling convention to
12347 the default value DW_CC_normal. */
12348 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12349 if (attr)
12350 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12351 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12352 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12353 else
12354 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
12355
12356 /* We need to add the subroutine type to the die immediately so
12357 we don't infinitely recurse when dealing with parameters
12358 declared as the same subroutine type. */
12359 set_die_type (die, ftype, cu);
12360
12361 if (die->child != NULL)
12362 {
12363 struct type *void_type = objfile_type (objfile)->builtin_void;
12364 struct die_info *child_die;
12365 int nparams, iparams;
12366
12367 /* Count the number of parameters.
12368 FIXME: GDB currently ignores vararg functions, but knows about
12369 vararg member functions. */
12370 nparams = 0;
12371 child_die = die->child;
12372 while (child_die && child_die->tag)
12373 {
12374 if (child_die->tag == DW_TAG_formal_parameter)
12375 nparams++;
12376 else if (child_die->tag == DW_TAG_unspecified_parameters)
12377 TYPE_VARARGS (ftype) = 1;
12378 child_die = sibling_die (child_die);
12379 }
12380
12381 /* Allocate storage for parameters and fill them in. */
12382 TYPE_NFIELDS (ftype) = nparams;
12383 TYPE_FIELDS (ftype) = (struct field *)
12384 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
12385
12386 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12387 even if we error out during the parameters reading below. */
12388 for (iparams = 0; iparams < nparams; iparams++)
12389 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12390
12391 iparams = 0;
12392 child_die = die->child;
12393 while (child_die && child_die->tag)
12394 {
12395 if (child_die->tag == DW_TAG_formal_parameter)
12396 {
12397 struct type *arg_type;
12398
12399 /* DWARF version 2 has no clean way to discern C++
12400 static and non-static member functions. G++ helps
12401 GDB by marking the first parameter for non-static
12402 member functions (which is the this pointer) as
12403 artificial. We pass this information to
12404 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12405
12406 DWARF version 3 added DW_AT_object_pointer, which GCC
12407 4.5 does not yet generate. */
12408 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
12409 if (attr)
12410 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12411 else
12412 {
12413 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12414
12415 /* GCC/43521: In java, the formal parameter
12416 "this" is sometimes not marked with DW_AT_artificial. */
12417 if (cu->language == language_java)
12418 {
12419 const char *name = dwarf2_name (child_die, cu);
12420
12421 if (name && !strcmp (name, "this"))
12422 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12423 }
12424 }
12425 arg_type = die_type (child_die, cu);
12426
12427 /* RealView does not mark THIS as const, which the testsuite
12428 expects. GCC marks THIS as const in method definitions,
12429 but not in the class specifications (GCC PR 43053). */
12430 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12431 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12432 {
12433 int is_this = 0;
12434 struct dwarf2_cu *arg_cu = cu;
12435 const char *name = dwarf2_name (child_die, cu);
12436
12437 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12438 if (attr)
12439 {
12440 /* If the compiler emits this, use it. */
12441 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12442 is_this = 1;
12443 }
12444 else if (name && strcmp (name, "this") == 0)
12445 /* Function definitions will have the argument names. */
12446 is_this = 1;
12447 else if (name == NULL && iparams == 0)
12448 /* Declarations may not have the names, so like
12449 elsewhere in GDB, assume an artificial first
12450 argument is "this". */
12451 is_this = 1;
12452
12453 if (is_this)
12454 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12455 arg_type, 0);
12456 }
12457
12458 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
12459 iparams++;
12460 }
12461 child_die = sibling_die (child_die);
12462 }
12463 }
12464
12465 return ftype;
12466 }
12467
12468 static struct type *
12469 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
12470 {
12471 struct objfile *objfile = cu->objfile;
12472 const char *name = NULL;
12473 struct type *this_type, *target_type;
12474
12475 name = dwarf2_full_name (NULL, die, cu);
12476 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
12477 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12478 TYPE_NAME (this_type) = (char *) name;
12479 set_die_type (die, this_type, cu);
12480 target_type = die_type (die, cu);
12481 if (target_type != this_type)
12482 TYPE_TARGET_TYPE (this_type) = target_type;
12483 else
12484 {
12485 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12486 spec and cause infinite loops in GDB. */
12487 complaint (&symfile_complaints,
12488 _("Self-referential DW_TAG_typedef "
12489 "- DIE at 0x%x [in module %s]"),
12490 die->offset.sect_off, objfile->name);
12491 TYPE_TARGET_TYPE (this_type) = NULL;
12492 }
12493 return this_type;
12494 }
12495
12496 /* Find a representation of a given base type and install
12497 it in the TYPE field of the die. */
12498
12499 static struct type *
12500 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
12501 {
12502 struct objfile *objfile = cu->objfile;
12503 struct type *type;
12504 struct attribute *attr;
12505 int encoding = 0, size = 0;
12506 char *name;
12507 enum type_code code = TYPE_CODE_INT;
12508 int type_flags = 0;
12509 struct type *target_type = NULL;
12510
12511 attr = dwarf2_attr (die, DW_AT_encoding, cu);
12512 if (attr)
12513 {
12514 encoding = DW_UNSND (attr);
12515 }
12516 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12517 if (attr)
12518 {
12519 size = DW_UNSND (attr);
12520 }
12521 name = dwarf2_name (die, cu);
12522 if (!name)
12523 {
12524 complaint (&symfile_complaints,
12525 _("DW_AT_name missing from DW_TAG_base_type"));
12526 }
12527
12528 switch (encoding)
12529 {
12530 case DW_ATE_address:
12531 /* Turn DW_ATE_address into a void * pointer. */
12532 code = TYPE_CODE_PTR;
12533 type_flags |= TYPE_FLAG_UNSIGNED;
12534 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12535 break;
12536 case DW_ATE_boolean:
12537 code = TYPE_CODE_BOOL;
12538 type_flags |= TYPE_FLAG_UNSIGNED;
12539 break;
12540 case DW_ATE_complex_float:
12541 code = TYPE_CODE_COMPLEX;
12542 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12543 break;
12544 case DW_ATE_decimal_float:
12545 code = TYPE_CODE_DECFLOAT;
12546 break;
12547 case DW_ATE_float:
12548 code = TYPE_CODE_FLT;
12549 break;
12550 case DW_ATE_signed:
12551 break;
12552 case DW_ATE_unsigned:
12553 type_flags |= TYPE_FLAG_UNSIGNED;
12554 if (cu->language == language_fortran
12555 && name
12556 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12557 code = TYPE_CODE_CHAR;
12558 break;
12559 case DW_ATE_signed_char:
12560 if (cu->language == language_ada || cu->language == language_m2
12561 || cu->language == language_pascal
12562 || cu->language == language_fortran)
12563 code = TYPE_CODE_CHAR;
12564 break;
12565 case DW_ATE_unsigned_char:
12566 if (cu->language == language_ada || cu->language == language_m2
12567 || cu->language == language_pascal
12568 || cu->language == language_fortran)
12569 code = TYPE_CODE_CHAR;
12570 type_flags |= TYPE_FLAG_UNSIGNED;
12571 break;
12572 case DW_ATE_UTF:
12573 /* We just treat this as an integer and then recognize the
12574 type by name elsewhere. */
12575 break;
12576
12577 default:
12578 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12579 dwarf_type_encoding_name (encoding));
12580 break;
12581 }
12582
12583 type = init_type (code, size, type_flags, NULL, objfile);
12584 TYPE_NAME (type) = name;
12585 TYPE_TARGET_TYPE (type) = target_type;
12586
12587 if (name && strcmp (name, "char") == 0)
12588 TYPE_NOSIGN (type) = 1;
12589
12590 return set_die_type (die, type, cu);
12591 }
12592
12593 /* Read the given DW_AT_subrange DIE. */
12594
12595 static struct type *
12596 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12597 {
12598 struct type *base_type;
12599 struct type *range_type;
12600 struct attribute *attr;
12601 LONGEST low, high;
12602 int low_default_is_valid;
12603 char *name;
12604 LONGEST negative_mask;
12605
12606 base_type = die_type (die, cu);
12607 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
12608 check_typedef (base_type);
12609
12610 /* The die_type call above may have already set the type for this DIE. */
12611 range_type = get_die_type (die, cu);
12612 if (range_type)
12613 return range_type;
12614
12615 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12616 omitting DW_AT_lower_bound. */
12617 switch (cu->language)
12618 {
12619 case language_c:
12620 case language_cplus:
12621 low = 0;
12622 low_default_is_valid = 1;
12623 break;
12624 case language_fortran:
12625 low = 1;
12626 low_default_is_valid = 1;
12627 break;
12628 case language_d:
12629 case language_java:
12630 case language_objc:
12631 low = 0;
12632 low_default_is_valid = (cu->header.version >= 4);
12633 break;
12634 case language_ada:
12635 case language_m2:
12636 case language_pascal:
12637 low = 1;
12638 low_default_is_valid = (cu->header.version >= 4);
12639 break;
12640 default:
12641 low = 0;
12642 low_default_is_valid = 0;
12643 break;
12644 }
12645
12646 /* FIXME: For variable sized arrays either of these could be
12647 a variable rather than a constant value. We'll allow it,
12648 but we don't know how to handle it. */
12649 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
12650 if (attr)
12651 low = dwarf2_get_attr_constant_value (attr, low);
12652 else if (!low_default_is_valid)
12653 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12654 "- DIE at 0x%x [in module %s]"),
12655 die->offset.sect_off, cu->objfile->name);
12656
12657 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
12658 if (attr)
12659 {
12660 if (attr_form_is_block (attr) || is_ref_attr (attr))
12661 {
12662 /* GCC encodes arrays with unspecified or dynamic length
12663 with a DW_FORM_block1 attribute or a reference attribute.
12664 FIXME: GDB does not yet know how to handle dynamic
12665 arrays properly, treat them as arrays with unspecified
12666 length for now.
12667
12668 FIXME: jimb/2003-09-22: GDB does not really know
12669 how to handle arrays of unspecified length
12670 either; we just represent them as zero-length
12671 arrays. Choose an appropriate upper bound given
12672 the lower bound we've computed above. */
12673 high = low - 1;
12674 }
12675 else
12676 high = dwarf2_get_attr_constant_value (attr, 1);
12677 }
12678 else
12679 {
12680 attr = dwarf2_attr (die, DW_AT_count, cu);
12681 if (attr)
12682 {
12683 int count = dwarf2_get_attr_constant_value (attr, 1);
12684 high = low + count - 1;
12685 }
12686 else
12687 {
12688 /* Unspecified array length. */
12689 high = low - 1;
12690 }
12691 }
12692
12693 /* Dwarf-2 specifications explicitly allows to create subrange types
12694 without specifying a base type.
12695 In that case, the base type must be set to the type of
12696 the lower bound, upper bound or count, in that order, if any of these
12697 three attributes references an object that has a type.
12698 If no base type is found, the Dwarf-2 specifications say that
12699 a signed integer type of size equal to the size of an address should
12700 be used.
12701 For the following C code: `extern char gdb_int [];'
12702 GCC produces an empty range DIE.
12703 FIXME: muller/2010-05-28: Possible references to object for low bound,
12704 high bound or count are not yet handled by this code. */
12705 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12706 {
12707 struct objfile *objfile = cu->objfile;
12708 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12709 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12710 struct type *int_type = objfile_type (objfile)->builtin_int;
12711
12712 /* Test "int", "long int", and "long long int" objfile types,
12713 and select the first one having a size above or equal to the
12714 architecture address size. */
12715 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12716 base_type = int_type;
12717 else
12718 {
12719 int_type = objfile_type (objfile)->builtin_long;
12720 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12721 base_type = int_type;
12722 else
12723 {
12724 int_type = objfile_type (objfile)->builtin_long_long;
12725 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12726 base_type = int_type;
12727 }
12728 }
12729 }
12730
12731 negative_mask =
12732 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
12733 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
12734 low |= negative_mask;
12735 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
12736 high |= negative_mask;
12737
12738 range_type = create_range_type (NULL, base_type, low, high);
12739
12740 /* Mark arrays with dynamic length at least as an array of unspecified
12741 length. GDB could check the boundary but before it gets implemented at
12742 least allow accessing the array elements. */
12743 if (attr && attr_form_is_block (attr))
12744 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12745
12746 /* Ada expects an empty array on no boundary attributes. */
12747 if (attr == NULL && cu->language != language_ada)
12748 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12749
12750 name = dwarf2_name (die, cu);
12751 if (name)
12752 TYPE_NAME (range_type) = name;
12753
12754 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12755 if (attr)
12756 TYPE_LENGTH (range_type) = DW_UNSND (attr);
12757
12758 set_die_type (die, range_type, cu);
12759
12760 /* set_die_type should be already done. */
12761 set_descriptive_type (range_type, die, cu);
12762
12763 return range_type;
12764 }
12765
12766 static struct type *
12767 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
12768 {
12769 struct type *type;
12770
12771 /* For now, we only support the C meaning of an unspecified type: void. */
12772
12773 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
12774 TYPE_NAME (type) = dwarf2_name (die, cu);
12775
12776 return set_die_type (die, type, cu);
12777 }
12778
12779 /* Read a single die and all its descendents. Set the die's sibling
12780 field to NULL; set other fields in the die correctly, and set all
12781 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
12782 location of the info_ptr after reading all of those dies. PARENT
12783 is the parent of the die in question. */
12784
12785 static struct die_info *
12786 read_die_and_children (const struct die_reader_specs *reader,
12787 gdb_byte *info_ptr,
12788 gdb_byte **new_info_ptr,
12789 struct die_info *parent)
12790 {
12791 struct die_info *die;
12792 gdb_byte *cur_ptr;
12793 int has_children;
12794
12795 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
12796 if (die == NULL)
12797 {
12798 *new_info_ptr = cur_ptr;
12799 return NULL;
12800 }
12801 store_in_ref_table (die, reader->cu);
12802
12803 if (has_children)
12804 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
12805 else
12806 {
12807 die->child = NULL;
12808 *new_info_ptr = cur_ptr;
12809 }
12810
12811 die->sibling = NULL;
12812 die->parent = parent;
12813 return die;
12814 }
12815
12816 /* Read a die, all of its descendents, and all of its siblings; set
12817 all of the fields of all of the dies correctly. Arguments are as
12818 in read_die_and_children. */
12819
12820 static struct die_info *
12821 read_die_and_siblings (const struct die_reader_specs *reader,
12822 gdb_byte *info_ptr,
12823 gdb_byte **new_info_ptr,
12824 struct die_info *parent)
12825 {
12826 struct die_info *first_die, *last_sibling;
12827 gdb_byte *cur_ptr;
12828
12829 cur_ptr = info_ptr;
12830 first_die = last_sibling = NULL;
12831
12832 while (1)
12833 {
12834 struct die_info *die
12835 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
12836
12837 if (die == NULL)
12838 {
12839 *new_info_ptr = cur_ptr;
12840 return first_die;
12841 }
12842
12843 if (!first_die)
12844 first_die = die;
12845 else
12846 last_sibling->sibling = die;
12847
12848 last_sibling = die;
12849 }
12850 }
12851
12852 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
12853 attributes.
12854 The caller is responsible for filling in the extra attributes
12855 and updating (*DIEP)->num_attrs.
12856 Set DIEP to point to a newly allocated die with its information,
12857 except for its child, sibling, and parent fields.
12858 Set HAS_CHILDREN to tell whether the die has children or not. */
12859
12860 static gdb_byte *
12861 read_full_die_1 (const struct die_reader_specs *reader,
12862 struct die_info **diep, gdb_byte *info_ptr,
12863 int *has_children, int num_extra_attrs)
12864 {
12865 unsigned int abbrev_number, bytes_read, i;
12866 sect_offset offset;
12867 struct abbrev_info *abbrev;
12868 struct die_info *die;
12869 struct dwarf2_cu *cu = reader->cu;
12870 bfd *abfd = reader->abfd;
12871
12872 offset.sect_off = info_ptr - reader->buffer;
12873 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
12874 info_ptr += bytes_read;
12875 if (!abbrev_number)
12876 {
12877 *diep = NULL;
12878 *has_children = 0;
12879 return info_ptr;
12880 }
12881
12882 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
12883 if (!abbrev)
12884 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
12885 abbrev_number,
12886 bfd_get_filename (abfd));
12887
12888 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
12889 die->offset = offset;
12890 die->tag = abbrev->tag;
12891 die->abbrev = abbrev_number;
12892
12893 /* Make the result usable.
12894 The caller needs to update num_attrs after adding the extra
12895 attributes. */
12896 die->num_attrs = abbrev->num_attrs;
12897
12898 for (i = 0; i < abbrev->num_attrs; ++i)
12899 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
12900 info_ptr);
12901
12902 *diep = die;
12903 *has_children = abbrev->has_children;
12904 return info_ptr;
12905 }
12906
12907 /* Read a die and all its attributes.
12908 Set DIEP to point to a newly allocated die with its information,
12909 except for its child, sibling, and parent fields.
12910 Set HAS_CHILDREN to tell whether the die has children or not. */
12911
12912 static gdb_byte *
12913 read_full_die (const struct die_reader_specs *reader,
12914 struct die_info **diep, gdb_byte *info_ptr,
12915 int *has_children)
12916 {
12917 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
12918 }
12919 \f
12920 /* Abbreviation tables.
12921
12922 In DWARF version 2, the description of the debugging information is
12923 stored in a separate .debug_abbrev section. Before we read any
12924 dies from a section we read in all abbreviations and install them
12925 in a hash table. */
12926
12927 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
12928
12929 static struct abbrev_info *
12930 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
12931 {
12932 struct abbrev_info *abbrev;
12933
12934 abbrev = (struct abbrev_info *)
12935 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
12936 memset (abbrev, 0, sizeof (struct abbrev_info));
12937 return abbrev;
12938 }
12939
12940 /* Add an abbreviation to the table. */
12941
12942 static void
12943 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
12944 unsigned int abbrev_number,
12945 struct abbrev_info *abbrev)
12946 {
12947 unsigned int hash_number;
12948
12949 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12950 abbrev->next = abbrev_table->abbrevs[hash_number];
12951 abbrev_table->abbrevs[hash_number] = abbrev;
12952 }
12953
12954 /* Look up an abbrev in the table.
12955 Returns NULL if the abbrev is not found. */
12956
12957 static struct abbrev_info *
12958 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
12959 unsigned int abbrev_number)
12960 {
12961 unsigned int hash_number;
12962 struct abbrev_info *abbrev;
12963
12964 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12965 abbrev = abbrev_table->abbrevs[hash_number];
12966
12967 while (abbrev)
12968 {
12969 if (abbrev->number == abbrev_number)
12970 return abbrev;
12971 abbrev = abbrev->next;
12972 }
12973 return NULL;
12974 }
12975
12976 /* Read in an abbrev table. */
12977
12978 static struct abbrev_table *
12979 abbrev_table_read_table (struct dwarf2_section_info *section,
12980 sect_offset offset)
12981 {
12982 struct objfile *objfile = dwarf2_per_objfile->objfile;
12983 bfd *abfd = section->asection->owner;
12984 struct abbrev_table *abbrev_table;
12985 gdb_byte *abbrev_ptr;
12986 struct abbrev_info *cur_abbrev;
12987 unsigned int abbrev_number, bytes_read, abbrev_name;
12988 unsigned int abbrev_form;
12989 struct attr_abbrev *cur_attrs;
12990 unsigned int allocated_attrs;
12991
12992 abbrev_table = XMALLOC (struct abbrev_table);
12993 abbrev_table->offset = offset;
12994 obstack_init (&abbrev_table->abbrev_obstack);
12995 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
12996 (ABBREV_HASH_SIZE
12997 * sizeof (struct abbrev_info *)));
12998 memset (abbrev_table->abbrevs, 0,
12999 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13000
13001 dwarf2_read_section (objfile, section);
13002 abbrev_ptr = section->buffer + offset.sect_off;
13003 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13004 abbrev_ptr += bytes_read;
13005
13006 allocated_attrs = ATTR_ALLOC_CHUNK;
13007 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13008
13009 /* Loop until we reach an abbrev number of 0. */
13010 while (abbrev_number)
13011 {
13012 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13013
13014 /* read in abbrev header */
13015 cur_abbrev->number = abbrev_number;
13016 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13017 abbrev_ptr += bytes_read;
13018 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13019 abbrev_ptr += 1;
13020
13021 /* now read in declarations */
13022 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13023 abbrev_ptr += bytes_read;
13024 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13025 abbrev_ptr += bytes_read;
13026 while (abbrev_name)
13027 {
13028 if (cur_abbrev->num_attrs == allocated_attrs)
13029 {
13030 allocated_attrs += ATTR_ALLOC_CHUNK;
13031 cur_attrs
13032 = xrealloc (cur_attrs, (allocated_attrs
13033 * sizeof (struct attr_abbrev)));
13034 }
13035
13036 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13037 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13038 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13039 abbrev_ptr += bytes_read;
13040 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13041 abbrev_ptr += bytes_read;
13042 }
13043
13044 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13045 (cur_abbrev->num_attrs
13046 * sizeof (struct attr_abbrev)));
13047 memcpy (cur_abbrev->attrs, cur_attrs,
13048 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13049
13050 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13051
13052 /* Get next abbreviation.
13053 Under Irix6 the abbreviations for a compilation unit are not
13054 always properly terminated with an abbrev number of 0.
13055 Exit loop if we encounter an abbreviation which we have
13056 already read (which means we are about to read the abbreviations
13057 for the next compile unit) or if the end of the abbreviation
13058 table is reached. */
13059 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13060 break;
13061 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13062 abbrev_ptr += bytes_read;
13063 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13064 break;
13065 }
13066
13067 xfree (cur_attrs);
13068 return abbrev_table;
13069 }
13070
13071 /* Free the resources held by ABBREV_TABLE. */
13072
13073 static void
13074 abbrev_table_free (struct abbrev_table *abbrev_table)
13075 {
13076 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13077 xfree (abbrev_table);
13078 }
13079
13080 /* Same as abbrev_table_free but as a cleanup.
13081 We pass in a pointer to the pointer to the table so that we can
13082 set the pointer to NULL when we're done. It also simplifies
13083 build_type_unit_groups. */
13084
13085 static void
13086 abbrev_table_free_cleanup (void *table_ptr)
13087 {
13088 struct abbrev_table **abbrev_table_ptr = table_ptr;
13089
13090 if (*abbrev_table_ptr != NULL)
13091 abbrev_table_free (*abbrev_table_ptr);
13092 *abbrev_table_ptr = NULL;
13093 }
13094
13095 /* Read the abbrev table for CU from ABBREV_SECTION. */
13096
13097 static void
13098 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13099 struct dwarf2_section_info *abbrev_section)
13100 {
13101 cu->abbrev_table =
13102 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13103 }
13104
13105 /* Release the memory used by the abbrev table for a compilation unit. */
13106
13107 static void
13108 dwarf2_free_abbrev_table (void *ptr_to_cu)
13109 {
13110 struct dwarf2_cu *cu = ptr_to_cu;
13111
13112 abbrev_table_free (cu->abbrev_table);
13113 /* Set this to NULL so that we SEGV if we try to read it later,
13114 and also because free_comp_unit verifies this is NULL. */
13115 cu->abbrev_table = NULL;
13116 }
13117 \f
13118 /* Returns nonzero if TAG represents a type that we might generate a partial
13119 symbol for. */
13120
13121 static int
13122 is_type_tag_for_partial (int tag)
13123 {
13124 switch (tag)
13125 {
13126 #if 0
13127 /* Some types that would be reasonable to generate partial symbols for,
13128 that we don't at present. */
13129 case DW_TAG_array_type:
13130 case DW_TAG_file_type:
13131 case DW_TAG_ptr_to_member_type:
13132 case DW_TAG_set_type:
13133 case DW_TAG_string_type:
13134 case DW_TAG_subroutine_type:
13135 #endif
13136 case DW_TAG_base_type:
13137 case DW_TAG_class_type:
13138 case DW_TAG_interface_type:
13139 case DW_TAG_enumeration_type:
13140 case DW_TAG_structure_type:
13141 case DW_TAG_subrange_type:
13142 case DW_TAG_typedef:
13143 case DW_TAG_union_type:
13144 return 1;
13145 default:
13146 return 0;
13147 }
13148 }
13149
13150 /* Load all DIEs that are interesting for partial symbols into memory. */
13151
13152 static struct partial_die_info *
13153 load_partial_dies (const struct die_reader_specs *reader,
13154 gdb_byte *info_ptr, int building_psymtab)
13155 {
13156 struct dwarf2_cu *cu = reader->cu;
13157 struct objfile *objfile = cu->objfile;
13158 struct partial_die_info *part_die;
13159 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13160 struct abbrev_info *abbrev;
13161 unsigned int bytes_read;
13162 unsigned int load_all = 0;
13163 int nesting_level = 1;
13164
13165 parent_die = NULL;
13166 last_die = NULL;
13167
13168 gdb_assert (cu->per_cu != NULL);
13169 if (cu->per_cu->load_all_dies)
13170 load_all = 1;
13171
13172 cu->partial_dies
13173 = htab_create_alloc_ex (cu->header.length / 12,
13174 partial_die_hash,
13175 partial_die_eq,
13176 NULL,
13177 &cu->comp_unit_obstack,
13178 hashtab_obstack_allocate,
13179 dummy_obstack_deallocate);
13180
13181 part_die = obstack_alloc (&cu->comp_unit_obstack,
13182 sizeof (struct partial_die_info));
13183
13184 while (1)
13185 {
13186 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13187
13188 /* A NULL abbrev means the end of a series of children. */
13189 if (abbrev == NULL)
13190 {
13191 if (--nesting_level == 0)
13192 {
13193 /* PART_DIE was probably the last thing allocated on the
13194 comp_unit_obstack, so we could call obstack_free
13195 here. We don't do that because the waste is small,
13196 and will be cleaned up when we're done with this
13197 compilation unit. This way, we're also more robust
13198 against other users of the comp_unit_obstack. */
13199 return first_die;
13200 }
13201 info_ptr += bytes_read;
13202 last_die = parent_die;
13203 parent_die = parent_die->die_parent;
13204 continue;
13205 }
13206
13207 /* Check for template arguments. We never save these; if
13208 they're seen, we just mark the parent, and go on our way. */
13209 if (parent_die != NULL
13210 && cu->language == language_cplus
13211 && (abbrev->tag == DW_TAG_template_type_param
13212 || abbrev->tag == DW_TAG_template_value_param))
13213 {
13214 parent_die->has_template_arguments = 1;
13215
13216 if (!load_all)
13217 {
13218 /* We don't need a partial DIE for the template argument. */
13219 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13220 continue;
13221 }
13222 }
13223
13224 /* We only recurse into c++ subprograms looking for template arguments.
13225 Skip their other children. */
13226 if (!load_all
13227 && cu->language == language_cplus
13228 && parent_die != NULL
13229 && parent_die->tag == DW_TAG_subprogram)
13230 {
13231 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13232 continue;
13233 }
13234
13235 /* Check whether this DIE is interesting enough to save. Normally
13236 we would not be interested in members here, but there may be
13237 later variables referencing them via DW_AT_specification (for
13238 static members). */
13239 if (!load_all
13240 && !is_type_tag_for_partial (abbrev->tag)
13241 && abbrev->tag != DW_TAG_constant
13242 && abbrev->tag != DW_TAG_enumerator
13243 && abbrev->tag != DW_TAG_subprogram
13244 && abbrev->tag != DW_TAG_lexical_block
13245 && abbrev->tag != DW_TAG_variable
13246 && abbrev->tag != DW_TAG_namespace
13247 && abbrev->tag != DW_TAG_module
13248 && abbrev->tag != DW_TAG_member
13249 && abbrev->tag != DW_TAG_imported_unit)
13250 {
13251 /* Otherwise we skip to the next sibling, if any. */
13252 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13253 continue;
13254 }
13255
13256 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13257 info_ptr);
13258
13259 /* This two-pass algorithm for processing partial symbols has a
13260 high cost in cache pressure. Thus, handle some simple cases
13261 here which cover the majority of C partial symbols. DIEs
13262 which neither have specification tags in them, nor could have
13263 specification tags elsewhere pointing at them, can simply be
13264 processed and discarded.
13265
13266 This segment is also optional; scan_partial_symbols and
13267 add_partial_symbol will handle these DIEs if we chain
13268 them in normally. When compilers which do not emit large
13269 quantities of duplicate debug information are more common,
13270 this code can probably be removed. */
13271
13272 /* Any complete simple types at the top level (pretty much all
13273 of them, for a language without namespaces), can be processed
13274 directly. */
13275 if (parent_die == NULL
13276 && part_die->has_specification == 0
13277 && part_die->is_declaration == 0
13278 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13279 || part_die->tag == DW_TAG_base_type
13280 || part_die->tag == DW_TAG_subrange_type))
13281 {
13282 if (building_psymtab && part_die->name != NULL)
13283 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13284 VAR_DOMAIN, LOC_TYPEDEF,
13285 &objfile->static_psymbols,
13286 0, (CORE_ADDR) 0, cu->language, objfile);
13287 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13288 continue;
13289 }
13290
13291 /* The exception for DW_TAG_typedef with has_children above is
13292 a workaround of GCC PR debug/47510. In the case of this complaint
13293 type_name_no_tag_or_error will error on such types later.
13294
13295 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13296 it could not find the child DIEs referenced later, this is checked
13297 above. In correct DWARF DW_TAG_typedef should have no children. */
13298
13299 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13300 complaint (&symfile_complaints,
13301 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13302 "- DIE at 0x%x [in module %s]"),
13303 part_die->offset.sect_off, objfile->name);
13304
13305 /* If we're at the second level, and we're an enumerator, and
13306 our parent has no specification (meaning possibly lives in a
13307 namespace elsewhere), then we can add the partial symbol now
13308 instead of queueing it. */
13309 if (part_die->tag == DW_TAG_enumerator
13310 && parent_die != NULL
13311 && parent_die->die_parent == NULL
13312 && parent_die->tag == DW_TAG_enumeration_type
13313 && parent_die->has_specification == 0)
13314 {
13315 if (part_die->name == NULL)
13316 complaint (&symfile_complaints,
13317 _("malformed enumerator DIE ignored"));
13318 else if (building_psymtab)
13319 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13320 VAR_DOMAIN, LOC_CONST,
13321 (cu->language == language_cplus
13322 || cu->language == language_java)
13323 ? &objfile->global_psymbols
13324 : &objfile->static_psymbols,
13325 0, (CORE_ADDR) 0, cu->language, objfile);
13326
13327 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13328 continue;
13329 }
13330
13331 /* We'll save this DIE so link it in. */
13332 part_die->die_parent = parent_die;
13333 part_die->die_sibling = NULL;
13334 part_die->die_child = NULL;
13335
13336 if (last_die && last_die == parent_die)
13337 last_die->die_child = part_die;
13338 else if (last_die)
13339 last_die->die_sibling = part_die;
13340
13341 last_die = part_die;
13342
13343 if (first_die == NULL)
13344 first_die = part_die;
13345
13346 /* Maybe add the DIE to the hash table. Not all DIEs that we
13347 find interesting need to be in the hash table, because we
13348 also have the parent/sibling/child chains; only those that we
13349 might refer to by offset later during partial symbol reading.
13350
13351 For now this means things that might have be the target of a
13352 DW_AT_specification, DW_AT_abstract_origin, or
13353 DW_AT_extension. DW_AT_extension will refer only to
13354 namespaces; DW_AT_abstract_origin refers to functions (and
13355 many things under the function DIE, but we do not recurse
13356 into function DIEs during partial symbol reading) and
13357 possibly variables as well; DW_AT_specification refers to
13358 declarations. Declarations ought to have the DW_AT_declaration
13359 flag. It happens that GCC forgets to put it in sometimes, but
13360 only for functions, not for types.
13361
13362 Adding more things than necessary to the hash table is harmless
13363 except for the performance cost. Adding too few will result in
13364 wasted time in find_partial_die, when we reread the compilation
13365 unit with load_all_dies set. */
13366
13367 if (load_all
13368 || abbrev->tag == DW_TAG_constant
13369 || abbrev->tag == DW_TAG_subprogram
13370 || abbrev->tag == DW_TAG_variable
13371 || abbrev->tag == DW_TAG_namespace
13372 || part_die->is_declaration)
13373 {
13374 void **slot;
13375
13376 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
13377 part_die->offset.sect_off, INSERT);
13378 *slot = part_die;
13379 }
13380
13381 part_die = obstack_alloc (&cu->comp_unit_obstack,
13382 sizeof (struct partial_die_info));
13383
13384 /* For some DIEs we want to follow their children (if any). For C
13385 we have no reason to follow the children of structures; for other
13386 languages we have to, so that we can get at method physnames
13387 to infer fully qualified class names, for DW_AT_specification,
13388 and for C++ template arguments. For C++, we also look one level
13389 inside functions to find template arguments (if the name of the
13390 function does not already contain the template arguments).
13391
13392 For Ada, we need to scan the children of subprograms and lexical
13393 blocks as well because Ada allows the definition of nested
13394 entities that could be interesting for the debugger, such as
13395 nested subprograms for instance. */
13396 if (last_die->has_children
13397 && (load_all
13398 || last_die->tag == DW_TAG_namespace
13399 || last_die->tag == DW_TAG_module
13400 || last_die->tag == DW_TAG_enumeration_type
13401 || (cu->language == language_cplus
13402 && last_die->tag == DW_TAG_subprogram
13403 && (last_die->name == NULL
13404 || strchr (last_die->name, '<') == NULL))
13405 || (cu->language != language_c
13406 && (last_die->tag == DW_TAG_class_type
13407 || last_die->tag == DW_TAG_interface_type
13408 || last_die->tag == DW_TAG_structure_type
13409 || last_die->tag == DW_TAG_union_type))
13410 || (cu->language == language_ada
13411 && (last_die->tag == DW_TAG_subprogram
13412 || last_die->tag == DW_TAG_lexical_block))))
13413 {
13414 nesting_level++;
13415 parent_die = last_die;
13416 continue;
13417 }
13418
13419 /* Otherwise we skip to the next sibling, if any. */
13420 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
13421
13422 /* Back to the top, do it again. */
13423 }
13424 }
13425
13426 /* Read a minimal amount of information into the minimal die structure. */
13427
13428 static gdb_byte *
13429 read_partial_die (const struct die_reader_specs *reader,
13430 struct partial_die_info *part_die,
13431 struct abbrev_info *abbrev, unsigned int abbrev_len,
13432 gdb_byte *info_ptr)
13433 {
13434 struct dwarf2_cu *cu = reader->cu;
13435 struct objfile *objfile = cu->objfile;
13436 gdb_byte *buffer = reader->buffer;
13437 unsigned int i;
13438 struct attribute attr;
13439 int has_low_pc_attr = 0;
13440 int has_high_pc_attr = 0;
13441 int high_pc_relative = 0;
13442
13443 memset (part_die, 0, sizeof (struct partial_die_info));
13444
13445 part_die->offset.sect_off = info_ptr - buffer;
13446
13447 info_ptr += abbrev_len;
13448
13449 if (abbrev == NULL)
13450 return info_ptr;
13451
13452 part_die->tag = abbrev->tag;
13453 part_die->has_children = abbrev->has_children;
13454
13455 for (i = 0; i < abbrev->num_attrs; ++i)
13456 {
13457 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
13458
13459 /* Store the data if it is of an attribute we want to keep in a
13460 partial symbol table. */
13461 switch (attr.name)
13462 {
13463 case DW_AT_name:
13464 switch (part_die->tag)
13465 {
13466 case DW_TAG_compile_unit:
13467 case DW_TAG_partial_unit:
13468 case DW_TAG_type_unit:
13469 /* Compilation units have a DW_AT_name that is a filename, not
13470 a source language identifier. */
13471 case DW_TAG_enumeration_type:
13472 case DW_TAG_enumerator:
13473 /* These tags always have simple identifiers already; no need
13474 to canonicalize them. */
13475 part_die->name = DW_STRING (&attr);
13476 break;
13477 default:
13478 part_die->name
13479 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
13480 &objfile->objfile_obstack);
13481 break;
13482 }
13483 break;
13484 case DW_AT_linkage_name:
13485 case DW_AT_MIPS_linkage_name:
13486 /* Note that both forms of linkage name might appear. We
13487 assume they will be the same, and we only store the last
13488 one we see. */
13489 if (cu->language == language_ada)
13490 part_die->name = DW_STRING (&attr);
13491 part_die->linkage_name = DW_STRING (&attr);
13492 break;
13493 case DW_AT_low_pc:
13494 has_low_pc_attr = 1;
13495 part_die->lowpc = DW_ADDR (&attr);
13496 break;
13497 case DW_AT_high_pc:
13498 has_high_pc_attr = 1;
13499 if (attr.form == DW_FORM_addr
13500 || attr.form == DW_FORM_GNU_addr_index)
13501 part_die->highpc = DW_ADDR (&attr);
13502 else
13503 {
13504 high_pc_relative = 1;
13505 part_die->highpc = DW_UNSND (&attr);
13506 }
13507 break;
13508 case DW_AT_location:
13509 /* Support the .debug_loc offsets. */
13510 if (attr_form_is_block (&attr))
13511 {
13512 part_die->d.locdesc = DW_BLOCK (&attr);
13513 }
13514 else if (attr_form_is_section_offset (&attr))
13515 {
13516 dwarf2_complex_location_expr_complaint ();
13517 }
13518 else
13519 {
13520 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13521 "partial symbol information");
13522 }
13523 break;
13524 case DW_AT_external:
13525 part_die->is_external = DW_UNSND (&attr);
13526 break;
13527 case DW_AT_declaration:
13528 part_die->is_declaration = DW_UNSND (&attr);
13529 break;
13530 case DW_AT_type:
13531 part_die->has_type = 1;
13532 break;
13533 case DW_AT_abstract_origin:
13534 case DW_AT_specification:
13535 case DW_AT_extension:
13536 part_die->has_specification = 1;
13537 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
13538 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13539 || cu->per_cu->is_dwz);
13540 break;
13541 case DW_AT_sibling:
13542 /* Ignore absolute siblings, they might point outside of
13543 the current compile unit. */
13544 if (attr.form == DW_FORM_ref_addr)
13545 complaint (&symfile_complaints,
13546 _("ignoring absolute DW_AT_sibling"));
13547 else
13548 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
13549 break;
13550 case DW_AT_byte_size:
13551 part_die->has_byte_size = 1;
13552 break;
13553 case DW_AT_calling_convention:
13554 /* DWARF doesn't provide a way to identify a program's source-level
13555 entry point. DW_AT_calling_convention attributes are only meant
13556 to describe functions' calling conventions.
13557
13558 However, because it's a necessary piece of information in
13559 Fortran, and because DW_CC_program is the only piece of debugging
13560 information whose definition refers to a 'main program' at all,
13561 several compilers have begun marking Fortran main programs with
13562 DW_CC_program --- even when those functions use the standard
13563 calling conventions.
13564
13565 So until DWARF specifies a way to provide this information and
13566 compilers pick up the new representation, we'll support this
13567 practice. */
13568 if (DW_UNSND (&attr) == DW_CC_program
13569 && cu->language == language_fortran)
13570 {
13571 set_main_name (part_die->name);
13572
13573 /* As this DIE has a static linkage the name would be difficult
13574 to look up later. */
13575 language_of_main = language_fortran;
13576 }
13577 break;
13578 case DW_AT_inline:
13579 if (DW_UNSND (&attr) == DW_INL_inlined
13580 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13581 part_die->may_be_inlined = 1;
13582 break;
13583
13584 case DW_AT_import:
13585 if (part_die->tag == DW_TAG_imported_unit)
13586 {
13587 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13588 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13589 || cu->per_cu->is_dwz);
13590 }
13591 break;
13592
13593 default:
13594 break;
13595 }
13596 }
13597
13598 if (high_pc_relative)
13599 part_die->highpc += part_die->lowpc;
13600
13601 if (has_low_pc_attr && has_high_pc_attr)
13602 {
13603 /* When using the GNU linker, .gnu.linkonce. sections are used to
13604 eliminate duplicate copies of functions and vtables and such.
13605 The linker will arbitrarily choose one and discard the others.
13606 The AT_*_pc values for such functions refer to local labels in
13607 these sections. If the section from that file was discarded, the
13608 labels are not in the output, so the relocs get a value of 0.
13609 If this is a discarded function, mark the pc bounds as invalid,
13610 so that GDB will ignore it. */
13611 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13612 {
13613 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13614
13615 complaint (&symfile_complaints,
13616 _("DW_AT_low_pc %s is zero "
13617 "for DIE at 0x%x [in module %s]"),
13618 paddress (gdbarch, part_die->lowpc),
13619 part_die->offset.sect_off, objfile->name);
13620 }
13621 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13622 else if (part_die->lowpc >= part_die->highpc)
13623 {
13624 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13625
13626 complaint (&symfile_complaints,
13627 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13628 "for DIE at 0x%x [in module %s]"),
13629 paddress (gdbarch, part_die->lowpc),
13630 paddress (gdbarch, part_die->highpc),
13631 part_die->offset.sect_off, objfile->name);
13632 }
13633 else
13634 part_die->has_pc_info = 1;
13635 }
13636
13637 return info_ptr;
13638 }
13639
13640 /* Find a cached partial DIE at OFFSET in CU. */
13641
13642 static struct partial_die_info *
13643 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
13644 {
13645 struct partial_die_info *lookup_die = NULL;
13646 struct partial_die_info part_die;
13647
13648 part_die.offset = offset;
13649 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13650 offset.sect_off);
13651
13652 return lookup_die;
13653 }
13654
13655 /* Find a partial DIE at OFFSET, which may or may not be in CU,
13656 except in the case of .debug_types DIEs which do not reference
13657 outside their CU (they do however referencing other types via
13658 DW_FORM_ref_sig8). */
13659
13660 static struct partial_die_info *
13661 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
13662 {
13663 struct objfile *objfile = cu->objfile;
13664 struct dwarf2_per_cu_data *per_cu = NULL;
13665 struct partial_die_info *pd = NULL;
13666
13667 if (offset_in_dwz == cu->per_cu->is_dwz
13668 && offset_in_cu_p (&cu->header, offset))
13669 {
13670 pd = find_partial_die_in_comp_unit (offset, cu);
13671 if (pd != NULL)
13672 return pd;
13673 /* We missed recording what we needed.
13674 Load all dies and try again. */
13675 per_cu = cu->per_cu;
13676 }
13677 else
13678 {
13679 /* TUs don't reference other CUs/TUs (except via type signatures). */
13680 if (cu->per_cu->is_debug_types)
13681 {
13682 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
13683 " external reference to offset 0x%lx [in module %s].\n"),
13684 (long) cu->header.offset.sect_off, (long) offset.sect_off,
13685 bfd_get_filename (objfile->obfd));
13686 }
13687 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
13688 objfile);
13689
13690 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
13691 load_partial_comp_unit (per_cu);
13692
13693 per_cu->cu->last_used = 0;
13694 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13695 }
13696
13697 /* If we didn't find it, and not all dies have been loaded,
13698 load them all and try again. */
13699
13700 if (pd == NULL && per_cu->load_all_dies == 0)
13701 {
13702 per_cu->load_all_dies = 1;
13703
13704 /* This is nasty. When we reread the DIEs, somewhere up the call chain
13705 THIS_CU->cu may already be in use. So we can't just free it and
13706 replace its DIEs with the ones we read in. Instead, we leave those
13707 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
13708 and clobber THIS_CU->cu->partial_dies with the hash table for the new
13709 set. */
13710 load_partial_comp_unit (per_cu);
13711
13712 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13713 }
13714
13715 if (pd == NULL)
13716 internal_error (__FILE__, __LINE__,
13717 _("could not find partial DIE 0x%x "
13718 "in cache [from module %s]\n"),
13719 offset.sect_off, bfd_get_filename (objfile->obfd));
13720 return pd;
13721 }
13722
13723 /* See if we can figure out if the class lives in a namespace. We do
13724 this by looking for a member function; its demangled name will
13725 contain namespace info, if there is any. */
13726
13727 static void
13728 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
13729 struct dwarf2_cu *cu)
13730 {
13731 /* NOTE: carlton/2003-10-07: Getting the info this way changes
13732 what template types look like, because the demangler
13733 frequently doesn't give the same name as the debug info. We
13734 could fix this by only using the demangled name to get the
13735 prefix (but see comment in read_structure_type). */
13736
13737 struct partial_die_info *real_pdi;
13738 struct partial_die_info *child_pdi;
13739
13740 /* If this DIE (this DIE's specification, if any) has a parent, then
13741 we should not do this. We'll prepend the parent's fully qualified
13742 name when we create the partial symbol. */
13743
13744 real_pdi = struct_pdi;
13745 while (real_pdi->has_specification)
13746 real_pdi = find_partial_die (real_pdi->spec_offset,
13747 real_pdi->spec_is_dwz, cu);
13748
13749 if (real_pdi->die_parent != NULL)
13750 return;
13751
13752 for (child_pdi = struct_pdi->die_child;
13753 child_pdi != NULL;
13754 child_pdi = child_pdi->die_sibling)
13755 {
13756 if (child_pdi->tag == DW_TAG_subprogram
13757 && child_pdi->linkage_name != NULL)
13758 {
13759 char *actual_class_name
13760 = language_class_name_from_physname (cu->language_defn,
13761 child_pdi->linkage_name);
13762 if (actual_class_name != NULL)
13763 {
13764 struct_pdi->name
13765 = obsavestring (actual_class_name,
13766 strlen (actual_class_name),
13767 &cu->objfile->objfile_obstack);
13768 xfree (actual_class_name);
13769 }
13770 break;
13771 }
13772 }
13773 }
13774
13775 /* Adjust PART_DIE before generating a symbol for it. This function
13776 may set the is_external flag or change the DIE's name. */
13777
13778 static void
13779 fixup_partial_die (struct partial_die_info *part_die,
13780 struct dwarf2_cu *cu)
13781 {
13782 /* Once we've fixed up a die, there's no point in doing so again.
13783 This also avoids a memory leak if we were to call
13784 guess_partial_die_structure_name multiple times. */
13785 if (part_die->fixup_called)
13786 return;
13787
13788 /* If we found a reference attribute and the DIE has no name, try
13789 to find a name in the referred to DIE. */
13790
13791 if (part_die->name == NULL && part_die->has_specification)
13792 {
13793 struct partial_die_info *spec_die;
13794
13795 spec_die = find_partial_die (part_die->spec_offset,
13796 part_die->spec_is_dwz, cu);
13797
13798 fixup_partial_die (spec_die, cu);
13799
13800 if (spec_die->name)
13801 {
13802 part_die->name = spec_die->name;
13803
13804 /* Copy DW_AT_external attribute if it is set. */
13805 if (spec_die->is_external)
13806 part_die->is_external = spec_die->is_external;
13807 }
13808 }
13809
13810 /* Set default names for some unnamed DIEs. */
13811
13812 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
13813 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
13814
13815 /* If there is no parent die to provide a namespace, and there are
13816 children, see if we can determine the namespace from their linkage
13817 name. */
13818 if (cu->language == language_cplus
13819 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
13820 && part_die->die_parent == NULL
13821 && part_die->has_children
13822 && (part_die->tag == DW_TAG_class_type
13823 || part_die->tag == DW_TAG_structure_type
13824 || part_die->tag == DW_TAG_union_type))
13825 guess_partial_die_structure_name (part_die, cu);
13826
13827 /* GCC might emit a nameless struct or union that has a linkage
13828 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
13829 if (part_die->name == NULL
13830 && (part_die->tag == DW_TAG_class_type
13831 || part_die->tag == DW_TAG_interface_type
13832 || part_die->tag == DW_TAG_structure_type
13833 || part_die->tag == DW_TAG_union_type)
13834 && part_die->linkage_name != NULL)
13835 {
13836 char *demangled;
13837
13838 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
13839 if (demangled)
13840 {
13841 const char *base;
13842
13843 /* Strip any leading namespaces/classes, keep only the base name.
13844 DW_AT_name for named DIEs does not contain the prefixes. */
13845 base = strrchr (demangled, ':');
13846 if (base && base > demangled && base[-1] == ':')
13847 base++;
13848 else
13849 base = demangled;
13850
13851 part_die->name = obsavestring (base, strlen (base),
13852 &cu->objfile->objfile_obstack);
13853 xfree (demangled);
13854 }
13855 }
13856
13857 part_die->fixup_called = 1;
13858 }
13859
13860 /* Read an attribute value described by an attribute form. */
13861
13862 static gdb_byte *
13863 read_attribute_value (const struct die_reader_specs *reader,
13864 struct attribute *attr, unsigned form,
13865 gdb_byte *info_ptr)
13866 {
13867 struct dwarf2_cu *cu = reader->cu;
13868 bfd *abfd = reader->abfd;
13869 struct comp_unit_head *cu_header = &cu->header;
13870 unsigned int bytes_read;
13871 struct dwarf_block *blk;
13872
13873 attr->form = form;
13874 switch (form)
13875 {
13876 case DW_FORM_ref_addr:
13877 if (cu->header.version == 2)
13878 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
13879 else
13880 DW_UNSND (attr) = read_offset (abfd, info_ptr,
13881 &cu->header, &bytes_read);
13882 info_ptr += bytes_read;
13883 break;
13884 case DW_FORM_GNU_ref_alt:
13885 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13886 info_ptr += bytes_read;
13887 break;
13888 case DW_FORM_addr:
13889 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
13890 info_ptr += bytes_read;
13891 break;
13892 case DW_FORM_block2:
13893 blk = dwarf_alloc_block (cu);
13894 blk->size = read_2_bytes (abfd, info_ptr);
13895 info_ptr += 2;
13896 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13897 info_ptr += blk->size;
13898 DW_BLOCK (attr) = blk;
13899 break;
13900 case DW_FORM_block4:
13901 blk = dwarf_alloc_block (cu);
13902 blk->size = read_4_bytes (abfd, info_ptr);
13903 info_ptr += 4;
13904 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13905 info_ptr += blk->size;
13906 DW_BLOCK (attr) = blk;
13907 break;
13908 case DW_FORM_data2:
13909 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
13910 info_ptr += 2;
13911 break;
13912 case DW_FORM_data4:
13913 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
13914 info_ptr += 4;
13915 break;
13916 case DW_FORM_data8:
13917 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
13918 info_ptr += 8;
13919 break;
13920 case DW_FORM_sec_offset:
13921 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13922 info_ptr += bytes_read;
13923 break;
13924 case DW_FORM_string:
13925 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
13926 DW_STRING_IS_CANONICAL (attr) = 0;
13927 info_ptr += bytes_read;
13928 break;
13929 case DW_FORM_strp:
13930 if (!cu->per_cu->is_dwz)
13931 {
13932 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
13933 &bytes_read);
13934 DW_STRING_IS_CANONICAL (attr) = 0;
13935 info_ptr += bytes_read;
13936 break;
13937 }
13938 /* FALLTHROUGH */
13939 case DW_FORM_GNU_strp_alt:
13940 {
13941 struct dwz_file *dwz = dwarf2_get_dwz_file ();
13942 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
13943 &bytes_read);
13944
13945 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
13946 DW_STRING_IS_CANONICAL (attr) = 0;
13947 info_ptr += bytes_read;
13948 }
13949 break;
13950 case DW_FORM_exprloc:
13951 case DW_FORM_block:
13952 blk = dwarf_alloc_block (cu);
13953 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13954 info_ptr += bytes_read;
13955 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13956 info_ptr += blk->size;
13957 DW_BLOCK (attr) = blk;
13958 break;
13959 case DW_FORM_block1:
13960 blk = dwarf_alloc_block (cu);
13961 blk->size = read_1_byte (abfd, info_ptr);
13962 info_ptr += 1;
13963 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13964 info_ptr += blk->size;
13965 DW_BLOCK (attr) = blk;
13966 break;
13967 case DW_FORM_data1:
13968 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
13969 info_ptr += 1;
13970 break;
13971 case DW_FORM_flag:
13972 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
13973 info_ptr += 1;
13974 break;
13975 case DW_FORM_flag_present:
13976 DW_UNSND (attr) = 1;
13977 break;
13978 case DW_FORM_sdata:
13979 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
13980 info_ptr += bytes_read;
13981 break;
13982 case DW_FORM_udata:
13983 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13984 info_ptr += bytes_read;
13985 break;
13986 case DW_FORM_ref1:
13987 DW_UNSND (attr) = (cu->header.offset.sect_off
13988 + read_1_byte (abfd, info_ptr));
13989 info_ptr += 1;
13990 break;
13991 case DW_FORM_ref2:
13992 DW_UNSND (attr) = (cu->header.offset.sect_off
13993 + read_2_bytes (abfd, info_ptr));
13994 info_ptr += 2;
13995 break;
13996 case DW_FORM_ref4:
13997 DW_UNSND (attr) = (cu->header.offset.sect_off
13998 + read_4_bytes (abfd, info_ptr));
13999 info_ptr += 4;
14000 break;
14001 case DW_FORM_ref8:
14002 DW_UNSND (attr) = (cu->header.offset.sect_off
14003 + read_8_bytes (abfd, info_ptr));
14004 info_ptr += 8;
14005 break;
14006 case DW_FORM_ref_sig8:
14007 /* Convert the signature to something we can record in DW_UNSND
14008 for later lookup.
14009 NOTE: This is NULL if the type wasn't found. */
14010 DW_SIGNATURED_TYPE (attr) =
14011 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
14012 info_ptr += 8;
14013 break;
14014 case DW_FORM_ref_udata:
14015 DW_UNSND (attr) = (cu->header.offset.sect_off
14016 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14017 info_ptr += bytes_read;
14018 break;
14019 case DW_FORM_indirect:
14020 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14021 info_ptr += bytes_read;
14022 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14023 break;
14024 case DW_FORM_GNU_addr_index:
14025 if (reader->dwo_file == NULL)
14026 {
14027 /* For now flag a hard error.
14028 Later we can turn this into a complaint. */
14029 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14030 dwarf_form_name (form),
14031 bfd_get_filename (abfd));
14032 }
14033 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14034 info_ptr += bytes_read;
14035 break;
14036 case DW_FORM_GNU_str_index:
14037 if (reader->dwo_file == NULL)
14038 {
14039 /* For now flag a hard error.
14040 Later we can turn this into a complaint if warranted. */
14041 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14042 dwarf_form_name (form),
14043 bfd_get_filename (abfd));
14044 }
14045 {
14046 ULONGEST str_index =
14047 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14048
14049 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14050 DW_STRING_IS_CANONICAL (attr) = 0;
14051 info_ptr += bytes_read;
14052 }
14053 break;
14054 default:
14055 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14056 dwarf_form_name (form),
14057 bfd_get_filename (abfd));
14058 }
14059
14060 /* Super hack. */
14061 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14062 attr->form = DW_FORM_GNU_ref_alt;
14063
14064 /* We have seen instances where the compiler tried to emit a byte
14065 size attribute of -1 which ended up being encoded as an unsigned
14066 0xffffffff. Although 0xffffffff is technically a valid size value,
14067 an object of this size seems pretty unlikely so we can relatively
14068 safely treat these cases as if the size attribute was invalid and
14069 treat them as zero by default. */
14070 if (attr->name == DW_AT_byte_size
14071 && form == DW_FORM_data4
14072 && DW_UNSND (attr) >= 0xffffffff)
14073 {
14074 complaint
14075 (&symfile_complaints,
14076 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14077 hex_string (DW_UNSND (attr)));
14078 DW_UNSND (attr) = 0;
14079 }
14080
14081 return info_ptr;
14082 }
14083
14084 /* Read an attribute described by an abbreviated attribute. */
14085
14086 static gdb_byte *
14087 read_attribute (const struct die_reader_specs *reader,
14088 struct attribute *attr, struct attr_abbrev *abbrev,
14089 gdb_byte *info_ptr)
14090 {
14091 attr->name = abbrev->name;
14092 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14093 }
14094
14095 /* Read dwarf information from a buffer. */
14096
14097 static unsigned int
14098 read_1_byte (bfd *abfd, const gdb_byte *buf)
14099 {
14100 return bfd_get_8 (abfd, buf);
14101 }
14102
14103 static int
14104 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14105 {
14106 return bfd_get_signed_8 (abfd, buf);
14107 }
14108
14109 static unsigned int
14110 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14111 {
14112 return bfd_get_16 (abfd, buf);
14113 }
14114
14115 static int
14116 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14117 {
14118 return bfd_get_signed_16 (abfd, buf);
14119 }
14120
14121 static unsigned int
14122 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14123 {
14124 return bfd_get_32 (abfd, buf);
14125 }
14126
14127 static int
14128 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14129 {
14130 return bfd_get_signed_32 (abfd, buf);
14131 }
14132
14133 static ULONGEST
14134 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14135 {
14136 return bfd_get_64 (abfd, buf);
14137 }
14138
14139 static CORE_ADDR
14140 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
14141 unsigned int *bytes_read)
14142 {
14143 struct comp_unit_head *cu_header = &cu->header;
14144 CORE_ADDR retval = 0;
14145
14146 if (cu_header->signed_addr_p)
14147 {
14148 switch (cu_header->addr_size)
14149 {
14150 case 2:
14151 retval = bfd_get_signed_16 (abfd, buf);
14152 break;
14153 case 4:
14154 retval = bfd_get_signed_32 (abfd, buf);
14155 break;
14156 case 8:
14157 retval = bfd_get_signed_64 (abfd, buf);
14158 break;
14159 default:
14160 internal_error (__FILE__, __LINE__,
14161 _("read_address: bad switch, signed [in module %s]"),
14162 bfd_get_filename (abfd));
14163 }
14164 }
14165 else
14166 {
14167 switch (cu_header->addr_size)
14168 {
14169 case 2:
14170 retval = bfd_get_16 (abfd, buf);
14171 break;
14172 case 4:
14173 retval = bfd_get_32 (abfd, buf);
14174 break;
14175 case 8:
14176 retval = bfd_get_64 (abfd, buf);
14177 break;
14178 default:
14179 internal_error (__FILE__, __LINE__,
14180 _("read_address: bad switch, "
14181 "unsigned [in module %s]"),
14182 bfd_get_filename (abfd));
14183 }
14184 }
14185
14186 *bytes_read = cu_header->addr_size;
14187 return retval;
14188 }
14189
14190 /* Read the initial length from a section. The (draft) DWARF 3
14191 specification allows the initial length to take up either 4 bytes
14192 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14193 bytes describe the length and all offsets will be 8 bytes in length
14194 instead of 4.
14195
14196 An older, non-standard 64-bit format is also handled by this
14197 function. The older format in question stores the initial length
14198 as an 8-byte quantity without an escape value. Lengths greater
14199 than 2^32 aren't very common which means that the initial 4 bytes
14200 is almost always zero. Since a length value of zero doesn't make
14201 sense for the 32-bit format, this initial zero can be considered to
14202 be an escape value which indicates the presence of the older 64-bit
14203 format. As written, the code can't detect (old format) lengths
14204 greater than 4GB. If it becomes necessary to handle lengths
14205 somewhat larger than 4GB, we could allow other small values (such
14206 as the non-sensical values of 1, 2, and 3) to also be used as
14207 escape values indicating the presence of the old format.
14208
14209 The value returned via bytes_read should be used to increment the
14210 relevant pointer after calling read_initial_length().
14211
14212 [ Note: read_initial_length() and read_offset() are based on the
14213 document entitled "DWARF Debugging Information Format", revision
14214 3, draft 8, dated November 19, 2001. This document was obtained
14215 from:
14216
14217 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14218
14219 This document is only a draft and is subject to change. (So beware.)
14220
14221 Details regarding the older, non-standard 64-bit format were
14222 determined empirically by examining 64-bit ELF files produced by
14223 the SGI toolchain on an IRIX 6.5 machine.
14224
14225 - Kevin, July 16, 2002
14226 ] */
14227
14228 static LONGEST
14229 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
14230 {
14231 LONGEST length = bfd_get_32 (abfd, buf);
14232
14233 if (length == 0xffffffff)
14234 {
14235 length = bfd_get_64 (abfd, buf + 4);
14236 *bytes_read = 12;
14237 }
14238 else if (length == 0)
14239 {
14240 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14241 length = bfd_get_64 (abfd, buf);
14242 *bytes_read = 8;
14243 }
14244 else
14245 {
14246 *bytes_read = 4;
14247 }
14248
14249 return length;
14250 }
14251
14252 /* Cover function for read_initial_length.
14253 Returns the length of the object at BUF, and stores the size of the
14254 initial length in *BYTES_READ and stores the size that offsets will be in
14255 *OFFSET_SIZE.
14256 If the initial length size is not equivalent to that specified in
14257 CU_HEADER then issue a complaint.
14258 This is useful when reading non-comp-unit headers. */
14259
14260 static LONGEST
14261 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
14262 const struct comp_unit_head *cu_header,
14263 unsigned int *bytes_read,
14264 unsigned int *offset_size)
14265 {
14266 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14267
14268 gdb_assert (cu_header->initial_length_size == 4
14269 || cu_header->initial_length_size == 8
14270 || cu_header->initial_length_size == 12);
14271
14272 if (cu_header->initial_length_size != *bytes_read)
14273 complaint (&symfile_complaints,
14274 _("intermixed 32-bit and 64-bit DWARF sections"));
14275
14276 *offset_size = (*bytes_read == 4) ? 4 : 8;
14277 return length;
14278 }
14279
14280 /* Read an offset from the data stream. The size of the offset is
14281 given by cu_header->offset_size. */
14282
14283 static LONGEST
14284 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
14285 unsigned int *bytes_read)
14286 {
14287 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14288
14289 *bytes_read = cu_header->offset_size;
14290 return offset;
14291 }
14292
14293 /* Read an offset from the data stream. */
14294
14295 static LONGEST
14296 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
14297 {
14298 LONGEST retval = 0;
14299
14300 switch (offset_size)
14301 {
14302 case 4:
14303 retval = bfd_get_32 (abfd, buf);
14304 break;
14305 case 8:
14306 retval = bfd_get_64 (abfd, buf);
14307 break;
14308 default:
14309 internal_error (__FILE__, __LINE__,
14310 _("read_offset_1: bad switch [in module %s]"),
14311 bfd_get_filename (abfd));
14312 }
14313
14314 return retval;
14315 }
14316
14317 static gdb_byte *
14318 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
14319 {
14320 /* If the size of a host char is 8 bits, we can return a pointer
14321 to the buffer, otherwise we have to copy the data to a buffer
14322 allocated on the temporary obstack. */
14323 gdb_assert (HOST_CHAR_BIT == 8);
14324 return buf;
14325 }
14326
14327 static char *
14328 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14329 {
14330 /* If the size of a host char is 8 bits, we can return a pointer
14331 to the string, otherwise we have to copy the string to a buffer
14332 allocated on the temporary obstack. */
14333 gdb_assert (HOST_CHAR_BIT == 8);
14334 if (*buf == '\0')
14335 {
14336 *bytes_read_ptr = 1;
14337 return NULL;
14338 }
14339 *bytes_read_ptr = strlen ((char *) buf) + 1;
14340 return (char *) buf;
14341 }
14342
14343 static char *
14344 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
14345 {
14346 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
14347 if (dwarf2_per_objfile->str.buffer == NULL)
14348 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14349 bfd_get_filename (abfd));
14350 if (str_offset >= dwarf2_per_objfile->str.size)
14351 error (_("DW_FORM_strp pointing outside of "
14352 ".debug_str section [in module %s]"),
14353 bfd_get_filename (abfd));
14354 gdb_assert (HOST_CHAR_BIT == 8);
14355 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
14356 return NULL;
14357 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
14358 }
14359
14360 /* Read a string at offset STR_OFFSET in the .debug_str section from
14361 the .dwz file DWZ. Throw an error if the offset is too large. If
14362 the string consists of a single NUL byte, return NULL; otherwise
14363 return a pointer to the string. */
14364
14365 static char *
14366 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14367 {
14368 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14369
14370 if (dwz->str.buffer == NULL)
14371 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14372 "section [in module %s]"),
14373 bfd_get_filename (dwz->dwz_bfd));
14374 if (str_offset >= dwz->str.size)
14375 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14376 ".debug_str section [in module %s]"),
14377 bfd_get_filename (dwz->dwz_bfd));
14378 gdb_assert (HOST_CHAR_BIT == 8);
14379 if (dwz->str.buffer[str_offset] == '\0')
14380 return NULL;
14381 return (char *) (dwz->str.buffer + str_offset);
14382 }
14383
14384 static char *
14385 read_indirect_string (bfd *abfd, gdb_byte *buf,
14386 const struct comp_unit_head *cu_header,
14387 unsigned int *bytes_read_ptr)
14388 {
14389 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14390
14391 return read_indirect_string_at_offset (abfd, str_offset);
14392 }
14393
14394 static ULONGEST
14395 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14396 {
14397 ULONGEST result;
14398 unsigned int num_read;
14399 int i, shift;
14400 unsigned char byte;
14401
14402 result = 0;
14403 shift = 0;
14404 num_read = 0;
14405 i = 0;
14406 while (1)
14407 {
14408 byte = bfd_get_8 (abfd, buf);
14409 buf++;
14410 num_read++;
14411 result |= ((ULONGEST) (byte & 127) << shift);
14412 if ((byte & 128) == 0)
14413 {
14414 break;
14415 }
14416 shift += 7;
14417 }
14418 *bytes_read_ptr = num_read;
14419 return result;
14420 }
14421
14422 static LONGEST
14423 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14424 {
14425 LONGEST result;
14426 int i, shift, num_read;
14427 unsigned char byte;
14428
14429 result = 0;
14430 shift = 0;
14431 num_read = 0;
14432 i = 0;
14433 while (1)
14434 {
14435 byte = bfd_get_8 (abfd, buf);
14436 buf++;
14437 num_read++;
14438 result |= ((LONGEST) (byte & 127) << shift);
14439 shift += 7;
14440 if ((byte & 128) == 0)
14441 {
14442 break;
14443 }
14444 }
14445 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
14446 result |= -(((LONGEST) 1) << shift);
14447 *bytes_read_ptr = num_read;
14448 return result;
14449 }
14450
14451 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
14452 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14453 ADDR_SIZE is the size of addresses from the CU header. */
14454
14455 static CORE_ADDR
14456 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14457 {
14458 struct objfile *objfile = dwarf2_per_objfile->objfile;
14459 bfd *abfd = objfile->obfd;
14460 const gdb_byte *info_ptr;
14461
14462 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14463 if (dwarf2_per_objfile->addr.buffer == NULL)
14464 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14465 objfile->name);
14466 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14467 error (_("DW_FORM_addr_index pointing outside of "
14468 ".debug_addr section [in module %s]"),
14469 objfile->name);
14470 info_ptr = (dwarf2_per_objfile->addr.buffer
14471 + addr_base + addr_index * addr_size);
14472 if (addr_size == 4)
14473 return bfd_get_32 (abfd, info_ptr);
14474 else
14475 return bfd_get_64 (abfd, info_ptr);
14476 }
14477
14478 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14479
14480 static CORE_ADDR
14481 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14482 {
14483 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14484 }
14485
14486 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14487
14488 static CORE_ADDR
14489 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
14490 unsigned int *bytes_read)
14491 {
14492 bfd *abfd = cu->objfile->obfd;
14493 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14494
14495 return read_addr_index (cu, addr_index);
14496 }
14497
14498 /* Data structure to pass results from dwarf2_read_addr_index_reader
14499 back to dwarf2_read_addr_index. */
14500
14501 struct dwarf2_read_addr_index_data
14502 {
14503 ULONGEST addr_base;
14504 int addr_size;
14505 };
14506
14507 /* die_reader_func for dwarf2_read_addr_index. */
14508
14509 static void
14510 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14511 gdb_byte *info_ptr,
14512 struct die_info *comp_unit_die,
14513 int has_children,
14514 void *data)
14515 {
14516 struct dwarf2_cu *cu = reader->cu;
14517 struct dwarf2_read_addr_index_data *aidata =
14518 (struct dwarf2_read_addr_index_data *) data;
14519
14520 aidata->addr_base = cu->addr_base;
14521 aidata->addr_size = cu->header.addr_size;
14522 }
14523
14524 /* Given an index in .debug_addr, fetch the value.
14525 NOTE: This can be called during dwarf expression evaluation,
14526 long after the debug information has been read, and thus per_cu->cu
14527 may no longer exist. */
14528
14529 CORE_ADDR
14530 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14531 unsigned int addr_index)
14532 {
14533 struct objfile *objfile = per_cu->objfile;
14534 struct dwarf2_cu *cu = per_cu->cu;
14535 ULONGEST addr_base;
14536 int addr_size;
14537
14538 /* This is intended to be called from outside this file. */
14539 dw2_setup (objfile);
14540
14541 /* We need addr_base and addr_size.
14542 If we don't have PER_CU->cu, we have to get it.
14543 Nasty, but the alternative is storing the needed info in PER_CU,
14544 which at this point doesn't seem justified: it's not clear how frequently
14545 it would get used and it would increase the size of every PER_CU.
14546 Entry points like dwarf2_per_cu_addr_size do a similar thing
14547 so we're not in uncharted territory here.
14548 Alas we need to be a bit more complicated as addr_base is contained
14549 in the DIE.
14550
14551 We don't need to read the entire CU(/TU).
14552 We just need the header and top level die.
14553
14554 IWBN to use the aging mechanism to let us lazily later discard the CU.
14555 For now we skip this optimization. */
14556
14557 if (cu != NULL)
14558 {
14559 addr_base = cu->addr_base;
14560 addr_size = cu->header.addr_size;
14561 }
14562 else
14563 {
14564 struct dwarf2_read_addr_index_data aidata;
14565
14566 /* Note: We can't use init_cutu_and_read_dies_simple here,
14567 we need addr_base. */
14568 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14569 dwarf2_read_addr_index_reader, &aidata);
14570 addr_base = aidata.addr_base;
14571 addr_size = aidata.addr_size;
14572 }
14573
14574 return read_addr_index_1 (addr_index, addr_base, addr_size);
14575 }
14576
14577 /* Given a DW_AT_str_index, fetch the string. */
14578
14579 static char *
14580 read_str_index (const struct die_reader_specs *reader,
14581 struct dwarf2_cu *cu, ULONGEST str_index)
14582 {
14583 struct objfile *objfile = dwarf2_per_objfile->objfile;
14584 const char *dwo_name = objfile->name;
14585 bfd *abfd = objfile->obfd;
14586 struct dwo_sections *sections = &reader->dwo_file->sections;
14587 gdb_byte *info_ptr;
14588 ULONGEST str_offset;
14589
14590 dwarf2_read_section (objfile, &sections->str);
14591 dwarf2_read_section (objfile, &sections->str_offsets);
14592 if (sections->str.buffer == NULL)
14593 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14594 " in CU at offset 0x%lx [in module %s]"),
14595 (long) cu->header.offset.sect_off, dwo_name);
14596 if (sections->str_offsets.buffer == NULL)
14597 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14598 " in CU at offset 0x%lx [in module %s]"),
14599 (long) cu->header.offset.sect_off, dwo_name);
14600 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14601 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14602 " section in CU at offset 0x%lx [in module %s]"),
14603 (long) cu->header.offset.sect_off, dwo_name);
14604 info_ptr = (sections->str_offsets.buffer
14605 + str_index * cu->header.offset_size);
14606 if (cu->header.offset_size == 4)
14607 str_offset = bfd_get_32 (abfd, info_ptr);
14608 else
14609 str_offset = bfd_get_64 (abfd, info_ptr);
14610 if (str_offset >= sections->str.size)
14611 error (_("Offset from DW_FORM_str_index pointing outside of"
14612 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14613 (long) cu->header.offset.sect_off, dwo_name);
14614 return (char *) (sections->str.buffer + str_offset);
14615 }
14616
14617 /* Return the length of an LEB128 number in BUF. */
14618
14619 static int
14620 leb128_size (const gdb_byte *buf)
14621 {
14622 const gdb_byte *begin = buf;
14623 gdb_byte byte;
14624
14625 while (1)
14626 {
14627 byte = *buf++;
14628 if ((byte & 128) == 0)
14629 return buf - begin;
14630 }
14631 }
14632
14633 static void
14634 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
14635 {
14636 switch (lang)
14637 {
14638 case DW_LANG_C89:
14639 case DW_LANG_C99:
14640 case DW_LANG_C:
14641 cu->language = language_c;
14642 break;
14643 case DW_LANG_C_plus_plus:
14644 cu->language = language_cplus;
14645 break;
14646 case DW_LANG_D:
14647 cu->language = language_d;
14648 break;
14649 case DW_LANG_Fortran77:
14650 case DW_LANG_Fortran90:
14651 case DW_LANG_Fortran95:
14652 cu->language = language_fortran;
14653 break;
14654 case DW_LANG_Go:
14655 cu->language = language_go;
14656 break;
14657 case DW_LANG_Mips_Assembler:
14658 cu->language = language_asm;
14659 break;
14660 case DW_LANG_Java:
14661 cu->language = language_java;
14662 break;
14663 case DW_LANG_Ada83:
14664 case DW_LANG_Ada95:
14665 cu->language = language_ada;
14666 break;
14667 case DW_LANG_Modula2:
14668 cu->language = language_m2;
14669 break;
14670 case DW_LANG_Pascal83:
14671 cu->language = language_pascal;
14672 break;
14673 case DW_LANG_ObjC:
14674 cu->language = language_objc;
14675 break;
14676 case DW_LANG_Cobol74:
14677 case DW_LANG_Cobol85:
14678 default:
14679 cu->language = language_minimal;
14680 break;
14681 }
14682 cu->language_defn = language_def (cu->language);
14683 }
14684
14685 /* Return the named attribute or NULL if not there. */
14686
14687 static struct attribute *
14688 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
14689 {
14690 for (;;)
14691 {
14692 unsigned int i;
14693 struct attribute *spec = NULL;
14694
14695 for (i = 0; i < die->num_attrs; ++i)
14696 {
14697 if (die->attrs[i].name == name)
14698 return &die->attrs[i];
14699 if (die->attrs[i].name == DW_AT_specification
14700 || die->attrs[i].name == DW_AT_abstract_origin)
14701 spec = &die->attrs[i];
14702 }
14703
14704 if (!spec)
14705 break;
14706
14707 die = follow_die_ref (die, spec, &cu);
14708 }
14709
14710 return NULL;
14711 }
14712
14713 /* Return the named attribute or NULL if not there,
14714 but do not follow DW_AT_specification, etc.
14715 This is for use in contexts where we're reading .debug_types dies.
14716 Following DW_AT_specification, DW_AT_abstract_origin will take us
14717 back up the chain, and we want to go down. */
14718
14719 static struct attribute *
14720 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
14721 {
14722 unsigned int i;
14723
14724 for (i = 0; i < die->num_attrs; ++i)
14725 if (die->attrs[i].name == name)
14726 return &die->attrs[i];
14727
14728 return NULL;
14729 }
14730
14731 /* Return non-zero iff the attribute NAME is defined for the given DIE,
14732 and holds a non-zero value. This function should only be used for
14733 DW_FORM_flag or DW_FORM_flag_present attributes. */
14734
14735 static int
14736 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
14737 {
14738 struct attribute *attr = dwarf2_attr (die, name, cu);
14739
14740 return (attr && DW_UNSND (attr));
14741 }
14742
14743 static int
14744 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
14745 {
14746 /* A DIE is a declaration if it has a DW_AT_declaration attribute
14747 which value is non-zero. However, we have to be careful with
14748 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
14749 (via dwarf2_flag_true_p) follows this attribute. So we may
14750 end up accidently finding a declaration attribute that belongs
14751 to a different DIE referenced by the specification attribute,
14752 even though the given DIE does not have a declaration attribute. */
14753 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
14754 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
14755 }
14756
14757 /* Return the die giving the specification for DIE, if there is
14758 one. *SPEC_CU is the CU containing DIE on input, and the CU
14759 containing the return value on output. If there is no
14760 specification, but there is an abstract origin, that is
14761 returned. */
14762
14763 static struct die_info *
14764 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
14765 {
14766 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
14767 *spec_cu);
14768
14769 if (spec_attr == NULL)
14770 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
14771
14772 if (spec_attr == NULL)
14773 return NULL;
14774 else
14775 return follow_die_ref (die, spec_attr, spec_cu);
14776 }
14777
14778 /* Free the line_header structure *LH, and any arrays and strings it
14779 refers to.
14780 NOTE: This is also used as a "cleanup" function. */
14781
14782 static void
14783 free_line_header (struct line_header *lh)
14784 {
14785 if (lh->standard_opcode_lengths)
14786 xfree (lh->standard_opcode_lengths);
14787
14788 /* Remember that all the lh->file_names[i].name pointers are
14789 pointers into debug_line_buffer, and don't need to be freed. */
14790 if (lh->file_names)
14791 xfree (lh->file_names);
14792
14793 /* Similarly for the include directory names. */
14794 if (lh->include_dirs)
14795 xfree (lh->include_dirs);
14796
14797 xfree (lh);
14798 }
14799
14800 /* Add an entry to LH's include directory table. */
14801
14802 static void
14803 add_include_dir (struct line_header *lh, char *include_dir)
14804 {
14805 /* Grow the array if necessary. */
14806 if (lh->include_dirs_size == 0)
14807 {
14808 lh->include_dirs_size = 1; /* for testing */
14809 lh->include_dirs = xmalloc (lh->include_dirs_size
14810 * sizeof (*lh->include_dirs));
14811 }
14812 else if (lh->num_include_dirs >= lh->include_dirs_size)
14813 {
14814 lh->include_dirs_size *= 2;
14815 lh->include_dirs = xrealloc (lh->include_dirs,
14816 (lh->include_dirs_size
14817 * sizeof (*lh->include_dirs)));
14818 }
14819
14820 lh->include_dirs[lh->num_include_dirs++] = include_dir;
14821 }
14822
14823 /* Add an entry to LH's file name table. */
14824
14825 static void
14826 add_file_name (struct line_header *lh,
14827 char *name,
14828 unsigned int dir_index,
14829 unsigned int mod_time,
14830 unsigned int length)
14831 {
14832 struct file_entry *fe;
14833
14834 /* Grow the array if necessary. */
14835 if (lh->file_names_size == 0)
14836 {
14837 lh->file_names_size = 1; /* for testing */
14838 lh->file_names = xmalloc (lh->file_names_size
14839 * sizeof (*lh->file_names));
14840 }
14841 else if (lh->num_file_names >= lh->file_names_size)
14842 {
14843 lh->file_names_size *= 2;
14844 lh->file_names = xrealloc (lh->file_names,
14845 (lh->file_names_size
14846 * sizeof (*lh->file_names)));
14847 }
14848
14849 fe = &lh->file_names[lh->num_file_names++];
14850 fe->name = name;
14851 fe->dir_index = dir_index;
14852 fe->mod_time = mod_time;
14853 fe->length = length;
14854 fe->included_p = 0;
14855 fe->symtab = NULL;
14856 }
14857
14858 /* A convenience function to find the proper .debug_line section for a
14859 CU. */
14860
14861 static struct dwarf2_section_info *
14862 get_debug_line_section (struct dwarf2_cu *cu)
14863 {
14864 struct dwarf2_section_info *section;
14865
14866 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
14867 DWO file. */
14868 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14869 section = &cu->dwo_unit->dwo_file->sections.line;
14870 else if (cu->per_cu->is_dwz)
14871 {
14872 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14873
14874 section = &dwz->line;
14875 }
14876 else
14877 section = &dwarf2_per_objfile->line;
14878
14879 return section;
14880 }
14881
14882 /* Read the statement program header starting at OFFSET in
14883 .debug_line, or .debug_line.dwo. Return a pointer
14884 to a struct line_header, allocated using xmalloc.
14885
14886 NOTE: the strings in the include directory and file name tables of
14887 the returned object point into the dwarf line section buffer,
14888 and must not be freed. */
14889
14890 static struct line_header *
14891 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
14892 {
14893 struct cleanup *back_to;
14894 struct line_header *lh;
14895 gdb_byte *line_ptr;
14896 unsigned int bytes_read, offset_size;
14897 int i;
14898 char *cur_dir, *cur_file;
14899 struct dwarf2_section_info *section;
14900 bfd *abfd;
14901
14902 section = get_debug_line_section (cu);
14903 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
14904 if (section->buffer == NULL)
14905 {
14906 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14907 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
14908 else
14909 complaint (&symfile_complaints, _("missing .debug_line section"));
14910 return 0;
14911 }
14912
14913 /* We can't do this until we know the section is non-empty.
14914 Only then do we know we have such a section. */
14915 abfd = section->asection->owner;
14916
14917 /* Make sure that at least there's room for the total_length field.
14918 That could be 12 bytes long, but we're just going to fudge that. */
14919 if (offset + 4 >= section->size)
14920 {
14921 dwarf2_statement_list_fits_in_line_number_section_complaint ();
14922 return 0;
14923 }
14924
14925 lh = xmalloc (sizeof (*lh));
14926 memset (lh, 0, sizeof (*lh));
14927 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
14928 (void *) lh);
14929
14930 line_ptr = section->buffer + offset;
14931
14932 /* Read in the header. */
14933 lh->total_length =
14934 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
14935 &bytes_read, &offset_size);
14936 line_ptr += bytes_read;
14937 if (line_ptr + lh->total_length > (section->buffer + section->size))
14938 {
14939 dwarf2_statement_list_fits_in_line_number_section_complaint ();
14940 return 0;
14941 }
14942 lh->statement_program_end = line_ptr + lh->total_length;
14943 lh->version = read_2_bytes (abfd, line_ptr);
14944 line_ptr += 2;
14945 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
14946 line_ptr += offset_size;
14947 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
14948 line_ptr += 1;
14949 if (lh->version >= 4)
14950 {
14951 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
14952 line_ptr += 1;
14953 }
14954 else
14955 lh->maximum_ops_per_instruction = 1;
14956
14957 if (lh->maximum_ops_per_instruction == 0)
14958 {
14959 lh->maximum_ops_per_instruction = 1;
14960 complaint (&symfile_complaints,
14961 _("invalid maximum_ops_per_instruction "
14962 "in `.debug_line' section"));
14963 }
14964
14965 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
14966 line_ptr += 1;
14967 lh->line_base = read_1_signed_byte (abfd, line_ptr);
14968 line_ptr += 1;
14969 lh->line_range = read_1_byte (abfd, line_ptr);
14970 line_ptr += 1;
14971 lh->opcode_base = read_1_byte (abfd, line_ptr);
14972 line_ptr += 1;
14973 lh->standard_opcode_lengths
14974 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
14975
14976 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
14977 for (i = 1; i < lh->opcode_base; ++i)
14978 {
14979 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
14980 line_ptr += 1;
14981 }
14982
14983 /* Read directory table. */
14984 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
14985 {
14986 line_ptr += bytes_read;
14987 add_include_dir (lh, cur_dir);
14988 }
14989 line_ptr += bytes_read;
14990
14991 /* Read file name table. */
14992 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
14993 {
14994 unsigned int dir_index, mod_time, length;
14995
14996 line_ptr += bytes_read;
14997 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14998 line_ptr += bytes_read;
14999 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15000 line_ptr += bytes_read;
15001 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15002 line_ptr += bytes_read;
15003
15004 add_file_name (lh, cur_file, dir_index, mod_time, length);
15005 }
15006 line_ptr += bytes_read;
15007 lh->statement_program_start = line_ptr;
15008
15009 if (line_ptr > (section->buffer + section->size))
15010 complaint (&symfile_complaints,
15011 _("line number info header doesn't "
15012 "fit in `.debug_line' section"));
15013
15014 discard_cleanups (back_to);
15015 return lh;
15016 }
15017
15018 /* Subroutine of dwarf_decode_lines to simplify it.
15019 Return the file name of the psymtab for included file FILE_INDEX
15020 in line header LH of PST.
15021 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15022 If space for the result is malloc'd, it will be freed by a cleanup.
15023 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
15024
15025 static char *
15026 psymtab_include_file_name (const struct line_header *lh, int file_index,
15027 const struct partial_symtab *pst,
15028 const char *comp_dir)
15029 {
15030 const struct file_entry fe = lh->file_names [file_index];
15031 char *include_name = fe.name;
15032 char *include_name_to_compare = include_name;
15033 char *dir_name = NULL;
15034 const char *pst_filename;
15035 char *copied_name = NULL;
15036 int file_is_pst;
15037
15038 if (fe.dir_index)
15039 dir_name = lh->include_dirs[fe.dir_index - 1];
15040
15041 if (!IS_ABSOLUTE_PATH (include_name)
15042 && (dir_name != NULL || comp_dir != NULL))
15043 {
15044 /* Avoid creating a duplicate psymtab for PST.
15045 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15046 Before we do the comparison, however, we need to account
15047 for DIR_NAME and COMP_DIR.
15048 First prepend dir_name (if non-NULL). If we still don't
15049 have an absolute path prepend comp_dir (if non-NULL).
15050 However, the directory we record in the include-file's
15051 psymtab does not contain COMP_DIR (to match the
15052 corresponding symtab(s)).
15053
15054 Example:
15055
15056 bash$ cd /tmp
15057 bash$ gcc -g ./hello.c
15058 include_name = "hello.c"
15059 dir_name = "."
15060 DW_AT_comp_dir = comp_dir = "/tmp"
15061 DW_AT_name = "./hello.c" */
15062
15063 if (dir_name != NULL)
15064 {
15065 include_name = concat (dir_name, SLASH_STRING,
15066 include_name, (char *)NULL);
15067 include_name_to_compare = include_name;
15068 make_cleanup (xfree, include_name);
15069 }
15070 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15071 {
15072 include_name_to_compare = concat (comp_dir, SLASH_STRING,
15073 include_name, (char *)NULL);
15074 }
15075 }
15076
15077 pst_filename = pst->filename;
15078 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15079 {
15080 copied_name = concat (pst->dirname, SLASH_STRING,
15081 pst_filename, (char *)NULL);
15082 pst_filename = copied_name;
15083 }
15084
15085 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15086
15087 if (include_name_to_compare != include_name)
15088 xfree (include_name_to_compare);
15089 if (copied_name != NULL)
15090 xfree (copied_name);
15091
15092 if (file_is_pst)
15093 return NULL;
15094 return include_name;
15095 }
15096
15097 /* Ignore this record_line request. */
15098
15099 static void
15100 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15101 {
15102 return;
15103 }
15104
15105 /* Subroutine of dwarf_decode_lines to simplify it.
15106 Process the line number information in LH. */
15107
15108 static void
15109 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15110 struct dwarf2_cu *cu, struct partial_symtab *pst)
15111 {
15112 gdb_byte *line_ptr, *extended_end;
15113 gdb_byte *line_end;
15114 unsigned int bytes_read, extended_len;
15115 unsigned char op_code, extended_op, adj_opcode;
15116 CORE_ADDR baseaddr;
15117 struct objfile *objfile = cu->objfile;
15118 bfd *abfd = objfile->obfd;
15119 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15120 const int decode_for_pst_p = (pst != NULL);
15121 struct subfile *last_subfile = NULL;
15122 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15123 = record_line;
15124
15125 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15126
15127 line_ptr = lh->statement_program_start;
15128 line_end = lh->statement_program_end;
15129
15130 /* Read the statement sequences until there's nothing left. */
15131 while (line_ptr < line_end)
15132 {
15133 /* state machine registers */
15134 CORE_ADDR address = 0;
15135 unsigned int file = 1;
15136 unsigned int line = 1;
15137 unsigned int column = 0;
15138 int is_stmt = lh->default_is_stmt;
15139 int basic_block = 0;
15140 int end_sequence = 0;
15141 CORE_ADDR addr;
15142 unsigned char op_index = 0;
15143
15144 if (!decode_for_pst_p && lh->num_file_names >= file)
15145 {
15146 /* Start a subfile for the current file of the state machine. */
15147 /* lh->include_dirs and lh->file_names are 0-based, but the
15148 directory and file name numbers in the statement program
15149 are 1-based. */
15150 struct file_entry *fe = &lh->file_names[file - 1];
15151 char *dir = NULL;
15152
15153 if (fe->dir_index)
15154 dir = lh->include_dirs[fe->dir_index - 1];
15155
15156 dwarf2_start_subfile (fe->name, dir, comp_dir);
15157 }
15158
15159 /* Decode the table. */
15160 while (!end_sequence)
15161 {
15162 op_code = read_1_byte (abfd, line_ptr);
15163 line_ptr += 1;
15164 if (line_ptr > line_end)
15165 {
15166 dwarf2_debug_line_missing_end_sequence_complaint ();
15167 break;
15168 }
15169
15170 if (op_code >= lh->opcode_base)
15171 {
15172 /* Special operand. */
15173 adj_opcode = op_code - lh->opcode_base;
15174 address += (((op_index + (adj_opcode / lh->line_range))
15175 / lh->maximum_ops_per_instruction)
15176 * lh->minimum_instruction_length);
15177 op_index = ((op_index + (adj_opcode / lh->line_range))
15178 % lh->maximum_ops_per_instruction);
15179 line += lh->line_base + (adj_opcode % lh->line_range);
15180 if (lh->num_file_names < file || file == 0)
15181 dwarf2_debug_line_missing_file_complaint ();
15182 /* For now we ignore lines not starting on an
15183 instruction boundary. */
15184 else if (op_index == 0)
15185 {
15186 lh->file_names[file - 1].included_p = 1;
15187 if (!decode_for_pst_p && is_stmt)
15188 {
15189 if (last_subfile != current_subfile)
15190 {
15191 addr = gdbarch_addr_bits_remove (gdbarch, address);
15192 if (last_subfile)
15193 (*p_record_line) (last_subfile, 0, addr);
15194 last_subfile = current_subfile;
15195 }
15196 /* Append row to matrix using current values. */
15197 addr = gdbarch_addr_bits_remove (gdbarch, address);
15198 (*p_record_line) (current_subfile, line, addr);
15199 }
15200 }
15201 basic_block = 0;
15202 }
15203 else switch (op_code)
15204 {
15205 case DW_LNS_extended_op:
15206 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15207 &bytes_read);
15208 line_ptr += bytes_read;
15209 extended_end = line_ptr + extended_len;
15210 extended_op = read_1_byte (abfd, line_ptr);
15211 line_ptr += 1;
15212 switch (extended_op)
15213 {
15214 case DW_LNE_end_sequence:
15215 p_record_line = record_line;
15216 end_sequence = 1;
15217 break;
15218 case DW_LNE_set_address:
15219 address = read_address (abfd, line_ptr, cu, &bytes_read);
15220
15221 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15222 {
15223 /* This line table is for a function which has been
15224 GCd by the linker. Ignore it. PR gdb/12528 */
15225
15226 long line_offset
15227 = line_ptr - get_debug_line_section (cu)->buffer;
15228
15229 complaint (&symfile_complaints,
15230 _(".debug_line address at offset 0x%lx is 0 "
15231 "[in module %s]"),
15232 line_offset, objfile->name);
15233 p_record_line = noop_record_line;
15234 }
15235
15236 op_index = 0;
15237 line_ptr += bytes_read;
15238 address += baseaddr;
15239 break;
15240 case DW_LNE_define_file:
15241 {
15242 char *cur_file;
15243 unsigned int dir_index, mod_time, length;
15244
15245 cur_file = read_direct_string (abfd, line_ptr,
15246 &bytes_read);
15247 line_ptr += bytes_read;
15248 dir_index =
15249 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15250 line_ptr += bytes_read;
15251 mod_time =
15252 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15253 line_ptr += bytes_read;
15254 length =
15255 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15256 line_ptr += bytes_read;
15257 add_file_name (lh, cur_file, dir_index, mod_time, length);
15258 }
15259 break;
15260 case DW_LNE_set_discriminator:
15261 /* The discriminator is not interesting to the debugger;
15262 just ignore it. */
15263 line_ptr = extended_end;
15264 break;
15265 default:
15266 complaint (&symfile_complaints,
15267 _("mangled .debug_line section"));
15268 return;
15269 }
15270 /* Make sure that we parsed the extended op correctly. If e.g.
15271 we expected a different address size than the producer used,
15272 we may have read the wrong number of bytes. */
15273 if (line_ptr != extended_end)
15274 {
15275 complaint (&symfile_complaints,
15276 _("mangled .debug_line section"));
15277 return;
15278 }
15279 break;
15280 case DW_LNS_copy:
15281 if (lh->num_file_names < file || file == 0)
15282 dwarf2_debug_line_missing_file_complaint ();
15283 else
15284 {
15285 lh->file_names[file - 1].included_p = 1;
15286 if (!decode_for_pst_p && is_stmt)
15287 {
15288 if (last_subfile != current_subfile)
15289 {
15290 addr = gdbarch_addr_bits_remove (gdbarch, address);
15291 if (last_subfile)
15292 (*p_record_line) (last_subfile, 0, addr);
15293 last_subfile = current_subfile;
15294 }
15295 addr = gdbarch_addr_bits_remove (gdbarch, address);
15296 (*p_record_line) (current_subfile, line, addr);
15297 }
15298 }
15299 basic_block = 0;
15300 break;
15301 case DW_LNS_advance_pc:
15302 {
15303 CORE_ADDR adjust
15304 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15305
15306 address += (((op_index + adjust)
15307 / lh->maximum_ops_per_instruction)
15308 * lh->minimum_instruction_length);
15309 op_index = ((op_index + adjust)
15310 % lh->maximum_ops_per_instruction);
15311 line_ptr += bytes_read;
15312 }
15313 break;
15314 case DW_LNS_advance_line:
15315 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15316 line_ptr += bytes_read;
15317 break;
15318 case DW_LNS_set_file:
15319 {
15320 /* The arrays lh->include_dirs and lh->file_names are
15321 0-based, but the directory and file name numbers in
15322 the statement program are 1-based. */
15323 struct file_entry *fe;
15324 char *dir = NULL;
15325
15326 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15327 line_ptr += bytes_read;
15328 if (lh->num_file_names < file || file == 0)
15329 dwarf2_debug_line_missing_file_complaint ();
15330 else
15331 {
15332 fe = &lh->file_names[file - 1];
15333 if (fe->dir_index)
15334 dir = lh->include_dirs[fe->dir_index - 1];
15335 if (!decode_for_pst_p)
15336 {
15337 last_subfile = current_subfile;
15338 dwarf2_start_subfile (fe->name, dir, comp_dir);
15339 }
15340 }
15341 }
15342 break;
15343 case DW_LNS_set_column:
15344 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15345 line_ptr += bytes_read;
15346 break;
15347 case DW_LNS_negate_stmt:
15348 is_stmt = (!is_stmt);
15349 break;
15350 case DW_LNS_set_basic_block:
15351 basic_block = 1;
15352 break;
15353 /* Add to the address register of the state machine the
15354 address increment value corresponding to special opcode
15355 255. I.e., this value is scaled by the minimum
15356 instruction length since special opcode 255 would have
15357 scaled the increment. */
15358 case DW_LNS_const_add_pc:
15359 {
15360 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15361
15362 address += (((op_index + adjust)
15363 / lh->maximum_ops_per_instruction)
15364 * lh->minimum_instruction_length);
15365 op_index = ((op_index + adjust)
15366 % lh->maximum_ops_per_instruction);
15367 }
15368 break;
15369 case DW_LNS_fixed_advance_pc:
15370 address += read_2_bytes (abfd, line_ptr);
15371 op_index = 0;
15372 line_ptr += 2;
15373 break;
15374 default:
15375 {
15376 /* Unknown standard opcode, ignore it. */
15377 int i;
15378
15379 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
15380 {
15381 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15382 line_ptr += bytes_read;
15383 }
15384 }
15385 }
15386 }
15387 if (lh->num_file_names < file || file == 0)
15388 dwarf2_debug_line_missing_file_complaint ();
15389 else
15390 {
15391 lh->file_names[file - 1].included_p = 1;
15392 if (!decode_for_pst_p)
15393 {
15394 addr = gdbarch_addr_bits_remove (gdbarch, address);
15395 (*p_record_line) (current_subfile, 0, addr);
15396 }
15397 }
15398 }
15399 }
15400
15401 /* Decode the Line Number Program (LNP) for the given line_header
15402 structure and CU. The actual information extracted and the type
15403 of structures created from the LNP depends on the value of PST.
15404
15405 1. If PST is NULL, then this procedure uses the data from the program
15406 to create all necessary symbol tables, and their linetables.
15407
15408 2. If PST is not NULL, this procedure reads the program to determine
15409 the list of files included by the unit represented by PST, and
15410 builds all the associated partial symbol tables.
15411
15412 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15413 It is used for relative paths in the line table.
15414 NOTE: When processing partial symtabs (pst != NULL),
15415 comp_dir == pst->dirname.
15416
15417 NOTE: It is important that psymtabs have the same file name (via strcmp)
15418 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15419 symtab we don't use it in the name of the psymtabs we create.
15420 E.g. expand_line_sal requires this when finding psymtabs to expand.
15421 A good testcase for this is mb-inline.exp. */
15422
15423 static void
15424 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15425 struct dwarf2_cu *cu, struct partial_symtab *pst,
15426 int want_line_info)
15427 {
15428 struct objfile *objfile = cu->objfile;
15429 const int decode_for_pst_p = (pst != NULL);
15430 struct subfile *first_subfile = current_subfile;
15431
15432 if (want_line_info)
15433 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
15434
15435 if (decode_for_pst_p)
15436 {
15437 int file_index;
15438
15439 /* Now that we're done scanning the Line Header Program, we can
15440 create the psymtab of each included file. */
15441 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15442 if (lh->file_names[file_index].included_p == 1)
15443 {
15444 char *include_name =
15445 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15446 if (include_name != NULL)
15447 dwarf2_create_include_psymtab (include_name, pst, objfile);
15448 }
15449 }
15450 else
15451 {
15452 /* Make sure a symtab is created for every file, even files
15453 which contain only variables (i.e. no code with associated
15454 line numbers). */
15455 int i;
15456
15457 for (i = 0; i < lh->num_file_names; i++)
15458 {
15459 char *dir = NULL;
15460 struct file_entry *fe;
15461
15462 fe = &lh->file_names[i];
15463 if (fe->dir_index)
15464 dir = lh->include_dirs[fe->dir_index - 1];
15465 dwarf2_start_subfile (fe->name, dir, comp_dir);
15466
15467 /* Skip the main file; we don't need it, and it must be
15468 allocated last, so that it will show up before the
15469 non-primary symtabs in the objfile's symtab list. */
15470 if (current_subfile == first_subfile)
15471 continue;
15472
15473 if (current_subfile->symtab == NULL)
15474 current_subfile->symtab = allocate_symtab (current_subfile->name,
15475 objfile);
15476 fe->symtab = current_subfile->symtab;
15477 }
15478 }
15479 }
15480
15481 /* Start a subfile for DWARF. FILENAME is the name of the file and
15482 DIRNAME the name of the source directory which contains FILENAME
15483 or NULL if not known. COMP_DIR is the compilation directory for the
15484 linetable's compilation unit or NULL if not known.
15485 This routine tries to keep line numbers from identical absolute and
15486 relative file names in a common subfile.
15487
15488 Using the `list' example from the GDB testsuite, which resides in
15489 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15490 of /srcdir/list0.c yields the following debugging information for list0.c:
15491
15492 DW_AT_name: /srcdir/list0.c
15493 DW_AT_comp_dir: /compdir
15494 files.files[0].name: list0.h
15495 files.files[0].dir: /srcdir
15496 files.files[1].name: list0.c
15497 files.files[1].dir: /srcdir
15498
15499 The line number information for list0.c has to end up in a single
15500 subfile, so that `break /srcdir/list0.c:1' works as expected.
15501 start_subfile will ensure that this happens provided that we pass the
15502 concatenation of files.files[1].dir and files.files[1].name as the
15503 subfile's name. */
15504
15505 static void
15506 dwarf2_start_subfile (char *filename, const char *dirname,
15507 const char *comp_dir)
15508 {
15509 char *fullname;
15510
15511 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15512 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15513 second argument to start_subfile. To be consistent, we do the
15514 same here. In order not to lose the line information directory,
15515 we concatenate it to the filename when it makes sense.
15516 Note that the Dwarf3 standard says (speaking of filenames in line
15517 information): ``The directory index is ignored for file names
15518 that represent full path names''. Thus ignoring dirname in the
15519 `else' branch below isn't an issue. */
15520
15521 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
15522 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15523 else
15524 fullname = filename;
15525
15526 start_subfile (fullname, comp_dir);
15527
15528 if (fullname != filename)
15529 xfree (fullname);
15530 }
15531
15532 /* Start a symtab for DWARF.
15533 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15534
15535 static void
15536 dwarf2_start_symtab (struct dwarf2_cu *cu,
15537 char *name, char *comp_dir, CORE_ADDR low_pc)
15538 {
15539 start_symtab (name, comp_dir, low_pc);
15540 record_debugformat ("DWARF 2");
15541 record_producer (cu->producer);
15542
15543 /* We assume that we're processing GCC output. */
15544 processing_gcc_compilation = 2;
15545
15546 processing_has_namespace_info = 0;
15547 }
15548
15549 static void
15550 var_decode_location (struct attribute *attr, struct symbol *sym,
15551 struct dwarf2_cu *cu)
15552 {
15553 struct objfile *objfile = cu->objfile;
15554 struct comp_unit_head *cu_header = &cu->header;
15555
15556 /* NOTE drow/2003-01-30: There used to be a comment and some special
15557 code here to turn a symbol with DW_AT_external and a
15558 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15559 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15560 with some versions of binutils) where shared libraries could have
15561 relocations against symbols in their debug information - the
15562 minimal symbol would have the right address, but the debug info
15563 would not. It's no longer necessary, because we will explicitly
15564 apply relocations when we read in the debug information now. */
15565
15566 /* A DW_AT_location attribute with no contents indicates that a
15567 variable has been optimized away. */
15568 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15569 {
15570 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15571 return;
15572 }
15573
15574 /* Handle one degenerate form of location expression specially, to
15575 preserve GDB's previous behavior when section offsets are
15576 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15577 then mark this symbol as LOC_STATIC. */
15578
15579 if (attr_form_is_block (attr)
15580 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15581 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15582 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15583 && (DW_BLOCK (attr)->size
15584 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
15585 {
15586 unsigned int dummy;
15587
15588 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15589 SYMBOL_VALUE_ADDRESS (sym) =
15590 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15591 else
15592 SYMBOL_VALUE_ADDRESS (sym) =
15593 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
15594 SYMBOL_CLASS (sym) = LOC_STATIC;
15595 fixup_symbol_section (sym, objfile);
15596 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15597 SYMBOL_SECTION (sym));
15598 return;
15599 }
15600
15601 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15602 expression evaluator, and use LOC_COMPUTED only when necessary
15603 (i.e. when the value of a register or memory location is
15604 referenced, or a thread-local block, etc.). Then again, it might
15605 not be worthwhile. I'm assuming that it isn't unless performance
15606 or memory numbers show me otherwise. */
15607
15608 dwarf2_symbol_mark_computed (attr, sym, cu);
15609 SYMBOL_CLASS (sym) = LOC_COMPUTED;
15610
15611 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
15612 cu->has_loclist = 1;
15613 }
15614
15615 /* Given a pointer to a DWARF information entry, figure out if we need
15616 to make a symbol table entry for it, and if so, create a new entry
15617 and return a pointer to it.
15618 If TYPE is NULL, determine symbol type from the die, otherwise
15619 used the passed type.
15620 If SPACE is not NULL, use it to hold the new symbol. If it is
15621 NULL, allocate a new symbol on the objfile's obstack. */
15622
15623 static struct symbol *
15624 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15625 struct symbol *space)
15626 {
15627 struct objfile *objfile = cu->objfile;
15628 struct symbol *sym = NULL;
15629 char *name;
15630 struct attribute *attr = NULL;
15631 struct attribute *attr2 = NULL;
15632 CORE_ADDR baseaddr;
15633 struct pending **list_to_add = NULL;
15634
15635 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
15636
15637 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15638
15639 name = dwarf2_name (die, cu);
15640 if (name)
15641 {
15642 const char *linkagename;
15643 int suppress_add = 0;
15644
15645 if (space)
15646 sym = space;
15647 else
15648 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
15649 OBJSTAT (objfile, n_syms++);
15650
15651 /* Cache this symbol's name and the name's demangled form (if any). */
15652 SYMBOL_SET_LANGUAGE (sym, cu->language);
15653 linkagename = dwarf2_physname (name, die, cu);
15654 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
15655
15656 /* Fortran does not have mangling standard and the mangling does differ
15657 between gfortran, iFort etc. */
15658 if (cu->language == language_fortran
15659 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
15660 symbol_set_demangled_name (&(sym->ginfo),
15661 (char *) dwarf2_full_name (name, die, cu),
15662 NULL);
15663
15664 /* Default assumptions.
15665 Use the passed type or decode it from the die. */
15666 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15667 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15668 if (type != NULL)
15669 SYMBOL_TYPE (sym) = type;
15670 else
15671 SYMBOL_TYPE (sym) = die_type (die, cu);
15672 attr = dwarf2_attr (die,
15673 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
15674 cu);
15675 if (attr)
15676 {
15677 SYMBOL_LINE (sym) = DW_UNSND (attr);
15678 }
15679
15680 attr = dwarf2_attr (die,
15681 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
15682 cu);
15683 if (attr)
15684 {
15685 int file_index = DW_UNSND (attr);
15686
15687 if (cu->line_header == NULL
15688 || file_index > cu->line_header->num_file_names)
15689 complaint (&symfile_complaints,
15690 _("file index out of range"));
15691 else if (file_index > 0)
15692 {
15693 struct file_entry *fe;
15694
15695 fe = &cu->line_header->file_names[file_index - 1];
15696 SYMBOL_SYMTAB (sym) = fe->symtab;
15697 }
15698 }
15699
15700 switch (die->tag)
15701 {
15702 case DW_TAG_label:
15703 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15704 if (attr)
15705 {
15706 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
15707 }
15708 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
15709 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
15710 SYMBOL_CLASS (sym) = LOC_LABEL;
15711 add_symbol_to_list (sym, cu->list_in_scope);
15712 break;
15713 case DW_TAG_subprogram:
15714 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15715 finish_block. */
15716 SYMBOL_CLASS (sym) = LOC_BLOCK;
15717 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15718 if ((attr2 && (DW_UNSND (attr2) != 0))
15719 || cu->language == language_ada)
15720 {
15721 /* Subprograms marked external are stored as a global symbol.
15722 Ada subprograms, whether marked external or not, are always
15723 stored as a global symbol, because we want to be able to
15724 access them globally. For instance, we want to be able
15725 to break on a nested subprogram without having to
15726 specify the context. */
15727 list_to_add = &global_symbols;
15728 }
15729 else
15730 {
15731 list_to_add = cu->list_in_scope;
15732 }
15733 break;
15734 case DW_TAG_inlined_subroutine:
15735 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15736 finish_block. */
15737 SYMBOL_CLASS (sym) = LOC_BLOCK;
15738 SYMBOL_INLINED (sym) = 1;
15739 list_to_add = cu->list_in_scope;
15740 break;
15741 case DW_TAG_template_value_param:
15742 suppress_add = 1;
15743 /* Fall through. */
15744 case DW_TAG_constant:
15745 case DW_TAG_variable:
15746 case DW_TAG_member:
15747 /* Compilation with minimal debug info may result in
15748 variables with missing type entries. Change the
15749 misleading `void' type to something sensible. */
15750 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
15751 SYMBOL_TYPE (sym)
15752 = objfile_type (objfile)->nodebug_data_symbol;
15753
15754 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15755 /* In the case of DW_TAG_member, we should only be called for
15756 static const members. */
15757 if (die->tag == DW_TAG_member)
15758 {
15759 /* dwarf2_add_field uses die_is_declaration,
15760 so we do the same. */
15761 gdb_assert (die_is_declaration (die, cu));
15762 gdb_assert (attr);
15763 }
15764 if (attr)
15765 {
15766 dwarf2_const_value (attr, sym, cu);
15767 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15768 if (!suppress_add)
15769 {
15770 if (attr2 && (DW_UNSND (attr2) != 0))
15771 list_to_add = &global_symbols;
15772 else
15773 list_to_add = cu->list_in_scope;
15774 }
15775 break;
15776 }
15777 attr = dwarf2_attr (die, DW_AT_location, cu);
15778 if (attr)
15779 {
15780 var_decode_location (attr, sym, cu);
15781 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15782
15783 /* Fortran explicitly imports any global symbols to the local
15784 scope by DW_TAG_common_block. */
15785 if (cu->language == language_fortran && die->parent
15786 && die->parent->tag == DW_TAG_common_block)
15787 attr2 = NULL;
15788
15789 if (SYMBOL_CLASS (sym) == LOC_STATIC
15790 && SYMBOL_VALUE_ADDRESS (sym) == 0
15791 && !dwarf2_per_objfile->has_section_at_zero)
15792 {
15793 /* When a static variable is eliminated by the linker,
15794 the corresponding debug information is not stripped
15795 out, but the variable address is set to null;
15796 do not add such variables into symbol table. */
15797 }
15798 else if (attr2 && (DW_UNSND (attr2) != 0))
15799 {
15800 /* Workaround gfortran PR debug/40040 - it uses
15801 DW_AT_location for variables in -fPIC libraries which may
15802 get overriden by other libraries/executable and get
15803 a different address. Resolve it by the minimal symbol
15804 which may come from inferior's executable using copy
15805 relocation. Make this workaround only for gfortran as for
15806 other compilers GDB cannot guess the minimal symbol
15807 Fortran mangling kind. */
15808 if (cu->language == language_fortran && die->parent
15809 && die->parent->tag == DW_TAG_module
15810 && cu->producer
15811 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
15812 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15813
15814 /* A variable with DW_AT_external is never static,
15815 but it may be block-scoped. */
15816 list_to_add = (cu->list_in_scope == &file_symbols
15817 ? &global_symbols : cu->list_in_scope);
15818 }
15819 else
15820 list_to_add = cu->list_in_scope;
15821 }
15822 else
15823 {
15824 /* We do not know the address of this symbol.
15825 If it is an external symbol and we have type information
15826 for it, enter the symbol as a LOC_UNRESOLVED symbol.
15827 The address of the variable will then be determined from
15828 the minimal symbol table whenever the variable is
15829 referenced. */
15830 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15831
15832 /* Fortran explicitly imports any global symbols to the local
15833 scope by DW_TAG_common_block. */
15834 if (cu->language == language_fortran && die->parent
15835 && die->parent->tag == DW_TAG_common_block)
15836 {
15837 /* SYMBOL_CLASS doesn't matter here because
15838 read_common_block is going to reset it. */
15839 if (!suppress_add)
15840 list_to_add = cu->list_in_scope;
15841 }
15842 else if (attr2 && (DW_UNSND (attr2) != 0)
15843 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
15844 {
15845 /* A variable with DW_AT_external is never static, but it
15846 may be block-scoped. */
15847 list_to_add = (cu->list_in_scope == &file_symbols
15848 ? &global_symbols : cu->list_in_scope);
15849
15850 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15851 }
15852 else if (!die_is_declaration (die, cu))
15853 {
15854 /* Use the default LOC_OPTIMIZED_OUT class. */
15855 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
15856 if (!suppress_add)
15857 list_to_add = cu->list_in_scope;
15858 }
15859 }
15860 break;
15861 case DW_TAG_formal_parameter:
15862 /* If we are inside a function, mark this as an argument. If
15863 not, we might be looking at an argument to an inlined function
15864 when we do not have enough information to show inlined frames;
15865 pretend it's a local variable in that case so that the user can
15866 still see it. */
15867 if (context_stack_depth > 0
15868 && context_stack[context_stack_depth - 1].name != NULL)
15869 SYMBOL_IS_ARGUMENT (sym) = 1;
15870 attr = dwarf2_attr (die, DW_AT_location, cu);
15871 if (attr)
15872 {
15873 var_decode_location (attr, sym, cu);
15874 }
15875 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15876 if (attr)
15877 {
15878 dwarf2_const_value (attr, sym, cu);
15879 }
15880
15881 list_to_add = cu->list_in_scope;
15882 break;
15883 case DW_TAG_unspecified_parameters:
15884 /* From varargs functions; gdb doesn't seem to have any
15885 interest in this information, so just ignore it for now.
15886 (FIXME?) */
15887 break;
15888 case DW_TAG_template_type_param:
15889 suppress_add = 1;
15890 /* Fall through. */
15891 case DW_TAG_class_type:
15892 case DW_TAG_interface_type:
15893 case DW_TAG_structure_type:
15894 case DW_TAG_union_type:
15895 case DW_TAG_set_type:
15896 case DW_TAG_enumeration_type:
15897 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15898 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
15899
15900 {
15901 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
15902 really ever be static objects: otherwise, if you try
15903 to, say, break of a class's method and you're in a file
15904 which doesn't mention that class, it won't work unless
15905 the check for all static symbols in lookup_symbol_aux
15906 saves you. See the OtherFileClass tests in
15907 gdb.c++/namespace.exp. */
15908
15909 if (!suppress_add)
15910 {
15911 list_to_add = (cu->list_in_scope == &file_symbols
15912 && (cu->language == language_cplus
15913 || cu->language == language_java)
15914 ? &global_symbols : cu->list_in_scope);
15915
15916 /* The semantics of C++ state that "struct foo {
15917 ... }" also defines a typedef for "foo". A Java
15918 class declaration also defines a typedef for the
15919 class. */
15920 if (cu->language == language_cplus
15921 || cu->language == language_java
15922 || cu->language == language_ada)
15923 {
15924 /* The symbol's name is already allocated along
15925 with this objfile, so we don't need to
15926 duplicate it for the type. */
15927 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
15928 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
15929 }
15930 }
15931 }
15932 break;
15933 case DW_TAG_typedef:
15934 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15935 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15936 list_to_add = cu->list_in_scope;
15937 break;
15938 case DW_TAG_base_type:
15939 case DW_TAG_subrange_type:
15940 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15941 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15942 list_to_add = cu->list_in_scope;
15943 break;
15944 case DW_TAG_enumerator:
15945 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15946 if (attr)
15947 {
15948 dwarf2_const_value (attr, sym, cu);
15949 }
15950 {
15951 /* NOTE: carlton/2003-11-10: See comment above in the
15952 DW_TAG_class_type, etc. block. */
15953
15954 list_to_add = (cu->list_in_scope == &file_symbols
15955 && (cu->language == language_cplus
15956 || cu->language == language_java)
15957 ? &global_symbols : cu->list_in_scope);
15958 }
15959 break;
15960 case DW_TAG_namespace:
15961 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15962 list_to_add = &global_symbols;
15963 break;
15964 case DW_TAG_common_block:
15965 SYMBOL_CLASS (sym) = LOC_STATIC;
15966 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
15967 add_symbol_to_list (sym, cu->list_in_scope);
15968 break;
15969 default:
15970 /* Not a tag we recognize. Hopefully we aren't processing
15971 trash data, but since we must specifically ignore things
15972 we don't recognize, there is nothing else we should do at
15973 this point. */
15974 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
15975 dwarf_tag_name (die->tag));
15976 break;
15977 }
15978
15979 if (suppress_add)
15980 {
15981 sym->hash_next = objfile->template_symbols;
15982 objfile->template_symbols = sym;
15983 list_to_add = NULL;
15984 }
15985
15986 if (list_to_add != NULL)
15987 add_symbol_to_list (sym, list_to_add);
15988
15989 /* For the benefit of old versions of GCC, check for anonymous
15990 namespaces based on the demangled name. */
15991 if (!processing_has_namespace_info
15992 && cu->language == language_cplus)
15993 cp_scan_for_anonymous_namespaces (sym, objfile);
15994 }
15995 return (sym);
15996 }
15997
15998 /* A wrapper for new_symbol_full that always allocates a new symbol. */
15999
16000 static struct symbol *
16001 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16002 {
16003 return new_symbol_full (die, type, cu, NULL);
16004 }
16005
16006 /* Given an attr with a DW_FORM_dataN value in host byte order,
16007 zero-extend it as appropriate for the symbol's type. The DWARF
16008 standard (v4) is not entirely clear about the meaning of using
16009 DW_FORM_dataN for a constant with a signed type, where the type is
16010 wider than the data. The conclusion of a discussion on the DWARF
16011 list was that this is unspecified. We choose to always zero-extend
16012 because that is the interpretation long in use by GCC. */
16013
16014 static gdb_byte *
16015 dwarf2_const_value_data (struct attribute *attr, struct type *type,
16016 const char *name, struct obstack *obstack,
16017 struct dwarf2_cu *cu, LONGEST *value, int bits)
16018 {
16019 struct objfile *objfile = cu->objfile;
16020 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16021 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16022 LONGEST l = DW_UNSND (attr);
16023
16024 if (bits < sizeof (*value) * 8)
16025 {
16026 l &= ((LONGEST) 1 << bits) - 1;
16027 *value = l;
16028 }
16029 else if (bits == sizeof (*value) * 8)
16030 *value = l;
16031 else
16032 {
16033 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16034 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16035 return bytes;
16036 }
16037
16038 return NULL;
16039 }
16040
16041 /* Read a constant value from an attribute. Either set *VALUE, or if
16042 the value does not fit in *VALUE, set *BYTES - either already
16043 allocated on the objfile obstack, or newly allocated on OBSTACK,
16044 or, set *BATON, if we translated the constant to a location
16045 expression. */
16046
16047 static void
16048 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16049 const char *name, struct obstack *obstack,
16050 struct dwarf2_cu *cu,
16051 LONGEST *value, gdb_byte **bytes,
16052 struct dwarf2_locexpr_baton **baton)
16053 {
16054 struct objfile *objfile = cu->objfile;
16055 struct comp_unit_head *cu_header = &cu->header;
16056 struct dwarf_block *blk;
16057 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16058 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16059
16060 *value = 0;
16061 *bytes = NULL;
16062 *baton = NULL;
16063
16064 switch (attr->form)
16065 {
16066 case DW_FORM_addr:
16067 case DW_FORM_GNU_addr_index:
16068 {
16069 gdb_byte *data;
16070
16071 if (TYPE_LENGTH (type) != cu_header->addr_size)
16072 dwarf2_const_value_length_mismatch_complaint (name,
16073 cu_header->addr_size,
16074 TYPE_LENGTH (type));
16075 /* Symbols of this form are reasonably rare, so we just
16076 piggyback on the existing location code rather than writing
16077 a new implementation of symbol_computed_ops. */
16078 *baton = obstack_alloc (&objfile->objfile_obstack,
16079 sizeof (struct dwarf2_locexpr_baton));
16080 (*baton)->per_cu = cu->per_cu;
16081 gdb_assert ((*baton)->per_cu);
16082
16083 (*baton)->size = 2 + cu_header->addr_size;
16084 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16085 (*baton)->data = data;
16086
16087 data[0] = DW_OP_addr;
16088 store_unsigned_integer (&data[1], cu_header->addr_size,
16089 byte_order, DW_ADDR (attr));
16090 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16091 }
16092 break;
16093 case DW_FORM_string:
16094 case DW_FORM_strp:
16095 case DW_FORM_GNU_str_index:
16096 case DW_FORM_GNU_strp_alt:
16097 /* DW_STRING is already allocated on the objfile obstack, point
16098 directly to it. */
16099 *bytes = (gdb_byte *) DW_STRING (attr);
16100 break;
16101 case DW_FORM_block1:
16102 case DW_FORM_block2:
16103 case DW_FORM_block4:
16104 case DW_FORM_block:
16105 case DW_FORM_exprloc:
16106 blk = DW_BLOCK (attr);
16107 if (TYPE_LENGTH (type) != blk->size)
16108 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16109 TYPE_LENGTH (type));
16110 *bytes = blk->data;
16111 break;
16112
16113 /* The DW_AT_const_value attributes are supposed to carry the
16114 symbol's value "represented as it would be on the target
16115 architecture." By the time we get here, it's already been
16116 converted to host endianness, so we just need to sign- or
16117 zero-extend it as appropriate. */
16118 case DW_FORM_data1:
16119 *bytes = dwarf2_const_value_data (attr, type, name,
16120 obstack, cu, value, 8);
16121 break;
16122 case DW_FORM_data2:
16123 *bytes = dwarf2_const_value_data (attr, type, name,
16124 obstack, cu, value, 16);
16125 break;
16126 case DW_FORM_data4:
16127 *bytes = dwarf2_const_value_data (attr, type, name,
16128 obstack, cu, value, 32);
16129 break;
16130 case DW_FORM_data8:
16131 *bytes = dwarf2_const_value_data (attr, type, name,
16132 obstack, cu, value, 64);
16133 break;
16134
16135 case DW_FORM_sdata:
16136 *value = DW_SND (attr);
16137 break;
16138
16139 case DW_FORM_udata:
16140 *value = DW_UNSND (attr);
16141 break;
16142
16143 default:
16144 complaint (&symfile_complaints,
16145 _("unsupported const value attribute form: '%s'"),
16146 dwarf_form_name (attr->form));
16147 *value = 0;
16148 break;
16149 }
16150 }
16151
16152
16153 /* Copy constant value from an attribute to a symbol. */
16154
16155 static void
16156 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16157 struct dwarf2_cu *cu)
16158 {
16159 struct objfile *objfile = cu->objfile;
16160 struct comp_unit_head *cu_header = &cu->header;
16161 LONGEST value;
16162 gdb_byte *bytes;
16163 struct dwarf2_locexpr_baton *baton;
16164
16165 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16166 SYMBOL_PRINT_NAME (sym),
16167 &objfile->objfile_obstack, cu,
16168 &value, &bytes, &baton);
16169
16170 if (baton != NULL)
16171 {
16172 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
16173 SYMBOL_LOCATION_BATON (sym) = baton;
16174 SYMBOL_CLASS (sym) = LOC_COMPUTED;
16175 }
16176 else if (bytes != NULL)
16177 {
16178 SYMBOL_VALUE_BYTES (sym) = bytes;
16179 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
16180 }
16181 else
16182 {
16183 SYMBOL_VALUE (sym) = value;
16184 SYMBOL_CLASS (sym) = LOC_CONST;
16185 }
16186 }
16187
16188 /* Return the type of the die in question using its DW_AT_type attribute. */
16189
16190 static struct type *
16191 die_type (struct die_info *die, struct dwarf2_cu *cu)
16192 {
16193 struct attribute *type_attr;
16194
16195 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16196 if (!type_attr)
16197 {
16198 /* A missing DW_AT_type represents a void type. */
16199 return objfile_type (cu->objfile)->builtin_void;
16200 }
16201
16202 return lookup_die_type (die, type_attr, cu);
16203 }
16204
16205 /* True iff CU's producer generates GNAT Ada auxiliary information
16206 that allows to find parallel types through that information instead
16207 of having to do expensive parallel lookups by type name. */
16208
16209 static int
16210 need_gnat_info (struct dwarf2_cu *cu)
16211 {
16212 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16213 of GNAT produces this auxiliary information, without any indication
16214 that it is produced. Part of enhancing the FSF version of GNAT
16215 to produce that information will be to put in place an indicator
16216 that we can use in order to determine whether the descriptive type
16217 info is available or not. One suggestion that has been made is
16218 to use a new attribute, attached to the CU die. For now, assume
16219 that the descriptive type info is not available. */
16220 return 0;
16221 }
16222
16223 /* Return the auxiliary type of the die in question using its
16224 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16225 attribute is not present. */
16226
16227 static struct type *
16228 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16229 {
16230 struct attribute *type_attr;
16231
16232 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16233 if (!type_attr)
16234 return NULL;
16235
16236 return lookup_die_type (die, type_attr, cu);
16237 }
16238
16239 /* If DIE has a descriptive_type attribute, then set the TYPE's
16240 descriptive type accordingly. */
16241
16242 static void
16243 set_descriptive_type (struct type *type, struct die_info *die,
16244 struct dwarf2_cu *cu)
16245 {
16246 struct type *descriptive_type = die_descriptive_type (die, cu);
16247
16248 if (descriptive_type)
16249 {
16250 ALLOCATE_GNAT_AUX_TYPE (type);
16251 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16252 }
16253 }
16254
16255 /* Return the containing type of the die in question using its
16256 DW_AT_containing_type attribute. */
16257
16258 static struct type *
16259 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16260 {
16261 struct attribute *type_attr;
16262
16263 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16264 if (!type_attr)
16265 error (_("Dwarf Error: Problem turning containing type into gdb type "
16266 "[in module %s]"), cu->objfile->name);
16267
16268 return lookup_die_type (die, type_attr, cu);
16269 }
16270
16271 /* Look up the type of DIE in CU using its type attribute ATTR.
16272 If there is no type substitute an error marker. */
16273
16274 static struct type *
16275 lookup_die_type (struct die_info *die, struct attribute *attr,
16276 struct dwarf2_cu *cu)
16277 {
16278 struct objfile *objfile = cu->objfile;
16279 struct type *this_type;
16280
16281 /* First see if we have it cached. */
16282
16283 if (attr->form == DW_FORM_GNU_ref_alt)
16284 {
16285 struct dwarf2_per_cu_data *per_cu;
16286 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16287
16288 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16289 this_type = get_die_type_at_offset (offset, per_cu);
16290 }
16291 else if (is_ref_attr (attr))
16292 {
16293 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16294
16295 this_type = get_die_type_at_offset (offset, cu->per_cu);
16296 }
16297 else if (attr->form == DW_FORM_ref_sig8)
16298 {
16299 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16300
16301 /* sig_type will be NULL if the signatured type is missing from
16302 the debug info. */
16303 if (sig_type == NULL)
16304 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16305 "at 0x%x [in module %s]"),
16306 die->offset.sect_off, objfile->name);
16307
16308 gdb_assert (sig_type->per_cu.is_debug_types);
16309 /* If we haven't filled in type_offset_in_section yet, then we
16310 haven't read the type in yet. */
16311 this_type = NULL;
16312 if (sig_type->type_offset_in_section.sect_off != 0)
16313 {
16314 this_type =
16315 get_die_type_at_offset (sig_type->type_offset_in_section,
16316 &sig_type->per_cu);
16317 }
16318 }
16319 else
16320 {
16321 dump_die_for_error (die);
16322 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
16323 dwarf_attr_name (attr->name), objfile->name);
16324 }
16325
16326 /* If not cached we need to read it in. */
16327
16328 if (this_type == NULL)
16329 {
16330 struct die_info *type_die;
16331 struct dwarf2_cu *type_cu = cu;
16332
16333 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
16334 /* If we found the type now, it's probably because the type came
16335 from an inter-CU reference and the type's CU got expanded before
16336 ours. */
16337 this_type = get_die_type (type_die, type_cu);
16338 if (this_type == NULL)
16339 this_type = read_type_die_1 (type_die, type_cu);
16340 }
16341
16342 /* If we still don't have a type use an error marker. */
16343
16344 if (this_type == NULL)
16345 {
16346 char *message, *saved;
16347
16348 /* read_type_die already issued a complaint. */
16349 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16350 objfile->name,
16351 cu->header.offset.sect_off,
16352 die->offset.sect_off);
16353 saved = obstack_copy0 (&objfile->objfile_obstack,
16354 message, strlen (message));
16355 xfree (message);
16356
16357 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16358 }
16359
16360 return this_type;
16361 }
16362
16363 /* Return the type in DIE, CU.
16364 Returns NULL for invalid types.
16365
16366 This first does a lookup in the appropriate type_hash table,
16367 and only reads the die in if necessary.
16368
16369 NOTE: This can be called when reading in partial or full symbols. */
16370
16371 static struct type *
16372 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
16373 {
16374 struct type *this_type;
16375
16376 this_type = get_die_type (die, cu);
16377 if (this_type)
16378 return this_type;
16379
16380 return read_type_die_1 (die, cu);
16381 }
16382
16383 /* Read the type in DIE, CU.
16384 Returns NULL for invalid types. */
16385
16386 static struct type *
16387 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16388 {
16389 struct type *this_type = NULL;
16390
16391 switch (die->tag)
16392 {
16393 case DW_TAG_class_type:
16394 case DW_TAG_interface_type:
16395 case DW_TAG_structure_type:
16396 case DW_TAG_union_type:
16397 this_type = read_structure_type (die, cu);
16398 break;
16399 case DW_TAG_enumeration_type:
16400 this_type = read_enumeration_type (die, cu);
16401 break;
16402 case DW_TAG_subprogram:
16403 case DW_TAG_subroutine_type:
16404 case DW_TAG_inlined_subroutine:
16405 this_type = read_subroutine_type (die, cu);
16406 break;
16407 case DW_TAG_array_type:
16408 this_type = read_array_type (die, cu);
16409 break;
16410 case DW_TAG_set_type:
16411 this_type = read_set_type (die, cu);
16412 break;
16413 case DW_TAG_pointer_type:
16414 this_type = read_tag_pointer_type (die, cu);
16415 break;
16416 case DW_TAG_ptr_to_member_type:
16417 this_type = read_tag_ptr_to_member_type (die, cu);
16418 break;
16419 case DW_TAG_reference_type:
16420 this_type = read_tag_reference_type (die, cu);
16421 break;
16422 case DW_TAG_const_type:
16423 this_type = read_tag_const_type (die, cu);
16424 break;
16425 case DW_TAG_volatile_type:
16426 this_type = read_tag_volatile_type (die, cu);
16427 break;
16428 case DW_TAG_string_type:
16429 this_type = read_tag_string_type (die, cu);
16430 break;
16431 case DW_TAG_typedef:
16432 this_type = read_typedef (die, cu);
16433 break;
16434 case DW_TAG_subrange_type:
16435 this_type = read_subrange_type (die, cu);
16436 break;
16437 case DW_TAG_base_type:
16438 this_type = read_base_type (die, cu);
16439 break;
16440 case DW_TAG_unspecified_type:
16441 this_type = read_unspecified_type (die, cu);
16442 break;
16443 case DW_TAG_namespace:
16444 this_type = read_namespace_type (die, cu);
16445 break;
16446 case DW_TAG_module:
16447 this_type = read_module_type (die, cu);
16448 break;
16449 default:
16450 complaint (&symfile_complaints,
16451 _("unexpected tag in read_type_die: '%s'"),
16452 dwarf_tag_name (die->tag));
16453 break;
16454 }
16455
16456 return this_type;
16457 }
16458
16459 /* See if we can figure out if the class lives in a namespace. We do
16460 this by looking for a member function; its demangled name will
16461 contain namespace info, if there is any.
16462 Return the computed name or NULL.
16463 Space for the result is allocated on the objfile's obstack.
16464 This is the full-die version of guess_partial_die_structure_name.
16465 In this case we know DIE has no useful parent. */
16466
16467 static char *
16468 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16469 {
16470 struct die_info *spec_die;
16471 struct dwarf2_cu *spec_cu;
16472 struct die_info *child;
16473
16474 spec_cu = cu;
16475 spec_die = die_specification (die, &spec_cu);
16476 if (spec_die != NULL)
16477 {
16478 die = spec_die;
16479 cu = spec_cu;
16480 }
16481
16482 for (child = die->child;
16483 child != NULL;
16484 child = child->sibling)
16485 {
16486 if (child->tag == DW_TAG_subprogram)
16487 {
16488 struct attribute *attr;
16489
16490 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16491 if (attr == NULL)
16492 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16493 if (attr != NULL)
16494 {
16495 char *actual_name
16496 = language_class_name_from_physname (cu->language_defn,
16497 DW_STRING (attr));
16498 char *name = NULL;
16499
16500 if (actual_name != NULL)
16501 {
16502 char *die_name = dwarf2_name (die, cu);
16503
16504 if (die_name != NULL
16505 && strcmp (die_name, actual_name) != 0)
16506 {
16507 /* Strip off the class name from the full name.
16508 We want the prefix. */
16509 int die_name_len = strlen (die_name);
16510 int actual_name_len = strlen (actual_name);
16511
16512 /* Test for '::' as a sanity check. */
16513 if (actual_name_len > die_name_len + 2
16514 && actual_name[actual_name_len
16515 - die_name_len - 1] == ':')
16516 name =
16517 obsavestring (actual_name,
16518 actual_name_len - die_name_len - 2,
16519 &cu->objfile->objfile_obstack);
16520 }
16521 }
16522 xfree (actual_name);
16523 return name;
16524 }
16525 }
16526 }
16527
16528 return NULL;
16529 }
16530
16531 /* GCC might emit a nameless typedef that has a linkage name. Determine the
16532 prefix part in such case. See
16533 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16534
16535 static char *
16536 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16537 {
16538 struct attribute *attr;
16539 char *base;
16540
16541 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16542 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16543 return NULL;
16544
16545 attr = dwarf2_attr (die, DW_AT_name, cu);
16546 if (attr != NULL && DW_STRING (attr) != NULL)
16547 return NULL;
16548
16549 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16550 if (attr == NULL)
16551 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16552 if (attr == NULL || DW_STRING (attr) == NULL)
16553 return NULL;
16554
16555 /* dwarf2_name had to be already called. */
16556 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16557
16558 /* Strip the base name, keep any leading namespaces/classes. */
16559 base = strrchr (DW_STRING (attr), ':');
16560 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16561 return "";
16562
16563 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
16564 &cu->objfile->objfile_obstack);
16565 }
16566
16567 /* Return the name of the namespace/class that DIE is defined within,
16568 or "" if we can't tell. The caller should not xfree the result.
16569
16570 For example, if we're within the method foo() in the following
16571 code:
16572
16573 namespace N {
16574 class C {
16575 void foo () {
16576 }
16577 };
16578 }
16579
16580 then determine_prefix on foo's die will return "N::C". */
16581
16582 static const char *
16583 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
16584 {
16585 struct die_info *parent, *spec_die;
16586 struct dwarf2_cu *spec_cu;
16587 struct type *parent_type;
16588 char *retval;
16589
16590 if (cu->language != language_cplus && cu->language != language_java
16591 && cu->language != language_fortran)
16592 return "";
16593
16594 retval = anonymous_struct_prefix (die, cu);
16595 if (retval)
16596 return retval;
16597
16598 /* We have to be careful in the presence of DW_AT_specification.
16599 For example, with GCC 3.4, given the code
16600
16601 namespace N {
16602 void foo() {
16603 // Definition of N::foo.
16604 }
16605 }
16606
16607 then we'll have a tree of DIEs like this:
16608
16609 1: DW_TAG_compile_unit
16610 2: DW_TAG_namespace // N
16611 3: DW_TAG_subprogram // declaration of N::foo
16612 4: DW_TAG_subprogram // definition of N::foo
16613 DW_AT_specification // refers to die #3
16614
16615 Thus, when processing die #4, we have to pretend that we're in
16616 the context of its DW_AT_specification, namely the contex of die
16617 #3. */
16618 spec_cu = cu;
16619 spec_die = die_specification (die, &spec_cu);
16620 if (spec_die == NULL)
16621 parent = die->parent;
16622 else
16623 {
16624 parent = spec_die->parent;
16625 cu = spec_cu;
16626 }
16627
16628 if (parent == NULL)
16629 return "";
16630 else if (parent->building_fullname)
16631 {
16632 const char *name;
16633 const char *parent_name;
16634
16635 /* It has been seen on RealView 2.2 built binaries,
16636 DW_TAG_template_type_param types actually _defined_ as
16637 children of the parent class:
16638
16639 enum E {};
16640 template class <class Enum> Class{};
16641 Class<enum E> class_e;
16642
16643 1: DW_TAG_class_type (Class)
16644 2: DW_TAG_enumeration_type (E)
16645 3: DW_TAG_enumerator (enum1:0)
16646 3: DW_TAG_enumerator (enum2:1)
16647 ...
16648 2: DW_TAG_template_type_param
16649 DW_AT_type DW_FORM_ref_udata (E)
16650
16651 Besides being broken debug info, it can put GDB into an
16652 infinite loop. Consider:
16653
16654 When we're building the full name for Class<E>, we'll start
16655 at Class, and go look over its template type parameters,
16656 finding E. We'll then try to build the full name of E, and
16657 reach here. We're now trying to build the full name of E,
16658 and look over the parent DIE for containing scope. In the
16659 broken case, if we followed the parent DIE of E, we'd again
16660 find Class, and once again go look at its template type
16661 arguments, etc., etc. Simply don't consider such parent die
16662 as source-level parent of this die (it can't be, the language
16663 doesn't allow it), and break the loop here. */
16664 name = dwarf2_name (die, cu);
16665 parent_name = dwarf2_name (parent, cu);
16666 complaint (&symfile_complaints,
16667 _("template param type '%s' defined within parent '%s'"),
16668 name ? name : "<unknown>",
16669 parent_name ? parent_name : "<unknown>");
16670 return "";
16671 }
16672 else
16673 switch (parent->tag)
16674 {
16675 case DW_TAG_namespace:
16676 parent_type = read_type_die (parent, cu);
16677 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
16678 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
16679 Work around this problem here. */
16680 if (cu->language == language_cplus
16681 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
16682 return "";
16683 /* We give a name to even anonymous namespaces. */
16684 return TYPE_TAG_NAME (parent_type);
16685 case DW_TAG_class_type:
16686 case DW_TAG_interface_type:
16687 case DW_TAG_structure_type:
16688 case DW_TAG_union_type:
16689 case DW_TAG_module:
16690 parent_type = read_type_die (parent, cu);
16691 if (TYPE_TAG_NAME (parent_type) != NULL)
16692 return TYPE_TAG_NAME (parent_type);
16693 else
16694 /* An anonymous structure is only allowed non-static data
16695 members; no typedefs, no member functions, et cetera.
16696 So it does not need a prefix. */
16697 return "";
16698 case DW_TAG_compile_unit:
16699 case DW_TAG_partial_unit:
16700 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
16701 if (cu->language == language_cplus
16702 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16703 && die->child != NULL
16704 && (die->tag == DW_TAG_class_type
16705 || die->tag == DW_TAG_structure_type
16706 || die->tag == DW_TAG_union_type))
16707 {
16708 char *name = guess_full_die_structure_name (die, cu);
16709 if (name != NULL)
16710 return name;
16711 }
16712 return "";
16713 default:
16714 return determine_prefix (parent, cu);
16715 }
16716 }
16717
16718 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
16719 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
16720 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
16721 an obconcat, otherwise allocate storage for the result. The CU argument is
16722 used to determine the language and hence, the appropriate separator. */
16723
16724 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
16725
16726 static char *
16727 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
16728 int physname, struct dwarf2_cu *cu)
16729 {
16730 const char *lead = "";
16731 const char *sep;
16732
16733 if (suffix == NULL || suffix[0] == '\0'
16734 || prefix == NULL || prefix[0] == '\0')
16735 sep = "";
16736 else if (cu->language == language_java)
16737 sep = ".";
16738 else if (cu->language == language_fortran && physname)
16739 {
16740 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
16741 DW_AT_MIPS_linkage_name is preferred and used instead. */
16742
16743 lead = "__";
16744 sep = "_MOD_";
16745 }
16746 else
16747 sep = "::";
16748
16749 if (prefix == NULL)
16750 prefix = "";
16751 if (suffix == NULL)
16752 suffix = "";
16753
16754 if (obs == NULL)
16755 {
16756 char *retval
16757 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
16758
16759 strcpy (retval, lead);
16760 strcat (retval, prefix);
16761 strcat (retval, sep);
16762 strcat (retval, suffix);
16763 return retval;
16764 }
16765 else
16766 {
16767 /* We have an obstack. */
16768 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
16769 }
16770 }
16771
16772 /* Return sibling of die, NULL if no sibling. */
16773
16774 static struct die_info *
16775 sibling_die (struct die_info *die)
16776 {
16777 return die->sibling;
16778 }
16779
16780 /* Get name of a die, return NULL if not found. */
16781
16782 static char *
16783 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
16784 struct obstack *obstack)
16785 {
16786 if (name && cu->language == language_cplus)
16787 {
16788 char *canon_name = cp_canonicalize_string (name);
16789
16790 if (canon_name != NULL)
16791 {
16792 if (strcmp (canon_name, name) != 0)
16793 name = obsavestring (canon_name, strlen (canon_name),
16794 obstack);
16795 xfree (canon_name);
16796 }
16797 }
16798
16799 return name;
16800 }
16801
16802 /* Get name of a die, return NULL if not found. */
16803
16804 static char *
16805 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
16806 {
16807 struct attribute *attr;
16808
16809 attr = dwarf2_attr (die, DW_AT_name, cu);
16810 if ((!attr || !DW_STRING (attr))
16811 && die->tag != DW_TAG_class_type
16812 && die->tag != DW_TAG_interface_type
16813 && die->tag != DW_TAG_structure_type
16814 && die->tag != DW_TAG_union_type)
16815 return NULL;
16816
16817 switch (die->tag)
16818 {
16819 case DW_TAG_compile_unit:
16820 case DW_TAG_partial_unit:
16821 /* Compilation units have a DW_AT_name that is a filename, not
16822 a source language identifier. */
16823 case DW_TAG_enumeration_type:
16824 case DW_TAG_enumerator:
16825 /* These tags always have simple identifiers already; no need
16826 to canonicalize them. */
16827 return DW_STRING (attr);
16828
16829 case DW_TAG_subprogram:
16830 /* Java constructors will all be named "<init>", so return
16831 the class name when we see this special case. */
16832 if (cu->language == language_java
16833 && DW_STRING (attr) != NULL
16834 && strcmp (DW_STRING (attr), "<init>") == 0)
16835 {
16836 struct dwarf2_cu *spec_cu = cu;
16837 struct die_info *spec_die;
16838
16839 /* GCJ will output '<init>' for Java constructor names.
16840 For this special case, return the name of the parent class. */
16841
16842 /* GCJ may output suprogram DIEs with AT_specification set.
16843 If so, use the name of the specified DIE. */
16844 spec_die = die_specification (die, &spec_cu);
16845 if (spec_die != NULL)
16846 return dwarf2_name (spec_die, spec_cu);
16847
16848 do
16849 {
16850 die = die->parent;
16851 if (die->tag == DW_TAG_class_type)
16852 return dwarf2_name (die, cu);
16853 }
16854 while (die->tag != DW_TAG_compile_unit
16855 && die->tag != DW_TAG_partial_unit);
16856 }
16857 break;
16858
16859 case DW_TAG_class_type:
16860 case DW_TAG_interface_type:
16861 case DW_TAG_structure_type:
16862 case DW_TAG_union_type:
16863 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
16864 structures or unions. These were of the form "._%d" in GCC 4.1,
16865 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
16866 and GCC 4.4. We work around this problem by ignoring these. */
16867 if (attr && DW_STRING (attr)
16868 && (strncmp (DW_STRING (attr), "._", 2) == 0
16869 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
16870 return NULL;
16871
16872 /* GCC might emit a nameless typedef that has a linkage name. See
16873 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16874 if (!attr || DW_STRING (attr) == NULL)
16875 {
16876 char *demangled = NULL;
16877
16878 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16879 if (attr == NULL)
16880 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16881
16882 if (attr == NULL || DW_STRING (attr) == NULL)
16883 return NULL;
16884
16885 /* Avoid demangling DW_STRING (attr) the second time on a second
16886 call for the same DIE. */
16887 if (!DW_STRING_IS_CANONICAL (attr))
16888 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
16889
16890 if (demangled)
16891 {
16892 char *base;
16893
16894 /* FIXME: we already did this for the partial symbol... */
16895 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
16896 &cu->objfile->objfile_obstack);
16897 DW_STRING_IS_CANONICAL (attr) = 1;
16898 xfree (demangled);
16899
16900 /* Strip any leading namespaces/classes, keep only the base name.
16901 DW_AT_name for named DIEs does not contain the prefixes. */
16902 base = strrchr (DW_STRING (attr), ':');
16903 if (base && base > DW_STRING (attr) && base[-1] == ':')
16904 return &base[1];
16905 else
16906 return DW_STRING (attr);
16907 }
16908 }
16909 break;
16910
16911 default:
16912 break;
16913 }
16914
16915 if (!DW_STRING_IS_CANONICAL (attr))
16916 {
16917 DW_STRING (attr)
16918 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
16919 &cu->objfile->objfile_obstack);
16920 DW_STRING_IS_CANONICAL (attr) = 1;
16921 }
16922 return DW_STRING (attr);
16923 }
16924
16925 /* Return the die that this die in an extension of, or NULL if there
16926 is none. *EXT_CU is the CU containing DIE on input, and the CU
16927 containing the return value on output. */
16928
16929 static struct die_info *
16930 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
16931 {
16932 struct attribute *attr;
16933
16934 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
16935 if (attr == NULL)
16936 return NULL;
16937
16938 return follow_die_ref (die, attr, ext_cu);
16939 }
16940
16941 /* Convert a DIE tag into its string name. */
16942
16943 static const char *
16944 dwarf_tag_name (unsigned tag)
16945 {
16946 const char *name = get_DW_TAG_name (tag);
16947
16948 if (name == NULL)
16949 return "DW_TAG_<unknown>";
16950
16951 return name;
16952 }
16953
16954 /* Convert a DWARF attribute code into its string name. */
16955
16956 static const char *
16957 dwarf_attr_name (unsigned attr)
16958 {
16959 const char *name;
16960
16961 #ifdef MIPS /* collides with DW_AT_HP_block_index */
16962 if (attr == DW_AT_MIPS_fde)
16963 return "DW_AT_MIPS_fde";
16964 #else
16965 if (attr == DW_AT_HP_block_index)
16966 return "DW_AT_HP_block_index";
16967 #endif
16968
16969 name = get_DW_AT_name (attr);
16970
16971 if (name == NULL)
16972 return "DW_AT_<unknown>";
16973
16974 return name;
16975 }
16976
16977 /* Convert a DWARF value form code into its string name. */
16978
16979 static const char *
16980 dwarf_form_name (unsigned form)
16981 {
16982 const char *name = get_DW_FORM_name (form);
16983
16984 if (name == NULL)
16985 return "DW_FORM_<unknown>";
16986
16987 return name;
16988 }
16989
16990 static char *
16991 dwarf_bool_name (unsigned mybool)
16992 {
16993 if (mybool)
16994 return "TRUE";
16995 else
16996 return "FALSE";
16997 }
16998
16999 /* Convert a DWARF type code into its string name. */
17000
17001 static const char *
17002 dwarf_type_encoding_name (unsigned enc)
17003 {
17004 const char *name = get_DW_ATE_name (enc);
17005
17006 if (name == NULL)
17007 return "DW_ATE_<unknown>";
17008
17009 return name;
17010 }
17011
17012 static void
17013 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17014 {
17015 unsigned int i;
17016
17017 print_spaces (indent, f);
17018 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17019 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17020
17021 if (die->parent != NULL)
17022 {
17023 print_spaces (indent, f);
17024 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17025 die->parent->offset.sect_off);
17026 }
17027
17028 print_spaces (indent, f);
17029 fprintf_unfiltered (f, " has children: %s\n",
17030 dwarf_bool_name (die->child != NULL));
17031
17032 print_spaces (indent, f);
17033 fprintf_unfiltered (f, " attributes:\n");
17034
17035 for (i = 0; i < die->num_attrs; ++i)
17036 {
17037 print_spaces (indent, f);
17038 fprintf_unfiltered (f, " %s (%s) ",
17039 dwarf_attr_name (die->attrs[i].name),
17040 dwarf_form_name (die->attrs[i].form));
17041
17042 switch (die->attrs[i].form)
17043 {
17044 case DW_FORM_addr:
17045 case DW_FORM_GNU_addr_index:
17046 fprintf_unfiltered (f, "address: ");
17047 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17048 break;
17049 case DW_FORM_block2:
17050 case DW_FORM_block4:
17051 case DW_FORM_block:
17052 case DW_FORM_block1:
17053 fprintf_unfiltered (f, "block: size %s",
17054 pulongest (DW_BLOCK (&die->attrs[i])->size));
17055 break;
17056 case DW_FORM_exprloc:
17057 fprintf_unfiltered (f, "expression: size %s",
17058 pulongest (DW_BLOCK (&die->attrs[i])->size));
17059 break;
17060 case DW_FORM_ref_addr:
17061 fprintf_unfiltered (f, "ref address: ");
17062 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17063 break;
17064 case DW_FORM_GNU_ref_alt:
17065 fprintf_unfiltered (f, "alt ref address: ");
17066 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17067 break;
17068 case DW_FORM_ref1:
17069 case DW_FORM_ref2:
17070 case DW_FORM_ref4:
17071 case DW_FORM_ref8:
17072 case DW_FORM_ref_udata:
17073 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17074 (long) (DW_UNSND (&die->attrs[i])));
17075 break;
17076 case DW_FORM_data1:
17077 case DW_FORM_data2:
17078 case DW_FORM_data4:
17079 case DW_FORM_data8:
17080 case DW_FORM_udata:
17081 case DW_FORM_sdata:
17082 fprintf_unfiltered (f, "constant: %s",
17083 pulongest (DW_UNSND (&die->attrs[i])));
17084 break;
17085 case DW_FORM_sec_offset:
17086 fprintf_unfiltered (f, "section offset: %s",
17087 pulongest (DW_UNSND (&die->attrs[i])));
17088 break;
17089 case DW_FORM_ref_sig8:
17090 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
17091 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
17092 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
17093 else
17094 fprintf_unfiltered (f, "signatured type, offset: unknown");
17095 break;
17096 case DW_FORM_string:
17097 case DW_FORM_strp:
17098 case DW_FORM_GNU_str_index:
17099 case DW_FORM_GNU_strp_alt:
17100 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17101 DW_STRING (&die->attrs[i])
17102 ? DW_STRING (&die->attrs[i]) : "",
17103 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17104 break;
17105 case DW_FORM_flag:
17106 if (DW_UNSND (&die->attrs[i]))
17107 fprintf_unfiltered (f, "flag: TRUE");
17108 else
17109 fprintf_unfiltered (f, "flag: FALSE");
17110 break;
17111 case DW_FORM_flag_present:
17112 fprintf_unfiltered (f, "flag: TRUE");
17113 break;
17114 case DW_FORM_indirect:
17115 /* The reader will have reduced the indirect form to
17116 the "base form" so this form should not occur. */
17117 fprintf_unfiltered (f,
17118 "unexpected attribute form: DW_FORM_indirect");
17119 break;
17120 default:
17121 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17122 die->attrs[i].form);
17123 break;
17124 }
17125 fprintf_unfiltered (f, "\n");
17126 }
17127 }
17128
17129 static void
17130 dump_die_for_error (struct die_info *die)
17131 {
17132 dump_die_shallow (gdb_stderr, 0, die);
17133 }
17134
17135 static void
17136 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17137 {
17138 int indent = level * 4;
17139
17140 gdb_assert (die != NULL);
17141
17142 if (level >= max_level)
17143 return;
17144
17145 dump_die_shallow (f, indent, die);
17146
17147 if (die->child != NULL)
17148 {
17149 print_spaces (indent, f);
17150 fprintf_unfiltered (f, " Children:");
17151 if (level + 1 < max_level)
17152 {
17153 fprintf_unfiltered (f, "\n");
17154 dump_die_1 (f, level + 1, max_level, die->child);
17155 }
17156 else
17157 {
17158 fprintf_unfiltered (f,
17159 " [not printed, max nesting level reached]\n");
17160 }
17161 }
17162
17163 if (die->sibling != NULL && level > 0)
17164 {
17165 dump_die_1 (f, level, max_level, die->sibling);
17166 }
17167 }
17168
17169 /* This is called from the pdie macro in gdbinit.in.
17170 It's not static so gcc will keep a copy callable from gdb. */
17171
17172 void
17173 dump_die (struct die_info *die, int max_level)
17174 {
17175 dump_die_1 (gdb_stdlog, 0, max_level, die);
17176 }
17177
17178 static void
17179 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17180 {
17181 void **slot;
17182
17183 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17184 INSERT);
17185
17186 *slot = die;
17187 }
17188
17189 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17190 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17191
17192 static int
17193 is_ref_attr (struct attribute *attr)
17194 {
17195 switch (attr->form)
17196 {
17197 case DW_FORM_ref_addr:
17198 case DW_FORM_ref1:
17199 case DW_FORM_ref2:
17200 case DW_FORM_ref4:
17201 case DW_FORM_ref8:
17202 case DW_FORM_ref_udata:
17203 case DW_FORM_GNU_ref_alt:
17204 return 1;
17205 default:
17206 return 0;
17207 }
17208 }
17209
17210 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17211 required kind. */
17212
17213 static sect_offset
17214 dwarf2_get_ref_die_offset (struct attribute *attr)
17215 {
17216 sect_offset retval = { DW_UNSND (attr) };
17217
17218 if (is_ref_attr (attr))
17219 return retval;
17220
17221 retval.sect_off = 0;
17222 complaint (&symfile_complaints,
17223 _("unsupported die ref attribute form: '%s'"),
17224 dwarf_form_name (attr->form));
17225 return retval;
17226 }
17227
17228 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17229 * the value held by the attribute is not constant. */
17230
17231 static LONGEST
17232 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17233 {
17234 if (attr->form == DW_FORM_sdata)
17235 return DW_SND (attr);
17236 else if (attr->form == DW_FORM_udata
17237 || attr->form == DW_FORM_data1
17238 || attr->form == DW_FORM_data2
17239 || attr->form == DW_FORM_data4
17240 || attr->form == DW_FORM_data8)
17241 return DW_UNSND (attr);
17242 else
17243 {
17244 complaint (&symfile_complaints,
17245 _("Attribute value is not a constant (%s)"),
17246 dwarf_form_name (attr->form));
17247 return default_value;
17248 }
17249 }
17250
17251 /* Follow reference or signature attribute ATTR of SRC_DIE.
17252 On entry *REF_CU is the CU of SRC_DIE.
17253 On exit *REF_CU is the CU of the result. */
17254
17255 static struct die_info *
17256 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17257 struct dwarf2_cu **ref_cu)
17258 {
17259 struct die_info *die;
17260
17261 if (is_ref_attr (attr))
17262 die = follow_die_ref (src_die, attr, ref_cu);
17263 else if (attr->form == DW_FORM_ref_sig8)
17264 die = follow_die_sig (src_die, attr, ref_cu);
17265 else
17266 {
17267 dump_die_for_error (src_die);
17268 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17269 (*ref_cu)->objfile->name);
17270 }
17271
17272 return die;
17273 }
17274
17275 /* Follow reference OFFSET.
17276 On entry *REF_CU is the CU of the source die referencing OFFSET.
17277 On exit *REF_CU is the CU of the result.
17278 Returns NULL if OFFSET is invalid. */
17279
17280 static struct die_info *
17281 follow_die_offset (sect_offset offset, int offset_in_dwz,
17282 struct dwarf2_cu **ref_cu)
17283 {
17284 struct die_info temp_die;
17285 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17286
17287 gdb_assert (cu->per_cu != NULL);
17288
17289 target_cu = cu;
17290
17291 if (cu->per_cu->is_debug_types)
17292 {
17293 /* .debug_types CUs cannot reference anything outside their CU.
17294 If they need to, they have to reference a signatured type via
17295 DW_FORM_ref_sig8. */
17296 if (! offset_in_cu_p (&cu->header, offset))
17297 return NULL;
17298 }
17299 else if (offset_in_dwz != cu->per_cu->is_dwz
17300 || ! offset_in_cu_p (&cu->header, offset))
17301 {
17302 struct dwarf2_per_cu_data *per_cu;
17303
17304 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17305 cu->objfile);
17306
17307 /* If necessary, add it to the queue and load its DIEs. */
17308 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17309 load_full_comp_unit (per_cu, cu->language);
17310
17311 target_cu = per_cu->cu;
17312 }
17313 else if (cu->dies == NULL)
17314 {
17315 /* We're loading full DIEs during partial symbol reading. */
17316 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
17317 load_full_comp_unit (cu->per_cu, language_minimal);
17318 }
17319
17320 *ref_cu = target_cu;
17321 temp_die.offset = offset;
17322 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
17323 }
17324
17325 /* Follow reference attribute ATTR of SRC_DIE.
17326 On entry *REF_CU is the CU of SRC_DIE.
17327 On exit *REF_CU is the CU of the result. */
17328
17329 static struct die_info *
17330 follow_die_ref (struct die_info *src_die, struct attribute *attr,
17331 struct dwarf2_cu **ref_cu)
17332 {
17333 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17334 struct dwarf2_cu *cu = *ref_cu;
17335 struct die_info *die;
17336
17337 die = follow_die_offset (offset,
17338 (attr->form == DW_FORM_GNU_ref_alt
17339 || cu->per_cu->is_dwz),
17340 ref_cu);
17341 if (!die)
17342 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17343 "at 0x%x [in module %s]"),
17344 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
17345
17346 return die;
17347 }
17348
17349 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17350 Returned value is intended for DW_OP_call*. Returned
17351 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
17352
17353 struct dwarf2_locexpr_baton
17354 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
17355 struct dwarf2_per_cu_data *per_cu,
17356 CORE_ADDR (*get_frame_pc) (void *baton),
17357 void *baton)
17358 {
17359 struct dwarf2_cu *cu;
17360 struct die_info *die;
17361 struct attribute *attr;
17362 struct dwarf2_locexpr_baton retval;
17363
17364 dw2_setup (per_cu->objfile);
17365
17366 if (per_cu->cu == NULL)
17367 load_cu (per_cu);
17368 cu = per_cu->cu;
17369
17370 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
17371 if (!die)
17372 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
17373 offset.sect_off, per_cu->objfile->name);
17374
17375 attr = dwarf2_attr (die, DW_AT_location, cu);
17376 if (!attr)
17377 {
17378 /* DWARF: "If there is no such attribute, then there is no effect.".
17379 DATA is ignored if SIZE is 0. */
17380
17381 retval.data = NULL;
17382 retval.size = 0;
17383 }
17384 else if (attr_form_is_section_offset (attr))
17385 {
17386 struct dwarf2_loclist_baton loclist_baton;
17387 CORE_ADDR pc = (*get_frame_pc) (baton);
17388 size_t size;
17389
17390 fill_in_loclist_baton (cu, &loclist_baton, attr);
17391
17392 retval.data = dwarf2_find_location_expression (&loclist_baton,
17393 &size, pc);
17394 retval.size = size;
17395 }
17396 else
17397 {
17398 if (!attr_form_is_block (attr))
17399 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17400 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
17401 offset.sect_off, per_cu->objfile->name);
17402
17403 retval.data = DW_BLOCK (attr)->data;
17404 retval.size = DW_BLOCK (attr)->size;
17405 }
17406 retval.per_cu = cu->per_cu;
17407
17408 age_cached_comp_units ();
17409
17410 return retval;
17411 }
17412
17413 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
17414 offset. */
17415
17416 struct dwarf2_locexpr_baton
17417 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
17418 struct dwarf2_per_cu_data *per_cu,
17419 CORE_ADDR (*get_frame_pc) (void *baton),
17420 void *baton)
17421 {
17422 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17423
17424 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
17425 }
17426
17427 /* Return the type of the DIE at DIE_OFFSET in the CU named by
17428 PER_CU. */
17429
17430 struct type *
17431 dwarf2_get_die_type (cu_offset die_offset,
17432 struct dwarf2_per_cu_data *per_cu)
17433 {
17434 sect_offset die_offset_sect;
17435
17436 dw2_setup (per_cu->objfile);
17437
17438 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17439 return get_die_type_at_offset (die_offset_sect, per_cu);
17440 }
17441
17442 /* Follow the signature attribute ATTR in SRC_DIE.
17443 On entry *REF_CU is the CU of SRC_DIE.
17444 On exit *REF_CU is the CU of the result. */
17445
17446 static struct die_info *
17447 follow_die_sig (struct die_info *src_die, struct attribute *attr,
17448 struct dwarf2_cu **ref_cu)
17449 {
17450 struct objfile *objfile = (*ref_cu)->objfile;
17451 struct die_info temp_die;
17452 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
17453 struct dwarf2_cu *sig_cu;
17454 struct die_info *die;
17455
17456 /* sig_type will be NULL if the signatured type is missing from
17457 the debug info. */
17458 if (sig_type == NULL)
17459 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
17460 "at 0x%x [in module %s]"),
17461 src_die->offset.sect_off, objfile->name);
17462
17463 /* If necessary, add it to the queue and load its DIEs. */
17464
17465 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
17466 read_signatured_type (sig_type);
17467
17468 gdb_assert (sig_type->per_cu.cu != NULL);
17469
17470 sig_cu = sig_type->per_cu.cu;
17471 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17472 temp_die.offset = sig_type->type_offset_in_section;
17473 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17474 temp_die.offset.sect_off);
17475 if (die)
17476 {
17477 *ref_cu = sig_cu;
17478 return die;
17479 }
17480
17481 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
17482 "from DIE at 0x%x [in module %s]"),
17483 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
17484 }
17485
17486 /* Given an offset of a signatured type, return its signatured_type. */
17487
17488 static struct signatured_type *
17489 lookup_signatured_type_at_offset (struct objfile *objfile,
17490 struct dwarf2_section_info *section,
17491 sect_offset offset)
17492 {
17493 gdb_byte *info_ptr = section->buffer + offset.sect_off;
17494 unsigned int length, initial_length_size;
17495 unsigned int sig_offset;
17496 struct signatured_type find_entry, *sig_type;
17497
17498 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
17499 sig_offset = (initial_length_size
17500 + 2 /*version*/
17501 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
17502 + 1 /*address_size*/);
17503 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
17504 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
17505
17506 /* This is only used to lookup previously recorded types.
17507 If we didn't find it, it's our bug. */
17508 gdb_assert (sig_type != NULL);
17509 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
17510
17511 return sig_type;
17512 }
17513
17514 /* Load the DIEs associated with type unit PER_CU into memory. */
17515
17516 static void
17517 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
17518 {
17519 struct signatured_type *sig_type;
17520
17521 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17522 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17523
17524 /* We have the per_cu, but we need the signatured_type.
17525 Fortunately this is an easy translation. */
17526 gdb_assert (per_cu->is_debug_types);
17527 sig_type = (struct signatured_type *) per_cu;
17528
17529 gdb_assert (per_cu->cu == NULL);
17530
17531 read_signatured_type (sig_type);
17532
17533 gdb_assert (per_cu->cu != NULL);
17534 }
17535
17536 /* die_reader_func for read_signatured_type.
17537 This is identical to load_full_comp_unit_reader,
17538 but is kept separate for now. */
17539
17540 static void
17541 read_signatured_type_reader (const struct die_reader_specs *reader,
17542 gdb_byte *info_ptr,
17543 struct die_info *comp_unit_die,
17544 int has_children,
17545 void *data)
17546 {
17547 struct dwarf2_cu *cu = reader->cu;
17548
17549 gdb_assert (cu->die_hash == NULL);
17550 cu->die_hash =
17551 htab_create_alloc_ex (cu->header.length / 12,
17552 die_hash,
17553 die_eq,
17554 NULL,
17555 &cu->comp_unit_obstack,
17556 hashtab_obstack_allocate,
17557 dummy_obstack_deallocate);
17558
17559 if (has_children)
17560 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
17561 &info_ptr, comp_unit_die);
17562 cu->dies = comp_unit_die;
17563 /* comp_unit_die is not stored in die_hash, no need. */
17564
17565 /* We try not to read any attributes in this function, because not
17566 all CUs needed for references have been loaded yet, and symbol
17567 table processing isn't initialized. But we have to set the CU language,
17568 or we won't be able to build types correctly.
17569 Similarly, if we do not read the producer, we can not apply
17570 producer-specific interpretation. */
17571 prepare_one_comp_unit (cu, cu->dies, language_minimal);
17572 }
17573
17574 /* Read in a signatured type and build its CU and DIEs.
17575 If the type is a stub for the real type in a DWO file,
17576 read in the real type from the DWO file as well. */
17577
17578 static void
17579 read_signatured_type (struct signatured_type *sig_type)
17580 {
17581 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
17582
17583 gdb_assert (per_cu->is_debug_types);
17584 gdb_assert (per_cu->cu == NULL);
17585
17586 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
17587 read_signatured_type_reader, NULL);
17588 }
17589
17590 /* Decode simple location descriptions.
17591 Given a pointer to a dwarf block that defines a location, compute
17592 the location and return the value.
17593
17594 NOTE drow/2003-11-18: This function is called in two situations
17595 now: for the address of static or global variables (partial symbols
17596 only) and for offsets into structures which are expected to be
17597 (more or less) constant. The partial symbol case should go away,
17598 and only the constant case should remain. That will let this
17599 function complain more accurately. A few special modes are allowed
17600 without complaint for global variables (for instance, global
17601 register values and thread-local values).
17602
17603 A location description containing no operations indicates that the
17604 object is optimized out. The return value is 0 for that case.
17605 FIXME drow/2003-11-16: No callers check for this case any more; soon all
17606 callers will only want a very basic result and this can become a
17607 complaint.
17608
17609 Note that stack[0] is unused except as a default error return. */
17610
17611 static CORE_ADDR
17612 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
17613 {
17614 struct objfile *objfile = cu->objfile;
17615 size_t i;
17616 size_t size = blk->size;
17617 gdb_byte *data = blk->data;
17618 CORE_ADDR stack[64];
17619 int stacki;
17620 unsigned int bytes_read, unsnd;
17621 gdb_byte op;
17622
17623 i = 0;
17624 stacki = 0;
17625 stack[stacki] = 0;
17626 stack[++stacki] = 0;
17627
17628 while (i < size)
17629 {
17630 op = data[i++];
17631 switch (op)
17632 {
17633 case DW_OP_lit0:
17634 case DW_OP_lit1:
17635 case DW_OP_lit2:
17636 case DW_OP_lit3:
17637 case DW_OP_lit4:
17638 case DW_OP_lit5:
17639 case DW_OP_lit6:
17640 case DW_OP_lit7:
17641 case DW_OP_lit8:
17642 case DW_OP_lit9:
17643 case DW_OP_lit10:
17644 case DW_OP_lit11:
17645 case DW_OP_lit12:
17646 case DW_OP_lit13:
17647 case DW_OP_lit14:
17648 case DW_OP_lit15:
17649 case DW_OP_lit16:
17650 case DW_OP_lit17:
17651 case DW_OP_lit18:
17652 case DW_OP_lit19:
17653 case DW_OP_lit20:
17654 case DW_OP_lit21:
17655 case DW_OP_lit22:
17656 case DW_OP_lit23:
17657 case DW_OP_lit24:
17658 case DW_OP_lit25:
17659 case DW_OP_lit26:
17660 case DW_OP_lit27:
17661 case DW_OP_lit28:
17662 case DW_OP_lit29:
17663 case DW_OP_lit30:
17664 case DW_OP_lit31:
17665 stack[++stacki] = op - DW_OP_lit0;
17666 break;
17667
17668 case DW_OP_reg0:
17669 case DW_OP_reg1:
17670 case DW_OP_reg2:
17671 case DW_OP_reg3:
17672 case DW_OP_reg4:
17673 case DW_OP_reg5:
17674 case DW_OP_reg6:
17675 case DW_OP_reg7:
17676 case DW_OP_reg8:
17677 case DW_OP_reg9:
17678 case DW_OP_reg10:
17679 case DW_OP_reg11:
17680 case DW_OP_reg12:
17681 case DW_OP_reg13:
17682 case DW_OP_reg14:
17683 case DW_OP_reg15:
17684 case DW_OP_reg16:
17685 case DW_OP_reg17:
17686 case DW_OP_reg18:
17687 case DW_OP_reg19:
17688 case DW_OP_reg20:
17689 case DW_OP_reg21:
17690 case DW_OP_reg22:
17691 case DW_OP_reg23:
17692 case DW_OP_reg24:
17693 case DW_OP_reg25:
17694 case DW_OP_reg26:
17695 case DW_OP_reg27:
17696 case DW_OP_reg28:
17697 case DW_OP_reg29:
17698 case DW_OP_reg30:
17699 case DW_OP_reg31:
17700 stack[++stacki] = op - DW_OP_reg0;
17701 if (i < size)
17702 dwarf2_complex_location_expr_complaint ();
17703 break;
17704
17705 case DW_OP_regx:
17706 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
17707 i += bytes_read;
17708 stack[++stacki] = unsnd;
17709 if (i < size)
17710 dwarf2_complex_location_expr_complaint ();
17711 break;
17712
17713 case DW_OP_addr:
17714 stack[++stacki] = read_address (objfile->obfd, &data[i],
17715 cu, &bytes_read);
17716 i += bytes_read;
17717 break;
17718
17719 case DW_OP_const1u:
17720 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
17721 i += 1;
17722 break;
17723
17724 case DW_OP_const1s:
17725 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
17726 i += 1;
17727 break;
17728
17729 case DW_OP_const2u:
17730 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
17731 i += 2;
17732 break;
17733
17734 case DW_OP_const2s:
17735 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
17736 i += 2;
17737 break;
17738
17739 case DW_OP_const4u:
17740 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
17741 i += 4;
17742 break;
17743
17744 case DW_OP_const4s:
17745 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
17746 i += 4;
17747 break;
17748
17749 case DW_OP_const8u:
17750 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
17751 i += 8;
17752 break;
17753
17754 case DW_OP_constu:
17755 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
17756 &bytes_read);
17757 i += bytes_read;
17758 break;
17759
17760 case DW_OP_consts:
17761 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
17762 i += bytes_read;
17763 break;
17764
17765 case DW_OP_dup:
17766 stack[stacki + 1] = stack[stacki];
17767 stacki++;
17768 break;
17769
17770 case DW_OP_plus:
17771 stack[stacki - 1] += stack[stacki];
17772 stacki--;
17773 break;
17774
17775 case DW_OP_plus_uconst:
17776 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
17777 &bytes_read);
17778 i += bytes_read;
17779 break;
17780
17781 case DW_OP_minus:
17782 stack[stacki - 1] -= stack[stacki];
17783 stacki--;
17784 break;
17785
17786 case DW_OP_deref:
17787 /* If we're not the last op, then we definitely can't encode
17788 this using GDB's address_class enum. This is valid for partial
17789 global symbols, although the variable's address will be bogus
17790 in the psymtab. */
17791 if (i < size)
17792 dwarf2_complex_location_expr_complaint ();
17793 break;
17794
17795 case DW_OP_GNU_push_tls_address:
17796 /* The top of the stack has the offset from the beginning
17797 of the thread control block at which the variable is located. */
17798 /* Nothing should follow this operator, so the top of stack would
17799 be returned. */
17800 /* This is valid for partial global symbols, but the variable's
17801 address will be bogus in the psymtab. Make it always at least
17802 non-zero to not look as a variable garbage collected by linker
17803 which have DW_OP_addr 0. */
17804 if (i < size)
17805 dwarf2_complex_location_expr_complaint ();
17806 stack[stacki]++;
17807 break;
17808
17809 case DW_OP_GNU_uninit:
17810 break;
17811
17812 case DW_OP_GNU_addr_index:
17813 case DW_OP_GNU_const_index:
17814 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
17815 &bytes_read);
17816 i += bytes_read;
17817 break;
17818
17819 default:
17820 {
17821 const char *name = get_DW_OP_name (op);
17822
17823 if (name)
17824 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
17825 name);
17826 else
17827 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
17828 op);
17829 }
17830
17831 return (stack[stacki]);
17832 }
17833
17834 /* Enforce maximum stack depth of SIZE-1 to avoid writing
17835 outside of the allocated space. Also enforce minimum>0. */
17836 if (stacki >= ARRAY_SIZE (stack) - 1)
17837 {
17838 complaint (&symfile_complaints,
17839 _("location description stack overflow"));
17840 return 0;
17841 }
17842
17843 if (stacki <= 0)
17844 {
17845 complaint (&symfile_complaints,
17846 _("location description stack underflow"));
17847 return 0;
17848 }
17849 }
17850 return (stack[stacki]);
17851 }
17852
17853 /* memory allocation interface */
17854
17855 static struct dwarf_block *
17856 dwarf_alloc_block (struct dwarf2_cu *cu)
17857 {
17858 struct dwarf_block *blk;
17859
17860 blk = (struct dwarf_block *)
17861 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
17862 return (blk);
17863 }
17864
17865 static struct die_info *
17866 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
17867 {
17868 struct die_info *die;
17869 size_t size = sizeof (struct die_info);
17870
17871 if (num_attrs > 1)
17872 size += (num_attrs - 1) * sizeof (struct attribute);
17873
17874 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
17875 memset (die, 0, sizeof (struct die_info));
17876 return (die);
17877 }
17878
17879 \f
17880 /* Macro support. */
17881
17882 /* Return the full name of file number I in *LH's file name table.
17883 Use COMP_DIR as the name of the current directory of the
17884 compilation. The result is allocated using xmalloc; the caller is
17885 responsible for freeing it. */
17886 static char *
17887 file_full_name (int file, struct line_header *lh, const char *comp_dir)
17888 {
17889 /* Is the file number a valid index into the line header's file name
17890 table? Remember that file numbers start with one, not zero. */
17891 if (1 <= file && file <= lh->num_file_names)
17892 {
17893 struct file_entry *fe = &lh->file_names[file - 1];
17894
17895 if (IS_ABSOLUTE_PATH (fe->name))
17896 return xstrdup (fe->name);
17897 else
17898 {
17899 const char *dir;
17900 int dir_len;
17901 char *full_name;
17902
17903 if (fe->dir_index)
17904 dir = lh->include_dirs[fe->dir_index - 1];
17905 else
17906 dir = comp_dir;
17907
17908 if (dir)
17909 {
17910 dir_len = strlen (dir);
17911 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
17912 strcpy (full_name, dir);
17913 full_name[dir_len] = '/';
17914 strcpy (full_name + dir_len + 1, fe->name);
17915 return full_name;
17916 }
17917 else
17918 return xstrdup (fe->name);
17919 }
17920 }
17921 else
17922 {
17923 /* The compiler produced a bogus file number. We can at least
17924 record the macro definitions made in the file, even if we
17925 won't be able to find the file by name. */
17926 char fake_name[80];
17927
17928 xsnprintf (fake_name, sizeof (fake_name),
17929 "<bad macro file number %d>", file);
17930
17931 complaint (&symfile_complaints,
17932 _("bad file number in macro information (%d)"),
17933 file);
17934
17935 return xstrdup (fake_name);
17936 }
17937 }
17938
17939
17940 static struct macro_source_file *
17941 macro_start_file (int file, int line,
17942 struct macro_source_file *current_file,
17943 const char *comp_dir,
17944 struct line_header *lh, struct objfile *objfile)
17945 {
17946 /* The full name of this source file. */
17947 char *full_name = file_full_name (file, lh, comp_dir);
17948
17949 /* We don't create a macro table for this compilation unit
17950 at all until we actually get a filename. */
17951 if (! pending_macros)
17952 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
17953 objfile->per_bfd->macro_cache);
17954
17955 if (! current_file)
17956 {
17957 /* If we have no current file, then this must be the start_file
17958 directive for the compilation unit's main source file. */
17959 current_file = macro_set_main (pending_macros, full_name);
17960 macro_define_special (pending_macros);
17961 }
17962 else
17963 current_file = macro_include (current_file, line, full_name);
17964
17965 xfree (full_name);
17966
17967 return current_file;
17968 }
17969
17970
17971 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
17972 followed by a null byte. */
17973 static char *
17974 copy_string (const char *buf, int len)
17975 {
17976 char *s = xmalloc (len + 1);
17977
17978 memcpy (s, buf, len);
17979 s[len] = '\0';
17980 return s;
17981 }
17982
17983
17984 static const char *
17985 consume_improper_spaces (const char *p, const char *body)
17986 {
17987 if (*p == ' ')
17988 {
17989 complaint (&symfile_complaints,
17990 _("macro definition contains spaces "
17991 "in formal argument list:\n`%s'"),
17992 body);
17993
17994 while (*p == ' ')
17995 p++;
17996 }
17997
17998 return p;
17999 }
18000
18001
18002 static void
18003 parse_macro_definition (struct macro_source_file *file, int line,
18004 const char *body)
18005 {
18006 const char *p;
18007
18008 /* The body string takes one of two forms. For object-like macro
18009 definitions, it should be:
18010
18011 <macro name> " " <definition>
18012
18013 For function-like macro definitions, it should be:
18014
18015 <macro name> "() " <definition>
18016 or
18017 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18018
18019 Spaces may appear only where explicitly indicated, and in the
18020 <definition>.
18021
18022 The Dwarf 2 spec says that an object-like macro's name is always
18023 followed by a space, but versions of GCC around March 2002 omit
18024 the space when the macro's definition is the empty string.
18025
18026 The Dwarf 2 spec says that there should be no spaces between the
18027 formal arguments in a function-like macro's formal argument list,
18028 but versions of GCC around March 2002 include spaces after the
18029 commas. */
18030
18031
18032 /* Find the extent of the macro name. The macro name is terminated
18033 by either a space or null character (for an object-like macro) or
18034 an opening paren (for a function-like macro). */
18035 for (p = body; *p; p++)
18036 if (*p == ' ' || *p == '(')
18037 break;
18038
18039 if (*p == ' ' || *p == '\0')
18040 {
18041 /* It's an object-like macro. */
18042 int name_len = p - body;
18043 char *name = copy_string (body, name_len);
18044 const char *replacement;
18045
18046 if (*p == ' ')
18047 replacement = body + name_len + 1;
18048 else
18049 {
18050 dwarf2_macro_malformed_definition_complaint (body);
18051 replacement = body + name_len;
18052 }
18053
18054 macro_define_object (file, line, name, replacement);
18055
18056 xfree (name);
18057 }
18058 else if (*p == '(')
18059 {
18060 /* It's a function-like macro. */
18061 char *name = copy_string (body, p - body);
18062 int argc = 0;
18063 int argv_size = 1;
18064 char **argv = xmalloc (argv_size * sizeof (*argv));
18065
18066 p++;
18067
18068 p = consume_improper_spaces (p, body);
18069
18070 /* Parse the formal argument list. */
18071 while (*p && *p != ')')
18072 {
18073 /* Find the extent of the current argument name. */
18074 const char *arg_start = p;
18075
18076 while (*p && *p != ',' && *p != ')' && *p != ' ')
18077 p++;
18078
18079 if (! *p || p == arg_start)
18080 dwarf2_macro_malformed_definition_complaint (body);
18081 else
18082 {
18083 /* Make sure argv has room for the new argument. */
18084 if (argc >= argv_size)
18085 {
18086 argv_size *= 2;
18087 argv = xrealloc (argv, argv_size * sizeof (*argv));
18088 }
18089
18090 argv[argc++] = copy_string (arg_start, p - arg_start);
18091 }
18092
18093 p = consume_improper_spaces (p, body);
18094
18095 /* Consume the comma, if present. */
18096 if (*p == ',')
18097 {
18098 p++;
18099
18100 p = consume_improper_spaces (p, body);
18101 }
18102 }
18103
18104 if (*p == ')')
18105 {
18106 p++;
18107
18108 if (*p == ' ')
18109 /* Perfectly formed definition, no complaints. */
18110 macro_define_function (file, line, name,
18111 argc, (const char **) argv,
18112 p + 1);
18113 else if (*p == '\0')
18114 {
18115 /* Complain, but do define it. */
18116 dwarf2_macro_malformed_definition_complaint (body);
18117 macro_define_function (file, line, name,
18118 argc, (const char **) argv,
18119 p);
18120 }
18121 else
18122 /* Just complain. */
18123 dwarf2_macro_malformed_definition_complaint (body);
18124 }
18125 else
18126 /* Just complain. */
18127 dwarf2_macro_malformed_definition_complaint (body);
18128
18129 xfree (name);
18130 {
18131 int i;
18132
18133 for (i = 0; i < argc; i++)
18134 xfree (argv[i]);
18135 }
18136 xfree (argv);
18137 }
18138 else
18139 dwarf2_macro_malformed_definition_complaint (body);
18140 }
18141
18142 /* Skip some bytes from BYTES according to the form given in FORM.
18143 Returns the new pointer. */
18144
18145 static gdb_byte *
18146 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
18147 enum dwarf_form form,
18148 unsigned int offset_size,
18149 struct dwarf2_section_info *section)
18150 {
18151 unsigned int bytes_read;
18152
18153 switch (form)
18154 {
18155 case DW_FORM_data1:
18156 case DW_FORM_flag:
18157 ++bytes;
18158 break;
18159
18160 case DW_FORM_data2:
18161 bytes += 2;
18162 break;
18163
18164 case DW_FORM_data4:
18165 bytes += 4;
18166 break;
18167
18168 case DW_FORM_data8:
18169 bytes += 8;
18170 break;
18171
18172 case DW_FORM_string:
18173 read_direct_string (abfd, bytes, &bytes_read);
18174 bytes += bytes_read;
18175 break;
18176
18177 case DW_FORM_sec_offset:
18178 case DW_FORM_strp:
18179 case DW_FORM_GNU_strp_alt:
18180 bytes += offset_size;
18181 break;
18182
18183 case DW_FORM_block:
18184 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18185 bytes += bytes_read;
18186 break;
18187
18188 case DW_FORM_block1:
18189 bytes += 1 + read_1_byte (abfd, bytes);
18190 break;
18191 case DW_FORM_block2:
18192 bytes += 2 + read_2_bytes (abfd, bytes);
18193 break;
18194 case DW_FORM_block4:
18195 bytes += 4 + read_4_bytes (abfd, bytes);
18196 break;
18197
18198 case DW_FORM_sdata:
18199 case DW_FORM_udata:
18200 case DW_FORM_GNU_addr_index:
18201 case DW_FORM_GNU_str_index:
18202 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
18203 if (bytes == NULL)
18204 {
18205 dwarf2_section_buffer_overflow_complaint (section);
18206 return NULL;
18207 }
18208 break;
18209
18210 default:
18211 {
18212 complain:
18213 complaint (&symfile_complaints,
18214 _("invalid form 0x%x in `%s'"),
18215 form,
18216 section->asection->name);
18217 return NULL;
18218 }
18219 }
18220
18221 return bytes;
18222 }
18223
18224 /* A helper for dwarf_decode_macros that handles skipping an unknown
18225 opcode. Returns an updated pointer to the macro data buffer; or,
18226 on error, issues a complaint and returns NULL. */
18227
18228 static gdb_byte *
18229 skip_unknown_opcode (unsigned int opcode,
18230 gdb_byte **opcode_definitions,
18231 gdb_byte *mac_ptr, gdb_byte *mac_end,
18232 bfd *abfd,
18233 unsigned int offset_size,
18234 struct dwarf2_section_info *section)
18235 {
18236 unsigned int bytes_read, i;
18237 unsigned long arg;
18238 gdb_byte *defn;
18239
18240 if (opcode_definitions[opcode] == NULL)
18241 {
18242 complaint (&symfile_complaints,
18243 _("unrecognized DW_MACFINO opcode 0x%x"),
18244 opcode);
18245 return NULL;
18246 }
18247
18248 defn = opcode_definitions[opcode];
18249 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18250 defn += bytes_read;
18251
18252 for (i = 0; i < arg; ++i)
18253 {
18254 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18255 section);
18256 if (mac_ptr == NULL)
18257 {
18258 /* skip_form_bytes already issued the complaint. */
18259 return NULL;
18260 }
18261 }
18262
18263 return mac_ptr;
18264 }
18265
18266 /* A helper function which parses the header of a macro section.
18267 If the macro section is the extended (for now called "GNU") type,
18268 then this updates *OFFSET_SIZE. Returns a pointer to just after
18269 the header, or issues a complaint and returns NULL on error. */
18270
18271 static gdb_byte *
18272 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
18273 bfd *abfd,
18274 gdb_byte *mac_ptr,
18275 unsigned int *offset_size,
18276 int section_is_gnu)
18277 {
18278 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
18279
18280 if (section_is_gnu)
18281 {
18282 unsigned int version, flags;
18283
18284 version = read_2_bytes (abfd, mac_ptr);
18285 if (version != 4)
18286 {
18287 complaint (&symfile_complaints,
18288 _("unrecognized version `%d' in .debug_macro section"),
18289 version);
18290 return NULL;
18291 }
18292 mac_ptr += 2;
18293
18294 flags = read_1_byte (abfd, mac_ptr);
18295 ++mac_ptr;
18296 *offset_size = (flags & 1) ? 8 : 4;
18297
18298 if ((flags & 2) != 0)
18299 /* We don't need the line table offset. */
18300 mac_ptr += *offset_size;
18301
18302 /* Vendor opcode descriptions. */
18303 if ((flags & 4) != 0)
18304 {
18305 unsigned int i, count;
18306
18307 count = read_1_byte (abfd, mac_ptr);
18308 ++mac_ptr;
18309 for (i = 0; i < count; ++i)
18310 {
18311 unsigned int opcode, bytes_read;
18312 unsigned long arg;
18313
18314 opcode = read_1_byte (abfd, mac_ptr);
18315 ++mac_ptr;
18316 opcode_definitions[opcode] = mac_ptr;
18317 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18318 mac_ptr += bytes_read;
18319 mac_ptr += arg;
18320 }
18321 }
18322 }
18323
18324 return mac_ptr;
18325 }
18326
18327 /* A helper for dwarf_decode_macros that handles the GNU extensions,
18328 including DW_MACRO_GNU_transparent_include. */
18329
18330 static void
18331 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
18332 struct macro_source_file *current_file,
18333 struct line_header *lh, char *comp_dir,
18334 struct dwarf2_section_info *section,
18335 int section_is_gnu, int section_is_dwz,
18336 unsigned int offset_size,
18337 struct objfile *objfile,
18338 htab_t include_hash)
18339 {
18340 enum dwarf_macro_record_type macinfo_type;
18341 int at_commandline;
18342 gdb_byte *opcode_definitions[256];
18343
18344 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18345 &offset_size, section_is_gnu);
18346 if (mac_ptr == NULL)
18347 {
18348 /* We already issued a complaint. */
18349 return;
18350 }
18351
18352 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18353 GDB is still reading the definitions from command line. First
18354 DW_MACINFO_start_file will need to be ignored as it was already executed
18355 to create CURRENT_FILE for the main source holding also the command line
18356 definitions. On first met DW_MACINFO_start_file this flag is reset to
18357 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18358
18359 at_commandline = 1;
18360
18361 do
18362 {
18363 /* Do we at least have room for a macinfo type byte? */
18364 if (mac_ptr >= mac_end)
18365 {
18366 dwarf2_section_buffer_overflow_complaint (section);
18367 break;
18368 }
18369
18370 macinfo_type = read_1_byte (abfd, mac_ptr);
18371 mac_ptr++;
18372
18373 /* Note that we rely on the fact that the corresponding GNU and
18374 DWARF constants are the same. */
18375 switch (macinfo_type)
18376 {
18377 /* A zero macinfo type indicates the end of the macro
18378 information. */
18379 case 0:
18380 break;
18381
18382 case DW_MACRO_GNU_define:
18383 case DW_MACRO_GNU_undef:
18384 case DW_MACRO_GNU_define_indirect:
18385 case DW_MACRO_GNU_undef_indirect:
18386 case DW_MACRO_GNU_define_indirect_alt:
18387 case DW_MACRO_GNU_undef_indirect_alt:
18388 {
18389 unsigned int bytes_read;
18390 int line;
18391 char *body;
18392 int is_define;
18393
18394 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18395 mac_ptr += bytes_read;
18396
18397 if (macinfo_type == DW_MACRO_GNU_define
18398 || macinfo_type == DW_MACRO_GNU_undef)
18399 {
18400 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18401 mac_ptr += bytes_read;
18402 }
18403 else
18404 {
18405 LONGEST str_offset;
18406
18407 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18408 mac_ptr += offset_size;
18409
18410 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
18411 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18412 || section_is_dwz)
18413 {
18414 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18415
18416 body = read_indirect_string_from_dwz (dwz, str_offset);
18417 }
18418 else
18419 body = read_indirect_string_at_offset (abfd, str_offset);
18420 }
18421
18422 is_define = (macinfo_type == DW_MACRO_GNU_define
18423 || macinfo_type == DW_MACRO_GNU_define_indirect
18424 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
18425 if (! current_file)
18426 {
18427 /* DWARF violation as no main source is present. */
18428 complaint (&symfile_complaints,
18429 _("debug info with no main source gives macro %s "
18430 "on line %d: %s"),
18431 is_define ? _("definition") : _("undefinition"),
18432 line, body);
18433 break;
18434 }
18435 if ((line == 0 && !at_commandline)
18436 || (line != 0 && at_commandline))
18437 complaint (&symfile_complaints,
18438 _("debug info gives %s macro %s with %s line %d: %s"),
18439 at_commandline ? _("command-line") : _("in-file"),
18440 is_define ? _("definition") : _("undefinition"),
18441 line == 0 ? _("zero") : _("non-zero"), line, body);
18442
18443 if (is_define)
18444 parse_macro_definition (current_file, line, body);
18445 else
18446 {
18447 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
18448 || macinfo_type == DW_MACRO_GNU_undef_indirect
18449 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
18450 macro_undef (current_file, line, body);
18451 }
18452 }
18453 break;
18454
18455 case DW_MACRO_GNU_start_file:
18456 {
18457 unsigned int bytes_read;
18458 int line, file;
18459
18460 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18461 mac_ptr += bytes_read;
18462 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18463 mac_ptr += bytes_read;
18464
18465 if ((line == 0 && !at_commandline)
18466 || (line != 0 && at_commandline))
18467 complaint (&symfile_complaints,
18468 _("debug info gives source %d included "
18469 "from %s at %s line %d"),
18470 file, at_commandline ? _("command-line") : _("file"),
18471 line == 0 ? _("zero") : _("non-zero"), line);
18472
18473 if (at_commandline)
18474 {
18475 /* This DW_MACRO_GNU_start_file was executed in the
18476 pass one. */
18477 at_commandline = 0;
18478 }
18479 else
18480 current_file = macro_start_file (file, line,
18481 current_file, comp_dir,
18482 lh, objfile);
18483 }
18484 break;
18485
18486 case DW_MACRO_GNU_end_file:
18487 if (! current_file)
18488 complaint (&symfile_complaints,
18489 _("macro debug info has an unmatched "
18490 "`close_file' directive"));
18491 else
18492 {
18493 current_file = current_file->included_by;
18494 if (! current_file)
18495 {
18496 enum dwarf_macro_record_type next_type;
18497
18498 /* GCC circa March 2002 doesn't produce the zero
18499 type byte marking the end of the compilation
18500 unit. Complain if it's not there, but exit no
18501 matter what. */
18502
18503 /* Do we at least have room for a macinfo type byte? */
18504 if (mac_ptr >= mac_end)
18505 {
18506 dwarf2_section_buffer_overflow_complaint (section);
18507 return;
18508 }
18509
18510 /* We don't increment mac_ptr here, so this is just
18511 a look-ahead. */
18512 next_type = read_1_byte (abfd, mac_ptr);
18513 if (next_type != 0)
18514 complaint (&symfile_complaints,
18515 _("no terminating 0-type entry for "
18516 "macros in `.debug_macinfo' section"));
18517
18518 return;
18519 }
18520 }
18521 break;
18522
18523 case DW_MACRO_GNU_transparent_include:
18524 case DW_MACRO_GNU_transparent_include_alt:
18525 {
18526 LONGEST offset;
18527 void **slot;
18528 bfd *include_bfd = abfd;
18529 struct dwarf2_section_info *include_section = section;
18530 struct dwarf2_section_info alt_section;
18531 gdb_byte *include_mac_end = mac_end;
18532 int is_dwz = section_is_dwz;
18533 gdb_byte *new_mac_ptr;
18534
18535 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18536 mac_ptr += offset_size;
18537
18538 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18539 {
18540 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18541
18542 dwarf2_read_section (dwarf2_per_objfile->objfile,
18543 &dwz->macro);
18544
18545 include_bfd = dwz->macro.asection->owner;
18546 include_section = &dwz->macro;
18547 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18548 is_dwz = 1;
18549 }
18550
18551 new_mac_ptr = include_section->buffer + offset;
18552 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18553
18554 if (*slot != NULL)
18555 {
18556 /* This has actually happened; see
18557 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18558 complaint (&symfile_complaints,
18559 _("recursive DW_MACRO_GNU_transparent_include in "
18560 ".debug_macro section"));
18561 }
18562 else
18563 {
18564 *slot = new_mac_ptr;
18565
18566 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
18567 include_mac_end, current_file,
18568 lh, comp_dir,
18569 section, section_is_gnu, is_dwz,
18570 offset_size, objfile, include_hash);
18571
18572 htab_remove_elt (include_hash, new_mac_ptr);
18573 }
18574 }
18575 break;
18576
18577 case DW_MACINFO_vendor_ext:
18578 if (!section_is_gnu)
18579 {
18580 unsigned int bytes_read;
18581 int constant;
18582
18583 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18584 mac_ptr += bytes_read;
18585 read_direct_string (abfd, mac_ptr, &bytes_read);
18586 mac_ptr += bytes_read;
18587
18588 /* We don't recognize any vendor extensions. */
18589 break;
18590 }
18591 /* FALLTHROUGH */
18592
18593 default:
18594 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18595 mac_ptr, mac_end, abfd, offset_size,
18596 section);
18597 if (mac_ptr == NULL)
18598 return;
18599 break;
18600 }
18601 } while (macinfo_type != 0);
18602 }
18603
18604 static void
18605 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
18606 char *comp_dir, int section_is_gnu)
18607 {
18608 struct objfile *objfile = dwarf2_per_objfile->objfile;
18609 struct line_header *lh = cu->line_header;
18610 bfd *abfd;
18611 gdb_byte *mac_ptr, *mac_end;
18612 struct macro_source_file *current_file = 0;
18613 enum dwarf_macro_record_type macinfo_type;
18614 unsigned int offset_size = cu->header.offset_size;
18615 gdb_byte *opcode_definitions[256];
18616 struct cleanup *cleanup;
18617 htab_t include_hash;
18618 void **slot;
18619 struct dwarf2_section_info *section;
18620 const char *section_name;
18621
18622 if (cu->dwo_unit != NULL)
18623 {
18624 if (section_is_gnu)
18625 {
18626 section = &cu->dwo_unit->dwo_file->sections.macro;
18627 section_name = ".debug_macro.dwo";
18628 }
18629 else
18630 {
18631 section = &cu->dwo_unit->dwo_file->sections.macinfo;
18632 section_name = ".debug_macinfo.dwo";
18633 }
18634 }
18635 else
18636 {
18637 if (section_is_gnu)
18638 {
18639 section = &dwarf2_per_objfile->macro;
18640 section_name = ".debug_macro";
18641 }
18642 else
18643 {
18644 section = &dwarf2_per_objfile->macinfo;
18645 section_name = ".debug_macinfo";
18646 }
18647 }
18648
18649 dwarf2_read_section (objfile, section);
18650 if (section->buffer == NULL)
18651 {
18652 complaint (&symfile_complaints, _("missing %s section"), section_name);
18653 return;
18654 }
18655 abfd = section->asection->owner;
18656
18657 /* First pass: Find the name of the base filename.
18658 This filename is needed in order to process all macros whose definition
18659 (or undefinition) comes from the command line. These macros are defined
18660 before the first DW_MACINFO_start_file entry, and yet still need to be
18661 associated to the base file.
18662
18663 To determine the base file name, we scan the macro definitions until we
18664 reach the first DW_MACINFO_start_file entry. We then initialize
18665 CURRENT_FILE accordingly so that any macro definition found before the
18666 first DW_MACINFO_start_file can still be associated to the base file. */
18667
18668 mac_ptr = section->buffer + offset;
18669 mac_end = section->buffer + section->size;
18670
18671 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18672 &offset_size, section_is_gnu);
18673 if (mac_ptr == NULL)
18674 {
18675 /* We already issued a complaint. */
18676 return;
18677 }
18678
18679 do
18680 {
18681 /* Do we at least have room for a macinfo type byte? */
18682 if (mac_ptr >= mac_end)
18683 {
18684 /* Complaint is printed during the second pass as GDB will probably
18685 stop the first pass earlier upon finding
18686 DW_MACINFO_start_file. */
18687 break;
18688 }
18689
18690 macinfo_type = read_1_byte (abfd, mac_ptr);
18691 mac_ptr++;
18692
18693 /* Note that we rely on the fact that the corresponding GNU and
18694 DWARF constants are the same. */
18695 switch (macinfo_type)
18696 {
18697 /* A zero macinfo type indicates the end of the macro
18698 information. */
18699 case 0:
18700 break;
18701
18702 case DW_MACRO_GNU_define:
18703 case DW_MACRO_GNU_undef:
18704 /* Only skip the data by MAC_PTR. */
18705 {
18706 unsigned int bytes_read;
18707
18708 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18709 mac_ptr += bytes_read;
18710 read_direct_string (abfd, mac_ptr, &bytes_read);
18711 mac_ptr += bytes_read;
18712 }
18713 break;
18714
18715 case DW_MACRO_GNU_start_file:
18716 {
18717 unsigned int bytes_read;
18718 int line, file;
18719
18720 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18721 mac_ptr += bytes_read;
18722 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18723 mac_ptr += bytes_read;
18724
18725 current_file = macro_start_file (file, line, current_file,
18726 comp_dir, lh, objfile);
18727 }
18728 break;
18729
18730 case DW_MACRO_GNU_end_file:
18731 /* No data to skip by MAC_PTR. */
18732 break;
18733
18734 case DW_MACRO_GNU_define_indirect:
18735 case DW_MACRO_GNU_undef_indirect:
18736 case DW_MACRO_GNU_define_indirect_alt:
18737 case DW_MACRO_GNU_undef_indirect_alt:
18738 {
18739 unsigned int bytes_read;
18740
18741 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18742 mac_ptr += bytes_read;
18743 mac_ptr += offset_size;
18744 }
18745 break;
18746
18747 case DW_MACRO_GNU_transparent_include:
18748 case DW_MACRO_GNU_transparent_include_alt:
18749 /* Note that, according to the spec, a transparent include
18750 chain cannot call DW_MACRO_GNU_start_file. So, we can just
18751 skip this opcode. */
18752 mac_ptr += offset_size;
18753 break;
18754
18755 case DW_MACINFO_vendor_ext:
18756 /* Only skip the data by MAC_PTR. */
18757 if (!section_is_gnu)
18758 {
18759 unsigned int bytes_read;
18760
18761 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18762 mac_ptr += bytes_read;
18763 read_direct_string (abfd, mac_ptr, &bytes_read);
18764 mac_ptr += bytes_read;
18765 }
18766 /* FALLTHROUGH */
18767
18768 default:
18769 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18770 mac_ptr, mac_end, abfd, offset_size,
18771 section);
18772 if (mac_ptr == NULL)
18773 return;
18774 break;
18775 }
18776 } while (macinfo_type != 0 && current_file == NULL);
18777
18778 /* Second pass: Process all entries.
18779
18780 Use the AT_COMMAND_LINE flag to determine whether we are still processing
18781 command-line macro definitions/undefinitions. This flag is unset when we
18782 reach the first DW_MACINFO_start_file entry. */
18783
18784 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
18785 NULL, xcalloc, xfree);
18786 cleanup = make_cleanup_htab_delete (include_hash);
18787 mac_ptr = section->buffer + offset;
18788 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
18789 *slot = mac_ptr;
18790 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
18791 current_file, lh, comp_dir, section,
18792 section_is_gnu, 0,
18793 offset_size, objfile, include_hash);
18794 do_cleanups (cleanup);
18795 }
18796
18797 /* Check if the attribute's form is a DW_FORM_block*
18798 if so return true else false. */
18799
18800 static int
18801 attr_form_is_block (struct attribute *attr)
18802 {
18803 return (attr == NULL ? 0 :
18804 attr->form == DW_FORM_block1
18805 || attr->form == DW_FORM_block2
18806 || attr->form == DW_FORM_block4
18807 || attr->form == DW_FORM_block
18808 || attr->form == DW_FORM_exprloc);
18809 }
18810
18811 /* Return non-zero if ATTR's value is a section offset --- classes
18812 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
18813 You may use DW_UNSND (attr) to retrieve such offsets.
18814
18815 Section 7.5.4, "Attribute Encodings", explains that no attribute
18816 may have a value that belongs to more than one of these classes; it
18817 would be ambiguous if we did, because we use the same forms for all
18818 of them. */
18819
18820 static int
18821 attr_form_is_section_offset (struct attribute *attr)
18822 {
18823 return (attr->form == DW_FORM_data4
18824 || attr->form == DW_FORM_data8
18825 || attr->form == DW_FORM_sec_offset);
18826 }
18827
18828 /* Return non-zero if ATTR's value falls in the 'constant' class, or
18829 zero otherwise. When this function returns true, you can apply
18830 dwarf2_get_attr_constant_value to it.
18831
18832 However, note that for some attributes you must check
18833 attr_form_is_section_offset before using this test. DW_FORM_data4
18834 and DW_FORM_data8 are members of both the constant class, and of
18835 the classes that contain offsets into other debug sections
18836 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
18837 that, if an attribute's can be either a constant or one of the
18838 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
18839 taken as section offsets, not constants. */
18840
18841 static int
18842 attr_form_is_constant (struct attribute *attr)
18843 {
18844 switch (attr->form)
18845 {
18846 case DW_FORM_sdata:
18847 case DW_FORM_udata:
18848 case DW_FORM_data1:
18849 case DW_FORM_data2:
18850 case DW_FORM_data4:
18851 case DW_FORM_data8:
18852 return 1;
18853 default:
18854 return 0;
18855 }
18856 }
18857
18858 /* Return the .debug_loc section to use for CU.
18859 For DWO files use .debug_loc.dwo. */
18860
18861 static struct dwarf2_section_info *
18862 cu_debug_loc_section (struct dwarf2_cu *cu)
18863 {
18864 if (cu->dwo_unit)
18865 return &cu->dwo_unit->dwo_file->sections.loc;
18866 return &dwarf2_per_objfile->loc;
18867 }
18868
18869 /* A helper function that fills in a dwarf2_loclist_baton. */
18870
18871 static void
18872 fill_in_loclist_baton (struct dwarf2_cu *cu,
18873 struct dwarf2_loclist_baton *baton,
18874 struct attribute *attr)
18875 {
18876 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18877
18878 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
18879
18880 baton->per_cu = cu->per_cu;
18881 gdb_assert (baton->per_cu);
18882 /* We don't know how long the location list is, but make sure we
18883 don't run off the edge of the section. */
18884 baton->size = section->size - DW_UNSND (attr);
18885 baton->data = section->buffer + DW_UNSND (attr);
18886 baton->base_address = cu->base_address;
18887 baton->from_dwo = cu->dwo_unit != NULL;
18888 }
18889
18890 static void
18891 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
18892 struct dwarf2_cu *cu)
18893 {
18894 struct objfile *objfile = dwarf2_per_objfile->objfile;
18895 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18896
18897 if (attr_form_is_section_offset (attr)
18898 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
18899 the section. If so, fall through to the complaint in the
18900 other branch. */
18901 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
18902 {
18903 struct dwarf2_loclist_baton *baton;
18904
18905 baton = obstack_alloc (&objfile->objfile_obstack,
18906 sizeof (struct dwarf2_loclist_baton));
18907
18908 fill_in_loclist_baton (cu, baton, attr);
18909
18910 if (cu->base_known == 0)
18911 complaint (&symfile_complaints,
18912 _("Location list used without "
18913 "specifying the CU base address."));
18914
18915 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
18916 SYMBOL_LOCATION_BATON (sym) = baton;
18917 }
18918 else
18919 {
18920 struct dwarf2_locexpr_baton *baton;
18921
18922 baton = obstack_alloc (&objfile->objfile_obstack,
18923 sizeof (struct dwarf2_locexpr_baton));
18924 baton->per_cu = cu->per_cu;
18925 gdb_assert (baton->per_cu);
18926
18927 if (attr_form_is_block (attr))
18928 {
18929 /* Note that we're just copying the block's data pointer
18930 here, not the actual data. We're still pointing into the
18931 info_buffer for SYM's objfile; right now we never release
18932 that buffer, but when we do clean up properly this may
18933 need to change. */
18934 baton->size = DW_BLOCK (attr)->size;
18935 baton->data = DW_BLOCK (attr)->data;
18936 }
18937 else
18938 {
18939 dwarf2_invalid_attrib_class_complaint ("location description",
18940 SYMBOL_NATURAL_NAME (sym));
18941 baton->size = 0;
18942 }
18943
18944 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
18945 SYMBOL_LOCATION_BATON (sym) = baton;
18946 }
18947 }
18948
18949 /* Return the OBJFILE associated with the compilation unit CU. If CU
18950 came from a separate debuginfo file, then the master objfile is
18951 returned. */
18952
18953 struct objfile *
18954 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
18955 {
18956 struct objfile *objfile = per_cu->objfile;
18957
18958 /* Return the master objfile, so that we can report and look up the
18959 correct file containing this variable. */
18960 if (objfile->separate_debug_objfile_backlink)
18961 objfile = objfile->separate_debug_objfile_backlink;
18962
18963 return objfile;
18964 }
18965
18966 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
18967 (CU_HEADERP is unused in such case) or prepare a temporary copy at
18968 CU_HEADERP first. */
18969
18970 static const struct comp_unit_head *
18971 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
18972 struct dwarf2_per_cu_data *per_cu)
18973 {
18974 gdb_byte *info_ptr;
18975
18976 if (per_cu->cu)
18977 return &per_cu->cu->header;
18978
18979 info_ptr = per_cu->info_or_types_section->buffer + per_cu->offset.sect_off;
18980
18981 memset (cu_headerp, 0, sizeof (*cu_headerp));
18982 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
18983
18984 return cu_headerp;
18985 }
18986
18987 /* Return the address size given in the compilation unit header for CU. */
18988
18989 int
18990 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
18991 {
18992 struct comp_unit_head cu_header_local;
18993 const struct comp_unit_head *cu_headerp;
18994
18995 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
18996
18997 return cu_headerp->addr_size;
18998 }
18999
19000 /* Return the offset size given in the compilation unit header for CU. */
19001
19002 int
19003 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19004 {
19005 struct comp_unit_head cu_header_local;
19006 const struct comp_unit_head *cu_headerp;
19007
19008 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19009
19010 return cu_headerp->offset_size;
19011 }
19012
19013 /* See its dwarf2loc.h declaration. */
19014
19015 int
19016 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19017 {
19018 struct comp_unit_head cu_header_local;
19019 const struct comp_unit_head *cu_headerp;
19020
19021 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19022
19023 if (cu_headerp->version == 2)
19024 return cu_headerp->addr_size;
19025 else
19026 return cu_headerp->offset_size;
19027 }
19028
19029 /* Return the text offset of the CU. The returned offset comes from
19030 this CU's objfile. If this objfile came from a separate debuginfo
19031 file, then the offset may be different from the corresponding
19032 offset in the parent objfile. */
19033
19034 CORE_ADDR
19035 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19036 {
19037 struct objfile *objfile = per_cu->objfile;
19038
19039 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19040 }
19041
19042 /* Locate the .debug_info compilation unit from CU's objfile which contains
19043 the DIE at OFFSET. Raises an error on failure. */
19044
19045 static struct dwarf2_per_cu_data *
19046 dwarf2_find_containing_comp_unit (sect_offset offset,
19047 unsigned int offset_in_dwz,
19048 struct objfile *objfile)
19049 {
19050 struct dwarf2_per_cu_data *this_cu;
19051 int low, high;
19052 const sect_offset *cu_off;
19053
19054 low = 0;
19055 high = dwarf2_per_objfile->n_comp_units - 1;
19056 while (high > low)
19057 {
19058 struct dwarf2_per_cu_data *mid_cu;
19059 int mid = low + (high - low) / 2;
19060
19061 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19062 cu_off = &mid_cu->offset;
19063 if (mid_cu->is_dwz > offset_in_dwz
19064 || (mid_cu->is_dwz == offset_in_dwz
19065 && cu_off->sect_off >= offset.sect_off))
19066 high = mid;
19067 else
19068 low = mid + 1;
19069 }
19070 gdb_assert (low == high);
19071 this_cu = dwarf2_per_objfile->all_comp_units[low];
19072 cu_off = &this_cu->offset;
19073 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
19074 {
19075 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
19076 error (_("Dwarf Error: could not find partial DIE containing "
19077 "offset 0x%lx [in module %s]"),
19078 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
19079
19080 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19081 <= offset.sect_off);
19082 return dwarf2_per_objfile->all_comp_units[low-1];
19083 }
19084 else
19085 {
19086 this_cu = dwarf2_per_objfile->all_comp_units[low];
19087 if (low == dwarf2_per_objfile->n_comp_units - 1
19088 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19089 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19090 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
19091 return this_cu;
19092 }
19093 }
19094
19095 /* Initialize dwarf2_cu CU, owned by PER_CU. */
19096
19097 static void
19098 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
19099 {
19100 memset (cu, 0, sizeof (*cu));
19101 per_cu->cu = cu;
19102 cu->per_cu = per_cu;
19103 cu->objfile = per_cu->objfile;
19104 obstack_init (&cu->comp_unit_obstack);
19105 }
19106
19107 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19108
19109 static void
19110 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19111 enum language pretend_language)
19112 {
19113 struct attribute *attr;
19114
19115 /* Set the language we're debugging. */
19116 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19117 if (attr)
19118 set_cu_language (DW_UNSND (attr), cu);
19119 else
19120 {
19121 cu->language = pretend_language;
19122 cu->language_defn = language_def (cu->language);
19123 }
19124
19125 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19126 if (attr)
19127 cu->producer = DW_STRING (attr);
19128 }
19129
19130 /* Release one cached compilation unit, CU. We unlink it from the tree
19131 of compilation units, but we don't remove it from the read_in_chain;
19132 the caller is responsible for that.
19133 NOTE: DATA is a void * because this function is also used as a
19134 cleanup routine. */
19135
19136 static void
19137 free_heap_comp_unit (void *data)
19138 {
19139 struct dwarf2_cu *cu = data;
19140
19141 gdb_assert (cu->per_cu != NULL);
19142 cu->per_cu->cu = NULL;
19143 cu->per_cu = NULL;
19144
19145 obstack_free (&cu->comp_unit_obstack, NULL);
19146
19147 xfree (cu);
19148 }
19149
19150 /* This cleanup function is passed the address of a dwarf2_cu on the stack
19151 when we're finished with it. We can't free the pointer itself, but be
19152 sure to unlink it from the cache. Also release any associated storage. */
19153
19154 static void
19155 free_stack_comp_unit (void *data)
19156 {
19157 struct dwarf2_cu *cu = data;
19158
19159 gdb_assert (cu->per_cu != NULL);
19160 cu->per_cu->cu = NULL;
19161 cu->per_cu = NULL;
19162
19163 obstack_free (&cu->comp_unit_obstack, NULL);
19164 cu->partial_dies = NULL;
19165 }
19166
19167 /* Free all cached compilation units. */
19168
19169 static void
19170 free_cached_comp_units (void *data)
19171 {
19172 struct dwarf2_per_cu_data *per_cu, **last_chain;
19173
19174 per_cu = dwarf2_per_objfile->read_in_chain;
19175 last_chain = &dwarf2_per_objfile->read_in_chain;
19176 while (per_cu != NULL)
19177 {
19178 struct dwarf2_per_cu_data *next_cu;
19179
19180 next_cu = per_cu->cu->read_in_chain;
19181
19182 free_heap_comp_unit (per_cu->cu);
19183 *last_chain = next_cu;
19184
19185 per_cu = next_cu;
19186 }
19187 }
19188
19189 /* Increase the age counter on each cached compilation unit, and free
19190 any that are too old. */
19191
19192 static void
19193 age_cached_comp_units (void)
19194 {
19195 struct dwarf2_per_cu_data *per_cu, **last_chain;
19196
19197 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19198 per_cu = dwarf2_per_objfile->read_in_chain;
19199 while (per_cu != NULL)
19200 {
19201 per_cu->cu->last_used ++;
19202 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19203 dwarf2_mark (per_cu->cu);
19204 per_cu = per_cu->cu->read_in_chain;
19205 }
19206
19207 per_cu = dwarf2_per_objfile->read_in_chain;
19208 last_chain = &dwarf2_per_objfile->read_in_chain;
19209 while (per_cu != NULL)
19210 {
19211 struct dwarf2_per_cu_data *next_cu;
19212
19213 next_cu = per_cu->cu->read_in_chain;
19214
19215 if (!per_cu->cu->mark)
19216 {
19217 free_heap_comp_unit (per_cu->cu);
19218 *last_chain = next_cu;
19219 }
19220 else
19221 last_chain = &per_cu->cu->read_in_chain;
19222
19223 per_cu = next_cu;
19224 }
19225 }
19226
19227 /* Remove a single compilation unit from the cache. */
19228
19229 static void
19230 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
19231 {
19232 struct dwarf2_per_cu_data *per_cu, **last_chain;
19233
19234 per_cu = dwarf2_per_objfile->read_in_chain;
19235 last_chain = &dwarf2_per_objfile->read_in_chain;
19236 while (per_cu != NULL)
19237 {
19238 struct dwarf2_per_cu_data *next_cu;
19239
19240 next_cu = per_cu->cu->read_in_chain;
19241
19242 if (per_cu == target_per_cu)
19243 {
19244 free_heap_comp_unit (per_cu->cu);
19245 per_cu->cu = NULL;
19246 *last_chain = next_cu;
19247 break;
19248 }
19249 else
19250 last_chain = &per_cu->cu->read_in_chain;
19251
19252 per_cu = next_cu;
19253 }
19254 }
19255
19256 /* Release all extra memory associated with OBJFILE. */
19257
19258 void
19259 dwarf2_free_objfile (struct objfile *objfile)
19260 {
19261 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19262
19263 if (dwarf2_per_objfile == NULL)
19264 return;
19265
19266 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19267 free_cached_comp_units (NULL);
19268
19269 if (dwarf2_per_objfile->quick_file_names_table)
19270 htab_delete (dwarf2_per_objfile->quick_file_names_table);
19271
19272 /* Everything else should be on the objfile obstack. */
19273 }
19274
19275 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19276 We store these in a hash table separate from the DIEs, and preserve them
19277 when the DIEs are flushed out of cache.
19278
19279 The CU "per_cu" pointer is needed because offset alone is not enough to
19280 uniquely identify the type. A file may have multiple .debug_types sections,
19281 or the type may come from a DWO file. We have to use something in
19282 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
19283 routine, get_die_type_at_offset, from outside this file, and thus won't
19284 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
19285 of the objfile. */
19286
19287 struct dwarf2_per_cu_offset_and_type
19288 {
19289 const struct dwarf2_per_cu_data *per_cu;
19290 sect_offset offset;
19291 struct type *type;
19292 };
19293
19294 /* Hash function for a dwarf2_per_cu_offset_and_type. */
19295
19296 static hashval_t
19297 per_cu_offset_and_type_hash (const void *item)
19298 {
19299 const struct dwarf2_per_cu_offset_and_type *ofs = item;
19300
19301 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
19302 }
19303
19304 /* Equality function for a dwarf2_per_cu_offset_and_type. */
19305
19306 static int
19307 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
19308 {
19309 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19310 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
19311
19312 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19313 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
19314 }
19315
19316 /* Set the type associated with DIE to TYPE. Save it in CU's hash
19317 table if necessary. For convenience, return TYPE.
19318
19319 The DIEs reading must have careful ordering to:
19320 * Not cause infite loops trying to read in DIEs as a prerequisite for
19321 reading current DIE.
19322 * Not trying to dereference contents of still incompletely read in types
19323 while reading in other DIEs.
19324 * Enable referencing still incompletely read in types just by a pointer to
19325 the type without accessing its fields.
19326
19327 Therefore caller should follow these rules:
19328 * Try to fetch any prerequisite types we may need to build this DIE type
19329 before building the type and calling set_die_type.
19330 * After building type call set_die_type for current DIE as soon as
19331 possible before fetching more types to complete the current type.
19332 * Make the type as complete as possible before fetching more types. */
19333
19334 static struct type *
19335 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19336 {
19337 struct dwarf2_per_cu_offset_and_type **slot, ofs;
19338 struct objfile *objfile = cu->objfile;
19339
19340 /* For Ada types, make sure that the gnat-specific data is always
19341 initialized (if not already set). There are a few types where
19342 we should not be doing so, because the type-specific area is
19343 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19344 where the type-specific area is used to store the floatformat).
19345 But this is not a problem, because the gnat-specific information
19346 is actually not needed for these types. */
19347 if (need_gnat_info (cu)
19348 && TYPE_CODE (type) != TYPE_CODE_FUNC
19349 && TYPE_CODE (type) != TYPE_CODE_FLT
19350 && !HAVE_GNAT_AUX_INFO (type))
19351 INIT_GNAT_SPECIFIC (type);
19352
19353 if (dwarf2_per_objfile->die_type_hash == NULL)
19354 {
19355 dwarf2_per_objfile->die_type_hash =
19356 htab_create_alloc_ex (127,
19357 per_cu_offset_and_type_hash,
19358 per_cu_offset_and_type_eq,
19359 NULL,
19360 &objfile->objfile_obstack,
19361 hashtab_obstack_allocate,
19362 dummy_obstack_deallocate);
19363 }
19364
19365 ofs.per_cu = cu->per_cu;
19366 ofs.offset = die->offset;
19367 ofs.type = type;
19368 slot = (struct dwarf2_per_cu_offset_and_type **)
19369 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
19370 if (*slot)
19371 complaint (&symfile_complaints,
19372 _("A problem internal to GDB: DIE 0x%x has type already set"),
19373 die->offset.sect_off);
19374 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
19375 **slot = ofs;
19376 return type;
19377 }
19378
19379 /* Look up the type for the die at OFFSET in the appropriate type_hash
19380 table, or return NULL if the die does not have a saved type. */
19381
19382 static struct type *
19383 get_die_type_at_offset (sect_offset offset,
19384 struct dwarf2_per_cu_data *per_cu)
19385 {
19386 struct dwarf2_per_cu_offset_and_type *slot, ofs;
19387
19388 if (dwarf2_per_objfile->die_type_hash == NULL)
19389 return NULL;
19390
19391 ofs.per_cu = per_cu;
19392 ofs.offset = offset;
19393 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
19394 if (slot)
19395 return slot->type;
19396 else
19397 return NULL;
19398 }
19399
19400 /* Look up the type for DIE in the appropriate type_hash table,
19401 or return NULL if DIE does not have a saved type. */
19402
19403 static struct type *
19404 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19405 {
19406 return get_die_type_at_offset (die->offset, cu->per_cu);
19407 }
19408
19409 /* Add a dependence relationship from CU to REF_PER_CU. */
19410
19411 static void
19412 dwarf2_add_dependence (struct dwarf2_cu *cu,
19413 struct dwarf2_per_cu_data *ref_per_cu)
19414 {
19415 void **slot;
19416
19417 if (cu->dependencies == NULL)
19418 cu->dependencies
19419 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19420 NULL, &cu->comp_unit_obstack,
19421 hashtab_obstack_allocate,
19422 dummy_obstack_deallocate);
19423
19424 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19425 if (*slot == NULL)
19426 *slot = ref_per_cu;
19427 }
19428
19429 /* Subroutine of dwarf2_mark to pass to htab_traverse.
19430 Set the mark field in every compilation unit in the
19431 cache that we must keep because we are keeping CU. */
19432
19433 static int
19434 dwarf2_mark_helper (void **slot, void *data)
19435 {
19436 struct dwarf2_per_cu_data *per_cu;
19437
19438 per_cu = (struct dwarf2_per_cu_data *) *slot;
19439
19440 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19441 reading of the chain. As such dependencies remain valid it is not much
19442 useful to track and undo them during QUIT cleanups. */
19443 if (per_cu->cu == NULL)
19444 return 1;
19445
19446 if (per_cu->cu->mark)
19447 return 1;
19448 per_cu->cu->mark = 1;
19449
19450 if (per_cu->cu->dependencies != NULL)
19451 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19452
19453 return 1;
19454 }
19455
19456 /* Set the mark field in CU and in every other compilation unit in the
19457 cache that we must keep because we are keeping CU. */
19458
19459 static void
19460 dwarf2_mark (struct dwarf2_cu *cu)
19461 {
19462 if (cu->mark)
19463 return;
19464 cu->mark = 1;
19465 if (cu->dependencies != NULL)
19466 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
19467 }
19468
19469 static void
19470 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19471 {
19472 while (per_cu)
19473 {
19474 per_cu->cu->mark = 0;
19475 per_cu = per_cu->cu->read_in_chain;
19476 }
19477 }
19478
19479 /* Trivial hash function for partial_die_info: the hash value of a DIE
19480 is its offset in .debug_info for this objfile. */
19481
19482 static hashval_t
19483 partial_die_hash (const void *item)
19484 {
19485 const struct partial_die_info *part_die = item;
19486
19487 return part_die->offset.sect_off;
19488 }
19489
19490 /* Trivial comparison function for partial_die_info structures: two DIEs
19491 are equal if they have the same offset. */
19492
19493 static int
19494 partial_die_eq (const void *item_lhs, const void *item_rhs)
19495 {
19496 const struct partial_die_info *part_die_lhs = item_lhs;
19497 const struct partial_die_info *part_die_rhs = item_rhs;
19498
19499 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
19500 }
19501
19502 static struct cmd_list_element *set_dwarf2_cmdlist;
19503 static struct cmd_list_element *show_dwarf2_cmdlist;
19504
19505 static void
19506 set_dwarf2_cmd (char *args, int from_tty)
19507 {
19508 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19509 }
19510
19511 static void
19512 show_dwarf2_cmd (char *args, int from_tty)
19513 {
19514 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19515 }
19516
19517 /* Free data associated with OBJFILE, if necessary. */
19518
19519 static void
19520 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
19521 {
19522 struct dwarf2_per_objfile *data = d;
19523 int ix;
19524
19525 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19526 VEC_free (dwarf2_per_cu_ptr,
19527 dwarf2_per_objfile->all_comp_units[ix]->s.imported_symtabs);
19528
19529 VEC_free (dwarf2_section_info_def, data->types);
19530
19531 if (data->dwo_files)
19532 free_dwo_files (data->dwo_files, objfile);
19533
19534 if (data->dwz_file && data->dwz_file->dwz_bfd)
19535 gdb_bfd_unref (data->dwz_file->dwz_bfd);
19536 }
19537
19538 \f
19539 /* The "save gdb-index" command. */
19540
19541 /* The contents of the hash table we create when building the string
19542 table. */
19543 struct strtab_entry
19544 {
19545 offset_type offset;
19546 const char *str;
19547 };
19548
19549 /* Hash function for a strtab_entry.
19550
19551 Function is used only during write_hash_table so no index format backward
19552 compatibility is needed. */
19553
19554 static hashval_t
19555 hash_strtab_entry (const void *e)
19556 {
19557 const struct strtab_entry *entry = e;
19558 return mapped_index_string_hash (INT_MAX, entry->str);
19559 }
19560
19561 /* Equality function for a strtab_entry. */
19562
19563 static int
19564 eq_strtab_entry (const void *a, const void *b)
19565 {
19566 const struct strtab_entry *ea = a;
19567 const struct strtab_entry *eb = b;
19568 return !strcmp (ea->str, eb->str);
19569 }
19570
19571 /* Create a strtab_entry hash table. */
19572
19573 static htab_t
19574 create_strtab (void)
19575 {
19576 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
19577 xfree, xcalloc, xfree);
19578 }
19579
19580 /* Add a string to the constant pool. Return the string's offset in
19581 host order. */
19582
19583 static offset_type
19584 add_string (htab_t table, struct obstack *cpool, const char *str)
19585 {
19586 void **slot;
19587 struct strtab_entry entry;
19588 struct strtab_entry *result;
19589
19590 entry.str = str;
19591 slot = htab_find_slot (table, &entry, INSERT);
19592 if (*slot)
19593 result = *slot;
19594 else
19595 {
19596 result = XNEW (struct strtab_entry);
19597 result->offset = obstack_object_size (cpool);
19598 result->str = str;
19599 obstack_grow_str0 (cpool, str);
19600 *slot = result;
19601 }
19602 return result->offset;
19603 }
19604
19605 /* An entry in the symbol table. */
19606 struct symtab_index_entry
19607 {
19608 /* The name of the symbol. */
19609 const char *name;
19610 /* The offset of the name in the constant pool. */
19611 offset_type index_offset;
19612 /* A sorted vector of the indices of all the CUs that hold an object
19613 of this name. */
19614 VEC (offset_type) *cu_indices;
19615 };
19616
19617 /* The symbol table. This is a power-of-2-sized hash table. */
19618 struct mapped_symtab
19619 {
19620 offset_type n_elements;
19621 offset_type size;
19622 struct symtab_index_entry **data;
19623 };
19624
19625 /* Hash function for a symtab_index_entry. */
19626
19627 static hashval_t
19628 hash_symtab_entry (const void *e)
19629 {
19630 const struct symtab_index_entry *entry = e;
19631 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
19632 sizeof (offset_type) * VEC_length (offset_type,
19633 entry->cu_indices),
19634 0);
19635 }
19636
19637 /* Equality function for a symtab_index_entry. */
19638
19639 static int
19640 eq_symtab_entry (const void *a, const void *b)
19641 {
19642 const struct symtab_index_entry *ea = a;
19643 const struct symtab_index_entry *eb = b;
19644 int len = VEC_length (offset_type, ea->cu_indices);
19645 if (len != VEC_length (offset_type, eb->cu_indices))
19646 return 0;
19647 return !memcmp (VEC_address (offset_type, ea->cu_indices),
19648 VEC_address (offset_type, eb->cu_indices),
19649 sizeof (offset_type) * len);
19650 }
19651
19652 /* Destroy a symtab_index_entry. */
19653
19654 static void
19655 delete_symtab_entry (void *p)
19656 {
19657 struct symtab_index_entry *entry = p;
19658 VEC_free (offset_type, entry->cu_indices);
19659 xfree (entry);
19660 }
19661
19662 /* Create a hash table holding symtab_index_entry objects. */
19663
19664 static htab_t
19665 create_symbol_hash_table (void)
19666 {
19667 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
19668 delete_symtab_entry, xcalloc, xfree);
19669 }
19670
19671 /* Create a new mapped symtab object. */
19672
19673 static struct mapped_symtab *
19674 create_mapped_symtab (void)
19675 {
19676 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
19677 symtab->n_elements = 0;
19678 symtab->size = 1024;
19679 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19680 return symtab;
19681 }
19682
19683 /* Destroy a mapped_symtab. */
19684
19685 static void
19686 cleanup_mapped_symtab (void *p)
19687 {
19688 struct mapped_symtab *symtab = p;
19689 /* The contents of the array are freed when the other hash table is
19690 destroyed. */
19691 xfree (symtab->data);
19692 xfree (symtab);
19693 }
19694
19695 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
19696 the slot.
19697
19698 Function is used only during write_hash_table so no index format backward
19699 compatibility is needed. */
19700
19701 static struct symtab_index_entry **
19702 find_slot (struct mapped_symtab *symtab, const char *name)
19703 {
19704 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
19705
19706 index = hash & (symtab->size - 1);
19707 step = ((hash * 17) & (symtab->size - 1)) | 1;
19708
19709 for (;;)
19710 {
19711 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
19712 return &symtab->data[index];
19713 index = (index + step) & (symtab->size - 1);
19714 }
19715 }
19716
19717 /* Expand SYMTAB's hash table. */
19718
19719 static void
19720 hash_expand (struct mapped_symtab *symtab)
19721 {
19722 offset_type old_size = symtab->size;
19723 offset_type i;
19724 struct symtab_index_entry **old_entries = symtab->data;
19725
19726 symtab->size *= 2;
19727 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19728
19729 for (i = 0; i < old_size; ++i)
19730 {
19731 if (old_entries[i])
19732 {
19733 struct symtab_index_entry **slot = find_slot (symtab,
19734 old_entries[i]->name);
19735 *slot = old_entries[i];
19736 }
19737 }
19738
19739 xfree (old_entries);
19740 }
19741
19742 /* Add an entry to SYMTAB. NAME is the name of the symbol.
19743 CU_INDEX is the index of the CU in which the symbol appears.
19744 IS_STATIC is one if the symbol is static, otherwise zero (global). */
19745
19746 static void
19747 add_index_entry (struct mapped_symtab *symtab, const char *name,
19748 int is_static, gdb_index_symbol_kind kind,
19749 offset_type cu_index)
19750 {
19751 struct symtab_index_entry **slot;
19752 offset_type cu_index_and_attrs;
19753
19754 ++symtab->n_elements;
19755 if (4 * symtab->n_elements / 3 >= symtab->size)
19756 hash_expand (symtab);
19757
19758 slot = find_slot (symtab, name);
19759 if (!*slot)
19760 {
19761 *slot = XNEW (struct symtab_index_entry);
19762 (*slot)->name = name;
19763 /* index_offset is set later. */
19764 (*slot)->cu_indices = NULL;
19765 }
19766
19767 cu_index_and_attrs = 0;
19768 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
19769 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
19770 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
19771
19772 /* We don't want to record an index value twice as we want to avoid the
19773 duplication.
19774 We process all global symbols and then all static symbols
19775 (which would allow us to avoid the duplication by only having to check
19776 the last entry pushed), but a symbol could have multiple kinds in one CU.
19777 To keep things simple we don't worry about the duplication here and
19778 sort and uniqufy the list after we've processed all symbols. */
19779 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
19780 }
19781
19782 /* qsort helper routine for uniquify_cu_indices. */
19783
19784 static int
19785 offset_type_compare (const void *ap, const void *bp)
19786 {
19787 offset_type a = *(offset_type *) ap;
19788 offset_type b = *(offset_type *) bp;
19789
19790 return (a > b) - (b > a);
19791 }
19792
19793 /* Sort and remove duplicates of all symbols' cu_indices lists. */
19794
19795 static void
19796 uniquify_cu_indices (struct mapped_symtab *symtab)
19797 {
19798 int i;
19799
19800 for (i = 0; i < symtab->size; ++i)
19801 {
19802 struct symtab_index_entry *entry = symtab->data[i];
19803
19804 if (entry
19805 && entry->cu_indices != NULL)
19806 {
19807 unsigned int next_to_insert, next_to_check;
19808 offset_type last_value;
19809
19810 qsort (VEC_address (offset_type, entry->cu_indices),
19811 VEC_length (offset_type, entry->cu_indices),
19812 sizeof (offset_type), offset_type_compare);
19813
19814 last_value = VEC_index (offset_type, entry->cu_indices, 0);
19815 next_to_insert = 1;
19816 for (next_to_check = 1;
19817 next_to_check < VEC_length (offset_type, entry->cu_indices);
19818 ++next_to_check)
19819 {
19820 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
19821 != last_value)
19822 {
19823 last_value = VEC_index (offset_type, entry->cu_indices,
19824 next_to_check);
19825 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
19826 last_value);
19827 ++next_to_insert;
19828 }
19829 }
19830 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
19831 }
19832 }
19833 }
19834
19835 /* Add a vector of indices to the constant pool. */
19836
19837 static offset_type
19838 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
19839 struct symtab_index_entry *entry)
19840 {
19841 void **slot;
19842
19843 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
19844 if (!*slot)
19845 {
19846 offset_type len = VEC_length (offset_type, entry->cu_indices);
19847 offset_type val = MAYBE_SWAP (len);
19848 offset_type iter;
19849 int i;
19850
19851 *slot = entry;
19852 entry->index_offset = obstack_object_size (cpool);
19853
19854 obstack_grow (cpool, &val, sizeof (val));
19855 for (i = 0;
19856 VEC_iterate (offset_type, entry->cu_indices, i, iter);
19857 ++i)
19858 {
19859 val = MAYBE_SWAP (iter);
19860 obstack_grow (cpool, &val, sizeof (val));
19861 }
19862 }
19863 else
19864 {
19865 struct symtab_index_entry *old_entry = *slot;
19866 entry->index_offset = old_entry->index_offset;
19867 entry = old_entry;
19868 }
19869 return entry->index_offset;
19870 }
19871
19872 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
19873 constant pool entries going into the obstack CPOOL. */
19874
19875 static void
19876 write_hash_table (struct mapped_symtab *symtab,
19877 struct obstack *output, struct obstack *cpool)
19878 {
19879 offset_type i;
19880 htab_t symbol_hash_table;
19881 htab_t str_table;
19882
19883 symbol_hash_table = create_symbol_hash_table ();
19884 str_table = create_strtab ();
19885
19886 /* We add all the index vectors to the constant pool first, to
19887 ensure alignment is ok. */
19888 for (i = 0; i < symtab->size; ++i)
19889 {
19890 if (symtab->data[i])
19891 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
19892 }
19893
19894 /* Now write out the hash table. */
19895 for (i = 0; i < symtab->size; ++i)
19896 {
19897 offset_type str_off, vec_off;
19898
19899 if (symtab->data[i])
19900 {
19901 str_off = add_string (str_table, cpool, symtab->data[i]->name);
19902 vec_off = symtab->data[i]->index_offset;
19903 }
19904 else
19905 {
19906 /* While 0 is a valid constant pool index, it is not valid
19907 to have 0 for both offsets. */
19908 str_off = 0;
19909 vec_off = 0;
19910 }
19911
19912 str_off = MAYBE_SWAP (str_off);
19913 vec_off = MAYBE_SWAP (vec_off);
19914
19915 obstack_grow (output, &str_off, sizeof (str_off));
19916 obstack_grow (output, &vec_off, sizeof (vec_off));
19917 }
19918
19919 htab_delete (str_table);
19920 htab_delete (symbol_hash_table);
19921 }
19922
19923 /* Struct to map psymtab to CU index in the index file. */
19924 struct psymtab_cu_index_map
19925 {
19926 struct partial_symtab *psymtab;
19927 unsigned int cu_index;
19928 };
19929
19930 static hashval_t
19931 hash_psymtab_cu_index (const void *item)
19932 {
19933 const struct psymtab_cu_index_map *map = item;
19934
19935 return htab_hash_pointer (map->psymtab);
19936 }
19937
19938 static int
19939 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
19940 {
19941 const struct psymtab_cu_index_map *lhs = item_lhs;
19942 const struct psymtab_cu_index_map *rhs = item_rhs;
19943
19944 return lhs->psymtab == rhs->psymtab;
19945 }
19946
19947 /* Helper struct for building the address table. */
19948 struct addrmap_index_data
19949 {
19950 struct objfile *objfile;
19951 struct obstack *addr_obstack;
19952 htab_t cu_index_htab;
19953
19954 /* Non-zero if the previous_* fields are valid.
19955 We can't write an entry until we see the next entry (since it is only then
19956 that we know the end of the entry). */
19957 int previous_valid;
19958 /* Index of the CU in the table of all CUs in the index file. */
19959 unsigned int previous_cu_index;
19960 /* Start address of the CU. */
19961 CORE_ADDR previous_cu_start;
19962 };
19963
19964 /* Write an address entry to OBSTACK. */
19965
19966 static void
19967 add_address_entry (struct objfile *objfile, struct obstack *obstack,
19968 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
19969 {
19970 offset_type cu_index_to_write;
19971 char addr[8];
19972 CORE_ADDR baseaddr;
19973
19974 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19975
19976 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
19977 obstack_grow (obstack, addr, 8);
19978 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
19979 obstack_grow (obstack, addr, 8);
19980 cu_index_to_write = MAYBE_SWAP (cu_index);
19981 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
19982 }
19983
19984 /* Worker function for traversing an addrmap to build the address table. */
19985
19986 static int
19987 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
19988 {
19989 struct addrmap_index_data *data = datap;
19990 struct partial_symtab *pst = obj;
19991
19992 if (data->previous_valid)
19993 add_address_entry (data->objfile, data->addr_obstack,
19994 data->previous_cu_start, start_addr,
19995 data->previous_cu_index);
19996
19997 data->previous_cu_start = start_addr;
19998 if (pst != NULL)
19999 {
20000 struct psymtab_cu_index_map find_map, *map;
20001 find_map.psymtab = pst;
20002 map = htab_find (data->cu_index_htab, &find_map);
20003 gdb_assert (map != NULL);
20004 data->previous_cu_index = map->cu_index;
20005 data->previous_valid = 1;
20006 }
20007 else
20008 data->previous_valid = 0;
20009
20010 return 0;
20011 }
20012
20013 /* Write OBJFILE's address map to OBSTACK.
20014 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20015 in the index file. */
20016
20017 static void
20018 write_address_map (struct objfile *objfile, struct obstack *obstack,
20019 htab_t cu_index_htab)
20020 {
20021 struct addrmap_index_data addrmap_index_data;
20022
20023 /* When writing the address table, we have to cope with the fact that
20024 the addrmap iterator only provides the start of a region; we have to
20025 wait until the next invocation to get the start of the next region. */
20026
20027 addrmap_index_data.objfile = objfile;
20028 addrmap_index_data.addr_obstack = obstack;
20029 addrmap_index_data.cu_index_htab = cu_index_htab;
20030 addrmap_index_data.previous_valid = 0;
20031
20032 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20033 &addrmap_index_data);
20034
20035 /* It's highly unlikely the last entry (end address = 0xff...ff)
20036 is valid, but we should still handle it.
20037 The end address is recorded as the start of the next region, but that
20038 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20039 anyway. */
20040 if (addrmap_index_data.previous_valid)
20041 add_address_entry (objfile, obstack,
20042 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20043 addrmap_index_data.previous_cu_index);
20044 }
20045
20046 /* Return the symbol kind of PSYM. */
20047
20048 static gdb_index_symbol_kind
20049 symbol_kind (struct partial_symbol *psym)
20050 {
20051 domain_enum domain = PSYMBOL_DOMAIN (psym);
20052 enum address_class aclass = PSYMBOL_CLASS (psym);
20053
20054 switch (domain)
20055 {
20056 case VAR_DOMAIN:
20057 switch (aclass)
20058 {
20059 case LOC_BLOCK:
20060 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20061 case LOC_TYPEDEF:
20062 return GDB_INDEX_SYMBOL_KIND_TYPE;
20063 case LOC_COMPUTED:
20064 case LOC_CONST_BYTES:
20065 case LOC_OPTIMIZED_OUT:
20066 case LOC_STATIC:
20067 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20068 case LOC_CONST:
20069 /* Note: It's currently impossible to recognize psyms as enum values
20070 short of reading the type info. For now punt. */
20071 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20072 default:
20073 /* There are other LOC_FOO values that one might want to classify
20074 as variables, but dwarf2read.c doesn't currently use them. */
20075 return GDB_INDEX_SYMBOL_KIND_OTHER;
20076 }
20077 case STRUCT_DOMAIN:
20078 return GDB_INDEX_SYMBOL_KIND_TYPE;
20079 default:
20080 return GDB_INDEX_SYMBOL_KIND_OTHER;
20081 }
20082 }
20083
20084 /* Add a list of partial symbols to SYMTAB. */
20085
20086 static void
20087 write_psymbols (struct mapped_symtab *symtab,
20088 htab_t psyms_seen,
20089 struct partial_symbol **psymp,
20090 int count,
20091 offset_type cu_index,
20092 int is_static)
20093 {
20094 for (; count-- > 0; ++psymp)
20095 {
20096 struct partial_symbol *psym = *psymp;
20097 void **slot;
20098
20099 if (SYMBOL_LANGUAGE (psym) == language_ada)
20100 error (_("Ada is not currently supported by the index"));
20101
20102 /* Only add a given psymbol once. */
20103 slot = htab_find_slot (psyms_seen, psym, INSERT);
20104 if (!*slot)
20105 {
20106 gdb_index_symbol_kind kind = symbol_kind (psym);
20107
20108 *slot = psym;
20109 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20110 is_static, kind, cu_index);
20111 }
20112 }
20113 }
20114
20115 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
20116 exception if there is an error. */
20117
20118 static void
20119 write_obstack (FILE *file, struct obstack *obstack)
20120 {
20121 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20122 file)
20123 != obstack_object_size (obstack))
20124 error (_("couldn't data write to file"));
20125 }
20126
20127 /* Unlink a file if the argument is not NULL. */
20128
20129 static void
20130 unlink_if_set (void *p)
20131 {
20132 char **filename = p;
20133 if (*filename)
20134 unlink (*filename);
20135 }
20136
20137 /* A helper struct used when iterating over debug_types. */
20138 struct signatured_type_index_data
20139 {
20140 struct objfile *objfile;
20141 struct mapped_symtab *symtab;
20142 struct obstack *types_list;
20143 htab_t psyms_seen;
20144 int cu_index;
20145 };
20146
20147 /* A helper function that writes a single signatured_type to an
20148 obstack. */
20149
20150 static int
20151 write_one_signatured_type (void **slot, void *d)
20152 {
20153 struct signatured_type_index_data *info = d;
20154 struct signatured_type *entry = (struct signatured_type *) *slot;
20155 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
20156 struct partial_symtab *psymtab = per_cu->v.psymtab;
20157 gdb_byte val[8];
20158
20159 write_psymbols (info->symtab,
20160 info->psyms_seen,
20161 info->objfile->global_psymbols.list
20162 + psymtab->globals_offset,
20163 psymtab->n_global_syms, info->cu_index,
20164 0);
20165 write_psymbols (info->symtab,
20166 info->psyms_seen,
20167 info->objfile->static_psymbols.list
20168 + psymtab->statics_offset,
20169 psymtab->n_static_syms, info->cu_index,
20170 1);
20171
20172 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20173 entry->per_cu.offset.sect_off);
20174 obstack_grow (info->types_list, val, 8);
20175 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20176 entry->type_offset_in_tu.cu_off);
20177 obstack_grow (info->types_list, val, 8);
20178 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20179 obstack_grow (info->types_list, val, 8);
20180
20181 ++info->cu_index;
20182
20183 return 1;
20184 }
20185
20186 /* Recurse into all "included" dependencies and write their symbols as
20187 if they appeared in this psymtab. */
20188
20189 static void
20190 recursively_write_psymbols (struct objfile *objfile,
20191 struct partial_symtab *psymtab,
20192 struct mapped_symtab *symtab,
20193 htab_t psyms_seen,
20194 offset_type cu_index)
20195 {
20196 int i;
20197
20198 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20199 if (psymtab->dependencies[i]->user != NULL)
20200 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20201 symtab, psyms_seen, cu_index);
20202
20203 write_psymbols (symtab,
20204 psyms_seen,
20205 objfile->global_psymbols.list + psymtab->globals_offset,
20206 psymtab->n_global_syms, cu_index,
20207 0);
20208 write_psymbols (symtab,
20209 psyms_seen,
20210 objfile->static_psymbols.list + psymtab->statics_offset,
20211 psymtab->n_static_syms, cu_index,
20212 1);
20213 }
20214
20215 /* Create an index file for OBJFILE in the directory DIR. */
20216
20217 static void
20218 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20219 {
20220 struct cleanup *cleanup;
20221 char *filename, *cleanup_filename;
20222 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20223 struct obstack cu_list, types_cu_list;
20224 int i;
20225 FILE *out_file;
20226 struct mapped_symtab *symtab;
20227 offset_type val, size_of_contents, total_len;
20228 struct stat st;
20229 htab_t psyms_seen;
20230 htab_t cu_index_htab;
20231 struct psymtab_cu_index_map *psymtab_cu_index_map;
20232
20233 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
20234 return;
20235
20236 if (dwarf2_per_objfile->using_index)
20237 error (_("Cannot use an index to create the index"));
20238
20239 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20240 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20241
20242 if (stat (objfile->name, &st) < 0)
20243 perror_with_name (objfile->name);
20244
20245 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20246 INDEX_SUFFIX, (char *) NULL);
20247 cleanup = make_cleanup (xfree, filename);
20248
20249 out_file = fopen (filename, "wb");
20250 if (!out_file)
20251 error (_("Can't open `%s' for writing"), filename);
20252
20253 cleanup_filename = filename;
20254 make_cleanup (unlink_if_set, &cleanup_filename);
20255
20256 symtab = create_mapped_symtab ();
20257 make_cleanup (cleanup_mapped_symtab, symtab);
20258
20259 obstack_init (&addr_obstack);
20260 make_cleanup_obstack_free (&addr_obstack);
20261
20262 obstack_init (&cu_list);
20263 make_cleanup_obstack_free (&cu_list);
20264
20265 obstack_init (&types_cu_list);
20266 make_cleanup_obstack_free (&types_cu_list);
20267
20268 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20269 NULL, xcalloc, xfree);
20270 make_cleanup_htab_delete (psyms_seen);
20271
20272 /* While we're scanning CU's create a table that maps a psymtab pointer
20273 (which is what addrmap records) to its index (which is what is recorded
20274 in the index file). This will later be needed to write the address
20275 table. */
20276 cu_index_htab = htab_create_alloc (100,
20277 hash_psymtab_cu_index,
20278 eq_psymtab_cu_index,
20279 NULL, xcalloc, xfree);
20280 make_cleanup_htab_delete (cu_index_htab);
20281 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20282 xmalloc (sizeof (struct psymtab_cu_index_map)
20283 * dwarf2_per_objfile->n_comp_units);
20284 make_cleanup (xfree, psymtab_cu_index_map);
20285
20286 /* The CU list is already sorted, so we don't need to do additional
20287 work here. Also, the debug_types entries do not appear in
20288 all_comp_units, but only in their own hash table. */
20289 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20290 {
20291 struct dwarf2_per_cu_data *per_cu
20292 = dwarf2_per_objfile->all_comp_units[i];
20293 struct partial_symtab *psymtab = per_cu->v.psymtab;
20294 gdb_byte val[8];
20295 struct psymtab_cu_index_map *map;
20296 void **slot;
20297
20298 if (psymtab->user == NULL)
20299 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
20300
20301 map = &psymtab_cu_index_map[i];
20302 map->psymtab = psymtab;
20303 map->cu_index = i;
20304 slot = htab_find_slot (cu_index_htab, map, INSERT);
20305 gdb_assert (slot != NULL);
20306 gdb_assert (*slot == NULL);
20307 *slot = map;
20308
20309 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20310 per_cu->offset.sect_off);
20311 obstack_grow (&cu_list, val, 8);
20312 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
20313 obstack_grow (&cu_list, val, 8);
20314 }
20315
20316 /* Dump the address map. */
20317 write_address_map (objfile, &addr_obstack, cu_index_htab);
20318
20319 /* Write out the .debug_type entries, if any. */
20320 if (dwarf2_per_objfile->signatured_types)
20321 {
20322 struct signatured_type_index_data sig_data;
20323
20324 sig_data.objfile = objfile;
20325 sig_data.symtab = symtab;
20326 sig_data.types_list = &types_cu_list;
20327 sig_data.psyms_seen = psyms_seen;
20328 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20329 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20330 write_one_signatured_type, &sig_data);
20331 }
20332
20333 /* Now that we've processed all symbols we can shrink their cu_indices
20334 lists. */
20335 uniquify_cu_indices (symtab);
20336
20337 obstack_init (&constant_pool);
20338 make_cleanup_obstack_free (&constant_pool);
20339 obstack_init (&symtab_obstack);
20340 make_cleanup_obstack_free (&symtab_obstack);
20341 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20342
20343 obstack_init (&contents);
20344 make_cleanup_obstack_free (&contents);
20345 size_of_contents = 6 * sizeof (offset_type);
20346 total_len = size_of_contents;
20347
20348 /* The version number. */
20349 val = MAYBE_SWAP (7);
20350 obstack_grow (&contents, &val, sizeof (val));
20351
20352 /* The offset of the CU list from the start of the file. */
20353 val = MAYBE_SWAP (total_len);
20354 obstack_grow (&contents, &val, sizeof (val));
20355 total_len += obstack_object_size (&cu_list);
20356
20357 /* The offset of the types CU list from the start of the file. */
20358 val = MAYBE_SWAP (total_len);
20359 obstack_grow (&contents, &val, sizeof (val));
20360 total_len += obstack_object_size (&types_cu_list);
20361
20362 /* The offset of the address table from the start of the file. */
20363 val = MAYBE_SWAP (total_len);
20364 obstack_grow (&contents, &val, sizeof (val));
20365 total_len += obstack_object_size (&addr_obstack);
20366
20367 /* The offset of the symbol table from the start of the file. */
20368 val = MAYBE_SWAP (total_len);
20369 obstack_grow (&contents, &val, sizeof (val));
20370 total_len += obstack_object_size (&symtab_obstack);
20371
20372 /* The offset of the constant pool from the start of the file. */
20373 val = MAYBE_SWAP (total_len);
20374 obstack_grow (&contents, &val, sizeof (val));
20375 total_len += obstack_object_size (&constant_pool);
20376
20377 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20378
20379 write_obstack (out_file, &contents);
20380 write_obstack (out_file, &cu_list);
20381 write_obstack (out_file, &types_cu_list);
20382 write_obstack (out_file, &addr_obstack);
20383 write_obstack (out_file, &symtab_obstack);
20384 write_obstack (out_file, &constant_pool);
20385
20386 fclose (out_file);
20387
20388 /* We want to keep the file, so we set cleanup_filename to NULL
20389 here. See unlink_if_set. */
20390 cleanup_filename = NULL;
20391
20392 do_cleanups (cleanup);
20393 }
20394
20395 /* Implementation of the `save gdb-index' command.
20396
20397 Note that the file format used by this command is documented in the
20398 GDB manual. Any changes here must be documented there. */
20399
20400 static void
20401 save_gdb_index_command (char *arg, int from_tty)
20402 {
20403 struct objfile *objfile;
20404
20405 if (!arg || !*arg)
20406 error (_("usage: save gdb-index DIRECTORY"));
20407
20408 ALL_OBJFILES (objfile)
20409 {
20410 struct stat st;
20411
20412 /* If the objfile does not correspond to an actual file, skip it. */
20413 if (stat (objfile->name, &st) < 0)
20414 continue;
20415
20416 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20417 if (dwarf2_per_objfile)
20418 {
20419 volatile struct gdb_exception except;
20420
20421 TRY_CATCH (except, RETURN_MASK_ERROR)
20422 {
20423 write_psymtabs_to_index (objfile, arg);
20424 }
20425 if (except.reason < 0)
20426 exception_fprintf (gdb_stderr, except,
20427 _("Error while writing index for `%s': "),
20428 objfile->name);
20429 }
20430 }
20431 }
20432
20433 \f
20434
20435 int dwarf2_always_disassemble;
20436
20437 static void
20438 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20439 struct cmd_list_element *c, const char *value)
20440 {
20441 fprintf_filtered (file,
20442 _("Whether to always disassemble "
20443 "DWARF expressions is %s.\n"),
20444 value);
20445 }
20446
20447 static void
20448 show_check_physname (struct ui_file *file, int from_tty,
20449 struct cmd_list_element *c, const char *value)
20450 {
20451 fprintf_filtered (file,
20452 _("Whether to check \"physname\" is %s.\n"),
20453 value);
20454 }
20455
20456 void _initialize_dwarf2_read (void);
20457
20458 void
20459 _initialize_dwarf2_read (void)
20460 {
20461 struct cmd_list_element *c;
20462
20463 dwarf2_objfile_data_key
20464 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
20465
20466 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20467 Set DWARF 2 specific variables.\n\
20468 Configure DWARF 2 variables such as the cache size"),
20469 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20470 0/*allow-unknown*/, &maintenance_set_cmdlist);
20471
20472 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20473 Show DWARF 2 specific variables\n\
20474 Show DWARF 2 variables such as the cache size"),
20475 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20476 0/*allow-unknown*/, &maintenance_show_cmdlist);
20477
20478 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
20479 &dwarf2_max_cache_age, _("\
20480 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20481 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20482 A higher limit means that cached compilation units will be stored\n\
20483 in memory longer, and more total memory will be used. Zero disables\n\
20484 caching, which can slow down startup."),
20485 NULL,
20486 show_dwarf2_max_cache_age,
20487 &set_dwarf2_cmdlist,
20488 &show_dwarf2_cmdlist);
20489
20490 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20491 &dwarf2_always_disassemble, _("\
20492 Set whether `info address' always disassembles DWARF expressions."), _("\
20493 Show whether `info address' always disassembles DWARF expressions."), _("\
20494 When enabled, DWARF expressions are always printed in an assembly-like\n\
20495 syntax. When disabled, expressions will be printed in a more\n\
20496 conversational style, when possible."),
20497 NULL,
20498 show_dwarf2_always_disassemble,
20499 &set_dwarf2_cmdlist,
20500 &show_dwarf2_cmdlist);
20501
20502 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20503 Set debugging of the dwarf2 reader."), _("\
20504 Show debugging of the dwarf2 reader."), _("\
20505 When enabled, debugging messages are printed during dwarf2 reading\n\
20506 and symtab expansion."),
20507 NULL,
20508 NULL,
20509 &setdebuglist, &showdebuglist);
20510
20511 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
20512 Set debugging of the dwarf2 DIE reader."), _("\
20513 Show debugging of the dwarf2 DIE reader."), _("\
20514 When enabled (non-zero), DIEs are dumped after they are read in.\n\
20515 The value is the maximum depth to print."),
20516 NULL,
20517 NULL,
20518 &setdebuglist, &showdebuglist);
20519
20520 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20521 Set cross-checking of \"physname\" code against demangler."), _("\
20522 Show cross-checking of \"physname\" code against demangler."), _("\
20523 When enabled, GDB's internal \"physname\" code is checked against\n\
20524 the demangler."),
20525 NULL, show_check_physname,
20526 &setdebuglist, &showdebuglist);
20527
20528 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20529 no_class, &use_deprecated_index_sections, _("\
20530 Set whether to use deprecated gdb_index sections."), _("\
20531 Show whether to use deprecated gdb_index sections."), _("\
20532 When enabled, deprecated .gdb_index sections are used anyway.\n\
20533 Normally they are ignored either because of a missing feature or\n\
20534 performance issue.\n\
20535 Warning: This option must be enabled before gdb reads the file."),
20536 NULL,
20537 NULL,
20538 &setlist, &showlist);
20539
20540 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
20541 _("\
20542 Save a gdb-index file.\n\
20543 Usage: save gdb-index DIRECTORY"),
20544 &save_cmdlist);
20545 set_cmd_completer (c, filename_completer);
20546 }