gdb/
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70
71 #include <fcntl.h>
72 #include "gdb_string.h"
73 #include "gdb_assert.h"
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When non-zero, print basic high level tracing messages.
80 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
81 static int dwarf2_read_debug = 0;
82
83 /* When non-zero, dump DIEs after they are read in. */
84 static unsigned int dwarf2_die_debug = 0;
85
86 /* When non-zero, cross-check physname against demangler. */
87 static int check_physname = 0;
88
89 /* When non-zero, do not reject deprecated .gdb_index sections. */
90 static int use_deprecated_index_sections = 0;
91
92 static const struct objfile_data *dwarf2_objfile_data_key;
93
94 struct dwarf2_section_info
95 {
96 asection *asection;
97 gdb_byte *buffer;
98 bfd_size_type size;
99 /* True if we have tried to read this section. */
100 int readin;
101 };
102
103 typedef struct dwarf2_section_info dwarf2_section_info_def;
104 DEF_VEC_O (dwarf2_section_info_def);
105
106 /* All offsets in the index are of this type. It must be
107 architecture-independent. */
108 typedef uint32_t offset_type;
109
110 DEF_VEC_I (offset_type);
111
112 /* Ensure only legit values are used. */
113 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
114 do { \
115 gdb_assert ((unsigned int) (value) <= 1); \
116 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
117 } while (0)
118
119 /* Ensure only legit values are used. */
120 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
121 do { \
122 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
123 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
124 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
125 } while (0)
126
127 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
128 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
129 do { \
130 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
131 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
132 } while (0)
133
134 /* A description of the mapped index. The file format is described in
135 a comment by the code that writes the index. */
136 struct mapped_index
137 {
138 /* Index data format version. */
139 int version;
140
141 /* The total length of the buffer. */
142 off_t total_size;
143
144 /* A pointer to the address table data. */
145 const gdb_byte *address_table;
146
147 /* Size of the address table data in bytes. */
148 offset_type address_table_size;
149
150 /* The symbol table, implemented as a hash table. */
151 const offset_type *symbol_table;
152
153 /* Size in slots, each slot is 2 offset_types. */
154 offset_type symbol_table_slots;
155
156 /* A pointer to the constant pool. */
157 const char *constant_pool;
158 };
159
160 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
161 DEF_VEC_P (dwarf2_per_cu_ptr);
162
163 /* Collection of data recorded per objfile.
164 This hangs off of dwarf2_objfile_data_key. */
165
166 struct dwarf2_per_objfile
167 {
168 struct dwarf2_section_info info;
169 struct dwarf2_section_info abbrev;
170 struct dwarf2_section_info line;
171 struct dwarf2_section_info loc;
172 struct dwarf2_section_info macinfo;
173 struct dwarf2_section_info macro;
174 struct dwarf2_section_info str;
175 struct dwarf2_section_info ranges;
176 struct dwarf2_section_info addr;
177 struct dwarf2_section_info frame;
178 struct dwarf2_section_info eh_frame;
179 struct dwarf2_section_info gdb_index;
180
181 VEC (dwarf2_section_info_def) *types;
182
183 /* Back link. */
184 struct objfile *objfile;
185
186 /* Table of all the compilation units. This is used to locate
187 the target compilation unit of a particular reference. */
188 struct dwarf2_per_cu_data **all_comp_units;
189
190 /* The number of compilation units in ALL_COMP_UNITS. */
191 int n_comp_units;
192
193 /* The number of .debug_types-related CUs. */
194 int n_type_units;
195
196 /* The .debug_types-related CUs (TUs). */
197 struct signatured_type **all_type_units;
198
199 /* The number of entries in all_type_unit_groups. */
200 int n_type_unit_groups;
201
202 /* Table of type unit groups.
203 This exists to make it easy to iterate over all CUs and TU groups. */
204 struct type_unit_group **all_type_unit_groups;
205
206 /* Table of struct type_unit_group objects.
207 The hash key is the DW_AT_stmt_list value. */
208 htab_t type_unit_groups;
209
210 /* A table mapping .debug_types signatures to its signatured_type entry.
211 This is NULL if the .debug_types section hasn't been read in yet. */
212 htab_t signatured_types;
213
214 /* Type unit statistics, to see how well the scaling improvements
215 are doing. */
216 struct tu_stats
217 {
218 int nr_uniq_abbrev_tables;
219 int nr_symtabs;
220 int nr_symtab_sharers;
221 int nr_stmt_less_type_units;
222 } tu_stats;
223
224 /* A chain of compilation units that are currently read in, so that
225 they can be freed later. */
226 struct dwarf2_per_cu_data *read_in_chain;
227
228 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
229 This is NULL if the table hasn't been allocated yet. */
230 htab_t dwo_files;
231
232 /* Non-zero if we've check for whether there is a DWP file. */
233 int dwp_checked;
234
235 /* The DWP file if there is one, or NULL. */
236 struct dwp_file *dwp_file;
237
238 /* The shared '.dwz' file, if one exists. This is used when the
239 original data was compressed using 'dwz -m'. */
240 struct dwz_file *dwz_file;
241
242 /* A flag indicating wether this objfile has a section loaded at a
243 VMA of 0. */
244 int has_section_at_zero;
245
246 /* True if we are using the mapped index,
247 or we are faking it for OBJF_READNOW's sake. */
248 unsigned char using_index;
249
250 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
251 struct mapped_index *index_table;
252
253 /* When using index_table, this keeps track of all quick_file_names entries.
254 TUs typically share line table entries with a CU, so we maintain a
255 separate table of all line table entries to support the sharing.
256 Note that while there can be way more TUs than CUs, we've already
257 sorted all the TUs into "type unit groups", grouped by their
258 DW_AT_stmt_list value. Therefore the only sharing done here is with a
259 CU and its associated TU group if there is one. */
260 htab_t quick_file_names_table;
261
262 /* Set during partial symbol reading, to prevent queueing of full
263 symbols. */
264 int reading_partial_symbols;
265
266 /* Table mapping type DIEs to their struct type *.
267 This is NULL if not allocated yet.
268 The mapping is done via (CU/TU signature + DIE offset) -> type. */
269 htab_t die_type_hash;
270
271 /* The CUs we recently read. */
272 VEC (dwarf2_per_cu_ptr) *just_read_cus;
273 };
274
275 static struct dwarf2_per_objfile *dwarf2_per_objfile;
276
277 /* Default names of the debugging sections. */
278
279 /* Note that if the debugging section has been compressed, it might
280 have a name like .zdebug_info. */
281
282 static const struct dwarf2_debug_sections dwarf2_elf_names =
283 {
284 { ".debug_info", ".zdebug_info" },
285 { ".debug_abbrev", ".zdebug_abbrev" },
286 { ".debug_line", ".zdebug_line" },
287 { ".debug_loc", ".zdebug_loc" },
288 { ".debug_macinfo", ".zdebug_macinfo" },
289 { ".debug_macro", ".zdebug_macro" },
290 { ".debug_str", ".zdebug_str" },
291 { ".debug_ranges", ".zdebug_ranges" },
292 { ".debug_types", ".zdebug_types" },
293 { ".debug_addr", ".zdebug_addr" },
294 { ".debug_frame", ".zdebug_frame" },
295 { ".eh_frame", NULL },
296 { ".gdb_index", ".zgdb_index" },
297 23
298 };
299
300 /* List of DWO/DWP sections. */
301
302 static const struct dwop_section_names
303 {
304 struct dwarf2_section_names abbrev_dwo;
305 struct dwarf2_section_names info_dwo;
306 struct dwarf2_section_names line_dwo;
307 struct dwarf2_section_names loc_dwo;
308 struct dwarf2_section_names macinfo_dwo;
309 struct dwarf2_section_names macro_dwo;
310 struct dwarf2_section_names str_dwo;
311 struct dwarf2_section_names str_offsets_dwo;
312 struct dwarf2_section_names types_dwo;
313 struct dwarf2_section_names cu_index;
314 struct dwarf2_section_names tu_index;
315 }
316 dwop_section_names =
317 {
318 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
319 { ".debug_info.dwo", ".zdebug_info.dwo" },
320 { ".debug_line.dwo", ".zdebug_line.dwo" },
321 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
322 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
323 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
324 { ".debug_str.dwo", ".zdebug_str.dwo" },
325 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
326 { ".debug_types.dwo", ".zdebug_types.dwo" },
327 { ".debug_cu_index", ".zdebug_cu_index" },
328 { ".debug_tu_index", ".zdebug_tu_index" },
329 };
330
331 /* local data types */
332
333 /* The data in a compilation unit header, after target2host
334 translation, looks like this. */
335 struct comp_unit_head
336 {
337 unsigned int length;
338 short version;
339 unsigned char addr_size;
340 unsigned char signed_addr_p;
341 sect_offset abbrev_offset;
342
343 /* Size of file offsets; either 4 or 8. */
344 unsigned int offset_size;
345
346 /* Size of the length field; either 4 or 12. */
347 unsigned int initial_length_size;
348
349 /* Offset to the first byte of this compilation unit header in the
350 .debug_info section, for resolving relative reference dies. */
351 sect_offset offset;
352
353 /* Offset to first die in this cu from the start of the cu.
354 This will be the first byte following the compilation unit header. */
355 cu_offset first_die_offset;
356 };
357
358 /* Type used for delaying computation of method physnames.
359 See comments for compute_delayed_physnames. */
360 struct delayed_method_info
361 {
362 /* The type to which the method is attached, i.e., its parent class. */
363 struct type *type;
364
365 /* The index of the method in the type's function fieldlists. */
366 int fnfield_index;
367
368 /* The index of the method in the fieldlist. */
369 int index;
370
371 /* The name of the DIE. */
372 const char *name;
373
374 /* The DIE associated with this method. */
375 struct die_info *die;
376 };
377
378 typedef struct delayed_method_info delayed_method_info;
379 DEF_VEC_O (delayed_method_info);
380
381 /* Internal state when decoding a particular compilation unit. */
382 struct dwarf2_cu
383 {
384 /* The objfile containing this compilation unit. */
385 struct objfile *objfile;
386
387 /* The header of the compilation unit. */
388 struct comp_unit_head header;
389
390 /* Base address of this compilation unit. */
391 CORE_ADDR base_address;
392
393 /* Non-zero if base_address has been set. */
394 int base_known;
395
396 /* The language we are debugging. */
397 enum language language;
398 const struct language_defn *language_defn;
399
400 const char *producer;
401
402 /* The generic symbol table building routines have separate lists for
403 file scope symbols and all all other scopes (local scopes). So
404 we need to select the right one to pass to add_symbol_to_list().
405 We do it by keeping a pointer to the correct list in list_in_scope.
406
407 FIXME: The original dwarf code just treated the file scope as the
408 first local scope, and all other local scopes as nested local
409 scopes, and worked fine. Check to see if we really need to
410 distinguish these in buildsym.c. */
411 struct pending **list_in_scope;
412
413 /* The abbrev table for this CU.
414 Normally this points to the abbrev table in the objfile.
415 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
416 struct abbrev_table *abbrev_table;
417
418 /* Hash table holding all the loaded partial DIEs
419 with partial_die->offset.SECT_OFF as hash. */
420 htab_t partial_dies;
421
422 /* Storage for things with the same lifetime as this read-in compilation
423 unit, including partial DIEs. */
424 struct obstack comp_unit_obstack;
425
426 /* When multiple dwarf2_cu structures are living in memory, this field
427 chains them all together, so that they can be released efficiently.
428 We will probably also want a generation counter so that most-recently-used
429 compilation units are cached... */
430 struct dwarf2_per_cu_data *read_in_chain;
431
432 /* Backchain to our per_cu entry if the tree has been built. */
433 struct dwarf2_per_cu_data *per_cu;
434
435 /* How many compilation units ago was this CU last referenced? */
436 int last_used;
437
438 /* A hash table of DIE cu_offset for following references with
439 die_info->offset.sect_off as hash. */
440 htab_t die_hash;
441
442 /* Full DIEs if read in. */
443 struct die_info *dies;
444
445 /* A set of pointers to dwarf2_per_cu_data objects for compilation
446 units referenced by this one. Only set during full symbol processing;
447 partial symbol tables do not have dependencies. */
448 htab_t dependencies;
449
450 /* Header data from the line table, during full symbol processing. */
451 struct line_header *line_header;
452
453 /* A list of methods which need to have physnames computed
454 after all type information has been read. */
455 VEC (delayed_method_info) *method_list;
456
457 /* To be copied to symtab->call_site_htab. */
458 htab_t call_site_htab;
459
460 /* Non-NULL if this CU came from a DWO file.
461 There is an invariant here that is important to remember:
462 Except for attributes copied from the top level DIE in the "main"
463 (or "stub") file in preparation for reading the DWO file
464 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
465 Either there isn't a DWO file (in which case this is NULL and the point
466 is moot), or there is and either we're not going to read it (in which
467 case this is NULL) or there is and we are reading it (in which case this
468 is non-NULL). */
469 struct dwo_unit *dwo_unit;
470
471 /* The DW_AT_addr_base attribute if present, zero otherwise
472 (zero is a valid value though).
473 Note this value comes from the stub CU/TU's DIE. */
474 ULONGEST addr_base;
475
476 /* The DW_AT_ranges_base attribute if present, zero otherwise
477 (zero is a valid value though).
478 Note this value comes from the stub CU/TU's DIE.
479 Also note that the value is zero in the non-DWO case so this value can
480 be used without needing to know whether DWO files are in use or not.
481 N.B. This does not apply to DW_AT_ranges appearing in
482 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
483 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
484 DW_AT_ranges_base *would* have to be applied, and we'd have to care
485 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
486 ULONGEST ranges_base;
487
488 /* Mark used when releasing cached dies. */
489 unsigned int mark : 1;
490
491 /* This CU references .debug_loc. See the symtab->locations_valid field.
492 This test is imperfect as there may exist optimized debug code not using
493 any location list and still facing inlining issues if handled as
494 unoptimized code. For a future better test see GCC PR other/32998. */
495 unsigned int has_loclist : 1;
496
497 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
498 if all the producer_is_* fields are valid. This information is cached
499 because profiling CU expansion showed excessive time spent in
500 producer_is_gxx_lt_4_6. */
501 unsigned int checked_producer : 1;
502 unsigned int producer_is_gxx_lt_4_6 : 1;
503 unsigned int producer_is_gcc_lt_4_3 : 1;
504 unsigned int producer_is_icc : 1;
505
506 /* When set, the file that we're processing is known to have
507 debugging info for C++ namespaces. GCC 3.3.x did not produce
508 this information, but later versions do. */
509
510 unsigned int processing_has_namespace_info : 1;
511 };
512
513 /* Persistent data held for a compilation unit, even when not
514 processing it. We put a pointer to this structure in the
515 read_symtab_private field of the psymtab. */
516
517 struct dwarf2_per_cu_data
518 {
519 /* The start offset and length of this compilation unit.
520 NOTE: Unlike comp_unit_head.length, this length includes
521 initial_length_size.
522 If the DIE refers to a DWO file, this is always of the original die,
523 not the DWO file. */
524 sect_offset offset;
525 unsigned int length;
526
527 /* Flag indicating this compilation unit will be read in before
528 any of the current compilation units are processed. */
529 unsigned int queued : 1;
530
531 /* This flag will be set when reading partial DIEs if we need to load
532 absolutely all DIEs for this compilation unit, instead of just the ones
533 we think are interesting. It gets set if we look for a DIE in the
534 hash table and don't find it. */
535 unsigned int load_all_dies : 1;
536
537 /* Non-zero if this CU is from .debug_types. */
538 unsigned int is_debug_types : 1;
539
540 /* Non-zero if this CU is from the .dwz file. */
541 unsigned int is_dwz : 1;
542
543 /* The section this CU/TU lives in.
544 If the DIE refers to a DWO file, this is always the original die,
545 not the DWO file. */
546 struct dwarf2_section_info *info_or_types_section;
547
548 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
549 of the CU cache it gets reset to NULL again. */
550 struct dwarf2_cu *cu;
551
552 /* The corresponding objfile.
553 Normally we can get the objfile from dwarf2_per_objfile.
554 However we can enter this file with just a "per_cu" handle. */
555 struct objfile *objfile;
556
557 /* When using partial symbol tables, the 'psymtab' field is active.
558 Otherwise the 'quick' field is active. */
559 union
560 {
561 /* The partial symbol table associated with this compilation unit,
562 or NULL for unread partial units. */
563 struct partial_symtab *psymtab;
564
565 /* Data needed by the "quick" functions. */
566 struct dwarf2_per_cu_quick_data *quick;
567 } v;
568
569 /* The CUs we import using DW_TAG_imported_unit. This is filled in
570 while reading psymtabs, used to compute the psymtab dependencies,
571 and then cleared. Then it is filled in again while reading full
572 symbols, and only deleted when the objfile is destroyed.
573
574 This is also used to work around a difference between the way gold
575 generates .gdb_index version <=7 and the way gdb does. Arguably this
576 is a gold bug. For symbols coming from TUs, gold records in the index
577 the CU that includes the TU instead of the TU itself. This breaks
578 dw2_lookup_symbol: It assumes that if the index says symbol X lives
579 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
580 will find X. Alas TUs live in their own symtab, so after expanding CU Y
581 we need to look in TU Z to find X. Fortunately, this is akin to
582 DW_TAG_imported_unit, so we just use the same mechanism: For
583 .gdb_index version <=7 this also records the TUs that the CU referred
584 to. Concurrently with this change gdb was modified to emit version 8
585 indices so we only pay a price for gold generated indices. */
586 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
587
588 /* Type units are grouped by their DW_AT_stmt_list entry so that they
589 can share them. If this is a TU, this points to the containing
590 symtab. */
591 struct type_unit_group *type_unit_group;
592 };
593
594 /* Entry in the signatured_types hash table. */
595
596 struct signatured_type
597 {
598 /* The "per_cu" object of this type.
599 N.B.: This is the first member so that it's easy to convert pointers
600 between them. */
601 struct dwarf2_per_cu_data per_cu;
602
603 /* The type's signature. */
604 ULONGEST signature;
605
606 /* Offset in the TU of the type's DIE, as read from the TU header.
607 If the definition lives in a DWO file, this value is unusable. */
608 cu_offset type_offset_in_tu;
609
610 /* Offset in the section of the type's DIE.
611 If the definition lives in a DWO file, this is the offset in the
612 .debug_types.dwo section.
613 The value is zero until the actual value is known.
614 Zero is otherwise not a valid section offset. */
615 sect_offset type_offset_in_section;
616 };
617
618 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
619 This includes type_unit_group and quick_file_names. */
620
621 struct stmt_list_hash
622 {
623 /* The DWO unit this table is from or NULL if there is none. */
624 struct dwo_unit *dwo_unit;
625
626 /* Offset in .debug_line or .debug_line.dwo. */
627 sect_offset line_offset;
628 };
629
630 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
631 an object of this type. */
632
633 struct type_unit_group
634 {
635 /* dwarf2read.c's main "handle" on the symtab.
636 To simplify things we create an artificial CU that "includes" all the
637 type units using this stmt_list so that the rest of the code still has
638 a "per_cu" handle on the symtab.
639 This PER_CU is recognized by having no section. */
640 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->info_or_types_section == NULL)
641 struct dwarf2_per_cu_data per_cu;
642
643 union
644 {
645 /* The TUs that share this DW_AT_stmt_list entry.
646 This is added to while parsing type units to build partial symtabs,
647 and is deleted afterwards and not used again. */
648 VEC (dwarf2_per_cu_ptr) *tus;
649
650 /* When reading the line table in "quick" functions, we need a real TU.
651 Any will do, we know they all share the same DW_AT_stmt_list entry.
652 For simplicity's sake, we pick the first one. */
653 struct dwarf2_per_cu_data *first_tu;
654 } t;
655
656 /* The primary symtab.
657 Type units in a group needn't all be defined in the same source file,
658 so we create an essentially anonymous symtab as the primary symtab. */
659 struct symtab *primary_symtab;
660
661 /* The data used to construct the hash key. */
662 struct stmt_list_hash hash;
663
664 /* The number of symtabs from the line header.
665 The value here must match line_header.num_file_names. */
666 unsigned int num_symtabs;
667
668 /* The symbol tables for this TU (obtained from the files listed in
669 DW_AT_stmt_list).
670 WARNING: The order of entries here must match the order of entries
671 in the line header. After the first TU using this type_unit_group, the
672 line header for the subsequent TUs is recreated from this. This is done
673 because we need to use the same symtabs for each TU using the same
674 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
675 there's no guarantee the line header doesn't have duplicate entries. */
676 struct symtab **symtabs;
677 };
678
679 /* These sections are what may appear in a DWO file. */
680
681 struct dwo_sections
682 {
683 struct dwarf2_section_info abbrev;
684 struct dwarf2_section_info line;
685 struct dwarf2_section_info loc;
686 struct dwarf2_section_info macinfo;
687 struct dwarf2_section_info macro;
688 struct dwarf2_section_info str;
689 struct dwarf2_section_info str_offsets;
690 /* In the case of a virtual DWO file, these two are unused. */
691 struct dwarf2_section_info info;
692 VEC (dwarf2_section_info_def) *types;
693 };
694
695 /* Common bits of DWO CUs/TUs. */
696
697 struct dwo_unit
698 {
699 /* Backlink to the containing struct dwo_file. */
700 struct dwo_file *dwo_file;
701
702 /* The "id" that distinguishes this CU/TU.
703 .debug_info calls this "dwo_id", .debug_types calls this "signature".
704 Since signatures came first, we stick with it for consistency. */
705 ULONGEST signature;
706
707 /* The section this CU/TU lives in, in the DWO file. */
708 struct dwarf2_section_info *info_or_types_section;
709
710 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
711 sect_offset offset;
712 unsigned int length;
713
714 /* For types, offset in the type's DIE of the type defined by this TU. */
715 cu_offset type_offset_in_tu;
716 };
717
718 /* Data for one DWO file.
719 This includes virtual DWO files that have been packaged into a
720 DWP file. */
721
722 struct dwo_file
723 {
724 /* The DW_AT_GNU_dwo_name attribute. This is the hash key.
725 For virtual DWO files the name is constructed from the section offsets
726 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
727 from related CU+TUs. */
728 const char *name;
729
730 /* The bfd, when the file is open. Otherwise this is NULL.
731 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
732 bfd *dbfd;
733
734 /* Section info for this file. */
735 struct dwo_sections sections;
736
737 /* Table of CUs in the file.
738 Each element is a struct dwo_unit. */
739 htab_t cus;
740
741 /* Table of TUs in the file.
742 Each element is a struct dwo_unit. */
743 htab_t tus;
744 };
745
746 /* These sections are what may appear in a DWP file. */
747
748 struct dwp_sections
749 {
750 struct dwarf2_section_info str;
751 struct dwarf2_section_info cu_index;
752 struct dwarf2_section_info tu_index;
753 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
754 by section number. We don't need to record them here. */
755 };
756
757 /* These sections are what may appear in a virtual DWO file. */
758
759 struct virtual_dwo_sections
760 {
761 struct dwarf2_section_info abbrev;
762 struct dwarf2_section_info line;
763 struct dwarf2_section_info loc;
764 struct dwarf2_section_info macinfo;
765 struct dwarf2_section_info macro;
766 struct dwarf2_section_info str_offsets;
767 /* Each DWP hash table entry records one CU or one TU.
768 That is recorded here, and copied to dwo_unit.info_or_types_section. */
769 struct dwarf2_section_info info_or_types;
770 };
771
772 /* Contents of DWP hash tables. */
773
774 struct dwp_hash_table
775 {
776 uint32_t nr_units, nr_slots;
777 const gdb_byte *hash_table, *unit_table, *section_pool;
778 };
779
780 /* Data for one DWP file. */
781
782 struct dwp_file
783 {
784 /* Name of the file. */
785 const char *name;
786
787 /* The bfd, when the file is open. Otherwise this is NULL. */
788 bfd *dbfd;
789
790 /* Section info for this file. */
791 struct dwp_sections sections;
792
793 /* Table of CUs in the file. */
794 const struct dwp_hash_table *cus;
795
796 /* Table of TUs in the file. */
797 const struct dwp_hash_table *tus;
798
799 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
800 htab_t loaded_cutus;
801
802 /* Table to map ELF section numbers to their sections. */
803 unsigned int num_sections;
804 asection **elf_sections;
805 };
806
807 /* This represents a '.dwz' file. */
808
809 struct dwz_file
810 {
811 /* A dwz file can only contain a few sections. */
812 struct dwarf2_section_info abbrev;
813 struct dwarf2_section_info info;
814 struct dwarf2_section_info str;
815 struct dwarf2_section_info line;
816 struct dwarf2_section_info macro;
817 struct dwarf2_section_info gdb_index;
818
819 /* The dwz's BFD. */
820 bfd *dwz_bfd;
821 };
822
823 /* Struct used to pass misc. parameters to read_die_and_children, et
824 al. which are used for both .debug_info and .debug_types dies.
825 All parameters here are unchanging for the life of the call. This
826 struct exists to abstract away the constant parameters of die reading. */
827
828 struct die_reader_specs
829 {
830 /* die_section->asection->owner. */
831 bfd* abfd;
832
833 /* The CU of the DIE we are parsing. */
834 struct dwarf2_cu *cu;
835
836 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
837 struct dwo_file *dwo_file;
838
839 /* The section the die comes from.
840 This is either .debug_info or .debug_types, or the .dwo variants. */
841 struct dwarf2_section_info *die_section;
842
843 /* die_section->buffer. */
844 gdb_byte *buffer;
845
846 /* The end of the buffer. */
847 const gdb_byte *buffer_end;
848 };
849
850 /* Type of function passed to init_cutu_and_read_dies, et.al. */
851 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
852 gdb_byte *info_ptr,
853 struct die_info *comp_unit_die,
854 int has_children,
855 void *data);
856
857 /* The line number information for a compilation unit (found in the
858 .debug_line section) begins with a "statement program header",
859 which contains the following information. */
860 struct line_header
861 {
862 unsigned int total_length;
863 unsigned short version;
864 unsigned int header_length;
865 unsigned char minimum_instruction_length;
866 unsigned char maximum_ops_per_instruction;
867 unsigned char default_is_stmt;
868 int line_base;
869 unsigned char line_range;
870 unsigned char opcode_base;
871
872 /* standard_opcode_lengths[i] is the number of operands for the
873 standard opcode whose value is i. This means that
874 standard_opcode_lengths[0] is unused, and the last meaningful
875 element is standard_opcode_lengths[opcode_base - 1]. */
876 unsigned char *standard_opcode_lengths;
877
878 /* The include_directories table. NOTE! These strings are not
879 allocated with xmalloc; instead, they are pointers into
880 debug_line_buffer. If you try to free them, `free' will get
881 indigestion. */
882 unsigned int num_include_dirs, include_dirs_size;
883 char **include_dirs;
884
885 /* The file_names table. NOTE! These strings are not allocated
886 with xmalloc; instead, they are pointers into debug_line_buffer.
887 Don't try to free them directly. */
888 unsigned int num_file_names, file_names_size;
889 struct file_entry
890 {
891 char *name;
892 unsigned int dir_index;
893 unsigned int mod_time;
894 unsigned int length;
895 int included_p; /* Non-zero if referenced by the Line Number Program. */
896 struct symtab *symtab; /* The associated symbol table, if any. */
897 } *file_names;
898
899 /* The start and end of the statement program following this
900 header. These point into dwarf2_per_objfile->line_buffer. */
901 gdb_byte *statement_program_start, *statement_program_end;
902 };
903
904 /* When we construct a partial symbol table entry we only
905 need this much information. */
906 struct partial_die_info
907 {
908 /* Offset of this DIE. */
909 sect_offset offset;
910
911 /* DWARF-2 tag for this DIE. */
912 ENUM_BITFIELD(dwarf_tag) tag : 16;
913
914 /* Assorted flags describing the data found in this DIE. */
915 unsigned int has_children : 1;
916 unsigned int is_external : 1;
917 unsigned int is_declaration : 1;
918 unsigned int has_type : 1;
919 unsigned int has_specification : 1;
920 unsigned int has_pc_info : 1;
921 unsigned int may_be_inlined : 1;
922
923 /* Flag set if the SCOPE field of this structure has been
924 computed. */
925 unsigned int scope_set : 1;
926
927 /* Flag set if the DIE has a byte_size attribute. */
928 unsigned int has_byte_size : 1;
929
930 /* Flag set if any of the DIE's children are template arguments. */
931 unsigned int has_template_arguments : 1;
932
933 /* Flag set if fixup_partial_die has been called on this die. */
934 unsigned int fixup_called : 1;
935
936 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
937 unsigned int is_dwz : 1;
938
939 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
940 unsigned int spec_is_dwz : 1;
941
942 /* The name of this DIE. Normally the value of DW_AT_name, but
943 sometimes a default name for unnamed DIEs. */
944 const char *name;
945
946 /* The linkage name, if present. */
947 const char *linkage_name;
948
949 /* The scope to prepend to our children. This is generally
950 allocated on the comp_unit_obstack, so will disappear
951 when this compilation unit leaves the cache. */
952 const char *scope;
953
954 /* Some data associated with the partial DIE. The tag determines
955 which field is live. */
956 union
957 {
958 /* The location description associated with this DIE, if any. */
959 struct dwarf_block *locdesc;
960 /* The offset of an import, for DW_TAG_imported_unit. */
961 sect_offset offset;
962 } d;
963
964 /* If HAS_PC_INFO, the PC range associated with this DIE. */
965 CORE_ADDR lowpc;
966 CORE_ADDR highpc;
967
968 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
969 DW_AT_sibling, if any. */
970 /* NOTE: This member isn't strictly necessary, read_partial_die could
971 return DW_AT_sibling values to its caller load_partial_dies. */
972 gdb_byte *sibling;
973
974 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
975 DW_AT_specification (or DW_AT_abstract_origin or
976 DW_AT_extension). */
977 sect_offset spec_offset;
978
979 /* Pointers to this DIE's parent, first child, and next sibling,
980 if any. */
981 struct partial_die_info *die_parent, *die_child, *die_sibling;
982 };
983
984 /* This data structure holds the information of an abbrev. */
985 struct abbrev_info
986 {
987 unsigned int number; /* number identifying abbrev */
988 enum dwarf_tag tag; /* dwarf tag */
989 unsigned short has_children; /* boolean */
990 unsigned short num_attrs; /* number of attributes */
991 struct attr_abbrev *attrs; /* an array of attribute descriptions */
992 struct abbrev_info *next; /* next in chain */
993 };
994
995 struct attr_abbrev
996 {
997 ENUM_BITFIELD(dwarf_attribute) name : 16;
998 ENUM_BITFIELD(dwarf_form) form : 16;
999 };
1000
1001 /* Size of abbrev_table.abbrev_hash_table. */
1002 #define ABBREV_HASH_SIZE 121
1003
1004 /* Top level data structure to contain an abbreviation table. */
1005
1006 struct abbrev_table
1007 {
1008 /* Where the abbrev table came from.
1009 This is used as a sanity check when the table is used. */
1010 sect_offset offset;
1011
1012 /* Storage for the abbrev table. */
1013 struct obstack abbrev_obstack;
1014
1015 /* Hash table of abbrevs.
1016 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1017 It could be statically allocated, but the previous code didn't so we
1018 don't either. */
1019 struct abbrev_info **abbrevs;
1020 };
1021
1022 /* Attributes have a name and a value. */
1023 struct attribute
1024 {
1025 ENUM_BITFIELD(dwarf_attribute) name : 16;
1026 ENUM_BITFIELD(dwarf_form) form : 15;
1027
1028 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1029 field should be in u.str (existing only for DW_STRING) but it is kept
1030 here for better struct attribute alignment. */
1031 unsigned int string_is_canonical : 1;
1032
1033 union
1034 {
1035 const char *str;
1036 struct dwarf_block *blk;
1037 ULONGEST unsnd;
1038 LONGEST snd;
1039 CORE_ADDR addr;
1040 struct signatured_type *signatured_type;
1041 }
1042 u;
1043 };
1044
1045 /* This data structure holds a complete die structure. */
1046 struct die_info
1047 {
1048 /* DWARF-2 tag for this DIE. */
1049 ENUM_BITFIELD(dwarf_tag) tag : 16;
1050
1051 /* Number of attributes */
1052 unsigned char num_attrs;
1053
1054 /* True if we're presently building the full type name for the
1055 type derived from this DIE. */
1056 unsigned char building_fullname : 1;
1057
1058 /* Abbrev number */
1059 unsigned int abbrev;
1060
1061 /* Offset in .debug_info or .debug_types section. */
1062 sect_offset offset;
1063
1064 /* The dies in a compilation unit form an n-ary tree. PARENT
1065 points to this die's parent; CHILD points to the first child of
1066 this node; and all the children of a given node are chained
1067 together via their SIBLING fields. */
1068 struct die_info *child; /* Its first child, if any. */
1069 struct die_info *sibling; /* Its next sibling, if any. */
1070 struct die_info *parent; /* Its parent, if any. */
1071
1072 /* An array of attributes, with NUM_ATTRS elements. There may be
1073 zero, but it's not common and zero-sized arrays are not
1074 sufficiently portable C. */
1075 struct attribute attrs[1];
1076 };
1077
1078 /* Get at parts of an attribute structure. */
1079
1080 #define DW_STRING(attr) ((attr)->u.str)
1081 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1082 #define DW_UNSND(attr) ((attr)->u.unsnd)
1083 #define DW_BLOCK(attr) ((attr)->u.blk)
1084 #define DW_SND(attr) ((attr)->u.snd)
1085 #define DW_ADDR(attr) ((attr)->u.addr)
1086 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
1087
1088 /* Blocks are a bunch of untyped bytes. */
1089 struct dwarf_block
1090 {
1091 size_t size;
1092
1093 /* Valid only if SIZE is not zero. */
1094 gdb_byte *data;
1095 };
1096
1097 #ifndef ATTR_ALLOC_CHUNK
1098 #define ATTR_ALLOC_CHUNK 4
1099 #endif
1100
1101 /* Allocate fields for structs, unions and enums in this size. */
1102 #ifndef DW_FIELD_ALLOC_CHUNK
1103 #define DW_FIELD_ALLOC_CHUNK 4
1104 #endif
1105
1106 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1107 but this would require a corresponding change in unpack_field_as_long
1108 and friends. */
1109 static int bits_per_byte = 8;
1110
1111 /* The routines that read and process dies for a C struct or C++ class
1112 pass lists of data member fields and lists of member function fields
1113 in an instance of a field_info structure, as defined below. */
1114 struct field_info
1115 {
1116 /* List of data member and baseclasses fields. */
1117 struct nextfield
1118 {
1119 struct nextfield *next;
1120 int accessibility;
1121 int virtuality;
1122 struct field field;
1123 }
1124 *fields, *baseclasses;
1125
1126 /* Number of fields (including baseclasses). */
1127 int nfields;
1128
1129 /* Number of baseclasses. */
1130 int nbaseclasses;
1131
1132 /* Set if the accesibility of one of the fields is not public. */
1133 int non_public_fields;
1134
1135 /* Member function fields array, entries are allocated in the order they
1136 are encountered in the object file. */
1137 struct nextfnfield
1138 {
1139 struct nextfnfield *next;
1140 struct fn_field fnfield;
1141 }
1142 *fnfields;
1143
1144 /* Member function fieldlist array, contains name of possibly overloaded
1145 member function, number of overloaded member functions and a pointer
1146 to the head of the member function field chain. */
1147 struct fnfieldlist
1148 {
1149 const char *name;
1150 int length;
1151 struct nextfnfield *head;
1152 }
1153 *fnfieldlists;
1154
1155 /* Number of entries in the fnfieldlists array. */
1156 int nfnfields;
1157
1158 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1159 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1160 struct typedef_field_list
1161 {
1162 struct typedef_field field;
1163 struct typedef_field_list *next;
1164 }
1165 *typedef_field_list;
1166 unsigned typedef_field_list_count;
1167 };
1168
1169 /* One item on the queue of compilation units to read in full symbols
1170 for. */
1171 struct dwarf2_queue_item
1172 {
1173 struct dwarf2_per_cu_data *per_cu;
1174 enum language pretend_language;
1175 struct dwarf2_queue_item *next;
1176 };
1177
1178 /* The current queue. */
1179 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1180
1181 /* Loaded secondary compilation units are kept in memory until they
1182 have not been referenced for the processing of this many
1183 compilation units. Set this to zero to disable caching. Cache
1184 sizes of up to at least twenty will improve startup time for
1185 typical inter-CU-reference binaries, at an obvious memory cost. */
1186 static int dwarf2_max_cache_age = 5;
1187 static void
1188 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1189 struct cmd_list_element *c, const char *value)
1190 {
1191 fprintf_filtered (file, _("The upper bound on the age of cached "
1192 "dwarf2 compilation units is %s.\n"),
1193 value);
1194 }
1195
1196
1197 /* Various complaints about symbol reading that don't abort the process. */
1198
1199 static void
1200 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1201 {
1202 complaint (&symfile_complaints,
1203 _("statement list doesn't fit in .debug_line section"));
1204 }
1205
1206 static void
1207 dwarf2_debug_line_missing_file_complaint (void)
1208 {
1209 complaint (&symfile_complaints,
1210 _(".debug_line section has line data without a file"));
1211 }
1212
1213 static void
1214 dwarf2_debug_line_missing_end_sequence_complaint (void)
1215 {
1216 complaint (&symfile_complaints,
1217 _(".debug_line section has line "
1218 "program sequence without an end"));
1219 }
1220
1221 static void
1222 dwarf2_complex_location_expr_complaint (void)
1223 {
1224 complaint (&symfile_complaints, _("location expression too complex"));
1225 }
1226
1227 static void
1228 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1229 int arg3)
1230 {
1231 complaint (&symfile_complaints,
1232 _("const value length mismatch for '%s', got %d, expected %d"),
1233 arg1, arg2, arg3);
1234 }
1235
1236 static void
1237 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1238 {
1239 complaint (&symfile_complaints,
1240 _("debug info runs off end of %s section"
1241 " [in module %s]"),
1242 section->asection->name,
1243 bfd_get_filename (section->asection->owner));
1244 }
1245
1246 static void
1247 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1248 {
1249 complaint (&symfile_complaints,
1250 _("macro debug info contains a "
1251 "malformed macro definition:\n`%s'"),
1252 arg1);
1253 }
1254
1255 static void
1256 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1257 {
1258 complaint (&symfile_complaints,
1259 _("invalid attribute class or form for '%s' in '%s'"),
1260 arg1, arg2);
1261 }
1262
1263 /* local function prototypes */
1264
1265 static void dwarf2_locate_sections (bfd *, asection *, void *);
1266
1267 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1268 struct objfile *);
1269
1270 static void dwarf2_find_base_address (struct die_info *die,
1271 struct dwarf2_cu *cu);
1272
1273 static void dwarf2_build_psymtabs_hard (struct objfile *);
1274
1275 static void scan_partial_symbols (struct partial_die_info *,
1276 CORE_ADDR *, CORE_ADDR *,
1277 int, struct dwarf2_cu *);
1278
1279 static void add_partial_symbol (struct partial_die_info *,
1280 struct dwarf2_cu *);
1281
1282 static void add_partial_namespace (struct partial_die_info *pdi,
1283 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1284 int need_pc, struct dwarf2_cu *cu);
1285
1286 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1287 CORE_ADDR *highpc, int need_pc,
1288 struct dwarf2_cu *cu);
1289
1290 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1291 struct dwarf2_cu *cu);
1292
1293 static void add_partial_subprogram (struct partial_die_info *pdi,
1294 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1295 int need_pc, struct dwarf2_cu *cu);
1296
1297 static void dwarf2_read_symtab (struct partial_symtab *,
1298 struct objfile *);
1299
1300 static void psymtab_to_symtab_1 (struct partial_symtab *);
1301
1302 static struct abbrev_info *abbrev_table_lookup_abbrev
1303 (const struct abbrev_table *, unsigned int);
1304
1305 static struct abbrev_table *abbrev_table_read_table
1306 (struct dwarf2_section_info *, sect_offset);
1307
1308 static void abbrev_table_free (struct abbrev_table *);
1309
1310 static void abbrev_table_free_cleanup (void *);
1311
1312 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1313 struct dwarf2_section_info *);
1314
1315 static void dwarf2_free_abbrev_table (void *);
1316
1317 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1318
1319 static struct partial_die_info *load_partial_dies
1320 (const struct die_reader_specs *, gdb_byte *, int);
1321
1322 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1323 struct partial_die_info *,
1324 struct abbrev_info *,
1325 unsigned int,
1326 gdb_byte *);
1327
1328 static struct partial_die_info *find_partial_die (sect_offset, int,
1329 struct dwarf2_cu *);
1330
1331 static void fixup_partial_die (struct partial_die_info *,
1332 struct dwarf2_cu *);
1333
1334 static gdb_byte *read_attribute (const struct die_reader_specs *,
1335 struct attribute *, struct attr_abbrev *,
1336 gdb_byte *);
1337
1338 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1339
1340 static int read_1_signed_byte (bfd *, const gdb_byte *);
1341
1342 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1343
1344 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1345
1346 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1347
1348 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1349 unsigned int *);
1350
1351 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1352
1353 static LONGEST read_checked_initial_length_and_offset
1354 (bfd *, gdb_byte *, const struct comp_unit_head *,
1355 unsigned int *, unsigned int *);
1356
1357 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1358 unsigned int *);
1359
1360 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1361
1362 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1363 sect_offset);
1364
1365 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1366
1367 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1368
1369 static char *read_indirect_string (bfd *, gdb_byte *,
1370 const struct comp_unit_head *,
1371 unsigned int *);
1372
1373 static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1374
1375 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1376
1377 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1378
1379 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1380 unsigned int *);
1381
1382 static char *read_str_index (const struct die_reader_specs *reader,
1383 struct dwarf2_cu *cu, ULONGEST str_index);
1384
1385 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1386
1387 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1388 struct dwarf2_cu *);
1389
1390 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1391 unsigned int);
1392
1393 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1394 struct dwarf2_cu *cu);
1395
1396 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1397
1398 static struct die_info *die_specification (struct die_info *die,
1399 struct dwarf2_cu **);
1400
1401 static void free_line_header (struct line_header *lh);
1402
1403 static void add_file_name (struct line_header *, char *, unsigned int,
1404 unsigned int, unsigned int);
1405
1406 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1407 struct dwarf2_cu *cu);
1408
1409 static void dwarf_decode_lines (struct line_header *, const char *,
1410 struct dwarf2_cu *, struct partial_symtab *,
1411 int);
1412
1413 static void dwarf2_start_subfile (char *, const char *, const char *);
1414
1415 static void dwarf2_start_symtab (struct dwarf2_cu *,
1416 const char *, const char *, CORE_ADDR);
1417
1418 static struct symbol *new_symbol (struct die_info *, struct type *,
1419 struct dwarf2_cu *);
1420
1421 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1422 struct dwarf2_cu *, struct symbol *);
1423
1424 static void dwarf2_const_value (struct attribute *, struct symbol *,
1425 struct dwarf2_cu *);
1426
1427 static void dwarf2_const_value_attr (struct attribute *attr,
1428 struct type *type,
1429 const char *name,
1430 struct obstack *obstack,
1431 struct dwarf2_cu *cu, LONGEST *value,
1432 gdb_byte **bytes,
1433 struct dwarf2_locexpr_baton **baton);
1434
1435 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1436
1437 static int need_gnat_info (struct dwarf2_cu *);
1438
1439 static struct type *die_descriptive_type (struct die_info *,
1440 struct dwarf2_cu *);
1441
1442 static void set_descriptive_type (struct type *, struct die_info *,
1443 struct dwarf2_cu *);
1444
1445 static struct type *die_containing_type (struct die_info *,
1446 struct dwarf2_cu *);
1447
1448 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1449 struct dwarf2_cu *);
1450
1451 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1452
1453 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1454
1455 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1456
1457 static char *typename_concat (struct obstack *obs, const char *prefix,
1458 const char *suffix, int physname,
1459 struct dwarf2_cu *cu);
1460
1461 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1462
1463 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1464
1465 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1466
1467 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1468
1469 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1470
1471 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1472 struct dwarf2_cu *, struct partial_symtab *);
1473
1474 static int dwarf2_get_pc_bounds (struct die_info *,
1475 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1476 struct partial_symtab *);
1477
1478 static void get_scope_pc_bounds (struct die_info *,
1479 CORE_ADDR *, CORE_ADDR *,
1480 struct dwarf2_cu *);
1481
1482 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1483 CORE_ADDR, struct dwarf2_cu *);
1484
1485 static void dwarf2_add_field (struct field_info *, struct die_info *,
1486 struct dwarf2_cu *);
1487
1488 static void dwarf2_attach_fields_to_type (struct field_info *,
1489 struct type *, struct dwarf2_cu *);
1490
1491 static void dwarf2_add_member_fn (struct field_info *,
1492 struct die_info *, struct type *,
1493 struct dwarf2_cu *);
1494
1495 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1496 struct type *,
1497 struct dwarf2_cu *);
1498
1499 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1500
1501 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1502
1503 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1504
1505 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1506
1507 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1508
1509 static struct type *read_module_type (struct die_info *die,
1510 struct dwarf2_cu *cu);
1511
1512 static const char *namespace_name (struct die_info *die,
1513 int *is_anonymous, struct dwarf2_cu *);
1514
1515 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1516
1517 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1518
1519 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1520 struct dwarf2_cu *);
1521
1522 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1523 gdb_byte *info_ptr,
1524 gdb_byte **new_info_ptr,
1525 struct die_info *parent);
1526
1527 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1528 gdb_byte *info_ptr,
1529 gdb_byte **new_info_ptr,
1530 struct die_info *parent);
1531
1532 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1533 struct die_info **, gdb_byte *, int *, int);
1534
1535 static gdb_byte *read_full_die (const struct die_reader_specs *,
1536 struct die_info **, gdb_byte *, int *);
1537
1538 static void process_die (struct die_info *, struct dwarf2_cu *);
1539
1540 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1541 struct obstack *);
1542
1543 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1544
1545 static const char *dwarf2_full_name (const char *name,
1546 struct die_info *die,
1547 struct dwarf2_cu *cu);
1548
1549 static struct die_info *dwarf2_extension (struct die_info *die,
1550 struct dwarf2_cu **);
1551
1552 static const char *dwarf_tag_name (unsigned int);
1553
1554 static const char *dwarf_attr_name (unsigned int);
1555
1556 static const char *dwarf_form_name (unsigned int);
1557
1558 static char *dwarf_bool_name (unsigned int);
1559
1560 static const char *dwarf_type_encoding_name (unsigned int);
1561
1562 static struct die_info *sibling_die (struct die_info *);
1563
1564 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1565
1566 static void dump_die_for_error (struct die_info *);
1567
1568 static void dump_die_1 (struct ui_file *, int level, int max_level,
1569 struct die_info *);
1570
1571 /*static*/ void dump_die (struct die_info *, int max_level);
1572
1573 static void store_in_ref_table (struct die_info *,
1574 struct dwarf2_cu *);
1575
1576 static int is_ref_attr (struct attribute *);
1577
1578 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1579
1580 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1581
1582 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1583 struct attribute *,
1584 struct dwarf2_cu **);
1585
1586 static struct die_info *follow_die_ref (struct die_info *,
1587 struct attribute *,
1588 struct dwarf2_cu **);
1589
1590 static struct die_info *follow_die_sig (struct die_info *,
1591 struct attribute *,
1592 struct dwarf2_cu **);
1593
1594 static struct signatured_type *lookup_signatured_type_at_offset
1595 (struct objfile *objfile,
1596 struct dwarf2_section_info *section, sect_offset offset);
1597
1598 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1599
1600 static void read_signatured_type (struct signatured_type *);
1601
1602 static struct type_unit_group *get_type_unit_group
1603 (struct dwarf2_cu *, struct attribute *);
1604
1605 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1606
1607 /* memory allocation interface */
1608
1609 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1610
1611 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1612
1613 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1614 const char *, int);
1615
1616 static int attr_form_is_block (struct attribute *);
1617
1618 static int attr_form_is_section_offset (struct attribute *);
1619
1620 static int attr_form_is_constant (struct attribute *);
1621
1622 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1623 struct dwarf2_loclist_baton *baton,
1624 struct attribute *attr);
1625
1626 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1627 struct symbol *sym,
1628 struct dwarf2_cu *cu);
1629
1630 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1631 gdb_byte *info_ptr,
1632 struct abbrev_info *abbrev);
1633
1634 static void free_stack_comp_unit (void *);
1635
1636 static hashval_t partial_die_hash (const void *item);
1637
1638 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1639
1640 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1641 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1642
1643 static void init_one_comp_unit (struct dwarf2_cu *cu,
1644 struct dwarf2_per_cu_data *per_cu);
1645
1646 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1647 struct die_info *comp_unit_die,
1648 enum language pretend_language);
1649
1650 static void free_heap_comp_unit (void *);
1651
1652 static void free_cached_comp_units (void *);
1653
1654 static void age_cached_comp_units (void);
1655
1656 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1657
1658 static struct type *set_die_type (struct die_info *, struct type *,
1659 struct dwarf2_cu *);
1660
1661 static void create_all_comp_units (struct objfile *);
1662
1663 static int create_all_type_units (struct objfile *);
1664
1665 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1666 enum language);
1667
1668 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1669 enum language);
1670
1671 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1672 enum language);
1673
1674 static void dwarf2_add_dependence (struct dwarf2_cu *,
1675 struct dwarf2_per_cu_data *);
1676
1677 static void dwarf2_mark (struct dwarf2_cu *);
1678
1679 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1680
1681 static struct type *get_die_type_at_offset (sect_offset,
1682 struct dwarf2_per_cu_data *per_cu);
1683
1684 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1685
1686 static void dwarf2_release_queue (void *dummy);
1687
1688 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1689 enum language pretend_language);
1690
1691 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1692 struct dwarf2_per_cu_data *per_cu,
1693 enum language pretend_language);
1694
1695 static void process_queue (void);
1696
1697 static void find_file_and_directory (struct die_info *die,
1698 struct dwarf2_cu *cu,
1699 const char **name, const char **comp_dir);
1700
1701 static char *file_full_name (int file, struct line_header *lh,
1702 const char *comp_dir);
1703
1704 static gdb_byte *read_and_check_comp_unit_head
1705 (struct comp_unit_head *header,
1706 struct dwarf2_section_info *section,
1707 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1708 int is_debug_types_section);
1709
1710 static void init_cutu_and_read_dies
1711 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1712 int use_existing_cu, int keep,
1713 die_reader_func_ftype *die_reader_func, void *data);
1714
1715 static void init_cutu_and_read_dies_simple
1716 (struct dwarf2_per_cu_data *this_cu,
1717 die_reader_func_ftype *die_reader_func, void *data);
1718
1719 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1720
1721 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1722
1723 static struct dwo_unit *lookup_dwo_comp_unit
1724 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1725
1726 static struct dwo_unit *lookup_dwo_type_unit
1727 (struct signatured_type *, const char *, const char *);
1728
1729 static void free_dwo_file_cleanup (void *);
1730
1731 static void process_cu_includes (void);
1732
1733 static void check_producer (struct dwarf2_cu *cu);
1734
1735 #if WORDS_BIGENDIAN
1736
1737 /* Convert VALUE between big- and little-endian. */
1738 static offset_type
1739 byte_swap (offset_type value)
1740 {
1741 offset_type result;
1742
1743 result = (value & 0xff) << 24;
1744 result |= (value & 0xff00) << 8;
1745 result |= (value & 0xff0000) >> 8;
1746 result |= (value & 0xff000000) >> 24;
1747 return result;
1748 }
1749
1750 #define MAYBE_SWAP(V) byte_swap (V)
1751
1752 #else
1753 #define MAYBE_SWAP(V) (V)
1754 #endif /* WORDS_BIGENDIAN */
1755
1756 /* The suffix for an index file. */
1757 #define INDEX_SUFFIX ".gdb-index"
1758
1759 static const char *dwarf2_physname (const char *name, struct die_info *die,
1760 struct dwarf2_cu *cu);
1761
1762 /* Try to locate the sections we need for DWARF 2 debugging
1763 information and return true if we have enough to do something.
1764 NAMES points to the dwarf2 section names, or is NULL if the standard
1765 ELF names are used. */
1766
1767 int
1768 dwarf2_has_info (struct objfile *objfile,
1769 const struct dwarf2_debug_sections *names)
1770 {
1771 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1772 if (!dwarf2_per_objfile)
1773 {
1774 /* Initialize per-objfile state. */
1775 struct dwarf2_per_objfile *data
1776 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1777
1778 memset (data, 0, sizeof (*data));
1779 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1780 dwarf2_per_objfile = data;
1781
1782 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1783 (void *) names);
1784 dwarf2_per_objfile->objfile = objfile;
1785 }
1786 return (dwarf2_per_objfile->info.asection != NULL
1787 && dwarf2_per_objfile->abbrev.asection != NULL);
1788 }
1789
1790 /* When loading sections, we look either for uncompressed section or for
1791 compressed section names. */
1792
1793 static int
1794 section_is_p (const char *section_name,
1795 const struct dwarf2_section_names *names)
1796 {
1797 if (names->normal != NULL
1798 && strcmp (section_name, names->normal) == 0)
1799 return 1;
1800 if (names->compressed != NULL
1801 && strcmp (section_name, names->compressed) == 0)
1802 return 1;
1803 return 0;
1804 }
1805
1806 /* This function is mapped across the sections and remembers the
1807 offset and size of each of the debugging sections we are interested
1808 in. */
1809
1810 static void
1811 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1812 {
1813 const struct dwarf2_debug_sections *names;
1814 flagword aflag = bfd_get_section_flags (abfd, sectp);
1815
1816 if (vnames == NULL)
1817 names = &dwarf2_elf_names;
1818 else
1819 names = (const struct dwarf2_debug_sections *) vnames;
1820
1821 if ((aflag & SEC_HAS_CONTENTS) == 0)
1822 {
1823 }
1824 else if (section_is_p (sectp->name, &names->info))
1825 {
1826 dwarf2_per_objfile->info.asection = sectp;
1827 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1828 }
1829 else if (section_is_p (sectp->name, &names->abbrev))
1830 {
1831 dwarf2_per_objfile->abbrev.asection = sectp;
1832 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1833 }
1834 else if (section_is_p (sectp->name, &names->line))
1835 {
1836 dwarf2_per_objfile->line.asection = sectp;
1837 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1838 }
1839 else if (section_is_p (sectp->name, &names->loc))
1840 {
1841 dwarf2_per_objfile->loc.asection = sectp;
1842 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1843 }
1844 else if (section_is_p (sectp->name, &names->macinfo))
1845 {
1846 dwarf2_per_objfile->macinfo.asection = sectp;
1847 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1848 }
1849 else if (section_is_p (sectp->name, &names->macro))
1850 {
1851 dwarf2_per_objfile->macro.asection = sectp;
1852 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1853 }
1854 else if (section_is_p (sectp->name, &names->str))
1855 {
1856 dwarf2_per_objfile->str.asection = sectp;
1857 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1858 }
1859 else if (section_is_p (sectp->name, &names->addr))
1860 {
1861 dwarf2_per_objfile->addr.asection = sectp;
1862 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1863 }
1864 else if (section_is_p (sectp->name, &names->frame))
1865 {
1866 dwarf2_per_objfile->frame.asection = sectp;
1867 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1868 }
1869 else if (section_is_p (sectp->name, &names->eh_frame))
1870 {
1871 dwarf2_per_objfile->eh_frame.asection = sectp;
1872 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1873 }
1874 else if (section_is_p (sectp->name, &names->ranges))
1875 {
1876 dwarf2_per_objfile->ranges.asection = sectp;
1877 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1878 }
1879 else if (section_is_p (sectp->name, &names->types))
1880 {
1881 struct dwarf2_section_info type_section;
1882
1883 memset (&type_section, 0, sizeof (type_section));
1884 type_section.asection = sectp;
1885 type_section.size = bfd_get_section_size (sectp);
1886
1887 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1888 &type_section);
1889 }
1890 else if (section_is_p (sectp->name, &names->gdb_index))
1891 {
1892 dwarf2_per_objfile->gdb_index.asection = sectp;
1893 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1894 }
1895
1896 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1897 && bfd_section_vma (abfd, sectp) == 0)
1898 dwarf2_per_objfile->has_section_at_zero = 1;
1899 }
1900
1901 /* A helper function that decides whether a section is empty,
1902 or not present. */
1903
1904 static int
1905 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1906 {
1907 return info->asection == NULL || info->size == 0;
1908 }
1909
1910 /* Read the contents of the section INFO.
1911 OBJFILE is the main object file, but not necessarily the file where
1912 the section comes from. E.g., for DWO files INFO->asection->owner
1913 is the bfd of the DWO file.
1914 If the section is compressed, uncompress it before returning. */
1915
1916 static void
1917 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1918 {
1919 asection *sectp = info->asection;
1920 bfd *abfd;
1921 gdb_byte *buf, *retbuf;
1922 unsigned char header[4];
1923
1924 if (info->readin)
1925 return;
1926 info->buffer = NULL;
1927 info->readin = 1;
1928
1929 if (dwarf2_section_empty_p (info))
1930 return;
1931
1932 abfd = sectp->owner;
1933
1934 /* If the section has relocations, we must read it ourselves.
1935 Otherwise we attach it to the BFD. */
1936 if ((sectp->flags & SEC_RELOC) == 0)
1937 {
1938 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
1939
1940 /* We have to cast away const here for historical reasons.
1941 Fixing dwarf2read to be const-correct would be quite nice. */
1942 info->buffer = (gdb_byte *) bytes;
1943 return;
1944 }
1945
1946 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1947 info->buffer = buf;
1948
1949 /* When debugging .o files, we may need to apply relocations; see
1950 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1951 We never compress sections in .o files, so we only need to
1952 try this when the section is not compressed. */
1953 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1954 if (retbuf != NULL)
1955 {
1956 info->buffer = retbuf;
1957 return;
1958 }
1959
1960 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1961 || bfd_bread (buf, info->size, abfd) != info->size)
1962 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1963 bfd_get_filename (abfd));
1964 }
1965
1966 /* A helper function that returns the size of a section in a safe way.
1967 If you are positive that the section has been read before using the
1968 size, then it is safe to refer to the dwarf2_section_info object's
1969 "size" field directly. In other cases, you must call this
1970 function, because for compressed sections the size field is not set
1971 correctly until the section has been read. */
1972
1973 static bfd_size_type
1974 dwarf2_section_size (struct objfile *objfile,
1975 struct dwarf2_section_info *info)
1976 {
1977 if (!info->readin)
1978 dwarf2_read_section (objfile, info);
1979 return info->size;
1980 }
1981
1982 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1983 SECTION_NAME. */
1984
1985 void
1986 dwarf2_get_section_info (struct objfile *objfile,
1987 enum dwarf2_section_enum sect,
1988 asection **sectp, gdb_byte **bufp,
1989 bfd_size_type *sizep)
1990 {
1991 struct dwarf2_per_objfile *data
1992 = objfile_data (objfile, dwarf2_objfile_data_key);
1993 struct dwarf2_section_info *info;
1994
1995 /* We may see an objfile without any DWARF, in which case we just
1996 return nothing. */
1997 if (data == NULL)
1998 {
1999 *sectp = NULL;
2000 *bufp = NULL;
2001 *sizep = 0;
2002 return;
2003 }
2004 switch (sect)
2005 {
2006 case DWARF2_DEBUG_FRAME:
2007 info = &data->frame;
2008 break;
2009 case DWARF2_EH_FRAME:
2010 info = &data->eh_frame;
2011 break;
2012 default:
2013 gdb_assert_not_reached ("unexpected section");
2014 }
2015
2016 dwarf2_read_section (objfile, info);
2017
2018 *sectp = info->asection;
2019 *bufp = info->buffer;
2020 *sizep = info->size;
2021 }
2022
2023 /* A helper function to find the sections for a .dwz file. */
2024
2025 static void
2026 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2027 {
2028 struct dwz_file *dwz_file = arg;
2029
2030 /* Note that we only support the standard ELF names, because .dwz
2031 is ELF-only (at the time of writing). */
2032 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2033 {
2034 dwz_file->abbrev.asection = sectp;
2035 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2036 }
2037 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2038 {
2039 dwz_file->info.asection = sectp;
2040 dwz_file->info.size = bfd_get_section_size (sectp);
2041 }
2042 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2043 {
2044 dwz_file->str.asection = sectp;
2045 dwz_file->str.size = bfd_get_section_size (sectp);
2046 }
2047 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2048 {
2049 dwz_file->line.asection = sectp;
2050 dwz_file->line.size = bfd_get_section_size (sectp);
2051 }
2052 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2053 {
2054 dwz_file->macro.asection = sectp;
2055 dwz_file->macro.size = bfd_get_section_size (sectp);
2056 }
2057 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2058 {
2059 dwz_file->gdb_index.asection = sectp;
2060 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2061 }
2062 }
2063
2064 /* Open the separate '.dwz' debug file, if needed. Error if the file
2065 cannot be found. */
2066
2067 static struct dwz_file *
2068 dwarf2_get_dwz_file (void)
2069 {
2070 bfd *abfd, *dwz_bfd;
2071 asection *section;
2072 gdb_byte *data;
2073 struct cleanup *cleanup;
2074 const char *filename;
2075 struct dwz_file *result;
2076
2077 if (dwarf2_per_objfile->dwz_file != NULL)
2078 return dwarf2_per_objfile->dwz_file;
2079
2080 abfd = dwarf2_per_objfile->objfile->obfd;
2081 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2082 if (section == NULL)
2083 error (_("could not find '.gnu_debugaltlink' section"));
2084 if (!bfd_malloc_and_get_section (abfd, section, &data))
2085 error (_("could not read '.gnu_debugaltlink' section: %s"),
2086 bfd_errmsg (bfd_get_error ()));
2087 cleanup = make_cleanup (xfree, data);
2088
2089 filename = data;
2090 if (!IS_ABSOLUTE_PATH (filename))
2091 {
2092 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2093 char *rel;
2094
2095 make_cleanup (xfree, abs);
2096 abs = ldirname (abs);
2097 make_cleanup (xfree, abs);
2098
2099 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2100 make_cleanup (xfree, rel);
2101 filename = rel;
2102 }
2103
2104 /* The format is just a NUL-terminated file name, followed by the
2105 build-id. For now, though, we ignore the build-id. */
2106 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2107 if (dwz_bfd == NULL)
2108 error (_("could not read '%s': %s"), filename,
2109 bfd_errmsg (bfd_get_error ()));
2110
2111 if (!bfd_check_format (dwz_bfd, bfd_object))
2112 {
2113 gdb_bfd_unref (dwz_bfd);
2114 error (_("file '%s' was not usable: %s"), filename,
2115 bfd_errmsg (bfd_get_error ()));
2116 }
2117
2118 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2119 struct dwz_file);
2120 result->dwz_bfd = dwz_bfd;
2121
2122 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2123
2124 do_cleanups (cleanup);
2125
2126 dwarf2_per_objfile->dwz_file = result;
2127 return result;
2128 }
2129 \f
2130 /* DWARF quick_symbols_functions support. */
2131
2132 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2133 unique line tables, so we maintain a separate table of all .debug_line
2134 derived entries to support the sharing.
2135 All the quick functions need is the list of file names. We discard the
2136 line_header when we're done and don't need to record it here. */
2137 struct quick_file_names
2138 {
2139 /* The data used to construct the hash key. */
2140 struct stmt_list_hash hash;
2141
2142 /* The number of entries in file_names, real_names. */
2143 unsigned int num_file_names;
2144
2145 /* The file names from the line table, after being run through
2146 file_full_name. */
2147 const char **file_names;
2148
2149 /* The file names from the line table after being run through
2150 gdb_realpath. These are computed lazily. */
2151 const char **real_names;
2152 };
2153
2154 /* When using the index (and thus not using psymtabs), each CU has an
2155 object of this type. This is used to hold information needed by
2156 the various "quick" methods. */
2157 struct dwarf2_per_cu_quick_data
2158 {
2159 /* The file table. This can be NULL if there was no file table
2160 or it's currently not read in.
2161 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2162 struct quick_file_names *file_names;
2163
2164 /* The corresponding symbol table. This is NULL if symbols for this
2165 CU have not yet been read. */
2166 struct symtab *symtab;
2167
2168 /* A temporary mark bit used when iterating over all CUs in
2169 expand_symtabs_matching. */
2170 unsigned int mark : 1;
2171
2172 /* True if we've tried to read the file table and found there isn't one.
2173 There will be no point in trying to read it again next time. */
2174 unsigned int no_file_data : 1;
2175 };
2176
2177 /* Utility hash function for a stmt_list_hash. */
2178
2179 static hashval_t
2180 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2181 {
2182 hashval_t v = 0;
2183
2184 if (stmt_list_hash->dwo_unit != NULL)
2185 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2186 v += stmt_list_hash->line_offset.sect_off;
2187 return v;
2188 }
2189
2190 /* Utility equality function for a stmt_list_hash. */
2191
2192 static int
2193 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2194 const struct stmt_list_hash *rhs)
2195 {
2196 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2197 return 0;
2198 if (lhs->dwo_unit != NULL
2199 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2200 return 0;
2201
2202 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2203 }
2204
2205 /* Hash function for a quick_file_names. */
2206
2207 static hashval_t
2208 hash_file_name_entry (const void *e)
2209 {
2210 const struct quick_file_names *file_data = e;
2211
2212 return hash_stmt_list_entry (&file_data->hash);
2213 }
2214
2215 /* Equality function for a quick_file_names. */
2216
2217 static int
2218 eq_file_name_entry (const void *a, const void *b)
2219 {
2220 const struct quick_file_names *ea = a;
2221 const struct quick_file_names *eb = b;
2222
2223 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2224 }
2225
2226 /* Delete function for a quick_file_names. */
2227
2228 static void
2229 delete_file_name_entry (void *e)
2230 {
2231 struct quick_file_names *file_data = e;
2232 int i;
2233
2234 for (i = 0; i < file_data->num_file_names; ++i)
2235 {
2236 xfree ((void*) file_data->file_names[i]);
2237 if (file_data->real_names)
2238 xfree ((void*) file_data->real_names[i]);
2239 }
2240
2241 /* The space for the struct itself lives on objfile_obstack,
2242 so we don't free it here. */
2243 }
2244
2245 /* Create a quick_file_names hash table. */
2246
2247 static htab_t
2248 create_quick_file_names_table (unsigned int nr_initial_entries)
2249 {
2250 return htab_create_alloc (nr_initial_entries,
2251 hash_file_name_entry, eq_file_name_entry,
2252 delete_file_name_entry, xcalloc, xfree);
2253 }
2254
2255 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2256 have to be created afterwards. You should call age_cached_comp_units after
2257 processing PER_CU->CU. dw2_setup must have been already called. */
2258
2259 static void
2260 load_cu (struct dwarf2_per_cu_data *per_cu)
2261 {
2262 if (per_cu->is_debug_types)
2263 load_full_type_unit (per_cu);
2264 else
2265 load_full_comp_unit (per_cu, language_minimal);
2266
2267 gdb_assert (per_cu->cu != NULL);
2268
2269 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2270 }
2271
2272 /* Read in the symbols for PER_CU. */
2273
2274 static void
2275 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2276 {
2277 struct cleanup *back_to;
2278
2279 /* Skip type_unit_groups, reading the type units they contain
2280 is handled elsewhere. */
2281 if (IS_TYPE_UNIT_GROUP (per_cu))
2282 return;
2283
2284 back_to = make_cleanup (dwarf2_release_queue, NULL);
2285
2286 if (dwarf2_per_objfile->using_index
2287 ? per_cu->v.quick->symtab == NULL
2288 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2289 {
2290 queue_comp_unit (per_cu, language_minimal);
2291 load_cu (per_cu);
2292 }
2293
2294 process_queue ();
2295
2296 /* Age the cache, releasing compilation units that have not
2297 been used recently. */
2298 age_cached_comp_units ();
2299
2300 do_cleanups (back_to);
2301 }
2302
2303 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2304 the objfile from which this CU came. Returns the resulting symbol
2305 table. */
2306
2307 static struct symtab *
2308 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2309 {
2310 gdb_assert (dwarf2_per_objfile->using_index);
2311 if (!per_cu->v.quick->symtab)
2312 {
2313 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2314 increment_reading_symtab ();
2315 dw2_do_instantiate_symtab (per_cu);
2316 process_cu_includes ();
2317 do_cleanups (back_to);
2318 }
2319 return per_cu->v.quick->symtab;
2320 }
2321
2322 /* Return the CU given its index.
2323
2324 This is intended for loops like:
2325
2326 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2327 + dwarf2_per_objfile->n_type_units); ++i)
2328 {
2329 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2330
2331 ...;
2332 }
2333 */
2334
2335 static struct dwarf2_per_cu_data *
2336 dw2_get_cu (int index)
2337 {
2338 if (index >= dwarf2_per_objfile->n_comp_units)
2339 {
2340 index -= dwarf2_per_objfile->n_comp_units;
2341 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2342 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2343 }
2344
2345 return dwarf2_per_objfile->all_comp_units[index];
2346 }
2347
2348 /* Return the primary CU given its index.
2349 The difference between this function and dw2_get_cu is in the handling
2350 of type units (TUs). Here we return the type_unit_group object.
2351
2352 This is intended for loops like:
2353
2354 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2355 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2356 {
2357 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2358
2359 ...;
2360 }
2361 */
2362
2363 static struct dwarf2_per_cu_data *
2364 dw2_get_primary_cu (int index)
2365 {
2366 if (index >= dwarf2_per_objfile->n_comp_units)
2367 {
2368 index -= dwarf2_per_objfile->n_comp_units;
2369 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2370 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2371 }
2372
2373 return dwarf2_per_objfile->all_comp_units[index];
2374 }
2375
2376 /* A helper for create_cus_from_index that handles a given list of
2377 CUs. */
2378
2379 static void
2380 create_cus_from_index_list (struct objfile *objfile,
2381 const gdb_byte *cu_list, offset_type n_elements,
2382 struct dwarf2_section_info *section,
2383 int is_dwz,
2384 int base_offset)
2385 {
2386 offset_type i;
2387
2388 for (i = 0; i < n_elements; i += 2)
2389 {
2390 struct dwarf2_per_cu_data *the_cu;
2391 ULONGEST offset, length;
2392
2393 gdb_static_assert (sizeof (ULONGEST) >= 8);
2394 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2395 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2396 cu_list += 2 * 8;
2397
2398 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2399 struct dwarf2_per_cu_data);
2400 the_cu->offset.sect_off = offset;
2401 the_cu->length = length;
2402 the_cu->objfile = objfile;
2403 the_cu->info_or_types_section = section;
2404 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2405 struct dwarf2_per_cu_quick_data);
2406 the_cu->is_dwz = is_dwz;
2407 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2408 }
2409 }
2410
2411 /* Read the CU list from the mapped index, and use it to create all
2412 the CU objects for this objfile. */
2413
2414 static void
2415 create_cus_from_index (struct objfile *objfile,
2416 const gdb_byte *cu_list, offset_type cu_list_elements,
2417 const gdb_byte *dwz_list, offset_type dwz_elements)
2418 {
2419 struct dwz_file *dwz;
2420
2421 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2422 dwarf2_per_objfile->all_comp_units
2423 = obstack_alloc (&objfile->objfile_obstack,
2424 dwarf2_per_objfile->n_comp_units
2425 * sizeof (struct dwarf2_per_cu_data *));
2426
2427 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2428 &dwarf2_per_objfile->info, 0, 0);
2429
2430 if (dwz_elements == 0)
2431 return;
2432
2433 dwz = dwarf2_get_dwz_file ();
2434 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2435 cu_list_elements / 2);
2436 }
2437
2438 /* Create the signatured type hash table from the index. */
2439
2440 static void
2441 create_signatured_type_table_from_index (struct objfile *objfile,
2442 struct dwarf2_section_info *section,
2443 const gdb_byte *bytes,
2444 offset_type elements)
2445 {
2446 offset_type i;
2447 htab_t sig_types_hash;
2448
2449 dwarf2_per_objfile->n_type_units = elements / 3;
2450 dwarf2_per_objfile->all_type_units
2451 = obstack_alloc (&objfile->objfile_obstack,
2452 dwarf2_per_objfile->n_type_units
2453 * sizeof (struct signatured_type *));
2454
2455 sig_types_hash = allocate_signatured_type_table (objfile);
2456
2457 for (i = 0; i < elements; i += 3)
2458 {
2459 struct signatured_type *sig_type;
2460 ULONGEST offset, type_offset_in_tu, signature;
2461 void **slot;
2462
2463 gdb_static_assert (sizeof (ULONGEST) >= 8);
2464 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2465 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2466 BFD_ENDIAN_LITTLE);
2467 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2468 bytes += 3 * 8;
2469
2470 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2471 struct signatured_type);
2472 sig_type->signature = signature;
2473 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2474 sig_type->per_cu.is_debug_types = 1;
2475 sig_type->per_cu.info_or_types_section = section;
2476 sig_type->per_cu.offset.sect_off = offset;
2477 sig_type->per_cu.objfile = objfile;
2478 sig_type->per_cu.v.quick
2479 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2480 struct dwarf2_per_cu_quick_data);
2481
2482 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2483 *slot = sig_type;
2484
2485 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2486 }
2487
2488 dwarf2_per_objfile->signatured_types = sig_types_hash;
2489 }
2490
2491 /* Read the address map data from the mapped index, and use it to
2492 populate the objfile's psymtabs_addrmap. */
2493
2494 static void
2495 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2496 {
2497 const gdb_byte *iter, *end;
2498 struct obstack temp_obstack;
2499 struct addrmap *mutable_map;
2500 struct cleanup *cleanup;
2501 CORE_ADDR baseaddr;
2502
2503 obstack_init (&temp_obstack);
2504 cleanup = make_cleanup_obstack_free (&temp_obstack);
2505 mutable_map = addrmap_create_mutable (&temp_obstack);
2506
2507 iter = index->address_table;
2508 end = iter + index->address_table_size;
2509
2510 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2511
2512 while (iter < end)
2513 {
2514 ULONGEST hi, lo, cu_index;
2515 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2516 iter += 8;
2517 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2518 iter += 8;
2519 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2520 iter += 4;
2521
2522 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2523 dw2_get_cu (cu_index));
2524 }
2525
2526 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2527 &objfile->objfile_obstack);
2528 do_cleanups (cleanup);
2529 }
2530
2531 /* The hash function for strings in the mapped index. This is the same as
2532 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2533 implementation. This is necessary because the hash function is tied to the
2534 format of the mapped index file. The hash values do not have to match with
2535 SYMBOL_HASH_NEXT.
2536
2537 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2538
2539 static hashval_t
2540 mapped_index_string_hash (int index_version, const void *p)
2541 {
2542 const unsigned char *str = (const unsigned char *) p;
2543 hashval_t r = 0;
2544 unsigned char c;
2545
2546 while ((c = *str++) != 0)
2547 {
2548 if (index_version >= 5)
2549 c = tolower (c);
2550 r = r * 67 + c - 113;
2551 }
2552
2553 return r;
2554 }
2555
2556 /* Find a slot in the mapped index INDEX for the object named NAME.
2557 If NAME is found, set *VEC_OUT to point to the CU vector in the
2558 constant pool and return 1. If NAME cannot be found, return 0. */
2559
2560 static int
2561 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2562 offset_type **vec_out)
2563 {
2564 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2565 offset_type hash;
2566 offset_type slot, step;
2567 int (*cmp) (const char *, const char *);
2568
2569 if (current_language->la_language == language_cplus
2570 || current_language->la_language == language_java
2571 || current_language->la_language == language_fortran)
2572 {
2573 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2574 not contain any. */
2575 const char *paren = strchr (name, '(');
2576
2577 if (paren)
2578 {
2579 char *dup;
2580
2581 dup = xmalloc (paren - name + 1);
2582 memcpy (dup, name, paren - name);
2583 dup[paren - name] = 0;
2584
2585 make_cleanup (xfree, dup);
2586 name = dup;
2587 }
2588 }
2589
2590 /* Index version 4 did not support case insensitive searches. But the
2591 indices for case insensitive languages are built in lowercase, therefore
2592 simulate our NAME being searched is also lowercased. */
2593 hash = mapped_index_string_hash ((index->version == 4
2594 && case_sensitivity == case_sensitive_off
2595 ? 5 : index->version),
2596 name);
2597
2598 slot = hash & (index->symbol_table_slots - 1);
2599 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2600 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2601
2602 for (;;)
2603 {
2604 /* Convert a slot number to an offset into the table. */
2605 offset_type i = 2 * slot;
2606 const char *str;
2607 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2608 {
2609 do_cleanups (back_to);
2610 return 0;
2611 }
2612
2613 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2614 if (!cmp (name, str))
2615 {
2616 *vec_out = (offset_type *) (index->constant_pool
2617 + MAYBE_SWAP (index->symbol_table[i + 1]));
2618 do_cleanups (back_to);
2619 return 1;
2620 }
2621
2622 slot = (slot + step) & (index->symbol_table_slots - 1);
2623 }
2624 }
2625
2626 /* A helper function that reads the .gdb_index from SECTION and fills
2627 in MAP. FILENAME is the name of the file containing the section;
2628 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2629 ok to use deprecated sections.
2630
2631 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2632 out parameters that are filled in with information about the CU and
2633 TU lists in the section.
2634
2635 Returns 1 if all went well, 0 otherwise. */
2636
2637 static int
2638 read_index_from_section (struct objfile *objfile,
2639 const char *filename,
2640 int deprecated_ok,
2641 struct dwarf2_section_info *section,
2642 struct mapped_index *map,
2643 const gdb_byte **cu_list,
2644 offset_type *cu_list_elements,
2645 const gdb_byte **types_list,
2646 offset_type *types_list_elements)
2647 {
2648 char *addr;
2649 offset_type version;
2650 offset_type *metadata;
2651 int i;
2652
2653 if (dwarf2_section_empty_p (section))
2654 return 0;
2655
2656 /* Older elfutils strip versions could keep the section in the main
2657 executable while splitting it for the separate debug info file. */
2658 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2659 return 0;
2660
2661 dwarf2_read_section (objfile, section);
2662
2663 addr = section->buffer;
2664 /* Version check. */
2665 version = MAYBE_SWAP (*(offset_type *) addr);
2666 /* Versions earlier than 3 emitted every copy of a psymbol. This
2667 causes the index to behave very poorly for certain requests. Version 3
2668 contained incomplete addrmap. So, it seems better to just ignore such
2669 indices. */
2670 if (version < 4)
2671 {
2672 static int warning_printed = 0;
2673 if (!warning_printed)
2674 {
2675 warning (_("Skipping obsolete .gdb_index section in %s."),
2676 filename);
2677 warning_printed = 1;
2678 }
2679 return 0;
2680 }
2681 /* Index version 4 uses a different hash function than index version
2682 5 and later.
2683
2684 Versions earlier than 6 did not emit psymbols for inlined
2685 functions. Using these files will cause GDB not to be able to
2686 set breakpoints on inlined functions by name, so we ignore these
2687 indices unless the user has done
2688 "set use-deprecated-index-sections on". */
2689 if (version < 6 && !deprecated_ok)
2690 {
2691 static int warning_printed = 0;
2692 if (!warning_printed)
2693 {
2694 warning (_("\
2695 Skipping deprecated .gdb_index section in %s.\n\
2696 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2697 to use the section anyway."),
2698 filename);
2699 warning_printed = 1;
2700 }
2701 return 0;
2702 }
2703 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2704 of the TU (for symbols coming from TUs). It's just a performance bug, and
2705 we can't distinguish gdb-generated indices from gold-generated ones, so
2706 nothing to do here. */
2707
2708 /* Indexes with higher version than the one supported by GDB may be no
2709 longer backward compatible. */
2710 if (version > 8)
2711 return 0;
2712
2713 map->version = version;
2714 map->total_size = section->size;
2715
2716 metadata = (offset_type *) (addr + sizeof (offset_type));
2717
2718 i = 0;
2719 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2720 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2721 / 8);
2722 ++i;
2723
2724 *types_list = addr + MAYBE_SWAP (metadata[i]);
2725 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2726 - MAYBE_SWAP (metadata[i]))
2727 / 8);
2728 ++i;
2729
2730 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2731 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2732 - MAYBE_SWAP (metadata[i]));
2733 ++i;
2734
2735 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2736 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2737 - MAYBE_SWAP (metadata[i]))
2738 / (2 * sizeof (offset_type)));
2739 ++i;
2740
2741 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2742
2743 return 1;
2744 }
2745
2746
2747 /* Read the index file. If everything went ok, initialize the "quick"
2748 elements of all the CUs and return 1. Otherwise, return 0. */
2749
2750 static int
2751 dwarf2_read_index (struct objfile *objfile)
2752 {
2753 struct mapped_index local_map, *map;
2754 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2755 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2756
2757 if (!read_index_from_section (objfile, objfile->name,
2758 use_deprecated_index_sections,
2759 &dwarf2_per_objfile->gdb_index, &local_map,
2760 &cu_list, &cu_list_elements,
2761 &types_list, &types_list_elements))
2762 return 0;
2763
2764 /* Don't use the index if it's empty. */
2765 if (local_map.symbol_table_slots == 0)
2766 return 0;
2767
2768 /* If there is a .dwz file, read it so we can get its CU list as
2769 well. */
2770 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2771 {
2772 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2773 struct mapped_index dwz_map;
2774 const gdb_byte *dwz_types_ignore;
2775 offset_type dwz_types_elements_ignore;
2776
2777 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2778 1,
2779 &dwz->gdb_index, &dwz_map,
2780 &dwz_list, &dwz_list_elements,
2781 &dwz_types_ignore,
2782 &dwz_types_elements_ignore))
2783 {
2784 warning (_("could not read '.gdb_index' section from %s; skipping"),
2785 bfd_get_filename (dwz->dwz_bfd));
2786 return 0;
2787 }
2788 }
2789
2790 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2791 dwz_list_elements);
2792
2793 if (types_list_elements)
2794 {
2795 struct dwarf2_section_info *section;
2796
2797 /* We can only handle a single .debug_types when we have an
2798 index. */
2799 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2800 return 0;
2801
2802 section = VEC_index (dwarf2_section_info_def,
2803 dwarf2_per_objfile->types, 0);
2804
2805 create_signatured_type_table_from_index (objfile, section, types_list,
2806 types_list_elements);
2807 }
2808
2809 create_addrmap_from_index (objfile, &local_map);
2810
2811 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2812 *map = local_map;
2813
2814 dwarf2_per_objfile->index_table = map;
2815 dwarf2_per_objfile->using_index = 1;
2816 dwarf2_per_objfile->quick_file_names_table =
2817 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2818
2819 return 1;
2820 }
2821
2822 /* A helper for the "quick" functions which sets the global
2823 dwarf2_per_objfile according to OBJFILE. */
2824
2825 static void
2826 dw2_setup (struct objfile *objfile)
2827 {
2828 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2829 gdb_assert (dwarf2_per_objfile);
2830 }
2831
2832 /* die_reader_func for dw2_get_file_names. */
2833
2834 static void
2835 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2836 gdb_byte *info_ptr,
2837 struct die_info *comp_unit_die,
2838 int has_children,
2839 void *data)
2840 {
2841 struct dwarf2_cu *cu = reader->cu;
2842 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2843 struct objfile *objfile = dwarf2_per_objfile->objfile;
2844 struct dwarf2_per_cu_data *lh_cu;
2845 struct line_header *lh;
2846 struct attribute *attr;
2847 int i;
2848 const char *name, *comp_dir;
2849 void **slot;
2850 struct quick_file_names *qfn;
2851 unsigned int line_offset;
2852
2853 /* Our callers never want to match partial units -- instead they
2854 will match the enclosing full CU. */
2855 if (comp_unit_die->tag == DW_TAG_partial_unit)
2856 {
2857 this_cu->v.quick->no_file_data = 1;
2858 return;
2859 }
2860
2861 /* If we're reading the line header for TUs, store it in the "per_cu"
2862 for tu_group. */
2863 if (this_cu->is_debug_types)
2864 {
2865 struct type_unit_group *tu_group = data;
2866
2867 gdb_assert (tu_group != NULL);
2868 lh_cu = &tu_group->per_cu;
2869 }
2870 else
2871 lh_cu = this_cu;
2872
2873 lh = NULL;
2874 slot = NULL;
2875 line_offset = 0;
2876
2877 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2878 if (attr)
2879 {
2880 struct quick_file_names find_entry;
2881
2882 line_offset = DW_UNSND (attr);
2883
2884 /* We may have already read in this line header (TU line header sharing).
2885 If we have we're done. */
2886 find_entry.hash.dwo_unit = cu->dwo_unit;
2887 find_entry.hash.line_offset.sect_off = line_offset;
2888 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2889 &find_entry, INSERT);
2890 if (*slot != NULL)
2891 {
2892 lh_cu->v.quick->file_names = *slot;
2893 return;
2894 }
2895
2896 lh = dwarf_decode_line_header (line_offset, cu);
2897 }
2898 if (lh == NULL)
2899 {
2900 lh_cu->v.quick->no_file_data = 1;
2901 return;
2902 }
2903
2904 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2905 qfn->hash.dwo_unit = cu->dwo_unit;
2906 qfn->hash.line_offset.sect_off = line_offset;
2907 gdb_assert (slot != NULL);
2908 *slot = qfn;
2909
2910 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2911
2912 qfn->num_file_names = lh->num_file_names;
2913 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2914 lh->num_file_names * sizeof (char *));
2915 for (i = 0; i < lh->num_file_names; ++i)
2916 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2917 qfn->real_names = NULL;
2918
2919 free_line_header (lh);
2920
2921 lh_cu->v.quick->file_names = qfn;
2922 }
2923
2924 /* A helper for the "quick" functions which attempts to read the line
2925 table for THIS_CU. */
2926
2927 static struct quick_file_names *
2928 dw2_get_file_names (struct objfile *objfile,
2929 struct dwarf2_per_cu_data *this_cu)
2930 {
2931 /* For TUs this should only be called on the parent group. */
2932 if (this_cu->is_debug_types)
2933 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2934
2935 if (this_cu->v.quick->file_names != NULL)
2936 return this_cu->v.quick->file_names;
2937 /* If we know there is no line data, no point in looking again. */
2938 if (this_cu->v.quick->no_file_data)
2939 return NULL;
2940
2941 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2942 in the stub for CUs, there's is no need to lookup the DWO file.
2943 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2944 DWO file. */
2945 if (this_cu->is_debug_types)
2946 {
2947 struct type_unit_group *tu_group = this_cu->type_unit_group;
2948
2949 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2950 dw2_get_file_names_reader, tu_group);
2951 }
2952 else
2953 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2954
2955 if (this_cu->v.quick->no_file_data)
2956 return NULL;
2957 return this_cu->v.quick->file_names;
2958 }
2959
2960 /* A helper for the "quick" functions which computes and caches the
2961 real path for a given file name from the line table. */
2962
2963 static const char *
2964 dw2_get_real_path (struct objfile *objfile,
2965 struct quick_file_names *qfn, int index)
2966 {
2967 if (qfn->real_names == NULL)
2968 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2969 qfn->num_file_names, sizeof (char *));
2970
2971 if (qfn->real_names[index] == NULL)
2972 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2973
2974 return qfn->real_names[index];
2975 }
2976
2977 static struct symtab *
2978 dw2_find_last_source_symtab (struct objfile *objfile)
2979 {
2980 int index;
2981
2982 dw2_setup (objfile);
2983 index = dwarf2_per_objfile->n_comp_units - 1;
2984 return dw2_instantiate_symtab (dw2_get_cu (index));
2985 }
2986
2987 /* Traversal function for dw2_forget_cached_source_info. */
2988
2989 static int
2990 dw2_free_cached_file_names (void **slot, void *info)
2991 {
2992 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2993
2994 if (file_data->real_names)
2995 {
2996 int i;
2997
2998 for (i = 0; i < file_data->num_file_names; ++i)
2999 {
3000 xfree ((void*) file_data->real_names[i]);
3001 file_data->real_names[i] = NULL;
3002 }
3003 }
3004
3005 return 1;
3006 }
3007
3008 static void
3009 dw2_forget_cached_source_info (struct objfile *objfile)
3010 {
3011 dw2_setup (objfile);
3012
3013 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3014 dw2_free_cached_file_names, NULL);
3015 }
3016
3017 /* Helper function for dw2_map_symtabs_matching_filename that expands
3018 the symtabs and calls the iterator. */
3019
3020 static int
3021 dw2_map_expand_apply (struct objfile *objfile,
3022 struct dwarf2_per_cu_data *per_cu,
3023 const char *name, const char *real_path,
3024 int (*callback) (struct symtab *, void *),
3025 void *data)
3026 {
3027 struct symtab *last_made = objfile->symtabs;
3028
3029 /* Don't visit already-expanded CUs. */
3030 if (per_cu->v.quick->symtab)
3031 return 0;
3032
3033 /* This may expand more than one symtab, and we want to iterate over
3034 all of them. */
3035 dw2_instantiate_symtab (per_cu);
3036
3037 return iterate_over_some_symtabs (name, real_path, callback, data,
3038 objfile->symtabs, last_made);
3039 }
3040
3041 /* Implementation of the map_symtabs_matching_filename method. */
3042
3043 static int
3044 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3045 const char *real_path,
3046 int (*callback) (struct symtab *, void *),
3047 void *data)
3048 {
3049 int i;
3050 const char *name_basename = lbasename (name);
3051
3052 dw2_setup (objfile);
3053
3054 /* The rule is CUs specify all the files, including those used by
3055 any TU, so there's no need to scan TUs here. */
3056
3057 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3058 {
3059 int j;
3060 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3061 struct quick_file_names *file_data;
3062
3063 /* We only need to look at symtabs not already expanded. */
3064 if (per_cu->v.quick->symtab)
3065 continue;
3066
3067 file_data = dw2_get_file_names (objfile, per_cu);
3068 if (file_data == NULL)
3069 continue;
3070
3071 for (j = 0; j < file_data->num_file_names; ++j)
3072 {
3073 const char *this_name = file_data->file_names[j];
3074
3075 if (compare_filenames_for_search (this_name, name))
3076 {
3077 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3078 callback, data))
3079 return 1;
3080 }
3081
3082 /* Before we invoke realpath, which can get expensive when many
3083 files are involved, do a quick comparison of the basenames. */
3084 if (! basenames_may_differ
3085 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3086 continue;
3087
3088 if (real_path != NULL)
3089 {
3090 const char *this_real_name = dw2_get_real_path (objfile,
3091 file_data, j);
3092
3093 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3094 gdb_assert (IS_ABSOLUTE_PATH (name));
3095 if (this_real_name != NULL
3096 && FILENAME_CMP (real_path, this_real_name) == 0)
3097 {
3098 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3099 callback, data))
3100 return 1;
3101 }
3102 }
3103 }
3104 }
3105
3106 return 0;
3107 }
3108
3109 /* Struct used to manage iterating over all CUs looking for a symbol. */
3110
3111 struct dw2_symtab_iterator
3112 {
3113 /* The internalized form of .gdb_index. */
3114 struct mapped_index *index;
3115 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3116 int want_specific_block;
3117 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3118 Unused if !WANT_SPECIFIC_BLOCK. */
3119 int block_index;
3120 /* The kind of symbol we're looking for. */
3121 domain_enum domain;
3122 /* The list of CUs from the index entry of the symbol,
3123 or NULL if not found. */
3124 offset_type *vec;
3125 /* The next element in VEC to look at. */
3126 int next;
3127 /* The number of elements in VEC, or zero if there is no match. */
3128 int length;
3129 };
3130
3131 /* Initialize the index symtab iterator ITER.
3132 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3133 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3134
3135 static void
3136 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3137 struct mapped_index *index,
3138 int want_specific_block,
3139 int block_index,
3140 domain_enum domain,
3141 const char *name)
3142 {
3143 iter->index = index;
3144 iter->want_specific_block = want_specific_block;
3145 iter->block_index = block_index;
3146 iter->domain = domain;
3147 iter->next = 0;
3148
3149 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3150 iter->length = MAYBE_SWAP (*iter->vec);
3151 else
3152 {
3153 iter->vec = NULL;
3154 iter->length = 0;
3155 }
3156 }
3157
3158 /* Return the next matching CU or NULL if there are no more. */
3159
3160 static struct dwarf2_per_cu_data *
3161 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3162 {
3163 for ( ; iter->next < iter->length; ++iter->next)
3164 {
3165 offset_type cu_index_and_attrs =
3166 MAYBE_SWAP (iter->vec[iter->next + 1]);
3167 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3168 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3169 int want_static = iter->block_index != GLOBAL_BLOCK;
3170 /* This value is only valid for index versions >= 7. */
3171 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3172 gdb_index_symbol_kind symbol_kind =
3173 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3174 /* Only check the symbol attributes if they're present.
3175 Indices prior to version 7 don't record them,
3176 and indices >= 7 may elide them for certain symbols
3177 (gold does this). */
3178 int attrs_valid =
3179 (iter->index->version >= 7
3180 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3181
3182 /* Skip if already read in. */
3183 if (per_cu->v.quick->symtab)
3184 continue;
3185
3186 if (attrs_valid
3187 && iter->want_specific_block
3188 && want_static != is_static)
3189 continue;
3190
3191 /* Only check the symbol's kind if it has one. */
3192 if (attrs_valid)
3193 {
3194 switch (iter->domain)
3195 {
3196 case VAR_DOMAIN:
3197 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3198 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3199 /* Some types are also in VAR_DOMAIN. */
3200 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3201 continue;
3202 break;
3203 case STRUCT_DOMAIN:
3204 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3205 continue;
3206 break;
3207 case LABEL_DOMAIN:
3208 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3209 continue;
3210 break;
3211 default:
3212 break;
3213 }
3214 }
3215
3216 ++iter->next;
3217 return per_cu;
3218 }
3219
3220 return NULL;
3221 }
3222
3223 static struct symtab *
3224 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3225 const char *name, domain_enum domain)
3226 {
3227 struct symtab *stab_best = NULL;
3228 struct mapped_index *index;
3229
3230 dw2_setup (objfile);
3231
3232 index = dwarf2_per_objfile->index_table;
3233
3234 /* index is NULL if OBJF_READNOW. */
3235 if (index)
3236 {
3237 struct dw2_symtab_iterator iter;
3238 struct dwarf2_per_cu_data *per_cu;
3239
3240 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3241
3242 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3243 {
3244 struct symbol *sym = NULL;
3245 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3246
3247 /* Some caution must be observed with overloaded functions
3248 and methods, since the index will not contain any overload
3249 information (but NAME might contain it). */
3250 if (stab->primary)
3251 {
3252 struct blockvector *bv = BLOCKVECTOR (stab);
3253 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3254
3255 sym = lookup_block_symbol (block, name, domain);
3256 }
3257
3258 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3259 {
3260 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3261 return stab;
3262
3263 stab_best = stab;
3264 }
3265
3266 /* Keep looking through other CUs. */
3267 }
3268 }
3269
3270 return stab_best;
3271 }
3272
3273 static void
3274 dw2_print_stats (struct objfile *objfile)
3275 {
3276 int i, count;
3277
3278 dw2_setup (objfile);
3279 count = 0;
3280 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3281 + dwarf2_per_objfile->n_type_units); ++i)
3282 {
3283 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3284
3285 if (!per_cu->v.quick->symtab)
3286 ++count;
3287 }
3288 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3289 }
3290
3291 static void
3292 dw2_dump (struct objfile *objfile)
3293 {
3294 /* Nothing worth printing. */
3295 }
3296
3297 static void
3298 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3299 struct section_offsets *delta)
3300 {
3301 /* There's nothing to relocate here. */
3302 }
3303
3304 static void
3305 dw2_expand_symtabs_for_function (struct objfile *objfile,
3306 const char *func_name)
3307 {
3308 struct mapped_index *index;
3309
3310 dw2_setup (objfile);
3311
3312 index = dwarf2_per_objfile->index_table;
3313
3314 /* index is NULL if OBJF_READNOW. */
3315 if (index)
3316 {
3317 struct dw2_symtab_iterator iter;
3318 struct dwarf2_per_cu_data *per_cu;
3319
3320 /* Note: It doesn't matter what we pass for block_index here. */
3321 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3322 func_name);
3323
3324 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3325 dw2_instantiate_symtab (per_cu);
3326 }
3327 }
3328
3329 static void
3330 dw2_expand_all_symtabs (struct objfile *objfile)
3331 {
3332 int i;
3333
3334 dw2_setup (objfile);
3335
3336 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3337 + dwarf2_per_objfile->n_type_units); ++i)
3338 {
3339 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3340
3341 dw2_instantiate_symtab (per_cu);
3342 }
3343 }
3344
3345 static void
3346 dw2_expand_symtabs_with_filename (struct objfile *objfile,
3347 const char *filename)
3348 {
3349 int i;
3350
3351 dw2_setup (objfile);
3352
3353 /* We don't need to consider type units here.
3354 This is only called for examining code, e.g. expand_line_sal.
3355 There can be an order of magnitude (or more) more type units
3356 than comp units, and we avoid them if we can. */
3357
3358 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3359 {
3360 int j;
3361 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3362 struct quick_file_names *file_data;
3363
3364 /* We only need to look at symtabs not already expanded. */
3365 if (per_cu->v.quick->symtab)
3366 continue;
3367
3368 file_data = dw2_get_file_names (objfile, per_cu);
3369 if (file_data == NULL)
3370 continue;
3371
3372 for (j = 0; j < file_data->num_file_names; ++j)
3373 {
3374 const char *this_name = file_data->file_names[j];
3375 if (FILENAME_CMP (this_name, filename) == 0)
3376 {
3377 dw2_instantiate_symtab (per_cu);
3378 break;
3379 }
3380 }
3381 }
3382 }
3383
3384 /* A helper function for dw2_find_symbol_file that finds the primary
3385 file name for a given CU. This is a die_reader_func. */
3386
3387 static void
3388 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3389 gdb_byte *info_ptr,
3390 struct die_info *comp_unit_die,
3391 int has_children,
3392 void *data)
3393 {
3394 const char **result_ptr = data;
3395 struct dwarf2_cu *cu = reader->cu;
3396 struct attribute *attr;
3397
3398 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3399 if (attr == NULL)
3400 *result_ptr = NULL;
3401 else
3402 *result_ptr = DW_STRING (attr);
3403 }
3404
3405 static const char *
3406 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3407 {
3408 struct dwarf2_per_cu_data *per_cu;
3409 offset_type *vec;
3410 const char *filename;
3411
3412 dw2_setup (objfile);
3413
3414 /* index_table is NULL if OBJF_READNOW. */
3415 if (!dwarf2_per_objfile->index_table)
3416 {
3417 struct symtab *s;
3418
3419 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3420 {
3421 struct blockvector *bv = BLOCKVECTOR (s);
3422 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3423 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3424
3425 if (sym)
3426 return SYMBOL_SYMTAB (sym)->filename;
3427 }
3428 return NULL;
3429 }
3430
3431 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3432 name, &vec))
3433 return NULL;
3434
3435 /* Note that this just looks at the very first one named NAME -- but
3436 actually we are looking for a function. find_main_filename
3437 should be rewritten so that it doesn't require a custom hook. It
3438 could just use the ordinary symbol tables. */
3439 /* vec[0] is the length, which must always be >0. */
3440 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3441
3442 if (per_cu->v.quick->symtab != NULL)
3443 return per_cu->v.quick->symtab->filename;
3444
3445 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3446 dw2_get_primary_filename_reader, &filename);
3447
3448 return filename;
3449 }
3450
3451 static void
3452 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3453 struct objfile *objfile, int global,
3454 int (*callback) (struct block *,
3455 struct symbol *, void *),
3456 void *data, symbol_compare_ftype *match,
3457 symbol_compare_ftype *ordered_compare)
3458 {
3459 /* Currently unimplemented; used for Ada. The function can be called if the
3460 current language is Ada for a non-Ada objfile using GNU index. As Ada
3461 does not look for non-Ada symbols this function should just return. */
3462 }
3463
3464 static void
3465 dw2_expand_symtabs_matching
3466 (struct objfile *objfile,
3467 int (*file_matcher) (const char *, void *),
3468 int (*name_matcher) (const char *, void *),
3469 enum search_domain kind,
3470 void *data)
3471 {
3472 int i;
3473 offset_type iter;
3474 struct mapped_index *index;
3475
3476 dw2_setup (objfile);
3477
3478 /* index_table is NULL if OBJF_READNOW. */
3479 if (!dwarf2_per_objfile->index_table)
3480 return;
3481 index = dwarf2_per_objfile->index_table;
3482
3483 if (file_matcher != NULL)
3484 {
3485 struct cleanup *cleanup;
3486 htab_t visited_found, visited_not_found;
3487
3488 visited_found = htab_create_alloc (10,
3489 htab_hash_pointer, htab_eq_pointer,
3490 NULL, xcalloc, xfree);
3491 cleanup = make_cleanup_htab_delete (visited_found);
3492 visited_not_found = htab_create_alloc (10,
3493 htab_hash_pointer, htab_eq_pointer,
3494 NULL, xcalloc, xfree);
3495 make_cleanup_htab_delete (visited_not_found);
3496
3497 /* The rule is CUs specify all the files, including those used by
3498 any TU, so there's no need to scan TUs here. */
3499
3500 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3501 {
3502 int j;
3503 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3504 struct quick_file_names *file_data;
3505 void **slot;
3506
3507 per_cu->v.quick->mark = 0;
3508
3509 /* We only need to look at symtabs not already expanded. */
3510 if (per_cu->v.quick->symtab)
3511 continue;
3512
3513 file_data = dw2_get_file_names (objfile, per_cu);
3514 if (file_data == NULL)
3515 continue;
3516
3517 if (htab_find (visited_not_found, file_data) != NULL)
3518 continue;
3519 else if (htab_find (visited_found, file_data) != NULL)
3520 {
3521 per_cu->v.quick->mark = 1;
3522 continue;
3523 }
3524
3525 for (j = 0; j < file_data->num_file_names; ++j)
3526 {
3527 if (file_matcher (file_data->file_names[j], data))
3528 {
3529 per_cu->v.quick->mark = 1;
3530 break;
3531 }
3532 }
3533
3534 slot = htab_find_slot (per_cu->v.quick->mark
3535 ? visited_found
3536 : visited_not_found,
3537 file_data, INSERT);
3538 *slot = file_data;
3539 }
3540
3541 do_cleanups (cleanup);
3542 }
3543
3544 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3545 {
3546 offset_type idx = 2 * iter;
3547 const char *name;
3548 offset_type *vec, vec_len, vec_idx;
3549
3550 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3551 continue;
3552
3553 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3554
3555 if (! (*name_matcher) (name, data))
3556 continue;
3557
3558 /* The name was matched, now expand corresponding CUs that were
3559 marked. */
3560 vec = (offset_type *) (index->constant_pool
3561 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3562 vec_len = MAYBE_SWAP (vec[0]);
3563 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3564 {
3565 struct dwarf2_per_cu_data *per_cu;
3566 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3567 gdb_index_symbol_kind symbol_kind =
3568 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3569 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3570
3571 /* Don't crash on bad data. */
3572 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3573 + dwarf2_per_objfile->n_type_units))
3574 continue;
3575
3576 /* Only check the symbol's kind if it has one.
3577 Indices prior to version 7 don't record it. */
3578 if (index->version >= 7)
3579 {
3580 switch (kind)
3581 {
3582 case VARIABLES_DOMAIN:
3583 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3584 continue;
3585 break;
3586 case FUNCTIONS_DOMAIN:
3587 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3588 continue;
3589 break;
3590 case TYPES_DOMAIN:
3591 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3592 continue;
3593 break;
3594 default:
3595 break;
3596 }
3597 }
3598
3599 per_cu = dw2_get_cu (cu_index);
3600 if (file_matcher == NULL || per_cu->v.quick->mark)
3601 dw2_instantiate_symtab (per_cu);
3602 }
3603 }
3604 }
3605
3606 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3607 symtab. */
3608
3609 static struct symtab *
3610 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3611 {
3612 int i;
3613
3614 if (BLOCKVECTOR (symtab) != NULL
3615 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3616 return symtab;
3617
3618 if (symtab->includes == NULL)
3619 return NULL;
3620
3621 for (i = 0; symtab->includes[i]; ++i)
3622 {
3623 struct symtab *s = symtab->includes[i];
3624
3625 s = recursively_find_pc_sect_symtab (s, pc);
3626 if (s != NULL)
3627 return s;
3628 }
3629
3630 return NULL;
3631 }
3632
3633 static struct symtab *
3634 dw2_find_pc_sect_symtab (struct objfile *objfile,
3635 struct minimal_symbol *msymbol,
3636 CORE_ADDR pc,
3637 struct obj_section *section,
3638 int warn_if_readin)
3639 {
3640 struct dwarf2_per_cu_data *data;
3641 struct symtab *result;
3642
3643 dw2_setup (objfile);
3644
3645 if (!objfile->psymtabs_addrmap)
3646 return NULL;
3647
3648 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3649 if (!data)
3650 return NULL;
3651
3652 if (warn_if_readin && data->v.quick->symtab)
3653 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3654 paddress (get_objfile_arch (objfile), pc));
3655
3656 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3657 gdb_assert (result != NULL);
3658 return result;
3659 }
3660
3661 static void
3662 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3663 void *data, int need_fullname)
3664 {
3665 int i;
3666 struct cleanup *cleanup;
3667 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3668 NULL, xcalloc, xfree);
3669
3670 cleanup = make_cleanup_htab_delete (visited);
3671 dw2_setup (objfile);
3672
3673 /* The rule is CUs specify all the files, including those used by
3674 any TU, so there's no need to scan TUs here.
3675 We can ignore file names coming from already-expanded CUs. */
3676
3677 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3678 {
3679 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3680
3681 if (per_cu->v.quick->symtab)
3682 {
3683 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3684 INSERT);
3685
3686 *slot = per_cu->v.quick->file_names;
3687 }
3688 }
3689
3690 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3691 {
3692 int j;
3693 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3694 struct quick_file_names *file_data;
3695 void **slot;
3696
3697 /* We only need to look at symtabs not already expanded. */
3698 if (per_cu->v.quick->symtab)
3699 continue;
3700
3701 file_data = dw2_get_file_names (objfile, per_cu);
3702 if (file_data == NULL)
3703 continue;
3704
3705 slot = htab_find_slot (visited, file_data, INSERT);
3706 if (*slot)
3707 {
3708 /* Already visited. */
3709 continue;
3710 }
3711 *slot = file_data;
3712
3713 for (j = 0; j < file_data->num_file_names; ++j)
3714 {
3715 const char *this_real_name;
3716
3717 if (need_fullname)
3718 this_real_name = dw2_get_real_path (objfile, file_data, j);
3719 else
3720 this_real_name = NULL;
3721 (*fun) (file_data->file_names[j], this_real_name, data);
3722 }
3723 }
3724
3725 do_cleanups (cleanup);
3726 }
3727
3728 static int
3729 dw2_has_symbols (struct objfile *objfile)
3730 {
3731 return 1;
3732 }
3733
3734 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3735 {
3736 dw2_has_symbols,
3737 dw2_find_last_source_symtab,
3738 dw2_forget_cached_source_info,
3739 dw2_map_symtabs_matching_filename,
3740 dw2_lookup_symbol,
3741 dw2_print_stats,
3742 dw2_dump,
3743 dw2_relocate,
3744 dw2_expand_symtabs_for_function,
3745 dw2_expand_all_symtabs,
3746 dw2_expand_symtabs_with_filename,
3747 dw2_find_symbol_file,
3748 dw2_map_matching_symbols,
3749 dw2_expand_symtabs_matching,
3750 dw2_find_pc_sect_symtab,
3751 dw2_map_symbol_filenames
3752 };
3753
3754 /* Initialize for reading DWARF for this objfile. Return 0 if this
3755 file will use psymtabs, or 1 if using the GNU index. */
3756
3757 int
3758 dwarf2_initialize_objfile (struct objfile *objfile)
3759 {
3760 /* If we're about to read full symbols, don't bother with the
3761 indices. In this case we also don't care if some other debug
3762 format is making psymtabs, because they are all about to be
3763 expanded anyway. */
3764 if ((objfile->flags & OBJF_READNOW))
3765 {
3766 int i;
3767
3768 dwarf2_per_objfile->using_index = 1;
3769 create_all_comp_units (objfile);
3770 create_all_type_units (objfile);
3771 dwarf2_per_objfile->quick_file_names_table =
3772 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3773
3774 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3775 + dwarf2_per_objfile->n_type_units); ++i)
3776 {
3777 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3778
3779 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3780 struct dwarf2_per_cu_quick_data);
3781 }
3782
3783 /* Return 1 so that gdb sees the "quick" functions. However,
3784 these functions will be no-ops because we will have expanded
3785 all symtabs. */
3786 return 1;
3787 }
3788
3789 if (dwarf2_read_index (objfile))
3790 return 1;
3791
3792 return 0;
3793 }
3794
3795 \f
3796
3797 /* Build a partial symbol table. */
3798
3799 void
3800 dwarf2_build_psymtabs (struct objfile *objfile)
3801 {
3802 volatile struct gdb_exception except;
3803
3804 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3805 {
3806 init_psymbol_list (objfile, 1024);
3807 }
3808
3809 TRY_CATCH (except, RETURN_MASK_ERROR)
3810 {
3811 /* This isn't really ideal: all the data we allocate on the
3812 objfile's obstack is still uselessly kept around. However,
3813 freeing it seems unsafe. */
3814 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3815
3816 dwarf2_build_psymtabs_hard (objfile);
3817 discard_cleanups (cleanups);
3818 }
3819 if (except.reason < 0)
3820 exception_print (gdb_stderr, except);
3821 }
3822
3823 /* Return the total length of the CU described by HEADER. */
3824
3825 static unsigned int
3826 get_cu_length (const struct comp_unit_head *header)
3827 {
3828 return header->initial_length_size + header->length;
3829 }
3830
3831 /* Return TRUE if OFFSET is within CU_HEADER. */
3832
3833 static inline int
3834 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3835 {
3836 sect_offset bottom = { cu_header->offset.sect_off };
3837 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3838
3839 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3840 }
3841
3842 /* Find the base address of the compilation unit for range lists and
3843 location lists. It will normally be specified by DW_AT_low_pc.
3844 In DWARF-3 draft 4, the base address could be overridden by
3845 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3846 compilation units with discontinuous ranges. */
3847
3848 static void
3849 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3850 {
3851 struct attribute *attr;
3852
3853 cu->base_known = 0;
3854 cu->base_address = 0;
3855
3856 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3857 if (attr)
3858 {
3859 cu->base_address = DW_ADDR (attr);
3860 cu->base_known = 1;
3861 }
3862 else
3863 {
3864 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3865 if (attr)
3866 {
3867 cu->base_address = DW_ADDR (attr);
3868 cu->base_known = 1;
3869 }
3870 }
3871 }
3872
3873 /* Read in the comp unit header information from the debug_info at info_ptr.
3874 NOTE: This leaves members offset, first_die_offset to be filled in
3875 by the caller. */
3876
3877 static gdb_byte *
3878 read_comp_unit_head (struct comp_unit_head *cu_header,
3879 gdb_byte *info_ptr, bfd *abfd)
3880 {
3881 int signed_addr;
3882 unsigned int bytes_read;
3883
3884 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3885 cu_header->initial_length_size = bytes_read;
3886 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3887 info_ptr += bytes_read;
3888 cu_header->version = read_2_bytes (abfd, info_ptr);
3889 info_ptr += 2;
3890 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3891 &bytes_read);
3892 info_ptr += bytes_read;
3893 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3894 info_ptr += 1;
3895 signed_addr = bfd_get_sign_extend_vma (abfd);
3896 if (signed_addr < 0)
3897 internal_error (__FILE__, __LINE__,
3898 _("read_comp_unit_head: dwarf from non elf file"));
3899 cu_header->signed_addr_p = signed_addr;
3900
3901 return info_ptr;
3902 }
3903
3904 /* Helper function that returns the proper abbrev section for
3905 THIS_CU. */
3906
3907 static struct dwarf2_section_info *
3908 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3909 {
3910 struct dwarf2_section_info *abbrev;
3911
3912 if (this_cu->is_dwz)
3913 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3914 else
3915 abbrev = &dwarf2_per_objfile->abbrev;
3916
3917 return abbrev;
3918 }
3919
3920 /* Subroutine of read_and_check_comp_unit_head and
3921 read_and_check_type_unit_head to simplify them.
3922 Perform various error checking on the header. */
3923
3924 static void
3925 error_check_comp_unit_head (struct comp_unit_head *header,
3926 struct dwarf2_section_info *section,
3927 struct dwarf2_section_info *abbrev_section)
3928 {
3929 bfd *abfd = section->asection->owner;
3930 const char *filename = bfd_get_filename (abfd);
3931
3932 if (header->version != 2 && header->version != 3 && header->version != 4)
3933 error (_("Dwarf Error: wrong version in compilation unit header "
3934 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3935 filename);
3936
3937 if (header->abbrev_offset.sect_off
3938 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3939 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3940 "(offset 0x%lx + 6) [in module %s]"),
3941 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3942 filename);
3943
3944 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3945 avoid potential 32-bit overflow. */
3946 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3947 > section->size)
3948 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3949 "(offset 0x%lx + 0) [in module %s]"),
3950 (long) header->length, (long) header->offset.sect_off,
3951 filename);
3952 }
3953
3954 /* Read in a CU/TU header and perform some basic error checking.
3955 The contents of the header are stored in HEADER.
3956 The result is a pointer to the start of the first DIE. */
3957
3958 static gdb_byte *
3959 read_and_check_comp_unit_head (struct comp_unit_head *header,
3960 struct dwarf2_section_info *section,
3961 struct dwarf2_section_info *abbrev_section,
3962 gdb_byte *info_ptr,
3963 int is_debug_types_section)
3964 {
3965 gdb_byte *beg_of_comp_unit = info_ptr;
3966 bfd *abfd = section->asection->owner;
3967
3968 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3969
3970 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3971
3972 /* If we're reading a type unit, skip over the signature and
3973 type_offset fields. */
3974 if (is_debug_types_section)
3975 info_ptr += 8 /*signature*/ + header->offset_size;
3976
3977 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3978
3979 error_check_comp_unit_head (header, section, abbrev_section);
3980
3981 return info_ptr;
3982 }
3983
3984 /* Read in the types comp unit header information from .debug_types entry at
3985 types_ptr. The result is a pointer to one past the end of the header. */
3986
3987 static gdb_byte *
3988 read_and_check_type_unit_head (struct comp_unit_head *header,
3989 struct dwarf2_section_info *section,
3990 struct dwarf2_section_info *abbrev_section,
3991 gdb_byte *info_ptr,
3992 ULONGEST *signature,
3993 cu_offset *type_offset_in_tu)
3994 {
3995 gdb_byte *beg_of_comp_unit = info_ptr;
3996 bfd *abfd = section->asection->owner;
3997
3998 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3999
4000 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4001
4002 /* If we're reading a type unit, skip over the signature and
4003 type_offset fields. */
4004 if (signature != NULL)
4005 *signature = read_8_bytes (abfd, info_ptr);
4006 info_ptr += 8;
4007 if (type_offset_in_tu != NULL)
4008 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4009 header->offset_size);
4010 info_ptr += header->offset_size;
4011
4012 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4013
4014 error_check_comp_unit_head (header, section, abbrev_section);
4015
4016 return info_ptr;
4017 }
4018
4019 /* Fetch the abbreviation table offset from a comp or type unit header. */
4020
4021 static sect_offset
4022 read_abbrev_offset (struct dwarf2_section_info *section,
4023 sect_offset offset)
4024 {
4025 bfd *abfd = section->asection->owner;
4026 gdb_byte *info_ptr;
4027 unsigned int length, initial_length_size, offset_size;
4028 sect_offset abbrev_offset;
4029
4030 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4031 info_ptr = section->buffer + offset.sect_off;
4032 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4033 offset_size = initial_length_size == 4 ? 4 : 8;
4034 info_ptr += initial_length_size + 2 /*version*/;
4035 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4036 return abbrev_offset;
4037 }
4038
4039 /* Allocate a new partial symtab for file named NAME and mark this new
4040 partial symtab as being an include of PST. */
4041
4042 static void
4043 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
4044 struct objfile *objfile)
4045 {
4046 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4047
4048 subpst->section_offsets = pst->section_offsets;
4049 subpst->textlow = 0;
4050 subpst->texthigh = 0;
4051
4052 subpst->dependencies = (struct partial_symtab **)
4053 obstack_alloc (&objfile->objfile_obstack,
4054 sizeof (struct partial_symtab *));
4055 subpst->dependencies[0] = pst;
4056 subpst->number_of_dependencies = 1;
4057
4058 subpst->globals_offset = 0;
4059 subpst->n_global_syms = 0;
4060 subpst->statics_offset = 0;
4061 subpst->n_static_syms = 0;
4062 subpst->symtab = NULL;
4063 subpst->read_symtab = pst->read_symtab;
4064 subpst->readin = 0;
4065
4066 /* No private part is necessary for include psymtabs. This property
4067 can be used to differentiate between such include psymtabs and
4068 the regular ones. */
4069 subpst->read_symtab_private = NULL;
4070 }
4071
4072 /* Read the Line Number Program data and extract the list of files
4073 included by the source file represented by PST. Build an include
4074 partial symtab for each of these included files. */
4075
4076 static void
4077 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4078 struct die_info *die,
4079 struct partial_symtab *pst)
4080 {
4081 struct line_header *lh = NULL;
4082 struct attribute *attr;
4083
4084 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4085 if (attr)
4086 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4087 if (lh == NULL)
4088 return; /* No linetable, so no includes. */
4089
4090 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4091 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4092
4093 free_line_header (lh);
4094 }
4095
4096 static hashval_t
4097 hash_signatured_type (const void *item)
4098 {
4099 const struct signatured_type *sig_type = item;
4100
4101 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4102 return sig_type->signature;
4103 }
4104
4105 static int
4106 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4107 {
4108 const struct signatured_type *lhs = item_lhs;
4109 const struct signatured_type *rhs = item_rhs;
4110
4111 return lhs->signature == rhs->signature;
4112 }
4113
4114 /* Allocate a hash table for signatured types. */
4115
4116 static htab_t
4117 allocate_signatured_type_table (struct objfile *objfile)
4118 {
4119 return htab_create_alloc_ex (41,
4120 hash_signatured_type,
4121 eq_signatured_type,
4122 NULL,
4123 &objfile->objfile_obstack,
4124 hashtab_obstack_allocate,
4125 dummy_obstack_deallocate);
4126 }
4127
4128 /* A helper function to add a signatured type CU to a table. */
4129
4130 static int
4131 add_signatured_type_cu_to_table (void **slot, void *datum)
4132 {
4133 struct signatured_type *sigt = *slot;
4134 struct signatured_type ***datap = datum;
4135
4136 **datap = sigt;
4137 ++*datap;
4138
4139 return 1;
4140 }
4141
4142 /* Create the hash table of all entries in the .debug_types section.
4143 DWO_FILE is a pointer to the DWO file for .debug_types.dwo,
4144 NULL otherwise.
4145 Note: This function processes DWO files only, not DWP files.
4146 The result is a pointer to the hash table or NULL if there are
4147 no types. */
4148
4149 static htab_t
4150 create_debug_types_hash_table (struct dwo_file *dwo_file,
4151 VEC (dwarf2_section_info_def) *types)
4152 {
4153 struct objfile *objfile = dwarf2_per_objfile->objfile;
4154 htab_t types_htab = NULL;
4155 int ix;
4156 struct dwarf2_section_info *section;
4157 struct dwarf2_section_info *abbrev_section;
4158
4159 if (VEC_empty (dwarf2_section_info_def, types))
4160 return NULL;
4161
4162 abbrev_section = (dwo_file != NULL
4163 ? &dwo_file->sections.abbrev
4164 : &dwarf2_per_objfile->abbrev);
4165
4166 if (dwarf2_read_debug)
4167 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4168 dwo_file ? ".dwo" : "",
4169 bfd_get_filename (abbrev_section->asection->owner));
4170
4171 for (ix = 0;
4172 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4173 ++ix)
4174 {
4175 bfd *abfd;
4176 gdb_byte *info_ptr, *end_ptr;
4177 struct dwarf2_section_info *abbrev_section;
4178
4179 dwarf2_read_section (objfile, section);
4180 info_ptr = section->buffer;
4181
4182 if (info_ptr == NULL)
4183 continue;
4184
4185 /* We can't set abfd until now because the section may be empty or
4186 not present, in which case section->asection will be NULL. */
4187 abfd = section->asection->owner;
4188
4189 if (dwo_file)
4190 abbrev_section = &dwo_file->sections.abbrev;
4191 else
4192 abbrev_section = &dwarf2_per_objfile->abbrev;
4193
4194 if (types_htab == NULL)
4195 {
4196 if (dwo_file)
4197 types_htab = allocate_dwo_unit_table (objfile);
4198 else
4199 types_htab = allocate_signatured_type_table (objfile);
4200 }
4201
4202 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4203 because we don't need to read any dies: the signature is in the
4204 header. */
4205
4206 end_ptr = info_ptr + section->size;
4207 while (info_ptr < end_ptr)
4208 {
4209 sect_offset offset;
4210 cu_offset type_offset_in_tu;
4211 ULONGEST signature;
4212 struct signatured_type *sig_type;
4213 struct dwo_unit *dwo_tu;
4214 void **slot;
4215 gdb_byte *ptr = info_ptr;
4216 struct comp_unit_head header;
4217 unsigned int length;
4218
4219 offset.sect_off = ptr - section->buffer;
4220
4221 /* We need to read the type's signature in order to build the hash
4222 table, but we don't need anything else just yet. */
4223
4224 ptr = read_and_check_type_unit_head (&header, section,
4225 abbrev_section, ptr,
4226 &signature, &type_offset_in_tu);
4227
4228 length = get_cu_length (&header);
4229
4230 /* Skip dummy type units. */
4231 if (ptr >= info_ptr + length
4232 || peek_abbrev_code (abfd, ptr) == 0)
4233 {
4234 info_ptr += length;
4235 continue;
4236 }
4237
4238 if (dwo_file)
4239 {
4240 sig_type = NULL;
4241 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4242 struct dwo_unit);
4243 dwo_tu->dwo_file = dwo_file;
4244 dwo_tu->signature = signature;
4245 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4246 dwo_tu->info_or_types_section = section;
4247 dwo_tu->offset = offset;
4248 dwo_tu->length = length;
4249 }
4250 else
4251 {
4252 /* N.B.: type_offset is not usable if this type uses a DWO file.
4253 The real type_offset is in the DWO file. */
4254 dwo_tu = NULL;
4255 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4256 struct signatured_type);
4257 sig_type->signature = signature;
4258 sig_type->type_offset_in_tu = type_offset_in_tu;
4259 sig_type->per_cu.objfile = objfile;
4260 sig_type->per_cu.is_debug_types = 1;
4261 sig_type->per_cu.info_or_types_section = section;
4262 sig_type->per_cu.offset = offset;
4263 sig_type->per_cu.length = length;
4264 }
4265
4266 slot = htab_find_slot (types_htab,
4267 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4268 INSERT);
4269 gdb_assert (slot != NULL);
4270 if (*slot != NULL)
4271 {
4272 sect_offset dup_offset;
4273
4274 if (dwo_file)
4275 {
4276 const struct dwo_unit *dup_tu = *slot;
4277
4278 dup_offset = dup_tu->offset;
4279 }
4280 else
4281 {
4282 const struct signatured_type *dup_tu = *slot;
4283
4284 dup_offset = dup_tu->per_cu.offset;
4285 }
4286
4287 complaint (&symfile_complaints,
4288 _("debug type entry at offset 0x%x is duplicate to the "
4289 "entry at offset 0x%x, signature 0x%s"),
4290 offset.sect_off, dup_offset.sect_off,
4291 phex (signature, sizeof (signature)));
4292 }
4293 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4294
4295 if (dwarf2_read_debug)
4296 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
4297 offset.sect_off,
4298 phex (signature, sizeof (signature)));
4299
4300 info_ptr += length;
4301 }
4302 }
4303
4304 return types_htab;
4305 }
4306
4307 /* Create the hash table of all entries in the .debug_types section,
4308 and initialize all_type_units.
4309 The result is zero if there is an error (e.g. missing .debug_types section),
4310 otherwise non-zero. */
4311
4312 static int
4313 create_all_type_units (struct objfile *objfile)
4314 {
4315 htab_t types_htab;
4316 struct signatured_type **iter;
4317
4318 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4319 if (types_htab == NULL)
4320 {
4321 dwarf2_per_objfile->signatured_types = NULL;
4322 return 0;
4323 }
4324
4325 dwarf2_per_objfile->signatured_types = types_htab;
4326
4327 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4328 dwarf2_per_objfile->all_type_units
4329 = obstack_alloc (&objfile->objfile_obstack,
4330 dwarf2_per_objfile->n_type_units
4331 * sizeof (struct signatured_type *));
4332 iter = &dwarf2_per_objfile->all_type_units[0];
4333 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4334 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4335 == dwarf2_per_objfile->n_type_units);
4336
4337 return 1;
4338 }
4339
4340 /* Lookup a signature based type for DW_FORM_ref_sig8.
4341 Returns NULL if signature SIG is not present in the table. */
4342
4343 static struct signatured_type *
4344 lookup_signatured_type (ULONGEST sig)
4345 {
4346 struct signatured_type find_entry, *entry;
4347
4348 if (dwarf2_per_objfile->signatured_types == NULL)
4349 {
4350 complaint (&symfile_complaints,
4351 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
4352 return NULL;
4353 }
4354
4355 find_entry.signature = sig;
4356 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4357 return entry;
4358 }
4359 \f
4360 /* Low level DIE reading support. */
4361
4362 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4363
4364 static void
4365 init_cu_die_reader (struct die_reader_specs *reader,
4366 struct dwarf2_cu *cu,
4367 struct dwarf2_section_info *section,
4368 struct dwo_file *dwo_file)
4369 {
4370 gdb_assert (section->readin && section->buffer != NULL);
4371 reader->abfd = section->asection->owner;
4372 reader->cu = cu;
4373 reader->dwo_file = dwo_file;
4374 reader->die_section = section;
4375 reader->buffer = section->buffer;
4376 reader->buffer_end = section->buffer + section->size;
4377 }
4378
4379 /* Initialize a CU (or TU) and read its DIEs.
4380 If the CU defers to a DWO file, read the DWO file as well.
4381
4382 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4383 Otherwise the table specified in the comp unit header is read in and used.
4384 This is an optimization for when we already have the abbrev table.
4385
4386 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4387 Otherwise, a new CU is allocated with xmalloc.
4388
4389 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4390 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4391
4392 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4393 linker) then DIE_READER_FUNC will not get called. */
4394
4395 static void
4396 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4397 struct abbrev_table *abbrev_table,
4398 int use_existing_cu, int keep,
4399 die_reader_func_ftype *die_reader_func,
4400 void *data)
4401 {
4402 struct objfile *objfile = dwarf2_per_objfile->objfile;
4403 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4404 bfd *abfd = section->asection->owner;
4405 struct dwarf2_cu *cu;
4406 gdb_byte *begin_info_ptr, *info_ptr;
4407 struct die_reader_specs reader;
4408 struct die_info *comp_unit_die;
4409 int has_children;
4410 struct attribute *attr;
4411 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4412 struct signatured_type *sig_type = NULL;
4413 struct dwarf2_section_info *abbrev_section;
4414 /* Non-zero if CU currently points to a DWO file and we need to
4415 reread it. When this happens we need to reread the skeleton die
4416 before we can reread the DWO file. */
4417 int rereading_dwo_cu = 0;
4418
4419 if (dwarf2_die_debug)
4420 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4421 this_cu->is_debug_types ? "type" : "comp",
4422 this_cu->offset.sect_off);
4423
4424 if (use_existing_cu)
4425 gdb_assert (keep);
4426
4427 cleanups = make_cleanup (null_cleanup, NULL);
4428
4429 /* This is cheap if the section is already read in. */
4430 dwarf2_read_section (objfile, section);
4431
4432 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4433
4434 abbrev_section = get_abbrev_section_for_cu (this_cu);
4435
4436 if (use_existing_cu && this_cu->cu != NULL)
4437 {
4438 cu = this_cu->cu;
4439
4440 /* If this CU is from a DWO file we need to start over, we need to
4441 refetch the attributes from the skeleton CU.
4442 This could be optimized by retrieving those attributes from when we
4443 were here the first time: the previous comp_unit_die was stored in
4444 comp_unit_obstack. But there's no data yet that we need this
4445 optimization. */
4446 if (cu->dwo_unit != NULL)
4447 rereading_dwo_cu = 1;
4448 }
4449 else
4450 {
4451 /* If !use_existing_cu, this_cu->cu must be NULL. */
4452 gdb_assert (this_cu->cu == NULL);
4453
4454 cu = xmalloc (sizeof (*cu));
4455 init_one_comp_unit (cu, this_cu);
4456
4457 /* If an error occurs while loading, release our storage. */
4458 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4459 }
4460
4461 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4462 {
4463 /* We already have the header, there's no need to read it in again. */
4464 info_ptr += cu->header.first_die_offset.cu_off;
4465 }
4466 else
4467 {
4468 if (this_cu->is_debug_types)
4469 {
4470 ULONGEST signature;
4471 cu_offset type_offset_in_tu;
4472
4473 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4474 abbrev_section, info_ptr,
4475 &signature,
4476 &type_offset_in_tu);
4477
4478 /* Since per_cu is the first member of struct signatured_type,
4479 we can go from a pointer to one to a pointer to the other. */
4480 sig_type = (struct signatured_type *) this_cu;
4481 gdb_assert (sig_type->signature == signature);
4482 gdb_assert (sig_type->type_offset_in_tu.cu_off
4483 == type_offset_in_tu.cu_off);
4484 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4485
4486 /* LENGTH has not been set yet for type units if we're
4487 using .gdb_index. */
4488 this_cu->length = get_cu_length (&cu->header);
4489
4490 /* Establish the type offset that can be used to lookup the type. */
4491 sig_type->type_offset_in_section.sect_off =
4492 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4493 }
4494 else
4495 {
4496 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4497 abbrev_section,
4498 info_ptr, 0);
4499
4500 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4501 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4502 }
4503 }
4504
4505 /* Skip dummy compilation units. */
4506 if (info_ptr >= begin_info_ptr + this_cu->length
4507 || peek_abbrev_code (abfd, info_ptr) == 0)
4508 {
4509 do_cleanups (cleanups);
4510 return;
4511 }
4512
4513 /* If we don't have them yet, read the abbrevs for this compilation unit.
4514 And if we need to read them now, make sure they're freed when we're
4515 done. Note that it's important that if the CU had an abbrev table
4516 on entry we don't free it when we're done: Somewhere up the call stack
4517 it may be in use. */
4518 if (abbrev_table != NULL)
4519 {
4520 gdb_assert (cu->abbrev_table == NULL);
4521 gdb_assert (cu->header.abbrev_offset.sect_off
4522 == abbrev_table->offset.sect_off);
4523 cu->abbrev_table = abbrev_table;
4524 }
4525 else if (cu->abbrev_table == NULL)
4526 {
4527 dwarf2_read_abbrevs (cu, abbrev_section);
4528 make_cleanup (dwarf2_free_abbrev_table, cu);
4529 }
4530 else if (rereading_dwo_cu)
4531 {
4532 dwarf2_free_abbrev_table (cu);
4533 dwarf2_read_abbrevs (cu, abbrev_section);
4534 }
4535
4536 /* Read the top level CU/TU die. */
4537 init_cu_die_reader (&reader, cu, section, NULL);
4538 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4539
4540 /* If we have a DWO stub, process it and then read in the DWO file.
4541 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4542 a DWO CU, that this test will fail. */
4543 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4544 if (attr)
4545 {
4546 const char *dwo_name = DW_STRING (attr);
4547 const char *comp_dir_string;
4548 struct dwo_unit *dwo_unit;
4549 ULONGEST signature; /* Or dwo_id. */
4550 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4551 int i,num_extra_attrs;
4552 struct dwarf2_section_info *dwo_abbrev_section;
4553
4554 if (has_children)
4555 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4556 " has children (offset 0x%x) [in module %s]"),
4557 this_cu->offset.sect_off, bfd_get_filename (abfd));
4558
4559 /* These attributes aren't processed until later:
4560 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4561 However, the attribute is found in the stub which we won't have later.
4562 In order to not impose this complication on the rest of the code,
4563 we read them here and copy them to the DWO CU/TU die. */
4564
4565 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4566 DWO file. */
4567 stmt_list = NULL;
4568 if (! this_cu->is_debug_types)
4569 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4570 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4571 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4572 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
4573 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4574
4575 /* There should be a DW_AT_addr_base attribute here (if needed).
4576 We need the value before we can process DW_FORM_GNU_addr_index. */
4577 cu->addr_base = 0;
4578 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4579 if (attr)
4580 cu->addr_base = DW_UNSND (attr);
4581
4582 /* There should be a DW_AT_ranges_base attribute here (if needed).
4583 We need the value before we can process DW_AT_ranges. */
4584 cu->ranges_base = 0;
4585 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4586 if (attr)
4587 cu->ranges_base = DW_UNSND (attr);
4588
4589 if (this_cu->is_debug_types)
4590 {
4591 gdb_assert (sig_type != NULL);
4592 signature = sig_type->signature;
4593 }
4594 else
4595 {
4596 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4597 if (! attr)
4598 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4599 dwo_name);
4600 signature = DW_UNSND (attr);
4601 }
4602
4603 /* We may need the comp_dir in order to find the DWO file. */
4604 comp_dir_string = NULL;
4605 if (comp_dir)
4606 comp_dir_string = DW_STRING (comp_dir);
4607
4608 if (this_cu->is_debug_types)
4609 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
4610 else
4611 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
4612 signature);
4613
4614 if (dwo_unit == NULL)
4615 {
4616 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4617 " with ID %s [in module %s]"),
4618 this_cu->offset.sect_off,
4619 phex (signature, sizeof (signature)),
4620 objfile->name);
4621 }
4622
4623 /* Set up for reading the DWO CU/TU. */
4624 cu->dwo_unit = dwo_unit;
4625 section = dwo_unit->info_or_types_section;
4626 dwarf2_read_section (objfile, section);
4627 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4628 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4629 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4630
4631 if (this_cu->is_debug_types)
4632 {
4633 ULONGEST signature;
4634 cu_offset type_offset_in_tu;
4635
4636 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4637 dwo_abbrev_section,
4638 info_ptr,
4639 &signature,
4640 &type_offset_in_tu);
4641 gdb_assert (sig_type->signature == signature);
4642 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4643 /* For DWOs coming from DWP files, we don't know the CU length
4644 nor the type's offset in the TU until now. */
4645 dwo_unit->length = get_cu_length (&cu->header);
4646 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4647
4648 /* Establish the type offset that can be used to lookup the type.
4649 For DWO files, we don't know it until now. */
4650 sig_type->type_offset_in_section.sect_off =
4651 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4652 }
4653 else
4654 {
4655 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4656 dwo_abbrev_section,
4657 info_ptr, 0);
4658 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4659 /* For DWOs coming from DWP files, we don't know the CU length
4660 until now. */
4661 dwo_unit->length = get_cu_length (&cu->header);
4662 }
4663
4664 /* Discard the original CU's abbrev table, and read the DWO's. */
4665 if (abbrev_table == NULL)
4666 {
4667 dwarf2_free_abbrev_table (cu);
4668 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4669 }
4670 else
4671 {
4672 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4673 make_cleanup (dwarf2_free_abbrev_table, cu);
4674 }
4675
4676 /* Read in the die, but leave space to copy over the attributes
4677 from the stub. This has the benefit of simplifying the rest of
4678 the code - all the real work is done here. */
4679 num_extra_attrs = ((stmt_list != NULL)
4680 + (low_pc != NULL)
4681 + (high_pc != NULL)
4682 + (ranges != NULL)
4683 + (comp_dir != NULL));
4684 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4685 &has_children, num_extra_attrs);
4686
4687 /* Copy over the attributes from the stub to the DWO die. */
4688 i = comp_unit_die->num_attrs;
4689 if (stmt_list != NULL)
4690 comp_unit_die->attrs[i++] = *stmt_list;
4691 if (low_pc != NULL)
4692 comp_unit_die->attrs[i++] = *low_pc;
4693 if (high_pc != NULL)
4694 comp_unit_die->attrs[i++] = *high_pc;
4695 if (ranges != NULL)
4696 comp_unit_die->attrs[i++] = *ranges;
4697 if (comp_dir != NULL)
4698 comp_unit_die->attrs[i++] = *comp_dir;
4699 comp_unit_die->num_attrs += num_extra_attrs;
4700
4701 /* Skip dummy compilation units. */
4702 if (info_ptr >= begin_info_ptr + dwo_unit->length
4703 || peek_abbrev_code (abfd, info_ptr) == 0)
4704 {
4705 do_cleanups (cleanups);
4706 return;
4707 }
4708 }
4709
4710 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4711
4712 if (free_cu_cleanup != NULL)
4713 {
4714 if (keep)
4715 {
4716 /* We've successfully allocated this compilation unit. Let our
4717 caller clean it up when finished with it. */
4718 discard_cleanups (free_cu_cleanup);
4719
4720 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4721 So we have to manually free the abbrev table. */
4722 dwarf2_free_abbrev_table (cu);
4723
4724 /* Link this CU into read_in_chain. */
4725 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4726 dwarf2_per_objfile->read_in_chain = this_cu;
4727 }
4728 else
4729 do_cleanups (free_cu_cleanup);
4730 }
4731
4732 do_cleanups (cleanups);
4733 }
4734
4735 /* Read CU/TU THIS_CU in section SECTION,
4736 but do not follow DW_AT_GNU_dwo_name if present.
4737 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4738 to have already done the lookup to find the DWO/DWP file).
4739
4740 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4741 THIS_CU->is_debug_types, but nothing else.
4742
4743 We fill in THIS_CU->length.
4744
4745 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4746 linker) then DIE_READER_FUNC will not get called.
4747
4748 THIS_CU->cu is always freed when done.
4749 This is done in order to not leave THIS_CU->cu in a state where we have
4750 to care whether it refers to the "main" CU or the DWO CU. */
4751
4752 static void
4753 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4754 struct dwarf2_section_info *abbrev_section,
4755 struct dwo_file *dwo_file,
4756 die_reader_func_ftype *die_reader_func,
4757 void *data)
4758 {
4759 struct objfile *objfile = dwarf2_per_objfile->objfile;
4760 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4761 bfd *abfd = section->asection->owner;
4762 struct dwarf2_cu cu;
4763 gdb_byte *begin_info_ptr, *info_ptr;
4764 struct die_reader_specs reader;
4765 struct cleanup *cleanups;
4766 struct die_info *comp_unit_die;
4767 int has_children;
4768
4769 if (dwarf2_die_debug)
4770 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4771 this_cu->is_debug_types ? "type" : "comp",
4772 this_cu->offset.sect_off);
4773
4774 gdb_assert (this_cu->cu == NULL);
4775
4776 /* This is cheap if the section is already read in. */
4777 dwarf2_read_section (objfile, section);
4778
4779 init_one_comp_unit (&cu, this_cu);
4780
4781 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4782
4783 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4784 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4785 abbrev_section, info_ptr,
4786 this_cu->is_debug_types);
4787
4788 this_cu->length = get_cu_length (&cu.header);
4789
4790 /* Skip dummy compilation units. */
4791 if (info_ptr >= begin_info_ptr + this_cu->length
4792 || peek_abbrev_code (abfd, info_ptr) == 0)
4793 {
4794 do_cleanups (cleanups);
4795 return;
4796 }
4797
4798 dwarf2_read_abbrevs (&cu, abbrev_section);
4799 make_cleanup (dwarf2_free_abbrev_table, &cu);
4800
4801 init_cu_die_reader (&reader, &cu, section, dwo_file);
4802 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4803
4804 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4805
4806 do_cleanups (cleanups);
4807 }
4808
4809 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4810 does not lookup the specified DWO file.
4811 This cannot be used to read DWO files.
4812
4813 THIS_CU->cu is always freed when done.
4814 This is done in order to not leave THIS_CU->cu in a state where we have
4815 to care whether it refers to the "main" CU or the DWO CU.
4816 We can revisit this if the data shows there's a performance issue. */
4817
4818 static void
4819 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4820 die_reader_func_ftype *die_reader_func,
4821 void *data)
4822 {
4823 init_cutu_and_read_dies_no_follow (this_cu,
4824 get_abbrev_section_for_cu (this_cu),
4825 NULL,
4826 die_reader_func, data);
4827 }
4828
4829 /* Create a psymtab named NAME and assign it to PER_CU.
4830
4831 The caller must fill in the following details:
4832 dirname, textlow, texthigh. */
4833
4834 static struct partial_symtab *
4835 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
4836 {
4837 struct objfile *objfile = per_cu->objfile;
4838 struct partial_symtab *pst;
4839
4840 pst = start_psymtab_common (objfile, objfile->section_offsets,
4841 name, 0,
4842 objfile->global_psymbols.next,
4843 objfile->static_psymbols.next);
4844
4845 pst->psymtabs_addrmap_supported = 1;
4846
4847 /* This is the glue that links PST into GDB's symbol API. */
4848 pst->read_symtab_private = per_cu;
4849 pst->read_symtab = dwarf2_read_symtab;
4850 per_cu->v.psymtab = pst;
4851
4852 return pst;
4853 }
4854
4855 /* die_reader_func for process_psymtab_comp_unit. */
4856
4857 static void
4858 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4859 gdb_byte *info_ptr,
4860 struct die_info *comp_unit_die,
4861 int has_children,
4862 void *data)
4863 {
4864 struct dwarf2_cu *cu = reader->cu;
4865 struct objfile *objfile = cu->objfile;
4866 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
4867 struct attribute *attr;
4868 CORE_ADDR baseaddr;
4869 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4870 struct partial_symtab *pst;
4871 int has_pc_info;
4872 const char *filename;
4873 int *want_partial_unit_ptr = data;
4874
4875 if (comp_unit_die->tag == DW_TAG_partial_unit
4876 && (want_partial_unit_ptr == NULL
4877 || !*want_partial_unit_ptr))
4878 return;
4879
4880 gdb_assert (! per_cu->is_debug_types);
4881
4882 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
4883
4884 cu->list_in_scope = &file_symbols;
4885
4886 /* Allocate a new partial symbol table structure. */
4887 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
4888 if (attr == NULL || !DW_STRING (attr))
4889 filename = "";
4890 else
4891 filename = DW_STRING (attr);
4892
4893 pst = create_partial_symtab (per_cu, filename);
4894
4895 /* This must be done before calling dwarf2_build_include_psymtabs. */
4896 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4897 if (attr != NULL)
4898 pst->dirname = DW_STRING (attr);
4899
4900 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4901
4902 dwarf2_find_base_address (comp_unit_die, cu);
4903
4904 /* Possibly set the default values of LOWPC and HIGHPC from
4905 `DW_AT_ranges'. */
4906 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
4907 &best_highpc, cu, pst);
4908 if (has_pc_info == 1 && best_lowpc < best_highpc)
4909 /* Store the contiguous range if it is not empty; it can be empty for
4910 CUs with no code. */
4911 addrmap_set_empty (objfile->psymtabs_addrmap,
4912 best_lowpc + baseaddr,
4913 best_highpc + baseaddr - 1, pst);
4914
4915 /* Check if comp unit has_children.
4916 If so, read the rest of the partial symbols from this comp unit.
4917 If not, there's no more debug_info for this comp unit. */
4918 if (has_children)
4919 {
4920 struct partial_die_info *first_die;
4921 CORE_ADDR lowpc, highpc;
4922
4923 lowpc = ((CORE_ADDR) -1);
4924 highpc = ((CORE_ADDR) 0);
4925
4926 first_die = load_partial_dies (reader, info_ptr, 1);
4927
4928 scan_partial_symbols (first_die, &lowpc, &highpc,
4929 ! has_pc_info, cu);
4930
4931 /* If we didn't find a lowpc, set it to highpc to avoid
4932 complaints from `maint check'. */
4933 if (lowpc == ((CORE_ADDR) -1))
4934 lowpc = highpc;
4935
4936 /* If the compilation unit didn't have an explicit address range,
4937 then use the information extracted from its child dies. */
4938 if (! has_pc_info)
4939 {
4940 best_lowpc = lowpc;
4941 best_highpc = highpc;
4942 }
4943 }
4944 pst->textlow = best_lowpc + baseaddr;
4945 pst->texthigh = best_highpc + baseaddr;
4946
4947 pst->n_global_syms = objfile->global_psymbols.next -
4948 (objfile->global_psymbols.list + pst->globals_offset);
4949 pst->n_static_syms = objfile->static_psymbols.next -
4950 (objfile->static_psymbols.list + pst->statics_offset);
4951 sort_pst_symbols (objfile, pst);
4952
4953 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
4954 {
4955 int i;
4956 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
4957 struct dwarf2_per_cu_data *iter;
4958
4959 /* Fill in 'dependencies' here; we fill in 'users' in a
4960 post-pass. */
4961 pst->number_of_dependencies = len;
4962 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
4963 len * sizeof (struct symtab *));
4964 for (i = 0;
4965 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
4966 i, iter);
4967 ++i)
4968 pst->dependencies[i] = iter->v.psymtab;
4969
4970 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
4971 }
4972
4973 /* Get the list of files included in the current compilation unit,
4974 and build a psymtab for each of them. */
4975 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
4976
4977 if (dwarf2_read_debug)
4978 {
4979 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4980
4981 fprintf_unfiltered (gdb_stdlog,
4982 "Psymtab for %s unit @0x%x: %s - %s"
4983 ", %d global, %d static syms\n",
4984 per_cu->is_debug_types ? "type" : "comp",
4985 per_cu->offset.sect_off,
4986 paddress (gdbarch, pst->textlow),
4987 paddress (gdbarch, pst->texthigh),
4988 pst->n_global_syms, pst->n_static_syms);
4989 }
4990 }
4991
4992 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
4993 Process compilation unit THIS_CU for a psymtab. */
4994
4995 static void
4996 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
4997 int want_partial_unit)
4998 {
4999 /* If this compilation unit was already read in, free the
5000 cached copy in order to read it in again. This is
5001 necessary because we skipped some symbols when we first
5002 read in the compilation unit (see load_partial_dies).
5003 This problem could be avoided, but the benefit is unclear. */
5004 if (this_cu->cu != NULL)
5005 free_one_cached_comp_unit (this_cu);
5006
5007 gdb_assert (! this_cu->is_debug_types);
5008 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5009 process_psymtab_comp_unit_reader,
5010 &want_partial_unit);
5011
5012 /* Age out any secondary CUs. */
5013 age_cached_comp_units ();
5014 }
5015
5016 static hashval_t
5017 hash_type_unit_group (const void *item)
5018 {
5019 const struct type_unit_group *tu_group = item;
5020
5021 return hash_stmt_list_entry (&tu_group->hash);
5022 }
5023
5024 static int
5025 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5026 {
5027 const struct type_unit_group *lhs = item_lhs;
5028 const struct type_unit_group *rhs = item_rhs;
5029
5030 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5031 }
5032
5033 /* Allocate a hash table for type unit groups. */
5034
5035 static htab_t
5036 allocate_type_unit_groups_table (void)
5037 {
5038 return htab_create_alloc_ex (3,
5039 hash_type_unit_group,
5040 eq_type_unit_group,
5041 NULL,
5042 &dwarf2_per_objfile->objfile->objfile_obstack,
5043 hashtab_obstack_allocate,
5044 dummy_obstack_deallocate);
5045 }
5046
5047 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5048 partial symtabs. We combine several TUs per psymtab to not let the size
5049 of any one psymtab grow too big. */
5050 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5051 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5052
5053 /* Helper routine for get_type_unit_group.
5054 Create the type_unit_group object used to hold one or more TUs. */
5055
5056 static struct type_unit_group *
5057 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5058 {
5059 struct objfile *objfile = dwarf2_per_objfile->objfile;
5060 struct dwarf2_per_cu_data *per_cu;
5061 struct type_unit_group *tu_group;
5062
5063 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5064 struct type_unit_group);
5065 per_cu = &tu_group->per_cu;
5066 per_cu->objfile = objfile;
5067 per_cu->is_debug_types = 1;
5068 per_cu->type_unit_group = tu_group;
5069
5070 if (dwarf2_per_objfile->using_index)
5071 {
5072 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5073 struct dwarf2_per_cu_quick_data);
5074 tu_group->t.first_tu = cu->per_cu;
5075 }
5076 else
5077 {
5078 unsigned int line_offset = line_offset_struct.sect_off;
5079 struct partial_symtab *pst;
5080 char *name;
5081
5082 /* Give the symtab a useful name for debug purposes. */
5083 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5084 name = xstrprintf ("<type_units_%d>",
5085 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5086 else
5087 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5088
5089 pst = create_partial_symtab (per_cu, name);
5090 pst->anonymous = 1;
5091
5092 xfree (name);
5093 }
5094
5095 tu_group->hash.dwo_unit = cu->dwo_unit;
5096 tu_group->hash.line_offset = line_offset_struct;
5097
5098 return tu_group;
5099 }
5100
5101 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5102 STMT_LIST is a DW_AT_stmt_list attribute. */
5103
5104 static struct type_unit_group *
5105 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5106 {
5107 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5108 struct type_unit_group *tu_group;
5109 void **slot;
5110 unsigned int line_offset;
5111 struct type_unit_group type_unit_group_for_lookup;
5112
5113 if (dwarf2_per_objfile->type_unit_groups == NULL)
5114 {
5115 dwarf2_per_objfile->type_unit_groups =
5116 allocate_type_unit_groups_table ();
5117 }
5118
5119 /* Do we need to create a new group, or can we use an existing one? */
5120
5121 if (stmt_list)
5122 {
5123 line_offset = DW_UNSND (stmt_list);
5124 ++tu_stats->nr_symtab_sharers;
5125 }
5126 else
5127 {
5128 /* Ugh, no stmt_list. Rare, but we have to handle it.
5129 We can do various things here like create one group per TU or
5130 spread them over multiple groups to split up the expansion work.
5131 To avoid worst case scenarios (too many groups or too large groups)
5132 we, umm, group them in bunches. */
5133 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5134 | (tu_stats->nr_stmt_less_type_units
5135 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5136 ++tu_stats->nr_stmt_less_type_units;
5137 }
5138
5139 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5140 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5141 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5142 &type_unit_group_for_lookup, INSERT);
5143 if (*slot != NULL)
5144 {
5145 tu_group = *slot;
5146 gdb_assert (tu_group != NULL);
5147 }
5148 else
5149 {
5150 sect_offset line_offset_struct;
5151
5152 line_offset_struct.sect_off = line_offset;
5153 tu_group = create_type_unit_group (cu, line_offset_struct);
5154 *slot = tu_group;
5155 ++tu_stats->nr_symtabs;
5156 }
5157
5158 return tu_group;
5159 }
5160
5161 /* Struct used to sort TUs by their abbreviation table offset. */
5162
5163 struct tu_abbrev_offset
5164 {
5165 struct signatured_type *sig_type;
5166 sect_offset abbrev_offset;
5167 };
5168
5169 /* Helper routine for build_type_unit_groups, passed to qsort. */
5170
5171 static int
5172 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5173 {
5174 const struct tu_abbrev_offset * const *a = ap;
5175 const struct tu_abbrev_offset * const *b = bp;
5176 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5177 unsigned int boff = (*b)->abbrev_offset.sect_off;
5178
5179 return (aoff > boff) - (aoff < boff);
5180 }
5181
5182 /* A helper function to add a type_unit_group to a table. */
5183
5184 static int
5185 add_type_unit_group_to_table (void **slot, void *datum)
5186 {
5187 struct type_unit_group *tu_group = *slot;
5188 struct type_unit_group ***datap = datum;
5189
5190 **datap = tu_group;
5191 ++*datap;
5192
5193 return 1;
5194 }
5195
5196 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5197 each one passing FUNC,DATA.
5198
5199 The efficiency is because we sort TUs by the abbrev table they use and
5200 only read each abbrev table once. In one program there are 200K TUs
5201 sharing 8K abbrev tables.
5202
5203 The main purpose of this function is to support building the
5204 dwarf2_per_objfile->type_unit_groups table.
5205 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5206 can collapse the search space by grouping them by stmt_list.
5207 The savings can be significant, in the same program from above the 200K TUs
5208 share 8K stmt_list tables.
5209
5210 FUNC is expected to call get_type_unit_group, which will create the
5211 struct type_unit_group if necessary and add it to
5212 dwarf2_per_objfile->type_unit_groups. */
5213
5214 static void
5215 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5216 {
5217 struct objfile *objfile = dwarf2_per_objfile->objfile;
5218 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5219 struct cleanup *cleanups;
5220 struct abbrev_table *abbrev_table;
5221 sect_offset abbrev_offset;
5222 struct tu_abbrev_offset *sorted_by_abbrev;
5223 struct type_unit_group **iter;
5224 int i;
5225
5226 /* It's up to the caller to not call us multiple times. */
5227 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5228
5229 if (dwarf2_per_objfile->n_type_units == 0)
5230 return;
5231
5232 /* TUs typically share abbrev tables, and there can be way more TUs than
5233 abbrev tables. Sort by abbrev table to reduce the number of times we
5234 read each abbrev table in.
5235 Alternatives are to punt or to maintain a cache of abbrev tables.
5236 This is simpler and efficient enough for now.
5237
5238 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5239 symtab to use). Typically TUs with the same abbrev offset have the same
5240 stmt_list value too so in practice this should work well.
5241
5242 The basic algorithm here is:
5243
5244 sort TUs by abbrev table
5245 for each TU with same abbrev table:
5246 read abbrev table if first user
5247 read TU top level DIE
5248 [IWBN if DWO skeletons had DW_AT_stmt_list]
5249 call FUNC */
5250
5251 if (dwarf2_read_debug)
5252 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5253
5254 /* Sort in a separate table to maintain the order of all_type_units
5255 for .gdb_index: TU indices directly index all_type_units. */
5256 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5257 dwarf2_per_objfile->n_type_units);
5258 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5259 {
5260 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5261
5262 sorted_by_abbrev[i].sig_type = sig_type;
5263 sorted_by_abbrev[i].abbrev_offset =
5264 read_abbrev_offset (sig_type->per_cu.info_or_types_section,
5265 sig_type->per_cu.offset);
5266 }
5267 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5268 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5269 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5270
5271 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5272 called any number of times, so we don't reset tu_stats here. */
5273
5274 abbrev_offset.sect_off = ~(unsigned) 0;
5275 abbrev_table = NULL;
5276 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5277
5278 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5279 {
5280 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5281
5282 /* Switch to the next abbrev table if necessary. */
5283 if (abbrev_table == NULL
5284 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5285 {
5286 if (abbrev_table != NULL)
5287 {
5288 abbrev_table_free (abbrev_table);
5289 /* Reset to NULL in case abbrev_table_read_table throws
5290 an error: abbrev_table_free_cleanup will get called. */
5291 abbrev_table = NULL;
5292 }
5293 abbrev_offset = tu->abbrev_offset;
5294 abbrev_table =
5295 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5296 abbrev_offset);
5297 ++tu_stats->nr_uniq_abbrev_tables;
5298 }
5299
5300 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5301 func, data);
5302 }
5303
5304 /* Create a vector of pointers to primary type units to make it easy to
5305 iterate over them and CUs. See dw2_get_primary_cu. */
5306 dwarf2_per_objfile->n_type_unit_groups =
5307 htab_elements (dwarf2_per_objfile->type_unit_groups);
5308 dwarf2_per_objfile->all_type_unit_groups =
5309 obstack_alloc (&objfile->objfile_obstack,
5310 dwarf2_per_objfile->n_type_unit_groups
5311 * sizeof (struct type_unit_group *));
5312 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5313 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5314 add_type_unit_group_to_table, &iter);
5315 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5316 == dwarf2_per_objfile->n_type_unit_groups);
5317
5318 do_cleanups (cleanups);
5319
5320 if (dwarf2_read_debug)
5321 {
5322 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5323 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5324 dwarf2_per_objfile->n_type_units);
5325 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5326 tu_stats->nr_uniq_abbrev_tables);
5327 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5328 tu_stats->nr_symtabs);
5329 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5330 tu_stats->nr_symtab_sharers);
5331 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5332 tu_stats->nr_stmt_less_type_units);
5333 }
5334 }
5335
5336 /* Reader function for build_type_psymtabs. */
5337
5338 static void
5339 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5340 gdb_byte *info_ptr,
5341 struct die_info *type_unit_die,
5342 int has_children,
5343 void *data)
5344 {
5345 struct objfile *objfile = dwarf2_per_objfile->objfile;
5346 struct dwarf2_cu *cu = reader->cu;
5347 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5348 struct type_unit_group *tu_group;
5349 struct attribute *attr;
5350 struct partial_die_info *first_die;
5351 CORE_ADDR lowpc, highpc;
5352 struct partial_symtab *pst;
5353
5354 gdb_assert (data == NULL);
5355
5356 if (! has_children)
5357 return;
5358
5359 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5360 tu_group = get_type_unit_group (cu, attr);
5361
5362 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
5363
5364 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5365 cu->list_in_scope = &file_symbols;
5366 pst = create_partial_symtab (per_cu, "");
5367 pst->anonymous = 1;
5368
5369 first_die = load_partial_dies (reader, info_ptr, 1);
5370
5371 lowpc = (CORE_ADDR) -1;
5372 highpc = (CORE_ADDR) 0;
5373 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5374
5375 pst->n_global_syms = objfile->global_psymbols.next -
5376 (objfile->global_psymbols.list + pst->globals_offset);
5377 pst->n_static_syms = objfile->static_psymbols.next -
5378 (objfile->static_psymbols.list + pst->statics_offset);
5379 sort_pst_symbols (objfile, pst);
5380 }
5381
5382 /* Traversal function for build_type_psymtabs. */
5383
5384 static int
5385 build_type_psymtab_dependencies (void **slot, void *info)
5386 {
5387 struct objfile *objfile = dwarf2_per_objfile->objfile;
5388 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5389 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5390 struct partial_symtab *pst = per_cu->v.psymtab;
5391 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
5392 struct dwarf2_per_cu_data *iter;
5393 int i;
5394
5395 gdb_assert (len > 0);
5396
5397 pst->number_of_dependencies = len;
5398 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5399 len * sizeof (struct psymtab *));
5400 for (i = 0;
5401 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
5402 ++i)
5403 {
5404 pst->dependencies[i] = iter->v.psymtab;
5405 iter->type_unit_group = tu_group;
5406 }
5407
5408 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
5409
5410 return 1;
5411 }
5412
5413 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5414 Build partial symbol tables for the .debug_types comp-units. */
5415
5416 static void
5417 build_type_psymtabs (struct objfile *objfile)
5418 {
5419 if (! create_all_type_units (objfile))
5420 return;
5421
5422 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5423
5424 /* Now that all TUs have been processed we can fill in the dependencies. */
5425 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5426 build_type_psymtab_dependencies, NULL);
5427 }
5428
5429 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5430
5431 static void
5432 psymtabs_addrmap_cleanup (void *o)
5433 {
5434 struct objfile *objfile = o;
5435
5436 objfile->psymtabs_addrmap = NULL;
5437 }
5438
5439 /* Compute the 'user' field for each psymtab in OBJFILE. */
5440
5441 static void
5442 set_partial_user (struct objfile *objfile)
5443 {
5444 int i;
5445
5446 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5447 {
5448 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5449 struct partial_symtab *pst = per_cu->v.psymtab;
5450 int j;
5451
5452 if (pst == NULL)
5453 continue;
5454
5455 for (j = 0; j < pst->number_of_dependencies; ++j)
5456 {
5457 /* Set the 'user' field only if it is not already set. */
5458 if (pst->dependencies[j]->user == NULL)
5459 pst->dependencies[j]->user = pst;
5460 }
5461 }
5462 }
5463
5464 /* Build the partial symbol table by doing a quick pass through the
5465 .debug_info and .debug_abbrev sections. */
5466
5467 static void
5468 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5469 {
5470 struct cleanup *back_to, *addrmap_cleanup;
5471 struct obstack temp_obstack;
5472 int i;
5473
5474 if (dwarf2_read_debug)
5475 {
5476 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5477 objfile->name);
5478 }
5479
5480 dwarf2_per_objfile->reading_partial_symbols = 1;
5481
5482 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5483
5484 /* Any cached compilation units will be linked by the per-objfile
5485 read_in_chain. Make sure to free them when we're done. */
5486 back_to = make_cleanup (free_cached_comp_units, NULL);
5487
5488 build_type_psymtabs (objfile);
5489
5490 create_all_comp_units (objfile);
5491
5492 /* Create a temporary address map on a temporary obstack. We later
5493 copy this to the final obstack. */
5494 obstack_init (&temp_obstack);
5495 make_cleanup_obstack_free (&temp_obstack);
5496 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5497 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5498
5499 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5500 {
5501 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5502
5503 process_psymtab_comp_unit (per_cu, 0);
5504 }
5505
5506 set_partial_user (objfile);
5507
5508 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5509 &objfile->objfile_obstack);
5510 discard_cleanups (addrmap_cleanup);
5511
5512 do_cleanups (back_to);
5513
5514 if (dwarf2_read_debug)
5515 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5516 objfile->name);
5517 }
5518
5519 /* die_reader_func for load_partial_comp_unit. */
5520
5521 static void
5522 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5523 gdb_byte *info_ptr,
5524 struct die_info *comp_unit_die,
5525 int has_children,
5526 void *data)
5527 {
5528 struct dwarf2_cu *cu = reader->cu;
5529
5530 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5531
5532 /* Check if comp unit has_children.
5533 If so, read the rest of the partial symbols from this comp unit.
5534 If not, there's no more debug_info for this comp unit. */
5535 if (has_children)
5536 load_partial_dies (reader, info_ptr, 0);
5537 }
5538
5539 /* Load the partial DIEs for a secondary CU into memory.
5540 This is also used when rereading a primary CU with load_all_dies. */
5541
5542 static void
5543 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5544 {
5545 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5546 load_partial_comp_unit_reader, NULL);
5547 }
5548
5549 static void
5550 read_comp_units_from_section (struct objfile *objfile,
5551 struct dwarf2_section_info *section,
5552 unsigned int is_dwz,
5553 int *n_allocated,
5554 int *n_comp_units,
5555 struct dwarf2_per_cu_data ***all_comp_units)
5556 {
5557 gdb_byte *info_ptr;
5558 bfd *abfd = section->asection->owner;
5559
5560 dwarf2_read_section (objfile, section);
5561
5562 info_ptr = section->buffer;
5563
5564 while (info_ptr < section->buffer + section->size)
5565 {
5566 unsigned int length, initial_length_size;
5567 struct dwarf2_per_cu_data *this_cu;
5568 sect_offset offset;
5569
5570 offset.sect_off = info_ptr - section->buffer;
5571
5572 /* Read just enough information to find out where the next
5573 compilation unit is. */
5574 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5575
5576 /* Save the compilation unit for later lookup. */
5577 this_cu = obstack_alloc (&objfile->objfile_obstack,
5578 sizeof (struct dwarf2_per_cu_data));
5579 memset (this_cu, 0, sizeof (*this_cu));
5580 this_cu->offset = offset;
5581 this_cu->length = length + initial_length_size;
5582 this_cu->is_dwz = is_dwz;
5583 this_cu->objfile = objfile;
5584 this_cu->info_or_types_section = section;
5585
5586 if (*n_comp_units == *n_allocated)
5587 {
5588 *n_allocated *= 2;
5589 *all_comp_units = xrealloc (*all_comp_units,
5590 *n_allocated
5591 * sizeof (struct dwarf2_per_cu_data *));
5592 }
5593 (*all_comp_units)[*n_comp_units] = this_cu;
5594 ++*n_comp_units;
5595
5596 info_ptr = info_ptr + this_cu->length;
5597 }
5598 }
5599
5600 /* Create a list of all compilation units in OBJFILE.
5601 This is only done for -readnow and building partial symtabs. */
5602
5603 static void
5604 create_all_comp_units (struct objfile *objfile)
5605 {
5606 int n_allocated;
5607 int n_comp_units;
5608 struct dwarf2_per_cu_data **all_comp_units;
5609
5610 n_comp_units = 0;
5611 n_allocated = 10;
5612 all_comp_units = xmalloc (n_allocated
5613 * sizeof (struct dwarf2_per_cu_data *));
5614
5615 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5616 &n_allocated, &n_comp_units, &all_comp_units);
5617
5618 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5619 {
5620 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5621
5622 read_comp_units_from_section (objfile, &dwz->info, 1,
5623 &n_allocated, &n_comp_units,
5624 &all_comp_units);
5625 }
5626
5627 dwarf2_per_objfile->all_comp_units
5628 = obstack_alloc (&objfile->objfile_obstack,
5629 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5630 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5631 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5632 xfree (all_comp_units);
5633 dwarf2_per_objfile->n_comp_units = n_comp_units;
5634 }
5635
5636 /* Process all loaded DIEs for compilation unit CU, starting at
5637 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5638 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5639 DW_AT_ranges). If NEED_PC is set, then this function will set
5640 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5641 and record the covered ranges in the addrmap. */
5642
5643 static void
5644 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5645 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5646 {
5647 struct partial_die_info *pdi;
5648
5649 /* Now, march along the PDI's, descending into ones which have
5650 interesting children but skipping the children of the other ones,
5651 until we reach the end of the compilation unit. */
5652
5653 pdi = first_die;
5654
5655 while (pdi != NULL)
5656 {
5657 fixup_partial_die (pdi, cu);
5658
5659 /* Anonymous namespaces or modules have no name but have interesting
5660 children, so we need to look at them. Ditto for anonymous
5661 enums. */
5662
5663 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5664 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5665 || pdi->tag == DW_TAG_imported_unit)
5666 {
5667 switch (pdi->tag)
5668 {
5669 case DW_TAG_subprogram:
5670 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5671 break;
5672 case DW_TAG_constant:
5673 case DW_TAG_variable:
5674 case DW_TAG_typedef:
5675 case DW_TAG_union_type:
5676 if (!pdi->is_declaration)
5677 {
5678 add_partial_symbol (pdi, cu);
5679 }
5680 break;
5681 case DW_TAG_class_type:
5682 case DW_TAG_interface_type:
5683 case DW_TAG_structure_type:
5684 if (!pdi->is_declaration)
5685 {
5686 add_partial_symbol (pdi, cu);
5687 }
5688 break;
5689 case DW_TAG_enumeration_type:
5690 if (!pdi->is_declaration)
5691 add_partial_enumeration (pdi, cu);
5692 break;
5693 case DW_TAG_base_type:
5694 case DW_TAG_subrange_type:
5695 /* File scope base type definitions are added to the partial
5696 symbol table. */
5697 add_partial_symbol (pdi, cu);
5698 break;
5699 case DW_TAG_namespace:
5700 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5701 break;
5702 case DW_TAG_module:
5703 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5704 break;
5705 case DW_TAG_imported_unit:
5706 {
5707 struct dwarf2_per_cu_data *per_cu;
5708
5709 /* For now we don't handle imported units in type units. */
5710 if (cu->per_cu->is_debug_types)
5711 {
5712 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5713 " supported in type units [in module %s]"),
5714 cu->objfile->name);
5715 }
5716
5717 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5718 pdi->is_dwz,
5719 cu->objfile);
5720
5721 /* Go read the partial unit, if needed. */
5722 if (per_cu->v.psymtab == NULL)
5723 process_psymtab_comp_unit (per_cu, 1);
5724
5725 VEC_safe_push (dwarf2_per_cu_ptr,
5726 cu->per_cu->imported_symtabs, per_cu);
5727 }
5728 break;
5729 default:
5730 break;
5731 }
5732 }
5733
5734 /* If the die has a sibling, skip to the sibling. */
5735
5736 pdi = pdi->die_sibling;
5737 }
5738 }
5739
5740 /* Functions used to compute the fully scoped name of a partial DIE.
5741
5742 Normally, this is simple. For C++, the parent DIE's fully scoped
5743 name is concatenated with "::" and the partial DIE's name. For
5744 Java, the same thing occurs except that "." is used instead of "::".
5745 Enumerators are an exception; they use the scope of their parent
5746 enumeration type, i.e. the name of the enumeration type is not
5747 prepended to the enumerator.
5748
5749 There are two complexities. One is DW_AT_specification; in this
5750 case "parent" means the parent of the target of the specification,
5751 instead of the direct parent of the DIE. The other is compilers
5752 which do not emit DW_TAG_namespace; in this case we try to guess
5753 the fully qualified name of structure types from their members'
5754 linkage names. This must be done using the DIE's children rather
5755 than the children of any DW_AT_specification target. We only need
5756 to do this for structures at the top level, i.e. if the target of
5757 any DW_AT_specification (if any; otherwise the DIE itself) does not
5758 have a parent. */
5759
5760 /* Compute the scope prefix associated with PDI's parent, in
5761 compilation unit CU. The result will be allocated on CU's
5762 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5763 field. NULL is returned if no prefix is necessary. */
5764 static const char *
5765 partial_die_parent_scope (struct partial_die_info *pdi,
5766 struct dwarf2_cu *cu)
5767 {
5768 const char *grandparent_scope;
5769 struct partial_die_info *parent, *real_pdi;
5770
5771 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5772 then this means the parent of the specification DIE. */
5773
5774 real_pdi = pdi;
5775 while (real_pdi->has_specification)
5776 real_pdi = find_partial_die (real_pdi->spec_offset,
5777 real_pdi->spec_is_dwz, cu);
5778
5779 parent = real_pdi->die_parent;
5780 if (parent == NULL)
5781 return NULL;
5782
5783 if (parent->scope_set)
5784 return parent->scope;
5785
5786 fixup_partial_die (parent, cu);
5787
5788 grandparent_scope = partial_die_parent_scope (parent, cu);
5789
5790 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5791 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5792 Work around this problem here. */
5793 if (cu->language == language_cplus
5794 && parent->tag == DW_TAG_namespace
5795 && strcmp (parent->name, "::") == 0
5796 && grandparent_scope == NULL)
5797 {
5798 parent->scope = NULL;
5799 parent->scope_set = 1;
5800 return NULL;
5801 }
5802
5803 if (pdi->tag == DW_TAG_enumerator)
5804 /* Enumerators should not get the name of the enumeration as a prefix. */
5805 parent->scope = grandparent_scope;
5806 else if (parent->tag == DW_TAG_namespace
5807 || parent->tag == DW_TAG_module
5808 || parent->tag == DW_TAG_structure_type
5809 || parent->tag == DW_TAG_class_type
5810 || parent->tag == DW_TAG_interface_type
5811 || parent->tag == DW_TAG_union_type
5812 || parent->tag == DW_TAG_enumeration_type)
5813 {
5814 if (grandparent_scope == NULL)
5815 parent->scope = parent->name;
5816 else
5817 parent->scope = typename_concat (&cu->comp_unit_obstack,
5818 grandparent_scope,
5819 parent->name, 0, cu);
5820 }
5821 else
5822 {
5823 /* FIXME drow/2004-04-01: What should we be doing with
5824 function-local names? For partial symbols, we should probably be
5825 ignoring them. */
5826 complaint (&symfile_complaints,
5827 _("unhandled containing DIE tag %d for DIE at %d"),
5828 parent->tag, pdi->offset.sect_off);
5829 parent->scope = grandparent_scope;
5830 }
5831
5832 parent->scope_set = 1;
5833 return parent->scope;
5834 }
5835
5836 /* Return the fully scoped name associated with PDI, from compilation unit
5837 CU. The result will be allocated with malloc. */
5838
5839 static char *
5840 partial_die_full_name (struct partial_die_info *pdi,
5841 struct dwarf2_cu *cu)
5842 {
5843 const char *parent_scope;
5844
5845 /* If this is a template instantiation, we can not work out the
5846 template arguments from partial DIEs. So, unfortunately, we have
5847 to go through the full DIEs. At least any work we do building
5848 types here will be reused if full symbols are loaded later. */
5849 if (pdi->has_template_arguments)
5850 {
5851 fixup_partial_die (pdi, cu);
5852
5853 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5854 {
5855 struct die_info *die;
5856 struct attribute attr;
5857 struct dwarf2_cu *ref_cu = cu;
5858
5859 /* DW_FORM_ref_addr is using section offset. */
5860 attr.name = 0;
5861 attr.form = DW_FORM_ref_addr;
5862 attr.u.unsnd = pdi->offset.sect_off;
5863 die = follow_die_ref (NULL, &attr, &ref_cu);
5864
5865 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5866 }
5867 }
5868
5869 parent_scope = partial_die_parent_scope (pdi, cu);
5870 if (parent_scope == NULL)
5871 return NULL;
5872 else
5873 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
5874 }
5875
5876 static void
5877 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
5878 {
5879 struct objfile *objfile = cu->objfile;
5880 CORE_ADDR addr = 0;
5881 const char *actual_name = NULL;
5882 CORE_ADDR baseaddr;
5883 char *built_actual_name;
5884
5885 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5886
5887 built_actual_name = partial_die_full_name (pdi, cu);
5888 if (built_actual_name != NULL)
5889 actual_name = built_actual_name;
5890
5891 if (actual_name == NULL)
5892 actual_name = pdi->name;
5893
5894 switch (pdi->tag)
5895 {
5896 case DW_TAG_subprogram:
5897 if (pdi->is_external || cu->language == language_ada)
5898 {
5899 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5900 of the global scope. But in Ada, we want to be able to access
5901 nested procedures globally. So all Ada subprograms are stored
5902 in the global scope. */
5903 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5904 mst_text, objfile); */
5905 add_psymbol_to_list (actual_name, strlen (actual_name),
5906 built_actual_name != NULL,
5907 VAR_DOMAIN, LOC_BLOCK,
5908 &objfile->global_psymbols,
5909 0, pdi->lowpc + baseaddr,
5910 cu->language, objfile);
5911 }
5912 else
5913 {
5914 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5915 mst_file_text, objfile); */
5916 add_psymbol_to_list (actual_name, strlen (actual_name),
5917 built_actual_name != NULL,
5918 VAR_DOMAIN, LOC_BLOCK,
5919 &objfile->static_psymbols,
5920 0, pdi->lowpc + baseaddr,
5921 cu->language, objfile);
5922 }
5923 break;
5924 case DW_TAG_constant:
5925 {
5926 struct psymbol_allocation_list *list;
5927
5928 if (pdi->is_external)
5929 list = &objfile->global_psymbols;
5930 else
5931 list = &objfile->static_psymbols;
5932 add_psymbol_to_list (actual_name, strlen (actual_name),
5933 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
5934 list, 0, 0, cu->language, objfile);
5935 }
5936 break;
5937 case DW_TAG_variable:
5938 if (pdi->d.locdesc)
5939 addr = decode_locdesc (pdi->d.locdesc, cu);
5940
5941 if (pdi->d.locdesc
5942 && addr == 0
5943 && !dwarf2_per_objfile->has_section_at_zero)
5944 {
5945 /* A global or static variable may also have been stripped
5946 out by the linker if unused, in which case its address
5947 will be nullified; do not add such variables into partial
5948 symbol table then. */
5949 }
5950 else if (pdi->is_external)
5951 {
5952 /* Global Variable.
5953 Don't enter into the minimal symbol tables as there is
5954 a minimal symbol table entry from the ELF symbols already.
5955 Enter into partial symbol table if it has a location
5956 descriptor or a type.
5957 If the location descriptor is missing, new_symbol will create
5958 a LOC_UNRESOLVED symbol, the address of the variable will then
5959 be determined from the minimal symbol table whenever the variable
5960 is referenced.
5961 The address for the partial symbol table entry is not
5962 used by GDB, but it comes in handy for debugging partial symbol
5963 table building. */
5964
5965 if (pdi->d.locdesc || pdi->has_type)
5966 add_psymbol_to_list (actual_name, strlen (actual_name),
5967 built_actual_name != NULL,
5968 VAR_DOMAIN, LOC_STATIC,
5969 &objfile->global_psymbols,
5970 0, addr + baseaddr,
5971 cu->language, objfile);
5972 }
5973 else
5974 {
5975 /* Static Variable. Skip symbols without location descriptors. */
5976 if (pdi->d.locdesc == NULL)
5977 {
5978 xfree (built_actual_name);
5979 return;
5980 }
5981 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
5982 mst_file_data, objfile); */
5983 add_psymbol_to_list (actual_name, strlen (actual_name),
5984 built_actual_name != NULL,
5985 VAR_DOMAIN, LOC_STATIC,
5986 &objfile->static_psymbols,
5987 0, addr + baseaddr,
5988 cu->language, objfile);
5989 }
5990 break;
5991 case DW_TAG_typedef:
5992 case DW_TAG_base_type:
5993 case DW_TAG_subrange_type:
5994 add_psymbol_to_list (actual_name, strlen (actual_name),
5995 built_actual_name != NULL,
5996 VAR_DOMAIN, LOC_TYPEDEF,
5997 &objfile->static_psymbols,
5998 0, (CORE_ADDR) 0, cu->language, objfile);
5999 break;
6000 case DW_TAG_namespace:
6001 add_psymbol_to_list (actual_name, strlen (actual_name),
6002 built_actual_name != NULL,
6003 VAR_DOMAIN, LOC_TYPEDEF,
6004 &objfile->global_psymbols,
6005 0, (CORE_ADDR) 0, cu->language, objfile);
6006 break;
6007 case DW_TAG_class_type:
6008 case DW_TAG_interface_type:
6009 case DW_TAG_structure_type:
6010 case DW_TAG_union_type:
6011 case DW_TAG_enumeration_type:
6012 /* Skip external references. The DWARF standard says in the section
6013 about "Structure, Union, and Class Type Entries": "An incomplete
6014 structure, union or class type is represented by a structure,
6015 union or class entry that does not have a byte size attribute
6016 and that has a DW_AT_declaration attribute." */
6017 if (!pdi->has_byte_size && pdi->is_declaration)
6018 {
6019 xfree (built_actual_name);
6020 return;
6021 }
6022
6023 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6024 static vs. global. */
6025 add_psymbol_to_list (actual_name, strlen (actual_name),
6026 built_actual_name != NULL,
6027 STRUCT_DOMAIN, LOC_TYPEDEF,
6028 (cu->language == language_cplus
6029 || cu->language == language_java)
6030 ? &objfile->global_psymbols
6031 : &objfile->static_psymbols,
6032 0, (CORE_ADDR) 0, cu->language, objfile);
6033
6034 break;
6035 case DW_TAG_enumerator:
6036 add_psymbol_to_list (actual_name, strlen (actual_name),
6037 built_actual_name != NULL,
6038 VAR_DOMAIN, LOC_CONST,
6039 (cu->language == language_cplus
6040 || cu->language == language_java)
6041 ? &objfile->global_psymbols
6042 : &objfile->static_psymbols,
6043 0, (CORE_ADDR) 0, cu->language, objfile);
6044 break;
6045 default:
6046 break;
6047 }
6048
6049 xfree (built_actual_name);
6050 }
6051
6052 /* Read a partial die corresponding to a namespace; also, add a symbol
6053 corresponding to that namespace to the symbol table. NAMESPACE is
6054 the name of the enclosing namespace. */
6055
6056 static void
6057 add_partial_namespace (struct partial_die_info *pdi,
6058 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6059 int need_pc, struct dwarf2_cu *cu)
6060 {
6061 /* Add a symbol for the namespace. */
6062
6063 add_partial_symbol (pdi, cu);
6064
6065 /* Now scan partial symbols in that namespace. */
6066
6067 if (pdi->has_children)
6068 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6069 }
6070
6071 /* Read a partial die corresponding to a Fortran module. */
6072
6073 static void
6074 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6075 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6076 {
6077 /* Now scan partial symbols in that module. */
6078
6079 if (pdi->has_children)
6080 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6081 }
6082
6083 /* Read a partial die corresponding to a subprogram and create a partial
6084 symbol for that subprogram. When the CU language allows it, this
6085 routine also defines a partial symbol for each nested subprogram
6086 that this subprogram contains.
6087
6088 DIE my also be a lexical block, in which case we simply search
6089 recursively for suprograms defined inside that lexical block.
6090 Again, this is only performed when the CU language allows this
6091 type of definitions. */
6092
6093 static void
6094 add_partial_subprogram (struct partial_die_info *pdi,
6095 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6096 int need_pc, struct dwarf2_cu *cu)
6097 {
6098 if (pdi->tag == DW_TAG_subprogram)
6099 {
6100 if (pdi->has_pc_info)
6101 {
6102 if (pdi->lowpc < *lowpc)
6103 *lowpc = pdi->lowpc;
6104 if (pdi->highpc > *highpc)
6105 *highpc = pdi->highpc;
6106 if (need_pc)
6107 {
6108 CORE_ADDR baseaddr;
6109 struct objfile *objfile = cu->objfile;
6110
6111 baseaddr = ANOFFSET (objfile->section_offsets,
6112 SECT_OFF_TEXT (objfile));
6113 addrmap_set_empty (objfile->psymtabs_addrmap,
6114 pdi->lowpc + baseaddr,
6115 pdi->highpc - 1 + baseaddr,
6116 cu->per_cu->v.psymtab);
6117 }
6118 }
6119
6120 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6121 {
6122 if (!pdi->is_declaration)
6123 /* Ignore subprogram DIEs that do not have a name, they are
6124 illegal. Do not emit a complaint at this point, we will
6125 do so when we convert this psymtab into a symtab. */
6126 if (pdi->name)
6127 add_partial_symbol (pdi, cu);
6128 }
6129 }
6130
6131 if (! pdi->has_children)
6132 return;
6133
6134 if (cu->language == language_ada)
6135 {
6136 pdi = pdi->die_child;
6137 while (pdi != NULL)
6138 {
6139 fixup_partial_die (pdi, cu);
6140 if (pdi->tag == DW_TAG_subprogram
6141 || pdi->tag == DW_TAG_lexical_block)
6142 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6143 pdi = pdi->die_sibling;
6144 }
6145 }
6146 }
6147
6148 /* Read a partial die corresponding to an enumeration type. */
6149
6150 static void
6151 add_partial_enumeration (struct partial_die_info *enum_pdi,
6152 struct dwarf2_cu *cu)
6153 {
6154 struct partial_die_info *pdi;
6155
6156 if (enum_pdi->name != NULL)
6157 add_partial_symbol (enum_pdi, cu);
6158
6159 pdi = enum_pdi->die_child;
6160 while (pdi)
6161 {
6162 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6163 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6164 else
6165 add_partial_symbol (pdi, cu);
6166 pdi = pdi->die_sibling;
6167 }
6168 }
6169
6170 /* Return the initial uleb128 in the die at INFO_PTR. */
6171
6172 static unsigned int
6173 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6174 {
6175 unsigned int bytes_read;
6176
6177 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6178 }
6179
6180 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6181 Return the corresponding abbrev, or NULL if the number is zero (indicating
6182 an empty DIE). In either case *BYTES_READ will be set to the length of
6183 the initial number. */
6184
6185 static struct abbrev_info *
6186 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
6187 struct dwarf2_cu *cu)
6188 {
6189 bfd *abfd = cu->objfile->obfd;
6190 unsigned int abbrev_number;
6191 struct abbrev_info *abbrev;
6192
6193 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6194
6195 if (abbrev_number == 0)
6196 return NULL;
6197
6198 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6199 if (!abbrev)
6200 {
6201 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6202 abbrev_number, bfd_get_filename (abfd));
6203 }
6204
6205 return abbrev;
6206 }
6207
6208 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6209 Returns a pointer to the end of a series of DIEs, terminated by an empty
6210 DIE. Any children of the skipped DIEs will also be skipped. */
6211
6212 static gdb_byte *
6213 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
6214 {
6215 struct dwarf2_cu *cu = reader->cu;
6216 struct abbrev_info *abbrev;
6217 unsigned int bytes_read;
6218
6219 while (1)
6220 {
6221 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6222 if (abbrev == NULL)
6223 return info_ptr + bytes_read;
6224 else
6225 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6226 }
6227 }
6228
6229 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6230 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6231 abbrev corresponding to that skipped uleb128 should be passed in
6232 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6233 children. */
6234
6235 static gdb_byte *
6236 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6237 struct abbrev_info *abbrev)
6238 {
6239 unsigned int bytes_read;
6240 struct attribute attr;
6241 bfd *abfd = reader->abfd;
6242 struct dwarf2_cu *cu = reader->cu;
6243 gdb_byte *buffer = reader->buffer;
6244 const gdb_byte *buffer_end = reader->buffer_end;
6245 gdb_byte *start_info_ptr = info_ptr;
6246 unsigned int form, i;
6247
6248 for (i = 0; i < abbrev->num_attrs; i++)
6249 {
6250 /* The only abbrev we care about is DW_AT_sibling. */
6251 if (abbrev->attrs[i].name == DW_AT_sibling)
6252 {
6253 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6254 if (attr.form == DW_FORM_ref_addr)
6255 complaint (&symfile_complaints,
6256 _("ignoring absolute DW_AT_sibling"));
6257 else
6258 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6259 }
6260
6261 /* If it isn't DW_AT_sibling, skip this attribute. */
6262 form = abbrev->attrs[i].form;
6263 skip_attribute:
6264 switch (form)
6265 {
6266 case DW_FORM_ref_addr:
6267 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6268 and later it is offset sized. */
6269 if (cu->header.version == 2)
6270 info_ptr += cu->header.addr_size;
6271 else
6272 info_ptr += cu->header.offset_size;
6273 break;
6274 case DW_FORM_GNU_ref_alt:
6275 info_ptr += cu->header.offset_size;
6276 break;
6277 case DW_FORM_addr:
6278 info_ptr += cu->header.addr_size;
6279 break;
6280 case DW_FORM_data1:
6281 case DW_FORM_ref1:
6282 case DW_FORM_flag:
6283 info_ptr += 1;
6284 break;
6285 case DW_FORM_flag_present:
6286 break;
6287 case DW_FORM_data2:
6288 case DW_FORM_ref2:
6289 info_ptr += 2;
6290 break;
6291 case DW_FORM_data4:
6292 case DW_FORM_ref4:
6293 info_ptr += 4;
6294 break;
6295 case DW_FORM_data8:
6296 case DW_FORM_ref8:
6297 case DW_FORM_ref_sig8:
6298 info_ptr += 8;
6299 break;
6300 case DW_FORM_string:
6301 read_direct_string (abfd, info_ptr, &bytes_read);
6302 info_ptr += bytes_read;
6303 break;
6304 case DW_FORM_sec_offset:
6305 case DW_FORM_strp:
6306 case DW_FORM_GNU_strp_alt:
6307 info_ptr += cu->header.offset_size;
6308 break;
6309 case DW_FORM_exprloc:
6310 case DW_FORM_block:
6311 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6312 info_ptr += bytes_read;
6313 break;
6314 case DW_FORM_block1:
6315 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6316 break;
6317 case DW_FORM_block2:
6318 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6319 break;
6320 case DW_FORM_block4:
6321 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6322 break;
6323 case DW_FORM_sdata:
6324 case DW_FORM_udata:
6325 case DW_FORM_ref_udata:
6326 case DW_FORM_GNU_addr_index:
6327 case DW_FORM_GNU_str_index:
6328 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
6329 break;
6330 case DW_FORM_indirect:
6331 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6332 info_ptr += bytes_read;
6333 /* We need to continue parsing from here, so just go back to
6334 the top. */
6335 goto skip_attribute;
6336
6337 default:
6338 error (_("Dwarf Error: Cannot handle %s "
6339 "in DWARF reader [in module %s]"),
6340 dwarf_form_name (form),
6341 bfd_get_filename (abfd));
6342 }
6343 }
6344
6345 if (abbrev->has_children)
6346 return skip_children (reader, info_ptr);
6347 else
6348 return info_ptr;
6349 }
6350
6351 /* Locate ORIG_PDI's sibling.
6352 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6353
6354 static gdb_byte *
6355 locate_pdi_sibling (const struct die_reader_specs *reader,
6356 struct partial_die_info *orig_pdi,
6357 gdb_byte *info_ptr)
6358 {
6359 /* Do we know the sibling already? */
6360
6361 if (orig_pdi->sibling)
6362 return orig_pdi->sibling;
6363
6364 /* Are there any children to deal with? */
6365
6366 if (!orig_pdi->has_children)
6367 return info_ptr;
6368
6369 /* Skip the children the long way. */
6370
6371 return skip_children (reader, info_ptr);
6372 }
6373
6374 /* Expand this partial symbol table into a full symbol table. SELF is
6375 not NULL. */
6376
6377 static void
6378 dwarf2_read_symtab (struct partial_symtab *self,
6379 struct objfile *objfile)
6380 {
6381 if (self->readin)
6382 {
6383 warning (_("bug: psymtab for %s is already read in."),
6384 self->filename);
6385 }
6386 else
6387 {
6388 if (info_verbose)
6389 {
6390 printf_filtered (_("Reading in symbols for %s..."),
6391 self->filename);
6392 gdb_flush (gdb_stdout);
6393 }
6394
6395 /* Restore our global data. */
6396 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6397
6398 /* If this psymtab is constructed from a debug-only objfile, the
6399 has_section_at_zero flag will not necessarily be correct. We
6400 can get the correct value for this flag by looking at the data
6401 associated with the (presumably stripped) associated objfile. */
6402 if (objfile->separate_debug_objfile_backlink)
6403 {
6404 struct dwarf2_per_objfile *dpo_backlink
6405 = objfile_data (objfile->separate_debug_objfile_backlink,
6406 dwarf2_objfile_data_key);
6407
6408 dwarf2_per_objfile->has_section_at_zero
6409 = dpo_backlink->has_section_at_zero;
6410 }
6411
6412 dwarf2_per_objfile->reading_partial_symbols = 0;
6413
6414 psymtab_to_symtab_1 (self);
6415
6416 /* Finish up the debug error message. */
6417 if (info_verbose)
6418 printf_filtered (_("done.\n"));
6419 }
6420
6421 process_cu_includes ();
6422 }
6423 \f
6424 /* Reading in full CUs. */
6425
6426 /* Add PER_CU to the queue. */
6427
6428 static void
6429 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6430 enum language pretend_language)
6431 {
6432 struct dwarf2_queue_item *item;
6433
6434 per_cu->queued = 1;
6435 item = xmalloc (sizeof (*item));
6436 item->per_cu = per_cu;
6437 item->pretend_language = pretend_language;
6438 item->next = NULL;
6439
6440 if (dwarf2_queue == NULL)
6441 dwarf2_queue = item;
6442 else
6443 dwarf2_queue_tail->next = item;
6444
6445 dwarf2_queue_tail = item;
6446 }
6447
6448 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6449 unit and add it to our queue.
6450 The result is non-zero if PER_CU was queued, otherwise the result is zero
6451 meaning either PER_CU is already queued or it is already loaded. */
6452
6453 static int
6454 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6455 struct dwarf2_per_cu_data *per_cu,
6456 enum language pretend_language)
6457 {
6458 /* We may arrive here during partial symbol reading, if we need full
6459 DIEs to process an unusual case (e.g. template arguments). Do
6460 not queue PER_CU, just tell our caller to load its DIEs. */
6461 if (dwarf2_per_objfile->reading_partial_symbols)
6462 {
6463 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6464 return 1;
6465 return 0;
6466 }
6467
6468 /* Mark the dependence relation so that we don't flush PER_CU
6469 too early. */
6470 dwarf2_add_dependence (this_cu, per_cu);
6471
6472 /* If it's already on the queue, we have nothing to do. */
6473 if (per_cu->queued)
6474 return 0;
6475
6476 /* If the compilation unit is already loaded, just mark it as
6477 used. */
6478 if (per_cu->cu != NULL)
6479 {
6480 per_cu->cu->last_used = 0;
6481 return 0;
6482 }
6483
6484 /* Add it to the queue. */
6485 queue_comp_unit (per_cu, pretend_language);
6486
6487 return 1;
6488 }
6489
6490 /* Process the queue. */
6491
6492 static void
6493 process_queue (void)
6494 {
6495 struct dwarf2_queue_item *item, *next_item;
6496
6497 if (dwarf2_read_debug)
6498 {
6499 fprintf_unfiltered (gdb_stdlog,
6500 "Expanding one or more symtabs of objfile %s ...\n",
6501 dwarf2_per_objfile->objfile->name);
6502 }
6503
6504 /* The queue starts out with one item, but following a DIE reference
6505 may load a new CU, adding it to the end of the queue. */
6506 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6507 {
6508 if (dwarf2_per_objfile->using_index
6509 ? !item->per_cu->v.quick->symtab
6510 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6511 {
6512 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6513
6514 if (dwarf2_read_debug)
6515 {
6516 fprintf_unfiltered (gdb_stdlog,
6517 "Expanding symtab of %s at offset 0x%x\n",
6518 per_cu->is_debug_types ? "TU" : "CU",
6519 per_cu->offset.sect_off);
6520 }
6521
6522 if (per_cu->is_debug_types)
6523 process_full_type_unit (per_cu, item->pretend_language);
6524 else
6525 process_full_comp_unit (per_cu, item->pretend_language);
6526
6527 if (dwarf2_read_debug)
6528 {
6529 fprintf_unfiltered (gdb_stdlog,
6530 "Done expanding %s at offset 0x%x\n",
6531 per_cu->is_debug_types ? "TU" : "CU",
6532 per_cu->offset.sect_off);
6533 }
6534 }
6535
6536 item->per_cu->queued = 0;
6537 next_item = item->next;
6538 xfree (item);
6539 }
6540
6541 dwarf2_queue_tail = NULL;
6542
6543 if (dwarf2_read_debug)
6544 {
6545 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6546 dwarf2_per_objfile->objfile->name);
6547 }
6548 }
6549
6550 /* Free all allocated queue entries. This function only releases anything if
6551 an error was thrown; if the queue was processed then it would have been
6552 freed as we went along. */
6553
6554 static void
6555 dwarf2_release_queue (void *dummy)
6556 {
6557 struct dwarf2_queue_item *item, *last;
6558
6559 item = dwarf2_queue;
6560 while (item)
6561 {
6562 /* Anything still marked queued is likely to be in an
6563 inconsistent state, so discard it. */
6564 if (item->per_cu->queued)
6565 {
6566 if (item->per_cu->cu != NULL)
6567 free_one_cached_comp_unit (item->per_cu);
6568 item->per_cu->queued = 0;
6569 }
6570
6571 last = item;
6572 item = item->next;
6573 xfree (last);
6574 }
6575
6576 dwarf2_queue = dwarf2_queue_tail = NULL;
6577 }
6578
6579 /* Read in full symbols for PST, and anything it depends on. */
6580
6581 static void
6582 psymtab_to_symtab_1 (struct partial_symtab *pst)
6583 {
6584 struct dwarf2_per_cu_data *per_cu;
6585 int i;
6586
6587 if (pst->readin)
6588 return;
6589
6590 for (i = 0; i < pst->number_of_dependencies; i++)
6591 if (!pst->dependencies[i]->readin
6592 && pst->dependencies[i]->user == NULL)
6593 {
6594 /* Inform about additional files that need to be read in. */
6595 if (info_verbose)
6596 {
6597 /* FIXME: i18n: Need to make this a single string. */
6598 fputs_filtered (" ", gdb_stdout);
6599 wrap_here ("");
6600 fputs_filtered ("and ", gdb_stdout);
6601 wrap_here ("");
6602 printf_filtered ("%s...", pst->dependencies[i]->filename);
6603 wrap_here (""); /* Flush output. */
6604 gdb_flush (gdb_stdout);
6605 }
6606 psymtab_to_symtab_1 (pst->dependencies[i]);
6607 }
6608
6609 per_cu = pst->read_symtab_private;
6610
6611 if (per_cu == NULL)
6612 {
6613 /* It's an include file, no symbols to read for it.
6614 Everything is in the parent symtab. */
6615 pst->readin = 1;
6616 return;
6617 }
6618
6619 dw2_do_instantiate_symtab (per_cu);
6620 }
6621
6622 /* Trivial hash function for die_info: the hash value of a DIE
6623 is its offset in .debug_info for this objfile. */
6624
6625 static hashval_t
6626 die_hash (const void *item)
6627 {
6628 const struct die_info *die = item;
6629
6630 return die->offset.sect_off;
6631 }
6632
6633 /* Trivial comparison function for die_info structures: two DIEs
6634 are equal if they have the same offset. */
6635
6636 static int
6637 die_eq (const void *item_lhs, const void *item_rhs)
6638 {
6639 const struct die_info *die_lhs = item_lhs;
6640 const struct die_info *die_rhs = item_rhs;
6641
6642 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6643 }
6644
6645 /* die_reader_func for load_full_comp_unit.
6646 This is identical to read_signatured_type_reader,
6647 but is kept separate for now. */
6648
6649 static void
6650 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6651 gdb_byte *info_ptr,
6652 struct die_info *comp_unit_die,
6653 int has_children,
6654 void *data)
6655 {
6656 struct dwarf2_cu *cu = reader->cu;
6657 enum language *language_ptr = data;
6658
6659 gdb_assert (cu->die_hash == NULL);
6660 cu->die_hash =
6661 htab_create_alloc_ex (cu->header.length / 12,
6662 die_hash,
6663 die_eq,
6664 NULL,
6665 &cu->comp_unit_obstack,
6666 hashtab_obstack_allocate,
6667 dummy_obstack_deallocate);
6668
6669 if (has_children)
6670 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6671 &info_ptr, comp_unit_die);
6672 cu->dies = comp_unit_die;
6673 /* comp_unit_die is not stored in die_hash, no need. */
6674
6675 /* We try not to read any attributes in this function, because not
6676 all CUs needed for references have been loaded yet, and symbol
6677 table processing isn't initialized. But we have to set the CU language,
6678 or we won't be able to build types correctly.
6679 Similarly, if we do not read the producer, we can not apply
6680 producer-specific interpretation. */
6681 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6682 }
6683
6684 /* Load the DIEs associated with PER_CU into memory. */
6685
6686 static void
6687 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6688 enum language pretend_language)
6689 {
6690 gdb_assert (! this_cu->is_debug_types);
6691
6692 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6693 load_full_comp_unit_reader, &pretend_language);
6694 }
6695
6696 /* Add a DIE to the delayed physname list. */
6697
6698 static void
6699 add_to_method_list (struct type *type, int fnfield_index, int index,
6700 const char *name, struct die_info *die,
6701 struct dwarf2_cu *cu)
6702 {
6703 struct delayed_method_info mi;
6704 mi.type = type;
6705 mi.fnfield_index = fnfield_index;
6706 mi.index = index;
6707 mi.name = name;
6708 mi.die = die;
6709 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6710 }
6711
6712 /* A cleanup for freeing the delayed method list. */
6713
6714 static void
6715 free_delayed_list (void *ptr)
6716 {
6717 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6718 if (cu->method_list != NULL)
6719 {
6720 VEC_free (delayed_method_info, cu->method_list);
6721 cu->method_list = NULL;
6722 }
6723 }
6724
6725 /* Compute the physnames of any methods on the CU's method list.
6726
6727 The computation of method physnames is delayed in order to avoid the
6728 (bad) condition that one of the method's formal parameters is of an as yet
6729 incomplete type. */
6730
6731 static void
6732 compute_delayed_physnames (struct dwarf2_cu *cu)
6733 {
6734 int i;
6735 struct delayed_method_info *mi;
6736 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6737 {
6738 const char *physname;
6739 struct fn_fieldlist *fn_flp
6740 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6741 physname = dwarf2_physname (mi->name, mi->die, cu);
6742 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6743 }
6744 }
6745
6746 /* Go objects should be embedded in a DW_TAG_module DIE,
6747 and it's not clear if/how imported objects will appear.
6748 To keep Go support simple until that's worked out,
6749 go back through what we've read and create something usable.
6750 We could do this while processing each DIE, and feels kinda cleaner,
6751 but that way is more invasive.
6752 This is to, for example, allow the user to type "p var" or "b main"
6753 without having to specify the package name, and allow lookups
6754 of module.object to work in contexts that use the expression
6755 parser. */
6756
6757 static void
6758 fixup_go_packaging (struct dwarf2_cu *cu)
6759 {
6760 char *package_name = NULL;
6761 struct pending *list;
6762 int i;
6763
6764 for (list = global_symbols; list != NULL; list = list->next)
6765 {
6766 for (i = 0; i < list->nsyms; ++i)
6767 {
6768 struct symbol *sym = list->symbol[i];
6769
6770 if (SYMBOL_LANGUAGE (sym) == language_go
6771 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6772 {
6773 char *this_package_name = go_symbol_package_name (sym);
6774
6775 if (this_package_name == NULL)
6776 continue;
6777 if (package_name == NULL)
6778 package_name = this_package_name;
6779 else
6780 {
6781 if (strcmp (package_name, this_package_name) != 0)
6782 complaint (&symfile_complaints,
6783 _("Symtab %s has objects from two different Go packages: %s and %s"),
6784 (SYMBOL_SYMTAB (sym)
6785 ? SYMBOL_SYMTAB (sym)->filename
6786 : cu->objfile->name),
6787 this_package_name, package_name);
6788 xfree (this_package_name);
6789 }
6790 }
6791 }
6792 }
6793
6794 if (package_name != NULL)
6795 {
6796 struct objfile *objfile = cu->objfile;
6797 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
6798 package_name,
6799 strlen (package_name));
6800 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6801 saved_package_name, objfile);
6802 struct symbol *sym;
6803
6804 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6805
6806 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6807 SYMBOL_SET_LANGUAGE (sym, language_go);
6808 SYMBOL_SET_NAMES (sym, saved_package_name,
6809 strlen (saved_package_name), 0, objfile);
6810 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6811 e.g., "main" finds the "main" module and not C's main(). */
6812 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6813 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6814 SYMBOL_TYPE (sym) = type;
6815
6816 add_symbol_to_list (sym, &global_symbols);
6817
6818 xfree (package_name);
6819 }
6820 }
6821
6822 static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
6823
6824 /* Return the symtab for PER_CU. This works properly regardless of
6825 whether we're using the index or psymtabs. */
6826
6827 static struct symtab *
6828 get_symtab (struct dwarf2_per_cu_data *per_cu)
6829 {
6830 return (dwarf2_per_objfile->using_index
6831 ? per_cu->v.quick->symtab
6832 : per_cu->v.psymtab->symtab);
6833 }
6834
6835 /* A helper function for computing the list of all symbol tables
6836 included by PER_CU. */
6837
6838 static void
6839 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6840 htab_t all_children,
6841 struct dwarf2_per_cu_data *per_cu)
6842 {
6843 void **slot;
6844 int ix;
6845 struct dwarf2_per_cu_data *iter;
6846
6847 slot = htab_find_slot (all_children, per_cu, INSERT);
6848 if (*slot != NULL)
6849 {
6850 /* This inclusion and its children have been processed. */
6851 return;
6852 }
6853
6854 *slot = per_cu;
6855 /* Only add a CU if it has a symbol table. */
6856 if (get_symtab (per_cu) != NULL)
6857 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6858
6859 for (ix = 0;
6860 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
6861 ++ix)
6862 recursively_compute_inclusions (result, all_children, iter);
6863 }
6864
6865 /* Compute the symtab 'includes' fields for the symtab related to
6866 PER_CU. */
6867
6868 static void
6869 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6870 {
6871 gdb_assert (! per_cu->is_debug_types);
6872
6873 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
6874 {
6875 int ix, len;
6876 struct dwarf2_per_cu_data *iter;
6877 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6878 htab_t all_children;
6879 struct symtab *symtab = get_symtab (per_cu);
6880
6881 /* If we don't have a symtab, we can just skip this case. */
6882 if (symtab == NULL)
6883 return;
6884
6885 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6886 NULL, xcalloc, xfree);
6887
6888 for (ix = 0;
6889 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
6890 ix, iter);
6891 ++ix)
6892 recursively_compute_inclusions (&result_children, all_children, iter);
6893
6894 /* Now we have a transitive closure of all the included CUs, and
6895 for .gdb_index version 7 the included TUs, so we can convert it
6896 to a list of symtabs. */
6897 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6898 symtab->includes
6899 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6900 (len + 1) * sizeof (struct symtab *));
6901 for (ix = 0;
6902 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6903 ++ix)
6904 symtab->includes[ix] = get_symtab (iter);
6905 symtab->includes[len] = NULL;
6906
6907 VEC_free (dwarf2_per_cu_ptr, result_children);
6908 htab_delete (all_children);
6909 }
6910 }
6911
6912 /* Compute the 'includes' field for the symtabs of all the CUs we just
6913 read. */
6914
6915 static void
6916 process_cu_includes (void)
6917 {
6918 int ix;
6919 struct dwarf2_per_cu_data *iter;
6920
6921 for (ix = 0;
6922 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6923 ix, iter);
6924 ++ix)
6925 {
6926 if (! iter->is_debug_types)
6927 compute_symtab_includes (iter);
6928 }
6929
6930 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6931 }
6932
6933 /* Generate full symbol information for PER_CU, whose DIEs have
6934 already been loaded into memory. */
6935
6936 static void
6937 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
6938 enum language pretend_language)
6939 {
6940 struct dwarf2_cu *cu = per_cu->cu;
6941 struct objfile *objfile = per_cu->objfile;
6942 CORE_ADDR lowpc, highpc;
6943 struct symtab *symtab;
6944 struct cleanup *back_to, *delayed_list_cleanup;
6945 CORE_ADDR baseaddr;
6946 struct block *static_block;
6947
6948 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6949
6950 buildsym_init ();
6951 back_to = make_cleanup (really_free_pendings, NULL);
6952 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6953
6954 cu->list_in_scope = &file_symbols;
6955
6956 cu->language = pretend_language;
6957 cu->language_defn = language_def (cu->language);
6958
6959 /* Do line number decoding in read_file_scope () */
6960 process_die (cu->dies, cu);
6961
6962 /* For now fudge the Go package. */
6963 if (cu->language == language_go)
6964 fixup_go_packaging (cu);
6965
6966 /* Now that we have processed all the DIEs in the CU, all the types
6967 should be complete, and it should now be safe to compute all of the
6968 physnames. */
6969 compute_delayed_physnames (cu);
6970 do_cleanups (delayed_list_cleanup);
6971
6972 /* Some compilers don't define a DW_AT_high_pc attribute for the
6973 compilation unit. If the DW_AT_high_pc is missing, synthesize
6974 it, by scanning the DIE's below the compilation unit. */
6975 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
6976
6977 static_block
6978 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
6979 per_cu->imported_symtabs != NULL);
6980
6981 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
6982 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
6983 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
6984 addrmap to help ensure it has an accurate map of pc values belonging to
6985 this comp unit. */
6986 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
6987
6988 symtab = end_symtab_from_static_block (static_block, objfile,
6989 SECT_OFF_TEXT (objfile), 0);
6990
6991 if (symtab != NULL)
6992 {
6993 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
6994
6995 /* Set symtab language to language from DW_AT_language. If the
6996 compilation is from a C file generated by language preprocessors, do
6997 not set the language if it was already deduced by start_subfile. */
6998 if (!(cu->language == language_c && symtab->language != language_c))
6999 symtab->language = cu->language;
7000
7001 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7002 produce DW_AT_location with location lists but it can be possibly
7003 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7004 there were bugs in prologue debug info, fixed later in GCC-4.5
7005 by "unwind info for epilogues" patch (which is not directly related).
7006
7007 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7008 needed, it would be wrong due to missing DW_AT_producer there.
7009
7010 Still one can confuse GDB by using non-standard GCC compilation
7011 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7012 */
7013 if (cu->has_loclist && gcc_4_minor >= 5)
7014 symtab->locations_valid = 1;
7015
7016 if (gcc_4_minor >= 5)
7017 symtab->epilogue_unwind_valid = 1;
7018
7019 symtab->call_site_htab = cu->call_site_htab;
7020 }
7021
7022 if (dwarf2_per_objfile->using_index)
7023 per_cu->v.quick->symtab = symtab;
7024 else
7025 {
7026 struct partial_symtab *pst = per_cu->v.psymtab;
7027 pst->symtab = symtab;
7028 pst->readin = 1;
7029 }
7030
7031 /* Push it for inclusion processing later. */
7032 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7033
7034 do_cleanups (back_to);
7035 }
7036
7037 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7038 already been loaded into memory. */
7039
7040 static void
7041 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7042 enum language pretend_language)
7043 {
7044 struct dwarf2_cu *cu = per_cu->cu;
7045 struct objfile *objfile = per_cu->objfile;
7046 struct symtab *symtab;
7047 struct cleanup *back_to, *delayed_list_cleanup;
7048
7049 buildsym_init ();
7050 back_to = make_cleanup (really_free_pendings, NULL);
7051 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7052
7053 cu->list_in_scope = &file_symbols;
7054
7055 cu->language = pretend_language;
7056 cu->language_defn = language_def (cu->language);
7057
7058 /* The symbol tables are set up in read_type_unit_scope. */
7059 process_die (cu->dies, cu);
7060
7061 /* For now fudge the Go package. */
7062 if (cu->language == language_go)
7063 fixup_go_packaging (cu);
7064
7065 /* Now that we have processed all the DIEs in the CU, all the types
7066 should be complete, and it should now be safe to compute all of the
7067 physnames. */
7068 compute_delayed_physnames (cu);
7069 do_cleanups (delayed_list_cleanup);
7070
7071 /* TUs share symbol tables.
7072 If this is the first TU to use this symtab, complete the construction
7073 of it with end_expandable_symtab. Otherwise, complete the addition of
7074 this TU's symbols to the existing symtab. */
7075 if (per_cu->type_unit_group->primary_symtab == NULL)
7076 {
7077 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7078 per_cu->type_unit_group->primary_symtab = symtab;
7079
7080 if (symtab != NULL)
7081 {
7082 /* Set symtab language to language from DW_AT_language. If the
7083 compilation is from a C file generated by language preprocessors,
7084 do not set the language if it was already deduced by
7085 start_subfile. */
7086 if (!(cu->language == language_c && symtab->language != language_c))
7087 symtab->language = cu->language;
7088 }
7089 }
7090 else
7091 {
7092 augment_type_symtab (objfile,
7093 per_cu->type_unit_group->primary_symtab);
7094 symtab = per_cu->type_unit_group->primary_symtab;
7095 }
7096
7097 if (dwarf2_per_objfile->using_index)
7098 per_cu->v.quick->symtab = symtab;
7099 else
7100 {
7101 struct partial_symtab *pst = per_cu->v.psymtab;
7102 pst->symtab = symtab;
7103 pst->readin = 1;
7104 }
7105
7106 do_cleanups (back_to);
7107 }
7108
7109 /* Process an imported unit DIE. */
7110
7111 static void
7112 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7113 {
7114 struct attribute *attr;
7115
7116 /* For now we don't handle imported units in type units. */
7117 if (cu->per_cu->is_debug_types)
7118 {
7119 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7120 " supported in type units [in module %s]"),
7121 cu->objfile->name);
7122 }
7123
7124 attr = dwarf2_attr (die, DW_AT_import, cu);
7125 if (attr != NULL)
7126 {
7127 struct dwarf2_per_cu_data *per_cu;
7128 struct symtab *imported_symtab;
7129 sect_offset offset;
7130 int is_dwz;
7131
7132 offset = dwarf2_get_ref_die_offset (attr);
7133 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7134 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7135
7136 /* Queue the unit, if needed. */
7137 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7138 load_full_comp_unit (per_cu, cu->language);
7139
7140 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7141 per_cu);
7142 }
7143 }
7144
7145 /* Process a die and its children. */
7146
7147 static void
7148 process_die (struct die_info *die, struct dwarf2_cu *cu)
7149 {
7150 switch (die->tag)
7151 {
7152 case DW_TAG_padding:
7153 break;
7154 case DW_TAG_compile_unit:
7155 case DW_TAG_partial_unit:
7156 read_file_scope (die, cu);
7157 break;
7158 case DW_TAG_type_unit:
7159 read_type_unit_scope (die, cu);
7160 break;
7161 case DW_TAG_subprogram:
7162 case DW_TAG_inlined_subroutine:
7163 read_func_scope (die, cu);
7164 break;
7165 case DW_TAG_lexical_block:
7166 case DW_TAG_try_block:
7167 case DW_TAG_catch_block:
7168 read_lexical_block_scope (die, cu);
7169 break;
7170 case DW_TAG_GNU_call_site:
7171 read_call_site_scope (die, cu);
7172 break;
7173 case DW_TAG_class_type:
7174 case DW_TAG_interface_type:
7175 case DW_TAG_structure_type:
7176 case DW_TAG_union_type:
7177 process_structure_scope (die, cu);
7178 break;
7179 case DW_TAG_enumeration_type:
7180 process_enumeration_scope (die, cu);
7181 break;
7182
7183 /* These dies have a type, but processing them does not create
7184 a symbol or recurse to process the children. Therefore we can
7185 read them on-demand through read_type_die. */
7186 case DW_TAG_subroutine_type:
7187 case DW_TAG_set_type:
7188 case DW_TAG_array_type:
7189 case DW_TAG_pointer_type:
7190 case DW_TAG_ptr_to_member_type:
7191 case DW_TAG_reference_type:
7192 case DW_TAG_string_type:
7193 break;
7194
7195 case DW_TAG_base_type:
7196 case DW_TAG_subrange_type:
7197 case DW_TAG_typedef:
7198 /* Add a typedef symbol for the type definition, if it has a
7199 DW_AT_name. */
7200 new_symbol (die, read_type_die (die, cu), cu);
7201 break;
7202 case DW_TAG_common_block:
7203 read_common_block (die, cu);
7204 break;
7205 case DW_TAG_common_inclusion:
7206 break;
7207 case DW_TAG_namespace:
7208 cu->processing_has_namespace_info = 1;
7209 read_namespace (die, cu);
7210 break;
7211 case DW_TAG_module:
7212 cu->processing_has_namespace_info = 1;
7213 read_module (die, cu);
7214 break;
7215 case DW_TAG_imported_declaration:
7216 case DW_TAG_imported_module:
7217 cu->processing_has_namespace_info = 1;
7218 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7219 || cu->language != language_fortran))
7220 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7221 dwarf_tag_name (die->tag));
7222 read_import_statement (die, cu);
7223 break;
7224
7225 case DW_TAG_imported_unit:
7226 process_imported_unit_die (die, cu);
7227 break;
7228
7229 default:
7230 new_symbol (die, NULL, cu);
7231 break;
7232 }
7233 }
7234
7235 /* A helper function for dwarf2_compute_name which determines whether DIE
7236 needs to have the name of the scope prepended to the name listed in the
7237 die. */
7238
7239 static int
7240 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7241 {
7242 struct attribute *attr;
7243
7244 switch (die->tag)
7245 {
7246 case DW_TAG_namespace:
7247 case DW_TAG_typedef:
7248 case DW_TAG_class_type:
7249 case DW_TAG_interface_type:
7250 case DW_TAG_structure_type:
7251 case DW_TAG_union_type:
7252 case DW_TAG_enumeration_type:
7253 case DW_TAG_enumerator:
7254 case DW_TAG_subprogram:
7255 case DW_TAG_member:
7256 return 1;
7257
7258 case DW_TAG_variable:
7259 case DW_TAG_constant:
7260 /* We only need to prefix "globally" visible variables. These include
7261 any variable marked with DW_AT_external or any variable that
7262 lives in a namespace. [Variables in anonymous namespaces
7263 require prefixing, but they are not DW_AT_external.] */
7264
7265 if (dwarf2_attr (die, DW_AT_specification, cu))
7266 {
7267 struct dwarf2_cu *spec_cu = cu;
7268
7269 return die_needs_namespace (die_specification (die, &spec_cu),
7270 spec_cu);
7271 }
7272
7273 attr = dwarf2_attr (die, DW_AT_external, cu);
7274 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7275 && die->parent->tag != DW_TAG_module)
7276 return 0;
7277 /* A variable in a lexical block of some kind does not need a
7278 namespace, even though in C++ such variables may be external
7279 and have a mangled name. */
7280 if (die->parent->tag == DW_TAG_lexical_block
7281 || die->parent->tag == DW_TAG_try_block
7282 || die->parent->tag == DW_TAG_catch_block
7283 || die->parent->tag == DW_TAG_subprogram)
7284 return 0;
7285 return 1;
7286
7287 default:
7288 return 0;
7289 }
7290 }
7291
7292 /* Retrieve the last character from a mem_file. */
7293
7294 static void
7295 do_ui_file_peek_last (void *object, const char *buffer, long length)
7296 {
7297 char *last_char_p = (char *) object;
7298
7299 if (length > 0)
7300 *last_char_p = buffer[length - 1];
7301 }
7302
7303 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7304 compute the physname for the object, which include a method's:
7305 - formal parameters (C++/Java),
7306 - receiver type (Go),
7307 - return type (Java).
7308
7309 The term "physname" is a bit confusing.
7310 For C++, for example, it is the demangled name.
7311 For Go, for example, it's the mangled name.
7312
7313 For Ada, return the DIE's linkage name rather than the fully qualified
7314 name. PHYSNAME is ignored..
7315
7316 The result is allocated on the objfile_obstack and canonicalized. */
7317
7318 static const char *
7319 dwarf2_compute_name (const char *name,
7320 struct die_info *die, struct dwarf2_cu *cu,
7321 int physname)
7322 {
7323 struct objfile *objfile = cu->objfile;
7324
7325 if (name == NULL)
7326 name = dwarf2_name (die, cu);
7327
7328 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7329 compute it by typename_concat inside GDB. */
7330 if (cu->language == language_ada
7331 || (cu->language == language_fortran && physname))
7332 {
7333 /* For Ada unit, we prefer the linkage name over the name, as
7334 the former contains the exported name, which the user expects
7335 to be able to reference. Ideally, we want the user to be able
7336 to reference this entity using either natural or linkage name,
7337 but we haven't started looking at this enhancement yet. */
7338 struct attribute *attr;
7339
7340 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7341 if (attr == NULL)
7342 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7343 if (attr && DW_STRING (attr))
7344 return DW_STRING (attr);
7345 }
7346
7347 /* These are the only languages we know how to qualify names in. */
7348 if (name != NULL
7349 && (cu->language == language_cplus || cu->language == language_java
7350 || cu->language == language_fortran))
7351 {
7352 if (die_needs_namespace (die, cu))
7353 {
7354 long length;
7355 const char *prefix;
7356 struct ui_file *buf;
7357
7358 prefix = determine_prefix (die, cu);
7359 buf = mem_fileopen ();
7360 if (*prefix != '\0')
7361 {
7362 char *prefixed_name = typename_concat (NULL, prefix, name,
7363 physname, cu);
7364
7365 fputs_unfiltered (prefixed_name, buf);
7366 xfree (prefixed_name);
7367 }
7368 else
7369 fputs_unfiltered (name, buf);
7370
7371 /* Template parameters may be specified in the DIE's DW_AT_name, or
7372 as children with DW_TAG_template_type_param or
7373 DW_TAG_value_type_param. If the latter, add them to the name
7374 here. If the name already has template parameters, then
7375 skip this step; some versions of GCC emit both, and
7376 it is more efficient to use the pre-computed name.
7377
7378 Something to keep in mind about this process: it is very
7379 unlikely, or in some cases downright impossible, to produce
7380 something that will match the mangled name of a function.
7381 If the definition of the function has the same debug info,
7382 we should be able to match up with it anyway. But fallbacks
7383 using the minimal symbol, for instance to find a method
7384 implemented in a stripped copy of libstdc++, will not work.
7385 If we do not have debug info for the definition, we will have to
7386 match them up some other way.
7387
7388 When we do name matching there is a related problem with function
7389 templates; two instantiated function templates are allowed to
7390 differ only by their return types, which we do not add here. */
7391
7392 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7393 {
7394 struct attribute *attr;
7395 struct die_info *child;
7396 int first = 1;
7397
7398 die->building_fullname = 1;
7399
7400 for (child = die->child; child != NULL; child = child->sibling)
7401 {
7402 struct type *type;
7403 LONGEST value;
7404 gdb_byte *bytes;
7405 struct dwarf2_locexpr_baton *baton;
7406 struct value *v;
7407
7408 if (child->tag != DW_TAG_template_type_param
7409 && child->tag != DW_TAG_template_value_param)
7410 continue;
7411
7412 if (first)
7413 {
7414 fputs_unfiltered ("<", buf);
7415 first = 0;
7416 }
7417 else
7418 fputs_unfiltered (", ", buf);
7419
7420 attr = dwarf2_attr (child, DW_AT_type, cu);
7421 if (attr == NULL)
7422 {
7423 complaint (&symfile_complaints,
7424 _("template parameter missing DW_AT_type"));
7425 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7426 continue;
7427 }
7428 type = die_type (child, cu);
7429
7430 if (child->tag == DW_TAG_template_type_param)
7431 {
7432 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7433 continue;
7434 }
7435
7436 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7437 if (attr == NULL)
7438 {
7439 complaint (&symfile_complaints,
7440 _("template parameter missing "
7441 "DW_AT_const_value"));
7442 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7443 continue;
7444 }
7445
7446 dwarf2_const_value_attr (attr, type, name,
7447 &cu->comp_unit_obstack, cu,
7448 &value, &bytes, &baton);
7449
7450 if (TYPE_NOSIGN (type))
7451 /* GDB prints characters as NUMBER 'CHAR'. If that's
7452 changed, this can use value_print instead. */
7453 c_printchar (value, type, buf);
7454 else
7455 {
7456 struct value_print_options opts;
7457
7458 if (baton != NULL)
7459 v = dwarf2_evaluate_loc_desc (type, NULL,
7460 baton->data,
7461 baton->size,
7462 baton->per_cu);
7463 else if (bytes != NULL)
7464 {
7465 v = allocate_value (type);
7466 memcpy (value_contents_writeable (v), bytes,
7467 TYPE_LENGTH (type));
7468 }
7469 else
7470 v = value_from_longest (type, value);
7471
7472 /* Specify decimal so that we do not depend on
7473 the radix. */
7474 get_formatted_print_options (&opts, 'd');
7475 opts.raw = 1;
7476 value_print (v, buf, &opts);
7477 release_value (v);
7478 value_free (v);
7479 }
7480 }
7481
7482 die->building_fullname = 0;
7483
7484 if (!first)
7485 {
7486 /* Close the argument list, with a space if necessary
7487 (nested templates). */
7488 char last_char = '\0';
7489 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7490 if (last_char == '>')
7491 fputs_unfiltered (" >", buf);
7492 else
7493 fputs_unfiltered (">", buf);
7494 }
7495 }
7496
7497 /* For Java and C++ methods, append formal parameter type
7498 information, if PHYSNAME. */
7499
7500 if (physname && die->tag == DW_TAG_subprogram
7501 && (cu->language == language_cplus
7502 || cu->language == language_java))
7503 {
7504 struct type *type = read_type_die (die, cu);
7505
7506 c_type_print_args (type, buf, 1, cu->language,
7507 &type_print_raw_options);
7508
7509 if (cu->language == language_java)
7510 {
7511 /* For java, we must append the return type to method
7512 names. */
7513 if (die->tag == DW_TAG_subprogram)
7514 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7515 0, 0, &type_print_raw_options);
7516 }
7517 else if (cu->language == language_cplus)
7518 {
7519 /* Assume that an artificial first parameter is
7520 "this", but do not crash if it is not. RealView
7521 marks unnamed (and thus unused) parameters as
7522 artificial; there is no way to differentiate
7523 the two cases. */
7524 if (TYPE_NFIELDS (type) > 0
7525 && TYPE_FIELD_ARTIFICIAL (type, 0)
7526 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7527 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7528 0))))
7529 fputs_unfiltered (" const", buf);
7530 }
7531 }
7532
7533 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7534 &length);
7535 ui_file_delete (buf);
7536
7537 if (cu->language == language_cplus)
7538 {
7539 const char *cname
7540 = dwarf2_canonicalize_name (name, cu,
7541 &objfile->objfile_obstack);
7542
7543 if (cname != NULL)
7544 name = cname;
7545 }
7546 }
7547 }
7548
7549 return name;
7550 }
7551
7552 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7553 If scope qualifiers are appropriate they will be added. The result
7554 will be allocated on the objfile_obstack, or NULL if the DIE does
7555 not have a name. NAME may either be from a previous call to
7556 dwarf2_name or NULL.
7557
7558 The output string will be canonicalized (if C++/Java). */
7559
7560 static const char *
7561 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7562 {
7563 return dwarf2_compute_name (name, die, cu, 0);
7564 }
7565
7566 /* Construct a physname for the given DIE in CU. NAME may either be
7567 from a previous call to dwarf2_name or NULL. The result will be
7568 allocated on the objfile_objstack or NULL if the DIE does not have a
7569 name.
7570
7571 The output string will be canonicalized (if C++/Java). */
7572
7573 static const char *
7574 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7575 {
7576 struct objfile *objfile = cu->objfile;
7577 struct attribute *attr;
7578 const char *retval, *mangled = NULL, *canon = NULL;
7579 struct cleanup *back_to;
7580 int need_copy = 1;
7581
7582 /* In this case dwarf2_compute_name is just a shortcut not building anything
7583 on its own. */
7584 if (!die_needs_namespace (die, cu))
7585 return dwarf2_compute_name (name, die, cu, 1);
7586
7587 back_to = make_cleanup (null_cleanup, NULL);
7588
7589 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7590 if (!attr)
7591 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7592
7593 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7594 has computed. */
7595 if (attr && DW_STRING (attr))
7596 {
7597 char *demangled;
7598
7599 mangled = DW_STRING (attr);
7600
7601 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7602 type. It is easier for GDB users to search for such functions as
7603 `name(params)' than `long name(params)'. In such case the minimal
7604 symbol names do not match the full symbol names but for template
7605 functions there is never a need to look up their definition from their
7606 declaration so the only disadvantage remains the minimal symbol
7607 variant `long name(params)' does not have the proper inferior type.
7608 */
7609
7610 if (cu->language == language_go)
7611 {
7612 /* This is a lie, but we already lie to the caller new_symbol_full.
7613 new_symbol_full assumes we return the mangled name.
7614 This just undoes that lie until things are cleaned up. */
7615 demangled = NULL;
7616 }
7617 else
7618 {
7619 demangled = cplus_demangle (mangled,
7620 (DMGL_PARAMS | DMGL_ANSI
7621 | (cu->language == language_java
7622 ? DMGL_JAVA | DMGL_RET_POSTFIX
7623 : DMGL_RET_DROP)));
7624 }
7625 if (demangled)
7626 {
7627 make_cleanup (xfree, demangled);
7628 canon = demangled;
7629 }
7630 else
7631 {
7632 canon = mangled;
7633 need_copy = 0;
7634 }
7635 }
7636
7637 if (canon == NULL || check_physname)
7638 {
7639 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7640
7641 if (canon != NULL && strcmp (physname, canon) != 0)
7642 {
7643 /* It may not mean a bug in GDB. The compiler could also
7644 compute DW_AT_linkage_name incorrectly. But in such case
7645 GDB would need to be bug-to-bug compatible. */
7646
7647 complaint (&symfile_complaints,
7648 _("Computed physname <%s> does not match demangled <%s> "
7649 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7650 physname, canon, mangled, die->offset.sect_off, objfile->name);
7651
7652 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7653 is available here - over computed PHYSNAME. It is safer
7654 against both buggy GDB and buggy compilers. */
7655
7656 retval = canon;
7657 }
7658 else
7659 {
7660 retval = physname;
7661 need_copy = 0;
7662 }
7663 }
7664 else
7665 retval = canon;
7666
7667 if (need_copy)
7668 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
7669
7670 do_cleanups (back_to);
7671 return retval;
7672 }
7673
7674 /* Read the import statement specified by the given die and record it. */
7675
7676 static void
7677 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7678 {
7679 struct objfile *objfile = cu->objfile;
7680 struct attribute *import_attr;
7681 struct die_info *imported_die, *child_die;
7682 struct dwarf2_cu *imported_cu;
7683 const char *imported_name;
7684 const char *imported_name_prefix;
7685 const char *canonical_name;
7686 const char *import_alias;
7687 const char *imported_declaration = NULL;
7688 const char *import_prefix;
7689 VEC (const_char_ptr) *excludes = NULL;
7690 struct cleanup *cleanups;
7691
7692 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7693 if (import_attr == NULL)
7694 {
7695 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7696 dwarf_tag_name (die->tag));
7697 return;
7698 }
7699
7700 imported_cu = cu;
7701 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7702 imported_name = dwarf2_name (imported_die, imported_cu);
7703 if (imported_name == NULL)
7704 {
7705 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7706
7707 The import in the following code:
7708 namespace A
7709 {
7710 typedef int B;
7711 }
7712
7713 int main ()
7714 {
7715 using A::B;
7716 B b;
7717 return b;
7718 }
7719
7720 ...
7721 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7722 <52> DW_AT_decl_file : 1
7723 <53> DW_AT_decl_line : 6
7724 <54> DW_AT_import : <0x75>
7725 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7726 <59> DW_AT_name : B
7727 <5b> DW_AT_decl_file : 1
7728 <5c> DW_AT_decl_line : 2
7729 <5d> DW_AT_type : <0x6e>
7730 ...
7731 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7732 <76> DW_AT_byte_size : 4
7733 <77> DW_AT_encoding : 5 (signed)
7734
7735 imports the wrong die ( 0x75 instead of 0x58 ).
7736 This case will be ignored until the gcc bug is fixed. */
7737 return;
7738 }
7739
7740 /* Figure out the local name after import. */
7741 import_alias = dwarf2_name (die, cu);
7742
7743 /* Figure out where the statement is being imported to. */
7744 import_prefix = determine_prefix (die, cu);
7745
7746 /* Figure out what the scope of the imported die is and prepend it
7747 to the name of the imported die. */
7748 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7749
7750 if (imported_die->tag != DW_TAG_namespace
7751 && imported_die->tag != DW_TAG_module)
7752 {
7753 imported_declaration = imported_name;
7754 canonical_name = imported_name_prefix;
7755 }
7756 else if (strlen (imported_name_prefix) > 0)
7757 canonical_name = obconcat (&objfile->objfile_obstack,
7758 imported_name_prefix, "::", imported_name,
7759 (char *) NULL);
7760 else
7761 canonical_name = imported_name;
7762
7763 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7764
7765 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7766 for (child_die = die->child; child_die && child_die->tag;
7767 child_die = sibling_die (child_die))
7768 {
7769 /* DWARF-4: A Fortran use statement with a “rename list” may be
7770 represented by an imported module entry with an import attribute
7771 referring to the module and owned entries corresponding to those
7772 entities that are renamed as part of being imported. */
7773
7774 if (child_die->tag != DW_TAG_imported_declaration)
7775 {
7776 complaint (&symfile_complaints,
7777 _("child DW_TAG_imported_declaration expected "
7778 "- DIE at 0x%x [in module %s]"),
7779 child_die->offset.sect_off, objfile->name);
7780 continue;
7781 }
7782
7783 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7784 if (import_attr == NULL)
7785 {
7786 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7787 dwarf_tag_name (child_die->tag));
7788 continue;
7789 }
7790
7791 imported_cu = cu;
7792 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7793 &imported_cu);
7794 imported_name = dwarf2_name (imported_die, imported_cu);
7795 if (imported_name == NULL)
7796 {
7797 complaint (&symfile_complaints,
7798 _("child DW_TAG_imported_declaration has unknown "
7799 "imported name - DIE at 0x%x [in module %s]"),
7800 child_die->offset.sect_off, objfile->name);
7801 continue;
7802 }
7803
7804 VEC_safe_push (const_char_ptr, excludes, imported_name);
7805
7806 process_die (child_die, cu);
7807 }
7808
7809 cp_add_using_directive (import_prefix,
7810 canonical_name,
7811 import_alias,
7812 imported_declaration,
7813 excludes,
7814 0,
7815 &objfile->objfile_obstack);
7816
7817 do_cleanups (cleanups);
7818 }
7819
7820 /* Cleanup function for handle_DW_AT_stmt_list. */
7821
7822 static void
7823 free_cu_line_header (void *arg)
7824 {
7825 struct dwarf2_cu *cu = arg;
7826
7827 free_line_header (cu->line_header);
7828 cu->line_header = NULL;
7829 }
7830
7831 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
7832 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
7833 this, it was first present in GCC release 4.3.0. */
7834
7835 static int
7836 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
7837 {
7838 if (!cu->checked_producer)
7839 check_producer (cu);
7840
7841 return cu->producer_is_gcc_lt_4_3;
7842 }
7843
7844 static void
7845 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7846 const char **name, const char **comp_dir)
7847 {
7848 struct attribute *attr;
7849
7850 *name = NULL;
7851 *comp_dir = NULL;
7852
7853 /* Find the filename. Do not use dwarf2_name here, since the filename
7854 is not a source language identifier. */
7855 attr = dwarf2_attr (die, DW_AT_name, cu);
7856 if (attr)
7857 {
7858 *name = DW_STRING (attr);
7859 }
7860
7861 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7862 if (attr)
7863 *comp_dir = DW_STRING (attr);
7864 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
7865 && IS_ABSOLUTE_PATH (*name))
7866 {
7867 char *d = ldirname (*name);
7868
7869 *comp_dir = d;
7870 if (d != NULL)
7871 make_cleanup (xfree, d);
7872 }
7873 if (*comp_dir != NULL)
7874 {
7875 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7876 directory, get rid of it. */
7877 char *cp = strchr (*comp_dir, ':');
7878
7879 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7880 *comp_dir = cp + 1;
7881 }
7882
7883 if (*name == NULL)
7884 *name = "<unknown>";
7885 }
7886
7887 /* Handle DW_AT_stmt_list for a compilation unit.
7888 DIE is the DW_TAG_compile_unit die for CU.
7889 COMP_DIR is the compilation directory.
7890 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
7891
7892 static void
7893 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
7894 const char *comp_dir)
7895 {
7896 struct attribute *attr;
7897
7898 gdb_assert (! cu->per_cu->is_debug_types);
7899
7900 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7901 if (attr)
7902 {
7903 unsigned int line_offset = DW_UNSND (attr);
7904 struct line_header *line_header
7905 = dwarf_decode_line_header (line_offset, cu);
7906
7907 if (line_header)
7908 {
7909 cu->line_header = line_header;
7910 make_cleanup (free_cu_line_header, cu);
7911 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
7912 }
7913 }
7914 }
7915
7916 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
7917
7918 static void
7919 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
7920 {
7921 struct objfile *objfile = dwarf2_per_objfile->objfile;
7922 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7923 CORE_ADDR lowpc = ((CORE_ADDR) -1);
7924 CORE_ADDR highpc = ((CORE_ADDR) 0);
7925 struct attribute *attr;
7926 const char *name = NULL;
7927 const char *comp_dir = NULL;
7928 struct die_info *child_die;
7929 bfd *abfd = objfile->obfd;
7930 CORE_ADDR baseaddr;
7931
7932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7933
7934 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
7935
7936 /* If we didn't find a lowpc, set it to highpc to avoid complaints
7937 from finish_block. */
7938 if (lowpc == ((CORE_ADDR) -1))
7939 lowpc = highpc;
7940 lowpc += baseaddr;
7941 highpc += baseaddr;
7942
7943 find_file_and_directory (die, cu, &name, &comp_dir);
7944
7945 prepare_one_comp_unit (cu, die, cu->language);
7946
7947 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
7948 standardised yet. As a workaround for the language detection we fall
7949 back to the DW_AT_producer string. */
7950 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
7951 cu->language = language_opencl;
7952
7953 /* Similar hack for Go. */
7954 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
7955 set_cu_language (DW_LANG_Go, cu);
7956
7957 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
7958
7959 /* Decode line number information if present. We do this before
7960 processing child DIEs, so that the line header table is available
7961 for DW_AT_decl_file. */
7962 handle_DW_AT_stmt_list (die, cu, comp_dir);
7963
7964 /* Process all dies in compilation unit. */
7965 if (die->child != NULL)
7966 {
7967 child_die = die->child;
7968 while (child_die && child_die->tag)
7969 {
7970 process_die (child_die, cu);
7971 child_die = sibling_die (child_die);
7972 }
7973 }
7974
7975 /* Decode macro information, if present. Dwarf 2 macro information
7976 refers to information in the line number info statement program
7977 header, so we can only read it if we've read the header
7978 successfully. */
7979 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
7980 if (attr && cu->line_header)
7981 {
7982 if (dwarf2_attr (die, DW_AT_macro_info, cu))
7983 complaint (&symfile_complaints,
7984 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
7985
7986 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
7987 }
7988 else
7989 {
7990 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
7991 if (attr && cu->line_header)
7992 {
7993 unsigned int macro_offset = DW_UNSND (attr);
7994
7995 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
7996 }
7997 }
7998
7999 do_cleanups (back_to);
8000 }
8001
8002 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8003 Create the set of symtabs used by this TU, or if this TU is sharing
8004 symtabs with another TU and the symtabs have already been created
8005 then restore those symtabs in the line header.
8006 We don't need the pc/line-number mapping for type units. */
8007
8008 static void
8009 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8010 {
8011 struct objfile *objfile = dwarf2_per_objfile->objfile;
8012 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8013 struct type_unit_group *tu_group;
8014 int first_time;
8015 struct line_header *lh;
8016 struct attribute *attr;
8017 unsigned int i, line_offset;
8018
8019 gdb_assert (per_cu->is_debug_types);
8020
8021 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8022
8023 /* If we're using .gdb_index (includes -readnow) then
8024 per_cu->s.type_unit_group may not have been set up yet. */
8025 if (per_cu->type_unit_group == NULL)
8026 per_cu->type_unit_group = get_type_unit_group (cu, attr);
8027 tu_group = per_cu->type_unit_group;
8028
8029 /* If we've already processed this stmt_list there's no real need to
8030 do it again, we could fake it and just recreate the part we need
8031 (file name,index -> symtab mapping). If data shows this optimization
8032 is useful we can do it then. */
8033 first_time = tu_group->primary_symtab == NULL;
8034
8035 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8036 debug info. */
8037 lh = NULL;
8038 if (attr != NULL)
8039 {
8040 line_offset = DW_UNSND (attr);
8041 lh = dwarf_decode_line_header (line_offset, cu);
8042 }
8043 if (lh == NULL)
8044 {
8045 if (first_time)
8046 dwarf2_start_symtab (cu, "", NULL, 0);
8047 else
8048 {
8049 gdb_assert (tu_group->symtabs == NULL);
8050 restart_symtab (0);
8051 }
8052 /* Note: The primary symtab will get allocated at the end. */
8053 return;
8054 }
8055
8056 cu->line_header = lh;
8057 make_cleanup (free_cu_line_header, cu);
8058
8059 if (first_time)
8060 {
8061 dwarf2_start_symtab (cu, "", NULL, 0);
8062
8063 tu_group->num_symtabs = lh->num_file_names;
8064 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8065
8066 for (i = 0; i < lh->num_file_names; ++i)
8067 {
8068 char *dir = NULL;
8069 struct file_entry *fe = &lh->file_names[i];
8070
8071 if (fe->dir_index)
8072 dir = lh->include_dirs[fe->dir_index - 1];
8073 dwarf2_start_subfile (fe->name, dir, NULL);
8074
8075 /* Note: We don't have to watch for the main subfile here, type units
8076 don't have DW_AT_name. */
8077
8078 if (current_subfile->symtab == NULL)
8079 {
8080 /* NOTE: start_subfile will recognize when it's been passed
8081 a file it has already seen. So we can't assume there's a
8082 simple mapping from lh->file_names to subfiles,
8083 lh->file_names may contain dups. */
8084 current_subfile->symtab = allocate_symtab (current_subfile->name,
8085 objfile);
8086 }
8087
8088 fe->symtab = current_subfile->symtab;
8089 tu_group->symtabs[i] = fe->symtab;
8090 }
8091 }
8092 else
8093 {
8094 restart_symtab (0);
8095
8096 for (i = 0; i < lh->num_file_names; ++i)
8097 {
8098 struct file_entry *fe = &lh->file_names[i];
8099
8100 fe->symtab = tu_group->symtabs[i];
8101 }
8102 }
8103
8104 /* The main symtab is allocated last. Type units don't have DW_AT_name
8105 so they don't have a "real" (so to speak) symtab anyway.
8106 There is later code that will assign the main symtab to all symbols
8107 that don't have one. We need to handle the case of a symbol with a
8108 missing symtab (DW_AT_decl_file) anyway. */
8109 }
8110
8111 /* Process DW_TAG_type_unit.
8112 For TUs we want to skip the first top level sibling if it's not the
8113 actual type being defined by this TU. In this case the first top
8114 level sibling is there to provide context only. */
8115
8116 static void
8117 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8118 {
8119 struct die_info *child_die;
8120
8121 prepare_one_comp_unit (cu, die, language_minimal);
8122
8123 /* Initialize (or reinitialize) the machinery for building symtabs.
8124 We do this before processing child DIEs, so that the line header table
8125 is available for DW_AT_decl_file. */
8126 setup_type_unit_groups (die, cu);
8127
8128 if (die->child != NULL)
8129 {
8130 child_die = die->child;
8131 while (child_die && child_die->tag)
8132 {
8133 process_die (child_die, cu);
8134 child_die = sibling_die (child_die);
8135 }
8136 }
8137 }
8138 \f
8139 /* DWO/DWP files.
8140
8141 http://gcc.gnu.org/wiki/DebugFission
8142 http://gcc.gnu.org/wiki/DebugFissionDWP
8143
8144 To simplify handling of both DWO files ("object" files with the DWARF info)
8145 and DWP files (a file with the DWOs packaged up into one file), we treat
8146 DWP files as having a collection of virtual DWO files. */
8147
8148 static hashval_t
8149 hash_dwo_file (const void *item)
8150 {
8151 const struct dwo_file *dwo_file = item;
8152
8153 return htab_hash_string (dwo_file->name);
8154 }
8155
8156 static int
8157 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8158 {
8159 const struct dwo_file *lhs = item_lhs;
8160 const struct dwo_file *rhs = item_rhs;
8161
8162 return strcmp (lhs->name, rhs->name) == 0;
8163 }
8164
8165 /* Allocate a hash table for DWO files. */
8166
8167 static htab_t
8168 allocate_dwo_file_hash_table (void)
8169 {
8170 struct objfile *objfile = dwarf2_per_objfile->objfile;
8171
8172 return htab_create_alloc_ex (41,
8173 hash_dwo_file,
8174 eq_dwo_file,
8175 NULL,
8176 &objfile->objfile_obstack,
8177 hashtab_obstack_allocate,
8178 dummy_obstack_deallocate);
8179 }
8180
8181 /* Lookup DWO file DWO_NAME. */
8182
8183 static void **
8184 lookup_dwo_file_slot (const char *dwo_name)
8185 {
8186 struct dwo_file find_entry;
8187 void **slot;
8188
8189 if (dwarf2_per_objfile->dwo_files == NULL)
8190 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8191
8192 memset (&find_entry, 0, sizeof (find_entry));
8193 find_entry.name = dwo_name;
8194 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8195
8196 return slot;
8197 }
8198
8199 static hashval_t
8200 hash_dwo_unit (const void *item)
8201 {
8202 const struct dwo_unit *dwo_unit = item;
8203
8204 /* This drops the top 32 bits of the id, but is ok for a hash. */
8205 return dwo_unit->signature;
8206 }
8207
8208 static int
8209 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8210 {
8211 const struct dwo_unit *lhs = item_lhs;
8212 const struct dwo_unit *rhs = item_rhs;
8213
8214 /* The signature is assumed to be unique within the DWO file.
8215 So while object file CU dwo_id's always have the value zero,
8216 that's OK, assuming each object file DWO file has only one CU,
8217 and that's the rule for now. */
8218 return lhs->signature == rhs->signature;
8219 }
8220
8221 /* Allocate a hash table for DWO CUs,TUs.
8222 There is one of these tables for each of CUs,TUs for each DWO file. */
8223
8224 static htab_t
8225 allocate_dwo_unit_table (struct objfile *objfile)
8226 {
8227 /* Start out with a pretty small number.
8228 Generally DWO files contain only one CU and maybe some TUs. */
8229 return htab_create_alloc_ex (3,
8230 hash_dwo_unit,
8231 eq_dwo_unit,
8232 NULL,
8233 &objfile->objfile_obstack,
8234 hashtab_obstack_allocate,
8235 dummy_obstack_deallocate);
8236 }
8237
8238 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8239
8240 struct create_dwo_info_table_data
8241 {
8242 struct dwo_file *dwo_file;
8243 htab_t cu_htab;
8244 };
8245
8246 /* die_reader_func for create_dwo_debug_info_hash_table. */
8247
8248 static void
8249 create_dwo_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8250 gdb_byte *info_ptr,
8251 struct die_info *comp_unit_die,
8252 int has_children,
8253 void *datap)
8254 {
8255 struct dwarf2_cu *cu = reader->cu;
8256 struct objfile *objfile = dwarf2_per_objfile->objfile;
8257 sect_offset offset = cu->per_cu->offset;
8258 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
8259 struct create_dwo_info_table_data *data = datap;
8260 struct dwo_file *dwo_file = data->dwo_file;
8261 htab_t cu_htab = data->cu_htab;
8262 void **slot;
8263 struct attribute *attr;
8264 struct dwo_unit *dwo_unit;
8265
8266 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8267 if (attr == NULL)
8268 {
8269 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8270 " its dwo_id [in module %s]"),
8271 offset.sect_off, dwo_file->name);
8272 return;
8273 }
8274
8275 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8276 dwo_unit->dwo_file = dwo_file;
8277 dwo_unit->signature = DW_UNSND (attr);
8278 dwo_unit->info_or_types_section = section;
8279 dwo_unit->offset = offset;
8280 dwo_unit->length = cu->per_cu->length;
8281
8282 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8283 gdb_assert (slot != NULL);
8284 if (*slot != NULL)
8285 {
8286 const struct dwo_unit *dup_dwo_unit = *slot;
8287
8288 complaint (&symfile_complaints,
8289 _("debug entry at offset 0x%x is duplicate to the entry at"
8290 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8291 offset.sect_off, dup_dwo_unit->offset.sect_off,
8292 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
8293 dwo_file->name);
8294 }
8295 else
8296 *slot = dwo_unit;
8297
8298 if (dwarf2_read_debug)
8299 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8300 offset.sect_off,
8301 phex (dwo_unit->signature,
8302 sizeof (dwo_unit->signature)));
8303 }
8304
8305 /* Create a hash table to map DWO IDs to their CU entry in
8306 .debug_info.dwo in DWO_FILE.
8307 Note: This function processes DWO files only, not DWP files. */
8308
8309 static htab_t
8310 create_dwo_debug_info_hash_table (struct dwo_file *dwo_file)
8311 {
8312 struct objfile *objfile = dwarf2_per_objfile->objfile;
8313 struct dwarf2_section_info *section = &dwo_file->sections.info;
8314 bfd *abfd;
8315 htab_t cu_htab;
8316 gdb_byte *info_ptr, *end_ptr;
8317 struct create_dwo_info_table_data create_dwo_info_table_data;
8318
8319 dwarf2_read_section (objfile, section);
8320 info_ptr = section->buffer;
8321
8322 if (info_ptr == NULL)
8323 return NULL;
8324
8325 /* We can't set abfd until now because the section may be empty or
8326 not present, in which case section->asection will be NULL. */
8327 abfd = section->asection->owner;
8328
8329 if (dwarf2_read_debug)
8330 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8331 bfd_get_filename (abfd));
8332
8333 cu_htab = allocate_dwo_unit_table (objfile);
8334
8335 create_dwo_info_table_data.dwo_file = dwo_file;
8336 create_dwo_info_table_data.cu_htab = cu_htab;
8337
8338 end_ptr = info_ptr + section->size;
8339 while (info_ptr < end_ptr)
8340 {
8341 struct dwarf2_per_cu_data per_cu;
8342
8343 memset (&per_cu, 0, sizeof (per_cu));
8344 per_cu.objfile = objfile;
8345 per_cu.is_debug_types = 0;
8346 per_cu.offset.sect_off = info_ptr - section->buffer;
8347 per_cu.info_or_types_section = section;
8348
8349 init_cutu_and_read_dies_no_follow (&per_cu,
8350 &dwo_file->sections.abbrev,
8351 dwo_file,
8352 create_dwo_debug_info_hash_table_reader,
8353 &create_dwo_info_table_data);
8354
8355 info_ptr += per_cu.length;
8356 }
8357
8358 return cu_htab;
8359 }
8360
8361 /* DWP file .debug_{cu,tu}_index section format:
8362 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8363
8364 Both index sections have the same format, and serve to map a 64-bit
8365 signature to a set of section numbers. Each section begins with a header,
8366 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8367 indexes, and a pool of 32-bit section numbers. The index sections will be
8368 aligned at 8-byte boundaries in the file.
8369
8370 The index section header contains two unsigned 32-bit values (using the
8371 byte order of the application binary):
8372
8373 N, the number of compilation units or type units in the index
8374 M, the number of slots in the hash table
8375
8376 (We assume that N and M will not exceed 2^32 - 1.)
8377
8378 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8379
8380 The hash table begins at offset 8 in the section, and consists of an array
8381 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8382 order of the application binary). Unused slots in the hash table are 0.
8383 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8384
8385 The parallel table begins immediately after the hash table
8386 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8387 array of 32-bit indexes (using the byte order of the application binary),
8388 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8389 table contains a 32-bit index into the pool of section numbers. For unused
8390 hash table slots, the corresponding entry in the parallel table will be 0.
8391
8392 Given a 64-bit compilation unit signature or a type signature S, an entry
8393 in the hash table is located as follows:
8394
8395 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8396 the low-order k bits all set to 1.
8397
8398 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8399
8400 3) If the hash table entry at index H matches the signature, use that
8401 entry. If the hash table entry at index H is unused (all zeroes),
8402 terminate the search: the signature is not present in the table.
8403
8404 4) Let H = (H + H') modulo M. Repeat at Step 3.
8405
8406 Because M > N and H' and M are relatively prime, the search is guaranteed
8407 to stop at an unused slot or find the match.
8408
8409 The pool of section numbers begins immediately following the hash table
8410 (at offset 8 + 12 * M from the beginning of the section). The pool of
8411 section numbers consists of an array of 32-bit words (using the byte order
8412 of the application binary). Each item in the array is indexed starting
8413 from 0. The hash table entry provides the index of the first section
8414 number in the set. Additional section numbers in the set follow, and the
8415 set is terminated by a 0 entry (section number 0 is not used in ELF).
8416
8417 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8418 section must be the first entry in the set, and the .debug_abbrev.dwo must
8419 be the second entry. Other members of the set may follow in any order. */
8420
8421 /* Create a hash table to map DWO IDs to their CU/TU entry in
8422 .debug_{info,types}.dwo in DWP_FILE.
8423 Returns NULL if there isn't one.
8424 Note: This function processes DWP files only, not DWO files. */
8425
8426 static struct dwp_hash_table *
8427 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8428 {
8429 struct objfile *objfile = dwarf2_per_objfile->objfile;
8430 bfd *dbfd = dwp_file->dbfd;
8431 char *index_ptr, *index_end;
8432 struct dwarf2_section_info *index;
8433 uint32_t version, nr_units, nr_slots;
8434 struct dwp_hash_table *htab;
8435
8436 if (is_debug_types)
8437 index = &dwp_file->sections.tu_index;
8438 else
8439 index = &dwp_file->sections.cu_index;
8440
8441 if (dwarf2_section_empty_p (index))
8442 return NULL;
8443 dwarf2_read_section (objfile, index);
8444
8445 index_ptr = index->buffer;
8446 index_end = index_ptr + index->size;
8447
8448 version = read_4_bytes (dbfd, index_ptr);
8449 index_ptr += 8; /* Skip the unused word. */
8450 nr_units = read_4_bytes (dbfd, index_ptr);
8451 index_ptr += 4;
8452 nr_slots = read_4_bytes (dbfd, index_ptr);
8453 index_ptr += 4;
8454
8455 if (version != 1)
8456 {
8457 error (_("Dwarf Error: unsupported DWP file version (%u)"
8458 " [in module %s]"),
8459 version, dwp_file->name);
8460 }
8461 if (nr_slots != (nr_slots & -nr_slots))
8462 {
8463 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8464 " is not power of 2 [in module %s]"),
8465 nr_slots, dwp_file->name);
8466 }
8467
8468 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8469 htab->nr_units = nr_units;
8470 htab->nr_slots = nr_slots;
8471 htab->hash_table = index_ptr;
8472 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8473 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8474
8475 return htab;
8476 }
8477
8478 /* Update SECTIONS with the data from SECTP.
8479
8480 This function is like the other "locate" section routines that are
8481 passed to bfd_map_over_sections, but in this context the sections to
8482 read comes from the DWP hash table, not the full ELF section table.
8483
8484 The result is non-zero for success, or zero if an error was found. */
8485
8486 static int
8487 locate_virtual_dwo_sections (asection *sectp,
8488 struct virtual_dwo_sections *sections)
8489 {
8490 const struct dwop_section_names *names = &dwop_section_names;
8491
8492 if (section_is_p (sectp->name, &names->abbrev_dwo))
8493 {
8494 /* There can be only one. */
8495 if (sections->abbrev.asection != NULL)
8496 return 0;
8497 sections->abbrev.asection = sectp;
8498 sections->abbrev.size = bfd_get_section_size (sectp);
8499 }
8500 else if (section_is_p (sectp->name, &names->info_dwo)
8501 || section_is_p (sectp->name, &names->types_dwo))
8502 {
8503 /* There can be only one. */
8504 if (sections->info_or_types.asection != NULL)
8505 return 0;
8506 sections->info_or_types.asection = sectp;
8507 sections->info_or_types.size = bfd_get_section_size (sectp);
8508 }
8509 else if (section_is_p (sectp->name, &names->line_dwo))
8510 {
8511 /* There can be only one. */
8512 if (sections->line.asection != NULL)
8513 return 0;
8514 sections->line.asection = sectp;
8515 sections->line.size = bfd_get_section_size (sectp);
8516 }
8517 else if (section_is_p (sectp->name, &names->loc_dwo))
8518 {
8519 /* There can be only one. */
8520 if (sections->loc.asection != NULL)
8521 return 0;
8522 sections->loc.asection = sectp;
8523 sections->loc.size = bfd_get_section_size (sectp);
8524 }
8525 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8526 {
8527 /* There can be only one. */
8528 if (sections->macinfo.asection != NULL)
8529 return 0;
8530 sections->macinfo.asection = sectp;
8531 sections->macinfo.size = bfd_get_section_size (sectp);
8532 }
8533 else if (section_is_p (sectp->name, &names->macro_dwo))
8534 {
8535 /* There can be only one. */
8536 if (sections->macro.asection != NULL)
8537 return 0;
8538 sections->macro.asection = sectp;
8539 sections->macro.size = bfd_get_section_size (sectp);
8540 }
8541 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8542 {
8543 /* There can be only one. */
8544 if (sections->str_offsets.asection != NULL)
8545 return 0;
8546 sections->str_offsets.asection = sectp;
8547 sections->str_offsets.size = bfd_get_section_size (sectp);
8548 }
8549 else
8550 {
8551 /* No other kind of section is valid. */
8552 return 0;
8553 }
8554
8555 return 1;
8556 }
8557
8558 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
8559 HTAB is the hash table from the DWP file.
8560 SECTION_INDEX is the index of the DWO in HTAB. */
8561
8562 static struct dwo_unit *
8563 create_dwo_in_dwp (struct dwp_file *dwp_file,
8564 const struct dwp_hash_table *htab,
8565 uint32_t section_index,
8566 ULONGEST signature, int is_debug_types)
8567 {
8568 struct objfile *objfile = dwarf2_per_objfile->objfile;
8569 bfd *dbfd = dwp_file->dbfd;
8570 const char *kind = is_debug_types ? "TU" : "CU";
8571 struct dwo_file *dwo_file;
8572 struct dwo_unit *dwo_unit;
8573 struct virtual_dwo_sections sections;
8574 void **dwo_file_slot;
8575 char *virtual_dwo_name;
8576 struct dwarf2_section_info *cutu;
8577 struct cleanup *cleanups;
8578 int i;
8579
8580 if (dwarf2_read_debug)
8581 {
8582 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/0x%s in DWP file: %s\n",
8583 kind,
8584 section_index, phex (signature, sizeof (signature)),
8585 dwp_file->name);
8586 }
8587
8588 /* Fetch the sections of this DWO.
8589 Put a limit on the number of sections we look for so that bad data
8590 doesn't cause us to loop forever. */
8591
8592 #define MAX_NR_DWO_SECTIONS \
8593 (1 /* .debug_info or .debug_types */ \
8594 + 1 /* .debug_abbrev */ \
8595 + 1 /* .debug_line */ \
8596 + 1 /* .debug_loc */ \
8597 + 1 /* .debug_str_offsets */ \
8598 + 1 /* .debug_macro */ \
8599 + 1 /* .debug_macinfo */ \
8600 + 1 /* trailing zero */)
8601
8602 memset (&sections, 0, sizeof (sections));
8603 cleanups = make_cleanup (null_cleanup, 0);
8604
8605 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8606 {
8607 asection *sectp;
8608 uint32_t section_nr =
8609 read_4_bytes (dbfd,
8610 htab->section_pool
8611 + (section_index + i) * sizeof (uint32_t));
8612
8613 if (section_nr == 0)
8614 break;
8615 if (section_nr >= dwp_file->num_sections)
8616 {
8617 error (_("Dwarf Error: bad DWP hash table, section number too large"
8618 " [in module %s]"),
8619 dwp_file->name);
8620 }
8621
8622 sectp = dwp_file->elf_sections[section_nr];
8623 if (! locate_virtual_dwo_sections (sectp, &sections))
8624 {
8625 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8626 " [in module %s]"),
8627 dwp_file->name);
8628 }
8629 }
8630
8631 if (i < 2
8632 || sections.info_or_types.asection == NULL
8633 || sections.abbrev.asection == NULL)
8634 {
8635 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8636 " [in module %s]"),
8637 dwp_file->name);
8638 }
8639 if (i == MAX_NR_DWO_SECTIONS)
8640 {
8641 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8642 " [in module %s]"),
8643 dwp_file->name);
8644 }
8645
8646 /* It's easier for the rest of the code if we fake a struct dwo_file and
8647 have dwo_unit "live" in that. At least for now.
8648
8649 The DWP file can be made up of a random collection of CUs and TUs.
8650 However, for each CU + set of TUs that came from the same original DWO
8651 file, we want to combine them back into a virtual DWO file to save space
8652 (fewer struct dwo_file objects to allocated). Remember that for really
8653 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8654
8655 virtual_dwo_name =
8656 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8657 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8658 sections.line.asection ? sections.line.asection->id : 0,
8659 sections.loc.asection ? sections.loc.asection->id : 0,
8660 (sections.str_offsets.asection
8661 ? sections.str_offsets.asection->id
8662 : 0));
8663 make_cleanup (xfree, virtual_dwo_name);
8664 /* Can we use an existing virtual DWO file? */
8665 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name);
8666 /* Create one if necessary. */
8667 if (*dwo_file_slot == NULL)
8668 {
8669 if (dwarf2_read_debug)
8670 {
8671 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8672 virtual_dwo_name);
8673 }
8674 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8675 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8676 virtual_dwo_name,
8677 strlen (virtual_dwo_name));
8678 dwo_file->sections.abbrev = sections.abbrev;
8679 dwo_file->sections.line = sections.line;
8680 dwo_file->sections.loc = sections.loc;
8681 dwo_file->sections.macinfo = sections.macinfo;
8682 dwo_file->sections.macro = sections.macro;
8683 dwo_file->sections.str_offsets = sections.str_offsets;
8684 /* The "str" section is global to the entire DWP file. */
8685 dwo_file->sections.str = dwp_file->sections.str;
8686 /* The info or types section is assigned later to dwo_unit,
8687 there's no need to record it in dwo_file.
8688 Also, we can't simply record type sections in dwo_file because
8689 we record a pointer into the vector in dwo_unit. As we collect more
8690 types we'll grow the vector and eventually have to reallocate space
8691 for it, invalidating all the pointers into the current copy. */
8692 *dwo_file_slot = dwo_file;
8693 }
8694 else
8695 {
8696 if (dwarf2_read_debug)
8697 {
8698 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8699 virtual_dwo_name);
8700 }
8701 dwo_file = *dwo_file_slot;
8702 }
8703 do_cleanups (cleanups);
8704
8705 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8706 dwo_unit->dwo_file = dwo_file;
8707 dwo_unit->signature = signature;
8708 dwo_unit->info_or_types_section =
8709 obstack_alloc (&objfile->objfile_obstack,
8710 sizeof (struct dwarf2_section_info));
8711 *dwo_unit->info_or_types_section = sections.info_or_types;
8712 /* offset, length, type_offset_in_tu are set later. */
8713
8714 return dwo_unit;
8715 }
8716
8717 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
8718
8719 static struct dwo_unit *
8720 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8721 const struct dwp_hash_table *htab,
8722 ULONGEST signature, int is_debug_types)
8723 {
8724 bfd *dbfd = dwp_file->dbfd;
8725 uint32_t mask = htab->nr_slots - 1;
8726 uint32_t hash = signature & mask;
8727 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8728 unsigned int i;
8729 void **slot;
8730 struct dwo_unit find_dwo_cu, *dwo_cu;
8731
8732 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8733 find_dwo_cu.signature = signature;
8734 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8735
8736 if (*slot != NULL)
8737 return *slot;
8738
8739 /* Use a for loop so that we don't loop forever on bad debug info. */
8740 for (i = 0; i < htab->nr_slots; ++i)
8741 {
8742 ULONGEST signature_in_table;
8743
8744 signature_in_table =
8745 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8746 if (signature_in_table == signature)
8747 {
8748 uint32_t section_index =
8749 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8750
8751 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8752 signature, is_debug_types);
8753 return *slot;
8754 }
8755 if (signature_in_table == 0)
8756 return NULL;
8757 hash = (hash + hash2) & mask;
8758 }
8759
8760 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8761 " [in module %s]"),
8762 dwp_file->name);
8763 }
8764
8765 /* Subroutine of open_dwop_file to simplify it.
8766 Open the file specified by FILE_NAME and hand it off to BFD for
8767 preliminary analysis. Return a newly initialized bfd *, which
8768 includes a canonicalized copy of FILE_NAME.
8769 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8770 In case of trouble, return NULL.
8771 NOTE: This function is derived from symfile_bfd_open. */
8772
8773 static bfd *
8774 try_open_dwop_file (const char *file_name, int is_dwp)
8775 {
8776 bfd *sym_bfd;
8777 int desc, flags;
8778 char *absolute_name;
8779
8780 flags = OPF_TRY_CWD_FIRST;
8781 if (is_dwp)
8782 flags |= OPF_SEARCH_IN_PATH;
8783 desc = openp (debug_file_directory, flags, file_name,
8784 O_RDONLY | O_BINARY, &absolute_name);
8785 if (desc < 0)
8786 return NULL;
8787
8788 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8789 if (!sym_bfd)
8790 {
8791 xfree (absolute_name);
8792 return NULL;
8793 }
8794 xfree (absolute_name);
8795 bfd_set_cacheable (sym_bfd, 1);
8796
8797 if (!bfd_check_format (sym_bfd, bfd_object))
8798 {
8799 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8800 return NULL;
8801 }
8802
8803 return sym_bfd;
8804 }
8805
8806 /* Try to open DWO/DWP file FILE_NAME.
8807 COMP_DIR is the DW_AT_comp_dir attribute.
8808 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8809 The result is the bfd handle of the file.
8810 If there is a problem finding or opening the file, return NULL.
8811 Upon success, the canonicalized path of the file is stored in the bfd,
8812 same as symfile_bfd_open. */
8813
8814 static bfd *
8815 open_dwop_file (const char *file_name, const char *comp_dir, int is_dwp)
8816 {
8817 bfd *abfd;
8818
8819 if (IS_ABSOLUTE_PATH (file_name))
8820 return try_open_dwop_file (file_name, is_dwp);
8821
8822 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8823
8824 if (comp_dir != NULL)
8825 {
8826 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
8827
8828 /* NOTE: If comp_dir is a relative path, this will also try the
8829 search path, which seems useful. */
8830 abfd = try_open_dwop_file (path_to_try, is_dwp);
8831 xfree (path_to_try);
8832 if (abfd != NULL)
8833 return abfd;
8834 }
8835
8836 /* That didn't work, try debug-file-directory, which, despite its name,
8837 is a list of paths. */
8838
8839 if (*debug_file_directory == '\0')
8840 return NULL;
8841
8842 return try_open_dwop_file (file_name, is_dwp);
8843 }
8844
8845 /* This function is mapped across the sections and remembers the offset and
8846 size of each of the DWO debugging sections we are interested in. */
8847
8848 static void
8849 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
8850 {
8851 struct dwo_sections *dwo_sections = dwo_sections_ptr;
8852 const struct dwop_section_names *names = &dwop_section_names;
8853
8854 if (section_is_p (sectp->name, &names->abbrev_dwo))
8855 {
8856 dwo_sections->abbrev.asection = sectp;
8857 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
8858 }
8859 else if (section_is_p (sectp->name, &names->info_dwo))
8860 {
8861 dwo_sections->info.asection = sectp;
8862 dwo_sections->info.size = bfd_get_section_size (sectp);
8863 }
8864 else if (section_is_p (sectp->name, &names->line_dwo))
8865 {
8866 dwo_sections->line.asection = sectp;
8867 dwo_sections->line.size = bfd_get_section_size (sectp);
8868 }
8869 else if (section_is_p (sectp->name, &names->loc_dwo))
8870 {
8871 dwo_sections->loc.asection = sectp;
8872 dwo_sections->loc.size = bfd_get_section_size (sectp);
8873 }
8874 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8875 {
8876 dwo_sections->macinfo.asection = sectp;
8877 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
8878 }
8879 else if (section_is_p (sectp->name, &names->macro_dwo))
8880 {
8881 dwo_sections->macro.asection = sectp;
8882 dwo_sections->macro.size = bfd_get_section_size (sectp);
8883 }
8884 else if (section_is_p (sectp->name, &names->str_dwo))
8885 {
8886 dwo_sections->str.asection = sectp;
8887 dwo_sections->str.size = bfd_get_section_size (sectp);
8888 }
8889 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8890 {
8891 dwo_sections->str_offsets.asection = sectp;
8892 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
8893 }
8894 else if (section_is_p (sectp->name, &names->types_dwo))
8895 {
8896 struct dwarf2_section_info type_section;
8897
8898 memset (&type_section, 0, sizeof (type_section));
8899 type_section.asection = sectp;
8900 type_section.size = bfd_get_section_size (sectp);
8901 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
8902 &type_section);
8903 }
8904 }
8905
8906 /* Initialize the use of the DWO file specified by DWO_NAME.
8907 The result is NULL if DWO_NAME can't be found. */
8908
8909 static struct dwo_file *
8910 open_and_init_dwo_file (const char *dwo_name, const char *comp_dir)
8911 {
8912 struct objfile *objfile = dwarf2_per_objfile->objfile;
8913 struct dwo_file *dwo_file;
8914 bfd *dbfd;
8915 struct cleanup *cleanups;
8916
8917 dbfd = open_dwop_file (dwo_name, comp_dir, 0);
8918 if (dbfd == NULL)
8919 {
8920 if (dwarf2_read_debug)
8921 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
8922 return NULL;
8923 }
8924 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8925 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8926 dwo_name, strlen (dwo_name));
8927 dwo_file->dbfd = dbfd;
8928
8929 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8930
8931 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
8932
8933 dwo_file->cus = create_dwo_debug_info_hash_table (dwo_file);
8934
8935 dwo_file->tus = create_debug_types_hash_table (dwo_file,
8936 dwo_file->sections.types);
8937
8938 discard_cleanups (cleanups);
8939
8940 if (dwarf2_read_debug)
8941 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
8942
8943 return dwo_file;
8944 }
8945
8946 /* This function is mapped across the sections and remembers the offset and
8947 size of each of the DWP debugging sections we are interested in. */
8948
8949 static void
8950 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
8951 {
8952 struct dwp_file *dwp_file = dwp_file_ptr;
8953 const struct dwop_section_names *names = &dwop_section_names;
8954 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
8955
8956 /* Record the ELF section number for later lookup: this is what the
8957 .debug_cu_index,.debug_tu_index tables use. */
8958 gdb_assert (elf_section_nr < dwp_file->num_sections);
8959 dwp_file->elf_sections[elf_section_nr] = sectp;
8960
8961 /* Look for specific sections that we need. */
8962 if (section_is_p (sectp->name, &names->str_dwo))
8963 {
8964 dwp_file->sections.str.asection = sectp;
8965 dwp_file->sections.str.size = bfd_get_section_size (sectp);
8966 }
8967 else if (section_is_p (sectp->name, &names->cu_index))
8968 {
8969 dwp_file->sections.cu_index.asection = sectp;
8970 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
8971 }
8972 else if (section_is_p (sectp->name, &names->tu_index))
8973 {
8974 dwp_file->sections.tu_index.asection = sectp;
8975 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
8976 }
8977 }
8978
8979 /* Hash function for dwp_file loaded CUs/TUs. */
8980
8981 static hashval_t
8982 hash_dwp_loaded_cutus (const void *item)
8983 {
8984 const struct dwo_unit *dwo_unit = item;
8985
8986 /* This drops the top 32 bits of the signature, but is ok for a hash. */
8987 return dwo_unit->signature;
8988 }
8989
8990 /* Equality function for dwp_file loaded CUs/TUs. */
8991
8992 static int
8993 eq_dwp_loaded_cutus (const void *a, const void *b)
8994 {
8995 const struct dwo_unit *dua = a;
8996 const struct dwo_unit *dub = b;
8997
8998 return dua->signature == dub->signature;
8999 }
9000
9001 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9002
9003 static htab_t
9004 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9005 {
9006 return htab_create_alloc_ex (3,
9007 hash_dwp_loaded_cutus,
9008 eq_dwp_loaded_cutus,
9009 NULL,
9010 &objfile->objfile_obstack,
9011 hashtab_obstack_allocate,
9012 dummy_obstack_deallocate);
9013 }
9014
9015 /* Initialize the use of the DWP file for the current objfile.
9016 By convention the name of the DWP file is ${objfile}.dwp.
9017 The result is NULL if it can't be found. */
9018
9019 static struct dwp_file *
9020 open_and_init_dwp_file (const char *comp_dir)
9021 {
9022 struct objfile *objfile = dwarf2_per_objfile->objfile;
9023 struct dwp_file *dwp_file;
9024 char *dwp_name;
9025 bfd *dbfd;
9026 struct cleanup *cleanups;
9027
9028 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9029 cleanups = make_cleanup (xfree, dwp_name);
9030
9031 dbfd = open_dwop_file (dwp_name, comp_dir, 1);
9032 if (dbfd == NULL)
9033 {
9034 if (dwarf2_read_debug)
9035 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9036 do_cleanups (cleanups);
9037 return NULL;
9038 }
9039 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9040 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
9041 dwp_name, strlen (dwp_name));
9042 dwp_file->dbfd = dbfd;
9043 do_cleanups (cleanups);
9044
9045 cleanups = make_cleanup (free_dwo_file_cleanup, dwp_file);
9046
9047 /* +1: section 0 is unused */
9048 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9049 dwp_file->elf_sections =
9050 OBSTACK_CALLOC (&objfile->objfile_obstack,
9051 dwp_file->num_sections, asection *);
9052
9053 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9054
9055 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9056
9057 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9058
9059 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9060
9061 discard_cleanups (cleanups);
9062
9063 if (dwarf2_read_debug)
9064 {
9065 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9066 fprintf_unfiltered (gdb_stdlog,
9067 " %u CUs, %u TUs\n",
9068 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9069 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9070 }
9071
9072 return dwp_file;
9073 }
9074
9075 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9076 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9077 or in the DWP file for the objfile, referenced by THIS_UNIT.
9078 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9079 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9080
9081 This is called, for example, when wanting to read a variable with a
9082 complex location. Therefore we don't want to do file i/o for every call.
9083 Therefore we don't want to look for a DWO file on every call.
9084 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9085 then we check if we've already seen DWO_NAME, and only THEN do we check
9086 for a DWO file.
9087
9088 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9089 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9090
9091 static struct dwo_unit *
9092 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9093 const char *dwo_name, const char *comp_dir,
9094 ULONGEST signature, int is_debug_types)
9095 {
9096 struct objfile *objfile = dwarf2_per_objfile->objfile;
9097 const char *kind = is_debug_types ? "TU" : "CU";
9098 void **dwo_file_slot;
9099 struct dwo_file *dwo_file;
9100 struct dwp_file *dwp_file;
9101
9102 /* Have we already read SIGNATURE from a DWP file? */
9103
9104 if (! dwarf2_per_objfile->dwp_checked)
9105 {
9106 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file (comp_dir);
9107 dwarf2_per_objfile->dwp_checked = 1;
9108 }
9109 dwp_file = dwarf2_per_objfile->dwp_file;
9110
9111 if (dwp_file != NULL)
9112 {
9113 const struct dwp_hash_table *dwp_htab =
9114 is_debug_types ? dwp_file->tus : dwp_file->cus;
9115
9116 if (dwp_htab != NULL)
9117 {
9118 struct dwo_unit *dwo_cutu =
9119 lookup_dwo_in_dwp (dwp_file, dwp_htab, signature, is_debug_types);
9120
9121 if (dwo_cutu != NULL)
9122 {
9123 if (dwarf2_read_debug)
9124 {
9125 fprintf_unfiltered (gdb_stdlog,
9126 "Virtual DWO %s %s found: @%s\n",
9127 kind, hex_string (signature),
9128 host_address_to_string (dwo_cutu));
9129 }
9130 return dwo_cutu;
9131 }
9132 }
9133 }
9134
9135 /* Have we already seen DWO_NAME? */
9136
9137 dwo_file_slot = lookup_dwo_file_slot (dwo_name);
9138 if (*dwo_file_slot == NULL)
9139 {
9140 /* Read in the file and build a table of the DWOs it contains. */
9141 *dwo_file_slot = open_and_init_dwo_file (dwo_name, comp_dir);
9142 }
9143 /* NOTE: This will be NULL if unable to open the file. */
9144 dwo_file = *dwo_file_slot;
9145
9146 if (dwo_file != NULL)
9147 {
9148 htab_t htab = is_debug_types ? dwo_file->tus : dwo_file->cus;
9149
9150 if (htab != NULL)
9151 {
9152 struct dwo_unit find_dwo_cutu, *dwo_cutu;
9153
9154 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9155 find_dwo_cutu.signature = signature;
9156 dwo_cutu = htab_find (htab, &find_dwo_cutu);
9157
9158 if (dwo_cutu != NULL)
9159 {
9160 if (dwarf2_read_debug)
9161 {
9162 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9163 kind, dwo_name, hex_string (signature),
9164 host_address_to_string (dwo_cutu));
9165 }
9166 return dwo_cutu;
9167 }
9168 }
9169 }
9170
9171 /* We didn't find it. This could mean a dwo_id mismatch, or
9172 someone deleted the DWO/DWP file, or the search path isn't set up
9173 correctly to find the file. */
9174
9175 if (dwarf2_read_debug)
9176 {
9177 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9178 kind, dwo_name, hex_string (signature));
9179 }
9180
9181 complaint (&symfile_complaints,
9182 _("Could not find DWO CU referenced by CU at offset 0x%x"
9183 " [in module %s]"),
9184 this_unit->offset.sect_off, objfile->name);
9185 return NULL;
9186 }
9187
9188 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9189 See lookup_dwo_cutu_unit for details. */
9190
9191 static struct dwo_unit *
9192 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9193 const char *dwo_name, const char *comp_dir,
9194 ULONGEST signature)
9195 {
9196 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9197 }
9198
9199 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9200 See lookup_dwo_cutu_unit for details. */
9201
9202 static struct dwo_unit *
9203 lookup_dwo_type_unit (struct signatured_type *this_tu,
9204 const char *dwo_name, const char *comp_dir)
9205 {
9206 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9207 }
9208
9209 /* Free all resources associated with DWO_FILE.
9210 Close the DWO file and munmap the sections.
9211 All memory should be on the objfile obstack. */
9212
9213 static void
9214 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9215 {
9216 int ix;
9217 struct dwarf2_section_info *section;
9218
9219 gdb_bfd_unref (dwo_file->dbfd);
9220
9221 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9222 }
9223
9224 /* Wrapper for free_dwo_file for use in cleanups. */
9225
9226 static void
9227 free_dwo_file_cleanup (void *arg)
9228 {
9229 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9230 struct objfile *objfile = dwarf2_per_objfile->objfile;
9231
9232 free_dwo_file (dwo_file, objfile);
9233 }
9234
9235 /* Traversal function for free_dwo_files. */
9236
9237 static int
9238 free_dwo_file_from_slot (void **slot, void *info)
9239 {
9240 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9241 struct objfile *objfile = (struct objfile *) info;
9242
9243 free_dwo_file (dwo_file, objfile);
9244
9245 return 1;
9246 }
9247
9248 /* Free all resources associated with DWO_FILES. */
9249
9250 static void
9251 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9252 {
9253 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9254 }
9255 \f
9256 /* Read in various DIEs. */
9257
9258 /* qsort helper for inherit_abstract_dies. */
9259
9260 static int
9261 unsigned_int_compar (const void *ap, const void *bp)
9262 {
9263 unsigned int a = *(unsigned int *) ap;
9264 unsigned int b = *(unsigned int *) bp;
9265
9266 return (a > b) - (b > a);
9267 }
9268
9269 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9270 Inherit only the children of the DW_AT_abstract_origin DIE not being
9271 already referenced by DW_AT_abstract_origin from the children of the
9272 current DIE. */
9273
9274 static void
9275 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9276 {
9277 struct die_info *child_die;
9278 unsigned die_children_count;
9279 /* CU offsets which were referenced by children of the current DIE. */
9280 sect_offset *offsets;
9281 sect_offset *offsets_end, *offsetp;
9282 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9283 struct die_info *origin_die;
9284 /* Iterator of the ORIGIN_DIE children. */
9285 struct die_info *origin_child_die;
9286 struct cleanup *cleanups;
9287 struct attribute *attr;
9288 struct dwarf2_cu *origin_cu;
9289 struct pending **origin_previous_list_in_scope;
9290
9291 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9292 if (!attr)
9293 return;
9294
9295 /* Note that following die references may follow to a die in a
9296 different cu. */
9297
9298 origin_cu = cu;
9299 origin_die = follow_die_ref (die, attr, &origin_cu);
9300
9301 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9302 symbols in. */
9303 origin_previous_list_in_scope = origin_cu->list_in_scope;
9304 origin_cu->list_in_scope = cu->list_in_scope;
9305
9306 if (die->tag != origin_die->tag
9307 && !(die->tag == DW_TAG_inlined_subroutine
9308 && origin_die->tag == DW_TAG_subprogram))
9309 complaint (&symfile_complaints,
9310 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9311 die->offset.sect_off, origin_die->offset.sect_off);
9312
9313 child_die = die->child;
9314 die_children_count = 0;
9315 while (child_die && child_die->tag)
9316 {
9317 child_die = sibling_die (child_die);
9318 die_children_count++;
9319 }
9320 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9321 cleanups = make_cleanup (xfree, offsets);
9322
9323 offsets_end = offsets;
9324 child_die = die->child;
9325 while (child_die && child_die->tag)
9326 {
9327 /* For each CHILD_DIE, find the corresponding child of
9328 ORIGIN_DIE. If there is more than one layer of
9329 DW_AT_abstract_origin, follow them all; there shouldn't be,
9330 but GCC versions at least through 4.4 generate this (GCC PR
9331 40573). */
9332 struct die_info *child_origin_die = child_die;
9333 struct dwarf2_cu *child_origin_cu = cu;
9334
9335 while (1)
9336 {
9337 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9338 child_origin_cu);
9339 if (attr == NULL)
9340 break;
9341 child_origin_die = follow_die_ref (child_origin_die, attr,
9342 &child_origin_cu);
9343 }
9344
9345 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9346 counterpart may exist. */
9347 if (child_origin_die != child_die)
9348 {
9349 if (child_die->tag != child_origin_die->tag
9350 && !(child_die->tag == DW_TAG_inlined_subroutine
9351 && child_origin_die->tag == DW_TAG_subprogram))
9352 complaint (&symfile_complaints,
9353 _("Child DIE 0x%x and its abstract origin 0x%x have "
9354 "different tags"), child_die->offset.sect_off,
9355 child_origin_die->offset.sect_off);
9356 if (child_origin_die->parent != origin_die)
9357 complaint (&symfile_complaints,
9358 _("Child DIE 0x%x and its abstract origin 0x%x have "
9359 "different parents"), child_die->offset.sect_off,
9360 child_origin_die->offset.sect_off);
9361 else
9362 *offsets_end++ = child_origin_die->offset;
9363 }
9364 child_die = sibling_die (child_die);
9365 }
9366 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9367 unsigned_int_compar);
9368 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9369 if (offsetp[-1].sect_off == offsetp->sect_off)
9370 complaint (&symfile_complaints,
9371 _("Multiple children of DIE 0x%x refer "
9372 "to DIE 0x%x as their abstract origin"),
9373 die->offset.sect_off, offsetp->sect_off);
9374
9375 offsetp = offsets;
9376 origin_child_die = origin_die->child;
9377 while (origin_child_die && origin_child_die->tag)
9378 {
9379 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9380 while (offsetp < offsets_end
9381 && offsetp->sect_off < origin_child_die->offset.sect_off)
9382 offsetp++;
9383 if (offsetp >= offsets_end
9384 || offsetp->sect_off > origin_child_die->offset.sect_off)
9385 {
9386 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9387 process_die (origin_child_die, origin_cu);
9388 }
9389 origin_child_die = sibling_die (origin_child_die);
9390 }
9391 origin_cu->list_in_scope = origin_previous_list_in_scope;
9392
9393 do_cleanups (cleanups);
9394 }
9395
9396 static void
9397 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9398 {
9399 struct objfile *objfile = cu->objfile;
9400 struct context_stack *new;
9401 CORE_ADDR lowpc;
9402 CORE_ADDR highpc;
9403 struct die_info *child_die;
9404 struct attribute *attr, *call_line, *call_file;
9405 const char *name;
9406 CORE_ADDR baseaddr;
9407 struct block *block;
9408 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9409 VEC (symbolp) *template_args = NULL;
9410 struct template_symbol *templ_func = NULL;
9411
9412 if (inlined_func)
9413 {
9414 /* If we do not have call site information, we can't show the
9415 caller of this inlined function. That's too confusing, so
9416 only use the scope for local variables. */
9417 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9418 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9419 if (call_line == NULL || call_file == NULL)
9420 {
9421 read_lexical_block_scope (die, cu);
9422 return;
9423 }
9424 }
9425
9426 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9427
9428 name = dwarf2_name (die, cu);
9429
9430 /* Ignore functions with missing or empty names. These are actually
9431 illegal according to the DWARF standard. */
9432 if (name == NULL)
9433 {
9434 complaint (&symfile_complaints,
9435 _("missing name for subprogram DIE at %d"),
9436 die->offset.sect_off);
9437 return;
9438 }
9439
9440 /* Ignore functions with missing or invalid low and high pc attributes. */
9441 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9442 {
9443 attr = dwarf2_attr (die, DW_AT_external, cu);
9444 if (!attr || !DW_UNSND (attr))
9445 complaint (&symfile_complaints,
9446 _("cannot get low and high bounds "
9447 "for subprogram DIE at %d"),
9448 die->offset.sect_off);
9449 return;
9450 }
9451
9452 lowpc += baseaddr;
9453 highpc += baseaddr;
9454
9455 /* If we have any template arguments, then we must allocate a
9456 different sort of symbol. */
9457 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9458 {
9459 if (child_die->tag == DW_TAG_template_type_param
9460 || child_die->tag == DW_TAG_template_value_param)
9461 {
9462 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
9463 struct template_symbol);
9464 templ_func->base.is_cplus_template_function = 1;
9465 break;
9466 }
9467 }
9468
9469 new = push_context (0, lowpc);
9470 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9471 (struct symbol *) templ_func);
9472
9473 /* If there is a location expression for DW_AT_frame_base, record
9474 it. */
9475 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
9476 if (attr)
9477 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
9478 expression is being recorded directly in the function's symbol
9479 and not in a separate frame-base object. I guess this hack is
9480 to avoid adding some sort of frame-base adjunct/annex to the
9481 function's symbol :-(. The problem with doing this is that it
9482 results in a function symbol with a location expression that
9483 has nothing to do with the location of the function, ouch! The
9484 relationship should be: a function's symbol has-a frame base; a
9485 frame-base has-a location expression. */
9486 dwarf2_symbol_mark_computed (attr, new->name, cu);
9487
9488 cu->list_in_scope = &local_symbols;
9489
9490 if (die->child != NULL)
9491 {
9492 child_die = die->child;
9493 while (child_die && child_die->tag)
9494 {
9495 if (child_die->tag == DW_TAG_template_type_param
9496 || child_die->tag == DW_TAG_template_value_param)
9497 {
9498 struct symbol *arg = new_symbol (child_die, NULL, cu);
9499
9500 if (arg != NULL)
9501 VEC_safe_push (symbolp, template_args, arg);
9502 }
9503 else
9504 process_die (child_die, cu);
9505 child_die = sibling_die (child_die);
9506 }
9507 }
9508
9509 inherit_abstract_dies (die, cu);
9510
9511 /* If we have a DW_AT_specification, we might need to import using
9512 directives from the context of the specification DIE. See the
9513 comment in determine_prefix. */
9514 if (cu->language == language_cplus
9515 && dwarf2_attr (die, DW_AT_specification, cu))
9516 {
9517 struct dwarf2_cu *spec_cu = cu;
9518 struct die_info *spec_die = die_specification (die, &spec_cu);
9519
9520 while (spec_die)
9521 {
9522 child_die = spec_die->child;
9523 while (child_die && child_die->tag)
9524 {
9525 if (child_die->tag == DW_TAG_imported_module)
9526 process_die (child_die, spec_cu);
9527 child_die = sibling_die (child_die);
9528 }
9529
9530 /* In some cases, GCC generates specification DIEs that
9531 themselves contain DW_AT_specification attributes. */
9532 spec_die = die_specification (spec_die, &spec_cu);
9533 }
9534 }
9535
9536 new = pop_context ();
9537 /* Make a block for the local symbols within. */
9538 block = finish_block (new->name, &local_symbols, new->old_blocks,
9539 lowpc, highpc, objfile);
9540
9541 /* For C++, set the block's scope. */
9542 if ((cu->language == language_cplus || cu->language == language_fortran)
9543 && cu->processing_has_namespace_info)
9544 block_set_scope (block, determine_prefix (die, cu),
9545 &objfile->objfile_obstack);
9546
9547 /* If we have address ranges, record them. */
9548 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9549
9550 /* Attach template arguments to function. */
9551 if (! VEC_empty (symbolp, template_args))
9552 {
9553 gdb_assert (templ_func != NULL);
9554
9555 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9556 templ_func->template_arguments
9557 = obstack_alloc (&objfile->objfile_obstack,
9558 (templ_func->n_template_arguments
9559 * sizeof (struct symbol *)));
9560 memcpy (templ_func->template_arguments,
9561 VEC_address (symbolp, template_args),
9562 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9563 VEC_free (symbolp, template_args);
9564 }
9565
9566 /* In C++, we can have functions nested inside functions (e.g., when
9567 a function declares a class that has methods). This means that
9568 when we finish processing a function scope, we may need to go
9569 back to building a containing block's symbol lists. */
9570 local_symbols = new->locals;
9571 using_directives = new->using_directives;
9572
9573 /* If we've finished processing a top-level function, subsequent
9574 symbols go in the file symbol list. */
9575 if (outermost_context_p ())
9576 cu->list_in_scope = &file_symbols;
9577 }
9578
9579 /* Process all the DIES contained within a lexical block scope. Start
9580 a new scope, process the dies, and then close the scope. */
9581
9582 static void
9583 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
9584 {
9585 struct objfile *objfile = cu->objfile;
9586 struct context_stack *new;
9587 CORE_ADDR lowpc, highpc;
9588 struct die_info *child_die;
9589 CORE_ADDR baseaddr;
9590
9591 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9592
9593 /* Ignore blocks with missing or invalid low and high pc attributes. */
9594 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9595 as multiple lexical blocks? Handling children in a sane way would
9596 be nasty. Might be easier to properly extend generic blocks to
9597 describe ranges. */
9598 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9599 return;
9600 lowpc += baseaddr;
9601 highpc += baseaddr;
9602
9603 push_context (0, lowpc);
9604 if (die->child != NULL)
9605 {
9606 child_die = die->child;
9607 while (child_die && child_die->tag)
9608 {
9609 process_die (child_die, cu);
9610 child_die = sibling_die (child_die);
9611 }
9612 }
9613 new = pop_context ();
9614
9615 if (local_symbols != NULL || using_directives != NULL)
9616 {
9617 struct block *block
9618 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9619 highpc, objfile);
9620
9621 /* Note that recording ranges after traversing children, as we
9622 do here, means that recording a parent's ranges entails
9623 walking across all its children's ranges as they appear in
9624 the address map, which is quadratic behavior.
9625
9626 It would be nicer to record the parent's ranges before
9627 traversing its children, simply overriding whatever you find
9628 there. But since we don't even decide whether to create a
9629 block until after we've traversed its children, that's hard
9630 to do. */
9631 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9632 }
9633 local_symbols = new->locals;
9634 using_directives = new->using_directives;
9635 }
9636
9637 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9638
9639 static void
9640 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9641 {
9642 struct objfile *objfile = cu->objfile;
9643 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9644 CORE_ADDR pc, baseaddr;
9645 struct attribute *attr;
9646 struct call_site *call_site, call_site_local;
9647 void **slot;
9648 int nparams;
9649 struct die_info *child_die;
9650
9651 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9652
9653 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9654 if (!attr)
9655 {
9656 complaint (&symfile_complaints,
9657 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9658 "DIE 0x%x [in module %s]"),
9659 die->offset.sect_off, objfile->name);
9660 return;
9661 }
9662 pc = DW_ADDR (attr) + baseaddr;
9663
9664 if (cu->call_site_htab == NULL)
9665 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9666 NULL, &objfile->objfile_obstack,
9667 hashtab_obstack_allocate, NULL);
9668 call_site_local.pc = pc;
9669 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9670 if (*slot != NULL)
9671 {
9672 complaint (&symfile_complaints,
9673 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9674 "DIE 0x%x [in module %s]"),
9675 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
9676 return;
9677 }
9678
9679 /* Count parameters at the caller. */
9680
9681 nparams = 0;
9682 for (child_die = die->child; child_die && child_die->tag;
9683 child_die = sibling_die (child_die))
9684 {
9685 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9686 {
9687 complaint (&symfile_complaints,
9688 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9689 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9690 child_die->tag, child_die->offset.sect_off, objfile->name);
9691 continue;
9692 }
9693
9694 nparams++;
9695 }
9696
9697 call_site = obstack_alloc (&objfile->objfile_obstack,
9698 (sizeof (*call_site)
9699 + (sizeof (*call_site->parameter)
9700 * (nparams - 1))));
9701 *slot = call_site;
9702 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9703 call_site->pc = pc;
9704
9705 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9706 {
9707 struct die_info *func_die;
9708
9709 /* Skip also over DW_TAG_inlined_subroutine. */
9710 for (func_die = die->parent;
9711 func_die && func_die->tag != DW_TAG_subprogram
9712 && func_die->tag != DW_TAG_subroutine_type;
9713 func_die = func_die->parent);
9714
9715 /* DW_AT_GNU_all_call_sites is a superset
9716 of DW_AT_GNU_all_tail_call_sites. */
9717 if (func_die
9718 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9719 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9720 {
9721 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9722 not complete. But keep CALL_SITE for look ups via call_site_htab,
9723 both the initial caller containing the real return address PC and
9724 the final callee containing the current PC of a chain of tail
9725 calls do not need to have the tail call list complete. But any
9726 function candidate for a virtual tail call frame searched via
9727 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9728 determined unambiguously. */
9729 }
9730 else
9731 {
9732 struct type *func_type = NULL;
9733
9734 if (func_die)
9735 func_type = get_die_type (func_die, cu);
9736 if (func_type != NULL)
9737 {
9738 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9739
9740 /* Enlist this call site to the function. */
9741 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9742 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9743 }
9744 else
9745 complaint (&symfile_complaints,
9746 _("Cannot find function owning DW_TAG_GNU_call_site "
9747 "DIE 0x%x [in module %s]"),
9748 die->offset.sect_off, objfile->name);
9749 }
9750 }
9751
9752 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9753 if (attr == NULL)
9754 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9755 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9756 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9757 /* Keep NULL DWARF_BLOCK. */;
9758 else if (attr_form_is_block (attr))
9759 {
9760 struct dwarf2_locexpr_baton *dlbaton;
9761
9762 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9763 dlbaton->data = DW_BLOCK (attr)->data;
9764 dlbaton->size = DW_BLOCK (attr)->size;
9765 dlbaton->per_cu = cu->per_cu;
9766
9767 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9768 }
9769 else if (is_ref_attr (attr))
9770 {
9771 struct dwarf2_cu *target_cu = cu;
9772 struct die_info *target_die;
9773
9774 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9775 gdb_assert (target_cu->objfile == objfile);
9776 if (die_is_declaration (target_die, target_cu))
9777 {
9778 const char *target_physname;
9779
9780 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9781 if (target_physname == NULL)
9782 complaint (&symfile_complaints,
9783 _("DW_AT_GNU_call_site_target target DIE has invalid "
9784 "physname, for referencing DIE 0x%x [in module %s]"),
9785 die->offset.sect_off, objfile->name);
9786 else
9787 SET_FIELD_PHYSNAME (call_site->target, target_physname);
9788 }
9789 else
9790 {
9791 CORE_ADDR lowpc;
9792
9793 /* DW_AT_entry_pc should be preferred. */
9794 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9795 complaint (&symfile_complaints,
9796 _("DW_AT_GNU_call_site_target target DIE has invalid "
9797 "low pc, for referencing DIE 0x%x [in module %s]"),
9798 die->offset.sect_off, objfile->name);
9799 else
9800 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9801 }
9802 }
9803 else
9804 complaint (&symfile_complaints,
9805 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9806 "block nor reference, for DIE 0x%x [in module %s]"),
9807 die->offset.sect_off, objfile->name);
9808
9809 call_site->per_cu = cu->per_cu;
9810
9811 for (child_die = die->child;
9812 child_die && child_die->tag;
9813 child_die = sibling_die (child_die))
9814 {
9815 struct call_site_parameter *parameter;
9816 struct attribute *loc, *origin;
9817
9818 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9819 {
9820 /* Already printed the complaint above. */
9821 continue;
9822 }
9823
9824 gdb_assert (call_site->parameter_count < nparams);
9825 parameter = &call_site->parameter[call_site->parameter_count];
9826
9827 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
9828 specifies DW_TAG_formal_parameter. Value of the data assumed for the
9829 register is contained in DW_AT_GNU_call_site_value. */
9830
9831 loc = dwarf2_attr (child_die, DW_AT_location, cu);
9832 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
9833 if (loc == NULL && origin != NULL && is_ref_attr (origin))
9834 {
9835 sect_offset offset;
9836
9837 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9838 offset = dwarf2_get_ref_die_offset (origin);
9839 if (!offset_in_cu_p (&cu->header, offset))
9840 {
9841 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
9842 binding can be done only inside one CU. Such referenced DIE
9843 therefore cannot be even moved to DW_TAG_partial_unit. */
9844 complaint (&symfile_complaints,
9845 _("DW_AT_abstract_origin offset is not in CU for "
9846 "DW_TAG_GNU_call_site child DIE 0x%x "
9847 "[in module %s]"),
9848 child_die->offset.sect_off, objfile->name);
9849 continue;
9850 }
9851 parameter->u.param_offset.cu_off = (offset.sect_off
9852 - cu->header.offset.sect_off);
9853 }
9854 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
9855 {
9856 complaint (&symfile_complaints,
9857 _("No DW_FORM_block* DW_AT_location for "
9858 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9859 child_die->offset.sect_off, objfile->name);
9860 continue;
9861 }
9862 else
9863 {
9864 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
9865 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
9866 if (parameter->u.dwarf_reg != -1)
9867 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
9868 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
9869 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
9870 &parameter->u.fb_offset))
9871 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
9872 else
9873 {
9874 complaint (&symfile_complaints,
9875 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
9876 "for DW_FORM_block* DW_AT_location is supported for "
9877 "DW_TAG_GNU_call_site child DIE 0x%x "
9878 "[in module %s]"),
9879 child_die->offset.sect_off, objfile->name);
9880 continue;
9881 }
9882 }
9883
9884 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
9885 if (!attr_form_is_block (attr))
9886 {
9887 complaint (&symfile_complaints,
9888 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
9889 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9890 child_die->offset.sect_off, objfile->name);
9891 continue;
9892 }
9893 parameter->value = DW_BLOCK (attr)->data;
9894 parameter->value_size = DW_BLOCK (attr)->size;
9895
9896 /* Parameters are not pre-cleared by memset above. */
9897 parameter->data_value = NULL;
9898 parameter->data_value_size = 0;
9899 call_site->parameter_count++;
9900
9901 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
9902 if (attr)
9903 {
9904 if (!attr_form_is_block (attr))
9905 complaint (&symfile_complaints,
9906 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
9907 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9908 child_die->offset.sect_off, objfile->name);
9909 else
9910 {
9911 parameter->data_value = DW_BLOCK (attr)->data;
9912 parameter->data_value_size = DW_BLOCK (attr)->size;
9913 }
9914 }
9915 }
9916 }
9917
9918 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
9919 Return 1 if the attributes are present and valid, otherwise, return 0.
9920 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
9921
9922 static int
9923 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
9924 CORE_ADDR *high_return, struct dwarf2_cu *cu,
9925 struct partial_symtab *ranges_pst)
9926 {
9927 struct objfile *objfile = cu->objfile;
9928 struct comp_unit_head *cu_header = &cu->header;
9929 bfd *obfd = objfile->obfd;
9930 unsigned int addr_size = cu_header->addr_size;
9931 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9932 /* Base address selection entry. */
9933 CORE_ADDR base;
9934 int found_base;
9935 unsigned int dummy;
9936 gdb_byte *buffer;
9937 CORE_ADDR marker;
9938 int low_set;
9939 CORE_ADDR low = 0;
9940 CORE_ADDR high = 0;
9941 CORE_ADDR baseaddr;
9942
9943 found_base = cu->base_known;
9944 base = cu->base_address;
9945
9946 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
9947 if (offset >= dwarf2_per_objfile->ranges.size)
9948 {
9949 complaint (&symfile_complaints,
9950 _("Offset %d out of bounds for DW_AT_ranges attribute"),
9951 offset);
9952 return 0;
9953 }
9954 buffer = dwarf2_per_objfile->ranges.buffer + offset;
9955
9956 /* Read in the largest possible address. */
9957 marker = read_address (obfd, buffer, cu, &dummy);
9958 if ((marker & mask) == mask)
9959 {
9960 /* If we found the largest possible address, then
9961 read the base address. */
9962 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9963 buffer += 2 * addr_size;
9964 offset += 2 * addr_size;
9965 found_base = 1;
9966 }
9967
9968 low_set = 0;
9969
9970 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9971
9972 while (1)
9973 {
9974 CORE_ADDR range_beginning, range_end;
9975
9976 range_beginning = read_address (obfd, buffer, cu, &dummy);
9977 buffer += addr_size;
9978 range_end = read_address (obfd, buffer, cu, &dummy);
9979 buffer += addr_size;
9980 offset += 2 * addr_size;
9981
9982 /* An end of list marker is a pair of zero addresses. */
9983 if (range_beginning == 0 && range_end == 0)
9984 /* Found the end of list entry. */
9985 break;
9986
9987 /* Each base address selection entry is a pair of 2 values.
9988 The first is the largest possible address, the second is
9989 the base address. Check for a base address here. */
9990 if ((range_beginning & mask) == mask)
9991 {
9992 /* If we found the largest possible address, then
9993 read the base address. */
9994 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9995 found_base = 1;
9996 continue;
9997 }
9998
9999 if (!found_base)
10000 {
10001 /* We have no valid base address for the ranges
10002 data. */
10003 complaint (&symfile_complaints,
10004 _("Invalid .debug_ranges data (no base address)"));
10005 return 0;
10006 }
10007
10008 if (range_beginning > range_end)
10009 {
10010 /* Inverted range entries are invalid. */
10011 complaint (&symfile_complaints,
10012 _("Invalid .debug_ranges data (inverted range)"));
10013 return 0;
10014 }
10015
10016 /* Empty range entries have no effect. */
10017 if (range_beginning == range_end)
10018 continue;
10019
10020 range_beginning += base;
10021 range_end += base;
10022
10023 /* A not-uncommon case of bad debug info.
10024 Don't pollute the addrmap with bad data. */
10025 if (range_beginning + baseaddr == 0
10026 && !dwarf2_per_objfile->has_section_at_zero)
10027 {
10028 complaint (&symfile_complaints,
10029 _(".debug_ranges entry has start address of zero"
10030 " [in module %s]"), objfile->name);
10031 continue;
10032 }
10033
10034 if (ranges_pst != NULL)
10035 addrmap_set_empty (objfile->psymtabs_addrmap,
10036 range_beginning + baseaddr,
10037 range_end - 1 + baseaddr,
10038 ranges_pst);
10039
10040 /* FIXME: This is recording everything as a low-high
10041 segment of consecutive addresses. We should have a
10042 data structure for discontiguous block ranges
10043 instead. */
10044 if (! low_set)
10045 {
10046 low = range_beginning;
10047 high = range_end;
10048 low_set = 1;
10049 }
10050 else
10051 {
10052 if (range_beginning < low)
10053 low = range_beginning;
10054 if (range_end > high)
10055 high = range_end;
10056 }
10057 }
10058
10059 if (! low_set)
10060 /* If the first entry is an end-of-list marker, the range
10061 describes an empty scope, i.e. no instructions. */
10062 return 0;
10063
10064 if (low_return)
10065 *low_return = low;
10066 if (high_return)
10067 *high_return = high;
10068 return 1;
10069 }
10070
10071 /* Get low and high pc attributes from a die. Return 1 if the attributes
10072 are present and valid, otherwise, return 0. Return -1 if the range is
10073 discontinuous, i.e. derived from DW_AT_ranges information. */
10074
10075 static int
10076 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10077 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10078 struct partial_symtab *pst)
10079 {
10080 struct attribute *attr;
10081 struct attribute *attr_high;
10082 CORE_ADDR low = 0;
10083 CORE_ADDR high = 0;
10084 int ret = 0;
10085
10086 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10087 if (attr_high)
10088 {
10089 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10090 if (attr)
10091 {
10092 low = DW_ADDR (attr);
10093 if (attr_high->form == DW_FORM_addr
10094 || attr_high->form == DW_FORM_GNU_addr_index)
10095 high = DW_ADDR (attr_high);
10096 else
10097 high = low + DW_UNSND (attr_high);
10098 }
10099 else
10100 /* Found high w/o low attribute. */
10101 return 0;
10102
10103 /* Found consecutive range of addresses. */
10104 ret = 1;
10105 }
10106 else
10107 {
10108 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10109 if (attr != NULL)
10110 {
10111 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10112 We take advantage of the fact that DW_AT_ranges does not appear
10113 in DW_TAG_compile_unit of DWO files. */
10114 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10115 unsigned int ranges_offset = (DW_UNSND (attr)
10116 + (need_ranges_base
10117 ? cu->ranges_base
10118 : 0));
10119
10120 /* Value of the DW_AT_ranges attribute is the offset in the
10121 .debug_ranges section. */
10122 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10123 return 0;
10124 /* Found discontinuous range of addresses. */
10125 ret = -1;
10126 }
10127 }
10128
10129 /* read_partial_die has also the strict LOW < HIGH requirement. */
10130 if (high <= low)
10131 return 0;
10132
10133 /* When using the GNU linker, .gnu.linkonce. sections are used to
10134 eliminate duplicate copies of functions and vtables and such.
10135 The linker will arbitrarily choose one and discard the others.
10136 The AT_*_pc values for such functions refer to local labels in
10137 these sections. If the section from that file was discarded, the
10138 labels are not in the output, so the relocs get a value of 0.
10139 If this is a discarded function, mark the pc bounds as invalid,
10140 so that GDB will ignore it. */
10141 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10142 return 0;
10143
10144 *lowpc = low;
10145 if (highpc)
10146 *highpc = high;
10147 return ret;
10148 }
10149
10150 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10151 its low and high PC addresses. Do nothing if these addresses could not
10152 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10153 and HIGHPC to the high address if greater than HIGHPC. */
10154
10155 static void
10156 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10157 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10158 struct dwarf2_cu *cu)
10159 {
10160 CORE_ADDR low, high;
10161 struct die_info *child = die->child;
10162
10163 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10164 {
10165 *lowpc = min (*lowpc, low);
10166 *highpc = max (*highpc, high);
10167 }
10168
10169 /* If the language does not allow nested subprograms (either inside
10170 subprograms or lexical blocks), we're done. */
10171 if (cu->language != language_ada)
10172 return;
10173
10174 /* Check all the children of the given DIE. If it contains nested
10175 subprograms, then check their pc bounds. Likewise, we need to
10176 check lexical blocks as well, as they may also contain subprogram
10177 definitions. */
10178 while (child && child->tag)
10179 {
10180 if (child->tag == DW_TAG_subprogram
10181 || child->tag == DW_TAG_lexical_block)
10182 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10183 child = sibling_die (child);
10184 }
10185 }
10186
10187 /* Get the low and high pc's represented by the scope DIE, and store
10188 them in *LOWPC and *HIGHPC. If the correct values can't be
10189 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10190
10191 static void
10192 get_scope_pc_bounds (struct die_info *die,
10193 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10194 struct dwarf2_cu *cu)
10195 {
10196 CORE_ADDR best_low = (CORE_ADDR) -1;
10197 CORE_ADDR best_high = (CORE_ADDR) 0;
10198 CORE_ADDR current_low, current_high;
10199
10200 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10201 {
10202 best_low = current_low;
10203 best_high = current_high;
10204 }
10205 else
10206 {
10207 struct die_info *child = die->child;
10208
10209 while (child && child->tag)
10210 {
10211 switch (child->tag) {
10212 case DW_TAG_subprogram:
10213 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10214 break;
10215 case DW_TAG_namespace:
10216 case DW_TAG_module:
10217 /* FIXME: carlton/2004-01-16: Should we do this for
10218 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10219 that current GCC's always emit the DIEs corresponding
10220 to definitions of methods of classes as children of a
10221 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10222 the DIEs giving the declarations, which could be
10223 anywhere). But I don't see any reason why the
10224 standards says that they have to be there. */
10225 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10226
10227 if (current_low != ((CORE_ADDR) -1))
10228 {
10229 best_low = min (best_low, current_low);
10230 best_high = max (best_high, current_high);
10231 }
10232 break;
10233 default:
10234 /* Ignore. */
10235 break;
10236 }
10237
10238 child = sibling_die (child);
10239 }
10240 }
10241
10242 *lowpc = best_low;
10243 *highpc = best_high;
10244 }
10245
10246 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10247 in DIE. */
10248
10249 static void
10250 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10251 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10252 {
10253 struct objfile *objfile = cu->objfile;
10254 struct attribute *attr;
10255 struct attribute *attr_high;
10256
10257 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10258 if (attr_high)
10259 {
10260 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10261 if (attr)
10262 {
10263 CORE_ADDR low = DW_ADDR (attr);
10264 CORE_ADDR high;
10265 if (attr_high->form == DW_FORM_addr
10266 || attr_high->form == DW_FORM_GNU_addr_index)
10267 high = DW_ADDR (attr_high);
10268 else
10269 high = low + DW_UNSND (attr_high);
10270
10271 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10272 }
10273 }
10274
10275 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10276 if (attr)
10277 {
10278 bfd *obfd = objfile->obfd;
10279 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10280 We take advantage of the fact that DW_AT_ranges does not appear
10281 in DW_TAG_compile_unit of DWO files. */
10282 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10283
10284 /* The value of the DW_AT_ranges attribute is the offset of the
10285 address range list in the .debug_ranges section. */
10286 unsigned long offset = (DW_UNSND (attr)
10287 + (need_ranges_base ? cu->ranges_base : 0));
10288 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
10289
10290 /* For some target architectures, but not others, the
10291 read_address function sign-extends the addresses it returns.
10292 To recognize base address selection entries, we need a
10293 mask. */
10294 unsigned int addr_size = cu->header.addr_size;
10295 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10296
10297 /* The base address, to which the next pair is relative. Note
10298 that this 'base' is a DWARF concept: most entries in a range
10299 list are relative, to reduce the number of relocs against the
10300 debugging information. This is separate from this function's
10301 'baseaddr' argument, which GDB uses to relocate debugging
10302 information from a shared library based on the address at
10303 which the library was loaded. */
10304 CORE_ADDR base = cu->base_address;
10305 int base_known = cu->base_known;
10306
10307 gdb_assert (dwarf2_per_objfile->ranges.readin);
10308 if (offset >= dwarf2_per_objfile->ranges.size)
10309 {
10310 complaint (&symfile_complaints,
10311 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10312 offset);
10313 return;
10314 }
10315
10316 for (;;)
10317 {
10318 unsigned int bytes_read;
10319 CORE_ADDR start, end;
10320
10321 start = read_address (obfd, buffer, cu, &bytes_read);
10322 buffer += bytes_read;
10323 end = read_address (obfd, buffer, cu, &bytes_read);
10324 buffer += bytes_read;
10325
10326 /* Did we find the end of the range list? */
10327 if (start == 0 && end == 0)
10328 break;
10329
10330 /* Did we find a base address selection entry? */
10331 else if ((start & base_select_mask) == base_select_mask)
10332 {
10333 base = end;
10334 base_known = 1;
10335 }
10336
10337 /* We found an ordinary address range. */
10338 else
10339 {
10340 if (!base_known)
10341 {
10342 complaint (&symfile_complaints,
10343 _("Invalid .debug_ranges data "
10344 "(no base address)"));
10345 return;
10346 }
10347
10348 if (start > end)
10349 {
10350 /* Inverted range entries are invalid. */
10351 complaint (&symfile_complaints,
10352 _("Invalid .debug_ranges data "
10353 "(inverted range)"));
10354 return;
10355 }
10356
10357 /* Empty range entries have no effect. */
10358 if (start == end)
10359 continue;
10360
10361 start += base + baseaddr;
10362 end += base + baseaddr;
10363
10364 /* A not-uncommon case of bad debug info.
10365 Don't pollute the addrmap with bad data. */
10366 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10367 {
10368 complaint (&symfile_complaints,
10369 _(".debug_ranges entry has start address of zero"
10370 " [in module %s]"), objfile->name);
10371 continue;
10372 }
10373
10374 record_block_range (block, start, end - 1);
10375 }
10376 }
10377 }
10378 }
10379
10380 /* Check whether the producer field indicates either of GCC < 4.6, or the
10381 Intel C/C++ compiler, and cache the result in CU. */
10382
10383 static void
10384 check_producer (struct dwarf2_cu *cu)
10385 {
10386 const char *cs;
10387 int major, minor, release;
10388
10389 if (cu->producer == NULL)
10390 {
10391 /* For unknown compilers expect their behavior is DWARF version
10392 compliant.
10393
10394 GCC started to support .debug_types sections by -gdwarf-4 since
10395 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10396 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10397 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10398 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10399 }
10400 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10401 {
10402 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10403
10404 cs = &cu->producer[strlen ("GNU ")];
10405 while (*cs && !isdigit (*cs))
10406 cs++;
10407 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10408 {
10409 /* Not recognized as GCC. */
10410 }
10411 else
10412 {
10413 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10414 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10415 }
10416 }
10417 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10418 cu->producer_is_icc = 1;
10419 else
10420 {
10421 /* For other non-GCC compilers, expect their behavior is DWARF version
10422 compliant. */
10423 }
10424
10425 cu->checked_producer = 1;
10426 }
10427
10428 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10429 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10430 during 4.6.0 experimental. */
10431
10432 static int
10433 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10434 {
10435 if (!cu->checked_producer)
10436 check_producer (cu);
10437
10438 return cu->producer_is_gxx_lt_4_6;
10439 }
10440
10441 /* Return the default accessibility type if it is not overriden by
10442 DW_AT_accessibility. */
10443
10444 static enum dwarf_access_attribute
10445 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10446 {
10447 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10448 {
10449 /* The default DWARF 2 accessibility for members is public, the default
10450 accessibility for inheritance is private. */
10451
10452 if (die->tag != DW_TAG_inheritance)
10453 return DW_ACCESS_public;
10454 else
10455 return DW_ACCESS_private;
10456 }
10457 else
10458 {
10459 /* DWARF 3+ defines the default accessibility a different way. The same
10460 rules apply now for DW_TAG_inheritance as for the members and it only
10461 depends on the container kind. */
10462
10463 if (die->parent->tag == DW_TAG_class_type)
10464 return DW_ACCESS_private;
10465 else
10466 return DW_ACCESS_public;
10467 }
10468 }
10469
10470 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10471 offset. If the attribute was not found return 0, otherwise return
10472 1. If it was found but could not properly be handled, set *OFFSET
10473 to 0. */
10474
10475 static int
10476 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10477 LONGEST *offset)
10478 {
10479 struct attribute *attr;
10480
10481 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10482 if (attr != NULL)
10483 {
10484 *offset = 0;
10485
10486 /* Note that we do not check for a section offset first here.
10487 This is because DW_AT_data_member_location is new in DWARF 4,
10488 so if we see it, we can assume that a constant form is really
10489 a constant and not a section offset. */
10490 if (attr_form_is_constant (attr))
10491 *offset = dwarf2_get_attr_constant_value (attr, 0);
10492 else if (attr_form_is_section_offset (attr))
10493 dwarf2_complex_location_expr_complaint ();
10494 else if (attr_form_is_block (attr))
10495 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10496 else
10497 dwarf2_complex_location_expr_complaint ();
10498
10499 return 1;
10500 }
10501
10502 return 0;
10503 }
10504
10505 /* Add an aggregate field to the field list. */
10506
10507 static void
10508 dwarf2_add_field (struct field_info *fip, struct die_info *die,
10509 struct dwarf2_cu *cu)
10510 {
10511 struct objfile *objfile = cu->objfile;
10512 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10513 struct nextfield *new_field;
10514 struct attribute *attr;
10515 struct field *fp;
10516 const char *fieldname = "";
10517
10518 /* Allocate a new field list entry and link it in. */
10519 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
10520 make_cleanup (xfree, new_field);
10521 memset (new_field, 0, sizeof (struct nextfield));
10522
10523 if (die->tag == DW_TAG_inheritance)
10524 {
10525 new_field->next = fip->baseclasses;
10526 fip->baseclasses = new_field;
10527 }
10528 else
10529 {
10530 new_field->next = fip->fields;
10531 fip->fields = new_field;
10532 }
10533 fip->nfields++;
10534
10535 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10536 if (attr)
10537 new_field->accessibility = DW_UNSND (attr);
10538 else
10539 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
10540 if (new_field->accessibility != DW_ACCESS_public)
10541 fip->non_public_fields = 1;
10542
10543 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10544 if (attr)
10545 new_field->virtuality = DW_UNSND (attr);
10546 else
10547 new_field->virtuality = DW_VIRTUALITY_none;
10548
10549 fp = &new_field->field;
10550
10551 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
10552 {
10553 LONGEST offset;
10554
10555 /* Data member other than a C++ static data member. */
10556
10557 /* Get type of field. */
10558 fp->type = die_type (die, cu);
10559
10560 SET_FIELD_BITPOS (*fp, 0);
10561
10562 /* Get bit size of field (zero if none). */
10563 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
10564 if (attr)
10565 {
10566 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10567 }
10568 else
10569 {
10570 FIELD_BITSIZE (*fp) = 0;
10571 }
10572
10573 /* Get bit offset of field. */
10574 if (handle_data_member_location (die, cu, &offset))
10575 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10576 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
10577 if (attr)
10578 {
10579 if (gdbarch_bits_big_endian (gdbarch))
10580 {
10581 /* For big endian bits, the DW_AT_bit_offset gives the
10582 additional bit offset from the MSB of the containing
10583 anonymous object to the MSB of the field. We don't
10584 have to do anything special since we don't need to
10585 know the size of the anonymous object. */
10586 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
10587 }
10588 else
10589 {
10590 /* For little endian bits, compute the bit offset to the
10591 MSB of the anonymous object, subtract off the number of
10592 bits from the MSB of the field to the MSB of the
10593 object, and then subtract off the number of bits of
10594 the field itself. The result is the bit offset of
10595 the LSB of the field. */
10596 int anonymous_size;
10597 int bit_offset = DW_UNSND (attr);
10598
10599 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10600 if (attr)
10601 {
10602 /* The size of the anonymous object containing
10603 the bit field is explicit, so use the
10604 indicated size (in bytes). */
10605 anonymous_size = DW_UNSND (attr);
10606 }
10607 else
10608 {
10609 /* The size of the anonymous object containing
10610 the bit field must be inferred from the type
10611 attribute of the data member containing the
10612 bit field. */
10613 anonymous_size = TYPE_LENGTH (fp->type);
10614 }
10615 SET_FIELD_BITPOS (*fp,
10616 (FIELD_BITPOS (*fp)
10617 + anonymous_size * bits_per_byte
10618 - bit_offset - FIELD_BITSIZE (*fp)));
10619 }
10620 }
10621
10622 /* Get name of field. */
10623 fieldname = dwarf2_name (die, cu);
10624 if (fieldname == NULL)
10625 fieldname = "";
10626
10627 /* The name is already allocated along with this objfile, so we don't
10628 need to duplicate it for the type. */
10629 fp->name = fieldname;
10630
10631 /* Change accessibility for artificial fields (e.g. virtual table
10632 pointer or virtual base class pointer) to private. */
10633 if (dwarf2_attr (die, DW_AT_artificial, cu))
10634 {
10635 FIELD_ARTIFICIAL (*fp) = 1;
10636 new_field->accessibility = DW_ACCESS_private;
10637 fip->non_public_fields = 1;
10638 }
10639 }
10640 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
10641 {
10642 /* C++ static member. */
10643
10644 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10645 is a declaration, but all versions of G++ as of this writing
10646 (so through at least 3.2.1) incorrectly generate
10647 DW_TAG_variable tags. */
10648
10649 const char *physname;
10650
10651 /* Get name of field. */
10652 fieldname = dwarf2_name (die, cu);
10653 if (fieldname == NULL)
10654 return;
10655
10656 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10657 if (attr
10658 /* Only create a symbol if this is an external value.
10659 new_symbol checks this and puts the value in the global symbol
10660 table, which we want. If it is not external, new_symbol
10661 will try to put the value in cu->list_in_scope which is wrong. */
10662 && dwarf2_flag_true_p (die, DW_AT_external, cu))
10663 {
10664 /* A static const member, not much different than an enum as far as
10665 we're concerned, except that we can support more types. */
10666 new_symbol (die, NULL, cu);
10667 }
10668
10669 /* Get physical name. */
10670 physname = dwarf2_physname (fieldname, die, cu);
10671
10672 /* The name is already allocated along with this objfile, so we don't
10673 need to duplicate it for the type. */
10674 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
10675 FIELD_TYPE (*fp) = die_type (die, cu);
10676 FIELD_NAME (*fp) = fieldname;
10677 }
10678 else if (die->tag == DW_TAG_inheritance)
10679 {
10680 LONGEST offset;
10681
10682 /* C++ base class field. */
10683 if (handle_data_member_location (die, cu, &offset))
10684 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10685 FIELD_BITSIZE (*fp) = 0;
10686 FIELD_TYPE (*fp) = die_type (die, cu);
10687 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10688 fip->nbaseclasses++;
10689 }
10690 }
10691
10692 /* Add a typedef defined in the scope of the FIP's class. */
10693
10694 static void
10695 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10696 struct dwarf2_cu *cu)
10697 {
10698 struct objfile *objfile = cu->objfile;
10699 struct typedef_field_list *new_field;
10700 struct attribute *attr;
10701 struct typedef_field *fp;
10702 char *fieldname = "";
10703
10704 /* Allocate a new field list entry and link it in. */
10705 new_field = xzalloc (sizeof (*new_field));
10706 make_cleanup (xfree, new_field);
10707
10708 gdb_assert (die->tag == DW_TAG_typedef);
10709
10710 fp = &new_field->field;
10711
10712 /* Get name of field. */
10713 fp->name = dwarf2_name (die, cu);
10714 if (fp->name == NULL)
10715 return;
10716
10717 fp->type = read_type_die (die, cu);
10718
10719 new_field->next = fip->typedef_field_list;
10720 fip->typedef_field_list = new_field;
10721 fip->typedef_field_list_count++;
10722 }
10723
10724 /* Create the vector of fields, and attach it to the type. */
10725
10726 static void
10727 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
10728 struct dwarf2_cu *cu)
10729 {
10730 int nfields = fip->nfields;
10731
10732 /* Record the field count, allocate space for the array of fields,
10733 and create blank accessibility bitfields if necessary. */
10734 TYPE_NFIELDS (type) = nfields;
10735 TYPE_FIELDS (type) = (struct field *)
10736 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10737 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10738
10739 if (fip->non_public_fields && cu->language != language_ada)
10740 {
10741 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10742
10743 TYPE_FIELD_PRIVATE_BITS (type) =
10744 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10745 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10746
10747 TYPE_FIELD_PROTECTED_BITS (type) =
10748 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10749 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10750
10751 TYPE_FIELD_IGNORE_BITS (type) =
10752 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10753 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10754 }
10755
10756 /* If the type has baseclasses, allocate and clear a bit vector for
10757 TYPE_FIELD_VIRTUAL_BITS. */
10758 if (fip->nbaseclasses && cu->language != language_ada)
10759 {
10760 int num_bytes = B_BYTES (fip->nbaseclasses);
10761 unsigned char *pointer;
10762
10763 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10764 pointer = TYPE_ALLOC (type, num_bytes);
10765 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10766 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10767 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10768 }
10769
10770 /* Copy the saved-up fields into the field vector. Start from the head of
10771 the list, adding to the tail of the field array, so that they end up in
10772 the same order in the array in which they were added to the list. */
10773 while (nfields-- > 0)
10774 {
10775 struct nextfield *fieldp;
10776
10777 if (fip->fields)
10778 {
10779 fieldp = fip->fields;
10780 fip->fields = fieldp->next;
10781 }
10782 else
10783 {
10784 fieldp = fip->baseclasses;
10785 fip->baseclasses = fieldp->next;
10786 }
10787
10788 TYPE_FIELD (type, nfields) = fieldp->field;
10789 switch (fieldp->accessibility)
10790 {
10791 case DW_ACCESS_private:
10792 if (cu->language != language_ada)
10793 SET_TYPE_FIELD_PRIVATE (type, nfields);
10794 break;
10795
10796 case DW_ACCESS_protected:
10797 if (cu->language != language_ada)
10798 SET_TYPE_FIELD_PROTECTED (type, nfields);
10799 break;
10800
10801 case DW_ACCESS_public:
10802 break;
10803
10804 default:
10805 /* Unknown accessibility. Complain and treat it as public. */
10806 {
10807 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10808 fieldp->accessibility);
10809 }
10810 break;
10811 }
10812 if (nfields < fip->nbaseclasses)
10813 {
10814 switch (fieldp->virtuality)
10815 {
10816 case DW_VIRTUALITY_virtual:
10817 case DW_VIRTUALITY_pure_virtual:
10818 if (cu->language == language_ada)
10819 error (_("unexpected virtuality in component of Ada type"));
10820 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10821 break;
10822 }
10823 }
10824 }
10825 }
10826
10827 /* Return true if this member function is a constructor, false
10828 otherwise. */
10829
10830 static int
10831 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
10832 {
10833 const char *fieldname;
10834 const char *typename;
10835 int len;
10836
10837 if (die->parent == NULL)
10838 return 0;
10839
10840 if (die->parent->tag != DW_TAG_structure_type
10841 && die->parent->tag != DW_TAG_union_type
10842 && die->parent->tag != DW_TAG_class_type)
10843 return 0;
10844
10845 fieldname = dwarf2_name (die, cu);
10846 typename = dwarf2_name (die->parent, cu);
10847 if (fieldname == NULL || typename == NULL)
10848 return 0;
10849
10850 len = strlen (fieldname);
10851 return (strncmp (fieldname, typename, len) == 0
10852 && (typename[len] == '\0' || typename[len] == '<'));
10853 }
10854
10855 /* Add a member function to the proper fieldlist. */
10856
10857 static void
10858 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
10859 struct type *type, struct dwarf2_cu *cu)
10860 {
10861 struct objfile *objfile = cu->objfile;
10862 struct attribute *attr;
10863 struct fnfieldlist *flp;
10864 int i;
10865 struct fn_field *fnp;
10866 const char *fieldname;
10867 struct nextfnfield *new_fnfield;
10868 struct type *this_type;
10869 enum dwarf_access_attribute accessibility;
10870
10871 if (cu->language == language_ada)
10872 error (_("unexpected member function in Ada type"));
10873
10874 /* Get name of member function. */
10875 fieldname = dwarf2_name (die, cu);
10876 if (fieldname == NULL)
10877 return;
10878
10879 /* Look up member function name in fieldlist. */
10880 for (i = 0; i < fip->nfnfields; i++)
10881 {
10882 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
10883 break;
10884 }
10885
10886 /* Create new list element if necessary. */
10887 if (i < fip->nfnfields)
10888 flp = &fip->fnfieldlists[i];
10889 else
10890 {
10891 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
10892 {
10893 fip->fnfieldlists = (struct fnfieldlist *)
10894 xrealloc (fip->fnfieldlists,
10895 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
10896 * sizeof (struct fnfieldlist));
10897 if (fip->nfnfields == 0)
10898 make_cleanup (free_current_contents, &fip->fnfieldlists);
10899 }
10900 flp = &fip->fnfieldlists[fip->nfnfields];
10901 flp->name = fieldname;
10902 flp->length = 0;
10903 flp->head = NULL;
10904 i = fip->nfnfields++;
10905 }
10906
10907 /* Create a new member function field and chain it to the field list
10908 entry. */
10909 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
10910 make_cleanup (xfree, new_fnfield);
10911 memset (new_fnfield, 0, sizeof (struct nextfnfield));
10912 new_fnfield->next = flp->head;
10913 flp->head = new_fnfield;
10914 flp->length++;
10915
10916 /* Fill in the member function field info. */
10917 fnp = &new_fnfield->fnfield;
10918
10919 /* Delay processing of the physname until later. */
10920 if (cu->language == language_cplus || cu->language == language_java)
10921 {
10922 add_to_method_list (type, i, flp->length - 1, fieldname,
10923 die, cu);
10924 }
10925 else
10926 {
10927 const char *physname = dwarf2_physname (fieldname, die, cu);
10928 fnp->physname = physname ? physname : "";
10929 }
10930
10931 fnp->type = alloc_type (objfile);
10932 this_type = read_type_die (die, cu);
10933 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
10934 {
10935 int nparams = TYPE_NFIELDS (this_type);
10936
10937 /* TYPE is the domain of this method, and THIS_TYPE is the type
10938 of the method itself (TYPE_CODE_METHOD). */
10939 smash_to_method_type (fnp->type, type,
10940 TYPE_TARGET_TYPE (this_type),
10941 TYPE_FIELDS (this_type),
10942 TYPE_NFIELDS (this_type),
10943 TYPE_VARARGS (this_type));
10944
10945 /* Handle static member functions.
10946 Dwarf2 has no clean way to discern C++ static and non-static
10947 member functions. G++ helps GDB by marking the first
10948 parameter for non-static member functions (which is the this
10949 pointer) as artificial. We obtain this information from
10950 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
10951 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
10952 fnp->voffset = VOFFSET_STATIC;
10953 }
10954 else
10955 complaint (&symfile_complaints, _("member function type missing for '%s'"),
10956 dwarf2_full_name (fieldname, die, cu));
10957
10958 /* Get fcontext from DW_AT_containing_type if present. */
10959 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
10960 fnp->fcontext = die_containing_type (die, cu);
10961
10962 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
10963 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
10964
10965 /* Get accessibility. */
10966 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10967 if (attr)
10968 accessibility = DW_UNSND (attr);
10969 else
10970 accessibility = dwarf2_default_access_attribute (die, cu);
10971 switch (accessibility)
10972 {
10973 case DW_ACCESS_private:
10974 fnp->is_private = 1;
10975 break;
10976 case DW_ACCESS_protected:
10977 fnp->is_protected = 1;
10978 break;
10979 }
10980
10981 /* Check for artificial methods. */
10982 attr = dwarf2_attr (die, DW_AT_artificial, cu);
10983 if (attr && DW_UNSND (attr) != 0)
10984 fnp->is_artificial = 1;
10985
10986 fnp->is_constructor = dwarf2_is_constructor (die, cu);
10987
10988 /* Get index in virtual function table if it is a virtual member
10989 function. For older versions of GCC, this is an offset in the
10990 appropriate virtual table, as specified by DW_AT_containing_type.
10991 For everyone else, it is an expression to be evaluated relative
10992 to the object address. */
10993
10994 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
10995 if (attr)
10996 {
10997 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
10998 {
10999 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11000 {
11001 /* Old-style GCC. */
11002 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11003 }
11004 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11005 || (DW_BLOCK (attr)->size > 1
11006 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11007 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11008 {
11009 struct dwarf_block blk;
11010 int offset;
11011
11012 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11013 ? 1 : 2);
11014 blk.size = DW_BLOCK (attr)->size - offset;
11015 blk.data = DW_BLOCK (attr)->data + offset;
11016 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11017 if ((fnp->voffset % cu->header.addr_size) != 0)
11018 dwarf2_complex_location_expr_complaint ();
11019 else
11020 fnp->voffset /= cu->header.addr_size;
11021 fnp->voffset += 2;
11022 }
11023 else
11024 dwarf2_complex_location_expr_complaint ();
11025
11026 if (!fnp->fcontext)
11027 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11028 }
11029 else if (attr_form_is_section_offset (attr))
11030 {
11031 dwarf2_complex_location_expr_complaint ();
11032 }
11033 else
11034 {
11035 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11036 fieldname);
11037 }
11038 }
11039 else
11040 {
11041 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11042 if (attr && DW_UNSND (attr))
11043 {
11044 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11045 complaint (&symfile_complaints,
11046 _("Member function \"%s\" (offset %d) is virtual "
11047 "but the vtable offset is not specified"),
11048 fieldname, die->offset.sect_off);
11049 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11050 TYPE_CPLUS_DYNAMIC (type) = 1;
11051 }
11052 }
11053 }
11054
11055 /* Create the vector of member function fields, and attach it to the type. */
11056
11057 static void
11058 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11059 struct dwarf2_cu *cu)
11060 {
11061 struct fnfieldlist *flp;
11062 int i;
11063
11064 if (cu->language == language_ada)
11065 error (_("unexpected member functions in Ada type"));
11066
11067 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11068 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11069 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11070
11071 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11072 {
11073 struct nextfnfield *nfp = flp->head;
11074 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11075 int k;
11076
11077 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11078 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11079 fn_flp->fn_fields = (struct fn_field *)
11080 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11081 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11082 fn_flp->fn_fields[k] = nfp->fnfield;
11083 }
11084
11085 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11086 }
11087
11088 /* Returns non-zero if NAME is the name of a vtable member in CU's
11089 language, zero otherwise. */
11090 static int
11091 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11092 {
11093 static const char vptr[] = "_vptr";
11094 static const char vtable[] = "vtable";
11095
11096 /* Look for the C++ and Java forms of the vtable. */
11097 if ((cu->language == language_java
11098 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11099 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11100 && is_cplus_marker (name[sizeof (vptr) - 1])))
11101 return 1;
11102
11103 return 0;
11104 }
11105
11106 /* GCC outputs unnamed structures that are really pointers to member
11107 functions, with the ABI-specified layout. If TYPE describes
11108 such a structure, smash it into a member function type.
11109
11110 GCC shouldn't do this; it should just output pointer to member DIEs.
11111 This is GCC PR debug/28767. */
11112
11113 static void
11114 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11115 {
11116 struct type *pfn_type, *domain_type, *new_type;
11117
11118 /* Check for a structure with no name and two children. */
11119 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11120 return;
11121
11122 /* Check for __pfn and __delta members. */
11123 if (TYPE_FIELD_NAME (type, 0) == NULL
11124 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11125 || TYPE_FIELD_NAME (type, 1) == NULL
11126 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11127 return;
11128
11129 /* Find the type of the method. */
11130 pfn_type = TYPE_FIELD_TYPE (type, 0);
11131 if (pfn_type == NULL
11132 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11133 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11134 return;
11135
11136 /* Look for the "this" argument. */
11137 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11138 if (TYPE_NFIELDS (pfn_type) == 0
11139 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11140 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11141 return;
11142
11143 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11144 new_type = alloc_type (objfile);
11145 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11146 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11147 TYPE_VARARGS (pfn_type));
11148 smash_to_methodptr_type (type, new_type);
11149 }
11150
11151 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11152 (icc). */
11153
11154 static int
11155 producer_is_icc (struct dwarf2_cu *cu)
11156 {
11157 if (!cu->checked_producer)
11158 check_producer (cu);
11159
11160 return cu->producer_is_icc;
11161 }
11162
11163 /* Called when we find the DIE that starts a structure or union scope
11164 (definition) to create a type for the structure or union. Fill in
11165 the type's name and general properties; the members will not be
11166 processed until process_structure_type.
11167
11168 NOTE: we need to call these functions regardless of whether or not the
11169 DIE has a DW_AT_name attribute, since it might be an anonymous
11170 structure or union. This gets the type entered into our set of
11171 user defined types.
11172
11173 However, if the structure is incomplete (an opaque struct/union)
11174 then suppress creating a symbol table entry for it since gdb only
11175 wants to find the one with the complete definition. Note that if
11176 it is complete, we just call new_symbol, which does it's own
11177 checking about whether the struct/union is anonymous or not (and
11178 suppresses creating a symbol table entry itself). */
11179
11180 static struct type *
11181 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11182 {
11183 struct objfile *objfile = cu->objfile;
11184 struct type *type;
11185 struct attribute *attr;
11186 const char *name;
11187
11188 /* If the definition of this type lives in .debug_types, read that type.
11189 Don't follow DW_AT_specification though, that will take us back up
11190 the chain and we want to go down. */
11191 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11192 if (attr)
11193 {
11194 struct dwarf2_cu *type_cu = cu;
11195 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11196
11197 /* We could just recurse on read_structure_type, but we need to call
11198 get_die_type to ensure only one type for this DIE is created.
11199 This is important, for example, because for c++ classes we need
11200 TYPE_NAME set which is only done by new_symbol. Blech. */
11201 type = read_type_die (type_die, type_cu);
11202
11203 /* TYPE_CU may not be the same as CU.
11204 Ensure TYPE is recorded in CU's type_hash table. */
11205 return set_die_type (die, type, cu);
11206 }
11207
11208 type = alloc_type (objfile);
11209 INIT_CPLUS_SPECIFIC (type);
11210
11211 name = dwarf2_name (die, cu);
11212 if (name != NULL)
11213 {
11214 if (cu->language == language_cplus
11215 || cu->language == language_java)
11216 {
11217 const char *full_name = dwarf2_full_name (name, die, cu);
11218
11219 /* dwarf2_full_name might have already finished building the DIE's
11220 type. If so, there is no need to continue. */
11221 if (get_die_type (die, cu) != NULL)
11222 return get_die_type (die, cu);
11223
11224 TYPE_TAG_NAME (type) = full_name;
11225 if (die->tag == DW_TAG_structure_type
11226 || die->tag == DW_TAG_class_type)
11227 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11228 }
11229 else
11230 {
11231 /* The name is already allocated along with this objfile, so
11232 we don't need to duplicate it for the type. */
11233 TYPE_TAG_NAME (type) = name;
11234 if (die->tag == DW_TAG_class_type)
11235 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11236 }
11237 }
11238
11239 if (die->tag == DW_TAG_structure_type)
11240 {
11241 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11242 }
11243 else if (die->tag == DW_TAG_union_type)
11244 {
11245 TYPE_CODE (type) = TYPE_CODE_UNION;
11246 }
11247 else
11248 {
11249 TYPE_CODE (type) = TYPE_CODE_CLASS;
11250 }
11251
11252 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11253 TYPE_DECLARED_CLASS (type) = 1;
11254
11255 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11256 if (attr)
11257 {
11258 TYPE_LENGTH (type) = DW_UNSND (attr);
11259 }
11260 else
11261 {
11262 TYPE_LENGTH (type) = 0;
11263 }
11264
11265 if (producer_is_icc (cu))
11266 {
11267 /* ICC does not output the required DW_AT_declaration
11268 on incomplete types, but gives them a size of zero. */
11269 }
11270 else
11271 TYPE_STUB_SUPPORTED (type) = 1;
11272
11273 if (die_is_declaration (die, cu))
11274 TYPE_STUB (type) = 1;
11275 else if (attr == NULL && die->child == NULL
11276 && producer_is_realview (cu->producer))
11277 /* RealView does not output the required DW_AT_declaration
11278 on incomplete types. */
11279 TYPE_STUB (type) = 1;
11280
11281 /* We need to add the type field to the die immediately so we don't
11282 infinitely recurse when dealing with pointers to the structure
11283 type within the structure itself. */
11284 set_die_type (die, type, cu);
11285
11286 /* set_die_type should be already done. */
11287 set_descriptive_type (type, die, cu);
11288
11289 return type;
11290 }
11291
11292 /* Finish creating a structure or union type, including filling in
11293 its members and creating a symbol for it. */
11294
11295 static void
11296 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11297 {
11298 struct objfile *objfile = cu->objfile;
11299 struct die_info *child_die = die->child;
11300 struct type *type;
11301
11302 type = get_die_type (die, cu);
11303 if (type == NULL)
11304 type = read_structure_type (die, cu);
11305
11306 if (die->child != NULL && ! die_is_declaration (die, cu))
11307 {
11308 struct field_info fi;
11309 struct die_info *child_die;
11310 VEC (symbolp) *template_args = NULL;
11311 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11312
11313 memset (&fi, 0, sizeof (struct field_info));
11314
11315 child_die = die->child;
11316
11317 while (child_die && child_die->tag)
11318 {
11319 if (child_die->tag == DW_TAG_member
11320 || child_die->tag == DW_TAG_variable)
11321 {
11322 /* NOTE: carlton/2002-11-05: A C++ static data member
11323 should be a DW_TAG_member that is a declaration, but
11324 all versions of G++ as of this writing (so through at
11325 least 3.2.1) incorrectly generate DW_TAG_variable
11326 tags for them instead. */
11327 dwarf2_add_field (&fi, child_die, cu);
11328 }
11329 else if (child_die->tag == DW_TAG_subprogram)
11330 {
11331 /* C++ member function. */
11332 dwarf2_add_member_fn (&fi, child_die, type, cu);
11333 }
11334 else if (child_die->tag == DW_TAG_inheritance)
11335 {
11336 /* C++ base class field. */
11337 dwarf2_add_field (&fi, child_die, cu);
11338 }
11339 else if (child_die->tag == DW_TAG_typedef)
11340 dwarf2_add_typedef (&fi, child_die, cu);
11341 else if (child_die->tag == DW_TAG_template_type_param
11342 || child_die->tag == DW_TAG_template_value_param)
11343 {
11344 struct symbol *arg = new_symbol (child_die, NULL, cu);
11345
11346 if (arg != NULL)
11347 VEC_safe_push (symbolp, template_args, arg);
11348 }
11349
11350 child_die = sibling_die (child_die);
11351 }
11352
11353 /* Attach template arguments to type. */
11354 if (! VEC_empty (symbolp, template_args))
11355 {
11356 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11357 TYPE_N_TEMPLATE_ARGUMENTS (type)
11358 = VEC_length (symbolp, template_args);
11359 TYPE_TEMPLATE_ARGUMENTS (type)
11360 = obstack_alloc (&objfile->objfile_obstack,
11361 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11362 * sizeof (struct symbol *)));
11363 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11364 VEC_address (symbolp, template_args),
11365 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11366 * sizeof (struct symbol *)));
11367 VEC_free (symbolp, template_args);
11368 }
11369
11370 /* Attach fields and member functions to the type. */
11371 if (fi.nfields)
11372 dwarf2_attach_fields_to_type (&fi, type, cu);
11373 if (fi.nfnfields)
11374 {
11375 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11376
11377 /* Get the type which refers to the base class (possibly this
11378 class itself) which contains the vtable pointer for the current
11379 class from the DW_AT_containing_type attribute. This use of
11380 DW_AT_containing_type is a GNU extension. */
11381
11382 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11383 {
11384 struct type *t = die_containing_type (die, cu);
11385
11386 TYPE_VPTR_BASETYPE (type) = t;
11387 if (type == t)
11388 {
11389 int i;
11390
11391 /* Our own class provides vtbl ptr. */
11392 for (i = TYPE_NFIELDS (t) - 1;
11393 i >= TYPE_N_BASECLASSES (t);
11394 --i)
11395 {
11396 const char *fieldname = TYPE_FIELD_NAME (t, i);
11397
11398 if (is_vtable_name (fieldname, cu))
11399 {
11400 TYPE_VPTR_FIELDNO (type) = i;
11401 break;
11402 }
11403 }
11404
11405 /* Complain if virtual function table field not found. */
11406 if (i < TYPE_N_BASECLASSES (t))
11407 complaint (&symfile_complaints,
11408 _("virtual function table pointer "
11409 "not found when defining class '%s'"),
11410 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11411 "");
11412 }
11413 else
11414 {
11415 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11416 }
11417 }
11418 else if (cu->producer
11419 && strncmp (cu->producer,
11420 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11421 {
11422 /* The IBM XLC compiler does not provide direct indication
11423 of the containing type, but the vtable pointer is
11424 always named __vfp. */
11425
11426 int i;
11427
11428 for (i = TYPE_NFIELDS (type) - 1;
11429 i >= TYPE_N_BASECLASSES (type);
11430 --i)
11431 {
11432 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11433 {
11434 TYPE_VPTR_FIELDNO (type) = i;
11435 TYPE_VPTR_BASETYPE (type) = type;
11436 break;
11437 }
11438 }
11439 }
11440 }
11441
11442 /* Copy fi.typedef_field_list linked list elements content into the
11443 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11444 if (fi.typedef_field_list)
11445 {
11446 int i = fi.typedef_field_list_count;
11447
11448 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11449 TYPE_TYPEDEF_FIELD_ARRAY (type)
11450 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11451 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11452
11453 /* Reverse the list order to keep the debug info elements order. */
11454 while (--i >= 0)
11455 {
11456 struct typedef_field *dest, *src;
11457
11458 dest = &TYPE_TYPEDEF_FIELD (type, i);
11459 src = &fi.typedef_field_list->field;
11460 fi.typedef_field_list = fi.typedef_field_list->next;
11461 *dest = *src;
11462 }
11463 }
11464
11465 do_cleanups (back_to);
11466
11467 if (HAVE_CPLUS_STRUCT (type))
11468 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
11469 }
11470
11471 quirk_gcc_member_function_pointer (type, objfile);
11472
11473 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11474 snapshots) has been known to create a die giving a declaration
11475 for a class that has, as a child, a die giving a definition for a
11476 nested class. So we have to process our children even if the
11477 current die is a declaration. Normally, of course, a declaration
11478 won't have any children at all. */
11479
11480 while (child_die != NULL && child_die->tag)
11481 {
11482 if (child_die->tag == DW_TAG_member
11483 || child_die->tag == DW_TAG_variable
11484 || child_die->tag == DW_TAG_inheritance
11485 || child_die->tag == DW_TAG_template_value_param
11486 || child_die->tag == DW_TAG_template_type_param)
11487 {
11488 /* Do nothing. */
11489 }
11490 else
11491 process_die (child_die, cu);
11492
11493 child_die = sibling_die (child_die);
11494 }
11495
11496 /* Do not consider external references. According to the DWARF standard,
11497 these DIEs are identified by the fact that they have no byte_size
11498 attribute, and a declaration attribute. */
11499 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11500 || !die_is_declaration (die, cu))
11501 new_symbol (die, type, cu);
11502 }
11503
11504 /* Given a DW_AT_enumeration_type die, set its type. We do not
11505 complete the type's fields yet, or create any symbols. */
11506
11507 static struct type *
11508 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
11509 {
11510 struct objfile *objfile = cu->objfile;
11511 struct type *type;
11512 struct attribute *attr;
11513 const char *name;
11514
11515 /* If the definition of this type lives in .debug_types, read that type.
11516 Don't follow DW_AT_specification though, that will take us back up
11517 the chain and we want to go down. */
11518 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11519 if (attr)
11520 {
11521 struct dwarf2_cu *type_cu = cu;
11522 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11523
11524 type = read_type_die (type_die, type_cu);
11525
11526 /* TYPE_CU may not be the same as CU.
11527 Ensure TYPE is recorded in CU's type_hash table. */
11528 return set_die_type (die, type, cu);
11529 }
11530
11531 type = alloc_type (objfile);
11532
11533 TYPE_CODE (type) = TYPE_CODE_ENUM;
11534 name = dwarf2_full_name (NULL, die, cu);
11535 if (name != NULL)
11536 TYPE_TAG_NAME (type) = name;
11537
11538 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11539 if (attr)
11540 {
11541 TYPE_LENGTH (type) = DW_UNSND (attr);
11542 }
11543 else
11544 {
11545 TYPE_LENGTH (type) = 0;
11546 }
11547
11548 /* The enumeration DIE can be incomplete. In Ada, any type can be
11549 declared as private in the package spec, and then defined only
11550 inside the package body. Such types are known as Taft Amendment
11551 Types. When another package uses such a type, an incomplete DIE
11552 may be generated by the compiler. */
11553 if (die_is_declaration (die, cu))
11554 TYPE_STUB (type) = 1;
11555
11556 return set_die_type (die, type, cu);
11557 }
11558
11559 /* Given a pointer to a die which begins an enumeration, process all
11560 the dies that define the members of the enumeration, and create the
11561 symbol for the enumeration type.
11562
11563 NOTE: We reverse the order of the element list. */
11564
11565 static void
11566 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11567 {
11568 struct type *this_type;
11569
11570 this_type = get_die_type (die, cu);
11571 if (this_type == NULL)
11572 this_type = read_enumeration_type (die, cu);
11573
11574 if (die->child != NULL)
11575 {
11576 struct die_info *child_die;
11577 struct symbol *sym;
11578 struct field *fields = NULL;
11579 int num_fields = 0;
11580 int unsigned_enum = 1;
11581 const char *name;
11582 int flag_enum = 1;
11583 ULONGEST mask = 0;
11584
11585 child_die = die->child;
11586 while (child_die && child_die->tag)
11587 {
11588 if (child_die->tag != DW_TAG_enumerator)
11589 {
11590 process_die (child_die, cu);
11591 }
11592 else
11593 {
11594 name = dwarf2_name (child_die, cu);
11595 if (name)
11596 {
11597 sym = new_symbol (child_die, this_type, cu);
11598 if (SYMBOL_VALUE (sym) < 0)
11599 {
11600 unsigned_enum = 0;
11601 flag_enum = 0;
11602 }
11603 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11604 flag_enum = 0;
11605 else
11606 mask |= SYMBOL_VALUE (sym);
11607
11608 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11609 {
11610 fields = (struct field *)
11611 xrealloc (fields,
11612 (num_fields + DW_FIELD_ALLOC_CHUNK)
11613 * sizeof (struct field));
11614 }
11615
11616 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
11617 FIELD_TYPE (fields[num_fields]) = NULL;
11618 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
11619 FIELD_BITSIZE (fields[num_fields]) = 0;
11620
11621 num_fields++;
11622 }
11623 }
11624
11625 child_die = sibling_die (child_die);
11626 }
11627
11628 if (num_fields)
11629 {
11630 TYPE_NFIELDS (this_type) = num_fields;
11631 TYPE_FIELDS (this_type) = (struct field *)
11632 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11633 memcpy (TYPE_FIELDS (this_type), fields,
11634 sizeof (struct field) * num_fields);
11635 xfree (fields);
11636 }
11637 if (unsigned_enum)
11638 TYPE_UNSIGNED (this_type) = 1;
11639 if (flag_enum)
11640 TYPE_FLAG_ENUM (this_type) = 1;
11641 }
11642
11643 /* If we are reading an enum from a .debug_types unit, and the enum
11644 is a declaration, and the enum is not the signatured type in the
11645 unit, then we do not want to add a symbol for it. Adding a
11646 symbol would in some cases obscure the true definition of the
11647 enum, giving users an incomplete type when the definition is
11648 actually available. Note that we do not want to do this for all
11649 enums which are just declarations, because C++0x allows forward
11650 enum declarations. */
11651 if (cu->per_cu->is_debug_types
11652 && die_is_declaration (die, cu))
11653 {
11654 struct signatured_type *sig_type;
11655
11656 sig_type
11657 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
11658 cu->per_cu->info_or_types_section,
11659 cu->per_cu->offset);
11660 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11661 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
11662 return;
11663 }
11664
11665 new_symbol (die, this_type, cu);
11666 }
11667
11668 /* Extract all information from a DW_TAG_array_type DIE and put it in
11669 the DIE's type field. For now, this only handles one dimensional
11670 arrays. */
11671
11672 static struct type *
11673 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
11674 {
11675 struct objfile *objfile = cu->objfile;
11676 struct die_info *child_die;
11677 struct type *type;
11678 struct type *element_type, *range_type, *index_type;
11679 struct type **range_types = NULL;
11680 struct attribute *attr;
11681 int ndim = 0;
11682 struct cleanup *back_to;
11683 const char *name;
11684
11685 element_type = die_type (die, cu);
11686
11687 /* The die_type call above may have already set the type for this DIE. */
11688 type = get_die_type (die, cu);
11689 if (type)
11690 return type;
11691
11692 /* Irix 6.2 native cc creates array types without children for
11693 arrays with unspecified length. */
11694 if (die->child == NULL)
11695 {
11696 index_type = objfile_type (objfile)->builtin_int;
11697 range_type = create_range_type (NULL, index_type, 0, -1);
11698 type = create_array_type (NULL, element_type, range_type);
11699 return set_die_type (die, type, cu);
11700 }
11701
11702 back_to = make_cleanup (null_cleanup, NULL);
11703 child_die = die->child;
11704 while (child_die && child_die->tag)
11705 {
11706 if (child_die->tag == DW_TAG_subrange_type)
11707 {
11708 struct type *child_type = read_type_die (child_die, cu);
11709
11710 if (child_type != NULL)
11711 {
11712 /* The range type was succesfully read. Save it for the
11713 array type creation. */
11714 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11715 {
11716 range_types = (struct type **)
11717 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11718 * sizeof (struct type *));
11719 if (ndim == 0)
11720 make_cleanup (free_current_contents, &range_types);
11721 }
11722 range_types[ndim++] = child_type;
11723 }
11724 }
11725 child_die = sibling_die (child_die);
11726 }
11727
11728 /* Dwarf2 dimensions are output from left to right, create the
11729 necessary array types in backwards order. */
11730
11731 type = element_type;
11732
11733 if (read_array_order (die, cu) == DW_ORD_col_major)
11734 {
11735 int i = 0;
11736
11737 while (i < ndim)
11738 type = create_array_type (NULL, type, range_types[i++]);
11739 }
11740 else
11741 {
11742 while (ndim-- > 0)
11743 type = create_array_type (NULL, type, range_types[ndim]);
11744 }
11745
11746 /* Understand Dwarf2 support for vector types (like they occur on
11747 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11748 array type. This is not part of the Dwarf2/3 standard yet, but a
11749 custom vendor extension. The main difference between a regular
11750 array and the vector variant is that vectors are passed by value
11751 to functions. */
11752 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
11753 if (attr)
11754 make_vector_type (type);
11755
11756 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11757 implementation may choose to implement triple vectors using this
11758 attribute. */
11759 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11760 if (attr)
11761 {
11762 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11763 TYPE_LENGTH (type) = DW_UNSND (attr);
11764 else
11765 complaint (&symfile_complaints,
11766 _("DW_AT_byte_size for array type smaller "
11767 "than the total size of elements"));
11768 }
11769
11770 name = dwarf2_name (die, cu);
11771 if (name)
11772 TYPE_NAME (type) = name;
11773
11774 /* Install the type in the die. */
11775 set_die_type (die, type, cu);
11776
11777 /* set_die_type should be already done. */
11778 set_descriptive_type (type, die, cu);
11779
11780 do_cleanups (back_to);
11781
11782 return type;
11783 }
11784
11785 static enum dwarf_array_dim_ordering
11786 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11787 {
11788 struct attribute *attr;
11789
11790 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11791
11792 if (attr) return DW_SND (attr);
11793
11794 /* GNU F77 is a special case, as at 08/2004 array type info is the
11795 opposite order to the dwarf2 specification, but data is still
11796 laid out as per normal fortran.
11797
11798 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11799 version checking. */
11800
11801 if (cu->language == language_fortran
11802 && cu->producer && strstr (cu->producer, "GNU F77"))
11803 {
11804 return DW_ORD_row_major;
11805 }
11806
11807 switch (cu->language_defn->la_array_ordering)
11808 {
11809 case array_column_major:
11810 return DW_ORD_col_major;
11811 case array_row_major:
11812 default:
11813 return DW_ORD_row_major;
11814 };
11815 }
11816
11817 /* Extract all information from a DW_TAG_set_type DIE and put it in
11818 the DIE's type field. */
11819
11820 static struct type *
11821 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11822 {
11823 struct type *domain_type, *set_type;
11824 struct attribute *attr;
11825
11826 domain_type = die_type (die, cu);
11827
11828 /* The die_type call above may have already set the type for this DIE. */
11829 set_type = get_die_type (die, cu);
11830 if (set_type)
11831 return set_type;
11832
11833 set_type = create_set_type (NULL, domain_type);
11834
11835 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11836 if (attr)
11837 TYPE_LENGTH (set_type) = DW_UNSND (attr);
11838
11839 return set_die_type (die, set_type, cu);
11840 }
11841
11842 /* A helper for read_common_block that creates a locexpr baton.
11843 SYM is the symbol which we are marking as computed.
11844 COMMON_DIE is the DIE for the common block.
11845 COMMON_LOC is the location expression attribute for the common
11846 block itself.
11847 MEMBER_LOC is the location expression attribute for the particular
11848 member of the common block that we are processing.
11849 CU is the CU from which the above come. */
11850
11851 static void
11852 mark_common_block_symbol_computed (struct symbol *sym,
11853 struct die_info *common_die,
11854 struct attribute *common_loc,
11855 struct attribute *member_loc,
11856 struct dwarf2_cu *cu)
11857 {
11858 struct objfile *objfile = dwarf2_per_objfile->objfile;
11859 struct dwarf2_locexpr_baton *baton;
11860 gdb_byte *ptr;
11861 unsigned int cu_off;
11862 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
11863 LONGEST offset = 0;
11864
11865 gdb_assert (common_loc && member_loc);
11866 gdb_assert (attr_form_is_block (common_loc));
11867 gdb_assert (attr_form_is_block (member_loc)
11868 || attr_form_is_constant (member_loc));
11869
11870 baton = obstack_alloc (&objfile->objfile_obstack,
11871 sizeof (struct dwarf2_locexpr_baton));
11872 baton->per_cu = cu->per_cu;
11873 gdb_assert (baton->per_cu);
11874
11875 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
11876
11877 if (attr_form_is_constant (member_loc))
11878 {
11879 offset = dwarf2_get_attr_constant_value (member_loc, 0);
11880 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
11881 }
11882 else
11883 baton->size += DW_BLOCK (member_loc)->size;
11884
11885 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
11886 baton->data = ptr;
11887
11888 *ptr++ = DW_OP_call4;
11889 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
11890 store_unsigned_integer (ptr, 4, byte_order, cu_off);
11891 ptr += 4;
11892
11893 if (attr_form_is_constant (member_loc))
11894 {
11895 *ptr++ = DW_OP_addr;
11896 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
11897 ptr += cu->header.addr_size;
11898 }
11899 else
11900 {
11901 /* We have to copy the data here, because DW_OP_call4 will only
11902 use a DW_AT_location attribute. */
11903 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
11904 ptr += DW_BLOCK (member_loc)->size;
11905 }
11906
11907 *ptr++ = DW_OP_plus;
11908 gdb_assert (ptr - baton->data == baton->size);
11909
11910 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11911 SYMBOL_LOCATION_BATON (sym) = baton;
11912 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11913 }
11914
11915 /* Create appropriate locally-scoped variables for all the
11916 DW_TAG_common_block entries. Also create a struct common_block
11917 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
11918 is used to sepate the common blocks name namespace from regular
11919 variable names. */
11920
11921 static void
11922 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
11923 {
11924 struct attribute *attr;
11925
11926 attr = dwarf2_attr (die, DW_AT_location, cu);
11927 if (attr)
11928 {
11929 /* Support the .debug_loc offsets. */
11930 if (attr_form_is_block (attr))
11931 {
11932 /* Ok. */
11933 }
11934 else if (attr_form_is_section_offset (attr))
11935 {
11936 dwarf2_complex_location_expr_complaint ();
11937 attr = NULL;
11938 }
11939 else
11940 {
11941 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11942 "common block member");
11943 attr = NULL;
11944 }
11945 }
11946
11947 if (die->child != NULL)
11948 {
11949 struct objfile *objfile = cu->objfile;
11950 struct die_info *child_die;
11951 size_t n_entries = 0, size;
11952 struct common_block *common_block;
11953 struct symbol *sym;
11954
11955 for (child_die = die->child;
11956 child_die && child_die->tag;
11957 child_die = sibling_die (child_die))
11958 ++n_entries;
11959
11960 size = (sizeof (struct common_block)
11961 + (n_entries - 1) * sizeof (struct symbol *));
11962 common_block = obstack_alloc (&objfile->objfile_obstack, size);
11963 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
11964 common_block->n_entries = 0;
11965
11966 for (child_die = die->child;
11967 child_die && child_die->tag;
11968 child_die = sibling_die (child_die))
11969 {
11970 /* Create the symbol in the DW_TAG_common_block block in the current
11971 symbol scope. */
11972 sym = new_symbol (child_die, NULL, cu);
11973 if (sym != NULL)
11974 {
11975 struct attribute *member_loc;
11976
11977 common_block->contents[common_block->n_entries++] = sym;
11978
11979 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
11980 cu);
11981 if (member_loc)
11982 {
11983 /* GDB has handled this for a long time, but it is
11984 not specified by DWARF. It seems to have been
11985 emitted by gfortran at least as recently as:
11986 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
11987 complaint (&symfile_complaints,
11988 _("Variable in common block has "
11989 "DW_AT_data_member_location "
11990 "- DIE at 0x%x [in module %s]"),
11991 child_die->offset.sect_off, cu->objfile->name);
11992
11993 if (attr_form_is_section_offset (member_loc))
11994 dwarf2_complex_location_expr_complaint ();
11995 else if (attr_form_is_constant (member_loc)
11996 || attr_form_is_block (member_loc))
11997 {
11998 if (attr)
11999 mark_common_block_symbol_computed (sym, die, attr,
12000 member_loc, cu);
12001 }
12002 else
12003 dwarf2_complex_location_expr_complaint ();
12004 }
12005 }
12006 }
12007
12008 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12009 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12010 }
12011 }
12012
12013 /* Create a type for a C++ namespace. */
12014
12015 static struct type *
12016 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12017 {
12018 struct objfile *objfile = cu->objfile;
12019 const char *previous_prefix, *name;
12020 int is_anonymous;
12021 struct type *type;
12022
12023 /* For extensions, reuse the type of the original namespace. */
12024 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12025 {
12026 struct die_info *ext_die;
12027 struct dwarf2_cu *ext_cu = cu;
12028
12029 ext_die = dwarf2_extension (die, &ext_cu);
12030 type = read_type_die (ext_die, ext_cu);
12031
12032 /* EXT_CU may not be the same as CU.
12033 Ensure TYPE is recorded in CU's type_hash table. */
12034 return set_die_type (die, type, cu);
12035 }
12036
12037 name = namespace_name (die, &is_anonymous, cu);
12038
12039 /* Now build the name of the current namespace. */
12040
12041 previous_prefix = determine_prefix (die, cu);
12042 if (previous_prefix[0] != '\0')
12043 name = typename_concat (&objfile->objfile_obstack,
12044 previous_prefix, name, 0, cu);
12045
12046 /* Create the type. */
12047 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12048 objfile);
12049 TYPE_NAME (type) = name;
12050 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12051
12052 return set_die_type (die, type, cu);
12053 }
12054
12055 /* Read a C++ namespace. */
12056
12057 static void
12058 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12059 {
12060 struct objfile *objfile = cu->objfile;
12061 int is_anonymous;
12062
12063 /* Add a symbol associated to this if we haven't seen the namespace
12064 before. Also, add a using directive if it's an anonymous
12065 namespace. */
12066
12067 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12068 {
12069 struct type *type;
12070
12071 type = read_type_die (die, cu);
12072 new_symbol (die, type, cu);
12073
12074 namespace_name (die, &is_anonymous, cu);
12075 if (is_anonymous)
12076 {
12077 const char *previous_prefix = determine_prefix (die, cu);
12078
12079 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12080 NULL, NULL, 0, &objfile->objfile_obstack);
12081 }
12082 }
12083
12084 if (die->child != NULL)
12085 {
12086 struct die_info *child_die = die->child;
12087
12088 while (child_die && child_die->tag)
12089 {
12090 process_die (child_die, cu);
12091 child_die = sibling_die (child_die);
12092 }
12093 }
12094 }
12095
12096 /* Read a Fortran module as type. This DIE can be only a declaration used for
12097 imported module. Still we need that type as local Fortran "use ... only"
12098 declaration imports depend on the created type in determine_prefix. */
12099
12100 static struct type *
12101 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12102 {
12103 struct objfile *objfile = cu->objfile;
12104 const char *module_name;
12105 struct type *type;
12106
12107 module_name = dwarf2_name (die, cu);
12108 if (!module_name)
12109 complaint (&symfile_complaints,
12110 _("DW_TAG_module has no name, offset 0x%x"),
12111 die->offset.sect_off);
12112 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12113
12114 /* determine_prefix uses TYPE_TAG_NAME. */
12115 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12116
12117 return set_die_type (die, type, cu);
12118 }
12119
12120 /* Read a Fortran module. */
12121
12122 static void
12123 read_module (struct die_info *die, struct dwarf2_cu *cu)
12124 {
12125 struct die_info *child_die = die->child;
12126
12127 while (child_die && child_die->tag)
12128 {
12129 process_die (child_die, cu);
12130 child_die = sibling_die (child_die);
12131 }
12132 }
12133
12134 /* Return the name of the namespace represented by DIE. Set
12135 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12136 namespace. */
12137
12138 static const char *
12139 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12140 {
12141 struct die_info *current_die;
12142 const char *name = NULL;
12143
12144 /* Loop through the extensions until we find a name. */
12145
12146 for (current_die = die;
12147 current_die != NULL;
12148 current_die = dwarf2_extension (die, &cu))
12149 {
12150 name = dwarf2_name (current_die, cu);
12151 if (name != NULL)
12152 break;
12153 }
12154
12155 /* Is it an anonymous namespace? */
12156
12157 *is_anonymous = (name == NULL);
12158 if (*is_anonymous)
12159 name = CP_ANONYMOUS_NAMESPACE_STR;
12160
12161 return name;
12162 }
12163
12164 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12165 the user defined type vector. */
12166
12167 static struct type *
12168 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12169 {
12170 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12171 struct comp_unit_head *cu_header = &cu->header;
12172 struct type *type;
12173 struct attribute *attr_byte_size;
12174 struct attribute *attr_address_class;
12175 int byte_size, addr_class;
12176 struct type *target_type;
12177
12178 target_type = die_type (die, cu);
12179
12180 /* The die_type call above may have already set the type for this DIE. */
12181 type = get_die_type (die, cu);
12182 if (type)
12183 return type;
12184
12185 type = lookup_pointer_type (target_type);
12186
12187 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12188 if (attr_byte_size)
12189 byte_size = DW_UNSND (attr_byte_size);
12190 else
12191 byte_size = cu_header->addr_size;
12192
12193 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12194 if (attr_address_class)
12195 addr_class = DW_UNSND (attr_address_class);
12196 else
12197 addr_class = DW_ADDR_none;
12198
12199 /* If the pointer size or address class is different than the
12200 default, create a type variant marked as such and set the
12201 length accordingly. */
12202 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12203 {
12204 if (gdbarch_address_class_type_flags_p (gdbarch))
12205 {
12206 int type_flags;
12207
12208 type_flags = gdbarch_address_class_type_flags
12209 (gdbarch, byte_size, addr_class);
12210 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12211 == 0);
12212 type = make_type_with_address_space (type, type_flags);
12213 }
12214 else if (TYPE_LENGTH (type) != byte_size)
12215 {
12216 complaint (&symfile_complaints,
12217 _("invalid pointer size %d"), byte_size);
12218 }
12219 else
12220 {
12221 /* Should we also complain about unhandled address classes? */
12222 }
12223 }
12224
12225 TYPE_LENGTH (type) = byte_size;
12226 return set_die_type (die, type, cu);
12227 }
12228
12229 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12230 the user defined type vector. */
12231
12232 static struct type *
12233 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12234 {
12235 struct type *type;
12236 struct type *to_type;
12237 struct type *domain;
12238
12239 to_type = die_type (die, cu);
12240 domain = die_containing_type (die, cu);
12241
12242 /* The calls above may have already set the type for this DIE. */
12243 type = get_die_type (die, cu);
12244 if (type)
12245 return type;
12246
12247 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12248 type = lookup_methodptr_type (to_type);
12249 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12250 {
12251 struct type *new_type = alloc_type (cu->objfile);
12252
12253 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12254 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12255 TYPE_VARARGS (to_type));
12256 type = lookup_methodptr_type (new_type);
12257 }
12258 else
12259 type = lookup_memberptr_type (to_type, domain);
12260
12261 return set_die_type (die, type, cu);
12262 }
12263
12264 /* Extract all information from a DW_TAG_reference_type DIE and add to
12265 the user defined type vector. */
12266
12267 static struct type *
12268 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12269 {
12270 struct comp_unit_head *cu_header = &cu->header;
12271 struct type *type, *target_type;
12272 struct attribute *attr;
12273
12274 target_type = die_type (die, cu);
12275
12276 /* The die_type call above may have already set the type for this DIE. */
12277 type = get_die_type (die, cu);
12278 if (type)
12279 return type;
12280
12281 type = lookup_reference_type (target_type);
12282 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12283 if (attr)
12284 {
12285 TYPE_LENGTH (type) = DW_UNSND (attr);
12286 }
12287 else
12288 {
12289 TYPE_LENGTH (type) = cu_header->addr_size;
12290 }
12291 return set_die_type (die, type, cu);
12292 }
12293
12294 static struct type *
12295 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12296 {
12297 struct type *base_type, *cv_type;
12298
12299 base_type = die_type (die, cu);
12300
12301 /* The die_type call above may have already set the type for this DIE. */
12302 cv_type = get_die_type (die, cu);
12303 if (cv_type)
12304 return cv_type;
12305
12306 /* In case the const qualifier is applied to an array type, the element type
12307 is so qualified, not the array type (section 6.7.3 of C99). */
12308 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12309 {
12310 struct type *el_type, *inner_array;
12311
12312 base_type = copy_type (base_type);
12313 inner_array = base_type;
12314
12315 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12316 {
12317 TYPE_TARGET_TYPE (inner_array) =
12318 copy_type (TYPE_TARGET_TYPE (inner_array));
12319 inner_array = TYPE_TARGET_TYPE (inner_array);
12320 }
12321
12322 el_type = TYPE_TARGET_TYPE (inner_array);
12323 TYPE_TARGET_TYPE (inner_array) =
12324 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12325
12326 return set_die_type (die, base_type, cu);
12327 }
12328
12329 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12330 return set_die_type (die, cv_type, cu);
12331 }
12332
12333 static struct type *
12334 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12335 {
12336 struct type *base_type, *cv_type;
12337
12338 base_type = die_type (die, cu);
12339
12340 /* The die_type call above may have already set the type for this DIE. */
12341 cv_type = get_die_type (die, cu);
12342 if (cv_type)
12343 return cv_type;
12344
12345 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12346 return set_die_type (die, cv_type, cu);
12347 }
12348
12349 /* Handle DW_TAG_restrict_type. */
12350
12351 static struct type *
12352 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12353 {
12354 struct type *base_type, *cv_type;
12355
12356 base_type = die_type (die, cu);
12357
12358 /* The die_type call above may have already set the type for this DIE. */
12359 cv_type = get_die_type (die, cu);
12360 if (cv_type)
12361 return cv_type;
12362
12363 cv_type = make_restrict_type (base_type);
12364 return set_die_type (die, cv_type, cu);
12365 }
12366
12367 /* Extract all information from a DW_TAG_string_type DIE and add to
12368 the user defined type vector. It isn't really a user defined type,
12369 but it behaves like one, with other DIE's using an AT_user_def_type
12370 attribute to reference it. */
12371
12372 static struct type *
12373 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12374 {
12375 struct objfile *objfile = cu->objfile;
12376 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12377 struct type *type, *range_type, *index_type, *char_type;
12378 struct attribute *attr;
12379 unsigned int length;
12380
12381 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12382 if (attr)
12383 {
12384 length = DW_UNSND (attr);
12385 }
12386 else
12387 {
12388 /* Check for the DW_AT_byte_size attribute. */
12389 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12390 if (attr)
12391 {
12392 length = DW_UNSND (attr);
12393 }
12394 else
12395 {
12396 length = 1;
12397 }
12398 }
12399
12400 index_type = objfile_type (objfile)->builtin_int;
12401 range_type = create_range_type (NULL, index_type, 1, length);
12402 char_type = language_string_char_type (cu->language_defn, gdbarch);
12403 type = create_string_type (NULL, char_type, range_type);
12404
12405 return set_die_type (die, type, cu);
12406 }
12407
12408 /* Handle DIES due to C code like:
12409
12410 struct foo
12411 {
12412 int (*funcp)(int a, long l);
12413 int b;
12414 };
12415
12416 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12417
12418 static struct type *
12419 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12420 {
12421 struct objfile *objfile = cu->objfile;
12422 struct type *type; /* Type that this function returns. */
12423 struct type *ftype; /* Function that returns above type. */
12424 struct attribute *attr;
12425
12426 type = die_type (die, cu);
12427
12428 /* The die_type call above may have already set the type for this DIE. */
12429 ftype = get_die_type (die, cu);
12430 if (ftype)
12431 return ftype;
12432
12433 ftype = lookup_function_type (type);
12434
12435 /* All functions in C++, Pascal and Java have prototypes. */
12436 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12437 if ((attr && (DW_UNSND (attr) != 0))
12438 || cu->language == language_cplus
12439 || cu->language == language_java
12440 || cu->language == language_pascal)
12441 TYPE_PROTOTYPED (ftype) = 1;
12442 else if (producer_is_realview (cu->producer))
12443 /* RealView does not emit DW_AT_prototyped. We can not
12444 distinguish prototyped and unprototyped functions; default to
12445 prototyped, since that is more common in modern code (and
12446 RealView warns about unprototyped functions). */
12447 TYPE_PROTOTYPED (ftype) = 1;
12448
12449 /* Store the calling convention in the type if it's available in
12450 the subroutine die. Otherwise set the calling convention to
12451 the default value DW_CC_normal. */
12452 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12453 if (attr)
12454 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12455 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12456 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12457 else
12458 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
12459
12460 /* We need to add the subroutine type to the die immediately so
12461 we don't infinitely recurse when dealing with parameters
12462 declared as the same subroutine type. */
12463 set_die_type (die, ftype, cu);
12464
12465 if (die->child != NULL)
12466 {
12467 struct type *void_type = objfile_type (objfile)->builtin_void;
12468 struct die_info *child_die;
12469 int nparams, iparams;
12470
12471 /* Count the number of parameters.
12472 FIXME: GDB currently ignores vararg functions, but knows about
12473 vararg member functions. */
12474 nparams = 0;
12475 child_die = die->child;
12476 while (child_die && child_die->tag)
12477 {
12478 if (child_die->tag == DW_TAG_formal_parameter)
12479 nparams++;
12480 else if (child_die->tag == DW_TAG_unspecified_parameters)
12481 TYPE_VARARGS (ftype) = 1;
12482 child_die = sibling_die (child_die);
12483 }
12484
12485 /* Allocate storage for parameters and fill them in. */
12486 TYPE_NFIELDS (ftype) = nparams;
12487 TYPE_FIELDS (ftype) = (struct field *)
12488 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
12489
12490 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12491 even if we error out during the parameters reading below. */
12492 for (iparams = 0; iparams < nparams; iparams++)
12493 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12494
12495 iparams = 0;
12496 child_die = die->child;
12497 while (child_die && child_die->tag)
12498 {
12499 if (child_die->tag == DW_TAG_formal_parameter)
12500 {
12501 struct type *arg_type;
12502
12503 /* DWARF version 2 has no clean way to discern C++
12504 static and non-static member functions. G++ helps
12505 GDB by marking the first parameter for non-static
12506 member functions (which is the this pointer) as
12507 artificial. We pass this information to
12508 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12509
12510 DWARF version 3 added DW_AT_object_pointer, which GCC
12511 4.5 does not yet generate. */
12512 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
12513 if (attr)
12514 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12515 else
12516 {
12517 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12518
12519 /* GCC/43521: In java, the formal parameter
12520 "this" is sometimes not marked with DW_AT_artificial. */
12521 if (cu->language == language_java)
12522 {
12523 const char *name = dwarf2_name (child_die, cu);
12524
12525 if (name && !strcmp (name, "this"))
12526 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12527 }
12528 }
12529 arg_type = die_type (child_die, cu);
12530
12531 /* RealView does not mark THIS as const, which the testsuite
12532 expects. GCC marks THIS as const in method definitions,
12533 but not in the class specifications (GCC PR 43053). */
12534 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12535 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12536 {
12537 int is_this = 0;
12538 struct dwarf2_cu *arg_cu = cu;
12539 const char *name = dwarf2_name (child_die, cu);
12540
12541 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12542 if (attr)
12543 {
12544 /* If the compiler emits this, use it. */
12545 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12546 is_this = 1;
12547 }
12548 else if (name && strcmp (name, "this") == 0)
12549 /* Function definitions will have the argument names. */
12550 is_this = 1;
12551 else if (name == NULL && iparams == 0)
12552 /* Declarations may not have the names, so like
12553 elsewhere in GDB, assume an artificial first
12554 argument is "this". */
12555 is_this = 1;
12556
12557 if (is_this)
12558 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12559 arg_type, 0);
12560 }
12561
12562 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
12563 iparams++;
12564 }
12565 child_die = sibling_die (child_die);
12566 }
12567 }
12568
12569 return ftype;
12570 }
12571
12572 static struct type *
12573 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
12574 {
12575 struct objfile *objfile = cu->objfile;
12576 const char *name = NULL;
12577 struct type *this_type, *target_type;
12578
12579 name = dwarf2_full_name (NULL, die, cu);
12580 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
12581 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12582 TYPE_NAME (this_type) = name;
12583 set_die_type (die, this_type, cu);
12584 target_type = die_type (die, cu);
12585 if (target_type != this_type)
12586 TYPE_TARGET_TYPE (this_type) = target_type;
12587 else
12588 {
12589 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12590 spec and cause infinite loops in GDB. */
12591 complaint (&symfile_complaints,
12592 _("Self-referential DW_TAG_typedef "
12593 "- DIE at 0x%x [in module %s]"),
12594 die->offset.sect_off, objfile->name);
12595 TYPE_TARGET_TYPE (this_type) = NULL;
12596 }
12597 return this_type;
12598 }
12599
12600 /* Find a representation of a given base type and install
12601 it in the TYPE field of the die. */
12602
12603 static struct type *
12604 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
12605 {
12606 struct objfile *objfile = cu->objfile;
12607 struct type *type;
12608 struct attribute *attr;
12609 int encoding = 0, size = 0;
12610 const char *name;
12611 enum type_code code = TYPE_CODE_INT;
12612 int type_flags = 0;
12613 struct type *target_type = NULL;
12614
12615 attr = dwarf2_attr (die, DW_AT_encoding, cu);
12616 if (attr)
12617 {
12618 encoding = DW_UNSND (attr);
12619 }
12620 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12621 if (attr)
12622 {
12623 size = DW_UNSND (attr);
12624 }
12625 name = dwarf2_name (die, cu);
12626 if (!name)
12627 {
12628 complaint (&symfile_complaints,
12629 _("DW_AT_name missing from DW_TAG_base_type"));
12630 }
12631
12632 switch (encoding)
12633 {
12634 case DW_ATE_address:
12635 /* Turn DW_ATE_address into a void * pointer. */
12636 code = TYPE_CODE_PTR;
12637 type_flags |= TYPE_FLAG_UNSIGNED;
12638 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12639 break;
12640 case DW_ATE_boolean:
12641 code = TYPE_CODE_BOOL;
12642 type_flags |= TYPE_FLAG_UNSIGNED;
12643 break;
12644 case DW_ATE_complex_float:
12645 code = TYPE_CODE_COMPLEX;
12646 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12647 break;
12648 case DW_ATE_decimal_float:
12649 code = TYPE_CODE_DECFLOAT;
12650 break;
12651 case DW_ATE_float:
12652 code = TYPE_CODE_FLT;
12653 break;
12654 case DW_ATE_signed:
12655 break;
12656 case DW_ATE_unsigned:
12657 type_flags |= TYPE_FLAG_UNSIGNED;
12658 if (cu->language == language_fortran
12659 && name
12660 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12661 code = TYPE_CODE_CHAR;
12662 break;
12663 case DW_ATE_signed_char:
12664 if (cu->language == language_ada || cu->language == language_m2
12665 || cu->language == language_pascal
12666 || cu->language == language_fortran)
12667 code = TYPE_CODE_CHAR;
12668 break;
12669 case DW_ATE_unsigned_char:
12670 if (cu->language == language_ada || cu->language == language_m2
12671 || cu->language == language_pascal
12672 || cu->language == language_fortran)
12673 code = TYPE_CODE_CHAR;
12674 type_flags |= TYPE_FLAG_UNSIGNED;
12675 break;
12676 case DW_ATE_UTF:
12677 /* We just treat this as an integer and then recognize the
12678 type by name elsewhere. */
12679 break;
12680
12681 default:
12682 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12683 dwarf_type_encoding_name (encoding));
12684 break;
12685 }
12686
12687 type = init_type (code, size, type_flags, NULL, objfile);
12688 TYPE_NAME (type) = name;
12689 TYPE_TARGET_TYPE (type) = target_type;
12690
12691 if (name && strcmp (name, "char") == 0)
12692 TYPE_NOSIGN (type) = 1;
12693
12694 return set_die_type (die, type, cu);
12695 }
12696
12697 /* Read the given DW_AT_subrange DIE. */
12698
12699 static struct type *
12700 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12701 {
12702 struct type *base_type;
12703 struct type *range_type;
12704 struct attribute *attr;
12705 LONGEST low, high;
12706 int low_default_is_valid;
12707 const char *name;
12708 LONGEST negative_mask;
12709
12710 base_type = die_type (die, cu);
12711 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
12712 check_typedef (base_type);
12713
12714 /* The die_type call above may have already set the type for this DIE. */
12715 range_type = get_die_type (die, cu);
12716 if (range_type)
12717 return range_type;
12718
12719 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12720 omitting DW_AT_lower_bound. */
12721 switch (cu->language)
12722 {
12723 case language_c:
12724 case language_cplus:
12725 low = 0;
12726 low_default_is_valid = 1;
12727 break;
12728 case language_fortran:
12729 low = 1;
12730 low_default_is_valid = 1;
12731 break;
12732 case language_d:
12733 case language_java:
12734 case language_objc:
12735 low = 0;
12736 low_default_is_valid = (cu->header.version >= 4);
12737 break;
12738 case language_ada:
12739 case language_m2:
12740 case language_pascal:
12741 low = 1;
12742 low_default_is_valid = (cu->header.version >= 4);
12743 break;
12744 default:
12745 low = 0;
12746 low_default_is_valid = 0;
12747 break;
12748 }
12749
12750 /* FIXME: For variable sized arrays either of these could be
12751 a variable rather than a constant value. We'll allow it,
12752 but we don't know how to handle it. */
12753 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
12754 if (attr)
12755 low = dwarf2_get_attr_constant_value (attr, low);
12756 else if (!low_default_is_valid)
12757 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12758 "- DIE at 0x%x [in module %s]"),
12759 die->offset.sect_off, cu->objfile->name);
12760
12761 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
12762 if (attr)
12763 {
12764 if (attr_form_is_block (attr) || is_ref_attr (attr))
12765 {
12766 /* GCC encodes arrays with unspecified or dynamic length
12767 with a DW_FORM_block1 attribute or a reference attribute.
12768 FIXME: GDB does not yet know how to handle dynamic
12769 arrays properly, treat them as arrays with unspecified
12770 length for now.
12771
12772 FIXME: jimb/2003-09-22: GDB does not really know
12773 how to handle arrays of unspecified length
12774 either; we just represent them as zero-length
12775 arrays. Choose an appropriate upper bound given
12776 the lower bound we've computed above. */
12777 high = low - 1;
12778 }
12779 else
12780 high = dwarf2_get_attr_constant_value (attr, 1);
12781 }
12782 else
12783 {
12784 attr = dwarf2_attr (die, DW_AT_count, cu);
12785 if (attr)
12786 {
12787 int count = dwarf2_get_attr_constant_value (attr, 1);
12788 high = low + count - 1;
12789 }
12790 else
12791 {
12792 /* Unspecified array length. */
12793 high = low - 1;
12794 }
12795 }
12796
12797 /* Dwarf-2 specifications explicitly allows to create subrange types
12798 without specifying a base type.
12799 In that case, the base type must be set to the type of
12800 the lower bound, upper bound or count, in that order, if any of these
12801 three attributes references an object that has a type.
12802 If no base type is found, the Dwarf-2 specifications say that
12803 a signed integer type of size equal to the size of an address should
12804 be used.
12805 For the following C code: `extern char gdb_int [];'
12806 GCC produces an empty range DIE.
12807 FIXME: muller/2010-05-28: Possible references to object for low bound,
12808 high bound or count are not yet handled by this code. */
12809 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12810 {
12811 struct objfile *objfile = cu->objfile;
12812 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12813 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12814 struct type *int_type = objfile_type (objfile)->builtin_int;
12815
12816 /* Test "int", "long int", and "long long int" objfile types,
12817 and select the first one having a size above or equal to the
12818 architecture address size. */
12819 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12820 base_type = int_type;
12821 else
12822 {
12823 int_type = objfile_type (objfile)->builtin_long;
12824 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12825 base_type = int_type;
12826 else
12827 {
12828 int_type = objfile_type (objfile)->builtin_long_long;
12829 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12830 base_type = int_type;
12831 }
12832 }
12833 }
12834
12835 negative_mask =
12836 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
12837 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
12838 low |= negative_mask;
12839 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
12840 high |= negative_mask;
12841
12842 range_type = create_range_type (NULL, base_type, low, high);
12843
12844 /* Mark arrays with dynamic length at least as an array of unspecified
12845 length. GDB could check the boundary but before it gets implemented at
12846 least allow accessing the array elements. */
12847 if (attr && attr_form_is_block (attr))
12848 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12849
12850 /* Ada expects an empty array on no boundary attributes. */
12851 if (attr == NULL && cu->language != language_ada)
12852 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12853
12854 name = dwarf2_name (die, cu);
12855 if (name)
12856 TYPE_NAME (range_type) = name;
12857
12858 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12859 if (attr)
12860 TYPE_LENGTH (range_type) = DW_UNSND (attr);
12861
12862 set_die_type (die, range_type, cu);
12863
12864 /* set_die_type should be already done. */
12865 set_descriptive_type (range_type, die, cu);
12866
12867 return range_type;
12868 }
12869
12870 static struct type *
12871 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
12872 {
12873 struct type *type;
12874
12875 /* For now, we only support the C meaning of an unspecified type: void. */
12876
12877 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
12878 TYPE_NAME (type) = dwarf2_name (die, cu);
12879
12880 return set_die_type (die, type, cu);
12881 }
12882
12883 /* Read a single die and all its descendents. Set the die's sibling
12884 field to NULL; set other fields in the die correctly, and set all
12885 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
12886 location of the info_ptr after reading all of those dies. PARENT
12887 is the parent of the die in question. */
12888
12889 static struct die_info *
12890 read_die_and_children (const struct die_reader_specs *reader,
12891 gdb_byte *info_ptr,
12892 gdb_byte **new_info_ptr,
12893 struct die_info *parent)
12894 {
12895 struct die_info *die;
12896 gdb_byte *cur_ptr;
12897 int has_children;
12898
12899 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
12900 if (die == NULL)
12901 {
12902 *new_info_ptr = cur_ptr;
12903 return NULL;
12904 }
12905 store_in_ref_table (die, reader->cu);
12906
12907 if (has_children)
12908 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
12909 else
12910 {
12911 die->child = NULL;
12912 *new_info_ptr = cur_ptr;
12913 }
12914
12915 die->sibling = NULL;
12916 die->parent = parent;
12917 return die;
12918 }
12919
12920 /* Read a die, all of its descendents, and all of its siblings; set
12921 all of the fields of all of the dies correctly. Arguments are as
12922 in read_die_and_children. */
12923
12924 static struct die_info *
12925 read_die_and_siblings (const struct die_reader_specs *reader,
12926 gdb_byte *info_ptr,
12927 gdb_byte **new_info_ptr,
12928 struct die_info *parent)
12929 {
12930 struct die_info *first_die, *last_sibling;
12931 gdb_byte *cur_ptr;
12932
12933 cur_ptr = info_ptr;
12934 first_die = last_sibling = NULL;
12935
12936 while (1)
12937 {
12938 struct die_info *die
12939 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
12940
12941 if (die == NULL)
12942 {
12943 *new_info_ptr = cur_ptr;
12944 return first_die;
12945 }
12946
12947 if (!first_die)
12948 first_die = die;
12949 else
12950 last_sibling->sibling = die;
12951
12952 last_sibling = die;
12953 }
12954 }
12955
12956 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
12957 attributes.
12958 The caller is responsible for filling in the extra attributes
12959 and updating (*DIEP)->num_attrs.
12960 Set DIEP to point to a newly allocated die with its information,
12961 except for its child, sibling, and parent fields.
12962 Set HAS_CHILDREN to tell whether the die has children or not. */
12963
12964 static gdb_byte *
12965 read_full_die_1 (const struct die_reader_specs *reader,
12966 struct die_info **diep, gdb_byte *info_ptr,
12967 int *has_children, int num_extra_attrs)
12968 {
12969 unsigned int abbrev_number, bytes_read, i;
12970 sect_offset offset;
12971 struct abbrev_info *abbrev;
12972 struct die_info *die;
12973 struct dwarf2_cu *cu = reader->cu;
12974 bfd *abfd = reader->abfd;
12975
12976 offset.sect_off = info_ptr - reader->buffer;
12977 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
12978 info_ptr += bytes_read;
12979 if (!abbrev_number)
12980 {
12981 *diep = NULL;
12982 *has_children = 0;
12983 return info_ptr;
12984 }
12985
12986 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
12987 if (!abbrev)
12988 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
12989 abbrev_number,
12990 bfd_get_filename (abfd));
12991
12992 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
12993 die->offset = offset;
12994 die->tag = abbrev->tag;
12995 die->abbrev = abbrev_number;
12996
12997 /* Make the result usable.
12998 The caller needs to update num_attrs after adding the extra
12999 attributes. */
13000 die->num_attrs = abbrev->num_attrs;
13001
13002 for (i = 0; i < abbrev->num_attrs; ++i)
13003 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13004 info_ptr);
13005
13006 *diep = die;
13007 *has_children = abbrev->has_children;
13008 return info_ptr;
13009 }
13010
13011 /* Read a die and all its attributes.
13012 Set DIEP to point to a newly allocated die with its information,
13013 except for its child, sibling, and parent fields.
13014 Set HAS_CHILDREN to tell whether the die has children or not. */
13015
13016 static gdb_byte *
13017 read_full_die (const struct die_reader_specs *reader,
13018 struct die_info **diep, gdb_byte *info_ptr,
13019 int *has_children)
13020 {
13021 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13022 }
13023 \f
13024 /* Abbreviation tables.
13025
13026 In DWARF version 2, the description of the debugging information is
13027 stored in a separate .debug_abbrev section. Before we read any
13028 dies from a section we read in all abbreviations and install them
13029 in a hash table. */
13030
13031 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13032
13033 static struct abbrev_info *
13034 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13035 {
13036 struct abbrev_info *abbrev;
13037
13038 abbrev = (struct abbrev_info *)
13039 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13040 memset (abbrev, 0, sizeof (struct abbrev_info));
13041 return abbrev;
13042 }
13043
13044 /* Add an abbreviation to the table. */
13045
13046 static void
13047 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13048 unsigned int abbrev_number,
13049 struct abbrev_info *abbrev)
13050 {
13051 unsigned int hash_number;
13052
13053 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13054 abbrev->next = abbrev_table->abbrevs[hash_number];
13055 abbrev_table->abbrevs[hash_number] = abbrev;
13056 }
13057
13058 /* Look up an abbrev in the table.
13059 Returns NULL if the abbrev is not found. */
13060
13061 static struct abbrev_info *
13062 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13063 unsigned int abbrev_number)
13064 {
13065 unsigned int hash_number;
13066 struct abbrev_info *abbrev;
13067
13068 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13069 abbrev = abbrev_table->abbrevs[hash_number];
13070
13071 while (abbrev)
13072 {
13073 if (abbrev->number == abbrev_number)
13074 return abbrev;
13075 abbrev = abbrev->next;
13076 }
13077 return NULL;
13078 }
13079
13080 /* Read in an abbrev table. */
13081
13082 static struct abbrev_table *
13083 abbrev_table_read_table (struct dwarf2_section_info *section,
13084 sect_offset offset)
13085 {
13086 struct objfile *objfile = dwarf2_per_objfile->objfile;
13087 bfd *abfd = section->asection->owner;
13088 struct abbrev_table *abbrev_table;
13089 gdb_byte *abbrev_ptr;
13090 struct abbrev_info *cur_abbrev;
13091 unsigned int abbrev_number, bytes_read, abbrev_name;
13092 unsigned int abbrev_form;
13093 struct attr_abbrev *cur_attrs;
13094 unsigned int allocated_attrs;
13095
13096 abbrev_table = XMALLOC (struct abbrev_table);
13097 abbrev_table->offset = offset;
13098 obstack_init (&abbrev_table->abbrev_obstack);
13099 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13100 (ABBREV_HASH_SIZE
13101 * sizeof (struct abbrev_info *)));
13102 memset (abbrev_table->abbrevs, 0,
13103 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13104
13105 dwarf2_read_section (objfile, section);
13106 abbrev_ptr = section->buffer + offset.sect_off;
13107 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13108 abbrev_ptr += bytes_read;
13109
13110 allocated_attrs = ATTR_ALLOC_CHUNK;
13111 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13112
13113 /* Loop until we reach an abbrev number of 0. */
13114 while (abbrev_number)
13115 {
13116 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13117
13118 /* read in abbrev header */
13119 cur_abbrev->number = abbrev_number;
13120 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13121 abbrev_ptr += bytes_read;
13122 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13123 abbrev_ptr += 1;
13124
13125 /* now read in declarations */
13126 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13127 abbrev_ptr += bytes_read;
13128 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13129 abbrev_ptr += bytes_read;
13130 while (abbrev_name)
13131 {
13132 if (cur_abbrev->num_attrs == allocated_attrs)
13133 {
13134 allocated_attrs += ATTR_ALLOC_CHUNK;
13135 cur_attrs
13136 = xrealloc (cur_attrs, (allocated_attrs
13137 * sizeof (struct attr_abbrev)));
13138 }
13139
13140 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13141 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13142 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13143 abbrev_ptr += bytes_read;
13144 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13145 abbrev_ptr += bytes_read;
13146 }
13147
13148 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13149 (cur_abbrev->num_attrs
13150 * sizeof (struct attr_abbrev)));
13151 memcpy (cur_abbrev->attrs, cur_attrs,
13152 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13153
13154 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13155
13156 /* Get next abbreviation.
13157 Under Irix6 the abbreviations for a compilation unit are not
13158 always properly terminated with an abbrev number of 0.
13159 Exit loop if we encounter an abbreviation which we have
13160 already read (which means we are about to read the abbreviations
13161 for the next compile unit) or if the end of the abbreviation
13162 table is reached. */
13163 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13164 break;
13165 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13166 abbrev_ptr += bytes_read;
13167 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13168 break;
13169 }
13170
13171 xfree (cur_attrs);
13172 return abbrev_table;
13173 }
13174
13175 /* Free the resources held by ABBREV_TABLE. */
13176
13177 static void
13178 abbrev_table_free (struct abbrev_table *abbrev_table)
13179 {
13180 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13181 xfree (abbrev_table);
13182 }
13183
13184 /* Same as abbrev_table_free but as a cleanup.
13185 We pass in a pointer to the pointer to the table so that we can
13186 set the pointer to NULL when we're done. It also simplifies
13187 build_type_unit_groups. */
13188
13189 static void
13190 abbrev_table_free_cleanup (void *table_ptr)
13191 {
13192 struct abbrev_table **abbrev_table_ptr = table_ptr;
13193
13194 if (*abbrev_table_ptr != NULL)
13195 abbrev_table_free (*abbrev_table_ptr);
13196 *abbrev_table_ptr = NULL;
13197 }
13198
13199 /* Read the abbrev table for CU from ABBREV_SECTION. */
13200
13201 static void
13202 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13203 struct dwarf2_section_info *abbrev_section)
13204 {
13205 cu->abbrev_table =
13206 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13207 }
13208
13209 /* Release the memory used by the abbrev table for a compilation unit. */
13210
13211 static void
13212 dwarf2_free_abbrev_table (void *ptr_to_cu)
13213 {
13214 struct dwarf2_cu *cu = ptr_to_cu;
13215
13216 abbrev_table_free (cu->abbrev_table);
13217 /* Set this to NULL so that we SEGV if we try to read it later,
13218 and also because free_comp_unit verifies this is NULL. */
13219 cu->abbrev_table = NULL;
13220 }
13221 \f
13222 /* Returns nonzero if TAG represents a type that we might generate a partial
13223 symbol for. */
13224
13225 static int
13226 is_type_tag_for_partial (int tag)
13227 {
13228 switch (tag)
13229 {
13230 #if 0
13231 /* Some types that would be reasonable to generate partial symbols for,
13232 that we don't at present. */
13233 case DW_TAG_array_type:
13234 case DW_TAG_file_type:
13235 case DW_TAG_ptr_to_member_type:
13236 case DW_TAG_set_type:
13237 case DW_TAG_string_type:
13238 case DW_TAG_subroutine_type:
13239 #endif
13240 case DW_TAG_base_type:
13241 case DW_TAG_class_type:
13242 case DW_TAG_interface_type:
13243 case DW_TAG_enumeration_type:
13244 case DW_TAG_structure_type:
13245 case DW_TAG_subrange_type:
13246 case DW_TAG_typedef:
13247 case DW_TAG_union_type:
13248 return 1;
13249 default:
13250 return 0;
13251 }
13252 }
13253
13254 /* Load all DIEs that are interesting for partial symbols into memory. */
13255
13256 static struct partial_die_info *
13257 load_partial_dies (const struct die_reader_specs *reader,
13258 gdb_byte *info_ptr, int building_psymtab)
13259 {
13260 struct dwarf2_cu *cu = reader->cu;
13261 struct objfile *objfile = cu->objfile;
13262 struct partial_die_info *part_die;
13263 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13264 struct abbrev_info *abbrev;
13265 unsigned int bytes_read;
13266 unsigned int load_all = 0;
13267 int nesting_level = 1;
13268
13269 parent_die = NULL;
13270 last_die = NULL;
13271
13272 gdb_assert (cu->per_cu != NULL);
13273 if (cu->per_cu->load_all_dies)
13274 load_all = 1;
13275
13276 cu->partial_dies
13277 = htab_create_alloc_ex (cu->header.length / 12,
13278 partial_die_hash,
13279 partial_die_eq,
13280 NULL,
13281 &cu->comp_unit_obstack,
13282 hashtab_obstack_allocate,
13283 dummy_obstack_deallocate);
13284
13285 part_die = obstack_alloc (&cu->comp_unit_obstack,
13286 sizeof (struct partial_die_info));
13287
13288 while (1)
13289 {
13290 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13291
13292 /* A NULL abbrev means the end of a series of children. */
13293 if (abbrev == NULL)
13294 {
13295 if (--nesting_level == 0)
13296 {
13297 /* PART_DIE was probably the last thing allocated on the
13298 comp_unit_obstack, so we could call obstack_free
13299 here. We don't do that because the waste is small,
13300 and will be cleaned up when we're done with this
13301 compilation unit. This way, we're also more robust
13302 against other users of the comp_unit_obstack. */
13303 return first_die;
13304 }
13305 info_ptr += bytes_read;
13306 last_die = parent_die;
13307 parent_die = parent_die->die_parent;
13308 continue;
13309 }
13310
13311 /* Check for template arguments. We never save these; if
13312 they're seen, we just mark the parent, and go on our way. */
13313 if (parent_die != NULL
13314 && cu->language == language_cplus
13315 && (abbrev->tag == DW_TAG_template_type_param
13316 || abbrev->tag == DW_TAG_template_value_param))
13317 {
13318 parent_die->has_template_arguments = 1;
13319
13320 if (!load_all)
13321 {
13322 /* We don't need a partial DIE for the template argument. */
13323 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13324 continue;
13325 }
13326 }
13327
13328 /* We only recurse into c++ subprograms looking for template arguments.
13329 Skip their other children. */
13330 if (!load_all
13331 && cu->language == language_cplus
13332 && parent_die != NULL
13333 && parent_die->tag == DW_TAG_subprogram)
13334 {
13335 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13336 continue;
13337 }
13338
13339 /* Check whether this DIE is interesting enough to save. Normally
13340 we would not be interested in members here, but there may be
13341 later variables referencing them via DW_AT_specification (for
13342 static members). */
13343 if (!load_all
13344 && !is_type_tag_for_partial (abbrev->tag)
13345 && abbrev->tag != DW_TAG_constant
13346 && abbrev->tag != DW_TAG_enumerator
13347 && abbrev->tag != DW_TAG_subprogram
13348 && abbrev->tag != DW_TAG_lexical_block
13349 && abbrev->tag != DW_TAG_variable
13350 && abbrev->tag != DW_TAG_namespace
13351 && abbrev->tag != DW_TAG_module
13352 && abbrev->tag != DW_TAG_member
13353 && abbrev->tag != DW_TAG_imported_unit)
13354 {
13355 /* Otherwise we skip to the next sibling, if any. */
13356 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13357 continue;
13358 }
13359
13360 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13361 info_ptr);
13362
13363 /* This two-pass algorithm for processing partial symbols has a
13364 high cost in cache pressure. Thus, handle some simple cases
13365 here which cover the majority of C partial symbols. DIEs
13366 which neither have specification tags in them, nor could have
13367 specification tags elsewhere pointing at them, can simply be
13368 processed and discarded.
13369
13370 This segment is also optional; scan_partial_symbols and
13371 add_partial_symbol will handle these DIEs if we chain
13372 them in normally. When compilers which do not emit large
13373 quantities of duplicate debug information are more common,
13374 this code can probably be removed. */
13375
13376 /* Any complete simple types at the top level (pretty much all
13377 of them, for a language without namespaces), can be processed
13378 directly. */
13379 if (parent_die == NULL
13380 && part_die->has_specification == 0
13381 && part_die->is_declaration == 0
13382 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13383 || part_die->tag == DW_TAG_base_type
13384 || part_die->tag == DW_TAG_subrange_type))
13385 {
13386 if (building_psymtab && part_die->name != NULL)
13387 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13388 VAR_DOMAIN, LOC_TYPEDEF,
13389 &objfile->static_psymbols,
13390 0, (CORE_ADDR) 0, cu->language, objfile);
13391 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13392 continue;
13393 }
13394
13395 /* The exception for DW_TAG_typedef with has_children above is
13396 a workaround of GCC PR debug/47510. In the case of this complaint
13397 type_name_no_tag_or_error will error on such types later.
13398
13399 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13400 it could not find the child DIEs referenced later, this is checked
13401 above. In correct DWARF DW_TAG_typedef should have no children. */
13402
13403 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13404 complaint (&symfile_complaints,
13405 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13406 "- DIE at 0x%x [in module %s]"),
13407 part_die->offset.sect_off, objfile->name);
13408
13409 /* If we're at the second level, and we're an enumerator, and
13410 our parent has no specification (meaning possibly lives in a
13411 namespace elsewhere), then we can add the partial symbol now
13412 instead of queueing it. */
13413 if (part_die->tag == DW_TAG_enumerator
13414 && parent_die != NULL
13415 && parent_die->die_parent == NULL
13416 && parent_die->tag == DW_TAG_enumeration_type
13417 && parent_die->has_specification == 0)
13418 {
13419 if (part_die->name == NULL)
13420 complaint (&symfile_complaints,
13421 _("malformed enumerator DIE ignored"));
13422 else if (building_psymtab)
13423 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13424 VAR_DOMAIN, LOC_CONST,
13425 (cu->language == language_cplus
13426 || cu->language == language_java)
13427 ? &objfile->global_psymbols
13428 : &objfile->static_psymbols,
13429 0, (CORE_ADDR) 0, cu->language, objfile);
13430
13431 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13432 continue;
13433 }
13434
13435 /* We'll save this DIE so link it in. */
13436 part_die->die_parent = parent_die;
13437 part_die->die_sibling = NULL;
13438 part_die->die_child = NULL;
13439
13440 if (last_die && last_die == parent_die)
13441 last_die->die_child = part_die;
13442 else if (last_die)
13443 last_die->die_sibling = part_die;
13444
13445 last_die = part_die;
13446
13447 if (first_die == NULL)
13448 first_die = part_die;
13449
13450 /* Maybe add the DIE to the hash table. Not all DIEs that we
13451 find interesting need to be in the hash table, because we
13452 also have the parent/sibling/child chains; only those that we
13453 might refer to by offset later during partial symbol reading.
13454
13455 For now this means things that might have be the target of a
13456 DW_AT_specification, DW_AT_abstract_origin, or
13457 DW_AT_extension. DW_AT_extension will refer only to
13458 namespaces; DW_AT_abstract_origin refers to functions (and
13459 many things under the function DIE, but we do not recurse
13460 into function DIEs during partial symbol reading) and
13461 possibly variables as well; DW_AT_specification refers to
13462 declarations. Declarations ought to have the DW_AT_declaration
13463 flag. It happens that GCC forgets to put it in sometimes, but
13464 only for functions, not for types.
13465
13466 Adding more things than necessary to the hash table is harmless
13467 except for the performance cost. Adding too few will result in
13468 wasted time in find_partial_die, when we reread the compilation
13469 unit with load_all_dies set. */
13470
13471 if (load_all
13472 || abbrev->tag == DW_TAG_constant
13473 || abbrev->tag == DW_TAG_subprogram
13474 || abbrev->tag == DW_TAG_variable
13475 || abbrev->tag == DW_TAG_namespace
13476 || part_die->is_declaration)
13477 {
13478 void **slot;
13479
13480 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
13481 part_die->offset.sect_off, INSERT);
13482 *slot = part_die;
13483 }
13484
13485 part_die = obstack_alloc (&cu->comp_unit_obstack,
13486 sizeof (struct partial_die_info));
13487
13488 /* For some DIEs we want to follow their children (if any). For C
13489 we have no reason to follow the children of structures; for other
13490 languages we have to, so that we can get at method physnames
13491 to infer fully qualified class names, for DW_AT_specification,
13492 and for C++ template arguments. For C++, we also look one level
13493 inside functions to find template arguments (if the name of the
13494 function does not already contain the template arguments).
13495
13496 For Ada, we need to scan the children of subprograms and lexical
13497 blocks as well because Ada allows the definition of nested
13498 entities that could be interesting for the debugger, such as
13499 nested subprograms for instance. */
13500 if (last_die->has_children
13501 && (load_all
13502 || last_die->tag == DW_TAG_namespace
13503 || last_die->tag == DW_TAG_module
13504 || last_die->tag == DW_TAG_enumeration_type
13505 || (cu->language == language_cplus
13506 && last_die->tag == DW_TAG_subprogram
13507 && (last_die->name == NULL
13508 || strchr (last_die->name, '<') == NULL))
13509 || (cu->language != language_c
13510 && (last_die->tag == DW_TAG_class_type
13511 || last_die->tag == DW_TAG_interface_type
13512 || last_die->tag == DW_TAG_structure_type
13513 || last_die->tag == DW_TAG_union_type))
13514 || (cu->language == language_ada
13515 && (last_die->tag == DW_TAG_subprogram
13516 || last_die->tag == DW_TAG_lexical_block))))
13517 {
13518 nesting_level++;
13519 parent_die = last_die;
13520 continue;
13521 }
13522
13523 /* Otherwise we skip to the next sibling, if any. */
13524 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
13525
13526 /* Back to the top, do it again. */
13527 }
13528 }
13529
13530 /* Read a minimal amount of information into the minimal die structure. */
13531
13532 static gdb_byte *
13533 read_partial_die (const struct die_reader_specs *reader,
13534 struct partial_die_info *part_die,
13535 struct abbrev_info *abbrev, unsigned int abbrev_len,
13536 gdb_byte *info_ptr)
13537 {
13538 struct dwarf2_cu *cu = reader->cu;
13539 struct objfile *objfile = cu->objfile;
13540 gdb_byte *buffer = reader->buffer;
13541 unsigned int i;
13542 struct attribute attr;
13543 int has_low_pc_attr = 0;
13544 int has_high_pc_attr = 0;
13545 int high_pc_relative = 0;
13546
13547 memset (part_die, 0, sizeof (struct partial_die_info));
13548
13549 part_die->offset.sect_off = info_ptr - buffer;
13550
13551 info_ptr += abbrev_len;
13552
13553 if (abbrev == NULL)
13554 return info_ptr;
13555
13556 part_die->tag = abbrev->tag;
13557 part_die->has_children = abbrev->has_children;
13558
13559 for (i = 0; i < abbrev->num_attrs; ++i)
13560 {
13561 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
13562
13563 /* Store the data if it is of an attribute we want to keep in a
13564 partial symbol table. */
13565 switch (attr.name)
13566 {
13567 case DW_AT_name:
13568 switch (part_die->tag)
13569 {
13570 case DW_TAG_compile_unit:
13571 case DW_TAG_partial_unit:
13572 case DW_TAG_type_unit:
13573 /* Compilation units have a DW_AT_name that is a filename, not
13574 a source language identifier. */
13575 case DW_TAG_enumeration_type:
13576 case DW_TAG_enumerator:
13577 /* These tags always have simple identifiers already; no need
13578 to canonicalize them. */
13579 part_die->name = DW_STRING (&attr);
13580 break;
13581 default:
13582 part_die->name
13583 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
13584 &objfile->objfile_obstack);
13585 break;
13586 }
13587 break;
13588 case DW_AT_linkage_name:
13589 case DW_AT_MIPS_linkage_name:
13590 /* Note that both forms of linkage name might appear. We
13591 assume they will be the same, and we only store the last
13592 one we see. */
13593 if (cu->language == language_ada)
13594 part_die->name = DW_STRING (&attr);
13595 part_die->linkage_name = DW_STRING (&attr);
13596 break;
13597 case DW_AT_low_pc:
13598 has_low_pc_attr = 1;
13599 part_die->lowpc = DW_ADDR (&attr);
13600 break;
13601 case DW_AT_high_pc:
13602 has_high_pc_attr = 1;
13603 if (attr.form == DW_FORM_addr
13604 || attr.form == DW_FORM_GNU_addr_index)
13605 part_die->highpc = DW_ADDR (&attr);
13606 else
13607 {
13608 high_pc_relative = 1;
13609 part_die->highpc = DW_UNSND (&attr);
13610 }
13611 break;
13612 case DW_AT_location:
13613 /* Support the .debug_loc offsets. */
13614 if (attr_form_is_block (&attr))
13615 {
13616 part_die->d.locdesc = DW_BLOCK (&attr);
13617 }
13618 else if (attr_form_is_section_offset (&attr))
13619 {
13620 dwarf2_complex_location_expr_complaint ();
13621 }
13622 else
13623 {
13624 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13625 "partial symbol information");
13626 }
13627 break;
13628 case DW_AT_external:
13629 part_die->is_external = DW_UNSND (&attr);
13630 break;
13631 case DW_AT_declaration:
13632 part_die->is_declaration = DW_UNSND (&attr);
13633 break;
13634 case DW_AT_type:
13635 part_die->has_type = 1;
13636 break;
13637 case DW_AT_abstract_origin:
13638 case DW_AT_specification:
13639 case DW_AT_extension:
13640 part_die->has_specification = 1;
13641 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
13642 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13643 || cu->per_cu->is_dwz);
13644 break;
13645 case DW_AT_sibling:
13646 /* Ignore absolute siblings, they might point outside of
13647 the current compile unit. */
13648 if (attr.form == DW_FORM_ref_addr)
13649 complaint (&symfile_complaints,
13650 _("ignoring absolute DW_AT_sibling"));
13651 else
13652 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
13653 break;
13654 case DW_AT_byte_size:
13655 part_die->has_byte_size = 1;
13656 break;
13657 case DW_AT_calling_convention:
13658 /* DWARF doesn't provide a way to identify a program's source-level
13659 entry point. DW_AT_calling_convention attributes are only meant
13660 to describe functions' calling conventions.
13661
13662 However, because it's a necessary piece of information in
13663 Fortran, and because DW_CC_program is the only piece of debugging
13664 information whose definition refers to a 'main program' at all,
13665 several compilers have begun marking Fortran main programs with
13666 DW_CC_program --- even when those functions use the standard
13667 calling conventions.
13668
13669 So until DWARF specifies a way to provide this information and
13670 compilers pick up the new representation, we'll support this
13671 practice. */
13672 if (DW_UNSND (&attr) == DW_CC_program
13673 && cu->language == language_fortran)
13674 {
13675 set_main_name (part_die->name);
13676
13677 /* As this DIE has a static linkage the name would be difficult
13678 to look up later. */
13679 language_of_main = language_fortran;
13680 }
13681 break;
13682 case DW_AT_inline:
13683 if (DW_UNSND (&attr) == DW_INL_inlined
13684 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13685 part_die->may_be_inlined = 1;
13686 break;
13687
13688 case DW_AT_import:
13689 if (part_die->tag == DW_TAG_imported_unit)
13690 {
13691 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13692 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13693 || cu->per_cu->is_dwz);
13694 }
13695 break;
13696
13697 default:
13698 break;
13699 }
13700 }
13701
13702 if (high_pc_relative)
13703 part_die->highpc += part_die->lowpc;
13704
13705 if (has_low_pc_attr && has_high_pc_attr)
13706 {
13707 /* When using the GNU linker, .gnu.linkonce. sections are used to
13708 eliminate duplicate copies of functions and vtables and such.
13709 The linker will arbitrarily choose one and discard the others.
13710 The AT_*_pc values for such functions refer to local labels in
13711 these sections. If the section from that file was discarded, the
13712 labels are not in the output, so the relocs get a value of 0.
13713 If this is a discarded function, mark the pc bounds as invalid,
13714 so that GDB will ignore it. */
13715 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13716 {
13717 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13718
13719 complaint (&symfile_complaints,
13720 _("DW_AT_low_pc %s is zero "
13721 "for DIE at 0x%x [in module %s]"),
13722 paddress (gdbarch, part_die->lowpc),
13723 part_die->offset.sect_off, objfile->name);
13724 }
13725 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13726 else if (part_die->lowpc >= part_die->highpc)
13727 {
13728 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13729
13730 complaint (&symfile_complaints,
13731 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13732 "for DIE at 0x%x [in module %s]"),
13733 paddress (gdbarch, part_die->lowpc),
13734 paddress (gdbarch, part_die->highpc),
13735 part_die->offset.sect_off, objfile->name);
13736 }
13737 else
13738 part_die->has_pc_info = 1;
13739 }
13740
13741 return info_ptr;
13742 }
13743
13744 /* Find a cached partial DIE at OFFSET in CU. */
13745
13746 static struct partial_die_info *
13747 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
13748 {
13749 struct partial_die_info *lookup_die = NULL;
13750 struct partial_die_info part_die;
13751
13752 part_die.offset = offset;
13753 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13754 offset.sect_off);
13755
13756 return lookup_die;
13757 }
13758
13759 /* Find a partial DIE at OFFSET, which may or may not be in CU,
13760 except in the case of .debug_types DIEs which do not reference
13761 outside their CU (they do however referencing other types via
13762 DW_FORM_ref_sig8). */
13763
13764 static struct partial_die_info *
13765 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
13766 {
13767 struct objfile *objfile = cu->objfile;
13768 struct dwarf2_per_cu_data *per_cu = NULL;
13769 struct partial_die_info *pd = NULL;
13770
13771 if (offset_in_dwz == cu->per_cu->is_dwz
13772 && offset_in_cu_p (&cu->header, offset))
13773 {
13774 pd = find_partial_die_in_comp_unit (offset, cu);
13775 if (pd != NULL)
13776 return pd;
13777 /* We missed recording what we needed.
13778 Load all dies and try again. */
13779 per_cu = cu->per_cu;
13780 }
13781 else
13782 {
13783 /* TUs don't reference other CUs/TUs (except via type signatures). */
13784 if (cu->per_cu->is_debug_types)
13785 {
13786 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
13787 " external reference to offset 0x%lx [in module %s].\n"),
13788 (long) cu->header.offset.sect_off, (long) offset.sect_off,
13789 bfd_get_filename (objfile->obfd));
13790 }
13791 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
13792 objfile);
13793
13794 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
13795 load_partial_comp_unit (per_cu);
13796
13797 per_cu->cu->last_used = 0;
13798 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13799 }
13800
13801 /* If we didn't find it, and not all dies have been loaded,
13802 load them all and try again. */
13803
13804 if (pd == NULL && per_cu->load_all_dies == 0)
13805 {
13806 per_cu->load_all_dies = 1;
13807
13808 /* This is nasty. When we reread the DIEs, somewhere up the call chain
13809 THIS_CU->cu may already be in use. So we can't just free it and
13810 replace its DIEs with the ones we read in. Instead, we leave those
13811 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
13812 and clobber THIS_CU->cu->partial_dies with the hash table for the new
13813 set. */
13814 load_partial_comp_unit (per_cu);
13815
13816 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13817 }
13818
13819 if (pd == NULL)
13820 internal_error (__FILE__, __LINE__,
13821 _("could not find partial DIE 0x%x "
13822 "in cache [from module %s]\n"),
13823 offset.sect_off, bfd_get_filename (objfile->obfd));
13824 return pd;
13825 }
13826
13827 /* See if we can figure out if the class lives in a namespace. We do
13828 this by looking for a member function; its demangled name will
13829 contain namespace info, if there is any. */
13830
13831 static void
13832 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
13833 struct dwarf2_cu *cu)
13834 {
13835 /* NOTE: carlton/2003-10-07: Getting the info this way changes
13836 what template types look like, because the demangler
13837 frequently doesn't give the same name as the debug info. We
13838 could fix this by only using the demangled name to get the
13839 prefix (but see comment in read_structure_type). */
13840
13841 struct partial_die_info *real_pdi;
13842 struct partial_die_info *child_pdi;
13843
13844 /* If this DIE (this DIE's specification, if any) has a parent, then
13845 we should not do this. We'll prepend the parent's fully qualified
13846 name when we create the partial symbol. */
13847
13848 real_pdi = struct_pdi;
13849 while (real_pdi->has_specification)
13850 real_pdi = find_partial_die (real_pdi->spec_offset,
13851 real_pdi->spec_is_dwz, cu);
13852
13853 if (real_pdi->die_parent != NULL)
13854 return;
13855
13856 for (child_pdi = struct_pdi->die_child;
13857 child_pdi != NULL;
13858 child_pdi = child_pdi->die_sibling)
13859 {
13860 if (child_pdi->tag == DW_TAG_subprogram
13861 && child_pdi->linkage_name != NULL)
13862 {
13863 char *actual_class_name
13864 = language_class_name_from_physname (cu->language_defn,
13865 child_pdi->linkage_name);
13866 if (actual_class_name != NULL)
13867 {
13868 struct_pdi->name
13869 = obstack_copy0 (&cu->objfile->objfile_obstack,
13870 actual_class_name,
13871 strlen (actual_class_name));
13872 xfree (actual_class_name);
13873 }
13874 break;
13875 }
13876 }
13877 }
13878
13879 /* Adjust PART_DIE before generating a symbol for it. This function
13880 may set the is_external flag or change the DIE's name. */
13881
13882 static void
13883 fixup_partial_die (struct partial_die_info *part_die,
13884 struct dwarf2_cu *cu)
13885 {
13886 /* Once we've fixed up a die, there's no point in doing so again.
13887 This also avoids a memory leak if we were to call
13888 guess_partial_die_structure_name multiple times. */
13889 if (part_die->fixup_called)
13890 return;
13891
13892 /* If we found a reference attribute and the DIE has no name, try
13893 to find a name in the referred to DIE. */
13894
13895 if (part_die->name == NULL && part_die->has_specification)
13896 {
13897 struct partial_die_info *spec_die;
13898
13899 spec_die = find_partial_die (part_die->spec_offset,
13900 part_die->spec_is_dwz, cu);
13901
13902 fixup_partial_die (spec_die, cu);
13903
13904 if (spec_die->name)
13905 {
13906 part_die->name = spec_die->name;
13907
13908 /* Copy DW_AT_external attribute if it is set. */
13909 if (spec_die->is_external)
13910 part_die->is_external = spec_die->is_external;
13911 }
13912 }
13913
13914 /* Set default names for some unnamed DIEs. */
13915
13916 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
13917 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
13918
13919 /* If there is no parent die to provide a namespace, and there are
13920 children, see if we can determine the namespace from their linkage
13921 name. */
13922 if (cu->language == language_cplus
13923 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
13924 && part_die->die_parent == NULL
13925 && part_die->has_children
13926 && (part_die->tag == DW_TAG_class_type
13927 || part_die->tag == DW_TAG_structure_type
13928 || part_die->tag == DW_TAG_union_type))
13929 guess_partial_die_structure_name (part_die, cu);
13930
13931 /* GCC might emit a nameless struct or union that has a linkage
13932 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
13933 if (part_die->name == NULL
13934 && (part_die->tag == DW_TAG_class_type
13935 || part_die->tag == DW_TAG_interface_type
13936 || part_die->tag == DW_TAG_structure_type
13937 || part_die->tag == DW_TAG_union_type)
13938 && part_die->linkage_name != NULL)
13939 {
13940 char *demangled;
13941
13942 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
13943 if (demangled)
13944 {
13945 const char *base;
13946
13947 /* Strip any leading namespaces/classes, keep only the base name.
13948 DW_AT_name for named DIEs does not contain the prefixes. */
13949 base = strrchr (demangled, ':');
13950 if (base && base > demangled && base[-1] == ':')
13951 base++;
13952 else
13953 base = demangled;
13954
13955 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
13956 base, strlen (base));
13957 xfree (demangled);
13958 }
13959 }
13960
13961 part_die->fixup_called = 1;
13962 }
13963
13964 /* Read an attribute value described by an attribute form. */
13965
13966 static gdb_byte *
13967 read_attribute_value (const struct die_reader_specs *reader,
13968 struct attribute *attr, unsigned form,
13969 gdb_byte *info_ptr)
13970 {
13971 struct dwarf2_cu *cu = reader->cu;
13972 bfd *abfd = reader->abfd;
13973 struct comp_unit_head *cu_header = &cu->header;
13974 unsigned int bytes_read;
13975 struct dwarf_block *blk;
13976
13977 attr->form = form;
13978 switch (form)
13979 {
13980 case DW_FORM_ref_addr:
13981 if (cu->header.version == 2)
13982 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
13983 else
13984 DW_UNSND (attr) = read_offset (abfd, info_ptr,
13985 &cu->header, &bytes_read);
13986 info_ptr += bytes_read;
13987 break;
13988 case DW_FORM_GNU_ref_alt:
13989 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13990 info_ptr += bytes_read;
13991 break;
13992 case DW_FORM_addr:
13993 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
13994 info_ptr += bytes_read;
13995 break;
13996 case DW_FORM_block2:
13997 blk = dwarf_alloc_block (cu);
13998 blk->size = read_2_bytes (abfd, info_ptr);
13999 info_ptr += 2;
14000 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14001 info_ptr += blk->size;
14002 DW_BLOCK (attr) = blk;
14003 break;
14004 case DW_FORM_block4:
14005 blk = dwarf_alloc_block (cu);
14006 blk->size = read_4_bytes (abfd, info_ptr);
14007 info_ptr += 4;
14008 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14009 info_ptr += blk->size;
14010 DW_BLOCK (attr) = blk;
14011 break;
14012 case DW_FORM_data2:
14013 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14014 info_ptr += 2;
14015 break;
14016 case DW_FORM_data4:
14017 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14018 info_ptr += 4;
14019 break;
14020 case DW_FORM_data8:
14021 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14022 info_ptr += 8;
14023 break;
14024 case DW_FORM_sec_offset:
14025 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14026 info_ptr += bytes_read;
14027 break;
14028 case DW_FORM_string:
14029 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14030 DW_STRING_IS_CANONICAL (attr) = 0;
14031 info_ptr += bytes_read;
14032 break;
14033 case DW_FORM_strp:
14034 if (!cu->per_cu->is_dwz)
14035 {
14036 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14037 &bytes_read);
14038 DW_STRING_IS_CANONICAL (attr) = 0;
14039 info_ptr += bytes_read;
14040 break;
14041 }
14042 /* FALLTHROUGH */
14043 case DW_FORM_GNU_strp_alt:
14044 {
14045 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14046 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14047 &bytes_read);
14048
14049 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14050 DW_STRING_IS_CANONICAL (attr) = 0;
14051 info_ptr += bytes_read;
14052 }
14053 break;
14054 case DW_FORM_exprloc:
14055 case DW_FORM_block:
14056 blk = dwarf_alloc_block (cu);
14057 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14058 info_ptr += bytes_read;
14059 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14060 info_ptr += blk->size;
14061 DW_BLOCK (attr) = blk;
14062 break;
14063 case DW_FORM_block1:
14064 blk = dwarf_alloc_block (cu);
14065 blk->size = read_1_byte (abfd, info_ptr);
14066 info_ptr += 1;
14067 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14068 info_ptr += blk->size;
14069 DW_BLOCK (attr) = blk;
14070 break;
14071 case DW_FORM_data1:
14072 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14073 info_ptr += 1;
14074 break;
14075 case DW_FORM_flag:
14076 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14077 info_ptr += 1;
14078 break;
14079 case DW_FORM_flag_present:
14080 DW_UNSND (attr) = 1;
14081 break;
14082 case DW_FORM_sdata:
14083 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14084 info_ptr += bytes_read;
14085 break;
14086 case DW_FORM_udata:
14087 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14088 info_ptr += bytes_read;
14089 break;
14090 case DW_FORM_ref1:
14091 DW_UNSND (attr) = (cu->header.offset.sect_off
14092 + read_1_byte (abfd, info_ptr));
14093 info_ptr += 1;
14094 break;
14095 case DW_FORM_ref2:
14096 DW_UNSND (attr) = (cu->header.offset.sect_off
14097 + read_2_bytes (abfd, info_ptr));
14098 info_ptr += 2;
14099 break;
14100 case DW_FORM_ref4:
14101 DW_UNSND (attr) = (cu->header.offset.sect_off
14102 + read_4_bytes (abfd, info_ptr));
14103 info_ptr += 4;
14104 break;
14105 case DW_FORM_ref8:
14106 DW_UNSND (attr) = (cu->header.offset.sect_off
14107 + read_8_bytes (abfd, info_ptr));
14108 info_ptr += 8;
14109 break;
14110 case DW_FORM_ref_sig8:
14111 /* Convert the signature to something we can record in DW_UNSND
14112 for later lookup.
14113 NOTE: This is NULL if the type wasn't found. */
14114 DW_SIGNATURED_TYPE (attr) =
14115 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
14116 info_ptr += 8;
14117 break;
14118 case DW_FORM_ref_udata:
14119 DW_UNSND (attr) = (cu->header.offset.sect_off
14120 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14121 info_ptr += bytes_read;
14122 break;
14123 case DW_FORM_indirect:
14124 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14125 info_ptr += bytes_read;
14126 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14127 break;
14128 case DW_FORM_GNU_addr_index:
14129 if (reader->dwo_file == NULL)
14130 {
14131 /* For now flag a hard error.
14132 Later we can turn this into a complaint. */
14133 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14134 dwarf_form_name (form),
14135 bfd_get_filename (abfd));
14136 }
14137 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14138 info_ptr += bytes_read;
14139 break;
14140 case DW_FORM_GNU_str_index:
14141 if (reader->dwo_file == NULL)
14142 {
14143 /* For now flag a hard error.
14144 Later we can turn this into a complaint if warranted. */
14145 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14146 dwarf_form_name (form),
14147 bfd_get_filename (abfd));
14148 }
14149 {
14150 ULONGEST str_index =
14151 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14152
14153 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14154 DW_STRING_IS_CANONICAL (attr) = 0;
14155 info_ptr += bytes_read;
14156 }
14157 break;
14158 default:
14159 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14160 dwarf_form_name (form),
14161 bfd_get_filename (abfd));
14162 }
14163
14164 /* Super hack. */
14165 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14166 attr->form = DW_FORM_GNU_ref_alt;
14167
14168 /* We have seen instances where the compiler tried to emit a byte
14169 size attribute of -1 which ended up being encoded as an unsigned
14170 0xffffffff. Although 0xffffffff is technically a valid size value,
14171 an object of this size seems pretty unlikely so we can relatively
14172 safely treat these cases as if the size attribute was invalid and
14173 treat them as zero by default. */
14174 if (attr->name == DW_AT_byte_size
14175 && form == DW_FORM_data4
14176 && DW_UNSND (attr) >= 0xffffffff)
14177 {
14178 complaint
14179 (&symfile_complaints,
14180 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14181 hex_string (DW_UNSND (attr)));
14182 DW_UNSND (attr) = 0;
14183 }
14184
14185 return info_ptr;
14186 }
14187
14188 /* Read an attribute described by an abbreviated attribute. */
14189
14190 static gdb_byte *
14191 read_attribute (const struct die_reader_specs *reader,
14192 struct attribute *attr, struct attr_abbrev *abbrev,
14193 gdb_byte *info_ptr)
14194 {
14195 attr->name = abbrev->name;
14196 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14197 }
14198
14199 /* Read dwarf information from a buffer. */
14200
14201 static unsigned int
14202 read_1_byte (bfd *abfd, const gdb_byte *buf)
14203 {
14204 return bfd_get_8 (abfd, buf);
14205 }
14206
14207 static int
14208 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14209 {
14210 return bfd_get_signed_8 (abfd, buf);
14211 }
14212
14213 static unsigned int
14214 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14215 {
14216 return bfd_get_16 (abfd, buf);
14217 }
14218
14219 static int
14220 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14221 {
14222 return bfd_get_signed_16 (abfd, buf);
14223 }
14224
14225 static unsigned int
14226 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14227 {
14228 return bfd_get_32 (abfd, buf);
14229 }
14230
14231 static int
14232 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14233 {
14234 return bfd_get_signed_32 (abfd, buf);
14235 }
14236
14237 static ULONGEST
14238 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14239 {
14240 return bfd_get_64 (abfd, buf);
14241 }
14242
14243 static CORE_ADDR
14244 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
14245 unsigned int *bytes_read)
14246 {
14247 struct comp_unit_head *cu_header = &cu->header;
14248 CORE_ADDR retval = 0;
14249
14250 if (cu_header->signed_addr_p)
14251 {
14252 switch (cu_header->addr_size)
14253 {
14254 case 2:
14255 retval = bfd_get_signed_16 (abfd, buf);
14256 break;
14257 case 4:
14258 retval = bfd_get_signed_32 (abfd, buf);
14259 break;
14260 case 8:
14261 retval = bfd_get_signed_64 (abfd, buf);
14262 break;
14263 default:
14264 internal_error (__FILE__, __LINE__,
14265 _("read_address: bad switch, signed [in module %s]"),
14266 bfd_get_filename (abfd));
14267 }
14268 }
14269 else
14270 {
14271 switch (cu_header->addr_size)
14272 {
14273 case 2:
14274 retval = bfd_get_16 (abfd, buf);
14275 break;
14276 case 4:
14277 retval = bfd_get_32 (abfd, buf);
14278 break;
14279 case 8:
14280 retval = bfd_get_64 (abfd, buf);
14281 break;
14282 default:
14283 internal_error (__FILE__, __LINE__,
14284 _("read_address: bad switch, "
14285 "unsigned [in module %s]"),
14286 bfd_get_filename (abfd));
14287 }
14288 }
14289
14290 *bytes_read = cu_header->addr_size;
14291 return retval;
14292 }
14293
14294 /* Read the initial length from a section. The (draft) DWARF 3
14295 specification allows the initial length to take up either 4 bytes
14296 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14297 bytes describe the length and all offsets will be 8 bytes in length
14298 instead of 4.
14299
14300 An older, non-standard 64-bit format is also handled by this
14301 function. The older format in question stores the initial length
14302 as an 8-byte quantity without an escape value. Lengths greater
14303 than 2^32 aren't very common which means that the initial 4 bytes
14304 is almost always zero. Since a length value of zero doesn't make
14305 sense for the 32-bit format, this initial zero can be considered to
14306 be an escape value which indicates the presence of the older 64-bit
14307 format. As written, the code can't detect (old format) lengths
14308 greater than 4GB. If it becomes necessary to handle lengths
14309 somewhat larger than 4GB, we could allow other small values (such
14310 as the non-sensical values of 1, 2, and 3) to also be used as
14311 escape values indicating the presence of the old format.
14312
14313 The value returned via bytes_read should be used to increment the
14314 relevant pointer after calling read_initial_length().
14315
14316 [ Note: read_initial_length() and read_offset() are based on the
14317 document entitled "DWARF Debugging Information Format", revision
14318 3, draft 8, dated November 19, 2001. This document was obtained
14319 from:
14320
14321 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14322
14323 This document is only a draft and is subject to change. (So beware.)
14324
14325 Details regarding the older, non-standard 64-bit format were
14326 determined empirically by examining 64-bit ELF files produced by
14327 the SGI toolchain on an IRIX 6.5 machine.
14328
14329 - Kevin, July 16, 2002
14330 ] */
14331
14332 static LONGEST
14333 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
14334 {
14335 LONGEST length = bfd_get_32 (abfd, buf);
14336
14337 if (length == 0xffffffff)
14338 {
14339 length = bfd_get_64 (abfd, buf + 4);
14340 *bytes_read = 12;
14341 }
14342 else if (length == 0)
14343 {
14344 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14345 length = bfd_get_64 (abfd, buf);
14346 *bytes_read = 8;
14347 }
14348 else
14349 {
14350 *bytes_read = 4;
14351 }
14352
14353 return length;
14354 }
14355
14356 /* Cover function for read_initial_length.
14357 Returns the length of the object at BUF, and stores the size of the
14358 initial length in *BYTES_READ and stores the size that offsets will be in
14359 *OFFSET_SIZE.
14360 If the initial length size is not equivalent to that specified in
14361 CU_HEADER then issue a complaint.
14362 This is useful when reading non-comp-unit headers. */
14363
14364 static LONGEST
14365 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
14366 const struct comp_unit_head *cu_header,
14367 unsigned int *bytes_read,
14368 unsigned int *offset_size)
14369 {
14370 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14371
14372 gdb_assert (cu_header->initial_length_size == 4
14373 || cu_header->initial_length_size == 8
14374 || cu_header->initial_length_size == 12);
14375
14376 if (cu_header->initial_length_size != *bytes_read)
14377 complaint (&symfile_complaints,
14378 _("intermixed 32-bit and 64-bit DWARF sections"));
14379
14380 *offset_size = (*bytes_read == 4) ? 4 : 8;
14381 return length;
14382 }
14383
14384 /* Read an offset from the data stream. The size of the offset is
14385 given by cu_header->offset_size. */
14386
14387 static LONGEST
14388 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
14389 unsigned int *bytes_read)
14390 {
14391 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14392
14393 *bytes_read = cu_header->offset_size;
14394 return offset;
14395 }
14396
14397 /* Read an offset from the data stream. */
14398
14399 static LONGEST
14400 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
14401 {
14402 LONGEST retval = 0;
14403
14404 switch (offset_size)
14405 {
14406 case 4:
14407 retval = bfd_get_32 (abfd, buf);
14408 break;
14409 case 8:
14410 retval = bfd_get_64 (abfd, buf);
14411 break;
14412 default:
14413 internal_error (__FILE__, __LINE__,
14414 _("read_offset_1: bad switch [in module %s]"),
14415 bfd_get_filename (abfd));
14416 }
14417
14418 return retval;
14419 }
14420
14421 static gdb_byte *
14422 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
14423 {
14424 /* If the size of a host char is 8 bits, we can return a pointer
14425 to the buffer, otherwise we have to copy the data to a buffer
14426 allocated on the temporary obstack. */
14427 gdb_assert (HOST_CHAR_BIT == 8);
14428 return buf;
14429 }
14430
14431 static char *
14432 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14433 {
14434 /* If the size of a host char is 8 bits, we can return a pointer
14435 to the string, otherwise we have to copy the string to a buffer
14436 allocated on the temporary obstack. */
14437 gdb_assert (HOST_CHAR_BIT == 8);
14438 if (*buf == '\0')
14439 {
14440 *bytes_read_ptr = 1;
14441 return NULL;
14442 }
14443 *bytes_read_ptr = strlen ((char *) buf) + 1;
14444 return (char *) buf;
14445 }
14446
14447 static char *
14448 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
14449 {
14450 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
14451 if (dwarf2_per_objfile->str.buffer == NULL)
14452 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14453 bfd_get_filename (abfd));
14454 if (str_offset >= dwarf2_per_objfile->str.size)
14455 error (_("DW_FORM_strp pointing outside of "
14456 ".debug_str section [in module %s]"),
14457 bfd_get_filename (abfd));
14458 gdb_assert (HOST_CHAR_BIT == 8);
14459 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
14460 return NULL;
14461 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
14462 }
14463
14464 /* Read a string at offset STR_OFFSET in the .debug_str section from
14465 the .dwz file DWZ. Throw an error if the offset is too large. If
14466 the string consists of a single NUL byte, return NULL; otherwise
14467 return a pointer to the string. */
14468
14469 static char *
14470 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14471 {
14472 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14473
14474 if (dwz->str.buffer == NULL)
14475 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14476 "section [in module %s]"),
14477 bfd_get_filename (dwz->dwz_bfd));
14478 if (str_offset >= dwz->str.size)
14479 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14480 ".debug_str section [in module %s]"),
14481 bfd_get_filename (dwz->dwz_bfd));
14482 gdb_assert (HOST_CHAR_BIT == 8);
14483 if (dwz->str.buffer[str_offset] == '\0')
14484 return NULL;
14485 return (char *) (dwz->str.buffer + str_offset);
14486 }
14487
14488 static char *
14489 read_indirect_string (bfd *abfd, gdb_byte *buf,
14490 const struct comp_unit_head *cu_header,
14491 unsigned int *bytes_read_ptr)
14492 {
14493 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14494
14495 return read_indirect_string_at_offset (abfd, str_offset);
14496 }
14497
14498 static ULONGEST
14499 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14500 {
14501 ULONGEST result;
14502 unsigned int num_read;
14503 int i, shift;
14504 unsigned char byte;
14505
14506 result = 0;
14507 shift = 0;
14508 num_read = 0;
14509 i = 0;
14510 while (1)
14511 {
14512 byte = bfd_get_8 (abfd, buf);
14513 buf++;
14514 num_read++;
14515 result |= ((ULONGEST) (byte & 127) << shift);
14516 if ((byte & 128) == 0)
14517 {
14518 break;
14519 }
14520 shift += 7;
14521 }
14522 *bytes_read_ptr = num_read;
14523 return result;
14524 }
14525
14526 static LONGEST
14527 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14528 {
14529 LONGEST result;
14530 int i, shift, num_read;
14531 unsigned char byte;
14532
14533 result = 0;
14534 shift = 0;
14535 num_read = 0;
14536 i = 0;
14537 while (1)
14538 {
14539 byte = bfd_get_8 (abfd, buf);
14540 buf++;
14541 num_read++;
14542 result |= ((LONGEST) (byte & 127) << shift);
14543 shift += 7;
14544 if ((byte & 128) == 0)
14545 {
14546 break;
14547 }
14548 }
14549 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
14550 result |= -(((LONGEST) 1) << shift);
14551 *bytes_read_ptr = num_read;
14552 return result;
14553 }
14554
14555 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
14556 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14557 ADDR_SIZE is the size of addresses from the CU header. */
14558
14559 static CORE_ADDR
14560 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14561 {
14562 struct objfile *objfile = dwarf2_per_objfile->objfile;
14563 bfd *abfd = objfile->obfd;
14564 const gdb_byte *info_ptr;
14565
14566 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14567 if (dwarf2_per_objfile->addr.buffer == NULL)
14568 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14569 objfile->name);
14570 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14571 error (_("DW_FORM_addr_index pointing outside of "
14572 ".debug_addr section [in module %s]"),
14573 objfile->name);
14574 info_ptr = (dwarf2_per_objfile->addr.buffer
14575 + addr_base + addr_index * addr_size);
14576 if (addr_size == 4)
14577 return bfd_get_32 (abfd, info_ptr);
14578 else
14579 return bfd_get_64 (abfd, info_ptr);
14580 }
14581
14582 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14583
14584 static CORE_ADDR
14585 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14586 {
14587 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14588 }
14589
14590 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14591
14592 static CORE_ADDR
14593 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
14594 unsigned int *bytes_read)
14595 {
14596 bfd *abfd = cu->objfile->obfd;
14597 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14598
14599 return read_addr_index (cu, addr_index);
14600 }
14601
14602 /* Data structure to pass results from dwarf2_read_addr_index_reader
14603 back to dwarf2_read_addr_index. */
14604
14605 struct dwarf2_read_addr_index_data
14606 {
14607 ULONGEST addr_base;
14608 int addr_size;
14609 };
14610
14611 /* die_reader_func for dwarf2_read_addr_index. */
14612
14613 static void
14614 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14615 gdb_byte *info_ptr,
14616 struct die_info *comp_unit_die,
14617 int has_children,
14618 void *data)
14619 {
14620 struct dwarf2_cu *cu = reader->cu;
14621 struct dwarf2_read_addr_index_data *aidata =
14622 (struct dwarf2_read_addr_index_data *) data;
14623
14624 aidata->addr_base = cu->addr_base;
14625 aidata->addr_size = cu->header.addr_size;
14626 }
14627
14628 /* Given an index in .debug_addr, fetch the value.
14629 NOTE: This can be called during dwarf expression evaluation,
14630 long after the debug information has been read, and thus per_cu->cu
14631 may no longer exist. */
14632
14633 CORE_ADDR
14634 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14635 unsigned int addr_index)
14636 {
14637 struct objfile *objfile = per_cu->objfile;
14638 struct dwarf2_cu *cu = per_cu->cu;
14639 ULONGEST addr_base;
14640 int addr_size;
14641
14642 /* This is intended to be called from outside this file. */
14643 dw2_setup (objfile);
14644
14645 /* We need addr_base and addr_size.
14646 If we don't have PER_CU->cu, we have to get it.
14647 Nasty, but the alternative is storing the needed info in PER_CU,
14648 which at this point doesn't seem justified: it's not clear how frequently
14649 it would get used and it would increase the size of every PER_CU.
14650 Entry points like dwarf2_per_cu_addr_size do a similar thing
14651 so we're not in uncharted territory here.
14652 Alas we need to be a bit more complicated as addr_base is contained
14653 in the DIE.
14654
14655 We don't need to read the entire CU(/TU).
14656 We just need the header and top level die.
14657
14658 IWBN to use the aging mechanism to let us lazily later discard the CU.
14659 For now we skip this optimization. */
14660
14661 if (cu != NULL)
14662 {
14663 addr_base = cu->addr_base;
14664 addr_size = cu->header.addr_size;
14665 }
14666 else
14667 {
14668 struct dwarf2_read_addr_index_data aidata;
14669
14670 /* Note: We can't use init_cutu_and_read_dies_simple here,
14671 we need addr_base. */
14672 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14673 dwarf2_read_addr_index_reader, &aidata);
14674 addr_base = aidata.addr_base;
14675 addr_size = aidata.addr_size;
14676 }
14677
14678 return read_addr_index_1 (addr_index, addr_base, addr_size);
14679 }
14680
14681 /* Given a DW_AT_str_index, fetch the string. */
14682
14683 static char *
14684 read_str_index (const struct die_reader_specs *reader,
14685 struct dwarf2_cu *cu, ULONGEST str_index)
14686 {
14687 struct objfile *objfile = dwarf2_per_objfile->objfile;
14688 const char *dwo_name = objfile->name;
14689 bfd *abfd = objfile->obfd;
14690 struct dwo_sections *sections = &reader->dwo_file->sections;
14691 gdb_byte *info_ptr;
14692 ULONGEST str_offset;
14693
14694 dwarf2_read_section (objfile, &sections->str);
14695 dwarf2_read_section (objfile, &sections->str_offsets);
14696 if (sections->str.buffer == NULL)
14697 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14698 " in CU at offset 0x%lx [in module %s]"),
14699 (long) cu->header.offset.sect_off, dwo_name);
14700 if (sections->str_offsets.buffer == NULL)
14701 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14702 " in CU at offset 0x%lx [in module %s]"),
14703 (long) cu->header.offset.sect_off, dwo_name);
14704 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14705 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14706 " section in CU at offset 0x%lx [in module %s]"),
14707 (long) cu->header.offset.sect_off, dwo_name);
14708 info_ptr = (sections->str_offsets.buffer
14709 + str_index * cu->header.offset_size);
14710 if (cu->header.offset_size == 4)
14711 str_offset = bfd_get_32 (abfd, info_ptr);
14712 else
14713 str_offset = bfd_get_64 (abfd, info_ptr);
14714 if (str_offset >= sections->str.size)
14715 error (_("Offset from DW_FORM_str_index pointing outside of"
14716 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14717 (long) cu->header.offset.sect_off, dwo_name);
14718 return (char *) (sections->str.buffer + str_offset);
14719 }
14720
14721 /* Return the length of an LEB128 number in BUF. */
14722
14723 static int
14724 leb128_size (const gdb_byte *buf)
14725 {
14726 const gdb_byte *begin = buf;
14727 gdb_byte byte;
14728
14729 while (1)
14730 {
14731 byte = *buf++;
14732 if ((byte & 128) == 0)
14733 return buf - begin;
14734 }
14735 }
14736
14737 static void
14738 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
14739 {
14740 switch (lang)
14741 {
14742 case DW_LANG_C89:
14743 case DW_LANG_C99:
14744 case DW_LANG_C:
14745 cu->language = language_c;
14746 break;
14747 case DW_LANG_C_plus_plus:
14748 cu->language = language_cplus;
14749 break;
14750 case DW_LANG_D:
14751 cu->language = language_d;
14752 break;
14753 case DW_LANG_Fortran77:
14754 case DW_LANG_Fortran90:
14755 case DW_LANG_Fortran95:
14756 cu->language = language_fortran;
14757 break;
14758 case DW_LANG_Go:
14759 cu->language = language_go;
14760 break;
14761 case DW_LANG_Mips_Assembler:
14762 cu->language = language_asm;
14763 break;
14764 case DW_LANG_Java:
14765 cu->language = language_java;
14766 break;
14767 case DW_LANG_Ada83:
14768 case DW_LANG_Ada95:
14769 cu->language = language_ada;
14770 break;
14771 case DW_LANG_Modula2:
14772 cu->language = language_m2;
14773 break;
14774 case DW_LANG_Pascal83:
14775 cu->language = language_pascal;
14776 break;
14777 case DW_LANG_ObjC:
14778 cu->language = language_objc;
14779 break;
14780 case DW_LANG_Cobol74:
14781 case DW_LANG_Cobol85:
14782 default:
14783 cu->language = language_minimal;
14784 break;
14785 }
14786 cu->language_defn = language_def (cu->language);
14787 }
14788
14789 /* Return the named attribute or NULL if not there. */
14790
14791 static struct attribute *
14792 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
14793 {
14794 for (;;)
14795 {
14796 unsigned int i;
14797 struct attribute *spec = NULL;
14798
14799 for (i = 0; i < die->num_attrs; ++i)
14800 {
14801 if (die->attrs[i].name == name)
14802 return &die->attrs[i];
14803 if (die->attrs[i].name == DW_AT_specification
14804 || die->attrs[i].name == DW_AT_abstract_origin)
14805 spec = &die->attrs[i];
14806 }
14807
14808 if (!spec)
14809 break;
14810
14811 die = follow_die_ref (die, spec, &cu);
14812 }
14813
14814 return NULL;
14815 }
14816
14817 /* Return the named attribute or NULL if not there,
14818 but do not follow DW_AT_specification, etc.
14819 This is for use in contexts where we're reading .debug_types dies.
14820 Following DW_AT_specification, DW_AT_abstract_origin will take us
14821 back up the chain, and we want to go down. */
14822
14823 static struct attribute *
14824 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
14825 {
14826 unsigned int i;
14827
14828 for (i = 0; i < die->num_attrs; ++i)
14829 if (die->attrs[i].name == name)
14830 return &die->attrs[i];
14831
14832 return NULL;
14833 }
14834
14835 /* Return non-zero iff the attribute NAME is defined for the given DIE,
14836 and holds a non-zero value. This function should only be used for
14837 DW_FORM_flag or DW_FORM_flag_present attributes. */
14838
14839 static int
14840 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
14841 {
14842 struct attribute *attr = dwarf2_attr (die, name, cu);
14843
14844 return (attr && DW_UNSND (attr));
14845 }
14846
14847 static int
14848 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
14849 {
14850 /* A DIE is a declaration if it has a DW_AT_declaration attribute
14851 which value is non-zero. However, we have to be careful with
14852 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
14853 (via dwarf2_flag_true_p) follows this attribute. So we may
14854 end up accidently finding a declaration attribute that belongs
14855 to a different DIE referenced by the specification attribute,
14856 even though the given DIE does not have a declaration attribute. */
14857 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
14858 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
14859 }
14860
14861 /* Return the die giving the specification for DIE, if there is
14862 one. *SPEC_CU is the CU containing DIE on input, and the CU
14863 containing the return value on output. If there is no
14864 specification, but there is an abstract origin, that is
14865 returned. */
14866
14867 static struct die_info *
14868 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
14869 {
14870 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
14871 *spec_cu);
14872
14873 if (spec_attr == NULL)
14874 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
14875
14876 if (spec_attr == NULL)
14877 return NULL;
14878 else
14879 return follow_die_ref (die, spec_attr, spec_cu);
14880 }
14881
14882 /* Free the line_header structure *LH, and any arrays and strings it
14883 refers to.
14884 NOTE: This is also used as a "cleanup" function. */
14885
14886 static void
14887 free_line_header (struct line_header *lh)
14888 {
14889 if (lh->standard_opcode_lengths)
14890 xfree (lh->standard_opcode_lengths);
14891
14892 /* Remember that all the lh->file_names[i].name pointers are
14893 pointers into debug_line_buffer, and don't need to be freed. */
14894 if (lh->file_names)
14895 xfree (lh->file_names);
14896
14897 /* Similarly for the include directory names. */
14898 if (lh->include_dirs)
14899 xfree (lh->include_dirs);
14900
14901 xfree (lh);
14902 }
14903
14904 /* Add an entry to LH's include directory table. */
14905
14906 static void
14907 add_include_dir (struct line_header *lh, char *include_dir)
14908 {
14909 /* Grow the array if necessary. */
14910 if (lh->include_dirs_size == 0)
14911 {
14912 lh->include_dirs_size = 1; /* for testing */
14913 lh->include_dirs = xmalloc (lh->include_dirs_size
14914 * sizeof (*lh->include_dirs));
14915 }
14916 else if (lh->num_include_dirs >= lh->include_dirs_size)
14917 {
14918 lh->include_dirs_size *= 2;
14919 lh->include_dirs = xrealloc (lh->include_dirs,
14920 (lh->include_dirs_size
14921 * sizeof (*lh->include_dirs)));
14922 }
14923
14924 lh->include_dirs[lh->num_include_dirs++] = include_dir;
14925 }
14926
14927 /* Add an entry to LH's file name table. */
14928
14929 static void
14930 add_file_name (struct line_header *lh,
14931 char *name,
14932 unsigned int dir_index,
14933 unsigned int mod_time,
14934 unsigned int length)
14935 {
14936 struct file_entry *fe;
14937
14938 /* Grow the array if necessary. */
14939 if (lh->file_names_size == 0)
14940 {
14941 lh->file_names_size = 1; /* for testing */
14942 lh->file_names = xmalloc (lh->file_names_size
14943 * sizeof (*lh->file_names));
14944 }
14945 else if (lh->num_file_names >= lh->file_names_size)
14946 {
14947 lh->file_names_size *= 2;
14948 lh->file_names = xrealloc (lh->file_names,
14949 (lh->file_names_size
14950 * sizeof (*lh->file_names)));
14951 }
14952
14953 fe = &lh->file_names[lh->num_file_names++];
14954 fe->name = name;
14955 fe->dir_index = dir_index;
14956 fe->mod_time = mod_time;
14957 fe->length = length;
14958 fe->included_p = 0;
14959 fe->symtab = NULL;
14960 }
14961
14962 /* A convenience function to find the proper .debug_line section for a
14963 CU. */
14964
14965 static struct dwarf2_section_info *
14966 get_debug_line_section (struct dwarf2_cu *cu)
14967 {
14968 struct dwarf2_section_info *section;
14969
14970 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
14971 DWO file. */
14972 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14973 section = &cu->dwo_unit->dwo_file->sections.line;
14974 else if (cu->per_cu->is_dwz)
14975 {
14976 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14977
14978 section = &dwz->line;
14979 }
14980 else
14981 section = &dwarf2_per_objfile->line;
14982
14983 return section;
14984 }
14985
14986 /* Read the statement program header starting at OFFSET in
14987 .debug_line, or .debug_line.dwo. Return a pointer
14988 to a struct line_header, allocated using xmalloc.
14989
14990 NOTE: the strings in the include directory and file name tables of
14991 the returned object point into the dwarf line section buffer,
14992 and must not be freed. */
14993
14994 static struct line_header *
14995 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
14996 {
14997 struct cleanup *back_to;
14998 struct line_header *lh;
14999 gdb_byte *line_ptr;
15000 unsigned int bytes_read, offset_size;
15001 int i;
15002 char *cur_dir, *cur_file;
15003 struct dwarf2_section_info *section;
15004 bfd *abfd;
15005
15006 section = get_debug_line_section (cu);
15007 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15008 if (section->buffer == NULL)
15009 {
15010 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15011 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15012 else
15013 complaint (&symfile_complaints, _("missing .debug_line section"));
15014 return 0;
15015 }
15016
15017 /* We can't do this until we know the section is non-empty.
15018 Only then do we know we have such a section. */
15019 abfd = section->asection->owner;
15020
15021 /* Make sure that at least there's room for the total_length field.
15022 That could be 12 bytes long, but we're just going to fudge that. */
15023 if (offset + 4 >= section->size)
15024 {
15025 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15026 return 0;
15027 }
15028
15029 lh = xmalloc (sizeof (*lh));
15030 memset (lh, 0, sizeof (*lh));
15031 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15032 (void *) lh);
15033
15034 line_ptr = section->buffer + offset;
15035
15036 /* Read in the header. */
15037 lh->total_length =
15038 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15039 &bytes_read, &offset_size);
15040 line_ptr += bytes_read;
15041 if (line_ptr + lh->total_length > (section->buffer + section->size))
15042 {
15043 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15044 return 0;
15045 }
15046 lh->statement_program_end = line_ptr + lh->total_length;
15047 lh->version = read_2_bytes (abfd, line_ptr);
15048 line_ptr += 2;
15049 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15050 line_ptr += offset_size;
15051 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15052 line_ptr += 1;
15053 if (lh->version >= 4)
15054 {
15055 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15056 line_ptr += 1;
15057 }
15058 else
15059 lh->maximum_ops_per_instruction = 1;
15060
15061 if (lh->maximum_ops_per_instruction == 0)
15062 {
15063 lh->maximum_ops_per_instruction = 1;
15064 complaint (&symfile_complaints,
15065 _("invalid maximum_ops_per_instruction "
15066 "in `.debug_line' section"));
15067 }
15068
15069 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15070 line_ptr += 1;
15071 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15072 line_ptr += 1;
15073 lh->line_range = read_1_byte (abfd, line_ptr);
15074 line_ptr += 1;
15075 lh->opcode_base = read_1_byte (abfd, line_ptr);
15076 line_ptr += 1;
15077 lh->standard_opcode_lengths
15078 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15079
15080 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15081 for (i = 1; i < lh->opcode_base; ++i)
15082 {
15083 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15084 line_ptr += 1;
15085 }
15086
15087 /* Read directory table. */
15088 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15089 {
15090 line_ptr += bytes_read;
15091 add_include_dir (lh, cur_dir);
15092 }
15093 line_ptr += bytes_read;
15094
15095 /* Read file name table. */
15096 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15097 {
15098 unsigned int dir_index, mod_time, length;
15099
15100 line_ptr += bytes_read;
15101 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15102 line_ptr += bytes_read;
15103 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15104 line_ptr += bytes_read;
15105 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15106 line_ptr += bytes_read;
15107
15108 add_file_name (lh, cur_file, dir_index, mod_time, length);
15109 }
15110 line_ptr += bytes_read;
15111 lh->statement_program_start = line_ptr;
15112
15113 if (line_ptr > (section->buffer + section->size))
15114 complaint (&symfile_complaints,
15115 _("line number info header doesn't "
15116 "fit in `.debug_line' section"));
15117
15118 discard_cleanups (back_to);
15119 return lh;
15120 }
15121
15122 /* Subroutine of dwarf_decode_lines to simplify it.
15123 Return the file name of the psymtab for included file FILE_INDEX
15124 in line header LH of PST.
15125 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15126 If space for the result is malloc'd, it will be freed by a cleanup.
15127 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15128
15129 The function creates dangling cleanup registration. */
15130
15131 static char *
15132 psymtab_include_file_name (const struct line_header *lh, int file_index,
15133 const struct partial_symtab *pst,
15134 const char *comp_dir)
15135 {
15136 const struct file_entry fe = lh->file_names [file_index];
15137 char *include_name = fe.name;
15138 char *include_name_to_compare = include_name;
15139 char *dir_name = NULL;
15140 const char *pst_filename;
15141 char *copied_name = NULL;
15142 int file_is_pst;
15143
15144 if (fe.dir_index)
15145 dir_name = lh->include_dirs[fe.dir_index - 1];
15146
15147 if (!IS_ABSOLUTE_PATH (include_name)
15148 && (dir_name != NULL || comp_dir != NULL))
15149 {
15150 /* Avoid creating a duplicate psymtab for PST.
15151 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15152 Before we do the comparison, however, we need to account
15153 for DIR_NAME and COMP_DIR.
15154 First prepend dir_name (if non-NULL). If we still don't
15155 have an absolute path prepend comp_dir (if non-NULL).
15156 However, the directory we record in the include-file's
15157 psymtab does not contain COMP_DIR (to match the
15158 corresponding symtab(s)).
15159
15160 Example:
15161
15162 bash$ cd /tmp
15163 bash$ gcc -g ./hello.c
15164 include_name = "hello.c"
15165 dir_name = "."
15166 DW_AT_comp_dir = comp_dir = "/tmp"
15167 DW_AT_name = "./hello.c" */
15168
15169 if (dir_name != NULL)
15170 {
15171 include_name = concat (dir_name, SLASH_STRING,
15172 include_name, (char *)NULL);
15173 include_name_to_compare = include_name;
15174 make_cleanup (xfree, include_name);
15175 }
15176 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15177 {
15178 include_name_to_compare = concat (comp_dir, SLASH_STRING,
15179 include_name, (char *)NULL);
15180 }
15181 }
15182
15183 pst_filename = pst->filename;
15184 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15185 {
15186 copied_name = concat (pst->dirname, SLASH_STRING,
15187 pst_filename, (char *)NULL);
15188 pst_filename = copied_name;
15189 }
15190
15191 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15192
15193 if (include_name_to_compare != include_name)
15194 xfree (include_name_to_compare);
15195 if (copied_name != NULL)
15196 xfree (copied_name);
15197
15198 if (file_is_pst)
15199 return NULL;
15200 return include_name;
15201 }
15202
15203 /* Ignore this record_line request. */
15204
15205 static void
15206 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15207 {
15208 return;
15209 }
15210
15211 /* Subroutine of dwarf_decode_lines to simplify it.
15212 Process the line number information in LH. */
15213
15214 static void
15215 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15216 struct dwarf2_cu *cu, struct partial_symtab *pst)
15217 {
15218 gdb_byte *line_ptr, *extended_end;
15219 gdb_byte *line_end;
15220 unsigned int bytes_read, extended_len;
15221 unsigned char op_code, extended_op, adj_opcode;
15222 CORE_ADDR baseaddr;
15223 struct objfile *objfile = cu->objfile;
15224 bfd *abfd = objfile->obfd;
15225 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15226 const int decode_for_pst_p = (pst != NULL);
15227 struct subfile *last_subfile = NULL;
15228 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15229 = record_line;
15230
15231 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15232
15233 line_ptr = lh->statement_program_start;
15234 line_end = lh->statement_program_end;
15235
15236 /* Read the statement sequences until there's nothing left. */
15237 while (line_ptr < line_end)
15238 {
15239 /* state machine registers */
15240 CORE_ADDR address = 0;
15241 unsigned int file = 1;
15242 unsigned int line = 1;
15243 unsigned int column = 0;
15244 int is_stmt = lh->default_is_stmt;
15245 int basic_block = 0;
15246 int end_sequence = 0;
15247 CORE_ADDR addr;
15248 unsigned char op_index = 0;
15249
15250 if (!decode_for_pst_p && lh->num_file_names >= file)
15251 {
15252 /* Start a subfile for the current file of the state machine. */
15253 /* lh->include_dirs and lh->file_names are 0-based, but the
15254 directory and file name numbers in the statement program
15255 are 1-based. */
15256 struct file_entry *fe = &lh->file_names[file - 1];
15257 char *dir = NULL;
15258
15259 if (fe->dir_index)
15260 dir = lh->include_dirs[fe->dir_index - 1];
15261
15262 dwarf2_start_subfile (fe->name, dir, comp_dir);
15263 }
15264
15265 /* Decode the table. */
15266 while (!end_sequence)
15267 {
15268 op_code = read_1_byte (abfd, line_ptr);
15269 line_ptr += 1;
15270 if (line_ptr > line_end)
15271 {
15272 dwarf2_debug_line_missing_end_sequence_complaint ();
15273 break;
15274 }
15275
15276 if (op_code >= lh->opcode_base)
15277 {
15278 /* Special operand. */
15279 adj_opcode = op_code - lh->opcode_base;
15280 address += (((op_index + (adj_opcode / lh->line_range))
15281 / lh->maximum_ops_per_instruction)
15282 * lh->minimum_instruction_length);
15283 op_index = ((op_index + (adj_opcode / lh->line_range))
15284 % lh->maximum_ops_per_instruction);
15285 line += lh->line_base + (adj_opcode % lh->line_range);
15286 if (lh->num_file_names < file || file == 0)
15287 dwarf2_debug_line_missing_file_complaint ();
15288 /* For now we ignore lines not starting on an
15289 instruction boundary. */
15290 else if (op_index == 0)
15291 {
15292 lh->file_names[file - 1].included_p = 1;
15293 if (!decode_for_pst_p && is_stmt)
15294 {
15295 if (last_subfile != current_subfile)
15296 {
15297 addr = gdbarch_addr_bits_remove (gdbarch, address);
15298 if (last_subfile)
15299 (*p_record_line) (last_subfile, 0, addr);
15300 last_subfile = current_subfile;
15301 }
15302 /* Append row to matrix using current values. */
15303 addr = gdbarch_addr_bits_remove (gdbarch, address);
15304 (*p_record_line) (current_subfile, line, addr);
15305 }
15306 }
15307 basic_block = 0;
15308 }
15309 else switch (op_code)
15310 {
15311 case DW_LNS_extended_op:
15312 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15313 &bytes_read);
15314 line_ptr += bytes_read;
15315 extended_end = line_ptr + extended_len;
15316 extended_op = read_1_byte (abfd, line_ptr);
15317 line_ptr += 1;
15318 switch (extended_op)
15319 {
15320 case DW_LNE_end_sequence:
15321 p_record_line = record_line;
15322 end_sequence = 1;
15323 break;
15324 case DW_LNE_set_address:
15325 address = read_address (abfd, line_ptr, cu, &bytes_read);
15326
15327 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15328 {
15329 /* This line table is for a function which has been
15330 GCd by the linker. Ignore it. PR gdb/12528 */
15331
15332 long line_offset
15333 = line_ptr - get_debug_line_section (cu)->buffer;
15334
15335 complaint (&symfile_complaints,
15336 _(".debug_line address at offset 0x%lx is 0 "
15337 "[in module %s]"),
15338 line_offset, objfile->name);
15339 p_record_line = noop_record_line;
15340 }
15341
15342 op_index = 0;
15343 line_ptr += bytes_read;
15344 address += baseaddr;
15345 break;
15346 case DW_LNE_define_file:
15347 {
15348 char *cur_file;
15349 unsigned int dir_index, mod_time, length;
15350
15351 cur_file = read_direct_string (abfd, line_ptr,
15352 &bytes_read);
15353 line_ptr += bytes_read;
15354 dir_index =
15355 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15356 line_ptr += bytes_read;
15357 mod_time =
15358 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15359 line_ptr += bytes_read;
15360 length =
15361 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15362 line_ptr += bytes_read;
15363 add_file_name (lh, cur_file, dir_index, mod_time, length);
15364 }
15365 break;
15366 case DW_LNE_set_discriminator:
15367 /* The discriminator is not interesting to the debugger;
15368 just ignore it. */
15369 line_ptr = extended_end;
15370 break;
15371 default:
15372 complaint (&symfile_complaints,
15373 _("mangled .debug_line section"));
15374 return;
15375 }
15376 /* Make sure that we parsed the extended op correctly. If e.g.
15377 we expected a different address size than the producer used,
15378 we may have read the wrong number of bytes. */
15379 if (line_ptr != extended_end)
15380 {
15381 complaint (&symfile_complaints,
15382 _("mangled .debug_line section"));
15383 return;
15384 }
15385 break;
15386 case DW_LNS_copy:
15387 if (lh->num_file_names < file || file == 0)
15388 dwarf2_debug_line_missing_file_complaint ();
15389 else
15390 {
15391 lh->file_names[file - 1].included_p = 1;
15392 if (!decode_for_pst_p && is_stmt)
15393 {
15394 if (last_subfile != current_subfile)
15395 {
15396 addr = gdbarch_addr_bits_remove (gdbarch, address);
15397 if (last_subfile)
15398 (*p_record_line) (last_subfile, 0, addr);
15399 last_subfile = current_subfile;
15400 }
15401 addr = gdbarch_addr_bits_remove (gdbarch, address);
15402 (*p_record_line) (current_subfile, line, addr);
15403 }
15404 }
15405 basic_block = 0;
15406 break;
15407 case DW_LNS_advance_pc:
15408 {
15409 CORE_ADDR adjust
15410 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15411
15412 address += (((op_index + adjust)
15413 / lh->maximum_ops_per_instruction)
15414 * lh->minimum_instruction_length);
15415 op_index = ((op_index + adjust)
15416 % lh->maximum_ops_per_instruction);
15417 line_ptr += bytes_read;
15418 }
15419 break;
15420 case DW_LNS_advance_line:
15421 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15422 line_ptr += bytes_read;
15423 break;
15424 case DW_LNS_set_file:
15425 {
15426 /* The arrays lh->include_dirs and lh->file_names are
15427 0-based, but the directory and file name numbers in
15428 the statement program are 1-based. */
15429 struct file_entry *fe;
15430 char *dir = NULL;
15431
15432 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15433 line_ptr += bytes_read;
15434 if (lh->num_file_names < file || file == 0)
15435 dwarf2_debug_line_missing_file_complaint ();
15436 else
15437 {
15438 fe = &lh->file_names[file - 1];
15439 if (fe->dir_index)
15440 dir = lh->include_dirs[fe->dir_index - 1];
15441 if (!decode_for_pst_p)
15442 {
15443 last_subfile = current_subfile;
15444 dwarf2_start_subfile (fe->name, dir, comp_dir);
15445 }
15446 }
15447 }
15448 break;
15449 case DW_LNS_set_column:
15450 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15451 line_ptr += bytes_read;
15452 break;
15453 case DW_LNS_negate_stmt:
15454 is_stmt = (!is_stmt);
15455 break;
15456 case DW_LNS_set_basic_block:
15457 basic_block = 1;
15458 break;
15459 /* Add to the address register of the state machine the
15460 address increment value corresponding to special opcode
15461 255. I.e., this value is scaled by the minimum
15462 instruction length since special opcode 255 would have
15463 scaled the increment. */
15464 case DW_LNS_const_add_pc:
15465 {
15466 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15467
15468 address += (((op_index + adjust)
15469 / lh->maximum_ops_per_instruction)
15470 * lh->minimum_instruction_length);
15471 op_index = ((op_index + adjust)
15472 % lh->maximum_ops_per_instruction);
15473 }
15474 break;
15475 case DW_LNS_fixed_advance_pc:
15476 address += read_2_bytes (abfd, line_ptr);
15477 op_index = 0;
15478 line_ptr += 2;
15479 break;
15480 default:
15481 {
15482 /* Unknown standard opcode, ignore it. */
15483 int i;
15484
15485 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
15486 {
15487 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15488 line_ptr += bytes_read;
15489 }
15490 }
15491 }
15492 }
15493 if (lh->num_file_names < file || file == 0)
15494 dwarf2_debug_line_missing_file_complaint ();
15495 else
15496 {
15497 lh->file_names[file - 1].included_p = 1;
15498 if (!decode_for_pst_p)
15499 {
15500 addr = gdbarch_addr_bits_remove (gdbarch, address);
15501 (*p_record_line) (current_subfile, 0, addr);
15502 }
15503 }
15504 }
15505 }
15506
15507 /* Decode the Line Number Program (LNP) for the given line_header
15508 structure and CU. The actual information extracted and the type
15509 of structures created from the LNP depends on the value of PST.
15510
15511 1. If PST is NULL, then this procedure uses the data from the program
15512 to create all necessary symbol tables, and their linetables.
15513
15514 2. If PST is not NULL, this procedure reads the program to determine
15515 the list of files included by the unit represented by PST, and
15516 builds all the associated partial symbol tables.
15517
15518 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15519 It is used for relative paths in the line table.
15520 NOTE: When processing partial symtabs (pst != NULL),
15521 comp_dir == pst->dirname.
15522
15523 NOTE: It is important that psymtabs have the same file name (via strcmp)
15524 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15525 symtab we don't use it in the name of the psymtabs we create.
15526 E.g. expand_line_sal requires this when finding psymtabs to expand.
15527 A good testcase for this is mb-inline.exp. */
15528
15529 static void
15530 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15531 struct dwarf2_cu *cu, struct partial_symtab *pst,
15532 int want_line_info)
15533 {
15534 struct objfile *objfile = cu->objfile;
15535 const int decode_for_pst_p = (pst != NULL);
15536 struct subfile *first_subfile = current_subfile;
15537
15538 if (want_line_info)
15539 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
15540
15541 if (decode_for_pst_p)
15542 {
15543 int file_index;
15544
15545 /* Now that we're done scanning the Line Header Program, we can
15546 create the psymtab of each included file. */
15547 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15548 if (lh->file_names[file_index].included_p == 1)
15549 {
15550 char *include_name =
15551 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15552 if (include_name != NULL)
15553 dwarf2_create_include_psymtab (include_name, pst, objfile);
15554 }
15555 }
15556 else
15557 {
15558 /* Make sure a symtab is created for every file, even files
15559 which contain only variables (i.e. no code with associated
15560 line numbers). */
15561 int i;
15562
15563 for (i = 0; i < lh->num_file_names; i++)
15564 {
15565 char *dir = NULL;
15566 struct file_entry *fe;
15567
15568 fe = &lh->file_names[i];
15569 if (fe->dir_index)
15570 dir = lh->include_dirs[fe->dir_index - 1];
15571 dwarf2_start_subfile (fe->name, dir, comp_dir);
15572
15573 /* Skip the main file; we don't need it, and it must be
15574 allocated last, so that it will show up before the
15575 non-primary symtabs in the objfile's symtab list. */
15576 if (current_subfile == first_subfile)
15577 continue;
15578
15579 if (current_subfile->symtab == NULL)
15580 current_subfile->symtab = allocate_symtab (current_subfile->name,
15581 objfile);
15582 fe->symtab = current_subfile->symtab;
15583 }
15584 }
15585 }
15586
15587 /* Start a subfile for DWARF. FILENAME is the name of the file and
15588 DIRNAME the name of the source directory which contains FILENAME
15589 or NULL if not known. COMP_DIR is the compilation directory for the
15590 linetable's compilation unit or NULL if not known.
15591 This routine tries to keep line numbers from identical absolute and
15592 relative file names in a common subfile.
15593
15594 Using the `list' example from the GDB testsuite, which resides in
15595 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15596 of /srcdir/list0.c yields the following debugging information for list0.c:
15597
15598 DW_AT_name: /srcdir/list0.c
15599 DW_AT_comp_dir: /compdir
15600 files.files[0].name: list0.h
15601 files.files[0].dir: /srcdir
15602 files.files[1].name: list0.c
15603 files.files[1].dir: /srcdir
15604
15605 The line number information for list0.c has to end up in a single
15606 subfile, so that `break /srcdir/list0.c:1' works as expected.
15607 start_subfile will ensure that this happens provided that we pass the
15608 concatenation of files.files[1].dir and files.files[1].name as the
15609 subfile's name. */
15610
15611 static void
15612 dwarf2_start_subfile (char *filename, const char *dirname,
15613 const char *comp_dir)
15614 {
15615 char *fullname;
15616
15617 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15618 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15619 second argument to start_subfile. To be consistent, we do the
15620 same here. In order not to lose the line information directory,
15621 we concatenate it to the filename when it makes sense.
15622 Note that the Dwarf3 standard says (speaking of filenames in line
15623 information): ``The directory index is ignored for file names
15624 that represent full path names''. Thus ignoring dirname in the
15625 `else' branch below isn't an issue. */
15626
15627 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
15628 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15629 else
15630 fullname = filename;
15631
15632 start_subfile (fullname, comp_dir);
15633
15634 if (fullname != filename)
15635 xfree (fullname);
15636 }
15637
15638 /* Start a symtab for DWARF.
15639 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15640
15641 static void
15642 dwarf2_start_symtab (struct dwarf2_cu *cu,
15643 const char *name, const char *comp_dir, CORE_ADDR low_pc)
15644 {
15645 start_symtab (name, comp_dir, low_pc);
15646 record_debugformat ("DWARF 2");
15647 record_producer (cu->producer);
15648
15649 /* We assume that we're processing GCC output. */
15650 processing_gcc_compilation = 2;
15651
15652 cu->processing_has_namespace_info = 0;
15653 }
15654
15655 static void
15656 var_decode_location (struct attribute *attr, struct symbol *sym,
15657 struct dwarf2_cu *cu)
15658 {
15659 struct objfile *objfile = cu->objfile;
15660 struct comp_unit_head *cu_header = &cu->header;
15661
15662 /* NOTE drow/2003-01-30: There used to be a comment and some special
15663 code here to turn a symbol with DW_AT_external and a
15664 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15665 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15666 with some versions of binutils) where shared libraries could have
15667 relocations against symbols in their debug information - the
15668 minimal symbol would have the right address, but the debug info
15669 would not. It's no longer necessary, because we will explicitly
15670 apply relocations when we read in the debug information now. */
15671
15672 /* A DW_AT_location attribute with no contents indicates that a
15673 variable has been optimized away. */
15674 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15675 {
15676 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15677 return;
15678 }
15679
15680 /* Handle one degenerate form of location expression specially, to
15681 preserve GDB's previous behavior when section offsets are
15682 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15683 then mark this symbol as LOC_STATIC. */
15684
15685 if (attr_form_is_block (attr)
15686 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15687 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15688 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15689 && (DW_BLOCK (attr)->size
15690 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
15691 {
15692 unsigned int dummy;
15693
15694 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15695 SYMBOL_VALUE_ADDRESS (sym) =
15696 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15697 else
15698 SYMBOL_VALUE_ADDRESS (sym) =
15699 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
15700 SYMBOL_CLASS (sym) = LOC_STATIC;
15701 fixup_symbol_section (sym, objfile);
15702 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15703 SYMBOL_SECTION (sym));
15704 return;
15705 }
15706
15707 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15708 expression evaluator, and use LOC_COMPUTED only when necessary
15709 (i.e. when the value of a register or memory location is
15710 referenced, or a thread-local block, etc.). Then again, it might
15711 not be worthwhile. I'm assuming that it isn't unless performance
15712 or memory numbers show me otherwise. */
15713
15714 dwarf2_symbol_mark_computed (attr, sym, cu);
15715 SYMBOL_CLASS (sym) = LOC_COMPUTED;
15716
15717 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
15718 cu->has_loclist = 1;
15719 }
15720
15721 /* Given a pointer to a DWARF information entry, figure out if we need
15722 to make a symbol table entry for it, and if so, create a new entry
15723 and return a pointer to it.
15724 If TYPE is NULL, determine symbol type from the die, otherwise
15725 used the passed type.
15726 If SPACE is not NULL, use it to hold the new symbol. If it is
15727 NULL, allocate a new symbol on the objfile's obstack. */
15728
15729 static struct symbol *
15730 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15731 struct symbol *space)
15732 {
15733 struct objfile *objfile = cu->objfile;
15734 struct symbol *sym = NULL;
15735 const char *name;
15736 struct attribute *attr = NULL;
15737 struct attribute *attr2 = NULL;
15738 CORE_ADDR baseaddr;
15739 struct pending **list_to_add = NULL;
15740
15741 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
15742
15743 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15744
15745 name = dwarf2_name (die, cu);
15746 if (name)
15747 {
15748 const char *linkagename;
15749 int suppress_add = 0;
15750
15751 if (space)
15752 sym = space;
15753 else
15754 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
15755 OBJSTAT (objfile, n_syms++);
15756
15757 /* Cache this symbol's name and the name's demangled form (if any). */
15758 SYMBOL_SET_LANGUAGE (sym, cu->language);
15759 linkagename = dwarf2_physname (name, die, cu);
15760 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
15761
15762 /* Fortran does not have mangling standard and the mangling does differ
15763 between gfortran, iFort etc. */
15764 if (cu->language == language_fortran
15765 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
15766 symbol_set_demangled_name (&(sym->ginfo),
15767 dwarf2_full_name (name, die, cu),
15768 NULL);
15769
15770 /* Default assumptions.
15771 Use the passed type or decode it from the die. */
15772 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15773 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15774 if (type != NULL)
15775 SYMBOL_TYPE (sym) = type;
15776 else
15777 SYMBOL_TYPE (sym) = die_type (die, cu);
15778 attr = dwarf2_attr (die,
15779 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
15780 cu);
15781 if (attr)
15782 {
15783 SYMBOL_LINE (sym) = DW_UNSND (attr);
15784 }
15785
15786 attr = dwarf2_attr (die,
15787 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
15788 cu);
15789 if (attr)
15790 {
15791 int file_index = DW_UNSND (attr);
15792
15793 if (cu->line_header == NULL
15794 || file_index > cu->line_header->num_file_names)
15795 complaint (&symfile_complaints,
15796 _("file index out of range"));
15797 else if (file_index > 0)
15798 {
15799 struct file_entry *fe;
15800
15801 fe = &cu->line_header->file_names[file_index - 1];
15802 SYMBOL_SYMTAB (sym) = fe->symtab;
15803 }
15804 }
15805
15806 switch (die->tag)
15807 {
15808 case DW_TAG_label:
15809 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15810 if (attr)
15811 {
15812 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
15813 }
15814 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
15815 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
15816 SYMBOL_CLASS (sym) = LOC_LABEL;
15817 add_symbol_to_list (sym, cu->list_in_scope);
15818 break;
15819 case DW_TAG_subprogram:
15820 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15821 finish_block. */
15822 SYMBOL_CLASS (sym) = LOC_BLOCK;
15823 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15824 if ((attr2 && (DW_UNSND (attr2) != 0))
15825 || cu->language == language_ada)
15826 {
15827 /* Subprograms marked external are stored as a global symbol.
15828 Ada subprograms, whether marked external or not, are always
15829 stored as a global symbol, because we want to be able to
15830 access them globally. For instance, we want to be able
15831 to break on a nested subprogram without having to
15832 specify the context. */
15833 list_to_add = &global_symbols;
15834 }
15835 else
15836 {
15837 list_to_add = cu->list_in_scope;
15838 }
15839 break;
15840 case DW_TAG_inlined_subroutine:
15841 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15842 finish_block. */
15843 SYMBOL_CLASS (sym) = LOC_BLOCK;
15844 SYMBOL_INLINED (sym) = 1;
15845 list_to_add = cu->list_in_scope;
15846 break;
15847 case DW_TAG_template_value_param:
15848 suppress_add = 1;
15849 /* Fall through. */
15850 case DW_TAG_constant:
15851 case DW_TAG_variable:
15852 case DW_TAG_member:
15853 /* Compilation with minimal debug info may result in
15854 variables with missing type entries. Change the
15855 misleading `void' type to something sensible. */
15856 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
15857 SYMBOL_TYPE (sym)
15858 = objfile_type (objfile)->nodebug_data_symbol;
15859
15860 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15861 /* In the case of DW_TAG_member, we should only be called for
15862 static const members. */
15863 if (die->tag == DW_TAG_member)
15864 {
15865 /* dwarf2_add_field uses die_is_declaration,
15866 so we do the same. */
15867 gdb_assert (die_is_declaration (die, cu));
15868 gdb_assert (attr);
15869 }
15870 if (attr)
15871 {
15872 dwarf2_const_value (attr, sym, cu);
15873 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15874 if (!suppress_add)
15875 {
15876 if (attr2 && (DW_UNSND (attr2) != 0))
15877 list_to_add = &global_symbols;
15878 else
15879 list_to_add = cu->list_in_scope;
15880 }
15881 break;
15882 }
15883 attr = dwarf2_attr (die, DW_AT_location, cu);
15884 if (attr)
15885 {
15886 var_decode_location (attr, sym, cu);
15887 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15888
15889 /* Fortran explicitly imports any global symbols to the local
15890 scope by DW_TAG_common_block. */
15891 if (cu->language == language_fortran && die->parent
15892 && die->parent->tag == DW_TAG_common_block)
15893 attr2 = NULL;
15894
15895 if (SYMBOL_CLASS (sym) == LOC_STATIC
15896 && SYMBOL_VALUE_ADDRESS (sym) == 0
15897 && !dwarf2_per_objfile->has_section_at_zero)
15898 {
15899 /* When a static variable is eliminated by the linker,
15900 the corresponding debug information is not stripped
15901 out, but the variable address is set to null;
15902 do not add such variables into symbol table. */
15903 }
15904 else if (attr2 && (DW_UNSND (attr2) != 0))
15905 {
15906 /* Workaround gfortran PR debug/40040 - it uses
15907 DW_AT_location for variables in -fPIC libraries which may
15908 get overriden by other libraries/executable and get
15909 a different address. Resolve it by the minimal symbol
15910 which may come from inferior's executable using copy
15911 relocation. Make this workaround only for gfortran as for
15912 other compilers GDB cannot guess the minimal symbol
15913 Fortran mangling kind. */
15914 if (cu->language == language_fortran && die->parent
15915 && die->parent->tag == DW_TAG_module
15916 && cu->producer
15917 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
15918 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15919
15920 /* A variable with DW_AT_external is never static,
15921 but it may be block-scoped. */
15922 list_to_add = (cu->list_in_scope == &file_symbols
15923 ? &global_symbols : cu->list_in_scope);
15924 }
15925 else
15926 list_to_add = cu->list_in_scope;
15927 }
15928 else
15929 {
15930 /* We do not know the address of this symbol.
15931 If it is an external symbol and we have type information
15932 for it, enter the symbol as a LOC_UNRESOLVED symbol.
15933 The address of the variable will then be determined from
15934 the minimal symbol table whenever the variable is
15935 referenced. */
15936 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15937
15938 /* Fortran explicitly imports any global symbols to the local
15939 scope by DW_TAG_common_block. */
15940 if (cu->language == language_fortran && die->parent
15941 && die->parent->tag == DW_TAG_common_block)
15942 {
15943 /* SYMBOL_CLASS doesn't matter here because
15944 read_common_block is going to reset it. */
15945 if (!suppress_add)
15946 list_to_add = cu->list_in_scope;
15947 }
15948 else if (attr2 && (DW_UNSND (attr2) != 0)
15949 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
15950 {
15951 /* A variable with DW_AT_external is never static, but it
15952 may be block-scoped. */
15953 list_to_add = (cu->list_in_scope == &file_symbols
15954 ? &global_symbols : cu->list_in_scope);
15955
15956 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15957 }
15958 else if (!die_is_declaration (die, cu))
15959 {
15960 /* Use the default LOC_OPTIMIZED_OUT class. */
15961 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
15962 if (!suppress_add)
15963 list_to_add = cu->list_in_scope;
15964 }
15965 }
15966 break;
15967 case DW_TAG_formal_parameter:
15968 /* If we are inside a function, mark this as an argument. If
15969 not, we might be looking at an argument to an inlined function
15970 when we do not have enough information to show inlined frames;
15971 pretend it's a local variable in that case so that the user can
15972 still see it. */
15973 if (context_stack_depth > 0
15974 && context_stack[context_stack_depth - 1].name != NULL)
15975 SYMBOL_IS_ARGUMENT (sym) = 1;
15976 attr = dwarf2_attr (die, DW_AT_location, cu);
15977 if (attr)
15978 {
15979 var_decode_location (attr, sym, cu);
15980 }
15981 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15982 if (attr)
15983 {
15984 dwarf2_const_value (attr, sym, cu);
15985 }
15986
15987 list_to_add = cu->list_in_scope;
15988 break;
15989 case DW_TAG_unspecified_parameters:
15990 /* From varargs functions; gdb doesn't seem to have any
15991 interest in this information, so just ignore it for now.
15992 (FIXME?) */
15993 break;
15994 case DW_TAG_template_type_param:
15995 suppress_add = 1;
15996 /* Fall through. */
15997 case DW_TAG_class_type:
15998 case DW_TAG_interface_type:
15999 case DW_TAG_structure_type:
16000 case DW_TAG_union_type:
16001 case DW_TAG_set_type:
16002 case DW_TAG_enumeration_type:
16003 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16004 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16005
16006 {
16007 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16008 really ever be static objects: otherwise, if you try
16009 to, say, break of a class's method and you're in a file
16010 which doesn't mention that class, it won't work unless
16011 the check for all static symbols in lookup_symbol_aux
16012 saves you. See the OtherFileClass tests in
16013 gdb.c++/namespace.exp. */
16014
16015 if (!suppress_add)
16016 {
16017 list_to_add = (cu->list_in_scope == &file_symbols
16018 && (cu->language == language_cplus
16019 || cu->language == language_java)
16020 ? &global_symbols : cu->list_in_scope);
16021
16022 /* The semantics of C++ state that "struct foo {
16023 ... }" also defines a typedef for "foo". A Java
16024 class declaration also defines a typedef for the
16025 class. */
16026 if (cu->language == language_cplus
16027 || cu->language == language_java
16028 || cu->language == language_ada)
16029 {
16030 /* The symbol's name is already allocated along
16031 with this objfile, so we don't need to
16032 duplicate it for the type. */
16033 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16034 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16035 }
16036 }
16037 }
16038 break;
16039 case DW_TAG_typedef:
16040 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16041 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16042 list_to_add = cu->list_in_scope;
16043 break;
16044 case DW_TAG_base_type:
16045 case DW_TAG_subrange_type:
16046 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16047 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16048 list_to_add = cu->list_in_scope;
16049 break;
16050 case DW_TAG_enumerator:
16051 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16052 if (attr)
16053 {
16054 dwarf2_const_value (attr, sym, cu);
16055 }
16056 {
16057 /* NOTE: carlton/2003-11-10: See comment above in the
16058 DW_TAG_class_type, etc. block. */
16059
16060 list_to_add = (cu->list_in_scope == &file_symbols
16061 && (cu->language == language_cplus
16062 || cu->language == language_java)
16063 ? &global_symbols : cu->list_in_scope);
16064 }
16065 break;
16066 case DW_TAG_namespace:
16067 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16068 list_to_add = &global_symbols;
16069 break;
16070 case DW_TAG_common_block:
16071 SYMBOL_CLASS (sym) = LOC_COMMON_BLOCK;
16072 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16073 add_symbol_to_list (sym, cu->list_in_scope);
16074 break;
16075 default:
16076 /* Not a tag we recognize. Hopefully we aren't processing
16077 trash data, but since we must specifically ignore things
16078 we don't recognize, there is nothing else we should do at
16079 this point. */
16080 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16081 dwarf_tag_name (die->tag));
16082 break;
16083 }
16084
16085 if (suppress_add)
16086 {
16087 sym->hash_next = objfile->template_symbols;
16088 objfile->template_symbols = sym;
16089 list_to_add = NULL;
16090 }
16091
16092 if (list_to_add != NULL)
16093 add_symbol_to_list (sym, list_to_add);
16094
16095 /* For the benefit of old versions of GCC, check for anonymous
16096 namespaces based on the demangled name. */
16097 if (!cu->processing_has_namespace_info
16098 && cu->language == language_cplus)
16099 cp_scan_for_anonymous_namespaces (sym, objfile);
16100 }
16101 return (sym);
16102 }
16103
16104 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16105
16106 static struct symbol *
16107 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16108 {
16109 return new_symbol_full (die, type, cu, NULL);
16110 }
16111
16112 /* Given an attr with a DW_FORM_dataN value in host byte order,
16113 zero-extend it as appropriate for the symbol's type. The DWARF
16114 standard (v4) is not entirely clear about the meaning of using
16115 DW_FORM_dataN for a constant with a signed type, where the type is
16116 wider than the data. The conclusion of a discussion on the DWARF
16117 list was that this is unspecified. We choose to always zero-extend
16118 because that is the interpretation long in use by GCC. */
16119
16120 static gdb_byte *
16121 dwarf2_const_value_data (struct attribute *attr, struct type *type,
16122 const char *name, struct obstack *obstack,
16123 struct dwarf2_cu *cu, LONGEST *value, int bits)
16124 {
16125 struct objfile *objfile = cu->objfile;
16126 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16127 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16128 LONGEST l = DW_UNSND (attr);
16129
16130 if (bits < sizeof (*value) * 8)
16131 {
16132 l &= ((LONGEST) 1 << bits) - 1;
16133 *value = l;
16134 }
16135 else if (bits == sizeof (*value) * 8)
16136 *value = l;
16137 else
16138 {
16139 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16140 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16141 return bytes;
16142 }
16143
16144 return NULL;
16145 }
16146
16147 /* Read a constant value from an attribute. Either set *VALUE, or if
16148 the value does not fit in *VALUE, set *BYTES - either already
16149 allocated on the objfile obstack, or newly allocated on OBSTACK,
16150 or, set *BATON, if we translated the constant to a location
16151 expression. */
16152
16153 static void
16154 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16155 const char *name, struct obstack *obstack,
16156 struct dwarf2_cu *cu,
16157 LONGEST *value, gdb_byte **bytes,
16158 struct dwarf2_locexpr_baton **baton)
16159 {
16160 struct objfile *objfile = cu->objfile;
16161 struct comp_unit_head *cu_header = &cu->header;
16162 struct dwarf_block *blk;
16163 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16164 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16165
16166 *value = 0;
16167 *bytes = NULL;
16168 *baton = NULL;
16169
16170 switch (attr->form)
16171 {
16172 case DW_FORM_addr:
16173 case DW_FORM_GNU_addr_index:
16174 {
16175 gdb_byte *data;
16176
16177 if (TYPE_LENGTH (type) != cu_header->addr_size)
16178 dwarf2_const_value_length_mismatch_complaint (name,
16179 cu_header->addr_size,
16180 TYPE_LENGTH (type));
16181 /* Symbols of this form are reasonably rare, so we just
16182 piggyback on the existing location code rather than writing
16183 a new implementation of symbol_computed_ops. */
16184 *baton = obstack_alloc (&objfile->objfile_obstack,
16185 sizeof (struct dwarf2_locexpr_baton));
16186 (*baton)->per_cu = cu->per_cu;
16187 gdb_assert ((*baton)->per_cu);
16188
16189 (*baton)->size = 2 + cu_header->addr_size;
16190 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16191 (*baton)->data = data;
16192
16193 data[0] = DW_OP_addr;
16194 store_unsigned_integer (&data[1], cu_header->addr_size,
16195 byte_order, DW_ADDR (attr));
16196 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16197 }
16198 break;
16199 case DW_FORM_string:
16200 case DW_FORM_strp:
16201 case DW_FORM_GNU_str_index:
16202 case DW_FORM_GNU_strp_alt:
16203 /* DW_STRING is already allocated on the objfile obstack, point
16204 directly to it. */
16205 *bytes = (gdb_byte *) DW_STRING (attr);
16206 break;
16207 case DW_FORM_block1:
16208 case DW_FORM_block2:
16209 case DW_FORM_block4:
16210 case DW_FORM_block:
16211 case DW_FORM_exprloc:
16212 blk = DW_BLOCK (attr);
16213 if (TYPE_LENGTH (type) != blk->size)
16214 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16215 TYPE_LENGTH (type));
16216 *bytes = blk->data;
16217 break;
16218
16219 /* The DW_AT_const_value attributes are supposed to carry the
16220 symbol's value "represented as it would be on the target
16221 architecture." By the time we get here, it's already been
16222 converted to host endianness, so we just need to sign- or
16223 zero-extend it as appropriate. */
16224 case DW_FORM_data1:
16225 *bytes = dwarf2_const_value_data (attr, type, name,
16226 obstack, cu, value, 8);
16227 break;
16228 case DW_FORM_data2:
16229 *bytes = dwarf2_const_value_data (attr, type, name,
16230 obstack, cu, value, 16);
16231 break;
16232 case DW_FORM_data4:
16233 *bytes = dwarf2_const_value_data (attr, type, name,
16234 obstack, cu, value, 32);
16235 break;
16236 case DW_FORM_data8:
16237 *bytes = dwarf2_const_value_data (attr, type, name,
16238 obstack, cu, value, 64);
16239 break;
16240
16241 case DW_FORM_sdata:
16242 *value = DW_SND (attr);
16243 break;
16244
16245 case DW_FORM_udata:
16246 *value = DW_UNSND (attr);
16247 break;
16248
16249 default:
16250 complaint (&symfile_complaints,
16251 _("unsupported const value attribute form: '%s'"),
16252 dwarf_form_name (attr->form));
16253 *value = 0;
16254 break;
16255 }
16256 }
16257
16258
16259 /* Copy constant value from an attribute to a symbol. */
16260
16261 static void
16262 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16263 struct dwarf2_cu *cu)
16264 {
16265 struct objfile *objfile = cu->objfile;
16266 struct comp_unit_head *cu_header = &cu->header;
16267 LONGEST value;
16268 gdb_byte *bytes;
16269 struct dwarf2_locexpr_baton *baton;
16270
16271 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16272 SYMBOL_PRINT_NAME (sym),
16273 &objfile->objfile_obstack, cu,
16274 &value, &bytes, &baton);
16275
16276 if (baton != NULL)
16277 {
16278 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
16279 SYMBOL_LOCATION_BATON (sym) = baton;
16280 SYMBOL_CLASS (sym) = LOC_COMPUTED;
16281 }
16282 else if (bytes != NULL)
16283 {
16284 SYMBOL_VALUE_BYTES (sym) = bytes;
16285 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
16286 }
16287 else
16288 {
16289 SYMBOL_VALUE (sym) = value;
16290 SYMBOL_CLASS (sym) = LOC_CONST;
16291 }
16292 }
16293
16294 /* Return the type of the die in question using its DW_AT_type attribute. */
16295
16296 static struct type *
16297 die_type (struct die_info *die, struct dwarf2_cu *cu)
16298 {
16299 struct attribute *type_attr;
16300
16301 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16302 if (!type_attr)
16303 {
16304 /* A missing DW_AT_type represents a void type. */
16305 return objfile_type (cu->objfile)->builtin_void;
16306 }
16307
16308 return lookup_die_type (die, type_attr, cu);
16309 }
16310
16311 /* True iff CU's producer generates GNAT Ada auxiliary information
16312 that allows to find parallel types through that information instead
16313 of having to do expensive parallel lookups by type name. */
16314
16315 static int
16316 need_gnat_info (struct dwarf2_cu *cu)
16317 {
16318 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16319 of GNAT produces this auxiliary information, without any indication
16320 that it is produced. Part of enhancing the FSF version of GNAT
16321 to produce that information will be to put in place an indicator
16322 that we can use in order to determine whether the descriptive type
16323 info is available or not. One suggestion that has been made is
16324 to use a new attribute, attached to the CU die. For now, assume
16325 that the descriptive type info is not available. */
16326 return 0;
16327 }
16328
16329 /* Return the auxiliary type of the die in question using its
16330 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16331 attribute is not present. */
16332
16333 static struct type *
16334 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16335 {
16336 struct attribute *type_attr;
16337
16338 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16339 if (!type_attr)
16340 return NULL;
16341
16342 return lookup_die_type (die, type_attr, cu);
16343 }
16344
16345 /* If DIE has a descriptive_type attribute, then set the TYPE's
16346 descriptive type accordingly. */
16347
16348 static void
16349 set_descriptive_type (struct type *type, struct die_info *die,
16350 struct dwarf2_cu *cu)
16351 {
16352 struct type *descriptive_type = die_descriptive_type (die, cu);
16353
16354 if (descriptive_type)
16355 {
16356 ALLOCATE_GNAT_AUX_TYPE (type);
16357 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16358 }
16359 }
16360
16361 /* Return the containing type of the die in question using its
16362 DW_AT_containing_type attribute. */
16363
16364 static struct type *
16365 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16366 {
16367 struct attribute *type_attr;
16368
16369 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16370 if (!type_attr)
16371 error (_("Dwarf Error: Problem turning containing type into gdb type "
16372 "[in module %s]"), cu->objfile->name);
16373
16374 return lookup_die_type (die, type_attr, cu);
16375 }
16376
16377 /* Look up the type of DIE in CU using its type attribute ATTR.
16378 If there is no type substitute an error marker. */
16379
16380 static struct type *
16381 lookup_die_type (struct die_info *die, struct attribute *attr,
16382 struct dwarf2_cu *cu)
16383 {
16384 struct objfile *objfile = cu->objfile;
16385 struct type *this_type;
16386
16387 /* First see if we have it cached. */
16388
16389 if (attr->form == DW_FORM_GNU_ref_alt)
16390 {
16391 struct dwarf2_per_cu_data *per_cu;
16392 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16393
16394 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16395 this_type = get_die_type_at_offset (offset, per_cu);
16396 }
16397 else if (is_ref_attr (attr))
16398 {
16399 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16400
16401 this_type = get_die_type_at_offset (offset, cu->per_cu);
16402 }
16403 else if (attr->form == DW_FORM_ref_sig8)
16404 {
16405 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16406
16407 /* sig_type will be NULL if the signatured type is missing from
16408 the debug info. */
16409 if (sig_type == NULL)
16410 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16411 "at 0x%x [in module %s]"),
16412 die->offset.sect_off, objfile->name);
16413
16414 gdb_assert (sig_type->per_cu.is_debug_types);
16415 /* If we haven't filled in type_offset_in_section yet, then we
16416 haven't read the type in yet. */
16417 this_type = NULL;
16418 if (sig_type->type_offset_in_section.sect_off != 0)
16419 {
16420 this_type =
16421 get_die_type_at_offset (sig_type->type_offset_in_section,
16422 &sig_type->per_cu);
16423 }
16424 }
16425 else
16426 {
16427 dump_die_for_error (die);
16428 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
16429 dwarf_attr_name (attr->name), objfile->name);
16430 }
16431
16432 /* If not cached we need to read it in. */
16433
16434 if (this_type == NULL)
16435 {
16436 struct die_info *type_die;
16437 struct dwarf2_cu *type_cu = cu;
16438
16439 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
16440 /* If we found the type now, it's probably because the type came
16441 from an inter-CU reference and the type's CU got expanded before
16442 ours. */
16443 this_type = get_die_type (type_die, type_cu);
16444 if (this_type == NULL)
16445 this_type = read_type_die_1 (type_die, type_cu);
16446 }
16447
16448 /* If we still don't have a type use an error marker. */
16449
16450 if (this_type == NULL)
16451 {
16452 char *message, *saved;
16453
16454 /* read_type_die already issued a complaint. */
16455 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16456 objfile->name,
16457 cu->header.offset.sect_off,
16458 die->offset.sect_off);
16459 saved = obstack_copy0 (&objfile->objfile_obstack,
16460 message, strlen (message));
16461 xfree (message);
16462
16463 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16464 }
16465
16466 return this_type;
16467 }
16468
16469 /* Return the type in DIE, CU.
16470 Returns NULL for invalid types.
16471
16472 This first does a lookup in the appropriate type_hash table,
16473 and only reads the die in if necessary.
16474
16475 NOTE: This can be called when reading in partial or full symbols. */
16476
16477 static struct type *
16478 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
16479 {
16480 struct type *this_type;
16481
16482 this_type = get_die_type (die, cu);
16483 if (this_type)
16484 return this_type;
16485
16486 return read_type_die_1 (die, cu);
16487 }
16488
16489 /* Read the type in DIE, CU.
16490 Returns NULL for invalid types. */
16491
16492 static struct type *
16493 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16494 {
16495 struct type *this_type = NULL;
16496
16497 switch (die->tag)
16498 {
16499 case DW_TAG_class_type:
16500 case DW_TAG_interface_type:
16501 case DW_TAG_structure_type:
16502 case DW_TAG_union_type:
16503 this_type = read_structure_type (die, cu);
16504 break;
16505 case DW_TAG_enumeration_type:
16506 this_type = read_enumeration_type (die, cu);
16507 break;
16508 case DW_TAG_subprogram:
16509 case DW_TAG_subroutine_type:
16510 case DW_TAG_inlined_subroutine:
16511 this_type = read_subroutine_type (die, cu);
16512 break;
16513 case DW_TAG_array_type:
16514 this_type = read_array_type (die, cu);
16515 break;
16516 case DW_TAG_set_type:
16517 this_type = read_set_type (die, cu);
16518 break;
16519 case DW_TAG_pointer_type:
16520 this_type = read_tag_pointer_type (die, cu);
16521 break;
16522 case DW_TAG_ptr_to_member_type:
16523 this_type = read_tag_ptr_to_member_type (die, cu);
16524 break;
16525 case DW_TAG_reference_type:
16526 this_type = read_tag_reference_type (die, cu);
16527 break;
16528 case DW_TAG_const_type:
16529 this_type = read_tag_const_type (die, cu);
16530 break;
16531 case DW_TAG_volatile_type:
16532 this_type = read_tag_volatile_type (die, cu);
16533 break;
16534 case DW_TAG_restrict_type:
16535 this_type = read_tag_restrict_type (die, cu);
16536 break;
16537 case DW_TAG_string_type:
16538 this_type = read_tag_string_type (die, cu);
16539 break;
16540 case DW_TAG_typedef:
16541 this_type = read_typedef (die, cu);
16542 break;
16543 case DW_TAG_subrange_type:
16544 this_type = read_subrange_type (die, cu);
16545 break;
16546 case DW_TAG_base_type:
16547 this_type = read_base_type (die, cu);
16548 break;
16549 case DW_TAG_unspecified_type:
16550 this_type = read_unspecified_type (die, cu);
16551 break;
16552 case DW_TAG_namespace:
16553 this_type = read_namespace_type (die, cu);
16554 break;
16555 case DW_TAG_module:
16556 this_type = read_module_type (die, cu);
16557 break;
16558 default:
16559 complaint (&symfile_complaints,
16560 _("unexpected tag in read_type_die: '%s'"),
16561 dwarf_tag_name (die->tag));
16562 break;
16563 }
16564
16565 return this_type;
16566 }
16567
16568 /* See if we can figure out if the class lives in a namespace. We do
16569 this by looking for a member function; its demangled name will
16570 contain namespace info, if there is any.
16571 Return the computed name or NULL.
16572 Space for the result is allocated on the objfile's obstack.
16573 This is the full-die version of guess_partial_die_structure_name.
16574 In this case we know DIE has no useful parent. */
16575
16576 static char *
16577 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16578 {
16579 struct die_info *spec_die;
16580 struct dwarf2_cu *spec_cu;
16581 struct die_info *child;
16582
16583 spec_cu = cu;
16584 spec_die = die_specification (die, &spec_cu);
16585 if (spec_die != NULL)
16586 {
16587 die = spec_die;
16588 cu = spec_cu;
16589 }
16590
16591 for (child = die->child;
16592 child != NULL;
16593 child = child->sibling)
16594 {
16595 if (child->tag == DW_TAG_subprogram)
16596 {
16597 struct attribute *attr;
16598
16599 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16600 if (attr == NULL)
16601 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16602 if (attr != NULL)
16603 {
16604 char *actual_name
16605 = language_class_name_from_physname (cu->language_defn,
16606 DW_STRING (attr));
16607 char *name = NULL;
16608
16609 if (actual_name != NULL)
16610 {
16611 const char *die_name = dwarf2_name (die, cu);
16612
16613 if (die_name != NULL
16614 && strcmp (die_name, actual_name) != 0)
16615 {
16616 /* Strip off the class name from the full name.
16617 We want the prefix. */
16618 int die_name_len = strlen (die_name);
16619 int actual_name_len = strlen (actual_name);
16620
16621 /* Test for '::' as a sanity check. */
16622 if (actual_name_len > die_name_len + 2
16623 && actual_name[actual_name_len
16624 - die_name_len - 1] == ':')
16625 name =
16626 obstack_copy0 (&cu->objfile->objfile_obstack,
16627 actual_name,
16628 actual_name_len - die_name_len - 2);
16629 }
16630 }
16631 xfree (actual_name);
16632 return name;
16633 }
16634 }
16635 }
16636
16637 return NULL;
16638 }
16639
16640 /* GCC might emit a nameless typedef that has a linkage name. Determine the
16641 prefix part in such case. See
16642 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16643
16644 static char *
16645 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16646 {
16647 struct attribute *attr;
16648 char *base;
16649
16650 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16651 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16652 return NULL;
16653
16654 attr = dwarf2_attr (die, DW_AT_name, cu);
16655 if (attr != NULL && DW_STRING (attr) != NULL)
16656 return NULL;
16657
16658 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16659 if (attr == NULL)
16660 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16661 if (attr == NULL || DW_STRING (attr) == NULL)
16662 return NULL;
16663
16664 /* dwarf2_name had to be already called. */
16665 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16666
16667 /* Strip the base name, keep any leading namespaces/classes. */
16668 base = strrchr (DW_STRING (attr), ':');
16669 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16670 return "";
16671
16672 return obstack_copy0 (&cu->objfile->objfile_obstack,
16673 DW_STRING (attr), &base[-1] - DW_STRING (attr));
16674 }
16675
16676 /* Return the name of the namespace/class that DIE is defined within,
16677 or "" if we can't tell. The caller should not xfree the result.
16678
16679 For example, if we're within the method foo() in the following
16680 code:
16681
16682 namespace N {
16683 class C {
16684 void foo () {
16685 }
16686 };
16687 }
16688
16689 then determine_prefix on foo's die will return "N::C". */
16690
16691 static const char *
16692 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
16693 {
16694 struct die_info *parent, *spec_die;
16695 struct dwarf2_cu *spec_cu;
16696 struct type *parent_type;
16697 char *retval;
16698
16699 if (cu->language != language_cplus && cu->language != language_java
16700 && cu->language != language_fortran)
16701 return "";
16702
16703 retval = anonymous_struct_prefix (die, cu);
16704 if (retval)
16705 return retval;
16706
16707 /* We have to be careful in the presence of DW_AT_specification.
16708 For example, with GCC 3.4, given the code
16709
16710 namespace N {
16711 void foo() {
16712 // Definition of N::foo.
16713 }
16714 }
16715
16716 then we'll have a tree of DIEs like this:
16717
16718 1: DW_TAG_compile_unit
16719 2: DW_TAG_namespace // N
16720 3: DW_TAG_subprogram // declaration of N::foo
16721 4: DW_TAG_subprogram // definition of N::foo
16722 DW_AT_specification // refers to die #3
16723
16724 Thus, when processing die #4, we have to pretend that we're in
16725 the context of its DW_AT_specification, namely the contex of die
16726 #3. */
16727 spec_cu = cu;
16728 spec_die = die_specification (die, &spec_cu);
16729 if (spec_die == NULL)
16730 parent = die->parent;
16731 else
16732 {
16733 parent = spec_die->parent;
16734 cu = spec_cu;
16735 }
16736
16737 if (parent == NULL)
16738 return "";
16739 else if (parent->building_fullname)
16740 {
16741 const char *name;
16742 const char *parent_name;
16743
16744 /* It has been seen on RealView 2.2 built binaries,
16745 DW_TAG_template_type_param types actually _defined_ as
16746 children of the parent class:
16747
16748 enum E {};
16749 template class <class Enum> Class{};
16750 Class<enum E> class_e;
16751
16752 1: DW_TAG_class_type (Class)
16753 2: DW_TAG_enumeration_type (E)
16754 3: DW_TAG_enumerator (enum1:0)
16755 3: DW_TAG_enumerator (enum2:1)
16756 ...
16757 2: DW_TAG_template_type_param
16758 DW_AT_type DW_FORM_ref_udata (E)
16759
16760 Besides being broken debug info, it can put GDB into an
16761 infinite loop. Consider:
16762
16763 When we're building the full name for Class<E>, we'll start
16764 at Class, and go look over its template type parameters,
16765 finding E. We'll then try to build the full name of E, and
16766 reach here. We're now trying to build the full name of E,
16767 and look over the parent DIE for containing scope. In the
16768 broken case, if we followed the parent DIE of E, we'd again
16769 find Class, and once again go look at its template type
16770 arguments, etc., etc. Simply don't consider such parent die
16771 as source-level parent of this die (it can't be, the language
16772 doesn't allow it), and break the loop here. */
16773 name = dwarf2_name (die, cu);
16774 parent_name = dwarf2_name (parent, cu);
16775 complaint (&symfile_complaints,
16776 _("template param type '%s' defined within parent '%s'"),
16777 name ? name : "<unknown>",
16778 parent_name ? parent_name : "<unknown>");
16779 return "";
16780 }
16781 else
16782 switch (parent->tag)
16783 {
16784 case DW_TAG_namespace:
16785 parent_type = read_type_die (parent, cu);
16786 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
16787 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
16788 Work around this problem here. */
16789 if (cu->language == language_cplus
16790 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
16791 return "";
16792 /* We give a name to even anonymous namespaces. */
16793 return TYPE_TAG_NAME (parent_type);
16794 case DW_TAG_class_type:
16795 case DW_TAG_interface_type:
16796 case DW_TAG_structure_type:
16797 case DW_TAG_union_type:
16798 case DW_TAG_module:
16799 parent_type = read_type_die (parent, cu);
16800 if (TYPE_TAG_NAME (parent_type) != NULL)
16801 return TYPE_TAG_NAME (parent_type);
16802 else
16803 /* An anonymous structure is only allowed non-static data
16804 members; no typedefs, no member functions, et cetera.
16805 So it does not need a prefix. */
16806 return "";
16807 case DW_TAG_compile_unit:
16808 case DW_TAG_partial_unit:
16809 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
16810 if (cu->language == language_cplus
16811 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16812 && die->child != NULL
16813 && (die->tag == DW_TAG_class_type
16814 || die->tag == DW_TAG_structure_type
16815 || die->tag == DW_TAG_union_type))
16816 {
16817 char *name = guess_full_die_structure_name (die, cu);
16818 if (name != NULL)
16819 return name;
16820 }
16821 return "";
16822 default:
16823 return determine_prefix (parent, cu);
16824 }
16825 }
16826
16827 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
16828 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
16829 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
16830 an obconcat, otherwise allocate storage for the result. The CU argument is
16831 used to determine the language and hence, the appropriate separator. */
16832
16833 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
16834
16835 static char *
16836 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
16837 int physname, struct dwarf2_cu *cu)
16838 {
16839 const char *lead = "";
16840 const char *sep;
16841
16842 if (suffix == NULL || suffix[0] == '\0'
16843 || prefix == NULL || prefix[0] == '\0')
16844 sep = "";
16845 else if (cu->language == language_java)
16846 sep = ".";
16847 else if (cu->language == language_fortran && physname)
16848 {
16849 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
16850 DW_AT_MIPS_linkage_name is preferred and used instead. */
16851
16852 lead = "__";
16853 sep = "_MOD_";
16854 }
16855 else
16856 sep = "::";
16857
16858 if (prefix == NULL)
16859 prefix = "";
16860 if (suffix == NULL)
16861 suffix = "";
16862
16863 if (obs == NULL)
16864 {
16865 char *retval
16866 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
16867
16868 strcpy (retval, lead);
16869 strcat (retval, prefix);
16870 strcat (retval, sep);
16871 strcat (retval, suffix);
16872 return retval;
16873 }
16874 else
16875 {
16876 /* We have an obstack. */
16877 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
16878 }
16879 }
16880
16881 /* Return sibling of die, NULL if no sibling. */
16882
16883 static struct die_info *
16884 sibling_die (struct die_info *die)
16885 {
16886 return die->sibling;
16887 }
16888
16889 /* Get name of a die, return NULL if not found. */
16890
16891 static const char *
16892 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
16893 struct obstack *obstack)
16894 {
16895 if (name && cu->language == language_cplus)
16896 {
16897 char *canon_name = cp_canonicalize_string (name);
16898
16899 if (canon_name != NULL)
16900 {
16901 if (strcmp (canon_name, name) != 0)
16902 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
16903 xfree (canon_name);
16904 }
16905 }
16906
16907 return name;
16908 }
16909
16910 /* Get name of a die, return NULL if not found. */
16911
16912 static const char *
16913 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
16914 {
16915 struct attribute *attr;
16916
16917 attr = dwarf2_attr (die, DW_AT_name, cu);
16918 if ((!attr || !DW_STRING (attr))
16919 && die->tag != DW_TAG_class_type
16920 && die->tag != DW_TAG_interface_type
16921 && die->tag != DW_TAG_structure_type
16922 && die->tag != DW_TAG_union_type)
16923 return NULL;
16924
16925 switch (die->tag)
16926 {
16927 case DW_TAG_compile_unit:
16928 case DW_TAG_partial_unit:
16929 /* Compilation units have a DW_AT_name that is a filename, not
16930 a source language identifier. */
16931 case DW_TAG_enumeration_type:
16932 case DW_TAG_enumerator:
16933 /* These tags always have simple identifiers already; no need
16934 to canonicalize them. */
16935 return DW_STRING (attr);
16936
16937 case DW_TAG_subprogram:
16938 /* Java constructors will all be named "<init>", so return
16939 the class name when we see this special case. */
16940 if (cu->language == language_java
16941 && DW_STRING (attr) != NULL
16942 && strcmp (DW_STRING (attr), "<init>") == 0)
16943 {
16944 struct dwarf2_cu *spec_cu = cu;
16945 struct die_info *spec_die;
16946
16947 /* GCJ will output '<init>' for Java constructor names.
16948 For this special case, return the name of the parent class. */
16949
16950 /* GCJ may output suprogram DIEs with AT_specification set.
16951 If so, use the name of the specified DIE. */
16952 spec_die = die_specification (die, &spec_cu);
16953 if (spec_die != NULL)
16954 return dwarf2_name (spec_die, spec_cu);
16955
16956 do
16957 {
16958 die = die->parent;
16959 if (die->tag == DW_TAG_class_type)
16960 return dwarf2_name (die, cu);
16961 }
16962 while (die->tag != DW_TAG_compile_unit
16963 && die->tag != DW_TAG_partial_unit);
16964 }
16965 break;
16966
16967 case DW_TAG_class_type:
16968 case DW_TAG_interface_type:
16969 case DW_TAG_structure_type:
16970 case DW_TAG_union_type:
16971 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
16972 structures or unions. These were of the form "._%d" in GCC 4.1,
16973 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
16974 and GCC 4.4. We work around this problem by ignoring these. */
16975 if (attr && DW_STRING (attr)
16976 && (strncmp (DW_STRING (attr), "._", 2) == 0
16977 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
16978 return NULL;
16979
16980 /* GCC might emit a nameless typedef that has a linkage name. See
16981 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16982 if (!attr || DW_STRING (attr) == NULL)
16983 {
16984 char *demangled = NULL;
16985
16986 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16987 if (attr == NULL)
16988 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16989
16990 if (attr == NULL || DW_STRING (attr) == NULL)
16991 return NULL;
16992
16993 /* Avoid demangling DW_STRING (attr) the second time on a second
16994 call for the same DIE. */
16995 if (!DW_STRING_IS_CANONICAL (attr))
16996 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
16997
16998 if (demangled)
16999 {
17000 char *base;
17001
17002 /* FIXME: we already did this for the partial symbol... */
17003 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17004 demangled, strlen (demangled));
17005 DW_STRING_IS_CANONICAL (attr) = 1;
17006 xfree (demangled);
17007
17008 /* Strip any leading namespaces/classes, keep only the base name.
17009 DW_AT_name for named DIEs does not contain the prefixes. */
17010 base = strrchr (DW_STRING (attr), ':');
17011 if (base && base > DW_STRING (attr) && base[-1] == ':')
17012 return &base[1];
17013 else
17014 return DW_STRING (attr);
17015 }
17016 }
17017 break;
17018
17019 default:
17020 break;
17021 }
17022
17023 if (!DW_STRING_IS_CANONICAL (attr))
17024 {
17025 DW_STRING (attr)
17026 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17027 &cu->objfile->objfile_obstack);
17028 DW_STRING_IS_CANONICAL (attr) = 1;
17029 }
17030 return DW_STRING (attr);
17031 }
17032
17033 /* Return the die that this die in an extension of, or NULL if there
17034 is none. *EXT_CU is the CU containing DIE on input, and the CU
17035 containing the return value on output. */
17036
17037 static struct die_info *
17038 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17039 {
17040 struct attribute *attr;
17041
17042 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17043 if (attr == NULL)
17044 return NULL;
17045
17046 return follow_die_ref (die, attr, ext_cu);
17047 }
17048
17049 /* Convert a DIE tag into its string name. */
17050
17051 static const char *
17052 dwarf_tag_name (unsigned tag)
17053 {
17054 const char *name = get_DW_TAG_name (tag);
17055
17056 if (name == NULL)
17057 return "DW_TAG_<unknown>";
17058
17059 return name;
17060 }
17061
17062 /* Convert a DWARF attribute code into its string name. */
17063
17064 static const char *
17065 dwarf_attr_name (unsigned attr)
17066 {
17067 const char *name;
17068
17069 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17070 if (attr == DW_AT_MIPS_fde)
17071 return "DW_AT_MIPS_fde";
17072 #else
17073 if (attr == DW_AT_HP_block_index)
17074 return "DW_AT_HP_block_index";
17075 #endif
17076
17077 name = get_DW_AT_name (attr);
17078
17079 if (name == NULL)
17080 return "DW_AT_<unknown>";
17081
17082 return name;
17083 }
17084
17085 /* Convert a DWARF value form code into its string name. */
17086
17087 static const char *
17088 dwarf_form_name (unsigned form)
17089 {
17090 const char *name = get_DW_FORM_name (form);
17091
17092 if (name == NULL)
17093 return "DW_FORM_<unknown>";
17094
17095 return name;
17096 }
17097
17098 static char *
17099 dwarf_bool_name (unsigned mybool)
17100 {
17101 if (mybool)
17102 return "TRUE";
17103 else
17104 return "FALSE";
17105 }
17106
17107 /* Convert a DWARF type code into its string name. */
17108
17109 static const char *
17110 dwarf_type_encoding_name (unsigned enc)
17111 {
17112 const char *name = get_DW_ATE_name (enc);
17113
17114 if (name == NULL)
17115 return "DW_ATE_<unknown>";
17116
17117 return name;
17118 }
17119
17120 static void
17121 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17122 {
17123 unsigned int i;
17124
17125 print_spaces (indent, f);
17126 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17127 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17128
17129 if (die->parent != NULL)
17130 {
17131 print_spaces (indent, f);
17132 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17133 die->parent->offset.sect_off);
17134 }
17135
17136 print_spaces (indent, f);
17137 fprintf_unfiltered (f, " has children: %s\n",
17138 dwarf_bool_name (die->child != NULL));
17139
17140 print_spaces (indent, f);
17141 fprintf_unfiltered (f, " attributes:\n");
17142
17143 for (i = 0; i < die->num_attrs; ++i)
17144 {
17145 print_spaces (indent, f);
17146 fprintf_unfiltered (f, " %s (%s) ",
17147 dwarf_attr_name (die->attrs[i].name),
17148 dwarf_form_name (die->attrs[i].form));
17149
17150 switch (die->attrs[i].form)
17151 {
17152 case DW_FORM_addr:
17153 case DW_FORM_GNU_addr_index:
17154 fprintf_unfiltered (f, "address: ");
17155 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17156 break;
17157 case DW_FORM_block2:
17158 case DW_FORM_block4:
17159 case DW_FORM_block:
17160 case DW_FORM_block1:
17161 fprintf_unfiltered (f, "block: size %s",
17162 pulongest (DW_BLOCK (&die->attrs[i])->size));
17163 break;
17164 case DW_FORM_exprloc:
17165 fprintf_unfiltered (f, "expression: size %s",
17166 pulongest (DW_BLOCK (&die->attrs[i])->size));
17167 break;
17168 case DW_FORM_ref_addr:
17169 fprintf_unfiltered (f, "ref address: ");
17170 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17171 break;
17172 case DW_FORM_GNU_ref_alt:
17173 fprintf_unfiltered (f, "alt ref address: ");
17174 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17175 break;
17176 case DW_FORM_ref1:
17177 case DW_FORM_ref2:
17178 case DW_FORM_ref4:
17179 case DW_FORM_ref8:
17180 case DW_FORM_ref_udata:
17181 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17182 (long) (DW_UNSND (&die->attrs[i])));
17183 break;
17184 case DW_FORM_data1:
17185 case DW_FORM_data2:
17186 case DW_FORM_data4:
17187 case DW_FORM_data8:
17188 case DW_FORM_udata:
17189 case DW_FORM_sdata:
17190 fprintf_unfiltered (f, "constant: %s",
17191 pulongest (DW_UNSND (&die->attrs[i])));
17192 break;
17193 case DW_FORM_sec_offset:
17194 fprintf_unfiltered (f, "section offset: %s",
17195 pulongest (DW_UNSND (&die->attrs[i])));
17196 break;
17197 case DW_FORM_ref_sig8:
17198 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
17199 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
17200 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
17201 else
17202 fprintf_unfiltered (f, "signatured type, offset: unknown");
17203 break;
17204 case DW_FORM_string:
17205 case DW_FORM_strp:
17206 case DW_FORM_GNU_str_index:
17207 case DW_FORM_GNU_strp_alt:
17208 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17209 DW_STRING (&die->attrs[i])
17210 ? DW_STRING (&die->attrs[i]) : "",
17211 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17212 break;
17213 case DW_FORM_flag:
17214 if (DW_UNSND (&die->attrs[i]))
17215 fprintf_unfiltered (f, "flag: TRUE");
17216 else
17217 fprintf_unfiltered (f, "flag: FALSE");
17218 break;
17219 case DW_FORM_flag_present:
17220 fprintf_unfiltered (f, "flag: TRUE");
17221 break;
17222 case DW_FORM_indirect:
17223 /* The reader will have reduced the indirect form to
17224 the "base form" so this form should not occur. */
17225 fprintf_unfiltered (f,
17226 "unexpected attribute form: DW_FORM_indirect");
17227 break;
17228 default:
17229 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17230 die->attrs[i].form);
17231 break;
17232 }
17233 fprintf_unfiltered (f, "\n");
17234 }
17235 }
17236
17237 static void
17238 dump_die_for_error (struct die_info *die)
17239 {
17240 dump_die_shallow (gdb_stderr, 0, die);
17241 }
17242
17243 static void
17244 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17245 {
17246 int indent = level * 4;
17247
17248 gdb_assert (die != NULL);
17249
17250 if (level >= max_level)
17251 return;
17252
17253 dump_die_shallow (f, indent, die);
17254
17255 if (die->child != NULL)
17256 {
17257 print_spaces (indent, f);
17258 fprintf_unfiltered (f, " Children:");
17259 if (level + 1 < max_level)
17260 {
17261 fprintf_unfiltered (f, "\n");
17262 dump_die_1 (f, level + 1, max_level, die->child);
17263 }
17264 else
17265 {
17266 fprintf_unfiltered (f,
17267 " [not printed, max nesting level reached]\n");
17268 }
17269 }
17270
17271 if (die->sibling != NULL && level > 0)
17272 {
17273 dump_die_1 (f, level, max_level, die->sibling);
17274 }
17275 }
17276
17277 /* This is called from the pdie macro in gdbinit.in.
17278 It's not static so gcc will keep a copy callable from gdb. */
17279
17280 void
17281 dump_die (struct die_info *die, int max_level)
17282 {
17283 dump_die_1 (gdb_stdlog, 0, max_level, die);
17284 }
17285
17286 static void
17287 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17288 {
17289 void **slot;
17290
17291 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17292 INSERT);
17293
17294 *slot = die;
17295 }
17296
17297 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17298 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17299
17300 static int
17301 is_ref_attr (struct attribute *attr)
17302 {
17303 switch (attr->form)
17304 {
17305 case DW_FORM_ref_addr:
17306 case DW_FORM_ref1:
17307 case DW_FORM_ref2:
17308 case DW_FORM_ref4:
17309 case DW_FORM_ref8:
17310 case DW_FORM_ref_udata:
17311 case DW_FORM_GNU_ref_alt:
17312 return 1;
17313 default:
17314 return 0;
17315 }
17316 }
17317
17318 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17319 required kind. */
17320
17321 static sect_offset
17322 dwarf2_get_ref_die_offset (struct attribute *attr)
17323 {
17324 sect_offset retval = { DW_UNSND (attr) };
17325
17326 if (is_ref_attr (attr))
17327 return retval;
17328
17329 retval.sect_off = 0;
17330 complaint (&symfile_complaints,
17331 _("unsupported die ref attribute form: '%s'"),
17332 dwarf_form_name (attr->form));
17333 return retval;
17334 }
17335
17336 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17337 * the value held by the attribute is not constant. */
17338
17339 static LONGEST
17340 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17341 {
17342 if (attr->form == DW_FORM_sdata)
17343 return DW_SND (attr);
17344 else if (attr->form == DW_FORM_udata
17345 || attr->form == DW_FORM_data1
17346 || attr->form == DW_FORM_data2
17347 || attr->form == DW_FORM_data4
17348 || attr->form == DW_FORM_data8)
17349 return DW_UNSND (attr);
17350 else
17351 {
17352 complaint (&symfile_complaints,
17353 _("Attribute value is not a constant (%s)"),
17354 dwarf_form_name (attr->form));
17355 return default_value;
17356 }
17357 }
17358
17359 /* Follow reference or signature attribute ATTR of SRC_DIE.
17360 On entry *REF_CU is the CU of SRC_DIE.
17361 On exit *REF_CU is the CU of the result. */
17362
17363 static struct die_info *
17364 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17365 struct dwarf2_cu **ref_cu)
17366 {
17367 struct die_info *die;
17368
17369 if (is_ref_attr (attr))
17370 die = follow_die_ref (src_die, attr, ref_cu);
17371 else if (attr->form == DW_FORM_ref_sig8)
17372 die = follow_die_sig (src_die, attr, ref_cu);
17373 else
17374 {
17375 dump_die_for_error (src_die);
17376 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17377 (*ref_cu)->objfile->name);
17378 }
17379
17380 return die;
17381 }
17382
17383 /* Follow reference OFFSET.
17384 On entry *REF_CU is the CU of the source die referencing OFFSET.
17385 On exit *REF_CU is the CU of the result.
17386 Returns NULL if OFFSET is invalid. */
17387
17388 static struct die_info *
17389 follow_die_offset (sect_offset offset, int offset_in_dwz,
17390 struct dwarf2_cu **ref_cu)
17391 {
17392 struct die_info temp_die;
17393 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17394
17395 gdb_assert (cu->per_cu != NULL);
17396
17397 target_cu = cu;
17398
17399 if (cu->per_cu->is_debug_types)
17400 {
17401 /* .debug_types CUs cannot reference anything outside their CU.
17402 If they need to, they have to reference a signatured type via
17403 DW_FORM_ref_sig8. */
17404 if (! offset_in_cu_p (&cu->header, offset))
17405 return NULL;
17406 }
17407 else if (offset_in_dwz != cu->per_cu->is_dwz
17408 || ! offset_in_cu_p (&cu->header, offset))
17409 {
17410 struct dwarf2_per_cu_data *per_cu;
17411
17412 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17413 cu->objfile);
17414
17415 /* If necessary, add it to the queue and load its DIEs. */
17416 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17417 load_full_comp_unit (per_cu, cu->language);
17418
17419 target_cu = per_cu->cu;
17420 }
17421 else if (cu->dies == NULL)
17422 {
17423 /* We're loading full DIEs during partial symbol reading. */
17424 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
17425 load_full_comp_unit (cu->per_cu, language_minimal);
17426 }
17427
17428 *ref_cu = target_cu;
17429 temp_die.offset = offset;
17430 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
17431 }
17432
17433 /* Follow reference attribute ATTR of SRC_DIE.
17434 On entry *REF_CU is the CU of SRC_DIE.
17435 On exit *REF_CU is the CU of the result. */
17436
17437 static struct die_info *
17438 follow_die_ref (struct die_info *src_die, struct attribute *attr,
17439 struct dwarf2_cu **ref_cu)
17440 {
17441 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17442 struct dwarf2_cu *cu = *ref_cu;
17443 struct die_info *die;
17444
17445 die = follow_die_offset (offset,
17446 (attr->form == DW_FORM_GNU_ref_alt
17447 || cu->per_cu->is_dwz),
17448 ref_cu);
17449 if (!die)
17450 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17451 "at 0x%x [in module %s]"),
17452 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
17453
17454 return die;
17455 }
17456
17457 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17458 Returned value is intended for DW_OP_call*. Returned
17459 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
17460
17461 struct dwarf2_locexpr_baton
17462 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
17463 struct dwarf2_per_cu_data *per_cu,
17464 CORE_ADDR (*get_frame_pc) (void *baton),
17465 void *baton)
17466 {
17467 struct dwarf2_cu *cu;
17468 struct die_info *die;
17469 struct attribute *attr;
17470 struct dwarf2_locexpr_baton retval;
17471
17472 dw2_setup (per_cu->objfile);
17473
17474 if (per_cu->cu == NULL)
17475 load_cu (per_cu);
17476 cu = per_cu->cu;
17477
17478 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
17479 if (!die)
17480 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
17481 offset.sect_off, per_cu->objfile->name);
17482
17483 attr = dwarf2_attr (die, DW_AT_location, cu);
17484 if (!attr)
17485 {
17486 /* DWARF: "If there is no such attribute, then there is no effect.".
17487 DATA is ignored if SIZE is 0. */
17488
17489 retval.data = NULL;
17490 retval.size = 0;
17491 }
17492 else if (attr_form_is_section_offset (attr))
17493 {
17494 struct dwarf2_loclist_baton loclist_baton;
17495 CORE_ADDR pc = (*get_frame_pc) (baton);
17496 size_t size;
17497
17498 fill_in_loclist_baton (cu, &loclist_baton, attr);
17499
17500 retval.data = dwarf2_find_location_expression (&loclist_baton,
17501 &size, pc);
17502 retval.size = size;
17503 }
17504 else
17505 {
17506 if (!attr_form_is_block (attr))
17507 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17508 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
17509 offset.sect_off, per_cu->objfile->name);
17510
17511 retval.data = DW_BLOCK (attr)->data;
17512 retval.size = DW_BLOCK (attr)->size;
17513 }
17514 retval.per_cu = cu->per_cu;
17515
17516 age_cached_comp_units ();
17517
17518 return retval;
17519 }
17520
17521 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
17522 offset. */
17523
17524 struct dwarf2_locexpr_baton
17525 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
17526 struct dwarf2_per_cu_data *per_cu,
17527 CORE_ADDR (*get_frame_pc) (void *baton),
17528 void *baton)
17529 {
17530 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17531
17532 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
17533 }
17534
17535 /* Return the type of the DIE at DIE_OFFSET in the CU named by
17536 PER_CU. */
17537
17538 struct type *
17539 dwarf2_get_die_type (cu_offset die_offset,
17540 struct dwarf2_per_cu_data *per_cu)
17541 {
17542 sect_offset die_offset_sect;
17543
17544 dw2_setup (per_cu->objfile);
17545
17546 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17547 return get_die_type_at_offset (die_offset_sect, per_cu);
17548 }
17549
17550 /* Follow the signature attribute ATTR in SRC_DIE.
17551 On entry *REF_CU is the CU of SRC_DIE.
17552 On exit *REF_CU is the CU of the result. */
17553
17554 static struct die_info *
17555 follow_die_sig (struct die_info *src_die, struct attribute *attr,
17556 struct dwarf2_cu **ref_cu)
17557 {
17558 struct objfile *objfile = (*ref_cu)->objfile;
17559 struct die_info temp_die;
17560 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
17561 struct dwarf2_cu *sig_cu;
17562 struct die_info *die;
17563
17564 /* sig_type will be NULL if the signatured type is missing from
17565 the debug info. */
17566 if (sig_type == NULL)
17567 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
17568 "at 0x%x [in module %s]"),
17569 src_die->offset.sect_off, objfile->name);
17570
17571 /* If necessary, add it to the queue and load its DIEs. */
17572
17573 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
17574 read_signatured_type (sig_type);
17575
17576 gdb_assert (sig_type->per_cu.cu != NULL);
17577
17578 sig_cu = sig_type->per_cu.cu;
17579 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17580 temp_die.offset = sig_type->type_offset_in_section;
17581 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17582 temp_die.offset.sect_off);
17583 if (die)
17584 {
17585 /* For .gdb_index version 7 keep track of included TUs.
17586 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
17587 if (dwarf2_per_objfile->index_table != NULL
17588 && dwarf2_per_objfile->index_table->version <= 7)
17589 {
17590 VEC_safe_push (dwarf2_per_cu_ptr,
17591 (*ref_cu)->per_cu->imported_symtabs,
17592 sig_cu->per_cu);
17593 }
17594
17595 *ref_cu = sig_cu;
17596 return die;
17597 }
17598
17599 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
17600 "from DIE at 0x%x [in module %s]"),
17601 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
17602 }
17603
17604 /* Given an offset of a signatured type, return its signatured_type. */
17605
17606 static struct signatured_type *
17607 lookup_signatured_type_at_offset (struct objfile *objfile,
17608 struct dwarf2_section_info *section,
17609 sect_offset offset)
17610 {
17611 gdb_byte *info_ptr = section->buffer + offset.sect_off;
17612 unsigned int length, initial_length_size;
17613 unsigned int sig_offset;
17614 struct signatured_type find_entry, *sig_type;
17615
17616 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
17617 sig_offset = (initial_length_size
17618 + 2 /*version*/
17619 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
17620 + 1 /*address_size*/);
17621 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
17622 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
17623
17624 /* This is only used to lookup previously recorded types.
17625 If we didn't find it, it's our bug. */
17626 gdb_assert (sig_type != NULL);
17627 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
17628
17629 return sig_type;
17630 }
17631
17632 /* Load the DIEs associated with type unit PER_CU into memory. */
17633
17634 static void
17635 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
17636 {
17637 struct signatured_type *sig_type;
17638
17639 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17640 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17641
17642 /* We have the per_cu, but we need the signatured_type.
17643 Fortunately this is an easy translation. */
17644 gdb_assert (per_cu->is_debug_types);
17645 sig_type = (struct signatured_type *) per_cu;
17646
17647 gdb_assert (per_cu->cu == NULL);
17648
17649 read_signatured_type (sig_type);
17650
17651 gdb_assert (per_cu->cu != NULL);
17652 }
17653
17654 /* die_reader_func for read_signatured_type.
17655 This is identical to load_full_comp_unit_reader,
17656 but is kept separate for now. */
17657
17658 static void
17659 read_signatured_type_reader (const struct die_reader_specs *reader,
17660 gdb_byte *info_ptr,
17661 struct die_info *comp_unit_die,
17662 int has_children,
17663 void *data)
17664 {
17665 struct dwarf2_cu *cu = reader->cu;
17666
17667 gdb_assert (cu->die_hash == NULL);
17668 cu->die_hash =
17669 htab_create_alloc_ex (cu->header.length / 12,
17670 die_hash,
17671 die_eq,
17672 NULL,
17673 &cu->comp_unit_obstack,
17674 hashtab_obstack_allocate,
17675 dummy_obstack_deallocate);
17676
17677 if (has_children)
17678 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
17679 &info_ptr, comp_unit_die);
17680 cu->dies = comp_unit_die;
17681 /* comp_unit_die is not stored in die_hash, no need. */
17682
17683 /* We try not to read any attributes in this function, because not
17684 all CUs needed for references have been loaded yet, and symbol
17685 table processing isn't initialized. But we have to set the CU language,
17686 or we won't be able to build types correctly.
17687 Similarly, if we do not read the producer, we can not apply
17688 producer-specific interpretation. */
17689 prepare_one_comp_unit (cu, cu->dies, language_minimal);
17690 }
17691
17692 /* Read in a signatured type and build its CU and DIEs.
17693 If the type is a stub for the real type in a DWO file,
17694 read in the real type from the DWO file as well. */
17695
17696 static void
17697 read_signatured_type (struct signatured_type *sig_type)
17698 {
17699 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
17700
17701 gdb_assert (per_cu->is_debug_types);
17702 gdb_assert (per_cu->cu == NULL);
17703
17704 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
17705 read_signatured_type_reader, NULL);
17706 }
17707
17708 /* Decode simple location descriptions.
17709 Given a pointer to a dwarf block that defines a location, compute
17710 the location and return the value.
17711
17712 NOTE drow/2003-11-18: This function is called in two situations
17713 now: for the address of static or global variables (partial symbols
17714 only) and for offsets into structures which are expected to be
17715 (more or less) constant. The partial symbol case should go away,
17716 and only the constant case should remain. That will let this
17717 function complain more accurately. A few special modes are allowed
17718 without complaint for global variables (for instance, global
17719 register values and thread-local values).
17720
17721 A location description containing no operations indicates that the
17722 object is optimized out. The return value is 0 for that case.
17723 FIXME drow/2003-11-16: No callers check for this case any more; soon all
17724 callers will only want a very basic result and this can become a
17725 complaint.
17726
17727 Note that stack[0] is unused except as a default error return. */
17728
17729 static CORE_ADDR
17730 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
17731 {
17732 struct objfile *objfile = cu->objfile;
17733 size_t i;
17734 size_t size = blk->size;
17735 gdb_byte *data = blk->data;
17736 CORE_ADDR stack[64];
17737 int stacki;
17738 unsigned int bytes_read, unsnd;
17739 gdb_byte op;
17740
17741 i = 0;
17742 stacki = 0;
17743 stack[stacki] = 0;
17744 stack[++stacki] = 0;
17745
17746 while (i < size)
17747 {
17748 op = data[i++];
17749 switch (op)
17750 {
17751 case DW_OP_lit0:
17752 case DW_OP_lit1:
17753 case DW_OP_lit2:
17754 case DW_OP_lit3:
17755 case DW_OP_lit4:
17756 case DW_OP_lit5:
17757 case DW_OP_lit6:
17758 case DW_OP_lit7:
17759 case DW_OP_lit8:
17760 case DW_OP_lit9:
17761 case DW_OP_lit10:
17762 case DW_OP_lit11:
17763 case DW_OP_lit12:
17764 case DW_OP_lit13:
17765 case DW_OP_lit14:
17766 case DW_OP_lit15:
17767 case DW_OP_lit16:
17768 case DW_OP_lit17:
17769 case DW_OP_lit18:
17770 case DW_OP_lit19:
17771 case DW_OP_lit20:
17772 case DW_OP_lit21:
17773 case DW_OP_lit22:
17774 case DW_OP_lit23:
17775 case DW_OP_lit24:
17776 case DW_OP_lit25:
17777 case DW_OP_lit26:
17778 case DW_OP_lit27:
17779 case DW_OP_lit28:
17780 case DW_OP_lit29:
17781 case DW_OP_lit30:
17782 case DW_OP_lit31:
17783 stack[++stacki] = op - DW_OP_lit0;
17784 break;
17785
17786 case DW_OP_reg0:
17787 case DW_OP_reg1:
17788 case DW_OP_reg2:
17789 case DW_OP_reg3:
17790 case DW_OP_reg4:
17791 case DW_OP_reg5:
17792 case DW_OP_reg6:
17793 case DW_OP_reg7:
17794 case DW_OP_reg8:
17795 case DW_OP_reg9:
17796 case DW_OP_reg10:
17797 case DW_OP_reg11:
17798 case DW_OP_reg12:
17799 case DW_OP_reg13:
17800 case DW_OP_reg14:
17801 case DW_OP_reg15:
17802 case DW_OP_reg16:
17803 case DW_OP_reg17:
17804 case DW_OP_reg18:
17805 case DW_OP_reg19:
17806 case DW_OP_reg20:
17807 case DW_OP_reg21:
17808 case DW_OP_reg22:
17809 case DW_OP_reg23:
17810 case DW_OP_reg24:
17811 case DW_OP_reg25:
17812 case DW_OP_reg26:
17813 case DW_OP_reg27:
17814 case DW_OP_reg28:
17815 case DW_OP_reg29:
17816 case DW_OP_reg30:
17817 case DW_OP_reg31:
17818 stack[++stacki] = op - DW_OP_reg0;
17819 if (i < size)
17820 dwarf2_complex_location_expr_complaint ();
17821 break;
17822
17823 case DW_OP_regx:
17824 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
17825 i += bytes_read;
17826 stack[++stacki] = unsnd;
17827 if (i < size)
17828 dwarf2_complex_location_expr_complaint ();
17829 break;
17830
17831 case DW_OP_addr:
17832 stack[++stacki] = read_address (objfile->obfd, &data[i],
17833 cu, &bytes_read);
17834 i += bytes_read;
17835 break;
17836
17837 case DW_OP_const1u:
17838 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
17839 i += 1;
17840 break;
17841
17842 case DW_OP_const1s:
17843 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
17844 i += 1;
17845 break;
17846
17847 case DW_OP_const2u:
17848 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
17849 i += 2;
17850 break;
17851
17852 case DW_OP_const2s:
17853 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
17854 i += 2;
17855 break;
17856
17857 case DW_OP_const4u:
17858 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
17859 i += 4;
17860 break;
17861
17862 case DW_OP_const4s:
17863 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
17864 i += 4;
17865 break;
17866
17867 case DW_OP_const8u:
17868 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
17869 i += 8;
17870 break;
17871
17872 case DW_OP_constu:
17873 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
17874 &bytes_read);
17875 i += bytes_read;
17876 break;
17877
17878 case DW_OP_consts:
17879 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
17880 i += bytes_read;
17881 break;
17882
17883 case DW_OP_dup:
17884 stack[stacki + 1] = stack[stacki];
17885 stacki++;
17886 break;
17887
17888 case DW_OP_plus:
17889 stack[stacki - 1] += stack[stacki];
17890 stacki--;
17891 break;
17892
17893 case DW_OP_plus_uconst:
17894 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
17895 &bytes_read);
17896 i += bytes_read;
17897 break;
17898
17899 case DW_OP_minus:
17900 stack[stacki - 1] -= stack[stacki];
17901 stacki--;
17902 break;
17903
17904 case DW_OP_deref:
17905 /* If we're not the last op, then we definitely can't encode
17906 this using GDB's address_class enum. This is valid for partial
17907 global symbols, although the variable's address will be bogus
17908 in the psymtab. */
17909 if (i < size)
17910 dwarf2_complex_location_expr_complaint ();
17911 break;
17912
17913 case DW_OP_GNU_push_tls_address:
17914 /* The top of the stack has the offset from the beginning
17915 of the thread control block at which the variable is located. */
17916 /* Nothing should follow this operator, so the top of stack would
17917 be returned. */
17918 /* This is valid for partial global symbols, but the variable's
17919 address will be bogus in the psymtab. Make it always at least
17920 non-zero to not look as a variable garbage collected by linker
17921 which have DW_OP_addr 0. */
17922 if (i < size)
17923 dwarf2_complex_location_expr_complaint ();
17924 stack[stacki]++;
17925 break;
17926
17927 case DW_OP_GNU_uninit:
17928 break;
17929
17930 case DW_OP_GNU_addr_index:
17931 case DW_OP_GNU_const_index:
17932 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
17933 &bytes_read);
17934 i += bytes_read;
17935 break;
17936
17937 default:
17938 {
17939 const char *name = get_DW_OP_name (op);
17940
17941 if (name)
17942 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
17943 name);
17944 else
17945 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
17946 op);
17947 }
17948
17949 return (stack[stacki]);
17950 }
17951
17952 /* Enforce maximum stack depth of SIZE-1 to avoid writing
17953 outside of the allocated space. Also enforce minimum>0. */
17954 if (stacki >= ARRAY_SIZE (stack) - 1)
17955 {
17956 complaint (&symfile_complaints,
17957 _("location description stack overflow"));
17958 return 0;
17959 }
17960
17961 if (stacki <= 0)
17962 {
17963 complaint (&symfile_complaints,
17964 _("location description stack underflow"));
17965 return 0;
17966 }
17967 }
17968 return (stack[stacki]);
17969 }
17970
17971 /* memory allocation interface */
17972
17973 static struct dwarf_block *
17974 dwarf_alloc_block (struct dwarf2_cu *cu)
17975 {
17976 struct dwarf_block *blk;
17977
17978 blk = (struct dwarf_block *)
17979 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
17980 return (blk);
17981 }
17982
17983 static struct die_info *
17984 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
17985 {
17986 struct die_info *die;
17987 size_t size = sizeof (struct die_info);
17988
17989 if (num_attrs > 1)
17990 size += (num_attrs - 1) * sizeof (struct attribute);
17991
17992 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
17993 memset (die, 0, sizeof (struct die_info));
17994 return (die);
17995 }
17996
17997 \f
17998 /* Macro support. */
17999
18000 /* Return the full name of file number I in *LH's file name table.
18001 Use COMP_DIR as the name of the current directory of the
18002 compilation. The result is allocated using xmalloc; the caller is
18003 responsible for freeing it. */
18004 static char *
18005 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18006 {
18007 /* Is the file number a valid index into the line header's file name
18008 table? Remember that file numbers start with one, not zero. */
18009 if (1 <= file && file <= lh->num_file_names)
18010 {
18011 struct file_entry *fe = &lh->file_names[file - 1];
18012
18013 if (IS_ABSOLUTE_PATH (fe->name))
18014 return xstrdup (fe->name);
18015 else
18016 {
18017 const char *dir;
18018 int dir_len;
18019 char *full_name;
18020
18021 if (fe->dir_index)
18022 dir = lh->include_dirs[fe->dir_index - 1];
18023 else
18024 dir = comp_dir;
18025
18026 if (dir)
18027 {
18028 dir_len = strlen (dir);
18029 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
18030 strcpy (full_name, dir);
18031 full_name[dir_len] = '/';
18032 strcpy (full_name + dir_len + 1, fe->name);
18033 return full_name;
18034 }
18035 else
18036 return xstrdup (fe->name);
18037 }
18038 }
18039 else
18040 {
18041 /* The compiler produced a bogus file number. We can at least
18042 record the macro definitions made in the file, even if we
18043 won't be able to find the file by name. */
18044 char fake_name[80];
18045
18046 xsnprintf (fake_name, sizeof (fake_name),
18047 "<bad macro file number %d>", file);
18048
18049 complaint (&symfile_complaints,
18050 _("bad file number in macro information (%d)"),
18051 file);
18052
18053 return xstrdup (fake_name);
18054 }
18055 }
18056
18057
18058 static struct macro_source_file *
18059 macro_start_file (int file, int line,
18060 struct macro_source_file *current_file,
18061 const char *comp_dir,
18062 struct line_header *lh, struct objfile *objfile)
18063 {
18064 /* The full name of this source file. */
18065 char *full_name = file_full_name (file, lh, comp_dir);
18066
18067 /* We don't create a macro table for this compilation unit
18068 at all until we actually get a filename. */
18069 if (! pending_macros)
18070 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18071 objfile->per_bfd->macro_cache);
18072
18073 if (! current_file)
18074 {
18075 /* If we have no current file, then this must be the start_file
18076 directive for the compilation unit's main source file. */
18077 current_file = macro_set_main (pending_macros, full_name);
18078 macro_define_special (pending_macros);
18079 }
18080 else
18081 current_file = macro_include (current_file, line, full_name);
18082
18083 xfree (full_name);
18084
18085 return current_file;
18086 }
18087
18088
18089 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18090 followed by a null byte. */
18091 static char *
18092 copy_string (const char *buf, int len)
18093 {
18094 char *s = xmalloc (len + 1);
18095
18096 memcpy (s, buf, len);
18097 s[len] = '\0';
18098 return s;
18099 }
18100
18101
18102 static const char *
18103 consume_improper_spaces (const char *p, const char *body)
18104 {
18105 if (*p == ' ')
18106 {
18107 complaint (&symfile_complaints,
18108 _("macro definition contains spaces "
18109 "in formal argument list:\n`%s'"),
18110 body);
18111
18112 while (*p == ' ')
18113 p++;
18114 }
18115
18116 return p;
18117 }
18118
18119
18120 static void
18121 parse_macro_definition (struct macro_source_file *file, int line,
18122 const char *body)
18123 {
18124 const char *p;
18125
18126 /* The body string takes one of two forms. For object-like macro
18127 definitions, it should be:
18128
18129 <macro name> " " <definition>
18130
18131 For function-like macro definitions, it should be:
18132
18133 <macro name> "() " <definition>
18134 or
18135 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18136
18137 Spaces may appear only where explicitly indicated, and in the
18138 <definition>.
18139
18140 The Dwarf 2 spec says that an object-like macro's name is always
18141 followed by a space, but versions of GCC around March 2002 omit
18142 the space when the macro's definition is the empty string.
18143
18144 The Dwarf 2 spec says that there should be no spaces between the
18145 formal arguments in a function-like macro's formal argument list,
18146 but versions of GCC around March 2002 include spaces after the
18147 commas. */
18148
18149
18150 /* Find the extent of the macro name. The macro name is terminated
18151 by either a space or null character (for an object-like macro) or
18152 an opening paren (for a function-like macro). */
18153 for (p = body; *p; p++)
18154 if (*p == ' ' || *p == '(')
18155 break;
18156
18157 if (*p == ' ' || *p == '\0')
18158 {
18159 /* It's an object-like macro. */
18160 int name_len = p - body;
18161 char *name = copy_string (body, name_len);
18162 const char *replacement;
18163
18164 if (*p == ' ')
18165 replacement = body + name_len + 1;
18166 else
18167 {
18168 dwarf2_macro_malformed_definition_complaint (body);
18169 replacement = body + name_len;
18170 }
18171
18172 macro_define_object (file, line, name, replacement);
18173
18174 xfree (name);
18175 }
18176 else if (*p == '(')
18177 {
18178 /* It's a function-like macro. */
18179 char *name = copy_string (body, p - body);
18180 int argc = 0;
18181 int argv_size = 1;
18182 char **argv = xmalloc (argv_size * sizeof (*argv));
18183
18184 p++;
18185
18186 p = consume_improper_spaces (p, body);
18187
18188 /* Parse the formal argument list. */
18189 while (*p && *p != ')')
18190 {
18191 /* Find the extent of the current argument name. */
18192 const char *arg_start = p;
18193
18194 while (*p && *p != ',' && *p != ')' && *p != ' ')
18195 p++;
18196
18197 if (! *p || p == arg_start)
18198 dwarf2_macro_malformed_definition_complaint (body);
18199 else
18200 {
18201 /* Make sure argv has room for the new argument. */
18202 if (argc >= argv_size)
18203 {
18204 argv_size *= 2;
18205 argv = xrealloc (argv, argv_size * sizeof (*argv));
18206 }
18207
18208 argv[argc++] = copy_string (arg_start, p - arg_start);
18209 }
18210
18211 p = consume_improper_spaces (p, body);
18212
18213 /* Consume the comma, if present. */
18214 if (*p == ',')
18215 {
18216 p++;
18217
18218 p = consume_improper_spaces (p, body);
18219 }
18220 }
18221
18222 if (*p == ')')
18223 {
18224 p++;
18225
18226 if (*p == ' ')
18227 /* Perfectly formed definition, no complaints. */
18228 macro_define_function (file, line, name,
18229 argc, (const char **) argv,
18230 p + 1);
18231 else if (*p == '\0')
18232 {
18233 /* Complain, but do define it. */
18234 dwarf2_macro_malformed_definition_complaint (body);
18235 macro_define_function (file, line, name,
18236 argc, (const char **) argv,
18237 p);
18238 }
18239 else
18240 /* Just complain. */
18241 dwarf2_macro_malformed_definition_complaint (body);
18242 }
18243 else
18244 /* Just complain. */
18245 dwarf2_macro_malformed_definition_complaint (body);
18246
18247 xfree (name);
18248 {
18249 int i;
18250
18251 for (i = 0; i < argc; i++)
18252 xfree (argv[i]);
18253 }
18254 xfree (argv);
18255 }
18256 else
18257 dwarf2_macro_malformed_definition_complaint (body);
18258 }
18259
18260 /* Skip some bytes from BYTES according to the form given in FORM.
18261 Returns the new pointer. */
18262
18263 static gdb_byte *
18264 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
18265 enum dwarf_form form,
18266 unsigned int offset_size,
18267 struct dwarf2_section_info *section)
18268 {
18269 unsigned int bytes_read;
18270
18271 switch (form)
18272 {
18273 case DW_FORM_data1:
18274 case DW_FORM_flag:
18275 ++bytes;
18276 break;
18277
18278 case DW_FORM_data2:
18279 bytes += 2;
18280 break;
18281
18282 case DW_FORM_data4:
18283 bytes += 4;
18284 break;
18285
18286 case DW_FORM_data8:
18287 bytes += 8;
18288 break;
18289
18290 case DW_FORM_string:
18291 read_direct_string (abfd, bytes, &bytes_read);
18292 bytes += bytes_read;
18293 break;
18294
18295 case DW_FORM_sec_offset:
18296 case DW_FORM_strp:
18297 case DW_FORM_GNU_strp_alt:
18298 bytes += offset_size;
18299 break;
18300
18301 case DW_FORM_block:
18302 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18303 bytes += bytes_read;
18304 break;
18305
18306 case DW_FORM_block1:
18307 bytes += 1 + read_1_byte (abfd, bytes);
18308 break;
18309 case DW_FORM_block2:
18310 bytes += 2 + read_2_bytes (abfd, bytes);
18311 break;
18312 case DW_FORM_block4:
18313 bytes += 4 + read_4_bytes (abfd, bytes);
18314 break;
18315
18316 case DW_FORM_sdata:
18317 case DW_FORM_udata:
18318 case DW_FORM_GNU_addr_index:
18319 case DW_FORM_GNU_str_index:
18320 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
18321 if (bytes == NULL)
18322 {
18323 dwarf2_section_buffer_overflow_complaint (section);
18324 return NULL;
18325 }
18326 break;
18327
18328 default:
18329 {
18330 complain:
18331 complaint (&symfile_complaints,
18332 _("invalid form 0x%x in `%s'"),
18333 form,
18334 section->asection->name);
18335 return NULL;
18336 }
18337 }
18338
18339 return bytes;
18340 }
18341
18342 /* A helper for dwarf_decode_macros that handles skipping an unknown
18343 opcode. Returns an updated pointer to the macro data buffer; or,
18344 on error, issues a complaint and returns NULL. */
18345
18346 static gdb_byte *
18347 skip_unknown_opcode (unsigned int opcode,
18348 gdb_byte **opcode_definitions,
18349 gdb_byte *mac_ptr, gdb_byte *mac_end,
18350 bfd *abfd,
18351 unsigned int offset_size,
18352 struct dwarf2_section_info *section)
18353 {
18354 unsigned int bytes_read, i;
18355 unsigned long arg;
18356 gdb_byte *defn;
18357
18358 if (opcode_definitions[opcode] == NULL)
18359 {
18360 complaint (&symfile_complaints,
18361 _("unrecognized DW_MACFINO opcode 0x%x"),
18362 opcode);
18363 return NULL;
18364 }
18365
18366 defn = opcode_definitions[opcode];
18367 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18368 defn += bytes_read;
18369
18370 for (i = 0; i < arg; ++i)
18371 {
18372 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18373 section);
18374 if (mac_ptr == NULL)
18375 {
18376 /* skip_form_bytes already issued the complaint. */
18377 return NULL;
18378 }
18379 }
18380
18381 return mac_ptr;
18382 }
18383
18384 /* A helper function which parses the header of a macro section.
18385 If the macro section is the extended (for now called "GNU") type,
18386 then this updates *OFFSET_SIZE. Returns a pointer to just after
18387 the header, or issues a complaint and returns NULL on error. */
18388
18389 static gdb_byte *
18390 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
18391 bfd *abfd,
18392 gdb_byte *mac_ptr,
18393 unsigned int *offset_size,
18394 int section_is_gnu)
18395 {
18396 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
18397
18398 if (section_is_gnu)
18399 {
18400 unsigned int version, flags;
18401
18402 version = read_2_bytes (abfd, mac_ptr);
18403 if (version != 4)
18404 {
18405 complaint (&symfile_complaints,
18406 _("unrecognized version `%d' in .debug_macro section"),
18407 version);
18408 return NULL;
18409 }
18410 mac_ptr += 2;
18411
18412 flags = read_1_byte (abfd, mac_ptr);
18413 ++mac_ptr;
18414 *offset_size = (flags & 1) ? 8 : 4;
18415
18416 if ((flags & 2) != 0)
18417 /* We don't need the line table offset. */
18418 mac_ptr += *offset_size;
18419
18420 /* Vendor opcode descriptions. */
18421 if ((flags & 4) != 0)
18422 {
18423 unsigned int i, count;
18424
18425 count = read_1_byte (abfd, mac_ptr);
18426 ++mac_ptr;
18427 for (i = 0; i < count; ++i)
18428 {
18429 unsigned int opcode, bytes_read;
18430 unsigned long arg;
18431
18432 opcode = read_1_byte (abfd, mac_ptr);
18433 ++mac_ptr;
18434 opcode_definitions[opcode] = mac_ptr;
18435 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18436 mac_ptr += bytes_read;
18437 mac_ptr += arg;
18438 }
18439 }
18440 }
18441
18442 return mac_ptr;
18443 }
18444
18445 /* A helper for dwarf_decode_macros that handles the GNU extensions,
18446 including DW_MACRO_GNU_transparent_include. */
18447
18448 static void
18449 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
18450 struct macro_source_file *current_file,
18451 struct line_header *lh, const char *comp_dir,
18452 struct dwarf2_section_info *section,
18453 int section_is_gnu, int section_is_dwz,
18454 unsigned int offset_size,
18455 struct objfile *objfile,
18456 htab_t include_hash)
18457 {
18458 enum dwarf_macro_record_type macinfo_type;
18459 int at_commandline;
18460 gdb_byte *opcode_definitions[256];
18461
18462 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18463 &offset_size, section_is_gnu);
18464 if (mac_ptr == NULL)
18465 {
18466 /* We already issued a complaint. */
18467 return;
18468 }
18469
18470 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18471 GDB is still reading the definitions from command line. First
18472 DW_MACINFO_start_file will need to be ignored as it was already executed
18473 to create CURRENT_FILE for the main source holding also the command line
18474 definitions. On first met DW_MACINFO_start_file this flag is reset to
18475 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18476
18477 at_commandline = 1;
18478
18479 do
18480 {
18481 /* Do we at least have room for a macinfo type byte? */
18482 if (mac_ptr >= mac_end)
18483 {
18484 dwarf2_section_buffer_overflow_complaint (section);
18485 break;
18486 }
18487
18488 macinfo_type = read_1_byte (abfd, mac_ptr);
18489 mac_ptr++;
18490
18491 /* Note that we rely on the fact that the corresponding GNU and
18492 DWARF constants are the same. */
18493 switch (macinfo_type)
18494 {
18495 /* A zero macinfo type indicates the end of the macro
18496 information. */
18497 case 0:
18498 break;
18499
18500 case DW_MACRO_GNU_define:
18501 case DW_MACRO_GNU_undef:
18502 case DW_MACRO_GNU_define_indirect:
18503 case DW_MACRO_GNU_undef_indirect:
18504 case DW_MACRO_GNU_define_indirect_alt:
18505 case DW_MACRO_GNU_undef_indirect_alt:
18506 {
18507 unsigned int bytes_read;
18508 int line;
18509 char *body;
18510 int is_define;
18511
18512 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18513 mac_ptr += bytes_read;
18514
18515 if (macinfo_type == DW_MACRO_GNU_define
18516 || macinfo_type == DW_MACRO_GNU_undef)
18517 {
18518 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18519 mac_ptr += bytes_read;
18520 }
18521 else
18522 {
18523 LONGEST str_offset;
18524
18525 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18526 mac_ptr += offset_size;
18527
18528 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
18529 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18530 || section_is_dwz)
18531 {
18532 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18533
18534 body = read_indirect_string_from_dwz (dwz, str_offset);
18535 }
18536 else
18537 body = read_indirect_string_at_offset (abfd, str_offset);
18538 }
18539
18540 is_define = (macinfo_type == DW_MACRO_GNU_define
18541 || macinfo_type == DW_MACRO_GNU_define_indirect
18542 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
18543 if (! current_file)
18544 {
18545 /* DWARF violation as no main source is present. */
18546 complaint (&symfile_complaints,
18547 _("debug info with no main source gives macro %s "
18548 "on line %d: %s"),
18549 is_define ? _("definition") : _("undefinition"),
18550 line, body);
18551 break;
18552 }
18553 if ((line == 0 && !at_commandline)
18554 || (line != 0 && at_commandline))
18555 complaint (&symfile_complaints,
18556 _("debug info gives %s macro %s with %s line %d: %s"),
18557 at_commandline ? _("command-line") : _("in-file"),
18558 is_define ? _("definition") : _("undefinition"),
18559 line == 0 ? _("zero") : _("non-zero"), line, body);
18560
18561 if (is_define)
18562 parse_macro_definition (current_file, line, body);
18563 else
18564 {
18565 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
18566 || macinfo_type == DW_MACRO_GNU_undef_indirect
18567 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
18568 macro_undef (current_file, line, body);
18569 }
18570 }
18571 break;
18572
18573 case DW_MACRO_GNU_start_file:
18574 {
18575 unsigned int bytes_read;
18576 int line, file;
18577
18578 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18579 mac_ptr += bytes_read;
18580 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18581 mac_ptr += bytes_read;
18582
18583 if ((line == 0 && !at_commandline)
18584 || (line != 0 && at_commandline))
18585 complaint (&symfile_complaints,
18586 _("debug info gives source %d included "
18587 "from %s at %s line %d"),
18588 file, at_commandline ? _("command-line") : _("file"),
18589 line == 0 ? _("zero") : _("non-zero"), line);
18590
18591 if (at_commandline)
18592 {
18593 /* This DW_MACRO_GNU_start_file was executed in the
18594 pass one. */
18595 at_commandline = 0;
18596 }
18597 else
18598 current_file = macro_start_file (file, line,
18599 current_file, comp_dir,
18600 lh, objfile);
18601 }
18602 break;
18603
18604 case DW_MACRO_GNU_end_file:
18605 if (! current_file)
18606 complaint (&symfile_complaints,
18607 _("macro debug info has an unmatched "
18608 "`close_file' directive"));
18609 else
18610 {
18611 current_file = current_file->included_by;
18612 if (! current_file)
18613 {
18614 enum dwarf_macro_record_type next_type;
18615
18616 /* GCC circa March 2002 doesn't produce the zero
18617 type byte marking the end of the compilation
18618 unit. Complain if it's not there, but exit no
18619 matter what. */
18620
18621 /* Do we at least have room for a macinfo type byte? */
18622 if (mac_ptr >= mac_end)
18623 {
18624 dwarf2_section_buffer_overflow_complaint (section);
18625 return;
18626 }
18627
18628 /* We don't increment mac_ptr here, so this is just
18629 a look-ahead. */
18630 next_type = read_1_byte (abfd, mac_ptr);
18631 if (next_type != 0)
18632 complaint (&symfile_complaints,
18633 _("no terminating 0-type entry for "
18634 "macros in `.debug_macinfo' section"));
18635
18636 return;
18637 }
18638 }
18639 break;
18640
18641 case DW_MACRO_GNU_transparent_include:
18642 case DW_MACRO_GNU_transparent_include_alt:
18643 {
18644 LONGEST offset;
18645 void **slot;
18646 bfd *include_bfd = abfd;
18647 struct dwarf2_section_info *include_section = section;
18648 struct dwarf2_section_info alt_section;
18649 gdb_byte *include_mac_end = mac_end;
18650 int is_dwz = section_is_dwz;
18651 gdb_byte *new_mac_ptr;
18652
18653 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18654 mac_ptr += offset_size;
18655
18656 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18657 {
18658 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18659
18660 dwarf2_read_section (dwarf2_per_objfile->objfile,
18661 &dwz->macro);
18662
18663 include_bfd = dwz->macro.asection->owner;
18664 include_section = &dwz->macro;
18665 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18666 is_dwz = 1;
18667 }
18668
18669 new_mac_ptr = include_section->buffer + offset;
18670 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18671
18672 if (*slot != NULL)
18673 {
18674 /* This has actually happened; see
18675 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18676 complaint (&symfile_complaints,
18677 _("recursive DW_MACRO_GNU_transparent_include in "
18678 ".debug_macro section"));
18679 }
18680 else
18681 {
18682 *slot = new_mac_ptr;
18683
18684 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
18685 include_mac_end, current_file,
18686 lh, comp_dir,
18687 section, section_is_gnu, is_dwz,
18688 offset_size, objfile, include_hash);
18689
18690 htab_remove_elt (include_hash, new_mac_ptr);
18691 }
18692 }
18693 break;
18694
18695 case DW_MACINFO_vendor_ext:
18696 if (!section_is_gnu)
18697 {
18698 unsigned int bytes_read;
18699 int constant;
18700
18701 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18702 mac_ptr += bytes_read;
18703 read_direct_string (abfd, mac_ptr, &bytes_read);
18704 mac_ptr += bytes_read;
18705
18706 /* We don't recognize any vendor extensions. */
18707 break;
18708 }
18709 /* FALLTHROUGH */
18710
18711 default:
18712 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18713 mac_ptr, mac_end, abfd, offset_size,
18714 section);
18715 if (mac_ptr == NULL)
18716 return;
18717 break;
18718 }
18719 } while (macinfo_type != 0);
18720 }
18721
18722 static void
18723 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
18724 const char *comp_dir, int section_is_gnu)
18725 {
18726 struct objfile *objfile = dwarf2_per_objfile->objfile;
18727 struct line_header *lh = cu->line_header;
18728 bfd *abfd;
18729 gdb_byte *mac_ptr, *mac_end;
18730 struct macro_source_file *current_file = 0;
18731 enum dwarf_macro_record_type macinfo_type;
18732 unsigned int offset_size = cu->header.offset_size;
18733 gdb_byte *opcode_definitions[256];
18734 struct cleanup *cleanup;
18735 htab_t include_hash;
18736 void **slot;
18737 struct dwarf2_section_info *section;
18738 const char *section_name;
18739
18740 if (cu->dwo_unit != NULL)
18741 {
18742 if (section_is_gnu)
18743 {
18744 section = &cu->dwo_unit->dwo_file->sections.macro;
18745 section_name = ".debug_macro.dwo";
18746 }
18747 else
18748 {
18749 section = &cu->dwo_unit->dwo_file->sections.macinfo;
18750 section_name = ".debug_macinfo.dwo";
18751 }
18752 }
18753 else
18754 {
18755 if (section_is_gnu)
18756 {
18757 section = &dwarf2_per_objfile->macro;
18758 section_name = ".debug_macro";
18759 }
18760 else
18761 {
18762 section = &dwarf2_per_objfile->macinfo;
18763 section_name = ".debug_macinfo";
18764 }
18765 }
18766
18767 dwarf2_read_section (objfile, section);
18768 if (section->buffer == NULL)
18769 {
18770 complaint (&symfile_complaints, _("missing %s section"), section_name);
18771 return;
18772 }
18773 abfd = section->asection->owner;
18774
18775 /* First pass: Find the name of the base filename.
18776 This filename is needed in order to process all macros whose definition
18777 (or undefinition) comes from the command line. These macros are defined
18778 before the first DW_MACINFO_start_file entry, and yet still need to be
18779 associated to the base file.
18780
18781 To determine the base file name, we scan the macro definitions until we
18782 reach the first DW_MACINFO_start_file entry. We then initialize
18783 CURRENT_FILE accordingly so that any macro definition found before the
18784 first DW_MACINFO_start_file can still be associated to the base file. */
18785
18786 mac_ptr = section->buffer + offset;
18787 mac_end = section->buffer + section->size;
18788
18789 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18790 &offset_size, section_is_gnu);
18791 if (mac_ptr == NULL)
18792 {
18793 /* We already issued a complaint. */
18794 return;
18795 }
18796
18797 do
18798 {
18799 /* Do we at least have room for a macinfo type byte? */
18800 if (mac_ptr >= mac_end)
18801 {
18802 /* Complaint is printed during the second pass as GDB will probably
18803 stop the first pass earlier upon finding
18804 DW_MACINFO_start_file. */
18805 break;
18806 }
18807
18808 macinfo_type = read_1_byte (abfd, mac_ptr);
18809 mac_ptr++;
18810
18811 /* Note that we rely on the fact that the corresponding GNU and
18812 DWARF constants are the same. */
18813 switch (macinfo_type)
18814 {
18815 /* A zero macinfo type indicates the end of the macro
18816 information. */
18817 case 0:
18818 break;
18819
18820 case DW_MACRO_GNU_define:
18821 case DW_MACRO_GNU_undef:
18822 /* Only skip the data by MAC_PTR. */
18823 {
18824 unsigned int bytes_read;
18825
18826 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18827 mac_ptr += bytes_read;
18828 read_direct_string (abfd, mac_ptr, &bytes_read);
18829 mac_ptr += bytes_read;
18830 }
18831 break;
18832
18833 case DW_MACRO_GNU_start_file:
18834 {
18835 unsigned int bytes_read;
18836 int line, file;
18837
18838 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18839 mac_ptr += bytes_read;
18840 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18841 mac_ptr += bytes_read;
18842
18843 current_file = macro_start_file (file, line, current_file,
18844 comp_dir, lh, objfile);
18845 }
18846 break;
18847
18848 case DW_MACRO_GNU_end_file:
18849 /* No data to skip by MAC_PTR. */
18850 break;
18851
18852 case DW_MACRO_GNU_define_indirect:
18853 case DW_MACRO_GNU_undef_indirect:
18854 case DW_MACRO_GNU_define_indirect_alt:
18855 case DW_MACRO_GNU_undef_indirect_alt:
18856 {
18857 unsigned int bytes_read;
18858
18859 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18860 mac_ptr += bytes_read;
18861 mac_ptr += offset_size;
18862 }
18863 break;
18864
18865 case DW_MACRO_GNU_transparent_include:
18866 case DW_MACRO_GNU_transparent_include_alt:
18867 /* Note that, according to the spec, a transparent include
18868 chain cannot call DW_MACRO_GNU_start_file. So, we can just
18869 skip this opcode. */
18870 mac_ptr += offset_size;
18871 break;
18872
18873 case DW_MACINFO_vendor_ext:
18874 /* Only skip the data by MAC_PTR. */
18875 if (!section_is_gnu)
18876 {
18877 unsigned int bytes_read;
18878
18879 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18880 mac_ptr += bytes_read;
18881 read_direct_string (abfd, mac_ptr, &bytes_read);
18882 mac_ptr += bytes_read;
18883 }
18884 /* FALLTHROUGH */
18885
18886 default:
18887 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18888 mac_ptr, mac_end, abfd, offset_size,
18889 section);
18890 if (mac_ptr == NULL)
18891 return;
18892 break;
18893 }
18894 } while (macinfo_type != 0 && current_file == NULL);
18895
18896 /* Second pass: Process all entries.
18897
18898 Use the AT_COMMAND_LINE flag to determine whether we are still processing
18899 command-line macro definitions/undefinitions. This flag is unset when we
18900 reach the first DW_MACINFO_start_file entry. */
18901
18902 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
18903 NULL, xcalloc, xfree);
18904 cleanup = make_cleanup_htab_delete (include_hash);
18905 mac_ptr = section->buffer + offset;
18906 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
18907 *slot = mac_ptr;
18908 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
18909 current_file, lh, comp_dir, section,
18910 section_is_gnu, 0,
18911 offset_size, objfile, include_hash);
18912 do_cleanups (cleanup);
18913 }
18914
18915 /* Check if the attribute's form is a DW_FORM_block*
18916 if so return true else false. */
18917
18918 static int
18919 attr_form_is_block (struct attribute *attr)
18920 {
18921 return (attr == NULL ? 0 :
18922 attr->form == DW_FORM_block1
18923 || attr->form == DW_FORM_block2
18924 || attr->form == DW_FORM_block4
18925 || attr->form == DW_FORM_block
18926 || attr->form == DW_FORM_exprloc);
18927 }
18928
18929 /* Return non-zero if ATTR's value is a section offset --- classes
18930 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
18931 You may use DW_UNSND (attr) to retrieve such offsets.
18932
18933 Section 7.5.4, "Attribute Encodings", explains that no attribute
18934 may have a value that belongs to more than one of these classes; it
18935 would be ambiguous if we did, because we use the same forms for all
18936 of them. */
18937
18938 static int
18939 attr_form_is_section_offset (struct attribute *attr)
18940 {
18941 return (attr->form == DW_FORM_data4
18942 || attr->form == DW_FORM_data8
18943 || attr->form == DW_FORM_sec_offset);
18944 }
18945
18946 /* Return non-zero if ATTR's value falls in the 'constant' class, or
18947 zero otherwise. When this function returns true, you can apply
18948 dwarf2_get_attr_constant_value to it.
18949
18950 However, note that for some attributes you must check
18951 attr_form_is_section_offset before using this test. DW_FORM_data4
18952 and DW_FORM_data8 are members of both the constant class, and of
18953 the classes that contain offsets into other debug sections
18954 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
18955 that, if an attribute's can be either a constant or one of the
18956 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
18957 taken as section offsets, not constants. */
18958
18959 static int
18960 attr_form_is_constant (struct attribute *attr)
18961 {
18962 switch (attr->form)
18963 {
18964 case DW_FORM_sdata:
18965 case DW_FORM_udata:
18966 case DW_FORM_data1:
18967 case DW_FORM_data2:
18968 case DW_FORM_data4:
18969 case DW_FORM_data8:
18970 return 1;
18971 default:
18972 return 0;
18973 }
18974 }
18975
18976 /* Return the .debug_loc section to use for CU.
18977 For DWO files use .debug_loc.dwo. */
18978
18979 static struct dwarf2_section_info *
18980 cu_debug_loc_section (struct dwarf2_cu *cu)
18981 {
18982 if (cu->dwo_unit)
18983 return &cu->dwo_unit->dwo_file->sections.loc;
18984 return &dwarf2_per_objfile->loc;
18985 }
18986
18987 /* A helper function that fills in a dwarf2_loclist_baton. */
18988
18989 static void
18990 fill_in_loclist_baton (struct dwarf2_cu *cu,
18991 struct dwarf2_loclist_baton *baton,
18992 struct attribute *attr)
18993 {
18994 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18995
18996 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
18997
18998 baton->per_cu = cu->per_cu;
18999 gdb_assert (baton->per_cu);
19000 /* We don't know how long the location list is, but make sure we
19001 don't run off the edge of the section. */
19002 baton->size = section->size - DW_UNSND (attr);
19003 baton->data = section->buffer + DW_UNSND (attr);
19004 baton->base_address = cu->base_address;
19005 baton->from_dwo = cu->dwo_unit != NULL;
19006 }
19007
19008 static void
19009 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
19010 struct dwarf2_cu *cu)
19011 {
19012 struct objfile *objfile = dwarf2_per_objfile->objfile;
19013 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19014
19015 if (attr_form_is_section_offset (attr)
19016 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19017 the section. If so, fall through to the complaint in the
19018 other branch. */
19019 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19020 {
19021 struct dwarf2_loclist_baton *baton;
19022
19023 baton = obstack_alloc (&objfile->objfile_obstack,
19024 sizeof (struct dwarf2_loclist_baton));
19025
19026 fill_in_loclist_baton (cu, baton, attr);
19027
19028 if (cu->base_known == 0)
19029 complaint (&symfile_complaints,
19030 _("Location list used without "
19031 "specifying the CU base address."));
19032
19033 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
19034 SYMBOL_LOCATION_BATON (sym) = baton;
19035 }
19036 else
19037 {
19038 struct dwarf2_locexpr_baton *baton;
19039
19040 baton = obstack_alloc (&objfile->objfile_obstack,
19041 sizeof (struct dwarf2_locexpr_baton));
19042 baton->per_cu = cu->per_cu;
19043 gdb_assert (baton->per_cu);
19044
19045 if (attr_form_is_block (attr))
19046 {
19047 /* Note that we're just copying the block's data pointer
19048 here, not the actual data. We're still pointing into the
19049 info_buffer for SYM's objfile; right now we never release
19050 that buffer, but when we do clean up properly this may
19051 need to change. */
19052 baton->size = DW_BLOCK (attr)->size;
19053 baton->data = DW_BLOCK (attr)->data;
19054 }
19055 else
19056 {
19057 dwarf2_invalid_attrib_class_complaint ("location description",
19058 SYMBOL_NATURAL_NAME (sym));
19059 baton->size = 0;
19060 }
19061
19062 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
19063 SYMBOL_LOCATION_BATON (sym) = baton;
19064 }
19065 }
19066
19067 /* Return the OBJFILE associated with the compilation unit CU. If CU
19068 came from a separate debuginfo file, then the master objfile is
19069 returned. */
19070
19071 struct objfile *
19072 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19073 {
19074 struct objfile *objfile = per_cu->objfile;
19075
19076 /* Return the master objfile, so that we can report and look up the
19077 correct file containing this variable. */
19078 if (objfile->separate_debug_objfile_backlink)
19079 objfile = objfile->separate_debug_objfile_backlink;
19080
19081 return objfile;
19082 }
19083
19084 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19085 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19086 CU_HEADERP first. */
19087
19088 static const struct comp_unit_head *
19089 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19090 struct dwarf2_per_cu_data *per_cu)
19091 {
19092 gdb_byte *info_ptr;
19093
19094 if (per_cu->cu)
19095 return &per_cu->cu->header;
19096
19097 info_ptr = per_cu->info_or_types_section->buffer + per_cu->offset.sect_off;
19098
19099 memset (cu_headerp, 0, sizeof (*cu_headerp));
19100 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19101
19102 return cu_headerp;
19103 }
19104
19105 /* Return the address size given in the compilation unit header for CU. */
19106
19107 int
19108 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19109 {
19110 struct comp_unit_head cu_header_local;
19111 const struct comp_unit_head *cu_headerp;
19112
19113 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19114
19115 return cu_headerp->addr_size;
19116 }
19117
19118 /* Return the offset size given in the compilation unit header for CU. */
19119
19120 int
19121 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19122 {
19123 struct comp_unit_head cu_header_local;
19124 const struct comp_unit_head *cu_headerp;
19125
19126 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19127
19128 return cu_headerp->offset_size;
19129 }
19130
19131 /* See its dwarf2loc.h declaration. */
19132
19133 int
19134 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19135 {
19136 struct comp_unit_head cu_header_local;
19137 const struct comp_unit_head *cu_headerp;
19138
19139 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19140
19141 if (cu_headerp->version == 2)
19142 return cu_headerp->addr_size;
19143 else
19144 return cu_headerp->offset_size;
19145 }
19146
19147 /* Return the text offset of the CU. The returned offset comes from
19148 this CU's objfile. If this objfile came from a separate debuginfo
19149 file, then the offset may be different from the corresponding
19150 offset in the parent objfile. */
19151
19152 CORE_ADDR
19153 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19154 {
19155 struct objfile *objfile = per_cu->objfile;
19156
19157 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19158 }
19159
19160 /* Locate the .debug_info compilation unit from CU's objfile which contains
19161 the DIE at OFFSET. Raises an error on failure. */
19162
19163 static struct dwarf2_per_cu_data *
19164 dwarf2_find_containing_comp_unit (sect_offset offset,
19165 unsigned int offset_in_dwz,
19166 struct objfile *objfile)
19167 {
19168 struct dwarf2_per_cu_data *this_cu;
19169 int low, high;
19170 const sect_offset *cu_off;
19171
19172 low = 0;
19173 high = dwarf2_per_objfile->n_comp_units - 1;
19174 while (high > low)
19175 {
19176 struct dwarf2_per_cu_data *mid_cu;
19177 int mid = low + (high - low) / 2;
19178
19179 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19180 cu_off = &mid_cu->offset;
19181 if (mid_cu->is_dwz > offset_in_dwz
19182 || (mid_cu->is_dwz == offset_in_dwz
19183 && cu_off->sect_off >= offset.sect_off))
19184 high = mid;
19185 else
19186 low = mid + 1;
19187 }
19188 gdb_assert (low == high);
19189 this_cu = dwarf2_per_objfile->all_comp_units[low];
19190 cu_off = &this_cu->offset;
19191 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
19192 {
19193 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
19194 error (_("Dwarf Error: could not find partial DIE containing "
19195 "offset 0x%lx [in module %s]"),
19196 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
19197
19198 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19199 <= offset.sect_off);
19200 return dwarf2_per_objfile->all_comp_units[low-1];
19201 }
19202 else
19203 {
19204 this_cu = dwarf2_per_objfile->all_comp_units[low];
19205 if (low == dwarf2_per_objfile->n_comp_units - 1
19206 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19207 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19208 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
19209 return this_cu;
19210 }
19211 }
19212
19213 /* Initialize dwarf2_cu CU, owned by PER_CU. */
19214
19215 static void
19216 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
19217 {
19218 memset (cu, 0, sizeof (*cu));
19219 per_cu->cu = cu;
19220 cu->per_cu = per_cu;
19221 cu->objfile = per_cu->objfile;
19222 obstack_init (&cu->comp_unit_obstack);
19223 }
19224
19225 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19226
19227 static void
19228 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19229 enum language pretend_language)
19230 {
19231 struct attribute *attr;
19232
19233 /* Set the language we're debugging. */
19234 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19235 if (attr)
19236 set_cu_language (DW_UNSND (attr), cu);
19237 else
19238 {
19239 cu->language = pretend_language;
19240 cu->language_defn = language_def (cu->language);
19241 }
19242
19243 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19244 if (attr)
19245 cu->producer = DW_STRING (attr);
19246 }
19247
19248 /* Release one cached compilation unit, CU. We unlink it from the tree
19249 of compilation units, but we don't remove it from the read_in_chain;
19250 the caller is responsible for that.
19251 NOTE: DATA is a void * because this function is also used as a
19252 cleanup routine. */
19253
19254 static void
19255 free_heap_comp_unit (void *data)
19256 {
19257 struct dwarf2_cu *cu = data;
19258
19259 gdb_assert (cu->per_cu != NULL);
19260 cu->per_cu->cu = NULL;
19261 cu->per_cu = NULL;
19262
19263 obstack_free (&cu->comp_unit_obstack, NULL);
19264
19265 xfree (cu);
19266 }
19267
19268 /* This cleanup function is passed the address of a dwarf2_cu on the stack
19269 when we're finished with it. We can't free the pointer itself, but be
19270 sure to unlink it from the cache. Also release any associated storage. */
19271
19272 static void
19273 free_stack_comp_unit (void *data)
19274 {
19275 struct dwarf2_cu *cu = data;
19276
19277 gdb_assert (cu->per_cu != NULL);
19278 cu->per_cu->cu = NULL;
19279 cu->per_cu = NULL;
19280
19281 obstack_free (&cu->comp_unit_obstack, NULL);
19282 cu->partial_dies = NULL;
19283 }
19284
19285 /* Free all cached compilation units. */
19286
19287 static void
19288 free_cached_comp_units (void *data)
19289 {
19290 struct dwarf2_per_cu_data *per_cu, **last_chain;
19291
19292 per_cu = dwarf2_per_objfile->read_in_chain;
19293 last_chain = &dwarf2_per_objfile->read_in_chain;
19294 while (per_cu != NULL)
19295 {
19296 struct dwarf2_per_cu_data *next_cu;
19297
19298 next_cu = per_cu->cu->read_in_chain;
19299
19300 free_heap_comp_unit (per_cu->cu);
19301 *last_chain = next_cu;
19302
19303 per_cu = next_cu;
19304 }
19305 }
19306
19307 /* Increase the age counter on each cached compilation unit, and free
19308 any that are too old. */
19309
19310 static void
19311 age_cached_comp_units (void)
19312 {
19313 struct dwarf2_per_cu_data *per_cu, **last_chain;
19314
19315 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19316 per_cu = dwarf2_per_objfile->read_in_chain;
19317 while (per_cu != NULL)
19318 {
19319 per_cu->cu->last_used ++;
19320 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19321 dwarf2_mark (per_cu->cu);
19322 per_cu = per_cu->cu->read_in_chain;
19323 }
19324
19325 per_cu = dwarf2_per_objfile->read_in_chain;
19326 last_chain = &dwarf2_per_objfile->read_in_chain;
19327 while (per_cu != NULL)
19328 {
19329 struct dwarf2_per_cu_data *next_cu;
19330
19331 next_cu = per_cu->cu->read_in_chain;
19332
19333 if (!per_cu->cu->mark)
19334 {
19335 free_heap_comp_unit (per_cu->cu);
19336 *last_chain = next_cu;
19337 }
19338 else
19339 last_chain = &per_cu->cu->read_in_chain;
19340
19341 per_cu = next_cu;
19342 }
19343 }
19344
19345 /* Remove a single compilation unit from the cache. */
19346
19347 static void
19348 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
19349 {
19350 struct dwarf2_per_cu_data *per_cu, **last_chain;
19351
19352 per_cu = dwarf2_per_objfile->read_in_chain;
19353 last_chain = &dwarf2_per_objfile->read_in_chain;
19354 while (per_cu != NULL)
19355 {
19356 struct dwarf2_per_cu_data *next_cu;
19357
19358 next_cu = per_cu->cu->read_in_chain;
19359
19360 if (per_cu == target_per_cu)
19361 {
19362 free_heap_comp_unit (per_cu->cu);
19363 per_cu->cu = NULL;
19364 *last_chain = next_cu;
19365 break;
19366 }
19367 else
19368 last_chain = &per_cu->cu->read_in_chain;
19369
19370 per_cu = next_cu;
19371 }
19372 }
19373
19374 /* Release all extra memory associated with OBJFILE. */
19375
19376 void
19377 dwarf2_free_objfile (struct objfile *objfile)
19378 {
19379 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19380
19381 if (dwarf2_per_objfile == NULL)
19382 return;
19383
19384 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19385 free_cached_comp_units (NULL);
19386
19387 if (dwarf2_per_objfile->quick_file_names_table)
19388 htab_delete (dwarf2_per_objfile->quick_file_names_table);
19389
19390 /* Everything else should be on the objfile obstack. */
19391 }
19392
19393 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19394 We store these in a hash table separate from the DIEs, and preserve them
19395 when the DIEs are flushed out of cache.
19396
19397 The CU "per_cu" pointer is needed because offset alone is not enough to
19398 uniquely identify the type. A file may have multiple .debug_types sections,
19399 or the type may come from a DWO file. We have to use something in
19400 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
19401 routine, get_die_type_at_offset, from outside this file, and thus won't
19402 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
19403 of the objfile. */
19404
19405 struct dwarf2_per_cu_offset_and_type
19406 {
19407 const struct dwarf2_per_cu_data *per_cu;
19408 sect_offset offset;
19409 struct type *type;
19410 };
19411
19412 /* Hash function for a dwarf2_per_cu_offset_and_type. */
19413
19414 static hashval_t
19415 per_cu_offset_and_type_hash (const void *item)
19416 {
19417 const struct dwarf2_per_cu_offset_and_type *ofs = item;
19418
19419 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
19420 }
19421
19422 /* Equality function for a dwarf2_per_cu_offset_and_type. */
19423
19424 static int
19425 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
19426 {
19427 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19428 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
19429
19430 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19431 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
19432 }
19433
19434 /* Set the type associated with DIE to TYPE. Save it in CU's hash
19435 table if necessary. For convenience, return TYPE.
19436
19437 The DIEs reading must have careful ordering to:
19438 * Not cause infite loops trying to read in DIEs as a prerequisite for
19439 reading current DIE.
19440 * Not trying to dereference contents of still incompletely read in types
19441 while reading in other DIEs.
19442 * Enable referencing still incompletely read in types just by a pointer to
19443 the type without accessing its fields.
19444
19445 Therefore caller should follow these rules:
19446 * Try to fetch any prerequisite types we may need to build this DIE type
19447 before building the type and calling set_die_type.
19448 * After building type call set_die_type for current DIE as soon as
19449 possible before fetching more types to complete the current type.
19450 * Make the type as complete as possible before fetching more types. */
19451
19452 static struct type *
19453 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19454 {
19455 struct dwarf2_per_cu_offset_and_type **slot, ofs;
19456 struct objfile *objfile = cu->objfile;
19457
19458 /* For Ada types, make sure that the gnat-specific data is always
19459 initialized (if not already set). There are a few types where
19460 we should not be doing so, because the type-specific area is
19461 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19462 where the type-specific area is used to store the floatformat).
19463 But this is not a problem, because the gnat-specific information
19464 is actually not needed for these types. */
19465 if (need_gnat_info (cu)
19466 && TYPE_CODE (type) != TYPE_CODE_FUNC
19467 && TYPE_CODE (type) != TYPE_CODE_FLT
19468 && !HAVE_GNAT_AUX_INFO (type))
19469 INIT_GNAT_SPECIFIC (type);
19470
19471 if (dwarf2_per_objfile->die_type_hash == NULL)
19472 {
19473 dwarf2_per_objfile->die_type_hash =
19474 htab_create_alloc_ex (127,
19475 per_cu_offset_and_type_hash,
19476 per_cu_offset_and_type_eq,
19477 NULL,
19478 &objfile->objfile_obstack,
19479 hashtab_obstack_allocate,
19480 dummy_obstack_deallocate);
19481 }
19482
19483 ofs.per_cu = cu->per_cu;
19484 ofs.offset = die->offset;
19485 ofs.type = type;
19486 slot = (struct dwarf2_per_cu_offset_and_type **)
19487 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
19488 if (*slot)
19489 complaint (&symfile_complaints,
19490 _("A problem internal to GDB: DIE 0x%x has type already set"),
19491 die->offset.sect_off);
19492 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
19493 **slot = ofs;
19494 return type;
19495 }
19496
19497 /* Look up the type for the die at OFFSET in the appropriate type_hash
19498 table, or return NULL if the die does not have a saved type. */
19499
19500 static struct type *
19501 get_die_type_at_offset (sect_offset offset,
19502 struct dwarf2_per_cu_data *per_cu)
19503 {
19504 struct dwarf2_per_cu_offset_and_type *slot, ofs;
19505
19506 if (dwarf2_per_objfile->die_type_hash == NULL)
19507 return NULL;
19508
19509 ofs.per_cu = per_cu;
19510 ofs.offset = offset;
19511 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
19512 if (slot)
19513 return slot->type;
19514 else
19515 return NULL;
19516 }
19517
19518 /* Look up the type for DIE in the appropriate type_hash table,
19519 or return NULL if DIE does not have a saved type. */
19520
19521 static struct type *
19522 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19523 {
19524 return get_die_type_at_offset (die->offset, cu->per_cu);
19525 }
19526
19527 /* Add a dependence relationship from CU to REF_PER_CU. */
19528
19529 static void
19530 dwarf2_add_dependence (struct dwarf2_cu *cu,
19531 struct dwarf2_per_cu_data *ref_per_cu)
19532 {
19533 void **slot;
19534
19535 if (cu->dependencies == NULL)
19536 cu->dependencies
19537 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19538 NULL, &cu->comp_unit_obstack,
19539 hashtab_obstack_allocate,
19540 dummy_obstack_deallocate);
19541
19542 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19543 if (*slot == NULL)
19544 *slot = ref_per_cu;
19545 }
19546
19547 /* Subroutine of dwarf2_mark to pass to htab_traverse.
19548 Set the mark field in every compilation unit in the
19549 cache that we must keep because we are keeping CU. */
19550
19551 static int
19552 dwarf2_mark_helper (void **slot, void *data)
19553 {
19554 struct dwarf2_per_cu_data *per_cu;
19555
19556 per_cu = (struct dwarf2_per_cu_data *) *slot;
19557
19558 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19559 reading of the chain. As such dependencies remain valid it is not much
19560 useful to track and undo them during QUIT cleanups. */
19561 if (per_cu->cu == NULL)
19562 return 1;
19563
19564 if (per_cu->cu->mark)
19565 return 1;
19566 per_cu->cu->mark = 1;
19567
19568 if (per_cu->cu->dependencies != NULL)
19569 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19570
19571 return 1;
19572 }
19573
19574 /* Set the mark field in CU and in every other compilation unit in the
19575 cache that we must keep because we are keeping CU. */
19576
19577 static void
19578 dwarf2_mark (struct dwarf2_cu *cu)
19579 {
19580 if (cu->mark)
19581 return;
19582 cu->mark = 1;
19583 if (cu->dependencies != NULL)
19584 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
19585 }
19586
19587 static void
19588 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19589 {
19590 while (per_cu)
19591 {
19592 per_cu->cu->mark = 0;
19593 per_cu = per_cu->cu->read_in_chain;
19594 }
19595 }
19596
19597 /* Trivial hash function for partial_die_info: the hash value of a DIE
19598 is its offset in .debug_info for this objfile. */
19599
19600 static hashval_t
19601 partial_die_hash (const void *item)
19602 {
19603 const struct partial_die_info *part_die = item;
19604
19605 return part_die->offset.sect_off;
19606 }
19607
19608 /* Trivial comparison function for partial_die_info structures: two DIEs
19609 are equal if they have the same offset. */
19610
19611 static int
19612 partial_die_eq (const void *item_lhs, const void *item_rhs)
19613 {
19614 const struct partial_die_info *part_die_lhs = item_lhs;
19615 const struct partial_die_info *part_die_rhs = item_rhs;
19616
19617 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
19618 }
19619
19620 static struct cmd_list_element *set_dwarf2_cmdlist;
19621 static struct cmd_list_element *show_dwarf2_cmdlist;
19622
19623 static void
19624 set_dwarf2_cmd (char *args, int from_tty)
19625 {
19626 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19627 }
19628
19629 static void
19630 show_dwarf2_cmd (char *args, int from_tty)
19631 {
19632 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19633 }
19634
19635 /* Free data associated with OBJFILE, if necessary. */
19636
19637 static void
19638 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
19639 {
19640 struct dwarf2_per_objfile *data = d;
19641 int ix;
19642
19643 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19644 VEC_free (dwarf2_per_cu_ptr,
19645 dwarf2_per_objfile->all_comp_units[ix]->imported_symtabs);
19646
19647 for (ix = 0; ix < dwarf2_per_objfile->n_type_units; ++ix)
19648 VEC_free (dwarf2_per_cu_ptr,
19649 dwarf2_per_objfile->all_type_units[ix]->per_cu.imported_symtabs);
19650
19651 VEC_free (dwarf2_section_info_def, data->types);
19652
19653 if (data->dwo_files)
19654 free_dwo_files (data->dwo_files, objfile);
19655
19656 if (data->dwz_file && data->dwz_file->dwz_bfd)
19657 gdb_bfd_unref (data->dwz_file->dwz_bfd);
19658 }
19659
19660 \f
19661 /* The "save gdb-index" command. */
19662
19663 /* The contents of the hash table we create when building the string
19664 table. */
19665 struct strtab_entry
19666 {
19667 offset_type offset;
19668 const char *str;
19669 };
19670
19671 /* Hash function for a strtab_entry.
19672
19673 Function is used only during write_hash_table so no index format backward
19674 compatibility is needed. */
19675
19676 static hashval_t
19677 hash_strtab_entry (const void *e)
19678 {
19679 const struct strtab_entry *entry = e;
19680 return mapped_index_string_hash (INT_MAX, entry->str);
19681 }
19682
19683 /* Equality function for a strtab_entry. */
19684
19685 static int
19686 eq_strtab_entry (const void *a, const void *b)
19687 {
19688 const struct strtab_entry *ea = a;
19689 const struct strtab_entry *eb = b;
19690 return !strcmp (ea->str, eb->str);
19691 }
19692
19693 /* Create a strtab_entry hash table. */
19694
19695 static htab_t
19696 create_strtab (void)
19697 {
19698 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
19699 xfree, xcalloc, xfree);
19700 }
19701
19702 /* Add a string to the constant pool. Return the string's offset in
19703 host order. */
19704
19705 static offset_type
19706 add_string (htab_t table, struct obstack *cpool, const char *str)
19707 {
19708 void **slot;
19709 struct strtab_entry entry;
19710 struct strtab_entry *result;
19711
19712 entry.str = str;
19713 slot = htab_find_slot (table, &entry, INSERT);
19714 if (*slot)
19715 result = *slot;
19716 else
19717 {
19718 result = XNEW (struct strtab_entry);
19719 result->offset = obstack_object_size (cpool);
19720 result->str = str;
19721 obstack_grow_str0 (cpool, str);
19722 *slot = result;
19723 }
19724 return result->offset;
19725 }
19726
19727 /* An entry in the symbol table. */
19728 struct symtab_index_entry
19729 {
19730 /* The name of the symbol. */
19731 const char *name;
19732 /* The offset of the name in the constant pool. */
19733 offset_type index_offset;
19734 /* A sorted vector of the indices of all the CUs that hold an object
19735 of this name. */
19736 VEC (offset_type) *cu_indices;
19737 };
19738
19739 /* The symbol table. This is a power-of-2-sized hash table. */
19740 struct mapped_symtab
19741 {
19742 offset_type n_elements;
19743 offset_type size;
19744 struct symtab_index_entry **data;
19745 };
19746
19747 /* Hash function for a symtab_index_entry. */
19748
19749 static hashval_t
19750 hash_symtab_entry (const void *e)
19751 {
19752 const struct symtab_index_entry *entry = e;
19753 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
19754 sizeof (offset_type) * VEC_length (offset_type,
19755 entry->cu_indices),
19756 0);
19757 }
19758
19759 /* Equality function for a symtab_index_entry. */
19760
19761 static int
19762 eq_symtab_entry (const void *a, const void *b)
19763 {
19764 const struct symtab_index_entry *ea = a;
19765 const struct symtab_index_entry *eb = b;
19766 int len = VEC_length (offset_type, ea->cu_indices);
19767 if (len != VEC_length (offset_type, eb->cu_indices))
19768 return 0;
19769 return !memcmp (VEC_address (offset_type, ea->cu_indices),
19770 VEC_address (offset_type, eb->cu_indices),
19771 sizeof (offset_type) * len);
19772 }
19773
19774 /* Destroy a symtab_index_entry. */
19775
19776 static void
19777 delete_symtab_entry (void *p)
19778 {
19779 struct symtab_index_entry *entry = p;
19780 VEC_free (offset_type, entry->cu_indices);
19781 xfree (entry);
19782 }
19783
19784 /* Create a hash table holding symtab_index_entry objects. */
19785
19786 static htab_t
19787 create_symbol_hash_table (void)
19788 {
19789 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
19790 delete_symtab_entry, xcalloc, xfree);
19791 }
19792
19793 /* Create a new mapped symtab object. */
19794
19795 static struct mapped_symtab *
19796 create_mapped_symtab (void)
19797 {
19798 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
19799 symtab->n_elements = 0;
19800 symtab->size = 1024;
19801 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19802 return symtab;
19803 }
19804
19805 /* Destroy a mapped_symtab. */
19806
19807 static void
19808 cleanup_mapped_symtab (void *p)
19809 {
19810 struct mapped_symtab *symtab = p;
19811 /* The contents of the array are freed when the other hash table is
19812 destroyed. */
19813 xfree (symtab->data);
19814 xfree (symtab);
19815 }
19816
19817 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
19818 the slot.
19819
19820 Function is used only during write_hash_table so no index format backward
19821 compatibility is needed. */
19822
19823 static struct symtab_index_entry **
19824 find_slot (struct mapped_symtab *symtab, const char *name)
19825 {
19826 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
19827
19828 index = hash & (symtab->size - 1);
19829 step = ((hash * 17) & (symtab->size - 1)) | 1;
19830
19831 for (;;)
19832 {
19833 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
19834 return &symtab->data[index];
19835 index = (index + step) & (symtab->size - 1);
19836 }
19837 }
19838
19839 /* Expand SYMTAB's hash table. */
19840
19841 static void
19842 hash_expand (struct mapped_symtab *symtab)
19843 {
19844 offset_type old_size = symtab->size;
19845 offset_type i;
19846 struct symtab_index_entry **old_entries = symtab->data;
19847
19848 symtab->size *= 2;
19849 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19850
19851 for (i = 0; i < old_size; ++i)
19852 {
19853 if (old_entries[i])
19854 {
19855 struct symtab_index_entry **slot = find_slot (symtab,
19856 old_entries[i]->name);
19857 *slot = old_entries[i];
19858 }
19859 }
19860
19861 xfree (old_entries);
19862 }
19863
19864 /* Add an entry to SYMTAB. NAME is the name of the symbol.
19865 CU_INDEX is the index of the CU in which the symbol appears.
19866 IS_STATIC is one if the symbol is static, otherwise zero (global). */
19867
19868 static void
19869 add_index_entry (struct mapped_symtab *symtab, const char *name,
19870 int is_static, gdb_index_symbol_kind kind,
19871 offset_type cu_index)
19872 {
19873 struct symtab_index_entry **slot;
19874 offset_type cu_index_and_attrs;
19875
19876 ++symtab->n_elements;
19877 if (4 * symtab->n_elements / 3 >= symtab->size)
19878 hash_expand (symtab);
19879
19880 slot = find_slot (symtab, name);
19881 if (!*slot)
19882 {
19883 *slot = XNEW (struct symtab_index_entry);
19884 (*slot)->name = name;
19885 /* index_offset is set later. */
19886 (*slot)->cu_indices = NULL;
19887 }
19888
19889 cu_index_and_attrs = 0;
19890 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
19891 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
19892 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
19893
19894 /* We don't want to record an index value twice as we want to avoid the
19895 duplication.
19896 We process all global symbols and then all static symbols
19897 (which would allow us to avoid the duplication by only having to check
19898 the last entry pushed), but a symbol could have multiple kinds in one CU.
19899 To keep things simple we don't worry about the duplication here and
19900 sort and uniqufy the list after we've processed all symbols. */
19901 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
19902 }
19903
19904 /* qsort helper routine for uniquify_cu_indices. */
19905
19906 static int
19907 offset_type_compare (const void *ap, const void *bp)
19908 {
19909 offset_type a = *(offset_type *) ap;
19910 offset_type b = *(offset_type *) bp;
19911
19912 return (a > b) - (b > a);
19913 }
19914
19915 /* Sort and remove duplicates of all symbols' cu_indices lists. */
19916
19917 static void
19918 uniquify_cu_indices (struct mapped_symtab *symtab)
19919 {
19920 int i;
19921
19922 for (i = 0; i < symtab->size; ++i)
19923 {
19924 struct symtab_index_entry *entry = symtab->data[i];
19925
19926 if (entry
19927 && entry->cu_indices != NULL)
19928 {
19929 unsigned int next_to_insert, next_to_check;
19930 offset_type last_value;
19931
19932 qsort (VEC_address (offset_type, entry->cu_indices),
19933 VEC_length (offset_type, entry->cu_indices),
19934 sizeof (offset_type), offset_type_compare);
19935
19936 last_value = VEC_index (offset_type, entry->cu_indices, 0);
19937 next_to_insert = 1;
19938 for (next_to_check = 1;
19939 next_to_check < VEC_length (offset_type, entry->cu_indices);
19940 ++next_to_check)
19941 {
19942 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
19943 != last_value)
19944 {
19945 last_value = VEC_index (offset_type, entry->cu_indices,
19946 next_to_check);
19947 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
19948 last_value);
19949 ++next_to_insert;
19950 }
19951 }
19952 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
19953 }
19954 }
19955 }
19956
19957 /* Add a vector of indices to the constant pool. */
19958
19959 static offset_type
19960 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
19961 struct symtab_index_entry *entry)
19962 {
19963 void **slot;
19964
19965 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
19966 if (!*slot)
19967 {
19968 offset_type len = VEC_length (offset_type, entry->cu_indices);
19969 offset_type val = MAYBE_SWAP (len);
19970 offset_type iter;
19971 int i;
19972
19973 *slot = entry;
19974 entry->index_offset = obstack_object_size (cpool);
19975
19976 obstack_grow (cpool, &val, sizeof (val));
19977 for (i = 0;
19978 VEC_iterate (offset_type, entry->cu_indices, i, iter);
19979 ++i)
19980 {
19981 val = MAYBE_SWAP (iter);
19982 obstack_grow (cpool, &val, sizeof (val));
19983 }
19984 }
19985 else
19986 {
19987 struct symtab_index_entry *old_entry = *slot;
19988 entry->index_offset = old_entry->index_offset;
19989 entry = old_entry;
19990 }
19991 return entry->index_offset;
19992 }
19993
19994 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
19995 constant pool entries going into the obstack CPOOL. */
19996
19997 static void
19998 write_hash_table (struct mapped_symtab *symtab,
19999 struct obstack *output, struct obstack *cpool)
20000 {
20001 offset_type i;
20002 htab_t symbol_hash_table;
20003 htab_t str_table;
20004
20005 symbol_hash_table = create_symbol_hash_table ();
20006 str_table = create_strtab ();
20007
20008 /* We add all the index vectors to the constant pool first, to
20009 ensure alignment is ok. */
20010 for (i = 0; i < symtab->size; ++i)
20011 {
20012 if (symtab->data[i])
20013 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20014 }
20015
20016 /* Now write out the hash table. */
20017 for (i = 0; i < symtab->size; ++i)
20018 {
20019 offset_type str_off, vec_off;
20020
20021 if (symtab->data[i])
20022 {
20023 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20024 vec_off = symtab->data[i]->index_offset;
20025 }
20026 else
20027 {
20028 /* While 0 is a valid constant pool index, it is not valid
20029 to have 0 for both offsets. */
20030 str_off = 0;
20031 vec_off = 0;
20032 }
20033
20034 str_off = MAYBE_SWAP (str_off);
20035 vec_off = MAYBE_SWAP (vec_off);
20036
20037 obstack_grow (output, &str_off, sizeof (str_off));
20038 obstack_grow (output, &vec_off, sizeof (vec_off));
20039 }
20040
20041 htab_delete (str_table);
20042 htab_delete (symbol_hash_table);
20043 }
20044
20045 /* Struct to map psymtab to CU index in the index file. */
20046 struct psymtab_cu_index_map
20047 {
20048 struct partial_symtab *psymtab;
20049 unsigned int cu_index;
20050 };
20051
20052 static hashval_t
20053 hash_psymtab_cu_index (const void *item)
20054 {
20055 const struct psymtab_cu_index_map *map = item;
20056
20057 return htab_hash_pointer (map->psymtab);
20058 }
20059
20060 static int
20061 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20062 {
20063 const struct psymtab_cu_index_map *lhs = item_lhs;
20064 const struct psymtab_cu_index_map *rhs = item_rhs;
20065
20066 return lhs->psymtab == rhs->psymtab;
20067 }
20068
20069 /* Helper struct for building the address table. */
20070 struct addrmap_index_data
20071 {
20072 struct objfile *objfile;
20073 struct obstack *addr_obstack;
20074 htab_t cu_index_htab;
20075
20076 /* Non-zero if the previous_* fields are valid.
20077 We can't write an entry until we see the next entry (since it is only then
20078 that we know the end of the entry). */
20079 int previous_valid;
20080 /* Index of the CU in the table of all CUs in the index file. */
20081 unsigned int previous_cu_index;
20082 /* Start address of the CU. */
20083 CORE_ADDR previous_cu_start;
20084 };
20085
20086 /* Write an address entry to OBSTACK. */
20087
20088 static void
20089 add_address_entry (struct objfile *objfile, struct obstack *obstack,
20090 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
20091 {
20092 offset_type cu_index_to_write;
20093 char addr[8];
20094 CORE_ADDR baseaddr;
20095
20096 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20097
20098 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20099 obstack_grow (obstack, addr, 8);
20100 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20101 obstack_grow (obstack, addr, 8);
20102 cu_index_to_write = MAYBE_SWAP (cu_index);
20103 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20104 }
20105
20106 /* Worker function for traversing an addrmap to build the address table. */
20107
20108 static int
20109 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20110 {
20111 struct addrmap_index_data *data = datap;
20112 struct partial_symtab *pst = obj;
20113
20114 if (data->previous_valid)
20115 add_address_entry (data->objfile, data->addr_obstack,
20116 data->previous_cu_start, start_addr,
20117 data->previous_cu_index);
20118
20119 data->previous_cu_start = start_addr;
20120 if (pst != NULL)
20121 {
20122 struct psymtab_cu_index_map find_map, *map;
20123 find_map.psymtab = pst;
20124 map = htab_find (data->cu_index_htab, &find_map);
20125 gdb_assert (map != NULL);
20126 data->previous_cu_index = map->cu_index;
20127 data->previous_valid = 1;
20128 }
20129 else
20130 data->previous_valid = 0;
20131
20132 return 0;
20133 }
20134
20135 /* Write OBJFILE's address map to OBSTACK.
20136 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20137 in the index file. */
20138
20139 static void
20140 write_address_map (struct objfile *objfile, struct obstack *obstack,
20141 htab_t cu_index_htab)
20142 {
20143 struct addrmap_index_data addrmap_index_data;
20144
20145 /* When writing the address table, we have to cope with the fact that
20146 the addrmap iterator only provides the start of a region; we have to
20147 wait until the next invocation to get the start of the next region. */
20148
20149 addrmap_index_data.objfile = objfile;
20150 addrmap_index_data.addr_obstack = obstack;
20151 addrmap_index_data.cu_index_htab = cu_index_htab;
20152 addrmap_index_data.previous_valid = 0;
20153
20154 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20155 &addrmap_index_data);
20156
20157 /* It's highly unlikely the last entry (end address = 0xff...ff)
20158 is valid, but we should still handle it.
20159 The end address is recorded as the start of the next region, but that
20160 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20161 anyway. */
20162 if (addrmap_index_data.previous_valid)
20163 add_address_entry (objfile, obstack,
20164 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20165 addrmap_index_data.previous_cu_index);
20166 }
20167
20168 /* Return the symbol kind of PSYM. */
20169
20170 static gdb_index_symbol_kind
20171 symbol_kind (struct partial_symbol *psym)
20172 {
20173 domain_enum domain = PSYMBOL_DOMAIN (psym);
20174 enum address_class aclass = PSYMBOL_CLASS (psym);
20175
20176 switch (domain)
20177 {
20178 case VAR_DOMAIN:
20179 switch (aclass)
20180 {
20181 case LOC_BLOCK:
20182 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20183 case LOC_TYPEDEF:
20184 return GDB_INDEX_SYMBOL_KIND_TYPE;
20185 case LOC_COMPUTED:
20186 case LOC_CONST_BYTES:
20187 case LOC_OPTIMIZED_OUT:
20188 case LOC_STATIC:
20189 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20190 case LOC_CONST:
20191 /* Note: It's currently impossible to recognize psyms as enum values
20192 short of reading the type info. For now punt. */
20193 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20194 default:
20195 /* There are other LOC_FOO values that one might want to classify
20196 as variables, but dwarf2read.c doesn't currently use them. */
20197 return GDB_INDEX_SYMBOL_KIND_OTHER;
20198 }
20199 case STRUCT_DOMAIN:
20200 return GDB_INDEX_SYMBOL_KIND_TYPE;
20201 default:
20202 return GDB_INDEX_SYMBOL_KIND_OTHER;
20203 }
20204 }
20205
20206 /* Add a list of partial symbols to SYMTAB. */
20207
20208 static void
20209 write_psymbols (struct mapped_symtab *symtab,
20210 htab_t psyms_seen,
20211 struct partial_symbol **psymp,
20212 int count,
20213 offset_type cu_index,
20214 int is_static)
20215 {
20216 for (; count-- > 0; ++psymp)
20217 {
20218 struct partial_symbol *psym = *psymp;
20219 void **slot;
20220
20221 if (SYMBOL_LANGUAGE (psym) == language_ada)
20222 error (_("Ada is not currently supported by the index"));
20223
20224 /* Only add a given psymbol once. */
20225 slot = htab_find_slot (psyms_seen, psym, INSERT);
20226 if (!*slot)
20227 {
20228 gdb_index_symbol_kind kind = symbol_kind (psym);
20229
20230 *slot = psym;
20231 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20232 is_static, kind, cu_index);
20233 }
20234 }
20235 }
20236
20237 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
20238 exception if there is an error. */
20239
20240 static void
20241 write_obstack (FILE *file, struct obstack *obstack)
20242 {
20243 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20244 file)
20245 != obstack_object_size (obstack))
20246 error (_("couldn't data write to file"));
20247 }
20248
20249 /* Unlink a file if the argument is not NULL. */
20250
20251 static void
20252 unlink_if_set (void *p)
20253 {
20254 char **filename = p;
20255 if (*filename)
20256 unlink (*filename);
20257 }
20258
20259 /* A helper struct used when iterating over debug_types. */
20260 struct signatured_type_index_data
20261 {
20262 struct objfile *objfile;
20263 struct mapped_symtab *symtab;
20264 struct obstack *types_list;
20265 htab_t psyms_seen;
20266 int cu_index;
20267 };
20268
20269 /* A helper function that writes a single signatured_type to an
20270 obstack. */
20271
20272 static int
20273 write_one_signatured_type (void **slot, void *d)
20274 {
20275 struct signatured_type_index_data *info = d;
20276 struct signatured_type *entry = (struct signatured_type *) *slot;
20277 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
20278 struct partial_symtab *psymtab = per_cu->v.psymtab;
20279 gdb_byte val[8];
20280
20281 write_psymbols (info->symtab,
20282 info->psyms_seen,
20283 info->objfile->global_psymbols.list
20284 + psymtab->globals_offset,
20285 psymtab->n_global_syms, info->cu_index,
20286 0);
20287 write_psymbols (info->symtab,
20288 info->psyms_seen,
20289 info->objfile->static_psymbols.list
20290 + psymtab->statics_offset,
20291 psymtab->n_static_syms, info->cu_index,
20292 1);
20293
20294 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20295 entry->per_cu.offset.sect_off);
20296 obstack_grow (info->types_list, val, 8);
20297 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20298 entry->type_offset_in_tu.cu_off);
20299 obstack_grow (info->types_list, val, 8);
20300 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20301 obstack_grow (info->types_list, val, 8);
20302
20303 ++info->cu_index;
20304
20305 return 1;
20306 }
20307
20308 /* Recurse into all "included" dependencies and write their symbols as
20309 if they appeared in this psymtab. */
20310
20311 static void
20312 recursively_write_psymbols (struct objfile *objfile,
20313 struct partial_symtab *psymtab,
20314 struct mapped_symtab *symtab,
20315 htab_t psyms_seen,
20316 offset_type cu_index)
20317 {
20318 int i;
20319
20320 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20321 if (psymtab->dependencies[i]->user != NULL)
20322 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20323 symtab, psyms_seen, cu_index);
20324
20325 write_psymbols (symtab,
20326 psyms_seen,
20327 objfile->global_psymbols.list + psymtab->globals_offset,
20328 psymtab->n_global_syms, cu_index,
20329 0);
20330 write_psymbols (symtab,
20331 psyms_seen,
20332 objfile->static_psymbols.list + psymtab->statics_offset,
20333 psymtab->n_static_syms, cu_index,
20334 1);
20335 }
20336
20337 /* Create an index file for OBJFILE in the directory DIR. */
20338
20339 static void
20340 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20341 {
20342 struct cleanup *cleanup;
20343 char *filename, *cleanup_filename;
20344 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20345 struct obstack cu_list, types_cu_list;
20346 int i;
20347 FILE *out_file;
20348 struct mapped_symtab *symtab;
20349 offset_type val, size_of_contents, total_len;
20350 struct stat st;
20351 htab_t psyms_seen;
20352 htab_t cu_index_htab;
20353 struct psymtab_cu_index_map *psymtab_cu_index_map;
20354
20355 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
20356 return;
20357
20358 if (dwarf2_per_objfile->using_index)
20359 error (_("Cannot use an index to create the index"));
20360
20361 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20362 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20363
20364 if (stat (objfile->name, &st) < 0)
20365 perror_with_name (objfile->name);
20366
20367 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20368 INDEX_SUFFIX, (char *) NULL);
20369 cleanup = make_cleanup (xfree, filename);
20370
20371 out_file = fopen (filename, "wb");
20372 if (!out_file)
20373 error (_("Can't open `%s' for writing"), filename);
20374
20375 cleanup_filename = filename;
20376 make_cleanup (unlink_if_set, &cleanup_filename);
20377
20378 symtab = create_mapped_symtab ();
20379 make_cleanup (cleanup_mapped_symtab, symtab);
20380
20381 obstack_init (&addr_obstack);
20382 make_cleanup_obstack_free (&addr_obstack);
20383
20384 obstack_init (&cu_list);
20385 make_cleanup_obstack_free (&cu_list);
20386
20387 obstack_init (&types_cu_list);
20388 make_cleanup_obstack_free (&types_cu_list);
20389
20390 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20391 NULL, xcalloc, xfree);
20392 make_cleanup_htab_delete (psyms_seen);
20393
20394 /* While we're scanning CU's create a table that maps a psymtab pointer
20395 (which is what addrmap records) to its index (which is what is recorded
20396 in the index file). This will later be needed to write the address
20397 table. */
20398 cu_index_htab = htab_create_alloc (100,
20399 hash_psymtab_cu_index,
20400 eq_psymtab_cu_index,
20401 NULL, xcalloc, xfree);
20402 make_cleanup_htab_delete (cu_index_htab);
20403 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20404 xmalloc (sizeof (struct psymtab_cu_index_map)
20405 * dwarf2_per_objfile->n_comp_units);
20406 make_cleanup (xfree, psymtab_cu_index_map);
20407
20408 /* The CU list is already sorted, so we don't need to do additional
20409 work here. Also, the debug_types entries do not appear in
20410 all_comp_units, but only in their own hash table. */
20411 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20412 {
20413 struct dwarf2_per_cu_data *per_cu
20414 = dwarf2_per_objfile->all_comp_units[i];
20415 struct partial_symtab *psymtab = per_cu->v.psymtab;
20416 gdb_byte val[8];
20417 struct psymtab_cu_index_map *map;
20418 void **slot;
20419
20420 if (psymtab->user == NULL)
20421 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
20422
20423 map = &psymtab_cu_index_map[i];
20424 map->psymtab = psymtab;
20425 map->cu_index = i;
20426 slot = htab_find_slot (cu_index_htab, map, INSERT);
20427 gdb_assert (slot != NULL);
20428 gdb_assert (*slot == NULL);
20429 *slot = map;
20430
20431 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20432 per_cu->offset.sect_off);
20433 obstack_grow (&cu_list, val, 8);
20434 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
20435 obstack_grow (&cu_list, val, 8);
20436 }
20437
20438 /* Dump the address map. */
20439 write_address_map (objfile, &addr_obstack, cu_index_htab);
20440
20441 /* Write out the .debug_type entries, if any. */
20442 if (dwarf2_per_objfile->signatured_types)
20443 {
20444 struct signatured_type_index_data sig_data;
20445
20446 sig_data.objfile = objfile;
20447 sig_data.symtab = symtab;
20448 sig_data.types_list = &types_cu_list;
20449 sig_data.psyms_seen = psyms_seen;
20450 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20451 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20452 write_one_signatured_type, &sig_data);
20453 }
20454
20455 /* Now that we've processed all symbols we can shrink their cu_indices
20456 lists. */
20457 uniquify_cu_indices (symtab);
20458
20459 obstack_init (&constant_pool);
20460 make_cleanup_obstack_free (&constant_pool);
20461 obstack_init (&symtab_obstack);
20462 make_cleanup_obstack_free (&symtab_obstack);
20463 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20464
20465 obstack_init (&contents);
20466 make_cleanup_obstack_free (&contents);
20467 size_of_contents = 6 * sizeof (offset_type);
20468 total_len = size_of_contents;
20469
20470 /* The version number. */
20471 val = MAYBE_SWAP (8);
20472 obstack_grow (&contents, &val, sizeof (val));
20473
20474 /* The offset of the CU list from the start of the file. */
20475 val = MAYBE_SWAP (total_len);
20476 obstack_grow (&contents, &val, sizeof (val));
20477 total_len += obstack_object_size (&cu_list);
20478
20479 /* The offset of the types CU list from the start of the file. */
20480 val = MAYBE_SWAP (total_len);
20481 obstack_grow (&contents, &val, sizeof (val));
20482 total_len += obstack_object_size (&types_cu_list);
20483
20484 /* The offset of the address table from the start of the file. */
20485 val = MAYBE_SWAP (total_len);
20486 obstack_grow (&contents, &val, sizeof (val));
20487 total_len += obstack_object_size (&addr_obstack);
20488
20489 /* The offset of the symbol table from the start of the file. */
20490 val = MAYBE_SWAP (total_len);
20491 obstack_grow (&contents, &val, sizeof (val));
20492 total_len += obstack_object_size (&symtab_obstack);
20493
20494 /* The offset of the constant pool from the start of the file. */
20495 val = MAYBE_SWAP (total_len);
20496 obstack_grow (&contents, &val, sizeof (val));
20497 total_len += obstack_object_size (&constant_pool);
20498
20499 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20500
20501 write_obstack (out_file, &contents);
20502 write_obstack (out_file, &cu_list);
20503 write_obstack (out_file, &types_cu_list);
20504 write_obstack (out_file, &addr_obstack);
20505 write_obstack (out_file, &symtab_obstack);
20506 write_obstack (out_file, &constant_pool);
20507
20508 fclose (out_file);
20509
20510 /* We want to keep the file, so we set cleanup_filename to NULL
20511 here. See unlink_if_set. */
20512 cleanup_filename = NULL;
20513
20514 do_cleanups (cleanup);
20515 }
20516
20517 /* Implementation of the `save gdb-index' command.
20518
20519 Note that the file format used by this command is documented in the
20520 GDB manual. Any changes here must be documented there. */
20521
20522 static void
20523 save_gdb_index_command (char *arg, int from_tty)
20524 {
20525 struct objfile *objfile;
20526
20527 if (!arg || !*arg)
20528 error (_("usage: save gdb-index DIRECTORY"));
20529
20530 ALL_OBJFILES (objfile)
20531 {
20532 struct stat st;
20533
20534 /* If the objfile does not correspond to an actual file, skip it. */
20535 if (stat (objfile->name, &st) < 0)
20536 continue;
20537
20538 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20539 if (dwarf2_per_objfile)
20540 {
20541 volatile struct gdb_exception except;
20542
20543 TRY_CATCH (except, RETURN_MASK_ERROR)
20544 {
20545 write_psymtabs_to_index (objfile, arg);
20546 }
20547 if (except.reason < 0)
20548 exception_fprintf (gdb_stderr, except,
20549 _("Error while writing index for `%s': "),
20550 objfile->name);
20551 }
20552 }
20553 }
20554
20555 \f
20556
20557 int dwarf2_always_disassemble;
20558
20559 static void
20560 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20561 struct cmd_list_element *c, const char *value)
20562 {
20563 fprintf_filtered (file,
20564 _("Whether to always disassemble "
20565 "DWARF expressions is %s.\n"),
20566 value);
20567 }
20568
20569 static void
20570 show_check_physname (struct ui_file *file, int from_tty,
20571 struct cmd_list_element *c, const char *value)
20572 {
20573 fprintf_filtered (file,
20574 _("Whether to check \"physname\" is %s.\n"),
20575 value);
20576 }
20577
20578 void _initialize_dwarf2_read (void);
20579
20580 void
20581 _initialize_dwarf2_read (void)
20582 {
20583 struct cmd_list_element *c;
20584
20585 dwarf2_objfile_data_key
20586 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
20587
20588 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20589 Set DWARF 2 specific variables.\n\
20590 Configure DWARF 2 variables such as the cache size"),
20591 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20592 0/*allow-unknown*/, &maintenance_set_cmdlist);
20593
20594 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20595 Show DWARF 2 specific variables\n\
20596 Show DWARF 2 variables such as the cache size"),
20597 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20598 0/*allow-unknown*/, &maintenance_show_cmdlist);
20599
20600 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
20601 &dwarf2_max_cache_age, _("\
20602 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20603 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20604 A higher limit means that cached compilation units will be stored\n\
20605 in memory longer, and more total memory will be used. Zero disables\n\
20606 caching, which can slow down startup."),
20607 NULL,
20608 show_dwarf2_max_cache_age,
20609 &set_dwarf2_cmdlist,
20610 &show_dwarf2_cmdlist);
20611
20612 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20613 &dwarf2_always_disassemble, _("\
20614 Set whether `info address' always disassembles DWARF expressions."), _("\
20615 Show whether `info address' always disassembles DWARF expressions."), _("\
20616 When enabled, DWARF expressions are always printed in an assembly-like\n\
20617 syntax. When disabled, expressions will be printed in a more\n\
20618 conversational style, when possible."),
20619 NULL,
20620 show_dwarf2_always_disassemble,
20621 &set_dwarf2_cmdlist,
20622 &show_dwarf2_cmdlist);
20623
20624 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20625 Set debugging of the dwarf2 reader."), _("\
20626 Show debugging of the dwarf2 reader."), _("\
20627 When enabled, debugging messages are printed during dwarf2 reading\n\
20628 and symtab expansion."),
20629 NULL,
20630 NULL,
20631 &setdebuglist, &showdebuglist);
20632
20633 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
20634 Set debugging of the dwarf2 DIE reader."), _("\
20635 Show debugging of the dwarf2 DIE reader."), _("\
20636 When enabled (non-zero), DIEs are dumped after they are read in.\n\
20637 The value is the maximum depth to print."),
20638 NULL,
20639 NULL,
20640 &setdebuglist, &showdebuglist);
20641
20642 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20643 Set cross-checking of \"physname\" code against demangler."), _("\
20644 Show cross-checking of \"physname\" code against demangler."), _("\
20645 When enabled, GDB's internal \"physname\" code is checked against\n\
20646 the demangler."),
20647 NULL, show_check_physname,
20648 &setdebuglist, &showdebuglist);
20649
20650 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20651 no_class, &use_deprecated_index_sections, _("\
20652 Set whether to use deprecated gdb_index sections."), _("\
20653 Show whether to use deprecated gdb_index sections."), _("\
20654 When enabled, deprecated .gdb_index sections are used anyway.\n\
20655 Normally they are ignored either because of a missing feature or\n\
20656 performance issue.\n\
20657 Warning: This option must be enabled before gdb reads the file."),
20658 NULL,
20659 NULL,
20660 &setlist, &showlist);
20661
20662 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
20663 _("\
20664 Save a gdb-index file.\n\
20665 Usage: save gdb-index DIRECTORY"),
20666 &save_cmdlist);
20667 set_cmd_completer (c, filename_completer);
20668 }