PR symtab/18258
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf_die_debug. */
82 static unsigned int dwarf_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
101
102 /* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
118 struct dwarf2_section_info
119 {
120 union
121 {
122 /* If this is a real section, the bfd section. */
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
125 section. */
126 struct dwarf2_section_info *containing_section;
127 } s;
128 /* Pointer to section data, only valid if readin. */
129 const gdb_byte *buffer;
130 /* The size of the section, real or virtual. */
131 bfd_size_type size;
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
135 /* True if we have tried to read this section. */
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
140 };
141
142 typedef struct dwarf2_section_info dwarf2_section_info_def;
143 DEF_VEC_O (dwarf2_section_info_def);
144
145 /* All offsets in the index are of this type. It must be
146 architecture-independent. */
147 typedef uint32_t offset_type;
148
149 DEF_VEC_I (offset_type);
150
151 /* Ensure only legit values are used. */
152 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158 /* Ensure only legit values are used. */
159 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
167 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
173 /* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175 struct mapped_index
176 {
177 /* Index data format version. */
178 int version;
179
180 /* The total length of the buffer. */
181 off_t total_size;
182
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
185
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
188
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
191
192 /* Size in slots, each slot is 2 offset_types. */
193 offset_type symbol_table_slots;
194
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197 };
198
199 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200 DEF_VEC_P (dwarf2_per_cu_ptr);
201
202 struct tu_stats
203 {
204 int nr_uniq_abbrev_tables;
205 int nr_symtabs;
206 int nr_symtab_sharers;
207 int nr_stmt_less_type_units;
208 int nr_all_type_units_reallocs;
209 };
210
211 /* Collection of data recorded per objfile.
212 This hangs off of dwarf2_objfile_data_key. */
213
214 struct dwarf2_per_objfile
215 {
216 struct dwarf2_section_info info;
217 struct dwarf2_section_info abbrev;
218 struct dwarf2_section_info line;
219 struct dwarf2_section_info loc;
220 struct dwarf2_section_info macinfo;
221 struct dwarf2_section_info macro;
222 struct dwarf2_section_info str;
223 struct dwarf2_section_info ranges;
224 struct dwarf2_section_info addr;
225 struct dwarf2_section_info frame;
226 struct dwarf2_section_info eh_frame;
227 struct dwarf2_section_info gdb_index;
228
229 VEC (dwarf2_section_info_def) *types;
230
231 /* Back link. */
232 struct objfile *objfile;
233
234 /* Table of all the compilation units. This is used to locate
235 the target compilation unit of a particular reference. */
236 struct dwarf2_per_cu_data **all_comp_units;
237
238 /* The number of compilation units in ALL_COMP_UNITS. */
239 int n_comp_units;
240
241 /* The number of .debug_types-related CUs. */
242 int n_type_units;
243
244 /* The number of elements allocated in all_type_units.
245 If there are skeleton-less TUs, we add them to all_type_units lazily. */
246 int n_allocated_type_units;
247
248 /* The .debug_types-related CUs (TUs).
249 This is stored in malloc space because we may realloc it. */
250 struct signatured_type **all_type_units;
251
252 /* Table of struct type_unit_group objects.
253 The hash key is the DW_AT_stmt_list value. */
254 htab_t type_unit_groups;
255
256 /* A table mapping .debug_types signatures to its signatured_type entry.
257 This is NULL if the .debug_types section hasn't been read in yet. */
258 htab_t signatured_types;
259
260 /* Type unit statistics, to see how well the scaling improvements
261 are doing. */
262 struct tu_stats tu_stats;
263
264 /* A chain of compilation units that are currently read in, so that
265 they can be freed later. */
266 struct dwarf2_per_cu_data *read_in_chain;
267
268 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
269 This is NULL if the table hasn't been allocated yet. */
270 htab_t dwo_files;
271
272 /* Non-zero if we've check for whether there is a DWP file. */
273 int dwp_checked;
274
275 /* The DWP file if there is one, or NULL. */
276 struct dwp_file *dwp_file;
277
278 /* The shared '.dwz' file, if one exists. This is used when the
279 original data was compressed using 'dwz -m'. */
280 struct dwz_file *dwz_file;
281
282 /* A flag indicating wether this objfile has a section loaded at a
283 VMA of 0. */
284 int has_section_at_zero;
285
286 /* True if we are using the mapped index,
287 or we are faking it for OBJF_READNOW's sake. */
288 unsigned char using_index;
289
290 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
291 struct mapped_index *index_table;
292
293 /* When using index_table, this keeps track of all quick_file_names entries.
294 TUs typically share line table entries with a CU, so we maintain a
295 separate table of all line table entries to support the sharing.
296 Note that while there can be way more TUs than CUs, we've already
297 sorted all the TUs into "type unit groups", grouped by their
298 DW_AT_stmt_list value. Therefore the only sharing done here is with a
299 CU and its associated TU group if there is one. */
300 htab_t quick_file_names_table;
301
302 /* Set during partial symbol reading, to prevent queueing of full
303 symbols. */
304 int reading_partial_symbols;
305
306 /* Table mapping type DIEs to their struct type *.
307 This is NULL if not allocated yet.
308 The mapping is done via (CU/TU + DIE offset) -> type. */
309 htab_t die_type_hash;
310
311 /* The CUs we recently read. */
312 VEC (dwarf2_per_cu_ptr) *just_read_cus;
313
314 /* Table containing line_header indexed by offset and offset_in_dwz. */
315 htab_t line_header_hash;
316 };
317
318 static struct dwarf2_per_objfile *dwarf2_per_objfile;
319
320 /* Default names of the debugging sections. */
321
322 /* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
325 static const struct dwarf2_debug_sections dwarf2_elf_names =
326 {
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
336 { ".debug_addr", ".zdebug_addr" },
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
339 { ".gdb_index", ".zgdb_index" },
340 23
341 };
342
343 /* List of DWO/DWP sections. */
344
345 static const struct dwop_section_names
346 {
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
358 }
359 dwop_section_names =
360 {
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
372 };
373
374 /* local data types */
375
376 /* The data in a compilation unit header, after target2host
377 translation, looks like this. */
378 struct comp_unit_head
379 {
380 unsigned int length;
381 short version;
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
384 sect_offset abbrev_offset;
385
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
388
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
391
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
394 sect_offset offset;
395
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
398 cu_offset first_die_offset;
399 };
400
401 /* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403 struct delayed_method_info
404 {
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419 };
420
421 typedef struct delayed_method_info delayed_method_info;
422 DEF_VEC_O (delayed_method_info);
423
424 /* Internal state when decoding a particular compilation unit. */
425 struct dwarf2_cu
426 {
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
430 /* The header of the compilation unit. */
431 struct comp_unit_head header;
432
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
443 const char *producer;
444
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
460
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
475 /* Backlink to our per_cu entry. */
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
483 htab_t die_hash;
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the Fission stub CU/TU's DIE. */
517 ULONGEST addr_base;
518
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
529 ULONGEST ranges_base;
530
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
538 unsigned int has_loclist : 1;
539
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
546 unsigned int producer_is_gcc_lt_4_3 : 1;
547 unsigned int producer_is_icc : 1;
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
554 };
555
556 /* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
558 read_symtab_private field of the psymtab. */
559
560 struct dwarf2_per_cu_data
561 {
562 /* The start offset and length of this compilation unit.
563 NOTE: Unlike comp_unit_head.length, this length includes
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
567 sect_offset offset;
568 unsigned int length;
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
572 unsigned int queued : 1;
573
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
583 unsigned int is_debug_types : 1;
584
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
607 struct dwarf2_section_info *section;
608
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
611 struct dwarf2_cu *cu;
612
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
616 struct objfile *objfile;
617
618 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
619 is active. Otherwise, the 'psymtab' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
623 or NULL for unread partial units. */
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
629
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
649 };
650
651 /* Entry in the signatured_types hash table. */
652
653 struct signatured_type
654 {
655 /* The "per_cu" object of this type.
656 This struct is used iff per_cu.is_debug_types.
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
661 /* The type's signature. */
662 ULONGEST signature;
663
664 /* Offset in the TU of the type's DIE, as read from the TU header.
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
688 };
689
690 typedef struct signatured_type *sig_type_ptr;
691 DEF_VEC_P (sig_type_ptr);
692
693 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696 struct stmt_list_hash
697 {
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703 };
704
705 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708 struct type_unit_group
709 {
710 /* dwarf2read.c's main "handle" on a TU symtab.
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
715 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
716 struct dwarf2_per_cu_data per_cu;
717
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
722
723 /* The compunit symtab.
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the compunit symtab. */
726 struct compunit_symtab *compunit_symtab;
727
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744 };
745
746 /* These sections are what may appear in a (real or virtual) DWO file. */
747
748 struct dwo_sections
749 {
750 struct dwarf2_section_info abbrev;
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
759 VEC (dwarf2_section_info_def) *types;
760 };
761
762 /* CUs/TUs in DWP/DWO files. */
763
764 struct dwo_unit
765 {
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
775 struct dwarf2_section_info *section;
776
777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783 };
784
785 /* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789 enum dwp_v2_section_ids
790 {
791 DW_SECT_MIN = 1
792 };
793
794 /* Data for one DWO file.
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
804
805 struct dwo_file
806 {
807 /* The DW_AT_GNU_dwo_name attribute.
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
815
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
819
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
823 struct dwo_sections sections;
824
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835 };
836
837 /* These sections are what may appear in a DWP file. */
838
839 struct dwp_sections
840 {
841 /* These are used by both DWP version 1 and 2. */
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
862 };
863
864 /* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
866
867 struct virtual_v1_dwo_sections
868 {
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
876 That is recorded here, and copied to dwo_unit.section. */
877 struct dwarf2_section_info info_or_types;
878 };
879
880 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885 struct virtual_v2_dwo_sections
886 {
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909 };
910
911 /* Contents of DWP hash tables. */
912
913 struct dwp_hash_table
914 {
915 uint32_t version, nr_columns;
916 uint32_t nr_units, nr_slots;
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928 #define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
940 };
941
942 /* Data for one DWP file. */
943
944 struct dwp_file
945 {
946 /* Name of the file. */
947 const char *name;
948
949 /* File format version. */
950 int version;
951
952 /* The bfd. */
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
958 /* Table of CUs in the file. */
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
967
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
970 unsigned int num_sections;
971 asection **elf_sections;
972 };
973
974 /* This represents a '.dwz' file. */
975
976 struct dwz_file
977 {
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
984 struct dwarf2_section_info gdb_index;
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988 };
989
990 /* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
993 struct exists to abstract away the constant parameters of die reading. */
994
995 struct die_reader_specs
996 {
997 /* The bfd of die_section. */
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1004 struct dwo_file *dwo_file;
1005
1006 /* The section the die comes from.
1007 This is either .debug_info or .debug_types, or the .dwo variants. */
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
1011 const gdb_byte *buffer;
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
1018 };
1019
1020 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1021 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1022 const gdb_byte *info_ptr,
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
1027 struct file_entry
1028 {
1029 const char *name;
1030 unsigned int dir_index;
1031 unsigned int mod_time;
1032 unsigned int length;
1033 /* Non-zero if referenced by the Line Number Program. */
1034 int included_p;
1035 /* The associated symbol table, if any. */
1036 struct symtab *symtab;
1037 };
1038
1039 /* The line number information for a compilation unit (found in the
1040 .debug_line section) begins with a "statement program header",
1041 which contains the following information. */
1042 struct line_header
1043 {
1044 /* Offset of line number information in .debug_line section. */
1045 sect_offset offset;
1046
1047 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1048 unsigned offset_in_dwz : 1;
1049
1050 unsigned int total_length;
1051 unsigned short version;
1052 unsigned int header_length;
1053 unsigned char minimum_instruction_length;
1054 unsigned char maximum_ops_per_instruction;
1055 unsigned char default_is_stmt;
1056 int line_base;
1057 unsigned char line_range;
1058 unsigned char opcode_base;
1059
1060 /* standard_opcode_lengths[i] is the number of operands for the
1061 standard opcode whose value is i. This means that
1062 standard_opcode_lengths[0] is unused, and the last meaningful
1063 element is standard_opcode_lengths[opcode_base - 1]. */
1064 unsigned char *standard_opcode_lengths;
1065
1066 /* The include_directories table. NOTE! These strings are not
1067 allocated with xmalloc; instead, they are pointers into
1068 debug_line_buffer. If you try to free them, `free' will get
1069 indigestion. */
1070 unsigned int num_include_dirs, include_dirs_size;
1071 const char **include_dirs;
1072
1073 /* The file_names table. NOTE! These strings are not allocated
1074 with xmalloc; instead, they are pointers into debug_line_buffer.
1075 Don't try to free them directly. */
1076 unsigned int num_file_names, file_names_size;
1077 struct file_entry *file_names;
1078
1079 /* The start and end of the statement program following this
1080 header. These point into dwarf2_per_objfile->line_buffer. */
1081 const gdb_byte *statement_program_start, *statement_program_end;
1082 };
1083
1084 /* When we construct a partial symbol table entry we only
1085 need this much information. */
1086 struct partial_die_info
1087 {
1088 /* Offset of this DIE. */
1089 sect_offset offset;
1090
1091 /* DWARF-2 tag for this DIE. */
1092 ENUM_BITFIELD(dwarf_tag) tag : 16;
1093
1094 /* Assorted flags describing the data found in this DIE. */
1095 unsigned int has_children : 1;
1096 unsigned int is_external : 1;
1097 unsigned int is_declaration : 1;
1098 unsigned int has_type : 1;
1099 unsigned int has_specification : 1;
1100 unsigned int has_pc_info : 1;
1101 unsigned int may_be_inlined : 1;
1102
1103 /* Flag set if the SCOPE field of this structure has been
1104 computed. */
1105 unsigned int scope_set : 1;
1106
1107 /* Flag set if the DIE has a byte_size attribute. */
1108 unsigned int has_byte_size : 1;
1109
1110 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1111 unsigned int has_const_value : 1;
1112
1113 /* Flag set if any of the DIE's children are template arguments. */
1114 unsigned int has_template_arguments : 1;
1115
1116 /* Flag set if fixup_partial_die has been called on this die. */
1117 unsigned int fixup_called : 1;
1118
1119 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1120 unsigned int is_dwz : 1;
1121
1122 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1123 unsigned int spec_is_dwz : 1;
1124
1125 /* The name of this DIE. Normally the value of DW_AT_name, but
1126 sometimes a default name for unnamed DIEs. */
1127 const char *name;
1128
1129 /* The linkage name, if present. */
1130 const char *linkage_name;
1131
1132 /* The scope to prepend to our children. This is generally
1133 allocated on the comp_unit_obstack, so will disappear
1134 when this compilation unit leaves the cache. */
1135 const char *scope;
1136
1137 /* Some data associated with the partial DIE. The tag determines
1138 which field is live. */
1139 union
1140 {
1141 /* The location description associated with this DIE, if any. */
1142 struct dwarf_block *locdesc;
1143 /* The offset of an import, for DW_TAG_imported_unit. */
1144 sect_offset offset;
1145 } d;
1146
1147 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1148 CORE_ADDR lowpc;
1149 CORE_ADDR highpc;
1150
1151 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1152 DW_AT_sibling, if any. */
1153 /* NOTE: This member isn't strictly necessary, read_partial_die could
1154 return DW_AT_sibling values to its caller load_partial_dies. */
1155 const gdb_byte *sibling;
1156
1157 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1158 DW_AT_specification (or DW_AT_abstract_origin or
1159 DW_AT_extension). */
1160 sect_offset spec_offset;
1161
1162 /* Pointers to this DIE's parent, first child, and next sibling,
1163 if any. */
1164 struct partial_die_info *die_parent, *die_child, *die_sibling;
1165 };
1166
1167 /* This data structure holds the information of an abbrev. */
1168 struct abbrev_info
1169 {
1170 unsigned int number; /* number identifying abbrev */
1171 enum dwarf_tag tag; /* dwarf tag */
1172 unsigned short has_children; /* boolean */
1173 unsigned short num_attrs; /* number of attributes */
1174 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1175 struct abbrev_info *next; /* next in chain */
1176 };
1177
1178 struct attr_abbrev
1179 {
1180 ENUM_BITFIELD(dwarf_attribute) name : 16;
1181 ENUM_BITFIELD(dwarf_form) form : 16;
1182 };
1183
1184 /* Size of abbrev_table.abbrev_hash_table. */
1185 #define ABBREV_HASH_SIZE 121
1186
1187 /* Top level data structure to contain an abbreviation table. */
1188
1189 struct abbrev_table
1190 {
1191 /* Where the abbrev table came from.
1192 This is used as a sanity check when the table is used. */
1193 sect_offset offset;
1194
1195 /* Storage for the abbrev table. */
1196 struct obstack abbrev_obstack;
1197
1198 /* Hash table of abbrevs.
1199 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1200 It could be statically allocated, but the previous code didn't so we
1201 don't either. */
1202 struct abbrev_info **abbrevs;
1203 };
1204
1205 /* Attributes have a name and a value. */
1206 struct attribute
1207 {
1208 ENUM_BITFIELD(dwarf_attribute) name : 16;
1209 ENUM_BITFIELD(dwarf_form) form : 15;
1210
1211 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1212 field should be in u.str (existing only for DW_STRING) but it is kept
1213 here for better struct attribute alignment. */
1214 unsigned int string_is_canonical : 1;
1215
1216 union
1217 {
1218 const char *str;
1219 struct dwarf_block *blk;
1220 ULONGEST unsnd;
1221 LONGEST snd;
1222 CORE_ADDR addr;
1223 ULONGEST signature;
1224 }
1225 u;
1226 };
1227
1228 /* This data structure holds a complete die structure. */
1229 struct die_info
1230 {
1231 /* DWARF-2 tag for this DIE. */
1232 ENUM_BITFIELD(dwarf_tag) tag : 16;
1233
1234 /* Number of attributes */
1235 unsigned char num_attrs;
1236
1237 /* True if we're presently building the full type name for the
1238 type derived from this DIE. */
1239 unsigned char building_fullname : 1;
1240
1241 /* True if this die is in process. PR 16581. */
1242 unsigned char in_process : 1;
1243
1244 /* Abbrev number */
1245 unsigned int abbrev;
1246
1247 /* Offset in .debug_info or .debug_types section. */
1248 sect_offset offset;
1249
1250 /* The dies in a compilation unit form an n-ary tree. PARENT
1251 points to this die's parent; CHILD points to the first child of
1252 this node; and all the children of a given node are chained
1253 together via their SIBLING fields. */
1254 struct die_info *child; /* Its first child, if any. */
1255 struct die_info *sibling; /* Its next sibling, if any. */
1256 struct die_info *parent; /* Its parent, if any. */
1257
1258 /* An array of attributes, with NUM_ATTRS elements. There may be
1259 zero, but it's not common and zero-sized arrays are not
1260 sufficiently portable C. */
1261 struct attribute attrs[1];
1262 };
1263
1264 /* Get at parts of an attribute structure. */
1265
1266 #define DW_STRING(attr) ((attr)->u.str)
1267 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1268 #define DW_UNSND(attr) ((attr)->u.unsnd)
1269 #define DW_BLOCK(attr) ((attr)->u.blk)
1270 #define DW_SND(attr) ((attr)->u.snd)
1271 #define DW_ADDR(attr) ((attr)->u.addr)
1272 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1273
1274 /* Blocks are a bunch of untyped bytes. */
1275 struct dwarf_block
1276 {
1277 size_t size;
1278
1279 /* Valid only if SIZE is not zero. */
1280 const gdb_byte *data;
1281 };
1282
1283 #ifndef ATTR_ALLOC_CHUNK
1284 #define ATTR_ALLOC_CHUNK 4
1285 #endif
1286
1287 /* Allocate fields for structs, unions and enums in this size. */
1288 #ifndef DW_FIELD_ALLOC_CHUNK
1289 #define DW_FIELD_ALLOC_CHUNK 4
1290 #endif
1291
1292 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1293 but this would require a corresponding change in unpack_field_as_long
1294 and friends. */
1295 static int bits_per_byte = 8;
1296
1297 struct nextfield
1298 {
1299 struct nextfield *next;
1300 int accessibility;
1301 int virtuality;
1302 struct field field;
1303 };
1304
1305 struct nextfnfield
1306 {
1307 struct nextfnfield *next;
1308 struct fn_field fnfield;
1309 };
1310
1311 struct fnfieldlist
1312 {
1313 const char *name;
1314 int length;
1315 struct nextfnfield *head;
1316 };
1317
1318 struct typedef_field_list
1319 {
1320 struct typedef_field field;
1321 struct typedef_field_list *next;
1322 };
1323
1324 /* The routines that read and process dies for a C struct or C++ class
1325 pass lists of data member fields and lists of member function fields
1326 in an instance of a field_info structure, as defined below. */
1327 struct field_info
1328 {
1329 /* List of data member and baseclasses fields. */
1330 struct nextfield *fields, *baseclasses;
1331
1332 /* Number of fields (including baseclasses). */
1333 int nfields;
1334
1335 /* Number of baseclasses. */
1336 int nbaseclasses;
1337
1338 /* Set if the accesibility of one of the fields is not public. */
1339 int non_public_fields;
1340
1341 /* Member function fields array, entries are allocated in the order they
1342 are encountered in the object file. */
1343 struct nextfnfield *fnfields;
1344
1345 /* Member function fieldlist array, contains name of possibly overloaded
1346 member function, number of overloaded member functions and a pointer
1347 to the head of the member function field chain. */
1348 struct fnfieldlist *fnfieldlists;
1349
1350 /* Number of entries in the fnfieldlists array. */
1351 int nfnfields;
1352
1353 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1354 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1355 struct typedef_field_list *typedef_field_list;
1356 unsigned typedef_field_list_count;
1357 };
1358
1359 /* One item on the queue of compilation units to read in full symbols
1360 for. */
1361 struct dwarf2_queue_item
1362 {
1363 struct dwarf2_per_cu_data *per_cu;
1364 enum language pretend_language;
1365 struct dwarf2_queue_item *next;
1366 };
1367
1368 /* The current queue. */
1369 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1370
1371 /* Loaded secondary compilation units are kept in memory until they
1372 have not been referenced for the processing of this many
1373 compilation units. Set this to zero to disable caching. Cache
1374 sizes of up to at least twenty will improve startup time for
1375 typical inter-CU-reference binaries, at an obvious memory cost. */
1376 static int dwarf_max_cache_age = 5;
1377 static void
1378 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1379 struct cmd_list_element *c, const char *value)
1380 {
1381 fprintf_filtered (file, _("The upper bound on the age of cached "
1382 "DWARF compilation units is %s.\n"),
1383 value);
1384 }
1385 \f
1386 /* local function prototypes */
1387
1388 static const char *get_section_name (const struct dwarf2_section_info *);
1389
1390 static const char *get_section_file_name (const struct dwarf2_section_info *);
1391
1392 static void dwarf2_locate_sections (bfd *, asection *, void *);
1393
1394 static void dwarf2_find_base_address (struct die_info *die,
1395 struct dwarf2_cu *cu);
1396
1397 static struct partial_symtab *create_partial_symtab
1398 (struct dwarf2_per_cu_data *per_cu, const char *name);
1399
1400 static void dwarf2_build_psymtabs_hard (struct objfile *);
1401
1402 static void scan_partial_symbols (struct partial_die_info *,
1403 CORE_ADDR *, CORE_ADDR *,
1404 int, struct dwarf2_cu *);
1405
1406 static void add_partial_symbol (struct partial_die_info *,
1407 struct dwarf2_cu *);
1408
1409 static void add_partial_namespace (struct partial_die_info *pdi,
1410 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1411 int set_addrmap, struct dwarf2_cu *cu);
1412
1413 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1414 CORE_ADDR *highpc, int set_addrmap,
1415 struct dwarf2_cu *cu);
1416
1417 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1418 struct dwarf2_cu *cu);
1419
1420 static void add_partial_subprogram (struct partial_die_info *pdi,
1421 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1422 int need_pc, struct dwarf2_cu *cu);
1423
1424 static void dwarf2_read_symtab (struct partial_symtab *,
1425 struct objfile *);
1426
1427 static void psymtab_to_symtab_1 (struct partial_symtab *);
1428
1429 static struct abbrev_info *abbrev_table_lookup_abbrev
1430 (const struct abbrev_table *, unsigned int);
1431
1432 static struct abbrev_table *abbrev_table_read_table
1433 (struct dwarf2_section_info *, sect_offset);
1434
1435 static void abbrev_table_free (struct abbrev_table *);
1436
1437 static void abbrev_table_free_cleanup (void *);
1438
1439 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1440 struct dwarf2_section_info *);
1441
1442 static void dwarf2_free_abbrev_table (void *);
1443
1444 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1445
1446 static struct partial_die_info *load_partial_dies
1447 (const struct die_reader_specs *, const gdb_byte *, int);
1448
1449 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1450 struct partial_die_info *,
1451 struct abbrev_info *,
1452 unsigned int,
1453 const gdb_byte *);
1454
1455 static struct partial_die_info *find_partial_die (sect_offset, int,
1456 struct dwarf2_cu *);
1457
1458 static void fixup_partial_die (struct partial_die_info *,
1459 struct dwarf2_cu *);
1460
1461 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1462 struct attribute *, struct attr_abbrev *,
1463 const gdb_byte *);
1464
1465 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1466
1467 static int read_1_signed_byte (bfd *, const gdb_byte *);
1468
1469 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1470
1471 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1472
1473 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1474
1475 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1476 unsigned int *);
1477
1478 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1479
1480 static LONGEST read_checked_initial_length_and_offset
1481 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1482 unsigned int *, unsigned int *);
1483
1484 static LONGEST read_offset (bfd *, const gdb_byte *,
1485 const struct comp_unit_head *,
1486 unsigned int *);
1487
1488 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1489
1490 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1491 sect_offset);
1492
1493 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1494
1495 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1496
1497 static const char *read_indirect_string (bfd *, const gdb_byte *,
1498 const struct comp_unit_head *,
1499 unsigned int *);
1500
1501 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1502
1503 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1504
1505 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1506
1507 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1508 const gdb_byte *,
1509 unsigned int *);
1510
1511 static const char *read_str_index (const struct die_reader_specs *reader,
1512 ULONGEST str_index);
1513
1514 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1515
1516 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1517 struct dwarf2_cu *);
1518
1519 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1520 unsigned int);
1521
1522 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1523 struct dwarf2_cu *cu);
1524
1525 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1526
1527 static struct die_info *die_specification (struct die_info *die,
1528 struct dwarf2_cu **);
1529
1530 static void free_line_header (struct line_header *lh);
1531
1532 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1533 struct dwarf2_cu *cu);
1534
1535 static void dwarf_decode_lines (struct line_header *, const char *,
1536 struct dwarf2_cu *, struct partial_symtab *,
1537 CORE_ADDR, int decode_mapping);
1538
1539 static void dwarf2_start_subfile (const char *, const char *);
1540
1541 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1542 const char *, const char *,
1543 CORE_ADDR);
1544
1545 static struct symbol *new_symbol (struct die_info *, struct type *,
1546 struct dwarf2_cu *);
1547
1548 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1549 struct dwarf2_cu *, struct symbol *);
1550
1551 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1552 struct dwarf2_cu *);
1553
1554 static void dwarf2_const_value_attr (const struct attribute *attr,
1555 struct type *type,
1556 const char *name,
1557 struct obstack *obstack,
1558 struct dwarf2_cu *cu, LONGEST *value,
1559 const gdb_byte **bytes,
1560 struct dwarf2_locexpr_baton **baton);
1561
1562 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1563
1564 static int need_gnat_info (struct dwarf2_cu *);
1565
1566 static struct type *die_descriptive_type (struct die_info *,
1567 struct dwarf2_cu *);
1568
1569 static void set_descriptive_type (struct type *, struct die_info *,
1570 struct dwarf2_cu *);
1571
1572 static struct type *die_containing_type (struct die_info *,
1573 struct dwarf2_cu *);
1574
1575 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1576 struct dwarf2_cu *);
1577
1578 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1579
1580 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1581
1582 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1583
1584 static char *typename_concat (struct obstack *obs, const char *prefix,
1585 const char *suffix, int physname,
1586 struct dwarf2_cu *cu);
1587
1588 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1589
1590 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1591
1592 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1593
1594 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1595
1596 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1597
1598 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1599 struct dwarf2_cu *, struct partial_symtab *);
1600
1601 static int dwarf2_get_pc_bounds (struct die_info *,
1602 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1603 struct partial_symtab *);
1604
1605 static void get_scope_pc_bounds (struct die_info *,
1606 CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *);
1608
1609 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1610 CORE_ADDR, struct dwarf2_cu *);
1611
1612 static void dwarf2_add_field (struct field_info *, struct die_info *,
1613 struct dwarf2_cu *);
1614
1615 static void dwarf2_attach_fields_to_type (struct field_info *,
1616 struct type *, struct dwarf2_cu *);
1617
1618 static void dwarf2_add_member_fn (struct field_info *,
1619 struct die_info *, struct type *,
1620 struct dwarf2_cu *);
1621
1622 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1623 struct type *,
1624 struct dwarf2_cu *);
1625
1626 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1627
1628 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1629
1630 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1631
1632 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1633
1634 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1635
1636 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1637
1638 static struct type *read_module_type (struct die_info *die,
1639 struct dwarf2_cu *cu);
1640
1641 static const char *namespace_name (struct die_info *die,
1642 int *is_anonymous, struct dwarf2_cu *);
1643
1644 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1645
1646 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1647
1648 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1649 struct dwarf2_cu *);
1650
1651 static struct die_info *read_die_and_siblings_1
1652 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1653 struct die_info *);
1654
1655 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1656 const gdb_byte *info_ptr,
1657 const gdb_byte **new_info_ptr,
1658 struct die_info *parent);
1659
1660 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1661 struct die_info **, const gdb_byte *,
1662 int *, int);
1663
1664 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1665 struct die_info **, const gdb_byte *,
1666 int *);
1667
1668 static void process_die (struct die_info *, struct dwarf2_cu *);
1669
1670 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1671 struct obstack *);
1672
1673 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1674
1675 static const char *dwarf2_full_name (const char *name,
1676 struct die_info *die,
1677 struct dwarf2_cu *cu);
1678
1679 static const char *dwarf2_physname (const char *name, struct die_info *die,
1680 struct dwarf2_cu *cu);
1681
1682 static struct die_info *dwarf2_extension (struct die_info *die,
1683 struct dwarf2_cu **);
1684
1685 static const char *dwarf_tag_name (unsigned int);
1686
1687 static const char *dwarf_attr_name (unsigned int);
1688
1689 static const char *dwarf_form_name (unsigned int);
1690
1691 static char *dwarf_bool_name (unsigned int);
1692
1693 static const char *dwarf_type_encoding_name (unsigned int);
1694
1695 static struct die_info *sibling_die (struct die_info *);
1696
1697 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1698
1699 static void dump_die_for_error (struct die_info *);
1700
1701 static void dump_die_1 (struct ui_file *, int level, int max_level,
1702 struct die_info *);
1703
1704 /*static*/ void dump_die (struct die_info *, int max_level);
1705
1706 static void store_in_ref_table (struct die_info *,
1707 struct dwarf2_cu *);
1708
1709 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1710
1711 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1712
1713 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1714 const struct attribute *,
1715 struct dwarf2_cu **);
1716
1717 static struct die_info *follow_die_ref (struct die_info *,
1718 const struct attribute *,
1719 struct dwarf2_cu **);
1720
1721 static struct die_info *follow_die_sig (struct die_info *,
1722 const struct attribute *,
1723 struct dwarf2_cu **);
1724
1725 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1726 struct dwarf2_cu *);
1727
1728 static struct type *get_DW_AT_signature_type (struct die_info *,
1729 const struct attribute *,
1730 struct dwarf2_cu *);
1731
1732 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1733
1734 static void read_signatured_type (struct signatured_type *);
1735
1736 /* memory allocation interface */
1737
1738 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1739
1740 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1741
1742 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1743
1744 static int attr_form_is_block (const struct attribute *);
1745
1746 static int attr_form_is_section_offset (const struct attribute *);
1747
1748 static int attr_form_is_constant (const struct attribute *);
1749
1750 static int attr_form_is_ref (const struct attribute *);
1751
1752 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1753 struct dwarf2_loclist_baton *baton,
1754 const struct attribute *attr);
1755
1756 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1757 struct symbol *sym,
1758 struct dwarf2_cu *cu,
1759 int is_block);
1760
1761 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1762 const gdb_byte *info_ptr,
1763 struct abbrev_info *abbrev);
1764
1765 static void free_stack_comp_unit (void *);
1766
1767 static hashval_t partial_die_hash (const void *item);
1768
1769 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1770
1771 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1772 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1773
1774 static void init_one_comp_unit (struct dwarf2_cu *cu,
1775 struct dwarf2_per_cu_data *per_cu);
1776
1777 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1778 struct die_info *comp_unit_die,
1779 enum language pretend_language);
1780
1781 static void free_heap_comp_unit (void *);
1782
1783 static void free_cached_comp_units (void *);
1784
1785 static void age_cached_comp_units (void);
1786
1787 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1788
1789 static struct type *set_die_type (struct die_info *, struct type *,
1790 struct dwarf2_cu *);
1791
1792 static void create_all_comp_units (struct objfile *);
1793
1794 static int create_all_type_units (struct objfile *);
1795
1796 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1797 enum language);
1798
1799 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1800 enum language);
1801
1802 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1803 enum language);
1804
1805 static void dwarf2_add_dependence (struct dwarf2_cu *,
1806 struct dwarf2_per_cu_data *);
1807
1808 static void dwarf2_mark (struct dwarf2_cu *);
1809
1810 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1811
1812 static struct type *get_die_type_at_offset (sect_offset,
1813 struct dwarf2_per_cu_data *);
1814
1815 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1816
1817 static void dwarf2_release_queue (void *dummy);
1818
1819 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1820 enum language pretend_language);
1821
1822 static void process_queue (void);
1823
1824 static void find_file_and_directory (struct die_info *die,
1825 struct dwarf2_cu *cu,
1826 const char **name, const char **comp_dir);
1827
1828 static char *file_full_name (int file, struct line_header *lh,
1829 const char *comp_dir);
1830
1831 static const gdb_byte *read_and_check_comp_unit_head
1832 (struct comp_unit_head *header,
1833 struct dwarf2_section_info *section,
1834 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1835 int is_debug_types_section);
1836
1837 static void init_cutu_and_read_dies
1838 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1839 int use_existing_cu, int keep,
1840 die_reader_func_ftype *die_reader_func, void *data);
1841
1842 static void init_cutu_and_read_dies_simple
1843 (struct dwarf2_per_cu_data *this_cu,
1844 die_reader_func_ftype *die_reader_func, void *data);
1845
1846 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1847
1848 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1849
1850 static struct dwo_unit *lookup_dwo_unit_in_dwp
1851 (struct dwp_file *dwp_file, const char *comp_dir,
1852 ULONGEST signature, int is_debug_types);
1853
1854 static struct dwp_file *get_dwp_file (void);
1855
1856 static struct dwo_unit *lookup_dwo_comp_unit
1857 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1858
1859 static struct dwo_unit *lookup_dwo_type_unit
1860 (struct signatured_type *, const char *, const char *);
1861
1862 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1863
1864 static void free_dwo_file_cleanup (void *);
1865
1866 static void process_cu_includes (void);
1867
1868 static void check_producer (struct dwarf2_cu *cu);
1869
1870 static void free_line_header_voidp (void *arg);
1871 \f
1872 /* Various complaints about symbol reading that don't abort the process. */
1873
1874 static void
1875 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1876 {
1877 complaint (&symfile_complaints,
1878 _("statement list doesn't fit in .debug_line section"));
1879 }
1880
1881 static void
1882 dwarf2_debug_line_missing_file_complaint (void)
1883 {
1884 complaint (&symfile_complaints,
1885 _(".debug_line section has line data without a file"));
1886 }
1887
1888 static void
1889 dwarf2_debug_line_missing_end_sequence_complaint (void)
1890 {
1891 complaint (&symfile_complaints,
1892 _(".debug_line section has line "
1893 "program sequence without an end"));
1894 }
1895
1896 static void
1897 dwarf2_complex_location_expr_complaint (void)
1898 {
1899 complaint (&symfile_complaints, _("location expression too complex"));
1900 }
1901
1902 static void
1903 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1904 int arg3)
1905 {
1906 complaint (&symfile_complaints,
1907 _("const value length mismatch for '%s', got %d, expected %d"),
1908 arg1, arg2, arg3);
1909 }
1910
1911 static void
1912 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1913 {
1914 complaint (&symfile_complaints,
1915 _("debug info runs off end of %s section"
1916 " [in module %s]"),
1917 get_section_name (section),
1918 get_section_file_name (section));
1919 }
1920
1921 static void
1922 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1923 {
1924 complaint (&symfile_complaints,
1925 _("macro debug info contains a "
1926 "malformed macro definition:\n`%s'"),
1927 arg1);
1928 }
1929
1930 static void
1931 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1932 {
1933 complaint (&symfile_complaints,
1934 _("invalid attribute class or form for '%s' in '%s'"),
1935 arg1, arg2);
1936 }
1937
1938 /* Hash function for line_header_hash. */
1939
1940 static hashval_t
1941 line_header_hash (const struct line_header *ofs)
1942 {
1943 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1944 }
1945
1946 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1947
1948 static hashval_t
1949 line_header_hash_voidp (const void *item)
1950 {
1951 const struct line_header *ofs = item;
1952
1953 return line_header_hash (ofs);
1954 }
1955
1956 /* Equality function for line_header_hash. */
1957
1958 static int
1959 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1960 {
1961 const struct line_header *ofs_lhs = item_lhs;
1962 const struct line_header *ofs_rhs = item_rhs;
1963
1964 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1965 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1966 }
1967
1968 \f
1969 #if WORDS_BIGENDIAN
1970
1971 /* Convert VALUE between big- and little-endian. */
1972 static offset_type
1973 byte_swap (offset_type value)
1974 {
1975 offset_type result;
1976
1977 result = (value & 0xff) << 24;
1978 result |= (value & 0xff00) << 8;
1979 result |= (value & 0xff0000) >> 8;
1980 result |= (value & 0xff000000) >> 24;
1981 return result;
1982 }
1983
1984 #define MAYBE_SWAP(V) byte_swap (V)
1985
1986 #else
1987 #define MAYBE_SWAP(V) (V)
1988 #endif /* WORDS_BIGENDIAN */
1989
1990 /* Read the given attribute value as an address, taking the attribute's
1991 form into account. */
1992
1993 static CORE_ADDR
1994 attr_value_as_address (struct attribute *attr)
1995 {
1996 CORE_ADDR addr;
1997
1998 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1999 {
2000 /* Aside from a few clearly defined exceptions, attributes that
2001 contain an address must always be in DW_FORM_addr form.
2002 Unfortunately, some compilers happen to be violating this
2003 requirement by encoding addresses using other forms, such
2004 as DW_FORM_data4 for example. For those broken compilers,
2005 we try to do our best, without any guarantee of success,
2006 to interpret the address correctly. It would also be nice
2007 to generate a complaint, but that would require us to maintain
2008 a list of legitimate cases where a non-address form is allowed,
2009 as well as update callers to pass in at least the CU's DWARF
2010 version. This is more overhead than what we're willing to
2011 expand for a pretty rare case. */
2012 addr = DW_UNSND (attr);
2013 }
2014 else
2015 addr = DW_ADDR (attr);
2016
2017 return addr;
2018 }
2019
2020 /* The suffix for an index file. */
2021 #define INDEX_SUFFIX ".gdb-index"
2022
2023 /* Try to locate the sections we need for DWARF 2 debugging
2024 information and return true if we have enough to do something.
2025 NAMES points to the dwarf2 section names, or is NULL if the standard
2026 ELF names are used. */
2027
2028 int
2029 dwarf2_has_info (struct objfile *objfile,
2030 const struct dwarf2_debug_sections *names)
2031 {
2032 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2033 if (!dwarf2_per_objfile)
2034 {
2035 /* Initialize per-objfile state. */
2036 struct dwarf2_per_objfile *data
2037 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
2038
2039 memset (data, 0, sizeof (*data));
2040 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2041 dwarf2_per_objfile = data;
2042
2043 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2044 (void *) names);
2045 dwarf2_per_objfile->objfile = objfile;
2046 }
2047 return (!dwarf2_per_objfile->info.is_virtual
2048 && dwarf2_per_objfile->info.s.asection != NULL
2049 && !dwarf2_per_objfile->abbrev.is_virtual
2050 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2051 }
2052
2053 /* Return the containing section of virtual section SECTION. */
2054
2055 static struct dwarf2_section_info *
2056 get_containing_section (const struct dwarf2_section_info *section)
2057 {
2058 gdb_assert (section->is_virtual);
2059 return section->s.containing_section;
2060 }
2061
2062 /* Return the bfd owner of SECTION. */
2063
2064 static struct bfd *
2065 get_section_bfd_owner (const struct dwarf2_section_info *section)
2066 {
2067 if (section->is_virtual)
2068 {
2069 section = get_containing_section (section);
2070 gdb_assert (!section->is_virtual);
2071 }
2072 return section->s.asection->owner;
2073 }
2074
2075 /* Return the bfd section of SECTION.
2076 Returns NULL if the section is not present. */
2077
2078 static asection *
2079 get_section_bfd_section (const struct dwarf2_section_info *section)
2080 {
2081 if (section->is_virtual)
2082 {
2083 section = get_containing_section (section);
2084 gdb_assert (!section->is_virtual);
2085 }
2086 return section->s.asection;
2087 }
2088
2089 /* Return the name of SECTION. */
2090
2091 static const char *
2092 get_section_name (const struct dwarf2_section_info *section)
2093 {
2094 asection *sectp = get_section_bfd_section (section);
2095
2096 gdb_assert (sectp != NULL);
2097 return bfd_section_name (get_section_bfd_owner (section), sectp);
2098 }
2099
2100 /* Return the name of the file SECTION is in. */
2101
2102 static const char *
2103 get_section_file_name (const struct dwarf2_section_info *section)
2104 {
2105 bfd *abfd = get_section_bfd_owner (section);
2106
2107 return bfd_get_filename (abfd);
2108 }
2109
2110 /* Return the id of SECTION.
2111 Returns 0 if SECTION doesn't exist. */
2112
2113 static int
2114 get_section_id (const struct dwarf2_section_info *section)
2115 {
2116 asection *sectp = get_section_bfd_section (section);
2117
2118 if (sectp == NULL)
2119 return 0;
2120 return sectp->id;
2121 }
2122
2123 /* Return the flags of SECTION.
2124 SECTION (or containing section if this is a virtual section) must exist. */
2125
2126 static int
2127 get_section_flags (const struct dwarf2_section_info *section)
2128 {
2129 asection *sectp = get_section_bfd_section (section);
2130
2131 gdb_assert (sectp != NULL);
2132 return bfd_get_section_flags (sectp->owner, sectp);
2133 }
2134
2135 /* When loading sections, we look either for uncompressed section or for
2136 compressed section names. */
2137
2138 static int
2139 section_is_p (const char *section_name,
2140 const struct dwarf2_section_names *names)
2141 {
2142 if (names->normal != NULL
2143 && strcmp (section_name, names->normal) == 0)
2144 return 1;
2145 if (names->compressed != NULL
2146 && strcmp (section_name, names->compressed) == 0)
2147 return 1;
2148 return 0;
2149 }
2150
2151 /* This function is mapped across the sections and remembers the
2152 offset and size of each of the debugging sections we are interested
2153 in. */
2154
2155 static void
2156 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2157 {
2158 const struct dwarf2_debug_sections *names;
2159 flagword aflag = bfd_get_section_flags (abfd, sectp);
2160
2161 if (vnames == NULL)
2162 names = &dwarf2_elf_names;
2163 else
2164 names = (const struct dwarf2_debug_sections *) vnames;
2165
2166 if ((aflag & SEC_HAS_CONTENTS) == 0)
2167 {
2168 }
2169 else if (section_is_p (sectp->name, &names->info))
2170 {
2171 dwarf2_per_objfile->info.s.asection = sectp;
2172 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2173 }
2174 else if (section_is_p (sectp->name, &names->abbrev))
2175 {
2176 dwarf2_per_objfile->abbrev.s.asection = sectp;
2177 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2178 }
2179 else if (section_is_p (sectp->name, &names->line))
2180 {
2181 dwarf2_per_objfile->line.s.asection = sectp;
2182 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2183 }
2184 else if (section_is_p (sectp->name, &names->loc))
2185 {
2186 dwarf2_per_objfile->loc.s.asection = sectp;
2187 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2188 }
2189 else if (section_is_p (sectp->name, &names->macinfo))
2190 {
2191 dwarf2_per_objfile->macinfo.s.asection = sectp;
2192 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2193 }
2194 else if (section_is_p (sectp->name, &names->macro))
2195 {
2196 dwarf2_per_objfile->macro.s.asection = sectp;
2197 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2198 }
2199 else if (section_is_p (sectp->name, &names->str))
2200 {
2201 dwarf2_per_objfile->str.s.asection = sectp;
2202 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2203 }
2204 else if (section_is_p (sectp->name, &names->addr))
2205 {
2206 dwarf2_per_objfile->addr.s.asection = sectp;
2207 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2208 }
2209 else if (section_is_p (sectp->name, &names->frame))
2210 {
2211 dwarf2_per_objfile->frame.s.asection = sectp;
2212 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2213 }
2214 else if (section_is_p (sectp->name, &names->eh_frame))
2215 {
2216 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2217 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2218 }
2219 else if (section_is_p (sectp->name, &names->ranges))
2220 {
2221 dwarf2_per_objfile->ranges.s.asection = sectp;
2222 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2223 }
2224 else if (section_is_p (sectp->name, &names->types))
2225 {
2226 struct dwarf2_section_info type_section;
2227
2228 memset (&type_section, 0, sizeof (type_section));
2229 type_section.s.asection = sectp;
2230 type_section.size = bfd_get_section_size (sectp);
2231
2232 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2233 &type_section);
2234 }
2235 else if (section_is_p (sectp->name, &names->gdb_index))
2236 {
2237 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2238 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2239 }
2240
2241 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2242 && bfd_section_vma (abfd, sectp) == 0)
2243 dwarf2_per_objfile->has_section_at_zero = 1;
2244 }
2245
2246 /* A helper function that decides whether a section is empty,
2247 or not present. */
2248
2249 static int
2250 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2251 {
2252 if (section->is_virtual)
2253 return section->size == 0;
2254 return section->s.asection == NULL || section->size == 0;
2255 }
2256
2257 /* Read the contents of the section INFO.
2258 OBJFILE is the main object file, but not necessarily the file where
2259 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2260 of the DWO file.
2261 If the section is compressed, uncompress it before returning. */
2262
2263 static void
2264 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2265 {
2266 asection *sectp;
2267 bfd *abfd;
2268 gdb_byte *buf, *retbuf;
2269
2270 if (info->readin)
2271 return;
2272 info->buffer = NULL;
2273 info->readin = 1;
2274
2275 if (dwarf2_section_empty_p (info))
2276 return;
2277
2278 sectp = get_section_bfd_section (info);
2279
2280 /* If this is a virtual section we need to read in the real one first. */
2281 if (info->is_virtual)
2282 {
2283 struct dwarf2_section_info *containing_section =
2284 get_containing_section (info);
2285
2286 gdb_assert (sectp != NULL);
2287 if ((sectp->flags & SEC_RELOC) != 0)
2288 {
2289 error (_("Dwarf Error: DWP format V2 with relocations is not"
2290 " supported in section %s [in module %s]"),
2291 get_section_name (info), get_section_file_name (info));
2292 }
2293 dwarf2_read_section (objfile, containing_section);
2294 /* Other code should have already caught virtual sections that don't
2295 fit. */
2296 gdb_assert (info->virtual_offset + info->size
2297 <= containing_section->size);
2298 /* If the real section is empty or there was a problem reading the
2299 section we shouldn't get here. */
2300 gdb_assert (containing_section->buffer != NULL);
2301 info->buffer = containing_section->buffer + info->virtual_offset;
2302 return;
2303 }
2304
2305 /* If the section has relocations, we must read it ourselves.
2306 Otherwise we attach it to the BFD. */
2307 if ((sectp->flags & SEC_RELOC) == 0)
2308 {
2309 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2310 return;
2311 }
2312
2313 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2314 info->buffer = buf;
2315
2316 /* When debugging .o files, we may need to apply relocations; see
2317 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2318 We never compress sections in .o files, so we only need to
2319 try this when the section is not compressed. */
2320 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2321 if (retbuf != NULL)
2322 {
2323 info->buffer = retbuf;
2324 return;
2325 }
2326
2327 abfd = get_section_bfd_owner (info);
2328 gdb_assert (abfd != NULL);
2329
2330 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2331 || bfd_bread (buf, info->size, abfd) != info->size)
2332 {
2333 error (_("Dwarf Error: Can't read DWARF data"
2334 " in section %s [in module %s]"),
2335 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2336 }
2337 }
2338
2339 /* A helper function that returns the size of a section in a safe way.
2340 If you are positive that the section has been read before using the
2341 size, then it is safe to refer to the dwarf2_section_info object's
2342 "size" field directly. In other cases, you must call this
2343 function, because for compressed sections the size field is not set
2344 correctly until the section has been read. */
2345
2346 static bfd_size_type
2347 dwarf2_section_size (struct objfile *objfile,
2348 struct dwarf2_section_info *info)
2349 {
2350 if (!info->readin)
2351 dwarf2_read_section (objfile, info);
2352 return info->size;
2353 }
2354
2355 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2356 SECTION_NAME. */
2357
2358 void
2359 dwarf2_get_section_info (struct objfile *objfile,
2360 enum dwarf2_section_enum sect,
2361 asection **sectp, const gdb_byte **bufp,
2362 bfd_size_type *sizep)
2363 {
2364 struct dwarf2_per_objfile *data
2365 = objfile_data (objfile, dwarf2_objfile_data_key);
2366 struct dwarf2_section_info *info;
2367
2368 /* We may see an objfile without any DWARF, in which case we just
2369 return nothing. */
2370 if (data == NULL)
2371 {
2372 *sectp = NULL;
2373 *bufp = NULL;
2374 *sizep = 0;
2375 return;
2376 }
2377 switch (sect)
2378 {
2379 case DWARF2_DEBUG_FRAME:
2380 info = &data->frame;
2381 break;
2382 case DWARF2_EH_FRAME:
2383 info = &data->eh_frame;
2384 break;
2385 default:
2386 gdb_assert_not_reached ("unexpected section");
2387 }
2388
2389 dwarf2_read_section (objfile, info);
2390
2391 *sectp = get_section_bfd_section (info);
2392 *bufp = info->buffer;
2393 *sizep = info->size;
2394 }
2395
2396 /* A helper function to find the sections for a .dwz file. */
2397
2398 static void
2399 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2400 {
2401 struct dwz_file *dwz_file = arg;
2402
2403 /* Note that we only support the standard ELF names, because .dwz
2404 is ELF-only (at the time of writing). */
2405 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2406 {
2407 dwz_file->abbrev.s.asection = sectp;
2408 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2409 }
2410 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2411 {
2412 dwz_file->info.s.asection = sectp;
2413 dwz_file->info.size = bfd_get_section_size (sectp);
2414 }
2415 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2416 {
2417 dwz_file->str.s.asection = sectp;
2418 dwz_file->str.size = bfd_get_section_size (sectp);
2419 }
2420 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2421 {
2422 dwz_file->line.s.asection = sectp;
2423 dwz_file->line.size = bfd_get_section_size (sectp);
2424 }
2425 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2426 {
2427 dwz_file->macro.s.asection = sectp;
2428 dwz_file->macro.size = bfd_get_section_size (sectp);
2429 }
2430 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2431 {
2432 dwz_file->gdb_index.s.asection = sectp;
2433 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2434 }
2435 }
2436
2437 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2438 there is no .gnu_debugaltlink section in the file. Error if there
2439 is such a section but the file cannot be found. */
2440
2441 static struct dwz_file *
2442 dwarf2_get_dwz_file (void)
2443 {
2444 bfd *dwz_bfd;
2445 char *data;
2446 struct cleanup *cleanup;
2447 const char *filename;
2448 struct dwz_file *result;
2449 bfd_size_type buildid_len_arg;
2450 size_t buildid_len;
2451 bfd_byte *buildid;
2452
2453 if (dwarf2_per_objfile->dwz_file != NULL)
2454 return dwarf2_per_objfile->dwz_file;
2455
2456 bfd_set_error (bfd_error_no_error);
2457 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2458 &buildid_len_arg, &buildid);
2459 if (data == NULL)
2460 {
2461 if (bfd_get_error () == bfd_error_no_error)
2462 return NULL;
2463 error (_("could not read '.gnu_debugaltlink' section: %s"),
2464 bfd_errmsg (bfd_get_error ()));
2465 }
2466 cleanup = make_cleanup (xfree, data);
2467 make_cleanup (xfree, buildid);
2468
2469 buildid_len = (size_t) buildid_len_arg;
2470
2471 filename = (const char *) data;
2472 if (!IS_ABSOLUTE_PATH (filename))
2473 {
2474 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2475 char *rel;
2476
2477 make_cleanup (xfree, abs);
2478 abs = ldirname (abs);
2479 make_cleanup (xfree, abs);
2480
2481 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2482 make_cleanup (xfree, rel);
2483 filename = rel;
2484 }
2485
2486 /* First try the file name given in the section. If that doesn't
2487 work, try to use the build-id instead. */
2488 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2489 if (dwz_bfd != NULL)
2490 {
2491 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2492 {
2493 gdb_bfd_unref (dwz_bfd);
2494 dwz_bfd = NULL;
2495 }
2496 }
2497
2498 if (dwz_bfd == NULL)
2499 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2500
2501 if (dwz_bfd == NULL)
2502 error (_("could not find '.gnu_debugaltlink' file for %s"),
2503 objfile_name (dwarf2_per_objfile->objfile));
2504
2505 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2506 struct dwz_file);
2507 result->dwz_bfd = dwz_bfd;
2508
2509 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2510
2511 do_cleanups (cleanup);
2512
2513 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2514 dwarf2_per_objfile->dwz_file = result;
2515 return result;
2516 }
2517 \f
2518 /* DWARF quick_symbols_functions support. */
2519
2520 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2521 unique line tables, so we maintain a separate table of all .debug_line
2522 derived entries to support the sharing.
2523 All the quick functions need is the list of file names. We discard the
2524 line_header when we're done and don't need to record it here. */
2525 struct quick_file_names
2526 {
2527 /* The data used to construct the hash key. */
2528 struct stmt_list_hash hash;
2529
2530 /* The number of entries in file_names, real_names. */
2531 unsigned int num_file_names;
2532
2533 /* The file names from the line table, after being run through
2534 file_full_name. */
2535 const char **file_names;
2536
2537 /* The file names from the line table after being run through
2538 gdb_realpath. These are computed lazily. */
2539 const char **real_names;
2540 };
2541
2542 /* When using the index (and thus not using psymtabs), each CU has an
2543 object of this type. This is used to hold information needed by
2544 the various "quick" methods. */
2545 struct dwarf2_per_cu_quick_data
2546 {
2547 /* The file table. This can be NULL if there was no file table
2548 or it's currently not read in.
2549 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2550 struct quick_file_names *file_names;
2551
2552 /* The corresponding symbol table. This is NULL if symbols for this
2553 CU have not yet been read. */
2554 struct compunit_symtab *compunit_symtab;
2555
2556 /* A temporary mark bit used when iterating over all CUs in
2557 expand_symtabs_matching. */
2558 unsigned int mark : 1;
2559
2560 /* True if we've tried to read the file table and found there isn't one.
2561 There will be no point in trying to read it again next time. */
2562 unsigned int no_file_data : 1;
2563 };
2564
2565 /* Utility hash function for a stmt_list_hash. */
2566
2567 static hashval_t
2568 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2569 {
2570 hashval_t v = 0;
2571
2572 if (stmt_list_hash->dwo_unit != NULL)
2573 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2574 v += stmt_list_hash->line_offset.sect_off;
2575 return v;
2576 }
2577
2578 /* Utility equality function for a stmt_list_hash. */
2579
2580 static int
2581 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2582 const struct stmt_list_hash *rhs)
2583 {
2584 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2585 return 0;
2586 if (lhs->dwo_unit != NULL
2587 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2588 return 0;
2589
2590 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2591 }
2592
2593 /* Hash function for a quick_file_names. */
2594
2595 static hashval_t
2596 hash_file_name_entry (const void *e)
2597 {
2598 const struct quick_file_names *file_data = e;
2599
2600 return hash_stmt_list_entry (&file_data->hash);
2601 }
2602
2603 /* Equality function for a quick_file_names. */
2604
2605 static int
2606 eq_file_name_entry (const void *a, const void *b)
2607 {
2608 const struct quick_file_names *ea = a;
2609 const struct quick_file_names *eb = b;
2610
2611 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2612 }
2613
2614 /* Delete function for a quick_file_names. */
2615
2616 static void
2617 delete_file_name_entry (void *e)
2618 {
2619 struct quick_file_names *file_data = e;
2620 int i;
2621
2622 for (i = 0; i < file_data->num_file_names; ++i)
2623 {
2624 xfree ((void*) file_data->file_names[i]);
2625 if (file_data->real_names)
2626 xfree ((void*) file_data->real_names[i]);
2627 }
2628
2629 /* The space for the struct itself lives on objfile_obstack,
2630 so we don't free it here. */
2631 }
2632
2633 /* Create a quick_file_names hash table. */
2634
2635 static htab_t
2636 create_quick_file_names_table (unsigned int nr_initial_entries)
2637 {
2638 return htab_create_alloc (nr_initial_entries,
2639 hash_file_name_entry, eq_file_name_entry,
2640 delete_file_name_entry, xcalloc, xfree);
2641 }
2642
2643 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2644 have to be created afterwards. You should call age_cached_comp_units after
2645 processing PER_CU->CU. dw2_setup must have been already called. */
2646
2647 static void
2648 load_cu (struct dwarf2_per_cu_data *per_cu)
2649 {
2650 if (per_cu->is_debug_types)
2651 load_full_type_unit (per_cu);
2652 else
2653 load_full_comp_unit (per_cu, language_minimal);
2654
2655 gdb_assert (per_cu->cu != NULL);
2656
2657 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2658 }
2659
2660 /* Read in the symbols for PER_CU. */
2661
2662 static void
2663 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2664 {
2665 struct cleanup *back_to;
2666
2667 /* Skip type_unit_groups, reading the type units they contain
2668 is handled elsewhere. */
2669 if (IS_TYPE_UNIT_GROUP (per_cu))
2670 return;
2671
2672 back_to = make_cleanup (dwarf2_release_queue, NULL);
2673
2674 if (dwarf2_per_objfile->using_index
2675 ? per_cu->v.quick->compunit_symtab == NULL
2676 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2677 {
2678 queue_comp_unit (per_cu, language_minimal);
2679 load_cu (per_cu);
2680
2681 /* If we just loaded a CU from a DWO, and we're working with an index
2682 that may badly handle TUs, load all the TUs in that DWO as well.
2683 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2684 if (!per_cu->is_debug_types
2685 && per_cu->cu->dwo_unit != NULL
2686 && dwarf2_per_objfile->index_table != NULL
2687 && dwarf2_per_objfile->index_table->version <= 7
2688 /* DWP files aren't supported yet. */
2689 && get_dwp_file () == NULL)
2690 queue_and_load_all_dwo_tus (per_cu);
2691 }
2692
2693 process_queue ();
2694
2695 /* Age the cache, releasing compilation units that have not
2696 been used recently. */
2697 age_cached_comp_units ();
2698
2699 do_cleanups (back_to);
2700 }
2701
2702 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2703 the objfile from which this CU came. Returns the resulting symbol
2704 table. */
2705
2706 static struct compunit_symtab *
2707 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2708 {
2709 gdb_assert (dwarf2_per_objfile->using_index);
2710 if (!per_cu->v.quick->compunit_symtab)
2711 {
2712 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2713 increment_reading_symtab ();
2714 dw2_do_instantiate_symtab (per_cu);
2715 process_cu_includes ();
2716 do_cleanups (back_to);
2717 }
2718
2719 return per_cu->v.quick->compunit_symtab;
2720 }
2721
2722 /* Return the CU/TU given its index.
2723
2724 This is intended for loops like:
2725
2726 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2727 + dwarf2_per_objfile->n_type_units); ++i)
2728 {
2729 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2730
2731 ...;
2732 }
2733 */
2734
2735 static struct dwarf2_per_cu_data *
2736 dw2_get_cutu (int index)
2737 {
2738 if (index >= dwarf2_per_objfile->n_comp_units)
2739 {
2740 index -= dwarf2_per_objfile->n_comp_units;
2741 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2742 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2743 }
2744
2745 return dwarf2_per_objfile->all_comp_units[index];
2746 }
2747
2748 /* Return the CU given its index.
2749 This differs from dw2_get_cutu in that it's for when you know INDEX
2750 refers to a CU. */
2751
2752 static struct dwarf2_per_cu_data *
2753 dw2_get_cu (int index)
2754 {
2755 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2756
2757 return dwarf2_per_objfile->all_comp_units[index];
2758 }
2759
2760 /* A helper for create_cus_from_index that handles a given list of
2761 CUs. */
2762
2763 static void
2764 create_cus_from_index_list (struct objfile *objfile,
2765 const gdb_byte *cu_list, offset_type n_elements,
2766 struct dwarf2_section_info *section,
2767 int is_dwz,
2768 int base_offset)
2769 {
2770 offset_type i;
2771
2772 for (i = 0; i < n_elements; i += 2)
2773 {
2774 struct dwarf2_per_cu_data *the_cu;
2775 ULONGEST offset, length;
2776
2777 gdb_static_assert (sizeof (ULONGEST) >= 8);
2778 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2779 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2780 cu_list += 2 * 8;
2781
2782 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2783 struct dwarf2_per_cu_data);
2784 the_cu->offset.sect_off = offset;
2785 the_cu->length = length;
2786 the_cu->objfile = objfile;
2787 the_cu->section = section;
2788 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2789 struct dwarf2_per_cu_quick_data);
2790 the_cu->is_dwz = is_dwz;
2791 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2792 }
2793 }
2794
2795 /* Read the CU list from the mapped index, and use it to create all
2796 the CU objects for this objfile. */
2797
2798 static void
2799 create_cus_from_index (struct objfile *objfile,
2800 const gdb_byte *cu_list, offset_type cu_list_elements,
2801 const gdb_byte *dwz_list, offset_type dwz_elements)
2802 {
2803 struct dwz_file *dwz;
2804
2805 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2806 dwarf2_per_objfile->all_comp_units
2807 = obstack_alloc (&objfile->objfile_obstack,
2808 dwarf2_per_objfile->n_comp_units
2809 * sizeof (struct dwarf2_per_cu_data *));
2810
2811 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2812 &dwarf2_per_objfile->info, 0, 0);
2813
2814 if (dwz_elements == 0)
2815 return;
2816
2817 dwz = dwarf2_get_dwz_file ();
2818 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2819 cu_list_elements / 2);
2820 }
2821
2822 /* Create the signatured type hash table from the index. */
2823
2824 static void
2825 create_signatured_type_table_from_index (struct objfile *objfile,
2826 struct dwarf2_section_info *section,
2827 const gdb_byte *bytes,
2828 offset_type elements)
2829 {
2830 offset_type i;
2831 htab_t sig_types_hash;
2832
2833 dwarf2_per_objfile->n_type_units
2834 = dwarf2_per_objfile->n_allocated_type_units
2835 = elements / 3;
2836 dwarf2_per_objfile->all_type_units
2837 = xmalloc (dwarf2_per_objfile->n_type_units
2838 * sizeof (struct signatured_type *));
2839
2840 sig_types_hash = allocate_signatured_type_table (objfile);
2841
2842 for (i = 0; i < elements; i += 3)
2843 {
2844 struct signatured_type *sig_type;
2845 ULONGEST offset, type_offset_in_tu, signature;
2846 void **slot;
2847
2848 gdb_static_assert (sizeof (ULONGEST) >= 8);
2849 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2850 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2851 BFD_ENDIAN_LITTLE);
2852 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2853 bytes += 3 * 8;
2854
2855 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2856 struct signatured_type);
2857 sig_type->signature = signature;
2858 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2859 sig_type->per_cu.is_debug_types = 1;
2860 sig_type->per_cu.section = section;
2861 sig_type->per_cu.offset.sect_off = offset;
2862 sig_type->per_cu.objfile = objfile;
2863 sig_type->per_cu.v.quick
2864 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2865 struct dwarf2_per_cu_quick_data);
2866
2867 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2868 *slot = sig_type;
2869
2870 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2871 }
2872
2873 dwarf2_per_objfile->signatured_types = sig_types_hash;
2874 }
2875
2876 /* Read the address map data from the mapped index, and use it to
2877 populate the objfile's psymtabs_addrmap. */
2878
2879 static void
2880 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2881 {
2882 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2883 const gdb_byte *iter, *end;
2884 struct obstack temp_obstack;
2885 struct addrmap *mutable_map;
2886 struct cleanup *cleanup;
2887 CORE_ADDR baseaddr;
2888
2889 obstack_init (&temp_obstack);
2890 cleanup = make_cleanup_obstack_free (&temp_obstack);
2891 mutable_map = addrmap_create_mutable (&temp_obstack);
2892
2893 iter = index->address_table;
2894 end = iter + index->address_table_size;
2895
2896 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2897
2898 while (iter < end)
2899 {
2900 ULONGEST hi, lo, cu_index;
2901 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2902 iter += 8;
2903 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2904 iter += 8;
2905 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2906 iter += 4;
2907
2908 if (lo > hi)
2909 {
2910 complaint (&symfile_complaints,
2911 _(".gdb_index address table has invalid range (%s - %s)"),
2912 hex_string (lo), hex_string (hi));
2913 continue;
2914 }
2915
2916 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2917 {
2918 complaint (&symfile_complaints,
2919 _(".gdb_index address table has invalid CU number %u"),
2920 (unsigned) cu_index);
2921 continue;
2922 }
2923
2924 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2925 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2926 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2927 }
2928
2929 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2930 &objfile->objfile_obstack);
2931 do_cleanups (cleanup);
2932 }
2933
2934 /* The hash function for strings in the mapped index. This is the same as
2935 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2936 implementation. This is necessary because the hash function is tied to the
2937 format of the mapped index file. The hash values do not have to match with
2938 SYMBOL_HASH_NEXT.
2939
2940 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2941
2942 static hashval_t
2943 mapped_index_string_hash (int index_version, const void *p)
2944 {
2945 const unsigned char *str = (const unsigned char *) p;
2946 hashval_t r = 0;
2947 unsigned char c;
2948
2949 while ((c = *str++) != 0)
2950 {
2951 if (index_version >= 5)
2952 c = tolower (c);
2953 r = r * 67 + c - 113;
2954 }
2955
2956 return r;
2957 }
2958
2959 /* Find a slot in the mapped index INDEX for the object named NAME.
2960 If NAME is found, set *VEC_OUT to point to the CU vector in the
2961 constant pool and return 1. If NAME cannot be found, return 0. */
2962
2963 static int
2964 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2965 offset_type **vec_out)
2966 {
2967 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2968 offset_type hash;
2969 offset_type slot, step;
2970 int (*cmp) (const char *, const char *);
2971
2972 if (current_language->la_language == language_cplus
2973 || current_language->la_language == language_java
2974 || current_language->la_language == language_fortran)
2975 {
2976 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2977 not contain any. */
2978
2979 if (strchr (name, '(') != NULL)
2980 {
2981 char *without_params = cp_remove_params (name);
2982
2983 if (without_params != NULL)
2984 {
2985 make_cleanup (xfree, without_params);
2986 name = without_params;
2987 }
2988 }
2989 }
2990
2991 /* Index version 4 did not support case insensitive searches. But the
2992 indices for case insensitive languages are built in lowercase, therefore
2993 simulate our NAME being searched is also lowercased. */
2994 hash = mapped_index_string_hash ((index->version == 4
2995 && case_sensitivity == case_sensitive_off
2996 ? 5 : index->version),
2997 name);
2998
2999 slot = hash & (index->symbol_table_slots - 1);
3000 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3001 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3002
3003 for (;;)
3004 {
3005 /* Convert a slot number to an offset into the table. */
3006 offset_type i = 2 * slot;
3007 const char *str;
3008 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3009 {
3010 do_cleanups (back_to);
3011 return 0;
3012 }
3013
3014 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3015 if (!cmp (name, str))
3016 {
3017 *vec_out = (offset_type *) (index->constant_pool
3018 + MAYBE_SWAP (index->symbol_table[i + 1]));
3019 do_cleanups (back_to);
3020 return 1;
3021 }
3022
3023 slot = (slot + step) & (index->symbol_table_slots - 1);
3024 }
3025 }
3026
3027 /* A helper function that reads the .gdb_index from SECTION and fills
3028 in MAP. FILENAME is the name of the file containing the section;
3029 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3030 ok to use deprecated sections.
3031
3032 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3033 out parameters that are filled in with information about the CU and
3034 TU lists in the section.
3035
3036 Returns 1 if all went well, 0 otherwise. */
3037
3038 static int
3039 read_index_from_section (struct objfile *objfile,
3040 const char *filename,
3041 int deprecated_ok,
3042 struct dwarf2_section_info *section,
3043 struct mapped_index *map,
3044 const gdb_byte **cu_list,
3045 offset_type *cu_list_elements,
3046 const gdb_byte **types_list,
3047 offset_type *types_list_elements)
3048 {
3049 const gdb_byte *addr;
3050 offset_type version;
3051 offset_type *metadata;
3052 int i;
3053
3054 if (dwarf2_section_empty_p (section))
3055 return 0;
3056
3057 /* Older elfutils strip versions could keep the section in the main
3058 executable while splitting it for the separate debug info file. */
3059 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3060 return 0;
3061
3062 dwarf2_read_section (objfile, section);
3063
3064 addr = section->buffer;
3065 /* Version check. */
3066 version = MAYBE_SWAP (*(offset_type *) addr);
3067 /* Versions earlier than 3 emitted every copy of a psymbol. This
3068 causes the index to behave very poorly for certain requests. Version 3
3069 contained incomplete addrmap. So, it seems better to just ignore such
3070 indices. */
3071 if (version < 4)
3072 {
3073 static int warning_printed = 0;
3074 if (!warning_printed)
3075 {
3076 warning (_("Skipping obsolete .gdb_index section in %s."),
3077 filename);
3078 warning_printed = 1;
3079 }
3080 return 0;
3081 }
3082 /* Index version 4 uses a different hash function than index version
3083 5 and later.
3084
3085 Versions earlier than 6 did not emit psymbols for inlined
3086 functions. Using these files will cause GDB not to be able to
3087 set breakpoints on inlined functions by name, so we ignore these
3088 indices unless the user has done
3089 "set use-deprecated-index-sections on". */
3090 if (version < 6 && !deprecated_ok)
3091 {
3092 static int warning_printed = 0;
3093 if (!warning_printed)
3094 {
3095 warning (_("\
3096 Skipping deprecated .gdb_index section in %s.\n\
3097 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3098 to use the section anyway."),
3099 filename);
3100 warning_printed = 1;
3101 }
3102 return 0;
3103 }
3104 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3105 of the TU (for symbols coming from TUs),
3106 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3107 Plus gold-generated indices can have duplicate entries for global symbols,
3108 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3109 These are just performance bugs, and we can't distinguish gdb-generated
3110 indices from gold-generated ones, so issue no warning here. */
3111
3112 /* Indexes with higher version than the one supported by GDB may be no
3113 longer backward compatible. */
3114 if (version > 8)
3115 return 0;
3116
3117 map->version = version;
3118 map->total_size = section->size;
3119
3120 metadata = (offset_type *) (addr + sizeof (offset_type));
3121
3122 i = 0;
3123 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3124 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3125 / 8);
3126 ++i;
3127
3128 *types_list = addr + MAYBE_SWAP (metadata[i]);
3129 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3130 - MAYBE_SWAP (metadata[i]))
3131 / 8);
3132 ++i;
3133
3134 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3135 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3136 - MAYBE_SWAP (metadata[i]));
3137 ++i;
3138
3139 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3140 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3141 - MAYBE_SWAP (metadata[i]))
3142 / (2 * sizeof (offset_type)));
3143 ++i;
3144
3145 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3146
3147 return 1;
3148 }
3149
3150
3151 /* Read the index file. If everything went ok, initialize the "quick"
3152 elements of all the CUs and return 1. Otherwise, return 0. */
3153
3154 static int
3155 dwarf2_read_index (struct objfile *objfile)
3156 {
3157 struct mapped_index local_map, *map;
3158 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3159 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3160 struct dwz_file *dwz;
3161
3162 if (!read_index_from_section (objfile, objfile_name (objfile),
3163 use_deprecated_index_sections,
3164 &dwarf2_per_objfile->gdb_index, &local_map,
3165 &cu_list, &cu_list_elements,
3166 &types_list, &types_list_elements))
3167 return 0;
3168
3169 /* Don't use the index if it's empty. */
3170 if (local_map.symbol_table_slots == 0)
3171 return 0;
3172
3173 /* If there is a .dwz file, read it so we can get its CU list as
3174 well. */
3175 dwz = dwarf2_get_dwz_file ();
3176 if (dwz != NULL)
3177 {
3178 struct mapped_index dwz_map;
3179 const gdb_byte *dwz_types_ignore;
3180 offset_type dwz_types_elements_ignore;
3181
3182 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3183 1,
3184 &dwz->gdb_index, &dwz_map,
3185 &dwz_list, &dwz_list_elements,
3186 &dwz_types_ignore,
3187 &dwz_types_elements_ignore))
3188 {
3189 warning (_("could not read '.gdb_index' section from %s; skipping"),
3190 bfd_get_filename (dwz->dwz_bfd));
3191 return 0;
3192 }
3193 }
3194
3195 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3196 dwz_list_elements);
3197
3198 if (types_list_elements)
3199 {
3200 struct dwarf2_section_info *section;
3201
3202 /* We can only handle a single .debug_types when we have an
3203 index. */
3204 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3205 return 0;
3206
3207 section = VEC_index (dwarf2_section_info_def,
3208 dwarf2_per_objfile->types, 0);
3209
3210 create_signatured_type_table_from_index (objfile, section, types_list,
3211 types_list_elements);
3212 }
3213
3214 create_addrmap_from_index (objfile, &local_map);
3215
3216 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3217 *map = local_map;
3218
3219 dwarf2_per_objfile->index_table = map;
3220 dwarf2_per_objfile->using_index = 1;
3221 dwarf2_per_objfile->quick_file_names_table =
3222 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3223
3224 return 1;
3225 }
3226
3227 /* A helper for the "quick" functions which sets the global
3228 dwarf2_per_objfile according to OBJFILE. */
3229
3230 static void
3231 dw2_setup (struct objfile *objfile)
3232 {
3233 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3234 gdb_assert (dwarf2_per_objfile);
3235 }
3236
3237 /* die_reader_func for dw2_get_file_names. */
3238
3239 static void
3240 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3241 const gdb_byte *info_ptr,
3242 struct die_info *comp_unit_die,
3243 int has_children,
3244 void *data)
3245 {
3246 struct dwarf2_cu *cu = reader->cu;
3247 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3248 struct objfile *objfile = dwarf2_per_objfile->objfile;
3249 struct dwarf2_per_cu_data *lh_cu;
3250 struct line_header *lh;
3251 struct attribute *attr;
3252 int i;
3253 const char *name, *comp_dir;
3254 void **slot;
3255 struct quick_file_names *qfn;
3256 unsigned int line_offset;
3257
3258 gdb_assert (! this_cu->is_debug_types);
3259
3260 /* Our callers never want to match partial units -- instead they
3261 will match the enclosing full CU. */
3262 if (comp_unit_die->tag == DW_TAG_partial_unit)
3263 {
3264 this_cu->v.quick->no_file_data = 1;
3265 return;
3266 }
3267
3268 lh_cu = this_cu;
3269 lh = NULL;
3270 slot = NULL;
3271 line_offset = 0;
3272
3273 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3274 if (attr)
3275 {
3276 struct quick_file_names find_entry;
3277
3278 line_offset = DW_UNSND (attr);
3279
3280 /* We may have already read in this line header (TU line header sharing).
3281 If we have we're done. */
3282 find_entry.hash.dwo_unit = cu->dwo_unit;
3283 find_entry.hash.line_offset.sect_off = line_offset;
3284 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3285 &find_entry, INSERT);
3286 if (*slot != NULL)
3287 {
3288 lh_cu->v.quick->file_names = *slot;
3289 return;
3290 }
3291
3292 lh = dwarf_decode_line_header (line_offset, cu);
3293 }
3294 if (lh == NULL)
3295 {
3296 lh_cu->v.quick->no_file_data = 1;
3297 return;
3298 }
3299
3300 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3301 qfn->hash.dwo_unit = cu->dwo_unit;
3302 qfn->hash.line_offset.sect_off = line_offset;
3303 gdb_assert (slot != NULL);
3304 *slot = qfn;
3305
3306 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3307
3308 qfn->num_file_names = lh->num_file_names;
3309 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3310 lh->num_file_names * sizeof (char *));
3311 for (i = 0; i < lh->num_file_names; ++i)
3312 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3313 qfn->real_names = NULL;
3314
3315 free_line_header (lh);
3316
3317 lh_cu->v.quick->file_names = qfn;
3318 }
3319
3320 /* A helper for the "quick" functions which attempts to read the line
3321 table for THIS_CU. */
3322
3323 static struct quick_file_names *
3324 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3325 {
3326 /* This should never be called for TUs. */
3327 gdb_assert (! this_cu->is_debug_types);
3328 /* Nor type unit groups. */
3329 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3330
3331 if (this_cu->v.quick->file_names != NULL)
3332 return this_cu->v.quick->file_names;
3333 /* If we know there is no line data, no point in looking again. */
3334 if (this_cu->v.quick->no_file_data)
3335 return NULL;
3336
3337 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3338
3339 if (this_cu->v.quick->no_file_data)
3340 return NULL;
3341 return this_cu->v.quick->file_names;
3342 }
3343
3344 /* A helper for the "quick" functions which computes and caches the
3345 real path for a given file name from the line table. */
3346
3347 static const char *
3348 dw2_get_real_path (struct objfile *objfile,
3349 struct quick_file_names *qfn, int index)
3350 {
3351 if (qfn->real_names == NULL)
3352 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3353 qfn->num_file_names, const char *);
3354
3355 if (qfn->real_names[index] == NULL)
3356 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3357
3358 return qfn->real_names[index];
3359 }
3360
3361 static struct symtab *
3362 dw2_find_last_source_symtab (struct objfile *objfile)
3363 {
3364 struct compunit_symtab *cust;
3365 int index;
3366
3367 dw2_setup (objfile);
3368 index = dwarf2_per_objfile->n_comp_units - 1;
3369 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3370 if (cust == NULL)
3371 return NULL;
3372 return compunit_primary_filetab (cust);
3373 }
3374
3375 /* Traversal function for dw2_forget_cached_source_info. */
3376
3377 static int
3378 dw2_free_cached_file_names (void **slot, void *info)
3379 {
3380 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3381
3382 if (file_data->real_names)
3383 {
3384 int i;
3385
3386 for (i = 0; i < file_data->num_file_names; ++i)
3387 {
3388 xfree ((void*) file_data->real_names[i]);
3389 file_data->real_names[i] = NULL;
3390 }
3391 }
3392
3393 return 1;
3394 }
3395
3396 static void
3397 dw2_forget_cached_source_info (struct objfile *objfile)
3398 {
3399 dw2_setup (objfile);
3400
3401 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3402 dw2_free_cached_file_names, NULL);
3403 }
3404
3405 /* Helper function for dw2_map_symtabs_matching_filename that expands
3406 the symtabs and calls the iterator. */
3407
3408 static int
3409 dw2_map_expand_apply (struct objfile *objfile,
3410 struct dwarf2_per_cu_data *per_cu,
3411 const char *name, const char *real_path,
3412 int (*callback) (struct symtab *, void *),
3413 void *data)
3414 {
3415 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3416
3417 /* Don't visit already-expanded CUs. */
3418 if (per_cu->v.quick->compunit_symtab)
3419 return 0;
3420
3421 /* This may expand more than one symtab, and we want to iterate over
3422 all of them. */
3423 dw2_instantiate_symtab (per_cu);
3424
3425 return iterate_over_some_symtabs (name, real_path, callback, data,
3426 objfile->compunit_symtabs, last_made);
3427 }
3428
3429 /* Implementation of the map_symtabs_matching_filename method. */
3430
3431 static int
3432 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3433 const char *real_path,
3434 int (*callback) (struct symtab *, void *),
3435 void *data)
3436 {
3437 int i;
3438 const char *name_basename = lbasename (name);
3439
3440 dw2_setup (objfile);
3441
3442 /* The rule is CUs specify all the files, including those used by
3443 any TU, so there's no need to scan TUs here. */
3444
3445 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3446 {
3447 int j;
3448 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3449 struct quick_file_names *file_data;
3450
3451 /* We only need to look at symtabs not already expanded. */
3452 if (per_cu->v.quick->compunit_symtab)
3453 continue;
3454
3455 file_data = dw2_get_file_names (per_cu);
3456 if (file_data == NULL)
3457 continue;
3458
3459 for (j = 0; j < file_data->num_file_names; ++j)
3460 {
3461 const char *this_name = file_data->file_names[j];
3462 const char *this_real_name;
3463
3464 if (compare_filenames_for_search (this_name, name))
3465 {
3466 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3467 callback, data))
3468 return 1;
3469 continue;
3470 }
3471
3472 /* Before we invoke realpath, which can get expensive when many
3473 files are involved, do a quick comparison of the basenames. */
3474 if (! basenames_may_differ
3475 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3476 continue;
3477
3478 this_real_name = dw2_get_real_path (objfile, file_data, j);
3479 if (compare_filenames_for_search (this_real_name, name))
3480 {
3481 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3482 callback, data))
3483 return 1;
3484 continue;
3485 }
3486
3487 if (real_path != NULL)
3488 {
3489 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3490 gdb_assert (IS_ABSOLUTE_PATH (name));
3491 if (this_real_name != NULL
3492 && FILENAME_CMP (real_path, this_real_name) == 0)
3493 {
3494 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3495 callback, data))
3496 return 1;
3497 continue;
3498 }
3499 }
3500 }
3501 }
3502
3503 return 0;
3504 }
3505
3506 /* Struct used to manage iterating over all CUs looking for a symbol. */
3507
3508 struct dw2_symtab_iterator
3509 {
3510 /* The internalized form of .gdb_index. */
3511 struct mapped_index *index;
3512 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3513 int want_specific_block;
3514 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3515 Unused if !WANT_SPECIFIC_BLOCK. */
3516 int block_index;
3517 /* The kind of symbol we're looking for. */
3518 domain_enum domain;
3519 /* The list of CUs from the index entry of the symbol,
3520 or NULL if not found. */
3521 offset_type *vec;
3522 /* The next element in VEC to look at. */
3523 int next;
3524 /* The number of elements in VEC, or zero if there is no match. */
3525 int length;
3526 /* Have we seen a global version of the symbol?
3527 If so we can ignore all further global instances.
3528 This is to work around gold/15646, inefficient gold-generated
3529 indices. */
3530 int global_seen;
3531 };
3532
3533 /* Initialize the index symtab iterator ITER.
3534 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3535 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3536
3537 static void
3538 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3539 struct mapped_index *index,
3540 int want_specific_block,
3541 int block_index,
3542 domain_enum domain,
3543 const char *name)
3544 {
3545 iter->index = index;
3546 iter->want_specific_block = want_specific_block;
3547 iter->block_index = block_index;
3548 iter->domain = domain;
3549 iter->next = 0;
3550 iter->global_seen = 0;
3551
3552 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3553 iter->length = MAYBE_SWAP (*iter->vec);
3554 else
3555 {
3556 iter->vec = NULL;
3557 iter->length = 0;
3558 }
3559 }
3560
3561 /* Return the next matching CU or NULL if there are no more. */
3562
3563 static struct dwarf2_per_cu_data *
3564 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3565 {
3566 for ( ; iter->next < iter->length; ++iter->next)
3567 {
3568 offset_type cu_index_and_attrs =
3569 MAYBE_SWAP (iter->vec[iter->next + 1]);
3570 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3571 struct dwarf2_per_cu_data *per_cu;
3572 int want_static = iter->block_index != GLOBAL_BLOCK;
3573 /* This value is only valid for index versions >= 7. */
3574 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3575 gdb_index_symbol_kind symbol_kind =
3576 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3577 /* Only check the symbol attributes if they're present.
3578 Indices prior to version 7 don't record them,
3579 and indices >= 7 may elide them for certain symbols
3580 (gold does this). */
3581 int attrs_valid =
3582 (iter->index->version >= 7
3583 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3584
3585 /* Don't crash on bad data. */
3586 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3587 + dwarf2_per_objfile->n_type_units))
3588 {
3589 complaint (&symfile_complaints,
3590 _(".gdb_index entry has bad CU index"
3591 " [in module %s]"),
3592 objfile_name (dwarf2_per_objfile->objfile));
3593 continue;
3594 }
3595
3596 per_cu = dw2_get_cutu (cu_index);
3597
3598 /* Skip if already read in. */
3599 if (per_cu->v.quick->compunit_symtab)
3600 continue;
3601
3602 /* Check static vs global. */
3603 if (attrs_valid)
3604 {
3605 if (iter->want_specific_block
3606 && want_static != is_static)
3607 continue;
3608 /* Work around gold/15646. */
3609 if (!is_static && iter->global_seen)
3610 continue;
3611 if (!is_static)
3612 iter->global_seen = 1;
3613 }
3614
3615 /* Only check the symbol's kind if it has one. */
3616 if (attrs_valid)
3617 {
3618 switch (iter->domain)
3619 {
3620 case VAR_DOMAIN:
3621 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3622 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3623 /* Some types are also in VAR_DOMAIN. */
3624 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3625 continue;
3626 break;
3627 case STRUCT_DOMAIN:
3628 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3629 continue;
3630 break;
3631 case LABEL_DOMAIN:
3632 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3633 continue;
3634 break;
3635 default:
3636 break;
3637 }
3638 }
3639
3640 ++iter->next;
3641 return per_cu;
3642 }
3643
3644 return NULL;
3645 }
3646
3647 static struct compunit_symtab *
3648 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3649 const char *name, domain_enum domain)
3650 {
3651 struct compunit_symtab *stab_best = NULL;
3652 struct mapped_index *index;
3653
3654 dw2_setup (objfile);
3655
3656 index = dwarf2_per_objfile->index_table;
3657
3658 /* index is NULL if OBJF_READNOW. */
3659 if (index)
3660 {
3661 struct dw2_symtab_iterator iter;
3662 struct dwarf2_per_cu_data *per_cu;
3663
3664 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3665
3666 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3667 {
3668 struct symbol *sym, *with_opaque = NULL;
3669 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3670 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3671 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3672
3673 sym = block_find_symbol (block, name, domain,
3674 block_find_non_opaque_type_preferred,
3675 &with_opaque);
3676
3677 /* Some caution must be observed with overloaded functions
3678 and methods, since the index will not contain any overload
3679 information (but NAME might contain it). */
3680
3681 if (sym != NULL
3682 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3683 return stab;
3684 if (with_opaque != NULL
3685 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3686 stab_best = stab;
3687
3688 /* Keep looking through other CUs. */
3689 }
3690 }
3691
3692 return stab_best;
3693 }
3694
3695 static void
3696 dw2_print_stats (struct objfile *objfile)
3697 {
3698 int i, total, count;
3699
3700 dw2_setup (objfile);
3701 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3702 count = 0;
3703 for (i = 0; i < total; ++i)
3704 {
3705 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3706
3707 if (!per_cu->v.quick->compunit_symtab)
3708 ++count;
3709 }
3710 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3711 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3712 }
3713
3714 /* This dumps minimal information about the index.
3715 It is called via "mt print objfiles".
3716 One use is to verify .gdb_index has been loaded by the
3717 gdb.dwarf2/gdb-index.exp testcase. */
3718
3719 static void
3720 dw2_dump (struct objfile *objfile)
3721 {
3722 dw2_setup (objfile);
3723 gdb_assert (dwarf2_per_objfile->using_index);
3724 printf_filtered (".gdb_index:");
3725 if (dwarf2_per_objfile->index_table != NULL)
3726 {
3727 printf_filtered (" version %d\n",
3728 dwarf2_per_objfile->index_table->version);
3729 }
3730 else
3731 printf_filtered (" faked for \"readnow\"\n");
3732 printf_filtered ("\n");
3733 }
3734
3735 static void
3736 dw2_relocate (struct objfile *objfile,
3737 const struct section_offsets *new_offsets,
3738 const struct section_offsets *delta)
3739 {
3740 /* There's nothing to relocate here. */
3741 }
3742
3743 static void
3744 dw2_expand_symtabs_for_function (struct objfile *objfile,
3745 const char *func_name)
3746 {
3747 struct mapped_index *index;
3748
3749 dw2_setup (objfile);
3750
3751 index = dwarf2_per_objfile->index_table;
3752
3753 /* index is NULL if OBJF_READNOW. */
3754 if (index)
3755 {
3756 struct dw2_symtab_iterator iter;
3757 struct dwarf2_per_cu_data *per_cu;
3758
3759 /* Note: It doesn't matter what we pass for block_index here. */
3760 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3761 func_name);
3762
3763 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3764 dw2_instantiate_symtab (per_cu);
3765 }
3766 }
3767
3768 static void
3769 dw2_expand_all_symtabs (struct objfile *objfile)
3770 {
3771 int i;
3772
3773 dw2_setup (objfile);
3774
3775 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3776 + dwarf2_per_objfile->n_type_units); ++i)
3777 {
3778 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3779
3780 dw2_instantiate_symtab (per_cu);
3781 }
3782 }
3783
3784 static void
3785 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3786 const char *fullname)
3787 {
3788 int i;
3789
3790 dw2_setup (objfile);
3791
3792 /* We don't need to consider type units here.
3793 This is only called for examining code, e.g. expand_line_sal.
3794 There can be an order of magnitude (or more) more type units
3795 than comp units, and we avoid them if we can. */
3796
3797 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3798 {
3799 int j;
3800 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3801 struct quick_file_names *file_data;
3802
3803 /* We only need to look at symtabs not already expanded. */
3804 if (per_cu->v.quick->compunit_symtab)
3805 continue;
3806
3807 file_data = dw2_get_file_names (per_cu);
3808 if (file_data == NULL)
3809 continue;
3810
3811 for (j = 0; j < file_data->num_file_names; ++j)
3812 {
3813 const char *this_fullname = file_data->file_names[j];
3814
3815 if (filename_cmp (this_fullname, fullname) == 0)
3816 {
3817 dw2_instantiate_symtab (per_cu);
3818 break;
3819 }
3820 }
3821 }
3822 }
3823
3824 static void
3825 dw2_map_matching_symbols (struct objfile *objfile,
3826 const char * name, domain_enum domain,
3827 int global,
3828 int (*callback) (struct block *,
3829 struct symbol *, void *),
3830 void *data, symbol_compare_ftype *match,
3831 symbol_compare_ftype *ordered_compare)
3832 {
3833 /* Currently unimplemented; used for Ada. The function can be called if the
3834 current language is Ada for a non-Ada objfile using GNU index. As Ada
3835 does not look for non-Ada symbols this function should just return. */
3836 }
3837
3838 static void
3839 dw2_expand_symtabs_matching
3840 (struct objfile *objfile,
3841 expand_symtabs_file_matcher_ftype *file_matcher,
3842 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3843 expand_symtabs_exp_notify_ftype *expansion_notify,
3844 enum search_domain kind,
3845 void *data)
3846 {
3847 int i;
3848 offset_type iter;
3849 struct mapped_index *index;
3850
3851 dw2_setup (objfile);
3852
3853 /* index_table is NULL if OBJF_READNOW. */
3854 if (!dwarf2_per_objfile->index_table)
3855 return;
3856 index = dwarf2_per_objfile->index_table;
3857
3858 if (file_matcher != NULL)
3859 {
3860 struct cleanup *cleanup;
3861 htab_t visited_found, visited_not_found;
3862
3863 visited_found = htab_create_alloc (10,
3864 htab_hash_pointer, htab_eq_pointer,
3865 NULL, xcalloc, xfree);
3866 cleanup = make_cleanup_htab_delete (visited_found);
3867 visited_not_found = htab_create_alloc (10,
3868 htab_hash_pointer, htab_eq_pointer,
3869 NULL, xcalloc, xfree);
3870 make_cleanup_htab_delete (visited_not_found);
3871
3872 /* The rule is CUs specify all the files, including those used by
3873 any TU, so there's no need to scan TUs here. */
3874
3875 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3876 {
3877 int j;
3878 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3879 struct quick_file_names *file_data;
3880 void **slot;
3881
3882 QUIT;
3883
3884 per_cu->v.quick->mark = 0;
3885
3886 /* We only need to look at symtabs not already expanded. */
3887 if (per_cu->v.quick->compunit_symtab)
3888 continue;
3889
3890 file_data = dw2_get_file_names (per_cu);
3891 if (file_data == NULL)
3892 continue;
3893
3894 if (htab_find (visited_not_found, file_data) != NULL)
3895 continue;
3896 else if (htab_find (visited_found, file_data) != NULL)
3897 {
3898 per_cu->v.quick->mark = 1;
3899 continue;
3900 }
3901
3902 for (j = 0; j < file_data->num_file_names; ++j)
3903 {
3904 const char *this_real_name;
3905
3906 if (file_matcher (file_data->file_names[j], data, 0))
3907 {
3908 per_cu->v.quick->mark = 1;
3909 break;
3910 }
3911
3912 /* Before we invoke realpath, which can get expensive when many
3913 files are involved, do a quick comparison of the basenames. */
3914 if (!basenames_may_differ
3915 && !file_matcher (lbasename (file_data->file_names[j]),
3916 data, 1))
3917 continue;
3918
3919 this_real_name = dw2_get_real_path (objfile, file_data, j);
3920 if (file_matcher (this_real_name, data, 0))
3921 {
3922 per_cu->v.quick->mark = 1;
3923 break;
3924 }
3925 }
3926
3927 slot = htab_find_slot (per_cu->v.quick->mark
3928 ? visited_found
3929 : visited_not_found,
3930 file_data, INSERT);
3931 *slot = file_data;
3932 }
3933
3934 do_cleanups (cleanup);
3935 }
3936
3937 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3938 {
3939 offset_type idx = 2 * iter;
3940 const char *name;
3941 offset_type *vec, vec_len, vec_idx;
3942 int global_seen = 0;
3943
3944 QUIT;
3945
3946 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3947 continue;
3948
3949 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3950
3951 if (! (*symbol_matcher) (name, data))
3952 continue;
3953
3954 /* The name was matched, now expand corresponding CUs that were
3955 marked. */
3956 vec = (offset_type *) (index->constant_pool
3957 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3958 vec_len = MAYBE_SWAP (vec[0]);
3959 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3960 {
3961 struct dwarf2_per_cu_data *per_cu;
3962 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3963 /* This value is only valid for index versions >= 7. */
3964 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3965 gdb_index_symbol_kind symbol_kind =
3966 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3967 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3968 /* Only check the symbol attributes if they're present.
3969 Indices prior to version 7 don't record them,
3970 and indices >= 7 may elide them for certain symbols
3971 (gold does this). */
3972 int attrs_valid =
3973 (index->version >= 7
3974 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3975
3976 /* Work around gold/15646. */
3977 if (attrs_valid)
3978 {
3979 if (!is_static && global_seen)
3980 continue;
3981 if (!is_static)
3982 global_seen = 1;
3983 }
3984
3985 /* Only check the symbol's kind if it has one. */
3986 if (attrs_valid)
3987 {
3988 switch (kind)
3989 {
3990 case VARIABLES_DOMAIN:
3991 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3992 continue;
3993 break;
3994 case FUNCTIONS_DOMAIN:
3995 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3996 continue;
3997 break;
3998 case TYPES_DOMAIN:
3999 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4000 continue;
4001 break;
4002 default:
4003 break;
4004 }
4005 }
4006
4007 /* Don't crash on bad data. */
4008 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4009 + dwarf2_per_objfile->n_type_units))
4010 {
4011 complaint (&symfile_complaints,
4012 _(".gdb_index entry has bad CU index"
4013 " [in module %s]"), objfile_name (objfile));
4014 continue;
4015 }
4016
4017 per_cu = dw2_get_cutu (cu_index);
4018 if (file_matcher == NULL || per_cu->v.quick->mark)
4019 {
4020 int symtab_was_null =
4021 (per_cu->v.quick->compunit_symtab == NULL);
4022
4023 dw2_instantiate_symtab (per_cu);
4024
4025 if (expansion_notify != NULL
4026 && symtab_was_null
4027 && per_cu->v.quick->compunit_symtab != NULL)
4028 {
4029 expansion_notify (per_cu->v.quick->compunit_symtab,
4030 data);
4031 }
4032 }
4033 }
4034 }
4035 }
4036
4037 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4038 symtab. */
4039
4040 static struct compunit_symtab *
4041 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4042 CORE_ADDR pc)
4043 {
4044 int i;
4045
4046 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4047 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4048 return cust;
4049
4050 if (cust->includes == NULL)
4051 return NULL;
4052
4053 for (i = 0; cust->includes[i]; ++i)
4054 {
4055 struct compunit_symtab *s = cust->includes[i];
4056
4057 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4058 if (s != NULL)
4059 return s;
4060 }
4061
4062 return NULL;
4063 }
4064
4065 static struct compunit_symtab *
4066 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4067 struct bound_minimal_symbol msymbol,
4068 CORE_ADDR pc,
4069 struct obj_section *section,
4070 int warn_if_readin)
4071 {
4072 struct dwarf2_per_cu_data *data;
4073 struct compunit_symtab *result;
4074
4075 dw2_setup (objfile);
4076
4077 if (!objfile->psymtabs_addrmap)
4078 return NULL;
4079
4080 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4081 if (!data)
4082 return NULL;
4083
4084 if (warn_if_readin && data->v.quick->compunit_symtab)
4085 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4086 paddress (get_objfile_arch (objfile), pc));
4087
4088 result
4089 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4090 pc);
4091 gdb_assert (result != NULL);
4092 return result;
4093 }
4094
4095 static void
4096 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4097 void *data, int need_fullname)
4098 {
4099 int i;
4100 struct cleanup *cleanup;
4101 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4102 NULL, xcalloc, xfree);
4103
4104 cleanup = make_cleanup_htab_delete (visited);
4105 dw2_setup (objfile);
4106
4107 /* The rule is CUs specify all the files, including those used by
4108 any TU, so there's no need to scan TUs here.
4109 We can ignore file names coming from already-expanded CUs. */
4110
4111 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4112 {
4113 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4114
4115 if (per_cu->v.quick->compunit_symtab)
4116 {
4117 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4118 INSERT);
4119
4120 *slot = per_cu->v.quick->file_names;
4121 }
4122 }
4123
4124 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4125 {
4126 int j;
4127 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4128 struct quick_file_names *file_data;
4129 void **slot;
4130
4131 /* We only need to look at symtabs not already expanded. */
4132 if (per_cu->v.quick->compunit_symtab)
4133 continue;
4134
4135 file_data = dw2_get_file_names (per_cu);
4136 if (file_data == NULL)
4137 continue;
4138
4139 slot = htab_find_slot (visited, file_data, INSERT);
4140 if (*slot)
4141 {
4142 /* Already visited. */
4143 continue;
4144 }
4145 *slot = file_data;
4146
4147 for (j = 0; j < file_data->num_file_names; ++j)
4148 {
4149 const char *this_real_name;
4150
4151 if (need_fullname)
4152 this_real_name = dw2_get_real_path (objfile, file_data, j);
4153 else
4154 this_real_name = NULL;
4155 (*fun) (file_data->file_names[j], this_real_name, data);
4156 }
4157 }
4158
4159 do_cleanups (cleanup);
4160 }
4161
4162 static int
4163 dw2_has_symbols (struct objfile *objfile)
4164 {
4165 return 1;
4166 }
4167
4168 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4169 {
4170 dw2_has_symbols,
4171 dw2_find_last_source_symtab,
4172 dw2_forget_cached_source_info,
4173 dw2_map_symtabs_matching_filename,
4174 dw2_lookup_symbol,
4175 dw2_print_stats,
4176 dw2_dump,
4177 dw2_relocate,
4178 dw2_expand_symtabs_for_function,
4179 dw2_expand_all_symtabs,
4180 dw2_expand_symtabs_with_fullname,
4181 dw2_map_matching_symbols,
4182 dw2_expand_symtabs_matching,
4183 dw2_find_pc_sect_compunit_symtab,
4184 dw2_map_symbol_filenames
4185 };
4186
4187 /* Initialize for reading DWARF for this objfile. Return 0 if this
4188 file will use psymtabs, or 1 if using the GNU index. */
4189
4190 int
4191 dwarf2_initialize_objfile (struct objfile *objfile)
4192 {
4193 /* If we're about to read full symbols, don't bother with the
4194 indices. In this case we also don't care if some other debug
4195 format is making psymtabs, because they are all about to be
4196 expanded anyway. */
4197 if ((objfile->flags & OBJF_READNOW))
4198 {
4199 int i;
4200
4201 dwarf2_per_objfile->using_index = 1;
4202 create_all_comp_units (objfile);
4203 create_all_type_units (objfile);
4204 dwarf2_per_objfile->quick_file_names_table =
4205 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4206
4207 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4208 + dwarf2_per_objfile->n_type_units); ++i)
4209 {
4210 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4211
4212 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4213 struct dwarf2_per_cu_quick_data);
4214 }
4215
4216 /* Return 1 so that gdb sees the "quick" functions. However,
4217 these functions will be no-ops because we will have expanded
4218 all symtabs. */
4219 return 1;
4220 }
4221
4222 if (dwarf2_read_index (objfile))
4223 return 1;
4224
4225 return 0;
4226 }
4227
4228 \f
4229
4230 /* Build a partial symbol table. */
4231
4232 void
4233 dwarf2_build_psymtabs (struct objfile *objfile)
4234 {
4235
4236 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4237 {
4238 init_psymbol_list (objfile, 1024);
4239 }
4240
4241 TRY
4242 {
4243 /* This isn't really ideal: all the data we allocate on the
4244 objfile's obstack is still uselessly kept around. However,
4245 freeing it seems unsafe. */
4246 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4247
4248 dwarf2_build_psymtabs_hard (objfile);
4249 discard_cleanups (cleanups);
4250 }
4251 CATCH (except, RETURN_MASK_ERROR)
4252 {
4253 exception_print (gdb_stderr, except);
4254 }
4255 END_CATCH
4256 }
4257
4258 /* Return the total length of the CU described by HEADER. */
4259
4260 static unsigned int
4261 get_cu_length (const struct comp_unit_head *header)
4262 {
4263 return header->initial_length_size + header->length;
4264 }
4265
4266 /* Return TRUE if OFFSET is within CU_HEADER. */
4267
4268 static inline int
4269 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4270 {
4271 sect_offset bottom = { cu_header->offset.sect_off };
4272 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4273
4274 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4275 }
4276
4277 /* Find the base address of the compilation unit for range lists and
4278 location lists. It will normally be specified by DW_AT_low_pc.
4279 In DWARF-3 draft 4, the base address could be overridden by
4280 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4281 compilation units with discontinuous ranges. */
4282
4283 static void
4284 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4285 {
4286 struct attribute *attr;
4287
4288 cu->base_known = 0;
4289 cu->base_address = 0;
4290
4291 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4292 if (attr)
4293 {
4294 cu->base_address = attr_value_as_address (attr);
4295 cu->base_known = 1;
4296 }
4297 else
4298 {
4299 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4300 if (attr)
4301 {
4302 cu->base_address = attr_value_as_address (attr);
4303 cu->base_known = 1;
4304 }
4305 }
4306 }
4307
4308 /* Read in the comp unit header information from the debug_info at info_ptr.
4309 NOTE: This leaves members offset, first_die_offset to be filled in
4310 by the caller. */
4311
4312 static const gdb_byte *
4313 read_comp_unit_head (struct comp_unit_head *cu_header,
4314 const gdb_byte *info_ptr, bfd *abfd)
4315 {
4316 int signed_addr;
4317 unsigned int bytes_read;
4318
4319 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4320 cu_header->initial_length_size = bytes_read;
4321 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4322 info_ptr += bytes_read;
4323 cu_header->version = read_2_bytes (abfd, info_ptr);
4324 info_ptr += 2;
4325 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4326 &bytes_read);
4327 info_ptr += bytes_read;
4328 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4329 info_ptr += 1;
4330 signed_addr = bfd_get_sign_extend_vma (abfd);
4331 if (signed_addr < 0)
4332 internal_error (__FILE__, __LINE__,
4333 _("read_comp_unit_head: dwarf from non elf file"));
4334 cu_header->signed_addr_p = signed_addr;
4335
4336 return info_ptr;
4337 }
4338
4339 /* Helper function that returns the proper abbrev section for
4340 THIS_CU. */
4341
4342 static struct dwarf2_section_info *
4343 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4344 {
4345 struct dwarf2_section_info *abbrev;
4346
4347 if (this_cu->is_dwz)
4348 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4349 else
4350 abbrev = &dwarf2_per_objfile->abbrev;
4351
4352 return abbrev;
4353 }
4354
4355 /* Subroutine of read_and_check_comp_unit_head and
4356 read_and_check_type_unit_head to simplify them.
4357 Perform various error checking on the header. */
4358
4359 static void
4360 error_check_comp_unit_head (struct comp_unit_head *header,
4361 struct dwarf2_section_info *section,
4362 struct dwarf2_section_info *abbrev_section)
4363 {
4364 bfd *abfd = get_section_bfd_owner (section);
4365 const char *filename = get_section_file_name (section);
4366
4367 if (header->version != 2 && header->version != 3 && header->version != 4)
4368 error (_("Dwarf Error: wrong version in compilation unit header "
4369 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4370 filename);
4371
4372 if (header->abbrev_offset.sect_off
4373 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4374 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4375 "(offset 0x%lx + 6) [in module %s]"),
4376 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4377 filename);
4378
4379 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4380 avoid potential 32-bit overflow. */
4381 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4382 > section->size)
4383 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4384 "(offset 0x%lx + 0) [in module %s]"),
4385 (long) header->length, (long) header->offset.sect_off,
4386 filename);
4387 }
4388
4389 /* Read in a CU/TU header and perform some basic error checking.
4390 The contents of the header are stored in HEADER.
4391 The result is a pointer to the start of the first DIE. */
4392
4393 static const gdb_byte *
4394 read_and_check_comp_unit_head (struct comp_unit_head *header,
4395 struct dwarf2_section_info *section,
4396 struct dwarf2_section_info *abbrev_section,
4397 const gdb_byte *info_ptr,
4398 int is_debug_types_section)
4399 {
4400 const gdb_byte *beg_of_comp_unit = info_ptr;
4401 bfd *abfd = get_section_bfd_owner (section);
4402
4403 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4404
4405 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4406
4407 /* If we're reading a type unit, skip over the signature and
4408 type_offset fields. */
4409 if (is_debug_types_section)
4410 info_ptr += 8 /*signature*/ + header->offset_size;
4411
4412 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4413
4414 error_check_comp_unit_head (header, section, abbrev_section);
4415
4416 return info_ptr;
4417 }
4418
4419 /* Read in the types comp unit header information from .debug_types entry at
4420 types_ptr. The result is a pointer to one past the end of the header. */
4421
4422 static const gdb_byte *
4423 read_and_check_type_unit_head (struct comp_unit_head *header,
4424 struct dwarf2_section_info *section,
4425 struct dwarf2_section_info *abbrev_section,
4426 const gdb_byte *info_ptr,
4427 ULONGEST *signature,
4428 cu_offset *type_offset_in_tu)
4429 {
4430 const gdb_byte *beg_of_comp_unit = info_ptr;
4431 bfd *abfd = get_section_bfd_owner (section);
4432
4433 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4434
4435 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4436
4437 /* If we're reading a type unit, skip over the signature and
4438 type_offset fields. */
4439 if (signature != NULL)
4440 *signature = read_8_bytes (abfd, info_ptr);
4441 info_ptr += 8;
4442 if (type_offset_in_tu != NULL)
4443 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4444 header->offset_size);
4445 info_ptr += header->offset_size;
4446
4447 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4448
4449 error_check_comp_unit_head (header, section, abbrev_section);
4450
4451 return info_ptr;
4452 }
4453
4454 /* Fetch the abbreviation table offset from a comp or type unit header. */
4455
4456 static sect_offset
4457 read_abbrev_offset (struct dwarf2_section_info *section,
4458 sect_offset offset)
4459 {
4460 bfd *abfd = get_section_bfd_owner (section);
4461 const gdb_byte *info_ptr;
4462 unsigned int length, initial_length_size, offset_size;
4463 sect_offset abbrev_offset;
4464
4465 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4466 info_ptr = section->buffer + offset.sect_off;
4467 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4468 offset_size = initial_length_size == 4 ? 4 : 8;
4469 info_ptr += initial_length_size + 2 /*version*/;
4470 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4471 return abbrev_offset;
4472 }
4473
4474 /* Allocate a new partial symtab for file named NAME and mark this new
4475 partial symtab as being an include of PST. */
4476
4477 static void
4478 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4479 struct objfile *objfile)
4480 {
4481 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4482
4483 if (!IS_ABSOLUTE_PATH (subpst->filename))
4484 {
4485 /* It shares objfile->objfile_obstack. */
4486 subpst->dirname = pst->dirname;
4487 }
4488
4489 subpst->section_offsets = pst->section_offsets;
4490 subpst->textlow = 0;
4491 subpst->texthigh = 0;
4492
4493 subpst->dependencies = (struct partial_symtab **)
4494 obstack_alloc (&objfile->objfile_obstack,
4495 sizeof (struct partial_symtab *));
4496 subpst->dependencies[0] = pst;
4497 subpst->number_of_dependencies = 1;
4498
4499 subpst->globals_offset = 0;
4500 subpst->n_global_syms = 0;
4501 subpst->statics_offset = 0;
4502 subpst->n_static_syms = 0;
4503 subpst->compunit_symtab = NULL;
4504 subpst->read_symtab = pst->read_symtab;
4505 subpst->readin = 0;
4506
4507 /* No private part is necessary for include psymtabs. This property
4508 can be used to differentiate between such include psymtabs and
4509 the regular ones. */
4510 subpst->read_symtab_private = NULL;
4511 }
4512
4513 /* Read the Line Number Program data and extract the list of files
4514 included by the source file represented by PST. Build an include
4515 partial symtab for each of these included files. */
4516
4517 static void
4518 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4519 struct die_info *die,
4520 struct partial_symtab *pst)
4521 {
4522 struct line_header *lh = NULL;
4523 struct attribute *attr;
4524
4525 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4526 if (attr)
4527 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4528 if (lh == NULL)
4529 return; /* No linetable, so no includes. */
4530
4531 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4532 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4533
4534 free_line_header (lh);
4535 }
4536
4537 static hashval_t
4538 hash_signatured_type (const void *item)
4539 {
4540 const struct signatured_type *sig_type = item;
4541
4542 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4543 return sig_type->signature;
4544 }
4545
4546 static int
4547 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4548 {
4549 const struct signatured_type *lhs = item_lhs;
4550 const struct signatured_type *rhs = item_rhs;
4551
4552 return lhs->signature == rhs->signature;
4553 }
4554
4555 /* Allocate a hash table for signatured types. */
4556
4557 static htab_t
4558 allocate_signatured_type_table (struct objfile *objfile)
4559 {
4560 return htab_create_alloc_ex (41,
4561 hash_signatured_type,
4562 eq_signatured_type,
4563 NULL,
4564 &objfile->objfile_obstack,
4565 hashtab_obstack_allocate,
4566 dummy_obstack_deallocate);
4567 }
4568
4569 /* A helper function to add a signatured type CU to a table. */
4570
4571 static int
4572 add_signatured_type_cu_to_table (void **slot, void *datum)
4573 {
4574 struct signatured_type *sigt = *slot;
4575 struct signatured_type ***datap = datum;
4576
4577 **datap = sigt;
4578 ++*datap;
4579
4580 return 1;
4581 }
4582
4583 /* Create the hash table of all entries in the .debug_types
4584 (or .debug_types.dwo) section(s).
4585 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4586 otherwise it is NULL.
4587
4588 The result is a pointer to the hash table or NULL if there are no types.
4589
4590 Note: This function processes DWO files only, not DWP files. */
4591
4592 static htab_t
4593 create_debug_types_hash_table (struct dwo_file *dwo_file,
4594 VEC (dwarf2_section_info_def) *types)
4595 {
4596 struct objfile *objfile = dwarf2_per_objfile->objfile;
4597 htab_t types_htab = NULL;
4598 int ix;
4599 struct dwarf2_section_info *section;
4600 struct dwarf2_section_info *abbrev_section;
4601
4602 if (VEC_empty (dwarf2_section_info_def, types))
4603 return NULL;
4604
4605 abbrev_section = (dwo_file != NULL
4606 ? &dwo_file->sections.abbrev
4607 : &dwarf2_per_objfile->abbrev);
4608
4609 if (dwarf_read_debug)
4610 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4611 dwo_file ? ".dwo" : "",
4612 get_section_file_name (abbrev_section));
4613
4614 for (ix = 0;
4615 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4616 ++ix)
4617 {
4618 bfd *abfd;
4619 const gdb_byte *info_ptr, *end_ptr;
4620
4621 dwarf2_read_section (objfile, section);
4622 info_ptr = section->buffer;
4623
4624 if (info_ptr == NULL)
4625 continue;
4626
4627 /* We can't set abfd until now because the section may be empty or
4628 not present, in which case the bfd is unknown. */
4629 abfd = get_section_bfd_owner (section);
4630
4631 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4632 because we don't need to read any dies: the signature is in the
4633 header. */
4634
4635 end_ptr = info_ptr + section->size;
4636 while (info_ptr < end_ptr)
4637 {
4638 sect_offset offset;
4639 cu_offset type_offset_in_tu;
4640 ULONGEST signature;
4641 struct signatured_type *sig_type;
4642 struct dwo_unit *dwo_tu;
4643 void **slot;
4644 const gdb_byte *ptr = info_ptr;
4645 struct comp_unit_head header;
4646 unsigned int length;
4647
4648 offset.sect_off = ptr - section->buffer;
4649
4650 /* We need to read the type's signature in order to build the hash
4651 table, but we don't need anything else just yet. */
4652
4653 ptr = read_and_check_type_unit_head (&header, section,
4654 abbrev_section, ptr,
4655 &signature, &type_offset_in_tu);
4656
4657 length = get_cu_length (&header);
4658
4659 /* Skip dummy type units. */
4660 if (ptr >= info_ptr + length
4661 || peek_abbrev_code (abfd, ptr) == 0)
4662 {
4663 info_ptr += length;
4664 continue;
4665 }
4666
4667 if (types_htab == NULL)
4668 {
4669 if (dwo_file)
4670 types_htab = allocate_dwo_unit_table (objfile);
4671 else
4672 types_htab = allocate_signatured_type_table (objfile);
4673 }
4674
4675 if (dwo_file)
4676 {
4677 sig_type = NULL;
4678 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4679 struct dwo_unit);
4680 dwo_tu->dwo_file = dwo_file;
4681 dwo_tu->signature = signature;
4682 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4683 dwo_tu->section = section;
4684 dwo_tu->offset = offset;
4685 dwo_tu->length = length;
4686 }
4687 else
4688 {
4689 /* N.B.: type_offset is not usable if this type uses a DWO file.
4690 The real type_offset is in the DWO file. */
4691 dwo_tu = NULL;
4692 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4693 struct signatured_type);
4694 sig_type->signature = signature;
4695 sig_type->type_offset_in_tu = type_offset_in_tu;
4696 sig_type->per_cu.objfile = objfile;
4697 sig_type->per_cu.is_debug_types = 1;
4698 sig_type->per_cu.section = section;
4699 sig_type->per_cu.offset = offset;
4700 sig_type->per_cu.length = length;
4701 }
4702
4703 slot = htab_find_slot (types_htab,
4704 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4705 INSERT);
4706 gdb_assert (slot != NULL);
4707 if (*slot != NULL)
4708 {
4709 sect_offset dup_offset;
4710
4711 if (dwo_file)
4712 {
4713 const struct dwo_unit *dup_tu = *slot;
4714
4715 dup_offset = dup_tu->offset;
4716 }
4717 else
4718 {
4719 const struct signatured_type *dup_tu = *slot;
4720
4721 dup_offset = dup_tu->per_cu.offset;
4722 }
4723
4724 complaint (&symfile_complaints,
4725 _("debug type entry at offset 0x%x is duplicate to"
4726 " the entry at offset 0x%x, signature %s"),
4727 offset.sect_off, dup_offset.sect_off,
4728 hex_string (signature));
4729 }
4730 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4731
4732 if (dwarf_read_debug > 1)
4733 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4734 offset.sect_off,
4735 hex_string (signature));
4736
4737 info_ptr += length;
4738 }
4739 }
4740
4741 return types_htab;
4742 }
4743
4744 /* Create the hash table of all entries in the .debug_types section,
4745 and initialize all_type_units.
4746 The result is zero if there is an error (e.g. missing .debug_types section),
4747 otherwise non-zero. */
4748
4749 static int
4750 create_all_type_units (struct objfile *objfile)
4751 {
4752 htab_t types_htab;
4753 struct signatured_type **iter;
4754
4755 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4756 if (types_htab == NULL)
4757 {
4758 dwarf2_per_objfile->signatured_types = NULL;
4759 return 0;
4760 }
4761
4762 dwarf2_per_objfile->signatured_types = types_htab;
4763
4764 dwarf2_per_objfile->n_type_units
4765 = dwarf2_per_objfile->n_allocated_type_units
4766 = htab_elements (types_htab);
4767 dwarf2_per_objfile->all_type_units
4768 = xmalloc (dwarf2_per_objfile->n_type_units
4769 * sizeof (struct signatured_type *));
4770 iter = &dwarf2_per_objfile->all_type_units[0];
4771 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4772 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4773 == dwarf2_per_objfile->n_type_units);
4774
4775 return 1;
4776 }
4777
4778 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4779 If SLOT is non-NULL, it is the entry to use in the hash table.
4780 Otherwise we find one. */
4781
4782 static struct signatured_type *
4783 add_type_unit (ULONGEST sig, void **slot)
4784 {
4785 struct objfile *objfile = dwarf2_per_objfile->objfile;
4786 int n_type_units = dwarf2_per_objfile->n_type_units;
4787 struct signatured_type *sig_type;
4788
4789 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4790 ++n_type_units;
4791 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4792 {
4793 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4794 dwarf2_per_objfile->n_allocated_type_units = 1;
4795 dwarf2_per_objfile->n_allocated_type_units *= 2;
4796 dwarf2_per_objfile->all_type_units
4797 = xrealloc (dwarf2_per_objfile->all_type_units,
4798 dwarf2_per_objfile->n_allocated_type_units
4799 * sizeof (struct signatured_type *));
4800 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4801 }
4802 dwarf2_per_objfile->n_type_units = n_type_units;
4803
4804 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4805 struct signatured_type);
4806 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4807 sig_type->signature = sig;
4808 sig_type->per_cu.is_debug_types = 1;
4809 if (dwarf2_per_objfile->using_index)
4810 {
4811 sig_type->per_cu.v.quick =
4812 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4813 struct dwarf2_per_cu_quick_data);
4814 }
4815
4816 if (slot == NULL)
4817 {
4818 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4819 sig_type, INSERT);
4820 }
4821 gdb_assert (*slot == NULL);
4822 *slot = sig_type;
4823 /* The rest of sig_type must be filled in by the caller. */
4824 return sig_type;
4825 }
4826
4827 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4828 Fill in SIG_ENTRY with DWO_ENTRY. */
4829
4830 static void
4831 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4832 struct signatured_type *sig_entry,
4833 struct dwo_unit *dwo_entry)
4834 {
4835 /* Make sure we're not clobbering something we don't expect to. */
4836 gdb_assert (! sig_entry->per_cu.queued);
4837 gdb_assert (sig_entry->per_cu.cu == NULL);
4838 if (dwarf2_per_objfile->using_index)
4839 {
4840 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4841 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4842 }
4843 else
4844 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4845 gdb_assert (sig_entry->signature == dwo_entry->signature);
4846 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4847 gdb_assert (sig_entry->type_unit_group == NULL);
4848 gdb_assert (sig_entry->dwo_unit == NULL);
4849
4850 sig_entry->per_cu.section = dwo_entry->section;
4851 sig_entry->per_cu.offset = dwo_entry->offset;
4852 sig_entry->per_cu.length = dwo_entry->length;
4853 sig_entry->per_cu.reading_dwo_directly = 1;
4854 sig_entry->per_cu.objfile = objfile;
4855 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4856 sig_entry->dwo_unit = dwo_entry;
4857 }
4858
4859 /* Subroutine of lookup_signatured_type.
4860 If we haven't read the TU yet, create the signatured_type data structure
4861 for a TU to be read in directly from a DWO file, bypassing the stub.
4862 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4863 using .gdb_index, then when reading a CU we want to stay in the DWO file
4864 containing that CU. Otherwise we could end up reading several other DWO
4865 files (due to comdat folding) to process the transitive closure of all the
4866 mentioned TUs, and that can be slow. The current DWO file will have every
4867 type signature that it needs.
4868 We only do this for .gdb_index because in the psymtab case we already have
4869 to read all the DWOs to build the type unit groups. */
4870
4871 static struct signatured_type *
4872 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4873 {
4874 struct objfile *objfile = dwarf2_per_objfile->objfile;
4875 struct dwo_file *dwo_file;
4876 struct dwo_unit find_dwo_entry, *dwo_entry;
4877 struct signatured_type find_sig_entry, *sig_entry;
4878 void **slot;
4879
4880 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4881
4882 /* If TU skeletons have been removed then we may not have read in any
4883 TUs yet. */
4884 if (dwarf2_per_objfile->signatured_types == NULL)
4885 {
4886 dwarf2_per_objfile->signatured_types
4887 = allocate_signatured_type_table (objfile);
4888 }
4889
4890 /* We only ever need to read in one copy of a signatured type.
4891 Use the global signatured_types array to do our own comdat-folding
4892 of types. If this is the first time we're reading this TU, and
4893 the TU has an entry in .gdb_index, replace the recorded data from
4894 .gdb_index with this TU. */
4895
4896 find_sig_entry.signature = sig;
4897 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4898 &find_sig_entry, INSERT);
4899 sig_entry = *slot;
4900
4901 /* We can get here with the TU already read, *or* in the process of being
4902 read. Don't reassign the global entry to point to this DWO if that's
4903 the case. Also note that if the TU is already being read, it may not
4904 have come from a DWO, the program may be a mix of Fission-compiled
4905 code and non-Fission-compiled code. */
4906
4907 /* Have we already tried to read this TU?
4908 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4909 needn't exist in the global table yet). */
4910 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4911 return sig_entry;
4912
4913 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4914 dwo_unit of the TU itself. */
4915 dwo_file = cu->dwo_unit->dwo_file;
4916
4917 /* Ok, this is the first time we're reading this TU. */
4918 if (dwo_file->tus == NULL)
4919 return NULL;
4920 find_dwo_entry.signature = sig;
4921 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4922 if (dwo_entry == NULL)
4923 return NULL;
4924
4925 /* If the global table doesn't have an entry for this TU, add one. */
4926 if (sig_entry == NULL)
4927 sig_entry = add_type_unit (sig, slot);
4928
4929 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4930 sig_entry->per_cu.tu_read = 1;
4931 return sig_entry;
4932 }
4933
4934 /* Subroutine of lookup_signatured_type.
4935 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4936 then try the DWP file. If the TU stub (skeleton) has been removed then
4937 it won't be in .gdb_index. */
4938
4939 static struct signatured_type *
4940 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4941 {
4942 struct objfile *objfile = dwarf2_per_objfile->objfile;
4943 struct dwp_file *dwp_file = get_dwp_file ();
4944 struct dwo_unit *dwo_entry;
4945 struct signatured_type find_sig_entry, *sig_entry;
4946 void **slot;
4947
4948 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4949 gdb_assert (dwp_file != NULL);
4950
4951 /* If TU skeletons have been removed then we may not have read in any
4952 TUs yet. */
4953 if (dwarf2_per_objfile->signatured_types == NULL)
4954 {
4955 dwarf2_per_objfile->signatured_types
4956 = allocate_signatured_type_table (objfile);
4957 }
4958
4959 find_sig_entry.signature = sig;
4960 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4961 &find_sig_entry, INSERT);
4962 sig_entry = *slot;
4963
4964 /* Have we already tried to read this TU?
4965 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4966 needn't exist in the global table yet). */
4967 if (sig_entry != NULL)
4968 return sig_entry;
4969
4970 if (dwp_file->tus == NULL)
4971 return NULL;
4972 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4973 sig, 1 /* is_debug_types */);
4974 if (dwo_entry == NULL)
4975 return NULL;
4976
4977 sig_entry = add_type_unit (sig, slot);
4978 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4979
4980 return sig_entry;
4981 }
4982
4983 /* Lookup a signature based type for DW_FORM_ref_sig8.
4984 Returns NULL if signature SIG is not present in the table.
4985 It is up to the caller to complain about this. */
4986
4987 static struct signatured_type *
4988 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4989 {
4990 if (cu->dwo_unit
4991 && dwarf2_per_objfile->using_index)
4992 {
4993 /* We're in a DWO/DWP file, and we're using .gdb_index.
4994 These cases require special processing. */
4995 if (get_dwp_file () == NULL)
4996 return lookup_dwo_signatured_type (cu, sig);
4997 else
4998 return lookup_dwp_signatured_type (cu, sig);
4999 }
5000 else
5001 {
5002 struct signatured_type find_entry, *entry;
5003
5004 if (dwarf2_per_objfile->signatured_types == NULL)
5005 return NULL;
5006 find_entry.signature = sig;
5007 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
5008 return entry;
5009 }
5010 }
5011 \f
5012 /* Low level DIE reading support. */
5013
5014 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5015
5016 static void
5017 init_cu_die_reader (struct die_reader_specs *reader,
5018 struct dwarf2_cu *cu,
5019 struct dwarf2_section_info *section,
5020 struct dwo_file *dwo_file)
5021 {
5022 gdb_assert (section->readin && section->buffer != NULL);
5023 reader->abfd = get_section_bfd_owner (section);
5024 reader->cu = cu;
5025 reader->dwo_file = dwo_file;
5026 reader->die_section = section;
5027 reader->buffer = section->buffer;
5028 reader->buffer_end = section->buffer + section->size;
5029 reader->comp_dir = NULL;
5030 }
5031
5032 /* Subroutine of init_cutu_and_read_dies to simplify it.
5033 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5034 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5035 already.
5036
5037 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5038 from it to the DIE in the DWO. If NULL we are skipping the stub.
5039 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5040 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5041 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5042 STUB_COMP_DIR may be non-NULL.
5043 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5044 are filled in with the info of the DIE from the DWO file.
5045 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5046 provided an abbrev table to use.
5047 The result is non-zero if a valid (non-dummy) DIE was found. */
5048
5049 static int
5050 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5051 struct dwo_unit *dwo_unit,
5052 int abbrev_table_provided,
5053 struct die_info *stub_comp_unit_die,
5054 const char *stub_comp_dir,
5055 struct die_reader_specs *result_reader,
5056 const gdb_byte **result_info_ptr,
5057 struct die_info **result_comp_unit_die,
5058 int *result_has_children)
5059 {
5060 struct objfile *objfile = dwarf2_per_objfile->objfile;
5061 struct dwarf2_cu *cu = this_cu->cu;
5062 struct dwarf2_section_info *section;
5063 bfd *abfd;
5064 const gdb_byte *begin_info_ptr, *info_ptr;
5065 ULONGEST signature; /* Or dwo_id. */
5066 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5067 int i,num_extra_attrs;
5068 struct dwarf2_section_info *dwo_abbrev_section;
5069 struct attribute *attr;
5070 struct die_info *comp_unit_die;
5071
5072 /* At most one of these may be provided. */
5073 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5074
5075 /* These attributes aren't processed until later:
5076 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5077 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5078 referenced later. However, these attributes are found in the stub
5079 which we won't have later. In order to not impose this complication
5080 on the rest of the code, we read them here and copy them to the
5081 DWO CU/TU die. */
5082
5083 stmt_list = NULL;
5084 low_pc = NULL;
5085 high_pc = NULL;
5086 ranges = NULL;
5087 comp_dir = NULL;
5088
5089 if (stub_comp_unit_die != NULL)
5090 {
5091 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5092 DWO file. */
5093 if (! this_cu->is_debug_types)
5094 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5095 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5096 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5097 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5098 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5099
5100 /* There should be a DW_AT_addr_base attribute here (if needed).
5101 We need the value before we can process DW_FORM_GNU_addr_index. */
5102 cu->addr_base = 0;
5103 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5104 if (attr)
5105 cu->addr_base = DW_UNSND (attr);
5106
5107 /* There should be a DW_AT_ranges_base attribute here (if needed).
5108 We need the value before we can process DW_AT_ranges. */
5109 cu->ranges_base = 0;
5110 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5111 if (attr)
5112 cu->ranges_base = DW_UNSND (attr);
5113 }
5114 else if (stub_comp_dir != NULL)
5115 {
5116 /* Reconstruct the comp_dir attribute to simplify the code below. */
5117 comp_dir = (struct attribute *)
5118 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5119 comp_dir->name = DW_AT_comp_dir;
5120 comp_dir->form = DW_FORM_string;
5121 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5122 DW_STRING (comp_dir) = stub_comp_dir;
5123 }
5124
5125 /* Set up for reading the DWO CU/TU. */
5126 cu->dwo_unit = dwo_unit;
5127 section = dwo_unit->section;
5128 dwarf2_read_section (objfile, section);
5129 abfd = get_section_bfd_owner (section);
5130 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5131 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5132 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5133
5134 if (this_cu->is_debug_types)
5135 {
5136 ULONGEST header_signature;
5137 cu_offset type_offset_in_tu;
5138 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5139
5140 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5141 dwo_abbrev_section,
5142 info_ptr,
5143 &header_signature,
5144 &type_offset_in_tu);
5145 /* This is not an assert because it can be caused by bad debug info. */
5146 if (sig_type->signature != header_signature)
5147 {
5148 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5149 " TU at offset 0x%x [in module %s]"),
5150 hex_string (sig_type->signature),
5151 hex_string (header_signature),
5152 dwo_unit->offset.sect_off,
5153 bfd_get_filename (abfd));
5154 }
5155 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5156 /* For DWOs coming from DWP files, we don't know the CU length
5157 nor the type's offset in the TU until now. */
5158 dwo_unit->length = get_cu_length (&cu->header);
5159 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5160
5161 /* Establish the type offset that can be used to lookup the type.
5162 For DWO files, we don't know it until now. */
5163 sig_type->type_offset_in_section.sect_off =
5164 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5165 }
5166 else
5167 {
5168 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5169 dwo_abbrev_section,
5170 info_ptr, 0);
5171 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5172 /* For DWOs coming from DWP files, we don't know the CU length
5173 until now. */
5174 dwo_unit->length = get_cu_length (&cu->header);
5175 }
5176
5177 /* Replace the CU's original abbrev table with the DWO's.
5178 Reminder: We can't read the abbrev table until we've read the header. */
5179 if (abbrev_table_provided)
5180 {
5181 /* Don't free the provided abbrev table, the caller of
5182 init_cutu_and_read_dies owns it. */
5183 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5184 /* Ensure the DWO abbrev table gets freed. */
5185 make_cleanup (dwarf2_free_abbrev_table, cu);
5186 }
5187 else
5188 {
5189 dwarf2_free_abbrev_table (cu);
5190 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5191 /* Leave any existing abbrev table cleanup as is. */
5192 }
5193
5194 /* Read in the die, but leave space to copy over the attributes
5195 from the stub. This has the benefit of simplifying the rest of
5196 the code - all the work to maintain the illusion of a single
5197 DW_TAG_{compile,type}_unit DIE is done here. */
5198 num_extra_attrs = ((stmt_list != NULL)
5199 + (low_pc != NULL)
5200 + (high_pc != NULL)
5201 + (ranges != NULL)
5202 + (comp_dir != NULL));
5203 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5204 result_has_children, num_extra_attrs);
5205
5206 /* Copy over the attributes from the stub to the DIE we just read in. */
5207 comp_unit_die = *result_comp_unit_die;
5208 i = comp_unit_die->num_attrs;
5209 if (stmt_list != NULL)
5210 comp_unit_die->attrs[i++] = *stmt_list;
5211 if (low_pc != NULL)
5212 comp_unit_die->attrs[i++] = *low_pc;
5213 if (high_pc != NULL)
5214 comp_unit_die->attrs[i++] = *high_pc;
5215 if (ranges != NULL)
5216 comp_unit_die->attrs[i++] = *ranges;
5217 if (comp_dir != NULL)
5218 comp_unit_die->attrs[i++] = *comp_dir;
5219 comp_unit_die->num_attrs += num_extra_attrs;
5220
5221 if (dwarf_die_debug)
5222 {
5223 fprintf_unfiltered (gdb_stdlog,
5224 "Read die from %s@0x%x of %s:\n",
5225 get_section_name (section),
5226 (unsigned) (begin_info_ptr - section->buffer),
5227 bfd_get_filename (abfd));
5228 dump_die (comp_unit_die, dwarf_die_debug);
5229 }
5230
5231 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5232 TUs by skipping the stub and going directly to the entry in the DWO file.
5233 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5234 to get it via circuitous means. Blech. */
5235 if (comp_dir != NULL)
5236 result_reader->comp_dir = DW_STRING (comp_dir);
5237
5238 /* Skip dummy compilation units. */
5239 if (info_ptr >= begin_info_ptr + dwo_unit->length
5240 || peek_abbrev_code (abfd, info_ptr) == 0)
5241 return 0;
5242
5243 *result_info_ptr = info_ptr;
5244 return 1;
5245 }
5246
5247 /* Subroutine of init_cutu_and_read_dies to simplify it.
5248 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5249 Returns NULL if the specified DWO unit cannot be found. */
5250
5251 static struct dwo_unit *
5252 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5253 struct die_info *comp_unit_die)
5254 {
5255 struct dwarf2_cu *cu = this_cu->cu;
5256 struct attribute *attr;
5257 ULONGEST signature;
5258 struct dwo_unit *dwo_unit;
5259 const char *comp_dir, *dwo_name;
5260
5261 gdb_assert (cu != NULL);
5262
5263 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5264 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5265 gdb_assert (attr != NULL);
5266 dwo_name = DW_STRING (attr);
5267 comp_dir = NULL;
5268 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5269 if (attr)
5270 comp_dir = DW_STRING (attr);
5271
5272 if (this_cu->is_debug_types)
5273 {
5274 struct signatured_type *sig_type;
5275
5276 /* Since this_cu is the first member of struct signatured_type,
5277 we can go from a pointer to one to a pointer to the other. */
5278 sig_type = (struct signatured_type *) this_cu;
5279 signature = sig_type->signature;
5280 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5281 }
5282 else
5283 {
5284 struct attribute *attr;
5285
5286 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5287 if (! attr)
5288 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5289 " [in module %s]"),
5290 dwo_name, objfile_name (this_cu->objfile));
5291 signature = DW_UNSND (attr);
5292 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5293 signature);
5294 }
5295
5296 return dwo_unit;
5297 }
5298
5299 /* Subroutine of init_cutu_and_read_dies to simplify it.
5300 See it for a description of the parameters.
5301 Read a TU directly from a DWO file, bypassing the stub.
5302
5303 Note: This function could be a little bit simpler if we shared cleanups
5304 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5305 to do, so we keep this function self-contained. Or we could move this
5306 into our caller, but it's complex enough already. */
5307
5308 static void
5309 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5310 int use_existing_cu, int keep,
5311 die_reader_func_ftype *die_reader_func,
5312 void *data)
5313 {
5314 struct dwarf2_cu *cu;
5315 struct signatured_type *sig_type;
5316 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5317 struct die_reader_specs reader;
5318 const gdb_byte *info_ptr;
5319 struct die_info *comp_unit_die;
5320 int has_children;
5321
5322 /* Verify we can do the following downcast, and that we have the
5323 data we need. */
5324 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5325 sig_type = (struct signatured_type *) this_cu;
5326 gdb_assert (sig_type->dwo_unit != NULL);
5327
5328 cleanups = make_cleanup (null_cleanup, NULL);
5329
5330 if (use_existing_cu && this_cu->cu != NULL)
5331 {
5332 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5333 cu = this_cu->cu;
5334 /* There's no need to do the rereading_dwo_cu handling that
5335 init_cutu_and_read_dies does since we don't read the stub. */
5336 }
5337 else
5338 {
5339 /* If !use_existing_cu, this_cu->cu must be NULL. */
5340 gdb_assert (this_cu->cu == NULL);
5341 cu = xmalloc (sizeof (*cu));
5342 init_one_comp_unit (cu, this_cu);
5343 /* If an error occurs while loading, release our storage. */
5344 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5345 }
5346
5347 /* A future optimization, if needed, would be to use an existing
5348 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5349 could share abbrev tables. */
5350
5351 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5352 0 /* abbrev_table_provided */,
5353 NULL /* stub_comp_unit_die */,
5354 sig_type->dwo_unit->dwo_file->comp_dir,
5355 &reader, &info_ptr,
5356 &comp_unit_die, &has_children) == 0)
5357 {
5358 /* Dummy die. */
5359 do_cleanups (cleanups);
5360 return;
5361 }
5362
5363 /* All the "real" work is done here. */
5364 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5365
5366 /* This duplicates the code in init_cutu_and_read_dies,
5367 but the alternative is making the latter more complex.
5368 This function is only for the special case of using DWO files directly:
5369 no point in overly complicating the general case just to handle this. */
5370 if (free_cu_cleanup != NULL)
5371 {
5372 if (keep)
5373 {
5374 /* We've successfully allocated this compilation unit. Let our
5375 caller clean it up when finished with it. */
5376 discard_cleanups (free_cu_cleanup);
5377
5378 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5379 So we have to manually free the abbrev table. */
5380 dwarf2_free_abbrev_table (cu);
5381
5382 /* Link this CU into read_in_chain. */
5383 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5384 dwarf2_per_objfile->read_in_chain = this_cu;
5385 }
5386 else
5387 do_cleanups (free_cu_cleanup);
5388 }
5389
5390 do_cleanups (cleanups);
5391 }
5392
5393 /* Initialize a CU (or TU) and read its DIEs.
5394 If the CU defers to a DWO file, read the DWO file as well.
5395
5396 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5397 Otherwise the table specified in the comp unit header is read in and used.
5398 This is an optimization for when we already have the abbrev table.
5399
5400 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5401 Otherwise, a new CU is allocated with xmalloc.
5402
5403 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5404 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5405
5406 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5407 linker) then DIE_READER_FUNC will not get called. */
5408
5409 static void
5410 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5411 struct abbrev_table *abbrev_table,
5412 int use_existing_cu, int keep,
5413 die_reader_func_ftype *die_reader_func,
5414 void *data)
5415 {
5416 struct objfile *objfile = dwarf2_per_objfile->objfile;
5417 struct dwarf2_section_info *section = this_cu->section;
5418 bfd *abfd = get_section_bfd_owner (section);
5419 struct dwarf2_cu *cu;
5420 const gdb_byte *begin_info_ptr, *info_ptr;
5421 struct die_reader_specs reader;
5422 struct die_info *comp_unit_die;
5423 int has_children;
5424 struct attribute *attr;
5425 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5426 struct signatured_type *sig_type = NULL;
5427 struct dwarf2_section_info *abbrev_section;
5428 /* Non-zero if CU currently points to a DWO file and we need to
5429 reread it. When this happens we need to reread the skeleton die
5430 before we can reread the DWO file (this only applies to CUs, not TUs). */
5431 int rereading_dwo_cu = 0;
5432
5433 if (dwarf_die_debug)
5434 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5435 this_cu->is_debug_types ? "type" : "comp",
5436 this_cu->offset.sect_off);
5437
5438 if (use_existing_cu)
5439 gdb_assert (keep);
5440
5441 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5442 file (instead of going through the stub), short-circuit all of this. */
5443 if (this_cu->reading_dwo_directly)
5444 {
5445 /* Narrow down the scope of possibilities to have to understand. */
5446 gdb_assert (this_cu->is_debug_types);
5447 gdb_assert (abbrev_table == NULL);
5448 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5449 die_reader_func, data);
5450 return;
5451 }
5452
5453 cleanups = make_cleanup (null_cleanup, NULL);
5454
5455 /* This is cheap if the section is already read in. */
5456 dwarf2_read_section (objfile, section);
5457
5458 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5459
5460 abbrev_section = get_abbrev_section_for_cu (this_cu);
5461
5462 if (use_existing_cu && this_cu->cu != NULL)
5463 {
5464 cu = this_cu->cu;
5465 /* If this CU is from a DWO file we need to start over, we need to
5466 refetch the attributes from the skeleton CU.
5467 This could be optimized by retrieving those attributes from when we
5468 were here the first time: the previous comp_unit_die was stored in
5469 comp_unit_obstack. But there's no data yet that we need this
5470 optimization. */
5471 if (cu->dwo_unit != NULL)
5472 rereading_dwo_cu = 1;
5473 }
5474 else
5475 {
5476 /* If !use_existing_cu, this_cu->cu must be NULL. */
5477 gdb_assert (this_cu->cu == NULL);
5478 cu = xmalloc (sizeof (*cu));
5479 init_one_comp_unit (cu, this_cu);
5480 /* If an error occurs while loading, release our storage. */
5481 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5482 }
5483
5484 /* Get the header. */
5485 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5486 {
5487 /* We already have the header, there's no need to read it in again. */
5488 info_ptr += cu->header.first_die_offset.cu_off;
5489 }
5490 else
5491 {
5492 if (this_cu->is_debug_types)
5493 {
5494 ULONGEST signature;
5495 cu_offset type_offset_in_tu;
5496
5497 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5498 abbrev_section, info_ptr,
5499 &signature,
5500 &type_offset_in_tu);
5501
5502 /* Since per_cu is the first member of struct signatured_type,
5503 we can go from a pointer to one to a pointer to the other. */
5504 sig_type = (struct signatured_type *) this_cu;
5505 gdb_assert (sig_type->signature == signature);
5506 gdb_assert (sig_type->type_offset_in_tu.cu_off
5507 == type_offset_in_tu.cu_off);
5508 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5509
5510 /* LENGTH has not been set yet for type units if we're
5511 using .gdb_index. */
5512 this_cu->length = get_cu_length (&cu->header);
5513
5514 /* Establish the type offset that can be used to lookup the type. */
5515 sig_type->type_offset_in_section.sect_off =
5516 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5517 }
5518 else
5519 {
5520 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5521 abbrev_section,
5522 info_ptr, 0);
5523
5524 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5525 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5526 }
5527 }
5528
5529 /* Skip dummy compilation units. */
5530 if (info_ptr >= begin_info_ptr + this_cu->length
5531 || peek_abbrev_code (abfd, info_ptr) == 0)
5532 {
5533 do_cleanups (cleanups);
5534 return;
5535 }
5536
5537 /* If we don't have them yet, read the abbrevs for this compilation unit.
5538 And if we need to read them now, make sure they're freed when we're
5539 done. Note that it's important that if the CU had an abbrev table
5540 on entry we don't free it when we're done: Somewhere up the call stack
5541 it may be in use. */
5542 if (abbrev_table != NULL)
5543 {
5544 gdb_assert (cu->abbrev_table == NULL);
5545 gdb_assert (cu->header.abbrev_offset.sect_off
5546 == abbrev_table->offset.sect_off);
5547 cu->abbrev_table = abbrev_table;
5548 }
5549 else if (cu->abbrev_table == NULL)
5550 {
5551 dwarf2_read_abbrevs (cu, abbrev_section);
5552 make_cleanup (dwarf2_free_abbrev_table, cu);
5553 }
5554 else if (rereading_dwo_cu)
5555 {
5556 dwarf2_free_abbrev_table (cu);
5557 dwarf2_read_abbrevs (cu, abbrev_section);
5558 }
5559
5560 /* Read the top level CU/TU die. */
5561 init_cu_die_reader (&reader, cu, section, NULL);
5562 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5563
5564 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5565 from the DWO file.
5566 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5567 DWO CU, that this test will fail (the attribute will not be present). */
5568 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5569 if (attr)
5570 {
5571 struct dwo_unit *dwo_unit;
5572 struct die_info *dwo_comp_unit_die;
5573
5574 if (has_children)
5575 {
5576 complaint (&symfile_complaints,
5577 _("compilation unit with DW_AT_GNU_dwo_name"
5578 " has children (offset 0x%x) [in module %s]"),
5579 this_cu->offset.sect_off, bfd_get_filename (abfd));
5580 }
5581 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5582 if (dwo_unit != NULL)
5583 {
5584 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5585 abbrev_table != NULL,
5586 comp_unit_die, NULL,
5587 &reader, &info_ptr,
5588 &dwo_comp_unit_die, &has_children) == 0)
5589 {
5590 /* Dummy die. */
5591 do_cleanups (cleanups);
5592 return;
5593 }
5594 comp_unit_die = dwo_comp_unit_die;
5595 }
5596 else
5597 {
5598 /* Yikes, we couldn't find the rest of the DIE, we only have
5599 the stub. A complaint has already been logged. There's
5600 not much more we can do except pass on the stub DIE to
5601 die_reader_func. We don't want to throw an error on bad
5602 debug info. */
5603 }
5604 }
5605
5606 /* All of the above is setup for this call. Yikes. */
5607 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5608
5609 /* Done, clean up. */
5610 if (free_cu_cleanup != NULL)
5611 {
5612 if (keep)
5613 {
5614 /* We've successfully allocated this compilation unit. Let our
5615 caller clean it up when finished with it. */
5616 discard_cleanups (free_cu_cleanup);
5617
5618 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5619 So we have to manually free the abbrev table. */
5620 dwarf2_free_abbrev_table (cu);
5621
5622 /* Link this CU into read_in_chain. */
5623 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5624 dwarf2_per_objfile->read_in_chain = this_cu;
5625 }
5626 else
5627 do_cleanups (free_cu_cleanup);
5628 }
5629
5630 do_cleanups (cleanups);
5631 }
5632
5633 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5634 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5635 to have already done the lookup to find the DWO file).
5636
5637 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5638 THIS_CU->is_debug_types, but nothing else.
5639
5640 We fill in THIS_CU->length.
5641
5642 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5643 linker) then DIE_READER_FUNC will not get called.
5644
5645 THIS_CU->cu is always freed when done.
5646 This is done in order to not leave THIS_CU->cu in a state where we have
5647 to care whether it refers to the "main" CU or the DWO CU. */
5648
5649 static void
5650 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5651 struct dwo_file *dwo_file,
5652 die_reader_func_ftype *die_reader_func,
5653 void *data)
5654 {
5655 struct objfile *objfile = dwarf2_per_objfile->objfile;
5656 struct dwarf2_section_info *section = this_cu->section;
5657 bfd *abfd = get_section_bfd_owner (section);
5658 struct dwarf2_section_info *abbrev_section;
5659 struct dwarf2_cu cu;
5660 const gdb_byte *begin_info_ptr, *info_ptr;
5661 struct die_reader_specs reader;
5662 struct cleanup *cleanups;
5663 struct die_info *comp_unit_die;
5664 int has_children;
5665
5666 if (dwarf_die_debug)
5667 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5668 this_cu->is_debug_types ? "type" : "comp",
5669 this_cu->offset.sect_off);
5670
5671 gdb_assert (this_cu->cu == NULL);
5672
5673 abbrev_section = (dwo_file != NULL
5674 ? &dwo_file->sections.abbrev
5675 : get_abbrev_section_for_cu (this_cu));
5676
5677 /* This is cheap if the section is already read in. */
5678 dwarf2_read_section (objfile, section);
5679
5680 init_one_comp_unit (&cu, this_cu);
5681
5682 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5683
5684 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5685 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5686 abbrev_section, info_ptr,
5687 this_cu->is_debug_types);
5688
5689 this_cu->length = get_cu_length (&cu.header);
5690
5691 /* Skip dummy compilation units. */
5692 if (info_ptr >= begin_info_ptr + this_cu->length
5693 || peek_abbrev_code (abfd, info_ptr) == 0)
5694 {
5695 do_cleanups (cleanups);
5696 return;
5697 }
5698
5699 dwarf2_read_abbrevs (&cu, abbrev_section);
5700 make_cleanup (dwarf2_free_abbrev_table, &cu);
5701
5702 init_cu_die_reader (&reader, &cu, section, dwo_file);
5703 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5704
5705 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5706
5707 do_cleanups (cleanups);
5708 }
5709
5710 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5711 does not lookup the specified DWO file.
5712 This cannot be used to read DWO files.
5713
5714 THIS_CU->cu is always freed when done.
5715 This is done in order to not leave THIS_CU->cu in a state where we have
5716 to care whether it refers to the "main" CU or the DWO CU.
5717 We can revisit this if the data shows there's a performance issue. */
5718
5719 static void
5720 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5721 die_reader_func_ftype *die_reader_func,
5722 void *data)
5723 {
5724 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5725 }
5726 \f
5727 /* Type Unit Groups.
5728
5729 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5730 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5731 so that all types coming from the same compilation (.o file) are grouped
5732 together. A future step could be to put the types in the same symtab as
5733 the CU the types ultimately came from. */
5734
5735 static hashval_t
5736 hash_type_unit_group (const void *item)
5737 {
5738 const struct type_unit_group *tu_group = item;
5739
5740 return hash_stmt_list_entry (&tu_group->hash);
5741 }
5742
5743 static int
5744 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5745 {
5746 const struct type_unit_group *lhs = item_lhs;
5747 const struct type_unit_group *rhs = item_rhs;
5748
5749 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5750 }
5751
5752 /* Allocate a hash table for type unit groups. */
5753
5754 static htab_t
5755 allocate_type_unit_groups_table (void)
5756 {
5757 return htab_create_alloc_ex (3,
5758 hash_type_unit_group,
5759 eq_type_unit_group,
5760 NULL,
5761 &dwarf2_per_objfile->objfile->objfile_obstack,
5762 hashtab_obstack_allocate,
5763 dummy_obstack_deallocate);
5764 }
5765
5766 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5767 partial symtabs. We combine several TUs per psymtab to not let the size
5768 of any one psymtab grow too big. */
5769 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5770 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5771
5772 /* Helper routine for get_type_unit_group.
5773 Create the type_unit_group object used to hold one or more TUs. */
5774
5775 static struct type_unit_group *
5776 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5777 {
5778 struct objfile *objfile = dwarf2_per_objfile->objfile;
5779 struct dwarf2_per_cu_data *per_cu;
5780 struct type_unit_group *tu_group;
5781
5782 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5783 struct type_unit_group);
5784 per_cu = &tu_group->per_cu;
5785 per_cu->objfile = objfile;
5786
5787 if (dwarf2_per_objfile->using_index)
5788 {
5789 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5790 struct dwarf2_per_cu_quick_data);
5791 }
5792 else
5793 {
5794 unsigned int line_offset = line_offset_struct.sect_off;
5795 struct partial_symtab *pst;
5796 char *name;
5797
5798 /* Give the symtab a useful name for debug purposes. */
5799 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5800 name = xstrprintf ("<type_units_%d>",
5801 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5802 else
5803 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5804
5805 pst = create_partial_symtab (per_cu, name);
5806 pst->anonymous = 1;
5807
5808 xfree (name);
5809 }
5810
5811 tu_group->hash.dwo_unit = cu->dwo_unit;
5812 tu_group->hash.line_offset = line_offset_struct;
5813
5814 return tu_group;
5815 }
5816
5817 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5818 STMT_LIST is a DW_AT_stmt_list attribute. */
5819
5820 static struct type_unit_group *
5821 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5822 {
5823 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5824 struct type_unit_group *tu_group;
5825 void **slot;
5826 unsigned int line_offset;
5827 struct type_unit_group type_unit_group_for_lookup;
5828
5829 if (dwarf2_per_objfile->type_unit_groups == NULL)
5830 {
5831 dwarf2_per_objfile->type_unit_groups =
5832 allocate_type_unit_groups_table ();
5833 }
5834
5835 /* Do we need to create a new group, or can we use an existing one? */
5836
5837 if (stmt_list)
5838 {
5839 line_offset = DW_UNSND (stmt_list);
5840 ++tu_stats->nr_symtab_sharers;
5841 }
5842 else
5843 {
5844 /* Ugh, no stmt_list. Rare, but we have to handle it.
5845 We can do various things here like create one group per TU or
5846 spread them over multiple groups to split up the expansion work.
5847 To avoid worst case scenarios (too many groups or too large groups)
5848 we, umm, group them in bunches. */
5849 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5850 | (tu_stats->nr_stmt_less_type_units
5851 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5852 ++tu_stats->nr_stmt_less_type_units;
5853 }
5854
5855 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5856 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5857 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5858 &type_unit_group_for_lookup, INSERT);
5859 if (*slot != NULL)
5860 {
5861 tu_group = *slot;
5862 gdb_assert (tu_group != NULL);
5863 }
5864 else
5865 {
5866 sect_offset line_offset_struct;
5867
5868 line_offset_struct.sect_off = line_offset;
5869 tu_group = create_type_unit_group (cu, line_offset_struct);
5870 *slot = tu_group;
5871 ++tu_stats->nr_symtabs;
5872 }
5873
5874 return tu_group;
5875 }
5876 \f
5877 /* Partial symbol tables. */
5878
5879 /* Create a psymtab named NAME and assign it to PER_CU.
5880
5881 The caller must fill in the following details:
5882 dirname, textlow, texthigh. */
5883
5884 static struct partial_symtab *
5885 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5886 {
5887 struct objfile *objfile = per_cu->objfile;
5888 struct partial_symtab *pst;
5889
5890 pst = start_psymtab_common (objfile, objfile->section_offsets,
5891 name, 0,
5892 objfile->global_psymbols.next,
5893 objfile->static_psymbols.next);
5894
5895 pst->psymtabs_addrmap_supported = 1;
5896
5897 /* This is the glue that links PST into GDB's symbol API. */
5898 pst->read_symtab_private = per_cu;
5899 pst->read_symtab = dwarf2_read_symtab;
5900 per_cu->v.psymtab = pst;
5901
5902 return pst;
5903 }
5904
5905 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5906 type. */
5907
5908 struct process_psymtab_comp_unit_data
5909 {
5910 /* True if we are reading a DW_TAG_partial_unit. */
5911
5912 int want_partial_unit;
5913
5914 /* The "pretend" language that is used if the CU doesn't declare a
5915 language. */
5916
5917 enum language pretend_language;
5918 };
5919
5920 /* die_reader_func for process_psymtab_comp_unit. */
5921
5922 static void
5923 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5924 const gdb_byte *info_ptr,
5925 struct die_info *comp_unit_die,
5926 int has_children,
5927 void *data)
5928 {
5929 struct dwarf2_cu *cu = reader->cu;
5930 struct objfile *objfile = cu->objfile;
5931 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5932 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5933 struct attribute *attr;
5934 CORE_ADDR baseaddr;
5935 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5936 struct partial_symtab *pst;
5937 int has_pc_info;
5938 const char *filename;
5939 struct process_psymtab_comp_unit_data *info = data;
5940
5941 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5942 return;
5943
5944 gdb_assert (! per_cu->is_debug_types);
5945
5946 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5947
5948 cu->list_in_scope = &file_symbols;
5949
5950 /* Allocate a new partial symbol table structure. */
5951 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5952 if (attr == NULL || !DW_STRING (attr))
5953 filename = "";
5954 else
5955 filename = DW_STRING (attr);
5956
5957 pst = create_partial_symtab (per_cu, filename);
5958
5959 /* This must be done before calling dwarf2_build_include_psymtabs. */
5960 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5961 if (attr != NULL)
5962 pst->dirname = DW_STRING (attr);
5963
5964 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5965
5966 dwarf2_find_base_address (comp_unit_die, cu);
5967
5968 /* Possibly set the default values of LOWPC and HIGHPC from
5969 `DW_AT_ranges'. */
5970 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5971 &best_highpc, cu, pst);
5972 if (has_pc_info == 1 && best_lowpc < best_highpc)
5973 /* Store the contiguous range if it is not empty; it can be empty for
5974 CUs with no code. */
5975 addrmap_set_empty (objfile->psymtabs_addrmap,
5976 gdbarch_adjust_dwarf2_addr (gdbarch,
5977 best_lowpc + baseaddr),
5978 gdbarch_adjust_dwarf2_addr (gdbarch,
5979 best_highpc + baseaddr) - 1,
5980 pst);
5981
5982 /* Check if comp unit has_children.
5983 If so, read the rest of the partial symbols from this comp unit.
5984 If not, there's no more debug_info for this comp unit. */
5985 if (has_children)
5986 {
5987 struct partial_die_info *first_die;
5988 CORE_ADDR lowpc, highpc;
5989
5990 lowpc = ((CORE_ADDR) -1);
5991 highpc = ((CORE_ADDR) 0);
5992
5993 first_die = load_partial_dies (reader, info_ptr, 1);
5994
5995 scan_partial_symbols (first_die, &lowpc, &highpc,
5996 ! has_pc_info, cu);
5997
5998 /* If we didn't find a lowpc, set it to highpc to avoid
5999 complaints from `maint check'. */
6000 if (lowpc == ((CORE_ADDR) -1))
6001 lowpc = highpc;
6002
6003 /* If the compilation unit didn't have an explicit address range,
6004 then use the information extracted from its child dies. */
6005 if (! has_pc_info)
6006 {
6007 best_lowpc = lowpc;
6008 best_highpc = highpc;
6009 }
6010 }
6011 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6012 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6013
6014 pst->n_global_syms = objfile->global_psymbols.next -
6015 (objfile->global_psymbols.list + pst->globals_offset);
6016 pst->n_static_syms = objfile->static_psymbols.next -
6017 (objfile->static_psymbols.list + pst->statics_offset);
6018 sort_pst_symbols (objfile, pst);
6019
6020 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6021 {
6022 int i;
6023 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6024 struct dwarf2_per_cu_data *iter;
6025
6026 /* Fill in 'dependencies' here; we fill in 'users' in a
6027 post-pass. */
6028 pst->number_of_dependencies = len;
6029 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6030 len * sizeof (struct symtab *));
6031 for (i = 0;
6032 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6033 i, iter);
6034 ++i)
6035 pst->dependencies[i] = iter->v.psymtab;
6036
6037 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6038 }
6039
6040 /* Get the list of files included in the current compilation unit,
6041 and build a psymtab for each of them. */
6042 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6043
6044 if (dwarf_read_debug)
6045 {
6046 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6047
6048 fprintf_unfiltered (gdb_stdlog,
6049 "Psymtab for %s unit @0x%x: %s - %s"
6050 ", %d global, %d static syms\n",
6051 per_cu->is_debug_types ? "type" : "comp",
6052 per_cu->offset.sect_off,
6053 paddress (gdbarch, pst->textlow),
6054 paddress (gdbarch, pst->texthigh),
6055 pst->n_global_syms, pst->n_static_syms);
6056 }
6057 }
6058
6059 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6060 Process compilation unit THIS_CU for a psymtab. */
6061
6062 static void
6063 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6064 int want_partial_unit,
6065 enum language pretend_language)
6066 {
6067 struct process_psymtab_comp_unit_data info;
6068
6069 /* If this compilation unit was already read in, free the
6070 cached copy in order to read it in again. This is
6071 necessary because we skipped some symbols when we first
6072 read in the compilation unit (see load_partial_dies).
6073 This problem could be avoided, but the benefit is unclear. */
6074 if (this_cu->cu != NULL)
6075 free_one_cached_comp_unit (this_cu);
6076
6077 gdb_assert (! this_cu->is_debug_types);
6078 info.want_partial_unit = want_partial_unit;
6079 info.pretend_language = pretend_language;
6080 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6081 process_psymtab_comp_unit_reader,
6082 &info);
6083
6084 /* Age out any secondary CUs. */
6085 age_cached_comp_units ();
6086 }
6087
6088 /* Reader function for build_type_psymtabs. */
6089
6090 static void
6091 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6092 const gdb_byte *info_ptr,
6093 struct die_info *type_unit_die,
6094 int has_children,
6095 void *data)
6096 {
6097 struct objfile *objfile = dwarf2_per_objfile->objfile;
6098 struct dwarf2_cu *cu = reader->cu;
6099 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6100 struct signatured_type *sig_type;
6101 struct type_unit_group *tu_group;
6102 struct attribute *attr;
6103 struct partial_die_info *first_die;
6104 CORE_ADDR lowpc, highpc;
6105 struct partial_symtab *pst;
6106
6107 gdb_assert (data == NULL);
6108 gdb_assert (per_cu->is_debug_types);
6109 sig_type = (struct signatured_type *) per_cu;
6110
6111 if (! has_children)
6112 return;
6113
6114 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6115 tu_group = get_type_unit_group (cu, attr);
6116
6117 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6118
6119 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6120 cu->list_in_scope = &file_symbols;
6121 pst = create_partial_symtab (per_cu, "");
6122 pst->anonymous = 1;
6123
6124 first_die = load_partial_dies (reader, info_ptr, 1);
6125
6126 lowpc = (CORE_ADDR) -1;
6127 highpc = (CORE_ADDR) 0;
6128 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6129
6130 pst->n_global_syms = objfile->global_psymbols.next -
6131 (objfile->global_psymbols.list + pst->globals_offset);
6132 pst->n_static_syms = objfile->static_psymbols.next -
6133 (objfile->static_psymbols.list + pst->statics_offset);
6134 sort_pst_symbols (objfile, pst);
6135 }
6136
6137 /* Struct used to sort TUs by their abbreviation table offset. */
6138
6139 struct tu_abbrev_offset
6140 {
6141 struct signatured_type *sig_type;
6142 sect_offset abbrev_offset;
6143 };
6144
6145 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6146
6147 static int
6148 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6149 {
6150 const struct tu_abbrev_offset * const *a = ap;
6151 const struct tu_abbrev_offset * const *b = bp;
6152 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6153 unsigned int boff = (*b)->abbrev_offset.sect_off;
6154
6155 return (aoff > boff) - (aoff < boff);
6156 }
6157
6158 /* Efficiently read all the type units.
6159 This does the bulk of the work for build_type_psymtabs.
6160
6161 The efficiency is because we sort TUs by the abbrev table they use and
6162 only read each abbrev table once. In one program there are 200K TUs
6163 sharing 8K abbrev tables.
6164
6165 The main purpose of this function is to support building the
6166 dwarf2_per_objfile->type_unit_groups table.
6167 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6168 can collapse the search space by grouping them by stmt_list.
6169 The savings can be significant, in the same program from above the 200K TUs
6170 share 8K stmt_list tables.
6171
6172 FUNC is expected to call get_type_unit_group, which will create the
6173 struct type_unit_group if necessary and add it to
6174 dwarf2_per_objfile->type_unit_groups. */
6175
6176 static void
6177 build_type_psymtabs_1 (void)
6178 {
6179 struct objfile *objfile = dwarf2_per_objfile->objfile;
6180 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6181 struct cleanup *cleanups;
6182 struct abbrev_table *abbrev_table;
6183 sect_offset abbrev_offset;
6184 struct tu_abbrev_offset *sorted_by_abbrev;
6185 struct type_unit_group **iter;
6186 int i;
6187
6188 /* It's up to the caller to not call us multiple times. */
6189 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6190
6191 if (dwarf2_per_objfile->n_type_units == 0)
6192 return;
6193
6194 /* TUs typically share abbrev tables, and there can be way more TUs than
6195 abbrev tables. Sort by abbrev table to reduce the number of times we
6196 read each abbrev table in.
6197 Alternatives are to punt or to maintain a cache of abbrev tables.
6198 This is simpler and efficient enough for now.
6199
6200 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6201 symtab to use). Typically TUs with the same abbrev offset have the same
6202 stmt_list value too so in practice this should work well.
6203
6204 The basic algorithm here is:
6205
6206 sort TUs by abbrev table
6207 for each TU with same abbrev table:
6208 read abbrev table if first user
6209 read TU top level DIE
6210 [IWBN if DWO skeletons had DW_AT_stmt_list]
6211 call FUNC */
6212
6213 if (dwarf_read_debug)
6214 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6215
6216 /* Sort in a separate table to maintain the order of all_type_units
6217 for .gdb_index: TU indices directly index all_type_units. */
6218 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6219 dwarf2_per_objfile->n_type_units);
6220 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6221 {
6222 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6223
6224 sorted_by_abbrev[i].sig_type = sig_type;
6225 sorted_by_abbrev[i].abbrev_offset =
6226 read_abbrev_offset (sig_type->per_cu.section,
6227 sig_type->per_cu.offset);
6228 }
6229 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6230 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6231 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6232
6233 abbrev_offset.sect_off = ~(unsigned) 0;
6234 abbrev_table = NULL;
6235 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6236
6237 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6238 {
6239 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6240
6241 /* Switch to the next abbrev table if necessary. */
6242 if (abbrev_table == NULL
6243 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6244 {
6245 if (abbrev_table != NULL)
6246 {
6247 abbrev_table_free (abbrev_table);
6248 /* Reset to NULL in case abbrev_table_read_table throws
6249 an error: abbrev_table_free_cleanup will get called. */
6250 abbrev_table = NULL;
6251 }
6252 abbrev_offset = tu->abbrev_offset;
6253 abbrev_table =
6254 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6255 abbrev_offset);
6256 ++tu_stats->nr_uniq_abbrev_tables;
6257 }
6258
6259 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6260 build_type_psymtabs_reader, NULL);
6261 }
6262
6263 do_cleanups (cleanups);
6264 }
6265
6266 /* Print collected type unit statistics. */
6267
6268 static void
6269 print_tu_stats (void)
6270 {
6271 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6272
6273 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6274 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6275 dwarf2_per_objfile->n_type_units);
6276 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6277 tu_stats->nr_uniq_abbrev_tables);
6278 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6279 tu_stats->nr_symtabs);
6280 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6281 tu_stats->nr_symtab_sharers);
6282 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6283 tu_stats->nr_stmt_less_type_units);
6284 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6285 tu_stats->nr_all_type_units_reallocs);
6286 }
6287
6288 /* Traversal function for build_type_psymtabs. */
6289
6290 static int
6291 build_type_psymtab_dependencies (void **slot, void *info)
6292 {
6293 struct objfile *objfile = dwarf2_per_objfile->objfile;
6294 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6295 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6296 struct partial_symtab *pst = per_cu->v.psymtab;
6297 int len = VEC_length (sig_type_ptr, tu_group->tus);
6298 struct signatured_type *iter;
6299 int i;
6300
6301 gdb_assert (len > 0);
6302 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6303
6304 pst->number_of_dependencies = len;
6305 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6306 len * sizeof (struct psymtab *));
6307 for (i = 0;
6308 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6309 ++i)
6310 {
6311 gdb_assert (iter->per_cu.is_debug_types);
6312 pst->dependencies[i] = iter->per_cu.v.psymtab;
6313 iter->type_unit_group = tu_group;
6314 }
6315
6316 VEC_free (sig_type_ptr, tu_group->tus);
6317
6318 return 1;
6319 }
6320
6321 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6322 Build partial symbol tables for the .debug_types comp-units. */
6323
6324 static void
6325 build_type_psymtabs (struct objfile *objfile)
6326 {
6327 if (! create_all_type_units (objfile))
6328 return;
6329
6330 build_type_psymtabs_1 ();
6331 }
6332
6333 /* Traversal function for process_skeletonless_type_unit.
6334 Read a TU in a DWO file and build partial symbols for it. */
6335
6336 static int
6337 process_skeletonless_type_unit (void **slot, void *info)
6338 {
6339 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6340 struct objfile *objfile = info;
6341 struct signatured_type find_entry, *entry;
6342
6343 /* If this TU doesn't exist in the global table, add it and read it in. */
6344
6345 if (dwarf2_per_objfile->signatured_types == NULL)
6346 {
6347 dwarf2_per_objfile->signatured_types
6348 = allocate_signatured_type_table (objfile);
6349 }
6350
6351 find_entry.signature = dwo_unit->signature;
6352 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6353 INSERT);
6354 /* If we've already seen this type there's nothing to do. What's happening
6355 is we're doing our own version of comdat-folding here. */
6356 if (*slot != NULL)
6357 return 1;
6358
6359 /* This does the job that create_all_type_units would have done for
6360 this TU. */
6361 entry = add_type_unit (dwo_unit->signature, slot);
6362 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6363 *slot = entry;
6364
6365 /* This does the job that build_type_psymtabs_1 would have done. */
6366 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6367 build_type_psymtabs_reader, NULL);
6368
6369 return 1;
6370 }
6371
6372 /* Traversal function for process_skeletonless_type_units. */
6373
6374 static int
6375 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6376 {
6377 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6378
6379 if (dwo_file->tus != NULL)
6380 {
6381 htab_traverse_noresize (dwo_file->tus,
6382 process_skeletonless_type_unit, info);
6383 }
6384
6385 return 1;
6386 }
6387
6388 /* Scan all TUs of DWO files, verifying we've processed them.
6389 This is needed in case a TU was emitted without its skeleton.
6390 Note: This can't be done until we know what all the DWO files are. */
6391
6392 static void
6393 process_skeletonless_type_units (struct objfile *objfile)
6394 {
6395 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6396 if (get_dwp_file () == NULL
6397 && dwarf2_per_objfile->dwo_files != NULL)
6398 {
6399 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6400 process_dwo_file_for_skeletonless_type_units,
6401 objfile);
6402 }
6403 }
6404
6405 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6406
6407 static void
6408 psymtabs_addrmap_cleanup (void *o)
6409 {
6410 struct objfile *objfile = o;
6411
6412 objfile->psymtabs_addrmap = NULL;
6413 }
6414
6415 /* Compute the 'user' field for each psymtab in OBJFILE. */
6416
6417 static void
6418 set_partial_user (struct objfile *objfile)
6419 {
6420 int i;
6421
6422 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6423 {
6424 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6425 struct partial_symtab *pst = per_cu->v.psymtab;
6426 int j;
6427
6428 if (pst == NULL)
6429 continue;
6430
6431 for (j = 0; j < pst->number_of_dependencies; ++j)
6432 {
6433 /* Set the 'user' field only if it is not already set. */
6434 if (pst->dependencies[j]->user == NULL)
6435 pst->dependencies[j]->user = pst;
6436 }
6437 }
6438 }
6439
6440 /* Build the partial symbol table by doing a quick pass through the
6441 .debug_info and .debug_abbrev sections. */
6442
6443 static void
6444 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6445 {
6446 struct cleanup *back_to, *addrmap_cleanup;
6447 struct obstack temp_obstack;
6448 int i;
6449
6450 if (dwarf_read_debug)
6451 {
6452 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6453 objfile_name (objfile));
6454 }
6455
6456 dwarf2_per_objfile->reading_partial_symbols = 1;
6457
6458 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6459
6460 /* Any cached compilation units will be linked by the per-objfile
6461 read_in_chain. Make sure to free them when we're done. */
6462 back_to = make_cleanup (free_cached_comp_units, NULL);
6463
6464 build_type_psymtabs (objfile);
6465
6466 create_all_comp_units (objfile);
6467
6468 /* Create a temporary address map on a temporary obstack. We later
6469 copy this to the final obstack. */
6470 obstack_init (&temp_obstack);
6471 make_cleanup_obstack_free (&temp_obstack);
6472 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6473 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6474
6475 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6476 {
6477 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6478
6479 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6480 }
6481
6482 /* This has to wait until we read the CUs, we need the list of DWOs. */
6483 process_skeletonless_type_units (objfile);
6484
6485 /* Now that all TUs have been processed we can fill in the dependencies. */
6486 if (dwarf2_per_objfile->type_unit_groups != NULL)
6487 {
6488 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6489 build_type_psymtab_dependencies, NULL);
6490 }
6491
6492 if (dwarf_read_debug)
6493 print_tu_stats ();
6494
6495 set_partial_user (objfile);
6496
6497 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6498 &objfile->objfile_obstack);
6499 discard_cleanups (addrmap_cleanup);
6500
6501 do_cleanups (back_to);
6502
6503 if (dwarf_read_debug)
6504 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6505 objfile_name (objfile));
6506 }
6507
6508 /* die_reader_func for load_partial_comp_unit. */
6509
6510 static void
6511 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6512 const gdb_byte *info_ptr,
6513 struct die_info *comp_unit_die,
6514 int has_children,
6515 void *data)
6516 {
6517 struct dwarf2_cu *cu = reader->cu;
6518
6519 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6520
6521 /* Check if comp unit has_children.
6522 If so, read the rest of the partial symbols from this comp unit.
6523 If not, there's no more debug_info for this comp unit. */
6524 if (has_children)
6525 load_partial_dies (reader, info_ptr, 0);
6526 }
6527
6528 /* Load the partial DIEs for a secondary CU into memory.
6529 This is also used when rereading a primary CU with load_all_dies. */
6530
6531 static void
6532 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6533 {
6534 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6535 load_partial_comp_unit_reader, NULL);
6536 }
6537
6538 static void
6539 read_comp_units_from_section (struct objfile *objfile,
6540 struct dwarf2_section_info *section,
6541 unsigned int is_dwz,
6542 int *n_allocated,
6543 int *n_comp_units,
6544 struct dwarf2_per_cu_data ***all_comp_units)
6545 {
6546 const gdb_byte *info_ptr;
6547 bfd *abfd = get_section_bfd_owner (section);
6548
6549 if (dwarf_read_debug)
6550 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6551 get_section_name (section),
6552 get_section_file_name (section));
6553
6554 dwarf2_read_section (objfile, section);
6555
6556 info_ptr = section->buffer;
6557
6558 while (info_ptr < section->buffer + section->size)
6559 {
6560 unsigned int length, initial_length_size;
6561 struct dwarf2_per_cu_data *this_cu;
6562 sect_offset offset;
6563
6564 offset.sect_off = info_ptr - section->buffer;
6565
6566 /* Read just enough information to find out where the next
6567 compilation unit is. */
6568 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6569
6570 /* Save the compilation unit for later lookup. */
6571 this_cu = obstack_alloc (&objfile->objfile_obstack,
6572 sizeof (struct dwarf2_per_cu_data));
6573 memset (this_cu, 0, sizeof (*this_cu));
6574 this_cu->offset = offset;
6575 this_cu->length = length + initial_length_size;
6576 this_cu->is_dwz = is_dwz;
6577 this_cu->objfile = objfile;
6578 this_cu->section = section;
6579
6580 if (*n_comp_units == *n_allocated)
6581 {
6582 *n_allocated *= 2;
6583 *all_comp_units = xrealloc (*all_comp_units,
6584 *n_allocated
6585 * sizeof (struct dwarf2_per_cu_data *));
6586 }
6587 (*all_comp_units)[*n_comp_units] = this_cu;
6588 ++*n_comp_units;
6589
6590 info_ptr = info_ptr + this_cu->length;
6591 }
6592 }
6593
6594 /* Create a list of all compilation units in OBJFILE.
6595 This is only done for -readnow and building partial symtabs. */
6596
6597 static void
6598 create_all_comp_units (struct objfile *objfile)
6599 {
6600 int n_allocated;
6601 int n_comp_units;
6602 struct dwarf2_per_cu_data **all_comp_units;
6603 struct dwz_file *dwz;
6604
6605 n_comp_units = 0;
6606 n_allocated = 10;
6607 all_comp_units = xmalloc (n_allocated
6608 * sizeof (struct dwarf2_per_cu_data *));
6609
6610 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6611 &n_allocated, &n_comp_units, &all_comp_units);
6612
6613 dwz = dwarf2_get_dwz_file ();
6614 if (dwz != NULL)
6615 read_comp_units_from_section (objfile, &dwz->info, 1,
6616 &n_allocated, &n_comp_units,
6617 &all_comp_units);
6618
6619 dwarf2_per_objfile->all_comp_units
6620 = obstack_alloc (&objfile->objfile_obstack,
6621 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6622 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6623 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6624 xfree (all_comp_units);
6625 dwarf2_per_objfile->n_comp_units = n_comp_units;
6626 }
6627
6628 /* Process all loaded DIEs for compilation unit CU, starting at
6629 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6630 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6631 DW_AT_ranges). See the comments of add_partial_subprogram on how
6632 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6633
6634 static void
6635 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6636 CORE_ADDR *highpc, int set_addrmap,
6637 struct dwarf2_cu *cu)
6638 {
6639 struct partial_die_info *pdi;
6640
6641 /* Now, march along the PDI's, descending into ones which have
6642 interesting children but skipping the children of the other ones,
6643 until we reach the end of the compilation unit. */
6644
6645 pdi = first_die;
6646
6647 while (pdi != NULL)
6648 {
6649 fixup_partial_die (pdi, cu);
6650
6651 /* Anonymous namespaces or modules have no name but have interesting
6652 children, so we need to look at them. Ditto for anonymous
6653 enums. */
6654
6655 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6656 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6657 || pdi->tag == DW_TAG_imported_unit)
6658 {
6659 switch (pdi->tag)
6660 {
6661 case DW_TAG_subprogram:
6662 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6663 break;
6664 case DW_TAG_constant:
6665 case DW_TAG_variable:
6666 case DW_TAG_typedef:
6667 case DW_TAG_union_type:
6668 if (!pdi->is_declaration)
6669 {
6670 add_partial_symbol (pdi, cu);
6671 }
6672 break;
6673 case DW_TAG_class_type:
6674 case DW_TAG_interface_type:
6675 case DW_TAG_structure_type:
6676 if (!pdi->is_declaration)
6677 {
6678 add_partial_symbol (pdi, cu);
6679 }
6680 break;
6681 case DW_TAG_enumeration_type:
6682 if (!pdi->is_declaration)
6683 add_partial_enumeration (pdi, cu);
6684 break;
6685 case DW_TAG_base_type:
6686 case DW_TAG_subrange_type:
6687 /* File scope base type definitions are added to the partial
6688 symbol table. */
6689 add_partial_symbol (pdi, cu);
6690 break;
6691 case DW_TAG_namespace:
6692 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6693 break;
6694 case DW_TAG_module:
6695 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6696 break;
6697 case DW_TAG_imported_unit:
6698 {
6699 struct dwarf2_per_cu_data *per_cu;
6700
6701 /* For now we don't handle imported units in type units. */
6702 if (cu->per_cu->is_debug_types)
6703 {
6704 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6705 " supported in type units [in module %s]"),
6706 objfile_name (cu->objfile));
6707 }
6708
6709 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6710 pdi->is_dwz,
6711 cu->objfile);
6712
6713 /* Go read the partial unit, if needed. */
6714 if (per_cu->v.psymtab == NULL)
6715 process_psymtab_comp_unit (per_cu, 1, cu->language);
6716
6717 VEC_safe_push (dwarf2_per_cu_ptr,
6718 cu->per_cu->imported_symtabs, per_cu);
6719 }
6720 break;
6721 case DW_TAG_imported_declaration:
6722 add_partial_symbol (pdi, cu);
6723 break;
6724 default:
6725 break;
6726 }
6727 }
6728
6729 /* If the die has a sibling, skip to the sibling. */
6730
6731 pdi = pdi->die_sibling;
6732 }
6733 }
6734
6735 /* Functions used to compute the fully scoped name of a partial DIE.
6736
6737 Normally, this is simple. For C++, the parent DIE's fully scoped
6738 name is concatenated with "::" and the partial DIE's name. For
6739 Java, the same thing occurs except that "." is used instead of "::".
6740 Enumerators are an exception; they use the scope of their parent
6741 enumeration type, i.e. the name of the enumeration type is not
6742 prepended to the enumerator.
6743
6744 There are two complexities. One is DW_AT_specification; in this
6745 case "parent" means the parent of the target of the specification,
6746 instead of the direct parent of the DIE. The other is compilers
6747 which do not emit DW_TAG_namespace; in this case we try to guess
6748 the fully qualified name of structure types from their members'
6749 linkage names. This must be done using the DIE's children rather
6750 than the children of any DW_AT_specification target. We only need
6751 to do this for structures at the top level, i.e. if the target of
6752 any DW_AT_specification (if any; otherwise the DIE itself) does not
6753 have a parent. */
6754
6755 /* Compute the scope prefix associated with PDI's parent, in
6756 compilation unit CU. The result will be allocated on CU's
6757 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6758 field. NULL is returned if no prefix is necessary. */
6759 static const char *
6760 partial_die_parent_scope (struct partial_die_info *pdi,
6761 struct dwarf2_cu *cu)
6762 {
6763 const char *grandparent_scope;
6764 struct partial_die_info *parent, *real_pdi;
6765
6766 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6767 then this means the parent of the specification DIE. */
6768
6769 real_pdi = pdi;
6770 while (real_pdi->has_specification)
6771 real_pdi = find_partial_die (real_pdi->spec_offset,
6772 real_pdi->spec_is_dwz, cu);
6773
6774 parent = real_pdi->die_parent;
6775 if (parent == NULL)
6776 return NULL;
6777
6778 if (parent->scope_set)
6779 return parent->scope;
6780
6781 fixup_partial_die (parent, cu);
6782
6783 grandparent_scope = partial_die_parent_scope (parent, cu);
6784
6785 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6786 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6787 Work around this problem here. */
6788 if (cu->language == language_cplus
6789 && parent->tag == DW_TAG_namespace
6790 && strcmp (parent->name, "::") == 0
6791 && grandparent_scope == NULL)
6792 {
6793 parent->scope = NULL;
6794 parent->scope_set = 1;
6795 return NULL;
6796 }
6797
6798 if (pdi->tag == DW_TAG_enumerator)
6799 /* Enumerators should not get the name of the enumeration as a prefix. */
6800 parent->scope = grandparent_scope;
6801 else if (parent->tag == DW_TAG_namespace
6802 || parent->tag == DW_TAG_module
6803 || parent->tag == DW_TAG_structure_type
6804 || parent->tag == DW_TAG_class_type
6805 || parent->tag == DW_TAG_interface_type
6806 || parent->tag == DW_TAG_union_type
6807 || parent->tag == DW_TAG_enumeration_type)
6808 {
6809 if (grandparent_scope == NULL)
6810 parent->scope = parent->name;
6811 else
6812 parent->scope = typename_concat (&cu->comp_unit_obstack,
6813 grandparent_scope,
6814 parent->name, 0, cu);
6815 }
6816 else
6817 {
6818 /* FIXME drow/2004-04-01: What should we be doing with
6819 function-local names? For partial symbols, we should probably be
6820 ignoring them. */
6821 complaint (&symfile_complaints,
6822 _("unhandled containing DIE tag %d for DIE at %d"),
6823 parent->tag, pdi->offset.sect_off);
6824 parent->scope = grandparent_scope;
6825 }
6826
6827 parent->scope_set = 1;
6828 return parent->scope;
6829 }
6830
6831 /* Return the fully scoped name associated with PDI, from compilation unit
6832 CU. The result will be allocated with malloc. */
6833
6834 static char *
6835 partial_die_full_name (struct partial_die_info *pdi,
6836 struct dwarf2_cu *cu)
6837 {
6838 const char *parent_scope;
6839
6840 /* If this is a template instantiation, we can not work out the
6841 template arguments from partial DIEs. So, unfortunately, we have
6842 to go through the full DIEs. At least any work we do building
6843 types here will be reused if full symbols are loaded later. */
6844 if (pdi->has_template_arguments)
6845 {
6846 fixup_partial_die (pdi, cu);
6847
6848 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6849 {
6850 struct die_info *die;
6851 struct attribute attr;
6852 struct dwarf2_cu *ref_cu = cu;
6853
6854 /* DW_FORM_ref_addr is using section offset. */
6855 attr.name = 0;
6856 attr.form = DW_FORM_ref_addr;
6857 attr.u.unsnd = pdi->offset.sect_off;
6858 die = follow_die_ref (NULL, &attr, &ref_cu);
6859
6860 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6861 }
6862 }
6863
6864 parent_scope = partial_die_parent_scope (pdi, cu);
6865 if (parent_scope == NULL)
6866 return NULL;
6867 else
6868 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6869 }
6870
6871 static void
6872 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6873 {
6874 struct objfile *objfile = cu->objfile;
6875 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6876 CORE_ADDR addr = 0;
6877 const char *actual_name = NULL;
6878 CORE_ADDR baseaddr;
6879 char *built_actual_name;
6880
6881 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6882
6883 built_actual_name = partial_die_full_name (pdi, cu);
6884 if (built_actual_name != NULL)
6885 actual_name = built_actual_name;
6886
6887 if (actual_name == NULL)
6888 actual_name = pdi->name;
6889
6890 switch (pdi->tag)
6891 {
6892 case DW_TAG_subprogram:
6893 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6894 if (pdi->is_external || cu->language == language_ada)
6895 {
6896 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6897 of the global scope. But in Ada, we want to be able to access
6898 nested procedures globally. So all Ada subprograms are stored
6899 in the global scope. */
6900 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6901 objfile); */
6902 add_psymbol_to_list (actual_name, strlen (actual_name),
6903 built_actual_name != NULL,
6904 VAR_DOMAIN, LOC_BLOCK,
6905 &objfile->global_psymbols,
6906 0, addr, cu->language, objfile);
6907 }
6908 else
6909 {
6910 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6911 objfile); */
6912 add_psymbol_to_list (actual_name, strlen (actual_name),
6913 built_actual_name != NULL,
6914 VAR_DOMAIN, LOC_BLOCK,
6915 &objfile->static_psymbols,
6916 0, addr, cu->language, objfile);
6917 }
6918 break;
6919 case DW_TAG_constant:
6920 {
6921 struct psymbol_allocation_list *list;
6922
6923 if (pdi->is_external)
6924 list = &objfile->global_psymbols;
6925 else
6926 list = &objfile->static_psymbols;
6927 add_psymbol_to_list (actual_name, strlen (actual_name),
6928 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6929 list, 0, 0, cu->language, objfile);
6930 }
6931 break;
6932 case DW_TAG_variable:
6933 if (pdi->d.locdesc)
6934 addr = decode_locdesc (pdi->d.locdesc, cu);
6935
6936 if (pdi->d.locdesc
6937 && addr == 0
6938 && !dwarf2_per_objfile->has_section_at_zero)
6939 {
6940 /* A global or static variable may also have been stripped
6941 out by the linker if unused, in which case its address
6942 will be nullified; do not add such variables into partial
6943 symbol table then. */
6944 }
6945 else if (pdi->is_external)
6946 {
6947 /* Global Variable.
6948 Don't enter into the minimal symbol tables as there is
6949 a minimal symbol table entry from the ELF symbols already.
6950 Enter into partial symbol table if it has a location
6951 descriptor or a type.
6952 If the location descriptor is missing, new_symbol will create
6953 a LOC_UNRESOLVED symbol, the address of the variable will then
6954 be determined from the minimal symbol table whenever the variable
6955 is referenced.
6956 The address for the partial symbol table entry is not
6957 used by GDB, but it comes in handy for debugging partial symbol
6958 table building. */
6959
6960 if (pdi->d.locdesc || pdi->has_type)
6961 add_psymbol_to_list (actual_name, strlen (actual_name),
6962 built_actual_name != NULL,
6963 VAR_DOMAIN, LOC_STATIC,
6964 &objfile->global_psymbols,
6965 0, addr + baseaddr,
6966 cu->language, objfile);
6967 }
6968 else
6969 {
6970 int has_loc = pdi->d.locdesc != NULL;
6971
6972 /* Static Variable. Skip symbols whose value we cannot know (those
6973 without location descriptors or constant values). */
6974 if (!has_loc && !pdi->has_const_value)
6975 {
6976 xfree (built_actual_name);
6977 return;
6978 }
6979
6980 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6981 mst_file_data, objfile); */
6982 add_psymbol_to_list (actual_name, strlen (actual_name),
6983 built_actual_name != NULL,
6984 VAR_DOMAIN, LOC_STATIC,
6985 &objfile->static_psymbols,
6986 0,
6987 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6988 cu->language, objfile);
6989 }
6990 break;
6991 case DW_TAG_typedef:
6992 case DW_TAG_base_type:
6993 case DW_TAG_subrange_type:
6994 add_psymbol_to_list (actual_name, strlen (actual_name),
6995 built_actual_name != NULL,
6996 VAR_DOMAIN, LOC_TYPEDEF,
6997 &objfile->static_psymbols,
6998 0, (CORE_ADDR) 0, cu->language, objfile);
6999 break;
7000 case DW_TAG_imported_declaration:
7001 case DW_TAG_namespace:
7002 add_psymbol_to_list (actual_name, strlen (actual_name),
7003 built_actual_name != NULL,
7004 VAR_DOMAIN, LOC_TYPEDEF,
7005 &objfile->global_psymbols,
7006 0, (CORE_ADDR) 0, cu->language, objfile);
7007 break;
7008 case DW_TAG_module:
7009 add_psymbol_to_list (actual_name, strlen (actual_name),
7010 built_actual_name != NULL,
7011 MODULE_DOMAIN, LOC_TYPEDEF,
7012 &objfile->global_psymbols,
7013 0, (CORE_ADDR) 0, cu->language, objfile);
7014 break;
7015 case DW_TAG_class_type:
7016 case DW_TAG_interface_type:
7017 case DW_TAG_structure_type:
7018 case DW_TAG_union_type:
7019 case DW_TAG_enumeration_type:
7020 /* Skip external references. The DWARF standard says in the section
7021 about "Structure, Union, and Class Type Entries": "An incomplete
7022 structure, union or class type is represented by a structure,
7023 union or class entry that does not have a byte size attribute
7024 and that has a DW_AT_declaration attribute." */
7025 if (!pdi->has_byte_size && pdi->is_declaration)
7026 {
7027 xfree (built_actual_name);
7028 return;
7029 }
7030
7031 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7032 static vs. global. */
7033 add_psymbol_to_list (actual_name, strlen (actual_name),
7034 built_actual_name != NULL,
7035 STRUCT_DOMAIN, LOC_TYPEDEF,
7036 (cu->language == language_cplus
7037 || cu->language == language_java)
7038 ? &objfile->global_psymbols
7039 : &objfile->static_psymbols,
7040 0, (CORE_ADDR) 0, cu->language, objfile);
7041
7042 break;
7043 case DW_TAG_enumerator:
7044 add_psymbol_to_list (actual_name, strlen (actual_name),
7045 built_actual_name != NULL,
7046 VAR_DOMAIN, LOC_CONST,
7047 (cu->language == language_cplus
7048 || cu->language == language_java)
7049 ? &objfile->global_psymbols
7050 : &objfile->static_psymbols,
7051 0, (CORE_ADDR) 0, cu->language, objfile);
7052 break;
7053 default:
7054 break;
7055 }
7056
7057 xfree (built_actual_name);
7058 }
7059
7060 /* Read a partial die corresponding to a namespace; also, add a symbol
7061 corresponding to that namespace to the symbol table. NAMESPACE is
7062 the name of the enclosing namespace. */
7063
7064 static void
7065 add_partial_namespace (struct partial_die_info *pdi,
7066 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7067 int set_addrmap, struct dwarf2_cu *cu)
7068 {
7069 /* Add a symbol for the namespace. */
7070
7071 add_partial_symbol (pdi, cu);
7072
7073 /* Now scan partial symbols in that namespace. */
7074
7075 if (pdi->has_children)
7076 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7077 }
7078
7079 /* Read a partial die corresponding to a Fortran module. */
7080
7081 static void
7082 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7083 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7084 {
7085 /* Add a symbol for the namespace. */
7086
7087 add_partial_symbol (pdi, cu);
7088
7089 /* Now scan partial symbols in that module. */
7090
7091 if (pdi->has_children)
7092 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7093 }
7094
7095 /* Read a partial die corresponding to a subprogram and create a partial
7096 symbol for that subprogram. When the CU language allows it, this
7097 routine also defines a partial symbol for each nested subprogram
7098 that this subprogram contains. If SET_ADDRMAP is true, record the
7099 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7100 and highest PC values found in PDI.
7101
7102 PDI may also be a lexical block, in which case we simply search
7103 recursively for subprograms defined inside that lexical block.
7104 Again, this is only performed when the CU language allows this
7105 type of definitions. */
7106
7107 static void
7108 add_partial_subprogram (struct partial_die_info *pdi,
7109 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7110 int set_addrmap, struct dwarf2_cu *cu)
7111 {
7112 if (pdi->tag == DW_TAG_subprogram)
7113 {
7114 if (pdi->has_pc_info)
7115 {
7116 if (pdi->lowpc < *lowpc)
7117 *lowpc = pdi->lowpc;
7118 if (pdi->highpc > *highpc)
7119 *highpc = pdi->highpc;
7120 if (set_addrmap)
7121 {
7122 struct objfile *objfile = cu->objfile;
7123 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7124 CORE_ADDR baseaddr;
7125 CORE_ADDR highpc;
7126 CORE_ADDR lowpc;
7127
7128 baseaddr = ANOFFSET (objfile->section_offsets,
7129 SECT_OFF_TEXT (objfile));
7130 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7131 pdi->lowpc + baseaddr);
7132 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7133 pdi->highpc + baseaddr);
7134 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7135 cu->per_cu->v.psymtab);
7136 }
7137 }
7138
7139 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7140 {
7141 if (!pdi->is_declaration)
7142 /* Ignore subprogram DIEs that do not have a name, they are
7143 illegal. Do not emit a complaint at this point, we will
7144 do so when we convert this psymtab into a symtab. */
7145 if (pdi->name)
7146 add_partial_symbol (pdi, cu);
7147 }
7148 }
7149
7150 if (! pdi->has_children)
7151 return;
7152
7153 if (cu->language == language_ada)
7154 {
7155 pdi = pdi->die_child;
7156 while (pdi != NULL)
7157 {
7158 fixup_partial_die (pdi, cu);
7159 if (pdi->tag == DW_TAG_subprogram
7160 || pdi->tag == DW_TAG_lexical_block)
7161 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7162 pdi = pdi->die_sibling;
7163 }
7164 }
7165 }
7166
7167 /* Read a partial die corresponding to an enumeration type. */
7168
7169 static void
7170 add_partial_enumeration (struct partial_die_info *enum_pdi,
7171 struct dwarf2_cu *cu)
7172 {
7173 struct partial_die_info *pdi;
7174
7175 if (enum_pdi->name != NULL)
7176 add_partial_symbol (enum_pdi, cu);
7177
7178 pdi = enum_pdi->die_child;
7179 while (pdi)
7180 {
7181 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7182 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7183 else
7184 add_partial_symbol (pdi, cu);
7185 pdi = pdi->die_sibling;
7186 }
7187 }
7188
7189 /* Return the initial uleb128 in the die at INFO_PTR. */
7190
7191 static unsigned int
7192 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7193 {
7194 unsigned int bytes_read;
7195
7196 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7197 }
7198
7199 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7200 Return the corresponding abbrev, or NULL if the number is zero (indicating
7201 an empty DIE). In either case *BYTES_READ will be set to the length of
7202 the initial number. */
7203
7204 static struct abbrev_info *
7205 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7206 struct dwarf2_cu *cu)
7207 {
7208 bfd *abfd = cu->objfile->obfd;
7209 unsigned int abbrev_number;
7210 struct abbrev_info *abbrev;
7211
7212 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7213
7214 if (abbrev_number == 0)
7215 return NULL;
7216
7217 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7218 if (!abbrev)
7219 {
7220 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7221 " at offset 0x%x [in module %s]"),
7222 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7223 cu->header.offset.sect_off, bfd_get_filename (abfd));
7224 }
7225
7226 return abbrev;
7227 }
7228
7229 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7230 Returns a pointer to the end of a series of DIEs, terminated by an empty
7231 DIE. Any children of the skipped DIEs will also be skipped. */
7232
7233 static const gdb_byte *
7234 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7235 {
7236 struct dwarf2_cu *cu = reader->cu;
7237 struct abbrev_info *abbrev;
7238 unsigned int bytes_read;
7239
7240 while (1)
7241 {
7242 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7243 if (abbrev == NULL)
7244 return info_ptr + bytes_read;
7245 else
7246 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7247 }
7248 }
7249
7250 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7251 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7252 abbrev corresponding to that skipped uleb128 should be passed in
7253 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7254 children. */
7255
7256 static const gdb_byte *
7257 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7258 struct abbrev_info *abbrev)
7259 {
7260 unsigned int bytes_read;
7261 struct attribute attr;
7262 bfd *abfd = reader->abfd;
7263 struct dwarf2_cu *cu = reader->cu;
7264 const gdb_byte *buffer = reader->buffer;
7265 const gdb_byte *buffer_end = reader->buffer_end;
7266 const gdb_byte *start_info_ptr = info_ptr;
7267 unsigned int form, i;
7268
7269 for (i = 0; i < abbrev->num_attrs; i++)
7270 {
7271 /* The only abbrev we care about is DW_AT_sibling. */
7272 if (abbrev->attrs[i].name == DW_AT_sibling)
7273 {
7274 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7275 if (attr.form == DW_FORM_ref_addr)
7276 complaint (&symfile_complaints,
7277 _("ignoring absolute DW_AT_sibling"));
7278 else
7279 {
7280 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7281 const gdb_byte *sibling_ptr = buffer + off;
7282
7283 if (sibling_ptr < info_ptr)
7284 complaint (&symfile_complaints,
7285 _("DW_AT_sibling points backwards"));
7286 else if (sibling_ptr > reader->buffer_end)
7287 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7288 else
7289 return sibling_ptr;
7290 }
7291 }
7292
7293 /* If it isn't DW_AT_sibling, skip this attribute. */
7294 form = abbrev->attrs[i].form;
7295 skip_attribute:
7296 switch (form)
7297 {
7298 case DW_FORM_ref_addr:
7299 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7300 and later it is offset sized. */
7301 if (cu->header.version == 2)
7302 info_ptr += cu->header.addr_size;
7303 else
7304 info_ptr += cu->header.offset_size;
7305 break;
7306 case DW_FORM_GNU_ref_alt:
7307 info_ptr += cu->header.offset_size;
7308 break;
7309 case DW_FORM_addr:
7310 info_ptr += cu->header.addr_size;
7311 break;
7312 case DW_FORM_data1:
7313 case DW_FORM_ref1:
7314 case DW_FORM_flag:
7315 info_ptr += 1;
7316 break;
7317 case DW_FORM_flag_present:
7318 break;
7319 case DW_FORM_data2:
7320 case DW_FORM_ref2:
7321 info_ptr += 2;
7322 break;
7323 case DW_FORM_data4:
7324 case DW_FORM_ref4:
7325 info_ptr += 4;
7326 break;
7327 case DW_FORM_data8:
7328 case DW_FORM_ref8:
7329 case DW_FORM_ref_sig8:
7330 info_ptr += 8;
7331 break;
7332 case DW_FORM_string:
7333 read_direct_string (abfd, info_ptr, &bytes_read);
7334 info_ptr += bytes_read;
7335 break;
7336 case DW_FORM_sec_offset:
7337 case DW_FORM_strp:
7338 case DW_FORM_GNU_strp_alt:
7339 info_ptr += cu->header.offset_size;
7340 break;
7341 case DW_FORM_exprloc:
7342 case DW_FORM_block:
7343 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7344 info_ptr += bytes_read;
7345 break;
7346 case DW_FORM_block1:
7347 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7348 break;
7349 case DW_FORM_block2:
7350 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7351 break;
7352 case DW_FORM_block4:
7353 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7354 break;
7355 case DW_FORM_sdata:
7356 case DW_FORM_udata:
7357 case DW_FORM_ref_udata:
7358 case DW_FORM_GNU_addr_index:
7359 case DW_FORM_GNU_str_index:
7360 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7361 break;
7362 case DW_FORM_indirect:
7363 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7364 info_ptr += bytes_read;
7365 /* We need to continue parsing from here, so just go back to
7366 the top. */
7367 goto skip_attribute;
7368
7369 default:
7370 error (_("Dwarf Error: Cannot handle %s "
7371 "in DWARF reader [in module %s]"),
7372 dwarf_form_name (form),
7373 bfd_get_filename (abfd));
7374 }
7375 }
7376
7377 if (abbrev->has_children)
7378 return skip_children (reader, info_ptr);
7379 else
7380 return info_ptr;
7381 }
7382
7383 /* Locate ORIG_PDI's sibling.
7384 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7385
7386 static const gdb_byte *
7387 locate_pdi_sibling (const struct die_reader_specs *reader,
7388 struct partial_die_info *orig_pdi,
7389 const gdb_byte *info_ptr)
7390 {
7391 /* Do we know the sibling already? */
7392
7393 if (orig_pdi->sibling)
7394 return orig_pdi->sibling;
7395
7396 /* Are there any children to deal with? */
7397
7398 if (!orig_pdi->has_children)
7399 return info_ptr;
7400
7401 /* Skip the children the long way. */
7402
7403 return skip_children (reader, info_ptr);
7404 }
7405
7406 /* Expand this partial symbol table into a full symbol table. SELF is
7407 not NULL. */
7408
7409 static void
7410 dwarf2_read_symtab (struct partial_symtab *self,
7411 struct objfile *objfile)
7412 {
7413 if (self->readin)
7414 {
7415 warning (_("bug: psymtab for %s is already read in."),
7416 self->filename);
7417 }
7418 else
7419 {
7420 if (info_verbose)
7421 {
7422 printf_filtered (_("Reading in symbols for %s..."),
7423 self->filename);
7424 gdb_flush (gdb_stdout);
7425 }
7426
7427 /* Restore our global data. */
7428 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7429
7430 /* If this psymtab is constructed from a debug-only objfile, the
7431 has_section_at_zero flag will not necessarily be correct. We
7432 can get the correct value for this flag by looking at the data
7433 associated with the (presumably stripped) associated objfile. */
7434 if (objfile->separate_debug_objfile_backlink)
7435 {
7436 struct dwarf2_per_objfile *dpo_backlink
7437 = objfile_data (objfile->separate_debug_objfile_backlink,
7438 dwarf2_objfile_data_key);
7439
7440 dwarf2_per_objfile->has_section_at_zero
7441 = dpo_backlink->has_section_at_zero;
7442 }
7443
7444 dwarf2_per_objfile->reading_partial_symbols = 0;
7445
7446 psymtab_to_symtab_1 (self);
7447
7448 /* Finish up the debug error message. */
7449 if (info_verbose)
7450 printf_filtered (_("done.\n"));
7451 }
7452
7453 process_cu_includes ();
7454 }
7455 \f
7456 /* Reading in full CUs. */
7457
7458 /* Add PER_CU to the queue. */
7459
7460 static void
7461 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7462 enum language pretend_language)
7463 {
7464 struct dwarf2_queue_item *item;
7465
7466 per_cu->queued = 1;
7467 item = xmalloc (sizeof (*item));
7468 item->per_cu = per_cu;
7469 item->pretend_language = pretend_language;
7470 item->next = NULL;
7471
7472 if (dwarf2_queue == NULL)
7473 dwarf2_queue = item;
7474 else
7475 dwarf2_queue_tail->next = item;
7476
7477 dwarf2_queue_tail = item;
7478 }
7479
7480 /* If PER_CU is not yet queued, add it to the queue.
7481 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7482 dependency.
7483 The result is non-zero if PER_CU was queued, otherwise the result is zero
7484 meaning either PER_CU is already queued or it is already loaded.
7485
7486 N.B. There is an invariant here that if a CU is queued then it is loaded.
7487 The caller is required to load PER_CU if we return non-zero. */
7488
7489 static int
7490 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7491 struct dwarf2_per_cu_data *per_cu,
7492 enum language pretend_language)
7493 {
7494 /* We may arrive here during partial symbol reading, if we need full
7495 DIEs to process an unusual case (e.g. template arguments). Do
7496 not queue PER_CU, just tell our caller to load its DIEs. */
7497 if (dwarf2_per_objfile->reading_partial_symbols)
7498 {
7499 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7500 return 1;
7501 return 0;
7502 }
7503
7504 /* Mark the dependence relation so that we don't flush PER_CU
7505 too early. */
7506 if (dependent_cu != NULL)
7507 dwarf2_add_dependence (dependent_cu, per_cu);
7508
7509 /* If it's already on the queue, we have nothing to do. */
7510 if (per_cu->queued)
7511 return 0;
7512
7513 /* If the compilation unit is already loaded, just mark it as
7514 used. */
7515 if (per_cu->cu != NULL)
7516 {
7517 per_cu->cu->last_used = 0;
7518 return 0;
7519 }
7520
7521 /* Add it to the queue. */
7522 queue_comp_unit (per_cu, pretend_language);
7523
7524 return 1;
7525 }
7526
7527 /* Process the queue. */
7528
7529 static void
7530 process_queue (void)
7531 {
7532 struct dwarf2_queue_item *item, *next_item;
7533
7534 if (dwarf_read_debug)
7535 {
7536 fprintf_unfiltered (gdb_stdlog,
7537 "Expanding one or more symtabs of objfile %s ...\n",
7538 objfile_name (dwarf2_per_objfile->objfile));
7539 }
7540
7541 /* The queue starts out with one item, but following a DIE reference
7542 may load a new CU, adding it to the end of the queue. */
7543 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7544 {
7545 if (dwarf2_per_objfile->using_index
7546 ? !item->per_cu->v.quick->compunit_symtab
7547 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7548 {
7549 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7550 unsigned int debug_print_threshold;
7551 char buf[100];
7552
7553 if (per_cu->is_debug_types)
7554 {
7555 struct signatured_type *sig_type =
7556 (struct signatured_type *) per_cu;
7557
7558 sprintf (buf, "TU %s at offset 0x%x",
7559 hex_string (sig_type->signature),
7560 per_cu->offset.sect_off);
7561 /* There can be 100s of TUs.
7562 Only print them in verbose mode. */
7563 debug_print_threshold = 2;
7564 }
7565 else
7566 {
7567 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7568 debug_print_threshold = 1;
7569 }
7570
7571 if (dwarf_read_debug >= debug_print_threshold)
7572 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7573
7574 if (per_cu->is_debug_types)
7575 process_full_type_unit (per_cu, item->pretend_language);
7576 else
7577 process_full_comp_unit (per_cu, item->pretend_language);
7578
7579 if (dwarf_read_debug >= debug_print_threshold)
7580 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7581 }
7582
7583 item->per_cu->queued = 0;
7584 next_item = item->next;
7585 xfree (item);
7586 }
7587
7588 dwarf2_queue_tail = NULL;
7589
7590 if (dwarf_read_debug)
7591 {
7592 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7593 objfile_name (dwarf2_per_objfile->objfile));
7594 }
7595 }
7596
7597 /* Free all allocated queue entries. This function only releases anything if
7598 an error was thrown; if the queue was processed then it would have been
7599 freed as we went along. */
7600
7601 static void
7602 dwarf2_release_queue (void *dummy)
7603 {
7604 struct dwarf2_queue_item *item, *last;
7605
7606 item = dwarf2_queue;
7607 while (item)
7608 {
7609 /* Anything still marked queued is likely to be in an
7610 inconsistent state, so discard it. */
7611 if (item->per_cu->queued)
7612 {
7613 if (item->per_cu->cu != NULL)
7614 free_one_cached_comp_unit (item->per_cu);
7615 item->per_cu->queued = 0;
7616 }
7617
7618 last = item;
7619 item = item->next;
7620 xfree (last);
7621 }
7622
7623 dwarf2_queue = dwarf2_queue_tail = NULL;
7624 }
7625
7626 /* Read in full symbols for PST, and anything it depends on. */
7627
7628 static void
7629 psymtab_to_symtab_1 (struct partial_symtab *pst)
7630 {
7631 struct dwarf2_per_cu_data *per_cu;
7632 int i;
7633
7634 if (pst->readin)
7635 return;
7636
7637 for (i = 0; i < pst->number_of_dependencies; i++)
7638 if (!pst->dependencies[i]->readin
7639 && pst->dependencies[i]->user == NULL)
7640 {
7641 /* Inform about additional files that need to be read in. */
7642 if (info_verbose)
7643 {
7644 /* FIXME: i18n: Need to make this a single string. */
7645 fputs_filtered (" ", gdb_stdout);
7646 wrap_here ("");
7647 fputs_filtered ("and ", gdb_stdout);
7648 wrap_here ("");
7649 printf_filtered ("%s...", pst->dependencies[i]->filename);
7650 wrap_here (""); /* Flush output. */
7651 gdb_flush (gdb_stdout);
7652 }
7653 psymtab_to_symtab_1 (pst->dependencies[i]);
7654 }
7655
7656 per_cu = pst->read_symtab_private;
7657
7658 if (per_cu == NULL)
7659 {
7660 /* It's an include file, no symbols to read for it.
7661 Everything is in the parent symtab. */
7662 pst->readin = 1;
7663 return;
7664 }
7665
7666 dw2_do_instantiate_symtab (per_cu);
7667 }
7668
7669 /* Trivial hash function for die_info: the hash value of a DIE
7670 is its offset in .debug_info for this objfile. */
7671
7672 static hashval_t
7673 die_hash (const void *item)
7674 {
7675 const struct die_info *die = item;
7676
7677 return die->offset.sect_off;
7678 }
7679
7680 /* Trivial comparison function for die_info structures: two DIEs
7681 are equal if they have the same offset. */
7682
7683 static int
7684 die_eq (const void *item_lhs, const void *item_rhs)
7685 {
7686 const struct die_info *die_lhs = item_lhs;
7687 const struct die_info *die_rhs = item_rhs;
7688
7689 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7690 }
7691
7692 /* die_reader_func for load_full_comp_unit.
7693 This is identical to read_signatured_type_reader,
7694 but is kept separate for now. */
7695
7696 static void
7697 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7698 const gdb_byte *info_ptr,
7699 struct die_info *comp_unit_die,
7700 int has_children,
7701 void *data)
7702 {
7703 struct dwarf2_cu *cu = reader->cu;
7704 enum language *language_ptr = data;
7705
7706 gdb_assert (cu->die_hash == NULL);
7707 cu->die_hash =
7708 htab_create_alloc_ex (cu->header.length / 12,
7709 die_hash,
7710 die_eq,
7711 NULL,
7712 &cu->comp_unit_obstack,
7713 hashtab_obstack_allocate,
7714 dummy_obstack_deallocate);
7715
7716 if (has_children)
7717 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7718 &info_ptr, comp_unit_die);
7719 cu->dies = comp_unit_die;
7720 /* comp_unit_die is not stored in die_hash, no need. */
7721
7722 /* We try not to read any attributes in this function, because not
7723 all CUs needed for references have been loaded yet, and symbol
7724 table processing isn't initialized. But we have to set the CU language,
7725 or we won't be able to build types correctly.
7726 Similarly, if we do not read the producer, we can not apply
7727 producer-specific interpretation. */
7728 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7729 }
7730
7731 /* Load the DIEs associated with PER_CU into memory. */
7732
7733 static void
7734 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7735 enum language pretend_language)
7736 {
7737 gdb_assert (! this_cu->is_debug_types);
7738
7739 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7740 load_full_comp_unit_reader, &pretend_language);
7741 }
7742
7743 /* Add a DIE to the delayed physname list. */
7744
7745 static void
7746 add_to_method_list (struct type *type, int fnfield_index, int index,
7747 const char *name, struct die_info *die,
7748 struct dwarf2_cu *cu)
7749 {
7750 struct delayed_method_info mi;
7751 mi.type = type;
7752 mi.fnfield_index = fnfield_index;
7753 mi.index = index;
7754 mi.name = name;
7755 mi.die = die;
7756 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7757 }
7758
7759 /* A cleanup for freeing the delayed method list. */
7760
7761 static void
7762 free_delayed_list (void *ptr)
7763 {
7764 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7765 if (cu->method_list != NULL)
7766 {
7767 VEC_free (delayed_method_info, cu->method_list);
7768 cu->method_list = NULL;
7769 }
7770 }
7771
7772 /* Compute the physnames of any methods on the CU's method list.
7773
7774 The computation of method physnames is delayed in order to avoid the
7775 (bad) condition that one of the method's formal parameters is of an as yet
7776 incomplete type. */
7777
7778 static void
7779 compute_delayed_physnames (struct dwarf2_cu *cu)
7780 {
7781 int i;
7782 struct delayed_method_info *mi;
7783 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7784 {
7785 const char *physname;
7786 struct fn_fieldlist *fn_flp
7787 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7788 physname = dwarf2_physname (mi->name, mi->die, cu);
7789 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7790 = physname ? physname : "";
7791 }
7792 }
7793
7794 /* Go objects should be embedded in a DW_TAG_module DIE,
7795 and it's not clear if/how imported objects will appear.
7796 To keep Go support simple until that's worked out,
7797 go back through what we've read and create something usable.
7798 We could do this while processing each DIE, and feels kinda cleaner,
7799 but that way is more invasive.
7800 This is to, for example, allow the user to type "p var" or "b main"
7801 without having to specify the package name, and allow lookups
7802 of module.object to work in contexts that use the expression
7803 parser. */
7804
7805 static void
7806 fixup_go_packaging (struct dwarf2_cu *cu)
7807 {
7808 char *package_name = NULL;
7809 struct pending *list;
7810 int i;
7811
7812 for (list = global_symbols; list != NULL; list = list->next)
7813 {
7814 for (i = 0; i < list->nsyms; ++i)
7815 {
7816 struct symbol *sym = list->symbol[i];
7817
7818 if (SYMBOL_LANGUAGE (sym) == language_go
7819 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7820 {
7821 char *this_package_name = go_symbol_package_name (sym);
7822
7823 if (this_package_name == NULL)
7824 continue;
7825 if (package_name == NULL)
7826 package_name = this_package_name;
7827 else
7828 {
7829 if (strcmp (package_name, this_package_name) != 0)
7830 complaint (&symfile_complaints,
7831 _("Symtab %s has objects from two different Go packages: %s and %s"),
7832 (symbol_symtab (sym) != NULL
7833 ? symtab_to_filename_for_display
7834 (symbol_symtab (sym))
7835 : objfile_name (cu->objfile)),
7836 this_package_name, package_name);
7837 xfree (this_package_name);
7838 }
7839 }
7840 }
7841 }
7842
7843 if (package_name != NULL)
7844 {
7845 struct objfile *objfile = cu->objfile;
7846 const char *saved_package_name
7847 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7848 package_name,
7849 strlen (package_name));
7850 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7851 saved_package_name, objfile);
7852 struct symbol *sym;
7853
7854 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7855
7856 sym = allocate_symbol (objfile);
7857 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7858 SYMBOL_SET_NAMES (sym, saved_package_name,
7859 strlen (saved_package_name), 0, objfile);
7860 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7861 e.g., "main" finds the "main" module and not C's main(). */
7862 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7863 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7864 SYMBOL_TYPE (sym) = type;
7865
7866 add_symbol_to_list (sym, &global_symbols);
7867
7868 xfree (package_name);
7869 }
7870 }
7871
7872 /* Return the symtab for PER_CU. This works properly regardless of
7873 whether we're using the index or psymtabs. */
7874
7875 static struct compunit_symtab *
7876 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7877 {
7878 return (dwarf2_per_objfile->using_index
7879 ? per_cu->v.quick->compunit_symtab
7880 : per_cu->v.psymtab->compunit_symtab);
7881 }
7882
7883 /* A helper function for computing the list of all symbol tables
7884 included by PER_CU. */
7885
7886 static void
7887 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7888 htab_t all_children, htab_t all_type_symtabs,
7889 struct dwarf2_per_cu_data *per_cu,
7890 struct compunit_symtab *immediate_parent)
7891 {
7892 void **slot;
7893 int ix;
7894 struct compunit_symtab *cust;
7895 struct dwarf2_per_cu_data *iter;
7896
7897 slot = htab_find_slot (all_children, per_cu, INSERT);
7898 if (*slot != NULL)
7899 {
7900 /* This inclusion and its children have been processed. */
7901 return;
7902 }
7903
7904 *slot = per_cu;
7905 /* Only add a CU if it has a symbol table. */
7906 cust = get_compunit_symtab (per_cu);
7907 if (cust != NULL)
7908 {
7909 /* If this is a type unit only add its symbol table if we haven't
7910 seen it yet (type unit per_cu's can share symtabs). */
7911 if (per_cu->is_debug_types)
7912 {
7913 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7914 if (*slot == NULL)
7915 {
7916 *slot = cust;
7917 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7918 if (cust->user == NULL)
7919 cust->user = immediate_parent;
7920 }
7921 }
7922 else
7923 {
7924 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7925 if (cust->user == NULL)
7926 cust->user = immediate_parent;
7927 }
7928 }
7929
7930 for (ix = 0;
7931 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7932 ++ix)
7933 {
7934 recursively_compute_inclusions (result, all_children,
7935 all_type_symtabs, iter, cust);
7936 }
7937 }
7938
7939 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7940 PER_CU. */
7941
7942 static void
7943 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7944 {
7945 gdb_assert (! per_cu->is_debug_types);
7946
7947 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7948 {
7949 int ix, len;
7950 struct dwarf2_per_cu_data *per_cu_iter;
7951 struct compunit_symtab *compunit_symtab_iter;
7952 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7953 htab_t all_children, all_type_symtabs;
7954 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7955
7956 /* If we don't have a symtab, we can just skip this case. */
7957 if (cust == NULL)
7958 return;
7959
7960 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7961 NULL, xcalloc, xfree);
7962 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7963 NULL, xcalloc, xfree);
7964
7965 for (ix = 0;
7966 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7967 ix, per_cu_iter);
7968 ++ix)
7969 {
7970 recursively_compute_inclusions (&result_symtabs, all_children,
7971 all_type_symtabs, per_cu_iter,
7972 cust);
7973 }
7974
7975 /* Now we have a transitive closure of all the included symtabs. */
7976 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7977 cust->includes
7978 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7979 (len + 1) * sizeof (struct symtab *));
7980 for (ix = 0;
7981 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7982 compunit_symtab_iter);
7983 ++ix)
7984 cust->includes[ix] = compunit_symtab_iter;
7985 cust->includes[len] = NULL;
7986
7987 VEC_free (compunit_symtab_ptr, result_symtabs);
7988 htab_delete (all_children);
7989 htab_delete (all_type_symtabs);
7990 }
7991 }
7992
7993 /* Compute the 'includes' field for the symtabs of all the CUs we just
7994 read. */
7995
7996 static void
7997 process_cu_includes (void)
7998 {
7999 int ix;
8000 struct dwarf2_per_cu_data *iter;
8001
8002 for (ix = 0;
8003 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8004 ix, iter);
8005 ++ix)
8006 {
8007 if (! iter->is_debug_types)
8008 compute_compunit_symtab_includes (iter);
8009 }
8010
8011 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8012 }
8013
8014 /* Generate full symbol information for PER_CU, whose DIEs have
8015 already been loaded into memory. */
8016
8017 static void
8018 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8019 enum language pretend_language)
8020 {
8021 struct dwarf2_cu *cu = per_cu->cu;
8022 struct objfile *objfile = per_cu->objfile;
8023 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8024 CORE_ADDR lowpc, highpc;
8025 struct compunit_symtab *cust;
8026 struct cleanup *back_to, *delayed_list_cleanup;
8027 CORE_ADDR baseaddr;
8028 struct block *static_block;
8029 CORE_ADDR addr;
8030
8031 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8032
8033 buildsym_init ();
8034 back_to = make_cleanup (really_free_pendings, NULL);
8035 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8036
8037 cu->list_in_scope = &file_symbols;
8038
8039 cu->language = pretend_language;
8040 cu->language_defn = language_def (cu->language);
8041
8042 /* Do line number decoding in read_file_scope () */
8043 process_die (cu->dies, cu);
8044
8045 /* For now fudge the Go package. */
8046 if (cu->language == language_go)
8047 fixup_go_packaging (cu);
8048
8049 /* Now that we have processed all the DIEs in the CU, all the types
8050 should be complete, and it should now be safe to compute all of the
8051 physnames. */
8052 compute_delayed_physnames (cu);
8053 do_cleanups (delayed_list_cleanup);
8054
8055 /* Some compilers don't define a DW_AT_high_pc attribute for the
8056 compilation unit. If the DW_AT_high_pc is missing, synthesize
8057 it, by scanning the DIE's below the compilation unit. */
8058 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8059
8060 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8061 static_block = end_symtab_get_static_block (addr, 0, 1);
8062
8063 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8064 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8065 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8066 addrmap to help ensure it has an accurate map of pc values belonging to
8067 this comp unit. */
8068 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8069
8070 cust = end_symtab_from_static_block (static_block,
8071 SECT_OFF_TEXT (objfile), 0);
8072
8073 if (cust != NULL)
8074 {
8075 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8076
8077 /* Set symtab language to language from DW_AT_language. If the
8078 compilation is from a C file generated by language preprocessors, do
8079 not set the language if it was already deduced by start_subfile. */
8080 if (!(cu->language == language_c
8081 && COMPUNIT_FILETABS (cust)->language != language_c))
8082 COMPUNIT_FILETABS (cust)->language = cu->language;
8083
8084 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8085 produce DW_AT_location with location lists but it can be possibly
8086 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8087 there were bugs in prologue debug info, fixed later in GCC-4.5
8088 by "unwind info for epilogues" patch (which is not directly related).
8089
8090 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8091 needed, it would be wrong due to missing DW_AT_producer there.
8092
8093 Still one can confuse GDB by using non-standard GCC compilation
8094 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8095 */
8096 if (cu->has_loclist && gcc_4_minor >= 5)
8097 cust->locations_valid = 1;
8098
8099 if (gcc_4_minor >= 5)
8100 cust->epilogue_unwind_valid = 1;
8101
8102 cust->call_site_htab = cu->call_site_htab;
8103 }
8104
8105 if (dwarf2_per_objfile->using_index)
8106 per_cu->v.quick->compunit_symtab = cust;
8107 else
8108 {
8109 struct partial_symtab *pst = per_cu->v.psymtab;
8110 pst->compunit_symtab = cust;
8111 pst->readin = 1;
8112 }
8113
8114 /* Push it for inclusion processing later. */
8115 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8116
8117 do_cleanups (back_to);
8118 }
8119
8120 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8121 already been loaded into memory. */
8122
8123 static void
8124 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8125 enum language pretend_language)
8126 {
8127 struct dwarf2_cu *cu = per_cu->cu;
8128 struct objfile *objfile = per_cu->objfile;
8129 struct compunit_symtab *cust;
8130 struct cleanup *back_to, *delayed_list_cleanup;
8131 struct signatured_type *sig_type;
8132
8133 gdb_assert (per_cu->is_debug_types);
8134 sig_type = (struct signatured_type *) per_cu;
8135
8136 buildsym_init ();
8137 back_to = make_cleanup (really_free_pendings, NULL);
8138 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8139
8140 cu->list_in_scope = &file_symbols;
8141
8142 cu->language = pretend_language;
8143 cu->language_defn = language_def (cu->language);
8144
8145 /* The symbol tables are set up in read_type_unit_scope. */
8146 process_die (cu->dies, cu);
8147
8148 /* For now fudge the Go package. */
8149 if (cu->language == language_go)
8150 fixup_go_packaging (cu);
8151
8152 /* Now that we have processed all the DIEs in the CU, all the types
8153 should be complete, and it should now be safe to compute all of the
8154 physnames. */
8155 compute_delayed_physnames (cu);
8156 do_cleanups (delayed_list_cleanup);
8157
8158 /* TUs share symbol tables.
8159 If this is the first TU to use this symtab, complete the construction
8160 of it with end_expandable_symtab. Otherwise, complete the addition of
8161 this TU's symbols to the existing symtab. */
8162 if (sig_type->type_unit_group->compunit_symtab == NULL)
8163 {
8164 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8165 sig_type->type_unit_group->compunit_symtab = cust;
8166
8167 if (cust != NULL)
8168 {
8169 /* Set symtab language to language from DW_AT_language. If the
8170 compilation is from a C file generated by language preprocessors,
8171 do not set the language if it was already deduced by
8172 start_subfile. */
8173 if (!(cu->language == language_c
8174 && COMPUNIT_FILETABS (cust)->language != language_c))
8175 COMPUNIT_FILETABS (cust)->language = cu->language;
8176 }
8177 }
8178 else
8179 {
8180 augment_type_symtab ();
8181 cust = sig_type->type_unit_group->compunit_symtab;
8182 }
8183
8184 if (dwarf2_per_objfile->using_index)
8185 per_cu->v.quick->compunit_symtab = cust;
8186 else
8187 {
8188 struct partial_symtab *pst = per_cu->v.psymtab;
8189 pst->compunit_symtab = cust;
8190 pst->readin = 1;
8191 }
8192
8193 do_cleanups (back_to);
8194 }
8195
8196 /* Process an imported unit DIE. */
8197
8198 static void
8199 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8200 {
8201 struct attribute *attr;
8202
8203 /* For now we don't handle imported units in type units. */
8204 if (cu->per_cu->is_debug_types)
8205 {
8206 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8207 " supported in type units [in module %s]"),
8208 objfile_name (cu->objfile));
8209 }
8210
8211 attr = dwarf2_attr (die, DW_AT_import, cu);
8212 if (attr != NULL)
8213 {
8214 struct dwarf2_per_cu_data *per_cu;
8215 struct symtab *imported_symtab;
8216 sect_offset offset;
8217 int is_dwz;
8218
8219 offset = dwarf2_get_ref_die_offset (attr);
8220 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8221 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8222
8223 /* If necessary, add it to the queue and load its DIEs. */
8224 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8225 load_full_comp_unit (per_cu, cu->language);
8226
8227 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8228 per_cu);
8229 }
8230 }
8231
8232 /* Reset the in_process bit of a die. */
8233
8234 static void
8235 reset_die_in_process (void *arg)
8236 {
8237 struct die_info *die = arg;
8238
8239 die->in_process = 0;
8240 }
8241
8242 /* Process a die and its children. */
8243
8244 static void
8245 process_die (struct die_info *die, struct dwarf2_cu *cu)
8246 {
8247 struct cleanup *in_process;
8248
8249 /* We should only be processing those not already in process. */
8250 gdb_assert (!die->in_process);
8251
8252 die->in_process = 1;
8253 in_process = make_cleanup (reset_die_in_process,die);
8254
8255 switch (die->tag)
8256 {
8257 case DW_TAG_padding:
8258 break;
8259 case DW_TAG_compile_unit:
8260 case DW_TAG_partial_unit:
8261 read_file_scope (die, cu);
8262 break;
8263 case DW_TAG_type_unit:
8264 read_type_unit_scope (die, cu);
8265 break;
8266 case DW_TAG_subprogram:
8267 case DW_TAG_inlined_subroutine:
8268 read_func_scope (die, cu);
8269 break;
8270 case DW_TAG_lexical_block:
8271 case DW_TAG_try_block:
8272 case DW_TAG_catch_block:
8273 read_lexical_block_scope (die, cu);
8274 break;
8275 case DW_TAG_GNU_call_site:
8276 read_call_site_scope (die, cu);
8277 break;
8278 case DW_TAG_class_type:
8279 case DW_TAG_interface_type:
8280 case DW_TAG_structure_type:
8281 case DW_TAG_union_type:
8282 process_structure_scope (die, cu);
8283 break;
8284 case DW_TAG_enumeration_type:
8285 process_enumeration_scope (die, cu);
8286 break;
8287
8288 /* These dies have a type, but processing them does not create
8289 a symbol or recurse to process the children. Therefore we can
8290 read them on-demand through read_type_die. */
8291 case DW_TAG_subroutine_type:
8292 case DW_TAG_set_type:
8293 case DW_TAG_array_type:
8294 case DW_TAG_pointer_type:
8295 case DW_TAG_ptr_to_member_type:
8296 case DW_TAG_reference_type:
8297 case DW_TAG_string_type:
8298 break;
8299
8300 case DW_TAG_base_type:
8301 case DW_TAG_subrange_type:
8302 case DW_TAG_typedef:
8303 /* Add a typedef symbol for the type definition, if it has a
8304 DW_AT_name. */
8305 new_symbol (die, read_type_die (die, cu), cu);
8306 break;
8307 case DW_TAG_common_block:
8308 read_common_block (die, cu);
8309 break;
8310 case DW_TAG_common_inclusion:
8311 break;
8312 case DW_TAG_namespace:
8313 cu->processing_has_namespace_info = 1;
8314 read_namespace (die, cu);
8315 break;
8316 case DW_TAG_module:
8317 cu->processing_has_namespace_info = 1;
8318 read_module (die, cu);
8319 break;
8320 case DW_TAG_imported_declaration:
8321 cu->processing_has_namespace_info = 1;
8322 if (read_namespace_alias (die, cu))
8323 break;
8324 /* The declaration is not a global namespace alias: fall through. */
8325 case DW_TAG_imported_module:
8326 cu->processing_has_namespace_info = 1;
8327 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8328 || cu->language != language_fortran))
8329 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8330 dwarf_tag_name (die->tag));
8331 read_import_statement (die, cu);
8332 break;
8333
8334 case DW_TAG_imported_unit:
8335 process_imported_unit_die (die, cu);
8336 break;
8337
8338 default:
8339 new_symbol (die, NULL, cu);
8340 break;
8341 }
8342
8343 do_cleanups (in_process);
8344 }
8345 \f
8346 /* DWARF name computation. */
8347
8348 /* A helper function for dwarf2_compute_name which determines whether DIE
8349 needs to have the name of the scope prepended to the name listed in the
8350 die. */
8351
8352 static int
8353 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8354 {
8355 struct attribute *attr;
8356
8357 switch (die->tag)
8358 {
8359 case DW_TAG_namespace:
8360 case DW_TAG_typedef:
8361 case DW_TAG_class_type:
8362 case DW_TAG_interface_type:
8363 case DW_TAG_structure_type:
8364 case DW_TAG_union_type:
8365 case DW_TAG_enumeration_type:
8366 case DW_TAG_enumerator:
8367 case DW_TAG_subprogram:
8368 case DW_TAG_inlined_subroutine:
8369 case DW_TAG_member:
8370 case DW_TAG_imported_declaration:
8371 return 1;
8372
8373 case DW_TAG_variable:
8374 case DW_TAG_constant:
8375 /* We only need to prefix "globally" visible variables. These include
8376 any variable marked with DW_AT_external or any variable that
8377 lives in a namespace. [Variables in anonymous namespaces
8378 require prefixing, but they are not DW_AT_external.] */
8379
8380 if (dwarf2_attr (die, DW_AT_specification, cu))
8381 {
8382 struct dwarf2_cu *spec_cu = cu;
8383
8384 return die_needs_namespace (die_specification (die, &spec_cu),
8385 spec_cu);
8386 }
8387
8388 attr = dwarf2_attr (die, DW_AT_external, cu);
8389 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8390 && die->parent->tag != DW_TAG_module)
8391 return 0;
8392 /* A variable in a lexical block of some kind does not need a
8393 namespace, even though in C++ such variables may be external
8394 and have a mangled name. */
8395 if (die->parent->tag == DW_TAG_lexical_block
8396 || die->parent->tag == DW_TAG_try_block
8397 || die->parent->tag == DW_TAG_catch_block
8398 || die->parent->tag == DW_TAG_subprogram)
8399 return 0;
8400 return 1;
8401
8402 default:
8403 return 0;
8404 }
8405 }
8406
8407 /* Retrieve the last character from a mem_file. */
8408
8409 static void
8410 do_ui_file_peek_last (void *object, const char *buffer, long length)
8411 {
8412 char *last_char_p = (char *) object;
8413
8414 if (length > 0)
8415 *last_char_p = buffer[length - 1];
8416 }
8417
8418 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8419 compute the physname for the object, which include a method's:
8420 - formal parameters (C++/Java),
8421 - receiver type (Go),
8422 - return type (Java).
8423
8424 The term "physname" is a bit confusing.
8425 For C++, for example, it is the demangled name.
8426 For Go, for example, it's the mangled name.
8427
8428 For Ada, return the DIE's linkage name rather than the fully qualified
8429 name. PHYSNAME is ignored..
8430
8431 The result is allocated on the objfile_obstack and canonicalized. */
8432
8433 static const char *
8434 dwarf2_compute_name (const char *name,
8435 struct die_info *die, struct dwarf2_cu *cu,
8436 int physname)
8437 {
8438 struct objfile *objfile = cu->objfile;
8439
8440 if (name == NULL)
8441 name = dwarf2_name (die, cu);
8442
8443 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8444 compute it by typename_concat inside GDB. */
8445 if (cu->language == language_ada
8446 || (cu->language == language_fortran && physname))
8447 {
8448 /* For Ada unit, we prefer the linkage name over the name, as
8449 the former contains the exported name, which the user expects
8450 to be able to reference. Ideally, we want the user to be able
8451 to reference this entity using either natural or linkage name,
8452 but we haven't started looking at this enhancement yet. */
8453 struct attribute *attr;
8454
8455 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8456 if (attr == NULL)
8457 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8458 if (attr && DW_STRING (attr))
8459 return DW_STRING (attr);
8460 }
8461
8462 /* These are the only languages we know how to qualify names in. */
8463 if (name != NULL
8464 && (cu->language == language_cplus || cu->language == language_java
8465 || cu->language == language_fortran))
8466 {
8467 if (die_needs_namespace (die, cu))
8468 {
8469 long length;
8470 const char *prefix;
8471 struct ui_file *buf;
8472 char *intermediate_name;
8473 const char *canonical_name = NULL;
8474
8475 prefix = determine_prefix (die, cu);
8476 buf = mem_fileopen ();
8477 if (*prefix != '\0')
8478 {
8479 char *prefixed_name = typename_concat (NULL, prefix, name,
8480 physname, cu);
8481
8482 fputs_unfiltered (prefixed_name, buf);
8483 xfree (prefixed_name);
8484 }
8485 else
8486 fputs_unfiltered (name, buf);
8487
8488 /* Template parameters may be specified in the DIE's DW_AT_name, or
8489 as children with DW_TAG_template_type_param or
8490 DW_TAG_value_type_param. If the latter, add them to the name
8491 here. If the name already has template parameters, then
8492 skip this step; some versions of GCC emit both, and
8493 it is more efficient to use the pre-computed name.
8494
8495 Something to keep in mind about this process: it is very
8496 unlikely, or in some cases downright impossible, to produce
8497 something that will match the mangled name of a function.
8498 If the definition of the function has the same debug info,
8499 we should be able to match up with it anyway. But fallbacks
8500 using the minimal symbol, for instance to find a method
8501 implemented in a stripped copy of libstdc++, will not work.
8502 If we do not have debug info for the definition, we will have to
8503 match them up some other way.
8504
8505 When we do name matching there is a related problem with function
8506 templates; two instantiated function templates are allowed to
8507 differ only by their return types, which we do not add here. */
8508
8509 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8510 {
8511 struct attribute *attr;
8512 struct die_info *child;
8513 int first = 1;
8514
8515 die->building_fullname = 1;
8516
8517 for (child = die->child; child != NULL; child = child->sibling)
8518 {
8519 struct type *type;
8520 LONGEST value;
8521 const gdb_byte *bytes;
8522 struct dwarf2_locexpr_baton *baton;
8523 struct value *v;
8524
8525 if (child->tag != DW_TAG_template_type_param
8526 && child->tag != DW_TAG_template_value_param)
8527 continue;
8528
8529 if (first)
8530 {
8531 fputs_unfiltered ("<", buf);
8532 first = 0;
8533 }
8534 else
8535 fputs_unfiltered (", ", buf);
8536
8537 attr = dwarf2_attr (child, DW_AT_type, cu);
8538 if (attr == NULL)
8539 {
8540 complaint (&symfile_complaints,
8541 _("template parameter missing DW_AT_type"));
8542 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8543 continue;
8544 }
8545 type = die_type (child, cu);
8546
8547 if (child->tag == DW_TAG_template_type_param)
8548 {
8549 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8550 continue;
8551 }
8552
8553 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8554 if (attr == NULL)
8555 {
8556 complaint (&symfile_complaints,
8557 _("template parameter missing "
8558 "DW_AT_const_value"));
8559 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8560 continue;
8561 }
8562
8563 dwarf2_const_value_attr (attr, type, name,
8564 &cu->comp_unit_obstack, cu,
8565 &value, &bytes, &baton);
8566
8567 if (TYPE_NOSIGN (type))
8568 /* GDB prints characters as NUMBER 'CHAR'. If that's
8569 changed, this can use value_print instead. */
8570 c_printchar (value, type, buf);
8571 else
8572 {
8573 struct value_print_options opts;
8574
8575 if (baton != NULL)
8576 v = dwarf2_evaluate_loc_desc (type, NULL,
8577 baton->data,
8578 baton->size,
8579 baton->per_cu);
8580 else if (bytes != NULL)
8581 {
8582 v = allocate_value (type);
8583 memcpy (value_contents_writeable (v), bytes,
8584 TYPE_LENGTH (type));
8585 }
8586 else
8587 v = value_from_longest (type, value);
8588
8589 /* Specify decimal so that we do not depend on
8590 the radix. */
8591 get_formatted_print_options (&opts, 'd');
8592 opts.raw = 1;
8593 value_print (v, buf, &opts);
8594 release_value (v);
8595 value_free (v);
8596 }
8597 }
8598
8599 die->building_fullname = 0;
8600
8601 if (!first)
8602 {
8603 /* Close the argument list, with a space if necessary
8604 (nested templates). */
8605 char last_char = '\0';
8606 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8607 if (last_char == '>')
8608 fputs_unfiltered (" >", buf);
8609 else
8610 fputs_unfiltered (">", buf);
8611 }
8612 }
8613
8614 /* For Java and C++ methods, append formal parameter type
8615 information, if PHYSNAME. */
8616
8617 if (physname && die->tag == DW_TAG_subprogram
8618 && (cu->language == language_cplus
8619 || cu->language == language_java))
8620 {
8621 struct type *type = read_type_die (die, cu);
8622
8623 c_type_print_args (type, buf, 1, cu->language,
8624 &type_print_raw_options);
8625
8626 if (cu->language == language_java)
8627 {
8628 /* For java, we must append the return type to method
8629 names. */
8630 if (die->tag == DW_TAG_subprogram)
8631 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8632 0, 0, &type_print_raw_options);
8633 }
8634 else if (cu->language == language_cplus)
8635 {
8636 /* Assume that an artificial first parameter is
8637 "this", but do not crash if it is not. RealView
8638 marks unnamed (and thus unused) parameters as
8639 artificial; there is no way to differentiate
8640 the two cases. */
8641 if (TYPE_NFIELDS (type) > 0
8642 && TYPE_FIELD_ARTIFICIAL (type, 0)
8643 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8644 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8645 0))))
8646 fputs_unfiltered (" const", buf);
8647 }
8648 }
8649
8650 intermediate_name = ui_file_xstrdup (buf, &length);
8651 ui_file_delete (buf);
8652
8653 if (cu->language == language_cplus)
8654 canonical_name
8655 = dwarf2_canonicalize_name (intermediate_name, cu,
8656 &objfile->per_bfd->storage_obstack);
8657
8658 /* If we only computed INTERMEDIATE_NAME, or if
8659 INTERMEDIATE_NAME is already canonical, then we need to
8660 copy it to the appropriate obstack. */
8661 if (canonical_name == NULL || canonical_name == intermediate_name)
8662 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8663 intermediate_name,
8664 strlen (intermediate_name));
8665 else
8666 name = canonical_name;
8667
8668 xfree (intermediate_name);
8669 }
8670 }
8671
8672 return name;
8673 }
8674
8675 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8676 If scope qualifiers are appropriate they will be added. The result
8677 will be allocated on the storage_obstack, or NULL if the DIE does
8678 not have a name. NAME may either be from a previous call to
8679 dwarf2_name or NULL.
8680
8681 The output string will be canonicalized (if C++/Java). */
8682
8683 static const char *
8684 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8685 {
8686 return dwarf2_compute_name (name, die, cu, 0);
8687 }
8688
8689 /* Construct a physname for the given DIE in CU. NAME may either be
8690 from a previous call to dwarf2_name or NULL. The result will be
8691 allocated on the objfile_objstack or NULL if the DIE does not have a
8692 name.
8693
8694 The output string will be canonicalized (if C++/Java). */
8695
8696 static const char *
8697 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8698 {
8699 struct objfile *objfile = cu->objfile;
8700 struct attribute *attr;
8701 const char *retval, *mangled = NULL, *canon = NULL;
8702 struct cleanup *back_to;
8703 int need_copy = 1;
8704
8705 /* In this case dwarf2_compute_name is just a shortcut not building anything
8706 on its own. */
8707 if (!die_needs_namespace (die, cu))
8708 return dwarf2_compute_name (name, die, cu, 1);
8709
8710 back_to = make_cleanup (null_cleanup, NULL);
8711
8712 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8713 if (!attr)
8714 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8715
8716 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8717 has computed. */
8718 if (attr && DW_STRING (attr))
8719 {
8720 char *demangled;
8721
8722 mangled = DW_STRING (attr);
8723
8724 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8725 type. It is easier for GDB users to search for such functions as
8726 `name(params)' than `long name(params)'. In such case the minimal
8727 symbol names do not match the full symbol names but for template
8728 functions there is never a need to look up their definition from their
8729 declaration so the only disadvantage remains the minimal symbol
8730 variant `long name(params)' does not have the proper inferior type.
8731 */
8732
8733 if (cu->language == language_go)
8734 {
8735 /* This is a lie, but we already lie to the caller new_symbol_full.
8736 new_symbol_full assumes we return the mangled name.
8737 This just undoes that lie until things are cleaned up. */
8738 demangled = NULL;
8739 }
8740 else
8741 {
8742 demangled = gdb_demangle (mangled,
8743 (DMGL_PARAMS | DMGL_ANSI
8744 | (cu->language == language_java
8745 ? DMGL_JAVA | DMGL_RET_POSTFIX
8746 : DMGL_RET_DROP)));
8747 }
8748 if (demangled)
8749 {
8750 make_cleanup (xfree, demangled);
8751 canon = demangled;
8752 }
8753 else
8754 {
8755 canon = mangled;
8756 need_copy = 0;
8757 }
8758 }
8759
8760 if (canon == NULL || check_physname)
8761 {
8762 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8763
8764 if (canon != NULL && strcmp (physname, canon) != 0)
8765 {
8766 /* It may not mean a bug in GDB. The compiler could also
8767 compute DW_AT_linkage_name incorrectly. But in such case
8768 GDB would need to be bug-to-bug compatible. */
8769
8770 complaint (&symfile_complaints,
8771 _("Computed physname <%s> does not match demangled <%s> "
8772 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8773 physname, canon, mangled, die->offset.sect_off,
8774 objfile_name (objfile));
8775
8776 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8777 is available here - over computed PHYSNAME. It is safer
8778 against both buggy GDB and buggy compilers. */
8779
8780 retval = canon;
8781 }
8782 else
8783 {
8784 retval = physname;
8785 need_copy = 0;
8786 }
8787 }
8788 else
8789 retval = canon;
8790
8791 if (need_copy)
8792 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8793 retval, strlen (retval));
8794
8795 do_cleanups (back_to);
8796 return retval;
8797 }
8798
8799 /* Inspect DIE in CU for a namespace alias. If one exists, record
8800 a new symbol for it.
8801
8802 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8803
8804 static int
8805 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8806 {
8807 struct attribute *attr;
8808
8809 /* If the die does not have a name, this is not a namespace
8810 alias. */
8811 attr = dwarf2_attr (die, DW_AT_name, cu);
8812 if (attr != NULL)
8813 {
8814 int num;
8815 struct die_info *d = die;
8816 struct dwarf2_cu *imported_cu = cu;
8817
8818 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8819 keep inspecting DIEs until we hit the underlying import. */
8820 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8821 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8822 {
8823 attr = dwarf2_attr (d, DW_AT_import, cu);
8824 if (attr == NULL)
8825 break;
8826
8827 d = follow_die_ref (d, attr, &imported_cu);
8828 if (d->tag != DW_TAG_imported_declaration)
8829 break;
8830 }
8831
8832 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8833 {
8834 complaint (&symfile_complaints,
8835 _("DIE at 0x%x has too many recursively imported "
8836 "declarations"), d->offset.sect_off);
8837 return 0;
8838 }
8839
8840 if (attr != NULL)
8841 {
8842 struct type *type;
8843 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8844
8845 type = get_die_type_at_offset (offset, cu->per_cu);
8846 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8847 {
8848 /* This declaration is a global namespace alias. Add
8849 a symbol for it whose type is the aliased namespace. */
8850 new_symbol (die, type, cu);
8851 return 1;
8852 }
8853 }
8854 }
8855
8856 return 0;
8857 }
8858
8859 /* Read the import statement specified by the given die and record it. */
8860
8861 static void
8862 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8863 {
8864 struct objfile *objfile = cu->objfile;
8865 struct attribute *import_attr;
8866 struct die_info *imported_die, *child_die;
8867 struct dwarf2_cu *imported_cu;
8868 const char *imported_name;
8869 const char *imported_name_prefix;
8870 const char *canonical_name;
8871 const char *import_alias;
8872 const char *imported_declaration = NULL;
8873 const char *import_prefix;
8874 VEC (const_char_ptr) *excludes = NULL;
8875 struct cleanup *cleanups;
8876
8877 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8878 if (import_attr == NULL)
8879 {
8880 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8881 dwarf_tag_name (die->tag));
8882 return;
8883 }
8884
8885 imported_cu = cu;
8886 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8887 imported_name = dwarf2_name (imported_die, imported_cu);
8888 if (imported_name == NULL)
8889 {
8890 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8891
8892 The import in the following code:
8893 namespace A
8894 {
8895 typedef int B;
8896 }
8897
8898 int main ()
8899 {
8900 using A::B;
8901 B b;
8902 return b;
8903 }
8904
8905 ...
8906 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8907 <52> DW_AT_decl_file : 1
8908 <53> DW_AT_decl_line : 6
8909 <54> DW_AT_import : <0x75>
8910 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8911 <59> DW_AT_name : B
8912 <5b> DW_AT_decl_file : 1
8913 <5c> DW_AT_decl_line : 2
8914 <5d> DW_AT_type : <0x6e>
8915 ...
8916 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8917 <76> DW_AT_byte_size : 4
8918 <77> DW_AT_encoding : 5 (signed)
8919
8920 imports the wrong die ( 0x75 instead of 0x58 ).
8921 This case will be ignored until the gcc bug is fixed. */
8922 return;
8923 }
8924
8925 /* Figure out the local name after import. */
8926 import_alias = dwarf2_name (die, cu);
8927
8928 /* Figure out where the statement is being imported to. */
8929 import_prefix = determine_prefix (die, cu);
8930
8931 /* Figure out what the scope of the imported die is and prepend it
8932 to the name of the imported die. */
8933 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8934
8935 if (imported_die->tag != DW_TAG_namespace
8936 && imported_die->tag != DW_TAG_module)
8937 {
8938 imported_declaration = imported_name;
8939 canonical_name = imported_name_prefix;
8940 }
8941 else if (strlen (imported_name_prefix) > 0)
8942 canonical_name = obconcat (&objfile->objfile_obstack,
8943 imported_name_prefix, "::", imported_name,
8944 (char *) NULL);
8945 else
8946 canonical_name = imported_name;
8947
8948 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8949
8950 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8951 for (child_die = die->child; child_die && child_die->tag;
8952 child_die = sibling_die (child_die))
8953 {
8954 /* DWARF-4: A Fortran use statement with a “rename list” may be
8955 represented by an imported module entry with an import attribute
8956 referring to the module and owned entries corresponding to those
8957 entities that are renamed as part of being imported. */
8958
8959 if (child_die->tag != DW_TAG_imported_declaration)
8960 {
8961 complaint (&symfile_complaints,
8962 _("child DW_TAG_imported_declaration expected "
8963 "- DIE at 0x%x [in module %s]"),
8964 child_die->offset.sect_off, objfile_name (objfile));
8965 continue;
8966 }
8967
8968 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8969 if (import_attr == NULL)
8970 {
8971 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8972 dwarf_tag_name (child_die->tag));
8973 continue;
8974 }
8975
8976 imported_cu = cu;
8977 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8978 &imported_cu);
8979 imported_name = dwarf2_name (imported_die, imported_cu);
8980 if (imported_name == NULL)
8981 {
8982 complaint (&symfile_complaints,
8983 _("child DW_TAG_imported_declaration has unknown "
8984 "imported name - DIE at 0x%x [in module %s]"),
8985 child_die->offset.sect_off, objfile_name (objfile));
8986 continue;
8987 }
8988
8989 VEC_safe_push (const_char_ptr, excludes, imported_name);
8990
8991 process_die (child_die, cu);
8992 }
8993
8994 cp_add_using_directive (import_prefix,
8995 canonical_name,
8996 import_alias,
8997 imported_declaration,
8998 excludes,
8999 0,
9000 &objfile->objfile_obstack);
9001
9002 do_cleanups (cleanups);
9003 }
9004
9005 /* Cleanup function for handle_DW_AT_stmt_list. */
9006
9007 static void
9008 free_cu_line_header (void *arg)
9009 {
9010 struct dwarf2_cu *cu = arg;
9011
9012 free_line_header (cu->line_header);
9013 cu->line_header = NULL;
9014 }
9015
9016 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9017 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9018 this, it was first present in GCC release 4.3.0. */
9019
9020 static int
9021 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9022 {
9023 if (!cu->checked_producer)
9024 check_producer (cu);
9025
9026 return cu->producer_is_gcc_lt_4_3;
9027 }
9028
9029 static void
9030 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9031 const char **name, const char **comp_dir)
9032 {
9033 struct attribute *attr;
9034
9035 *name = NULL;
9036 *comp_dir = NULL;
9037
9038 /* Find the filename. Do not use dwarf2_name here, since the filename
9039 is not a source language identifier. */
9040 attr = dwarf2_attr (die, DW_AT_name, cu);
9041 if (attr)
9042 {
9043 *name = DW_STRING (attr);
9044 }
9045
9046 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
9047 if (attr)
9048 *comp_dir = DW_STRING (attr);
9049 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
9050 && IS_ABSOLUTE_PATH (*name))
9051 {
9052 char *d = ldirname (*name);
9053
9054 *comp_dir = d;
9055 if (d != NULL)
9056 make_cleanup (xfree, d);
9057 }
9058 if (*comp_dir != NULL)
9059 {
9060 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9061 directory, get rid of it. */
9062 char *cp = strchr (*comp_dir, ':');
9063
9064 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9065 *comp_dir = cp + 1;
9066 }
9067
9068 if (*name == NULL)
9069 *name = "<unknown>";
9070 }
9071
9072 /* Handle DW_AT_stmt_list for a compilation unit.
9073 DIE is the DW_TAG_compile_unit die for CU.
9074 COMP_DIR is the compilation directory. LOWPC is passed to
9075 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9076
9077 static void
9078 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9079 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9080 {
9081 struct objfile *objfile = dwarf2_per_objfile->objfile;
9082 struct attribute *attr;
9083 unsigned int line_offset;
9084 struct line_header line_header_local;
9085 hashval_t line_header_local_hash;
9086 unsigned u;
9087 void **slot;
9088 int decode_mapping;
9089
9090 gdb_assert (! cu->per_cu->is_debug_types);
9091
9092 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9093 if (attr == NULL)
9094 return;
9095
9096 line_offset = DW_UNSND (attr);
9097
9098 /* The line header hash table is only created if needed (it exists to
9099 prevent redundant reading of the line table for partial_units).
9100 If we're given a partial_unit, we'll need it. If we're given a
9101 compile_unit, then use the line header hash table if it's already
9102 created, but don't create one just yet. */
9103
9104 if (dwarf2_per_objfile->line_header_hash == NULL
9105 && die->tag == DW_TAG_partial_unit)
9106 {
9107 dwarf2_per_objfile->line_header_hash
9108 = htab_create_alloc_ex (127, line_header_hash_voidp,
9109 line_header_eq_voidp,
9110 free_line_header_voidp,
9111 &objfile->objfile_obstack,
9112 hashtab_obstack_allocate,
9113 dummy_obstack_deallocate);
9114 }
9115
9116 line_header_local.offset.sect_off = line_offset;
9117 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9118 line_header_local_hash = line_header_hash (&line_header_local);
9119 if (dwarf2_per_objfile->line_header_hash != NULL)
9120 {
9121 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9122 &line_header_local,
9123 line_header_local_hash, NO_INSERT);
9124
9125 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9126 is not present in *SLOT (since if there is something in *SLOT then
9127 it will be for a partial_unit). */
9128 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9129 {
9130 gdb_assert (*slot != NULL);
9131 cu->line_header = *slot;
9132 return;
9133 }
9134 }
9135
9136 /* dwarf_decode_line_header does not yet provide sufficient information.
9137 We always have to call also dwarf_decode_lines for it. */
9138 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9139 if (cu->line_header == NULL)
9140 return;
9141
9142 if (dwarf2_per_objfile->line_header_hash == NULL)
9143 slot = NULL;
9144 else
9145 {
9146 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9147 &line_header_local,
9148 line_header_local_hash, INSERT);
9149 gdb_assert (slot != NULL);
9150 }
9151 if (slot != NULL && *slot == NULL)
9152 {
9153 /* This newly decoded line number information unit will be owned
9154 by line_header_hash hash table. */
9155 *slot = cu->line_header;
9156 }
9157 else
9158 {
9159 /* We cannot free any current entry in (*slot) as that struct line_header
9160 may be already used by multiple CUs. Create only temporary decoded
9161 line_header for this CU - it may happen at most once for each line
9162 number information unit. And if we're not using line_header_hash
9163 then this is what we want as well. */
9164 gdb_assert (die->tag != DW_TAG_partial_unit);
9165 make_cleanup (free_cu_line_header, cu);
9166 }
9167 decode_mapping = (die->tag != DW_TAG_partial_unit);
9168 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9169 decode_mapping);
9170 }
9171
9172 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9173
9174 static void
9175 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9176 {
9177 struct objfile *objfile = dwarf2_per_objfile->objfile;
9178 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9179 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9180 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9181 CORE_ADDR highpc = ((CORE_ADDR) 0);
9182 struct attribute *attr;
9183 const char *name = NULL;
9184 const char *comp_dir = NULL;
9185 struct die_info *child_die;
9186 bfd *abfd = objfile->obfd;
9187 CORE_ADDR baseaddr;
9188
9189 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9190
9191 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9192
9193 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9194 from finish_block. */
9195 if (lowpc == ((CORE_ADDR) -1))
9196 lowpc = highpc;
9197 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9198
9199 find_file_and_directory (die, cu, &name, &comp_dir);
9200
9201 prepare_one_comp_unit (cu, die, cu->language);
9202
9203 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9204 standardised yet. As a workaround for the language detection we fall
9205 back to the DW_AT_producer string. */
9206 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9207 cu->language = language_opencl;
9208
9209 /* Similar hack for Go. */
9210 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9211 set_cu_language (DW_LANG_Go, cu);
9212
9213 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9214
9215 /* Decode line number information if present. We do this before
9216 processing child DIEs, so that the line header table is available
9217 for DW_AT_decl_file. */
9218 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9219
9220 /* Process all dies in compilation unit. */
9221 if (die->child != NULL)
9222 {
9223 child_die = die->child;
9224 while (child_die && child_die->tag)
9225 {
9226 process_die (child_die, cu);
9227 child_die = sibling_die (child_die);
9228 }
9229 }
9230
9231 /* Decode macro information, if present. Dwarf 2 macro information
9232 refers to information in the line number info statement program
9233 header, so we can only read it if we've read the header
9234 successfully. */
9235 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9236 if (attr && cu->line_header)
9237 {
9238 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9239 complaint (&symfile_complaints,
9240 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9241
9242 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9243 }
9244 else
9245 {
9246 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9247 if (attr && cu->line_header)
9248 {
9249 unsigned int macro_offset = DW_UNSND (attr);
9250
9251 dwarf_decode_macros (cu, macro_offset, 0);
9252 }
9253 }
9254
9255 do_cleanups (back_to);
9256 }
9257
9258 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9259 Create the set of symtabs used by this TU, or if this TU is sharing
9260 symtabs with another TU and the symtabs have already been created
9261 then restore those symtabs in the line header.
9262 We don't need the pc/line-number mapping for type units. */
9263
9264 static void
9265 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9266 {
9267 struct objfile *objfile = dwarf2_per_objfile->objfile;
9268 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9269 struct type_unit_group *tu_group;
9270 int first_time;
9271 struct line_header *lh;
9272 struct attribute *attr;
9273 unsigned int i, line_offset;
9274 struct signatured_type *sig_type;
9275
9276 gdb_assert (per_cu->is_debug_types);
9277 sig_type = (struct signatured_type *) per_cu;
9278
9279 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9280
9281 /* If we're using .gdb_index (includes -readnow) then
9282 per_cu->type_unit_group may not have been set up yet. */
9283 if (sig_type->type_unit_group == NULL)
9284 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9285 tu_group = sig_type->type_unit_group;
9286
9287 /* If we've already processed this stmt_list there's no real need to
9288 do it again, we could fake it and just recreate the part we need
9289 (file name,index -> symtab mapping). If data shows this optimization
9290 is useful we can do it then. */
9291 first_time = tu_group->compunit_symtab == NULL;
9292
9293 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9294 debug info. */
9295 lh = NULL;
9296 if (attr != NULL)
9297 {
9298 line_offset = DW_UNSND (attr);
9299 lh = dwarf_decode_line_header (line_offset, cu);
9300 }
9301 if (lh == NULL)
9302 {
9303 if (first_time)
9304 dwarf2_start_symtab (cu, "", NULL, 0);
9305 else
9306 {
9307 gdb_assert (tu_group->symtabs == NULL);
9308 restart_symtab (tu_group->compunit_symtab, "", 0);
9309 }
9310 return;
9311 }
9312
9313 cu->line_header = lh;
9314 make_cleanup (free_cu_line_header, cu);
9315
9316 if (first_time)
9317 {
9318 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9319
9320 tu_group->num_symtabs = lh->num_file_names;
9321 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9322
9323 for (i = 0; i < lh->num_file_names; ++i)
9324 {
9325 const char *dir = NULL;
9326 struct file_entry *fe = &lh->file_names[i];
9327
9328 if (fe->dir_index && lh->include_dirs != NULL)
9329 dir = lh->include_dirs[fe->dir_index - 1];
9330 dwarf2_start_subfile (fe->name, dir);
9331
9332 if (current_subfile->symtab == NULL)
9333 {
9334 /* NOTE: start_subfile will recognize when it's been passed
9335 a file it has already seen. So we can't assume there's a
9336 simple mapping from lh->file_names to subfiles, plus
9337 lh->file_names may contain dups. */
9338 current_subfile->symtab
9339 = allocate_symtab (cust, current_subfile->name);
9340 }
9341
9342 fe->symtab = current_subfile->symtab;
9343 tu_group->symtabs[i] = fe->symtab;
9344 }
9345 }
9346 else
9347 {
9348 restart_symtab (tu_group->compunit_symtab, "", 0);
9349
9350 for (i = 0; i < lh->num_file_names; ++i)
9351 {
9352 struct file_entry *fe = &lh->file_names[i];
9353
9354 fe->symtab = tu_group->symtabs[i];
9355 }
9356 }
9357
9358 /* The main symtab is allocated last. Type units don't have DW_AT_name
9359 so they don't have a "real" (so to speak) symtab anyway.
9360 There is later code that will assign the main symtab to all symbols
9361 that don't have one. We need to handle the case of a symbol with a
9362 missing symtab (DW_AT_decl_file) anyway. */
9363 }
9364
9365 /* Process DW_TAG_type_unit.
9366 For TUs we want to skip the first top level sibling if it's not the
9367 actual type being defined by this TU. In this case the first top
9368 level sibling is there to provide context only. */
9369
9370 static void
9371 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9372 {
9373 struct die_info *child_die;
9374
9375 prepare_one_comp_unit (cu, die, language_minimal);
9376
9377 /* Initialize (or reinitialize) the machinery for building symtabs.
9378 We do this before processing child DIEs, so that the line header table
9379 is available for DW_AT_decl_file. */
9380 setup_type_unit_groups (die, cu);
9381
9382 if (die->child != NULL)
9383 {
9384 child_die = die->child;
9385 while (child_die && child_die->tag)
9386 {
9387 process_die (child_die, cu);
9388 child_die = sibling_die (child_die);
9389 }
9390 }
9391 }
9392 \f
9393 /* DWO/DWP files.
9394
9395 http://gcc.gnu.org/wiki/DebugFission
9396 http://gcc.gnu.org/wiki/DebugFissionDWP
9397
9398 To simplify handling of both DWO files ("object" files with the DWARF info)
9399 and DWP files (a file with the DWOs packaged up into one file), we treat
9400 DWP files as having a collection of virtual DWO files. */
9401
9402 static hashval_t
9403 hash_dwo_file (const void *item)
9404 {
9405 const struct dwo_file *dwo_file = item;
9406 hashval_t hash;
9407
9408 hash = htab_hash_string (dwo_file->dwo_name);
9409 if (dwo_file->comp_dir != NULL)
9410 hash += htab_hash_string (dwo_file->comp_dir);
9411 return hash;
9412 }
9413
9414 static int
9415 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9416 {
9417 const struct dwo_file *lhs = item_lhs;
9418 const struct dwo_file *rhs = item_rhs;
9419
9420 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9421 return 0;
9422 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9423 return lhs->comp_dir == rhs->comp_dir;
9424 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9425 }
9426
9427 /* Allocate a hash table for DWO files. */
9428
9429 static htab_t
9430 allocate_dwo_file_hash_table (void)
9431 {
9432 struct objfile *objfile = dwarf2_per_objfile->objfile;
9433
9434 return htab_create_alloc_ex (41,
9435 hash_dwo_file,
9436 eq_dwo_file,
9437 NULL,
9438 &objfile->objfile_obstack,
9439 hashtab_obstack_allocate,
9440 dummy_obstack_deallocate);
9441 }
9442
9443 /* Lookup DWO file DWO_NAME. */
9444
9445 static void **
9446 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9447 {
9448 struct dwo_file find_entry;
9449 void **slot;
9450
9451 if (dwarf2_per_objfile->dwo_files == NULL)
9452 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9453
9454 memset (&find_entry, 0, sizeof (find_entry));
9455 find_entry.dwo_name = dwo_name;
9456 find_entry.comp_dir = comp_dir;
9457 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9458
9459 return slot;
9460 }
9461
9462 static hashval_t
9463 hash_dwo_unit (const void *item)
9464 {
9465 const struct dwo_unit *dwo_unit = item;
9466
9467 /* This drops the top 32 bits of the id, but is ok for a hash. */
9468 return dwo_unit->signature;
9469 }
9470
9471 static int
9472 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9473 {
9474 const struct dwo_unit *lhs = item_lhs;
9475 const struct dwo_unit *rhs = item_rhs;
9476
9477 /* The signature is assumed to be unique within the DWO file.
9478 So while object file CU dwo_id's always have the value zero,
9479 that's OK, assuming each object file DWO file has only one CU,
9480 and that's the rule for now. */
9481 return lhs->signature == rhs->signature;
9482 }
9483
9484 /* Allocate a hash table for DWO CUs,TUs.
9485 There is one of these tables for each of CUs,TUs for each DWO file. */
9486
9487 static htab_t
9488 allocate_dwo_unit_table (struct objfile *objfile)
9489 {
9490 /* Start out with a pretty small number.
9491 Generally DWO files contain only one CU and maybe some TUs. */
9492 return htab_create_alloc_ex (3,
9493 hash_dwo_unit,
9494 eq_dwo_unit,
9495 NULL,
9496 &objfile->objfile_obstack,
9497 hashtab_obstack_allocate,
9498 dummy_obstack_deallocate);
9499 }
9500
9501 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9502
9503 struct create_dwo_cu_data
9504 {
9505 struct dwo_file *dwo_file;
9506 struct dwo_unit dwo_unit;
9507 };
9508
9509 /* die_reader_func for create_dwo_cu. */
9510
9511 static void
9512 create_dwo_cu_reader (const struct die_reader_specs *reader,
9513 const gdb_byte *info_ptr,
9514 struct die_info *comp_unit_die,
9515 int has_children,
9516 void *datap)
9517 {
9518 struct dwarf2_cu *cu = reader->cu;
9519 struct objfile *objfile = dwarf2_per_objfile->objfile;
9520 sect_offset offset = cu->per_cu->offset;
9521 struct dwarf2_section_info *section = cu->per_cu->section;
9522 struct create_dwo_cu_data *data = datap;
9523 struct dwo_file *dwo_file = data->dwo_file;
9524 struct dwo_unit *dwo_unit = &data->dwo_unit;
9525 struct attribute *attr;
9526
9527 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9528 if (attr == NULL)
9529 {
9530 complaint (&symfile_complaints,
9531 _("Dwarf Error: debug entry at offset 0x%x is missing"
9532 " its dwo_id [in module %s]"),
9533 offset.sect_off, dwo_file->dwo_name);
9534 return;
9535 }
9536
9537 dwo_unit->dwo_file = dwo_file;
9538 dwo_unit->signature = DW_UNSND (attr);
9539 dwo_unit->section = section;
9540 dwo_unit->offset = offset;
9541 dwo_unit->length = cu->per_cu->length;
9542
9543 if (dwarf_read_debug)
9544 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9545 offset.sect_off, hex_string (dwo_unit->signature));
9546 }
9547
9548 /* Create the dwo_unit for the lone CU in DWO_FILE.
9549 Note: This function processes DWO files only, not DWP files. */
9550
9551 static struct dwo_unit *
9552 create_dwo_cu (struct dwo_file *dwo_file)
9553 {
9554 struct objfile *objfile = dwarf2_per_objfile->objfile;
9555 struct dwarf2_section_info *section = &dwo_file->sections.info;
9556 bfd *abfd;
9557 htab_t cu_htab;
9558 const gdb_byte *info_ptr, *end_ptr;
9559 struct create_dwo_cu_data create_dwo_cu_data;
9560 struct dwo_unit *dwo_unit;
9561
9562 dwarf2_read_section (objfile, section);
9563 info_ptr = section->buffer;
9564
9565 if (info_ptr == NULL)
9566 return NULL;
9567
9568 /* We can't set abfd until now because the section may be empty or
9569 not present, in which case section->asection will be NULL. */
9570 abfd = get_section_bfd_owner (section);
9571
9572 if (dwarf_read_debug)
9573 {
9574 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9575 get_section_name (section),
9576 get_section_file_name (section));
9577 }
9578
9579 create_dwo_cu_data.dwo_file = dwo_file;
9580 dwo_unit = NULL;
9581
9582 end_ptr = info_ptr + section->size;
9583 while (info_ptr < end_ptr)
9584 {
9585 struct dwarf2_per_cu_data per_cu;
9586
9587 memset (&create_dwo_cu_data.dwo_unit, 0,
9588 sizeof (create_dwo_cu_data.dwo_unit));
9589 memset (&per_cu, 0, sizeof (per_cu));
9590 per_cu.objfile = objfile;
9591 per_cu.is_debug_types = 0;
9592 per_cu.offset.sect_off = info_ptr - section->buffer;
9593 per_cu.section = section;
9594
9595 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9596 create_dwo_cu_reader,
9597 &create_dwo_cu_data);
9598
9599 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9600 {
9601 /* If we've already found one, complain. We only support one
9602 because having more than one requires hacking the dwo_name of
9603 each to match, which is highly unlikely to happen. */
9604 if (dwo_unit != NULL)
9605 {
9606 complaint (&symfile_complaints,
9607 _("Multiple CUs in DWO file %s [in module %s]"),
9608 dwo_file->dwo_name, objfile_name (objfile));
9609 break;
9610 }
9611
9612 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9613 *dwo_unit = create_dwo_cu_data.dwo_unit;
9614 }
9615
9616 info_ptr += per_cu.length;
9617 }
9618
9619 return dwo_unit;
9620 }
9621
9622 /* DWP file .debug_{cu,tu}_index section format:
9623 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9624
9625 DWP Version 1:
9626
9627 Both index sections have the same format, and serve to map a 64-bit
9628 signature to a set of section numbers. Each section begins with a header,
9629 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9630 indexes, and a pool of 32-bit section numbers. The index sections will be
9631 aligned at 8-byte boundaries in the file.
9632
9633 The index section header consists of:
9634
9635 V, 32 bit version number
9636 -, 32 bits unused
9637 N, 32 bit number of compilation units or type units in the index
9638 M, 32 bit number of slots in the hash table
9639
9640 Numbers are recorded using the byte order of the application binary.
9641
9642 The hash table begins at offset 16 in the section, and consists of an array
9643 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9644 order of the application binary). Unused slots in the hash table are 0.
9645 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9646
9647 The parallel table begins immediately after the hash table
9648 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9649 array of 32-bit indexes (using the byte order of the application binary),
9650 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9651 table contains a 32-bit index into the pool of section numbers. For unused
9652 hash table slots, the corresponding entry in the parallel table will be 0.
9653
9654 The pool of section numbers begins immediately following the hash table
9655 (at offset 16 + 12 * M from the beginning of the section). The pool of
9656 section numbers consists of an array of 32-bit words (using the byte order
9657 of the application binary). Each item in the array is indexed starting
9658 from 0. The hash table entry provides the index of the first section
9659 number in the set. Additional section numbers in the set follow, and the
9660 set is terminated by a 0 entry (section number 0 is not used in ELF).
9661
9662 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9663 section must be the first entry in the set, and the .debug_abbrev.dwo must
9664 be the second entry. Other members of the set may follow in any order.
9665
9666 ---
9667
9668 DWP Version 2:
9669
9670 DWP Version 2 combines all the .debug_info, etc. sections into one,
9671 and the entries in the index tables are now offsets into these sections.
9672 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9673 section.
9674
9675 Index Section Contents:
9676 Header
9677 Hash Table of Signatures dwp_hash_table.hash_table
9678 Parallel Table of Indices dwp_hash_table.unit_table
9679 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9680 Table of Section Sizes dwp_hash_table.v2.sizes
9681
9682 The index section header consists of:
9683
9684 V, 32 bit version number
9685 L, 32 bit number of columns in the table of section offsets
9686 N, 32 bit number of compilation units or type units in the index
9687 M, 32 bit number of slots in the hash table
9688
9689 Numbers are recorded using the byte order of the application binary.
9690
9691 The hash table has the same format as version 1.
9692 The parallel table of indices has the same format as version 1,
9693 except that the entries are origin-1 indices into the table of sections
9694 offsets and the table of section sizes.
9695
9696 The table of offsets begins immediately following the parallel table
9697 (at offset 16 + 12 * M from the beginning of the section). The table is
9698 a two-dimensional array of 32-bit words (using the byte order of the
9699 application binary), with L columns and N+1 rows, in row-major order.
9700 Each row in the array is indexed starting from 0. The first row provides
9701 a key to the remaining rows: each column in this row provides an identifier
9702 for a debug section, and the offsets in the same column of subsequent rows
9703 refer to that section. The section identifiers are:
9704
9705 DW_SECT_INFO 1 .debug_info.dwo
9706 DW_SECT_TYPES 2 .debug_types.dwo
9707 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9708 DW_SECT_LINE 4 .debug_line.dwo
9709 DW_SECT_LOC 5 .debug_loc.dwo
9710 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9711 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9712 DW_SECT_MACRO 8 .debug_macro.dwo
9713
9714 The offsets provided by the CU and TU index sections are the base offsets
9715 for the contributions made by each CU or TU to the corresponding section
9716 in the package file. Each CU and TU header contains an abbrev_offset
9717 field, used to find the abbreviations table for that CU or TU within the
9718 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9719 be interpreted as relative to the base offset given in the index section.
9720 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9721 should be interpreted as relative to the base offset for .debug_line.dwo,
9722 and offsets into other debug sections obtained from DWARF attributes should
9723 also be interpreted as relative to the corresponding base offset.
9724
9725 The table of sizes begins immediately following the table of offsets.
9726 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9727 with L columns and N rows, in row-major order. Each row in the array is
9728 indexed starting from 1 (row 0 is shared by the two tables).
9729
9730 ---
9731
9732 Hash table lookup is handled the same in version 1 and 2:
9733
9734 We assume that N and M will not exceed 2^32 - 1.
9735 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9736
9737 Given a 64-bit compilation unit signature or a type signature S, an entry
9738 in the hash table is located as follows:
9739
9740 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9741 the low-order k bits all set to 1.
9742
9743 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9744
9745 3) If the hash table entry at index H matches the signature, use that
9746 entry. If the hash table entry at index H is unused (all zeroes),
9747 terminate the search: the signature is not present in the table.
9748
9749 4) Let H = (H + H') modulo M. Repeat at Step 3.
9750
9751 Because M > N and H' and M are relatively prime, the search is guaranteed
9752 to stop at an unused slot or find the match. */
9753
9754 /* Create a hash table to map DWO IDs to their CU/TU entry in
9755 .debug_{info,types}.dwo in DWP_FILE.
9756 Returns NULL if there isn't one.
9757 Note: This function processes DWP files only, not DWO files. */
9758
9759 static struct dwp_hash_table *
9760 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9761 {
9762 struct objfile *objfile = dwarf2_per_objfile->objfile;
9763 bfd *dbfd = dwp_file->dbfd;
9764 const gdb_byte *index_ptr, *index_end;
9765 struct dwarf2_section_info *index;
9766 uint32_t version, nr_columns, nr_units, nr_slots;
9767 struct dwp_hash_table *htab;
9768
9769 if (is_debug_types)
9770 index = &dwp_file->sections.tu_index;
9771 else
9772 index = &dwp_file->sections.cu_index;
9773
9774 if (dwarf2_section_empty_p (index))
9775 return NULL;
9776 dwarf2_read_section (objfile, index);
9777
9778 index_ptr = index->buffer;
9779 index_end = index_ptr + index->size;
9780
9781 version = read_4_bytes (dbfd, index_ptr);
9782 index_ptr += 4;
9783 if (version == 2)
9784 nr_columns = read_4_bytes (dbfd, index_ptr);
9785 else
9786 nr_columns = 0;
9787 index_ptr += 4;
9788 nr_units = read_4_bytes (dbfd, index_ptr);
9789 index_ptr += 4;
9790 nr_slots = read_4_bytes (dbfd, index_ptr);
9791 index_ptr += 4;
9792
9793 if (version != 1 && version != 2)
9794 {
9795 error (_("Dwarf Error: unsupported DWP file version (%s)"
9796 " [in module %s]"),
9797 pulongest (version), dwp_file->name);
9798 }
9799 if (nr_slots != (nr_slots & -nr_slots))
9800 {
9801 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9802 " is not power of 2 [in module %s]"),
9803 pulongest (nr_slots), dwp_file->name);
9804 }
9805
9806 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9807 htab->version = version;
9808 htab->nr_columns = nr_columns;
9809 htab->nr_units = nr_units;
9810 htab->nr_slots = nr_slots;
9811 htab->hash_table = index_ptr;
9812 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9813
9814 /* Exit early if the table is empty. */
9815 if (nr_slots == 0 || nr_units == 0
9816 || (version == 2 && nr_columns == 0))
9817 {
9818 /* All must be zero. */
9819 if (nr_slots != 0 || nr_units != 0
9820 || (version == 2 && nr_columns != 0))
9821 {
9822 complaint (&symfile_complaints,
9823 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9824 " all zero [in modules %s]"),
9825 dwp_file->name);
9826 }
9827 return htab;
9828 }
9829
9830 if (version == 1)
9831 {
9832 htab->section_pool.v1.indices =
9833 htab->unit_table + sizeof (uint32_t) * nr_slots;
9834 /* It's harder to decide whether the section is too small in v1.
9835 V1 is deprecated anyway so we punt. */
9836 }
9837 else
9838 {
9839 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9840 int *ids = htab->section_pool.v2.section_ids;
9841 /* Reverse map for error checking. */
9842 int ids_seen[DW_SECT_MAX + 1];
9843 int i;
9844
9845 if (nr_columns < 2)
9846 {
9847 error (_("Dwarf Error: bad DWP hash table, too few columns"
9848 " in section table [in module %s]"),
9849 dwp_file->name);
9850 }
9851 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9852 {
9853 error (_("Dwarf Error: bad DWP hash table, too many columns"
9854 " in section table [in module %s]"),
9855 dwp_file->name);
9856 }
9857 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9858 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9859 for (i = 0; i < nr_columns; ++i)
9860 {
9861 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9862
9863 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9864 {
9865 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9866 " in section table [in module %s]"),
9867 id, dwp_file->name);
9868 }
9869 if (ids_seen[id] != -1)
9870 {
9871 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9872 " id %d in section table [in module %s]"),
9873 id, dwp_file->name);
9874 }
9875 ids_seen[id] = i;
9876 ids[i] = id;
9877 }
9878 /* Must have exactly one info or types section. */
9879 if (((ids_seen[DW_SECT_INFO] != -1)
9880 + (ids_seen[DW_SECT_TYPES] != -1))
9881 != 1)
9882 {
9883 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9884 " DWO info/types section [in module %s]"),
9885 dwp_file->name);
9886 }
9887 /* Must have an abbrev section. */
9888 if (ids_seen[DW_SECT_ABBREV] == -1)
9889 {
9890 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9891 " section [in module %s]"),
9892 dwp_file->name);
9893 }
9894 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9895 htab->section_pool.v2.sizes =
9896 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9897 * nr_units * nr_columns);
9898 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9899 * nr_units * nr_columns))
9900 > index_end)
9901 {
9902 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9903 " [in module %s]"),
9904 dwp_file->name);
9905 }
9906 }
9907
9908 return htab;
9909 }
9910
9911 /* Update SECTIONS with the data from SECTP.
9912
9913 This function is like the other "locate" section routines that are
9914 passed to bfd_map_over_sections, but in this context the sections to
9915 read comes from the DWP V1 hash table, not the full ELF section table.
9916
9917 The result is non-zero for success, or zero if an error was found. */
9918
9919 static int
9920 locate_v1_virtual_dwo_sections (asection *sectp,
9921 struct virtual_v1_dwo_sections *sections)
9922 {
9923 const struct dwop_section_names *names = &dwop_section_names;
9924
9925 if (section_is_p (sectp->name, &names->abbrev_dwo))
9926 {
9927 /* There can be only one. */
9928 if (sections->abbrev.s.asection != NULL)
9929 return 0;
9930 sections->abbrev.s.asection = sectp;
9931 sections->abbrev.size = bfd_get_section_size (sectp);
9932 }
9933 else if (section_is_p (sectp->name, &names->info_dwo)
9934 || section_is_p (sectp->name, &names->types_dwo))
9935 {
9936 /* There can be only one. */
9937 if (sections->info_or_types.s.asection != NULL)
9938 return 0;
9939 sections->info_or_types.s.asection = sectp;
9940 sections->info_or_types.size = bfd_get_section_size (sectp);
9941 }
9942 else if (section_is_p (sectp->name, &names->line_dwo))
9943 {
9944 /* There can be only one. */
9945 if (sections->line.s.asection != NULL)
9946 return 0;
9947 sections->line.s.asection = sectp;
9948 sections->line.size = bfd_get_section_size (sectp);
9949 }
9950 else if (section_is_p (sectp->name, &names->loc_dwo))
9951 {
9952 /* There can be only one. */
9953 if (sections->loc.s.asection != NULL)
9954 return 0;
9955 sections->loc.s.asection = sectp;
9956 sections->loc.size = bfd_get_section_size (sectp);
9957 }
9958 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9959 {
9960 /* There can be only one. */
9961 if (sections->macinfo.s.asection != NULL)
9962 return 0;
9963 sections->macinfo.s.asection = sectp;
9964 sections->macinfo.size = bfd_get_section_size (sectp);
9965 }
9966 else if (section_is_p (sectp->name, &names->macro_dwo))
9967 {
9968 /* There can be only one. */
9969 if (sections->macro.s.asection != NULL)
9970 return 0;
9971 sections->macro.s.asection = sectp;
9972 sections->macro.size = bfd_get_section_size (sectp);
9973 }
9974 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9975 {
9976 /* There can be only one. */
9977 if (sections->str_offsets.s.asection != NULL)
9978 return 0;
9979 sections->str_offsets.s.asection = sectp;
9980 sections->str_offsets.size = bfd_get_section_size (sectp);
9981 }
9982 else
9983 {
9984 /* No other kind of section is valid. */
9985 return 0;
9986 }
9987
9988 return 1;
9989 }
9990
9991 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9992 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9993 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9994 This is for DWP version 1 files. */
9995
9996 static struct dwo_unit *
9997 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9998 uint32_t unit_index,
9999 const char *comp_dir,
10000 ULONGEST signature, int is_debug_types)
10001 {
10002 struct objfile *objfile = dwarf2_per_objfile->objfile;
10003 const struct dwp_hash_table *dwp_htab =
10004 is_debug_types ? dwp_file->tus : dwp_file->cus;
10005 bfd *dbfd = dwp_file->dbfd;
10006 const char *kind = is_debug_types ? "TU" : "CU";
10007 struct dwo_file *dwo_file;
10008 struct dwo_unit *dwo_unit;
10009 struct virtual_v1_dwo_sections sections;
10010 void **dwo_file_slot;
10011 char *virtual_dwo_name;
10012 struct dwarf2_section_info *cutu;
10013 struct cleanup *cleanups;
10014 int i;
10015
10016 gdb_assert (dwp_file->version == 1);
10017
10018 if (dwarf_read_debug)
10019 {
10020 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10021 kind,
10022 pulongest (unit_index), hex_string (signature),
10023 dwp_file->name);
10024 }
10025
10026 /* Fetch the sections of this DWO unit.
10027 Put a limit on the number of sections we look for so that bad data
10028 doesn't cause us to loop forever. */
10029
10030 #define MAX_NR_V1_DWO_SECTIONS \
10031 (1 /* .debug_info or .debug_types */ \
10032 + 1 /* .debug_abbrev */ \
10033 + 1 /* .debug_line */ \
10034 + 1 /* .debug_loc */ \
10035 + 1 /* .debug_str_offsets */ \
10036 + 1 /* .debug_macro or .debug_macinfo */ \
10037 + 1 /* trailing zero */)
10038
10039 memset (&sections, 0, sizeof (sections));
10040 cleanups = make_cleanup (null_cleanup, 0);
10041
10042 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10043 {
10044 asection *sectp;
10045 uint32_t section_nr =
10046 read_4_bytes (dbfd,
10047 dwp_htab->section_pool.v1.indices
10048 + (unit_index + i) * sizeof (uint32_t));
10049
10050 if (section_nr == 0)
10051 break;
10052 if (section_nr >= dwp_file->num_sections)
10053 {
10054 error (_("Dwarf Error: bad DWP hash table, section number too large"
10055 " [in module %s]"),
10056 dwp_file->name);
10057 }
10058
10059 sectp = dwp_file->elf_sections[section_nr];
10060 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10061 {
10062 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10063 " [in module %s]"),
10064 dwp_file->name);
10065 }
10066 }
10067
10068 if (i < 2
10069 || dwarf2_section_empty_p (&sections.info_or_types)
10070 || dwarf2_section_empty_p (&sections.abbrev))
10071 {
10072 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10073 " [in module %s]"),
10074 dwp_file->name);
10075 }
10076 if (i == MAX_NR_V1_DWO_SECTIONS)
10077 {
10078 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10079 " [in module %s]"),
10080 dwp_file->name);
10081 }
10082
10083 /* It's easier for the rest of the code if we fake a struct dwo_file and
10084 have dwo_unit "live" in that. At least for now.
10085
10086 The DWP file can be made up of a random collection of CUs and TUs.
10087 However, for each CU + set of TUs that came from the same original DWO
10088 file, we can combine them back into a virtual DWO file to save space
10089 (fewer struct dwo_file objects to allocate). Remember that for really
10090 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10091
10092 virtual_dwo_name =
10093 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10094 get_section_id (&sections.abbrev),
10095 get_section_id (&sections.line),
10096 get_section_id (&sections.loc),
10097 get_section_id (&sections.str_offsets));
10098 make_cleanup (xfree, virtual_dwo_name);
10099 /* Can we use an existing virtual DWO file? */
10100 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10101 /* Create one if necessary. */
10102 if (*dwo_file_slot == NULL)
10103 {
10104 if (dwarf_read_debug)
10105 {
10106 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10107 virtual_dwo_name);
10108 }
10109 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10110 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10111 virtual_dwo_name,
10112 strlen (virtual_dwo_name));
10113 dwo_file->comp_dir = comp_dir;
10114 dwo_file->sections.abbrev = sections.abbrev;
10115 dwo_file->sections.line = sections.line;
10116 dwo_file->sections.loc = sections.loc;
10117 dwo_file->sections.macinfo = sections.macinfo;
10118 dwo_file->sections.macro = sections.macro;
10119 dwo_file->sections.str_offsets = sections.str_offsets;
10120 /* The "str" section is global to the entire DWP file. */
10121 dwo_file->sections.str = dwp_file->sections.str;
10122 /* The info or types section is assigned below to dwo_unit,
10123 there's no need to record it in dwo_file.
10124 Also, we can't simply record type sections in dwo_file because
10125 we record a pointer into the vector in dwo_unit. As we collect more
10126 types we'll grow the vector and eventually have to reallocate space
10127 for it, invalidating all copies of pointers into the previous
10128 contents. */
10129 *dwo_file_slot = dwo_file;
10130 }
10131 else
10132 {
10133 if (dwarf_read_debug)
10134 {
10135 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10136 virtual_dwo_name);
10137 }
10138 dwo_file = *dwo_file_slot;
10139 }
10140 do_cleanups (cleanups);
10141
10142 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10143 dwo_unit->dwo_file = dwo_file;
10144 dwo_unit->signature = signature;
10145 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10146 sizeof (struct dwarf2_section_info));
10147 *dwo_unit->section = sections.info_or_types;
10148 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10149
10150 return dwo_unit;
10151 }
10152
10153 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10154 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10155 piece within that section used by a TU/CU, return a virtual section
10156 of just that piece. */
10157
10158 static struct dwarf2_section_info
10159 create_dwp_v2_section (struct dwarf2_section_info *section,
10160 bfd_size_type offset, bfd_size_type size)
10161 {
10162 struct dwarf2_section_info result;
10163 asection *sectp;
10164
10165 gdb_assert (section != NULL);
10166 gdb_assert (!section->is_virtual);
10167
10168 memset (&result, 0, sizeof (result));
10169 result.s.containing_section = section;
10170 result.is_virtual = 1;
10171
10172 if (size == 0)
10173 return result;
10174
10175 sectp = get_section_bfd_section (section);
10176
10177 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10178 bounds of the real section. This is a pretty-rare event, so just
10179 flag an error (easier) instead of a warning and trying to cope. */
10180 if (sectp == NULL
10181 || offset + size > bfd_get_section_size (sectp))
10182 {
10183 bfd *abfd = sectp->owner;
10184
10185 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10186 " in section %s [in module %s]"),
10187 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10188 objfile_name (dwarf2_per_objfile->objfile));
10189 }
10190
10191 result.virtual_offset = offset;
10192 result.size = size;
10193 return result;
10194 }
10195
10196 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10197 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10198 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10199 This is for DWP version 2 files. */
10200
10201 static struct dwo_unit *
10202 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10203 uint32_t unit_index,
10204 const char *comp_dir,
10205 ULONGEST signature, int is_debug_types)
10206 {
10207 struct objfile *objfile = dwarf2_per_objfile->objfile;
10208 const struct dwp_hash_table *dwp_htab =
10209 is_debug_types ? dwp_file->tus : dwp_file->cus;
10210 bfd *dbfd = dwp_file->dbfd;
10211 const char *kind = is_debug_types ? "TU" : "CU";
10212 struct dwo_file *dwo_file;
10213 struct dwo_unit *dwo_unit;
10214 struct virtual_v2_dwo_sections sections;
10215 void **dwo_file_slot;
10216 char *virtual_dwo_name;
10217 struct dwarf2_section_info *cutu;
10218 struct cleanup *cleanups;
10219 int i;
10220
10221 gdb_assert (dwp_file->version == 2);
10222
10223 if (dwarf_read_debug)
10224 {
10225 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10226 kind,
10227 pulongest (unit_index), hex_string (signature),
10228 dwp_file->name);
10229 }
10230
10231 /* Fetch the section offsets of this DWO unit. */
10232
10233 memset (&sections, 0, sizeof (sections));
10234 cleanups = make_cleanup (null_cleanup, 0);
10235
10236 for (i = 0; i < dwp_htab->nr_columns; ++i)
10237 {
10238 uint32_t offset = read_4_bytes (dbfd,
10239 dwp_htab->section_pool.v2.offsets
10240 + (((unit_index - 1) * dwp_htab->nr_columns
10241 + i)
10242 * sizeof (uint32_t)));
10243 uint32_t size = read_4_bytes (dbfd,
10244 dwp_htab->section_pool.v2.sizes
10245 + (((unit_index - 1) * dwp_htab->nr_columns
10246 + i)
10247 * sizeof (uint32_t)));
10248
10249 switch (dwp_htab->section_pool.v2.section_ids[i])
10250 {
10251 case DW_SECT_INFO:
10252 case DW_SECT_TYPES:
10253 sections.info_or_types_offset = offset;
10254 sections.info_or_types_size = size;
10255 break;
10256 case DW_SECT_ABBREV:
10257 sections.abbrev_offset = offset;
10258 sections.abbrev_size = size;
10259 break;
10260 case DW_SECT_LINE:
10261 sections.line_offset = offset;
10262 sections.line_size = size;
10263 break;
10264 case DW_SECT_LOC:
10265 sections.loc_offset = offset;
10266 sections.loc_size = size;
10267 break;
10268 case DW_SECT_STR_OFFSETS:
10269 sections.str_offsets_offset = offset;
10270 sections.str_offsets_size = size;
10271 break;
10272 case DW_SECT_MACINFO:
10273 sections.macinfo_offset = offset;
10274 sections.macinfo_size = size;
10275 break;
10276 case DW_SECT_MACRO:
10277 sections.macro_offset = offset;
10278 sections.macro_size = size;
10279 break;
10280 }
10281 }
10282
10283 /* It's easier for the rest of the code if we fake a struct dwo_file and
10284 have dwo_unit "live" in that. At least for now.
10285
10286 The DWP file can be made up of a random collection of CUs and TUs.
10287 However, for each CU + set of TUs that came from the same original DWO
10288 file, we can combine them back into a virtual DWO file to save space
10289 (fewer struct dwo_file objects to allocate). Remember that for really
10290 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10291
10292 virtual_dwo_name =
10293 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10294 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10295 (long) (sections.line_size ? sections.line_offset : 0),
10296 (long) (sections.loc_size ? sections.loc_offset : 0),
10297 (long) (sections.str_offsets_size
10298 ? sections.str_offsets_offset : 0));
10299 make_cleanup (xfree, virtual_dwo_name);
10300 /* Can we use an existing virtual DWO file? */
10301 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10302 /* Create one if necessary. */
10303 if (*dwo_file_slot == NULL)
10304 {
10305 if (dwarf_read_debug)
10306 {
10307 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10308 virtual_dwo_name);
10309 }
10310 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10311 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10312 virtual_dwo_name,
10313 strlen (virtual_dwo_name));
10314 dwo_file->comp_dir = comp_dir;
10315 dwo_file->sections.abbrev =
10316 create_dwp_v2_section (&dwp_file->sections.abbrev,
10317 sections.abbrev_offset, sections.abbrev_size);
10318 dwo_file->sections.line =
10319 create_dwp_v2_section (&dwp_file->sections.line,
10320 sections.line_offset, sections.line_size);
10321 dwo_file->sections.loc =
10322 create_dwp_v2_section (&dwp_file->sections.loc,
10323 sections.loc_offset, sections.loc_size);
10324 dwo_file->sections.macinfo =
10325 create_dwp_v2_section (&dwp_file->sections.macinfo,
10326 sections.macinfo_offset, sections.macinfo_size);
10327 dwo_file->sections.macro =
10328 create_dwp_v2_section (&dwp_file->sections.macro,
10329 sections.macro_offset, sections.macro_size);
10330 dwo_file->sections.str_offsets =
10331 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10332 sections.str_offsets_offset,
10333 sections.str_offsets_size);
10334 /* The "str" section is global to the entire DWP file. */
10335 dwo_file->sections.str = dwp_file->sections.str;
10336 /* The info or types section is assigned below to dwo_unit,
10337 there's no need to record it in dwo_file.
10338 Also, we can't simply record type sections in dwo_file because
10339 we record a pointer into the vector in dwo_unit. As we collect more
10340 types we'll grow the vector and eventually have to reallocate space
10341 for it, invalidating all copies of pointers into the previous
10342 contents. */
10343 *dwo_file_slot = dwo_file;
10344 }
10345 else
10346 {
10347 if (dwarf_read_debug)
10348 {
10349 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10350 virtual_dwo_name);
10351 }
10352 dwo_file = *dwo_file_slot;
10353 }
10354 do_cleanups (cleanups);
10355
10356 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10357 dwo_unit->dwo_file = dwo_file;
10358 dwo_unit->signature = signature;
10359 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10360 sizeof (struct dwarf2_section_info));
10361 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10362 ? &dwp_file->sections.types
10363 : &dwp_file->sections.info,
10364 sections.info_or_types_offset,
10365 sections.info_or_types_size);
10366 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10367
10368 return dwo_unit;
10369 }
10370
10371 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10372 Returns NULL if the signature isn't found. */
10373
10374 static struct dwo_unit *
10375 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10376 ULONGEST signature, int is_debug_types)
10377 {
10378 const struct dwp_hash_table *dwp_htab =
10379 is_debug_types ? dwp_file->tus : dwp_file->cus;
10380 bfd *dbfd = dwp_file->dbfd;
10381 uint32_t mask = dwp_htab->nr_slots - 1;
10382 uint32_t hash = signature & mask;
10383 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10384 unsigned int i;
10385 void **slot;
10386 struct dwo_unit find_dwo_cu, *dwo_cu;
10387
10388 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10389 find_dwo_cu.signature = signature;
10390 slot = htab_find_slot (is_debug_types
10391 ? dwp_file->loaded_tus
10392 : dwp_file->loaded_cus,
10393 &find_dwo_cu, INSERT);
10394
10395 if (*slot != NULL)
10396 return *slot;
10397
10398 /* Use a for loop so that we don't loop forever on bad debug info. */
10399 for (i = 0; i < dwp_htab->nr_slots; ++i)
10400 {
10401 ULONGEST signature_in_table;
10402
10403 signature_in_table =
10404 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10405 if (signature_in_table == signature)
10406 {
10407 uint32_t unit_index =
10408 read_4_bytes (dbfd,
10409 dwp_htab->unit_table + hash * sizeof (uint32_t));
10410
10411 if (dwp_file->version == 1)
10412 {
10413 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10414 comp_dir, signature,
10415 is_debug_types);
10416 }
10417 else
10418 {
10419 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10420 comp_dir, signature,
10421 is_debug_types);
10422 }
10423 return *slot;
10424 }
10425 if (signature_in_table == 0)
10426 return NULL;
10427 hash = (hash + hash2) & mask;
10428 }
10429
10430 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10431 " [in module %s]"),
10432 dwp_file->name);
10433 }
10434
10435 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10436 Open the file specified by FILE_NAME and hand it off to BFD for
10437 preliminary analysis. Return a newly initialized bfd *, which
10438 includes a canonicalized copy of FILE_NAME.
10439 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10440 SEARCH_CWD is true if the current directory is to be searched.
10441 It will be searched before debug-file-directory.
10442 If successful, the file is added to the bfd include table of the
10443 objfile's bfd (see gdb_bfd_record_inclusion).
10444 If unable to find/open the file, return NULL.
10445 NOTE: This function is derived from symfile_bfd_open. */
10446
10447 static bfd *
10448 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10449 {
10450 bfd *sym_bfd;
10451 int desc, flags;
10452 char *absolute_name;
10453 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10454 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10455 to debug_file_directory. */
10456 char *search_path;
10457 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10458
10459 if (search_cwd)
10460 {
10461 if (*debug_file_directory != '\0')
10462 search_path = concat (".", dirname_separator_string,
10463 debug_file_directory, NULL);
10464 else
10465 search_path = xstrdup (".");
10466 }
10467 else
10468 search_path = xstrdup (debug_file_directory);
10469
10470 flags = OPF_RETURN_REALPATH;
10471 if (is_dwp)
10472 flags |= OPF_SEARCH_IN_PATH;
10473 desc = openp (search_path, flags, file_name,
10474 O_RDONLY | O_BINARY, &absolute_name);
10475 xfree (search_path);
10476 if (desc < 0)
10477 return NULL;
10478
10479 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10480 xfree (absolute_name);
10481 if (sym_bfd == NULL)
10482 return NULL;
10483 bfd_set_cacheable (sym_bfd, 1);
10484
10485 if (!bfd_check_format (sym_bfd, bfd_object))
10486 {
10487 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10488 return NULL;
10489 }
10490
10491 /* Success. Record the bfd as having been included by the objfile's bfd.
10492 This is important because things like demangled_names_hash lives in the
10493 objfile's per_bfd space and may have references to things like symbol
10494 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10495 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10496
10497 return sym_bfd;
10498 }
10499
10500 /* Try to open DWO file FILE_NAME.
10501 COMP_DIR is the DW_AT_comp_dir attribute.
10502 The result is the bfd handle of the file.
10503 If there is a problem finding or opening the file, return NULL.
10504 Upon success, the canonicalized path of the file is stored in the bfd,
10505 same as symfile_bfd_open. */
10506
10507 static bfd *
10508 open_dwo_file (const char *file_name, const char *comp_dir)
10509 {
10510 bfd *abfd;
10511
10512 if (IS_ABSOLUTE_PATH (file_name))
10513 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10514
10515 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10516
10517 if (comp_dir != NULL)
10518 {
10519 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10520
10521 /* NOTE: If comp_dir is a relative path, this will also try the
10522 search path, which seems useful. */
10523 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10524 xfree (path_to_try);
10525 if (abfd != NULL)
10526 return abfd;
10527 }
10528
10529 /* That didn't work, try debug-file-directory, which, despite its name,
10530 is a list of paths. */
10531
10532 if (*debug_file_directory == '\0')
10533 return NULL;
10534
10535 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10536 }
10537
10538 /* This function is mapped across the sections and remembers the offset and
10539 size of each of the DWO debugging sections we are interested in. */
10540
10541 static void
10542 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10543 {
10544 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10545 const struct dwop_section_names *names = &dwop_section_names;
10546
10547 if (section_is_p (sectp->name, &names->abbrev_dwo))
10548 {
10549 dwo_sections->abbrev.s.asection = sectp;
10550 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10551 }
10552 else if (section_is_p (sectp->name, &names->info_dwo))
10553 {
10554 dwo_sections->info.s.asection = sectp;
10555 dwo_sections->info.size = bfd_get_section_size (sectp);
10556 }
10557 else if (section_is_p (sectp->name, &names->line_dwo))
10558 {
10559 dwo_sections->line.s.asection = sectp;
10560 dwo_sections->line.size = bfd_get_section_size (sectp);
10561 }
10562 else if (section_is_p (sectp->name, &names->loc_dwo))
10563 {
10564 dwo_sections->loc.s.asection = sectp;
10565 dwo_sections->loc.size = bfd_get_section_size (sectp);
10566 }
10567 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10568 {
10569 dwo_sections->macinfo.s.asection = sectp;
10570 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10571 }
10572 else if (section_is_p (sectp->name, &names->macro_dwo))
10573 {
10574 dwo_sections->macro.s.asection = sectp;
10575 dwo_sections->macro.size = bfd_get_section_size (sectp);
10576 }
10577 else if (section_is_p (sectp->name, &names->str_dwo))
10578 {
10579 dwo_sections->str.s.asection = sectp;
10580 dwo_sections->str.size = bfd_get_section_size (sectp);
10581 }
10582 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10583 {
10584 dwo_sections->str_offsets.s.asection = sectp;
10585 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10586 }
10587 else if (section_is_p (sectp->name, &names->types_dwo))
10588 {
10589 struct dwarf2_section_info type_section;
10590
10591 memset (&type_section, 0, sizeof (type_section));
10592 type_section.s.asection = sectp;
10593 type_section.size = bfd_get_section_size (sectp);
10594 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10595 &type_section);
10596 }
10597 }
10598
10599 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10600 by PER_CU. This is for the non-DWP case.
10601 The result is NULL if DWO_NAME can't be found. */
10602
10603 static struct dwo_file *
10604 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10605 const char *dwo_name, const char *comp_dir)
10606 {
10607 struct objfile *objfile = dwarf2_per_objfile->objfile;
10608 struct dwo_file *dwo_file;
10609 bfd *dbfd;
10610 struct cleanup *cleanups;
10611
10612 dbfd = open_dwo_file (dwo_name, comp_dir);
10613 if (dbfd == NULL)
10614 {
10615 if (dwarf_read_debug)
10616 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10617 return NULL;
10618 }
10619 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10620 dwo_file->dwo_name = dwo_name;
10621 dwo_file->comp_dir = comp_dir;
10622 dwo_file->dbfd = dbfd;
10623
10624 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10625
10626 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10627
10628 dwo_file->cu = create_dwo_cu (dwo_file);
10629
10630 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10631 dwo_file->sections.types);
10632
10633 discard_cleanups (cleanups);
10634
10635 if (dwarf_read_debug)
10636 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10637
10638 return dwo_file;
10639 }
10640
10641 /* This function is mapped across the sections and remembers the offset and
10642 size of each of the DWP debugging sections common to version 1 and 2 that
10643 we are interested in. */
10644
10645 static void
10646 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10647 void *dwp_file_ptr)
10648 {
10649 struct dwp_file *dwp_file = dwp_file_ptr;
10650 const struct dwop_section_names *names = &dwop_section_names;
10651 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10652
10653 /* Record the ELF section number for later lookup: this is what the
10654 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10655 gdb_assert (elf_section_nr < dwp_file->num_sections);
10656 dwp_file->elf_sections[elf_section_nr] = sectp;
10657
10658 /* Look for specific sections that we need. */
10659 if (section_is_p (sectp->name, &names->str_dwo))
10660 {
10661 dwp_file->sections.str.s.asection = sectp;
10662 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10663 }
10664 else if (section_is_p (sectp->name, &names->cu_index))
10665 {
10666 dwp_file->sections.cu_index.s.asection = sectp;
10667 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10668 }
10669 else if (section_is_p (sectp->name, &names->tu_index))
10670 {
10671 dwp_file->sections.tu_index.s.asection = sectp;
10672 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10673 }
10674 }
10675
10676 /* This function is mapped across the sections and remembers the offset and
10677 size of each of the DWP version 2 debugging sections that we are interested
10678 in. This is split into a separate function because we don't know if we
10679 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10680
10681 static void
10682 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10683 {
10684 struct dwp_file *dwp_file = dwp_file_ptr;
10685 const struct dwop_section_names *names = &dwop_section_names;
10686 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10687
10688 /* Record the ELF section number for later lookup: this is what the
10689 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10690 gdb_assert (elf_section_nr < dwp_file->num_sections);
10691 dwp_file->elf_sections[elf_section_nr] = sectp;
10692
10693 /* Look for specific sections that we need. */
10694 if (section_is_p (sectp->name, &names->abbrev_dwo))
10695 {
10696 dwp_file->sections.abbrev.s.asection = sectp;
10697 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10698 }
10699 else if (section_is_p (sectp->name, &names->info_dwo))
10700 {
10701 dwp_file->sections.info.s.asection = sectp;
10702 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10703 }
10704 else if (section_is_p (sectp->name, &names->line_dwo))
10705 {
10706 dwp_file->sections.line.s.asection = sectp;
10707 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10708 }
10709 else if (section_is_p (sectp->name, &names->loc_dwo))
10710 {
10711 dwp_file->sections.loc.s.asection = sectp;
10712 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10713 }
10714 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10715 {
10716 dwp_file->sections.macinfo.s.asection = sectp;
10717 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10718 }
10719 else if (section_is_p (sectp->name, &names->macro_dwo))
10720 {
10721 dwp_file->sections.macro.s.asection = sectp;
10722 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10723 }
10724 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10725 {
10726 dwp_file->sections.str_offsets.s.asection = sectp;
10727 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10728 }
10729 else if (section_is_p (sectp->name, &names->types_dwo))
10730 {
10731 dwp_file->sections.types.s.asection = sectp;
10732 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10733 }
10734 }
10735
10736 /* Hash function for dwp_file loaded CUs/TUs. */
10737
10738 static hashval_t
10739 hash_dwp_loaded_cutus (const void *item)
10740 {
10741 const struct dwo_unit *dwo_unit = item;
10742
10743 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10744 return dwo_unit->signature;
10745 }
10746
10747 /* Equality function for dwp_file loaded CUs/TUs. */
10748
10749 static int
10750 eq_dwp_loaded_cutus (const void *a, const void *b)
10751 {
10752 const struct dwo_unit *dua = a;
10753 const struct dwo_unit *dub = b;
10754
10755 return dua->signature == dub->signature;
10756 }
10757
10758 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10759
10760 static htab_t
10761 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10762 {
10763 return htab_create_alloc_ex (3,
10764 hash_dwp_loaded_cutus,
10765 eq_dwp_loaded_cutus,
10766 NULL,
10767 &objfile->objfile_obstack,
10768 hashtab_obstack_allocate,
10769 dummy_obstack_deallocate);
10770 }
10771
10772 /* Try to open DWP file FILE_NAME.
10773 The result is the bfd handle of the file.
10774 If there is a problem finding or opening the file, return NULL.
10775 Upon success, the canonicalized path of the file is stored in the bfd,
10776 same as symfile_bfd_open. */
10777
10778 static bfd *
10779 open_dwp_file (const char *file_name)
10780 {
10781 bfd *abfd;
10782
10783 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10784 if (abfd != NULL)
10785 return abfd;
10786
10787 /* Work around upstream bug 15652.
10788 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10789 [Whether that's a "bug" is debatable, but it is getting in our way.]
10790 We have no real idea where the dwp file is, because gdb's realpath-ing
10791 of the executable's path may have discarded the needed info.
10792 [IWBN if the dwp file name was recorded in the executable, akin to
10793 .gnu_debuglink, but that doesn't exist yet.]
10794 Strip the directory from FILE_NAME and search again. */
10795 if (*debug_file_directory != '\0')
10796 {
10797 /* Don't implicitly search the current directory here.
10798 If the user wants to search "." to handle this case,
10799 it must be added to debug-file-directory. */
10800 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10801 0 /*search_cwd*/);
10802 }
10803
10804 return NULL;
10805 }
10806
10807 /* Initialize the use of the DWP file for the current objfile.
10808 By convention the name of the DWP file is ${objfile}.dwp.
10809 The result is NULL if it can't be found. */
10810
10811 static struct dwp_file *
10812 open_and_init_dwp_file (void)
10813 {
10814 struct objfile *objfile = dwarf2_per_objfile->objfile;
10815 struct dwp_file *dwp_file;
10816 char *dwp_name;
10817 bfd *dbfd;
10818 struct cleanup *cleanups;
10819
10820 /* Try to find first .dwp for the binary file before any symbolic links
10821 resolving. */
10822 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10823 cleanups = make_cleanup (xfree, dwp_name);
10824
10825 dbfd = open_dwp_file (dwp_name);
10826 if (dbfd == NULL
10827 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10828 {
10829 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10830 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10831 make_cleanup (xfree, dwp_name);
10832 dbfd = open_dwp_file (dwp_name);
10833 }
10834
10835 if (dbfd == NULL)
10836 {
10837 if (dwarf_read_debug)
10838 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10839 do_cleanups (cleanups);
10840 return NULL;
10841 }
10842 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10843 dwp_file->name = bfd_get_filename (dbfd);
10844 dwp_file->dbfd = dbfd;
10845 do_cleanups (cleanups);
10846
10847 /* +1: section 0 is unused */
10848 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10849 dwp_file->elf_sections =
10850 OBSTACK_CALLOC (&objfile->objfile_obstack,
10851 dwp_file->num_sections, asection *);
10852
10853 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10854
10855 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10856
10857 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10858
10859 /* The DWP file version is stored in the hash table. Oh well. */
10860 if (dwp_file->cus->version != dwp_file->tus->version)
10861 {
10862 /* Technically speaking, we should try to limp along, but this is
10863 pretty bizarre. We use pulongest here because that's the established
10864 portability solution (e.g, we cannot use %u for uint32_t). */
10865 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10866 " TU version %s [in DWP file %s]"),
10867 pulongest (dwp_file->cus->version),
10868 pulongest (dwp_file->tus->version), dwp_name);
10869 }
10870 dwp_file->version = dwp_file->cus->version;
10871
10872 if (dwp_file->version == 2)
10873 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10874
10875 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10876 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10877
10878 if (dwarf_read_debug)
10879 {
10880 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10881 fprintf_unfiltered (gdb_stdlog,
10882 " %s CUs, %s TUs\n",
10883 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10884 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10885 }
10886
10887 return dwp_file;
10888 }
10889
10890 /* Wrapper around open_and_init_dwp_file, only open it once. */
10891
10892 static struct dwp_file *
10893 get_dwp_file (void)
10894 {
10895 if (! dwarf2_per_objfile->dwp_checked)
10896 {
10897 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10898 dwarf2_per_objfile->dwp_checked = 1;
10899 }
10900 return dwarf2_per_objfile->dwp_file;
10901 }
10902
10903 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10904 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10905 or in the DWP file for the objfile, referenced by THIS_UNIT.
10906 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10907 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10908
10909 This is called, for example, when wanting to read a variable with a
10910 complex location. Therefore we don't want to do file i/o for every call.
10911 Therefore we don't want to look for a DWO file on every call.
10912 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10913 then we check if we've already seen DWO_NAME, and only THEN do we check
10914 for a DWO file.
10915
10916 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10917 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10918
10919 static struct dwo_unit *
10920 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10921 const char *dwo_name, const char *comp_dir,
10922 ULONGEST signature, int is_debug_types)
10923 {
10924 struct objfile *objfile = dwarf2_per_objfile->objfile;
10925 const char *kind = is_debug_types ? "TU" : "CU";
10926 void **dwo_file_slot;
10927 struct dwo_file *dwo_file;
10928 struct dwp_file *dwp_file;
10929
10930 /* First see if there's a DWP file.
10931 If we have a DWP file but didn't find the DWO inside it, don't
10932 look for the original DWO file. It makes gdb behave differently
10933 depending on whether one is debugging in the build tree. */
10934
10935 dwp_file = get_dwp_file ();
10936 if (dwp_file != NULL)
10937 {
10938 const struct dwp_hash_table *dwp_htab =
10939 is_debug_types ? dwp_file->tus : dwp_file->cus;
10940
10941 if (dwp_htab != NULL)
10942 {
10943 struct dwo_unit *dwo_cutu =
10944 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10945 signature, is_debug_types);
10946
10947 if (dwo_cutu != NULL)
10948 {
10949 if (dwarf_read_debug)
10950 {
10951 fprintf_unfiltered (gdb_stdlog,
10952 "Virtual DWO %s %s found: @%s\n",
10953 kind, hex_string (signature),
10954 host_address_to_string (dwo_cutu));
10955 }
10956 return dwo_cutu;
10957 }
10958 }
10959 }
10960 else
10961 {
10962 /* No DWP file, look for the DWO file. */
10963
10964 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10965 if (*dwo_file_slot == NULL)
10966 {
10967 /* Read in the file and build a table of the CUs/TUs it contains. */
10968 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10969 }
10970 /* NOTE: This will be NULL if unable to open the file. */
10971 dwo_file = *dwo_file_slot;
10972
10973 if (dwo_file != NULL)
10974 {
10975 struct dwo_unit *dwo_cutu = NULL;
10976
10977 if (is_debug_types && dwo_file->tus)
10978 {
10979 struct dwo_unit find_dwo_cutu;
10980
10981 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10982 find_dwo_cutu.signature = signature;
10983 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10984 }
10985 else if (!is_debug_types && dwo_file->cu)
10986 {
10987 if (signature == dwo_file->cu->signature)
10988 dwo_cutu = dwo_file->cu;
10989 }
10990
10991 if (dwo_cutu != NULL)
10992 {
10993 if (dwarf_read_debug)
10994 {
10995 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10996 kind, dwo_name, hex_string (signature),
10997 host_address_to_string (dwo_cutu));
10998 }
10999 return dwo_cutu;
11000 }
11001 }
11002 }
11003
11004 /* We didn't find it. This could mean a dwo_id mismatch, or
11005 someone deleted the DWO/DWP file, or the search path isn't set up
11006 correctly to find the file. */
11007
11008 if (dwarf_read_debug)
11009 {
11010 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11011 kind, dwo_name, hex_string (signature));
11012 }
11013
11014 /* This is a warning and not a complaint because it can be caused by
11015 pilot error (e.g., user accidentally deleting the DWO). */
11016 {
11017 /* Print the name of the DWP file if we looked there, helps the user
11018 better diagnose the problem. */
11019 char *dwp_text = NULL;
11020 struct cleanup *cleanups;
11021
11022 if (dwp_file != NULL)
11023 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11024 cleanups = make_cleanup (xfree, dwp_text);
11025
11026 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11027 " [in module %s]"),
11028 kind, dwo_name, hex_string (signature),
11029 dwp_text != NULL ? dwp_text : "",
11030 this_unit->is_debug_types ? "TU" : "CU",
11031 this_unit->offset.sect_off, objfile_name (objfile));
11032
11033 do_cleanups (cleanups);
11034 }
11035 return NULL;
11036 }
11037
11038 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11039 See lookup_dwo_cutu_unit for details. */
11040
11041 static struct dwo_unit *
11042 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11043 const char *dwo_name, const char *comp_dir,
11044 ULONGEST signature)
11045 {
11046 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11047 }
11048
11049 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11050 See lookup_dwo_cutu_unit for details. */
11051
11052 static struct dwo_unit *
11053 lookup_dwo_type_unit (struct signatured_type *this_tu,
11054 const char *dwo_name, const char *comp_dir)
11055 {
11056 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11057 }
11058
11059 /* Traversal function for queue_and_load_all_dwo_tus. */
11060
11061 static int
11062 queue_and_load_dwo_tu (void **slot, void *info)
11063 {
11064 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11065 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11066 ULONGEST signature = dwo_unit->signature;
11067 struct signatured_type *sig_type =
11068 lookup_dwo_signatured_type (per_cu->cu, signature);
11069
11070 if (sig_type != NULL)
11071 {
11072 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11073
11074 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11075 a real dependency of PER_CU on SIG_TYPE. That is detected later
11076 while processing PER_CU. */
11077 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11078 load_full_type_unit (sig_cu);
11079 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11080 }
11081
11082 return 1;
11083 }
11084
11085 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11086 The DWO may have the only definition of the type, though it may not be
11087 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11088 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11089
11090 static void
11091 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11092 {
11093 struct dwo_unit *dwo_unit;
11094 struct dwo_file *dwo_file;
11095
11096 gdb_assert (!per_cu->is_debug_types);
11097 gdb_assert (get_dwp_file () == NULL);
11098 gdb_assert (per_cu->cu != NULL);
11099
11100 dwo_unit = per_cu->cu->dwo_unit;
11101 gdb_assert (dwo_unit != NULL);
11102
11103 dwo_file = dwo_unit->dwo_file;
11104 if (dwo_file->tus != NULL)
11105 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11106 }
11107
11108 /* Free all resources associated with DWO_FILE.
11109 Close the DWO file and munmap the sections.
11110 All memory should be on the objfile obstack. */
11111
11112 static void
11113 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11114 {
11115 int ix;
11116 struct dwarf2_section_info *section;
11117
11118 /* Note: dbfd is NULL for virtual DWO files. */
11119 gdb_bfd_unref (dwo_file->dbfd);
11120
11121 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11122 }
11123
11124 /* Wrapper for free_dwo_file for use in cleanups. */
11125
11126 static void
11127 free_dwo_file_cleanup (void *arg)
11128 {
11129 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11130 struct objfile *objfile = dwarf2_per_objfile->objfile;
11131
11132 free_dwo_file (dwo_file, objfile);
11133 }
11134
11135 /* Traversal function for free_dwo_files. */
11136
11137 static int
11138 free_dwo_file_from_slot (void **slot, void *info)
11139 {
11140 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11141 struct objfile *objfile = (struct objfile *) info;
11142
11143 free_dwo_file (dwo_file, objfile);
11144
11145 return 1;
11146 }
11147
11148 /* Free all resources associated with DWO_FILES. */
11149
11150 static void
11151 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11152 {
11153 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11154 }
11155 \f
11156 /* Read in various DIEs. */
11157
11158 /* qsort helper for inherit_abstract_dies. */
11159
11160 static int
11161 unsigned_int_compar (const void *ap, const void *bp)
11162 {
11163 unsigned int a = *(unsigned int *) ap;
11164 unsigned int b = *(unsigned int *) bp;
11165
11166 return (a > b) - (b > a);
11167 }
11168
11169 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11170 Inherit only the children of the DW_AT_abstract_origin DIE not being
11171 already referenced by DW_AT_abstract_origin from the children of the
11172 current DIE. */
11173
11174 static void
11175 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11176 {
11177 struct die_info *child_die;
11178 unsigned die_children_count;
11179 /* CU offsets which were referenced by children of the current DIE. */
11180 sect_offset *offsets;
11181 sect_offset *offsets_end, *offsetp;
11182 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11183 struct die_info *origin_die;
11184 /* Iterator of the ORIGIN_DIE children. */
11185 struct die_info *origin_child_die;
11186 struct cleanup *cleanups;
11187 struct attribute *attr;
11188 struct dwarf2_cu *origin_cu;
11189 struct pending **origin_previous_list_in_scope;
11190
11191 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11192 if (!attr)
11193 return;
11194
11195 /* Note that following die references may follow to a die in a
11196 different cu. */
11197
11198 origin_cu = cu;
11199 origin_die = follow_die_ref (die, attr, &origin_cu);
11200
11201 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11202 symbols in. */
11203 origin_previous_list_in_scope = origin_cu->list_in_scope;
11204 origin_cu->list_in_scope = cu->list_in_scope;
11205
11206 if (die->tag != origin_die->tag
11207 && !(die->tag == DW_TAG_inlined_subroutine
11208 && origin_die->tag == DW_TAG_subprogram))
11209 complaint (&symfile_complaints,
11210 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11211 die->offset.sect_off, origin_die->offset.sect_off);
11212
11213 child_die = die->child;
11214 die_children_count = 0;
11215 while (child_die && child_die->tag)
11216 {
11217 child_die = sibling_die (child_die);
11218 die_children_count++;
11219 }
11220 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11221 cleanups = make_cleanup (xfree, offsets);
11222
11223 offsets_end = offsets;
11224 for (child_die = die->child;
11225 child_die && child_die->tag;
11226 child_die = sibling_die (child_die))
11227 {
11228 struct die_info *child_origin_die;
11229 struct dwarf2_cu *child_origin_cu;
11230
11231 /* We are trying to process concrete instance entries:
11232 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11233 it's not relevant to our analysis here. i.e. detecting DIEs that are
11234 present in the abstract instance but not referenced in the concrete
11235 one. */
11236 if (child_die->tag == DW_TAG_GNU_call_site)
11237 continue;
11238
11239 /* For each CHILD_DIE, find the corresponding child of
11240 ORIGIN_DIE. If there is more than one layer of
11241 DW_AT_abstract_origin, follow them all; there shouldn't be,
11242 but GCC versions at least through 4.4 generate this (GCC PR
11243 40573). */
11244 child_origin_die = child_die;
11245 child_origin_cu = cu;
11246 while (1)
11247 {
11248 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11249 child_origin_cu);
11250 if (attr == NULL)
11251 break;
11252 child_origin_die = follow_die_ref (child_origin_die, attr,
11253 &child_origin_cu);
11254 }
11255
11256 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11257 counterpart may exist. */
11258 if (child_origin_die != child_die)
11259 {
11260 if (child_die->tag != child_origin_die->tag
11261 && !(child_die->tag == DW_TAG_inlined_subroutine
11262 && child_origin_die->tag == DW_TAG_subprogram))
11263 complaint (&symfile_complaints,
11264 _("Child DIE 0x%x and its abstract origin 0x%x have "
11265 "different tags"), child_die->offset.sect_off,
11266 child_origin_die->offset.sect_off);
11267 if (child_origin_die->parent != origin_die)
11268 complaint (&symfile_complaints,
11269 _("Child DIE 0x%x and its abstract origin 0x%x have "
11270 "different parents"), child_die->offset.sect_off,
11271 child_origin_die->offset.sect_off);
11272 else
11273 *offsets_end++ = child_origin_die->offset;
11274 }
11275 }
11276 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11277 unsigned_int_compar);
11278 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11279 if (offsetp[-1].sect_off == offsetp->sect_off)
11280 complaint (&symfile_complaints,
11281 _("Multiple children of DIE 0x%x refer "
11282 "to DIE 0x%x as their abstract origin"),
11283 die->offset.sect_off, offsetp->sect_off);
11284
11285 offsetp = offsets;
11286 origin_child_die = origin_die->child;
11287 while (origin_child_die && origin_child_die->tag)
11288 {
11289 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11290 while (offsetp < offsets_end
11291 && offsetp->sect_off < origin_child_die->offset.sect_off)
11292 offsetp++;
11293 if (offsetp >= offsets_end
11294 || offsetp->sect_off > origin_child_die->offset.sect_off)
11295 {
11296 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11297 Check whether we're already processing ORIGIN_CHILD_DIE.
11298 This can happen with mutually referenced abstract_origins.
11299 PR 16581. */
11300 if (!origin_child_die->in_process)
11301 process_die (origin_child_die, origin_cu);
11302 }
11303 origin_child_die = sibling_die (origin_child_die);
11304 }
11305 origin_cu->list_in_scope = origin_previous_list_in_scope;
11306
11307 do_cleanups (cleanups);
11308 }
11309
11310 static void
11311 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11312 {
11313 struct objfile *objfile = cu->objfile;
11314 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11315 struct context_stack *newobj;
11316 CORE_ADDR lowpc;
11317 CORE_ADDR highpc;
11318 struct die_info *child_die;
11319 struct attribute *attr, *call_line, *call_file;
11320 const char *name;
11321 CORE_ADDR baseaddr;
11322 struct block *block;
11323 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11324 VEC (symbolp) *template_args = NULL;
11325 struct template_symbol *templ_func = NULL;
11326
11327 if (inlined_func)
11328 {
11329 /* If we do not have call site information, we can't show the
11330 caller of this inlined function. That's too confusing, so
11331 only use the scope for local variables. */
11332 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11333 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11334 if (call_line == NULL || call_file == NULL)
11335 {
11336 read_lexical_block_scope (die, cu);
11337 return;
11338 }
11339 }
11340
11341 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11342
11343 name = dwarf2_name (die, cu);
11344
11345 /* Ignore functions with missing or empty names. These are actually
11346 illegal according to the DWARF standard. */
11347 if (name == NULL)
11348 {
11349 complaint (&symfile_complaints,
11350 _("missing name for subprogram DIE at %d"),
11351 die->offset.sect_off);
11352 return;
11353 }
11354
11355 /* Ignore functions with missing or invalid low and high pc attributes. */
11356 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11357 {
11358 attr = dwarf2_attr (die, DW_AT_external, cu);
11359 if (!attr || !DW_UNSND (attr))
11360 complaint (&symfile_complaints,
11361 _("cannot get low and high bounds "
11362 "for subprogram DIE at %d"),
11363 die->offset.sect_off);
11364 return;
11365 }
11366
11367 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11368 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11369
11370 /* If we have any template arguments, then we must allocate a
11371 different sort of symbol. */
11372 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11373 {
11374 if (child_die->tag == DW_TAG_template_type_param
11375 || child_die->tag == DW_TAG_template_value_param)
11376 {
11377 templ_func = allocate_template_symbol (objfile);
11378 templ_func->base.is_cplus_template_function = 1;
11379 break;
11380 }
11381 }
11382
11383 newobj = push_context (0, lowpc);
11384 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11385 (struct symbol *) templ_func);
11386
11387 /* If there is a location expression for DW_AT_frame_base, record
11388 it. */
11389 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11390 if (attr)
11391 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11392
11393 cu->list_in_scope = &local_symbols;
11394
11395 if (die->child != NULL)
11396 {
11397 child_die = die->child;
11398 while (child_die && child_die->tag)
11399 {
11400 if (child_die->tag == DW_TAG_template_type_param
11401 || child_die->tag == DW_TAG_template_value_param)
11402 {
11403 struct symbol *arg = new_symbol (child_die, NULL, cu);
11404
11405 if (arg != NULL)
11406 VEC_safe_push (symbolp, template_args, arg);
11407 }
11408 else
11409 process_die (child_die, cu);
11410 child_die = sibling_die (child_die);
11411 }
11412 }
11413
11414 inherit_abstract_dies (die, cu);
11415
11416 /* If we have a DW_AT_specification, we might need to import using
11417 directives from the context of the specification DIE. See the
11418 comment in determine_prefix. */
11419 if (cu->language == language_cplus
11420 && dwarf2_attr (die, DW_AT_specification, cu))
11421 {
11422 struct dwarf2_cu *spec_cu = cu;
11423 struct die_info *spec_die = die_specification (die, &spec_cu);
11424
11425 while (spec_die)
11426 {
11427 child_die = spec_die->child;
11428 while (child_die && child_die->tag)
11429 {
11430 if (child_die->tag == DW_TAG_imported_module)
11431 process_die (child_die, spec_cu);
11432 child_die = sibling_die (child_die);
11433 }
11434
11435 /* In some cases, GCC generates specification DIEs that
11436 themselves contain DW_AT_specification attributes. */
11437 spec_die = die_specification (spec_die, &spec_cu);
11438 }
11439 }
11440
11441 newobj = pop_context ();
11442 /* Make a block for the local symbols within. */
11443 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11444 lowpc, highpc);
11445
11446 /* For C++, set the block's scope. */
11447 if ((cu->language == language_cplus || cu->language == language_fortran)
11448 && cu->processing_has_namespace_info)
11449 block_set_scope (block, determine_prefix (die, cu),
11450 &objfile->objfile_obstack);
11451
11452 /* If we have address ranges, record them. */
11453 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11454
11455 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11456
11457 /* Attach template arguments to function. */
11458 if (! VEC_empty (symbolp, template_args))
11459 {
11460 gdb_assert (templ_func != NULL);
11461
11462 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11463 templ_func->template_arguments
11464 = obstack_alloc (&objfile->objfile_obstack,
11465 (templ_func->n_template_arguments
11466 * sizeof (struct symbol *)));
11467 memcpy (templ_func->template_arguments,
11468 VEC_address (symbolp, template_args),
11469 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11470 VEC_free (symbolp, template_args);
11471 }
11472
11473 /* In C++, we can have functions nested inside functions (e.g., when
11474 a function declares a class that has methods). This means that
11475 when we finish processing a function scope, we may need to go
11476 back to building a containing block's symbol lists. */
11477 local_symbols = newobj->locals;
11478 using_directives = newobj->using_directives;
11479
11480 /* If we've finished processing a top-level function, subsequent
11481 symbols go in the file symbol list. */
11482 if (outermost_context_p ())
11483 cu->list_in_scope = &file_symbols;
11484 }
11485
11486 /* Process all the DIES contained within a lexical block scope. Start
11487 a new scope, process the dies, and then close the scope. */
11488
11489 static void
11490 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11491 {
11492 struct objfile *objfile = cu->objfile;
11493 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11494 struct context_stack *newobj;
11495 CORE_ADDR lowpc, highpc;
11496 struct die_info *child_die;
11497 CORE_ADDR baseaddr;
11498
11499 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11500
11501 /* Ignore blocks with missing or invalid low and high pc attributes. */
11502 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11503 as multiple lexical blocks? Handling children in a sane way would
11504 be nasty. Might be easier to properly extend generic blocks to
11505 describe ranges. */
11506 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11507 return;
11508 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11509 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11510
11511 push_context (0, lowpc);
11512 if (die->child != NULL)
11513 {
11514 child_die = die->child;
11515 while (child_die && child_die->tag)
11516 {
11517 process_die (child_die, cu);
11518 child_die = sibling_die (child_die);
11519 }
11520 }
11521 inherit_abstract_dies (die, cu);
11522 newobj = pop_context ();
11523
11524 if (local_symbols != NULL || using_directives != NULL)
11525 {
11526 struct block *block
11527 = finish_block (0, &local_symbols, newobj->old_blocks,
11528 newobj->start_addr, highpc);
11529
11530 /* Note that recording ranges after traversing children, as we
11531 do here, means that recording a parent's ranges entails
11532 walking across all its children's ranges as they appear in
11533 the address map, which is quadratic behavior.
11534
11535 It would be nicer to record the parent's ranges before
11536 traversing its children, simply overriding whatever you find
11537 there. But since we don't even decide whether to create a
11538 block until after we've traversed its children, that's hard
11539 to do. */
11540 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11541 }
11542 local_symbols = newobj->locals;
11543 using_directives = newobj->using_directives;
11544 }
11545
11546 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11547
11548 static void
11549 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11550 {
11551 struct objfile *objfile = cu->objfile;
11552 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11553 CORE_ADDR pc, baseaddr;
11554 struct attribute *attr;
11555 struct call_site *call_site, call_site_local;
11556 void **slot;
11557 int nparams;
11558 struct die_info *child_die;
11559
11560 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11561
11562 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11563 if (!attr)
11564 {
11565 complaint (&symfile_complaints,
11566 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11567 "DIE 0x%x [in module %s]"),
11568 die->offset.sect_off, objfile_name (objfile));
11569 return;
11570 }
11571 pc = attr_value_as_address (attr) + baseaddr;
11572 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11573
11574 if (cu->call_site_htab == NULL)
11575 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11576 NULL, &objfile->objfile_obstack,
11577 hashtab_obstack_allocate, NULL);
11578 call_site_local.pc = pc;
11579 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11580 if (*slot != NULL)
11581 {
11582 complaint (&symfile_complaints,
11583 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11584 "DIE 0x%x [in module %s]"),
11585 paddress (gdbarch, pc), die->offset.sect_off,
11586 objfile_name (objfile));
11587 return;
11588 }
11589
11590 /* Count parameters at the caller. */
11591
11592 nparams = 0;
11593 for (child_die = die->child; child_die && child_die->tag;
11594 child_die = sibling_die (child_die))
11595 {
11596 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11597 {
11598 complaint (&symfile_complaints,
11599 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11600 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11601 child_die->tag, child_die->offset.sect_off,
11602 objfile_name (objfile));
11603 continue;
11604 }
11605
11606 nparams++;
11607 }
11608
11609 call_site = obstack_alloc (&objfile->objfile_obstack,
11610 (sizeof (*call_site)
11611 + (sizeof (*call_site->parameter)
11612 * (nparams - 1))));
11613 *slot = call_site;
11614 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11615 call_site->pc = pc;
11616
11617 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11618 {
11619 struct die_info *func_die;
11620
11621 /* Skip also over DW_TAG_inlined_subroutine. */
11622 for (func_die = die->parent;
11623 func_die && func_die->tag != DW_TAG_subprogram
11624 && func_die->tag != DW_TAG_subroutine_type;
11625 func_die = func_die->parent);
11626
11627 /* DW_AT_GNU_all_call_sites is a superset
11628 of DW_AT_GNU_all_tail_call_sites. */
11629 if (func_die
11630 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11631 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11632 {
11633 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11634 not complete. But keep CALL_SITE for look ups via call_site_htab,
11635 both the initial caller containing the real return address PC and
11636 the final callee containing the current PC of a chain of tail
11637 calls do not need to have the tail call list complete. But any
11638 function candidate for a virtual tail call frame searched via
11639 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11640 determined unambiguously. */
11641 }
11642 else
11643 {
11644 struct type *func_type = NULL;
11645
11646 if (func_die)
11647 func_type = get_die_type (func_die, cu);
11648 if (func_type != NULL)
11649 {
11650 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11651
11652 /* Enlist this call site to the function. */
11653 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11654 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11655 }
11656 else
11657 complaint (&symfile_complaints,
11658 _("Cannot find function owning DW_TAG_GNU_call_site "
11659 "DIE 0x%x [in module %s]"),
11660 die->offset.sect_off, objfile_name (objfile));
11661 }
11662 }
11663
11664 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11665 if (attr == NULL)
11666 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11667 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11668 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11669 /* Keep NULL DWARF_BLOCK. */;
11670 else if (attr_form_is_block (attr))
11671 {
11672 struct dwarf2_locexpr_baton *dlbaton;
11673
11674 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11675 dlbaton->data = DW_BLOCK (attr)->data;
11676 dlbaton->size = DW_BLOCK (attr)->size;
11677 dlbaton->per_cu = cu->per_cu;
11678
11679 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11680 }
11681 else if (attr_form_is_ref (attr))
11682 {
11683 struct dwarf2_cu *target_cu = cu;
11684 struct die_info *target_die;
11685
11686 target_die = follow_die_ref (die, attr, &target_cu);
11687 gdb_assert (target_cu->objfile == objfile);
11688 if (die_is_declaration (target_die, target_cu))
11689 {
11690 const char *target_physname = NULL;
11691 struct attribute *target_attr;
11692
11693 /* Prefer the mangled name; otherwise compute the demangled one. */
11694 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11695 if (target_attr == NULL)
11696 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11697 target_cu);
11698 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11699 target_physname = DW_STRING (target_attr);
11700 else
11701 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11702 if (target_physname == NULL)
11703 complaint (&symfile_complaints,
11704 _("DW_AT_GNU_call_site_target target DIE has invalid "
11705 "physname, for referencing DIE 0x%x [in module %s]"),
11706 die->offset.sect_off, objfile_name (objfile));
11707 else
11708 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11709 }
11710 else
11711 {
11712 CORE_ADDR lowpc;
11713
11714 /* DW_AT_entry_pc should be preferred. */
11715 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11716 complaint (&symfile_complaints,
11717 _("DW_AT_GNU_call_site_target target DIE has invalid "
11718 "low pc, for referencing DIE 0x%x [in module %s]"),
11719 die->offset.sect_off, objfile_name (objfile));
11720 else
11721 {
11722 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11723 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11724 }
11725 }
11726 }
11727 else
11728 complaint (&symfile_complaints,
11729 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11730 "block nor reference, for DIE 0x%x [in module %s]"),
11731 die->offset.sect_off, objfile_name (objfile));
11732
11733 call_site->per_cu = cu->per_cu;
11734
11735 for (child_die = die->child;
11736 child_die && child_die->tag;
11737 child_die = sibling_die (child_die))
11738 {
11739 struct call_site_parameter *parameter;
11740 struct attribute *loc, *origin;
11741
11742 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11743 {
11744 /* Already printed the complaint above. */
11745 continue;
11746 }
11747
11748 gdb_assert (call_site->parameter_count < nparams);
11749 parameter = &call_site->parameter[call_site->parameter_count];
11750
11751 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11752 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11753 register is contained in DW_AT_GNU_call_site_value. */
11754
11755 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11756 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11757 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11758 {
11759 sect_offset offset;
11760
11761 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11762 offset = dwarf2_get_ref_die_offset (origin);
11763 if (!offset_in_cu_p (&cu->header, offset))
11764 {
11765 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11766 binding can be done only inside one CU. Such referenced DIE
11767 therefore cannot be even moved to DW_TAG_partial_unit. */
11768 complaint (&symfile_complaints,
11769 _("DW_AT_abstract_origin offset is not in CU for "
11770 "DW_TAG_GNU_call_site child DIE 0x%x "
11771 "[in module %s]"),
11772 child_die->offset.sect_off, objfile_name (objfile));
11773 continue;
11774 }
11775 parameter->u.param_offset.cu_off = (offset.sect_off
11776 - cu->header.offset.sect_off);
11777 }
11778 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11779 {
11780 complaint (&symfile_complaints,
11781 _("No DW_FORM_block* DW_AT_location for "
11782 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11783 child_die->offset.sect_off, objfile_name (objfile));
11784 continue;
11785 }
11786 else
11787 {
11788 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11789 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11790 if (parameter->u.dwarf_reg != -1)
11791 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11792 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11793 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11794 &parameter->u.fb_offset))
11795 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11796 else
11797 {
11798 complaint (&symfile_complaints,
11799 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11800 "for DW_FORM_block* DW_AT_location is supported for "
11801 "DW_TAG_GNU_call_site child DIE 0x%x "
11802 "[in module %s]"),
11803 child_die->offset.sect_off, objfile_name (objfile));
11804 continue;
11805 }
11806 }
11807
11808 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11809 if (!attr_form_is_block (attr))
11810 {
11811 complaint (&symfile_complaints,
11812 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11813 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11814 child_die->offset.sect_off, objfile_name (objfile));
11815 continue;
11816 }
11817 parameter->value = DW_BLOCK (attr)->data;
11818 parameter->value_size = DW_BLOCK (attr)->size;
11819
11820 /* Parameters are not pre-cleared by memset above. */
11821 parameter->data_value = NULL;
11822 parameter->data_value_size = 0;
11823 call_site->parameter_count++;
11824
11825 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11826 if (attr)
11827 {
11828 if (!attr_form_is_block (attr))
11829 complaint (&symfile_complaints,
11830 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11831 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11832 child_die->offset.sect_off, objfile_name (objfile));
11833 else
11834 {
11835 parameter->data_value = DW_BLOCK (attr)->data;
11836 parameter->data_value_size = DW_BLOCK (attr)->size;
11837 }
11838 }
11839 }
11840 }
11841
11842 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11843 Return 1 if the attributes are present and valid, otherwise, return 0.
11844 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11845
11846 static int
11847 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11848 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11849 struct partial_symtab *ranges_pst)
11850 {
11851 struct objfile *objfile = cu->objfile;
11852 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11853 struct comp_unit_head *cu_header = &cu->header;
11854 bfd *obfd = objfile->obfd;
11855 unsigned int addr_size = cu_header->addr_size;
11856 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11857 /* Base address selection entry. */
11858 CORE_ADDR base;
11859 int found_base;
11860 unsigned int dummy;
11861 const gdb_byte *buffer;
11862 CORE_ADDR marker;
11863 int low_set;
11864 CORE_ADDR low = 0;
11865 CORE_ADDR high = 0;
11866 CORE_ADDR baseaddr;
11867
11868 found_base = cu->base_known;
11869 base = cu->base_address;
11870
11871 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11872 if (offset >= dwarf2_per_objfile->ranges.size)
11873 {
11874 complaint (&symfile_complaints,
11875 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11876 offset);
11877 return 0;
11878 }
11879 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11880
11881 /* Read in the largest possible address. */
11882 marker = read_address (obfd, buffer, cu, &dummy);
11883 if ((marker & mask) == mask)
11884 {
11885 /* If we found the largest possible address, then
11886 read the base address. */
11887 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11888 buffer += 2 * addr_size;
11889 offset += 2 * addr_size;
11890 found_base = 1;
11891 }
11892
11893 low_set = 0;
11894
11895 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11896
11897 while (1)
11898 {
11899 CORE_ADDR range_beginning, range_end;
11900
11901 range_beginning = read_address (obfd, buffer, cu, &dummy);
11902 buffer += addr_size;
11903 range_end = read_address (obfd, buffer, cu, &dummy);
11904 buffer += addr_size;
11905 offset += 2 * addr_size;
11906
11907 /* An end of list marker is a pair of zero addresses. */
11908 if (range_beginning == 0 && range_end == 0)
11909 /* Found the end of list entry. */
11910 break;
11911
11912 /* Each base address selection entry is a pair of 2 values.
11913 The first is the largest possible address, the second is
11914 the base address. Check for a base address here. */
11915 if ((range_beginning & mask) == mask)
11916 {
11917 /* If we found the largest possible address, then
11918 read the base address. */
11919 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11920 found_base = 1;
11921 continue;
11922 }
11923
11924 if (!found_base)
11925 {
11926 /* We have no valid base address for the ranges
11927 data. */
11928 complaint (&symfile_complaints,
11929 _("Invalid .debug_ranges data (no base address)"));
11930 return 0;
11931 }
11932
11933 if (range_beginning > range_end)
11934 {
11935 /* Inverted range entries are invalid. */
11936 complaint (&symfile_complaints,
11937 _("Invalid .debug_ranges data (inverted range)"));
11938 return 0;
11939 }
11940
11941 /* Empty range entries have no effect. */
11942 if (range_beginning == range_end)
11943 continue;
11944
11945 range_beginning += base;
11946 range_end += base;
11947
11948 /* A not-uncommon case of bad debug info.
11949 Don't pollute the addrmap with bad data. */
11950 if (range_beginning + baseaddr == 0
11951 && !dwarf2_per_objfile->has_section_at_zero)
11952 {
11953 complaint (&symfile_complaints,
11954 _(".debug_ranges entry has start address of zero"
11955 " [in module %s]"), objfile_name (objfile));
11956 continue;
11957 }
11958
11959 if (ranges_pst != NULL)
11960 {
11961 CORE_ADDR lowpc;
11962 CORE_ADDR highpc;
11963
11964 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11965 range_beginning + baseaddr);
11966 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11967 range_end + baseaddr);
11968 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11969 ranges_pst);
11970 }
11971
11972 /* FIXME: This is recording everything as a low-high
11973 segment of consecutive addresses. We should have a
11974 data structure for discontiguous block ranges
11975 instead. */
11976 if (! low_set)
11977 {
11978 low = range_beginning;
11979 high = range_end;
11980 low_set = 1;
11981 }
11982 else
11983 {
11984 if (range_beginning < low)
11985 low = range_beginning;
11986 if (range_end > high)
11987 high = range_end;
11988 }
11989 }
11990
11991 if (! low_set)
11992 /* If the first entry is an end-of-list marker, the range
11993 describes an empty scope, i.e. no instructions. */
11994 return 0;
11995
11996 if (low_return)
11997 *low_return = low;
11998 if (high_return)
11999 *high_return = high;
12000 return 1;
12001 }
12002
12003 /* Get low and high pc attributes from a die. Return 1 if the attributes
12004 are present and valid, otherwise, return 0. Return -1 if the range is
12005 discontinuous, i.e. derived from DW_AT_ranges information. */
12006
12007 static int
12008 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12009 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12010 struct partial_symtab *pst)
12011 {
12012 struct attribute *attr;
12013 struct attribute *attr_high;
12014 CORE_ADDR low = 0;
12015 CORE_ADDR high = 0;
12016 int ret = 0;
12017
12018 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12019 if (attr_high)
12020 {
12021 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12022 if (attr)
12023 {
12024 low = attr_value_as_address (attr);
12025 high = attr_value_as_address (attr_high);
12026 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12027 high += low;
12028 }
12029 else
12030 /* Found high w/o low attribute. */
12031 return 0;
12032
12033 /* Found consecutive range of addresses. */
12034 ret = 1;
12035 }
12036 else
12037 {
12038 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12039 if (attr != NULL)
12040 {
12041 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12042 We take advantage of the fact that DW_AT_ranges does not appear
12043 in DW_TAG_compile_unit of DWO files. */
12044 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12045 unsigned int ranges_offset = (DW_UNSND (attr)
12046 + (need_ranges_base
12047 ? cu->ranges_base
12048 : 0));
12049
12050 /* Value of the DW_AT_ranges attribute is the offset in the
12051 .debug_ranges section. */
12052 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12053 return 0;
12054 /* Found discontinuous range of addresses. */
12055 ret = -1;
12056 }
12057 }
12058
12059 /* read_partial_die has also the strict LOW < HIGH requirement. */
12060 if (high <= low)
12061 return 0;
12062
12063 /* When using the GNU linker, .gnu.linkonce. sections are used to
12064 eliminate duplicate copies of functions and vtables and such.
12065 The linker will arbitrarily choose one and discard the others.
12066 The AT_*_pc values for such functions refer to local labels in
12067 these sections. If the section from that file was discarded, the
12068 labels are not in the output, so the relocs get a value of 0.
12069 If this is a discarded function, mark the pc bounds as invalid,
12070 so that GDB will ignore it. */
12071 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12072 return 0;
12073
12074 *lowpc = low;
12075 if (highpc)
12076 *highpc = high;
12077 return ret;
12078 }
12079
12080 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12081 its low and high PC addresses. Do nothing if these addresses could not
12082 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12083 and HIGHPC to the high address if greater than HIGHPC. */
12084
12085 static void
12086 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12087 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12088 struct dwarf2_cu *cu)
12089 {
12090 CORE_ADDR low, high;
12091 struct die_info *child = die->child;
12092
12093 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12094 {
12095 *lowpc = min (*lowpc, low);
12096 *highpc = max (*highpc, high);
12097 }
12098
12099 /* If the language does not allow nested subprograms (either inside
12100 subprograms or lexical blocks), we're done. */
12101 if (cu->language != language_ada)
12102 return;
12103
12104 /* Check all the children of the given DIE. If it contains nested
12105 subprograms, then check their pc bounds. Likewise, we need to
12106 check lexical blocks as well, as they may also contain subprogram
12107 definitions. */
12108 while (child && child->tag)
12109 {
12110 if (child->tag == DW_TAG_subprogram
12111 || child->tag == DW_TAG_lexical_block)
12112 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12113 child = sibling_die (child);
12114 }
12115 }
12116
12117 /* Get the low and high pc's represented by the scope DIE, and store
12118 them in *LOWPC and *HIGHPC. If the correct values can't be
12119 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12120
12121 static void
12122 get_scope_pc_bounds (struct die_info *die,
12123 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12124 struct dwarf2_cu *cu)
12125 {
12126 CORE_ADDR best_low = (CORE_ADDR) -1;
12127 CORE_ADDR best_high = (CORE_ADDR) 0;
12128 CORE_ADDR current_low, current_high;
12129
12130 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12131 {
12132 best_low = current_low;
12133 best_high = current_high;
12134 }
12135 else
12136 {
12137 struct die_info *child = die->child;
12138
12139 while (child && child->tag)
12140 {
12141 switch (child->tag) {
12142 case DW_TAG_subprogram:
12143 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12144 break;
12145 case DW_TAG_namespace:
12146 case DW_TAG_module:
12147 /* FIXME: carlton/2004-01-16: Should we do this for
12148 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12149 that current GCC's always emit the DIEs corresponding
12150 to definitions of methods of classes as children of a
12151 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12152 the DIEs giving the declarations, which could be
12153 anywhere). But I don't see any reason why the
12154 standards says that they have to be there. */
12155 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12156
12157 if (current_low != ((CORE_ADDR) -1))
12158 {
12159 best_low = min (best_low, current_low);
12160 best_high = max (best_high, current_high);
12161 }
12162 break;
12163 default:
12164 /* Ignore. */
12165 break;
12166 }
12167
12168 child = sibling_die (child);
12169 }
12170 }
12171
12172 *lowpc = best_low;
12173 *highpc = best_high;
12174 }
12175
12176 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12177 in DIE. */
12178
12179 static void
12180 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12181 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12182 {
12183 struct objfile *objfile = cu->objfile;
12184 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12185 struct attribute *attr;
12186 struct attribute *attr_high;
12187
12188 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12189 if (attr_high)
12190 {
12191 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12192 if (attr)
12193 {
12194 CORE_ADDR low = attr_value_as_address (attr);
12195 CORE_ADDR high = attr_value_as_address (attr_high);
12196
12197 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12198 high += low;
12199
12200 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12201 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12202 record_block_range (block, low, high - 1);
12203 }
12204 }
12205
12206 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12207 if (attr)
12208 {
12209 bfd *obfd = objfile->obfd;
12210 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12211 We take advantage of the fact that DW_AT_ranges does not appear
12212 in DW_TAG_compile_unit of DWO files. */
12213 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12214
12215 /* The value of the DW_AT_ranges attribute is the offset of the
12216 address range list in the .debug_ranges section. */
12217 unsigned long offset = (DW_UNSND (attr)
12218 + (need_ranges_base ? cu->ranges_base : 0));
12219 const gdb_byte *buffer;
12220
12221 /* For some target architectures, but not others, the
12222 read_address function sign-extends the addresses it returns.
12223 To recognize base address selection entries, we need a
12224 mask. */
12225 unsigned int addr_size = cu->header.addr_size;
12226 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12227
12228 /* The base address, to which the next pair is relative. Note
12229 that this 'base' is a DWARF concept: most entries in a range
12230 list are relative, to reduce the number of relocs against the
12231 debugging information. This is separate from this function's
12232 'baseaddr' argument, which GDB uses to relocate debugging
12233 information from a shared library based on the address at
12234 which the library was loaded. */
12235 CORE_ADDR base = cu->base_address;
12236 int base_known = cu->base_known;
12237
12238 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12239 if (offset >= dwarf2_per_objfile->ranges.size)
12240 {
12241 complaint (&symfile_complaints,
12242 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12243 offset);
12244 return;
12245 }
12246 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12247
12248 for (;;)
12249 {
12250 unsigned int bytes_read;
12251 CORE_ADDR start, end;
12252
12253 start = read_address (obfd, buffer, cu, &bytes_read);
12254 buffer += bytes_read;
12255 end = read_address (obfd, buffer, cu, &bytes_read);
12256 buffer += bytes_read;
12257
12258 /* Did we find the end of the range list? */
12259 if (start == 0 && end == 0)
12260 break;
12261
12262 /* Did we find a base address selection entry? */
12263 else if ((start & base_select_mask) == base_select_mask)
12264 {
12265 base = end;
12266 base_known = 1;
12267 }
12268
12269 /* We found an ordinary address range. */
12270 else
12271 {
12272 if (!base_known)
12273 {
12274 complaint (&symfile_complaints,
12275 _("Invalid .debug_ranges data "
12276 "(no base address)"));
12277 return;
12278 }
12279
12280 if (start > end)
12281 {
12282 /* Inverted range entries are invalid. */
12283 complaint (&symfile_complaints,
12284 _("Invalid .debug_ranges data "
12285 "(inverted range)"));
12286 return;
12287 }
12288
12289 /* Empty range entries have no effect. */
12290 if (start == end)
12291 continue;
12292
12293 start += base + baseaddr;
12294 end += base + baseaddr;
12295
12296 /* A not-uncommon case of bad debug info.
12297 Don't pollute the addrmap with bad data. */
12298 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12299 {
12300 complaint (&symfile_complaints,
12301 _(".debug_ranges entry has start address of zero"
12302 " [in module %s]"), objfile_name (objfile));
12303 continue;
12304 }
12305
12306 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12307 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12308 record_block_range (block, start, end - 1);
12309 }
12310 }
12311 }
12312 }
12313
12314 /* Check whether the producer field indicates either of GCC < 4.6, or the
12315 Intel C/C++ compiler, and cache the result in CU. */
12316
12317 static void
12318 check_producer (struct dwarf2_cu *cu)
12319 {
12320 const char *cs;
12321 int major, minor;
12322
12323 if (cu->producer == NULL)
12324 {
12325 /* For unknown compilers expect their behavior is DWARF version
12326 compliant.
12327
12328 GCC started to support .debug_types sections by -gdwarf-4 since
12329 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12330 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12331 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12332 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12333 }
12334 else if (producer_is_gcc (cu->producer, &major, &minor))
12335 {
12336 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12337 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12338 }
12339 else if (startswith (cu->producer, "Intel(R) C"))
12340 cu->producer_is_icc = 1;
12341 else
12342 {
12343 /* For other non-GCC compilers, expect their behavior is DWARF version
12344 compliant. */
12345 }
12346
12347 cu->checked_producer = 1;
12348 }
12349
12350 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12351 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12352 during 4.6.0 experimental. */
12353
12354 static int
12355 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12356 {
12357 if (!cu->checked_producer)
12358 check_producer (cu);
12359
12360 return cu->producer_is_gxx_lt_4_6;
12361 }
12362
12363 /* Return the default accessibility type if it is not overriden by
12364 DW_AT_accessibility. */
12365
12366 static enum dwarf_access_attribute
12367 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12368 {
12369 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12370 {
12371 /* The default DWARF 2 accessibility for members is public, the default
12372 accessibility for inheritance is private. */
12373
12374 if (die->tag != DW_TAG_inheritance)
12375 return DW_ACCESS_public;
12376 else
12377 return DW_ACCESS_private;
12378 }
12379 else
12380 {
12381 /* DWARF 3+ defines the default accessibility a different way. The same
12382 rules apply now for DW_TAG_inheritance as for the members and it only
12383 depends on the container kind. */
12384
12385 if (die->parent->tag == DW_TAG_class_type)
12386 return DW_ACCESS_private;
12387 else
12388 return DW_ACCESS_public;
12389 }
12390 }
12391
12392 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12393 offset. If the attribute was not found return 0, otherwise return
12394 1. If it was found but could not properly be handled, set *OFFSET
12395 to 0. */
12396
12397 static int
12398 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12399 LONGEST *offset)
12400 {
12401 struct attribute *attr;
12402
12403 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12404 if (attr != NULL)
12405 {
12406 *offset = 0;
12407
12408 /* Note that we do not check for a section offset first here.
12409 This is because DW_AT_data_member_location is new in DWARF 4,
12410 so if we see it, we can assume that a constant form is really
12411 a constant and not a section offset. */
12412 if (attr_form_is_constant (attr))
12413 *offset = dwarf2_get_attr_constant_value (attr, 0);
12414 else if (attr_form_is_section_offset (attr))
12415 dwarf2_complex_location_expr_complaint ();
12416 else if (attr_form_is_block (attr))
12417 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12418 else
12419 dwarf2_complex_location_expr_complaint ();
12420
12421 return 1;
12422 }
12423
12424 return 0;
12425 }
12426
12427 /* Add an aggregate field to the field list. */
12428
12429 static void
12430 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12431 struct dwarf2_cu *cu)
12432 {
12433 struct objfile *objfile = cu->objfile;
12434 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12435 struct nextfield *new_field;
12436 struct attribute *attr;
12437 struct field *fp;
12438 const char *fieldname = "";
12439
12440 /* Allocate a new field list entry and link it in. */
12441 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12442 make_cleanup (xfree, new_field);
12443 memset (new_field, 0, sizeof (struct nextfield));
12444
12445 if (die->tag == DW_TAG_inheritance)
12446 {
12447 new_field->next = fip->baseclasses;
12448 fip->baseclasses = new_field;
12449 }
12450 else
12451 {
12452 new_field->next = fip->fields;
12453 fip->fields = new_field;
12454 }
12455 fip->nfields++;
12456
12457 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12458 if (attr)
12459 new_field->accessibility = DW_UNSND (attr);
12460 else
12461 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12462 if (new_field->accessibility != DW_ACCESS_public)
12463 fip->non_public_fields = 1;
12464
12465 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12466 if (attr)
12467 new_field->virtuality = DW_UNSND (attr);
12468 else
12469 new_field->virtuality = DW_VIRTUALITY_none;
12470
12471 fp = &new_field->field;
12472
12473 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12474 {
12475 LONGEST offset;
12476
12477 /* Data member other than a C++ static data member. */
12478
12479 /* Get type of field. */
12480 fp->type = die_type (die, cu);
12481
12482 SET_FIELD_BITPOS (*fp, 0);
12483
12484 /* Get bit size of field (zero if none). */
12485 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12486 if (attr)
12487 {
12488 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12489 }
12490 else
12491 {
12492 FIELD_BITSIZE (*fp) = 0;
12493 }
12494
12495 /* Get bit offset of field. */
12496 if (handle_data_member_location (die, cu, &offset))
12497 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12498 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12499 if (attr)
12500 {
12501 if (gdbarch_bits_big_endian (gdbarch))
12502 {
12503 /* For big endian bits, the DW_AT_bit_offset gives the
12504 additional bit offset from the MSB of the containing
12505 anonymous object to the MSB of the field. We don't
12506 have to do anything special since we don't need to
12507 know the size of the anonymous object. */
12508 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12509 }
12510 else
12511 {
12512 /* For little endian bits, compute the bit offset to the
12513 MSB of the anonymous object, subtract off the number of
12514 bits from the MSB of the field to the MSB of the
12515 object, and then subtract off the number of bits of
12516 the field itself. The result is the bit offset of
12517 the LSB of the field. */
12518 int anonymous_size;
12519 int bit_offset = DW_UNSND (attr);
12520
12521 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12522 if (attr)
12523 {
12524 /* The size of the anonymous object containing
12525 the bit field is explicit, so use the
12526 indicated size (in bytes). */
12527 anonymous_size = DW_UNSND (attr);
12528 }
12529 else
12530 {
12531 /* The size of the anonymous object containing
12532 the bit field must be inferred from the type
12533 attribute of the data member containing the
12534 bit field. */
12535 anonymous_size = TYPE_LENGTH (fp->type);
12536 }
12537 SET_FIELD_BITPOS (*fp,
12538 (FIELD_BITPOS (*fp)
12539 + anonymous_size * bits_per_byte
12540 - bit_offset - FIELD_BITSIZE (*fp)));
12541 }
12542 }
12543
12544 /* Get name of field. */
12545 fieldname = dwarf2_name (die, cu);
12546 if (fieldname == NULL)
12547 fieldname = "";
12548
12549 /* The name is already allocated along with this objfile, so we don't
12550 need to duplicate it for the type. */
12551 fp->name = fieldname;
12552
12553 /* Change accessibility for artificial fields (e.g. virtual table
12554 pointer or virtual base class pointer) to private. */
12555 if (dwarf2_attr (die, DW_AT_artificial, cu))
12556 {
12557 FIELD_ARTIFICIAL (*fp) = 1;
12558 new_field->accessibility = DW_ACCESS_private;
12559 fip->non_public_fields = 1;
12560 }
12561 }
12562 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12563 {
12564 /* C++ static member. */
12565
12566 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12567 is a declaration, but all versions of G++ as of this writing
12568 (so through at least 3.2.1) incorrectly generate
12569 DW_TAG_variable tags. */
12570
12571 const char *physname;
12572
12573 /* Get name of field. */
12574 fieldname = dwarf2_name (die, cu);
12575 if (fieldname == NULL)
12576 return;
12577
12578 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12579 if (attr
12580 /* Only create a symbol if this is an external value.
12581 new_symbol checks this and puts the value in the global symbol
12582 table, which we want. If it is not external, new_symbol
12583 will try to put the value in cu->list_in_scope which is wrong. */
12584 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12585 {
12586 /* A static const member, not much different than an enum as far as
12587 we're concerned, except that we can support more types. */
12588 new_symbol (die, NULL, cu);
12589 }
12590
12591 /* Get physical name. */
12592 physname = dwarf2_physname (fieldname, die, cu);
12593
12594 /* The name is already allocated along with this objfile, so we don't
12595 need to duplicate it for the type. */
12596 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12597 FIELD_TYPE (*fp) = die_type (die, cu);
12598 FIELD_NAME (*fp) = fieldname;
12599 }
12600 else if (die->tag == DW_TAG_inheritance)
12601 {
12602 LONGEST offset;
12603
12604 /* C++ base class field. */
12605 if (handle_data_member_location (die, cu, &offset))
12606 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12607 FIELD_BITSIZE (*fp) = 0;
12608 FIELD_TYPE (*fp) = die_type (die, cu);
12609 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12610 fip->nbaseclasses++;
12611 }
12612 }
12613
12614 /* Add a typedef defined in the scope of the FIP's class. */
12615
12616 static void
12617 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12618 struct dwarf2_cu *cu)
12619 {
12620 struct objfile *objfile = cu->objfile;
12621 struct typedef_field_list *new_field;
12622 struct attribute *attr;
12623 struct typedef_field *fp;
12624 char *fieldname = "";
12625
12626 /* Allocate a new field list entry and link it in. */
12627 new_field = xzalloc (sizeof (*new_field));
12628 make_cleanup (xfree, new_field);
12629
12630 gdb_assert (die->tag == DW_TAG_typedef);
12631
12632 fp = &new_field->field;
12633
12634 /* Get name of field. */
12635 fp->name = dwarf2_name (die, cu);
12636 if (fp->name == NULL)
12637 return;
12638
12639 fp->type = read_type_die (die, cu);
12640
12641 new_field->next = fip->typedef_field_list;
12642 fip->typedef_field_list = new_field;
12643 fip->typedef_field_list_count++;
12644 }
12645
12646 /* Create the vector of fields, and attach it to the type. */
12647
12648 static void
12649 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12650 struct dwarf2_cu *cu)
12651 {
12652 int nfields = fip->nfields;
12653
12654 /* Record the field count, allocate space for the array of fields,
12655 and create blank accessibility bitfields if necessary. */
12656 TYPE_NFIELDS (type) = nfields;
12657 TYPE_FIELDS (type) = (struct field *)
12658 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12659 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12660
12661 if (fip->non_public_fields && cu->language != language_ada)
12662 {
12663 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12664
12665 TYPE_FIELD_PRIVATE_BITS (type) =
12666 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12667 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12668
12669 TYPE_FIELD_PROTECTED_BITS (type) =
12670 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12671 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12672
12673 TYPE_FIELD_IGNORE_BITS (type) =
12674 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12675 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12676 }
12677
12678 /* If the type has baseclasses, allocate and clear a bit vector for
12679 TYPE_FIELD_VIRTUAL_BITS. */
12680 if (fip->nbaseclasses && cu->language != language_ada)
12681 {
12682 int num_bytes = B_BYTES (fip->nbaseclasses);
12683 unsigned char *pointer;
12684
12685 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12686 pointer = TYPE_ALLOC (type, num_bytes);
12687 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12688 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12689 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12690 }
12691
12692 /* Copy the saved-up fields into the field vector. Start from the head of
12693 the list, adding to the tail of the field array, so that they end up in
12694 the same order in the array in which they were added to the list. */
12695 while (nfields-- > 0)
12696 {
12697 struct nextfield *fieldp;
12698
12699 if (fip->fields)
12700 {
12701 fieldp = fip->fields;
12702 fip->fields = fieldp->next;
12703 }
12704 else
12705 {
12706 fieldp = fip->baseclasses;
12707 fip->baseclasses = fieldp->next;
12708 }
12709
12710 TYPE_FIELD (type, nfields) = fieldp->field;
12711 switch (fieldp->accessibility)
12712 {
12713 case DW_ACCESS_private:
12714 if (cu->language != language_ada)
12715 SET_TYPE_FIELD_PRIVATE (type, nfields);
12716 break;
12717
12718 case DW_ACCESS_protected:
12719 if (cu->language != language_ada)
12720 SET_TYPE_FIELD_PROTECTED (type, nfields);
12721 break;
12722
12723 case DW_ACCESS_public:
12724 break;
12725
12726 default:
12727 /* Unknown accessibility. Complain and treat it as public. */
12728 {
12729 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12730 fieldp->accessibility);
12731 }
12732 break;
12733 }
12734 if (nfields < fip->nbaseclasses)
12735 {
12736 switch (fieldp->virtuality)
12737 {
12738 case DW_VIRTUALITY_virtual:
12739 case DW_VIRTUALITY_pure_virtual:
12740 if (cu->language == language_ada)
12741 error (_("unexpected virtuality in component of Ada type"));
12742 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12743 break;
12744 }
12745 }
12746 }
12747 }
12748
12749 /* Return true if this member function is a constructor, false
12750 otherwise. */
12751
12752 static int
12753 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12754 {
12755 const char *fieldname;
12756 const char *type_name;
12757 int len;
12758
12759 if (die->parent == NULL)
12760 return 0;
12761
12762 if (die->parent->tag != DW_TAG_structure_type
12763 && die->parent->tag != DW_TAG_union_type
12764 && die->parent->tag != DW_TAG_class_type)
12765 return 0;
12766
12767 fieldname = dwarf2_name (die, cu);
12768 type_name = dwarf2_name (die->parent, cu);
12769 if (fieldname == NULL || type_name == NULL)
12770 return 0;
12771
12772 len = strlen (fieldname);
12773 return (strncmp (fieldname, type_name, len) == 0
12774 && (type_name[len] == '\0' || type_name[len] == '<'));
12775 }
12776
12777 /* Add a member function to the proper fieldlist. */
12778
12779 static void
12780 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12781 struct type *type, struct dwarf2_cu *cu)
12782 {
12783 struct objfile *objfile = cu->objfile;
12784 struct attribute *attr;
12785 struct fnfieldlist *flp;
12786 int i;
12787 struct fn_field *fnp;
12788 const char *fieldname;
12789 struct nextfnfield *new_fnfield;
12790 struct type *this_type;
12791 enum dwarf_access_attribute accessibility;
12792
12793 if (cu->language == language_ada)
12794 error (_("unexpected member function in Ada type"));
12795
12796 /* Get name of member function. */
12797 fieldname = dwarf2_name (die, cu);
12798 if (fieldname == NULL)
12799 return;
12800
12801 /* Look up member function name in fieldlist. */
12802 for (i = 0; i < fip->nfnfields; i++)
12803 {
12804 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12805 break;
12806 }
12807
12808 /* Create new list element if necessary. */
12809 if (i < fip->nfnfields)
12810 flp = &fip->fnfieldlists[i];
12811 else
12812 {
12813 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12814 {
12815 fip->fnfieldlists = (struct fnfieldlist *)
12816 xrealloc (fip->fnfieldlists,
12817 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12818 * sizeof (struct fnfieldlist));
12819 if (fip->nfnfields == 0)
12820 make_cleanup (free_current_contents, &fip->fnfieldlists);
12821 }
12822 flp = &fip->fnfieldlists[fip->nfnfields];
12823 flp->name = fieldname;
12824 flp->length = 0;
12825 flp->head = NULL;
12826 i = fip->nfnfields++;
12827 }
12828
12829 /* Create a new member function field and chain it to the field list
12830 entry. */
12831 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12832 make_cleanup (xfree, new_fnfield);
12833 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12834 new_fnfield->next = flp->head;
12835 flp->head = new_fnfield;
12836 flp->length++;
12837
12838 /* Fill in the member function field info. */
12839 fnp = &new_fnfield->fnfield;
12840
12841 /* Delay processing of the physname until later. */
12842 if (cu->language == language_cplus || cu->language == language_java)
12843 {
12844 add_to_method_list (type, i, flp->length - 1, fieldname,
12845 die, cu);
12846 }
12847 else
12848 {
12849 const char *physname = dwarf2_physname (fieldname, die, cu);
12850 fnp->physname = physname ? physname : "";
12851 }
12852
12853 fnp->type = alloc_type (objfile);
12854 this_type = read_type_die (die, cu);
12855 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12856 {
12857 int nparams = TYPE_NFIELDS (this_type);
12858
12859 /* TYPE is the domain of this method, and THIS_TYPE is the type
12860 of the method itself (TYPE_CODE_METHOD). */
12861 smash_to_method_type (fnp->type, type,
12862 TYPE_TARGET_TYPE (this_type),
12863 TYPE_FIELDS (this_type),
12864 TYPE_NFIELDS (this_type),
12865 TYPE_VARARGS (this_type));
12866
12867 /* Handle static member functions.
12868 Dwarf2 has no clean way to discern C++ static and non-static
12869 member functions. G++ helps GDB by marking the first
12870 parameter for non-static member functions (which is the this
12871 pointer) as artificial. We obtain this information from
12872 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12873 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12874 fnp->voffset = VOFFSET_STATIC;
12875 }
12876 else
12877 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12878 dwarf2_full_name (fieldname, die, cu));
12879
12880 /* Get fcontext from DW_AT_containing_type if present. */
12881 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12882 fnp->fcontext = die_containing_type (die, cu);
12883
12884 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12885 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12886
12887 /* Get accessibility. */
12888 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12889 if (attr)
12890 accessibility = DW_UNSND (attr);
12891 else
12892 accessibility = dwarf2_default_access_attribute (die, cu);
12893 switch (accessibility)
12894 {
12895 case DW_ACCESS_private:
12896 fnp->is_private = 1;
12897 break;
12898 case DW_ACCESS_protected:
12899 fnp->is_protected = 1;
12900 break;
12901 }
12902
12903 /* Check for artificial methods. */
12904 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12905 if (attr && DW_UNSND (attr) != 0)
12906 fnp->is_artificial = 1;
12907
12908 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12909
12910 /* Get index in virtual function table if it is a virtual member
12911 function. For older versions of GCC, this is an offset in the
12912 appropriate virtual table, as specified by DW_AT_containing_type.
12913 For everyone else, it is an expression to be evaluated relative
12914 to the object address. */
12915
12916 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12917 if (attr)
12918 {
12919 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12920 {
12921 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12922 {
12923 /* Old-style GCC. */
12924 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12925 }
12926 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12927 || (DW_BLOCK (attr)->size > 1
12928 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12929 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12930 {
12931 struct dwarf_block blk;
12932 int offset;
12933
12934 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12935 ? 1 : 2);
12936 blk.size = DW_BLOCK (attr)->size - offset;
12937 blk.data = DW_BLOCK (attr)->data + offset;
12938 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12939 if ((fnp->voffset % cu->header.addr_size) != 0)
12940 dwarf2_complex_location_expr_complaint ();
12941 else
12942 fnp->voffset /= cu->header.addr_size;
12943 fnp->voffset += 2;
12944 }
12945 else
12946 dwarf2_complex_location_expr_complaint ();
12947
12948 if (!fnp->fcontext)
12949 {
12950 /* If there is no `this' field and no DW_AT_containing_type,
12951 we cannot actually find a base class context for the
12952 vtable! */
12953 if (TYPE_NFIELDS (this_type) == 0
12954 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12955 {
12956 complaint (&symfile_complaints,
12957 _("cannot determine context for virtual member "
12958 "function \"%s\" (offset %d)"),
12959 fieldname, die->offset.sect_off);
12960 }
12961 else
12962 {
12963 fnp->fcontext
12964 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12965 }
12966 }
12967 }
12968 else if (attr_form_is_section_offset (attr))
12969 {
12970 dwarf2_complex_location_expr_complaint ();
12971 }
12972 else
12973 {
12974 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12975 fieldname);
12976 }
12977 }
12978 else
12979 {
12980 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12981 if (attr && DW_UNSND (attr))
12982 {
12983 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12984 complaint (&symfile_complaints,
12985 _("Member function \"%s\" (offset %d) is virtual "
12986 "but the vtable offset is not specified"),
12987 fieldname, die->offset.sect_off);
12988 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12989 TYPE_CPLUS_DYNAMIC (type) = 1;
12990 }
12991 }
12992 }
12993
12994 /* Create the vector of member function fields, and attach it to the type. */
12995
12996 static void
12997 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12998 struct dwarf2_cu *cu)
12999 {
13000 struct fnfieldlist *flp;
13001 int i;
13002
13003 if (cu->language == language_ada)
13004 error (_("unexpected member functions in Ada type"));
13005
13006 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13007 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13008 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13009
13010 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13011 {
13012 struct nextfnfield *nfp = flp->head;
13013 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13014 int k;
13015
13016 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13017 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13018 fn_flp->fn_fields = (struct fn_field *)
13019 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13020 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13021 fn_flp->fn_fields[k] = nfp->fnfield;
13022 }
13023
13024 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13025 }
13026
13027 /* Returns non-zero if NAME is the name of a vtable member in CU's
13028 language, zero otherwise. */
13029 static int
13030 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13031 {
13032 static const char vptr[] = "_vptr";
13033 static const char vtable[] = "vtable";
13034
13035 /* Look for the C++ and Java forms of the vtable. */
13036 if ((cu->language == language_java
13037 && startswith (name, vtable))
13038 || (startswith (name, vptr)
13039 && is_cplus_marker (name[sizeof (vptr) - 1])))
13040 return 1;
13041
13042 return 0;
13043 }
13044
13045 /* GCC outputs unnamed structures that are really pointers to member
13046 functions, with the ABI-specified layout. If TYPE describes
13047 such a structure, smash it into a member function type.
13048
13049 GCC shouldn't do this; it should just output pointer to member DIEs.
13050 This is GCC PR debug/28767. */
13051
13052 static void
13053 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13054 {
13055 struct type *pfn_type, *self_type, *new_type;
13056
13057 /* Check for a structure with no name and two children. */
13058 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13059 return;
13060
13061 /* Check for __pfn and __delta members. */
13062 if (TYPE_FIELD_NAME (type, 0) == NULL
13063 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13064 || TYPE_FIELD_NAME (type, 1) == NULL
13065 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13066 return;
13067
13068 /* Find the type of the method. */
13069 pfn_type = TYPE_FIELD_TYPE (type, 0);
13070 if (pfn_type == NULL
13071 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13072 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13073 return;
13074
13075 /* Look for the "this" argument. */
13076 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13077 if (TYPE_NFIELDS (pfn_type) == 0
13078 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13079 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13080 return;
13081
13082 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13083 new_type = alloc_type (objfile);
13084 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13085 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13086 TYPE_VARARGS (pfn_type));
13087 smash_to_methodptr_type (type, new_type);
13088 }
13089
13090 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13091 (icc). */
13092
13093 static int
13094 producer_is_icc (struct dwarf2_cu *cu)
13095 {
13096 if (!cu->checked_producer)
13097 check_producer (cu);
13098
13099 return cu->producer_is_icc;
13100 }
13101
13102 /* Called when we find the DIE that starts a structure or union scope
13103 (definition) to create a type for the structure or union. Fill in
13104 the type's name and general properties; the members will not be
13105 processed until process_structure_scope. A symbol table entry for
13106 the type will also not be done until process_structure_scope (assuming
13107 the type has a name).
13108
13109 NOTE: we need to call these functions regardless of whether or not the
13110 DIE has a DW_AT_name attribute, since it might be an anonymous
13111 structure or union. This gets the type entered into our set of
13112 user defined types. */
13113
13114 static struct type *
13115 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13116 {
13117 struct objfile *objfile = cu->objfile;
13118 struct type *type;
13119 struct attribute *attr;
13120 const char *name;
13121
13122 /* If the definition of this type lives in .debug_types, read that type.
13123 Don't follow DW_AT_specification though, that will take us back up
13124 the chain and we want to go down. */
13125 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13126 if (attr)
13127 {
13128 type = get_DW_AT_signature_type (die, attr, cu);
13129
13130 /* The type's CU may not be the same as CU.
13131 Ensure TYPE is recorded with CU in die_type_hash. */
13132 return set_die_type (die, type, cu);
13133 }
13134
13135 type = alloc_type (objfile);
13136 INIT_CPLUS_SPECIFIC (type);
13137
13138 name = dwarf2_name (die, cu);
13139 if (name != NULL)
13140 {
13141 if (cu->language == language_cplus
13142 || cu->language == language_java)
13143 {
13144 const char *full_name = dwarf2_full_name (name, die, cu);
13145
13146 /* dwarf2_full_name might have already finished building the DIE's
13147 type. If so, there is no need to continue. */
13148 if (get_die_type (die, cu) != NULL)
13149 return get_die_type (die, cu);
13150
13151 TYPE_TAG_NAME (type) = full_name;
13152 if (die->tag == DW_TAG_structure_type
13153 || die->tag == DW_TAG_class_type)
13154 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13155 }
13156 else
13157 {
13158 /* The name is already allocated along with this objfile, so
13159 we don't need to duplicate it for the type. */
13160 TYPE_TAG_NAME (type) = name;
13161 if (die->tag == DW_TAG_class_type)
13162 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13163 }
13164 }
13165
13166 if (die->tag == DW_TAG_structure_type)
13167 {
13168 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13169 }
13170 else if (die->tag == DW_TAG_union_type)
13171 {
13172 TYPE_CODE (type) = TYPE_CODE_UNION;
13173 }
13174 else
13175 {
13176 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13177 }
13178
13179 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13180 TYPE_DECLARED_CLASS (type) = 1;
13181
13182 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13183 if (attr)
13184 {
13185 TYPE_LENGTH (type) = DW_UNSND (attr);
13186 }
13187 else
13188 {
13189 TYPE_LENGTH (type) = 0;
13190 }
13191
13192 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13193 {
13194 /* ICC does not output the required DW_AT_declaration
13195 on incomplete types, but gives them a size of zero. */
13196 TYPE_STUB (type) = 1;
13197 }
13198 else
13199 TYPE_STUB_SUPPORTED (type) = 1;
13200
13201 if (die_is_declaration (die, cu))
13202 TYPE_STUB (type) = 1;
13203 else if (attr == NULL && die->child == NULL
13204 && producer_is_realview (cu->producer))
13205 /* RealView does not output the required DW_AT_declaration
13206 on incomplete types. */
13207 TYPE_STUB (type) = 1;
13208
13209 /* We need to add the type field to the die immediately so we don't
13210 infinitely recurse when dealing with pointers to the structure
13211 type within the structure itself. */
13212 set_die_type (die, type, cu);
13213
13214 /* set_die_type should be already done. */
13215 set_descriptive_type (type, die, cu);
13216
13217 return type;
13218 }
13219
13220 /* Finish creating a structure or union type, including filling in
13221 its members and creating a symbol for it. */
13222
13223 static void
13224 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13225 {
13226 struct objfile *objfile = cu->objfile;
13227 struct die_info *child_die;
13228 struct type *type;
13229
13230 type = get_die_type (die, cu);
13231 if (type == NULL)
13232 type = read_structure_type (die, cu);
13233
13234 if (die->child != NULL && ! die_is_declaration (die, cu))
13235 {
13236 struct field_info fi;
13237 VEC (symbolp) *template_args = NULL;
13238 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13239
13240 memset (&fi, 0, sizeof (struct field_info));
13241
13242 child_die = die->child;
13243
13244 while (child_die && child_die->tag)
13245 {
13246 if (child_die->tag == DW_TAG_member
13247 || child_die->tag == DW_TAG_variable)
13248 {
13249 /* NOTE: carlton/2002-11-05: A C++ static data member
13250 should be a DW_TAG_member that is a declaration, but
13251 all versions of G++ as of this writing (so through at
13252 least 3.2.1) incorrectly generate DW_TAG_variable
13253 tags for them instead. */
13254 dwarf2_add_field (&fi, child_die, cu);
13255 }
13256 else if (child_die->tag == DW_TAG_subprogram)
13257 {
13258 /* C++ member function. */
13259 dwarf2_add_member_fn (&fi, child_die, type, cu);
13260 }
13261 else if (child_die->tag == DW_TAG_inheritance)
13262 {
13263 /* C++ base class field. */
13264 dwarf2_add_field (&fi, child_die, cu);
13265 }
13266 else if (child_die->tag == DW_TAG_typedef)
13267 dwarf2_add_typedef (&fi, child_die, cu);
13268 else if (child_die->tag == DW_TAG_template_type_param
13269 || child_die->tag == DW_TAG_template_value_param)
13270 {
13271 struct symbol *arg = new_symbol (child_die, NULL, cu);
13272
13273 if (arg != NULL)
13274 VEC_safe_push (symbolp, template_args, arg);
13275 }
13276
13277 child_die = sibling_die (child_die);
13278 }
13279
13280 /* Attach template arguments to type. */
13281 if (! VEC_empty (symbolp, template_args))
13282 {
13283 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13284 TYPE_N_TEMPLATE_ARGUMENTS (type)
13285 = VEC_length (symbolp, template_args);
13286 TYPE_TEMPLATE_ARGUMENTS (type)
13287 = obstack_alloc (&objfile->objfile_obstack,
13288 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13289 * sizeof (struct symbol *)));
13290 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13291 VEC_address (symbolp, template_args),
13292 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13293 * sizeof (struct symbol *)));
13294 VEC_free (symbolp, template_args);
13295 }
13296
13297 /* Attach fields and member functions to the type. */
13298 if (fi.nfields)
13299 dwarf2_attach_fields_to_type (&fi, type, cu);
13300 if (fi.nfnfields)
13301 {
13302 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13303
13304 /* Get the type which refers to the base class (possibly this
13305 class itself) which contains the vtable pointer for the current
13306 class from the DW_AT_containing_type attribute. This use of
13307 DW_AT_containing_type is a GNU extension. */
13308
13309 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13310 {
13311 struct type *t = die_containing_type (die, cu);
13312
13313 set_type_vptr_basetype (type, t);
13314 if (type == t)
13315 {
13316 int i;
13317
13318 /* Our own class provides vtbl ptr. */
13319 for (i = TYPE_NFIELDS (t) - 1;
13320 i >= TYPE_N_BASECLASSES (t);
13321 --i)
13322 {
13323 const char *fieldname = TYPE_FIELD_NAME (t, i);
13324
13325 if (is_vtable_name (fieldname, cu))
13326 {
13327 set_type_vptr_fieldno (type, i);
13328 break;
13329 }
13330 }
13331
13332 /* Complain if virtual function table field not found. */
13333 if (i < TYPE_N_BASECLASSES (t))
13334 complaint (&symfile_complaints,
13335 _("virtual function table pointer "
13336 "not found when defining class '%s'"),
13337 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13338 "");
13339 }
13340 else
13341 {
13342 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13343 }
13344 }
13345 else if (cu->producer
13346 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13347 {
13348 /* The IBM XLC compiler does not provide direct indication
13349 of the containing type, but the vtable pointer is
13350 always named __vfp. */
13351
13352 int i;
13353
13354 for (i = TYPE_NFIELDS (type) - 1;
13355 i >= TYPE_N_BASECLASSES (type);
13356 --i)
13357 {
13358 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13359 {
13360 set_type_vptr_fieldno (type, i);
13361 set_type_vptr_basetype (type, type);
13362 break;
13363 }
13364 }
13365 }
13366 }
13367
13368 /* Copy fi.typedef_field_list linked list elements content into the
13369 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13370 if (fi.typedef_field_list)
13371 {
13372 int i = fi.typedef_field_list_count;
13373
13374 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13375 TYPE_TYPEDEF_FIELD_ARRAY (type)
13376 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13377 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13378
13379 /* Reverse the list order to keep the debug info elements order. */
13380 while (--i >= 0)
13381 {
13382 struct typedef_field *dest, *src;
13383
13384 dest = &TYPE_TYPEDEF_FIELD (type, i);
13385 src = &fi.typedef_field_list->field;
13386 fi.typedef_field_list = fi.typedef_field_list->next;
13387 *dest = *src;
13388 }
13389 }
13390
13391 do_cleanups (back_to);
13392
13393 if (HAVE_CPLUS_STRUCT (type))
13394 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13395 }
13396
13397 quirk_gcc_member_function_pointer (type, objfile);
13398
13399 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13400 snapshots) has been known to create a die giving a declaration
13401 for a class that has, as a child, a die giving a definition for a
13402 nested class. So we have to process our children even if the
13403 current die is a declaration. Normally, of course, a declaration
13404 won't have any children at all. */
13405
13406 child_die = die->child;
13407
13408 while (child_die != NULL && child_die->tag)
13409 {
13410 if (child_die->tag == DW_TAG_member
13411 || child_die->tag == DW_TAG_variable
13412 || child_die->tag == DW_TAG_inheritance
13413 || child_die->tag == DW_TAG_template_value_param
13414 || child_die->tag == DW_TAG_template_type_param)
13415 {
13416 /* Do nothing. */
13417 }
13418 else
13419 process_die (child_die, cu);
13420
13421 child_die = sibling_die (child_die);
13422 }
13423
13424 /* Do not consider external references. According to the DWARF standard,
13425 these DIEs are identified by the fact that they have no byte_size
13426 attribute, and a declaration attribute. */
13427 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13428 || !die_is_declaration (die, cu))
13429 new_symbol (die, type, cu);
13430 }
13431
13432 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13433 update TYPE using some information only available in DIE's children. */
13434
13435 static void
13436 update_enumeration_type_from_children (struct die_info *die,
13437 struct type *type,
13438 struct dwarf2_cu *cu)
13439 {
13440 struct obstack obstack;
13441 struct die_info *child_die;
13442 int unsigned_enum = 1;
13443 int flag_enum = 1;
13444 ULONGEST mask = 0;
13445 struct cleanup *old_chain;
13446
13447 obstack_init (&obstack);
13448 old_chain = make_cleanup_obstack_free (&obstack);
13449
13450 for (child_die = die->child;
13451 child_die != NULL && child_die->tag;
13452 child_die = sibling_die (child_die))
13453 {
13454 struct attribute *attr;
13455 LONGEST value;
13456 const gdb_byte *bytes;
13457 struct dwarf2_locexpr_baton *baton;
13458 const char *name;
13459
13460 if (child_die->tag != DW_TAG_enumerator)
13461 continue;
13462
13463 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13464 if (attr == NULL)
13465 continue;
13466
13467 name = dwarf2_name (child_die, cu);
13468 if (name == NULL)
13469 name = "<anonymous enumerator>";
13470
13471 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13472 &value, &bytes, &baton);
13473 if (value < 0)
13474 {
13475 unsigned_enum = 0;
13476 flag_enum = 0;
13477 }
13478 else if ((mask & value) != 0)
13479 flag_enum = 0;
13480 else
13481 mask |= value;
13482
13483 /* If we already know that the enum type is neither unsigned, nor
13484 a flag type, no need to look at the rest of the enumerates. */
13485 if (!unsigned_enum && !flag_enum)
13486 break;
13487 }
13488
13489 if (unsigned_enum)
13490 TYPE_UNSIGNED (type) = 1;
13491 if (flag_enum)
13492 TYPE_FLAG_ENUM (type) = 1;
13493
13494 do_cleanups (old_chain);
13495 }
13496
13497 /* Given a DW_AT_enumeration_type die, set its type. We do not
13498 complete the type's fields yet, or create any symbols. */
13499
13500 static struct type *
13501 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13502 {
13503 struct objfile *objfile = cu->objfile;
13504 struct type *type;
13505 struct attribute *attr;
13506 const char *name;
13507
13508 /* If the definition of this type lives in .debug_types, read that type.
13509 Don't follow DW_AT_specification though, that will take us back up
13510 the chain and we want to go down. */
13511 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13512 if (attr)
13513 {
13514 type = get_DW_AT_signature_type (die, attr, cu);
13515
13516 /* The type's CU may not be the same as CU.
13517 Ensure TYPE is recorded with CU in die_type_hash. */
13518 return set_die_type (die, type, cu);
13519 }
13520
13521 type = alloc_type (objfile);
13522
13523 TYPE_CODE (type) = TYPE_CODE_ENUM;
13524 name = dwarf2_full_name (NULL, die, cu);
13525 if (name != NULL)
13526 TYPE_TAG_NAME (type) = name;
13527
13528 attr = dwarf2_attr (die, DW_AT_type, cu);
13529 if (attr != NULL)
13530 {
13531 struct type *underlying_type = die_type (die, cu);
13532
13533 TYPE_TARGET_TYPE (type) = underlying_type;
13534 }
13535
13536 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13537 if (attr)
13538 {
13539 TYPE_LENGTH (type) = DW_UNSND (attr);
13540 }
13541 else
13542 {
13543 TYPE_LENGTH (type) = 0;
13544 }
13545
13546 /* The enumeration DIE can be incomplete. In Ada, any type can be
13547 declared as private in the package spec, and then defined only
13548 inside the package body. Such types are known as Taft Amendment
13549 Types. When another package uses such a type, an incomplete DIE
13550 may be generated by the compiler. */
13551 if (die_is_declaration (die, cu))
13552 TYPE_STUB (type) = 1;
13553
13554 /* Finish the creation of this type by using the enum's children.
13555 We must call this even when the underlying type has been provided
13556 so that we can determine if we're looking at a "flag" enum. */
13557 update_enumeration_type_from_children (die, type, cu);
13558
13559 /* If this type has an underlying type that is not a stub, then we
13560 may use its attributes. We always use the "unsigned" attribute
13561 in this situation, because ordinarily we guess whether the type
13562 is unsigned -- but the guess can be wrong and the underlying type
13563 can tell us the reality. However, we defer to a local size
13564 attribute if one exists, because this lets the compiler override
13565 the underlying type if needed. */
13566 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13567 {
13568 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13569 if (TYPE_LENGTH (type) == 0)
13570 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13571 }
13572
13573 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13574
13575 return set_die_type (die, type, cu);
13576 }
13577
13578 /* Given a pointer to a die which begins an enumeration, process all
13579 the dies that define the members of the enumeration, and create the
13580 symbol for the enumeration type.
13581
13582 NOTE: We reverse the order of the element list. */
13583
13584 static void
13585 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13586 {
13587 struct type *this_type;
13588
13589 this_type = get_die_type (die, cu);
13590 if (this_type == NULL)
13591 this_type = read_enumeration_type (die, cu);
13592
13593 if (die->child != NULL)
13594 {
13595 struct die_info *child_die;
13596 struct symbol *sym;
13597 struct field *fields = NULL;
13598 int num_fields = 0;
13599 const char *name;
13600
13601 child_die = die->child;
13602 while (child_die && child_die->tag)
13603 {
13604 if (child_die->tag != DW_TAG_enumerator)
13605 {
13606 process_die (child_die, cu);
13607 }
13608 else
13609 {
13610 name = dwarf2_name (child_die, cu);
13611 if (name)
13612 {
13613 sym = new_symbol (child_die, this_type, cu);
13614
13615 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13616 {
13617 fields = (struct field *)
13618 xrealloc (fields,
13619 (num_fields + DW_FIELD_ALLOC_CHUNK)
13620 * sizeof (struct field));
13621 }
13622
13623 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13624 FIELD_TYPE (fields[num_fields]) = NULL;
13625 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13626 FIELD_BITSIZE (fields[num_fields]) = 0;
13627
13628 num_fields++;
13629 }
13630 }
13631
13632 child_die = sibling_die (child_die);
13633 }
13634
13635 if (num_fields)
13636 {
13637 TYPE_NFIELDS (this_type) = num_fields;
13638 TYPE_FIELDS (this_type) = (struct field *)
13639 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13640 memcpy (TYPE_FIELDS (this_type), fields,
13641 sizeof (struct field) * num_fields);
13642 xfree (fields);
13643 }
13644 }
13645
13646 /* If we are reading an enum from a .debug_types unit, and the enum
13647 is a declaration, and the enum is not the signatured type in the
13648 unit, then we do not want to add a symbol for it. Adding a
13649 symbol would in some cases obscure the true definition of the
13650 enum, giving users an incomplete type when the definition is
13651 actually available. Note that we do not want to do this for all
13652 enums which are just declarations, because C++0x allows forward
13653 enum declarations. */
13654 if (cu->per_cu->is_debug_types
13655 && die_is_declaration (die, cu))
13656 {
13657 struct signatured_type *sig_type;
13658
13659 sig_type = (struct signatured_type *) cu->per_cu;
13660 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13661 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13662 return;
13663 }
13664
13665 new_symbol (die, this_type, cu);
13666 }
13667
13668 /* Extract all information from a DW_TAG_array_type DIE and put it in
13669 the DIE's type field. For now, this only handles one dimensional
13670 arrays. */
13671
13672 static struct type *
13673 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13674 {
13675 struct objfile *objfile = cu->objfile;
13676 struct die_info *child_die;
13677 struct type *type;
13678 struct type *element_type, *range_type, *index_type;
13679 struct type **range_types = NULL;
13680 struct attribute *attr;
13681 int ndim = 0;
13682 struct cleanup *back_to;
13683 const char *name;
13684 unsigned int bit_stride = 0;
13685
13686 element_type = die_type (die, cu);
13687
13688 /* The die_type call above may have already set the type for this DIE. */
13689 type = get_die_type (die, cu);
13690 if (type)
13691 return type;
13692
13693 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13694 if (attr != NULL)
13695 bit_stride = DW_UNSND (attr) * 8;
13696
13697 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13698 if (attr != NULL)
13699 bit_stride = DW_UNSND (attr);
13700
13701 /* Irix 6.2 native cc creates array types without children for
13702 arrays with unspecified length. */
13703 if (die->child == NULL)
13704 {
13705 index_type = objfile_type (objfile)->builtin_int;
13706 range_type = create_static_range_type (NULL, index_type, 0, -1);
13707 type = create_array_type_with_stride (NULL, element_type, range_type,
13708 bit_stride);
13709 return set_die_type (die, type, cu);
13710 }
13711
13712 back_to = make_cleanup (null_cleanup, NULL);
13713 child_die = die->child;
13714 while (child_die && child_die->tag)
13715 {
13716 if (child_die->tag == DW_TAG_subrange_type)
13717 {
13718 struct type *child_type = read_type_die (child_die, cu);
13719
13720 if (child_type != NULL)
13721 {
13722 /* The range type was succesfully read. Save it for the
13723 array type creation. */
13724 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13725 {
13726 range_types = (struct type **)
13727 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13728 * sizeof (struct type *));
13729 if (ndim == 0)
13730 make_cleanup (free_current_contents, &range_types);
13731 }
13732 range_types[ndim++] = child_type;
13733 }
13734 }
13735 child_die = sibling_die (child_die);
13736 }
13737
13738 /* Dwarf2 dimensions are output from left to right, create the
13739 necessary array types in backwards order. */
13740
13741 type = element_type;
13742
13743 if (read_array_order (die, cu) == DW_ORD_col_major)
13744 {
13745 int i = 0;
13746
13747 while (i < ndim)
13748 type = create_array_type_with_stride (NULL, type, range_types[i++],
13749 bit_stride);
13750 }
13751 else
13752 {
13753 while (ndim-- > 0)
13754 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13755 bit_stride);
13756 }
13757
13758 /* Understand Dwarf2 support for vector types (like they occur on
13759 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13760 array type. This is not part of the Dwarf2/3 standard yet, but a
13761 custom vendor extension. The main difference between a regular
13762 array and the vector variant is that vectors are passed by value
13763 to functions. */
13764 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13765 if (attr)
13766 make_vector_type (type);
13767
13768 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13769 implementation may choose to implement triple vectors using this
13770 attribute. */
13771 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13772 if (attr)
13773 {
13774 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13775 TYPE_LENGTH (type) = DW_UNSND (attr);
13776 else
13777 complaint (&symfile_complaints,
13778 _("DW_AT_byte_size for array type smaller "
13779 "than the total size of elements"));
13780 }
13781
13782 name = dwarf2_name (die, cu);
13783 if (name)
13784 TYPE_NAME (type) = name;
13785
13786 /* Install the type in the die. */
13787 set_die_type (die, type, cu);
13788
13789 /* set_die_type should be already done. */
13790 set_descriptive_type (type, die, cu);
13791
13792 do_cleanups (back_to);
13793
13794 return type;
13795 }
13796
13797 static enum dwarf_array_dim_ordering
13798 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13799 {
13800 struct attribute *attr;
13801
13802 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13803
13804 if (attr) return DW_SND (attr);
13805
13806 /* GNU F77 is a special case, as at 08/2004 array type info is the
13807 opposite order to the dwarf2 specification, but data is still
13808 laid out as per normal fortran.
13809
13810 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13811 version checking. */
13812
13813 if (cu->language == language_fortran
13814 && cu->producer && strstr (cu->producer, "GNU F77"))
13815 {
13816 return DW_ORD_row_major;
13817 }
13818
13819 switch (cu->language_defn->la_array_ordering)
13820 {
13821 case array_column_major:
13822 return DW_ORD_col_major;
13823 case array_row_major:
13824 default:
13825 return DW_ORD_row_major;
13826 };
13827 }
13828
13829 /* Extract all information from a DW_TAG_set_type DIE and put it in
13830 the DIE's type field. */
13831
13832 static struct type *
13833 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13834 {
13835 struct type *domain_type, *set_type;
13836 struct attribute *attr;
13837
13838 domain_type = die_type (die, cu);
13839
13840 /* The die_type call above may have already set the type for this DIE. */
13841 set_type = get_die_type (die, cu);
13842 if (set_type)
13843 return set_type;
13844
13845 set_type = create_set_type (NULL, domain_type);
13846
13847 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13848 if (attr)
13849 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13850
13851 return set_die_type (die, set_type, cu);
13852 }
13853
13854 /* A helper for read_common_block that creates a locexpr baton.
13855 SYM is the symbol which we are marking as computed.
13856 COMMON_DIE is the DIE for the common block.
13857 COMMON_LOC is the location expression attribute for the common
13858 block itself.
13859 MEMBER_LOC is the location expression attribute for the particular
13860 member of the common block that we are processing.
13861 CU is the CU from which the above come. */
13862
13863 static void
13864 mark_common_block_symbol_computed (struct symbol *sym,
13865 struct die_info *common_die,
13866 struct attribute *common_loc,
13867 struct attribute *member_loc,
13868 struct dwarf2_cu *cu)
13869 {
13870 struct objfile *objfile = dwarf2_per_objfile->objfile;
13871 struct dwarf2_locexpr_baton *baton;
13872 gdb_byte *ptr;
13873 unsigned int cu_off;
13874 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13875 LONGEST offset = 0;
13876
13877 gdb_assert (common_loc && member_loc);
13878 gdb_assert (attr_form_is_block (common_loc));
13879 gdb_assert (attr_form_is_block (member_loc)
13880 || attr_form_is_constant (member_loc));
13881
13882 baton = obstack_alloc (&objfile->objfile_obstack,
13883 sizeof (struct dwarf2_locexpr_baton));
13884 baton->per_cu = cu->per_cu;
13885 gdb_assert (baton->per_cu);
13886
13887 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13888
13889 if (attr_form_is_constant (member_loc))
13890 {
13891 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13892 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13893 }
13894 else
13895 baton->size += DW_BLOCK (member_loc)->size;
13896
13897 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13898 baton->data = ptr;
13899
13900 *ptr++ = DW_OP_call4;
13901 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13902 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13903 ptr += 4;
13904
13905 if (attr_form_is_constant (member_loc))
13906 {
13907 *ptr++ = DW_OP_addr;
13908 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13909 ptr += cu->header.addr_size;
13910 }
13911 else
13912 {
13913 /* We have to copy the data here, because DW_OP_call4 will only
13914 use a DW_AT_location attribute. */
13915 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13916 ptr += DW_BLOCK (member_loc)->size;
13917 }
13918
13919 *ptr++ = DW_OP_plus;
13920 gdb_assert (ptr - baton->data == baton->size);
13921
13922 SYMBOL_LOCATION_BATON (sym) = baton;
13923 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13924 }
13925
13926 /* Create appropriate locally-scoped variables for all the
13927 DW_TAG_common_block entries. Also create a struct common_block
13928 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13929 is used to sepate the common blocks name namespace from regular
13930 variable names. */
13931
13932 static void
13933 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13934 {
13935 struct attribute *attr;
13936
13937 attr = dwarf2_attr (die, DW_AT_location, cu);
13938 if (attr)
13939 {
13940 /* Support the .debug_loc offsets. */
13941 if (attr_form_is_block (attr))
13942 {
13943 /* Ok. */
13944 }
13945 else if (attr_form_is_section_offset (attr))
13946 {
13947 dwarf2_complex_location_expr_complaint ();
13948 attr = NULL;
13949 }
13950 else
13951 {
13952 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13953 "common block member");
13954 attr = NULL;
13955 }
13956 }
13957
13958 if (die->child != NULL)
13959 {
13960 struct objfile *objfile = cu->objfile;
13961 struct die_info *child_die;
13962 size_t n_entries = 0, size;
13963 struct common_block *common_block;
13964 struct symbol *sym;
13965
13966 for (child_die = die->child;
13967 child_die && child_die->tag;
13968 child_die = sibling_die (child_die))
13969 ++n_entries;
13970
13971 size = (sizeof (struct common_block)
13972 + (n_entries - 1) * sizeof (struct symbol *));
13973 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13974 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13975 common_block->n_entries = 0;
13976
13977 for (child_die = die->child;
13978 child_die && child_die->tag;
13979 child_die = sibling_die (child_die))
13980 {
13981 /* Create the symbol in the DW_TAG_common_block block in the current
13982 symbol scope. */
13983 sym = new_symbol (child_die, NULL, cu);
13984 if (sym != NULL)
13985 {
13986 struct attribute *member_loc;
13987
13988 common_block->contents[common_block->n_entries++] = sym;
13989
13990 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13991 cu);
13992 if (member_loc)
13993 {
13994 /* GDB has handled this for a long time, but it is
13995 not specified by DWARF. It seems to have been
13996 emitted by gfortran at least as recently as:
13997 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13998 complaint (&symfile_complaints,
13999 _("Variable in common block has "
14000 "DW_AT_data_member_location "
14001 "- DIE at 0x%x [in module %s]"),
14002 child_die->offset.sect_off,
14003 objfile_name (cu->objfile));
14004
14005 if (attr_form_is_section_offset (member_loc))
14006 dwarf2_complex_location_expr_complaint ();
14007 else if (attr_form_is_constant (member_loc)
14008 || attr_form_is_block (member_loc))
14009 {
14010 if (attr)
14011 mark_common_block_symbol_computed (sym, die, attr,
14012 member_loc, cu);
14013 }
14014 else
14015 dwarf2_complex_location_expr_complaint ();
14016 }
14017 }
14018 }
14019
14020 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14021 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14022 }
14023 }
14024
14025 /* Create a type for a C++ namespace. */
14026
14027 static struct type *
14028 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14029 {
14030 struct objfile *objfile = cu->objfile;
14031 const char *previous_prefix, *name;
14032 int is_anonymous;
14033 struct type *type;
14034
14035 /* For extensions, reuse the type of the original namespace. */
14036 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14037 {
14038 struct die_info *ext_die;
14039 struct dwarf2_cu *ext_cu = cu;
14040
14041 ext_die = dwarf2_extension (die, &ext_cu);
14042 type = read_type_die (ext_die, ext_cu);
14043
14044 /* EXT_CU may not be the same as CU.
14045 Ensure TYPE is recorded with CU in die_type_hash. */
14046 return set_die_type (die, type, cu);
14047 }
14048
14049 name = namespace_name (die, &is_anonymous, cu);
14050
14051 /* Now build the name of the current namespace. */
14052
14053 previous_prefix = determine_prefix (die, cu);
14054 if (previous_prefix[0] != '\0')
14055 name = typename_concat (&objfile->objfile_obstack,
14056 previous_prefix, name, 0, cu);
14057
14058 /* Create the type. */
14059 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14060 objfile);
14061 TYPE_NAME (type) = name;
14062 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14063
14064 return set_die_type (die, type, cu);
14065 }
14066
14067 /* Read a C++ namespace. */
14068
14069 static void
14070 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14071 {
14072 struct objfile *objfile = cu->objfile;
14073 int is_anonymous;
14074
14075 /* Add a symbol associated to this if we haven't seen the namespace
14076 before. Also, add a using directive if it's an anonymous
14077 namespace. */
14078
14079 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14080 {
14081 struct type *type;
14082
14083 type = read_type_die (die, cu);
14084 new_symbol (die, type, cu);
14085
14086 namespace_name (die, &is_anonymous, cu);
14087 if (is_anonymous)
14088 {
14089 const char *previous_prefix = determine_prefix (die, cu);
14090
14091 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
14092 NULL, NULL, 0, &objfile->objfile_obstack);
14093 }
14094 }
14095
14096 if (die->child != NULL)
14097 {
14098 struct die_info *child_die = die->child;
14099
14100 while (child_die && child_die->tag)
14101 {
14102 process_die (child_die, cu);
14103 child_die = sibling_die (child_die);
14104 }
14105 }
14106 }
14107
14108 /* Read a Fortran module as type. This DIE can be only a declaration used for
14109 imported module. Still we need that type as local Fortran "use ... only"
14110 declaration imports depend on the created type in determine_prefix. */
14111
14112 static struct type *
14113 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14114 {
14115 struct objfile *objfile = cu->objfile;
14116 const char *module_name;
14117 struct type *type;
14118
14119 module_name = dwarf2_name (die, cu);
14120 if (!module_name)
14121 complaint (&symfile_complaints,
14122 _("DW_TAG_module has no name, offset 0x%x"),
14123 die->offset.sect_off);
14124 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14125
14126 /* determine_prefix uses TYPE_TAG_NAME. */
14127 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14128
14129 return set_die_type (die, type, cu);
14130 }
14131
14132 /* Read a Fortran module. */
14133
14134 static void
14135 read_module (struct die_info *die, struct dwarf2_cu *cu)
14136 {
14137 struct die_info *child_die = die->child;
14138 struct type *type;
14139
14140 type = read_type_die (die, cu);
14141 new_symbol (die, type, cu);
14142
14143 while (child_die && child_die->tag)
14144 {
14145 process_die (child_die, cu);
14146 child_die = sibling_die (child_die);
14147 }
14148 }
14149
14150 /* Return the name of the namespace represented by DIE. Set
14151 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14152 namespace. */
14153
14154 static const char *
14155 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14156 {
14157 struct die_info *current_die;
14158 const char *name = NULL;
14159
14160 /* Loop through the extensions until we find a name. */
14161
14162 for (current_die = die;
14163 current_die != NULL;
14164 current_die = dwarf2_extension (die, &cu))
14165 {
14166 /* We don't use dwarf2_name here so that we can detect the absence
14167 of a name -> anonymous namespace. */
14168 struct attribute *attr = dwarf2_attr (die, DW_AT_name, cu);
14169
14170 if (attr != NULL)
14171 name = DW_STRING (attr);
14172 if (name != NULL)
14173 break;
14174 }
14175
14176 /* Is it an anonymous namespace? */
14177
14178 *is_anonymous = (name == NULL);
14179 if (*is_anonymous)
14180 name = CP_ANONYMOUS_NAMESPACE_STR;
14181
14182 return name;
14183 }
14184
14185 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14186 the user defined type vector. */
14187
14188 static struct type *
14189 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14190 {
14191 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14192 struct comp_unit_head *cu_header = &cu->header;
14193 struct type *type;
14194 struct attribute *attr_byte_size;
14195 struct attribute *attr_address_class;
14196 int byte_size, addr_class;
14197 struct type *target_type;
14198
14199 target_type = die_type (die, cu);
14200
14201 /* The die_type call above may have already set the type for this DIE. */
14202 type = get_die_type (die, cu);
14203 if (type)
14204 return type;
14205
14206 type = lookup_pointer_type (target_type);
14207
14208 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14209 if (attr_byte_size)
14210 byte_size = DW_UNSND (attr_byte_size);
14211 else
14212 byte_size = cu_header->addr_size;
14213
14214 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14215 if (attr_address_class)
14216 addr_class = DW_UNSND (attr_address_class);
14217 else
14218 addr_class = DW_ADDR_none;
14219
14220 /* If the pointer size or address class is different than the
14221 default, create a type variant marked as such and set the
14222 length accordingly. */
14223 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14224 {
14225 if (gdbarch_address_class_type_flags_p (gdbarch))
14226 {
14227 int type_flags;
14228
14229 type_flags = gdbarch_address_class_type_flags
14230 (gdbarch, byte_size, addr_class);
14231 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14232 == 0);
14233 type = make_type_with_address_space (type, type_flags);
14234 }
14235 else if (TYPE_LENGTH (type) != byte_size)
14236 {
14237 complaint (&symfile_complaints,
14238 _("invalid pointer size %d"), byte_size);
14239 }
14240 else
14241 {
14242 /* Should we also complain about unhandled address classes? */
14243 }
14244 }
14245
14246 TYPE_LENGTH (type) = byte_size;
14247 return set_die_type (die, type, cu);
14248 }
14249
14250 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14251 the user defined type vector. */
14252
14253 static struct type *
14254 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14255 {
14256 struct type *type;
14257 struct type *to_type;
14258 struct type *domain;
14259
14260 to_type = die_type (die, cu);
14261 domain = die_containing_type (die, cu);
14262
14263 /* The calls above may have already set the type for this DIE. */
14264 type = get_die_type (die, cu);
14265 if (type)
14266 return type;
14267
14268 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14269 type = lookup_methodptr_type (to_type);
14270 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14271 {
14272 struct type *new_type = alloc_type (cu->objfile);
14273
14274 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14275 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14276 TYPE_VARARGS (to_type));
14277 type = lookup_methodptr_type (new_type);
14278 }
14279 else
14280 type = lookup_memberptr_type (to_type, domain);
14281
14282 return set_die_type (die, type, cu);
14283 }
14284
14285 /* Extract all information from a DW_TAG_reference_type DIE and add to
14286 the user defined type vector. */
14287
14288 static struct type *
14289 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14290 {
14291 struct comp_unit_head *cu_header = &cu->header;
14292 struct type *type, *target_type;
14293 struct attribute *attr;
14294
14295 target_type = die_type (die, cu);
14296
14297 /* The die_type call above may have already set the type for this DIE. */
14298 type = get_die_type (die, cu);
14299 if (type)
14300 return type;
14301
14302 type = lookup_reference_type (target_type);
14303 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14304 if (attr)
14305 {
14306 TYPE_LENGTH (type) = DW_UNSND (attr);
14307 }
14308 else
14309 {
14310 TYPE_LENGTH (type) = cu_header->addr_size;
14311 }
14312 return set_die_type (die, type, cu);
14313 }
14314
14315 /* Add the given cv-qualifiers to the element type of the array. GCC
14316 outputs DWARF type qualifiers that apply to an array, not the
14317 element type. But GDB relies on the array element type to carry
14318 the cv-qualifiers. This mimics section 6.7.3 of the C99
14319 specification. */
14320
14321 static struct type *
14322 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14323 struct type *base_type, int cnst, int voltl)
14324 {
14325 struct type *el_type, *inner_array;
14326
14327 base_type = copy_type (base_type);
14328 inner_array = base_type;
14329
14330 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14331 {
14332 TYPE_TARGET_TYPE (inner_array) =
14333 copy_type (TYPE_TARGET_TYPE (inner_array));
14334 inner_array = TYPE_TARGET_TYPE (inner_array);
14335 }
14336
14337 el_type = TYPE_TARGET_TYPE (inner_array);
14338 cnst |= TYPE_CONST (el_type);
14339 voltl |= TYPE_VOLATILE (el_type);
14340 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14341
14342 return set_die_type (die, base_type, cu);
14343 }
14344
14345 static struct type *
14346 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14347 {
14348 struct type *base_type, *cv_type;
14349
14350 base_type = die_type (die, cu);
14351
14352 /* The die_type call above may have already set the type for this DIE. */
14353 cv_type = get_die_type (die, cu);
14354 if (cv_type)
14355 return cv_type;
14356
14357 /* In case the const qualifier is applied to an array type, the element type
14358 is so qualified, not the array type (section 6.7.3 of C99). */
14359 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14360 return add_array_cv_type (die, cu, base_type, 1, 0);
14361
14362 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14363 return set_die_type (die, cv_type, cu);
14364 }
14365
14366 static struct type *
14367 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14368 {
14369 struct type *base_type, *cv_type;
14370
14371 base_type = die_type (die, cu);
14372
14373 /* The die_type call above may have already set the type for this DIE. */
14374 cv_type = get_die_type (die, cu);
14375 if (cv_type)
14376 return cv_type;
14377
14378 /* In case the volatile qualifier is applied to an array type, the
14379 element type is so qualified, not the array type (section 6.7.3
14380 of C99). */
14381 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14382 return add_array_cv_type (die, cu, base_type, 0, 1);
14383
14384 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14385 return set_die_type (die, cv_type, cu);
14386 }
14387
14388 /* Handle DW_TAG_restrict_type. */
14389
14390 static struct type *
14391 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14392 {
14393 struct type *base_type, *cv_type;
14394
14395 base_type = die_type (die, cu);
14396
14397 /* The die_type call above may have already set the type for this DIE. */
14398 cv_type = get_die_type (die, cu);
14399 if (cv_type)
14400 return cv_type;
14401
14402 cv_type = make_restrict_type (base_type);
14403 return set_die_type (die, cv_type, cu);
14404 }
14405
14406 /* Handle DW_TAG_atomic_type. */
14407
14408 static struct type *
14409 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14410 {
14411 struct type *base_type, *cv_type;
14412
14413 base_type = die_type (die, cu);
14414
14415 /* The die_type call above may have already set the type for this DIE. */
14416 cv_type = get_die_type (die, cu);
14417 if (cv_type)
14418 return cv_type;
14419
14420 cv_type = make_atomic_type (base_type);
14421 return set_die_type (die, cv_type, cu);
14422 }
14423
14424 /* Extract all information from a DW_TAG_string_type DIE and add to
14425 the user defined type vector. It isn't really a user defined type,
14426 but it behaves like one, with other DIE's using an AT_user_def_type
14427 attribute to reference it. */
14428
14429 static struct type *
14430 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14431 {
14432 struct objfile *objfile = cu->objfile;
14433 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14434 struct type *type, *range_type, *index_type, *char_type;
14435 struct attribute *attr;
14436 unsigned int length;
14437
14438 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14439 if (attr)
14440 {
14441 length = DW_UNSND (attr);
14442 }
14443 else
14444 {
14445 /* Check for the DW_AT_byte_size attribute. */
14446 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14447 if (attr)
14448 {
14449 length = DW_UNSND (attr);
14450 }
14451 else
14452 {
14453 length = 1;
14454 }
14455 }
14456
14457 index_type = objfile_type (objfile)->builtin_int;
14458 range_type = create_static_range_type (NULL, index_type, 1, length);
14459 char_type = language_string_char_type (cu->language_defn, gdbarch);
14460 type = create_string_type (NULL, char_type, range_type);
14461
14462 return set_die_type (die, type, cu);
14463 }
14464
14465 /* Assuming that DIE corresponds to a function, returns nonzero
14466 if the function is prototyped. */
14467
14468 static int
14469 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14470 {
14471 struct attribute *attr;
14472
14473 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14474 if (attr && (DW_UNSND (attr) != 0))
14475 return 1;
14476
14477 /* The DWARF standard implies that the DW_AT_prototyped attribute
14478 is only meaninful for C, but the concept also extends to other
14479 languages that allow unprototyped functions (Eg: Objective C).
14480 For all other languages, assume that functions are always
14481 prototyped. */
14482 if (cu->language != language_c
14483 && cu->language != language_objc
14484 && cu->language != language_opencl)
14485 return 1;
14486
14487 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14488 prototyped and unprototyped functions; default to prototyped,
14489 since that is more common in modern code (and RealView warns
14490 about unprototyped functions). */
14491 if (producer_is_realview (cu->producer))
14492 return 1;
14493
14494 return 0;
14495 }
14496
14497 /* Handle DIES due to C code like:
14498
14499 struct foo
14500 {
14501 int (*funcp)(int a, long l);
14502 int b;
14503 };
14504
14505 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14506
14507 static struct type *
14508 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14509 {
14510 struct objfile *objfile = cu->objfile;
14511 struct type *type; /* Type that this function returns. */
14512 struct type *ftype; /* Function that returns above type. */
14513 struct attribute *attr;
14514
14515 type = die_type (die, cu);
14516
14517 /* The die_type call above may have already set the type for this DIE. */
14518 ftype = get_die_type (die, cu);
14519 if (ftype)
14520 return ftype;
14521
14522 ftype = lookup_function_type (type);
14523
14524 if (prototyped_function_p (die, cu))
14525 TYPE_PROTOTYPED (ftype) = 1;
14526
14527 /* Store the calling convention in the type if it's available in
14528 the subroutine die. Otherwise set the calling convention to
14529 the default value DW_CC_normal. */
14530 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14531 if (attr)
14532 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14533 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14534 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14535 else
14536 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14537
14538 /* Record whether the function returns normally to its caller or not
14539 if the DWARF producer set that information. */
14540 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14541 if (attr && (DW_UNSND (attr) != 0))
14542 TYPE_NO_RETURN (ftype) = 1;
14543
14544 /* We need to add the subroutine type to the die immediately so
14545 we don't infinitely recurse when dealing with parameters
14546 declared as the same subroutine type. */
14547 set_die_type (die, ftype, cu);
14548
14549 if (die->child != NULL)
14550 {
14551 struct type *void_type = objfile_type (objfile)->builtin_void;
14552 struct die_info *child_die;
14553 int nparams, iparams;
14554
14555 /* Count the number of parameters.
14556 FIXME: GDB currently ignores vararg functions, but knows about
14557 vararg member functions. */
14558 nparams = 0;
14559 child_die = die->child;
14560 while (child_die && child_die->tag)
14561 {
14562 if (child_die->tag == DW_TAG_formal_parameter)
14563 nparams++;
14564 else if (child_die->tag == DW_TAG_unspecified_parameters)
14565 TYPE_VARARGS (ftype) = 1;
14566 child_die = sibling_die (child_die);
14567 }
14568
14569 /* Allocate storage for parameters and fill them in. */
14570 TYPE_NFIELDS (ftype) = nparams;
14571 TYPE_FIELDS (ftype) = (struct field *)
14572 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14573
14574 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14575 even if we error out during the parameters reading below. */
14576 for (iparams = 0; iparams < nparams; iparams++)
14577 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14578
14579 iparams = 0;
14580 child_die = die->child;
14581 while (child_die && child_die->tag)
14582 {
14583 if (child_die->tag == DW_TAG_formal_parameter)
14584 {
14585 struct type *arg_type;
14586
14587 /* DWARF version 2 has no clean way to discern C++
14588 static and non-static member functions. G++ helps
14589 GDB by marking the first parameter for non-static
14590 member functions (which is the this pointer) as
14591 artificial. We pass this information to
14592 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14593
14594 DWARF version 3 added DW_AT_object_pointer, which GCC
14595 4.5 does not yet generate. */
14596 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14597 if (attr)
14598 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14599 else
14600 {
14601 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14602
14603 /* GCC/43521: In java, the formal parameter
14604 "this" is sometimes not marked with DW_AT_artificial. */
14605 if (cu->language == language_java)
14606 {
14607 const char *name = dwarf2_name (child_die, cu);
14608
14609 if (name && !strcmp (name, "this"))
14610 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14611 }
14612 }
14613 arg_type = die_type (child_die, cu);
14614
14615 /* RealView does not mark THIS as const, which the testsuite
14616 expects. GCC marks THIS as const in method definitions,
14617 but not in the class specifications (GCC PR 43053). */
14618 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14619 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14620 {
14621 int is_this = 0;
14622 struct dwarf2_cu *arg_cu = cu;
14623 const char *name = dwarf2_name (child_die, cu);
14624
14625 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14626 if (attr)
14627 {
14628 /* If the compiler emits this, use it. */
14629 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14630 is_this = 1;
14631 }
14632 else if (name && strcmp (name, "this") == 0)
14633 /* Function definitions will have the argument names. */
14634 is_this = 1;
14635 else if (name == NULL && iparams == 0)
14636 /* Declarations may not have the names, so like
14637 elsewhere in GDB, assume an artificial first
14638 argument is "this". */
14639 is_this = 1;
14640
14641 if (is_this)
14642 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14643 arg_type, 0);
14644 }
14645
14646 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14647 iparams++;
14648 }
14649 child_die = sibling_die (child_die);
14650 }
14651 }
14652
14653 return ftype;
14654 }
14655
14656 static struct type *
14657 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14658 {
14659 struct objfile *objfile = cu->objfile;
14660 const char *name = NULL;
14661 struct type *this_type, *target_type;
14662
14663 name = dwarf2_full_name (NULL, die, cu);
14664 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14665 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14666 TYPE_NAME (this_type) = name;
14667 set_die_type (die, this_type, cu);
14668 target_type = die_type (die, cu);
14669 if (target_type != this_type)
14670 TYPE_TARGET_TYPE (this_type) = target_type;
14671 else
14672 {
14673 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14674 spec and cause infinite loops in GDB. */
14675 complaint (&symfile_complaints,
14676 _("Self-referential DW_TAG_typedef "
14677 "- DIE at 0x%x [in module %s]"),
14678 die->offset.sect_off, objfile_name (objfile));
14679 TYPE_TARGET_TYPE (this_type) = NULL;
14680 }
14681 return this_type;
14682 }
14683
14684 /* Find a representation of a given base type and install
14685 it in the TYPE field of the die. */
14686
14687 static struct type *
14688 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14689 {
14690 struct objfile *objfile = cu->objfile;
14691 struct type *type;
14692 struct attribute *attr;
14693 int encoding = 0, size = 0;
14694 const char *name;
14695 enum type_code code = TYPE_CODE_INT;
14696 int type_flags = 0;
14697 struct type *target_type = NULL;
14698
14699 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14700 if (attr)
14701 {
14702 encoding = DW_UNSND (attr);
14703 }
14704 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14705 if (attr)
14706 {
14707 size = DW_UNSND (attr);
14708 }
14709 name = dwarf2_name (die, cu);
14710 if (!name)
14711 {
14712 complaint (&symfile_complaints,
14713 _("DW_AT_name missing from DW_TAG_base_type"));
14714 }
14715
14716 switch (encoding)
14717 {
14718 case DW_ATE_address:
14719 /* Turn DW_ATE_address into a void * pointer. */
14720 code = TYPE_CODE_PTR;
14721 type_flags |= TYPE_FLAG_UNSIGNED;
14722 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14723 break;
14724 case DW_ATE_boolean:
14725 code = TYPE_CODE_BOOL;
14726 type_flags |= TYPE_FLAG_UNSIGNED;
14727 break;
14728 case DW_ATE_complex_float:
14729 code = TYPE_CODE_COMPLEX;
14730 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14731 break;
14732 case DW_ATE_decimal_float:
14733 code = TYPE_CODE_DECFLOAT;
14734 break;
14735 case DW_ATE_float:
14736 code = TYPE_CODE_FLT;
14737 break;
14738 case DW_ATE_signed:
14739 break;
14740 case DW_ATE_unsigned:
14741 type_flags |= TYPE_FLAG_UNSIGNED;
14742 if (cu->language == language_fortran
14743 && name
14744 && startswith (name, "character("))
14745 code = TYPE_CODE_CHAR;
14746 break;
14747 case DW_ATE_signed_char:
14748 if (cu->language == language_ada || cu->language == language_m2
14749 || cu->language == language_pascal
14750 || cu->language == language_fortran)
14751 code = TYPE_CODE_CHAR;
14752 break;
14753 case DW_ATE_unsigned_char:
14754 if (cu->language == language_ada || cu->language == language_m2
14755 || cu->language == language_pascal
14756 || cu->language == language_fortran)
14757 code = TYPE_CODE_CHAR;
14758 type_flags |= TYPE_FLAG_UNSIGNED;
14759 break;
14760 case DW_ATE_UTF:
14761 /* We just treat this as an integer and then recognize the
14762 type by name elsewhere. */
14763 break;
14764
14765 default:
14766 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14767 dwarf_type_encoding_name (encoding));
14768 break;
14769 }
14770
14771 type = init_type (code, size, type_flags, NULL, objfile);
14772 TYPE_NAME (type) = name;
14773 TYPE_TARGET_TYPE (type) = target_type;
14774
14775 if (name && strcmp (name, "char") == 0)
14776 TYPE_NOSIGN (type) = 1;
14777
14778 return set_die_type (die, type, cu);
14779 }
14780
14781 /* Parse dwarf attribute if it's a block, reference or constant and put the
14782 resulting value of the attribute into struct bound_prop.
14783 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14784
14785 static int
14786 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14787 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14788 {
14789 struct dwarf2_property_baton *baton;
14790 struct obstack *obstack = &cu->objfile->objfile_obstack;
14791
14792 if (attr == NULL || prop == NULL)
14793 return 0;
14794
14795 if (attr_form_is_block (attr))
14796 {
14797 baton = obstack_alloc (obstack, sizeof (*baton));
14798 baton->referenced_type = NULL;
14799 baton->locexpr.per_cu = cu->per_cu;
14800 baton->locexpr.size = DW_BLOCK (attr)->size;
14801 baton->locexpr.data = DW_BLOCK (attr)->data;
14802 prop->data.baton = baton;
14803 prop->kind = PROP_LOCEXPR;
14804 gdb_assert (prop->data.baton != NULL);
14805 }
14806 else if (attr_form_is_ref (attr))
14807 {
14808 struct dwarf2_cu *target_cu = cu;
14809 struct die_info *target_die;
14810 struct attribute *target_attr;
14811
14812 target_die = follow_die_ref (die, attr, &target_cu);
14813 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14814 if (target_attr == NULL)
14815 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14816 target_cu);
14817 if (target_attr == NULL)
14818 return 0;
14819
14820 switch (target_attr->name)
14821 {
14822 case DW_AT_location:
14823 if (attr_form_is_section_offset (target_attr))
14824 {
14825 baton = obstack_alloc (obstack, sizeof (*baton));
14826 baton->referenced_type = die_type (target_die, target_cu);
14827 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14828 prop->data.baton = baton;
14829 prop->kind = PROP_LOCLIST;
14830 gdb_assert (prop->data.baton != NULL);
14831 }
14832 else if (attr_form_is_block (target_attr))
14833 {
14834 baton = obstack_alloc (obstack, sizeof (*baton));
14835 baton->referenced_type = die_type (target_die, target_cu);
14836 baton->locexpr.per_cu = cu->per_cu;
14837 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14838 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14839 prop->data.baton = baton;
14840 prop->kind = PROP_LOCEXPR;
14841 gdb_assert (prop->data.baton != NULL);
14842 }
14843 else
14844 {
14845 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14846 "dynamic property");
14847 return 0;
14848 }
14849 break;
14850 case DW_AT_data_member_location:
14851 {
14852 LONGEST offset;
14853
14854 if (!handle_data_member_location (target_die, target_cu,
14855 &offset))
14856 return 0;
14857
14858 baton = obstack_alloc (obstack, sizeof (*baton));
14859 baton->referenced_type = read_type_die (target_die->parent,
14860 target_cu);
14861 baton->offset_info.offset = offset;
14862 baton->offset_info.type = die_type (target_die, target_cu);
14863 prop->data.baton = baton;
14864 prop->kind = PROP_ADDR_OFFSET;
14865 break;
14866 }
14867 }
14868 }
14869 else if (attr_form_is_constant (attr))
14870 {
14871 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14872 prop->kind = PROP_CONST;
14873 }
14874 else
14875 {
14876 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14877 dwarf2_name (die, cu));
14878 return 0;
14879 }
14880
14881 return 1;
14882 }
14883
14884 /* Read the given DW_AT_subrange DIE. */
14885
14886 static struct type *
14887 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14888 {
14889 struct type *base_type, *orig_base_type;
14890 struct type *range_type;
14891 struct attribute *attr;
14892 struct dynamic_prop low, high;
14893 int low_default_is_valid;
14894 int high_bound_is_count = 0;
14895 const char *name;
14896 LONGEST negative_mask;
14897
14898 orig_base_type = die_type (die, cu);
14899 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14900 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14901 creating the range type, but we use the result of check_typedef
14902 when examining properties of the type. */
14903 base_type = check_typedef (orig_base_type);
14904
14905 /* The die_type call above may have already set the type for this DIE. */
14906 range_type = get_die_type (die, cu);
14907 if (range_type)
14908 return range_type;
14909
14910 low.kind = PROP_CONST;
14911 high.kind = PROP_CONST;
14912 high.data.const_val = 0;
14913
14914 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14915 omitting DW_AT_lower_bound. */
14916 switch (cu->language)
14917 {
14918 case language_c:
14919 case language_cplus:
14920 low.data.const_val = 0;
14921 low_default_is_valid = 1;
14922 break;
14923 case language_fortran:
14924 low.data.const_val = 1;
14925 low_default_is_valid = 1;
14926 break;
14927 case language_d:
14928 case language_java:
14929 case language_objc:
14930 low.data.const_val = 0;
14931 low_default_is_valid = (cu->header.version >= 4);
14932 break;
14933 case language_ada:
14934 case language_m2:
14935 case language_pascal:
14936 low.data.const_val = 1;
14937 low_default_is_valid = (cu->header.version >= 4);
14938 break;
14939 default:
14940 low.data.const_val = 0;
14941 low_default_is_valid = 0;
14942 break;
14943 }
14944
14945 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14946 if (attr)
14947 attr_to_dynamic_prop (attr, die, cu, &low);
14948 else if (!low_default_is_valid)
14949 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14950 "- DIE at 0x%x [in module %s]"),
14951 die->offset.sect_off, objfile_name (cu->objfile));
14952
14953 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14954 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14955 {
14956 attr = dwarf2_attr (die, DW_AT_count, cu);
14957 if (attr_to_dynamic_prop (attr, die, cu, &high))
14958 {
14959 /* If bounds are constant do the final calculation here. */
14960 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14961 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14962 else
14963 high_bound_is_count = 1;
14964 }
14965 }
14966
14967 /* Dwarf-2 specifications explicitly allows to create subrange types
14968 without specifying a base type.
14969 In that case, the base type must be set to the type of
14970 the lower bound, upper bound or count, in that order, if any of these
14971 three attributes references an object that has a type.
14972 If no base type is found, the Dwarf-2 specifications say that
14973 a signed integer type of size equal to the size of an address should
14974 be used.
14975 For the following C code: `extern char gdb_int [];'
14976 GCC produces an empty range DIE.
14977 FIXME: muller/2010-05-28: Possible references to object for low bound,
14978 high bound or count are not yet handled by this code. */
14979 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14980 {
14981 struct objfile *objfile = cu->objfile;
14982 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14983 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14984 struct type *int_type = objfile_type (objfile)->builtin_int;
14985
14986 /* Test "int", "long int", and "long long int" objfile types,
14987 and select the first one having a size above or equal to the
14988 architecture address size. */
14989 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14990 base_type = int_type;
14991 else
14992 {
14993 int_type = objfile_type (objfile)->builtin_long;
14994 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14995 base_type = int_type;
14996 else
14997 {
14998 int_type = objfile_type (objfile)->builtin_long_long;
14999 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15000 base_type = int_type;
15001 }
15002 }
15003 }
15004
15005 /* Normally, the DWARF producers are expected to use a signed
15006 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15007 But this is unfortunately not always the case, as witnessed
15008 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15009 is used instead. To work around that ambiguity, we treat
15010 the bounds as signed, and thus sign-extend their values, when
15011 the base type is signed. */
15012 negative_mask =
15013 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
15014 if (low.kind == PROP_CONST
15015 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15016 low.data.const_val |= negative_mask;
15017 if (high.kind == PROP_CONST
15018 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15019 high.data.const_val |= negative_mask;
15020
15021 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15022
15023 if (high_bound_is_count)
15024 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15025
15026 /* Ada expects an empty array on no boundary attributes. */
15027 if (attr == NULL && cu->language != language_ada)
15028 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15029
15030 name = dwarf2_name (die, cu);
15031 if (name)
15032 TYPE_NAME (range_type) = name;
15033
15034 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15035 if (attr)
15036 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15037
15038 set_die_type (die, range_type, cu);
15039
15040 /* set_die_type should be already done. */
15041 set_descriptive_type (range_type, die, cu);
15042
15043 return range_type;
15044 }
15045
15046 static struct type *
15047 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15048 {
15049 struct type *type;
15050
15051 /* For now, we only support the C meaning of an unspecified type: void. */
15052
15053 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15054 TYPE_NAME (type) = dwarf2_name (die, cu);
15055
15056 return set_die_type (die, type, cu);
15057 }
15058
15059 /* Read a single die and all its descendents. Set the die's sibling
15060 field to NULL; set other fields in the die correctly, and set all
15061 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15062 location of the info_ptr after reading all of those dies. PARENT
15063 is the parent of the die in question. */
15064
15065 static struct die_info *
15066 read_die_and_children (const struct die_reader_specs *reader,
15067 const gdb_byte *info_ptr,
15068 const gdb_byte **new_info_ptr,
15069 struct die_info *parent)
15070 {
15071 struct die_info *die;
15072 const gdb_byte *cur_ptr;
15073 int has_children;
15074
15075 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15076 if (die == NULL)
15077 {
15078 *new_info_ptr = cur_ptr;
15079 return NULL;
15080 }
15081 store_in_ref_table (die, reader->cu);
15082
15083 if (has_children)
15084 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15085 else
15086 {
15087 die->child = NULL;
15088 *new_info_ptr = cur_ptr;
15089 }
15090
15091 die->sibling = NULL;
15092 die->parent = parent;
15093 return die;
15094 }
15095
15096 /* Read a die, all of its descendents, and all of its siblings; set
15097 all of the fields of all of the dies correctly. Arguments are as
15098 in read_die_and_children. */
15099
15100 static struct die_info *
15101 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15102 const gdb_byte *info_ptr,
15103 const gdb_byte **new_info_ptr,
15104 struct die_info *parent)
15105 {
15106 struct die_info *first_die, *last_sibling;
15107 const gdb_byte *cur_ptr;
15108
15109 cur_ptr = info_ptr;
15110 first_die = last_sibling = NULL;
15111
15112 while (1)
15113 {
15114 struct die_info *die
15115 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15116
15117 if (die == NULL)
15118 {
15119 *new_info_ptr = cur_ptr;
15120 return first_die;
15121 }
15122
15123 if (!first_die)
15124 first_die = die;
15125 else
15126 last_sibling->sibling = die;
15127
15128 last_sibling = die;
15129 }
15130 }
15131
15132 /* Read a die, all of its descendents, and all of its siblings; set
15133 all of the fields of all of the dies correctly. Arguments are as
15134 in read_die_and_children.
15135 This the main entry point for reading a DIE and all its children. */
15136
15137 static struct die_info *
15138 read_die_and_siblings (const struct die_reader_specs *reader,
15139 const gdb_byte *info_ptr,
15140 const gdb_byte **new_info_ptr,
15141 struct die_info *parent)
15142 {
15143 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15144 new_info_ptr, parent);
15145
15146 if (dwarf_die_debug)
15147 {
15148 fprintf_unfiltered (gdb_stdlog,
15149 "Read die from %s@0x%x of %s:\n",
15150 get_section_name (reader->die_section),
15151 (unsigned) (info_ptr - reader->die_section->buffer),
15152 bfd_get_filename (reader->abfd));
15153 dump_die (die, dwarf_die_debug);
15154 }
15155
15156 return die;
15157 }
15158
15159 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15160 attributes.
15161 The caller is responsible for filling in the extra attributes
15162 and updating (*DIEP)->num_attrs.
15163 Set DIEP to point to a newly allocated die with its information,
15164 except for its child, sibling, and parent fields.
15165 Set HAS_CHILDREN to tell whether the die has children or not. */
15166
15167 static const gdb_byte *
15168 read_full_die_1 (const struct die_reader_specs *reader,
15169 struct die_info **diep, const gdb_byte *info_ptr,
15170 int *has_children, int num_extra_attrs)
15171 {
15172 unsigned int abbrev_number, bytes_read, i;
15173 sect_offset offset;
15174 struct abbrev_info *abbrev;
15175 struct die_info *die;
15176 struct dwarf2_cu *cu = reader->cu;
15177 bfd *abfd = reader->abfd;
15178
15179 offset.sect_off = info_ptr - reader->buffer;
15180 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15181 info_ptr += bytes_read;
15182 if (!abbrev_number)
15183 {
15184 *diep = NULL;
15185 *has_children = 0;
15186 return info_ptr;
15187 }
15188
15189 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15190 if (!abbrev)
15191 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15192 abbrev_number,
15193 bfd_get_filename (abfd));
15194
15195 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15196 die->offset = offset;
15197 die->tag = abbrev->tag;
15198 die->abbrev = abbrev_number;
15199
15200 /* Make the result usable.
15201 The caller needs to update num_attrs after adding the extra
15202 attributes. */
15203 die->num_attrs = abbrev->num_attrs;
15204
15205 for (i = 0; i < abbrev->num_attrs; ++i)
15206 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15207 info_ptr);
15208
15209 *diep = die;
15210 *has_children = abbrev->has_children;
15211 return info_ptr;
15212 }
15213
15214 /* Read a die and all its attributes.
15215 Set DIEP to point to a newly allocated die with its information,
15216 except for its child, sibling, and parent fields.
15217 Set HAS_CHILDREN to tell whether the die has children or not. */
15218
15219 static const gdb_byte *
15220 read_full_die (const struct die_reader_specs *reader,
15221 struct die_info **diep, const gdb_byte *info_ptr,
15222 int *has_children)
15223 {
15224 const gdb_byte *result;
15225
15226 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15227
15228 if (dwarf_die_debug)
15229 {
15230 fprintf_unfiltered (gdb_stdlog,
15231 "Read die from %s@0x%x of %s:\n",
15232 get_section_name (reader->die_section),
15233 (unsigned) (info_ptr - reader->die_section->buffer),
15234 bfd_get_filename (reader->abfd));
15235 dump_die (*diep, dwarf_die_debug);
15236 }
15237
15238 return result;
15239 }
15240 \f
15241 /* Abbreviation tables.
15242
15243 In DWARF version 2, the description of the debugging information is
15244 stored in a separate .debug_abbrev section. Before we read any
15245 dies from a section we read in all abbreviations and install them
15246 in a hash table. */
15247
15248 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15249
15250 static struct abbrev_info *
15251 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15252 {
15253 struct abbrev_info *abbrev;
15254
15255 abbrev = (struct abbrev_info *)
15256 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15257 memset (abbrev, 0, sizeof (struct abbrev_info));
15258 return abbrev;
15259 }
15260
15261 /* Add an abbreviation to the table. */
15262
15263 static void
15264 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15265 unsigned int abbrev_number,
15266 struct abbrev_info *abbrev)
15267 {
15268 unsigned int hash_number;
15269
15270 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15271 abbrev->next = abbrev_table->abbrevs[hash_number];
15272 abbrev_table->abbrevs[hash_number] = abbrev;
15273 }
15274
15275 /* Look up an abbrev in the table.
15276 Returns NULL if the abbrev is not found. */
15277
15278 static struct abbrev_info *
15279 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15280 unsigned int abbrev_number)
15281 {
15282 unsigned int hash_number;
15283 struct abbrev_info *abbrev;
15284
15285 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15286 abbrev = abbrev_table->abbrevs[hash_number];
15287
15288 while (abbrev)
15289 {
15290 if (abbrev->number == abbrev_number)
15291 return abbrev;
15292 abbrev = abbrev->next;
15293 }
15294 return NULL;
15295 }
15296
15297 /* Read in an abbrev table. */
15298
15299 static struct abbrev_table *
15300 abbrev_table_read_table (struct dwarf2_section_info *section,
15301 sect_offset offset)
15302 {
15303 struct objfile *objfile = dwarf2_per_objfile->objfile;
15304 bfd *abfd = get_section_bfd_owner (section);
15305 struct abbrev_table *abbrev_table;
15306 const gdb_byte *abbrev_ptr;
15307 struct abbrev_info *cur_abbrev;
15308 unsigned int abbrev_number, bytes_read, abbrev_name;
15309 unsigned int abbrev_form;
15310 struct attr_abbrev *cur_attrs;
15311 unsigned int allocated_attrs;
15312
15313 abbrev_table = XNEW (struct abbrev_table);
15314 abbrev_table->offset = offset;
15315 obstack_init (&abbrev_table->abbrev_obstack);
15316 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15317 (ABBREV_HASH_SIZE
15318 * sizeof (struct abbrev_info *)));
15319 memset (abbrev_table->abbrevs, 0,
15320 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15321
15322 dwarf2_read_section (objfile, section);
15323 abbrev_ptr = section->buffer + offset.sect_off;
15324 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15325 abbrev_ptr += bytes_read;
15326
15327 allocated_attrs = ATTR_ALLOC_CHUNK;
15328 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15329
15330 /* Loop until we reach an abbrev number of 0. */
15331 while (abbrev_number)
15332 {
15333 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15334
15335 /* read in abbrev header */
15336 cur_abbrev->number = abbrev_number;
15337 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15338 abbrev_ptr += bytes_read;
15339 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15340 abbrev_ptr += 1;
15341
15342 /* now read in declarations */
15343 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15344 abbrev_ptr += bytes_read;
15345 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15346 abbrev_ptr += bytes_read;
15347 while (abbrev_name)
15348 {
15349 if (cur_abbrev->num_attrs == allocated_attrs)
15350 {
15351 allocated_attrs += ATTR_ALLOC_CHUNK;
15352 cur_attrs
15353 = xrealloc (cur_attrs, (allocated_attrs
15354 * sizeof (struct attr_abbrev)));
15355 }
15356
15357 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15358 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15359 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15360 abbrev_ptr += bytes_read;
15361 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15362 abbrev_ptr += bytes_read;
15363 }
15364
15365 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15366 (cur_abbrev->num_attrs
15367 * sizeof (struct attr_abbrev)));
15368 memcpy (cur_abbrev->attrs, cur_attrs,
15369 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15370
15371 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15372
15373 /* Get next abbreviation.
15374 Under Irix6 the abbreviations for a compilation unit are not
15375 always properly terminated with an abbrev number of 0.
15376 Exit loop if we encounter an abbreviation which we have
15377 already read (which means we are about to read the abbreviations
15378 for the next compile unit) or if the end of the abbreviation
15379 table is reached. */
15380 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15381 break;
15382 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15383 abbrev_ptr += bytes_read;
15384 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15385 break;
15386 }
15387
15388 xfree (cur_attrs);
15389 return abbrev_table;
15390 }
15391
15392 /* Free the resources held by ABBREV_TABLE. */
15393
15394 static void
15395 abbrev_table_free (struct abbrev_table *abbrev_table)
15396 {
15397 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15398 xfree (abbrev_table);
15399 }
15400
15401 /* Same as abbrev_table_free but as a cleanup.
15402 We pass in a pointer to the pointer to the table so that we can
15403 set the pointer to NULL when we're done. It also simplifies
15404 build_type_psymtabs_1. */
15405
15406 static void
15407 abbrev_table_free_cleanup (void *table_ptr)
15408 {
15409 struct abbrev_table **abbrev_table_ptr = table_ptr;
15410
15411 if (*abbrev_table_ptr != NULL)
15412 abbrev_table_free (*abbrev_table_ptr);
15413 *abbrev_table_ptr = NULL;
15414 }
15415
15416 /* Read the abbrev table for CU from ABBREV_SECTION. */
15417
15418 static void
15419 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15420 struct dwarf2_section_info *abbrev_section)
15421 {
15422 cu->abbrev_table =
15423 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15424 }
15425
15426 /* Release the memory used by the abbrev table for a compilation unit. */
15427
15428 static void
15429 dwarf2_free_abbrev_table (void *ptr_to_cu)
15430 {
15431 struct dwarf2_cu *cu = ptr_to_cu;
15432
15433 if (cu->abbrev_table != NULL)
15434 abbrev_table_free (cu->abbrev_table);
15435 /* Set this to NULL so that we SEGV if we try to read it later,
15436 and also because free_comp_unit verifies this is NULL. */
15437 cu->abbrev_table = NULL;
15438 }
15439 \f
15440 /* Returns nonzero if TAG represents a type that we might generate a partial
15441 symbol for. */
15442
15443 static int
15444 is_type_tag_for_partial (int tag)
15445 {
15446 switch (tag)
15447 {
15448 #if 0
15449 /* Some types that would be reasonable to generate partial symbols for,
15450 that we don't at present. */
15451 case DW_TAG_array_type:
15452 case DW_TAG_file_type:
15453 case DW_TAG_ptr_to_member_type:
15454 case DW_TAG_set_type:
15455 case DW_TAG_string_type:
15456 case DW_TAG_subroutine_type:
15457 #endif
15458 case DW_TAG_base_type:
15459 case DW_TAG_class_type:
15460 case DW_TAG_interface_type:
15461 case DW_TAG_enumeration_type:
15462 case DW_TAG_structure_type:
15463 case DW_TAG_subrange_type:
15464 case DW_TAG_typedef:
15465 case DW_TAG_union_type:
15466 return 1;
15467 default:
15468 return 0;
15469 }
15470 }
15471
15472 /* Load all DIEs that are interesting for partial symbols into memory. */
15473
15474 static struct partial_die_info *
15475 load_partial_dies (const struct die_reader_specs *reader,
15476 const gdb_byte *info_ptr, int building_psymtab)
15477 {
15478 struct dwarf2_cu *cu = reader->cu;
15479 struct objfile *objfile = cu->objfile;
15480 struct partial_die_info *part_die;
15481 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15482 struct abbrev_info *abbrev;
15483 unsigned int bytes_read;
15484 unsigned int load_all = 0;
15485 int nesting_level = 1;
15486
15487 parent_die = NULL;
15488 last_die = NULL;
15489
15490 gdb_assert (cu->per_cu != NULL);
15491 if (cu->per_cu->load_all_dies)
15492 load_all = 1;
15493
15494 cu->partial_dies
15495 = htab_create_alloc_ex (cu->header.length / 12,
15496 partial_die_hash,
15497 partial_die_eq,
15498 NULL,
15499 &cu->comp_unit_obstack,
15500 hashtab_obstack_allocate,
15501 dummy_obstack_deallocate);
15502
15503 part_die = obstack_alloc (&cu->comp_unit_obstack,
15504 sizeof (struct partial_die_info));
15505
15506 while (1)
15507 {
15508 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15509
15510 /* A NULL abbrev means the end of a series of children. */
15511 if (abbrev == NULL)
15512 {
15513 if (--nesting_level == 0)
15514 {
15515 /* PART_DIE was probably the last thing allocated on the
15516 comp_unit_obstack, so we could call obstack_free
15517 here. We don't do that because the waste is small,
15518 and will be cleaned up when we're done with this
15519 compilation unit. This way, we're also more robust
15520 against other users of the comp_unit_obstack. */
15521 return first_die;
15522 }
15523 info_ptr += bytes_read;
15524 last_die = parent_die;
15525 parent_die = parent_die->die_parent;
15526 continue;
15527 }
15528
15529 /* Check for template arguments. We never save these; if
15530 they're seen, we just mark the parent, and go on our way. */
15531 if (parent_die != NULL
15532 && cu->language == language_cplus
15533 && (abbrev->tag == DW_TAG_template_type_param
15534 || abbrev->tag == DW_TAG_template_value_param))
15535 {
15536 parent_die->has_template_arguments = 1;
15537
15538 if (!load_all)
15539 {
15540 /* We don't need a partial DIE for the template argument. */
15541 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15542 continue;
15543 }
15544 }
15545
15546 /* We only recurse into c++ subprograms looking for template arguments.
15547 Skip their other children. */
15548 if (!load_all
15549 && cu->language == language_cplus
15550 && parent_die != NULL
15551 && parent_die->tag == DW_TAG_subprogram)
15552 {
15553 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15554 continue;
15555 }
15556
15557 /* Check whether this DIE is interesting enough to save. Normally
15558 we would not be interested in members here, but there may be
15559 later variables referencing them via DW_AT_specification (for
15560 static members). */
15561 if (!load_all
15562 && !is_type_tag_for_partial (abbrev->tag)
15563 && abbrev->tag != DW_TAG_constant
15564 && abbrev->tag != DW_TAG_enumerator
15565 && abbrev->tag != DW_TAG_subprogram
15566 && abbrev->tag != DW_TAG_lexical_block
15567 && abbrev->tag != DW_TAG_variable
15568 && abbrev->tag != DW_TAG_namespace
15569 && abbrev->tag != DW_TAG_module
15570 && abbrev->tag != DW_TAG_member
15571 && abbrev->tag != DW_TAG_imported_unit
15572 && abbrev->tag != DW_TAG_imported_declaration)
15573 {
15574 /* Otherwise we skip to the next sibling, if any. */
15575 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15576 continue;
15577 }
15578
15579 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15580 info_ptr);
15581
15582 /* This two-pass algorithm for processing partial symbols has a
15583 high cost in cache pressure. Thus, handle some simple cases
15584 here which cover the majority of C partial symbols. DIEs
15585 which neither have specification tags in them, nor could have
15586 specification tags elsewhere pointing at them, can simply be
15587 processed and discarded.
15588
15589 This segment is also optional; scan_partial_symbols and
15590 add_partial_symbol will handle these DIEs if we chain
15591 them in normally. When compilers which do not emit large
15592 quantities of duplicate debug information are more common,
15593 this code can probably be removed. */
15594
15595 /* Any complete simple types at the top level (pretty much all
15596 of them, for a language without namespaces), can be processed
15597 directly. */
15598 if (parent_die == NULL
15599 && part_die->has_specification == 0
15600 && part_die->is_declaration == 0
15601 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15602 || part_die->tag == DW_TAG_base_type
15603 || part_die->tag == DW_TAG_subrange_type))
15604 {
15605 if (building_psymtab && part_die->name != NULL)
15606 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15607 VAR_DOMAIN, LOC_TYPEDEF,
15608 &objfile->static_psymbols,
15609 0, (CORE_ADDR) 0, cu->language, objfile);
15610 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15611 continue;
15612 }
15613
15614 /* The exception for DW_TAG_typedef with has_children above is
15615 a workaround of GCC PR debug/47510. In the case of this complaint
15616 type_name_no_tag_or_error will error on such types later.
15617
15618 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15619 it could not find the child DIEs referenced later, this is checked
15620 above. In correct DWARF DW_TAG_typedef should have no children. */
15621
15622 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15623 complaint (&symfile_complaints,
15624 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15625 "- DIE at 0x%x [in module %s]"),
15626 part_die->offset.sect_off, objfile_name (objfile));
15627
15628 /* If we're at the second level, and we're an enumerator, and
15629 our parent has no specification (meaning possibly lives in a
15630 namespace elsewhere), then we can add the partial symbol now
15631 instead of queueing it. */
15632 if (part_die->tag == DW_TAG_enumerator
15633 && parent_die != NULL
15634 && parent_die->die_parent == NULL
15635 && parent_die->tag == DW_TAG_enumeration_type
15636 && parent_die->has_specification == 0)
15637 {
15638 if (part_die->name == NULL)
15639 complaint (&symfile_complaints,
15640 _("malformed enumerator DIE ignored"));
15641 else if (building_psymtab)
15642 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15643 VAR_DOMAIN, LOC_CONST,
15644 (cu->language == language_cplus
15645 || cu->language == language_java)
15646 ? &objfile->global_psymbols
15647 : &objfile->static_psymbols,
15648 0, (CORE_ADDR) 0, cu->language, objfile);
15649
15650 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15651 continue;
15652 }
15653
15654 /* We'll save this DIE so link it in. */
15655 part_die->die_parent = parent_die;
15656 part_die->die_sibling = NULL;
15657 part_die->die_child = NULL;
15658
15659 if (last_die && last_die == parent_die)
15660 last_die->die_child = part_die;
15661 else if (last_die)
15662 last_die->die_sibling = part_die;
15663
15664 last_die = part_die;
15665
15666 if (first_die == NULL)
15667 first_die = part_die;
15668
15669 /* Maybe add the DIE to the hash table. Not all DIEs that we
15670 find interesting need to be in the hash table, because we
15671 also have the parent/sibling/child chains; only those that we
15672 might refer to by offset later during partial symbol reading.
15673
15674 For now this means things that might have be the target of a
15675 DW_AT_specification, DW_AT_abstract_origin, or
15676 DW_AT_extension. DW_AT_extension will refer only to
15677 namespaces; DW_AT_abstract_origin refers to functions (and
15678 many things under the function DIE, but we do not recurse
15679 into function DIEs during partial symbol reading) and
15680 possibly variables as well; DW_AT_specification refers to
15681 declarations. Declarations ought to have the DW_AT_declaration
15682 flag. It happens that GCC forgets to put it in sometimes, but
15683 only for functions, not for types.
15684
15685 Adding more things than necessary to the hash table is harmless
15686 except for the performance cost. Adding too few will result in
15687 wasted time in find_partial_die, when we reread the compilation
15688 unit with load_all_dies set. */
15689
15690 if (load_all
15691 || abbrev->tag == DW_TAG_constant
15692 || abbrev->tag == DW_TAG_subprogram
15693 || abbrev->tag == DW_TAG_variable
15694 || abbrev->tag == DW_TAG_namespace
15695 || part_die->is_declaration)
15696 {
15697 void **slot;
15698
15699 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15700 part_die->offset.sect_off, INSERT);
15701 *slot = part_die;
15702 }
15703
15704 part_die = obstack_alloc (&cu->comp_unit_obstack,
15705 sizeof (struct partial_die_info));
15706
15707 /* For some DIEs we want to follow their children (if any). For C
15708 we have no reason to follow the children of structures; for other
15709 languages we have to, so that we can get at method physnames
15710 to infer fully qualified class names, for DW_AT_specification,
15711 and for C++ template arguments. For C++, we also look one level
15712 inside functions to find template arguments (if the name of the
15713 function does not already contain the template arguments).
15714
15715 For Ada, we need to scan the children of subprograms and lexical
15716 blocks as well because Ada allows the definition of nested
15717 entities that could be interesting for the debugger, such as
15718 nested subprograms for instance. */
15719 if (last_die->has_children
15720 && (load_all
15721 || last_die->tag == DW_TAG_namespace
15722 || last_die->tag == DW_TAG_module
15723 || last_die->tag == DW_TAG_enumeration_type
15724 || (cu->language == language_cplus
15725 && last_die->tag == DW_TAG_subprogram
15726 && (last_die->name == NULL
15727 || strchr (last_die->name, '<') == NULL))
15728 || (cu->language != language_c
15729 && (last_die->tag == DW_TAG_class_type
15730 || last_die->tag == DW_TAG_interface_type
15731 || last_die->tag == DW_TAG_structure_type
15732 || last_die->tag == DW_TAG_union_type))
15733 || (cu->language == language_ada
15734 && (last_die->tag == DW_TAG_subprogram
15735 || last_die->tag == DW_TAG_lexical_block))))
15736 {
15737 nesting_level++;
15738 parent_die = last_die;
15739 continue;
15740 }
15741
15742 /* Otherwise we skip to the next sibling, if any. */
15743 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15744
15745 /* Back to the top, do it again. */
15746 }
15747 }
15748
15749 /* Read a minimal amount of information into the minimal die structure. */
15750
15751 static const gdb_byte *
15752 read_partial_die (const struct die_reader_specs *reader,
15753 struct partial_die_info *part_die,
15754 struct abbrev_info *abbrev, unsigned int abbrev_len,
15755 const gdb_byte *info_ptr)
15756 {
15757 struct dwarf2_cu *cu = reader->cu;
15758 struct objfile *objfile = cu->objfile;
15759 const gdb_byte *buffer = reader->buffer;
15760 unsigned int i;
15761 struct attribute attr;
15762 int has_low_pc_attr = 0;
15763 int has_high_pc_attr = 0;
15764 int high_pc_relative = 0;
15765
15766 memset (part_die, 0, sizeof (struct partial_die_info));
15767
15768 part_die->offset.sect_off = info_ptr - buffer;
15769
15770 info_ptr += abbrev_len;
15771
15772 if (abbrev == NULL)
15773 return info_ptr;
15774
15775 part_die->tag = abbrev->tag;
15776 part_die->has_children = abbrev->has_children;
15777
15778 for (i = 0; i < abbrev->num_attrs; ++i)
15779 {
15780 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15781
15782 /* Store the data if it is of an attribute we want to keep in a
15783 partial symbol table. */
15784 switch (attr.name)
15785 {
15786 case DW_AT_name:
15787 switch (part_die->tag)
15788 {
15789 case DW_TAG_compile_unit:
15790 case DW_TAG_partial_unit:
15791 case DW_TAG_type_unit:
15792 /* Compilation units have a DW_AT_name that is a filename, not
15793 a source language identifier. */
15794 case DW_TAG_enumeration_type:
15795 case DW_TAG_enumerator:
15796 /* These tags always have simple identifiers already; no need
15797 to canonicalize them. */
15798 part_die->name = DW_STRING (&attr);
15799 break;
15800 default:
15801 part_die->name
15802 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15803 &objfile->per_bfd->storage_obstack);
15804 break;
15805 }
15806 break;
15807 case DW_AT_linkage_name:
15808 case DW_AT_MIPS_linkage_name:
15809 /* Note that both forms of linkage name might appear. We
15810 assume they will be the same, and we only store the last
15811 one we see. */
15812 if (cu->language == language_ada)
15813 part_die->name = DW_STRING (&attr);
15814 part_die->linkage_name = DW_STRING (&attr);
15815 break;
15816 case DW_AT_low_pc:
15817 has_low_pc_attr = 1;
15818 part_die->lowpc = attr_value_as_address (&attr);
15819 break;
15820 case DW_AT_high_pc:
15821 has_high_pc_attr = 1;
15822 part_die->highpc = attr_value_as_address (&attr);
15823 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15824 high_pc_relative = 1;
15825 break;
15826 case DW_AT_location:
15827 /* Support the .debug_loc offsets. */
15828 if (attr_form_is_block (&attr))
15829 {
15830 part_die->d.locdesc = DW_BLOCK (&attr);
15831 }
15832 else if (attr_form_is_section_offset (&attr))
15833 {
15834 dwarf2_complex_location_expr_complaint ();
15835 }
15836 else
15837 {
15838 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15839 "partial symbol information");
15840 }
15841 break;
15842 case DW_AT_external:
15843 part_die->is_external = DW_UNSND (&attr);
15844 break;
15845 case DW_AT_declaration:
15846 part_die->is_declaration = DW_UNSND (&attr);
15847 break;
15848 case DW_AT_type:
15849 part_die->has_type = 1;
15850 break;
15851 case DW_AT_abstract_origin:
15852 case DW_AT_specification:
15853 case DW_AT_extension:
15854 part_die->has_specification = 1;
15855 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15856 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15857 || cu->per_cu->is_dwz);
15858 break;
15859 case DW_AT_sibling:
15860 /* Ignore absolute siblings, they might point outside of
15861 the current compile unit. */
15862 if (attr.form == DW_FORM_ref_addr)
15863 complaint (&symfile_complaints,
15864 _("ignoring absolute DW_AT_sibling"));
15865 else
15866 {
15867 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15868 const gdb_byte *sibling_ptr = buffer + off;
15869
15870 if (sibling_ptr < info_ptr)
15871 complaint (&symfile_complaints,
15872 _("DW_AT_sibling points backwards"));
15873 else if (sibling_ptr > reader->buffer_end)
15874 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15875 else
15876 part_die->sibling = sibling_ptr;
15877 }
15878 break;
15879 case DW_AT_byte_size:
15880 part_die->has_byte_size = 1;
15881 break;
15882 case DW_AT_const_value:
15883 part_die->has_const_value = 1;
15884 break;
15885 case DW_AT_calling_convention:
15886 /* DWARF doesn't provide a way to identify a program's source-level
15887 entry point. DW_AT_calling_convention attributes are only meant
15888 to describe functions' calling conventions.
15889
15890 However, because it's a necessary piece of information in
15891 Fortran, and because DW_CC_program is the only piece of debugging
15892 information whose definition refers to a 'main program' at all,
15893 several compilers have begun marking Fortran main programs with
15894 DW_CC_program --- even when those functions use the standard
15895 calling conventions.
15896
15897 So until DWARF specifies a way to provide this information and
15898 compilers pick up the new representation, we'll support this
15899 practice. */
15900 if (DW_UNSND (&attr) == DW_CC_program
15901 && cu->language == language_fortran)
15902 set_objfile_main_name (objfile, part_die->name, language_fortran);
15903 break;
15904 case DW_AT_inline:
15905 if (DW_UNSND (&attr) == DW_INL_inlined
15906 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15907 part_die->may_be_inlined = 1;
15908 break;
15909
15910 case DW_AT_import:
15911 if (part_die->tag == DW_TAG_imported_unit)
15912 {
15913 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15914 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15915 || cu->per_cu->is_dwz);
15916 }
15917 break;
15918
15919 default:
15920 break;
15921 }
15922 }
15923
15924 if (high_pc_relative)
15925 part_die->highpc += part_die->lowpc;
15926
15927 if (has_low_pc_attr && has_high_pc_attr)
15928 {
15929 /* When using the GNU linker, .gnu.linkonce. sections are used to
15930 eliminate duplicate copies of functions and vtables and such.
15931 The linker will arbitrarily choose one and discard the others.
15932 The AT_*_pc values for such functions refer to local labels in
15933 these sections. If the section from that file was discarded, the
15934 labels are not in the output, so the relocs get a value of 0.
15935 If this is a discarded function, mark the pc bounds as invalid,
15936 so that GDB will ignore it. */
15937 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15938 {
15939 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15940
15941 complaint (&symfile_complaints,
15942 _("DW_AT_low_pc %s is zero "
15943 "for DIE at 0x%x [in module %s]"),
15944 paddress (gdbarch, part_die->lowpc),
15945 part_die->offset.sect_off, objfile_name (objfile));
15946 }
15947 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15948 else if (part_die->lowpc >= part_die->highpc)
15949 {
15950 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15951
15952 complaint (&symfile_complaints,
15953 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15954 "for DIE at 0x%x [in module %s]"),
15955 paddress (gdbarch, part_die->lowpc),
15956 paddress (gdbarch, part_die->highpc),
15957 part_die->offset.sect_off, objfile_name (objfile));
15958 }
15959 else
15960 part_die->has_pc_info = 1;
15961 }
15962
15963 return info_ptr;
15964 }
15965
15966 /* Find a cached partial DIE at OFFSET in CU. */
15967
15968 static struct partial_die_info *
15969 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15970 {
15971 struct partial_die_info *lookup_die = NULL;
15972 struct partial_die_info part_die;
15973
15974 part_die.offset = offset;
15975 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15976 offset.sect_off);
15977
15978 return lookup_die;
15979 }
15980
15981 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15982 except in the case of .debug_types DIEs which do not reference
15983 outside their CU (they do however referencing other types via
15984 DW_FORM_ref_sig8). */
15985
15986 static struct partial_die_info *
15987 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15988 {
15989 struct objfile *objfile = cu->objfile;
15990 struct dwarf2_per_cu_data *per_cu = NULL;
15991 struct partial_die_info *pd = NULL;
15992
15993 if (offset_in_dwz == cu->per_cu->is_dwz
15994 && offset_in_cu_p (&cu->header, offset))
15995 {
15996 pd = find_partial_die_in_comp_unit (offset, cu);
15997 if (pd != NULL)
15998 return pd;
15999 /* We missed recording what we needed.
16000 Load all dies and try again. */
16001 per_cu = cu->per_cu;
16002 }
16003 else
16004 {
16005 /* TUs don't reference other CUs/TUs (except via type signatures). */
16006 if (cu->per_cu->is_debug_types)
16007 {
16008 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16009 " external reference to offset 0x%lx [in module %s].\n"),
16010 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16011 bfd_get_filename (objfile->obfd));
16012 }
16013 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16014 objfile);
16015
16016 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16017 load_partial_comp_unit (per_cu);
16018
16019 per_cu->cu->last_used = 0;
16020 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16021 }
16022
16023 /* If we didn't find it, and not all dies have been loaded,
16024 load them all and try again. */
16025
16026 if (pd == NULL && per_cu->load_all_dies == 0)
16027 {
16028 per_cu->load_all_dies = 1;
16029
16030 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16031 THIS_CU->cu may already be in use. So we can't just free it and
16032 replace its DIEs with the ones we read in. Instead, we leave those
16033 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16034 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16035 set. */
16036 load_partial_comp_unit (per_cu);
16037
16038 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16039 }
16040
16041 if (pd == NULL)
16042 internal_error (__FILE__, __LINE__,
16043 _("could not find partial DIE 0x%x "
16044 "in cache [from module %s]\n"),
16045 offset.sect_off, bfd_get_filename (objfile->obfd));
16046 return pd;
16047 }
16048
16049 /* See if we can figure out if the class lives in a namespace. We do
16050 this by looking for a member function; its demangled name will
16051 contain namespace info, if there is any. */
16052
16053 static void
16054 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16055 struct dwarf2_cu *cu)
16056 {
16057 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16058 what template types look like, because the demangler
16059 frequently doesn't give the same name as the debug info. We
16060 could fix this by only using the demangled name to get the
16061 prefix (but see comment in read_structure_type). */
16062
16063 struct partial_die_info *real_pdi;
16064 struct partial_die_info *child_pdi;
16065
16066 /* If this DIE (this DIE's specification, if any) has a parent, then
16067 we should not do this. We'll prepend the parent's fully qualified
16068 name when we create the partial symbol. */
16069
16070 real_pdi = struct_pdi;
16071 while (real_pdi->has_specification)
16072 real_pdi = find_partial_die (real_pdi->spec_offset,
16073 real_pdi->spec_is_dwz, cu);
16074
16075 if (real_pdi->die_parent != NULL)
16076 return;
16077
16078 for (child_pdi = struct_pdi->die_child;
16079 child_pdi != NULL;
16080 child_pdi = child_pdi->die_sibling)
16081 {
16082 if (child_pdi->tag == DW_TAG_subprogram
16083 && child_pdi->linkage_name != NULL)
16084 {
16085 char *actual_class_name
16086 = language_class_name_from_physname (cu->language_defn,
16087 child_pdi->linkage_name);
16088 if (actual_class_name != NULL)
16089 {
16090 struct_pdi->name
16091 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16092 actual_class_name,
16093 strlen (actual_class_name));
16094 xfree (actual_class_name);
16095 }
16096 break;
16097 }
16098 }
16099 }
16100
16101 /* Adjust PART_DIE before generating a symbol for it. This function
16102 may set the is_external flag or change the DIE's name. */
16103
16104 static void
16105 fixup_partial_die (struct partial_die_info *part_die,
16106 struct dwarf2_cu *cu)
16107 {
16108 /* Once we've fixed up a die, there's no point in doing so again.
16109 This also avoids a memory leak if we were to call
16110 guess_partial_die_structure_name multiple times. */
16111 if (part_die->fixup_called)
16112 return;
16113
16114 /* If we found a reference attribute and the DIE has no name, try
16115 to find a name in the referred to DIE. */
16116
16117 if (part_die->name == NULL && part_die->has_specification)
16118 {
16119 struct partial_die_info *spec_die;
16120
16121 spec_die = find_partial_die (part_die->spec_offset,
16122 part_die->spec_is_dwz, cu);
16123
16124 fixup_partial_die (spec_die, cu);
16125
16126 if (spec_die->name)
16127 {
16128 part_die->name = spec_die->name;
16129
16130 /* Copy DW_AT_external attribute if it is set. */
16131 if (spec_die->is_external)
16132 part_die->is_external = spec_die->is_external;
16133 }
16134 }
16135
16136 /* Set default names for some unnamed DIEs. */
16137
16138 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16139 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16140
16141 /* If there is no parent die to provide a namespace, and there are
16142 children, see if we can determine the namespace from their linkage
16143 name. */
16144 if (cu->language == language_cplus
16145 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16146 && part_die->die_parent == NULL
16147 && part_die->has_children
16148 && (part_die->tag == DW_TAG_class_type
16149 || part_die->tag == DW_TAG_structure_type
16150 || part_die->tag == DW_TAG_union_type))
16151 guess_partial_die_structure_name (part_die, cu);
16152
16153 /* GCC might emit a nameless struct or union that has a linkage
16154 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16155 if (part_die->name == NULL
16156 && (part_die->tag == DW_TAG_class_type
16157 || part_die->tag == DW_TAG_interface_type
16158 || part_die->tag == DW_TAG_structure_type
16159 || part_die->tag == DW_TAG_union_type)
16160 && part_die->linkage_name != NULL)
16161 {
16162 char *demangled;
16163
16164 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16165 if (demangled)
16166 {
16167 const char *base;
16168
16169 /* Strip any leading namespaces/classes, keep only the base name.
16170 DW_AT_name for named DIEs does not contain the prefixes. */
16171 base = strrchr (demangled, ':');
16172 if (base && base > demangled && base[-1] == ':')
16173 base++;
16174 else
16175 base = demangled;
16176
16177 part_die->name
16178 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16179 base, strlen (base));
16180 xfree (demangled);
16181 }
16182 }
16183
16184 part_die->fixup_called = 1;
16185 }
16186
16187 /* Read an attribute value described by an attribute form. */
16188
16189 static const gdb_byte *
16190 read_attribute_value (const struct die_reader_specs *reader,
16191 struct attribute *attr, unsigned form,
16192 const gdb_byte *info_ptr)
16193 {
16194 struct dwarf2_cu *cu = reader->cu;
16195 struct objfile *objfile = cu->objfile;
16196 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16197 bfd *abfd = reader->abfd;
16198 struct comp_unit_head *cu_header = &cu->header;
16199 unsigned int bytes_read;
16200 struct dwarf_block *blk;
16201
16202 attr->form = form;
16203 switch (form)
16204 {
16205 case DW_FORM_ref_addr:
16206 if (cu->header.version == 2)
16207 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16208 else
16209 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16210 &cu->header, &bytes_read);
16211 info_ptr += bytes_read;
16212 break;
16213 case DW_FORM_GNU_ref_alt:
16214 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16215 info_ptr += bytes_read;
16216 break;
16217 case DW_FORM_addr:
16218 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16219 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16220 info_ptr += bytes_read;
16221 break;
16222 case DW_FORM_block2:
16223 blk = dwarf_alloc_block (cu);
16224 blk->size = read_2_bytes (abfd, info_ptr);
16225 info_ptr += 2;
16226 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16227 info_ptr += blk->size;
16228 DW_BLOCK (attr) = blk;
16229 break;
16230 case DW_FORM_block4:
16231 blk = dwarf_alloc_block (cu);
16232 blk->size = read_4_bytes (abfd, info_ptr);
16233 info_ptr += 4;
16234 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16235 info_ptr += blk->size;
16236 DW_BLOCK (attr) = blk;
16237 break;
16238 case DW_FORM_data2:
16239 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16240 info_ptr += 2;
16241 break;
16242 case DW_FORM_data4:
16243 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16244 info_ptr += 4;
16245 break;
16246 case DW_FORM_data8:
16247 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16248 info_ptr += 8;
16249 break;
16250 case DW_FORM_sec_offset:
16251 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16252 info_ptr += bytes_read;
16253 break;
16254 case DW_FORM_string:
16255 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16256 DW_STRING_IS_CANONICAL (attr) = 0;
16257 info_ptr += bytes_read;
16258 break;
16259 case DW_FORM_strp:
16260 if (!cu->per_cu->is_dwz)
16261 {
16262 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16263 &bytes_read);
16264 DW_STRING_IS_CANONICAL (attr) = 0;
16265 info_ptr += bytes_read;
16266 break;
16267 }
16268 /* FALLTHROUGH */
16269 case DW_FORM_GNU_strp_alt:
16270 {
16271 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16272 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16273 &bytes_read);
16274
16275 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16276 DW_STRING_IS_CANONICAL (attr) = 0;
16277 info_ptr += bytes_read;
16278 }
16279 break;
16280 case DW_FORM_exprloc:
16281 case DW_FORM_block:
16282 blk = dwarf_alloc_block (cu);
16283 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16284 info_ptr += bytes_read;
16285 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16286 info_ptr += blk->size;
16287 DW_BLOCK (attr) = blk;
16288 break;
16289 case DW_FORM_block1:
16290 blk = dwarf_alloc_block (cu);
16291 blk->size = read_1_byte (abfd, info_ptr);
16292 info_ptr += 1;
16293 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16294 info_ptr += blk->size;
16295 DW_BLOCK (attr) = blk;
16296 break;
16297 case DW_FORM_data1:
16298 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16299 info_ptr += 1;
16300 break;
16301 case DW_FORM_flag:
16302 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16303 info_ptr += 1;
16304 break;
16305 case DW_FORM_flag_present:
16306 DW_UNSND (attr) = 1;
16307 break;
16308 case DW_FORM_sdata:
16309 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16310 info_ptr += bytes_read;
16311 break;
16312 case DW_FORM_udata:
16313 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16314 info_ptr += bytes_read;
16315 break;
16316 case DW_FORM_ref1:
16317 DW_UNSND (attr) = (cu->header.offset.sect_off
16318 + read_1_byte (abfd, info_ptr));
16319 info_ptr += 1;
16320 break;
16321 case DW_FORM_ref2:
16322 DW_UNSND (attr) = (cu->header.offset.sect_off
16323 + read_2_bytes (abfd, info_ptr));
16324 info_ptr += 2;
16325 break;
16326 case DW_FORM_ref4:
16327 DW_UNSND (attr) = (cu->header.offset.sect_off
16328 + read_4_bytes (abfd, info_ptr));
16329 info_ptr += 4;
16330 break;
16331 case DW_FORM_ref8:
16332 DW_UNSND (attr) = (cu->header.offset.sect_off
16333 + read_8_bytes (abfd, info_ptr));
16334 info_ptr += 8;
16335 break;
16336 case DW_FORM_ref_sig8:
16337 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16338 info_ptr += 8;
16339 break;
16340 case DW_FORM_ref_udata:
16341 DW_UNSND (attr) = (cu->header.offset.sect_off
16342 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16343 info_ptr += bytes_read;
16344 break;
16345 case DW_FORM_indirect:
16346 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16347 info_ptr += bytes_read;
16348 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16349 break;
16350 case DW_FORM_GNU_addr_index:
16351 if (reader->dwo_file == NULL)
16352 {
16353 /* For now flag a hard error.
16354 Later we can turn this into a complaint. */
16355 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16356 dwarf_form_name (form),
16357 bfd_get_filename (abfd));
16358 }
16359 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16360 info_ptr += bytes_read;
16361 break;
16362 case DW_FORM_GNU_str_index:
16363 if (reader->dwo_file == NULL)
16364 {
16365 /* For now flag a hard error.
16366 Later we can turn this into a complaint if warranted. */
16367 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16368 dwarf_form_name (form),
16369 bfd_get_filename (abfd));
16370 }
16371 {
16372 ULONGEST str_index =
16373 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16374
16375 DW_STRING (attr) = read_str_index (reader, str_index);
16376 DW_STRING_IS_CANONICAL (attr) = 0;
16377 info_ptr += bytes_read;
16378 }
16379 break;
16380 default:
16381 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16382 dwarf_form_name (form),
16383 bfd_get_filename (abfd));
16384 }
16385
16386 /* Super hack. */
16387 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16388 attr->form = DW_FORM_GNU_ref_alt;
16389
16390 /* We have seen instances where the compiler tried to emit a byte
16391 size attribute of -1 which ended up being encoded as an unsigned
16392 0xffffffff. Although 0xffffffff is technically a valid size value,
16393 an object of this size seems pretty unlikely so we can relatively
16394 safely treat these cases as if the size attribute was invalid and
16395 treat them as zero by default. */
16396 if (attr->name == DW_AT_byte_size
16397 && form == DW_FORM_data4
16398 && DW_UNSND (attr) >= 0xffffffff)
16399 {
16400 complaint
16401 (&symfile_complaints,
16402 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16403 hex_string (DW_UNSND (attr)));
16404 DW_UNSND (attr) = 0;
16405 }
16406
16407 return info_ptr;
16408 }
16409
16410 /* Read an attribute described by an abbreviated attribute. */
16411
16412 static const gdb_byte *
16413 read_attribute (const struct die_reader_specs *reader,
16414 struct attribute *attr, struct attr_abbrev *abbrev,
16415 const gdb_byte *info_ptr)
16416 {
16417 attr->name = abbrev->name;
16418 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16419 }
16420
16421 /* Read dwarf information from a buffer. */
16422
16423 static unsigned int
16424 read_1_byte (bfd *abfd, const gdb_byte *buf)
16425 {
16426 return bfd_get_8 (abfd, buf);
16427 }
16428
16429 static int
16430 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16431 {
16432 return bfd_get_signed_8 (abfd, buf);
16433 }
16434
16435 static unsigned int
16436 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16437 {
16438 return bfd_get_16 (abfd, buf);
16439 }
16440
16441 static int
16442 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16443 {
16444 return bfd_get_signed_16 (abfd, buf);
16445 }
16446
16447 static unsigned int
16448 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16449 {
16450 return bfd_get_32 (abfd, buf);
16451 }
16452
16453 static int
16454 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16455 {
16456 return bfd_get_signed_32 (abfd, buf);
16457 }
16458
16459 static ULONGEST
16460 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16461 {
16462 return bfd_get_64 (abfd, buf);
16463 }
16464
16465 static CORE_ADDR
16466 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16467 unsigned int *bytes_read)
16468 {
16469 struct comp_unit_head *cu_header = &cu->header;
16470 CORE_ADDR retval = 0;
16471
16472 if (cu_header->signed_addr_p)
16473 {
16474 switch (cu_header->addr_size)
16475 {
16476 case 2:
16477 retval = bfd_get_signed_16 (abfd, buf);
16478 break;
16479 case 4:
16480 retval = bfd_get_signed_32 (abfd, buf);
16481 break;
16482 case 8:
16483 retval = bfd_get_signed_64 (abfd, buf);
16484 break;
16485 default:
16486 internal_error (__FILE__, __LINE__,
16487 _("read_address: bad switch, signed [in module %s]"),
16488 bfd_get_filename (abfd));
16489 }
16490 }
16491 else
16492 {
16493 switch (cu_header->addr_size)
16494 {
16495 case 2:
16496 retval = bfd_get_16 (abfd, buf);
16497 break;
16498 case 4:
16499 retval = bfd_get_32 (abfd, buf);
16500 break;
16501 case 8:
16502 retval = bfd_get_64 (abfd, buf);
16503 break;
16504 default:
16505 internal_error (__FILE__, __LINE__,
16506 _("read_address: bad switch, "
16507 "unsigned [in module %s]"),
16508 bfd_get_filename (abfd));
16509 }
16510 }
16511
16512 *bytes_read = cu_header->addr_size;
16513 return retval;
16514 }
16515
16516 /* Read the initial length from a section. The (draft) DWARF 3
16517 specification allows the initial length to take up either 4 bytes
16518 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16519 bytes describe the length and all offsets will be 8 bytes in length
16520 instead of 4.
16521
16522 An older, non-standard 64-bit format is also handled by this
16523 function. The older format in question stores the initial length
16524 as an 8-byte quantity without an escape value. Lengths greater
16525 than 2^32 aren't very common which means that the initial 4 bytes
16526 is almost always zero. Since a length value of zero doesn't make
16527 sense for the 32-bit format, this initial zero can be considered to
16528 be an escape value which indicates the presence of the older 64-bit
16529 format. As written, the code can't detect (old format) lengths
16530 greater than 4GB. If it becomes necessary to handle lengths
16531 somewhat larger than 4GB, we could allow other small values (such
16532 as the non-sensical values of 1, 2, and 3) to also be used as
16533 escape values indicating the presence of the old format.
16534
16535 The value returned via bytes_read should be used to increment the
16536 relevant pointer after calling read_initial_length().
16537
16538 [ Note: read_initial_length() and read_offset() are based on the
16539 document entitled "DWARF Debugging Information Format", revision
16540 3, draft 8, dated November 19, 2001. This document was obtained
16541 from:
16542
16543 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16544
16545 This document is only a draft and is subject to change. (So beware.)
16546
16547 Details regarding the older, non-standard 64-bit format were
16548 determined empirically by examining 64-bit ELF files produced by
16549 the SGI toolchain on an IRIX 6.5 machine.
16550
16551 - Kevin, July 16, 2002
16552 ] */
16553
16554 static LONGEST
16555 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16556 {
16557 LONGEST length = bfd_get_32 (abfd, buf);
16558
16559 if (length == 0xffffffff)
16560 {
16561 length = bfd_get_64 (abfd, buf + 4);
16562 *bytes_read = 12;
16563 }
16564 else if (length == 0)
16565 {
16566 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16567 length = bfd_get_64 (abfd, buf);
16568 *bytes_read = 8;
16569 }
16570 else
16571 {
16572 *bytes_read = 4;
16573 }
16574
16575 return length;
16576 }
16577
16578 /* Cover function for read_initial_length.
16579 Returns the length of the object at BUF, and stores the size of the
16580 initial length in *BYTES_READ and stores the size that offsets will be in
16581 *OFFSET_SIZE.
16582 If the initial length size is not equivalent to that specified in
16583 CU_HEADER then issue a complaint.
16584 This is useful when reading non-comp-unit headers. */
16585
16586 static LONGEST
16587 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16588 const struct comp_unit_head *cu_header,
16589 unsigned int *bytes_read,
16590 unsigned int *offset_size)
16591 {
16592 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16593
16594 gdb_assert (cu_header->initial_length_size == 4
16595 || cu_header->initial_length_size == 8
16596 || cu_header->initial_length_size == 12);
16597
16598 if (cu_header->initial_length_size != *bytes_read)
16599 complaint (&symfile_complaints,
16600 _("intermixed 32-bit and 64-bit DWARF sections"));
16601
16602 *offset_size = (*bytes_read == 4) ? 4 : 8;
16603 return length;
16604 }
16605
16606 /* Read an offset from the data stream. The size of the offset is
16607 given by cu_header->offset_size. */
16608
16609 static LONGEST
16610 read_offset (bfd *abfd, const gdb_byte *buf,
16611 const struct comp_unit_head *cu_header,
16612 unsigned int *bytes_read)
16613 {
16614 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16615
16616 *bytes_read = cu_header->offset_size;
16617 return offset;
16618 }
16619
16620 /* Read an offset from the data stream. */
16621
16622 static LONGEST
16623 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16624 {
16625 LONGEST retval = 0;
16626
16627 switch (offset_size)
16628 {
16629 case 4:
16630 retval = bfd_get_32 (abfd, buf);
16631 break;
16632 case 8:
16633 retval = bfd_get_64 (abfd, buf);
16634 break;
16635 default:
16636 internal_error (__FILE__, __LINE__,
16637 _("read_offset_1: bad switch [in module %s]"),
16638 bfd_get_filename (abfd));
16639 }
16640
16641 return retval;
16642 }
16643
16644 static const gdb_byte *
16645 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16646 {
16647 /* If the size of a host char is 8 bits, we can return a pointer
16648 to the buffer, otherwise we have to copy the data to a buffer
16649 allocated on the temporary obstack. */
16650 gdb_assert (HOST_CHAR_BIT == 8);
16651 return buf;
16652 }
16653
16654 static const char *
16655 read_direct_string (bfd *abfd, const gdb_byte *buf,
16656 unsigned int *bytes_read_ptr)
16657 {
16658 /* If the size of a host char is 8 bits, we can return a pointer
16659 to the string, otherwise we have to copy the string to a buffer
16660 allocated on the temporary obstack. */
16661 gdb_assert (HOST_CHAR_BIT == 8);
16662 if (*buf == '\0')
16663 {
16664 *bytes_read_ptr = 1;
16665 return NULL;
16666 }
16667 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16668 return (const char *) buf;
16669 }
16670
16671 static const char *
16672 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16673 {
16674 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16675 if (dwarf2_per_objfile->str.buffer == NULL)
16676 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16677 bfd_get_filename (abfd));
16678 if (str_offset >= dwarf2_per_objfile->str.size)
16679 error (_("DW_FORM_strp pointing outside of "
16680 ".debug_str section [in module %s]"),
16681 bfd_get_filename (abfd));
16682 gdb_assert (HOST_CHAR_BIT == 8);
16683 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16684 return NULL;
16685 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16686 }
16687
16688 /* Read a string at offset STR_OFFSET in the .debug_str section from
16689 the .dwz file DWZ. Throw an error if the offset is too large. If
16690 the string consists of a single NUL byte, return NULL; otherwise
16691 return a pointer to the string. */
16692
16693 static const char *
16694 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16695 {
16696 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16697
16698 if (dwz->str.buffer == NULL)
16699 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16700 "section [in module %s]"),
16701 bfd_get_filename (dwz->dwz_bfd));
16702 if (str_offset >= dwz->str.size)
16703 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16704 ".debug_str section [in module %s]"),
16705 bfd_get_filename (dwz->dwz_bfd));
16706 gdb_assert (HOST_CHAR_BIT == 8);
16707 if (dwz->str.buffer[str_offset] == '\0')
16708 return NULL;
16709 return (const char *) (dwz->str.buffer + str_offset);
16710 }
16711
16712 static const char *
16713 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16714 const struct comp_unit_head *cu_header,
16715 unsigned int *bytes_read_ptr)
16716 {
16717 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16718
16719 return read_indirect_string_at_offset (abfd, str_offset);
16720 }
16721
16722 static ULONGEST
16723 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16724 unsigned int *bytes_read_ptr)
16725 {
16726 ULONGEST result;
16727 unsigned int num_read;
16728 int i, shift;
16729 unsigned char byte;
16730
16731 result = 0;
16732 shift = 0;
16733 num_read = 0;
16734 i = 0;
16735 while (1)
16736 {
16737 byte = bfd_get_8 (abfd, buf);
16738 buf++;
16739 num_read++;
16740 result |= ((ULONGEST) (byte & 127) << shift);
16741 if ((byte & 128) == 0)
16742 {
16743 break;
16744 }
16745 shift += 7;
16746 }
16747 *bytes_read_ptr = num_read;
16748 return result;
16749 }
16750
16751 static LONGEST
16752 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16753 unsigned int *bytes_read_ptr)
16754 {
16755 LONGEST result;
16756 int i, shift, num_read;
16757 unsigned char byte;
16758
16759 result = 0;
16760 shift = 0;
16761 num_read = 0;
16762 i = 0;
16763 while (1)
16764 {
16765 byte = bfd_get_8 (abfd, buf);
16766 buf++;
16767 num_read++;
16768 result |= ((LONGEST) (byte & 127) << shift);
16769 shift += 7;
16770 if ((byte & 128) == 0)
16771 {
16772 break;
16773 }
16774 }
16775 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16776 result |= -(((LONGEST) 1) << shift);
16777 *bytes_read_ptr = num_read;
16778 return result;
16779 }
16780
16781 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16782 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16783 ADDR_SIZE is the size of addresses from the CU header. */
16784
16785 static CORE_ADDR
16786 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16787 {
16788 struct objfile *objfile = dwarf2_per_objfile->objfile;
16789 bfd *abfd = objfile->obfd;
16790 const gdb_byte *info_ptr;
16791
16792 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16793 if (dwarf2_per_objfile->addr.buffer == NULL)
16794 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16795 objfile_name (objfile));
16796 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16797 error (_("DW_FORM_addr_index pointing outside of "
16798 ".debug_addr section [in module %s]"),
16799 objfile_name (objfile));
16800 info_ptr = (dwarf2_per_objfile->addr.buffer
16801 + addr_base + addr_index * addr_size);
16802 if (addr_size == 4)
16803 return bfd_get_32 (abfd, info_ptr);
16804 else
16805 return bfd_get_64 (abfd, info_ptr);
16806 }
16807
16808 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16809
16810 static CORE_ADDR
16811 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16812 {
16813 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16814 }
16815
16816 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16817
16818 static CORE_ADDR
16819 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16820 unsigned int *bytes_read)
16821 {
16822 bfd *abfd = cu->objfile->obfd;
16823 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16824
16825 return read_addr_index (cu, addr_index);
16826 }
16827
16828 /* Data structure to pass results from dwarf2_read_addr_index_reader
16829 back to dwarf2_read_addr_index. */
16830
16831 struct dwarf2_read_addr_index_data
16832 {
16833 ULONGEST addr_base;
16834 int addr_size;
16835 };
16836
16837 /* die_reader_func for dwarf2_read_addr_index. */
16838
16839 static void
16840 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16841 const gdb_byte *info_ptr,
16842 struct die_info *comp_unit_die,
16843 int has_children,
16844 void *data)
16845 {
16846 struct dwarf2_cu *cu = reader->cu;
16847 struct dwarf2_read_addr_index_data *aidata =
16848 (struct dwarf2_read_addr_index_data *) data;
16849
16850 aidata->addr_base = cu->addr_base;
16851 aidata->addr_size = cu->header.addr_size;
16852 }
16853
16854 /* Given an index in .debug_addr, fetch the value.
16855 NOTE: This can be called during dwarf expression evaluation,
16856 long after the debug information has been read, and thus per_cu->cu
16857 may no longer exist. */
16858
16859 CORE_ADDR
16860 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16861 unsigned int addr_index)
16862 {
16863 struct objfile *objfile = per_cu->objfile;
16864 struct dwarf2_cu *cu = per_cu->cu;
16865 ULONGEST addr_base;
16866 int addr_size;
16867
16868 /* This is intended to be called from outside this file. */
16869 dw2_setup (objfile);
16870
16871 /* We need addr_base and addr_size.
16872 If we don't have PER_CU->cu, we have to get it.
16873 Nasty, but the alternative is storing the needed info in PER_CU,
16874 which at this point doesn't seem justified: it's not clear how frequently
16875 it would get used and it would increase the size of every PER_CU.
16876 Entry points like dwarf2_per_cu_addr_size do a similar thing
16877 so we're not in uncharted territory here.
16878 Alas we need to be a bit more complicated as addr_base is contained
16879 in the DIE.
16880
16881 We don't need to read the entire CU(/TU).
16882 We just need the header and top level die.
16883
16884 IWBN to use the aging mechanism to let us lazily later discard the CU.
16885 For now we skip this optimization. */
16886
16887 if (cu != NULL)
16888 {
16889 addr_base = cu->addr_base;
16890 addr_size = cu->header.addr_size;
16891 }
16892 else
16893 {
16894 struct dwarf2_read_addr_index_data aidata;
16895
16896 /* Note: We can't use init_cutu_and_read_dies_simple here,
16897 we need addr_base. */
16898 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16899 dwarf2_read_addr_index_reader, &aidata);
16900 addr_base = aidata.addr_base;
16901 addr_size = aidata.addr_size;
16902 }
16903
16904 return read_addr_index_1 (addr_index, addr_base, addr_size);
16905 }
16906
16907 /* Given a DW_FORM_GNU_str_index, fetch the string.
16908 This is only used by the Fission support. */
16909
16910 static const char *
16911 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16912 {
16913 struct objfile *objfile = dwarf2_per_objfile->objfile;
16914 const char *objf_name = objfile_name (objfile);
16915 bfd *abfd = objfile->obfd;
16916 struct dwarf2_cu *cu = reader->cu;
16917 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16918 struct dwarf2_section_info *str_offsets_section =
16919 &reader->dwo_file->sections.str_offsets;
16920 const gdb_byte *info_ptr;
16921 ULONGEST str_offset;
16922 static const char form_name[] = "DW_FORM_GNU_str_index";
16923
16924 dwarf2_read_section (objfile, str_section);
16925 dwarf2_read_section (objfile, str_offsets_section);
16926 if (str_section->buffer == NULL)
16927 error (_("%s used without .debug_str.dwo section"
16928 " in CU at offset 0x%lx [in module %s]"),
16929 form_name, (long) cu->header.offset.sect_off, objf_name);
16930 if (str_offsets_section->buffer == NULL)
16931 error (_("%s used without .debug_str_offsets.dwo section"
16932 " in CU at offset 0x%lx [in module %s]"),
16933 form_name, (long) cu->header.offset.sect_off, objf_name);
16934 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16935 error (_("%s pointing outside of .debug_str_offsets.dwo"
16936 " section in CU at offset 0x%lx [in module %s]"),
16937 form_name, (long) cu->header.offset.sect_off, objf_name);
16938 info_ptr = (str_offsets_section->buffer
16939 + str_index * cu->header.offset_size);
16940 if (cu->header.offset_size == 4)
16941 str_offset = bfd_get_32 (abfd, info_ptr);
16942 else
16943 str_offset = bfd_get_64 (abfd, info_ptr);
16944 if (str_offset >= str_section->size)
16945 error (_("Offset from %s pointing outside of"
16946 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16947 form_name, (long) cu->header.offset.sect_off, objf_name);
16948 return (const char *) (str_section->buffer + str_offset);
16949 }
16950
16951 /* Return the length of an LEB128 number in BUF. */
16952
16953 static int
16954 leb128_size (const gdb_byte *buf)
16955 {
16956 const gdb_byte *begin = buf;
16957 gdb_byte byte;
16958
16959 while (1)
16960 {
16961 byte = *buf++;
16962 if ((byte & 128) == 0)
16963 return buf - begin;
16964 }
16965 }
16966
16967 static void
16968 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16969 {
16970 switch (lang)
16971 {
16972 case DW_LANG_C89:
16973 case DW_LANG_C99:
16974 case DW_LANG_C11:
16975 case DW_LANG_C:
16976 case DW_LANG_UPC:
16977 cu->language = language_c;
16978 break;
16979 case DW_LANG_C_plus_plus:
16980 case DW_LANG_C_plus_plus_11:
16981 case DW_LANG_C_plus_plus_14:
16982 cu->language = language_cplus;
16983 break;
16984 case DW_LANG_D:
16985 cu->language = language_d;
16986 break;
16987 case DW_LANG_Fortran77:
16988 case DW_LANG_Fortran90:
16989 case DW_LANG_Fortran95:
16990 case DW_LANG_Fortran03:
16991 case DW_LANG_Fortran08:
16992 cu->language = language_fortran;
16993 break;
16994 case DW_LANG_Go:
16995 cu->language = language_go;
16996 break;
16997 case DW_LANG_Mips_Assembler:
16998 cu->language = language_asm;
16999 break;
17000 case DW_LANG_Java:
17001 cu->language = language_java;
17002 break;
17003 case DW_LANG_Ada83:
17004 case DW_LANG_Ada95:
17005 cu->language = language_ada;
17006 break;
17007 case DW_LANG_Modula2:
17008 cu->language = language_m2;
17009 break;
17010 case DW_LANG_Pascal83:
17011 cu->language = language_pascal;
17012 break;
17013 case DW_LANG_ObjC:
17014 cu->language = language_objc;
17015 break;
17016 case DW_LANG_Cobol74:
17017 case DW_LANG_Cobol85:
17018 default:
17019 cu->language = language_minimal;
17020 break;
17021 }
17022 cu->language_defn = language_def (cu->language);
17023 }
17024
17025 /* Return the named attribute or NULL if not there. */
17026
17027 static struct attribute *
17028 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17029 {
17030 for (;;)
17031 {
17032 unsigned int i;
17033 struct attribute *spec = NULL;
17034
17035 for (i = 0; i < die->num_attrs; ++i)
17036 {
17037 if (die->attrs[i].name == name)
17038 return &die->attrs[i];
17039 if (die->attrs[i].name == DW_AT_specification
17040 || die->attrs[i].name == DW_AT_abstract_origin)
17041 spec = &die->attrs[i];
17042 }
17043
17044 if (!spec)
17045 break;
17046
17047 die = follow_die_ref (die, spec, &cu);
17048 }
17049
17050 return NULL;
17051 }
17052
17053 /* Return the named attribute or NULL if not there,
17054 but do not follow DW_AT_specification, etc.
17055 This is for use in contexts where we're reading .debug_types dies.
17056 Following DW_AT_specification, DW_AT_abstract_origin will take us
17057 back up the chain, and we want to go down. */
17058
17059 static struct attribute *
17060 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17061 {
17062 unsigned int i;
17063
17064 for (i = 0; i < die->num_attrs; ++i)
17065 if (die->attrs[i].name == name)
17066 return &die->attrs[i];
17067
17068 return NULL;
17069 }
17070
17071 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17072 and holds a non-zero value. This function should only be used for
17073 DW_FORM_flag or DW_FORM_flag_present attributes. */
17074
17075 static int
17076 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17077 {
17078 struct attribute *attr = dwarf2_attr (die, name, cu);
17079
17080 return (attr && DW_UNSND (attr));
17081 }
17082
17083 static int
17084 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17085 {
17086 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17087 which value is non-zero. However, we have to be careful with
17088 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17089 (via dwarf2_flag_true_p) follows this attribute. So we may
17090 end up accidently finding a declaration attribute that belongs
17091 to a different DIE referenced by the specification attribute,
17092 even though the given DIE does not have a declaration attribute. */
17093 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17094 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17095 }
17096
17097 /* Return the die giving the specification for DIE, if there is
17098 one. *SPEC_CU is the CU containing DIE on input, and the CU
17099 containing the return value on output. If there is no
17100 specification, but there is an abstract origin, that is
17101 returned. */
17102
17103 static struct die_info *
17104 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17105 {
17106 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17107 *spec_cu);
17108
17109 if (spec_attr == NULL)
17110 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17111
17112 if (spec_attr == NULL)
17113 return NULL;
17114 else
17115 return follow_die_ref (die, spec_attr, spec_cu);
17116 }
17117
17118 /* Free the line_header structure *LH, and any arrays and strings it
17119 refers to.
17120 NOTE: This is also used as a "cleanup" function. */
17121
17122 static void
17123 free_line_header (struct line_header *lh)
17124 {
17125 if (lh->standard_opcode_lengths)
17126 xfree (lh->standard_opcode_lengths);
17127
17128 /* Remember that all the lh->file_names[i].name pointers are
17129 pointers into debug_line_buffer, and don't need to be freed. */
17130 if (lh->file_names)
17131 xfree (lh->file_names);
17132
17133 /* Similarly for the include directory names. */
17134 if (lh->include_dirs)
17135 xfree (lh->include_dirs);
17136
17137 xfree (lh);
17138 }
17139
17140 /* Stub for free_line_header to match void * callback types. */
17141
17142 static void
17143 free_line_header_voidp (void *arg)
17144 {
17145 struct line_header *lh = arg;
17146
17147 free_line_header (lh);
17148 }
17149
17150 /* Add an entry to LH's include directory table. */
17151
17152 static void
17153 add_include_dir (struct line_header *lh, const char *include_dir)
17154 {
17155 /* Grow the array if necessary. */
17156 if (lh->include_dirs_size == 0)
17157 {
17158 lh->include_dirs_size = 1; /* for testing */
17159 lh->include_dirs = xmalloc (lh->include_dirs_size
17160 * sizeof (*lh->include_dirs));
17161 }
17162 else if (lh->num_include_dirs >= lh->include_dirs_size)
17163 {
17164 lh->include_dirs_size *= 2;
17165 lh->include_dirs = xrealloc (lh->include_dirs,
17166 (lh->include_dirs_size
17167 * sizeof (*lh->include_dirs)));
17168 }
17169
17170 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17171 }
17172
17173 /* Add an entry to LH's file name table. */
17174
17175 static void
17176 add_file_name (struct line_header *lh,
17177 const char *name,
17178 unsigned int dir_index,
17179 unsigned int mod_time,
17180 unsigned int length)
17181 {
17182 struct file_entry *fe;
17183
17184 /* Grow the array if necessary. */
17185 if (lh->file_names_size == 0)
17186 {
17187 lh->file_names_size = 1; /* for testing */
17188 lh->file_names = xmalloc (lh->file_names_size
17189 * sizeof (*lh->file_names));
17190 }
17191 else if (lh->num_file_names >= lh->file_names_size)
17192 {
17193 lh->file_names_size *= 2;
17194 lh->file_names = xrealloc (lh->file_names,
17195 (lh->file_names_size
17196 * sizeof (*lh->file_names)));
17197 }
17198
17199 fe = &lh->file_names[lh->num_file_names++];
17200 fe->name = name;
17201 fe->dir_index = dir_index;
17202 fe->mod_time = mod_time;
17203 fe->length = length;
17204 fe->included_p = 0;
17205 fe->symtab = NULL;
17206 }
17207
17208 /* A convenience function to find the proper .debug_line section for a CU. */
17209
17210 static struct dwarf2_section_info *
17211 get_debug_line_section (struct dwarf2_cu *cu)
17212 {
17213 struct dwarf2_section_info *section;
17214
17215 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17216 DWO file. */
17217 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17218 section = &cu->dwo_unit->dwo_file->sections.line;
17219 else if (cu->per_cu->is_dwz)
17220 {
17221 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17222
17223 section = &dwz->line;
17224 }
17225 else
17226 section = &dwarf2_per_objfile->line;
17227
17228 return section;
17229 }
17230
17231 /* Read the statement program header starting at OFFSET in
17232 .debug_line, or .debug_line.dwo. Return a pointer
17233 to a struct line_header, allocated using xmalloc.
17234 Returns NULL if there is a problem reading the header, e.g., if it
17235 has a version we don't understand.
17236
17237 NOTE: the strings in the include directory and file name tables of
17238 the returned object point into the dwarf line section buffer,
17239 and must not be freed. */
17240
17241 static struct line_header *
17242 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17243 {
17244 struct cleanup *back_to;
17245 struct line_header *lh;
17246 const gdb_byte *line_ptr;
17247 unsigned int bytes_read, offset_size;
17248 int i;
17249 const char *cur_dir, *cur_file;
17250 struct dwarf2_section_info *section;
17251 bfd *abfd;
17252
17253 section = get_debug_line_section (cu);
17254 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17255 if (section->buffer == NULL)
17256 {
17257 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17258 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17259 else
17260 complaint (&symfile_complaints, _("missing .debug_line section"));
17261 return 0;
17262 }
17263
17264 /* We can't do this until we know the section is non-empty.
17265 Only then do we know we have such a section. */
17266 abfd = get_section_bfd_owner (section);
17267
17268 /* Make sure that at least there's room for the total_length field.
17269 That could be 12 bytes long, but we're just going to fudge that. */
17270 if (offset + 4 >= section->size)
17271 {
17272 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17273 return 0;
17274 }
17275
17276 lh = xmalloc (sizeof (*lh));
17277 memset (lh, 0, sizeof (*lh));
17278 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17279 (void *) lh);
17280
17281 lh->offset.sect_off = offset;
17282 lh->offset_in_dwz = cu->per_cu->is_dwz;
17283
17284 line_ptr = section->buffer + offset;
17285
17286 /* Read in the header. */
17287 lh->total_length =
17288 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17289 &bytes_read, &offset_size);
17290 line_ptr += bytes_read;
17291 if (line_ptr + lh->total_length > (section->buffer + section->size))
17292 {
17293 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17294 do_cleanups (back_to);
17295 return 0;
17296 }
17297 lh->statement_program_end = line_ptr + lh->total_length;
17298 lh->version = read_2_bytes (abfd, line_ptr);
17299 line_ptr += 2;
17300 if (lh->version > 4)
17301 {
17302 /* This is a version we don't understand. The format could have
17303 changed in ways we don't handle properly so just punt. */
17304 complaint (&symfile_complaints,
17305 _("unsupported version in .debug_line section"));
17306 return NULL;
17307 }
17308 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17309 line_ptr += offset_size;
17310 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17311 line_ptr += 1;
17312 if (lh->version >= 4)
17313 {
17314 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17315 line_ptr += 1;
17316 }
17317 else
17318 lh->maximum_ops_per_instruction = 1;
17319
17320 if (lh->maximum_ops_per_instruction == 0)
17321 {
17322 lh->maximum_ops_per_instruction = 1;
17323 complaint (&symfile_complaints,
17324 _("invalid maximum_ops_per_instruction "
17325 "in `.debug_line' section"));
17326 }
17327
17328 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17329 line_ptr += 1;
17330 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17331 line_ptr += 1;
17332 lh->line_range = read_1_byte (abfd, line_ptr);
17333 line_ptr += 1;
17334 lh->opcode_base = read_1_byte (abfd, line_ptr);
17335 line_ptr += 1;
17336 lh->standard_opcode_lengths
17337 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17338
17339 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17340 for (i = 1; i < lh->opcode_base; ++i)
17341 {
17342 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17343 line_ptr += 1;
17344 }
17345
17346 /* Read directory table. */
17347 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17348 {
17349 line_ptr += bytes_read;
17350 add_include_dir (lh, cur_dir);
17351 }
17352 line_ptr += bytes_read;
17353
17354 /* Read file name table. */
17355 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17356 {
17357 unsigned int dir_index, mod_time, length;
17358
17359 line_ptr += bytes_read;
17360 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17361 line_ptr += bytes_read;
17362 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17363 line_ptr += bytes_read;
17364 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17365 line_ptr += bytes_read;
17366
17367 add_file_name (lh, cur_file, dir_index, mod_time, length);
17368 }
17369 line_ptr += bytes_read;
17370 lh->statement_program_start = line_ptr;
17371
17372 if (line_ptr > (section->buffer + section->size))
17373 complaint (&symfile_complaints,
17374 _("line number info header doesn't "
17375 "fit in `.debug_line' section"));
17376
17377 discard_cleanups (back_to);
17378 return lh;
17379 }
17380
17381 /* Subroutine of dwarf_decode_lines to simplify it.
17382 Return the file name of the psymtab for included file FILE_INDEX
17383 in line header LH of PST.
17384 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17385 If space for the result is malloc'd, it will be freed by a cleanup.
17386 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17387
17388 The function creates dangling cleanup registration. */
17389
17390 static const char *
17391 psymtab_include_file_name (const struct line_header *lh, int file_index,
17392 const struct partial_symtab *pst,
17393 const char *comp_dir)
17394 {
17395 const struct file_entry fe = lh->file_names [file_index];
17396 const char *include_name = fe.name;
17397 const char *include_name_to_compare = include_name;
17398 const char *dir_name = NULL;
17399 const char *pst_filename;
17400 char *copied_name = NULL;
17401 int file_is_pst;
17402
17403 if (fe.dir_index && lh->include_dirs != NULL)
17404 dir_name = lh->include_dirs[fe.dir_index - 1];
17405
17406 if (!IS_ABSOLUTE_PATH (include_name)
17407 && (dir_name != NULL || comp_dir != NULL))
17408 {
17409 /* Avoid creating a duplicate psymtab for PST.
17410 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17411 Before we do the comparison, however, we need to account
17412 for DIR_NAME and COMP_DIR.
17413 First prepend dir_name (if non-NULL). If we still don't
17414 have an absolute path prepend comp_dir (if non-NULL).
17415 However, the directory we record in the include-file's
17416 psymtab does not contain COMP_DIR (to match the
17417 corresponding symtab(s)).
17418
17419 Example:
17420
17421 bash$ cd /tmp
17422 bash$ gcc -g ./hello.c
17423 include_name = "hello.c"
17424 dir_name = "."
17425 DW_AT_comp_dir = comp_dir = "/tmp"
17426 DW_AT_name = "./hello.c"
17427
17428 */
17429
17430 if (dir_name != NULL)
17431 {
17432 char *tem = concat (dir_name, SLASH_STRING,
17433 include_name, (char *)NULL);
17434
17435 make_cleanup (xfree, tem);
17436 include_name = tem;
17437 include_name_to_compare = include_name;
17438 }
17439 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17440 {
17441 char *tem = concat (comp_dir, SLASH_STRING,
17442 include_name, (char *)NULL);
17443
17444 make_cleanup (xfree, tem);
17445 include_name_to_compare = tem;
17446 }
17447 }
17448
17449 pst_filename = pst->filename;
17450 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17451 {
17452 copied_name = concat (pst->dirname, SLASH_STRING,
17453 pst_filename, (char *)NULL);
17454 pst_filename = copied_name;
17455 }
17456
17457 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17458
17459 if (copied_name != NULL)
17460 xfree (copied_name);
17461
17462 if (file_is_pst)
17463 return NULL;
17464 return include_name;
17465 }
17466
17467 /* Ignore this record_line request. */
17468
17469 static void
17470 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17471 {
17472 return;
17473 }
17474
17475 /* Return non-zero if we should add LINE to the line number table.
17476 LINE is the line to add, LAST_LINE is the last line that was added,
17477 LAST_SUBFILE is the subfile for LAST_LINE.
17478 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17479 had a non-zero discriminator.
17480
17481 We have to be careful in the presence of discriminators.
17482 E.g., for this line:
17483
17484 for (i = 0; i < 100000; i++);
17485
17486 clang can emit four line number entries for that one line,
17487 each with a different discriminator.
17488 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17489
17490 However, we want gdb to coalesce all four entries into one.
17491 Otherwise the user could stepi into the middle of the line and
17492 gdb would get confused about whether the pc really was in the
17493 middle of the line.
17494
17495 Things are further complicated by the fact that two consecutive
17496 line number entries for the same line is a heuristic used by gcc
17497 to denote the end of the prologue. So we can't just discard duplicate
17498 entries, we have to be selective about it. The heuristic we use is
17499 that we only collapse consecutive entries for the same line if at least
17500 one of those entries has a non-zero discriminator. PR 17276.
17501
17502 Note: Addresses in the line number state machine can never go backwards
17503 within one sequence, thus this coalescing is ok. */
17504
17505 static int
17506 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17507 int line_has_non_zero_discriminator,
17508 struct subfile *last_subfile)
17509 {
17510 if (current_subfile != last_subfile)
17511 return 1;
17512 if (line != last_line)
17513 return 1;
17514 /* Same line for the same file that we've seen already.
17515 As a last check, for pr 17276, only record the line if the line
17516 has never had a non-zero discriminator. */
17517 if (!line_has_non_zero_discriminator)
17518 return 1;
17519 return 0;
17520 }
17521
17522 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17523 in the line table of subfile SUBFILE. */
17524
17525 static void
17526 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17527 unsigned int line, CORE_ADDR address,
17528 record_line_ftype p_record_line)
17529 {
17530 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17531
17532 (*p_record_line) (subfile, line, addr);
17533 }
17534
17535 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17536 Mark the end of a set of line number records.
17537 The arguments are the same as for dwarf_record_line.
17538 If SUBFILE is NULL the request is ignored. */
17539
17540 static void
17541 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17542 CORE_ADDR address, record_line_ftype p_record_line)
17543 {
17544 if (subfile != NULL)
17545 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17546 }
17547
17548 /* Subroutine of dwarf_decode_lines to simplify it.
17549 Process the line number information in LH. */
17550
17551 static void
17552 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17553 const int decode_for_pst_p, CORE_ADDR lowpc)
17554 {
17555 const gdb_byte *line_ptr, *extended_end;
17556 const gdb_byte *line_end;
17557 unsigned int bytes_read, extended_len;
17558 unsigned char op_code, extended_op;
17559 CORE_ADDR baseaddr;
17560 struct objfile *objfile = cu->objfile;
17561 bfd *abfd = objfile->obfd;
17562 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17563 struct subfile *last_subfile = NULL;
17564 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17565 = record_line;
17566
17567 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17568
17569 line_ptr = lh->statement_program_start;
17570 line_end = lh->statement_program_end;
17571
17572 /* Read the statement sequences until there's nothing left. */
17573 while (line_ptr < line_end)
17574 {
17575 /* State machine registers. Call `gdbarch_adjust_dwarf2_line'
17576 on the initial 0 address as if there was a line entry for it
17577 so that the backend has a chance to adjust it and also record
17578 it in case it needs it. This is currently used by MIPS code,
17579 cf. `mips_adjust_dwarf2_line'. */
17580 CORE_ADDR address = gdbarch_adjust_dwarf2_line (gdbarch, 0, 0);
17581 unsigned int file = 1;
17582 unsigned int line = 1;
17583 int is_stmt = lh->default_is_stmt;
17584 int end_sequence = 0;
17585 unsigned char op_index = 0;
17586 unsigned int discriminator = 0;
17587 /* The last line number that was recorded, used to coalesce
17588 consecutive entries for the same line. This can happen, for
17589 example, when discriminators are present. PR 17276. */
17590 unsigned int last_line = 0;
17591 int line_has_non_zero_discriminator = 0;
17592
17593 if (!decode_for_pst_p && lh->num_file_names >= file)
17594 {
17595 /* Start a subfile for the current file of the state machine. */
17596 /* lh->include_dirs and lh->file_names are 0-based, but the
17597 directory and file name numbers in the statement program
17598 are 1-based. */
17599 struct file_entry *fe = &lh->file_names[file - 1];
17600 const char *dir = NULL;
17601
17602 if (fe->dir_index && lh->include_dirs != NULL)
17603 dir = lh->include_dirs[fe->dir_index - 1];
17604
17605 dwarf2_start_subfile (fe->name, dir);
17606 }
17607
17608 /* Decode the table. */
17609 while (!end_sequence)
17610 {
17611 op_code = read_1_byte (abfd, line_ptr);
17612 line_ptr += 1;
17613 if (line_ptr > line_end)
17614 {
17615 dwarf2_debug_line_missing_end_sequence_complaint ();
17616 break;
17617 }
17618
17619 if (op_code >= lh->opcode_base)
17620 {
17621 /* Special opcode. */
17622 unsigned char adj_opcode;
17623 CORE_ADDR addr_adj;
17624 int line_delta;
17625
17626 adj_opcode = op_code - lh->opcode_base;
17627 addr_adj = (((op_index + (adj_opcode / lh->line_range))
17628 / lh->maximum_ops_per_instruction)
17629 * lh->minimum_instruction_length);
17630 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17631 op_index = ((op_index + (adj_opcode / lh->line_range))
17632 % lh->maximum_ops_per_instruction);
17633 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17634 line += line_delta;
17635 if (line_delta != 0)
17636 line_has_non_zero_discriminator = discriminator != 0;
17637 if (lh->num_file_names < file || file == 0)
17638 dwarf2_debug_line_missing_file_complaint ();
17639 /* For now we ignore lines not starting on an
17640 instruction boundary. */
17641 else if (op_index == 0)
17642 {
17643 lh->file_names[file - 1].included_p = 1;
17644 if (!decode_for_pst_p && is_stmt)
17645 {
17646 if (last_subfile != current_subfile)
17647 {
17648 dwarf_finish_line (gdbarch, last_subfile,
17649 address, p_record_line);
17650 }
17651 if (dwarf_record_line_p (line, last_line,
17652 line_has_non_zero_discriminator,
17653 last_subfile))
17654 {
17655 dwarf_record_line (gdbarch, current_subfile,
17656 line, address, p_record_line);
17657 }
17658 last_subfile = current_subfile;
17659 last_line = line;
17660 }
17661 }
17662 discriminator = 0;
17663 }
17664 else switch (op_code)
17665 {
17666 case DW_LNS_extended_op:
17667 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17668 &bytes_read);
17669 line_ptr += bytes_read;
17670 extended_end = line_ptr + extended_len;
17671 extended_op = read_1_byte (abfd, line_ptr);
17672 line_ptr += 1;
17673 switch (extended_op)
17674 {
17675 case DW_LNE_end_sequence:
17676 p_record_line = record_line;
17677 end_sequence = 1;
17678 break;
17679 case DW_LNE_set_address:
17680 address = read_address (abfd, line_ptr, cu, &bytes_read);
17681
17682 /* If address < lowpc then it's not a usable value, it's
17683 outside the pc range of the CU. However, we restrict
17684 the test to only address values of zero to preserve
17685 GDB's previous behaviour which is to handle the specific
17686 case of a function being GC'd by the linker. */
17687 if (address == 0 && address < lowpc)
17688 {
17689 /* This line table is for a function which has been
17690 GCd by the linker. Ignore it. PR gdb/12528 */
17691
17692 long line_offset
17693 = line_ptr - get_debug_line_section (cu)->buffer;
17694
17695 complaint (&symfile_complaints,
17696 _(".debug_line address at offset 0x%lx is 0 "
17697 "[in module %s]"),
17698 line_offset, objfile_name (objfile));
17699 p_record_line = noop_record_line;
17700 /* Note: p_record_line is left as noop_record_line
17701 until we see DW_LNE_end_sequence. */
17702 }
17703
17704 op_index = 0;
17705 line_ptr += bytes_read;
17706 address += baseaddr;
17707 address = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17708 break;
17709 case DW_LNE_define_file:
17710 {
17711 const char *cur_file;
17712 unsigned int dir_index, mod_time, length;
17713
17714 cur_file = read_direct_string (abfd, line_ptr,
17715 &bytes_read);
17716 line_ptr += bytes_read;
17717 dir_index =
17718 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17719 line_ptr += bytes_read;
17720 mod_time =
17721 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17722 line_ptr += bytes_read;
17723 length =
17724 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17725 line_ptr += bytes_read;
17726 add_file_name (lh, cur_file, dir_index, mod_time, length);
17727 }
17728 break;
17729 case DW_LNE_set_discriminator:
17730 /* The discriminator is not interesting to the debugger;
17731 just ignore it. We still need to check its value though:
17732 if there are consecutive entries for the same
17733 (non-prologue) line we want to coalesce them.
17734 PR 17276. */
17735 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17736 &bytes_read);
17737 line_has_non_zero_discriminator |= discriminator != 0;
17738 line_ptr += bytes_read;
17739 break;
17740 default:
17741 complaint (&symfile_complaints,
17742 _("mangled .debug_line section"));
17743 return;
17744 }
17745 /* Make sure that we parsed the extended op correctly. If e.g.
17746 we expected a different address size than the producer used,
17747 we may have read the wrong number of bytes. */
17748 if (line_ptr != extended_end)
17749 {
17750 complaint (&symfile_complaints,
17751 _("mangled .debug_line section"));
17752 return;
17753 }
17754 break;
17755 case DW_LNS_copy:
17756 if (lh->num_file_names < file || file == 0)
17757 dwarf2_debug_line_missing_file_complaint ();
17758 else
17759 {
17760 lh->file_names[file - 1].included_p = 1;
17761 if (!decode_for_pst_p && is_stmt)
17762 {
17763 if (last_subfile != current_subfile)
17764 {
17765 dwarf_finish_line (gdbarch, last_subfile,
17766 address, p_record_line);
17767 }
17768 if (dwarf_record_line_p (line, last_line,
17769 line_has_non_zero_discriminator,
17770 last_subfile))
17771 {
17772 dwarf_record_line (gdbarch, current_subfile,
17773 line, address, p_record_line);
17774 }
17775 last_subfile = current_subfile;
17776 last_line = line;
17777 }
17778 }
17779 discriminator = 0;
17780 break;
17781 case DW_LNS_advance_pc:
17782 {
17783 CORE_ADDR adjust
17784 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17785 CORE_ADDR addr_adj;
17786
17787 addr_adj = (((op_index + adjust)
17788 / lh->maximum_ops_per_instruction)
17789 * lh->minimum_instruction_length);
17790 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17791 op_index = ((op_index + adjust)
17792 % lh->maximum_ops_per_instruction);
17793 line_ptr += bytes_read;
17794 }
17795 break;
17796 case DW_LNS_advance_line:
17797 {
17798 int line_delta
17799 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17800
17801 line += line_delta;
17802 if (line_delta != 0)
17803 line_has_non_zero_discriminator = discriminator != 0;
17804 line_ptr += bytes_read;
17805 }
17806 break;
17807 case DW_LNS_set_file:
17808 {
17809 /* The arrays lh->include_dirs and lh->file_names are
17810 0-based, but the directory and file name numbers in
17811 the statement program are 1-based. */
17812 struct file_entry *fe;
17813 const char *dir = NULL;
17814
17815 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17816 line_ptr += bytes_read;
17817 if (lh->num_file_names < file || file == 0)
17818 dwarf2_debug_line_missing_file_complaint ();
17819 else
17820 {
17821 fe = &lh->file_names[file - 1];
17822 if (fe->dir_index && lh->include_dirs != NULL)
17823 dir = lh->include_dirs[fe->dir_index - 1];
17824 if (!decode_for_pst_p)
17825 {
17826 last_subfile = current_subfile;
17827 line_has_non_zero_discriminator = discriminator != 0;
17828 dwarf2_start_subfile (fe->name, dir);
17829 }
17830 }
17831 }
17832 break;
17833 case DW_LNS_set_column:
17834 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17835 line_ptr += bytes_read;
17836 break;
17837 case DW_LNS_negate_stmt:
17838 is_stmt = (!is_stmt);
17839 break;
17840 case DW_LNS_set_basic_block:
17841 break;
17842 /* Add to the address register of the state machine the
17843 address increment value corresponding to special opcode
17844 255. I.e., this value is scaled by the minimum
17845 instruction length since special opcode 255 would have
17846 scaled the increment. */
17847 case DW_LNS_const_add_pc:
17848 {
17849 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17850 CORE_ADDR addr_adj;
17851
17852 addr_adj = (((op_index + adjust)
17853 / lh->maximum_ops_per_instruction)
17854 * lh->minimum_instruction_length);
17855 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17856 op_index = ((op_index + adjust)
17857 % lh->maximum_ops_per_instruction);
17858 }
17859 break;
17860 case DW_LNS_fixed_advance_pc:
17861 {
17862 CORE_ADDR addr_adj;
17863
17864 addr_adj = read_2_bytes (abfd, line_ptr);
17865 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17866 op_index = 0;
17867 line_ptr += 2;
17868 }
17869 break;
17870 default:
17871 {
17872 /* Unknown standard opcode, ignore it. */
17873 int i;
17874
17875 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17876 {
17877 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17878 line_ptr += bytes_read;
17879 }
17880 }
17881 }
17882 }
17883 if (lh->num_file_names < file || file == 0)
17884 dwarf2_debug_line_missing_file_complaint ();
17885 else
17886 {
17887 lh->file_names[file - 1].included_p = 1;
17888 if (!decode_for_pst_p)
17889 {
17890 dwarf_finish_line (gdbarch, current_subfile, address,
17891 p_record_line);
17892 }
17893 }
17894 }
17895 }
17896
17897 /* Decode the Line Number Program (LNP) for the given line_header
17898 structure and CU. The actual information extracted and the type
17899 of structures created from the LNP depends on the value of PST.
17900
17901 1. If PST is NULL, then this procedure uses the data from the program
17902 to create all necessary symbol tables, and their linetables.
17903
17904 2. If PST is not NULL, this procedure reads the program to determine
17905 the list of files included by the unit represented by PST, and
17906 builds all the associated partial symbol tables.
17907
17908 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17909 It is used for relative paths in the line table.
17910 NOTE: When processing partial symtabs (pst != NULL),
17911 comp_dir == pst->dirname.
17912
17913 NOTE: It is important that psymtabs have the same file name (via strcmp)
17914 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17915 symtab we don't use it in the name of the psymtabs we create.
17916 E.g. expand_line_sal requires this when finding psymtabs to expand.
17917 A good testcase for this is mb-inline.exp.
17918
17919 LOWPC is the lowest address in CU (or 0 if not known).
17920
17921 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
17922 for its PC<->lines mapping information. Otherwise only the filename
17923 table is read in. */
17924
17925 static void
17926 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17927 struct dwarf2_cu *cu, struct partial_symtab *pst,
17928 CORE_ADDR lowpc, int decode_mapping)
17929 {
17930 struct objfile *objfile = cu->objfile;
17931 const int decode_for_pst_p = (pst != NULL);
17932
17933 if (decode_mapping)
17934 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
17935
17936 if (decode_for_pst_p)
17937 {
17938 int file_index;
17939
17940 /* Now that we're done scanning the Line Header Program, we can
17941 create the psymtab of each included file. */
17942 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17943 if (lh->file_names[file_index].included_p == 1)
17944 {
17945 const char *include_name =
17946 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17947 if (include_name != NULL)
17948 dwarf2_create_include_psymtab (include_name, pst, objfile);
17949 }
17950 }
17951 else
17952 {
17953 /* Make sure a symtab is created for every file, even files
17954 which contain only variables (i.e. no code with associated
17955 line numbers). */
17956 struct compunit_symtab *cust = buildsym_compunit_symtab ();
17957 int i;
17958
17959 for (i = 0; i < lh->num_file_names; i++)
17960 {
17961 const char *dir = NULL;
17962 struct file_entry *fe;
17963
17964 fe = &lh->file_names[i];
17965 if (fe->dir_index && lh->include_dirs != NULL)
17966 dir = lh->include_dirs[fe->dir_index - 1];
17967 dwarf2_start_subfile (fe->name, dir);
17968
17969 if (current_subfile->symtab == NULL)
17970 {
17971 current_subfile->symtab
17972 = allocate_symtab (cust, current_subfile->name);
17973 }
17974 fe->symtab = current_subfile->symtab;
17975 }
17976 }
17977 }
17978
17979 /* Start a subfile for DWARF. FILENAME is the name of the file and
17980 DIRNAME the name of the source directory which contains FILENAME
17981 or NULL if not known.
17982 This routine tries to keep line numbers from identical absolute and
17983 relative file names in a common subfile.
17984
17985 Using the `list' example from the GDB testsuite, which resides in
17986 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17987 of /srcdir/list0.c yields the following debugging information for list0.c:
17988
17989 DW_AT_name: /srcdir/list0.c
17990 DW_AT_comp_dir: /compdir
17991 files.files[0].name: list0.h
17992 files.files[0].dir: /srcdir
17993 files.files[1].name: list0.c
17994 files.files[1].dir: /srcdir
17995
17996 The line number information for list0.c has to end up in a single
17997 subfile, so that `break /srcdir/list0.c:1' works as expected.
17998 start_subfile will ensure that this happens provided that we pass the
17999 concatenation of files.files[1].dir and files.files[1].name as the
18000 subfile's name. */
18001
18002 static void
18003 dwarf2_start_subfile (const char *filename, const char *dirname)
18004 {
18005 char *copy = NULL;
18006
18007 /* In order not to lose the line information directory,
18008 we concatenate it to the filename when it makes sense.
18009 Note that the Dwarf3 standard says (speaking of filenames in line
18010 information): ``The directory index is ignored for file names
18011 that represent full path names''. Thus ignoring dirname in the
18012 `else' branch below isn't an issue. */
18013
18014 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18015 {
18016 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18017 filename = copy;
18018 }
18019
18020 start_subfile (filename);
18021
18022 if (copy != NULL)
18023 xfree (copy);
18024 }
18025
18026 /* Start a symtab for DWARF.
18027 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18028
18029 static struct compunit_symtab *
18030 dwarf2_start_symtab (struct dwarf2_cu *cu,
18031 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18032 {
18033 struct compunit_symtab *cust
18034 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18035
18036 record_debugformat ("DWARF 2");
18037 record_producer (cu->producer);
18038
18039 /* We assume that we're processing GCC output. */
18040 processing_gcc_compilation = 2;
18041
18042 cu->processing_has_namespace_info = 0;
18043
18044 return cust;
18045 }
18046
18047 static void
18048 var_decode_location (struct attribute *attr, struct symbol *sym,
18049 struct dwarf2_cu *cu)
18050 {
18051 struct objfile *objfile = cu->objfile;
18052 struct comp_unit_head *cu_header = &cu->header;
18053
18054 /* NOTE drow/2003-01-30: There used to be a comment and some special
18055 code here to turn a symbol with DW_AT_external and a
18056 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18057 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18058 with some versions of binutils) where shared libraries could have
18059 relocations against symbols in their debug information - the
18060 minimal symbol would have the right address, but the debug info
18061 would not. It's no longer necessary, because we will explicitly
18062 apply relocations when we read in the debug information now. */
18063
18064 /* A DW_AT_location attribute with no contents indicates that a
18065 variable has been optimized away. */
18066 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18067 {
18068 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18069 return;
18070 }
18071
18072 /* Handle one degenerate form of location expression specially, to
18073 preserve GDB's previous behavior when section offsets are
18074 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18075 then mark this symbol as LOC_STATIC. */
18076
18077 if (attr_form_is_block (attr)
18078 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18079 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18080 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18081 && (DW_BLOCK (attr)->size
18082 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18083 {
18084 unsigned int dummy;
18085
18086 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18087 SYMBOL_VALUE_ADDRESS (sym) =
18088 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18089 else
18090 SYMBOL_VALUE_ADDRESS (sym) =
18091 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18092 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18093 fixup_symbol_section (sym, objfile);
18094 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18095 SYMBOL_SECTION (sym));
18096 return;
18097 }
18098
18099 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18100 expression evaluator, and use LOC_COMPUTED only when necessary
18101 (i.e. when the value of a register or memory location is
18102 referenced, or a thread-local block, etc.). Then again, it might
18103 not be worthwhile. I'm assuming that it isn't unless performance
18104 or memory numbers show me otherwise. */
18105
18106 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18107
18108 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18109 cu->has_loclist = 1;
18110 }
18111
18112 /* Given a pointer to a DWARF information entry, figure out if we need
18113 to make a symbol table entry for it, and if so, create a new entry
18114 and return a pointer to it.
18115 If TYPE is NULL, determine symbol type from the die, otherwise
18116 used the passed type.
18117 If SPACE is not NULL, use it to hold the new symbol. If it is
18118 NULL, allocate a new symbol on the objfile's obstack. */
18119
18120 static struct symbol *
18121 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18122 struct symbol *space)
18123 {
18124 struct objfile *objfile = cu->objfile;
18125 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18126 struct symbol *sym = NULL;
18127 const char *name;
18128 struct attribute *attr = NULL;
18129 struct attribute *attr2 = NULL;
18130 CORE_ADDR baseaddr;
18131 struct pending **list_to_add = NULL;
18132
18133 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18134
18135 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18136
18137 name = dwarf2_name (die, cu);
18138 if (name)
18139 {
18140 const char *linkagename;
18141 int suppress_add = 0;
18142
18143 if (space)
18144 sym = space;
18145 else
18146 sym = allocate_symbol (objfile);
18147 OBJSTAT (objfile, n_syms++);
18148
18149 /* Cache this symbol's name and the name's demangled form (if any). */
18150 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18151 linkagename = dwarf2_physname (name, die, cu);
18152 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18153
18154 /* Fortran does not have mangling standard and the mangling does differ
18155 between gfortran, iFort etc. */
18156 if (cu->language == language_fortran
18157 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18158 symbol_set_demangled_name (&(sym->ginfo),
18159 dwarf2_full_name (name, die, cu),
18160 NULL);
18161
18162 /* Default assumptions.
18163 Use the passed type or decode it from the die. */
18164 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18165 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18166 if (type != NULL)
18167 SYMBOL_TYPE (sym) = type;
18168 else
18169 SYMBOL_TYPE (sym) = die_type (die, cu);
18170 attr = dwarf2_attr (die,
18171 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18172 cu);
18173 if (attr)
18174 {
18175 SYMBOL_LINE (sym) = DW_UNSND (attr);
18176 }
18177
18178 attr = dwarf2_attr (die,
18179 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18180 cu);
18181 if (attr)
18182 {
18183 int file_index = DW_UNSND (attr);
18184
18185 if (cu->line_header == NULL
18186 || file_index > cu->line_header->num_file_names)
18187 complaint (&symfile_complaints,
18188 _("file index out of range"));
18189 else if (file_index > 0)
18190 {
18191 struct file_entry *fe;
18192
18193 fe = &cu->line_header->file_names[file_index - 1];
18194 symbol_set_symtab (sym, fe->symtab);
18195 }
18196 }
18197
18198 switch (die->tag)
18199 {
18200 case DW_TAG_label:
18201 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18202 if (attr)
18203 {
18204 CORE_ADDR addr;
18205
18206 addr = attr_value_as_address (attr);
18207 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18208 SYMBOL_VALUE_ADDRESS (sym) = addr;
18209 }
18210 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18211 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18212 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18213 add_symbol_to_list (sym, cu->list_in_scope);
18214 break;
18215 case DW_TAG_subprogram:
18216 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18217 finish_block. */
18218 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18219 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18220 if ((attr2 && (DW_UNSND (attr2) != 0))
18221 || cu->language == language_ada)
18222 {
18223 /* Subprograms marked external are stored as a global symbol.
18224 Ada subprograms, whether marked external or not, are always
18225 stored as a global symbol, because we want to be able to
18226 access them globally. For instance, we want to be able
18227 to break on a nested subprogram without having to
18228 specify the context. */
18229 list_to_add = &global_symbols;
18230 }
18231 else
18232 {
18233 list_to_add = cu->list_in_scope;
18234 }
18235 break;
18236 case DW_TAG_inlined_subroutine:
18237 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18238 finish_block. */
18239 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18240 SYMBOL_INLINED (sym) = 1;
18241 list_to_add = cu->list_in_scope;
18242 break;
18243 case DW_TAG_template_value_param:
18244 suppress_add = 1;
18245 /* Fall through. */
18246 case DW_TAG_constant:
18247 case DW_TAG_variable:
18248 case DW_TAG_member:
18249 /* Compilation with minimal debug info may result in
18250 variables with missing type entries. Change the
18251 misleading `void' type to something sensible. */
18252 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18253 SYMBOL_TYPE (sym)
18254 = objfile_type (objfile)->nodebug_data_symbol;
18255
18256 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18257 /* In the case of DW_TAG_member, we should only be called for
18258 static const members. */
18259 if (die->tag == DW_TAG_member)
18260 {
18261 /* dwarf2_add_field uses die_is_declaration,
18262 so we do the same. */
18263 gdb_assert (die_is_declaration (die, cu));
18264 gdb_assert (attr);
18265 }
18266 if (attr)
18267 {
18268 dwarf2_const_value (attr, sym, cu);
18269 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18270 if (!suppress_add)
18271 {
18272 if (attr2 && (DW_UNSND (attr2) != 0))
18273 list_to_add = &global_symbols;
18274 else
18275 list_to_add = cu->list_in_scope;
18276 }
18277 break;
18278 }
18279 attr = dwarf2_attr (die, DW_AT_location, cu);
18280 if (attr)
18281 {
18282 var_decode_location (attr, sym, cu);
18283 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18284
18285 /* Fortran explicitly imports any global symbols to the local
18286 scope by DW_TAG_common_block. */
18287 if (cu->language == language_fortran && die->parent
18288 && die->parent->tag == DW_TAG_common_block)
18289 attr2 = NULL;
18290
18291 if (SYMBOL_CLASS (sym) == LOC_STATIC
18292 && SYMBOL_VALUE_ADDRESS (sym) == 0
18293 && !dwarf2_per_objfile->has_section_at_zero)
18294 {
18295 /* When a static variable is eliminated by the linker,
18296 the corresponding debug information is not stripped
18297 out, but the variable address is set to null;
18298 do not add such variables into symbol table. */
18299 }
18300 else if (attr2 && (DW_UNSND (attr2) != 0))
18301 {
18302 /* Workaround gfortran PR debug/40040 - it uses
18303 DW_AT_location for variables in -fPIC libraries which may
18304 get overriden by other libraries/executable and get
18305 a different address. Resolve it by the minimal symbol
18306 which may come from inferior's executable using copy
18307 relocation. Make this workaround only for gfortran as for
18308 other compilers GDB cannot guess the minimal symbol
18309 Fortran mangling kind. */
18310 if (cu->language == language_fortran && die->parent
18311 && die->parent->tag == DW_TAG_module
18312 && cu->producer
18313 && startswith (cu->producer, "GNU Fortran "))
18314 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18315
18316 /* A variable with DW_AT_external is never static,
18317 but it may be block-scoped. */
18318 list_to_add = (cu->list_in_scope == &file_symbols
18319 ? &global_symbols : cu->list_in_scope);
18320 }
18321 else
18322 list_to_add = cu->list_in_scope;
18323 }
18324 else
18325 {
18326 /* We do not know the address of this symbol.
18327 If it is an external symbol and we have type information
18328 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18329 The address of the variable will then be determined from
18330 the minimal symbol table whenever the variable is
18331 referenced. */
18332 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18333
18334 /* Fortran explicitly imports any global symbols to the local
18335 scope by DW_TAG_common_block. */
18336 if (cu->language == language_fortran && die->parent
18337 && die->parent->tag == DW_TAG_common_block)
18338 {
18339 /* SYMBOL_CLASS doesn't matter here because
18340 read_common_block is going to reset it. */
18341 if (!suppress_add)
18342 list_to_add = cu->list_in_scope;
18343 }
18344 else if (attr2 && (DW_UNSND (attr2) != 0)
18345 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18346 {
18347 /* A variable with DW_AT_external is never static, but it
18348 may be block-scoped. */
18349 list_to_add = (cu->list_in_scope == &file_symbols
18350 ? &global_symbols : cu->list_in_scope);
18351
18352 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18353 }
18354 else if (!die_is_declaration (die, cu))
18355 {
18356 /* Use the default LOC_OPTIMIZED_OUT class. */
18357 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18358 if (!suppress_add)
18359 list_to_add = cu->list_in_scope;
18360 }
18361 }
18362 break;
18363 case DW_TAG_formal_parameter:
18364 /* If we are inside a function, mark this as an argument. If
18365 not, we might be looking at an argument to an inlined function
18366 when we do not have enough information to show inlined frames;
18367 pretend it's a local variable in that case so that the user can
18368 still see it. */
18369 if (context_stack_depth > 0
18370 && context_stack[context_stack_depth - 1].name != NULL)
18371 SYMBOL_IS_ARGUMENT (sym) = 1;
18372 attr = dwarf2_attr (die, DW_AT_location, cu);
18373 if (attr)
18374 {
18375 var_decode_location (attr, sym, cu);
18376 }
18377 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18378 if (attr)
18379 {
18380 dwarf2_const_value (attr, sym, cu);
18381 }
18382
18383 list_to_add = cu->list_in_scope;
18384 break;
18385 case DW_TAG_unspecified_parameters:
18386 /* From varargs functions; gdb doesn't seem to have any
18387 interest in this information, so just ignore it for now.
18388 (FIXME?) */
18389 break;
18390 case DW_TAG_template_type_param:
18391 suppress_add = 1;
18392 /* Fall through. */
18393 case DW_TAG_class_type:
18394 case DW_TAG_interface_type:
18395 case DW_TAG_structure_type:
18396 case DW_TAG_union_type:
18397 case DW_TAG_set_type:
18398 case DW_TAG_enumeration_type:
18399 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18400 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18401
18402 {
18403 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18404 really ever be static objects: otherwise, if you try
18405 to, say, break of a class's method and you're in a file
18406 which doesn't mention that class, it won't work unless
18407 the check for all static symbols in lookup_symbol_aux
18408 saves you. See the OtherFileClass tests in
18409 gdb.c++/namespace.exp. */
18410
18411 if (!suppress_add)
18412 {
18413 list_to_add = (cu->list_in_scope == &file_symbols
18414 && (cu->language == language_cplus
18415 || cu->language == language_java)
18416 ? &global_symbols : cu->list_in_scope);
18417
18418 /* The semantics of C++ state that "struct foo {
18419 ... }" also defines a typedef for "foo". A Java
18420 class declaration also defines a typedef for the
18421 class. */
18422 if (cu->language == language_cplus
18423 || cu->language == language_java
18424 || cu->language == language_ada)
18425 {
18426 /* The symbol's name is already allocated along
18427 with this objfile, so we don't need to
18428 duplicate it for the type. */
18429 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18430 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18431 }
18432 }
18433 }
18434 break;
18435 case DW_TAG_typedef:
18436 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18437 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18438 list_to_add = cu->list_in_scope;
18439 break;
18440 case DW_TAG_base_type:
18441 case DW_TAG_subrange_type:
18442 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18443 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18444 list_to_add = cu->list_in_scope;
18445 break;
18446 case DW_TAG_enumerator:
18447 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18448 if (attr)
18449 {
18450 dwarf2_const_value (attr, sym, cu);
18451 }
18452 {
18453 /* NOTE: carlton/2003-11-10: See comment above in the
18454 DW_TAG_class_type, etc. block. */
18455
18456 list_to_add = (cu->list_in_scope == &file_symbols
18457 && (cu->language == language_cplus
18458 || cu->language == language_java)
18459 ? &global_symbols : cu->list_in_scope);
18460 }
18461 break;
18462 case DW_TAG_imported_declaration:
18463 case DW_TAG_namespace:
18464 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18465 list_to_add = &global_symbols;
18466 break;
18467 case DW_TAG_module:
18468 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18469 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18470 list_to_add = &global_symbols;
18471 break;
18472 case DW_TAG_common_block:
18473 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18474 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18475 add_symbol_to_list (sym, cu->list_in_scope);
18476 break;
18477 default:
18478 /* Not a tag we recognize. Hopefully we aren't processing
18479 trash data, but since we must specifically ignore things
18480 we don't recognize, there is nothing else we should do at
18481 this point. */
18482 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18483 dwarf_tag_name (die->tag));
18484 break;
18485 }
18486
18487 if (suppress_add)
18488 {
18489 sym->hash_next = objfile->template_symbols;
18490 objfile->template_symbols = sym;
18491 list_to_add = NULL;
18492 }
18493
18494 if (list_to_add != NULL)
18495 add_symbol_to_list (sym, list_to_add);
18496
18497 /* For the benefit of old versions of GCC, check for anonymous
18498 namespaces based on the demangled name. */
18499 if (!cu->processing_has_namespace_info
18500 && cu->language == language_cplus)
18501 cp_scan_for_anonymous_namespaces (sym, objfile);
18502 }
18503 return (sym);
18504 }
18505
18506 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18507
18508 static struct symbol *
18509 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18510 {
18511 return new_symbol_full (die, type, cu, NULL);
18512 }
18513
18514 /* Given an attr with a DW_FORM_dataN value in host byte order,
18515 zero-extend it as appropriate for the symbol's type. The DWARF
18516 standard (v4) is not entirely clear about the meaning of using
18517 DW_FORM_dataN for a constant with a signed type, where the type is
18518 wider than the data. The conclusion of a discussion on the DWARF
18519 list was that this is unspecified. We choose to always zero-extend
18520 because that is the interpretation long in use by GCC. */
18521
18522 static gdb_byte *
18523 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18524 struct dwarf2_cu *cu, LONGEST *value, int bits)
18525 {
18526 struct objfile *objfile = cu->objfile;
18527 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18528 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18529 LONGEST l = DW_UNSND (attr);
18530
18531 if (bits < sizeof (*value) * 8)
18532 {
18533 l &= ((LONGEST) 1 << bits) - 1;
18534 *value = l;
18535 }
18536 else if (bits == sizeof (*value) * 8)
18537 *value = l;
18538 else
18539 {
18540 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18541 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18542 return bytes;
18543 }
18544
18545 return NULL;
18546 }
18547
18548 /* Read a constant value from an attribute. Either set *VALUE, or if
18549 the value does not fit in *VALUE, set *BYTES - either already
18550 allocated on the objfile obstack, or newly allocated on OBSTACK,
18551 or, set *BATON, if we translated the constant to a location
18552 expression. */
18553
18554 static void
18555 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18556 const char *name, struct obstack *obstack,
18557 struct dwarf2_cu *cu,
18558 LONGEST *value, const gdb_byte **bytes,
18559 struct dwarf2_locexpr_baton **baton)
18560 {
18561 struct objfile *objfile = cu->objfile;
18562 struct comp_unit_head *cu_header = &cu->header;
18563 struct dwarf_block *blk;
18564 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18565 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18566
18567 *value = 0;
18568 *bytes = NULL;
18569 *baton = NULL;
18570
18571 switch (attr->form)
18572 {
18573 case DW_FORM_addr:
18574 case DW_FORM_GNU_addr_index:
18575 {
18576 gdb_byte *data;
18577
18578 if (TYPE_LENGTH (type) != cu_header->addr_size)
18579 dwarf2_const_value_length_mismatch_complaint (name,
18580 cu_header->addr_size,
18581 TYPE_LENGTH (type));
18582 /* Symbols of this form are reasonably rare, so we just
18583 piggyback on the existing location code rather than writing
18584 a new implementation of symbol_computed_ops. */
18585 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18586 (*baton)->per_cu = cu->per_cu;
18587 gdb_assert ((*baton)->per_cu);
18588
18589 (*baton)->size = 2 + cu_header->addr_size;
18590 data = obstack_alloc (obstack, (*baton)->size);
18591 (*baton)->data = data;
18592
18593 data[0] = DW_OP_addr;
18594 store_unsigned_integer (&data[1], cu_header->addr_size,
18595 byte_order, DW_ADDR (attr));
18596 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18597 }
18598 break;
18599 case DW_FORM_string:
18600 case DW_FORM_strp:
18601 case DW_FORM_GNU_str_index:
18602 case DW_FORM_GNU_strp_alt:
18603 /* DW_STRING is already allocated on the objfile obstack, point
18604 directly to it. */
18605 *bytes = (const gdb_byte *) DW_STRING (attr);
18606 break;
18607 case DW_FORM_block1:
18608 case DW_FORM_block2:
18609 case DW_FORM_block4:
18610 case DW_FORM_block:
18611 case DW_FORM_exprloc:
18612 blk = DW_BLOCK (attr);
18613 if (TYPE_LENGTH (type) != blk->size)
18614 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18615 TYPE_LENGTH (type));
18616 *bytes = blk->data;
18617 break;
18618
18619 /* The DW_AT_const_value attributes are supposed to carry the
18620 symbol's value "represented as it would be on the target
18621 architecture." By the time we get here, it's already been
18622 converted to host endianness, so we just need to sign- or
18623 zero-extend it as appropriate. */
18624 case DW_FORM_data1:
18625 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18626 break;
18627 case DW_FORM_data2:
18628 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18629 break;
18630 case DW_FORM_data4:
18631 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18632 break;
18633 case DW_FORM_data8:
18634 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18635 break;
18636
18637 case DW_FORM_sdata:
18638 *value = DW_SND (attr);
18639 break;
18640
18641 case DW_FORM_udata:
18642 *value = DW_UNSND (attr);
18643 break;
18644
18645 default:
18646 complaint (&symfile_complaints,
18647 _("unsupported const value attribute form: '%s'"),
18648 dwarf_form_name (attr->form));
18649 *value = 0;
18650 break;
18651 }
18652 }
18653
18654
18655 /* Copy constant value from an attribute to a symbol. */
18656
18657 static void
18658 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18659 struct dwarf2_cu *cu)
18660 {
18661 struct objfile *objfile = cu->objfile;
18662 struct comp_unit_head *cu_header = &cu->header;
18663 LONGEST value;
18664 const gdb_byte *bytes;
18665 struct dwarf2_locexpr_baton *baton;
18666
18667 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18668 SYMBOL_PRINT_NAME (sym),
18669 &objfile->objfile_obstack, cu,
18670 &value, &bytes, &baton);
18671
18672 if (baton != NULL)
18673 {
18674 SYMBOL_LOCATION_BATON (sym) = baton;
18675 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18676 }
18677 else if (bytes != NULL)
18678 {
18679 SYMBOL_VALUE_BYTES (sym) = bytes;
18680 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18681 }
18682 else
18683 {
18684 SYMBOL_VALUE (sym) = value;
18685 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18686 }
18687 }
18688
18689 /* Return the type of the die in question using its DW_AT_type attribute. */
18690
18691 static struct type *
18692 die_type (struct die_info *die, struct dwarf2_cu *cu)
18693 {
18694 struct attribute *type_attr;
18695
18696 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18697 if (!type_attr)
18698 {
18699 /* A missing DW_AT_type represents a void type. */
18700 return objfile_type (cu->objfile)->builtin_void;
18701 }
18702
18703 return lookup_die_type (die, type_attr, cu);
18704 }
18705
18706 /* True iff CU's producer generates GNAT Ada auxiliary information
18707 that allows to find parallel types through that information instead
18708 of having to do expensive parallel lookups by type name. */
18709
18710 static int
18711 need_gnat_info (struct dwarf2_cu *cu)
18712 {
18713 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18714 of GNAT produces this auxiliary information, without any indication
18715 that it is produced. Part of enhancing the FSF version of GNAT
18716 to produce that information will be to put in place an indicator
18717 that we can use in order to determine whether the descriptive type
18718 info is available or not. One suggestion that has been made is
18719 to use a new attribute, attached to the CU die. For now, assume
18720 that the descriptive type info is not available. */
18721 return 0;
18722 }
18723
18724 /* Return the auxiliary type of the die in question using its
18725 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18726 attribute is not present. */
18727
18728 static struct type *
18729 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18730 {
18731 struct attribute *type_attr;
18732
18733 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18734 if (!type_attr)
18735 return NULL;
18736
18737 return lookup_die_type (die, type_attr, cu);
18738 }
18739
18740 /* If DIE has a descriptive_type attribute, then set the TYPE's
18741 descriptive type accordingly. */
18742
18743 static void
18744 set_descriptive_type (struct type *type, struct die_info *die,
18745 struct dwarf2_cu *cu)
18746 {
18747 struct type *descriptive_type = die_descriptive_type (die, cu);
18748
18749 if (descriptive_type)
18750 {
18751 ALLOCATE_GNAT_AUX_TYPE (type);
18752 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18753 }
18754 }
18755
18756 /* Return the containing type of the die in question using its
18757 DW_AT_containing_type attribute. */
18758
18759 static struct type *
18760 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18761 {
18762 struct attribute *type_attr;
18763
18764 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18765 if (!type_attr)
18766 error (_("Dwarf Error: Problem turning containing type into gdb type "
18767 "[in module %s]"), objfile_name (cu->objfile));
18768
18769 return lookup_die_type (die, type_attr, cu);
18770 }
18771
18772 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18773
18774 static struct type *
18775 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18776 {
18777 struct objfile *objfile = dwarf2_per_objfile->objfile;
18778 char *message, *saved;
18779
18780 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18781 objfile_name (objfile),
18782 cu->header.offset.sect_off,
18783 die->offset.sect_off);
18784 saved = obstack_copy0 (&objfile->objfile_obstack,
18785 message, strlen (message));
18786 xfree (message);
18787
18788 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18789 }
18790
18791 /* Look up the type of DIE in CU using its type attribute ATTR.
18792 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18793 DW_AT_containing_type.
18794 If there is no type substitute an error marker. */
18795
18796 static struct type *
18797 lookup_die_type (struct die_info *die, const struct attribute *attr,
18798 struct dwarf2_cu *cu)
18799 {
18800 struct objfile *objfile = cu->objfile;
18801 struct type *this_type;
18802
18803 gdb_assert (attr->name == DW_AT_type
18804 || attr->name == DW_AT_GNAT_descriptive_type
18805 || attr->name == DW_AT_containing_type);
18806
18807 /* First see if we have it cached. */
18808
18809 if (attr->form == DW_FORM_GNU_ref_alt)
18810 {
18811 struct dwarf2_per_cu_data *per_cu;
18812 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18813
18814 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18815 this_type = get_die_type_at_offset (offset, per_cu);
18816 }
18817 else if (attr_form_is_ref (attr))
18818 {
18819 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18820
18821 this_type = get_die_type_at_offset (offset, cu->per_cu);
18822 }
18823 else if (attr->form == DW_FORM_ref_sig8)
18824 {
18825 ULONGEST signature = DW_SIGNATURE (attr);
18826
18827 return get_signatured_type (die, signature, cu);
18828 }
18829 else
18830 {
18831 complaint (&symfile_complaints,
18832 _("Dwarf Error: Bad type attribute %s in DIE"
18833 " at 0x%x [in module %s]"),
18834 dwarf_attr_name (attr->name), die->offset.sect_off,
18835 objfile_name (objfile));
18836 return build_error_marker_type (cu, die);
18837 }
18838
18839 /* If not cached we need to read it in. */
18840
18841 if (this_type == NULL)
18842 {
18843 struct die_info *type_die = NULL;
18844 struct dwarf2_cu *type_cu = cu;
18845
18846 if (attr_form_is_ref (attr))
18847 type_die = follow_die_ref (die, attr, &type_cu);
18848 if (type_die == NULL)
18849 return build_error_marker_type (cu, die);
18850 /* If we find the type now, it's probably because the type came
18851 from an inter-CU reference and the type's CU got expanded before
18852 ours. */
18853 this_type = read_type_die (type_die, type_cu);
18854 }
18855
18856 /* If we still don't have a type use an error marker. */
18857
18858 if (this_type == NULL)
18859 return build_error_marker_type (cu, die);
18860
18861 return this_type;
18862 }
18863
18864 /* Return the type in DIE, CU.
18865 Returns NULL for invalid types.
18866
18867 This first does a lookup in die_type_hash,
18868 and only reads the die in if necessary.
18869
18870 NOTE: This can be called when reading in partial or full symbols. */
18871
18872 static struct type *
18873 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18874 {
18875 struct type *this_type;
18876
18877 this_type = get_die_type (die, cu);
18878 if (this_type)
18879 return this_type;
18880
18881 return read_type_die_1 (die, cu);
18882 }
18883
18884 /* Read the type in DIE, CU.
18885 Returns NULL for invalid types. */
18886
18887 static struct type *
18888 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18889 {
18890 struct type *this_type = NULL;
18891
18892 switch (die->tag)
18893 {
18894 case DW_TAG_class_type:
18895 case DW_TAG_interface_type:
18896 case DW_TAG_structure_type:
18897 case DW_TAG_union_type:
18898 this_type = read_structure_type (die, cu);
18899 break;
18900 case DW_TAG_enumeration_type:
18901 this_type = read_enumeration_type (die, cu);
18902 break;
18903 case DW_TAG_subprogram:
18904 case DW_TAG_subroutine_type:
18905 case DW_TAG_inlined_subroutine:
18906 this_type = read_subroutine_type (die, cu);
18907 break;
18908 case DW_TAG_array_type:
18909 this_type = read_array_type (die, cu);
18910 break;
18911 case DW_TAG_set_type:
18912 this_type = read_set_type (die, cu);
18913 break;
18914 case DW_TAG_pointer_type:
18915 this_type = read_tag_pointer_type (die, cu);
18916 break;
18917 case DW_TAG_ptr_to_member_type:
18918 this_type = read_tag_ptr_to_member_type (die, cu);
18919 break;
18920 case DW_TAG_reference_type:
18921 this_type = read_tag_reference_type (die, cu);
18922 break;
18923 case DW_TAG_const_type:
18924 this_type = read_tag_const_type (die, cu);
18925 break;
18926 case DW_TAG_volatile_type:
18927 this_type = read_tag_volatile_type (die, cu);
18928 break;
18929 case DW_TAG_restrict_type:
18930 this_type = read_tag_restrict_type (die, cu);
18931 break;
18932 case DW_TAG_string_type:
18933 this_type = read_tag_string_type (die, cu);
18934 break;
18935 case DW_TAG_typedef:
18936 this_type = read_typedef (die, cu);
18937 break;
18938 case DW_TAG_subrange_type:
18939 this_type = read_subrange_type (die, cu);
18940 break;
18941 case DW_TAG_base_type:
18942 this_type = read_base_type (die, cu);
18943 break;
18944 case DW_TAG_unspecified_type:
18945 this_type = read_unspecified_type (die, cu);
18946 break;
18947 case DW_TAG_namespace:
18948 this_type = read_namespace_type (die, cu);
18949 break;
18950 case DW_TAG_module:
18951 this_type = read_module_type (die, cu);
18952 break;
18953 case DW_TAG_atomic_type:
18954 this_type = read_tag_atomic_type (die, cu);
18955 break;
18956 default:
18957 complaint (&symfile_complaints,
18958 _("unexpected tag in read_type_die: '%s'"),
18959 dwarf_tag_name (die->tag));
18960 break;
18961 }
18962
18963 return this_type;
18964 }
18965
18966 /* See if we can figure out if the class lives in a namespace. We do
18967 this by looking for a member function; its demangled name will
18968 contain namespace info, if there is any.
18969 Return the computed name or NULL.
18970 Space for the result is allocated on the objfile's obstack.
18971 This is the full-die version of guess_partial_die_structure_name.
18972 In this case we know DIE has no useful parent. */
18973
18974 static char *
18975 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18976 {
18977 struct die_info *spec_die;
18978 struct dwarf2_cu *spec_cu;
18979 struct die_info *child;
18980
18981 spec_cu = cu;
18982 spec_die = die_specification (die, &spec_cu);
18983 if (spec_die != NULL)
18984 {
18985 die = spec_die;
18986 cu = spec_cu;
18987 }
18988
18989 for (child = die->child;
18990 child != NULL;
18991 child = child->sibling)
18992 {
18993 if (child->tag == DW_TAG_subprogram)
18994 {
18995 struct attribute *attr;
18996
18997 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18998 if (attr == NULL)
18999 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
19000 if (attr != NULL)
19001 {
19002 char *actual_name
19003 = language_class_name_from_physname (cu->language_defn,
19004 DW_STRING (attr));
19005 char *name = NULL;
19006
19007 if (actual_name != NULL)
19008 {
19009 const char *die_name = dwarf2_name (die, cu);
19010
19011 if (die_name != NULL
19012 && strcmp (die_name, actual_name) != 0)
19013 {
19014 /* Strip off the class name from the full name.
19015 We want the prefix. */
19016 int die_name_len = strlen (die_name);
19017 int actual_name_len = strlen (actual_name);
19018
19019 /* Test for '::' as a sanity check. */
19020 if (actual_name_len > die_name_len + 2
19021 && actual_name[actual_name_len
19022 - die_name_len - 1] == ':')
19023 name =
19024 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19025 actual_name,
19026 actual_name_len - die_name_len - 2);
19027 }
19028 }
19029 xfree (actual_name);
19030 return name;
19031 }
19032 }
19033 }
19034
19035 return NULL;
19036 }
19037
19038 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19039 prefix part in such case. See
19040 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19041
19042 static char *
19043 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19044 {
19045 struct attribute *attr;
19046 char *base;
19047
19048 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19049 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19050 return NULL;
19051
19052 attr = dwarf2_attr (die, DW_AT_name, cu);
19053 if (attr != NULL && DW_STRING (attr) != NULL)
19054 return NULL;
19055
19056 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19057 if (attr == NULL)
19058 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19059 if (attr == NULL || DW_STRING (attr) == NULL)
19060 return NULL;
19061
19062 /* dwarf2_name had to be already called. */
19063 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19064
19065 /* Strip the base name, keep any leading namespaces/classes. */
19066 base = strrchr (DW_STRING (attr), ':');
19067 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19068 return "";
19069
19070 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19071 DW_STRING (attr), &base[-1] - DW_STRING (attr));
19072 }
19073
19074 /* Return the name of the namespace/class that DIE is defined within,
19075 or "" if we can't tell. The caller should not xfree the result.
19076
19077 For example, if we're within the method foo() in the following
19078 code:
19079
19080 namespace N {
19081 class C {
19082 void foo () {
19083 }
19084 };
19085 }
19086
19087 then determine_prefix on foo's die will return "N::C". */
19088
19089 static const char *
19090 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19091 {
19092 struct die_info *parent, *spec_die;
19093 struct dwarf2_cu *spec_cu;
19094 struct type *parent_type;
19095 char *retval;
19096
19097 if (cu->language != language_cplus && cu->language != language_java
19098 && cu->language != language_fortran)
19099 return "";
19100
19101 retval = anonymous_struct_prefix (die, cu);
19102 if (retval)
19103 return retval;
19104
19105 /* We have to be careful in the presence of DW_AT_specification.
19106 For example, with GCC 3.4, given the code
19107
19108 namespace N {
19109 void foo() {
19110 // Definition of N::foo.
19111 }
19112 }
19113
19114 then we'll have a tree of DIEs like this:
19115
19116 1: DW_TAG_compile_unit
19117 2: DW_TAG_namespace // N
19118 3: DW_TAG_subprogram // declaration of N::foo
19119 4: DW_TAG_subprogram // definition of N::foo
19120 DW_AT_specification // refers to die #3
19121
19122 Thus, when processing die #4, we have to pretend that we're in
19123 the context of its DW_AT_specification, namely the contex of die
19124 #3. */
19125 spec_cu = cu;
19126 spec_die = die_specification (die, &spec_cu);
19127 if (spec_die == NULL)
19128 parent = die->parent;
19129 else
19130 {
19131 parent = spec_die->parent;
19132 cu = spec_cu;
19133 }
19134
19135 if (parent == NULL)
19136 return "";
19137 else if (parent->building_fullname)
19138 {
19139 const char *name;
19140 const char *parent_name;
19141
19142 /* It has been seen on RealView 2.2 built binaries,
19143 DW_TAG_template_type_param types actually _defined_ as
19144 children of the parent class:
19145
19146 enum E {};
19147 template class <class Enum> Class{};
19148 Class<enum E> class_e;
19149
19150 1: DW_TAG_class_type (Class)
19151 2: DW_TAG_enumeration_type (E)
19152 3: DW_TAG_enumerator (enum1:0)
19153 3: DW_TAG_enumerator (enum2:1)
19154 ...
19155 2: DW_TAG_template_type_param
19156 DW_AT_type DW_FORM_ref_udata (E)
19157
19158 Besides being broken debug info, it can put GDB into an
19159 infinite loop. Consider:
19160
19161 When we're building the full name for Class<E>, we'll start
19162 at Class, and go look over its template type parameters,
19163 finding E. We'll then try to build the full name of E, and
19164 reach here. We're now trying to build the full name of E,
19165 and look over the parent DIE for containing scope. In the
19166 broken case, if we followed the parent DIE of E, we'd again
19167 find Class, and once again go look at its template type
19168 arguments, etc., etc. Simply don't consider such parent die
19169 as source-level parent of this die (it can't be, the language
19170 doesn't allow it), and break the loop here. */
19171 name = dwarf2_name (die, cu);
19172 parent_name = dwarf2_name (parent, cu);
19173 complaint (&symfile_complaints,
19174 _("template param type '%s' defined within parent '%s'"),
19175 name ? name : "<unknown>",
19176 parent_name ? parent_name : "<unknown>");
19177 return "";
19178 }
19179 else
19180 switch (parent->tag)
19181 {
19182 case DW_TAG_namespace:
19183 parent_type = read_type_die (parent, cu);
19184 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19185 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19186 Work around this problem here. */
19187 if (cu->language == language_cplus
19188 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19189 return "";
19190 /* We give a name to even anonymous namespaces. */
19191 return TYPE_TAG_NAME (parent_type);
19192 case DW_TAG_class_type:
19193 case DW_TAG_interface_type:
19194 case DW_TAG_structure_type:
19195 case DW_TAG_union_type:
19196 case DW_TAG_module:
19197 parent_type = read_type_die (parent, cu);
19198 if (TYPE_TAG_NAME (parent_type) != NULL)
19199 return TYPE_TAG_NAME (parent_type);
19200 else
19201 /* An anonymous structure is only allowed non-static data
19202 members; no typedefs, no member functions, et cetera.
19203 So it does not need a prefix. */
19204 return "";
19205 case DW_TAG_compile_unit:
19206 case DW_TAG_partial_unit:
19207 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19208 if (cu->language == language_cplus
19209 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19210 && die->child != NULL
19211 && (die->tag == DW_TAG_class_type
19212 || die->tag == DW_TAG_structure_type
19213 || die->tag == DW_TAG_union_type))
19214 {
19215 char *name = guess_full_die_structure_name (die, cu);
19216 if (name != NULL)
19217 return name;
19218 }
19219 return "";
19220 case DW_TAG_enumeration_type:
19221 parent_type = read_type_die (parent, cu);
19222 if (TYPE_DECLARED_CLASS (parent_type))
19223 {
19224 if (TYPE_TAG_NAME (parent_type) != NULL)
19225 return TYPE_TAG_NAME (parent_type);
19226 return "";
19227 }
19228 /* Fall through. */
19229 default:
19230 return determine_prefix (parent, cu);
19231 }
19232 }
19233
19234 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19235 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19236 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19237 an obconcat, otherwise allocate storage for the result. The CU argument is
19238 used to determine the language and hence, the appropriate separator. */
19239
19240 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19241
19242 static char *
19243 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19244 int physname, struct dwarf2_cu *cu)
19245 {
19246 const char *lead = "";
19247 const char *sep;
19248
19249 if (suffix == NULL || suffix[0] == '\0'
19250 || prefix == NULL || prefix[0] == '\0')
19251 sep = "";
19252 else if (cu->language == language_java)
19253 sep = ".";
19254 else if (cu->language == language_fortran && physname)
19255 {
19256 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19257 DW_AT_MIPS_linkage_name is preferred and used instead. */
19258
19259 lead = "__";
19260 sep = "_MOD_";
19261 }
19262 else
19263 sep = "::";
19264
19265 if (prefix == NULL)
19266 prefix = "";
19267 if (suffix == NULL)
19268 suffix = "";
19269
19270 if (obs == NULL)
19271 {
19272 char *retval
19273 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
19274
19275 strcpy (retval, lead);
19276 strcat (retval, prefix);
19277 strcat (retval, sep);
19278 strcat (retval, suffix);
19279 return retval;
19280 }
19281 else
19282 {
19283 /* We have an obstack. */
19284 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19285 }
19286 }
19287
19288 /* Return sibling of die, NULL if no sibling. */
19289
19290 static struct die_info *
19291 sibling_die (struct die_info *die)
19292 {
19293 return die->sibling;
19294 }
19295
19296 /* Get name of a die, return NULL if not found. */
19297
19298 static const char *
19299 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19300 struct obstack *obstack)
19301 {
19302 if (name && cu->language == language_cplus)
19303 {
19304 char *canon_name = cp_canonicalize_string (name);
19305
19306 if (canon_name != NULL)
19307 {
19308 if (strcmp (canon_name, name) != 0)
19309 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
19310 xfree (canon_name);
19311 }
19312 }
19313
19314 return name;
19315 }
19316
19317 /* Get name of a die, return NULL if not found.
19318 Anonymous namespaces are converted to their magic string. */
19319
19320 static const char *
19321 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19322 {
19323 struct attribute *attr;
19324
19325 attr = dwarf2_attr (die, DW_AT_name, cu);
19326 if ((!attr || !DW_STRING (attr))
19327 && die->tag != DW_TAG_namespace
19328 && die->tag != DW_TAG_class_type
19329 && die->tag != DW_TAG_interface_type
19330 && die->tag != DW_TAG_structure_type
19331 && die->tag != DW_TAG_union_type)
19332 return NULL;
19333
19334 switch (die->tag)
19335 {
19336 case DW_TAG_compile_unit:
19337 case DW_TAG_partial_unit:
19338 /* Compilation units have a DW_AT_name that is a filename, not
19339 a source language identifier. */
19340 case DW_TAG_enumeration_type:
19341 case DW_TAG_enumerator:
19342 /* These tags always have simple identifiers already; no need
19343 to canonicalize them. */
19344 return DW_STRING (attr);
19345
19346 case DW_TAG_namespace:
19347 if (attr != NULL && DW_STRING (attr) != NULL)
19348 return DW_STRING (attr);
19349 return CP_ANONYMOUS_NAMESPACE_STR;
19350
19351 case DW_TAG_subprogram:
19352 /* Java constructors will all be named "<init>", so return
19353 the class name when we see this special case. */
19354 if (cu->language == language_java
19355 && DW_STRING (attr) != NULL
19356 && strcmp (DW_STRING (attr), "<init>") == 0)
19357 {
19358 struct dwarf2_cu *spec_cu = cu;
19359 struct die_info *spec_die;
19360
19361 /* GCJ will output '<init>' for Java constructor names.
19362 For this special case, return the name of the parent class. */
19363
19364 /* GCJ may output subprogram DIEs with AT_specification set.
19365 If so, use the name of the specified DIE. */
19366 spec_die = die_specification (die, &spec_cu);
19367 if (spec_die != NULL)
19368 return dwarf2_name (spec_die, spec_cu);
19369
19370 do
19371 {
19372 die = die->parent;
19373 if (die->tag == DW_TAG_class_type)
19374 return dwarf2_name (die, cu);
19375 }
19376 while (die->tag != DW_TAG_compile_unit
19377 && die->tag != DW_TAG_partial_unit);
19378 }
19379 break;
19380
19381 case DW_TAG_class_type:
19382 case DW_TAG_interface_type:
19383 case DW_TAG_structure_type:
19384 case DW_TAG_union_type:
19385 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19386 structures or unions. These were of the form "._%d" in GCC 4.1,
19387 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19388 and GCC 4.4. We work around this problem by ignoring these. */
19389 if (attr && DW_STRING (attr)
19390 && (startswith (DW_STRING (attr), "._")
19391 || startswith (DW_STRING (attr), "<anonymous")))
19392 return NULL;
19393
19394 /* GCC might emit a nameless typedef that has a linkage name. See
19395 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19396 if (!attr || DW_STRING (attr) == NULL)
19397 {
19398 char *demangled = NULL;
19399
19400 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19401 if (attr == NULL)
19402 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19403
19404 if (attr == NULL || DW_STRING (attr) == NULL)
19405 return NULL;
19406
19407 /* Avoid demangling DW_STRING (attr) the second time on a second
19408 call for the same DIE. */
19409 if (!DW_STRING_IS_CANONICAL (attr))
19410 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19411
19412 if (demangled)
19413 {
19414 char *base;
19415
19416 /* FIXME: we already did this for the partial symbol... */
19417 DW_STRING (attr)
19418 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19419 demangled, strlen (demangled));
19420 DW_STRING_IS_CANONICAL (attr) = 1;
19421 xfree (demangled);
19422
19423 /* Strip any leading namespaces/classes, keep only the base name.
19424 DW_AT_name for named DIEs does not contain the prefixes. */
19425 base = strrchr (DW_STRING (attr), ':');
19426 if (base && base > DW_STRING (attr) && base[-1] == ':')
19427 return &base[1];
19428 else
19429 return DW_STRING (attr);
19430 }
19431 }
19432 break;
19433
19434 default:
19435 break;
19436 }
19437
19438 if (!DW_STRING_IS_CANONICAL (attr))
19439 {
19440 DW_STRING (attr)
19441 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19442 &cu->objfile->per_bfd->storage_obstack);
19443 DW_STRING_IS_CANONICAL (attr) = 1;
19444 }
19445 return DW_STRING (attr);
19446 }
19447
19448 /* Return the die that this die in an extension of, or NULL if there
19449 is none. *EXT_CU is the CU containing DIE on input, and the CU
19450 containing the return value on output. */
19451
19452 static struct die_info *
19453 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19454 {
19455 struct attribute *attr;
19456
19457 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19458 if (attr == NULL)
19459 return NULL;
19460
19461 return follow_die_ref (die, attr, ext_cu);
19462 }
19463
19464 /* Convert a DIE tag into its string name. */
19465
19466 static const char *
19467 dwarf_tag_name (unsigned tag)
19468 {
19469 const char *name = get_DW_TAG_name (tag);
19470
19471 if (name == NULL)
19472 return "DW_TAG_<unknown>";
19473
19474 return name;
19475 }
19476
19477 /* Convert a DWARF attribute code into its string name. */
19478
19479 static const char *
19480 dwarf_attr_name (unsigned attr)
19481 {
19482 const char *name;
19483
19484 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19485 if (attr == DW_AT_MIPS_fde)
19486 return "DW_AT_MIPS_fde";
19487 #else
19488 if (attr == DW_AT_HP_block_index)
19489 return "DW_AT_HP_block_index";
19490 #endif
19491
19492 name = get_DW_AT_name (attr);
19493
19494 if (name == NULL)
19495 return "DW_AT_<unknown>";
19496
19497 return name;
19498 }
19499
19500 /* Convert a DWARF value form code into its string name. */
19501
19502 static const char *
19503 dwarf_form_name (unsigned form)
19504 {
19505 const char *name = get_DW_FORM_name (form);
19506
19507 if (name == NULL)
19508 return "DW_FORM_<unknown>";
19509
19510 return name;
19511 }
19512
19513 static char *
19514 dwarf_bool_name (unsigned mybool)
19515 {
19516 if (mybool)
19517 return "TRUE";
19518 else
19519 return "FALSE";
19520 }
19521
19522 /* Convert a DWARF type code into its string name. */
19523
19524 static const char *
19525 dwarf_type_encoding_name (unsigned enc)
19526 {
19527 const char *name = get_DW_ATE_name (enc);
19528
19529 if (name == NULL)
19530 return "DW_ATE_<unknown>";
19531
19532 return name;
19533 }
19534
19535 static void
19536 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19537 {
19538 unsigned int i;
19539
19540 print_spaces (indent, f);
19541 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19542 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19543
19544 if (die->parent != NULL)
19545 {
19546 print_spaces (indent, f);
19547 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19548 die->parent->offset.sect_off);
19549 }
19550
19551 print_spaces (indent, f);
19552 fprintf_unfiltered (f, " has children: %s\n",
19553 dwarf_bool_name (die->child != NULL));
19554
19555 print_spaces (indent, f);
19556 fprintf_unfiltered (f, " attributes:\n");
19557
19558 for (i = 0; i < die->num_attrs; ++i)
19559 {
19560 print_spaces (indent, f);
19561 fprintf_unfiltered (f, " %s (%s) ",
19562 dwarf_attr_name (die->attrs[i].name),
19563 dwarf_form_name (die->attrs[i].form));
19564
19565 switch (die->attrs[i].form)
19566 {
19567 case DW_FORM_addr:
19568 case DW_FORM_GNU_addr_index:
19569 fprintf_unfiltered (f, "address: ");
19570 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19571 break;
19572 case DW_FORM_block2:
19573 case DW_FORM_block4:
19574 case DW_FORM_block:
19575 case DW_FORM_block1:
19576 fprintf_unfiltered (f, "block: size %s",
19577 pulongest (DW_BLOCK (&die->attrs[i])->size));
19578 break;
19579 case DW_FORM_exprloc:
19580 fprintf_unfiltered (f, "expression: size %s",
19581 pulongest (DW_BLOCK (&die->attrs[i])->size));
19582 break;
19583 case DW_FORM_ref_addr:
19584 fprintf_unfiltered (f, "ref address: ");
19585 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19586 break;
19587 case DW_FORM_GNU_ref_alt:
19588 fprintf_unfiltered (f, "alt ref address: ");
19589 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19590 break;
19591 case DW_FORM_ref1:
19592 case DW_FORM_ref2:
19593 case DW_FORM_ref4:
19594 case DW_FORM_ref8:
19595 case DW_FORM_ref_udata:
19596 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19597 (long) (DW_UNSND (&die->attrs[i])));
19598 break;
19599 case DW_FORM_data1:
19600 case DW_FORM_data2:
19601 case DW_FORM_data4:
19602 case DW_FORM_data8:
19603 case DW_FORM_udata:
19604 case DW_FORM_sdata:
19605 fprintf_unfiltered (f, "constant: %s",
19606 pulongest (DW_UNSND (&die->attrs[i])));
19607 break;
19608 case DW_FORM_sec_offset:
19609 fprintf_unfiltered (f, "section offset: %s",
19610 pulongest (DW_UNSND (&die->attrs[i])));
19611 break;
19612 case DW_FORM_ref_sig8:
19613 fprintf_unfiltered (f, "signature: %s",
19614 hex_string (DW_SIGNATURE (&die->attrs[i])));
19615 break;
19616 case DW_FORM_string:
19617 case DW_FORM_strp:
19618 case DW_FORM_GNU_str_index:
19619 case DW_FORM_GNU_strp_alt:
19620 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19621 DW_STRING (&die->attrs[i])
19622 ? DW_STRING (&die->attrs[i]) : "",
19623 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19624 break;
19625 case DW_FORM_flag:
19626 if (DW_UNSND (&die->attrs[i]))
19627 fprintf_unfiltered (f, "flag: TRUE");
19628 else
19629 fprintf_unfiltered (f, "flag: FALSE");
19630 break;
19631 case DW_FORM_flag_present:
19632 fprintf_unfiltered (f, "flag: TRUE");
19633 break;
19634 case DW_FORM_indirect:
19635 /* The reader will have reduced the indirect form to
19636 the "base form" so this form should not occur. */
19637 fprintf_unfiltered (f,
19638 "unexpected attribute form: DW_FORM_indirect");
19639 break;
19640 default:
19641 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19642 die->attrs[i].form);
19643 break;
19644 }
19645 fprintf_unfiltered (f, "\n");
19646 }
19647 }
19648
19649 static void
19650 dump_die_for_error (struct die_info *die)
19651 {
19652 dump_die_shallow (gdb_stderr, 0, die);
19653 }
19654
19655 static void
19656 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19657 {
19658 int indent = level * 4;
19659
19660 gdb_assert (die != NULL);
19661
19662 if (level >= max_level)
19663 return;
19664
19665 dump_die_shallow (f, indent, die);
19666
19667 if (die->child != NULL)
19668 {
19669 print_spaces (indent, f);
19670 fprintf_unfiltered (f, " Children:");
19671 if (level + 1 < max_level)
19672 {
19673 fprintf_unfiltered (f, "\n");
19674 dump_die_1 (f, level + 1, max_level, die->child);
19675 }
19676 else
19677 {
19678 fprintf_unfiltered (f,
19679 " [not printed, max nesting level reached]\n");
19680 }
19681 }
19682
19683 if (die->sibling != NULL && level > 0)
19684 {
19685 dump_die_1 (f, level, max_level, die->sibling);
19686 }
19687 }
19688
19689 /* This is called from the pdie macro in gdbinit.in.
19690 It's not static so gcc will keep a copy callable from gdb. */
19691
19692 void
19693 dump_die (struct die_info *die, int max_level)
19694 {
19695 dump_die_1 (gdb_stdlog, 0, max_level, die);
19696 }
19697
19698 static void
19699 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19700 {
19701 void **slot;
19702
19703 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19704 INSERT);
19705
19706 *slot = die;
19707 }
19708
19709 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19710 required kind. */
19711
19712 static sect_offset
19713 dwarf2_get_ref_die_offset (const struct attribute *attr)
19714 {
19715 sect_offset retval = { DW_UNSND (attr) };
19716
19717 if (attr_form_is_ref (attr))
19718 return retval;
19719
19720 retval.sect_off = 0;
19721 complaint (&symfile_complaints,
19722 _("unsupported die ref attribute form: '%s'"),
19723 dwarf_form_name (attr->form));
19724 return retval;
19725 }
19726
19727 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19728 * the value held by the attribute is not constant. */
19729
19730 static LONGEST
19731 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19732 {
19733 if (attr->form == DW_FORM_sdata)
19734 return DW_SND (attr);
19735 else if (attr->form == DW_FORM_udata
19736 || attr->form == DW_FORM_data1
19737 || attr->form == DW_FORM_data2
19738 || attr->form == DW_FORM_data4
19739 || attr->form == DW_FORM_data8)
19740 return DW_UNSND (attr);
19741 else
19742 {
19743 complaint (&symfile_complaints,
19744 _("Attribute value is not a constant (%s)"),
19745 dwarf_form_name (attr->form));
19746 return default_value;
19747 }
19748 }
19749
19750 /* Follow reference or signature attribute ATTR of SRC_DIE.
19751 On entry *REF_CU is the CU of SRC_DIE.
19752 On exit *REF_CU is the CU of the result. */
19753
19754 static struct die_info *
19755 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19756 struct dwarf2_cu **ref_cu)
19757 {
19758 struct die_info *die;
19759
19760 if (attr_form_is_ref (attr))
19761 die = follow_die_ref (src_die, attr, ref_cu);
19762 else if (attr->form == DW_FORM_ref_sig8)
19763 die = follow_die_sig (src_die, attr, ref_cu);
19764 else
19765 {
19766 dump_die_for_error (src_die);
19767 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19768 objfile_name ((*ref_cu)->objfile));
19769 }
19770
19771 return die;
19772 }
19773
19774 /* Follow reference OFFSET.
19775 On entry *REF_CU is the CU of the source die referencing OFFSET.
19776 On exit *REF_CU is the CU of the result.
19777 Returns NULL if OFFSET is invalid. */
19778
19779 static struct die_info *
19780 follow_die_offset (sect_offset offset, int offset_in_dwz,
19781 struct dwarf2_cu **ref_cu)
19782 {
19783 struct die_info temp_die;
19784 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19785
19786 gdb_assert (cu->per_cu != NULL);
19787
19788 target_cu = cu;
19789
19790 if (cu->per_cu->is_debug_types)
19791 {
19792 /* .debug_types CUs cannot reference anything outside their CU.
19793 If they need to, they have to reference a signatured type via
19794 DW_FORM_ref_sig8. */
19795 if (! offset_in_cu_p (&cu->header, offset))
19796 return NULL;
19797 }
19798 else if (offset_in_dwz != cu->per_cu->is_dwz
19799 || ! offset_in_cu_p (&cu->header, offset))
19800 {
19801 struct dwarf2_per_cu_data *per_cu;
19802
19803 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19804 cu->objfile);
19805
19806 /* If necessary, add it to the queue and load its DIEs. */
19807 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19808 load_full_comp_unit (per_cu, cu->language);
19809
19810 target_cu = per_cu->cu;
19811 }
19812 else if (cu->dies == NULL)
19813 {
19814 /* We're loading full DIEs during partial symbol reading. */
19815 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19816 load_full_comp_unit (cu->per_cu, language_minimal);
19817 }
19818
19819 *ref_cu = target_cu;
19820 temp_die.offset = offset;
19821 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19822 }
19823
19824 /* Follow reference attribute ATTR of SRC_DIE.
19825 On entry *REF_CU is the CU of SRC_DIE.
19826 On exit *REF_CU is the CU of the result. */
19827
19828 static struct die_info *
19829 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19830 struct dwarf2_cu **ref_cu)
19831 {
19832 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19833 struct dwarf2_cu *cu = *ref_cu;
19834 struct die_info *die;
19835
19836 die = follow_die_offset (offset,
19837 (attr->form == DW_FORM_GNU_ref_alt
19838 || cu->per_cu->is_dwz),
19839 ref_cu);
19840 if (!die)
19841 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19842 "at 0x%x [in module %s]"),
19843 offset.sect_off, src_die->offset.sect_off,
19844 objfile_name (cu->objfile));
19845
19846 return die;
19847 }
19848
19849 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19850 Returned value is intended for DW_OP_call*. Returned
19851 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19852
19853 struct dwarf2_locexpr_baton
19854 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19855 struct dwarf2_per_cu_data *per_cu,
19856 CORE_ADDR (*get_frame_pc) (void *baton),
19857 void *baton)
19858 {
19859 struct dwarf2_cu *cu;
19860 struct die_info *die;
19861 struct attribute *attr;
19862 struct dwarf2_locexpr_baton retval;
19863
19864 dw2_setup (per_cu->objfile);
19865
19866 if (per_cu->cu == NULL)
19867 load_cu (per_cu);
19868 cu = per_cu->cu;
19869
19870 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19871 if (!die)
19872 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19873 offset.sect_off, objfile_name (per_cu->objfile));
19874
19875 attr = dwarf2_attr (die, DW_AT_location, cu);
19876 if (!attr)
19877 {
19878 /* DWARF: "If there is no such attribute, then there is no effect.".
19879 DATA is ignored if SIZE is 0. */
19880
19881 retval.data = NULL;
19882 retval.size = 0;
19883 }
19884 else if (attr_form_is_section_offset (attr))
19885 {
19886 struct dwarf2_loclist_baton loclist_baton;
19887 CORE_ADDR pc = (*get_frame_pc) (baton);
19888 size_t size;
19889
19890 fill_in_loclist_baton (cu, &loclist_baton, attr);
19891
19892 retval.data = dwarf2_find_location_expression (&loclist_baton,
19893 &size, pc);
19894 retval.size = size;
19895 }
19896 else
19897 {
19898 if (!attr_form_is_block (attr))
19899 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19900 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19901 offset.sect_off, objfile_name (per_cu->objfile));
19902
19903 retval.data = DW_BLOCK (attr)->data;
19904 retval.size = DW_BLOCK (attr)->size;
19905 }
19906 retval.per_cu = cu->per_cu;
19907
19908 age_cached_comp_units ();
19909
19910 return retval;
19911 }
19912
19913 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19914 offset. */
19915
19916 struct dwarf2_locexpr_baton
19917 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19918 struct dwarf2_per_cu_data *per_cu,
19919 CORE_ADDR (*get_frame_pc) (void *baton),
19920 void *baton)
19921 {
19922 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19923
19924 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19925 }
19926
19927 /* Write a constant of a given type as target-ordered bytes into
19928 OBSTACK. */
19929
19930 static const gdb_byte *
19931 write_constant_as_bytes (struct obstack *obstack,
19932 enum bfd_endian byte_order,
19933 struct type *type,
19934 ULONGEST value,
19935 LONGEST *len)
19936 {
19937 gdb_byte *result;
19938
19939 *len = TYPE_LENGTH (type);
19940 result = obstack_alloc (obstack, *len);
19941 store_unsigned_integer (result, *len, byte_order, value);
19942
19943 return result;
19944 }
19945
19946 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19947 pointer to the constant bytes and set LEN to the length of the
19948 data. If memory is needed, allocate it on OBSTACK. If the DIE
19949 does not have a DW_AT_const_value, return NULL. */
19950
19951 const gdb_byte *
19952 dwarf2_fetch_constant_bytes (sect_offset offset,
19953 struct dwarf2_per_cu_data *per_cu,
19954 struct obstack *obstack,
19955 LONGEST *len)
19956 {
19957 struct dwarf2_cu *cu;
19958 struct die_info *die;
19959 struct attribute *attr;
19960 const gdb_byte *result = NULL;
19961 struct type *type;
19962 LONGEST value;
19963 enum bfd_endian byte_order;
19964
19965 dw2_setup (per_cu->objfile);
19966
19967 if (per_cu->cu == NULL)
19968 load_cu (per_cu);
19969 cu = per_cu->cu;
19970
19971 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19972 if (!die)
19973 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19974 offset.sect_off, objfile_name (per_cu->objfile));
19975
19976
19977 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19978 if (attr == NULL)
19979 return NULL;
19980
19981 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19982 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19983
19984 switch (attr->form)
19985 {
19986 case DW_FORM_addr:
19987 case DW_FORM_GNU_addr_index:
19988 {
19989 gdb_byte *tem;
19990
19991 *len = cu->header.addr_size;
19992 tem = obstack_alloc (obstack, *len);
19993 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19994 result = tem;
19995 }
19996 break;
19997 case DW_FORM_string:
19998 case DW_FORM_strp:
19999 case DW_FORM_GNU_str_index:
20000 case DW_FORM_GNU_strp_alt:
20001 /* DW_STRING is already allocated on the objfile obstack, point
20002 directly to it. */
20003 result = (const gdb_byte *) DW_STRING (attr);
20004 *len = strlen (DW_STRING (attr));
20005 break;
20006 case DW_FORM_block1:
20007 case DW_FORM_block2:
20008 case DW_FORM_block4:
20009 case DW_FORM_block:
20010 case DW_FORM_exprloc:
20011 result = DW_BLOCK (attr)->data;
20012 *len = DW_BLOCK (attr)->size;
20013 break;
20014
20015 /* The DW_AT_const_value attributes are supposed to carry the
20016 symbol's value "represented as it would be on the target
20017 architecture." By the time we get here, it's already been
20018 converted to host endianness, so we just need to sign- or
20019 zero-extend it as appropriate. */
20020 case DW_FORM_data1:
20021 type = die_type (die, cu);
20022 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20023 if (result == NULL)
20024 result = write_constant_as_bytes (obstack, byte_order,
20025 type, value, len);
20026 break;
20027 case DW_FORM_data2:
20028 type = die_type (die, cu);
20029 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20030 if (result == NULL)
20031 result = write_constant_as_bytes (obstack, byte_order,
20032 type, value, len);
20033 break;
20034 case DW_FORM_data4:
20035 type = die_type (die, cu);
20036 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20037 if (result == NULL)
20038 result = write_constant_as_bytes (obstack, byte_order,
20039 type, value, len);
20040 break;
20041 case DW_FORM_data8:
20042 type = die_type (die, cu);
20043 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20044 if (result == NULL)
20045 result = write_constant_as_bytes (obstack, byte_order,
20046 type, value, len);
20047 break;
20048
20049 case DW_FORM_sdata:
20050 type = die_type (die, cu);
20051 result = write_constant_as_bytes (obstack, byte_order,
20052 type, DW_SND (attr), len);
20053 break;
20054
20055 case DW_FORM_udata:
20056 type = die_type (die, cu);
20057 result = write_constant_as_bytes (obstack, byte_order,
20058 type, DW_UNSND (attr), len);
20059 break;
20060
20061 default:
20062 complaint (&symfile_complaints,
20063 _("unsupported const value attribute form: '%s'"),
20064 dwarf_form_name (attr->form));
20065 break;
20066 }
20067
20068 return result;
20069 }
20070
20071 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20072 PER_CU. */
20073
20074 struct type *
20075 dwarf2_get_die_type (cu_offset die_offset,
20076 struct dwarf2_per_cu_data *per_cu)
20077 {
20078 sect_offset die_offset_sect;
20079
20080 dw2_setup (per_cu->objfile);
20081
20082 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20083 return get_die_type_at_offset (die_offset_sect, per_cu);
20084 }
20085
20086 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20087 On entry *REF_CU is the CU of SRC_DIE.
20088 On exit *REF_CU is the CU of the result.
20089 Returns NULL if the referenced DIE isn't found. */
20090
20091 static struct die_info *
20092 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20093 struct dwarf2_cu **ref_cu)
20094 {
20095 struct objfile *objfile = (*ref_cu)->objfile;
20096 struct die_info temp_die;
20097 struct dwarf2_cu *sig_cu;
20098 struct die_info *die;
20099
20100 /* While it might be nice to assert sig_type->type == NULL here,
20101 we can get here for DW_AT_imported_declaration where we need
20102 the DIE not the type. */
20103
20104 /* If necessary, add it to the queue and load its DIEs. */
20105
20106 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20107 read_signatured_type (sig_type);
20108
20109 sig_cu = sig_type->per_cu.cu;
20110 gdb_assert (sig_cu != NULL);
20111 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20112 temp_die.offset = sig_type->type_offset_in_section;
20113 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20114 temp_die.offset.sect_off);
20115 if (die)
20116 {
20117 /* For .gdb_index version 7 keep track of included TUs.
20118 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20119 if (dwarf2_per_objfile->index_table != NULL
20120 && dwarf2_per_objfile->index_table->version <= 7)
20121 {
20122 VEC_safe_push (dwarf2_per_cu_ptr,
20123 (*ref_cu)->per_cu->imported_symtabs,
20124 sig_cu->per_cu);
20125 }
20126
20127 *ref_cu = sig_cu;
20128 return die;
20129 }
20130
20131 return NULL;
20132 }
20133
20134 /* Follow signatured type referenced by ATTR in SRC_DIE.
20135 On entry *REF_CU is the CU of SRC_DIE.
20136 On exit *REF_CU is the CU of the result.
20137 The result is the DIE of the type.
20138 If the referenced type cannot be found an error is thrown. */
20139
20140 static struct die_info *
20141 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20142 struct dwarf2_cu **ref_cu)
20143 {
20144 ULONGEST signature = DW_SIGNATURE (attr);
20145 struct signatured_type *sig_type;
20146 struct die_info *die;
20147
20148 gdb_assert (attr->form == DW_FORM_ref_sig8);
20149
20150 sig_type = lookup_signatured_type (*ref_cu, signature);
20151 /* sig_type will be NULL if the signatured type is missing from
20152 the debug info. */
20153 if (sig_type == NULL)
20154 {
20155 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20156 " from DIE at 0x%x [in module %s]"),
20157 hex_string (signature), src_die->offset.sect_off,
20158 objfile_name ((*ref_cu)->objfile));
20159 }
20160
20161 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20162 if (die == NULL)
20163 {
20164 dump_die_for_error (src_die);
20165 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20166 " from DIE at 0x%x [in module %s]"),
20167 hex_string (signature), src_die->offset.sect_off,
20168 objfile_name ((*ref_cu)->objfile));
20169 }
20170
20171 return die;
20172 }
20173
20174 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20175 reading in and processing the type unit if necessary. */
20176
20177 static struct type *
20178 get_signatured_type (struct die_info *die, ULONGEST signature,
20179 struct dwarf2_cu *cu)
20180 {
20181 struct signatured_type *sig_type;
20182 struct dwarf2_cu *type_cu;
20183 struct die_info *type_die;
20184 struct type *type;
20185
20186 sig_type = lookup_signatured_type (cu, signature);
20187 /* sig_type will be NULL if the signatured type is missing from
20188 the debug info. */
20189 if (sig_type == NULL)
20190 {
20191 complaint (&symfile_complaints,
20192 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20193 " from DIE at 0x%x [in module %s]"),
20194 hex_string (signature), die->offset.sect_off,
20195 objfile_name (dwarf2_per_objfile->objfile));
20196 return build_error_marker_type (cu, die);
20197 }
20198
20199 /* If we already know the type we're done. */
20200 if (sig_type->type != NULL)
20201 return sig_type->type;
20202
20203 type_cu = cu;
20204 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20205 if (type_die != NULL)
20206 {
20207 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20208 is created. This is important, for example, because for c++ classes
20209 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20210 type = read_type_die (type_die, type_cu);
20211 if (type == NULL)
20212 {
20213 complaint (&symfile_complaints,
20214 _("Dwarf Error: Cannot build signatured type %s"
20215 " referenced from DIE at 0x%x [in module %s]"),
20216 hex_string (signature), die->offset.sect_off,
20217 objfile_name (dwarf2_per_objfile->objfile));
20218 type = build_error_marker_type (cu, die);
20219 }
20220 }
20221 else
20222 {
20223 complaint (&symfile_complaints,
20224 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20225 " from DIE at 0x%x [in module %s]"),
20226 hex_string (signature), die->offset.sect_off,
20227 objfile_name (dwarf2_per_objfile->objfile));
20228 type = build_error_marker_type (cu, die);
20229 }
20230 sig_type->type = type;
20231
20232 return type;
20233 }
20234
20235 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20236 reading in and processing the type unit if necessary. */
20237
20238 static struct type *
20239 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20240 struct dwarf2_cu *cu) /* ARI: editCase function */
20241 {
20242 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20243 if (attr_form_is_ref (attr))
20244 {
20245 struct dwarf2_cu *type_cu = cu;
20246 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20247
20248 return read_type_die (type_die, type_cu);
20249 }
20250 else if (attr->form == DW_FORM_ref_sig8)
20251 {
20252 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20253 }
20254 else
20255 {
20256 complaint (&symfile_complaints,
20257 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20258 " at 0x%x [in module %s]"),
20259 dwarf_form_name (attr->form), die->offset.sect_off,
20260 objfile_name (dwarf2_per_objfile->objfile));
20261 return build_error_marker_type (cu, die);
20262 }
20263 }
20264
20265 /* Load the DIEs associated with type unit PER_CU into memory. */
20266
20267 static void
20268 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20269 {
20270 struct signatured_type *sig_type;
20271
20272 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20273 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20274
20275 /* We have the per_cu, but we need the signatured_type.
20276 Fortunately this is an easy translation. */
20277 gdb_assert (per_cu->is_debug_types);
20278 sig_type = (struct signatured_type *) per_cu;
20279
20280 gdb_assert (per_cu->cu == NULL);
20281
20282 read_signatured_type (sig_type);
20283
20284 gdb_assert (per_cu->cu != NULL);
20285 }
20286
20287 /* die_reader_func for read_signatured_type.
20288 This is identical to load_full_comp_unit_reader,
20289 but is kept separate for now. */
20290
20291 static void
20292 read_signatured_type_reader (const struct die_reader_specs *reader,
20293 const gdb_byte *info_ptr,
20294 struct die_info *comp_unit_die,
20295 int has_children,
20296 void *data)
20297 {
20298 struct dwarf2_cu *cu = reader->cu;
20299
20300 gdb_assert (cu->die_hash == NULL);
20301 cu->die_hash =
20302 htab_create_alloc_ex (cu->header.length / 12,
20303 die_hash,
20304 die_eq,
20305 NULL,
20306 &cu->comp_unit_obstack,
20307 hashtab_obstack_allocate,
20308 dummy_obstack_deallocate);
20309
20310 if (has_children)
20311 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20312 &info_ptr, comp_unit_die);
20313 cu->dies = comp_unit_die;
20314 /* comp_unit_die is not stored in die_hash, no need. */
20315
20316 /* We try not to read any attributes in this function, because not
20317 all CUs needed for references have been loaded yet, and symbol
20318 table processing isn't initialized. But we have to set the CU language,
20319 or we won't be able to build types correctly.
20320 Similarly, if we do not read the producer, we can not apply
20321 producer-specific interpretation. */
20322 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20323 }
20324
20325 /* Read in a signatured type and build its CU and DIEs.
20326 If the type is a stub for the real type in a DWO file,
20327 read in the real type from the DWO file as well. */
20328
20329 static void
20330 read_signatured_type (struct signatured_type *sig_type)
20331 {
20332 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20333
20334 gdb_assert (per_cu->is_debug_types);
20335 gdb_assert (per_cu->cu == NULL);
20336
20337 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20338 read_signatured_type_reader, NULL);
20339 sig_type->per_cu.tu_read = 1;
20340 }
20341
20342 /* Decode simple location descriptions.
20343 Given a pointer to a dwarf block that defines a location, compute
20344 the location and return the value.
20345
20346 NOTE drow/2003-11-18: This function is called in two situations
20347 now: for the address of static or global variables (partial symbols
20348 only) and for offsets into structures which are expected to be
20349 (more or less) constant. The partial symbol case should go away,
20350 and only the constant case should remain. That will let this
20351 function complain more accurately. A few special modes are allowed
20352 without complaint for global variables (for instance, global
20353 register values and thread-local values).
20354
20355 A location description containing no operations indicates that the
20356 object is optimized out. The return value is 0 for that case.
20357 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20358 callers will only want a very basic result and this can become a
20359 complaint.
20360
20361 Note that stack[0] is unused except as a default error return. */
20362
20363 static CORE_ADDR
20364 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20365 {
20366 struct objfile *objfile = cu->objfile;
20367 size_t i;
20368 size_t size = blk->size;
20369 const gdb_byte *data = blk->data;
20370 CORE_ADDR stack[64];
20371 int stacki;
20372 unsigned int bytes_read, unsnd;
20373 gdb_byte op;
20374
20375 i = 0;
20376 stacki = 0;
20377 stack[stacki] = 0;
20378 stack[++stacki] = 0;
20379
20380 while (i < size)
20381 {
20382 op = data[i++];
20383 switch (op)
20384 {
20385 case DW_OP_lit0:
20386 case DW_OP_lit1:
20387 case DW_OP_lit2:
20388 case DW_OP_lit3:
20389 case DW_OP_lit4:
20390 case DW_OP_lit5:
20391 case DW_OP_lit6:
20392 case DW_OP_lit7:
20393 case DW_OP_lit8:
20394 case DW_OP_lit9:
20395 case DW_OP_lit10:
20396 case DW_OP_lit11:
20397 case DW_OP_lit12:
20398 case DW_OP_lit13:
20399 case DW_OP_lit14:
20400 case DW_OP_lit15:
20401 case DW_OP_lit16:
20402 case DW_OP_lit17:
20403 case DW_OP_lit18:
20404 case DW_OP_lit19:
20405 case DW_OP_lit20:
20406 case DW_OP_lit21:
20407 case DW_OP_lit22:
20408 case DW_OP_lit23:
20409 case DW_OP_lit24:
20410 case DW_OP_lit25:
20411 case DW_OP_lit26:
20412 case DW_OP_lit27:
20413 case DW_OP_lit28:
20414 case DW_OP_lit29:
20415 case DW_OP_lit30:
20416 case DW_OP_lit31:
20417 stack[++stacki] = op - DW_OP_lit0;
20418 break;
20419
20420 case DW_OP_reg0:
20421 case DW_OP_reg1:
20422 case DW_OP_reg2:
20423 case DW_OP_reg3:
20424 case DW_OP_reg4:
20425 case DW_OP_reg5:
20426 case DW_OP_reg6:
20427 case DW_OP_reg7:
20428 case DW_OP_reg8:
20429 case DW_OP_reg9:
20430 case DW_OP_reg10:
20431 case DW_OP_reg11:
20432 case DW_OP_reg12:
20433 case DW_OP_reg13:
20434 case DW_OP_reg14:
20435 case DW_OP_reg15:
20436 case DW_OP_reg16:
20437 case DW_OP_reg17:
20438 case DW_OP_reg18:
20439 case DW_OP_reg19:
20440 case DW_OP_reg20:
20441 case DW_OP_reg21:
20442 case DW_OP_reg22:
20443 case DW_OP_reg23:
20444 case DW_OP_reg24:
20445 case DW_OP_reg25:
20446 case DW_OP_reg26:
20447 case DW_OP_reg27:
20448 case DW_OP_reg28:
20449 case DW_OP_reg29:
20450 case DW_OP_reg30:
20451 case DW_OP_reg31:
20452 stack[++stacki] = op - DW_OP_reg0;
20453 if (i < size)
20454 dwarf2_complex_location_expr_complaint ();
20455 break;
20456
20457 case DW_OP_regx:
20458 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20459 i += bytes_read;
20460 stack[++stacki] = unsnd;
20461 if (i < size)
20462 dwarf2_complex_location_expr_complaint ();
20463 break;
20464
20465 case DW_OP_addr:
20466 stack[++stacki] = read_address (objfile->obfd, &data[i],
20467 cu, &bytes_read);
20468 i += bytes_read;
20469 break;
20470
20471 case DW_OP_const1u:
20472 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20473 i += 1;
20474 break;
20475
20476 case DW_OP_const1s:
20477 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20478 i += 1;
20479 break;
20480
20481 case DW_OP_const2u:
20482 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20483 i += 2;
20484 break;
20485
20486 case DW_OP_const2s:
20487 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20488 i += 2;
20489 break;
20490
20491 case DW_OP_const4u:
20492 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20493 i += 4;
20494 break;
20495
20496 case DW_OP_const4s:
20497 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20498 i += 4;
20499 break;
20500
20501 case DW_OP_const8u:
20502 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20503 i += 8;
20504 break;
20505
20506 case DW_OP_constu:
20507 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20508 &bytes_read);
20509 i += bytes_read;
20510 break;
20511
20512 case DW_OP_consts:
20513 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20514 i += bytes_read;
20515 break;
20516
20517 case DW_OP_dup:
20518 stack[stacki + 1] = stack[stacki];
20519 stacki++;
20520 break;
20521
20522 case DW_OP_plus:
20523 stack[stacki - 1] += stack[stacki];
20524 stacki--;
20525 break;
20526
20527 case DW_OP_plus_uconst:
20528 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20529 &bytes_read);
20530 i += bytes_read;
20531 break;
20532
20533 case DW_OP_minus:
20534 stack[stacki - 1] -= stack[stacki];
20535 stacki--;
20536 break;
20537
20538 case DW_OP_deref:
20539 /* If we're not the last op, then we definitely can't encode
20540 this using GDB's address_class enum. This is valid for partial
20541 global symbols, although the variable's address will be bogus
20542 in the psymtab. */
20543 if (i < size)
20544 dwarf2_complex_location_expr_complaint ();
20545 break;
20546
20547 case DW_OP_GNU_push_tls_address:
20548 /* The top of the stack has the offset from the beginning
20549 of the thread control block at which the variable is located. */
20550 /* Nothing should follow this operator, so the top of stack would
20551 be returned. */
20552 /* This is valid for partial global symbols, but the variable's
20553 address will be bogus in the psymtab. Make it always at least
20554 non-zero to not look as a variable garbage collected by linker
20555 which have DW_OP_addr 0. */
20556 if (i < size)
20557 dwarf2_complex_location_expr_complaint ();
20558 stack[stacki]++;
20559 break;
20560
20561 case DW_OP_GNU_uninit:
20562 break;
20563
20564 case DW_OP_GNU_addr_index:
20565 case DW_OP_GNU_const_index:
20566 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20567 &bytes_read);
20568 i += bytes_read;
20569 break;
20570
20571 default:
20572 {
20573 const char *name = get_DW_OP_name (op);
20574
20575 if (name)
20576 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20577 name);
20578 else
20579 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20580 op);
20581 }
20582
20583 return (stack[stacki]);
20584 }
20585
20586 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20587 outside of the allocated space. Also enforce minimum>0. */
20588 if (stacki >= ARRAY_SIZE (stack) - 1)
20589 {
20590 complaint (&symfile_complaints,
20591 _("location description stack overflow"));
20592 return 0;
20593 }
20594
20595 if (stacki <= 0)
20596 {
20597 complaint (&symfile_complaints,
20598 _("location description stack underflow"));
20599 return 0;
20600 }
20601 }
20602 return (stack[stacki]);
20603 }
20604
20605 /* memory allocation interface */
20606
20607 static struct dwarf_block *
20608 dwarf_alloc_block (struct dwarf2_cu *cu)
20609 {
20610 struct dwarf_block *blk;
20611
20612 blk = (struct dwarf_block *)
20613 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20614 return (blk);
20615 }
20616
20617 static struct die_info *
20618 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20619 {
20620 struct die_info *die;
20621 size_t size = sizeof (struct die_info);
20622
20623 if (num_attrs > 1)
20624 size += (num_attrs - 1) * sizeof (struct attribute);
20625
20626 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20627 memset (die, 0, sizeof (struct die_info));
20628 return (die);
20629 }
20630
20631 \f
20632 /* Macro support. */
20633
20634 /* Return file name relative to the compilation directory of file number I in
20635 *LH's file name table. The result is allocated using xmalloc; the caller is
20636 responsible for freeing it. */
20637
20638 static char *
20639 file_file_name (int file, struct line_header *lh)
20640 {
20641 /* Is the file number a valid index into the line header's file name
20642 table? Remember that file numbers start with one, not zero. */
20643 if (1 <= file && file <= lh->num_file_names)
20644 {
20645 struct file_entry *fe = &lh->file_names[file - 1];
20646
20647 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20648 || lh->include_dirs == NULL)
20649 return xstrdup (fe->name);
20650 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20651 fe->name, NULL);
20652 }
20653 else
20654 {
20655 /* The compiler produced a bogus file number. We can at least
20656 record the macro definitions made in the file, even if we
20657 won't be able to find the file by name. */
20658 char fake_name[80];
20659
20660 xsnprintf (fake_name, sizeof (fake_name),
20661 "<bad macro file number %d>", file);
20662
20663 complaint (&symfile_complaints,
20664 _("bad file number in macro information (%d)"),
20665 file);
20666
20667 return xstrdup (fake_name);
20668 }
20669 }
20670
20671 /* Return the full name of file number I in *LH's file name table.
20672 Use COMP_DIR as the name of the current directory of the
20673 compilation. The result is allocated using xmalloc; the caller is
20674 responsible for freeing it. */
20675 static char *
20676 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20677 {
20678 /* Is the file number a valid index into the line header's file name
20679 table? Remember that file numbers start with one, not zero. */
20680 if (1 <= file && file <= lh->num_file_names)
20681 {
20682 char *relative = file_file_name (file, lh);
20683
20684 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20685 return relative;
20686 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20687 }
20688 else
20689 return file_file_name (file, lh);
20690 }
20691
20692
20693 static struct macro_source_file *
20694 macro_start_file (int file, int line,
20695 struct macro_source_file *current_file,
20696 struct line_header *lh)
20697 {
20698 /* File name relative to the compilation directory of this source file. */
20699 char *file_name = file_file_name (file, lh);
20700
20701 if (! current_file)
20702 {
20703 /* Note: We don't create a macro table for this compilation unit
20704 at all until we actually get a filename. */
20705 struct macro_table *macro_table = get_macro_table ();
20706
20707 /* If we have no current file, then this must be the start_file
20708 directive for the compilation unit's main source file. */
20709 current_file = macro_set_main (macro_table, file_name);
20710 macro_define_special (macro_table);
20711 }
20712 else
20713 current_file = macro_include (current_file, line, file_name);
20714
20715 xfree (file_name);
20716
20717 return current_file;
20718 }
20719
20720
20721 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20722 followed by a null byte. */
20723 static char *
20724 copy_string (const char *buf, int len)
20725 {
20726 char *s = xmalloc (len + 1);
20727
20728 memcpy (s, buf, len);
20729 s[len] = '\0';
20730 return s;
20731 }
20732
20733
20734 static const char *
20735 consume_improper_spaces (const char *p, const char *body)
20736 {
20737 if (*p == ' ')
20738 {
20739 complaint (&symfile_complaints,
20740 _("macro definition contains spaces "
20741 "in formal argument list:\n`%s'"),
20742 body);
20743
20744 while (*p == ' ')
20745 p++;
20746 }
20747
20748 return p;
20749 }
20750
20751
20752 static void
20753 parse_macro_definition (struct macro_source_file *file, int line,
20754 const char *body)
20755 {
20756 const char *p;
20757
20758 /* The body string takes one of two forms. For object-like macro
20759 definitions, it should be:
20760
20761 <macro name> " " <definition>
20762
20763 For function-like macro definitions, it should be:
20764
20765 <macro name> "() " <definition>
20766 or
20767 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20768
20769 Spaces may appear only where explicitly indicated, and in the
20770 <definition>.
20771
20772 The Dwarf 2 spec says that an object-like macro's name is always
20773 followed by a space, but versions of GCC around March 2002 omit
20774 the space when the macro's definition is the empty string.
20775
20776 The Dwarf 2 spec says that there should be no spaces between the
20777 formal arguments in a function-like macro's formal argument list,
20778 but versions of GCC around March 2002 include spaces after the
20779 commas. */
20780
20781
20782 /* Find the extent of the macro name. The macro name is terminated
20783 by either a space or null character (for an object-like macro) or
20784 an opening paren (for a function-like macro). */
20785 for (p = body; *p; p++)
20786 if (*p == ' ' || *p == '(')
20787 break;
20788
20789 if (*p == ' ' || *p == '\0')
20790 {
20791 /* It's an object-like macro. */
20792 int name_len = p - body;
20793 char *name = copy_string (body, name_len);
20794 const char *replacement;
20795
20796 if (*p == ' ')
20797 replacement = body + name_len + 1;
20798 else
20799 {
20800 dwarf2_macro_malformed_definition_complaint (body);
20801 replacement = body + name_len;
20802 }
20803
20804 macro_define_object (file, line, name, replacement);
20805
20806 xfree (name);
20807 }
20808 else if (*p == '(')
20809 {
20810 /* It's a function-like macro. */
20811 char *name = copy_string (body, p - body);
20812 int argc = 0;
20813 int argv_size = 1;
20814 char **argv = xmalloc (argv_size * sizeof (*argv));
20815
20816 p++;
20817
20818 p = consume_improper_spaces (p, body);
20819
20820 /* Parse the formal argument list. */
20821 while (*p && *p != ')')
20822 {
20823 /* Find the extent of the current argument name. */
20824 const char *arg_start = p;
20825
20826 while (*p && *p != ',' && *p != ')' && *p != ' ')
20827 p++;
20828
20829 if (! *p || p == arg_start)
20830 dwarf2_macro_malformed_definition_complaint (body);
20831 else
20832 {
20833 /* Make sure argv has room for the new argument. */
20834 if (argc >= argv_size)
20835 {
20836 argv_size *= 2;
20837 argv = xrealloc (argv, argv_size * sizeof (*argv));
20838 }
20839
20840 argv[argc++] = copy_string (arg_start, p - arg_start);
20841 }
20842
20843 p = consume_improper_spaces (p, body);
20844
20845 /* Consume the comma, if present. */
20846 if (*p == ',')
20847 {
20848 p++;
20849
20850 p = consume_improper_spaces (p, body);
20851 }
20852 }
20853
20854 if (*p == ')')
20855 {
20856 p++;
20857
20858 if (*p == ' ')
20859 /* Perfectly formed definition, no complaints. */
20860 macro_define_function (file, line, name,
20861 argc, (const char **) argv,
20862 p + 1);
20863 else if (*p == '\0')
20864 {
20865 /* Complain, but do define it. */
20866 dwarf2_macro_malformed_definition_complaint (body);
20867 macro_define_function (file, line, name,
20868 argc, (const char **) argv,
20869 p);
20870 }
20871 else
20872 /* Just complain. */
20873 dwarf2_macro_malformed_definition_complaint (body);
20874 }
20875 else
20876 /* Just complain. */
20877 dwarf2_macro_malformed_definition_complaint (body);
20878
20879 xfree (name);
20880 {
20881 int i;
20882
20883 for (i = 0; i < argc; i++)
20884 xfree (argv[i]);
20885 }
20886 xfree (argv);
20887 }
20888 else
20889 dwarf2_macro_malformed_definition_complaint (body);
20890 }
20891
20892 /* Skip some bytes from BYTES according to the form given in FORM.
20893 Returns the new pointer. */
20894
20895 static const gdb_byte *
20896 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20897 enum dwarf_form form,
20898 unsigned int offset_size,
20899 struct dwarf2_section_info *section)
20900 {
20901 unsigned int bytes_read;
20902
20903 switch (form)
20904 {
20905 case DW_FORM_data1:
20906 case DW_FORM_flag:
20907 ++bytes;
20908 break;
20909
20910 case DW_FORM_data2:
20911 bytes += 2;
20912 break;
20913
20914 case DW_FORM_data4:
20915 bytes += 4;
20916 break;
20917
20918 case DW_FORM_data8:
20919 bytes += 8;
20920 break;
20921
20922 case DW_FORM_string:
20923 read_direct_string (abfd, bytes, &bytes_read);
20924 bytes += bytes_read;
20925 break;
20926
20927 case DW_FORM_sec_offset:
20928 case DW_FORM_strp:
20929 case DW_FORM_GNU_strp_alt:
20930 bytes += offset_size;
20931 break;
20932
20933 case DW_FORM_block:
20934 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20935 bytes += bytes_read;
20936 break;
20937
20938 case DW_FORM_block1:
20939 bytes += 1 + read_1_byte (abfd, bytes);
20940 break;
20941 case DW_FORM_block2:
20942 bytes += 2 + read_2_bytes (abfd, bytes);
20943 break;
20944 case DW_FORM_block4:
20945 bytes += 4 + read_4_bytes (abfd, bytes);
20946 break;
20947
20948 case DW_FORM_sdata:
20949 case DW_FORM_udata:
20950 case DW_FORM_GNU_addr_index:
20951 case DW_FORM_GNU_str_index:
20952 bytes = gdb_skip_leb128 (bytes, buffer_end);
20953 if (bytes == NULL)
20954 {
20955 dwarf2_section_buffer_overflow_complaint (section);
20956 return NULL;
20957 }
20958 break;
20959
20960 default:
20961 {
20962 complain:
20963 complaint (&symfile_complaints,
20964 _("invalid form 0x%x in `%s'"),
20965 form, get_section_name (section));
20966 return NULL;
20967 }
20968 }
20969
20970 return bytes;
20971 }
20972
20973 /* A helper for dwarf_decode_macros that handles skipping an unknown
20974 opcode. Returns an updated pointer to the macro data buffer; or,
20975 on error, issues a complaint and returns NULL. */
20976
20977 static const gdb_byte *
20978 skip_unknown_opcode (unsigned int opcode,
20979 const gdb_byte **opcode_definitions,
20980 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20981 bfd *abfd,
20982 unsigned int offset_size,
20983 struct dwarf2_section_info *section)
20984 {
20985 unsigned int bytes_read, i;
20986 unsigned long arg;
20987 const gdb_byte *defn;
20988
20989 if (opcode_definitions[opcode] == NULL)
20990 {
20991 complaint (&symfile_complaints,
20992 _("unrecognized DW_MACFINO opcode 0x%x"),
20993 opcode);
20994 return NULL;
20995 }
20996
20997 defn = opcode_definitions[opcode];
20998 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20999 defn += bytes_read;
21000
21001 for (i = 0; i < arg; ++i)
21002 {
21003 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
21004 section);
21005 if (mac_ptr == NULL)
21006 {
21007 /* skip_form_bytes already issued the complaint. */
21008 return NULL;
21009 }
21010 }
21011
21012 return mac_ptr;
21013 }
21014
21015 /* A helper function which parses the header of a macro section.
21016 If the macro section is the extended (for now called "GNU") type,
21017 then this updates *OFFSET_SIZE. Returns a pointer to just after
21018 the header, or issues a complaint and returns NULL on error. */
21019
21020 static const gdb_byte *
21021 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21022 bfd *abfd,
21023 const gdb_byte *mac_ptr,
21024 unsigned int *offset_size,
21025 int section_is_gnu)
21026 {
21027 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21028
21029 if (section_is_gnu)
21030 {
21031 unsigned int version, flags;
21032
21033 version = read_2_bytes (abfd, mac_ptr);
21034 if (version != 4)
21035 {
21036 complaint (&symfile_complaints,
21037 _("unrecognized version `%d' in .debug_macro section"),
21038 version);
21039 return NULL;
21040 }
21041 mac_ptr += 2;
21042
21043 flags = read_1_byte (abfd, mac_ptr);
21044 ++mac_ptr;
21045 *offset_size = (flags & 1) ? 8 : 4;
21046
21047 if ((flags & 2) != 0)
21048 /* We don't need the line table offset. */
21049 mac_ptr += *offset_size;
21050
21051 /* Vendor opcode descriptions. */
21052 if ((flags & 4) != 0)
21053 {
21054 unsigned int i, count;
21055
21056 count = read_1_byte (abfd, mac_ptr);
21057 ++mac_ptr;
21058 for (i = 0; i < count; ++i)
21059 {
21060 unsigned int opcode, bytes_read;
21061 unsigned long arg;
21062
21063 opcode = read_1_byte (abfd, mac_ptr);
21064 ++mac_ptr;
21065 opcode_definitions[opcode] = mac_ptr;
21066 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21067 mac_ptr += bytes_read;
21068 mac_ptr += arg;
21069 }
21070 }
21071 }
21072
21073 return mac_ptr;
21074 }
21075
21076 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21077 including DW_MACRO_GNU_transparent_include. */
21078
21079 static void
21080 dwarf_decode_macro_bytes (bfd *abfd,
21081 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21082 struct macro_source_file *current_file,
21083 struct line_header *lh,
21084 struct dwarf2_section_info *section,
21085 int section_is_gnu, int section_is_dwz,
21086 unsigned int offset_size,
21087 htab_t include_hash)
21088 {
21089 struct objfile *objfile = dwarf2_per_objfile->objfile;
21090 enum dwarf_macro_record_type macinfo_type;
21091 int at_commandline;
21092 const gdb_byte *opcode_definitions[256];
21093
21094 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21095 &offset_size, section_is_gnu);
21096 if (mac_ptr == NULL)
21097 {
21098 /* We already issued a complaint. */
21099 return;
21100 }
21101
21102 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21103 GDB is still reading the definitions from command line. First
21104 DW_MACINFO_start_file will need to be ignored as it was already executed
21105 to create CURRENT_FILE for the main source holding also the command line
21106 definitions. On first met DW_MACINFO_start_file this flag is reset to
21107 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21108
21109 at_commandline = 1;
21110
21111 do
21112 {
21113 /* Do we at least have room for a macinfo type byte? */
21114 if (mac_ptr >= mac_end)
21115 {
21116 dwarf2_section_buffer_overflow_complaint (section);
21117 break;
21118 }
21119
21120 macinfo_type = read_1_byte (abfd, mac_ptr);
21121 mac_ptr++;
21122
21123 /* Note that we rely on the fact that the corresponding GNU and
21124 DWARF constants are the same. */
21125 switch (macinfo_type)
21126 {
21127 /* A zero macinfo type indicates the end of the macro
21128 information. */
21129 case 0:
21130 break;
21131
21132 case DW_MACRO_GNU_define:
21133 case DW_MACRO_GNU_undef:
21134 case DW_MACRO_GNU_define_indirect:
21135 case DW_MACRO_GNU_undef_indirect:
21136 case DW_MACRO_GNU_define_indirect_alt:
21137 case DW_MACRO_GNU_undef_indirect_alt:
21138 {
21139 unsigned int bytes_read;
21140 int line;
21141 const char *body;
21142 int is_define;
21143
21144 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21145 mac_ptr += bytes_read;
21146
21147 if (macinfo_type == DW_MACRO_GNU_define
21148 || macinfo_type == DW_MACRO_GNU_undef)
21149 {
21150 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21151 mac_ptr += bytes_read;
21152 }
21153 else
21154 {
21155 LONGEST str_offset;
21156
21157 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21158 mac_ptr += offset_size;
21159
21160 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21161 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21162 || section_is_dwz)
21163 {
21164 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21165
21166 body = read_indirect_string_from_dwz (dwz, str_offset);
21167 }
21168 else
21169 body = read_indirect_string_at_offset (abfd, str_offset);
21170 }
21171
21172 is_define = (macinfo_type == DW_MACRO_GNU_define
21173 || macinfo_type == DW_MACRO_GNU_define_indirect
21174 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21175 if (! current_file)
21176 {
21177 /* DWARF violation as no main source is present. */
21178 complaint (&symfile_complaints,
21179 _("debug info with no main source gives macro %s "
21180 "on line %d: %s"),
21181 is_define ? _("definition") : _("undefinition"),
21182 line, body);
21183 break;
21184 }
21185 if ((line == 0 && !at_commandline)
21186 || (line != 0 && at_commandline))
21187 complaint (&symfile_complaints,
21188 _("debug info gives %s macro %s with %s line %d: %s"),
21189 at_commandline ? _("command-line") : _("in-file"),
21190 is_define ? _("definition") : _("undefinition"),
21191 line == 0 ? _("zero") : _("non-zero"), line, body);
21192
21193 if (is_define)
21194 parse_macro_definition (current_file, line, body);
21195 else
21196 {
21197 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21198 || macinfo_type == DW_MACRO_GNU_undef_indirect
21199 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21200 macro_undef (current_file, line, body);
21201 }
21202 }
21203 break;
21204
21205 case DW_MACRO_GNU_start_file:
21206 {
21207 unsigned int bytes_read;
21208 int line, file;
21209
21210 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21211 mac_ptr += bytes_read;
21212 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21213 mac_ptr += bytes_read;
21214
21215 if ((line == 0 && !at_commandline)
21216 || (line != 0 && at_commandline))
21217 complaint (&symfile_complaints,
21218 _("debug info gives source %d included "
21219 "from %s at %s line %d"),
21220 file, at_commandline ? _("command-line") : _("file"),
21221 line == 0 ? _("zero") : _("non-zero"), line);
21222
21223 if (at_commandline)
21224 {
21225 /* This DW_MACRO_GNU_start_file was executed in the
21226 pass one. */
21227 at_commandline = 0;
21228 }
21229 else
21230 current_file = macro_start_file (file, line, current_file, lh);
21231 }
21232 break;
21233
21234 case DW_MACRO_GNU_end_file:
21235 if (! current_file)
21236 complaint (&symfile_complaints,
21237 _("macro debug info has an unmatched "
21238 "`close_file' directive"));
21239 else
21240 {
21241 current_file = current_file->included_by;
21242 if (! current_file)
21243 {
21244 enum dwarf_macro_record_type next_type;
21245
21246 /* GCC circa March 2002 doesn't produce the zero
21247 type byte marking the end of the compilation
21248 unit. Complain if it's not there, but exit no
21249 matter what. */
21250
21251 /* Do we at least have room for a macinfo type byte? */
21252 if (mac_ptr >= mac_end)
21253 {
21254 dwarf2_section_buffer_overflow_complaint (section);
21255 return;
21256 }
21257
21258 /* We don't increment mac_ptr here, so this is just
21259 a look-ahead. */
21260 next_type = read_1_byte (abfd, mac_ptr);
21261 if (next_type != 0)
21262 complaint (&symfile_complaints,
21263 _("no terminating 0-type entry for "
21264 "macros in `.debug_macinfo' section"));
21265
21266 return;
21267 }
21268 }
21269 break;
21270
21271 case DW_MACRO_GNU_transparent_include:
21272 case DW_MACRO_GNU_transparent_include_alt:
21273 {
21274 LONGEST offset;
21275 void **slot;
21276 bfd *include_bfd = abfd;
21277 struct dwarf2_section_info *include_section = section;
21278 struct dwarf2_section_info alt_section;
21279 const gdb_byte *include_mac_end = mac_end;
21280 int is_dwz = section_is_dwz;
21281 const gdb_byte *new_mac_ptr;
21282
21283 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21284 mac_ptr += offset_size;
21285
21286 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21287 {
21288 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21289
21290 dwarf2_read_section (objfile, &dwz->macro);
21291
21292 include_section = &dwz->macro;
21293 include_bfd = get_section_bfd_owner (include_section);
21294 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21295 is_dwz = 1;
21296 }
21297
21298 new_mac_ptr = include_section->buffer + offset;
21299 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21300
21301 if (*slot != NULL)
21302 {
21303 /* This has actually happened; see
21304 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21305 complaint (&symfile_complaints,
21306 _("recursive DW_MACRO_GNU_transparent_include in "
21307 ".debug_macro section"));
21308 }
21309 else
21310 {
21311 *slot = (void *) new_mac_ptr;
21312
21313 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21314 include_mac_end, current_file, lh,
21315 section, section_is_gnu, is_dwz,
21316 offset_size, include_hash);
21317
21318 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21319 }
21320 }
21321 break;
21322
21323 case DW_MACINFO_vendor_ext:
21324 if (!section_is_gnu)
21325 {
21326 unsigned int bytes_read;
21327 int constant;
21328
21329 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21330 mac_ptr += bytes_read;
21331 read_direct_string (abfd, mac_ptr, &bytes_read);
21332 mac_ptr += bytes_read;
21333
21334 /* We don't recognize any vendor extensions. */
21335 break;
21336 }
21337 /* FALLTHROUGH */
21338
21339 default:
21340 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21341 mac_ptr, mac_end, abfd, offset_size,
21342 section);
21343 if (mac_ptr == NULL)
21344 return;
21345 break;
21346 }
21347 } while (macinfo_type != 0);
21348 }
21349
21350 static void
21351 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21352 int section_is_gnu)
21353 {
21354 struct objfile *objfile = dwarf2_per_objfile->objfile;
21355 struct line_header *lh = cu->line_header;
21356 bfd *abfd;
21357 const gdb_byte *mac_ptr, *mac_end;
21358 struct macro_source_file *current_file = 0;
21359 enum dwarf_macro_record_type macinfo_type;
21360 unsigned int offset_size = cu->header.offset_size;
21361 const gdb_byte *opcode_definitions[256];
21362 struct cleanup *cleanup;
21363 htab_t include_hash;
21364 void **slot;
21365 struct dwarf2_section_info *section;
21366 const char *section_name;
21367
21368 if (cu->dwo_unit != NULL)
21369 {
21370 if (section_is_gnu)
21371 {
21372 section = &cu->dwo_unit->dwo_file->sections.macro;
21373 section_name = ".debug_macro.dwo";
21374 }
21375 else
21376 {
21377 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21378 section_name = ".debug_macinfo.dwo";
21379 }
21380 }
21381 else
21382 {
21383 if (section_is_gnu)
21384 {
21385 section = &dwarf2_per_objfile->macro;
21386 section_name = ".debug_macro";
21387 }
21388 else
21389 {
21390 section = &dwarf2_per_objfile->macinfo;
21391 section_name = ".debug_macinfo";
21392 }
21393 }
21394
21395 dwarf2_read_section (objfile, section);
21396 if (section->buffer == NULL)
21397 {
21398 complaint (&symfile_complaints, _("missing %s section"), section_name);
21399 return;
21400 }
21401 abfd = get_section_bfd_owner (section);
21402
21403 /* First pass: Find the name of the base filename.
21404 This filename is needed in order to process all macros whose definition
21405 (or undefinition) comes from the command line. These macros are defined
21406 before the first DW_MACINFO_start_file entry, and yet still need to be
21407 associated to the base file.
21408
21409 To determine the base file name, we scan the macro definitions until we
21410 reach the first DW_MACINFO_start_file entry. We then initialize
21411 CURRENT_FILE accordingly so that any macro definition found before the
21412 first DW_MACINFO_start_file can still be associated to the base file. */
21413
21414 mac_ptr = section->buffer + offset;
21415 mac_end = section->buffer + section->size;
21416
21417 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21418 &offset_size, section_is_gnu);
21419 if (mac_ptr == NULL)
21420 {
21421 /* We already issued a complaint. */
21422 return;
21423 }
21424
21425 do
21426 {
21427 /* Do we at least have room for a macinfo type byte? */
21428 if (mac_ptr >= mac_end)
21429 {
21430 /* Complaint is printed during the second pass as GDB will probably
21431 stop the first pass earlier upon finding
21432 DW_MACINFO_start_file. */
21433 break;
21434 }
21435
21436 macinfo_type = read_1_byte (abfd, mac_ptr);
21437 mac_ptr++;
21438
21439 /* Note that we rely on the fact that the corresponding GNU and
21440 DWARF constants are the same. */
21441 switch (macinfo_type)
21442 {
21443 /* A zero macinfo type indicates the end of the macro
21444 information. */
21445 case 0:
21446 break;
21447
21448 case DW_MACRO_GNU_define:
21449 case DW_MACRO_GNU_undef:
21450 /* Only skip the data by MAC_PTR. */
21451 {
21452 unsigned int bytes_read;
21453
21454 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21455 mac_ptr += bytes_read;
21456 read_direct_string (abfd, mac_ptr, &bytes_read);
21457 mac_ptr += bytes_read;
21458 }
21459 break;
21460
21461 case DW_MACRO_GNU_start_file:
21462 {
21463 unsigned int bytes_read;
21464 int line, file;
21465
21466 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21467 mac_ptr += bytes_read;
21468 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21469 mac_ptr += bytes_read;
21470
21471 current_file = macro_start_file (file, line, current_file, lh);
21472 }
21473 break;
21474
21475 case DW_MACRO_GNU_end_file:
21476 /* No data to skip by MAC_PTR. */
21477 break;
21478
21479 case DW_MACRO_GNU_define_indirect:
21480 case DW_MACRO_GNU_undef_indirect:
21481 case DW_MACRO_GNU_define_indirect_alt:
21482 case DW_MACRO_GNU_undef_indirect_alt:
21483 {
21484 unsigned int bytes_read;
21485
21486 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21487 mac_ptr += bytes_read;
21488 mac_ptr += offset_size;
21489 }
21490 break;
21491
21492 case DW_MACRO_GNU_transparent_include:
21493 case DW_MACRO_GNU_transparent_include_alt:
21494 /* Note that, according to the spec, a transparent include
21495 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21496 skip this opcode. */
21497 mac_ptr += offset_size;
21498 break;
21499
21500 case DW_MACINFO_vendor_ext:
21501 /* Only skip the data by MAC_PTR. */
21502 if (!section_is_gnu)
21503 {
21504 unsigned int bytes_read;
21505
21506 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21507 mac_ptr += bytes_read;
21508 read_direct_string (abfd, mac_ptr, &bytes_read);
21509 mac_ptr += bytes_read;
21510 }
21511 /* FALLTHROUGH */
21512
21513 default:
21514 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21515 mac_ptr, mac_end, abfd, offset_size,
21516 section);
21517 if (mac_ptr == NULL)
21518 return;
21519 break;
21520 }
21521 } while (macinfo_type != 0 && current_file == NULL);
21522
21523 /* Second pass: Process all entries.
21524
21525 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21526 command-line macro definitions/undefinitions. This flag is unset when we
21527 reach the first DW_MACINFO_start_file entry. */
21528
21529 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21530 NULL, xcalloc, xfree);
21531 cleanup = make_cleanup_htab_delete (include_hash);
21532 mac_ptr = section->buffer + offset;
21533 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21534 *slot = (void *) mac_ptr;
21535 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21536 current_file, lh, section,
21537 section_is_gnu, 0, offset_size, include_hash);
21538 do_cleanups (cleanup);
21539 }
21540
21541 /* Check if the attribute's form is a DW_FORM_block*
21542 if so return true else false. */
21543
21544 static int
21545 attr_form_is_block (const struct attribute *attr)
21546 {
21547 return (attr == NULL ? 0 :
21548 attr->form == DW_FORM_block1
21549 || attr->form == DW_FORM_block2
21550 || attr->form == DW_FORM_block4
21551 || attr->form == DW_FORM_block
21552 || attr->form == DW_FORM_exprloc);
21553 }
21554
21555 /* Return non-zero if ATTR's value is a section offset --- classes
21556 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21557 You may use DW_UNSND (attr) to retrieve such offsets.
21558
21559 Section 7.5.4, "Attribute Encodings", explains that no attribute
21560 may have a value that belongs to more than one of these classes; it
21561 would be ambiguous if we did, because we use the same forms for all
21562 of them. */
21563
21564 static int
21565 attr_form_is_section_offset (const struct attribute *attr)
21566 {
21567 return (attr->form == DW_FORM_data4
21568 || attr->form == DW_FORM_data8
21569 || attr->form == DW_FORM_sec_offset);
21570 }
21571
21572 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21573 zero otherwise. When this function returns true, you can apply
21574 dwarf2_get_attr_constant_value to it.
21575
21576 However, note that for some attributes you must check
21577 attr_form_is_section_offset before using this test. DW_FORM_data4
21578 and DW_FORM_data8 are members of both the constant class, and of
21579 the classes that contain offsets into other debug sections
21580 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21581 that, if an attribute's can be either a constant or one of the
21582 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21583 taken as section offsets, not constants. */
21584
21585 static int
21586 attr_form_is_constant (const struct attribute *attr)
21587 {
21588 switch (attr->form)
21589 {
21590 case DW_FORM_sdata:
21591 case DW_FORM_udata:
21592 case DW_FORM_data1:
21593 case DW_FORM_data2:
21594 case DW_FORM_data4:
21595 case DW_FORM_data8:
21596 return 1;
21597 default:
21598 return 0;
21599 }
21600 }
21601
21602
21603 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21604 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21605
21606 static int
21607 attr_form_is_ref (const struct attribute *attr)
21608 {
21609 switch (attr->form)
21610 {
21611 case DW_FORM_ref_addr:
21612 case DW_FORM_ref1:
21613 case DW_FORM_ref2:
21614 case DW_FORM_ref4:
21615 case DW_FORM_ref8:
21616 case DW_FORM_ref_udata:
21617 case DW_FORM_GNU_ref_alt:
21618 return 1;
21619 default:
21620 return 0;
21621 }
21622 }
21623
21624 /* Return the .debug_loc section to use for CU.
21625 For DWO files use .debug_loc.dwo. */
21626
21627 static struct dwarf2_section_info *
21628 cu_debug_loc_section (struct dwarf2_cu *cu)
21629 {
21630 if (cu->dwo_unit)
21631 return &cu->dwo_unit->dwo_file->sections.loc;
21632 return &dwarf2_per_objfile->loc;
21633 }
21634
21635 /* A helper function that fills in a dwarf2_loclist_baton. */
21636
21637 static void
21638 fill_in_loclist_baton (struct dwarf2_cu *cu,
21639 struct dwarf2_loclist_baton *baton,
21640 const struct attribute *attr)
21641 {
21642 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21643
21644 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21645
21646 baton->per_cu = cu->per_cu;
21647 gdb_assert (baton->per_cu);
21648 /* We don't know how long the location list is, but make sure we
21649 don't run off the edge of the section. */
21650 baton->size = section->size - DW_UNSND (attr);
21651 baton->data = section->buffer + DW_UNSND (attr);
21652 baton->base_address = cu->base_address;
21653 baton->from_dwo = cu->dwo_unit != NULL;
21654 }
21655
21656 static void
21657 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21658 struct dwarf2_cu *cu, int is_block)
21659 {
21660 struct objfile *objfile = dwarf2_per_objfile->objfile;
21661 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21662
21663 if (attr_form_is_section_offset (attr)
21664 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21665 the section. If so, fall through to the complaint in the
21666 other branch. */
21667 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21668 {
21669 struct dwarf2_loclist_baton *baton;
21670
21671 baton = obstack_alloc (&objfile->objfile_obstack,
21672 sizeof (struct dwarf2_loclist_baton));
21673
21674 fill_in_loclist_baton (cu, baton, attr);
21675
21676 if (cu->base_known == 0)
21677 complaint (&symfile_complaints,
21678 _("Location list used without "
21679 "specifying the CU base address."));
21680
21681 SYMBOL_ACLASS_INDEX (sym) = (is_block
21682 ? dwarf2_loclist_block_index
21683 : dwarf2_loclist_index);
21684 SYMBOL_LOCATION_BATON (sym) = baton;
21685 }
21686 else
21687 {
21688 struct dwarf2_locexpr_baton *baton;
21689
21690 baton = obstack_alloc (&objfile->objfile_obstack,
21691 sizeof (struct dwarf2_locexpr_baton));
21692 baton->per_cu = cu->per_cu;
21693 gdb_assert (baton->per_cu);
21694
21695 if (attr_form_is_block (attr))
21696 {
21697 /* Note that we're just copying the block's data pointer
21698 here, not the actual data. We're still pointing into the
21699 info_buffer for SYM's objfile; right now we never release
21700 that buffer, but when we do clean up properly this may
21701 need to change. */
21702 baton->size = DW_BLOCK (attr)->size;
21703 baton->data = DW_BLOCK (attr)->data;
21704 }
21705 else
21706 {
21707 dwarf2_invalid_attrib_class_complaint ("location description",
21708 SYMBOL_NATURAL_NAME (sym));
21709 baton->size = 0;
21710 }
21711
21712 SYMBOL_ACLASS_INDEX (sym) = (is_block
21713 ? dwarf2_locexpr_block_index
21714 : dwarf2_locexpr_index);
21715 SYMBOL_LOCATION_BATON (sym) = baton;
21716 }
21717 }
21718
21719 /* Return the OBJFILE associated with the compilation unit CU. If CU
21720 came from a separate debuginfo file, then the master objfile is
21721 returned. */
21722
21723 struct objfile *
21724 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21725 {
21726 struct objfile *objfile = per_cu->objfile;
21727
21728 /* Return the master objfile, so that we can report and look up the
21729 correct file containing this variable. */
21730 if (objfile->separate_debug_objfile_backlink)
21731 objfile = objfile->separate_debug_objfile_backlink;
21732
21733 return objfile;
21734 }
21735
21736 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21737 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21738 CU_HEADERP first. */
21739
21740 static const struct comp_unit_head *
21741 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21742 struct dwarf2_per_cu_data *per_cu)
21743 {
21744 const gdb_byte *info_ptr;
21745
21746 if (per_cu->cu)
21747 return &per_cu->cu->header;
21748
21749 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21750
21751 memset (cu_headerp, 0, sizeof (*cu_headerp));
21752 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21753
21754 return cu_headerp;
21755 }
21756
21757 /* Return the address size given in the compilation unit header for CU. */
21758
21759 int
21760 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21761 {
21762 struct comp_unit_head cu_header_local;
21763 const struct comp_unit_head *cu_headerp;
21764
21765 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21766
21767 return cu_headerp->addr_size;
21768 }
21769
21770 /* Return the offset size given in the compilation unit header for CU. */
21771
21772 int
21773 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21774 {
21775 struct comp_unit_head cu_header_local;
21776 const struct comp_unit_head *cu_headerp;
21777
21778 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21779
21780 return cu_headerp->offset_size;
21781 }
21782
21783 /* See its dwarf2loc.h declaration. */
21784
21785 int
21786 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21787 {
21788 struct comp_unit_head cu_header_local;
21789 const struct comp_unit_head *cu_headerp;
21790
21791 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21792
21793 if (cu_headerp->version == 2)
21794 return cu_headerp->addr_size;
21795 else
21796 return cu_headerp->offset_size;
21797 }
21798
21799 /* Return the text offset of the CU. The returned offset comes from
21800 this CU's objfile. If this objfile came from a separate debuginfo
21801 file, then the offset may be different from the corresponding
21802 offset in the parent objfile. */
21803
21804 CORE_ADDR
21805 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21806 {
21807 struct objfile *objfile = per_cu->objfile;
21808
21809 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21810 }
21811
21812 /* Locate the .debug_info compilation unit from CU's objfile which contains
21813 the DIE at OFFSET. Raises an error on failure. */
21814
21815 static struct dwarf2_per_cu_data *
21816 dwarf2_find_containing_comp_unit (sect_offset offset,
21817 unsigned int offset_in_dwz,
21818 struct objfile *objfile)
21819 {
21820 struct dwarf2_per_cu_data *this_cu;
21821 int low, high;
21822 const sect_offset *cu_off;
21823
21824 low = 0;
21825 high = dwarf2_per_objfile->n_comp_units - 1;
21826 while (high > low)
21827 {
21828 struct dwarf2_per_cu_data *mid_cu;
21829 int mid = low + (high - low) / 2;
21830
21831 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21832 cu_off = &mid_cu->offset;
21833 if (mid_cu->is_dwz > offset_in_dwz
21834 || (mid_cu->is_dwz == offset_in_dwz
21835 && cu_off->sect_off >= offset.sect_off))
21836 high = mid;
21837 else
21838 low = mid + 1;
21839 }
21840 gdb_assert (low == high);
21841 this_cu = dwarf2_per_objfile->all_comp_units[low];
21842 cu_off = &this_cu->offset;
21843 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21844 {
21845 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21846 error (_("Dwarf Error: could not find partial DIE containing "
21847 "offset 0x%lx [in module %s]"),
21848 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21849
21850 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21851 <= offset.sect_off);
21852 return dwarf2_per_objfile->all_comp_units[low-1];
21853 }
21854 else
21855 {
21856 this_cu = dwarf2_per_objfile->all_comp_units[low];
21857 if (low == dwarf2_per_objfile->n_comp_units - 1
21858 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21859 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21860 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21861 return this_cu;
21862 }
21863 }
21864
21865 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21866
21867 static void
21868 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21869 {
21870 memset (cu, 0, sizeof (*cu));
21871 per_cu->cu = cu;
21872 cu->per_cu = per_cu;
21873 cu->objfile = per_cu->objfile;
21874 obstack_init (&cu->comp_unit_obstack);
21875 }
21876
21877 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21878
21879 static void
21880 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21881 enum language pretend_language)
21882 {
21883 struct attribute *attr;
21884
21885 /* Set the language we're debugging. */
21886 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21887 if (attr)
21888 set_cu_language (DW_UNSND (attr), cu);
21889 else
21890 {
21891 cu->language = pretend_language;
21892 cu->language_defn = language_def (cu->language);
21893 }
21894
21895 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21896 if (attr)
21897 cu->producer = DW_STRING (attr);
21898 }
21899
21900 /* Release one cached compilation unit, CU. We unlink it from the tree
21901 of compilation units, but we don't remove it from the read_in_chain;
21902 the caller is responsible for that.
21903 NOTE: DATA is a void * because this function is also used as a
21904 cleanup routine. */
21905
21906 static void
21907 free_heap_comp_unit (void *data)
21908 {
21909 struct dwarf2_cu *cu = data;
21910
21911 gdb_assert (cu->per_cu != NULL);
21912 cu->per_cu->cu = NULL;
21913 cu->per_cu = NULL;
21914
21915 obstack_free (&cu->comp_unit_obstack, NULL);
21916
21917 xfree (cu);
21918 }
21919
21920 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21921 when we're finished with it. We can't free the pointer itself, but be
21922 sure to unlink it from the cache. Also release any associated storage. */
21923
21924 static void
21925 free_stack_comp_unit (void *data)
21926 {
21927 struct dwarf2_cu *cu = data;
21928
21929 gdb_assert (cu->per_cu != NULL);
21930 cu->per_cu->cu = NULL;
21931 cu->per_cu = NULL;
21932
21933 obstack_free (&cu->comp_unit_obstack, NULL);
21934 cu->partial_dies = NULL;
21935 }
21936
21937 /* Free all cached compilation units. */
21938
21939 static void
21940 free_cached_comp_units (void *data)
21941 {
21942 struct dwarf2_per_cu_data *per_cu, **last_chain;
21943
21944 per_cu = dwarf2_per_objfile->read_in_chain;
21945 last_chain = &dwarf2_per_objfile->read_in_chain;
21946 while (per_cu != NULL)
21947 {
21948 struct dwarf2_per_cu_data *next_cu;
21949
21950 next_cu = per_cu->cu->read_in_chain;
21951
21952 free_heap_comp_unit (per_cu->cu);
21953 *last_chain = next_cu;
21954
21955 per_cu = next_cu;
21956 }
21957 }
21958
21959 /* Increase the age counter on each cached compilation unit, and free
21960 any that are too old. */
21961
21962 static void
21963 age_cached_comp_units (void)
21964 {
21965 struct dwarf2_per_cu_data *per_cu, **last_chain;
21966
21967 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21968 per_cu = dwarf2_per_objfile->read_in_chain;
21969 while (per_cu != NULL)
21970 {
21971 per_cu->cu->last_used ++;
21972 if (per_cu->cu->last_used <= dwarf_max_cache_age)
21973 dwarf2_mark (per_cu->cu);
21974 per_cu = per_cu->cu->read_in_chain;
21975 }
21976
21977 per_cu = dwarf2_per_objfile->read_in_chain;
21978 last_chain = &dwarf2_per_objfile->read_in_chain;
21979 while (per_cu != NULL)
21980 {
21981 struct dwarf2_per_cu_data *next_cu;
21982
21983 next_cu = per_cu->cu->read_in_chain;
21984
21985 if (!per_cu->cu->mark)
21986 {
21987 free_heap_comp_unit (per_cu->cu);
21988 *last_chain = next_cu;
21989 }
21990 else
21991 last_chain = &per_cu->cu->read_in_chain;
21992
21993 per_cu = next_cu;
21994 }
21995 }
21996
21997 /* Remove a single compilation unit from the cache. */
21998
21999 static void
22000 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22001 {
22002 struct dwarf2_per_cu_data *per_cu, **last_chain;
22003
22004 per_cu = dwarf2_per_objfile->read_in_chain;
22005 last_chain = &dwarf2_per_objfile->read_in_chain;
22006 while (per_cu != NULL)
22007 {
22008 struct dwarf2_per_cu_data *next_cu;
22009
22010 next_cu = per_cu->cu->read_in_chain;
22011
22012 if (per_cu == target_per_cu)
22013 {
22014 free_heap_comp_unit (per_cu->cu);
22015 per_cu->cu = NULL;
22016 *last_chain = next_cu;
22017 break;
22018 }
22019 else
22020 last_chain = &per_cu->cu->read_in_chain;
22021
22022 per_cu = next_cu;
22023 }
22024 }
22025
22026 /* Release all extra memory associated with OBJFILE. */
22027
22028 void
22029 dwarf2_free_objfile (struct objfile *objfile)
22030 {
22031 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22032
22033 if (dwarf2_per_objfile == NULL)
22034 return;
22035
22036 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22037 free_cached_comp_units (NULL);
22038
22039 if (dwarf2_per_objfile->quick_file_names_table)
22040 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22041
22042 if (dwarf2_per_objfile->line_header_hash)
22043 htab_delete (dwarf2_per_objfile->line_header_hash);
22044
22045 /* Everything else should be on the objfile obstack. */
22046 }
22047
22048 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22049 We store these in a hash table separate from the DIEs, and preserve them
22050 when the DIEs are flushed out of cache.
22051
22052 The CU "per_cu" pointer is needed because offset alone is not enough to
22053 uniquely identify the type. A file may have multiple .debug_types sections,
22054 or the type may come from a DWO file. Furthermore, while it's more logical
22055 to use per_cu->section+offset, with Fission the section with the data is in
22056 the DWO file but we don't know that section at the point we need it.
22057 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22058 because we can enter the lookup routine, get_die_type_at_offset, from
22059 outside this file, and thus won't necessarily have PER_CU->cu.
22060 Fortunately, PER_CU is stable for the life of the objfile. */
22061
22062 struct dwarf2_per_cu_offset_and_type
22063 {
22064 const struct dwarf2_per_cu_data *per_cu;
22065 sect_offset offset;
22066 struct type *type;
22067 };
22068
22069 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22070
22071 static hashval_t
22072 per_cu_offset_and_type_hash (const void *item)
22073 {
22074 const struct dwarf2_per_cu_offset_and_type *ofs = item;
22075
22076 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22077 }
22078
22079 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22080
22081 static int
22082 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22083 {
22084 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22085 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
22086
22087 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22088 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22089 }
22090
22091 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22092 table if necessary. For convenience, return TYPE.
22093
22094 The DIEs reading must have careful ordering to:
22095 * Not cause infite loops trying to read in DIEs as a prerequisite for
22096 reading current DIE.
22097 * Not trying to dereference contents of still incompletely read in types
22098 while reading in other DIEs.
22099 * Enable referencing still incompletely read in types just by a pointer to
22100 the type without accessing its fields.
22101
22102 Therefore caller should follow these rules:
22103 * Try to fetch any prerequisite types we may need to build this DIE type
22104 before building the type and calling set_die_type.
22105 * After building type call set_die_type for current DIE as soon as
22106 possible before fetching more types to complete the current type.
22107 * Make the type as complete as possible before fetching more types. */
22108
22109 static struct type *
22110 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22111 {
22112 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22113 struct objfile *objfile = cu->objfile;
22114 struct attribute *attr;
22115 struct dynamic_prop prop;
22116
22117 /* For Ada types, make sure that the gnat-specific data is always
22118 initialized (if not already set). There are a few types where
22119 we should not be doing so, because the type-specific area is
22120 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22121 where the type-specific area is used to store the floatformat).
22122 But this is not a problem, because the gnat-specific information
22123 is actually not needed for these types. */
22124 if (need_gnat_info (cu)
22125 && TYPE_CODE (type) != TYPE_CODE_FUNC
22126 && TYPE_CODE (type) != TYPE_CODE_FLT
22127 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22128 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22129 && TYPE_CODE (type) != TYPE_CODE_METHOD
22130 && !HAVE_GNAT_AUX_INFO (type))
22131 INIT_GNAT_SPECIFIC (type);
22132
22133 /* Read DW_AT_data_location and set in type. */
22134 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22135 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22136 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22137
22138 if (dwarf2_per_objfile->die_type_hash == NULL)
22139 {
22140 dwarf2_per_objfile->die_type_hash =
22141 htab_create_alloc_ex (127,
22142 per_cu_offset_and_type_hash,
22143 per_cu_offset_and_type_eq,
22144 NULL,
22145 &objfile->objfile_obstack,
22146 hashtab_obstack_allocate,
22147 dummy_obstack_deallocate);
22148 }
22149
22150 ofs.per_cu = cu->per_cu;
22151 ofs.offset = die->offset;
22152 ofs.type = type;
22153 slot = (struct dwarf2_per_cu_offset_and_type **)
22154 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22155 if (*slot)
22156 complaint (&symfile_complaints,
22157 _("A problem internal to GDB: DIE 0x%x has type already set"),
22158 die->offset.sect_off);
22159 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
22160 **slot = ofs;
22161 return type;
22162 }
22163
22164 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22165 or return NULL if the die does not have a saved type. */
22166
22167 static struct type *
22168 get_die_type_at_offset (sect_offset offset,
22169 struct dwarf2_per_cu_data *per_cu)
22170 {
22171 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22172
22173 if (dwarf2_per_objfile->die_type_hash == NULL)
22174 return NULL;
22175
22176 ofs.per_cu = per_cu;
22177 ofs.offset = offset;
22178 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
22179 if (slot)
22180 return slot->type;
22181 else
22182 return NULL;
22183 }
22184
22185 /* Look up the type for DIE in CU in die_type_hash,
22186 or return NULL if DIE does not have a saved type. */
22187
22188 static struct type *
22189 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22190 {
22191 return get_die_type_at_offset (die->offset, cu->per_cu);
22192 }
22193
22194 /* Add a dependence relationship from CU to REF_PER_CU. */
22195
22196 static void
22197 dwarf2_add_dependence (struct dwarf2_cu *cu,
22198 struct dwarf2_per_cu_data *ref_per_cu)
22199 {
22200 void **slot;
22201
22202 if (cu->dependencies == NULL)
22203 cu->dependencies
22204 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22205 NULL, &cu->comp_unit_obstack,
22206 hashtab_obstack_allocate,
22207 dummy_obstack_deallocate);
22208
22209 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22210 if (*slot == NULL)
22211 *slot = ref_per_cu;
22212 }
22213
22214 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22215 Set the mark field in every compilation unit in the
22216 cache that we must keep because we are keeping CU. */
22217
22218 static int
22219 dwarf2_mark_helper (void **slot, void *data)
22220 {
22221 struct dwarf2_per_cu_data *per_cu;
22222
22223 per_cu = (struct dwarf2_per_cu_data *) *slot;
22224
22225 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22226 reading of the chain. As such dependencies remain valid it is not much
22227 useful to track and undo them during QUIT cleanups. */
22228 if (per_cu->cu == NULL)
22229 return 1;
22230
22231 if (per_cu->cu->mark)
22232 return 1;
22233 per_cu->cu->mark = 1;
22234
22235 if (per_cu->cu->dependencies != NULL)
22236 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22237
22238 return 1;
22239 }
22240
22241 /* Set the mark field in CU and in every other compilation unit in the
22242 cache that we must keep because we are keeping CU. */
22243
22244 static void
22245 dwarf2_mark (struct dwarf2_cu *cu)
22246 {
22247 if (cu->mark)
22248 return;
22249 cu->mark = 1;
22250 if (cu->dependencies != NULL)
22251 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22252 }
22253
22254 static void
22255 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22256 {
22257 while (per_cu)
22258 {
22259 per_cu->cu->mark = 0;
22260 per_cu = per_cu->cu->read_in_chain;
22261 }
22262 }
22263
22264 /* Trivial hash function for partial_die_info: the hash value of a DIE
22265 is its offset in .debug_info for this objfile. */
22266
22267 static hashval_t
22268 partial_die_hash (const void *item)
22269 {
22270 const struct partial_die_info *part_die = item;
22271
22272 return part_die->offset.sect_off;
22273 }
22274
22275 /* Trivial comparison function for partial_die_info structures: two DIEs
22276 are equal if they have the same offset. */
22277
22278 static int
22279 partial_die_eq (const void *item_lhs, const void *item_rhs)
22280 {
22281 const struct partial_die_info *part_die_lhs = item_lhs;
22282 const struct partial_die_info *part_die_rhs = item_rhs;
22283
22284 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22285 }
22286
22287 static struct cmd_list_element *set_dwarf_cmdlist;
22288 static struct cmd_list_element *show_dwarf_cmdlist;
22289
22290 static void
22291 set_dwarf_cmd (char *args, int from_tty)
22292 {
22293 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22294 gdb_stdout);
22295 }
22296
22297 static void
22298 show_dwarf_cmd (char *args, int from_tty)
22299 {
22300 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22301 }
22302
22303 /* Free data associated with OBJFILE, if necessary. */
22304
22305 static void
22306 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22307 {
22308 struct dwarf2_per_objfile *data = d;
22309 int ix;
22310
22311 /* Make sure we don't accidentally use dwarf2_per_objfile while
22312 cleaning up. */
22313 dwarf2_per_objfile = NULL;
22314
22315 for (ix = 0; ix < data->n_comp_units; ++ix)
22316 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22317
22318 for (ix = 0; ix < data->n_type_units; ++ix)
22319 VEC_free (dwarf2_per_cu_ptr,
22320 data->all_type_units[ix]->per_cu.imported_symtabs);
22321 xfree (data->all_type_units);
22322
22323 VEC_free (dwarf2_section_info_def, data->types);
22324
22325 if (data->dwo_files)
22326 free_dwo_files (data->dwo_files, objfile);
22327 if (data->dwp_file)
22328 gdb_bfd_unref (data->dwp_file->dbfd);
22329
22330 if (data->dwz_file && data->dwz_file->dwz_bfd)
22331 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22332 }
22333
22334 \f
22335 /* The "save gdb-index" command. */
22336
22337 /* The contents of the hash table we create when building the string
22338 table. */
22339 struct strtab_entry
22340 {
22341 offset_type offset;
22342 const char *str;
22343 };
22344
22345 /* Hash function for a strtab_entry.
22346
22347 Function is used only during write_hash_table so no index format backward
22348 compatibility is needed. */
22349
22350 static hashval_t
22351 hash_strtab_entry (const void *e)
22352 {
22353 const struct strtab_entry *entry = e;
22354 return mapped_index_string_hash (INT_MAX, entry->str);
22355 }
22356
22357 /* Equality function for a strtab_entry. */
22358
22359 static int
22360 eq_strtab_entry (const void *a, const void *b)
22361 {
22362 const struct strtab_entry *ea = a;
22363 const struct strtab_entry *eb = b;
22364 return !strcmp (ea->str, eb->str);
22365 }
22366
22367 /* Create a strtab_entry hash table. */
22368
22369 static htab_t
22370 create_strtab (void)
22371 {
22372 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22373 xfree, xcalloc, xfree);
22374 }
22375
22376 /* Add a string to the constant pool. Return the string's offset in
22377 host order. */
22378
22379 static offset_type
22380 add_string (htab_t table, struct obstack *cpool, const char *str)
22381 {
22382 void **slot;
22383 struct strtab_entry entry;
22384 struct strtab_entry *result;
22385
22386 entry.str = str;
22387 slot = htab_find_slot (table, &entry, INSERT);
22388 if (*slot)
22389 result = *slot;
22390 else
22391 {
22392 result = XNEW (struct strtab_entry);
22393 result->offset = obstack_object_size (cpool);
22394 result->str = str;
22395 obstack_grow_str0 (cpool, str);
22396 *slot = result;
22397 }
22398 return result->offset;
22399 }
22400
22401 /* An entry in the symbol table. */
22402 struct symtab_index_entry
22403 {
22404 /* The name of the symbol. */
22405 const char *name;
22406 /* The offset of the name in the constant pool. */
22407 offset_type index_offset;
22408 /* A sorted vector of the indices of all the CUs that hold an object
22409 of this name. */
22410 VEC (offset_type) *cu_indices;
22411 };
22412
22413 /* The symbol table. This is a power-of-2-sized hash table. */
22414 struct mapped_symtab
22415 {
22416 offset_type n_elements;
22417 offset_type size;
22418 struct symtab_index_entry **data;
22419 };
22420
22421 /* Hash function for a symtab_index_entry. */
22422
22423 static hashval_t
22424 hash_symtab_entry (const void *e)
22425 {
22426 const struct symtab_index_entry *entry = e;
22427 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22428 sizeof (offset_type) * VEC_length (offset_type,
22429 entry->cu_indices),
22430 0);
22431 }
22432
22433 /* Equality function for a symtab_index_entry. */
22434
22435 static int
22436 eq_symtab_entry (const void *a, const void *b)
22437 {
22438 const struct symtab_index_entry *ea = a;
22439 const struct symtab_index_entry *eb = b;
22440 int len = VEC_length (offset_type, ea->cu_indices);
22441 if (len != VEC_length (offset_type, eb->cu_indices))
22442 return 0;
22443 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22444 VEC_address (offset_type, eb->cu_indices),
22445 sizeof (offset_type) * len);
22446 }
22447
22448 /* Destroy a symtab_index_entry. */
22449
22450 static void
22451 delete_symtab_entry (void *p)
22452 {
22453 struct symtab_index_entry *entry = p;
22454 VEC_free (offset_type, entry->cu_indices);
22455 xfree (entry);
22456 }
22457
22458 /* Create a hash table holding symtab_index_entry objects. */
22459
22460 static htab_t
22461 create_symbol_hash_table (void)
22462 {
22463 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22464 delete_symtab_entry, xcalloc, xfree);
22465 }
22466
22467 /* Create a new mapped symtab object. */
22468
22469 static struct mapped_symtab *
22470 create_mapped_symtab (void)
22471 {
22472 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22473 symtab->n_elements = 0;
22474 symtab->size = 1024;
22475 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22476 return symtab;
22477 }
22478
22479 /* Destroy a mapped_symtab. */
22480
22481 static void
22482 cleanup_mapped_symtab (void *p)
22483 {
22484 struct mapped_symtab *symtab = p;
22485 /* The contents of the array are freed when the other hash table is
22486 destroyed. */
22487 xfree (symtab->data);
22488 xfree (symtab);
22489 }
22490
22491 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22492 the slot.
22493
22494 Function is used only during write_hash_table so no index format backward
22495 compatibility is needed. */
22496
22497 static struct symtab_index_entry **
22498 find_slot (struct mapped_symtab *symtab, const char *name)
22499 {
22500 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22501
22502 index = hash & (symtab->size - 1);
22503 step = ((hash * 17) & (symtab->size - 1)) | 1;
22504
22505 for (;;)
22506 {
22507 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22508 return &symtab->data[index];
22509 index = (index + step) & (symtab->size - 1);
22510 }
22511 }
22512
22513 /* Expand SYMTAB's hash table. */
22514
22515 static void
22516 hash_expand (struct mapped_symtab *symtab)
22517 {
22518 offset_type old_size = symtab->size;
22519 offset_type i;
22520 struct symtab_index_entry **old_entries = symtab->data;
22521
22522 symtab->size *= 2;
22523 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22524
22525 for (i = 0; i < old_size; ++i)
22526 {
22527 if (old_entries[i])
22528 {
22529 struct symtab_index_entry **slot = find_slot (symtab,
22530 old_entries[i]->name);
22531 *slot = old_entries[i];
22532 }
22533 }
22534
22535 xfree (old_entries);
22536 }
22537
22538 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22539 CU_INDEX is the index of the CU in which the symbol appears.
22540 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22541
22542 static void
22543 add_index_entry (struct mapped_symtab *symtab, const char *name,
22544 int is_static, gdb_index_symbol_kind kind,
22545 offset_type cu_index)
22546 {
22547 struct symtab_index_entry **slot;
22548 offset_type cu_index_and_attrs;
22549
22550 ++symtab->n_elements;
22551 if (4 * symtab->n_elements / 3 >= symtab->size)
22552 hash_expand (symtab);
22553
22554 slot = find_slot (symtab, name);
22555 if (!*slot)
22556 {
22557 *slot = XNEW (struct symtab_index_entry);
22558 (*slot)->name = name;
22559 /* index_offset is set later. */
22560 (*slot)->cu_indices = NULL;
22561 }
22562
22563 cu_index_and_attrs = 0;
22564 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22565 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22566 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22567
22568 /* We don't want to record an index value twice as we want to avoid the
22569 duplication.
22570 We process all global symbols and then all static symbols
22571 (which would allow us to avoid the duplication by only having to check
22572 the last entry pushed), but a symbol could have multiple kinds in one CU.
22573 To keep things simple we don't worry about the duplication here and
22574 sort and uniqufy the list after we've processed all symbols. */
22575 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22576 }
22577
22578 /* qsort helper routine for uniquify_cu_indices. */
22579
22580 static int
22581 offset_type_compare (const void *ap, const void *bp)
22582 {
22583 offset_type a = *(offset_type *) ap;
22584 offset_type b = *(offset_type *) bp;
22585
22586 return (a > b) - (b > a);
22587 }
22588
22589 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22590
22591 static void
22592 uniquify_cu_indices (struct mapped_symtab *symtab)
22593 {
22594 int i;
22595
22596 for (i = 0; i < symtab->size; ++i)
22597 {
22598 struct symtab_index_entry *entry = symtab->data[i];
22599
22600 if (entry
22601 && entry->cu_indices != NULL)
22602 {
22603 unsigned int next_to_insert, next_to_check;
22604 offset_type last_value;
22605
22606 qsort (VEC_address (offset_type, entry->cu_indices),
22607 VEC_length (offset_type, entry->cu_indices),
22608 sizeof (offset_type), offset_type_compare);
22609
22610 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22611 next_to_insert = 1;
22612 for (next_to_check = 1;
22613 next_to_check < VEC_length (offset_type, entry->cu_indices);
22614 ++next_to_check)
22615 {
22616 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22617 != last_value)
22618 {
22619 last_value = VEC_index (offset_type, entry->cu_indices,
22620 next_to_check);
22621 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22622 last_value);
22623 ++next_to_insert;
22624 }
22625 }
22626 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22627 }
22628 }
22629 }
22630
22631 /* Add a vector of indices to the constant pool. */
22632
22633 static offset_type
22634 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22635 struct symtab_index_entry *entry)
22636 {
22637 void **slot;
22638
22639 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22640 if (!*slot)
22641 {
22642 offset_type len = VEC_length (offset_type, entry->cu_indices);
22643 offset_type val = MAYBE_SWAP (len);
22644 offset_type iter;
22645 int i;
22646
22647 *slot = entry;
22648 entry->index_offset = obstack_object_size (cpool);
22649
22650 obstack_grow (cpool, &val, sizeof (val));
22651 for (i = 0;
22652 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22653 ++i)
22654 {
22655 val = MAYBE_SWAP (iter);
22656 obstack_grow (cpool, &val, sizeof (val));
22657 }
22658 }
22659 else
22660 {
22661 struct symtab_index_entry *old_entry = *slot;
22662 entry->index_offset = old_entry->index_offset;
22663 entry = old_entry;
22664 }
22665 return entry->index_offset;
22666 }
22667
22668 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22669 constant pool entries going into the obstack CPOOL. */
22670
22671 static void
22672 write_hash_table (struct mapped_symtab *symtab,
22673 struct obstack *output, struct obstack *cpool)
22674 {
22675 offset_type i;
22676 htab_t symbol_hash_table;
22677 htab_t str_table;
22678
22679 symbol_hash_table = create_symbol_hash_table ();
22680 str_table = create_strtab ();
22681
22682 /* We add all the index vectors to the constant pool first, to
22683 ensure alignment is ok. */
22684 for (i = 0; i < symtab->size; ++i)
22685 {
22686 if (symtab->data[i])
22687 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22688 }
22689
22690 /* Now write out the hash table. */
22691 for (i = 0; i < symtab->size; ++i)
22692 {
22693 offset_type str_off, vec_off;
22694
22695 if (symtab->data[i])
22696 {
22697 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22698 vec_off = symtab->data[i]->index_offset;
22699 }
22700 else
22701 {
22702 /* While 0 is a valid constant pool index, it is not valid
22703 to have 0 for both offsets. */
22704 str_off = 0;
22705 vec_off = 0;
22706 }
22707
22708 str_off = MAYBE_SWAP (str_off);
22709 vec_off = MAYBE_SWAP (vec_off);
22710
22711 obstack_grow (output, &str_off, sizeof (str_off));
22712 obstack_grow (output, &vec_off, sizeof (vec_off));
22713 }
22714
22715 htab_delete (str_table);
22716 htab_delete (symbol_hash_table);
22717 }
22718
22719 /* Struct to map psymtab to CU index in the index file. */
22720 struct psymtab_cu_index_map
22721 {
22722 struct partial_symtab *psymtab;
22723 unsigned int cu_index;
22724 };
22725
22726 static hashval_t
22727 hash_psymtab_cu_index (const void *item)
22728 {
22729 const struct psymtab_cu_index_map *map = item;
22730
22731 return htab_hash_pointer (map->psymtab);
22732 }
22733
22734 static int
22735 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22736 {
22737 const struct psymtab_cu_index_map *lhs = item_lhs;
22738 const struct psymtab_cu_index_map *rhs = item_rhs;
22739
22740 return lhs->psymtab == rhs->psymtab;
22741 }
22742
22743 /* Helper struct for building the address table. */
22744 struct addrmap_index_data
22745 {
22746 struct objfile *objfile;
22747 struct obstack *addr_obstack;
22748 htab_t cu_index_htab;
22749
22750 /* Non-zero if the previous_* fields are valid.
22751 We can't write an entry until we see the next entry (since it is only then
22752 that we know the end of the entry). */
22753 int previous_valid;
22754 /* Index of the CU in the table of all CUs in the index file. */
22755 unsigned int previous_cu_index;
22756 /* Start address of the CU. */
22757 CORE_ADDR previous_cu_start;
22758 };
22759
22760 /* Write an address entry to OBSTACK. */
22761
22762 static void
22763 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22764 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22765 {
22766 offset_type cu_index_to_write;
22767 gdb_byte addr[8];
22768 CORE_ADDR baseaddr;
22769
22770 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22771
22772 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22773 obstack_grow (obstack, addr, 8);
22774 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22775 obstack_grow (obstack, addr, 8);
22776 cu_index_to_write = MAYBE_SWAP (cu_index);
22777 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22778 }
22779
22780 /* Worker function for traversing an addrmap to build the address table. */
22781
22782 static int
22783 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22784 {
22785 struct addrmap_index_data *data = datap;
22786 struct partial_symtab *pst = obj;
22787
22788 if (data->previous_valid)
22789 add_address_entry (data->objfile, data->addr_obstack,
22790 data->previous_cu_start, start_addr,
22791 data->previous_cu_index);
22792
22793 data->previous_cu_start = start_addr;
22794 if (pst != NULL)
22795 {
22796 struct psymtab_cu_index_map find_map, *map;
22797 find_map.psymtab = pst;
22798 map = htab_find (data->cu_index_htab, &find_map);
22799 gdb_assert (map != NULL);
22800 data->previous_cu_index = map->cu_index;
22801 data->previous_valid = 1;
22802 }
22803 else
22804 data->previous_valid = 0;
22805
22806 return 0;
22807 }
22808
22809 /* Write OBJFILE's address map to OBSTACK.
22810 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22811 in the index file. */
22812
22813 static void
22814 write_address_map (struct objfile *objfile, struct obstack *obstack,
22815 htab_t cu_index_htab)
22816 {
22817 struct addrmap_index_data addrmap_index_data;
22818
22819 /* When writing the address table, we have to cope with the fact that
22820 the addrmap iterator only provides the start of a region; we have to
22821 wait until the next invocation to get the start of the next region. */
22822
22823 addrmap_index_data.objfile = objfile;
22824 addrmap_index_data.addr_obstack = obstack;
22825 addrmap_index_data.cu_index_htab = cu_index_htab;
22826 addrmap_index_data.previous_valid = 0;
22827
22828 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22829 &addrmap_index_data);
22830
22831 /* It's highly unlikely the last entry (end address = 0xff...ff)
22832 is valid, but we should still handle it.
22833 The end address is recorded as the start of the next region, but that
22834 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22835 anyway. */
22836 if (addrmap_index_data.previous_valid)
22837 add_address_entry (objfile, obstack,
22838 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22839 addrmap_index_data.previous_cu_index);
22840 }
22841
22842 /* Return the symbol kind of PSYM. */
22843
22844 static gdb_index_symbol_kind
22845 symbol_kind (struct partial_symbol *psym)
22846 {
22847 domain_enum domain = PSYMBOL_DOMAIN (psym);
22848 enum address_class aclass = PSYMBOL_CLASS (psym);
22849
22850 switch (domain)
22851 {
22852 case VAR_DOMAIN:
22853 switch (aclass)
22854 {
22855 case LOC_BLOCK:
22856 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22857 case LOC_TYPEDEF:
22858 return GDB_INDEX_SYMBOL_KIND_TYPE;
22859 case LOC_COMPUTED:
22860 case LOC_CONST_BYTES:
22861 case LOC_OPTIMIZED_OUT:
22862 case LOC_STATIC:
22863 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22864 case LOC_CONST:
22865 /* Note: It's currently impossible to recognize psyms as enum values
22866 short of reading the type info. For now punt. */
22867 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22868 default:
22869 /* There are other LOC_FOO values that one might want to classify
22870 as variables, but dwarf2read.c doesn't currently use them. */
22871 return GDB_INDEX_SYMBOL_KIND_OTHER;
22872 }
22873 case STRUCT_DOMAIN:
22874 return GDB_INDEX_SYMBOL_KIND_TYPE;
22875 default:
22876 return GDB_INDEX_SYMBOL_KIND_OTHER;
22877 }
22878 }
22879
22880 /* Add a list of partial symbols to SYMTAB. */
22881
22882 static void
22883 write_psymbols (struct mapped_symtab *symtab,
22884 htab_t psyms_seen,
22885 struct partial_symbol **psymp,
22886 int count,
22887 offset_type cu_index,
22888 int is_static)
22889 {
22890 for (; count-- > 0; ++psymp)
22891 {
22892 struct partial_symbol *psym = *psymp;
22893 void **slot;
22894
22895 if (SYMBOL_LANGUAGE (psym) == language_ada)
22896 error (_("Ada is not currently supported by the index"));
22897
22898 /* Only add a given psymbol once. */
22899 slot = htab_find_slot (psyms_seen, psym, INSERT);
22900 if (!*slot)
22901 {
22902 gdb_index_symbol_kind kind = symbol_kind (psym);
22903
22904 *slot = psym;
22905 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22906 is_static, kind, cu_index);
22907 }
22908 }
22909 }
22910
22911 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22912 exception if there is an error. */
22913
22914 static void
22915 write_obstack (FILE *file, struct obstack *obstack)
22916 {
22917 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22918 file)
22919 != obstack_object_size (obstack))
22920 error (_("couldn't data write to file"));
22921 }
22922
22923 /* Unlink a file if the argument is not NULL. */
22924
22925 static void
22926 unlink_if_set (void *p)
22927 {
22928 char **filename = p;
22929 if (*filename)
22930 unlink (*filename);
22931 }
22932
22933 /* A helper struct used when iterating over debug_types. */
22934 struct signatured_type_index_data
22935 {
22936 struct objfile *objfile;
22937 struct mapped_symtab *symtab;
22938 struct obstack *types_list;
22939 htab_t psyms_seen;
22940 int cu_index;
22941 };
22942
22943 /* A helper function that writes a single signatured_type to an
22944 obstack. */
22945
22946 static int
22947 write_one_signatured_type (void **slot, void *d)
22948 {
22949 struct signatured_type_index_data *info = d;
22950 struct signatured_type *entry = (struct signatured_type *) *slot;
22951 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22952 gdb_byte val[8];
22953
22954 write_psymbols (info->symtab,
22955 info->psyms_seen,
22956 info->objfile->global_psymbols.list
22957 + psymtab->globals_offset,
22958 psymtab->n_global_syms, info->cu_index,
22959 0);
22960 write_psymbols (info->symtab,
22961 info->psyms_seen,
22962 info->objfile->static_psymbols.list
22963 + psymtab->statics_offset,
22964 psymtab->n_static_syms, info->cu_index,
22965 1);
22966
22967 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22968 entry->per_cu.offset.sect_off);
22969 obstack_grow (info->types_list, val, 8);
22970 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22971 entry->type_offset_in_tu.cu_off);
22972 obstack_grow (info->types_list, val, 8);
22973 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22974 obstack_grow (info->types_list, val, 8);
22975
22976 ++info->cu_index;
22977
22978 return 1;
22979 }
22980
22981 /* Recurse into all "included" dependencies and write their symbols as
22982 if they appeared in this psymtab. */
22983
22984 static void
22985 recursively_write_psymbols (struct objfile *objfile,
22986 struct partial_symtab *psymtab,
22987 struct mapped_symtab *symtab,
22988 htab_t psyms_seen,
22989 offset_type cu_index)
22990 {
22991 int i;
22992
22993 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22994 if (psymtab->dependencies[i]->user != NULL)
22995 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22996 symtab, psyms_seen, cu_index);
22997
22998 write_psymbols (symtab,
22999 psyms_seen,
23000 objfile->global_psymbols.list + psymtab->globals_offset,
23001 psymtab->n_global_syms, cu_index,
23002 0);
23003 write_psymbols (symtab,
23004 psyms_seen,
23005 objfile->static_psymbols.list + psymtab->statics_offset,
23006 psymtab->n_static_syms, cu_index,
23007 1);
23008 }
23009
23010 /* Create an index file for OBJFILE in the directory DIR. */
23011
23012 static void
23013 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23014 {
23015 struct cleanup *cleanup;
23016 char *filename, *cleanup_filename;
23017 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23018 struct obstack cu_list, types_cu_list;
23019 int i;
23020 FILE *out_file;
23021 struct mapped_symtab *symtab;
23022 offset_type val, size_of_contents, total_len;
23023 struct stat st;
23024 htab_t psyms_seen;
23025 htab_t cu_index_htab;
23026 struct psymtab_cu_index_map *psymtab_cu_index_map;
23027
23028 if (dwarf2_per_objfile->using_index)
23029 error (_("Cannot use an index to create the index"));
23030
23031 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23032 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23033
23034 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23035 return;
23036
23037 if (stat (objfile_name (objfile), &st) < 0)
23038 perror_with_name (objfile_name (objfile));
23039
23040 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23041 INDEX_SUFFIX, (char *) NULL);
23042 cleanup = make_cleanup (xfree, filename);
23043
23044 out_file = gdb_fopen_cloexec (filename, "wb");
23045 if (!out_file)
23046 error (_("Can't open `%s' for writing"), filename);
23047
23048 cleanup_filename = filename;
23049 make_cleanup (unlink_if_set, &cleanup_filename);
23050
23051 symtab = create_mapped_symtab ();
23052 make_cleanup (cleanup_mapped_symtab, symtab);
23053
23054 obstack_init (&addr_obstack);
23055 make_cleanup_obstack_free (&addr_obstack);
23056
23057 obstack_init (&cu_list);
23058 make_cleanup_obstack_free (&cu_list);
23059
23060 obstack_init (&types_cu_list);
23061 make_cleanup_obstack_free (&types_cu_list);
23062
23063 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23064 NULL, xcalloc, xfree);
23065 make_cleanup_htab_delete (psyms_seen);
23066
23067 /* While we're scanning CU's create a table that maps a psymtab pointer
23068 (which is what addrmap records) to its index (which is what is recorded
23069 in the index file). This will later be needed to write the address
23070 table. */
23071 cu_index_htab = htab_create_alloc (100,
23072 hash_psymtab_cu_index,
23073 eq_psymtab_cu_index,
23074 NULL, xcalloc, xfree);
23075 make_cleanup_htab_delete (cu_index_htab);
23076 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
23077 xmalloc (sizeof (struct psymtab_cu_index_map)
23078 * dwarf2_per_objfile->n_comp_units);
23079 make_cleanup (xfree, psymtab_cu_index_map);
23080
23081 /* The CU list is already sorted, so we don't need to do additional
23082 work here. Also, the debug_types entries do not appear in
23083 all_comp_units, but only in their own hash table. */
23084 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23085 {
23086 struct dwarf2_per_cu_data *per_cu
23087 = dwarf2_per_objfile->all_comp_units[i];
23088 struct partial_symtab *psymtab = per_cu->v.psymtab;
23089 gdb_byte val[8];
23090 struct psymtab_cu_index_map *map;
23091 void **slot;
23092
23093 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23094 It may be referenced from a local scope but in such case it does not
23095 need to be present in .gdb_index. */
23096 if (psymtab == NULL)
23097 continue;
23098
23099 if (psymtab->user == NULL)
23100 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23101
23102 map = &psymtab_cu_index_map[i];
23103 map->psymtab = psymtab;
23104 map->cu_index = i;
23105 slot = htab_find_slot (cu_index_htab, map, INSERT);
23106 gdb_assert (slot != NULL);
23107 gdb_assert (*slot == NULL);
23108 *slot = map;
23109
23110 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23111 per_cu->offset.sect_off);
23112 obstack_grow (&cu_list, val, 8);
23113 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23114 obstack_grow (&cu_list, val, 8);
23115 }
23116
23117 /* Dump the address map. */
23118 write_address_map (objfile, &addr_obstack, cu_index_htab);
23119
23120 /* Write out the .debug_type entries, if any. */
23121 if (dwarf2_per_objfile->signatured_types)
23122 {
23123 struct signatured_type_index_data sig_data;
23124
23125 sig_data.objfile = objfile;
23126 sig_data.symtab = symtab;
23127 sig_data.types_list = &types_cu_list;
23128 sig_data.psyms_seen = psyms_seen;
23129 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23130 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23131 write_one_signatured_type, &sig_data);
23132 }
23133
23134 /* Now that we've processed all symbols we can shrink their cu_indices
23135 lists. */
23136 uniquify_cu_indices (symtab);
23137
23138 obstack_init (&constant_pool);
23139 make_cleanup_obstack_free (&constant_pool);
23140 obstack_init (&symtab_obstack);
23141 make_cleanup_obstack_free (&symtab_obstack);
23142 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23143
23144 obstack_init (&contents);
23145 make_cleanup_obstack_free (&contents);
23146 size_of_contents = 6 * sizeof (offset_type);
23147 total_len = size_of_contents;
23148
23149 /* The version number. */
23150 val = MAYBE_SWAP (8);
23151 obstack_grow (&contents, &val, sizeof (val));
23152
23153 /* The offset of the CU list from the start of the file. */
23154 val = MAYBE_SWAP (total_len);
23155 obstack_grow (&contents, &val, sizeof (val));
23156 total_len += obstack_object_size (&cu_list);
23157
23158 /* The offset of the types CU list from the start of the file. */
23159 val = MAYBE_SWAP (total_len);
23160 obstack_grow (&contents, &val, sizeof (val));
23161 total_len += obstack_object_size (&types_cu_list);
23162
23163 /* The offset of the address table from the start of the file. */
23164 val = MAYBE_SWAP (total_len);
23165 obstack_grow (&contents, &val, sizeof (val));
23166 total_len += obstack_object_size (&addr_obstack);
23167
23168 /* The offset of the symbol table from the start of the file. */
23169 val = MAYBE_SWAP (total_len);
23170 obstack_grow (&contents, &val, sizeof (val));
23171 total_len += obstack_object_size (&symtab_obstack);
23172
23173 /* The offset of the constant pool from the start of the file. */
23174 val = MAYBE_SWAP (total_len);
23175 obstack_grow (&contents, &val, sizeof (val));
23176 total_len += obstack_object_size (&constant_pool);
23177
23178 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23179
23180 write_obstack (out_file, &contents);
23181 write_obstack (out_file, &cu_list);
23182 write_obstack (out_file, &types_cu_list);
23183 write_obstack (out_file, &addr_obstack);
23184 write_obstack (out_file, &symtab_obstack);
23185 write_obstack (out_file, &constant_pool);
23186
23187 fclose (out_file);
23188
23189 /* We want to keep the file, so we set cleanup_filename to NULL
23190 here. See unlink_if_set. */
23191 cleanup_filename = NULL;
23192
23193 do_cleanups (cleanup);
23194 }
23195
23196 /* Implementation of the `save gdb-index' command.
23197
23198 Note that the file format used by this command is documented in the
23199 GDB manual. Any changes here must be documented there. */
23200
23201 static void
23202 save_gdb_index_command (char *arg, int from_tty)
23203 {
23204 struct objfile *objfile;
23205
23206 if (!arg || !*arg)
23207 error (_("usage: save gdb-index DIRECTORY"));
23208
23209 ALL_OBJFILES (objfile)
23210 {
23211 struct stat st;
23212
23213 /* If the objfile does not correspond to an actual file, skip it. */
23214 if (stat (objfile_name (objfile), &st) < 0)
23215 continue;
23216
23217 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23218 if (dwarf2_per_objfile)
23219 {
23220
23221 TRY
23222 {
23223 write_psymtabs_to_index (objfile, arg);
23224 }
23225 CATCH (except, RETURN_MASK_ERROR)
23226 {
23227 exception_fprintf (gdb_stderr, except,
23228 _("Error while writing index for `%s': "),
23229 objfile_name (objfile));
23230 }
23231 END_CATCH
23232 }
23233 }
23234 }
23235
23236 \f
23237
23238 int dwarf_always_disassemble;
23239
23240 static void
23241 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23242 struct cmd_list_element *c, const char *value)
23243 {
23244 fprintf_filtered (file,
23245 _("Whether to always disassemble "
23246 "DWARF expressions is %s.\n"),
23247 value);
23248 }
23249
23250 static void
23251 show_check_physname (struct ui_file *file, int from_tty,
23252 struct cmd_list_element *c, const char *value)
23253 {
23254 fprintf_filtered (file,
23255 _("Whether to check \"physname\" is %s.\n"),
23256 value);
23257 }
23258
23259 void _initialize_dwarf2_read (void);
23260
23261 void
23262 _initialize_dwarf2_read (void)
23263 {
23264 struct cmd_list_element *c;
23265
23266 dwarf2_objfile_data_key
23267 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23268
23269 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23270 Set DWARF specific variables.\n\
23271 Configure DWARF variables such as the cache size"),
23272 &set_dwarf_cmdlist, "maintenance set dwarf ",
23273 0/*allow-unknown*/, &maintenance_set_cmdlist);
23274
23275 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23276 Show DWARF specific variables\n\
23277 Show DWARF variables such as the cache size"),
23278 &show_dwarf_cmdlist, "maintenance show dwarf ",
23279 0/*allow-unknown*/, &maintenance_show_cmdlist);
23280
23281 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23282 &dwarf_max_cache_age, _("\
23283 Set the upper bound on the age of cached DWARF compilation units."), _("\
23284 Show the upper bound on the age of cached DWARF compilation units."), _("\
23285 A higher limit means that cached compilation units will be stored\n\
23286 in memory longer, and more total memory will be used. Zero disables\n\
23287 caching, which can slow down startup."),
23288 NULL,
23289 show_dwarf_max_cache_age,
23290 &set_dwarf_cmdlist,
23291 &show_dwarf_cmdlist);
23292
23293 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23294 &dwarf_always_disassemble, _("\
23295 Set whether `info address' always disassembles DWARF expressions."), _("\
23296 Show whether `info address' always disassembles DWARF expressions."), _("\
23297 When enabled, DWARF expressions are always printed in an assembly-like\n\
23298 syntax. When disabled, expressions will be printed in a more\n\
23299 conversational style, when possible."),
23300 NULL,
23301 show_dwarf_always_disassemble,
23302 &set_dwarf_cmdlist,
23303 &show_dwarf_cmdlist);
23304
23305 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23306 Set debugging of the DWARF reader."), _("\
23307 Show debugging of the DWARF reader."), _("\
23308 When enabled (non-zero), debugging messages are printed during DWARF\n\
23309 reading and symtab expansion. A value of 1 (one) provides basic\n\
23310 information. A value greater than 1 provides more verbose information."),
23311 NULL,
23312 NULL,
23313 &setdebuglist, &showdebuglist);
23314
23315 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23316 Set debugging of the DWARF DIE reader."), _("\
23317 Show debugging of the DWARF DIE reader."), _("\
23318 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23319 The value is the maximum depth to print."),
23320 NULL,
23321 NULL,
23322 &setdebuglist, &showdebuglist);
23323
23324 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23325 Set cross-checking of \"physname\" code against demangler."), _("\
23326 Show cross-checking of \"physname\" code against demangler."), _("\
23327 When enabled, GDB's internal \"physname\" code is checked against\n\
23328 the demangler."),
23329 NULL, show_check_physname,
23330 &setdebuglist, &showdebuglist);
23331
23332 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23333 no_class, &use_deprecated_index_sections, _("\
23334 Set whether to use deprecated gdb_index sections."), _("\
23335 Show whether to use deprecated gdb_index sections."), _("\
23336 When enabled, deprecated .gdb_index sections are used anyway.\n\
23337 Normally they are ignored either because of a missing feature or\n\
23338 performance issue.\n\
23339 Warning: This option must be enabled before gdb reads the file."),
23340 NULL,
23341 NULL,
23342 &setlist, &showlist);
23343
23344 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23345 _("\
23346 Save a gdb-index file.\n\
23347 Usage: save gdb-index DIRECTORY"),
23348 &save_cmdlist);
23349 set_cmd_completer (c, filename_completer);
23350
23351 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23352 &dwarf2_locexpr_funcs);
23353 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23354 &dwarf2_loclist_funcs);
23355
23356 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23357 &dwarf2_block_frame_base_locexpr_funcs);
23358 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23359 &dwarf2_block_frame_base_loclist_funcs);
23360 }