Add missing sentinel 'char *' casts in concat/reconcat calls
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2016 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72 #include "namespace.h"
73
74 #include <fcntl.h>
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83 static unsigned int dwarf_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf_die_debug = 0;
87
88 /* When non-zero, dump line number entries as they are read in. */
89 static unsigned int dwarf_line_debug = 0;
90
91 /* When non-zero, cross-check physname against demangler. */
92 static int check_physname = 0;
93
94 /* When non-zero, do not reject deprecated .gdb_index sections. */
95 static int use_deprecated_index_sections = 0;
96
97 static const struct objfile_data *dwarf2_objfile_data_key;
98
99 /* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101 static int dwarf2_locexpr_index;
102 static int dwarf2_loclist_index;
103 static int dwarf2_locexpr_block_index;
104 static int dwarf2_loclist_block_index;
105
106 /* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
122 struct dwarf2_section_info
123 {
124 union
125 {
126 /* If this is a real section, the bfd section. */
127 asection *section;
128 /* If this is a virtual section, pointer to the containing ("real")
129 section. */
130 struct dwarf2_section_info *containing_section;
131 } s;
132 /* Pointer to section data, only valid if readin. */
133 const gdb_byte *buffer;
134 /* The size of the section, real or virtual. */
135 bfd_size_type size;
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
139 /* True if we have tried to read this section. */
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.section and s.containing_section to use. */
143 char is_virtual;
144 };
145
146 typedef struct dwarf2_section_info dwarf2_section_info_def;
147 DEF_VEC_O (dwarf2_section_info_def);
148
149 /* All offsets in the index are of this type. It must be
150 architecture-independent. */
151 typedef uint32_t offset_type;
152
153 DEF_VEC_I (offset_type);
154
155 /* Ensure only legit values are used. */
156 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
171 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index
180 {
181 /* Index data format version. */
182 int version;
183
184 /* The total length of the buffer. */
185 off_t total_size;
186
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
189
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
192
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
195
196 /* Size in slots, each slot is 2 offset_types. */
197 offset_type symbol_table_slots;
198
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201 };
202
203 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204 DEF_VEC_P (dwarf2_per_cu_ptr);
205
206 struct tu_stats
207 {
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213 };
214
215 /* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
218 struct dwarf2_per_objfile
219 {
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
225 struct dwarf2_section_info macro;
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
228 struct dwarf2_section_info addr;
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
231 struct dwarf2_section_info gdb_index;
232
233 VEC (dwarf2_section_info_def) *types;
234
235 /* Back link. */
236 struct objfile *objfile;
237
238 /* Table of all the compilation units. This is used to locate
239 the target compilation unit of a particular reference. */
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
245 /* The number of .debug_types-related CUs. */
246 int n_type_units;
247
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
254 struct signatured_type **all_type_units;
255
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
259
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
266 struct tu_stats tu_stats;
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
289
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
292 unsigned char using_index;
293
294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
295 struct mapped_index *index_table;
296
297 /* When using index_table, this keeps track of all quick_file_names entries.
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
304 htab_t quick_file_names_table;
305
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
309
310 /* Table mapping type DIEs to their struct type *.
311 This is NULL if not allocated yet.
312 The mapping is done via (CU/TU + DIE offset) -> type. */
313 htab_t die_type_hash;
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
320 };
321
322 static struct dwarf2_per_objfile *dwarf2_per_objfile;
323
324 /* Default names of the debugging sections. */
325
326 /* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
329 static const struct dwarf2_debug_sections dwarf2_elf_names =
330 {
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
336 { ".debug_macro", ".zdebug_macro" },
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
340 { ".debug_addr", ".zdebug_addr" },
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
343 { ".gdb_index", ".zgdb_index" },
344 23
345 };
346
347 /* List of DWO/DWP sections. */
348
349 static const struct dwop_section_names
350 {
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
362 }
363 dwop_section_names =
364 {
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
376 };
377
378 /* local data types */
379
380 /* The data in a compilation unit header, after target2host
381 translation, looks like this. */
382 struct comp_unit_head
383 {
384 unsigned int length;
385 short version;
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
388 sect_offset abbrev_offset;
389
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
392
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
395
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
398 sect_offset offset;
399
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
402 cu_offset first_die_offset;
403 };
404
405 /* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407 struct delayed_method_info
408 {
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423 };
424
425 typedef struct delayed_method_info delayed_method_info;
426 DEF_VEC_O (delayed_method_info);
427
428 /* Internal state when decoding a particular compilation unit. */
429 struct dwarf2_cu
430 {
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
434 /* The header of the compilation unit. */
435 struct comp_unit_head header;
436
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
447 const char *producer;
448
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
464
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
479 /* Backlink to our per_cu entry. */
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
487 htab_t die_hash;
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE. */
521 ULONGEST addr_base;
522
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE.
526 Also note that the value is zero in the non-DWO case so this value can
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
533 ULONGEST ranges_base;
534
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 unsigned int has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
550 unsigned int producer_is_gcc_lt_4_3 : 1;
551 unsigned int producer_is_icc : 1;
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
558 };
559
560 /* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
562 read_symtab_private field of the psymtab. */
563
564 struct dwarf2_per_cu_data
565 {
566 /* The start offset and length of this compilation unit.
567 NOTE: Unlike comp_unit_head.length, this length includes
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
571 sect_offset offset;
572 unsigned int length;
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
576 unsigned int queued : 1;
577
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
587 unsigned int is_debug_types : 1;
588
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
611 struct dwarf2_section_info *section;
612
613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
616 struct dwarf2_cu *cu;
617
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
621 struct objfile *objfile;
622
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
628 or NULL for unread partial units. */
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
634
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
654 };
655
656 /* Entry in the signatured_types hash table. */
657
658 struct signatured_type
659 {
660 /* The "per_cu" object of this type.
661 This struct is used iff per_cu.is_debug_types.
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
666 /* The type's signature. */
667 ULONGEST signature;
668
669 /* Offset in the TU of the type's DIE, as read from the TU header.
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
693 };
694
695 typedef struct signatured_type *sig_type_ptr;
696 DEF_VEC_P (sig_type_ptr);
697
698 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701 struct stmt_list_hash
702 {
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708 };
709
710 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713 struct type_unit_group
714 {
715 /* dwarf2read.c's main "handle" on a TU symtab.
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
720 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
721 struct dwarf2_per_cu_data per_cu;
722
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
727
728 /* The compunit symtab.
729 Type units in a group needn't all be defined in the same source file,
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
732
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749 };
750
751 /* These sections are what may appear in a (real or virtual) DWO file. */
752
753 struct dwo_sections
754 {
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
764 VEC (dwarf2_section_info_def) *types;
765 };
766
767 /* CUs/TUs in DWP/DWO files. */
768
769 struct dwo_unit
770 {
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
780 struct dwarf2_section_info *section;
781
782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788 };
789
790 /* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794 enum dwp_v2_section_ids
795 {
796 DW_SECT_MIN = 1
797 };
798
799 /* Data for one DWO file.
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
809
810 struct dwo_file
811 {
812 /* The DW_AT_GNU_dwo_name attribute.
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
820
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
824
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
828 struct dwo_sections sections;
829
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840 };
841
842 /* These sections are what may appear in a DWP file. */
843
844 struct dwp_sections
845 {
846 /* These are used by both DWP version 1 and 2. */
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
867 };
868
869 /* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
871
872 struct virtual_v1_dwo_sections
873 {
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
881 That is recorded here, and copied to dwo_unit.section. */
882 struct dwarf2_section_info info_or_types;
883 };
884
885 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890 struct virtual_v2_dwo_sections
891 {
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914 };
915
916 /* Contents of DWP hash tables. */
917
918 struct dwp_hash_table
919 {
920 uint32_t version, nr_columns;
921 uint32_t nr_units, nr_slots;
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933 #define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
945 };
946
947 /* Data for one DWP file. */
948
949 struct dwp_file
950 {
951 /* Name of the file. */
952 const char *name;
953
954 /* File format version. */
955 int version;
956
957 /* The bfd. */
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
963 /* Table of CUs in the file. */
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
972
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
975 unsigned int num_sections;
976 asection **elf_sections;
977 };
978
979 /* This represents a '.dwz' file. */
980
981 struct dwz_file
982 {
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
989 struct dwarf2_section_info gdb_index;
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993 };
994
995 /* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
998 struct exists to abstract away the constant parameters of die reading. */
999
1000 struct die_reader_specs
1001 {
1002 /* The bfd of die_section. */
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1009 struct dwo_file *dwo_file;
1010
1011 /* The section the die comes from.
1012 This is either .debug_info or .debug_types, or the .dwo variants. */
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
1016 const gdb_byte *buffer;
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
1023 };
1024
1025 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1026 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1027 const gdb_byte *info_ptr,
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
1032 struct file_entry
1033 {
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
1042 };
1043
1044 /* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047 struct line_header
1048 {
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
1059 unsigned char maximum_ops_per_instruction;
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
1076 const char **include_dirs;
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
1082 struct file_entry *file_names;
1083
1084 /* The start and end of the statement program following this
1085 header. These point into dwarf2_per_objfile->line_buffer. */
1086 const gdb_byte *statement_program_start, *statement_program_end;
1087 };
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info
1092 {
1093 /* Offset of this DIE. */
1094 sect_offset offset;
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
1106 unsigned int may_be_inlined : 1;
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
1130 /* The name of this DIE. Normally the value of DW_AT_name, but
1131 sometimes a default name for unnamed DIEs. */
1132 const char *name;
1133
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
1140 const char *scope;
1141
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
1155
1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1157 DW_AT_sibling, if any. */
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
1160 const gdb_byte *sibling;
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
1165 sect_offset spec_offset;
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
1170 };
1171
1172 /* This data structure holds the information of an abbrev. */
1173 struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183 struct attr_abbrev
1184 {
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
1187 };
1188
1189 /* Size of abbrev_table.abbrev_hash_table. */
1190 #define ABBREV_HASH_SIZE 121
1191
1192 /* Top level data structure to contain an abbreviation table. */
1193
1194 struct abbrev_table
1195 {
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208 };
1209
1210 /* Attributes have a name and a value. */
1211 struct attribute
1212 {
1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
1221 union
1222 {
1223 const char *str;
1224 struct dwarf_block *blk;
1225 ULONGEST unsnd;
1226 LONGEST snd;
1227 CORE_ADDR addr;
1228 ULONGEST signature;
1229 }
1230 u;
1231 };
1232
1233 /* This data structure holds a complete die structure. */
1234 struct die_info
1235 {
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1245
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
1252 /* Offset in .debug_info or .debug_types section. */
1253 sect_offset offset;
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
1258 together via their SIBLING fields. */
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
1262
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
1267 };
1268
1269 /* Get at parts of an attribute structure. */
1270
1271 #define DW_STRING(attr) ((attr)->u.str)
1272 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1273 #define DW_UNSND(attr) ((attr)->u.unsnd)
1274 #define DW_BLOCK(attr) ((attr)->u.blk)
1275 #define DW_SND(attr) ((attr)->u.snd)
1276 #define DW_ADDR(attr) ((attr)->u.addr)
1277 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1278
1279 /* Blocks are a bunch of untyped bytes. */
1280 struct dwarf_block
1281 {
1282 size_t size;
1283
1284 /* Valid only if SIZE is not zero. */
1285 const gdb_byte *data;
1286 };
1287
1288 #ifndef ATTR_ALLOC_CHUNK
1289 #define ATTR_ALLOC_CHUNK 4
1290 #endif
1291
1292 /* Allocate fields for structs, unions and enums in this size. */
1293 #ifndef DW_FIELD_ALLOC_CHUNK
1294 #define DW_FIELD_ALLOC_CHUNK 4
1295 #endif
1296
1297 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300 static int bits_per_byte = 8;
1301
1302 struct nextfield
1303 {
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308 };
1309
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 };
1315
1316 struct fnfieldlist
1317 {
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321 };
1322
1323 struct typedef_field_list
1324 {
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327 };
1328
1329 /* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332 struct field_info
1333 {
1334 /* List of data member and baseclasses fields. */
1335 struct nextfield *fields, *baseclasses;
1336
1337 /* Number of fields (including baseclasses). */
1338 int nfields;
1339
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
1342
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
1345
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
1348 struct nextfnfield *fnfields;
1349
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
1353 struct fnfieldlist *fnfieldlists;
1354
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1360 struct typedef_field_list *typedef_field_list;
1361 unsigned typedef_field_list_count;
1362 };
1363
1364 /* One item on the queue of compilation units to read in full symbols
1365 for. */
1366 struct dwarf2_queue_item
1367 {
1368 struct dwarf2_per_cu_data *per_cu;
1369 enum language pretend_language;
1370 struct dwarf2_queue_item *next;
1371 };
1372
1373 /* The current queue. */
1374 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
1376 /* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
1381 static int dwarf_max_cache_age = 5;
1382 static void
1383 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
1385 {
1386 fprintf_filtered (file, _("The upper bound on the age of cached "
1387 "DWARF compilation units is %s.\n"),
1388 value);
1389 }
1390 \f
1391 /* local function prototypes */
1392
1393 static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395 static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
1397 static void dwarf2_locate_sections (bfd *, asection *, void *);
1398
1399 static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
1402 static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
1405 static void dwarf2_build_psymtabs_hard (struct objfile *);
1406
1407 static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
1409 int, struct dwarf2_cu *);
1410
1411 static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
1413
1414 static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1416 int set_addrmap, struct dwarf2_cu *cu);
1417
1418 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1419 CORE_ADDR *highpc, int set_addrmap,
1420 struct dwarf2_cu *cu);
1421
1422 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
1424
1425 static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1427 int need_pc, struct dwarf2_cu *cu);
1428
1429 static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
1431
1432 static void psymtab_to_symtab_1 (struct partial_symtab *);
1433
1434 static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437 static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440 static void abbrev_table_free (struct abbrev_table *);
1441
1442 static void abbrev_table_free_cleanup (void *);
1443
1444 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
1446
1447 static void dwarf2_free_abbrev_table (void *);
1448
1449 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1450
1451 static struct partial_die_info *load_partial_dies
1452 (const struct die_reader_specs *, const gdb_byte *, int);
1453
1454 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
1459
1460 static struct partial_die_info *find_partial_die (sect_offset, int,
1461 struct dwarf2_cu *);
1462
1463 static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
1466 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
1469
1470 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1471
1472 static int read_1_signed_byte (bfd *, const gdb_byte *);
1473
1474 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1475
1476 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1477
1478 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1479
1480 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1481 unsigned int *);
1482
1483 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_checked_initial_length_and_offset
1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1487 unsigned int *, unsigned int *);
1488
1489 static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
1491 unsigned int *);
1492
1493 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1494
1495 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
1498 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1499
1500 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1501
1502 static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
1505
1506 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1507
1508 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1509
1510 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
1514 unsigned int *);
1515
1516 static const char *read_str_index (const struct die_reader_specs *reader,
1517 ULONGEST str_index);
1518
1519 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1520
1521 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
1523
1524 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1525 unsigned int);
1526
1527 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
1530 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
1533 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1534
1535 static struct die_info *die_specification (struct die_info *die,
1536 struct dwarf2_cu **);
1537
1538 static void free_line_header (struct line_header *lh);
1539
1540 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
1542
1543 static void dwarf_decode_lines (struct line_header *, const char *,
1544 struct dwarf2_cu *, struct partial_symtab *,
1545 CORE_ADDR, int decode_mapping);
1546
1547 static void dwarf2_start_subfile (const char *, const char *);
1548
1549 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
1552
1553 static struct symbol *new_symbol (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
1559 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1560 struct dwarf2_cu *);
1561
1562 static void dwarf2_const_value_attr (const struct attribute *attr,
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
1566 struct dwarf2_cu *cu, LONGEST *value,
1567 const gdb_byte **bytes,
1568 struct dwarf2_locexpr_baton **baton);
1569
1570 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1571
1572 static int need_gnat_info (struct dwarf2_cu *);
1573
1574 static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
1576
1577 static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
1580 static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
1582
1583 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1584 struct dwarf2_cu *);
1585
1586 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1587
1588 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
1590 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1591
1592 static char *typename_concat (struct obstack *obs, const char *prefix,
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
1595
1596 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1597
1598 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
1600 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1601
1602 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1603
1604 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
1606 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
1609 static int dwarf2_get_pc_bounds (struct die_info *,
1610 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1611 struct partial_symtab *);
1612
1613 static void get_scope_pc_bounds (struct die_info *,
1614 CORE_ADDR *, CORE_ADDR *,
1615 struct dwarf2_cu *);
1616
1617 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1618 CORE_ADDR, struct dwarf2_cu *);
1619
1620 static void dwarf2_add_field (struct field_info *, struct die_info *,
1621 struct dwarf2_cu *);
1622
1623 static void dwarf2_attach_fields_to_type (struct field_info *,
1624 struct type *, struct dwarf2_cu *);
1625
1626 static void dwarf2_add_member_fn (struct field_info *,
1627 struct die_info *, struct type *,
1628 struct dwarf2_cu *);
1629
1630 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1631 struct type *,
1632 struct dwarf2_cu *);
1633
1634 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1635
1636 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1637
1638 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1639
1640 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1641
1642 static struct using_direct **using_directives (enum language);
1643
1644 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1645
1646 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1647
1648 static struct type *read_module_type (struct die_info *die,
1649 struct dwarf2_cu *cu);
1650
1651 static const char *namespace_name (struct die_info *die,
1652 int *is_anonymous, struct dwarf2_cu *);
1653
1654 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1655
1656 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1657
1658 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1659 struct dwarf2_cu *);
1660
1661 static struct die_info *read_die_and_siblings_1
1662 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1663 struct die_info *);
1664
1665 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1666 const gdb_byte *info_ptr,
1667 const gdb_byte **new_info_ptr,
1668 struct die_info *parent);
1669
1670 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1671 struct die_info **, const gdb_byte *,
1672 int *, int);
1673
1674 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1675 struct die_info **, const gdb_byte *,
1676 int *);
1677
1678 static void process_die (struct die_info *, struct dwarf2_cu *);
1679
1680 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1681 struct obstack *);
1682
1683 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1684
1685 static const char *dwarf2_full_name (const char *name,
1686 struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
1689 static const char *dwarf2_physname (const char *name, struct die_info *die,
1690 struct dwarf2_cu *cu);
1691
1692 static struct die_info *dwarf2_extension (struct die_info *die,
1693 struct dwarf2_cu **);
1694
1695 static const char *dwarf_tag_name (unsigned int);
1696
1697 static const char *dwarf_attr_name (unsigned int);
1698
1699 static const char *dwarf_form_name (unsigned int);
1700
1701 static char *dwarf_bool_name (unsigned int);
1702
1703 static const char *dwarf_type_encoding_name (unsigned int);
1704
1705 static struct die_info *sibling_die (struct die_info *);
1706
1707 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1708
1709 static void dump_die_for_error (struct die_info *);
1710
1711 static void dump_die_1 (struct ui_file *, int level, int max_level,
1712 struct die_info *);
1713
1714 /*static*/ void dump_die (struct die_info *, int max_level);
1715
1716 static void store_in_ref_table (struct die_info *,
1717 struct dwarf2_cu *);
1718
1719 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1720
1721 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1722
1723 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1724 const struct attribute *,
1725 struct dwarf2_cu **);
1726
1727 static struct die_info *follow_die_ref (struct die_info *,
1728 const struct attribute *,
1729 struct dwarf2_cu **);
1730
1731 static struct die_info *follow_die_sig (struct die_info *,
1732 const struct attribute *,
1733 struct dwarf2_cu **);
1734
1735 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1736 struct dwarf2_cu *);
1737
1738 static struct type *get_DW_AT_signature_type (struct die_info *,
1739 const struct attribute *,
1740 struct dwarf2_cu *);
1741
1742 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1743
1744 static void read_signatured_type (struct signatured_type *);
1745
1746 static int attr_to_dynamic_prop (const struct attribute *attr,
1747 struct die_info *die, struct dwarf2_cu *cu,
1748 struct dynamic_prop *prop);
1749
1750 /* memory allocation interface */
1751
1752 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1753
1754 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1755
1756 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1757
1758 static int attr_form_is_block (const struct attribute *);
1759
1760 static int attr_form_is_section_offset (const struct attribute *);
1761
1762 static int attr_form_is_constant (const struct attribute *);
1763
1764 static int attr_form_is_ref (const struct attribute *);
1765
1766 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1767 struct dwarf2_loclist_baton *baton,
1768 const struct attribute *attr);
1769
1770 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1771 struct symbol *sym,
1772 struct dwarf2_cu *cu,
1773 int is_block);
1774
1775 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1776 const gdb_byte *info_ptr,
1777 struct abbrev_info *abbrev);
1778
1779 static void free_stack_comp_unit (void *);
1780
1781 static hashval_t partial_die_hash (const void *item);
1782
1783 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1784
1785 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1786 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1787
1788 static void init_one_comp_unit (struct dwarf2_cu *cu,
1789 struct dwarf2_per_cu_data *per_cu);
1790
1791 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1792 struct die_info *comp_unit_die,
1793 enum language pretend_language);
1794
1795 static void free_heap_comp_unit (void *);
1796
1797 static void free_cached_comp_units (void *);
1798
1799 static void age_cached_comp_units (void);
1800
1801 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1802
1803 static struct type *set_die_type (struct die_info *, struct type *,
1804 struct dwarf2_cu *);
1805
1806 static void create_all_comp_units (struct objfile *);
1807
1808 static int create_all_type_units (struct objfile *);
1809
1810 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1811 enum language);
1812
1813 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1814 enum language);
1815
1816 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1817 enum language);
1818
1819 static void dwarf2_add_dependence (struct dwarf2_cu *,
1820 struct dwarf2_per_cu_data *);
1821
1822 static void dwarf2_mark (struct dwarf2_cu *);
1823
1824 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1825
1826 static struct type *get_die_type_at_offset (sect_offset,
1827 struct dwarf2_per_cu_data *);
1828
1829 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1830
1831 static void dwarf2_release_queue (void *dummy);
1832
1833 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1834 enum language pretend_language);
1835
1836 static void process_queue (void);
1837
1838 static void find_file_and_directory (struct die_info *die,
1839 struct dwarf2_cu *cu,
1840 const char **name, const char **comp_dir);
1841
1842 static char *file_full_name (int file, struct line_header *lh,
1843 const char *comp_dir);
1844
1845 static const gdb_byte *read_and_check_comp_unit_head
1846 (struct comp_unit_head *header,
1847 struct dwarf2_section_info *section,
1848 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1849 int is_debug_types_section);
1850
1851 static void init_cutu_and_read_dies
1852 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1853 int use_existing_cu, int keep,
1854 die_reader_func_ftype *die_reader_func, void *data);
1855
1856 static void init_cutu_and_read_dies_simple
1857 (struct dwarf2_per_cu_data *this_cu,
1858 die_reader_func_ftype *die_reader_func, void *data);
1859
1860 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1861
1862 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1863
1864 static struct dwo_unit *lookup_dwo_unit_in_dwp
1865 (struct dwp_file *dwp_file, const char *comp_dir,
1866 ULONGEST signature, int is_debug_types);
1867
1868 static struct dwp_file *get_dwp_file (void);
1869
1870 static struct dwo_unit *lookup_dwo_comp_unit
1871 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1872
1873 static struct dwo_unit *lookup_dwo_type_unit
1874 (struct signatured_type *, const char *, const char *);
1875
1876 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1877
1878 static void free_dwo_file_cleanup (void *);
1879
1880 static void process_cu_includes (void);
1881
1882 static void check_producer (struct dwarf2_cu *cu);
1883
1884 static void free_line_header_voidp (void *arg);
1885 \f
1886 /* Various complaints about symbol reading that don't abort the process. */
1887
1888 static void
1889 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1890 {
1891 complaint (&symfile_complaints,
1892 _("statement list doesn't fit in .debug_line section"));
1893 }
1894
1895 static void
1896 dwarf2_debug_line_missing_file_complaint (void)
1897 {
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line data without a file"));
1900 }
1901
1902 static void
1903 dwarf2_debug_line_missing_end_sequence_complaint (void)
1904 {
1905 complaint (&symfile_complaints,
1906 _(".debug_line section has line "
1907 "program sequence without an end"));
1908 }
1909
1910 static void
1911 dwarf2_complex_location_expr_complaint (void)
1912 {
1913 complaint (&symfile_complaints, _("location expression too complex"));
1914 }
1915
1916 static void
1917 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1918 int arg3)
1919 {
1920 complaint (&symfile_complaints,
1921 _("const value length mismatch for '%s', got %d, expected %d"),
1922 arg1, arg2, arg3);
1923 }
1924
1925 static void
1926 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1927 {
1928 complaint (&symfile_complaints,
1929 _("debug info runs off end of %s section"
1930 " [in module %s]"),
1931 get_section_name (section),
1932 get_section_file_name (section));
1933 }
1934
1935 static void
1936 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1937 {
1938 complaint (&symfile_complaints,
1939 _("macro debug info contains a "
1940 "malformed macro definition:\n`%s'"),
1941 arg1);
1942 }
1943
1944 static void
1945 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1946 {
1947 complaint (&symfile_complaints,
1948 _("invalid attribute class or form for '%s' in '%s'"),
1949 arg1, arg2);
1950 }
1951
1952 /* Hash function for line_header_hash. */
1953
1954 static hashval_t
1955 line_header_hash (const struct line_header *ofs)
1956 {
1957 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1958 }
1959
1960 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1961
1962 static hashval_t
1963 line_header_hash_voidp (const void *item)
1964 {
1965 const struct line_header *ofs = (const struct line_header *) item;
1966
1967 return line_header_hash (ofs);
1968 }
1969
1970 /* Equality function for line_header_hash. */
1971
1972 static int
1973 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1974 {
1975 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1976 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1977
1978 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1979 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1980 }
1981
1982 \f
1983 #if WORDS_BIGENDIAN
1984
1985 /* Convert VALUE between big- and little-endian. */
1986 static offset_type
1987 byte_swap (offset_type value)
1988 {
1989 offset_type result;
1990
1991 result = (value & 0xff) << 24;
1992 result |= (value & 0xff00) << 8;
1993 result |= (value & 0xff0000) >> 8;
1994 result |= (value & 0xff000000) >> 24;
1995 return result;
1996 }
1997
1998 #define MAYBE_SWAP(V) byte_swap (V)
1999
2000 #else
2001 #define MAYBE_SWAP(V) (V)
2002 #endif /* WORDS_BIGENDIAN */
2003
2004 /* Read the given attribute value as an address, taking the attribute's
2005 form into account. */
2006
2007 static CORE_ADDR
2008 attr_value_as_address (struct attribute *attr)
2009 {
2010 CORE_ADDR addr;
2011
2012 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2013 {
2014 /* Aside from a few clearly defined exceptions, attributes that
2015 contain an address must always be in DW_FORM_addr form.
2016 Unfortunately, some compilers happen to be violating this
2017 requirement by encoding addresses using other forms, such
2018 as DW_FORM_data4 for example. For those broken compilers,
2019 we try to do our best, without any guarantee of success,
2020 to interpret the address correctly. It would also be nice
2021 to generate a complaint, but that would require us to maintain
2022 a list of legitimate cases where a non-address form is allowed,
2023 as well as update callers to pass in at least the CU's DWARF
2024 version. This is more overhead than what we're willing to
2025 expand for a pretty rare case. */
2026 addr = DW_UNSND (attr);
2027 }
2028 else
2029 addr = DW_ADDR (attr);
2030
2031 return addr;
2032 }
2033
2034 /* The suffix for an index file. */
2035 #define INDEX_SUFFIX ".gdb-index"
2036
2037 /* Try to locate the sections we need for DWARF 2 debugging
2038 information and return true if we have enough to do something.
2039 NAMES points to the dwarf2 section names, or is NULL if the standard
2040 ELF names are used. */
2041
2042 int
2043 dwarf2_has_info (struct objfile *objfile,
2044 const struct dwarf2_debug_sections *names)
2045 {
2046 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2047 objfile_data (objfile, dwarf2_objfile_data_key));
2048 if (!dwarf2_per_objfile)
2049 {
2050 /* Initialize per-objfile state. */
2051 struct dwarf2_per_objfile *data
2052 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2053
2054 memset (data, 0, sizeof (*data));
2055 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2056 dwarf2_per_objfile = data;
2057
2058 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2059 (void *) names);
2060 dwarf2_per_objfile->objfile = objfile;
2061 }
2062 return (!dwarf2_per_objfile->info.is_virtual
2063 && dwarf2_per_objfile->info.s.section != NULL
2064 && !dwarf2_per_objfile->abbrev.is_virtual
2065 && dwarf2_per_objfile->abbrev.s.section != NULL);
2066 }
2067
2068 /* Return the containing section of virtual section SECTION. */
2069
2070 static struct dwarf2_section_info *
2071 get_containing_section (const struct dwarf2_section_info *section)
2072 {
2073 gdb_assert (section->is_virtual);
2074 return section->s.containing_section;
2075 }
2076
2077 /* Return the bfd owner of SECTION. */
2078
2079 static struct bfd *
2080 get_section_bfd_owner (const struct dwarf2_section_info *section)
2081 {
2082 if (section->is_virtual)
2083 {
2084 section = get_containing_section (section);
2085 gdb_assert (!section->is_virtual);
2086 }
2087 return section->s.section->owner;
2088 }
2089
2090 /* Return the bfd section of SECTION.
2091 Returns NULL if the section is not present. */
2092
2093 static asection *
2094 get_section_bfd_section (const struct dwarf2_section_info *section)
2095 {
2096 if (section->is_virtual)
2097 {
2098 section = get_containing_section (section);
2099 gdb_assert (!section->is_virtual);
2100 }
2101 return section->s.section;
2102 }
2103
2104 /* Return the name of SECTION. */
2105
2106 static const char *
2107 get_section_name (const struct dwarf2_section_info *section)
2108 {
2109 asection *sectp = get_section_bfd_section (section);
2110
2111 gdb_assert (sectp != NULL);
2112 return bfd_section_name (get_section_bfd_owner (section), sectp);
2113 }
2114
2115 /* Return the name of the file SECTION is in. */
2116
2117 static const char *
2118 get_section_file_name (const struct dwarf2_section_info *section)
2119 {
2120 bfd *abfd = get_section_bfd_owner (section);
2121
2122 return bfd_get_filename (abfd);
2123 }
2124
2125 /* Return the id of SECTION.
2126 Returns 0 if SECTION doesn't exist. */
2127
2128 static int
2129 get_section_id (const struct dwarf2_section_info *section)
2130 {
2131 asection *sectp = get_section_bfd_section (section);
2132
2133 if (sectp == NULL)
2134 return 0;
2135 return sectp->id;
2136 }
2137
2138 /* Return the flags of SECTION.
2139 SECTION (or containing section if this is a virtual section) must exist. */
2140
2141 static int
2142 get_section_flags (const struct dwarf2_section_info *section)
2143 {
2144 asection *sectp = get_section_bfd_section (section);
2145
2146 gdb_assert (sectp != NULL);
2147 return bfd_get_section_flags (sectp->owner, sectp);
2148 }
2149
2150 /* When loading sections, we look either for uncompressed section or for
2151 compressed section names. */
2152
2153 static int
2154 section_is_p (const char *section_name,
2155 const struct dwarf2_section_names *names)
2156 {
2157 if (names->normal != NULL
2158 && strcmp (section_name, names->normal) == 0)
2159 return 1;
2160 if (names->compressed != NULL
2161 && strcmp (section_name, names->compressed) == 0)
2162 return 1;
2163 return 0;
2164 }
2165
2166 /* This function is mapped across the sections and remembers the
2167 offset and size of each of the debugging sections we are interested
2168 in. */
2169
2170 static void
2171 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2172 {
2173 const struct dwarf2_debug_sections *names;
2174 flagword aflag = bfd_get_section_flags (abfd, sectp);
2175
2176 if (vnames == NULL)
2177 names = &dwarf2_elf_names;
2178 else
2179 names = (const struct dwarf2_debug_sections *) vnames;
2180
2181 if ((aflag & SEC_HAS_CONTENTS) == 0)
2182 {
2183 }
2184 else if (section_is_p (sectp->name, &names->info))
2185 {
2186 dwarf2_per_objfile->info.s.section = sectp;
2187 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2188 }
2189 else if (section_is_p (sectp->name, &names->abbrev))
2190 {
2191 dwarf2_per_objfile->abbrev.s.section = sectp;
2192 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2193 }
2194 else if (section_is_p (sectp->name, &names->line))
2195 {
2196 dwarf2_per_objfile->line.s.section = sectp;
2197 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2198 }
2199 else if (section_is_p (sectp->name, &names->loc))
2200 {
2201 dwarf2_per_objfile->loc.s.section = sectp;
2202 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2203 }
2204 else if (section_is_p (sectp->name, &names->macinfo))
2205 {
2206 dwarf2_per_objfile->macinfo.s.section = sectp;
2207 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2208 }
2209 else if (section_is_p (sectp->name, &names->macro))
2210 {
2211 dwarf2_per_objfile->macro.s.section = sectp;
2212 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2213 }
2214 else if (section_is_p (sectp->name, &names->str))
2215 {
2216 dwarf2_per_objfile->str.s.section = sectp;
2217 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2218 }
2219 else if (section_is_p (sectp->name, &names->addr))
2220 {
2221 dwarf2_per_objfile->addr.s.section = sectp;
2222 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2223 }
2224 else if (section_is_p (sectp->name, &names->frame))
2225 {
2226 dwarf2_per_objfile->frame.s.section = sectp;
2227 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2228 }
2229 else if (section_is_p (sectp->name, &names->eh_frame))
2230 {
2231 dwarf2_per_objfile->eh_frame.s.section = sectp;
2232 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2233 }
2234 else if (section_is_p (sectp->name, &names->ranges))
2235 {
2236 dwarf2_per_objfile->ranges.s.section = sectp;
2237 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2238 }
2239 else if (section_is_p (sectp->name, &names->types))
2240 {
2241 struct dwarf2_section_info type_section;
2242
2243 memset (&type_section, 0, sizeof (type_section));
2244 type_section.s.section = sectp;
2245 type_section.size = bfd_get_section_size (sectp);
2246
2247 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2248 &type_section);
2249 }
2250 else if (section_is_p (sectp->name, &names->gdb_index))
2251 {
2252 dwarf2_per_objfile->gdb_index.s.section = sectp;
2253 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2254 }
2255
2256 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2257 && bfd_section_vma (abfd, sectp) == 0)
2258 dwarf2_per_objfile->has_section_at_zero = 1;
2259 }
2260
2261 /* A helper function that decides whether a section is empty,
2262 or not present. */
2263
2264 static int
2265 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2266 {
2267 if (section->is_virtual)
2268 return section->size == 0;
2269 return section->s.section == NULL || section->size == 0;
2270 }
2271
2272 /* Read the contents of the section INFO.
2273 OBJFILE is the main object file, but not necessarily the file where
2274 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2275 of the DWO file.
2276 If the section is compressed, uncompress it before returning. */
2277
2278 static void
2279 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2280 {
2281 asection *sectp;
2282 bfd *abfd;
2283 gdb_byte *buf, *retbuf;
2284
2285 if (info->readin)
2286 return;
2287 info->buffer = NULL;
2288 info->readin = 1;
2289
2290 if (dwarf2_section_empty_p (info))
2291 return;
2292
2293 sectp = get_section_bfd_section (info);
2294
2295 /* If this is a virtual section we need to read in the real one first. */
2296 if (info->is_virtual)
2297 {
2298 struct dwarf2_section_info *containing_section =
2299 get_containing_section (info);
2300
2301 gdb_assert (sectp != NULL);
2302 if ((sectp->flags & SEC_RELOC) != 0)
2303 {
2304 error (_("Dwarf Error: DWP format V2 with relocations is not"
2305 " supported in section %s [in module %s]"),
2306 get_section_name (info), get_section_file_name (info));
2307 }
2308 dwarf2_read_section (objfile, containing_section);
2309 /* Other code should have already caught virtual sections that don't
2310 fit. */
2311 gdb_assert (info->virtual_offset + info->size
2312 <= containing_section->size);
2313 /* If the real section is empty or there was a problem reading the
2314 section we shouldn't get here. */
2315 gdb_assert (containing_section->buffer != NULL);
2316 info->buffer = containing_section->buffer + info->virtual_offset;
2317 return;
2318 }
2319
2320 /* If the section has relocations, we must read it ourselves.
2321 Otherwise we attach it to the BFD. */
2322 if ((sectp->flags & SEC_RELOC) == 0)
2323 {
2324 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2325 return;
2326 }
2327
2328 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2329 info->buffer = buf;
2330
2331 /* When debugging .o files, we may need to apply relocations; see
2332 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2333 We never compress sections in .o files, so we only need to
2334 try this when the section is not compressed. */
2335 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2336 if (retbuf != NULL)
2337 {
2338 info->buffer = retbuf;
2339 return;
2340 }
2341
2342 abfd = get_section_bfd_owner (info);
2343 gdb_assert (abfd != NULL);
2344
2345 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2346 || bfd_bread (buf, info->size, abfd) != info->size)
2347 {
2348 error (_("Dwarf Error: Can't read DWARF data"
2349 " in section %s [in module %s]"),
2350 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2351 }
2352 }
2353
2354 /* A helper function that returns the size of a section in a safe way.
2355 If you are positive that the section has been read before using the
2356 size, then it is safe to refer to the dwarf2_section_info object's
2357 "size" field directly. In other cases, you must call this
2358 function, because for compressed sections the size field is not set
2359 correctly until the section has been read. */
2360
2361 static bfd_size_type
2362 dwarf2_section_size (struct objfile *objfile,
2363 struct dwarf2_section_info *info)
2364 {
2365 if (!info->readin)
2366 dwarf2_read_section (objfile, info);
2367 return info->size;
2368 }
2369
2370 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2371 SECTION_NAME. */
2372
2373 void
2374 dwarf2_get_section_info (struct objfile *objfile,
2375 enum dwarf2_section_enum sect,
2376 asection **sectp, const gdb_byte **bufp,
2377 bfd_size_type *sizep)
2378 {
2379 struct dwarf2_per_objfile *data
2380 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2381 dwarf2_objfile_data_key);
2382 struct dwarf2_section_info *info;
2383
2384 /* We may see an objfile without any DWARF, in which case we just
2385 return nothing. */
2386 if (data == NULL)
2387 {
2388 *sectp = NULL;
2389 *bufp = NULL;
2390 *sizep = 0;
2391 return;
2392 }
2393 switch (sect)
2394 {
2395 case DWARF2_DEBUG_FRAME:
2396 info = &data->frame;
2397 break;
2398 case DWARF2_EH_FRAME:
2399 info = &data->eh_frame;
2400 break;
2401 default:
2402 gdb_assert_not_reached ("unexpected section");
2403 }
2404
2405 dwarf2_read_section (objfile, info);
2406
2407 *sectp = get_section_bfd_section (info);
2408 *bufp = info->buffer;
2409 *sizep = info->size;
2410 }
2411
2412 /* A helper function to find the sections for a .dwz file. */
2413
2414 static void
2415 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2416 {
2417 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2418
2419 /* Note that we only support the standard ELF names, because .dwz
2420 is ELF-only (at the time of writing). */
2421 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2422 {
2423 dwz_file->abbrev.s.section = sectp;
2424 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2425 }
2426 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2427 {
2428 dwz_file->info.s.section = sectp;
2429 dwz_file->info.size = bfd_get_section_size (sectp);
2430 }
2431 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2432 {
2433 dwz_file->str.s.section = sectp;
2434 dwz_file->str.size = bfd_get_section_size (sectp);
2435 }
2436 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2437 {
2438 dwz_file->line.s.section = sectp;
2439 dwz_file->line.size = bfd_get_section_size (sectp);
2440 }
2441 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2442 {
2443 dwz_file->macro.s.section = sectp;
2444 dwz_file->macro.size = bfd_get_section_size (sectp);
2445 }
2446 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2447 {
2448 dwz_file->gdb_index.s.section = sectp;
2449 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2450 }
2451 }
2452
2453 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2454 there is no .gnu_debugaltlink section in the file. Error if there
2455 is such a section but the file cannot be found. */
2456
2457 static struct dwz_file *
2458 dwarf2_get_dwz_file (void)
2459 {
2460 bfd *dwz_bfd;
2461 char *data;
2462 struct cleanup *cleanup;
2463 const char *filename;
2464 struct dwz_file *result;
2465 bfd_size_type buildid_len_arg;
2466 size_t buildid_len;
2467 bfd_byte *buildid;
2468
2469 if (dwarf2_per_objfile->dwz_file != NULL)
2470 return dwarf2_per_objfile->dwz_file;
2471
2472 bfd_set_error (bfd_error_no_error);
2473 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2474 &buildid_len_arg, &buildid);
2475 if (data == NULL)
2476 {
2477 if (bfd_get_error () == bfd_error_no_error)
2478 return NULL;
2479 error (_("could not read '.gnu_debugaltlink' section: %s"),
2480 bfd_errmsg (bfd_get_error ()));
2481 }
2482 cleanup = make_cleanup (xfree, data);
2483 make_cleanup (xfree, buildid);
2484
2485 buildid_len = (size_t) buildid_len_arg;
2486
2487 filename = (const char *) data;
2488 if (!IS_ABSOLUTE_PATH (filename))
2489 {
2490 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2491 char *rel;
2492
2493 make_cleanup (xfree, abs);
2494 abs = ldirname (abs);
2495 make_cleanup (xfree, abs);
2496
2497 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2498 make_cleanup (xfree, rel);
2499 filename = rel;
2500 }
2501
2502 /* First try the file name given in the section. If that doesn't
2503 work, try to use the build-id instead. */
2504 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2505 if (dwz_bfd != NULL)
2506 {
2507 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2508 {
2509 gdb_bfd_unref (dwz_bfd);
2510 dwz_bfd = NULL;
2511 }
2512 }
2513
2514 if (dwz_bfd == NULL)
2515 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2516
2517 if (dwz_bfd == NULL)
2518 error (_("could not find '.gnu_debugaltlink' file for %s"),
2519 objfile_name (dwarf2_per_objfile->objfile));
2520
2521 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2522 struct dwz_file);
2523 result->dwz_bfd = dwz_bfd;
2524
2525 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2526
2527 do_cleanups (cleanup);
2528
2529 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2530 dwarf2_per_objfile->dwz_file = result;
2531 return result;
2532 }
2533 \f
2534 /* DWARF quick_symbols_functions support. */
2535
2536 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2537 unique line tables, so we maintain a separate table of all .debug_line
2538 derived entries to support the sharing.
2539 All the quick functions need is the list of file names. We discard the
2540 line_header when we're done and don't need to record it here. */
2541 struct quick_file_names
2542 {
2543 /* The data used to construct the hash key. */
2544 struct stmt_list_hash hash;
2545
2546 /* The number of entries in file_names, real_names. */
2547 unsigned int num_file_names;
2548
2549 /* The file names from the line table, after being run through
2550 file_full_name. */
2551 const char **file_names;
2552
2553 /* The file names from the line table after being run through
2554 gdb_realpath. These are computed lazily. */
2555 const char **real_names;
2556 };
2557
2558 /* When using the index (and thus not using psymtabs), each CU has an
2559 object of this type. This is used to hold information needed by
2560 the various "quick" methods. */
2561 struct dwarf2_per_cu_quick_data
2562 {
2563 /* The file table. This can be NULL if there was no file table
2564 or it's currently not read in.
2565 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2566 struct quick_file_names *file_names;
2567
2568 /* The corresponding symbol table. This is NULL if symbols for this
2569 CU have not yet been read. */
2570 struct compunit_symtab *compunit_symtab;
2571
2572 /* A temporary mark bit used when iterating over all CUs in
2573 expand_symtabs_matching. */
2574 unsigned int mark : 1;
2575
2576 /* True if we've tried to read the file table and found there isn't one.
2577 There will be no point in trying to read it again next time. */
2578 unsigned int no_file_data : 1;
2579 };
2580
2581 /* Utility hash function for a stmt_list_hash. */
2582
2583 static hashval_t
2584 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2585 {
2586 hashval_t v = 0;
2587
2588 if (stmt_list_hash->dwo_unit != NULL)
2589 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2590 v += stmt_list_hash->line_offset.sect_off;
2591 return v;
2592 }
2593
2594 /* Utility equality function for a stmt_list_hash. */
2595
2596 static int
2597 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2598 const struct stmt_list_hash *rhs)
2599 {
2600 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2601 return 0;
2602 if (lhs->dwo_unit != NULL
2603 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2604 return 0;
2605
2606 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2607 }
2608
2609 /* Hash function for a quick_file_names. */
2610
2611 static hashval_t
2612 hash_file_name_entry (const void *e)
2613 {
2614 const struct quick_file_names *file_data
2615 = (const struct quick_file_names *) e;
2616
2617 return hash_stmt_list_entry (&file_data->hash);
2618 }
2619
2620 /* Equality function for a quick_file_names. */
2621
2622 static int
2623 eq_file_name_entry (const void *a, const void *b)
2624 {
2625 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2626 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2627
2628 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2629 }
2630
2631 /* Delete function for a quick_file_names. */
2632
2633 static void
2634 delete_file_name_entry (void *e)
2635 {
2636 struct quick_file_names *file_data = (struct quick_file_names *) e;
2637 int i;
2638
2639 for (i = 0; i < file_data->num_file_names; ++i)
2640 {
2641 xfree ((void*) file_data->file_names[i]);
2642 if (file_data->real_names)
2643 xfree ((void*) file_data->real_names[i]);
2644 }
2645
2646 /* The space for the struct itself lives on objfile_obstack,
2647 so we don't free it here. */
2648 }
2649
2650 /* Create a quick_file_names hash table. */
2651
2652 static htab_t
2653 create_quick_file_names_table (unsigned int nr_initial_entries)
2654 {
2655 return htab_create_alloc (nr_initial_entries,
2656 hash_file_name_entry, eq_file_name_entry,
2657 delete_file_name_entry, xcalloc, xfree);
2658 }
2659
2660 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2661 have to be created afterwards. You should call age_cached_comp_units after
2662 processing PER_CU->CU. dw2_setup must have been already called. */
2663
2664 static void
2665 load_cu (struct dwarf2_per_cu_data *per_cu)
2666 {
2667 if (per_cu->is_debug_types)
2668 load_full_type_unit (per_cu);
2669 else
2670 load_full_comp_unit (per_cu, language_minimal);
2671
2672 if (per_cu->cu == NULL)
2673 return; /* Dummy CU. */
2674
2675 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2676 }
2677
2678 /* Read in the symbols for PER_CU. */
2679
2680 static void
2681 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2682 {
2683 struct cleanup *back_to;
2684
2685 /* Skip type_unit_groups, reading the type units they contain
2686 is handled elsewhere. */
2687 if (IS_TYPE_UNIT_GROUP (per_cu))
2688 return;
2689
2690 back_to = make_cleanup (dwarf2_release_queue, NULL);
2691
2692 if (dwarf2_per_objfile->using_index
2693 ? per_cu->v.quick->compunit_symtab == NULL
2694 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2695 {
2696 queue_comp_unit (per_cu, language_minimal);
2697 load_cu (per_cu);
2698
2699 /* If we just loaded a CU from a DWO, and we're working with an index
2700 that may badly handle TUs, load all the TUs in that DWO as well.
2701 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2702 if (!per_cu->is_debug_types
2703 && per_cu->cu != NULL
2704 && per_cu->cu->dwo_unit != NULL
2705 && dwarf2_per_objfile->index_table != NULL
2706 && dwarf2_per_objfile->index_table->version <= 7
2707 /* DWP files aren't supported yet. */
2708 && get_dwp_file () == NULL)
2709 queue_and_load_all_dwo_tus (per_cu);
2710 }
2711
2712 process_queue ();
2713
2714 /* Age the cache, releasing compilation units that have not
2715 been used recently. */
2716 age_cached_comp_units ();
2717
2718 do_cleanups (back_to);
2719 }
2720
2721 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2722 the objfile from which this CU came. Returns the resulting symbol
2723 table. */
2724
2725 static struct compunit_symtab *
2726 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2727 {
2728 gdb_assert (dwarf2_per_objfile->using_index);
2729 if (!per_cu->v.quick->compunit_symtab)
2730 {
2731 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2732 increment_reading_symtab ();
2733 dw2_do_instantiate_symtab (per_cu);
2734 process_cu_includes ();
2735 do_cleanups (back_to);
2736 }
2737
2738 return per_cu->v.quick->compunit_symtab;
2739 }
2740
2741 /* Return the CU/TU given its index.
2742
2743 This is intended for loops like:
2744
2745 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2746 + dwarf2_per_objfile->n_type_units); ++i)
2747 {
2748 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2749
2750 ...;
2751 }
2752 */
2753
2754 static struct dwarf2_per_cu_data *
2755 dw2_get_cutu (int index)
2756 {
2757 if (index >= dwarf2_per_objfile->n_comp_units)
2758 {
2759 index -= dwarf2_per_objfile->n_comp_units;
2760 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2761 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2762 }
2763
2764 return dwarf2_per_objfile->all_comp_units[index];
2765 }
2766
2767 /* Return the CU given its index.
2768 This differs from dw2_get_cutu in that it's for when you know INDEX
2769 refers to a CU. */
2770
2771 static struct dwarf2_per_cu_data *
2772 dw2_get_cu (int index)
2773 {
2774 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2775
2776 return dwarf2_per_objfile->all_comp_units[index];
2777 }
2778
2779 /* A helper for create_cus_from_index that handles a given list of
2780 CUs. */
2781
2782 static void
2783 create_cus_from_index_list (struct objfile *objfile,
2784 const gdb_byte *cu_list, offset_type n_elements,
2785 struct dwarf2_section_info *section,
2786 int is_dwz,
2787 int base_offset)
2788 {
2789 offset_type i;
2790
2791 for (i = 0; i < n_elements; i += 2)
2792 {
2793 struct dwarf2_per_cu_data *the_cu;
2794 ULONGEST offset, length;
2795
2796 gdb_static_assert (sizeof (ULONGEST) >= 8);
2797 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2798 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2799 cu_list += 2 * 8;
2800
2801 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2802 struct dwarf2_per_cu_data);
2803 the_cu->offset.sect_off = offset;
2804 the_cu->length = length;
2805 the_cu->objfile = objfile;
2806 the_cu->section = section;
2807 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2808 struct dwarf2_per_cu_quick_data);
2809 the_cu->is_dwz = is_dwz;
2810 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2811 }
2812 }
2813
2814 /* Read the CU list from the mapped index, and use it to create all
2815 the CU objects for this objfile. */
2816
2817 static void
2818 create_cus_from_index (struct objfile *objfile,
2819 const gdb_byte *cu_list, offset_type cu_list_elements,
2820 const gdb_byte *dwz_list, offset_type dwz_elements)
2821 {
2822 struct dwz_file *dwz;
2823
2824 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2825 dwarf2_per_objfile->all_comp_units =
2826 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2827 dwarf2_per_objfile->n_comp_units);
2828
2829 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2830 &dwarf2_per_objfile->info, 0, 0);
2831
2832 if (dwz_elements == 0)
2833 return;
2834
2835 dwz = dwarf2_get_dwz_file ();
2836 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2837 cu_list_elements / 2);
2838 }
2839
2840 /* Create the signatured type hash table from the index. */
2841
2842 static void
2843 create_signatured_type_table_from_index (struct objfile *objfile,
2844 struct dwarf2_section_info *section,
2845 const gdb_byte *bytes,
2846 offset_type elements)
2847 {
2848 offset_type i;
2849 htab_t sig_types_hash;
2850
2851 dwarf2_per_objfile->n_type_units
2852 = dwarf2_per_objfile->n_allocated_type_units
2853 = elements / 3;
2854 dwarf2_per_objfile->all_type_units =
2855 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2856
2857 sig_types_hash = allocate_signatured_type_table (objfile);
2858
2859 for (i = 0; i < elements; i += 3)
2860 {
2861 struct signatured_type *sig_type;
2862 ULONGEST offset, type_offset_in_tu, signature;
2863 void **slot;
2864
2865 gdb_static_assert (sizeof (ULONGEST) >= 8);
2866 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2867 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2868 BFD_ENDIAN_LITTLE);
2869 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2870 bytes += 3 * 8;
2871
2872 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2873 struct signatured_type);
2874 sig_type->signature = signature;
2875 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2876 sig_type->per_cu.is_debug_types = 1;
2877 sig_type->per_cu.section = section;
2878 sig_type->per_cu.offset.sect_off = offset;
2879 sig_type->per_cu.objfile = objfile;
2880 sig_type->per_cu.v.quick
2881 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2882 struct dwarf2_per_cu_quick_data);
2883
2884 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2885 *slot = sig_type;
2886
2887 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2888 }
2889
2890 dwarf2_per_objfile->signatured_types = sig_types_hash;
2891 }
2892
2893 /* Read the address map data from the mapped index, and use it to
2894 populate the objfile's psymtabs_addrmap. */
2895
2896 static void
2897 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2898 {
2899 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2900 const gdb_byte *iter, *end;
2901 struct obstack temp_obstack;
2902 struct addrmap *mutable_map;
2903 struct cleanup *cleanup;
2904 CORE_ADDR baseaddr;
2905
2906 obstack_init (&temp_obstack);
2907 cleanup = make_cleanup_obstack_free (&temp_obstack);
2908 mutable_map = addrmap_create_mutable (&temp_obstack);
2909
2910 iter = index->address_table;
2911 end = iter + index->address_table_size;
2912
2913 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2914
2915 while (iter < end)
2916 {
2917 ULONGEST hi, lo, cu_index;
2918 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2919 iter += 8;
2920 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2921 iter += 8;
2922 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2923 iter += 4;
2924
2925 if (lo > hi)
2926 {
2927 complaint (&symfile_complaints,
2928 _(".gdb_index address table has invalid range (%s - %s)"),
2929 hex_string (lo), hex_string (hi));
2930 continue;
2931 }
2932
2933 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2934 {
2935 complaint (&symfile_complaints,
2936 _(".gdb_index address table has invalid CU number %u"),
2937 (unsigned) cu_index);
2938 continue;
2939 }
2940
2941 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2942 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2943 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2944 }
2945
2946 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2947 &objfile->objfile_obstack);
2948 do_cleanups (cleanup);
2949 }
2950
2951 /* The hash function for strings in the mapped index. This is the same as
2952 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2953 implementation. This is necessary because the hash function is tied to the
2954 format of the mapped index file. The hash values do not have to match with
2955 SYMBOL_HASH_NEXT.
2956
2957 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2958
2959 static hashval_t
2960 mapped_index_string_hash (int index_version, const void *p)
2961 {
2962 const unsigned char *str = (const unsigned char *) p;
2963 hashval_t r = 0;
2964 unsigned char c;
2965
2966 while ((c = *str++) != 0)
2967 {
2968 if (index_version >= 5)
2969 c = tolower (c);
2970 r = r * 67 + c - 113;
2971 }
2972
2973 return r;
2974 }
2975
2976 /* Find a slot in the mapped index INDEX for the object named NAME.
2977 If NAME is found, set *VEC_OUT to point to the CU vector in the
2978 constant pool and return 1. If NAME cannot be found, return 0. */
2979
2980 static int
2981 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2982 offset_type **vec_out)
2983 {
2984 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2985 offset_type hash;
2986 offset_type slot, step;
2987 int (*cmp) (const char *, const char *);
2988
2989 if (current_language->la_language == language_cplus
2990 || current_language->la_language == language_java
2991 || current_language->la_language == language_fortran
2992 || current_language->la_language == language_d)
2993 {
2994 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2995 not contain any. */
2996
2997 if (strchr (name, '(') != NULL)
2998 {
2999 char *without_params = cp_remove_params (name);
3000
3001 if (without_params != NULL)
3002 {
3003 make_cleanup (xfree, without_params);
3004 name = without_params;
3005 }
3006 }
3007 }
3008
3009 /* Index version 4 did not support case insensitive searches. But the
3010 indices for case insensitive languages are built in lowercase, therefore
3011 simulate our NAME being searched is also lowercased. */
3012 hash = mapped_index_string_hash ((index->version == 4
3013 && case_sensitivity == case_sensitive_off
3014 ? 5 : index->version),
3015 name);
3016
3017 slot = hash & (index->symbol_table_slots - 1);
3018 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3019 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3020
3021 for (;;)
3022 {
3023 /* Convert a slot number to an offset into the table. */
3024 offset_type i = 2 * slot;
3025 const char *str;
3026 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3027 {
3028 do_cleanups (back_to);
3029 return 0;
3030 }
3031
3032 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3033 if (!cmp (name, str))
3034 {
3035 *vec_out = (offset_type *) (index->constant_pool
3036 + MAYBE_SWAP (index->symbol_table[i + 1]));
3037 do_cleanups (back_to);
3038 return 1;
3039 }
3040
3041 slot = (slot + step) & (index->symbol_table_slots - 1);
3042 }
3043 }
3044
3045 /* A helper function that reads the .gdb_index from SECTION and fills
3046 in MAP. FILENAME is the name of the file containing the section;
3047 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3048 ok to use deprecated sections.
3049
3050 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3051 out parameters that are filled in with information about the CU and
3052 TU lists in the section.
3053
3054 Returns 1 if all went well, 0 otherwise. */
3055
3056 static int
3057 read_index_from_section (struct objfile *objfile,
3058 const char *filename,
3059 int deprecated_ok,
3060 struct dwarf2_section_info *section,
3061 struct mapped_index *map,
3062 const gdb_byte **cu_list,
3063 offset_type *cu_list_elements,
3064 const gdb_byte **types_list,
3065 offset_type *types_list_elements)
3066 {
3067 const gdb_byte *addr;
3068 offset_type version;
3069 offset_type *metadata;
3070 int i;
3071
3072 if (dwarf2_section_empty_p (section))
3073 return 0;
3074
3075 /* Older elfutils strip versions could keep the section in the main
3076 executable while splitting it for the separate debug info file. */
3077 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3078 return 0;
3079
3080 dwarf2_read_section (objfile, section);
3081
3082 addr = section->buffer;
3083 /* Version check. */
3084 version = MAYBE_SWAP (*(offset_type *) addr);
3085 /* Versions earlier than 3 emitted every copy of a psymbol. This
3086 causes the index to behave very poorly for certain requests. Version 3
3087 contained incomplete addrmap. So, it seems better to just ignore such
3088 indices. */
3089 if (version < 4)
3090 {
3091 static int warning_printed = 0;
3092 if (!warning_printed)
3093 {
3094 warning (_("Skipping obsolete .gdb_index section in %s."),
3095 filename);
3096 warning_printed = 1;
3097 }
3098 return 0;
3099 }
3100 /* Index version 4 uses a different hash function than index version
3101 5 and later.
3102
3103 Versions earlier than 6 did not emit psymbols for inlined
3104 functions. Using these files will cause GDB not to be able to
3105 set breakpoints on inlined functions by name, so we ignore these
3106 indices unless the user has done
3107 "set use-deprecated-index-sections on". */
3108 if (version < 6 && !deprecated_ok)
3109 {
3110 static int warning_printed = 0;
3111 if (!warning_printed)
3112 {
3113 warning (_("\
3114 Skipping deprecated .gdb_index section in %s.\n\
3115 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3116 to use the section anyway."),
3117 filename);
3118 warning_printed = 1;
3119 }
3120 return 0;
3121 }
3122 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3123 of the TU (for symbols coming from TUs),
3124 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3125 Plus gold-generated indices can have duplicate entries for global symbols,
3126 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3127 These are just performance bugs, and we can't distinguish gdb-generated
3128 indices from gold-generated ones, so issue no warning here. */
3129
3130 /* Indexes with higher version than the one supported by GDB may be no
3131 longer backward compatible. */
3132 if (version > 8)
3133 return 0;
3134
3135 map->version = version;
3136 map->total_size = section->size;
3137
3138 metadata = (offset_type *) (addr + sizeof (offset_type));
3139
3140 i = 0;
3141 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3142 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3143 / 8);
3144 ++i;
3145
3146 *types_list = addr + MAYBE_SWAP (metadata[i]);
3147 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3148 - MAYBE_SWAP (metadata[i]))
3149 / 8);
3150 ++i;
3151
3152 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3153 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3154 - MAYBE_SWAP (metadata[i]));
3155 ++i;
3156
3157 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3158 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3159 - MAYBE_SWAP (metadata[i]))
3160 / (2 * sizeof (offset_type)));
3161 ++i;
3162
3163 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3164
3165 return 1;
3166 }
3167
3168
3169 /* Read the index file. If everything went ok, initialize the "quick"
3170 elements of all the CUs and return 1. Otherwise, return 0. */
3171
3172 static int
3173 dwarf2_read_index (struct objfile *objfile)
3174 {
3175 struct mapped_index local_map, *map;
3176 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3177 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3178 struct dwz_file *dwz;
3179
3180 if (!read_index_from_section (objfile, objfile_name (objfile),
3181 use_deprecated_index_sections,
3182 &dwarf2_per_objfile->gdb_index, &local_map,
3183 &cu_list, &cu_list_elements,
3184 &types_list, &types_list_elements))
3185 return 0;
3186
3187 /* Don't use the index if it's empty. */
3188 if (local_map.symbol_table_slots == 0)
3189 return 0;
3190
3191 /* If there is a .dwz file, read it so we can get its CU list as
3192 well. */
3193 dwz = dwarf2_get_dwz_file ();
3194 if (dwz != NULL)
3195 {
3196 struct mapped_index dwz_map;
3197 const gdb_byte *dwz_types_ignore;
3198 offset_type dwz_types_elements_ignore;
3199
3200 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3201 1,
3202 &dwz->gdb_index, &dwz_map,
3203 &dwz_list, &dwz_list_elements,
3204 &dwz_types_ignore,
3205 &dwz_types_elements_ignore))
3206 {
3207 warning (_("could not read '.gdb_index' section from %s; skipping"),
3208 bfd_get_filename (dwz->dwz_bfd));
3209 return 0;
3210 }
3211 }
3212
3213 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3214 dwz_list_elements);
3215
3216 if (types_list_elements)
3217 {
3218 struct dwarf2_section_info *section;
3219
3220 /* We can only handle a single .debug_types when we have an
3221 index. */
3222 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3223 return 0;
3224
3225 section = VEC_index (dwarf2_section_info_def,
3226 dwarf2_per_objfile->types, 0);
3227
3228 create_signatured_type_table_from_index (objfile, section, types_list,
3229 types_list_elements);
3230 }
3231
3232 create_addrmap_from_index (objfile, &local_map);
3233
3234 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3235 *map = local_map;
3236
3237 dwarf2_per_objfile->index_table = map;
3238 dwarf2_per_objfile->using_index = 1;
3239 dwarf2_per_objfile->quick_file_names_table =
3240 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3241
3242 return 1;
3243 }
3244
3245 /* A helper for the "quick" functions which sets the global
3246 dwarf2_per_objfile according to OBJFILE. */
3247
3248 static void
3249 dw2_setup (struct objfile *objfile)
3250 {
3251 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3252 objfile_data (objfile, dwarf2_objfile_data_key));
3253 gdb_assert (dwarf2_per_objfile);
3254 }
3255
3256 /* die_reader_func for dw2_get_file_names. */
3257
3258 static void
3259 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3260 const gdb_byte *info_ptr,
3261 struct die_info *comp_unit_die,
3262 int has_children,
3263 void *data)
3264 {
3265 struct dwarf2_cu *cu = reader->cu;
3266 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3267 struct objfile *objfile = dwarf2_per_objfile->objfile;
3268 struct dwarf2_per_cu_data *lh_cu;
3269 struct line_header *lh;
3270 struct attribute *attr;
3271 int i;
3272 const char *name, *comp_dir;
3273 void **slot;
3274 struct quick_file_names *qfn;
3275 unsigned int line_offset;
3276
3277 gdb_assert (! this_cu->is_debug_types);
3278
3279 /* Our callers never want to match partial units -- instead they
3280 will match the enclosing full CU. */
3281 if (comp_unit_die->tag == DW_TAG_partial_unit)
3282 {
3283 this_cu->v.quick->no_file_data = 1;
3284 return;
3285 }
3286
3287 lh_cu = this_cu;
3288 lh = NULL;
3289 slot = NULL;
3290 line_offset = 0;
3291
3292 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3293 if (attr)
3294 {
3295 struct quick_file_names find_entry;
3296
3297 line_offset = DW_UNSND (attr);
3298
3299 /* We may have already read in this line header (TU line header sharing).
3300 If we have we're done. */
3301 find_entry.hash.dwo_unit = cu->dwo_unit;
3302 find_entry.hash.line_offset.sect_off = line_offset;
3303 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3304 &find_entry, INSERT);
3305 if (*slot != NULL)
3306 {
3307 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3308 return;
3309 }
3310
3311 lh = dwarf_decode_line_header (line_offset, cu);
3312 }
3313 if (lh == NULL)
3314 {
3315 lh_cu->v.quick->no_file_data = 1;
3316 return;
3317 }
3318
3319 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3320 qfn->hash.dwo_unit = cu->dwo_unit;
3321 qfn->hash.line_offset.sect_off = line_offset;
3322 gdb_assert (slot != NULL);
3323 *slot = qfn;
3324
3325 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3326
3327 qfn->num_file_names = lh->num_file_names;
3328 qfn->file_names =
3329 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3330 for (i = 0; i < lh->num_file_names; ++i)
3331 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3332 qfn->real_names = NULL;
3333
3334 free_line_header (lh);
3335
3336 lh_cu->v.quick->file_names = qfn;
3337 }
3338
3339 /* A helper for the "quick" functions which attempts to read the line
3340 table for THIS_CU. */
3341
3342 static struct quick_file_names *
3343 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3344 {
3345 /* This should never be called for TUs. */
3346 gdb_assert (! this_cu->is_debug_types);
3347 /* Nor type unit groups. */
3348 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3349
3350 if (this_cu->v.quick->file_names != NULL)
3351 return this_cu->v.quick->file_names;
3352 /* If we know there is no line data, no point in looking again. */
3353 if (this_cu->v.quick->no_file_data)
3354 return NULL;
3355
3356 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3357
3358 if (this_cu->v.quick->no_file_data)
3359 return NULL;
3360 return this_cu->v.quick->file_names;
3361 }
3362
3363 /* A helper for the "quick" functions which computes and caches the
3364 real path for a given file name from the line table. */
3365
3366 static const char *
3367 dw2_get_real_path (struct objfile *objfile,
3368 struct quick_file_names *qfn, int index)
3369 {
3370 if (qfn->real_names == NULL)
3371 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3372 qfn->num_file_names, const char *);
3373
3374 if (qfn->real_names[index] == NULL)
3375 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3376
3377 return qfn->real_names[index];
3378 }
3379
3380 static struct symtab *
3381 dw2_find_last_source_symtab (struct objfile *objfile)
3382 {
3383 struct compunit_symtab *cust;
3384 int index;
3385
3386 dw2_setup (objfile);
3387 index = dwarf2_per_objfile->n_comp_units - 1;
3388 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3389 if (cust == NULL)
3390 return NULL;
3391 return compunit_primary_filetab (cust);
3392 }
3393
3394 /* Traversal function for dw2_forget_cached_source_info. */
3395
3396 static int
3397 dw2_free_cached_file_names (void **slot, void *info)
3398 {
3399 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3400
3401 if (file_data->real_names)
3402 {
3403 int i;
3404
3405 for (i = 0; i < file_data->num_file_names; ++i)
3406 {
3407 xfree ((void*) file_data->real_names[i]);
3408 file_data->real_names[i] = NULL;
3409 }
3410 }
3411
3412 return 1;
3413 }
3414
3415 static void
3416 dw2_forget_cached_source_info (struct objfile *objfile)
3417 {
3418 dw2_setup (objfile);
3419
3420 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3421 dw2_free_cached_file_names, NULL);
3422 }
3423
3424 /* Helper function for dw2_map_symtabs_matching_filename that expands
3425 the symtabs and calls the iterator. */
3426
3427 static int
3428 dw2_map_expand_apply (struct objfile *objfile,
3429 struct dwarf2_per_cu_data *per_cu,
3430 const char *name, const char *real_path,
3431 int (*callback) (struct symtab *, void *),
3432 void *data)
3433 {
3434 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3435
3436 /* Don't visit already-expanded CUs. */
3437 if (per_cu->v.quick->compunit_symtab)
3438 return 0;
3439
3440 /* This may expand more than one symtab, and we want to iterate over
3441 all of them. */
3442 dw2_instantiate_symtab (per_cu);
3443
3444 return iterate_over_some_symtabs (name, real_path, callback, data,
3445 objfile->compunit_symtabs, last_made);
3446 }
3447
3448 /* Implementation of the map_symtabs_matching_filename method. */
3449
3450 static int
3451 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3452 const char *real_path,
3453 int (*callback) (struct symtab *, void *),
3454 void *data)
3455 {
3456 int i;
3457 const char *name_basename = lbasename (name);
3458
3459 dw2_setup (objfile);
3460
3461 /* The rule is CUs specify all the files, including those used by
3462 any TU, so there's no need to scan TUs here. */
3463
3464 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3465 {
3466 int j;
3467 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3468 struct quick_file_names *file_data;
3469
3470 /* We only need to look at symtabs not already expanded. */
3471 if (per_cu->v.quick->compunit_symtab)
3472 continue;
3473
3474 file_data = dw2_get_file_names (per_cu);
3475 if (file_data == NULL)
3476 continue;
3477
3478 for (j = 0; j < file_data->num_file_names; ++j)
3479 {
3480 const char *this_name = file_data->file_names[j];
3481 const char *this_real_name;
3482
3483 if (compare_filenames_for_search (this_name, name))
3484 {
3485 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3486 callback, data))
3487 return 1;
3488 continue;
3489 }
3490
3491 /* Before we invoke realpath, which can get expensive when many
3492 files are involved, do a quick comparison of the basenames. */
3493 if (! basenames_may_differ
3494 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3495 continue;
3496
3497 this_real_name = dw2_get_real_path (objfile, file_data, j);
3498 if (compare_filenames_for_search (this_real_name, name))
3499 {
3500 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3501 callback, data))
3502 return 1;
3503 continue;
3504 }
3505
3506 if (real_path != NULL)
3507 {
3508 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3509 gdb_assert (IS_ABSOLUTE_PATH (name));
3510 if (this_real_name != NULL
3511 && FILENAME_CMP (real_path, this_real_name) == 0)
3512 {
3513 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3514 callback, data))
3515 return 1;
3516 continue;
3517 }
3518 }
3519 }
3520 }
3521
3522 return 0;
3523 }
3524
3525 /* Struct used to manage iterating over all CUs looking for a symbol. */
3526
3527 struct dw2_symtab_iterator
3528 {
3529 /* The internalized form of .gdb_index. */
3530 struct mapped_index *index;
3531 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3532 int want_specific_block;
3533 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3534 Unused if !WANT_SPECIFIC_BLOCK. */
3535 int block_index;
3536 /* The kind of symbol we're looking for. */
3537 domain_enum domain;
3538 /* The list of CUs from the index entry of the symbol,
3539 or NULL if not found. */
3540 offset_type *vec;
3541 /* The next element in VEC to look at. */
3542 int next;
3543 /* The number of elements in VEC, or zero if there is no match. */
3544 int length;
3545 /* Have we seen a global version of the symbol?
3546 If so we can ignore all further global instances.
3547 This is to work around gold/15646, inefficient gold-generated
3548 indices. */
3549 int global_seen;
3550 };
3551
3552 /* Initialize the index symtab iterator ITER.
3553 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3554 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3555
3556 static void
3557 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3558 struct mapped_index *index,
3559 int want_specific_block,
3560 int block_index,
3561 domain_enum domain,
3562 const char *name)
3563 {
3564 iter->index = index;
3565 iter->want_specific_block = want_specific_block;
3566 iter->block_index = block_index;
3567 iter->domain = domain;
3568 iter->next = 0;
3569 iter->global_seen = 0;
3570
3571 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3572 iter->length = MAYBE_SWAP (*iter->vec);
3573 else
3574 {
3575 iter->vec = NULL;
3576 iter->length = 0;
3577 }
3578 }
3579
3580 /* Return the next matching CU or NULL if there are no more. */
3581
3582 static struct dwarf2_per_cu_data *
3583 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3584 {
3585 for ( ; iter->next < iter->length; ++iter->next)
3586 {
3587 offset_type cu_index_and_attrs =
3588 MAYBE_SWAP (iter->vec[iter->next + 1]);
3589 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3590 struct dwarf2_per_cu_data *per_cu;
3591 int want_static = iter->block_index != GLOBAL_BLOCK;
3592 /* This value is only valid for index versions >= 7. */
3593 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3594 gdb_index_symbol_kind symbol_kind =
3595 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3596 /* Only check the symbol attributes if they're present.
3597 Indices prior to version 7 don't record them,
3598 and indices >= 7 may elide them for certain symbols
3599 (gold does this). */
3600 int attrs_valid =
3601 (iter->index->version >= 7
3602 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3603
3604 /* Don't crash on bad data. */
3605 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3606 + dwarf2_per_objfile->n_type_units))
3607 {
3608 complaint (&symfile_complaints,
3609 _(".gdb_index entry has bad CU index"
3610 " [in module %s]"),
3611 objfile_name (dwarf2_per_objfile->objfile));
3612 continue;
3613 }
3614
3615 per_cu = dw2_get_cutu (cu_index);
3616
3617 /* Skip if already read in. */
3618 if (per_cu->v.quick->compunit_symtab)
3619 continue;
3620
3621 /* Check static vs global. */
3622 if (attrs_valid)
3623 {
3624 if (iter->want_specific_block
3625 && want_static != is_static)
3626 continue;
3627 /* Work around gold/15646. */
3628 if (!is_static && iter->global_seen)
3629 continue;
3630 if (!is_static)
3631 iter->global_seen = 1;
3632 }
3633
3634 /* Only check the symbol's kind if it has one. */
3635 if (attrs_valid)
3636 {
3637 switch (iter->domain)
3638 {
3639 case VAR_DOMAIN:
3640 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3641 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3642 /* Some types are also in VAR_DOMAIN. */
3643 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3644 continue;
3645 break;
3646 case STRUCT_DOMAIN:
3647 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3648 continue;
3649 break;
3650 case LABEL_DOMAIN:
3651 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3652 continue;
3653 break;
3654 default:
3655 break;
3656 }
3657 }
3658
3659 ++iter->next;
3660 return per_cu;
3661 }
3662
3663 return NULL;
3664 }
3665
3666 static struct compunit_symtab *
3667 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3668 const char *name, domain_enum domain)
3669 {
3670 struct compunit_symtab *stab_best = NULL;
3671 struct mapped_index *index;
3672
3673 dw2_setup (objfile);
3674
3675 index = dwarf2_per_objfile->index_table;
3676
3677 /* index is NULL if OBJF_READNOW. */
3678 if (index)
3679 {
3680 struct dw2_symtab_iterator iter;
3681 struct dwarf2_per_cu_data *per_cu;
3682
3683 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3684
3685 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3686 {
3687 struct symbol *sym, *with_opaque = NULL;
3688 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3689 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3690 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3691
3692 sym = block_find_symbol (block, name, domain,
3693 block_find_non_opaque_type_preferred,
3694 &with_opaque);
3695
3696 /* Some caution must be observed with overloaded functions
3697 and methods, since the index will not contain any overload
3698 information (but NAME might contain it). */
3699
3700 if (sym != NULL
3701 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3702 return stab;
3703 if (with_opaque != NULL
3704 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3705 stab_best = stab;
3706
3707 /* Keep looking through other CUs. */
3708 }
3709 }
3710
3711 return stab_best;
3712 }
3713
3714 static void
3715 dw2_print_stats (struct objfile *objfile)
3716 {
3717 int i, total, count;
3718
3719 dw2_setup (objfile);
3720 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3721 count = 0;
3722 for (i = 0; i < total; ++i)
3723 {
3724 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3725
3726 if (!per_cu->v.quick->compunit_symtab)
3727 ++count;
3728 }
3729 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3730 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3731 }
3732
3733 /* This dumps minimal information about the index.
3734 It is called via "mt print objfiles".
3735 One use is to verify .gdb_index has been loaded by the
3736 gdb.dwarf2/gdb-index.exp testcase. */
3737
3738 static void
3739 dw2_dump (struct objfile *objfile)
3740 {
3741 dw2_setup (objfile);
3742 gdb_assert (dwarf2_per_objfile->using_index);
3743 printf_filtered (".gdb_index:");
3744 if (dwarf2_per_objfile->index_table != NULL)
3745 {
3746 printf_filtered (" version %d\n",
3747 dwarf2_per_objfile->index_table->version);
3748 }
3749 else
3750 printf_filtered (" faked for \"readnow\"\n");
3751 printf_filtered ("\n");
3752 }
3753
3754 static void
3755 dw2_relocate (struct objfile *objfile,
3756 const struct section_offsets *new_offsets,
3757 const struct section_offsets *delta)
3758 {
3759 /* There's nothing to relocate here. */
3760 }
3761
3762 static void
3763 dw2_expand_symtabs_for_function (struct objfile *objfile,
3764 const char *func_name)
3765 {
3766 struct mapped_index *index;
3767
3768 dw2_setup (objfile);
3769
3770 index = dwarf2_per_objfile->index_table;
3771
3772 /* index is NULL if OBJF_READNOW. */
3773 if (index)
3774 {
3775 struct dw2_symtab_iterator iter;
3776 struct dwarf2_per_cu_data *per_cu;
3777
3778 /* Note: It doesn't matter what we pass for block_index here. */
3779 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3780 func_name);
3781
3782 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3783 dw2_instantiate_symtab (per_cu);
3784 }
3785 }
3786
3787 static void
3788 dw2_expand_all_symtabs (struct objfile *objfile)
3789 {
3790 int i;
3791
3792 dw2_setup (objfile);
3793
3794 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3795 + dwarf2_per_objfile->n_type_units); ++i)
3796 {
3797 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3798
3799 dw2_instantiate_symtab (per_cu);
3800 }
3801 }
3802
3803 static void
3804 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3805 const char *fullname)
3806 {
3807 int i;
3808
3809 dw2_setup (objfile);
3810
3811 /* We don't need to consider type units here.
3812 This is only called for examining code, e.g. expand_line_sal.
3813 There can be an order of magnitude (or more) more type units
3814 than comp units, and we avoid them if we can. */
3815
3816 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3817 {
3818 int j;
3819 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3820 struct quick_file_names *file_data;
3821
3822 /* We only need to look at symtabs not already expanded. */
3823 if (per_cu->v.quick->compunit_symtab)
3824 continue;
3825
3826 file_data = dw2_get_file_names (per_cu);
3827 if (file_data == NULL)
3828 continue;
3829
3830 for (j = 0; j < file_data->num_file_names; ++j)
3831 {
3832 const char *this_fullname = file_data->file_names[j];
3833
3834 if (filename_cmp (this_fullname, fullname) == 0)
3835 {
3836 dw2_instantiate_symtab (per_cu);
3837 break;
3838 }
3839 }
3840 }
3841 }
3842
3843 static void
3844 dw2_map_matching_symbols (struct objfile *objfile,
3845 const char * name, domain_enum domain,
3846 int global,
3847 int (*callback) (struct block *,
3848 struct symbol *, void *),
3849 void *data, symbol_compare_ftype *match,
3850 symbol_compare_ftype *ordered_compare)
3851 {
3852 /* Currently unimplemented; used for Ada. The function can be called if the
3853 current language is Ada for a non-Ada objfile using GNU index. As Ada
3854 does not look for non-Ada symbols this function should just return. */
3855 }
3856
3857 static void
3858 dw2_expand_symtabs_matching
3859 (struct objfile *objfile,
3860 expand_symtabs_file_matcher_ftype *file_matcher,
3861 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3862 expand_symtabs_exp_notify_ftype *expansion_notify,
3863 enum search_domain kind,
3864 void *data)
3865 {
3866 int i;
3867 offset_type iter;
3868 struct mapped_index *index;
3869
3870 dw2_setup (objfile);
3871
3872 /* index_table is NULL if OBJF_READNOW. */
3873 if (!dwarf2_per_objfile->index_table)
3874 return;
3875 index = dwarf2_per_objfile->index_table;
3876
3877 if (file_matcher != NULL)
3878 {
3879 struct cleanup *cleanup;
3880 htab_t visited_found, visited_not_found;
3881
3882 visited_found = htab_create_alloc (10,
3883 htab_hash_pointer, htab_eq_pointer,
3884 NULL, xcalloc, xfree);
3885 cleanup = make_cleanup_htab_delete (visited_found);
3886 visited_not_found = htab_create_alloc (10,
3887 htab_hash_pointer, htab_eq_pointer,
3888 NULL, xcalloc, xfree);
3889 make_cleanup_htab_delete (visited_not_found);
3890
3891 /* The rule is CUs specify all the files, including those used by
3892 any TU, so there's no need to scan TUs here. */
3893
3894 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3895 {
3896 int j;
3897 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3898 struct quick_file_names *file_data;
3899 void **slot;
3900
3901 QUIT;
3902
3903 per_cu->v.quick->mark = 0;
3904
3905 /* We only need to look at symtabs not already expanded. */
3906 if (per_cu->v.quick->compunit_symtab)
3907 continue;
3908
3909 file_data = dw2_get_file_names (per_cu);
3910 if (file_data == NULL)
3911 continue;
3912
3913 if (htab_find (visited_not_found, file_data) != NULL)
3914 continue;
3915 else if (htab_find (visited_found, file_data) != NULL)
3916 {
3917 per_cu->v.quick->mark = 1;
3918 continue;
3919 }
3920
3921 for (j = 0; j < file_data->num_file_names; ++j)
3922 {
3923 const char *this_real_name;
3924
3925 if (file_matcher (file_data->file_names[j], data, 0))
3926 {
3927 per_cu->v.quick->mark = 1;
3928 break;
3929 }
3930
3931 /* Before we invoke realpath, which can get expensive when many
3932 files are involved, do a quick comparison of the basenames. */
3933 if (!basenames_may_differ
3934 && !file_matcher (lbasename (file_data->file_names[j]),
3935 data, 1))
3936 continue;
3937
3938 this_real_name = dw2_get_real_path (objfile, file_data, j);
3939 if (file_matcher (this_real_name, data, 0))
3940 {
3941 per_cu->v.quick->mark = 1;
3942 break;
3943 }
3944 }
3945
3946 slot = htab_find_slot (per_cu->v.quick->mark
3947 ? visited_found
3948 : visited_not_found,
3949 file_data, INSERT);
3950 *slot = file_data;
3951 }
3952
3953 do_cleanups (cleanup);
3954 }
3955
3956 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3957 {
3958 offset_type idx = 2 * iter;
3959 const char *name;
3960 offset_type *vec, vec_len, vec_idx;
3961 int global_seen = 0;
3962
3963 QUIT;
3964
3965 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3966 continue;
3967
3968 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3969
3970 if (! (*symbol_matcher) (name, data))
3971 continue;
3972
3973 /* The name was matched, now expand corresponding CUs that were
3974 marked. */
3975 vec = (offset_type *) (index->constant_pool
3976 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3977 vec_len = MAYBE_SWAP (vec[0]);
3978 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3979 {
3980 struct dwarf2_per_cu_data *per_cu;
3981 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3982 /* This value is only valid for index versions >= 7. */
3983 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3984 gdb_index_symbol_kind symbol_kind =
3985 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3986 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3987 /* Only check the symbol attributes if they're present.
3988 Indices prior to version 7 don't record them,
3989 and indices >= 7 may elide them for certain symbols
3990 (gold does this). */
3991 int attrs_valid =
3992 (index->version >= 7
3993 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3994
3995 /* Work around gold/15646. */
3996 if (attrs_valid)
3997 {
3998 if (!is_static && global_seen)
3999 continue;
4000 if (!is_static)
4001 global_seen = 1;
4002 }
4003
4004 /* Only check the symbol's kind if it has one. */
4005 if (attrs_valid)
4006 {
4007 switch (kind)
4008 {
4009 case VARIABLES_DOMAIN:
4010 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4011 continue;
4012 break;
4013 case FUNCTIONS_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4015 continue;
4016 break;
4017 case TYPES_DOMAIN:
4018 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4019 continue;
4020 break;
4021 default:
4022 break;
4023 }
4024 }
4025
4026 /* Don't crash on bad data. */
4027 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4028 + dwarf2_per_objfile->n_type_units))
4029 {
4030 complaint (&symfile_complaints,
4031 _(".gdb_index entry has bad CU index"
4032 " [in module %s]"), objfile_name (objfile));
4033 continue;
4034 }
4035
4036 per_cu = dw2_get_cutu (cu_index);
4037 if (file_matcher == NULL || per_cu->v.quick->mark)
4038 {
4039 int symtab_was_null =
4040 (per_cu->v.quick->compunit_symtab == NULL);
4041
4042 dw2_instantiate_symtab (per_cu);
4043
4044 if (expansion_notify != NULL
4045 && symtab_was_null
4046 && per_cu->v.quick->compunit_symtab != NULL)
4047 {
4048 expansion_notify (per_cu->v.quick->compunit_symtab,
4049 data);
4050 }
4051 }
4052 }
4053 }
4054 }
4055
4056 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4057 symtab. */
4058
4059 static struct compunit_symtab *
4060 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4061 CORE_ADDR pc)
4062 {
4063 int i;
4064
4065 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4066 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4067 return cust;
4068
4069 if (cust->includes == NULL)
4070 return NULL;
4071
4072 for (i = 0; cust->includes[i]; ++i)
4073 {
4074 struct compunit_symtab *s = cust->includes[i];
4075
4076 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4077 if (s != NULL)
4078 return s;
4079 }
4080
4081 return NULL;
4082 }
4083
4084 static struct compunit_symtab *
4085 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4086 struct bound_minimal_symbol msymbol,
4087 CORE_ADDR pc,
4088 struct obj_section *section,
4089 int warn_if_readin)
4090 {
4091 struct dwarf2_per_cu_data *data;
4092 struct compunit_symtab *result;
4093
4094 dw2_setup (objfile);
4095
4096 if (!objfile->psymtabs_addrmap)
4097 return NULL;
4098
4099 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4100 pc);
4101 if (!data)
4102 return NULL;
4103
4104 if (warn_if_readin && data->v.quick->compunit_symtab)
4105 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4106 paddress (get_objfile_arch (objfile), pc));
4107
4108 result
4109 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4110 pc);
4111 gdb_assert (result != NULL);
4112 return result;
4113 }
4114
4115 static void
4116 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4117 void *data, int need_fullname)
4118 {
4119 int i;
4120 struct cleanup *cleanup;
4121 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4122 NULL, xcalloc, xfree);
4123
4124 cleanup = make_cleanup_htab_delete (visited);
4125 dw2_setup (objfile);
4126
4127 /* The rule is CUs specify all the files, including those used by
4128 any TU, so there's no need to scan TUs here.
4129 We can ignore file names coming from already-expanded CUs. */
4130
4131 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4132 {
4133 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4134
4135 if (per_cu->v.quick->compunit_symtab)
4136 {
4137 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4138 INSERT);
4139
4140 *slot = per_cu->v.quick->file_names;
4141 }
4142 }
4143
4144 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4145 {
4146 int j;
4147 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4148 struct quick_file_names *file_data;
4149 void **slot;
4150
4151 /* We only need to look at symtabs not already expanded. */
4152 if (per_cu->v.quick->compunit_symtab)
4153 continue;
4154
4155 file_data = dw2_get_file_names (per_cu);
4156 if (file_data == NULL)
4157 continue;
4158
4159 slot = htab_find_slot (visited, file_data, INSERT);
4160 if (*slot)
4161 {
4162 /* Already visited. */
4163 continue;
4164 }
4165 *slot = file_data;
4166
4167 for (j = 0; j < file_data->num_file_names; ++j)
4168 {
4169 const char *this_real_name;
4170
4171 if (need_fullname)
4172 this_real_name = dw2_get_real_path (objfile, file_data, j);
4173 else
4174 this_real_name = NULL;
4175 (*fun) (file_data->file_names[j], this_real_name, data);
4176 }
4177 }
4178
4179 do_cleanups (cleanup);
4180 }
4181
4182 static int
4183 dw2_has_symbols (struct objfile *objfile)
4184 {
4185 return 1;
4186 }
4187
4188 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4189 {
4190 dw2_has_symbols,
4191 dw2_find_last_source_symtab,
4192 dw2_forget_cached_source_info,
4193 dw2_map_symtabs_matching_filename,
4194 dw2_lookup_symbol,
4195 dw2_print_stats,
4196 dw2_dump,
4197 dw2_relocate,
4198 dw2_expand_symtabs_for_function,
4199 dw2_expand_all_symtabs,
4200 dw2_expand_symtabs_with_fullname,
4201 dw2_map_matching_symbols,
4202 dw2_expand_symtabs_matching,
4203 dw2_find_pc_sect_compunit_symtab,
4204 dw2_map_symbol_filenames
4205 };
4206
4207 /* Initialize for reading DWARF for this objfile. Return 0 if this
4208 file will use psymtabs, or 1 if using the GNU index. */
4209
4210 int
4211 dwarf2_initialize_objfile (struct objfile *objfile)
4212 {
4213 /* If we're about to read full symbols, don't bother with the
4214 indices. In this case we also don't care if some other debug
4215 format is making psymtabs, because they are all about to be
4216 expanded anyway. */
4217 if ((objfile->flags & OBJF_READNOW))
4218 {
4219 int i;
4220
4221 dwarf2_per_objfile->using_index = 1;
4222 create_all_comp_units (objfile);
4223 create_all_type_units (objfile);
4224 dwarf2_per_objfile->quick_file_names_table =
4225 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4226
4227 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4228 + dwarf2_per_objfile->n_type_units); ++i)
4229 {
4230 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4231
4232 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4233 struct dwarf2_per_cu_quick_data);
4234 }
4235
4236 /* Return 1 so that gdb sees the "quick" functions. However,
4237 these functions will be no-ops because we will have expanded
4238 all symtabs. */
4239 return 1;
4240 }
4241
4242 if (dwarf2_read_index (objfile))
4243 return 1;
4244
4245 return 0;
4246 }
4247
4248 \f
4249
4250 /* Build a partial symbol table. */
4251
4252 void
4253 dwarf2_build_psymtabs (struct objfile *objfile)
4254 {
4255
4256 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4257 {
4258 init_psymbol_list (objfile, 1024);
4259 }
4260
4261 TRY
4262 {
4263 /* This isn't really ideal: all the data we allocate on the
4264 objfile's obstack is still uselessly kept around. However,
4265 freeing it seems unsafe. */
4266 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4267
4268 dwarf2_build_psymtabs_hard (objfile);
4269 discard_cleanups (cleanups);
4270 }
4271 CATCH (except, RETURN_MASK_ERROR)
4272 {
4273 exception_print (gdb_stderr, except);
4274 }
4275 END_CATCH
4276 }
4277
4278 /* Return the total length of the CU described by HEADER. */
4279
4280 static unsigned int
4281 get_cu_length (const struct comp_unit_head *header)
4282 {
4283 return header->initial_length_size + header->length;
4284 }
4285
4286 /* Return TRUE if OFFSET is within CU_HEADER. */
4287
4288 static inline int
4289 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4290 {
4291 sect_offset bottom = { cu_header->offset.sect_off };
4292 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4293
4294 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4295 }
4296
4297 /* Find the base address of the compilation unit for range lists and
4298 location lists. It will normally be specified by DW_AT_low_pc.
4299 In DWARF-3 draft 4, the base address could be overridden by
4300 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4301 compilation units with discontinuous ranges. */
4302
4303 static void
4304 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4305 {
4306 struct attribute *attr;
4307
4308 cu->base_known = 0;
4309 cu->base_address = 0;
4310
4311 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4312 if (attr)
4313 {
4314 cu->base_address = attr_value_as_address (attr);
4315 cu->base_known = 1;
4316 }
4317 else
4318 {
4319 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4320 if (attr)
4321 {
4322 cu->base_address = attr_value_as_address (attr);
4323 cu->base_known = 1;
4324 }
4325 }
4326 }
4327
4328 /* Read in the comp unit header information from the debug_info at info_ptr.
4329 NOTE: This leaves members offset, first_die_offset to be filled in
4330 by the caller. */
4331
4332 static const gdb_byte *
4333 read_comp_unit_head (struct comp_unit_head *cu_header,
4334 const gdb_byte *info_ptr, bfd *abfd)
4335 {
4336 int signed_addr;
4337 unsigned int bytes_read;
4338
4339 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4340 cu_header->initial_length_size = bytes_read;
4341 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4342 info_ptr += bytes_read;
4343 cu_header->version = read_2_bytes (abfd, info_ptr);
4344 info_ptr += 2;
4345 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4346 &bytes_read);
4347 info_ptr += bytes_read;
4348 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4349 info_ptr += 1;
4350 signed_addr = bfd_get_sign_extend_vma (abfd);
4351 if (signed_addr < 0)
4352 internal_error (__FILE__, __LINE__,
4353 _("read_comp_unit_head: dwarf from non elf file"));
4354 cu_header->signed_addr_p = signed_addr;
4355
4356 return info_ptr;
4357 }
4358
4359 /* Helper function that returns the proper abbrev section for
4360 THIS_CU. */
4361
4362 static struct dwarf2_section_info *
4363 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4364 {
4365 struct dwarf2_section_info *abbrev;
4366
4367 if (this_cu->is_dwz)
4368 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4369 else
4370 abbrev = &dwarf2_per_objfile->abbrev;
4371
4372 return abbrev;
4373 }
4374
4375 /* Subroutine of read_and_check_comp_unit_head and
4376 read_and_check_type_unit_head to simplify them.
4377 Perform various error checking on the header. */
4378
4379 static void
4380 error_check_comp_unit_head (struct comp_unit_head *header,
4381 struct dwarf2_section_info *section,
4382 struct dwarf2_section_info *abbrev_section)
4383 {
4384 bfd *abfd = get_section_bfd_owner (section);
4385 const char *filename = get_section_file_name (section);
4386
4387 if (header->version != 2 && header->version != 3 && header->version != 4)
4388 error (_("Dwarf Error: wrong version in compilation unit header "
4389 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4390 filename);
4391
4392 if (header->abbrev_offset.sect_off
4393 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4394 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4395 "(offset 0x%lx + 6) [in module %s]"),
4396 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4397 filename);
4398
4399 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4400 avoid potential 32-bit overflow. */
4401 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4402 > section->size)
4403 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4404 "(offset 0x%lx + 0) [in module %s]"),
4405 (long) header->length, (long) header->offset.sect_off,
4406 filename);
4407 }
4408
4409 /* Read in a CU/TU header and perform some basic error checking.
4410 The contents of the header are stored in HEADER.
4411 The result is a pointer to the start of the first DIE. */
4412
4413 static const gdb_byte *
4414 read_and_check_comp_unit_head (struct comp_unit_head *header,
4415 struct dwarf2_section_info *section,
4416 struct dwarf2_section_info *abbrev_section,
4417 const gdb_byte *info_ptr,
4418 int is_debug_types_section)
4419 {
4420 const gdb_byte *beg_of_comp_unit = info_ptr;
4421 bfd *abfd = get_section_bfd_owner (section);
4422
4423 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4424
4425 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4426
4427 /* If we're reading a type unit, skip over the signature and
4428 type_offset fields. */
4429 if (is_debug_types_section)
4430 info_ptr += 8 /*signature*/ + header->offset_size;
4431
4432 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4433
4434 error_check_comp_unit_head (header, section, abbrev_section);
4435
4436 return info_ptr;
4437 }
4438
4439 /* Read in the types comp unit header information from .debug_types entry at
4440 types_ptr. The result is a pointer to one past the end of the header. */
4441
4442 static const gdb_byte *
4443 read_and_check_type_unit_head (struct comp_unit_head *header,
4444 struct dwarf2_section_info *section,
4445 struct dwarf2_section_info *abbrev_section,
4446 const gdb_byte *info_ptr,
4447 ULONGEST *signature,
4448 cu_offset *type_offset_in_tu)
4449 {
4450 const gdb_byte *beg_of_comp_unit = info_ptr;
4451 bfd *abfd = get_section_bfd_owner (section);
4452
4453 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4454
4455 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4456
4457 /* If we're reading a type unit, skip over the signature and
4458 type_offset fields. */
4459 if (signature != NULL)
4460 *signature = read_8_bytes (abfd, info_ptr);
4461 info_ptr += 8;
4462 if (type_offset_in_tu != NULL)
4463 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4464 header->offset_size);
4465 info_ptr += header->offset_size;
4466
4467 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4468
4469 error_check_comp_unit_head (header, section, abbrev_section);
4470
4471 return info_ptr;
4472 }
4473
4474 /* Fetch the abbreviation table offset from a comp or type unit header. */
4475
4476 static sect_offset
4477 read_abbrev_offset (struct dwarf2_section_info *section,
4478 sect_offset offset)
4479 {
4480 bfd *abfd = get_section_bfd_owner (section);
4481 const gdb_byte *info_ptr;
4482 unsigned int length, initial_length_size, offset_size;
4483 sect_offset abbrev_offset;
4484
4485 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4486 info_ptr = section->buffer + offset.sect_off;
4487 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4488 offset_size = initial_length_size == 4 ? 4 : 8;
4489 info_ptr += initial_length_size + 2 /*version*/;
4490 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4491 return abbrev_offset;
4492 }
4493
4494 /* Allocate a new partial symtab for file named NAME and mark this new
4495 partial symtab as being an include of PST. */
4496
4497 static void
4498 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4499 struct objfile *objfile)
4500 {
4501 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4502
4503 if (!IS_ABSOLUTE_PATH (subpst->filename))
4504 {
4505 /* It shares objfile->objfile_obstack. */
4506 subpst->dirname = pst->dirname;
4507 }
4508
4509 subpst->textlow = 0;
4510 subpst->texthigh = 0;
4511
4512 subpst->dependencies
4513 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4514 subpst->dependencies[0] = pst;
4515 subpst->number_of_dependencies = 1;
4516
4517 subpst->globals_offset = 0;
4518 subpst->n_global_syms = 0;
4519 subpst->statics_offset = 0;
4520 subpst->n_static_syms = 0;
4521 subpst->compunit_symtab = NULL;
4522 subpst->read_symtab = pst->read_symtab;
4523 subpst->readin = 0;
4524
4525 /* No private part is necessary for include psymtabs. This property
4526 can be used to differentiate between such include psymtabs and
4527 the regular ones. */
4528 subpst->read_symtab_private = NULL;
4529 }
4530
4531 /* Read the Line Number Program data and extract the list of files
4532 included by the source file represented by PST. Build an include
4533 partial symtab for each of these included files. */
4534
4535 static void
4536 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4537 struct die_info *die,
4538 struct partial_symtab *pst)
4539 {
4540 struct line_header *lh = NULL;
4541 struct attribute *attr;
4542
4543 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4544 if (attr)
4545 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4546 if (lh == NULL)
4547 return; /* No linetable, so no includes. */
4548
4549 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4550 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4551
4552 free_line_header (lh);
4553 }
4554
4555 static hashval_t
4556 hash_signatured_type (const void *item)
4557 {
4558 const struct signatured_type *sig_type
4559 = (const struct signatured_type *) item;
4560
4561 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4562 return sig_type->signature;
4563 }
4564
4565 static int
4566 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4567 {
4568 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4569 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4570
4571 return lhs->signature == rhs->signature;
4572 }
4573
4574 /* Allocate a hash table for signatured types. */
4575
4576 static htab_t
4577 allocate_signatured_type_table (struct objfile *objfile)
4578 {
4579 return htab_create_alloc_ex (41,
4580 hash_signatured_type,
4581 eq_signatured_type,
4582 NULL,
4583 &objfile->objfile_obstack,
4584 hashtab_obstack_allocate,
4585 dummy_obstack_deallocate);
4586 }
4587
4588 /* A helper function to add a signatured type CU to a table. */
4589
4590 static int
4591 add_signatured_type_cu_to_table (void **slot, void *datum)
4592 {
4593 struct signatured_type *sigt = (struct signatured_type *) *slot;
4594 struct signatured_type ***datap = (struct signatured_type ***) datum;
4595
4596 **datap = sigt;
4597 ++*datap;
4598
4599 return 1;
4600 }
4601
4602 /* Create the hash table of all entries in the .debug_types
4603 (or .debug_types.dwo) section(s).
4604 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4605 otherwise it is NULL.
4606
4607 The result is a pointer to the hash table or NULL if there are no types.
4608
4609 Note: This function processes DWO files only, not DWP files. */
4610
4611 static htab_t
4612 create_debug_types_hash_table (struct dwo_file *dwo_file,
4613 VEC (dwarf2_section_info_def) *types)
4614 {
4615 struct objfile *objfile = dwarf2_per_objfile->objfile;
4616 htab_t types_htab = NULL;
4617 int ix;
4618 struct dwarf2_section_info *section;
4619 struct dwarf2_section_info *abbrev_section;
4620
4621 if (VEC_empty (dwarf2_section_info_def, types))
4622 return NULL;
4623
4624 abbrev_section = (dwo_file != NULL
4625 ? &dwo_file->sections.abbrev
4626 : &dwarf2_per_objfile->abbrev);
4627
4628 if (dwarf_read_debug)
4629 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4630 dwo_file ? ".dwo" : "",
4631 get_section_file_name (abbrev_section));
4632
4633 for (ix = 0;
4634 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4635 ++ix)
4636 {
4637 bfd *abfd;
4638 const gdb_byte *info_ptr, *end_ptr;
4639
4640 dwarf2_read_section (objfile, section);
4641 info_ptr = section->buffer;
4642
4643 if (info_ptr == NULL)
4644 continue;
4645
4646 /* We can't set abfd until now because the section may be empty or
4647 not present, in which case the bfd is unknown. */
4648 abfd = get_section_bfd_owner (section);
4649
4650 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4651 because we don't need to read any dies: the signature is in the
4652 header. */
4653
4654 end_ptr = info_ptr + section->size;
4655 while (info_ptr < end_ptr)
4656 {
4657 sect_offset offset;
4658 cu_offset type_offset_in_tu;
4659 ULONGEST signature;
4660 struct signatured_type *sig_type;
4661 struct dwo_unit *dwo_tu;
4662 void **slot;
4663 const gdb_byte *ptr = info_ptr;
4664 struct comp_unit_head header;
4665 unsigned int length;
4666
4667 offset.sect_off = ptr - section->buffer;
4668
4669 /* We need to read the type's signature in order to build the hash
4670 table, but we don't need anything else just yet. */
4671
4672 ptr = read_and_check_type_unit_head (&header, section,
4673 abbrev_section, ptr,
4674 &signature, &type_offset_in_tu);
4675
4676 length = get_cu_length (&header);
4677
4678 /* Skip dummy type units. */
4679 if (ptr >= info_ptr + length
4680 || peek_abbrev_code (abfd, ptr) == 0)
4681 {
4682 info_ptr += length;
4683 continue;
4684 }
4685
4686 if (types_htab == NULL)
4687 {
4688 if (dwo_file)
4689 types_htab = allocate_dwo_unit_table (objfile);
4690 else
4691 types_htab = allocate_signatured_type_table (objfile);
4692 }
4693
4694 if (dwo_file)
4695 {
4696 sig_type = NULL;
4697 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4698 struct dwo_unit);
4699 dwo_tu->dwo_file = dwo_file;
4700 dwo_tu->signature = signature;
4701 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4702 dwo_tu->section = section;
4703 dwo_tu->offset = offset;
4704 dwo_tu->length = length;
4705 }
4706 else
4707 {
4708 /* N.B.: type_offset is not usable if this type uses a DWO file.
4709 The real type_offset is in the DWO file. */
4710 dwo_tu = NULL;
4711 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4712 struct signatured_type);
4713 sig_type->signature = signature;
4714 sig_type->type_offset_in_tu = type_offset_in_tu;
4715 sig_type->per_cu.objfile = objfile;
4716 sig_type->per_cu.is_debug_types = 1;
4717 sig_type->per_cu.section = section;
4718 sig_type->per_cu.offset = offset;
4719 sig_type->per_cu.length = length;
4720 }
4721
4722 slot = htab_find_slot (types_htab,
4723 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4724 INSERT);
4725 gdb_assert (slot != NULL);
4726 if (*slot != NULL)
4727 {
4728 sect_offset dup_offset;
4729
4730 if (dwo_file)
4731 {
4732 const struct dwo_unit *dup_tu
4733 = (const struct dwo_unit *) *slot;
4734
4735 dup_offset = dup_tu->offset;
4736 }
4737 else
4738 {
4739 const struct signatured_type *dup_tu
4740 = (const struct signatured_type *) *slot;
4741
4742 dup_offset = dup_tu->per_cu.offset;
4743 }
4744
4745 complaint (&symfile_complaints,
4746 _("debug type entry at offset 0x%x is duplicate to"
4747 " the entry at offset 0x%x, signature %s"),
4748 offset.sect_off, dup_offset.sect_off,
4749 hex_string (signature));
4750 }
4751 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4752
4753 if (dwarf_read_debug > 1)
4754 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4755 offset.sect_off,
4756 hex_string (signature));
4757
4758 info_ptr += length;
4759 }
4760 }
4761
4762 return types_htab;
4763 }
4764
4765 /* Create the hash table of all entries in the .debug_types section,
4766 and initialize all_type_units.
4767 The result is zero if there is an error (e.g. missing .debug_types section),
4768 otherwise non-zero. */
4769
4770 static int
4771 create_all_type_units (struct objfile *objfile)
4772 {
4773 htab_t types_htab;
4774 struct signatured_type **iter;
4775
4776 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4777 if (types_htab == NULL)
4778 {
4779 dwarf2_per_objfile->signatured_types = NULL;
4780 return 0;
4781 }
4782
4783 dwarf2_per_objfile->signatured_types = types_htab;
4784
4785 dwarf2_per_objfile->n_type_units
4786 = dwarf2_per_objfile->n_allocated_type_units
4787 = htab_elements (types_htab);
4788 dwarf2_per_objfile->all_type_units =
4789 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4790 iter = &dwarf2_per_objfile->all_type_units[0];
4791 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4792 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4793 == dwarf2_per_objfile->n_type_units);
4794
4795 return 1;
4796 }
4797
4798 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4799 If SLOT is non-NULL, it is the entry to use in the hash table.
4800 Otherwise we find one. */
4801
4802 static struct signatured_type *
4803 add_type_unit (ULONGEST sig, void **slot)
4804 {
4805 struct objfile *objfile = dwarf2_per_objfile->objfile;
4806 int n_type_units = dwarf2_per_objfile->n_type_units;
4807 struct signatured_type *sig_type;
4808
4809 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4810 ++n_type_units;
4811 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4812 {
4813 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4814 dwarf2_per_objfile->n_allocated_type_units = 1;
4815 dwarf2_per_objfile->n_allocated_type_units *= 2;
4816 dwarf2_per_objfile->all_type_units
4817 = XRESIZEVEC (struct signatured_type *,
4818 dwarf2_per_objfile->all_type_units,
4819 dwarf2_per_objfile->n_allocated_type_units);
4820 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4821 }
4822 dwarf2_per_objfile->n_type_units = n_type_units;
4823
4824 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4825 struct signatured_type);
4826 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4827 sig_type->signature = sig;
4828 sig_type->per_cu.is_debug_types = 1;
4829 if (dwarf2_per_objfile->using_index)
4830 {
4831 sig_type->per_cu.v.quick =
4832 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4833 struct dwarf2_per_cu_quick_data);
4834 }
4835
4836 if (slot == NULL)
4837 {
4838 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4839 sig_type, INSERT);
4840 }
4841 gdb_assert (*slot == NULL);
4842 *slot = sig_type;
4843 /* The rest of sig_type must be filled in by the caller. */
4844 return sig_type;
4845 }
4846
4847 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4848 Fill in SIG_ENTRY with DWO_ENTRY. */
4849
4850 static void
4851 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4852 struct signatured_type *sig_entry,
4853 struct dwo_unit *dwo_entry)
4854 {
4855 /* Make sure we're not clobbering something we don't expect to. */
4856 gdb_assert (! sig_entry->per_cu.queued);
4857 gdb_assert (sig_entry->per_cu.cu == NULL);
4858 if (dwarf2_per_objfile->using_index)
4859 {
4860 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4861 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4862 }
4863 else
4864 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4865 gdb_assert (sig_entry->signature == dwo_entry->signature);
4866 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4867 gdb_assert (sig_entry->type_unit_group == NULL);
4868 gdb_assert (sig_entry->dwo_unit == NULL);
4869
4870 sig_entry->per_cu.section = dwo_entry->section;
4871 sig_entry->per_cu.offset = dwo_entry->offset;
4872 sig_entry->per_cu.length = dwo_entry->length;
4873 sig_entry->per_cu.reading_dwo_directly = 1;
4874 sig_entry->per_cu.objfile = objfile;
4875 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4876 sig_entry->dwo_unit = dwo_entry;
4877 }
4878
4879 /* Subroutine of lookup_signatured_type.
4880 If we haven't read the TU yet, create the signatured_type data structure
4881 for a TU to be read in directly from a DWO file, bypassing the stub.
4882 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4883 using .gdb_index, then when reading a CU we want to stay in the DWO file
4884 containing that CU. Otherwise we could end up reading several other DWO
4885 files (due to comdat folding) to process the transitive closure of all the
4886 mentioned TUs, and that can be slow. The current DWO file will have every
4887 type signature that it needs.
4888 We only do this for .gdb_index because in the psymtab case we already have
4889 to read all the DWOs to build the type unit groups. */
4890
4891 static struct signatured_type *
4892 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4893 {
4894 struct objfile *objfile = dwarf2_per_objfile->objfile;
4895 struct dwo_file *dwo_file;
4896 struct dwo_unit find_dwo_entry, *dwo_entry;
4897 struct signatured_type find_sig_entry, *sig_entry;
4898 void **slot;
4899
4900 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4901
4902 /* If TU skeletons have been removed then we may not have read in any
4903 TUs yet. */
4904 if (dwarf2_per_objfile->signatured_types == NULL)
4905 {
4906 dwarf2_per_objfile->signatured_types
4907 = allocate_signatured_type_table (objfile);
4908 }
4909
4910 /* We only ever need to read in one copy of a signatured type.
4911 Use the global signatured_types array to do our own comdat-folding
4912 of types. If this is the first time we're reading this TU, and
4913 the TU has an entry in .gdb_index, replace the recorded data from
4914 .gdb_index with this TU. */
4915
4916 find_sig_entry.signature = sig;
4917 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4918 &find_sig_entry, INSERT);
4919 sig_entry = (struct signatured_type *) *slot;
4920
4921 /* We can get here with the TU already read, *or* in the process of being
4922 read. Don't reassign the global entry to point to this DWO if that's
4923 the case. Also note that if the TU is already being read, it may not
4924 have come from a DWO, the program may be a mix of Fission-compiled
4925 code and non-Fission-compiled code. */
4926
4927 /* Have we already tried to read this TU?
4928 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4929 needn't exist in the global table yet). */
4930 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4931 return sig_entry;
4932
4933 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4934 dwo_unit of the TU itself. */
4935 dwo_file = cu->dwo_unit->dwo_file;
4936
4937 /* Ok, this is the first time we're reading this TU. */
4938 if (dwo_file->tus == NULL)
4939 return NULL;
4940 find_dwo_entry.signature = sig;
4941 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
4942 if (dwo_entry == NULL)
4943 return NULL;
4944
4945 /* If the global table doesn't have an entry for this TU, add one. */
4946 if (sig_entry == NULL)
4947 sig_entry = add_type_unit (sig, slot);
4948
4949 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4950 sig_entry->per_cu.tu_read = 1;
4951 return sig_entry;
4952 }
4953
4954 /* Subroutine of lookup_signatured_type.
4955 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4956 then try the DWP file. If the TU stub (skeleton) has been removed then
4957 it won't be in .gdb_index. */
4958
4959 static struct signatured_type *
4960 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4961 {
4962 struct objfile *objfile = dwarf2_per_objfile->objfile;
4963 struct dwp_file *dwp_file = get_dwp_file ();
4964 struct dwo_unit *dwo_entry;
4965 struct signatured_type find_sig_entry, *sig_entry;
4966 void **slot;
4967
4968 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4969 gdb_assert (dwp_file != NULL);
4970
4971 /* If TU skeletons have been removed then we may not have read in any
4972 TUs yet. */
4973 if (dwarf2_per_objfile->signatured_types == NULL)
4974 {
4975 dwarf2_per_objfile->signatured_types
4976 = allocate_signatured_type_table (objfile);
4977 }
4978
4979 find_sig_entry.signature = sig;
4980 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4981 &find_sig_entry, INSERT);
4982 sig_entry = (struct signatured_type *) *slot;
4983
4984 /* Have we already tried to read this TU?
4985 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4986 needn't exist in the global table yet). */
4987 if (sig_entry != NULL)
4988 return sig_entry;
4989
4990 if (dwp_file->tus == NULL)
4991 return NULL;
4992 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4993 sig, 1 /* is_debug_types */);
4994 if (dwo_entry == NULL)
4995 return NULL;
4996
4997 sig_entry = add_type_unit (sig, slot);
4998 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4999
5000 return sig_entry;
5001 }
5002
5003 /* Lookup a signature based type for DW_FORM_ref_sig8.
5004 Returns NULL if signature SIG is not present in the table.
5005 It is up to the caller to complain about this. */
5006
5007 static struct signatured_type *
5008 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5009 {
5010 if (cu->dwo_unit
5011 && dwarf2_per_objfile->using_index)
5012 {
5013 /* We're in a DWO/DWP file, and we're using .gdb_index.
5014 These cases require special processing. */
5015 if (get_dwp_file () == NULL)
5016 return lookup_dwo_signatured_type (cu, sig);
5017 else
5018 return lookup_dwp_signatured_type (cu, sig);
5019 }
5020 else
5021 {
5022 struct signatured_type find_entry, *entry;
5023
5024 if (dwarf2_per_objfile->signatured_types == NULL)
5025 return NULL;
5026 find_entry.signature = sig;
5027 entry = ((struct signatured_type *)
5028 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5029 return entry;
5030 }
5031 }
5032 \f
5033 /* Low level DIE reading support. */
5034
5035 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5036
5037 static void
5038 init_cu_die_reader (struct die_reader_specs *reader,
5039 struct dwarf2_cu *cu,
5040 struct dwarf2_section_info *section,
5041 struct dwo_file *dwo_file)
5042 {
5043 gdb_assert (section->readin && section->buffer != NULL);
5044 reader->abfd = get_section_bfd_owner (section);
5045 reader->cu = cu;
5046 reader->dwo_file = dwo_file;
5047 reader->die_section = section;
5048 reader->buffer = section->buffer;
5049 reader->buffer_end = section->buffer + section->size;
5050 reader->comp_dir = NULL;
5051 }
5052
5053 /* Subroutine of init_cutu_and_read_dies to simplify it.
5054 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5055 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5056 already.
5057
5058 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5059 from it to the DIE in the DWO. If NULL we are skipping the stub.
5060 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5061 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5062 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5063 STUB_COMP_DIR may be non-NULL.
5064 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5065 are filled in with the info of the DIE from the DWO file.
5066 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5067 provided an abbrev table to use.
5068 The result is non-zero if a valid (non-dummy) DIE was found. */
5069
5070 static int
5071 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5072 struct dwo_unit *dwo_unit,
5073 int abbrev_table_provided,
5074 struct die_info *stub_comp_unit_die,
5075 const char *stub_comp_dir,
5076 struct die_reader_specs *result_reader,
5077 const gdb_byte **result_info_ptr,
5078 struct die_info **result_comp_unit_die,
5079 int *result_has_children)
5080 {
5081 struct objfile *objfile = dwarf2_per_objfile->objfile;
5082 struct dwarf2_cu *cu = this_cu->cu;
5083 struct dwarf2_section_info *section;
5084 bfd *abfd;
5085 const gdb_byte *begin_info_ptr, *info_ptr;
5086 ULONGEST signature; /* Or dwo_id. */
5087 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5088 int i,num_extra_attrs;
5089 struct dwarf2_section_info *dwo_abbrev_section;
5090 struct attribute *attr;
5091 struct die_info *comp_unit_die;
5092
5093 /* At most one of these may be provided. */
5094 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5095
5096 /* These attributes aren't processed until later:
5097 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5098 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5099 referenced later. However, these attributes are found in the stub
5100 which we won't have later. In order to not impose this complication
5101 on the rest of the code, we read them here and copy them to the
5102 DWO CU/TU die. */
5103
5104 stmt_list = NULL;
5105 low_pc = NULL;
5106 high_pc = NULL;
5107 ranges = NULL;
5108 comp_dir = NULL;
5109
5110 if (stub_comp_unit_die != NULL)
5111 {
5112 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5113 DWO file. */
5114 if (! this_cu->is_debug_types)
5115 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5116 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5117 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5118 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5119 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5120
5121 /* There should be a DW_AT_addr_base attribute here (if needed).
5122 We need the value before we can process DW_FORM_GNU_addr_index. */
5123 cu->addr_base = 0;
5124 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5125 if (attr)
5126 cu->addr_base = DW_UNSND (attr);
5127
5128 /* There should be a DW_AT_ranges_base attribute here (if needed).
5129 We need the value before we can process DW_AT_ranges. */
5130 cu->ranges_base = 0;
5131 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5132 if (attr)
5133 cu->ranges_base = DW_UNSND (attr);
5134 }
5135 else if (stub_comp_dir != NULL)
5136 {
5137 /* Reconstruct the comp_dir attribute to simplify the code below. */
5138 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5139 comp_dir->name = DW_AT_comp_dir;
5140 comp_dir->form = DW_FORM_string;
5141 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5142 DW_STRING (comp_dir) = stub_comp_dir;
5143 }
5144
5145 /* Set up for reading the DWO CU/TU. */
5146 cu->dwo_unit = dwo_unit;
5147 section = dwo_unit->section;
5148 dwarf2_read_section (objfile, section);
5149 abfd = get_section_bfd_owner (section);
5150 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5151 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5152 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5153
5154 if (this_cu->is_debug_types)
5155 {
5156 ULONGEST header_signature;
5157 cu_offset type_offset_in_tu;
5158 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5159
5160 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5161 dwo_abbrev_section,
5162 info_ptr,
5163 &header_signature,
5164 &type_offset_in_tu);
5165 /* This is not an assert because it can be caused by bad debug info. */
5166 if (sig_type->signature != header_signature)
5167 {
5168 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5169 " TU at offset 0x%x [in module %s]"),
5170 hex_string (sig_type->signature),
5171 hex_string (header_signature),
5172 dwo_unit->offset.sect_off,
5173 bfd_get_filename (abfd));
5174 }
5175 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5176 /* For DWOs coming from DWP files, we don't know the CU length
5177 nor the type's offset in the TU until now. */
5178 dwo_unit->length = get_cu_length (&cu->header);
5179 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5180
5181 /* Establish the type offset that can be used to lookup the type.
5182 For DWO files, we don't know it until now. */
5183 sig_type->type_offset_in_section.sect_off =
5184 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5185 }
5186 else
5187 {
5188 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5189 dwo_abbrev_section,
5190 info_ptr, 0);
5191 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5192 /* For DWOs coming from DWP files, we don't know the CU length
5193 until now. */
5194 dwo_unit->length = get_cu_length (&cu->header);
5195 }
5196
5197 /* Replace the CU's original abbrev table with the DWO's.
5198 Reminder: We can't read the abbrev table until we've read the header. */
5199 if (abbrev_table_provided)
5200 {
5201 /* Don't free the provided abbrev table, the caller of
5202 init_cutu_and_read_dies owns it. */
5203 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5204 /* Ensure the DWO abbrev table gets freed. */
5205 make_cleanup (dwarf2_free_abbrev_table, cu);
5206 }
5207 else
5208 {
5209 dwarf2_free_abbrev_table (cu);
5210 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5211 /* Leave any existing abbrev table cleanup as is. */
5212 }
5213
5214 /* Read in the die, but leave space to copy over the attributes
5215 from the stub. This has the benefit of simplifying the rest of
5216 the code - all the work to maintain the illusion of a single
5217 DW_TAG_{compile,type}_unit DIE is done here. */
5218 num_extra_attrs = ((stmt_list != NULL)
5219 + (low_pc != NULL)
5220 + (high_pc != NULL)
5221 + (ranges != NULL)
5222 + (comp_dir != NULL));
5223 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5224 result_has_children, num_extra_attrs);
5225
5226 /* Copy over the attributes from the stub to the DIE we just read in. */
5227 comp_unit_die = *result_comp_unit_die;
5228 i = comp_unit_die->num_attrs;
5229 if (stmt_list != NULL)
5230 comp_unit_die->attrs[i++] = *stmt_list;
5231 if (low_pc != NULL)
5232 comp_unit_die->attrs[i++] = *low_pc;
5233 if (high_pc != NULL)
5234 comp_unit_die->attrs[i++] = *high_pc;
5235 if (ranges != NULL)
5236 comp_unit_die->attrs[i++] = *ranges;
5237 if (comp_dir != NULL)
5238 comp_unit_die->attrs[i++] = *comp_dir;
5239 comp_unit_die->num_attrs += num_extra_attrs;
5240
5241 if (dwarf_die_debug)
5242 {
5243 fprintf_unfiltered (gdb_stdlog,
5244 "Read die from %s@0x%x of %s:\n",
5245 get_section_name (section),
5246 (unsigned) (begin_info_ptr - section->buffer),
5247 bfd_get_filename (abfd));
5248 dump_die (comp_unit_die, dwarf_die_debug);
5249 }
5250
5251 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5252 TUs by skipping the stub and going directly to the entry in the DWO file.
5253 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5254 to get it via circuitous means. Blech. */
5255 if (comp_dir != NULL)
5256 result_reader->comp_dir = DW_STRING (comp_dir);
5257
5258 /* Skip dummy compilation units. */
5259 if (info_ptr >= begin_info_ptr + dwo_unit->length
5260 || peek_abbrev_code (abfd, info_ptr) == 0)
5261 return 0;
5262
5263 *result_info_ptr = info_ptr;
5264 return 1;
5265 }
5266
5267 /* Subroutine of init_cutu_and_read_dies to simplify it.
5268 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5269 Returns NULL if the specified DWO unit cannot be found. */
5270
5271 static struct dwo_unit *
5272 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5273 struct die_info *comp_unit_die)
5274 {
5275 struct dwarf2_cu *cu = this_cu->cu;
5276 struct attribute *attr;
5277 ULONGEST signature;
5278 struct dwo_unit *dwo_unit;
5279 const char *comp_dir, *dwo_name;
5280
5281 gdb_assert (cu != NULL);
5282
5283 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5284 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5285 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5286
5287 if (this_cu->is_debug_types)
5288 {
5289 struct signatured_type *sig_type;
5290
5291 /* Since this_cu is the first member of struct signatured_type,
5292 we can go from a pointer to one to a pointer to the other. */
5293 sig_type = (struct signatured_type *) this_cu;
5294 signature = sig_type->signature;
5295 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5296 }
5297 else
5298 {
5299 struct attribute *attr;
5300
5301 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5302 if (! attr)
5303 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5304 " [in module %s]"),
5305 dwo_name, objfile_name (this_cu->objfile));
5306 signature = DW_UNSND (attr);
5307 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5308 signature);
5309 }
5310
5311 return dwo_unit;
5312 }
5313
5314 /* Subroutine of init_cutu_and_read_dies to simplify it.
5315 See it for a description of the parameters.
5316 Read a TU directly from a DWO file, bypassing the stub.
5317
5318 Note: This function could be a little bit simpler if we shared cleanups
5319 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5320 to do, so we keep this function self-contained. Or we could move this
5321 into our caller, but it's complex enough already. */
5322
5323 static void
5324 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5325 int use_existing_cu, int keep,
5326 die_reader_func_ftype *die_reader_func,
5327 void *data)
5328 {
5329 struct dwarf2_cu *cu;
5330 struct signatured_type *sig_type;
5331 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5332 struct die_reader_specs reader;
5333 const gdb_byte *info_ptr;
5334 struct die_info *comp_unit_die;
5335 int has_children;
5336
5337 /* Verify we can do the following downcast, and that we have the
5338 data we need. */
5339 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5340 sig_type = (struct signatured_type *) this_cu;
5341 gdb_assert (sig_type->dwo_unit != NULL);
5342
5343 cleanups = make_cleanup (null_cleanup, NULL);
5344
5345 if (use_existing_cu && this_cu->cu != NULL)
5346 {
5347 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5348 cu = this_cu->cu;
5349 /* There's no need to do the rereading_dwo_cu handling that
5350 init_cutu_and_read_dies does since we don't read the stub. */
5351 }
5352 else
5353 {
5354 /* If !use_existing_cu, this_cu->cu must be NULL. */
5355 gdb_assert (this_cu->cu == NULL);
5356 cu = XNEW (struct dwarf2_cu);
5357 init_one_comp_unit (cu, this_cu);
5358 /* If an error occurs while loading, release our storage. */
5359 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5360 }
5361
5362 /* A future optimization, if needed, would be to use an existing
5363 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5364 could share abbrev tables. */
5365
5366 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5367 0 /* abbrev_table_provided */,
5368 NULL /* stub_comp_unit_die */,
5369 sig_type->dwo_unit->dwo_file->comp_dir,
5370 &reader, &info_ptr,
5371 &comp_unit_die, &has_children) == 0)
5372 {
5373 /* Dummy die. */
5374 do_cleanups (cleanups);
5375 return;
5376 }
5377
5378 /* All the "real" work is done here. */
5379 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5380
5381 /* This duplicates the code in init_cutu_and_read_dies,
5382 but the alternative is making the latter more complex.
5383 This function is only for the special case of using DWO files directly:
5384 no point in overly complicating the general case just to handle this. */
5385 if (free_cu_cleanup != NULL)
5386 {
5387 if (keep)
5388 {
5389 /* We've successfully allocated this compilation unit. Let our
5390 caller clean it up when finished with it. */
5391 discard_cleanups (free_cu_cleanup);
5392
5393 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5394 So we have to manually free the abbrev table. */
5395 dwarf2_free_abbrev_table (cu);
5396
5397 /* Link this CU into read_in_chain. */
5398 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5399 dwarf2_per_objfile->read_in_chain = this_cu;
5400 }
5401 else
5402 do_cleanups (free_cu_cleanup);
5403 }
5404
5405 do_cleanups (cleanups);
5406 }
5407
5408 /* Initialize a CU (or TU) and read its DIEs.
5409 If the CU defers to a DWO file, read the DWO file as well.
5410
5411 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5412 Otherwise the table specified in the comp unit header is read in and used.
5413 This is an optimization for when we already have the abbrev table.
5414
5415 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5416 Otherwise, a new CU is allocated with xmalloc.
5417
5418 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5419 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5420
5421 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5422 linker) then DIE_READER_FUNC will not get called. */
5423
5424 static void
5425 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5426 struct abbrev_table *abbrev_table,
5427 int use_existing_cu, int keep,
5428 die_reader_func_ftype *die_reader_func,
5429 void *data)
5430 {
5431 struct objfile *objfile = dwarf2_per_objfile->objfile;
5432 struct dwarf2_section_info *section = this_cu->section;
5433 bfd *abfd = get_section_bfd_owner (section);
5434 struct dwarf2_cu *cu;
5435 const gdb_byte *begin_info_ptr, *info_ptr;
5436 struct die_reader_specs reader;
5437 struct die_info *comp_unit_die;
5438 int has_children;
5439 struct attribute *attr;
5440 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5441 struct signatured_type *sig_type = NULL;
5442 struct dwarf2_section_info *abbrev_section;
5443 /* Non-zero if CU currently points to a DWO file and we need to
5444 reread it. When this happens we need to reread the skeleton die
5445 before we can reread the DWO file (this only applies to CUs, not TUs). */
5446 int rereading_dwo_cu = 0;
5447
5448 if (dwarf_die_debug)
5449 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5450 this_cu->is_debug_types ? "type" : "comp",
5451 this_cu->offset.sect_off);
5452
5453 if (use_existing_cu)
5454 gdb_assert (keep);
5455
5456 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5457 file (instead of going through the stub), short-circuit all of this. */
5458 if (this_cu->reading_dwo_directly)
5459 {
5460 /* Narrow down the scope of possibilities to have to understand. */
5461 gdb_assert (this_cu->is_debug_types);
5462 gdb_assert (abbrev_table == NULL);
5463 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5464 die_reader_func, data);
5465 return;
5466 }
5467
5468 cleanups = make_cleanup (null_cleanup, NULL);
5469
5470 /* This is cheap if the section is already read in. */
5471 dwarf2_read_section (objfile, section);
5472
5473 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5474
5475 abbrev_section = get_abbrev_section_for_cu (this_cu);
5476
5477 if (use_existing_cu && this_cu->cu != NULL)
5478 {
5479 cu = this_cu->cu;
5480 /* If this CU is from a DWO file we need to start over, we need to
5481 refetch the attributes from the skeleton CU.
5482 This could be optimized by retrieving those attributes from when we
5483 were here the first time: the previous comp_unit_die was stored in
5484 comp_unit_obstack. But there's no data yet that we need this
5485 optimization. */
5486 if (cu->dwo_unit != NULL)
5487 rereading_dwo_cu = 1;
5488 }
5489 else
5490 {
5491 /* If !use_existing_cu, this_cu->cu must be NULL. */
5492 gdb_assert (this_cu->cu == NULL);
5493 cu = XNEW (struct dwarf2_cu);
5494 init_one_comp_unit (cu, this_cu);
5495 /* If an error occurs while loading, release our storage. */
5496 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5497 }
5498
5499 /* Get the header. */
5500 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5501 {
5502 /* We already have the header, there's no need to read it in again. */
5503 info_ptr += cu->header.first_die_offset.cu_off;
5504 }
5505 else
5506 {
5507 if (this_cu->is_debug_types)
5508 {
5509 ULONGEST signature;
5510 cu_offset type_offset_in_tu;
5511
5512 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5513 abbrev_section, info_ptr,
5514 &signature,
5515 &type_offset_in_tu);
5516
5517 /* Since per_cu is the first member of struct signatured_type,
5518 we can go from a pointer to one to a pointer to the other. */
5519 sig_type = (struct signatured_type *) this_cu;
5520 gdb_assert (sig_type->signature == signature);
5521 gdb_assert (sig_type->type_offset_in_tu.cu_off
5522 == type_offset_in_tu.cu_off);
5523 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5524
5525 /* LENGTH has not been set yet for type units if we're
5526 using .gdb_index. */
5527 this_cu->length = get_cu_length (&cu->header);
5528
5529 /* Establish the type offset that can be used to lookup the type. */
5530 sig_type->type_offset_in_section.sect_off =
5531 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5532 }
5533 else
5534 {
5535 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5536 abbrev_section,
5537 info_ptr, 0);
5538
5539 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5540 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5541 }
5542 }
5543
5544 /* Skip dummy compilation units. */
5545 if (info_ptr >= begin_info_ptr + this_cu->length
5546 || peek_abbrev_code (abfd, info_ptr) == 0)
5547 {
5548 do_cleanups (cleanups);
5549 return;
5550 }
5551
5552 /* If we don't have them yet, read the abbrevs for this compilation unit.
5553 And if we need to read them now, make sure they're freed when we're
5554 done. Note that it's important that if the CU had an abbrev table
5555 on entry we don't free it when we're done: Somewhere up the call stack
5556 it may be in use. */
5557 if (abbrev_table != NULL)
5558 {
5559 gdb_assert (cu->abbrev_table == NULL);
5560 gdb_assert (cu->header.abbrev_offset.sect_off
5561 == abbrev_table->offset.sect_off);
5562 cu->abbrev_table = abbrev_table;
5563 }
5564 else if (cu->abbrev_table == NULL)
5565 {
5566 dwarf2_read_abbrevs (cu, abbrev_section);
5567 make_cleanup (dwarf2_free_abbrev_table, cu);
5568 }
5569 else if (rereading_dwo_cu)
5570 {
5571 dwarf2_free_abbrev_table (cu);
5572 dwarf2_read_abbrevs (cu, abbrev_section);
5573 }
5574
5575 /* Read the top level CU/TU die. */
5576 init_cu_die_reader (&reader, cu, section, NULL);
5577 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5578
5579 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5580 from the DWO file.
5581 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5582 DWO CU, that this test will fail (the attribute will not be present). */
5583 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5584 if (attr)
5585 {
5586 struct dwo_unit *dwo_unit;
5587 struct die_info *dwo_comp_unit_die;
5588
5589 if (has_children)
5590 {
5591 complaint (&symfile_complaints,
5592 _("compilation unit with DW_AT_GNU_dwo_name"
5593 " has children (offset 0x%x) [in module %s]"),
5594 this_cu->offset.sect_off, bfd_get_filename (abfd));
5595 }
5596 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5597 if (dwo_unit != NULL)
5598 {
5599 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5600 abbrev_table != NULL,
5601 comp_unit_die, NULL,
5602 &reader, &info_ptr,
5603 &dwo_comp_unit_die, &has_children) == 0)
5604 {
5605 /* Dummy die. */
5606 do_cleanups (cleanups);
5607 return;
5608 }
5609 comp_unit_die = dwo_comp_unit_die;
5610 }
5611 else
5612 {
5613 /* Yikes, we couldn't find the rest of the DIE, we only have
5614 the stub. A complaint has already been logged. There's
5615 not much more we can do except pass on the stub DIE to
5616 die_reader_func. We don't want to throw an error on bad
5617 debug info. */
5618 }
5619 }
5620
5621 /* All of the above is setup for this call. Yikes. */
5622 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5623
5624 /* Done, clean up. */
5625 if (free_cu_cleanup != NULL)
5626 {
5627 if (keep)
5628 {
5629 /* We've successfully allocated this compilation unit. Let our
5630 caller clean it up when finished with it. */
5631 discard_cleanups (free_cu_cleanup);
5632
5633 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5634 So we have to manually free the abbrev table. */
5635 dwarf2_free_abbrev_table (cu);
5636
5637 /* Link this CU into read_in_chain. */
5638 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5639 dwarf2_per_objfile->read_in_chain = this_cu;
5640 }
5641 else
5642 do_cleanups (free_cu_cleanup);
5643 }
5644
5645 do_cleanups (cleanups);
5646 }
5647
5648 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5649 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5650 to have already done the lookup to find the DWO file).
5651
5652 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5653 THIS_CU->is_debug_types, but nothing else.
5654
5655 We fill in THIS_CU->length.
5656
5657 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5658 linker) then DIE_READER_FUNC will not get called.
5659
5660 THIS_CU->cu is always freed when done.
5661 This is done in order to not leave THIS_CU->cu in a state where we have
5662 to care whether it refers to the "main" CU or the DWO CU. */
5663
5664 static void
5665 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5666 struct dwo_file *dwo_file,
5667 die_reader_func_ftype *die_reader_func,
5668 void *data)
5669 {
5670 struct objfile *objfile = dwarf2_per_objfile->objfile;
5671 struct dwarf2_section_info *section = this_cu->section;
5672 bfd *abfd = get_section_bfd_owner (section);
5673 struct dwarf2_section_info *abbrev_section;
5674 struct dwarf2_cu cu;
5675 const gdb_byte *begin_info_ptr, *info_ptr;
5676 struct die_reader_specs reader;
5677 struct cleanup *cleanups;
5678 struct die_info *comp_unit_die;
5679 int has_children;
5680
5681 if (dwarf_die_debug)
5682 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5683 this_cu->is_debug_types ? "type" : "comp",
5684 this_cu->offset.sect_off);
5685
5686 gdb_assert (this_cu->cu == NULL);
5687
5688 abbrev_section = (dwo_file != NULL
5689 ? &dwo_file->sections.abbrev
5690 : get_abbrev_section_for_cu (this_cu));
5691
5692 /* This is cheap if the section is already read in. */
5693 dwarf2_read_section (objfile, section);
5694
5695 init_one_comp_unit (&cu, this_cu);
5696
5697 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5698
5699 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5700 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5701 abbrev_section, info_ptr,
5702 this_cu->is_debug_types);
5703
5704 this_cu->length = get_cu_length (&cu.header);
5705
5706 /* Skip dummy compilation units. */
5707 if (info_ptr >= begin_info_ptr + this_cu->length
5708 || peek_abbrev_code (abfd, info_ptr) == 0)
5709 {
5710 do_cleanups (cleanups);
5711 return;
5712 }
5713
5714 dwarf2_read_abbrevs (&cu, abbrev_section);
5715 make_cleanup (dwarf2_free_abbrev_table, &cu);
5716
5717 init_cu_die_reader (&reader, &cu, section, dwo_file);
5718 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5719
5720 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5721
5722 do_cleanups (cleanups);
5723 }
5724
5725 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5726 does not lookup the specified DWO file.
5727 This cannot be used to read DWO files.
5728
5729 THIS_CU->cu is always freed when done.
5730 This is done in order to not leave THIS_CU->cu in a state where we have
5731 to care whether it refers to the "main" CU or the DWO CU.
5732 We can revisit this if the data shows there's a performance issue. */
5733
5734 static void
5735 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5736 die_reader_func_ftype *die_reader_func,
5737 void *data)
5738 {
5739 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5740 }
5741 \f
5742 /* Type Unit Groups.
5743
5744 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5745 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5746 so that all types coming from the same compilation (.o file) are grouped
5747 together. A future step could be to put the types in the same symtab as
5748 the CU the types ultimately came from. */
5749
5750 static hashval_t
5751 hash_type_unit_group (const void *item)
5752 {
5753 const struct type_unit_group *tu_group
5754 = (const struct type_unit_group *) item;
5755
5756 return hash_stmt_list_entry (&tu_group->hash);
5757 }
5758
5759 static int
5760 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5761 {
5762 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5763 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5764
5765 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5766 }
5767
5768 /* Allocate a hash table for type unit groups. */
5769
5770 static htab_t
5771 allocate_type_unit_groups_table (void)
5772 {
5773 return htab_create_alloc_ex (3,
5774 hash_type_unit_group,
5775 eq_type_unit_group,
5776 NULL,
5777 &dwarf2_per_objfile->objfile->objfile_obstack,
5778 hashtab_obstack_allocate,
5779 dummy_obstack_deallocate);
5780 }
5781
5782 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5783 partial symtabs. We combine several TUs per psymtab to not let the size
5784 of any one psymtab grow too big. */
5785 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5786 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5787
5788 /* Helper routine for get_type_unit_group.
5789 Create the type_unit_group object used to hold one or more TUs. */
5790
5791 static struct type_unit_group *
5792 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5793 {
5794 struct objfile *objfile = dwarf2_per_objfile->objfile;
5795 struct dwarf2_per_cu_data *per_cu;
5796 struct type_unit_group *tu_group;
5797
5798 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5799 struct type_unit_group);
5800 per_cu = &tu_group->per_cu;
5801 per_cu->objfile = objfile;
5802
5803 if (dwarf2_per_objfile->using_index)
5804 {
5805 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5806 struct dwarf2_per_cu_quick_data);
5807 }
5808 else
5809 {
5810 unsigned int line_offset = line_offset_struct.sect_off;
5811 struct partial_symtab *pst;
5812 char *name;
5813
5814 /* Give the symtab a useful name for debug purposes. */
5815 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5816 name = xstrprintf ("<type_units_%d>",
5817 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5818 else
5819 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5820
5821 pst = create_partial_symtab (per_cu, name);
5822 pst->anonymous = 1;
5823
5824 xfree (name);
5825 }
5826
5827 tu_group->hash.dwo_unit = cu->dwo_unit;
5828 tu_group->hash.line_offset = line_offset_struct;
5829
5830 return tu_group;
5831 }
5832
5833 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5834 STMT_LIST is a DW_AT_stmt_list attribute. */
5835
5836 static struct type_unit_group *
5837 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5838 {
5839 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5840 struct type_unit_group *tu_group;
5841 void **slot;
5842 unsigned int line_offset;
5843 struct type_unit_group type_unit_group_for_lookup;
5844
5845 if (dwarf2_per_objfile->type_unit_groups == NULL)
5846 {
5847 dwarf2_per_objfile->type_unit_groups =
5848 allocate_type_unit_groups_table ();
5849 }
5850
5851 /* Do we need to create a new group, or can we use an existing one? */
5852
5853 if (stmt_list)
5854 {
5855 line_offset = DW_UNSND (stmt_list);
5856 ++tu_stats->nr_symtab_sharers;
5857 }
5858 else
5859 {
5860 /* Ugh, no stmt_list. Rare, but we have to handle it.
5861 We can do various things here like create one group per TU or
5862 spread them over multiple groups to split up the expansion work.
5863 To avoid worst case scenarios (too many groups or too large groups)
5864 we, umm, group them in bunches. */
5865 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5866 | (tu_stats->nr_stmt_less_type_units
5867 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5868 ++tu_stats->nr_stmt_less_type_units;
5869 }
5870
5871 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5872 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5873 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5874 &type_unit_group_for_lookup, INSERT);
5875 if (*slot != NULL)
5876 {
5877 tu_group = (struct type_unit_group *) *slot;
5878 gdb_assert (tu_group != NULL);
5879 }
5880 else
5881 {
5882 sect_offset line_offset_struct;
5883
5884 line_offset_struct.sect_off = line_offset;
5885 tu_group = create_type_unit_group (cu, line_offset_struct);
5886 *slot = tu_group;
5887 ++tu_stats->nr_symtabs;
5888 }
5889
5890 return tu_group;
5891 }
5892 \f
5893 /* Partial symbol tables. */
5894
5895 /* Create a psymtab named NAME and assign it to PER_CU.
5896
5897 The caller must fill in the following details:
5898 dirname, textlow, texthigh. */
5899
5900 static struct partial_symtab *
5901 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5902 {
5903 struct objfile *objfile = per_cu->objfile;
5904 struct partial_symtab *pst;
5905
5906 pst = start_psymtab_common (objfile, name, 0,
5907 objfile->global_psymbols.next,
5908 objfile->static_psymbols.next);
5909
5910 pst->psymtabs_addrmap_supported = 1;
5911
5912 /* This is the glue that links PST into GDB's symbol API. */
5913 pst->read_symtab_private = per_cu;
5914 pst->read_symtab = dwarf2_read_symtab;
5915 per_cu->v.psymtab = pst;
5916
5917 return pst;
5918 }
5919
5920 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5921 type. */
5922
5923 struct process_psymtab_comp_unit_data
5924 {
5925 /* True if we are reading a DW_TAG_partial_unit. */
5926
5927 int want_partial_unit;
5928
5929 /* The "pretend" language that is used if the CU doesn't declare a
5930 language. */
5931
5932 enum language pretend_language;
5933 };
5934
5935 /* die_reader_func for process_psymtab_comp_unit. */
5936
5937 static void
5938 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5939 const gdb_byte *info_ptr,
5940 struct die_info *comp_unit_die,
5941 int has_children,
5942 void *data)
5943 {
5944 struct dwarf2_cu *cu = reader->cu;
5945 struct objfile *objfile = cu->objfile;
5946 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5947 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5948 CORE_ADDR baseaddr;
5949 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5950 struct partial_symtab *pst;
5951 int has_pc_info;
5952 const char *filename;
5953 struct process_psymtab_comp_unit_data *info
5954 = (struct process_psymtab_comp_unit_data *) data;
5955
5956 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5957 return;
5958
5959 gdb_assert (! per_cu->is_debug_types);
5960
5961 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5962
5963 cu->list_in_scope = &file_symbols;
5964
5965 /* Allocate a new partial symbol table structure. */
5966 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5967 if (filename == NULL)
5968 filename = "";
5969
5970 pst = create_partial_symtab (per_cu, filename);
5971
5972 /* This must be done before calling dwarf2_build_include_psymtabs. */
5973 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5974
5975 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5976
5977 dwarf2_find_base_address (comp_unit_die, cu);
5978
5979 /* Possibly set the default values of LOWPC and HIGHPC from
5980 `DW_AT_ranges'. */
5981 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5982 &best_highpc, cu, pst);
5983 if (has_pc_info == 1 && best_lowpc < best_highpc)
5984 /* Store the contiguous range if it is not empty; it can be empty for
5985 CUs with no code. */
5986 addrmap_set_empty (objfile->psymtabs_addrmap,
5987 gdbarch_adjust_dwarf2_addr (gdbarch,
5988 best_lowpc + baseaddr),
5989 gdbarch_adjust_dwarf2_addr (gdbarch,
5990 best_highpc + baseaddr) - 1,
5991 pst);
5992
5993 /* Check if comp unit has_children.
5994 If so, read the rest of the partial symbols from this comp unit.
5995 If not, there's no more debug_info for this comp unit. */
5996 if (has_children)
5997 {
5998 struct partial_die_info *first_die;
5999 CORE_ADDR lowpc, highpc;
6000
6001 lowpc = ((CORE_ADDR) -1);
6002 highpc = ((CORE_ADDR) 0);
6003
6004 first_die = load_partial_dies (reader, info_ptr, 1);
6005
6006 scan_partial_symbols (first_die, &lowpc, &highpc,
6007 ! has_pc_info, cu);
6008
6009 /* If we didn't find a lowpc, set it to highpc to avoid
6010 complaints from `maint check'. */
6011 if (lowpc == ((CORE_ADDR) -1))
6012 lowpc = highpc;
6013
6014 /* If the compilation unit didn't have an explicit address range,
6015 then use the information extracted from its child dies. */
6016 if (! has_pc_info)
6017 {
6018 best_lowpc = lowpc;
6019 best_highpc = highpc;
6020 }
6021 }
6022 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6023 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6024
6025 end_psymtab_common (objfile, pst);
6026
6027 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6028 {
6029 int i;
6030 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6031 struct dwarf2_per_cu_data *iter;
6032
6033 /* Fill in 'dependencies' here; we fill in 'users' in a
6034 post-pass. */
6035 pst->number_of_dependencies = len;
6036 pst->dependencies =
6037 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6038 for (i = 0;
6039 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6040 i, iter);
6041 ++i)
6042 pst->dependencies[i] = iter->v.psymtab;
6043
6044 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6045 }
6046
6047 /* Get the list of files included in the current compilation unit,
6048 and build a psymtab for each of them. */
6049 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6050
6051 if (dwarf_read_debug)
6052 {
6053 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6054
6055 fprintf_unfiltered (gdb_stdlog,
6056 "Psymtab for %s unit @0x%x: %s - %s"
6057 ", %d global, %d static syms\n",
6058 per_cu->is_debug_types ? "type" : "comp",
6059 per_cu->offset.sect_off,
6060 paddress (gdbarch, pst->textlow),
6061 paddress (gdbarch, pst->texthigh),
6062 pst->n_global_syms, pst->n_static_syms);
6063 }
6064 }
6065
6066 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6067 Process compilation unit THIS_CU for a psymtab. */
6068
6069 static void
6070 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6071 int want_partial_unit,
6072 enum language pretend_language)
6073 {
6074 struct process_psymtab_comp_unit_data info;
6075
6076 /* If this compilation unit was already read in, free the
6077 cached copy in order to read it in again. This is
6078 necessary because we skipped some symbols when we first
6079 read in the compilation unit (see load_partial_dies).
6080 This problem could be avoided, but the benefit is unclear. */
6081 if (this_cu->cu != NULL)
6082 free_one_cached_comp_unit (this_cu);
6083
6084 gdb_assert (! this_cu->is_debug_types);
6085 info.want_partial_unit = want_partial_unit;
6086 info.pretend_language = pretend_language;
6087 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6088 process_psymtab_comp_unit_reader,
6089 &info);
6090
6091 /* Age out any secondary CUs. */
6092 age_cached_comp_units ();
6093 }
6094
6095 /* Reader function for build_type_psymtabs. */
6096
6097 static void
6098 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6099 const gdb_byte *info_ptr,
6100 struct die_info *type_unit_die,
6101 int has_children,
6102 void *data)
6103 {
6104 struct objfile *objfile = dwarf2_per_objfile->objfile;
6105 struct dwarf2_cu *cu = reader->cu;
6106 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6107 struct signatured_type *sig_type;
6108 struct type_unit_group *tu_group;
6109 struct attribute *attr;
6110 struct partial_die_info *first_die;
6111 CORE_ADDR lowpc, highpc;
6112 struct partial_symtab *pst;
6113
6114 gdb_assert (data == NULL);
6115 gdb_assert (per_cu->is_debug_types);
6116 sig_type = (struct signatured_type *) per_cu;
6117
6118 if (! has_children)
6119 return;
6120
6121 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6122 tu_group = get_type_unit_group (cu, attr);
6123
6124 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6125
6126 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6127 cu->list_in_scope = &file_symbols;
6128 pst = create_partial_symtab (per_cu, "");
6129 pst->anonymous = 1;
6130
6131 first_die = load_partial_dies (reader, info_ptr, 1);
6132
6133 lowpc = (CORE_ADDR) -1;
6134 highpc = (CORE_ADDR) 0;
6135 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6136
6137 end_psymtab_common (objfile, pst);
6138 }
6139
6140 /* Struct used to sort TUs by their abbreviation table offset. */
6141
6142 struct tu_abbrev_offset
6143 {
6144 struct signatured_type *sig_type;
6145 sect_offset abbrev_offset;
6146 };
6147
6148 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6149
6150 static int
6151 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6152 {
6153 const struct tu_abbrev_offset * const *a
6154 = (const struct tu_abbrev_offset * const*) ap;
6155 const struct tu_abbrev_offset * const *b
6156 = (const struct tu_abbrev_offset * const*) bp;
6157 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6158 unsigned int boff = (*b)->abbrev_offset.sect_off;
6159
6160 return (aoff > boff) - (aoff < boff);
6161 }
6162
6163 /* Efficiently read all the type units.
6164 This does the bulk of the work for build_type_psymtabs.
6165
6166 The efficiency is because we sort TUs by the abbrev table they use and
6167 only read each abbrev table once. In one program there are 200K TUs
6168 sharing 8K abbrev tables.
6169
6170 The main purpose of this function is to support building the
6171 dwarf2_per_objfile->type_unit_groups table.
6172 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6173 can collapse the search space by grouping them by stmt_list.
6174 The savings can be significant, in the same program from above the 200K TUs
6175 share 8K stmt_list tables.
6176
6177 FUNC is expected to call get_type_unit_group, which will create the
6178 struct type_unit_group if necessary and add it to
6179 dwarf2_per_objfile->type_unit_groups. */
6180
6181 static void
6182 build_type_psymtabs_1 (void)
6183 {
6184 struct objfile *objfile = dwarf2_per_objfile->objfile;
6185 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6186 struct cleanup *cleanups;
6187 struct abbrev_table *abbrev_table;
6188 sect_offset abbrev_offset;
6189 struct tu_abbrev_offset *sorted_by_abbrev;
6190 struct type_unit_group **iter;
6191 int i;
6192
6193 /* It's up to the caller to not call us multiple times. */
6194 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6195
6196 if (dwarf2_per_objfile->n_type_units == 0)
6197 return;
6198
6199 /* TUs typically share abbrev tables, and there can be way more TUs than
6200 abbrev tables. Sort by abbrev table to reduce the number of times we
6201 read each abbrev table in.
6202 Alternatives are to punt or to maintain a cache of abbrev tables.
6203 This is simpler and efficient enough for now.
6204
6205 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6206 symtab to use). Typically TUs with the same abbrev offset have the same
6207 stmt_list value too so in practice this should work well.
6208
6209 The basic algorithm here is:
6210
6211 sort TUs by abbrev table
6212 for each TU with same abbrev table:
6213 read abbrev table if first user
6214 read TU top level DIE
6215 [IWBN if DWO skeletons had DW_AT_stmt_list]
6216 call FUNC */
6217
6218 if (dwarf_read_debug)
6219 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6220
6221 /* Sort in a separate table to maintain the order of all_type_units
6222 for .gdb_index: TU indices directly index all_type_units. */
6223 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6224 dwarf2_per_objfile->n_type_units);
6225 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6226 {
6227 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6228
6229 sorted_by_abbrev[i].sig_type = sig_type;
6230 sorted_by_abbrev[i].abbrev_offset =
6231 read_abbrev_offset (sig_type->per_cu.section,
6232 sig_type->per_cu.offset);
6233 }
6234 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6235 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6236 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6237
6238 abbrev_offset.sect_off = ~(unsigned) 0;
6239 abbrev_table = NULL;
6240 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6241
6242 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6243 {
6244 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6245
6246 /* Switch to the next abbrev table if necessary. */
6247 if (abbrev_table == NULL
6248 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6249 {
6250 if (abbrev_table != NULL)
6251 {
6252 abbrev_table_free (abbrev_table);
6253 /* Reset to NULL in case abbrev_table_read_table throws
6254 an error: abbrev_table_free_cleanup will get called. */
6255 abbrev_table = NULL;
6256 }
6257 abbrev_offset = tu->abbrev_offset;
6258 abbrev_table =
6259 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6260 abbrev_offset);
6261 ++tu_stats->nr_uniq_abbrev_tables;
6262 }
6263
6264 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6265 build_type_psymtabs_reader, NULL);
6266 }
6267
6268 do_cleanups (cleanups);
6269 }
6270
6271 /* Print collected type unit statistics. */
6272
6273 static void
6274 print_tu_stats (void)
6275 {
6276 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6277
6278 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6279 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6280 dwarf2_per_objfile->n_type_units);
6281 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6282 tu_stats->nr_uniq_abbrev_tables);
6283 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6284 tu_stats->nr_symtabs);
6285 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6286 tu_stats->nr_symtab_sharers);
6287 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6288 tu_stats->nr_stmt_less_type_units);
6289 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6290 tu_stats->nr_all_type_units_reallocs);
6291 }
6292
6293 /* Traversal function for build_type_psymtabs. */
6294
6295 static int
6296 build_type_psymtab_dependencies (void **slot, void *info)
6297 {
6298 struct objfile *objfile = dwarf2_per_objfile->objfile;
6299 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6300 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6301 struct partial_symtab *pst = per_cu->v.psymtab;
6302 int len = VEC_length (sig_type_ptr, tu_group->tus);
6303 struct signatured_type *iter;
6304 int i;
6305
6306 gdb_assert (len > 0);
6307 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6308
6309 pst->number_of_dependencies = len;
6310 pst->dependencies =
6311 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6312 for (i = 0;
6313 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6314 ++i)
6315 {
6316 gdb_assert (iter->per_cu.is_debug_types);
6317 pst->dependencies[i] = iter->per_cu.v.psymtab;
6318 iter->type_unit_group = tu_group;
6319 }
6320
6321 VEC_free (sig_type_ptr, tu_group->tus);
6322
6323 return 1;
6324 }
6325
6326 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6327 Build partial symbol tables for the .debug_types comp-units. */
6328
6329 static void
6330 build_type_psymtabs (struct objfile *objfile)
6331 {
6332 if (! create_all_type_units (objfile))
6333 return;
6334
6335 build_type_psymtabs_1 ();
6336 }
6337
6338 /* Traversal function for process_skeletonless_type_unit.
6339 Read a TU in a DWO file and build partial symbols for it. */
6340
6341 static int
6342 process_skeletonless_type_unit (void **slot, void *info)
6343 {
6344 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6345 struct objfile *objfile = (struct objfile *) info;
6346 struct signatured_type find_entry, *entry;
6347
6348 /* If this TU doesn't exist in the global table, add it and read it in. */
6349
6350 if (dwarf2_per_objfile->signatured_types == NULL)
6351 {
6352 dwarf2_per_objfile->signatured_types
6353 = allocate_signatured_type_table (objfile);
6354 }
6355
6356 find_entry.signature = dwo_unit->signature;
6357 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6358 INSERT);
6359 /* If we've already seen this type there's nothing to do. What's happening
6360 is we're doing our own version of comdat-folding here. */
6361 if (*slot != NULL)
6362 return 1;
6363
6364 /* This does the job that create_all_type_units would have done for
6365 this TU. */
6366 entry = add_type_unit (dwo_unit->signature, slot);
6367 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6368 *slot = entry;
6369
6370 /* This does the job that build_type_psymtabs_1 would have done. */
6371 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6372 build_type_psymtabs_reader, NULL);
6373
6374 return 1;
6375 }
6376
6377 /* Traversal function for process_skeletonless_type_units. */
6378
6379 static int
6380 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6381 {
6382 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6383
6384 if (dwo_file->tus != NULL)
6385 {
6386 htab_traverse_noresize (dwo_file->tus,
6387 process_skeletonless_type_unit, info);
6388 }
6389
6390 return 1;
6391 }
6392
6393 /* Scan all TUs of DWO files, verifying we've processed them.
6394 This is needed in case a TU was emitted without its skeleton.
6395 Note: This can't be done until we know what all the DWO files are. */
6396
6397 static void
6398 process_skeletonless_type_units (struct objfile *objfile)
6399 {
6400 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6401 if (get_dwp_file () == NULL
6402 && dwarf2_per_objfile->dwo_files != NULL)
6403 {
6404 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6405 process_dwo_file_for_skeletonless_type_units,
6406 objfile);
6407 }
6408 }
6409
6410 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6411
6412 static void
6413 psymtabs_addrmap_cleanup (void *o)
6414 {
6415 struct objfile *objfile = (struct objfile *) o;
6416
6417 objfile->psymtabs_addrmap = NULL;
6418 }
6419
6420 /* Compute the 'user' field for each psymtab in OBJFILE. */
6421
6422 static void
6423 set_partial_user (struct objfile *objfile)
6424 {
6425 int i;
6426
6427 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6428 {
6429 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6430 struct partial_symtab *pst = per_cu->v.psymtab;
6431 int j;
6432
6433 if (pst == NULL)
6434 continue;
6435
6436 for (j = 0; j < pst->number_of_dependencies; ++j)
6437 {
6438 /* Set the 'user' field only if it is not already set. */
6439 if (pst->dependencies[j]->user == NULL)
6440 pst->dependencies[j]->user = pst;
6441 }
6442 }
6443 }
6444
6445 /* Build the partial symbol table by doing a quick pass through the
6446 .debug_info and .debug_abbrev sections. */
6447
6448 static void
6449 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6450 {
6451 struct cleanup *back_to, *addrmap_cleanup;
6452 struct obstack temp_obstack;
6453 int i;
6454
6455 if (dwarf_read_debug)
6456 {
6457 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6458 objfile_name (objfile));
6459 }
6460
6461 dwarf2_per_objfile->reading_partial_symbols = 1;
6462
6463 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6464
6465 /* Any cached compilation units will be linked by the per-objfile
6466 read_in_chain. Make sure to free them when we're done. */
6467 back_to = make_cleanup (free_cached_comp_units, NULL);
6468
6469 build_type_psymtabs (objfile);
6470
6471 create_all_comp_units (objfile);
6472
6473 /* Create a temporary address map on a temporary obstack. We later
6474 copy this to the final obstack. */
6475 obstack_init (&temp_obstack);
6476 make_cleanup_obstack_free (&temp_obstack);
6477 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6478 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6479
6480 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6481 {
6482 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6483
6484 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6485 }
6486
6487 /* This has to wait until we read the CUs, we need the list of DWOs. */
6488 process_skeletonless_type_units (objfile);
6489
6490 /* Now that all TUs have been processed we can fill in the dependencies. */
6491 if (dwarf2_per_objfile->type_unit_groups != NULL)
6492 {
6493 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6494 build_type_psymtab_dependencies, NULL);
6495 }
6496
6497 if (dwarf_read_debug)
6498 print_tu_stats ();
6499
6500 set_partial_user (objfile);
6501
6502 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6503 &objfile->objfile_obstack);
6504 discard_cleanups (addrmap_cleanup);
6505
6506 do_cleanups (back_to);
6507
6508 if (dwarf_read_debug)
6509 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6510 objfile_name (objfile));
6511 }
6512
6513 /* die_reader_func for load_partial_comp_unit. */
6514
6515 static void
6516 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6517 const gdb_byte *info_ptr,
6518 struct die_info *comp_unit_die,
6519 int has_children,
6520 void *data)
6521 {
6522 struct dwarf2_cu *cu = reader->cu;
6523
6524 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6525
6526 /* Check if comp unit has_children.
6527 If so, read the rest of the partial symbols from this comp unit.
6528 If not, there's no more debug_info for this comp unit. */
6529 if (has_children)
6530 load_partial_dies (reader, info_ptr, 0);
6531 }
6532
6533 /* Load the partial DIEs for a secondary CU into memory.
6534 This is also used when rereading a primary CU with load_all_dies. */
6535
6536 static void
6537 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6538 {
6539 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6540 load_partial_comp_unit_reader, NULL);
6541 }
6542
6543 static void
6544 read_comp_units_from_section (struct objfile *objfile,
6545 struct dwarf2_section_info *section,
6546 unsigned int is_dwz,
6547 int *n_allocated,
6548 int *n_comp_units,
6549 struct dwarf2_per_cu_data ***all_comp_units)
6550 {
6551 const gdb_byte *info_ptr;
6552 bfd *abfd = get_section_bfd_owner (section);
6553
6554 if (dwarf_read_debug)
6555 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6556 get_section_name (section),
6557 get_section_file_name (section));
6558
6559 dwarf2_read_section (objfile, section);
6560
6561 info_ptr = section->buffer;
6562
6563 while (info_ptr < section->buffer + section->size)
6564 {
6565 unsigned int length, initial_length_size;
6566 struct dwarf2_per_cu_data *this_cu;
6567 sect_offset offset;
6568
6569 offset.sect_off = info_ptr - section->buffer;
6570
6571 /* Read just enough information to find out where the next
6572 compilation unit is. */
6573 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6574
6575 /* Save the compilation unit for later lookup. */
6576 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6577 memset (this_cu, 0, sizeof (*this_cu));
6578 this_cu->offset = offset;
6579 this_cu->length = length + initial_length_size;
6580 this_cu->is_dwz = is_dwz;
6581 this_cu->objfile = objfile;
6582 this_cu->section = section;
6583
6584 if (*n_comp_units == *n_allocated)
6585 {
6586 *n_allocated *= 2;
6587 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6588 *all_comp_units, *n_allocated);
6589 }
6590 (*all_comp_units)[*n_comp_units] = this_cu;
6591 ++*n_comp_units;
6592
6593 info_ptr = info_ptr + this_cu->length;
6594 }
6595 }
6596
6597 /* Create a list of all compilation units in OBJFILE.
6598 This is only done for -readnow and building partial symtabs. */
6599
6600 static void
6601 create_all_comp_units (struct objfile *objfile)
6602 {
6603 int n_allocated;
6604 int n_comp_units;
6605 struct dwarf2_per_cu_data **all_comp_units;
6606 struct dwz_file *dwz;
6607
6608 n_comp_units = 0;
6609 n_allocated = 10;
6610 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6611
6612 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6613 &n_allocated, &n_comp_units, &all_comp_units);
6614
6615 dwz = dwarf2_get_dwz_file ();
6616 if (dwz != NULL)
6617 read_comp_units_from_section (objfile, &dwz->info, 1,
6618 &n_allocated, &n_comp_units,
6619 &all_comp_units);
6620
6621 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6622 struct dwarf2_per_cu_data *,
6623 n_comp_units);
6624 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6625 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6626 xfree (all_comp_units);
6627 dwarf2_per_objfile->n_comp_units = n_comp_units;
6628 }
6629
6630 /* Process all loaded DIEs for compilation unit CU, starting at
6631 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6632 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6633 DW_AT_ranges). See the comments of add_partial_subprogram on how
6634 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6635
6636 static void
6637 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6638 CORE_ADDR *highpc, int set_addrmap,
6639 struct dwarf2_cu *cu)
6640 {
6641 struct partial_die_info *pdi;
6642
6643 /* Now, march along the PDI's, descending into ones which have
6644 interesting children but skipping the children of the other ones,
6645 until we reach the end of the compilation unit. */
6646
6647 pdi = first_die;
6648
6649 while (pdi != NULL)
6650 {
6651 fixup_partial_die (pdi, cu);
6652
6653 /* Anonymous namespaces or modules have no name but have interesting
6654 children, so we need to look at them. Ditto for anonymous
6655 enums. */
6656
6657 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6658 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6659 || pdi->tag == DW_TAG_imported_unit)
6660 {
6661 switch (pdi->tag)
6662 {
6663 case DW_TAG_subprogram:
6664 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6665 break;
6666 case DW_TAG_constant:
6667 case DW_TAG_variable:
6668 case DW_TAG_typedef:
6669 case DW_TAG_union_type:
6670 if (!pdi->is_declaration)
6671 {
6672 add_partial_symbol (pdi, cu);
6673 }
6674 break;
6675 case DW_TAG_class_type:
6676 case DW_TAG_interface_type:
6677 case DW_TAG_structure_type:
6678 if (!pdi->is_declaration)
6679 {
6680 add_partial_symbol (pdi, cu);
6681 }
6682 break;
6683 case DW_TAG_enumeration_type:
6684 if (!pdi->is_declaration)
6685 add_partial_enumeration (pdi, cu);
6686 break;
6687 case DW_TAG_base_type:
6688 case DW_TAG_subrange_type:
6689 /* File scope base type definitions are added to the partial
6690 symbol table. */
6691 add_partial_symbol (pdi, cu);
6692 break;
6693 case DW_TAG_namespace:
6694 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6695 break;
6696 case DW_TAG_module:
6697 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6698 break;
6699 case DW_TAG_imported_unit:
6700 {
6701 struct dwarf2_per_cu_data *per_cu;
6702
6703 /* For now we don't handle imported units in type units. */
6704 if (cu->per_cu->is_debug_types)
6705 {
6706 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6707 " supported in type units [in module %s]"),
6708 objfile_name (cu->objfile));
6709 }
6710
6711 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6712 pdi->is_dwz,
6713 cu->objfile);
6714
6715 /* Go read the partial unit, if needed. */
6716 if (per_cu->v.psymtab == NULL)
6717 process_psymtab_comp_unit (per_cu, 1, cu->language);
6718
6719 VEC_safe_push (dwarf2_per_cu_ptr,
6720 cu->per_cu->imported_symtabs, per_cu);
6721 }
6722 break;
6723 case DW_TAG_imported_declaration:
6724 add_partial_symbol (pdi, cu);
6725 break;
6726 default:
6727 break;
6728 }
6729 }
6730
6731 /* If the die has a sibling, skip to the sibling. */
6732
6733 pdi = pdi->die_sibling;
6734 }
6735 }
6736
6737 /* Functions used to compute the fully scoped name of a partial DIE.
6738
6739 Normally, this is simple. For C++, the parent DIE's fully scoped
6740 name is concatenated with "::" and the partial DIE's name. For
6741 Java, the same thing occurs except that "." is used instead of "::".
6742 Enumerators are an exception; they use the scope of their parent
6743 enumeration type, i.e. the name of the enumeration type is not
6744 prepended to the enumerator.
6745
6746 There are two complexities. One is DW_AT_specification; in this
6747 case "parent" means the parent of the target of the specification,
6748 instead of the direct parent of the DIE. The other is compilers
6749 which do not emit DW_TAG_namespace; in this case we try to guess
6750 the fully qualified name of structure types from their members'
6751 linkage names. This must be done using the DIE's children rather
6752 than the children of any DW_AT_specification target. We only need
6753 to do this for structures at the top level, i.e. if the target of
6754 any DW_AT_specification (if any; otherwise the DIE itself) does not
6755 have a parent. */
6756
6757 /* Compute the scope prefix associated with PDI's parent, in
6758 compilation unit CU. The result will be allocated on CU's
6759 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6760 field. NULL is returned if no prefix is necessary. */
6761 static const char *
6762 partial_die_parent_scope (struct partial_die_info *pdi,
6763 struct dwarf2_cu *cu)
6764 {
6765 const char *grandparent_scope;
6766 struct partial_die_info *parent, *real_pdi;
6767
6768 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6769 then this means the parent of the specification DIE. */
6770
6771 real_pdi = pdi;
6772 while (real_pdi->has_specification)
6773 real_pdi = find_partial_die (real_pdi->spec_offset,
6774 real_pdi->spec_is_dwz, cu);
6775
6776 parent = real_pdi->die_parent;
6777 if (parent == NULL)
6778 return NULL;
6779
6780 if (parent->scope_set)
6781 return parent->scope;
6782
6783 fixup_partial_die (parent, cu);
6784
6785 grandparent_scope = partial_die_parent_scope (parent, cu);
6786
6787 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6788 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6789 Work around this problem here. */
6790 if (cu->language == language_cplus
6791 && parent->tag == DW_TAG_namespace
6792 && strcmp (parent->name, "::") == 0
6793 && grandparent_scope == NULL)
6794 {
6795 parent->scope = NULL;
6796 parent->scope_set = 1;
6797 return NULL;
6798 }
6799
6800 if (pdi->tag == DW_TAG_enumerator)
6801 /* Enumerators should not get the name of the enumeration as a prefix. */
6802 parent->scope = grandparent_scope;
6803 else if (parent->tag == DW_TAG_namespace
6804 || parent->tag == DW_TAG_module
6805 || parent->tag == DW_TAG_structure_type
6806 || parent->tag == DW_TAG_class_type
6807 || parent->tag == DW_TAG_interface_type
6808 || parent->tag == DW_TAG_union_type
6809 || parent->tag == DW_TAG_enumeration_type)
6810 {
6811 if (grandparent_scope == NULL)
6812 parent->scope = parent->name;
6813 else
6814 parent->scope = typename_concat (&cu->comp_unit_obstack,
6815 grandparent_scope,
6816 parent->name, 0, cu);
6817 }
6818 else
6819 {
6820 /* FIXME drow/2004-04-01: What should we be doing with
6821 function-local names? For partial symbols, we should probably be
6822 ignoring them. */
6823 complaint (&symfile_complaints,
6824 _("unhandled containing DIE tag %d for DIE at %d"),
6825 parent->tag, pdi->offset.sect_off);
6826 parent->scope = grandparent_scope;
6827 }
6828
6829 parent->scope_set = 1;
6830 return parent->scope;
6831 }
6832
6833 /* Return the fully scoped name associated with PDI, from compilation unit
6834 CU. The result will be allocated with malloc. */
6835
6836 static char *
6837 partial_die_full_name (struct partial_die_info *pdi,
6838 struct dwarf2_cu *cu)
6839 {
6840 const char *parent_scope;
6841
6842 /* If this is a template instantiation, we can not work out the
6843 template arguments from partial DIEs. So, unfortunately, we have
6844 to go through the full DIEs. At least any work we do building
6845 types here will be reused if full symbols are loaded later. */
6846 if (pdi->has_template_arguments)
6847 {
6848 fixup_partial_die (pdi, cu);
6849
6850 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6851 {
6852 struct die_info *die;
6853 struct attribute attr;
6854 struct dwarf2_cu *ref_cu = cu;
6855
6856 /* DW_FORM_ref_addr is using section offset. */
6857 attr.name = (enum dwarf_attribute) 0;
6858 attr.form = DW_FORM_ref_addr;
6859 attr.u.unsnd = pdi->offset.sect_off;
6860 die = follow_die_ref (NULL, &attr, &ref_cu);
6861
6862 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6863 }
6864 }
6865
6866 parent_scope = partial_die_parent_scope (pdi, cu);
6867 if (parent_scope == NULL)
6868 return NULL;
6869 else
6870 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6871 }
6872
6873 static void
6874 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6875 {
6876 struct objfile *objfile = cu->objfile;
6877 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6878 CORE_ADDR addr = 0;
6879 const char *actual_name = NULL;
6880 CORE_ADDR baseaddr;
6881 char *built_actual_name;
6882
6883 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6884
6885 built_actual_name = partial_die_full_name (pdi, cu);
6886 if (built_actual_name != NULL)
6887 actual_name = built_actual_name;
6888
6889 if (actual_name == NULL)
6890 actual_name = pdi->name;
6891
6892 switch (pdi->tag)
6893 {
6894 case DW_TAG_subprogram:
6895 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6896 if (pdi->is_external || cu->language == language_ada)
6897 {
6898 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6899 of the global scope. But in Ada, we want to be able to access
6900 nested procedures globally. So all Ada subprograms are stored
6901 in the global scope. */
6902 add_psymbol_to_list (actual_name, strlen (actual_name),
6903 built_actual_name != NULL,
6904 VAR_DOMAIN, LOC_BLOCK,
6905 &objfile->global_psymbols,
6906 addr, cu->language, objfile);
6907 }
6908 else
6909 {
6910 add_psymbol_to_list (actual_name, strlen (actual_name),
6911 built_actual_name != NULL,
6912 VAR_DOMAIN, LOC_BLOCK,
6913 &objfile->static_psymbols,
6914 addr, cu->language, objfile);
6915 }
6916 break;
6917 case DW_TAG_constant:
6918 {
6919 struct psymbol_allocation_list *list;
6920
6921 if (pdi->is_external)
6922 list = &objfile->global_psymbols;
6923 else
6924 list = &objfile->static_psymbols;
6925 add_psymbol_to_list (actual_name, strlen (actual_name),
6926 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6927 list, 0, cu->language, objfile);
6928 }
6929 break;
6930 case DW_TAG_variable:
6931 if (pdi->d.locdesc)
6932 addr = decode_locdesc (pdi->d.locdesc, cu);
6933
6934 if (pdi->d.locdesc
6935 && addr == 0
6936 && !dwarf2_per_objfile->has_section_at_zero)
6937 {
6938 /* A global or static variable may also have been stripped
6939 out by the linker if unused, in which case its address
6940 will be nullified; do not add such variables into partial
6941 symbol table then. */
6942 }
6943 else if (pdi->is_external)
6944 {
6945 /* Global Variable.
6946 Don't enter into the minimal symbol tables as there is
6947 a minimal symbol table entry from the ELF symbols already.
6948 Enter into partial symbol table if it has a location
6949 descriptor or a type.
6950 If the location descriptor is missing, new_symbol will create
6951 a LOC_UNRESOLVED symbol, the address of the variable will then
6952 be determined from the minimal symbol table whenever the variable
6953 is referenced.
6954 The address for the partial symbol table entry is not
6955 used by GDB, but it comes in handy for debugging partial symbol
6956 table building. */
6957
6958 if (pdi->d.locdesc || pdi->has_type)
6959 add_psymbol_to_list (actual_name, strlen (actual_name),
6960 built_actual_name != NULL,
6961 VAR_DOMAIN, LOC_STATIC,
6962 &objfile->global_psymbols,
6963 addr + baseaddr,
6964 cu->language, objfile);
6965 }
6966 else
6967 {
6968 int has_loc = pdi->d.locdesc != NULL;
6969
6970 /* Static Variable. Skip symbols whose value we cannot know (those
6971 without location descriptors or constant values). */
6972 if (!has_loc && !pdi->has_const_value)
6973 {
6974 xfree (built_actual_name);
6975 return;
6976 }
6977
6978 add_psymbol_to_list (actual_name, strlen (actual_name),
6979 built_actual_name != NULL,
6980 VAR_DOMAIN, LOC_STATIC,
6981 &objfile->static_psymbols,
6982 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6983 cu->language, objfile);
6984 }
6985 break;
6986 case DW_TAG_typedef:
6987 case DW_TAG_base_type:
6988 case DW_TAG_subrange_type:
6989 add_psymbol_to_list (actual_name, strlen (actual_name),
6990 built_actual_name != NULL,
6991 VAR_DOMAIN, LOC_TYPEDEF,
6992 &objfile->static_psymbols,
6993 0, cu->language, objfile);
6994 break;
6995 case DW_TAG_imported_declaration:
6996 case DW_TAG_namespace:
6997 add_psymbol_to_list (actual_name, strlen (actual_name),
6998 built_actual_name != NULL,
6999 VAR_DOMAIN, LOC_TYPEDEF,
7000 &objfile->global_psymbols,
7001 0, cu->language, objfile);
7002 break;
7003 case DW_TAG_module:
7004 add_psymbol_to_list (actual_name, strlen (actual_name),
7005 built_actual_name != NULL,
7006 MODULE_DOMAIN, LOC_TYPEDEF,
7007 &objfile->global_psymbols,
7008 0, cu->language, objfile);
7009 break;
7010 case DW_TAG_class_type:
7011 case DW_TAG_interface_type:
7012 case DW_TAG_structure_type:
7013 case DW_TAG_union_type:
7014 case DW_TAG_enumeration_type:
7015 /* Skip external references. The DWARF standard says in the section
7016 about "Structure, Union, and Class Type Entries": "An incomplete
7017 structure, union or class type is represented by a structure,
7018 union or class entry that does not have a byte size attribute
7019 and that has a DW_AT_declaration attribute." */
7020 if (!pdi->has_byte_size && pdi->is_declaration)
7021 {
7022 xfree (built_actual_name);
7023 return;
7024 }
7025
7026 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7027 static vs. global. */
7028 add_psymbol_to_list (actual_name, strlen (actual_name),
7029 built_actual_name != NULL,
7030 STRUCT_DOMAIN, LOC_TYPEDEF,
7031 (cu->language == language_cplus
7032 || cu->language == language_java)
7033 ? &objfile->global_psymbols
7034 : &objfile->static_psymbols,
7035 0, cu->language, objfile);
7036
7037 break;
7038 case DW_TAG_enumerator:
7039 add_psymbol_to_list (actual_name, strlen (actual_name),
7040 built_actual_name != NULL,
7041 VAR_DOMAIN, LOC_CONST,
7042 (cu->language == language_cplus
7043 || cu->language == language_java)
7044 ? &objfile->global_psymbols
7045 : &objfile->static_psymbols,
7046 0, cu->language, objfile);
7047 break;
7048 default:
7049 break;
7050 }
7051
7052 xfree (built_actual_name);
7053 }
7054
7055 /* Read a partial die corresponding to a namespace; also, add a symbol
7056 corresponding to that namespace to the symbol table. NAMESPACE is
7057 the name of the enclosing namespace. */
7058
7059 static void
7060 add_partial_namespace (struct partial_die_info *pdi,
7061 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7062 int set_addrmap, struct dwarf2_cu *cu)
7063 {
7064 /* Add a symbol for the namespace. */
7065
7066 add_partial_symbol (pdi, cu);
7067
7068 /* Now scan partial symbols in that namespace. */
7069
7070 if (pdi->has_children)
7071 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7072 }
7073
7074 /* Read a partial die corresponding to a Fortran module. */
7075
7076 static void
7077 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7078 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7079 {
7080 /* Add a symbol for the namespace. */
7081
7082 add_partial_symbol (pdi, cu);
7083
7084 /* Now scan partial symbols in that module. */
7085
7086 if (pdi->has_children)
7087 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7088 }
7089
7090 /* Read a partial die corresponding to a subprogram and create a partial
7091 symbol for that subprogram. When the CU language allows it, this
7092 routine also defines a partial symbol for each nested subprogram
7093 that this subprogram contains. If SET_ADDRMAP is true, record the
7094 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7095 and highest PC values found in PDI.
7096
7097 PDI may also be a lexical block, in which case we simply search
7098 recursively for subprograms defined inside that lexical block.
7099 Again, this is only performed when the CU language allows this
7100 type of definitions. */
7101
7102 static void
7103 add_partial_subprogram (struct partial_die_info *pdi,
7104 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7105 int set_addrmap, struct dwarf2_cu *cu)
7106 {
7107 if (pdi->tag == DW_TAG_subprogram)
7108 {
7109 if (pdi->has_pc_info)
7110 {
7111 if (pdi->lowpc < *lowpc)
7112 *lowpc = pdi->lowpc;
7113 if (pdi->highpc > *highpc)
7114 *highpc = pdi->highpc;
7115 if (set_addrmap)
7116 {
7117 struct objfile *objfile = cu->objfile;
7118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7119 CORE_ADDR baseaddr;
7120 CORE_ADDR highpc;
7121 CORE_ADDR lowpc;
7122
7123 baseaddr = ANOFFSET (objfile->section_offsets,
7124 SECT_OFF_TEXT (objfile));
7125 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7126 pdi->lowpc + baseaddr);
7127 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7128 pdi->highpc + baseaddr);
7129 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7130 cu->per_cu->v.psymtab);
7131 }
7132 }
7133
7134 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7135 {
7136 if (!pdi->is_declaration)
7137 /* Ignore subprogram DIEs that do not have a name, they are
7138 illegal. Do not emit a complaint at this point, we will
7139 do so when we convert this psymtab into a symtab. */
7140 if (pdi->name)
7141 add_partial_symbol (pdi, cu);
7142 }
7143 }
7144
7145 if (! pdi->has_children)
7146 return;
7147
7148 if (cu->language == language_ada)
7149 {
7150 pdi = pdi->die_child;
7151 while (pdi != NULL)
7152 {
7153 fixup_partial_die (pdi, cu);
7154 if (pdi->tag == DW_TAG_subprogram
7155 || pdi->tag == DW_TAG_lexical_block)
7156 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7157 pdi = pdi->die_sibling;
7158 }
7159 }
7160 }
7161
7162 /* Read a partial die corresponding to an enumeration type. */
7163
7164 static void
7165 add_partial_enumeration (struct partial_die_info *enum_pdi,
7166 struct dwarf2_cu *cu)
7167 {
7168 struct partial_die_info *pdi;
7169
7170 if (enum_pdi->name != NULL)
7171 add_partial_symbol (enum_pdi, cu);
7172
7173 pdi = enum_pdi->die_child;
7174 while (pdi)
7175 {
7176 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7177 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7178 else
7179 add_partial_symbol (pdi, cu);
7180 pdi = pdi->die_sibling;
7181 }
7182 }
7183
7184 /* Return the initial uleb128 in the die at INFO_PTR. */
7185
7186 static unsigned int
7187 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7188 {
7189 unsigned int bytes_read;
7190
7191 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7192 }
7193
7194 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7195 Return the corresponding abbrev, or NULL if the number is zero (indicating
7196 an empty DIE). In either case *BYTES_READ will be set to the length of
7197 the initial number. */
7198
7199 static struct abbrev_info *
7200 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7201 struct dwarf2_cu *cu)
7202 {
7203 bfd *abfd = cu->objfile->obfd;
7204 unsigned int abbrev_number;
7205 struct abbrev_info *abbrev;
7206
7207 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7208
7209 if (abbrev_number == 0)
7210 return NULL;
7211
7212 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7213 if (!abbrev)
7214 {
7215 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7216 " at offset 0x%x [in module %s]"),
7217 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7218 cu->header.offset.sect_off, bfd_get_filename (abfd));
7219 }
7220
7221 return abbrev;
7222 }
7223
7224 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7225 Returns a pointer to the end of a series of DIEs, terminated by an empty
7226 DIE. Any children of the skipped DIEs will also be skipped. */
7227
7228 static const gdb_byte *
7229 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7230 {
7231 struct dwarf2_cu *cu = reader->cu;
7232 struct abbrev_info *abbrev;
7233 unsigned int bytes_read;
7234
7235 while (1)
7236 {
7237 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7238 if (abbrev == NULL)
7239 return info_ptr + bytes_read;
7240 else
7241 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7242 }
7243 }
7244
7245 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7246 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7247 abbrev corresponding to that skipped uleb128 should be passed in
7248 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7249 children. */
7250
7251 static const gdb_byte *
7252 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7253 struct abbrev_info *abbrev)
7254 {
7255 unsigned int bytes_read;
7256 struct attribute attr;
7257 bfd *abfd = reader->abfd;
7258 struct dwarf2_cu *cu = reader->cu;
7259 const gdb_byte *buffer = reader->buffer;
7260 const gdb_byte *buffer_end = reader->buffer_end;
7261 const gdb_byte *start_info_ptr = info_ptr;
7262 unsigned int form, i;
7263
7264 for (i = 0; i < abbrev->num_attrs; i++)
7265 {
7266 /* The only abbrev we care about is DW_AT_sibling. */
7267 if (abbrev->attrs[i].name == DW_AT_sibling)
7268 {
7269 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7270 if (attr.form == DW_FORM_ref_addr)
7271 complaint (&symfile_complaints,
7272 _("ignoring absolute DW_AT_sibling"));
7273 else
7274 {
7275 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7276 const gdb_byte *sibling_ptr = buffer + off;
7277
7278 if (sibling_ptr < info_ptr)
7279 complaint (&symfile_complaints,
7280 _("DW_AT_sibling points backwards"));
7281 else if (sibling_ptr > reader->buffer_end)
7282 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7283 else
7284 return sibling_ptr;
7285 }
7286 }
7287
7288 /* If it isn't DW_AT_sibling, skip this attribute. */
7289 form = abbrev->attrs[i].form;
7290 skip_attribute:
7291 switch (form)
7292 {
7293 case DW_FORM_ref_addr:
7294 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7295 and later it is offset sized. */
7296 if (cu->header.version == 2)
7297 info_ptr += cu->header.addr_size;
7298 else
7299 info_ptr += cu->header.offset_size;
7300 break;
7301 case DW_FORM_GNU_ref_alt:
7302 info_ptr += cu->header.offset_size;
7303 break;
7304 case DW_FORM_addr:
7305 info_ptr += cu->header.addr_size;
7306 break;
7307 case DW_FORM_data1:
7308 case DW_FORM_ref1:
7309 case DW_FORM_flag:
7310 info_ptr += 1;
7311 break;
7312 case DW_FORM_flag_present:
7313 break;
7314 case DW_FORM_data2:
7315 case DW_FORM_ref2:
7316 info_ptr += 2;
7317 break;
7318 case DW_FORM_data4:
7319 case DW_FORM_ref4:
7320 info_ptr += 4;
7321 break;
7322 case DW_FORM_data8:
7323 case DW_FORM_ref8:
7324 case DW_FORM_ref_sig8:
7325 info_ptr += 8;
7326 break;
7327 case DW_FORM_string:
7328 read_direct_string (abfd, info_ptr, &bytes_read);
7329 info_ptr += bytes_read;
7330 break;
7331 case DW_FORM_sec_offset:
7332 case DW_FORM_strp:
7333 case DW_FORM_GNU_strp_alt:
7334 info_ptr += cu->header.offset_size;
7335 break;
7336 case DW_FORM_exprloc:
7337 case DW_FORM_block:
7338 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7339 info_ptr += bytes_read;
7340 break;
7341 case DW_FORM_block1:
7342 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7343 break;
7344 case DW_FORM_block2:
7345 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7346 break;
7347 case DW_FORM_block4:
7348 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7349 break;
7350 case DW_FORM_sdata:
7351 case DW_FORM_udata:
7352 case DW_FORM_ref_udata:
7353 case DW_FORM_GNU_addr_index:
7354 case DW_FORM_GNU_str_index:
7355 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7356 break;
7357 case DW_FORM_indirect:
7358 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7359 info_ptr += bytes_read;
7360 /* We need to continue parsing from here, so just go back to
7361 the top. */
7362 goto skip_attribute;
7363
7364 default:
7365 error (_("Dwarf Error: Cannot handle %s "
7366 "in DWARF reader [in module %s]"),
7367 dwarf_form_name (form),
7368 bfd_get_filename (abfd));
7369 }
7370 }
7371
7372 if (abbrev->has_children)
7373 return skip_children (reader, info_ptr);
7374 else
7375 return info_ptr;
7376 }
7377
7378 /* Locate ORIG_PDI's sibling.
7379 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7380
7381 static const gdb_byte *
7382 locate_pdi_sibling (const struct die_reader_specs *reader,
7383 struct partial_die_info *orig_pdi,
7384 const gdb_byte *info_ptr)
7385 {
7386 /* Do we know the sibling already? */
7387
7388 if (orig_pdi->sibling)
7389 return orig_pdi->sibling;
7390
7391 /* Are there any children to deal with? */
7392
7393 if (!orig_pdi->has_children)
7394 return info_ptr;
7395
7396 /* Skip the children the long way. */
7397
7398 return skip_children (reader, info_ptr);
7399 }
7400
7401 /* Expand this partial symbol table into a full symbol table. SELF is
7402 not NULL. */
7403
7404 static void
7405 dwarf2_read_symtab (struct partial_symtab *self,
7406 struct objfile *objfile)
7407 {
7408 if (self->readin)
7409 {
7410 warning (_("bug: psymtab for %s is already read in."),
7411 self->filename);
7412 }
7413 else
7414 {
7415 if (info_verbose)
7416 {
7417 printf_filtered (_("Reading in symbols for %s..."),
7418 self->filename);
7419 gdb_flush (gdb_stdout);
7420 }
7421
7422 /* Restore our global data. */
7423 dwarf2_per_objfile
7424 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7425 dwarf2_objfile_data_key);
7426
7427 /* If this psymtab is constructed from a debug-only objfile, the
7428 has_section_at_zero flag will not necessarily be correct. We
7429 can get the correct value for this flag by looking at the data
7430 associated with the (presumably stripped) associated objfile. */
7431 if (objfile->separate_debug_objfile_backlink)
7432 {
7433 struct dwarf2_per_objfile *dpo_backlink
7434 = ((struct dwarf2_per_objfile *)
7435 objfile_data (objfile->separate_debug_objfile_backlink,
7436 dwarf2_objfile_data_key));
7437
7438 dwarf2_per_objfile->has_section_at_zero
7439 = dpo_backlink->has_section_at_zero;
7440 }
7441
7442 dwarf2_per_objfile->reading_partial_symbols = 0;
7443
7444 psymtab_to_symtab_1 (self);
7445
7446 /* Finish up the debug error message. */
7447 if (info_verbose)
7448 printf_filtered (_("done.\n"));
7449 }
7450
7451 process_cu_includes ();
7452 }
7453 \f
7454 /* Reading in full CUs. */
7455
7456 /* Add PER_CU to the queue. */
7457
7458 static void
7459 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7460 enum language pretend_language)
7461 {
7462 struct dwarf2_queue_item *item;
7463
7464 per_cu->queued = 1;
7465 item = XNEW (struct dwarf2_queue_item);
7466 item->per_cu = per_cu;
7467 item->pretend_language = pretend_language;
7468 item->next = NULL;
7469
7470 if (dwarf2_queue == NULL)
7471 dwarf2_queue = item;
7472 else
7473 dwarf2_queue_tail->next = item;
7474
7475 dwarf2_queue_tail = item;
7476 }
7477
7478 /* If PER_CU is not yet queued, add it to the queue.
7479 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7480 dependency.
7481 The result is non-zero if PER_CU was queued, otherwise the result is zero
7482 meaning either PER_CU is already queued or it is already loaded.
7483
7484 N.B. There is an invariant here that if a CU is queued then it is loaded.
7485 The caller is required to load PER_CU if we return non-zero. */
7486
7487 static int
7488 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7489 struct dwarf2_per_cu_data *per_cu,
7490 enum language pretend_language)
7491 {
7492 /* We may arrive here during partial symbol reading, if we need full
7493 DIEs to process an unusual case (e.g. template arguments). Do
7494 not queue PER_CU, just tell our caller to load its DIEs. */
7495 if (dwarf2_per_objfile->reading_partial_symbols)
7496 {
7497 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7498 return 1;
7499 return 0;
7500 }
7501
7502 /* Mark the dependence relation so that we don't flush PER_CU
7503 too early. */
7504 if (dependent_cu != NULL)
7505 dwarf2_add_dependence (dependent_cu, per_cu);
7506
7507 /* If it's already on the queue, we have nothing to do. */
7508 if (per_cu->queued)
7509 return 0;
7510
7511 /* If the compilation unit is already loaded, just mark it as
7512 used. */
7513 if (per_cu->cu != NULL)
7514 {
7515 per_cu->cu->last_used = 0;
7516 return 0;
7517 }
7518
7519 /* Add it to the queue. */
7520 queue_comp_unit (per_cu, pretend_language);
7521
7522 return 1;
7523 }
7524
7525 /* Process the queue. */
7526
7527 static void
7528 process_queue (void)
7529 {
7530 struct dwarf2_queue_item *item, *next_item;
7531
7532 if (dwarf_read_debug)
7533 {
7534 fprintf_unfiltered (gdb_stdlog,
7535 "Expanding one or more symtabs of objfile %s ...\n",
7536 objfile_name (dwarf2_per_objfile->objfile));
7537 }
7538
7539 /* The queue starts out with one item, but following a DIE reference
7540 may load a new CU, adding it to the end of the queue. */
7541 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7542 {
7543 if ((dwarf2_per_objfile->using_index
7544 ? !item->per_cu->v.quick->compunit_symtab
7545 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7546 /* Skip dummy CUs. */
7547 && item->per_cu->cu != NULL)
7548 {
7549 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7550 unsigned int debug_print_threshold;
7551 char buf[100];
7552
7553 if (per_cu->is_debug_types)
7554 {
7555 struct signatured_type *sig_type =
7556 (struct signatured_type *) per_cu;
7557
7558 sprintf (buf, "TU %s at offset 0x%x",
7559 hex_string (sig_type->signature),
7560 per_cu->offset.sect_off);
7561 /* There can be 100s of TUs.
7562 Only print them in verbose mode. */
7563 debug_print_threshold = 2;
7564 }
7565 else
7566 {
7567 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7568 debug_print_threshold = 1;
7569 }
7570
7571 if (dwarf_read_debug >= debug_print_threshold)
7572 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7573
7574 if (per_cu->is_debug_types)
7575 process_full_type_unit (per_cu, item->pretend_language);
7576 else
7577 process_full_comp_unit (per_cu, item->pretend_language);
7578
7579 if (dwarf_read_debug >= debug_print_threshold)
7580 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7581 }
7582
7583 item->per_cu->queued = 0;
7584 next_item = item->next;
7585 xfree (item);
7586 }
7587
7588 dwarf2_queue_tail = NULL;
7589
7590 if (dwarf_read_debug)
7591 {
7592 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7593 objfile_name (dwarf2_per_objfile->objfile));
7594 }
7595 }
7596
7597 /* Free all allocated queue entries. This function only releases anything if
7598 an error was thrown; if the queue was processed then it would have been
7599 freed as we went along. */
7600
7601 static void
7602 dwarf2_release_queue (void *dummy)
7603 {
7604 struct dwarf2_queue_item *item, *last;
7605
7606 item = dwarf2_queue;
7607 while (item)
7608 {
7609 /* Anything still marked queued is likely to be in an
7610 inconsistent state, so discard it. */
7611 if (item->per_cu->queued)
7612 {
7613 if (item->per_cu->cu != NULL)
7614 free_one_cached_comp_unit (item->per_cu);
7615 item->per_cu->queued = 0;
7616 }
7617
7618 last = item;
7619 item = item->next;
7620 xfree (last);
7621 }
7622
7623 dwarf2_queue = dwarf2_queue_tail = NULL;
7624 }
7625
7626 /* Read in full symbols for PST, and anything it depends on. */
7627
7628 static void
7629 psymtab_to_symtab_1 (struct partial_symtab *pst)
7630 {
7631 struct dwarf2_per_cu_data *per_cu;
7632 int i;
7633
7634 if (pst->readin)
7635 return;
7636
7637 for (i = 0; i < pst->number_of_dependencies; i++)
7638 if (!pst->dependencies[i]->readin
7639 && pst->dependencies[i]->user == NULL)
7640 {
7641 /* Inform about additional files that need to be read in. */
7642 if (info_verbose)
7643 {
7644 /* FIXME: i18n: Need to make this a single string. */
7645 fputs_filtered (" ", gdb_stdout);
7646 wrap_here ("");
7647 fputs_filtered ("and ", gdb_stdout);
7648 wrap_here ("");
7649 printf_filtered ("%s...", pst->dependencies[i]->filename);
7650 wrap_here (""); /* Flush output. */
7651 gdb_flush (gdb_stdout);
7652 }
7653 psymtab_to_symtab_1 (pst->dependencies[i]);
7654 }
7655
7656 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7657
7658 if (per_cu == NULL)
7659 {
7660 /* It's an include file, no symbols to read for it.
7661 Everything is in the parent symtab. */
7662 pst->readin = 1;
7663 return;
7664 }
7665
7666 dw2_do_instantiate_symtab (per_cu);
7667 }
7668
7669 /* Trivial hash function for die_info: the hash value of a DIE
7670 is its offset in .debug_info for this objfile. */
7671
7672 static hashval_t
7673 die_hash (const void *item)
7674 {
7675 const struct die_info *die = (const struct die_info *) item;
7676
7677 return die->offset.sect_off;
7678 }
7679
7680 /* Trivial comparison function for die_info structures: two DIEs
7681 are equal if they have the same offset. */
7682
7683 static int
7684 die_eq (const void *item_lhs, const void *item_rhs)
7685 {
7686 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7687 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7688
7689 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7690 }
7691
7692 /* die_reader_func for load_full_comp_unit.
7693 This is identical to read_signatured_type_reader,
7694 but is kept separate for now. */
7695
7696 static void
7697 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7698 const gdb_byte *info_ptr,
7699 struct die_info *comp_unit_die,
7700 int has_children,
7701 void *data)
7702 {
7703 struct dwarf2_cu *cu = reader->cu;
7704 enum language *language_ptr = (enum language *) data;
7705
7706 gdb_assert (cu->die_hash == NULL);
7707 cu->die_hash =
7708 htab_create_alloc_ex (cu->header.length / 12,
7709 die_hash,
7710 die_eq,
7711 NULL,
7712 &cu->comp_unit_obstack,
7713 hashtab_obstack_allocate,
7714 dummy_obstack_deallocate);
7715
7716 if (has_children)
7717 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7718 &info_ptr, comp_unit_die);
7719 cu->dies = comp_unit_die;
7720 /* comp_unit_die is not stored in die_hash, no need. */
7721
7722 /* We try not to read any attributes in this function, because not
7723 all CUs needed for references have been loaded yet, and symbol
7724 table processing isn't initialized. But we have to set the CU language,
7725 or we won't be able to build types correctly.
7726 Similarly, if we do not read the producer, we can not apply
7727 producer-specific interpretation. */
7728 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7729 }
7730
7731 /* Load the DIEs associated with PER_CU into memory. */
7732
7733 static void
7734 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7735 enum language pretend_language)
7736 {
7737 gdb_assert (! this_cu->is_debug_types);
7738
7739 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7740 load_full_comp_unit_reader, &pretend_language);
7741 }
7742
7743 /* Add a DIE to the delayed physname list. */
7744
7745 static void
7746 add_to_method_list (struct type *type, int fnfield_index, int index,
7747 const char *name, struct die_info *die,
7748 struct dwarf2_cu *cu)
7749 {
7750 struct delayed_method_info mi;
7751 mi.type = type;
7752 mi.fnfield_index = fnfield_index;
7753 mi.index = index;
7754 mi.name = name;
7755 mi.die = die;
7756 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7757 }
7758
7759 /* A cleanup for freeing the delayed method list. */
7760
7761 static void
7762 free_delayed_list (void *ptr)
7763 {
7764 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7765 if (cu->method_list != NULL)
7766 {
7767 VEC_free (delayed_method_info, cu->method_list);
7768 cu->method_list = NULL;
7769 }
7770 }
7771
7772 /* Compute the physnames of any methods on the CU's method list.
7773
7774 The computation of method physnames is delayed in order to avoid the
7775 (bad) condition that one of the method's formal parameters is of an as yet
7776 incomplete type. */
7777
7778 static void
7779 compute_delayed_physnames (struct dwarf2_cu *cu)
7780 {
7781 int i;
7782 struct delayed_method_info *mi;
7783 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7784 {
7785 const char *physname;
7786 struct fn_fieldlist *fn_flp
7787 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7788 physname = dwarf2_physname (mi->name, mi->die, cu);
7789 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7790 = physname ? physname : "";
7791 }
7792 }
7793
7794 /* Go objects should be embedded in a DW_TAG_module DIE,
7795 and it's not clear if/how imported objects will appear.
7796 To keep Go support simple until that's worked out,
7797 go back through what we've read and create something usable.
7798 We could do this while processing each DIE, and feels kinda cleaner,
7799 but that way is more invasive.
7800 This is to, for example, allow the user to type "p var" or "b main"
7801 without having to specify the package name, and allow lookups
7802 of module.object to work in contexts that use the expression
7803 parser. */
7804
7805 static void
7806 fixup_go_packaging (struct dwarf2_cu *cu)
7807 {
7808 char *package_name = NULL;
7809 struct pending *list;
7810 int i;
7811
7812 for (list = global_symbols; list != NULL; list = list->next)
7813 {
7814 for (i = 0; i < list->nsyms; ++i)
7815 {
7816 struct symbol *sym = list->symbol[i];
7817
7818 if (SYMBOL_LANGUAGE (sym) == language_go
7819 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7820 {
7821 char *this_package_name = go_symbol_package_name (sym);
7822
7823 if (this_package_name == NULL)
7824 continue;
7825 if (package_name == NULL)
7826 package_name = this_package_name;
7827 else
7828 {
7829 if (strcmp (package_name, this_package_name) != 0)
7830 complaint (&symfile_complaints,
7831 _("Symtab %s has objects from two different Go packages: %s and %s"),
7832 (symbol_symtab (sym) != NULL
7833 ? symtab_to_filename_for_display
7834 (symbol_symtab (sym))
7835 : objfile_name (cu->objfile)),
7836 this_package_name, package_name);
7837 xfree (this_package_name);
7838 }
7839 }
7840 }
7841 }
7842
7843 if (package_name != NULL)
7844 {
7845 struct objfile *objfile = cu->objfile;
7846 const char *saved_package_name
7847 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7848 package_name,
7849 strlen (package_name));
7850 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7851 saved_package_name, objfile);
7852 struct symbol *sym;
7853
7854 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7855
7856 sym = allocate_symbol (objfile);
7857 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7858 SYMBOL_SET_NAMES (sym, saved_package_name,
7859 strlen (saved_package_name), 0, objfile);
7860 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7861 e.g., "main" finds the "main" module and not C's main(). */
7862 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7863 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7864 SYMBOL_TYPE (sym) = type;
7865
7866 add_symbol_to_list (sym, &global_symbols);
7867
7868 xfree (package_name);
7869 }
7870 }
7871
7872 /* Return the symtab for PER_CU. This works properly regardless of
7873 whether we're using the index or psymtabs. */
7874
7875 static struct compunit_symtab *
7876 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7877 {
7878 return (dwarf2_per_objfile->using_index
7879 ? per_cu->v.quick->compunit_symtab
7880 : per_cu->v.psymtab->compunit_symtab);
7881 }
7882
7883 /* A helper function for computing the list of all symbol tables
7884 included by PER_CU. */
7885
7886 static void
7887 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7888 htab_t all_children, htab_t all_type_symtabs,
7889 struct dwarf2_per_cu_data *per_cu,
7890 struct compunit_symtab *immediate_parent)
7891 {
7892 void **slot;
7893 int ix;
7894 struct compunit_symtab *cust;
7895 struct dwarf2_per_cu_data *iter;
7896
7897 slot = htab_find_slot (all_children, per_cu, INSERT);
7898 if (*slot != NULL)
7899 {
7900 /* This inclusion and its children have been processed. */
7901 return;
7902 }
7903
7904 *slot = per_cu;
7905 /* Only add a CU if it has a symbol table. */
7906 cust = get_compunit_symtab (per_cu);
7907 if (cust != NULL)
7908 {
7909 /* If this is a type unit only add its symbol table if we haven't
7910 seen it yet (type unit per_cu's can share symtabs). */
7911 if (per_cu->is_debug_types)
7912 {
7913 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7914 if (*slot == NULL)
7915 {
7916 *slot = cust;
7917 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7918 if (cust->user == NULL)
7919 cust->user = immediate_parent;
7920 }
7921 }
7922 else
7923 {
7924 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7925 if (cust->user == NULL)
7926 cust->user = immediate_parent;
7927 }
7928 }
7929
7930 for (ix = 0;
7931 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7932 ++ix)
7933 {
7934 recursively_compute_inclusions (result, all_children,
7935 all_type_symtabs, iter, cust);
7936 }
7937 }
7938
7939 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7940 PER_CU. */
7941
7942 static void
7943 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7944 {
7945 gdb_assert (! per_cu->is_debug_types);
7946
7947 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7948 {
7949 int ix, len;
7950 struct dwarf2_per_cu_data *per_cu_iter;
7951 struct compunit_symtab *compunit_symtab_iter;
7952 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7953 htab_t all_children, all_type_symtabs;
7954 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7955
7956 /* If we don't have a symtab, we can just skip this case. */
7957 if (cust == NULL)
7958 return;
7959
7960 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7961 NULL, xcalloc, xfree);
7962 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7963 NULL, xcalloc, xfree);
7964
7965 for (ix = 0;
7966 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7967 ix, per_cu_iter);
7968 ++ix)
7969 {
7970 recursively_compute_inclusions (&result_symtabs, all_children,
7971 all_type_symtabs, per_cu_iter,
7972 cust);
7973 }
7974
7975 /* Now we have a transitive closure of all the included symtabs. */
7976 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7977 cust->includes
7978 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7979 struct compunit_symtab *, len + 1);
7980 for (ix = 0;
7981 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7982 compunit_symtab_iter);
7983 ++ix)
7984 cust->includes[ix] = compunit_symtab_iter;
7985 cust->includes[len] = NULL;
7986
7987 VEC_free (compunit_symtab_ptr, result_symtabs);
7988 htab_delete (all_children);
7989 htab_delete (all_type_symtabs);
7990 }
7991 }
7992
7993 /* Compute the 'includes' field for the symtabs of all the CUs we just
7994 read. */
7995
7996 static void
7997 process_cu_includes (void)
7998 {
7999 int ix;
8000 struct dwarf2_per_cu_data *iter;
8001
8002 for (ix = 0;
8003 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8004 ix, iter);
8005 ++ix)
8006 {
8007 if (! iter->is_debug_types)
8008 compute_compunit_symtab_includes (iter);
8009 }
8010
8011 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8012 }
8013
8014 /* Generate full symbol information for PER_CU, whose DIEs have
8015 already been loaded into memory. */
8016
8017 static void
8018 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8019 enum language pretend_language)
8020 {
8021 struct dwarf2_cu *cu = per_cu->cu;
8022 struct objfile *objfile = per_cu->objfile;
8023 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8024 CORE_ADDR lowpc, highpc;
8025 struct compunit_symtab *cust;
8026 struct cleanup *back_to, *delayed_list_cleanup;
8027 CORE_ADDR baseaddr;
8028 struct block *static_block;
8029 CORE_ADDR addr;
8030
8031 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8032
8033 buildsym_init ();
8034 back_to = make_cleanup (really_free_pendings, NULL);
8035 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8036
8037 cu->list_in_scope = &file_symbols;
8038
8039 cu->language = pretend_language;
8040 cu->language_defn = language_def (cu->language);
8041
8042 /* Do line number decoding in read_file_scope () */
8043 process_die (cu->dies, cu);
8044
8045 /* For now fudge the Go package. */
8046 if (cu->language == language_go)
8047 fixup_go_packaging (cu);
8048
8049 /* Now that we have processed all the DIEs in the CU, all the types
8050 should be complete, and it should now be safe to compute all of the
8051 physnames. */
8052 compute_delayed_physnames (cu);
8053 do_cleanups (delayed_list_cleanup);
8054
8055 /* Some compilers don't define a DW_AT_high_pc attribute for the
8056 compilation unit. If the DW_AT_high_pc is missing, synthesize
8057 it, by scanning the DIE's below the compilation unit. */
8058 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8059
8060 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8061 static_block = end_symtab_get_static_block (addr, 0, 1);
8062
8063 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8064 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8065 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8066 addrmap to help ensure it has an accurate map of pc values belonging to
8067 this comp unit. */
8068 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8069
8070 cust = end_symtab_from_static_block (static_block,
8071 SECT_OFF_TEXT (objfile), 0);
8072
8073 if (cust != NULL)
8074 {
8075 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8076
8077 /* Set symtab language to language from DW_AT_language. If the
8078 compilation is from a C file generated by language preprocessors, do
8079 not set the language if it was already deduced by start_subfile. */
8080 if (!(cu->language == language_c
8081 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8082 COMPUNIT_FILETABS (cust)->language = cu->language;
8083
8084 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8085 produce DW_AT_location with location lists but it can be possibly
8086 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8087 there were bugs in prologue debug info, fixed later in GCC-4.5
8088 by "unwind info for epilogues" patch (which is not directly related).
8089
8090 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8091 needed, it would be wrong due to missing DW_AT_producer there.
8092
8093 Still one can confuse GDB by using non-standard GCC compilation
8094 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8095 */
8096 if (cu->has_loclist && gcc_4_minor >= 5)
8097 cust->locations_valid = 1;
8098
8099 if (gcc_4_minor >= 5)
8100 cust->epilogue_unwind_valid = 1;
8101
8102 cust->call_site_htab = cu->call_site_htab;
8103 }
8104
8105 if (dwarf2_per_objfile->using_index)
8106 per_cu->v.quick->compunit_symtab = cust;
8107 else
8108 {
8109 struct partial_symtab *pst = per_cu->v.psymtab;
8110 pst->compunit_symtab = cust;
8111 pst->readin = 1;
8112 }
8113
8114 /* Push it for inclusion processing later. */
8115 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8116
8117 do_cleanups (back_to);
8118 }
8119
8120 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8121 already been loaded into memory. */
8122
8123 static void
8124 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8125 enum language pretend_language)
8126 {
8127 struct dwarf2_cu *cu = per_cu->cu;
8128 struct objfile *objfile = per_cu->objfile;
8129 struct compunit_symtab *cust;
8130 struct cleanup *back_to, *delayed_list_cleanup;
8131 struct signatured_type *sig_type;
8132
8133 gdb_assert (per_cu->is_debug_types);
8134 sig_type = (struct signatured_type *) per_cu;
8135
8136 buildsym_init ();
8137 back_to = make_cleanup (really_free_pendings, NULL);
8138 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8139
8140 cu->list_in_scope = &file_symbols;
8141
8142 cu->language = pretend_language;
8143 cu->language_defn = language_def (cu->language);
8144
8145 /* The symbol tables are set up in read_type_unit_scope. */
8146 process_die (cu->dies, cu);
8147
8148 /* For now fudge the Go package. */
8149 if (cu->language == language_go)
8150 fixup_go_packaging (cu);
8151
8152 /* Now that we have processed all the DIEs in the CU, all the types
8153 should be complete, and it should now be safe to compute all of the
8154 physnames. */
8155 compute_delayed_physnames (cu);
8156 do_cleanups (delayed_list_cleanup);
8157
8158 /* TUs share symbol tables.
8159 If this is the first TU to use this symtab, complete the construction
8160 of it with end_expandable_symtab. Otherwise, complete the addition of
8161 this TU's symbols to the existing symtab. */
8162 if (sig_type->type_unit_group->compunit_symtab == NULL)
8163 {
8164 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8165 sig_type->type_unit_group->compunit_symtab = cust;
8166
8167 if (cust != NULL)
8168 {
8169 /* Set symtab language to language from DW_AT_language. If the
8170 compilation is from a C file generated by language preprocessors,
8171 do not set the language if it was already deduced by
8172 start_subfile. */
8173 if (!(cu->language == language_c
8174 && COMPUNIT_FILETABS (cust)->language != language_c))
8175 COMPUNIT_FILETABS (cust)->language = cu->language;
8176 }
8177 }
8178 else
8179 {
8180 augment_type_symtab ();
8181 cust = sig_type->type_unit_group->compunit_symtab;
8182 }
8183
8184 if (dwarf2_per_objfile->using_index)
8185 per_cu->v.quick->compunit_symtab = cust;
8186 else
8187 {
8188 struct partial_symtab *pst = per_cu->v.psymtab;
8189 pst->compunit_symtab = cust;
8190 pst->readin = 1;
8191 }
8192
8193 do_cleanups (back_to);
8194 }
8195
8196 /* Process an imported unit DIE. */
8197
8198 static void
8199 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8200 {
8201 struct attribute *attr;
8202
8203 /* For now we don't handle imported units in type units. */
8204 if (cu->per_cu->is_debug_types)
8205 {
8206 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8207 " supported in type units [in module %s]"),
8208 objfile_name (cu->objfile));
8209 }
8210
8211 attr = dwarf2_attr (die, DW_AT_import, cu);
8212 if (attr != NULL)
8213 {
8214 struct dwarf2_per_cu_data *per_cu;
8215 struct symtab *imported_symtab;
8216 sect_offset offset;
8217 int is_dwz;
8218
8219 offset = dwarf2_get_ref_die_offset (attr);
8220 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8221 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8222
8223 /* If necessary, add it to the queue and load its DIEs. */
8224 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8225 load_full_comp_unit (per_cu, cu->language);
8226
8227 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8228 per_cu);
8229 }
8230 }
8231
8232 /* Reset the in_process bit of a die. */
8233
8234 static void
8235 reset_die_in_process (void *arg)
8236 {
8237 struct die_info *die = (struct die_info *) arg;
8238
8239 die->in_process = 0;
8240 }
8241
8242 /* Process a die and its children. */
8243
8244 static void
8245 process_die (struct die_info *die, struct dwarf2_cu *cu)
8246 {
8247 struct cleanup *in_process;
8248
8249 /* We should only be processing those not already in process. */
8250 gdb_assert (!die->in_process);
8251
8252 die->in_process = 1;
8253 in_process = make_cleanup (reset_die_in_process,die);
8254
8255 switch (die->tag)
8256 {
8257 case DW_TAG_padding:
8258 break;
8259 case DW_TAG_compile_unit:
8260 case DW_TAG_partial_unit:
8261 read_file_scope (die, cu);
8262 break;
8263 case DW_TAG_type_unit:
8264 read_type_unit_scope (die, cu);
8265 break;
8266 case DW_TAG_subprogram:
8267 case DW_TAG_inlined_subroutine:
8268 read_func_scope (die, cu);
8269 break;
8270 case DW_TAG_lexical_block:
8271 case DW_TAG_try_block:
8272 case DW_TAG_catch_block:
8273 read_lexical_block_scope (die, cu);
8274 break;
8275 case DW_TAG_GNU_call_site:
8276 read_call_site_scope (die, cu);
8277 break;
8278 case DW_TAG_class_type:
8279 case DW_TAG_interface_type:
8280 case DW_TAG_structure_type:
8281 case DW_TAG_union_type:
8282 process_structure_scope (die, cu);
8283 break;
8284 case DW_TAG_enumeration_type:
8285 process_enumeration_scope (die, cu);
8286 break;
8287
8288 /* These dies have a type, but processing them does not create
8289 a symbol or recurse to process the children. Therefore we can
8290 read them on-demand through read_type_die. */
8291 case DW_TAG_subroutine_type:
8292 case DW_TAG_set_type:
8293 case DW_TAG_array_type:
8294 case DW_TAG_pointer_type:
8295 case DW_TAG_ptr_to_member_type:
8296 case DW_TAG_reference_type:
8297 case DW_TAG_string_type:
8298 break;
8299
8300 case DW_TAG_base_type:
8301 case DW_TAG_subrange_type:
8302 case DW_TAG_typedef:
8303 /* Add a typedef symbol for the type definition, if it has a
8304 DW_AT_name. */
8305 new_symbol (die, read_type_die (die, cu), cu);
8306 break;
8307 case DW_TAG_common_block:
8308 read_common_block (die, cu);
8309 break;
8310 case DW_TAG_common_inclusion:
8311 break;
8312 case DW_TAG_namespace:
8313 cu->processing_has_namespace_info = 1;
8314 read_namespace (die, cu);
8315 break;
8316 case DW_TAG_module:
8317 cu->processing_has_namespace_info = 1;
8318 read_module (die, cu);
8319 break;
8320 case DW_TAG_imported_declaration:
8321 cu->processing_has_namespace_info = 1;
8322 if (read_namespace_alias (die, cu))
8323 break;
8324 /* The declaration is not a global namespace alias: fall through. */
8325 case DW_TAG_imported_module:
8326 cu->processing_has_namespace_info = 1;
8327 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8328 || cu->language != language_fortran))
8329 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8330 dwarf_tag_name (die->tag));
8331 read_import_statement (die, cu);
8332 break;
8333
8334 case DW_TAG_imported_unit:
8335 process_imported_unit_die (die, cu);
8336 break;
8337
8338 default:
8339 new_symbol (die, NULL, cu);
8340 break;
8341 }
8342
8343 do_cleanups (in_process);
8344 }
8345 \f
8346 /* DWARF name computation. */
8347
8348 /* A helper function for dwarf2_compute_name which determines whether DIE
8349 needs to have the name of the scope prepended to the name listed in the
8350 die. */
8351
8352 static int
8353 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8354 {
8355 struct attribute *attr;
8356
8357 switch (die->tag)
8358 {
8359 case DW_TAG_namespace:
8360 case DW_TAG_typedef:
8361 case DW_TAG_class_type:
8362 case DW_TAG_interface_type:
8363 case DW_TAG_structure_type:
8364 case DW_TAG_union_type:
8365 case DW_TAG_enumeration_type:
8366 case DW_TAG_enumerator:
8367 case DW_TAG_subprogram:
8368 case DW_TAG_inlined_subroutine:
8369 case DW_TAG_member:
8370 case DW_TAG_imported_declaration:
8371 return 1;
8372
8373 case DW_TAG_variable:
8374 case DW_TAG_constant:
8375 /* We only need to prefix "globally" visible variables. These include
8376 any variable marked with DW_AT_external or any variable that
8377 lives in a namespace. [Variables in anonymous namespaces
8378 require prefixing, but they are not DW_AT_external.] */
8379
8380 if (dwarf2_attr (die, DW_AT_specification, cu))
8381 {
8382 struct dwarf2_cu *spec_cu = cu;
8383
8384 return die_needs_namespace (die_specification (die, &spec_cu),
8385 spec_cu);
8386 }
8387
8388 attr = dwarf2_attr (die, DW_AT_external, cu);
8389 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8390 && die->parent->tag != DW_TAG_module)
8391 return 0;
8392 /* A variable in a lexical block of some kind does not need a
8393 namespace, even though in C++ such variables may be external
8394 and have a mangled name. */
8395 if (die->parent->tag == DW_TAG_lexical_block
8396 || die->parent->tag == DW_TAG_try_block
8397 || die->parent->tag == DW_TAG_catch_block
8398 || die->parent->tag == DW_TAG_subprogram)
8399 return 0;
8400 return 1;
8401
8402 default:
8403 return 0;
8404 }
8405 }
8406
8407 /* Retrieve the last character from a mem_file. */
8408
8409 static void
8410 do_ui_file_peek_last (void *object, const char *buffer, long length)
8411 {
8412 char *last_char_p = (char *) object;
8413
8414 if (length > 0)
8415 *last_char_p = buffer[length - 1];
8416 }
8417
8418 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8419 compute the physname for the object, which include a method's:
8420 - formal parameters (C++/Java),
8421 - receiver type (Go),
8422 - return type (Java).
8423
8424 The term "physname" is a bit confusing.
8425 For C++, for example, it is the demangled name.
8426 For Go, for example, it's the mangled name.
8427
8428 For Ada, return the DIE's linkage name rather than the fully qualified
8429 name. PHYSNAME is ignored..
8430
8431 The result is allocated on the objfile_obstack and canonicalized. */
8432
8433 static const char *
8434 dwarf2_compute_name (const char *name,
8435 struct die_info *die, struct dwarf2_cu *cu,
8436 int physname)
8437 {
8438 struct objfile *objfile = cu->objfile;
8439
8440 if (name == NULL)
8441 name = dwarf2_name (die, cu);
8442
8443 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8444 but otherwise compute it by typename_concat inside GDB.
8445 FIXME: Actually this is not really true, or at least not always true.
8446 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8447 Fortran names because there is no mangling standard. So new_symbol_full
8448 will set the demangled name to the result of dwarf2_full_name, and it is
8449 the demangled name that GDB uses if it exists. */
8450 if (cu->language == language_ada
8451 || (cu->language == language_fortran && physname))
8452 {
8453 /* For Ada unit, we prefer the linkage name over the name, as
8454 the former contains the exported name, which the user expects
8455 to be able to reference. Ideally, we want the user to be able
8456 to reference this entity using either natural or linkage name,
8457 but we haven't started looking at this enhancement yet. */
8458 const char *linkage_name;
8459
8460 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8461 if (linkage_name == NULL)
8462 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8463 if (linkage_name != NULL)
8464 return linkage_name;
8465 }
8466
8467 /* These are the only languages we know how to qualify names in. */
8468 if (name != NULL
8469 && (cu->language == language_cplus || cu->language == language_java
8470 || cu->language == language_fortran || cu->language == language_d))
8471 {
8472 if (die_needs_namespace (die, cu))
8473 {
8474 long length;
8475 const char *prefix;
8476 struct ui_file *buf;
8477 char *intermediate_name;
8478 const char *canonical_name = NULL;
8479
8480 prefix = determine_prefix (die, cu);
8481 buf = mem_fileopen ();
8482 if (*prefix != '\0')
8483 {
8484 char *prefixed_name = typename_concat (NULL, prefix, name,
8485 physname, cu);
8486
8487 fputs_unfiltered (prefixed_name, buf);
8488 xfree (prefixed_name);
8489 }
8490 else
8491 fputs_unfiltered (name, buf);
8492
8493 /* Template parameters may be specified in the DIE's DW_AT_name, or
8494 as children with DW_TAG_template_type_param or
8495 DW_TAG_value_type_param. If the latter, add them to the name
8496 here. If the name already has template parameters, then
8497 skip this step; some versions of GCC emit both, and
8498 it is more efficient to use the pre-computed name.
8499
8500 Something to keep in mind about this process: it is very
8501 unlikely, or in some cases downright impossible, to produce
8502 something that will match the mangled name of a function.
8503 If the definition of the function has the same debug info,
8504 we should be able to match up with it anyway. But fallbacks
8505 using the minimal symbol, for instance to find a method
8506 implemented in a stripped copy of libstdc++, will not work.
8507 If we do not have debug info for the definition, we will have to
8508 match them up some other way.
8509
8510 When we do name matching there is a related problem with function
8511 templates; two instantiated function templates are allowed to
8512 differ only by their return types, which we do not add here. */
8513
8514 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8515 {
8516 struct attribute *attr;
8517 struct die_info *child;
8518 int first = 1;
8519
8520 die->building_fullname = 1;
8521
8522 for (child = die->child; child != NULL; child = child->sibling)
8523 {
8524 struct type *type;
8525 LONGEST value;
8526 const gdb_byte *bytes;
8527 struct dwarf2_locexpr_baton *baton;
8528 struct value *v;
8529
8530 if (child->tag != DW_TAG_template_type_param
8531 && child->tag != DW_TAG_template_value_param)
8532 continue;
8533
8534 if (first)
8535 {
8536 fputs_unfiltered ("<", buf);
8537 first = 0;
8538 }
8539 else
8540 fputs_unfiltered (", ", buf);
8541
8542 attr = dwarf2_attr (child, DW_AT_type, cu);
8543 if (attr == NULL)
8544 {
8545 complaint (&symfile_complaints,
8546 _("template parameter missing DW_AT_type"));
8547 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8548 continue;
8549 }
8550 type = die_type (child, cu);
8551
8552 if (child->tag == DW_TAG_template_type_param)
8553 {
8554 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8555 continue;
8556 }
8557
8558 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8559 if (attr == NULL)
8560 {
8561 complaint (&symfile_complaints,
8562 _("template parameter missing "
8563 "DW_AT_const_value"));
8564 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8565 continue;
8566 }
8567
8568 dwarf2_const_value_attr (attr, type, name,
8569 &cu->comp_unit_obstack, cu,
8570 &value, &bytes, &baton);
8571
8572 if (TYPE_NOSIGN (type))
8573 /* GDB prints characters as NUMBER 'CHAR'. If that's
8574 changed, this can use value_print instead. */
8575 c_printchar (value, type, buf);
8576 else
8577 {
8578 struct value_print_options opts;
8579
8580 if (baton != NULL)
8581 v = dwarf2_evaluate_loc_desc (type, NULL,
8582 baton->data,
8583 baton->size,
8584 baton->per_cu);
8585 else if (bytes != NULL)
8586 {
8587 v = allocate_value (type);
8588 memcpy (value_contents_writeable (v), bytes,
8589 TYPE_LENGTH (type));
8590 }
8591 else
8592 v = value_from_longest (type, value);
8593
8594 /* Specify decimal so that we do not depend on
8595 the radix. */
8596 get_formatted_print_options (&opts, 'd');
8597 opts.raw = 1;
8598 value_print (v, buf, &opts);
8599 release_value (v);
8600 value_free (v);
8601 }
8602 }
8603
8604 die->building_fullname = 0;
8605
8606 if (!first)
8607 {
8608 /* Close the argument list, with a space if necessary
8609 (nested templates). */
8610 char last_char = '\0';
8611 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8612 if (last_char == '>')
8613 fputs_unfiltered (" >", buf);
8614 else
8615 fputs_unfiltered (">", buf);
8616 }
8617 }
8618
8619 /* For Java and C++ methods, append formal parameter type
8620 information, if PHYSNAME. */
8621
8622 if (physname && die->tag == DW_TAG_subprogram
8623 && (cu->language == language_cplus
8624 || cu->language == language_java))
8625 {
8626 struct type *type = read_type_die (die, cu);
8627
8628 c_type_print_args (type, buf, 1, cu->language,
8629 &type_print_raw_options);
8630
8631 if (cu->language == language_java)
8632 {
8633 /* For java, we must append the return type to method
8634 names. */
8635 if (die->tag == DW_TAG_subprogram)
8636 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8637 0, 0, &type_print_raw_options);
8638 }
8639 else if (cu->language == language_cplus)
8640 {
8641 /* Assume that an artificial first parameter is
8642 "this", but do not crash if it is not. RealView
8643 marks unnamed (and thus unused) parameters as
8644 artificial; there is no way to differentiate
8645 the two cases. */
8646 if (TYPE_NFIELDS (type) > 0
8647 && TYPE_FIELD_ARTIFICIAL (type, 0)
8648 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8649 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8650 0))))
8651 fputs_unfiltered (" const", buf);
8652 }
8653 }
8654
8655 intermediate_name = ui_file_xstrdup (buf, &length);
8656 ui_file_delete (buf);
8657
8658 if (cu->language == language_cplus)
8659 canonical_name
8660 = dwarf2_canonicalize_name (intermediate_name, cu,
8661 &objfile->per_bfd->storage_obstack);
8662
8663 /* If we only computed INTERMEDIATE_NAME, or if
8664 INTERMEDIATE_NAME is already canonical, then we need to
8665 copy it to the appropriate obstack. */
8666 if (canonical_name == NULL || canonical_name == intermediate_name)
8667 name = ((const char *)
8668 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8669 intermediate_name,
8670 strlen (intermediate_name)));
8671 else
8672 name = canonical_name;
8673
8674 xfree (intermediate_name);
8675 }
8676 }
8677
8678 return name;
8679 }
8680
8681 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8682 If scope qualifiers are appropriate they will be added. The result
8683 will be allocated on the storage_obstack, or NULL if the DIE does
8684 not have a name. NAME may either be from a previous call to
8685 dwarf2_name or NULL.
8686
8687 The output string will be canonicalized (if C++/Java). */
8688
8689 static const char *
8690 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8691 {
8692 return dwarf2_compute_name (name, die, cu, 0);
8693 }
8694
8695 /* Construct a physname for the given DIE in CU. NAME may either be
8696 from a previous call to dwarf2_name or NULL. The result will be
8697 allocated on the objfile_objstack or NULL if the DIE does not have a
8698 name.
8699
8700 The output string will be canonicalized (if C++/Java). */
8701
8702 static const char *
8703 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8704 {
8705 struct objfile *objfile = cu->objfile;
8706 struct attribute *attr;
8707 const char *retval, *mangled = NULL, *canon = NULL;
8708 struct cleanup *back_to;
8709 int need_copy = 1;
8710
8711 /* In this case dwarf2_compute_name is just a shortcut not building anything
8712 on its own. */
8713 if (!die_needs_namespace (die, cu))
8714 return dwarf2_compute_name (name, die, cu, 1);
8715
8716 back_to = make_cleanup (null_cleanup, NULL);
8717
8718 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8719 if (mangled == NULL)
8720 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8721
8722 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8723 has computed. */
8724 if (mangled != NULL)
8725 {
8726 char *demangled;
8727
8728 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8729 type. It is easier for GDB users to search for such functions as
8730 `name(params)' than `long name(params)'. In such case the minimal
8731 symbol names do not match the full symbol names but for template
8732 functions there is never a need to look up their definition from their
8733 declaration so the only disadvantage remains the minimal symbol
8734 variant `long name(params)' does not have the proper inferior type.
8735 */
8736
8737 if (cu->language == language_go)
8738 {
8739 /* This is a lie, but we already lie to the caller new_symbol_full.
8740 new_symbol_full assumes we return the mangled name.
8741 This just undoes that lie until things are cleaned up. */
8742 demangled = NULL;
8743 }
8744 else
8745 {
8746 demangled = gdb_demangle (mangled,
8747 (DMGL_PARAMS | DMGL_ANSI
8748 | (cu->language == language_java
8749 ? DMGL_JAVA | DMGL_RET_POSTFIX
8750 : DMGL_RET_DROP)));
8751 }
8752 if (demangled)
8753 {
8754 make_cleanup (xfree, demangled);
8755 canon = demangled;
8756 }
8757 else
8758 {
8759 canon = mangled;
8760 need_copy = 0;
8761 }
8762 }
8763
8764 if (canon == NULL || check_physname)
8765 {
8766 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8767
8768 if (canon != NULL && strcmp (physname, canon) != 0)
8769 {
8770 /* It may not mean a bug in GDB. The compiler could also
8771 compute DW_AT_linkage_name incorrectly. But in such case
8772 GDB would need to be bug-to-bug compatible. */
8773
8774 complaint (&symfile_complaints,
8775 _("Computed physname <%s> does not match demangled <%s> "
8776 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8777 physname, canon, mangled, die->offset.sect_off,
8778 objfile_name (objfile));
8779
8780 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8781 is available here - over computed PHYSNAME. It is safer
8782 against both buggy GDB and buggy compilers. */
8783
8784 retval = canon;
8785 }
8786 else
8787 {
8788 retval = physname;
8789 need_copy = 0;
8790 }
8791 }
8792 else
8793 retval = canon;
8794
8795 if (need_copy)
8796 retval = ((const char *)
8797 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8798 retval, strlen (retval)));
8799
8800 do_cleanups (back_to);
8801 return retval;
8802 }
8803
8804 /* Inspect DIE in CU for a namespace alias. If one exists, record
8805 a new symbol for it.
8806
8807 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8808
8809 static int
8810 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8811 {
8812 struct attribute *attr;
8813
8814 /* If the die does not have a name, this is not a namespace
8815 alias. */
8816 attr = dwarf2_attr (die, DW_AT_name, cu);
8817 if (attr != NULL)
8818 {
8819 int num;
8820 struct die_info *d = die;
8821 struct dwarf2_cu *imported_cu = cu;
8822
8823 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8824 keep inspecting DIEs until we hit the underlying import. */
8825 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8826 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8827 {
8828 attr = dwarf2_attr (d, DW_AT_import, cu);
8829 if (attr == NULL)
8830 break;
8831
8832 d = follow_die_ref (d, attr, &imported_cu);
8833 if (d->tag != DW_TAG_imported_declaration)
8834 break;
8835 }
8836
8837 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8838 {
8839 complaint (&symfile_complaints,
8840 _("DIE at 0x%x has too many recursively imported "
8841 "declarations"), d->offset.sect_off);
8842 return 0;
8843 }
8844
8845 if (attr != NULL)
8846 {
8847 struct type *type;
8848 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8849
8850 type = get_die_type_at_offset (offset, cu->per_cu);
8851 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8852 {
8853 /* This declaration is a global namespace alias. Add
8854 a symbol for it whose type is the aliased namespace. */
8855 new_symbol (die, type, cu);
8856 return 1;
8857 }
8858 }
8859 }
8860
8861 return 0;
8862 }
8863
8864 /* Return the using directives repository (global or local?) to use in the
8865 current context for LANGUAGE.
8866
8867 For Ada, imported declarations can materialize renamings, which *may* be
8868 global. However it is impossible (for now?) in DWARF to distinguish
8869 "external" imported declarations and "static" ones. As all imported
8870 declarations seem to be static in all other languages, make them all CU-wide
8871 global only in Ada. */
8872
8873 static struct using_direct **
8874 using_directives (enum language language)
8875 {
8876 if (language == language_ada && context_stack_depth == 0)
8877 return &global_using_directives;
8878 else
8879 return &local_using_directives;
8880 }
8881
8882 /* Read the import statement specified by the given die and record it. */
8883
8884 static void
8885 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8886 {
8887 struct objfile *objfile = cu->objfile;
8888 struct attribute *import_attr;
8889 struct die_info *imported_die, *child_die;
8890 struct dwarf2_cu *imported_cu;
8891 const char *imported_name;
8892 const char *imported_name_prefix;
8893 const char *canonical_name;
8894 const char *import_alias;
8895 const char *imported_declaration = NULL;
8896 const char *import_prefix;
8897 VEC (const_char_ptr) *excludes = NULL;
8898 struct cleanup *cleanups;
8899
8900 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8901 if (import_attr == NULL)
8902 {
8903 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8904 dwarf_tag_name (die->tag));
8905 return;
8906 }
8907
8908 imported_cu = cu;
8909 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8910 imported_name = dwarf2_name (imported_die, imported_cu);
8911 if (imported_name == NULL)
8912 {
8913 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8914
8915 The import in the following code:
8916 namespace A
8917 {
8918 typedef int B;
8919 }
8920
8921 int main ()
8922 {
8923 using A::B;
8924 B b;
8925 return b;
8926 }
8927
8928 ...
8929 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8930 <52> DW_AT_decl_file : 1
8931 <53> DW_AT_decl_line : 6
8932 <54> DW_AT_import : <0x75>
8933 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8934 <59> DW_AT_name : B
8935 <5b> DW_AT_decl_file : 1
8936 <5c> DW_AT_decl_line : 2
8937 <5d> DW_AT_type : <0x6e>
8938 ...
8939 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8940 <76> DW_AT_byte_size : 4
8941 <77> DW_AT_encoding : 5 (signed)
8942
8943 imports the wrong die ( 0x75 instead of 0x58 ).
8944 This case will be ignored until the gcc bug is fixed. */
8945 return;
8946 }
8947
8948 /* Figure out the local name after import. */
8949 import_alias = dwarf2_name (die, cu);
8950
8951 /* Figure out where the statement is being imported to. */
8952 import_prefix = determine_prefix (die, cu);
8953
8954 /* Figure out what the scope of the imported die is and prepend it
8955 to the name of the imported die. */
8956 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8957
8958 if (imported_die->tag != DW_TAG_namespace
8959 && imported_die->tag != DW_TAG_module)
8960 {
8961 imported_declaration = imported_name;
8962 canonical_name = imported_name_prefix;
8963 }
8964 else if (strlen (imported_name_prefix) > 0)
8965 canonical_name = obconcat (&objfile->objfile_obstack,
8966 imported_name_prefix,
8967 (cu->language == language_d ? "." : "::"),
8968 imported_name, (char *) NULL);
8969 else
8970 canonical_name = imported_name;
8971
8972 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8973
8974 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8975 for (child_die = die->child; child_die && child_die->tag;
8976 child_die = sibling_die (child_die))
8977 {
8978 /* DWARF-4: A Fortran use statement with a “rename list” may be
8979 represented by an imported module entry with an import attribute
8980 referring to the module and owned entries corresponding to those
8981 entities that are renamed as part of being imported. */
8982
8983 if (child_die->tag != DW_TAG_imported_declaration)
8984 {
8985 complaint (&symfile_complaints,
8986 _("child DW_TAG_imported_declaration expected "
8987 "- DIE at 0x%x [in module %s]"),
8988 child_die->offset.sect_off, objfile_name (objfile));
8989 continue;
8990 }
8991
8992 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8993 if (import_attr == NULL)
8994 {
8995 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8996 dwarf_tag_name (child_die->tag));
8997 continue;
8998 }
8999
9000 imported_cu = cu;
9001 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9002 &imported_cu);
9003 imported_name = dwarf2_name (imported_die, imported_cu);
9004 if (imported_name == NULL)
9005 {
9006 complaint (&symfile_complaints,
9007 _("child DW_TAG_imported_declaration has unknown "
9008 "imported name - DIE at 0x%x [in module %s]"),
9009 child_die->offset.sect_off, objfile_name (objfile));
9010 continue;
9011 }
9012
9013 VEC_safe_push (const_char_ptr, excludes, imported_name);
9014
9015 process_die (child_die, cu);
9016 }
9017
9018 add_using_directive (using_directives (cu->language),
9019 import_prefix,
9020 canonical_name,
9021 import_alias,
9022 imported_declaration,
9023 excludes,
9024 0,
9025 &objfile->objfile_obstack);
9026
9027 do_cleanups (cleanups);
9028 }
9029
9030 /* Cleanup function for handle_DW_AT_stmt_list. */
9031
9032 static void
9033 free_cu_line_header (void *arg)
9034 {
9035 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
9036
9037 free_line_header (cu->line_header);
9038 cu->line_header = NULL;
9039 }
9040
9041 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9042 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9043 this, it was first present in GCC release 4.3.0. */
9044
9045 static int
9046 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9047 {
9048 if (!cu->checked_producer)
9049 check_producer (cu);
9050
9051 return cu->producer_is_gcc_lt_4_3;
9052 }
9053
9054 static void
9055 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9056 const char **name, const char **comp_dir)
9057 {
9058 /* Find the filename. Do not use dwarf2_name here, since the filename
9059 is not a source language identifier. */
9060 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9061 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9062
9063 if (*comp_dir == NULL
9064 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9065 && IS_ABSOLUTE_PATH (*name))
9066 {
9067 char *d = ldirname (*name);
9068
9069 *comp_dir = d;
9070 if (d != NULL)
9071 make_cleanup (xfree, d);
9072 }
9073 if (*comp_dir != NULL)
9074 {
9075 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9076 directory, get rid of it. */
9077 const char *cp = strchr (*comp_dir, ':');
9078
9079 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9080 *comp_dir = cp + 1;
9081 }
9082
9083 if (*name == NULL)
9084 *name = "<unknown>";
9085 }
9086
9087 /* Handle DW_AT_stmt_list for a compilation unit.
9088 DIE is the DW_TAG_compile_unit die for CU.
9089 COMP_DIR is the compilation directory. LOWPC is passed to
9090 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9091
9092 static void
9093 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9094 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9095 {
9096 struct objfile *objfile = dwarf2_per_objfile->objfile;
9097 struct attribute *attr;
9098 unsigned int line_offset;
9099 struct line_header line_header_local;
9100 hashval_t line_header_local_hash;
9101 unsigned u;
9102 void **slot;
9103 int decode_mapping;
9104
9105 gdb_assert (! cu->per_cu->is_debug_types);
9106
9107 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9108 if (attr == NULL)
9109 return;
9110
9111 line_offset = DW_UNSND (attr);
9112
9113 /* The line header hash table is only created if needed (it exists to
9114 prevent redundant reading of the line table for partial_units).
9115 If we're given a partial_unit, we'll need it. If we're given a
9116 compile_unit, then use the line header hash table if it's already
9117 created, but don't create one just yet. */
9118
9119 if (dwarf2_per_objfile->line_header_hash == NULL
9120 && die->tag == DW_TAG_partial_unit)
9121 {
9122 dwarf2_per_objfile->line_header_hash
9123 = htab_create_alloc_ex (127, line_header_hash_voidp,
9124 line_header_eq_voidp,
9125 free_line_header_voidp,
9126 &objfile->objfile_obstack,
9127 hashtab_obstack_allocate,
9128 dummy_obstack_deallocate);
9129 }
9130
9131 line_header_local.offset.sect_off = line_offset;
9132 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9133 line_header_local_hash = line_header_hash (&line_header_local);
9134 if (dwarf2_per_objfile->line_header_hash != NULL)
9135 {
9136 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9137 &line_header_local,
9138 line_header_local_hash, NO_INSERT);
9139
9140 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9141 is not present in *SLOT (since if there is something in *SLOT then
9142 it will be for a partial_unit). */
9143 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9144 {
9145 gdb_assert (*slot != NULL);
9146 cu->line_header = (struct line_header *) *slot;
9147 return;
9148 }
9149 }
9150
9151 /* dwarf_decode_line_header does not yet provide sufficient information.
9152 We always have to call also dwarf_decode_lines for it. */
9153 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9154 if (cu->line_header == NULL)
9155 return;
9156
9157 if (dwarf2_per_objfile->line_header_hash == NULL)
9158 slot = NULL;
9159 else
9160 {
9161 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9162 &line_header_local,
9163 line_header_local_hash, INSERT);
9164 gdb_assert (slot != NULL);
9165 }
9166 if (slot != NULL && *slot == NULL)
9167 {
9168 /* This newly decoded line number information unit will be owned
9169 by line_header_hash hash table. */
9170 *slot = cu->line_header;
9171 }
9172 else
9173 {
9174 /* We cannot free any current entry in (*slot) as that struct line_header
9175 may be already used by multiple CUs. Create only temporary decoded
9176 line_header for this CU - it may happen at most once for each line
9177 number information unit. And if we're not using line_header_hash
9178 then this is what we want as well. */
9179 gdb_assert (die->tag != DW_TAG_partial_unit);
9180 make_cleanup (free_cu_line_header, cu);
9181 }
9182 decode_mapping = (die->tag != DW_TAG_partial_unit);
9183 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9184 decode_mapping);
9185 }
9186
9187 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9188
9189 static void
9190 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9191 {
9192 struct objfile *objfile = dwarf2_per_objfile->objfile;
9193 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9194 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9195 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9196 CORE_ADDR highpc = ((CORE_ADDR) 0);
9197 struct attribute *attr;
9198 const char *name = NULL;
9199 const char *comp_dir = NULL;
9200 struct die_info *child_die;
9201 bfd *abfd = objfile->obfd;
9202 CORE_ADDR baseaddr;
9203
9204 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9205
9206 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9207
9208 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9209 from finish_block. */
9210 if (lowpc == ((CORE_ADDR) -1))
9211 lowpc = highpc;
9212 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9213
9214 find_file_and_directory (die, cu, &name, &comp_dir);
9215
9216 prepare_one_comp_unit (cu, die, cu->language);
9217
9218 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9219 standardised yet. As a workaround for the language detection we fall
9220 back to the DW_AT_producer string. */
9221 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9222 cu->language = language_opencl;
9223
9224 /* Similar hack for Go. */
9225 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9226 set_cu_language (DW_LANG_Go, cu);
9227
9228 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9229
9230 /* Decode line number information if present. We do this before
9231 processing child DIEs, so that the line header table is available
9232 for DW_AT_decl_file. */
9233 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9234
9235 /* Process all dies in compilation unit. */
9236 if (die->child != NULL)
9237 {
9238 child_die = die->child;
9239 while (child_die && child_die->tag)
9240 {
9241 process_die (child_die, cu);
9242 child_die = sibling_die (child_die);
9243 }
9244 }
9245
9246 /* Decode macro information, if present. Dwarf 2 macro information
9247 refers to information in the line number info statement program
9248 header, so we can only read it if we've read the header
9249 successfully. */
9250 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9251 if (attr && cu->line_header)
9252 {
9253 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9254 complaint (&symfile_complaints,
9255 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9256
9257 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9258 }
9259 else
9260 {
9261 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9262 if (attr && cu->line_header)
9263 {
9264 unsigned int macro_offset = DW_UNSND (attr);
9265
9266 dwarf_decode_macros (cu, macro_offset, 0);
9267 }
9268 }
9269
9270 do_cleanups (back_to);
9271 }
9272
9273 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9274 Create the set of symtabs used by this TU, or if this TU is sharing
9275 symtabs with another TU and the symtabs have already been created
9276 then restore those symtabs in the line header.
9277 We don't need the pc/line-number mapping for type units. */
9278
9279 static void
9280 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9281 {
9282 struct objfile *objfile = dwarf2_per_objfile->objfile;
9283 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9284 struct type_unit_group *tu_group;
9285 int first_time;
9286 struct line_header *lh;
9287 struct attribute *attr;
9288 unsigned int i, line_offset;
9289 struct signatured_type *sig_type;
9290
9291 gdb_assert (per_cu->is_debug_types);
9292 sig_type = (struct signatured_type *) per_cu;
9293
9294 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9295
9296 /* If we're using .gdb_index (includes -readnow) then
9297 per_cu->type_unit_group may not have been set up yet. */
9298 if (sig_type->type_unit_group == NULL)
9299 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9300 tu_group = sig_type->type_unit_group;
9301
9302 /* If we've already processed this stmt_list there's no real need to
9303 do it again, we could fake it and just recreate the part we need
9304 (file name,index -> symtab mapping). If data shows this optimization
9305 is useful we can do it then. */
9306 first_time = tu_group->compunit_symtab == NULL;
9307
9308 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9309 debug info. */
9310 lh = NULL;
9311 if (attr != NULL)
9312 {
9313 line_offset = DW_UNSND (attr);
9314 lh = dwarf_decode_line_header (line_offset, cu);
9315 }
9316 if (lh == NULL)
9317 {
9318 if (first_time)
9319 dwarf2_start_symtab (cu, "", NULL, 0);
9320 else
9321 {
9322 gdb_assert (tu_group->symtabs == NULL);
9323 restart_symtab (tu_group->compunit_symtab, "", 0);
9324 }
9325 return;
9326 }
9327
9328 cu->line_header = lh;
9329 make_cleanup (free_cu_line_header, cu);
9330
9331 if (first_time)
9332 {
9333 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9334
9335 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9336 still initializing it, and our caller (a few levels up)
9337 process_full_type_unit still needs to know if this is the first
9338 time. */
9339
9340 tu_group->num_symtabs = lh->num_file_names;
9341 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9342
9343 for (i = 0; i < lh->num_file_names; ++i)
9344 {
9345 const char *dir = NULL;
9346 struct file_entry *fe = &lh->file_names[i];
9347
9348 if (fe->dir_index && lh->include_dirs != NULL)
9349 dir = lh->include_dirs[fe->dir_index - 1];
9350 dwarf2_start_subfile (fe->name, dir);
9351
9352 if (current_subfile->symtab == NULL)
9353 {
9354 /* NOTE: start_subfile will recognize when it's been passed
9355 a file it has already seen. So we can't assume there's a
9356 simple mapping from lh->file_names to subfiles, plus
9357 lh->file_names may contain dups. */
9358 current_subfile->symtab
9359 = allocate_symtab (cust, current_subfile->name);
9360 }
9361
9362 fe->symtab = current_subfile->symtab;
9363 tu_group->symtabs[i] = fe->symtab;
9364 }
9365 }
9366 else
9367 {
9368 restart_symtab (tu_group->compunit_symtab, "", 0);
9369
9370 for (i = 0; i < lh->num_file_names; ++i)
9371 {
9372 struct file_entry *fe = &lh->file_names[i];
9373
9374 fe->symtab = tu_group->symtabs[i];
9375 }
9376 }
9377
9378 /* The main symtab is allocated last. Type units don't have DW_AT_name
9379 so they don't have a "real" (so to speak) symtab anyway.
9380 There is later code that will assign the main symtab to all symbols
9381 that don't have one. We need to handle the case of a symbol with a
9382 missing symtab (DW_AT_decl_file) anyway. */
9383 }
9384
9385 /* Process DW_TAG_type_unit.
9386 For TUs we want to skip the first top level sibling if it's not the
9387 actual type being defined by this TU. In this case the first top
9388 level sibling is there to provide context only. */
9389
9390 static void
9391 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9392 {
9393 struct die_info *child_die;
9394
9395 prepare_one_comp_unit (cu, die, language_minimal);
9396
9397 /* Initialize (or reinitialize) the machinery for building symtabs.
9398 We do this before processing child DIEs, so that the line header table
9399 is available for DW_AT_decl_file. */
9400 setup_type_unit_groups (die, cu);
9401
9402 if (die->child != NULL)
9403 {
9404 child_die = die->child;
9405 while (child_die && child_die->tag)
9406 {
9407 process_die (child_die, cu);
9408 child_die = sibling_die (child_die);
9409 }
9410 }
9411 }
9412 \f
9413 /* DWO/DWP files.
9414
9415 http://gcc.gnu.org/wiki/DebugFission
9416 http://gcc.gnu.org/wiki/DebugFissionDWP
9417
9418 To simplify handling of both DWO files ("object" files with the DWARF info)
9419 and DWP files (a file with the DWOs packaged up into one file), we treat
9420 DWP files as having a collection of virtual DWO files. */
9421
9422 static hashval_t
9423 hash_dwo_file (const void *item)
9424 {
9425 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9426 hashval_t hash;
9427
9428 hash = htab_hash_string (dwo_file->dwo_name);
9429 if (dwo_file->comp_dir != NULL)
9430 hash += htab_hash_string (dwo_file->comp_dir);
9431 return hash;
9432 }
9433
9434 static int
9435 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9436 {
9437 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9438 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9439
9440 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9441 return 0;
9442 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9443 return lhs->comp_dir == rhs->comp_dir;
9444 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9445 }
9446
9447 /* Allocate a hash table for DWO files. */
9448
9449 static htab_t
9450 allocate_dwo_file_hash_table (void)
9451 {
9452 struct objfile *objfile = dwarf2_per_objfile->objfile;
9453
9454 return htab_create_alloc_ex (41,
9455 hash_dwo_file,
9456 eq_dwo_file,
9457 NULL,
9458 &objfile->objfile_obstack,
9459 hashtab_obstack_allocate,
9460 dummy_obstack_deallocate);
9461 }
9462
9463 /* Lookup DWO file DWO_NAME. */
9464
9465 static void **
9466 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9467 {
9468 struct dwo_file find_entry;
9469 void **slot;
9470
9471 if (dwarf2_per_objfile->dwo_files == NULL)
9472 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9473
9474 memset (&find_entry, 0, sizeof (find_entry));
9475 find_entry.dwo_name = dwo_name;
9476 find_entry.comp_dir = comp_dir;
9477 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9478
9479 return slot;
9480 }
9481
9482 static hashval_t
9483 hash_dwo_unit (const void *item)
9484 {
9485 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9486
9487 /* This drops the top 32 bits of the id, but is ok for a hash. */
9488 return dwo_unit->signature;
9489 }
9490
9491 static int
9492 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9493 {
9494 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9495 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9496
9497 /* The signature is assumed to be unique within the DWO file.
9498 So while object file CU dwo_id's always have the value zero,
9499 that's OK, assuming each object file DWO file has only one CU,
9500 and that's the rule for now. */
9501 return lhs->signature == rhs->signature;
9502 }
9503
9504 /* Allocate a hash table for DWO CUs,TUs.
9505 There is one of these tables for each of CUs,TUs for each DWO file. */
9506
9507 static htab_t
9508 allocate_dwo_unit_table (struct objfile *objfile)
9509 {
9510 /* Start out with a pretty small number.
9511 Generally DWO files contain only one CU and maybe some TUs. */
9512 return htab_create_alloc_ex (3,
9513 hash_dwo_unit,
9514 eq_dwo_unit,
9515 NULL,
9516 &objfile->objfile_obstack,
9517 hashtab_obstack_allocate,
9518 dummy_obstack_deallocate);
9519 }
9520
9521 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9522
9523 struct create_dwo_cu_data
9524 {
9525 struct dwo_file *dwo_file;
9526 struct dwo_unit dwo_unit;
9527 };
9528
9529 /* die_reader_func for create_dwo_cu. */
9530
9531 static void
9532 create_dwo_cu_reader (const struct die_reader_specs *reader,
9533 const gdb_byte *info_ptr,
9534 struct die_info *comp_unit_die,
9535 int has_children,
9536 void *datap)
9537 {
9538 struct dwarf2_cu *cu = reader->cu;
9539 struct objfile *objfile = dwarf2_per_objfile->objfile;
9540 sect_offset offset = cu->per_cu->offset;
9541 struct dwarf2_section_info *section = cu->per_cu->section;
9542 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9543 struct dwo_file *dwo_file = data->dwo_file;
9544 struct dwo_unit *dwo_unit = &data->dwo_unit;
9545 struct attribute *attr;
9546
9547 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9548 if (attr == NULL)
9549 {
9550 complaint (&symfile_complaints,
9551 _("Dwarf Error: debug entry at offset 0x%x is missing"
9552 " its dwo_id [in module %s]"),
9553 offset.sect_off, dwo_file->dwo_name);
9554 return;
9555 }
9556
9557 dwo_unit->dwo_file = dwo_file;
9558 dwo_unit->signature = DW_UNSND (attr);
9559 dwo_unit->section = section;
9560 dwo_unit->offset = offset;
9561 dwo_unit->length = cu->per_cu->length;
9562
9563 if (dwarf_read_debug)
9564 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9565 offset.sect_off, hex_string (dwo_unit->signature));
9566 }
9567
9568 /* Create the dwo_unit for the lone CU in DWO_FILE.
9569 Note: This function processes DWO files only, not DWP files. */
9570
9571 static struct dwo_unit *
9572 create_dwo_cu (struct dwo_file *dwo_file)
9573 {
9574 struct objfile *objfile = dwarf2_per_objfile->objfile;
9575 struct dwarf2_section_info *section = &dwo_file->sections.info;
9576 bfd *abfd;
9577 htab_t cu_htab;
9578 const gdb_byte *info_ptr, *end_ptr;
9579 struct create_dwo_cu_data create_dwo_cu_data;
9580 struct dwo_unit *dwo_unit;
9581
9582 dwarf2_read_section (objfile, section);
9583 info_ptr = section->buffer;
9584
9585 if (info_ptr == NULL)
9586 return NULL;
9587
9588 /* We can't set abfd until now because the section may be empty or
9589 not present, in which case section->asection will be NULL. */
9590 abfd = get_section_bfd_owner (section);
9591
9592 if (dwarf_read_debug)
9593 {
9594 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9595 get_section_name (section),
9596 get_section_file_name (section));
9597 }
9598
9599 create_dwo_cu_data.dwo_file = dwo_file;
9600 dwo_unit = NULL;
9601
9602 end_ptr = info_ptr + section->size;
9603 while (info_ptr < end_ptr)
9604 {
9605 struct dwarf2_per_cu_data per_cu;
9606
9607 memset (&create_dwo_cu_data.dwo_unit, 0,
9608 sizeof (create_dwo_cu_data.dwo_unit));
9609 memset (&per_cu, 0, sizeof (per_cu));
9610 per_cu.objfile = objfile;
9611 per_cu.is_debug_types = 0;
9612 per_cu.offset.sect_off = info_ptr - section->buffer;
9613 per_cu.section = section;
9614
9615 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9616 create_dwo_cu_reader,
9617 &create_dwo_cu_data);
9618
9619 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9620 {
9621 /* If we've already found one, complain. We only support one
9622 because having more than one requires hacking the dwo_name of
9623 each to match, which is highly unlikely to happen. */
9624 if (dwo_unit != NULL)
9625 {
9626 complaint (&symfile_complaints,
9627 _("Multiple CUs in DWO file %s [in module %s]"),
9628 dwo_file->dwo_name, objfile_name (objfile));
9629 break;
9630 }
9631
9632 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9633 *dwo_unit = create_dwo_cu_data.dwo_unit;
9634 }
9635
9636 info_ptr += per_cu.length;
9637 }
9638
9639 return dwo_unit;
9640 }
9641
9642 /* DWP file .debug_{cu,tu}_index section format:
9643 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9644
9645 DWP Version 1:
9646
9647 Both index sections have the same format, and serve to map a 64-bit
9648 signature to a set of section numbers. Each section begins with a header,
9649 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9650 indexes, and a pool of 32-bit section numbers. The index sections will be
9651 aligned at 8-byte boundaries in the file.
9652
9653 The index section header consists of:
9654
9655 V, 32 bit version number
9656 -, 32 bits unused
9657 N, 32 bit number of compilation units or type units in the index
9658 M, 32 bit number of slots in the hash table
9659
9660 Numbers are recorded using the byte order of the application binary.
9661
9662 The hash table begins at offset 16 in the section, and consists of an array
9663 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9664 order of the application binary). Unused slots in the hash table are 0.
9665 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9666
9667 The parallel table begins immediately after the hash table
9668 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9669 array of 32-bit indexes (using the byte order of the application binary),
9670 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9671 table contains a 32-bit index into the pool of section numbers. For unused
9672 hash table slots, the corresponding entry in the parallel table will be 0.
9673
9674 The pool of section numbers begins immediately following the hash table
9675 (at offset 16 + 12 * M from the beginning of the section). The pool of
9676 section numbers consists of an array of 32-bit words (using the byte order
9677 of the application binary). Each item in the array is indexed starting
9678 from 0. The hash table entry provides the index of the first section
9679 number in the set. Additional section numbers in the set follow, and the
9680 set is terminated by a 0 entry (section number 0 is not used in ELF).
9681
9682 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9683 section must be the first entry in the set, and the .debug_abbrev.dwo must
9684 be the second entry. Other members of the set may follow in any order.
9685
9686 ---
9687
9688 DWP Version 2:
9689
9690 DWP Version 2 combines all the .debug_info, etc. sections into one,
9691 and the entries in the index tables are now offsets into these sections.
9692 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9693 section.
9694
9695 Index Section Contents:
9696 Header
9697 Hash Table of Signatures dwp_hash_table.hash_table
9698 Parallel Table of Indices dwp_hash_table.unit_table
9699 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9700 Table of Section Sizes dwp_hash_table.v2.sizes
9701
9702 The index section header consists of:
9703
9704 V, 32 bit version number
9705 L, 32 bit number of columns in the table of section offsets
9706 N, 32 bit number of compilation units or type units in the index
9707 M, 32 bit number of slots in the hash table
9708
9709 Numbers are recorded using the byte order of the application binary.
9710
9711 The hash table has the same format as version 1.
9712 The parallel table of indices has the same format as version 1,
9713 except that the entries are origin-1 indices into the table of sections
9714 offsets and the table of section sizes.
9715
9716 The table of offsets begins immediately following the parallel table
9717 (at offset 16 + 12 * M from the beginning of the section). The table is
9718 a two-dimensional array of 32-bit words (using the byte order of the
9719 application binary), with L columns and N+1 rows, in row-major order.
9720 Each row in the array is indexed starting from 0. The first row provides
9721 a key to the remaining rows: each column in this row provides an identifier
9722 for a debug section, and the offsets in the same column of subsequent rows
9723 refer to that section. The section identifiers are:
9724
9725 DW_SECT_INFO 1 .debug_info.dwo
9726 DW_SECT_TYPES 2 .debug_types.dwo
9727 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9728 DW_SECT_LINE 4 .debug_line.dwo
9729 DW_SECT_LOC 5 .debug_loc.dwo
9730 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9731 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9732 DW_SECT_MACRO 8 .debug_macro.dwo
9733
9734 The offsets provided by the CU and TU index sections are the base offsets
9735 for the contributions made by each CU or TU to the corresponding section
9736 in the package file. Each CU and TU header contains an abbrev_offset
9737 field, used to find the abbreviations table for that CU or TU within the
9738 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9739 be interpreted as relative to the base offset given in the index section.
9740 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9741 should be interpreted as relative to the base offset for .debug_line.dwo,
9742 and offsets into other debug sections obtained from DWARF attributes should
9743 also be interpreted as relative to the corresponding base offset.
9744
9745 The table of sizes begins immediately following the table of offsets.
9746 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9747 with L columns and N rows, in row-major order. Each row in the array is
9748 indexed starting from 1 (row 0 is shared by the two tables).
9749
9750 ---
9751
9752 Hash table lookup is handled the same in version 1 and 2:
9753
9754 We assume that N and M will not exceed 2^32 - 1.
9755 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9756
9757 Given a 64-bit compilation unit signature or a type signature S, an entry
9758 in the hash table is located as follows:
9759
9760 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9761 the low-order k bits all set to 1.
9762
9763 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9764
9765 3) If the hash table entry at index H matches the signature, use that
9766 entry. If the hash table entry at index H is unused (all zeroes),
9767 terminate the search: the signature is not present in the table.
9768
9769 4) Let H = (H + H') modulo M. Repeat at Step 3.
9770
9771 Because M > N and H' and M are relatively prime, the search is guaranteed
9772 to stop at an unused slot or find the match. */
9773
9774 /* Create a hash table to map DWO IDs to their CU/TU entry in
9775 .debug_{info,types}.dwo in DWP_FILE.
9776 Returns NULL if there isn't one.
9777 Note: This function processes DWP files only, not DWO files. */
9778
9779 static struct dwp_hash_table *
9780 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9781 {
9782 struct objfile *objfile = dwarf2_per_objfile->objfile;
9783 bfd *dbfd = dwp_file->dbfd;
9784 const gdb_byte *index_ptr, *index_end;
9785 struct dwarf2_section_info *index;
9786 uint32_t version, nr_columns, nr_units, nr_slots;
9787 struct dwp_hash_table *htab;
9788
9789 if (is_debug_types)
9790 index = &dwp_file->sections.tu_index;
9791 else
9792 index = &dwp_file->sections.cu_index;
9793
9794 if (dwarf2_section_empty_p (index))
9795 return NULL;
9796 dwarf2_read_section (objfile, index);
9797
9798 index_ptr = index->buffer;
9799 index_end = index_ptr + index->size;
9800
9801 version = read_4_bytes (dbfd, index_ptr);
9802 index_ptr += 4;
9803 if (version == 2)
9804 nr_columns = read_4_bytes (dbfd, index_ptr);
9805 else
9806 nr_columns = 0;
9807 index_ptr += 4;
9808 nr_units = read_4_bytes (dbfd, index_ptr);
9809 index_ptr += 4;
9810 nr_slots = read_4_bytes (dbfd, index_ptr);
9811 index_ptr += 4;
9812
9813 if (version != 1 && version != 2)
9814 {
9815 error (_("Dwarf Error: unsupported DWP file version (%s)"
9816 " [in module %s]"),
9817 pulongest (version), dwp_file->name);
9818 }
9819 if (nr_slots != (nr_slots & -nr_slots))
9820 {
9821 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9822 " is not power of 2 [in module %s]"),
9823 pulongest (nr_slots), dwp_file->name);
9824 }
9825
9826 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9827 htab->version = version;
9828 htab->nr_columns = nr_columns;
9829 htab->nr_units = nr_units;
9830 htab->nr_slots = nr_slots;
9831 htab->hash_table = index_ptr;
9832 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9833
9834 /* Exit early if the table is empty. */
9835 if (nr_slots == 0 || nr_units == 0
9836 || (version == 2 && nr_columns == 0))
9837 {
9838 /* All must be zero. */
9839 if (nr_slots != 0 || nr_units != 0
9840 || (version == 2 && nr_columns != 0))
9841 {
9842 complaint (&symfile_complaints,
9843 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9844 " all zero [in modules %s]"),
9845 dwp_file->name);
9846 }
9847 return htab;
9848 }
9849
9850 if (version == 1)
9851 {
9852 htab->section_pool.v1.indices =
9853 htab->unit_table + sizeof (uint32_t) * nr_slots;
9854 /* It's harder to decide whether the section is too small in v1.
9855 V1 is deprecated anyway so we punt. */
9856 }
9857 else
9858 {
9859 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9860 int *ids = htab->section_pool.v2.section_ids;
9861 /* Reverse map for error checking. */
9862 int ids_seen[DW_SECT_MAX + 1];
9863 int i;
9864
9865 if (nr_columns < 2)
9866 {
9867 error (_("Dwarf Error: bad DWP hash table, too few columns"
9868 " in section table [in module %s]"),
9869 dwp_file->name);
9870 }
9871 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9872 {
9873 error (_("Dwarf Error: bad DWP hash table, too many columns"
9874 " in section table [in module %s]"),
9875 dwp_file->name);
9876 }
9877 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9878 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9879 for (i = 0; i < nr_columns; ++i)
9880 {
9881 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9882
9883 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9884 {
9885 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9886 " in section table [in module %s]"),
9887 id, dwp_file->name);
9888 }
9889 if (ids_seen[id] != -1)
9890 {
9891 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9892 " id %d in section table [in module %s]"),
9893 id, dwp_file->name);
9894 }
9895 ids_seen[id] = i;
9896 ids[i] = id;
9897 }
9898 /* Must have exactly one info or types section. */
9899 if (((ids_seen[DW_SECT_INFO] != -1)
9900 + (ids_seen[DW_SECT_TYPES] != -1))
9901 != 1)
9902 {
9903 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9904 " DWO info/types section [in module %s]"),
9905 dwp_file->name);
9906 }
9907 /* Must have an abbrev section. */
9908 if (ids_seen[DW_SECT_ABBREV] == -1)
9909 {
9910 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9911 " section [in module %s]"),
9912 dwp_file->name);
9913 }
9914 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9915 htab->section_pool.v2.sizes =
9916 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9917 * nr_units * nr_columns);
9918 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9919 * nr_units * nr_columns))
9920 > index_end)
9921 {
9922 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9923 " [in module %s]"),
9924 dwp_file->name);
9925 }
9926 }
9927
9928 return htab;
9929 }
9930
9931 /* Update SECTIONS with the data from SECTP.
9932
9933 This function is like the other "locate" section routines that are
9934 passed to bfd_map_over_sections, but in this context the sections to
9935 read comes from the DWP V1 hash table, not the full ELF section table.
9936
9937 The result is non-zero for success, or zero if an error was found. */
9938
9939 static int
9940 locate_v1_virtual_dwo_sections (asection *sectp,
9941 struct virtual_v1_dwo_sections *sections)
9942 {
9943 const struct dwop_section_names *names = &dwop_section_names;
9944
9945 if (section_is_p (sectp->name, &names->abbrev_dwo))
9946 {
9947 /* There can be only one. */
9948 if (sections->abbrev.s.section != NULL)
9949 return 0;
9950 sections->abbrev.s.section = sectp;
9951 sections->abbrev.size = bfd_get_section_size (sectp);
9952 }
9953 else if (section_is_p (sectp->name, &names->info_dwo)
9954 || section_is_p (sectp->name, &names->types_dwo))
9955 {
9956 /* There can be only one. */
9957 if (sections->info_or_types.s.section != NULL)
9958 return 0;
9959 sections->info_or_types.s.section = sectp;
9960 sections->info_or_types.size = bfd_get_section_size (sectp);
9961 }
9962 else if (section_is_p (sectp->name, &names->line_dwo))
9963 {
9964 /* There can be only one. */
9965 if (sections->line.s.section != NULL)
9966 return 0;
9967 sections->line.s.section = sectp;
9968 sections->line.size = bfd_get_section_size (sectp);
9969 }
9970 else if (section_is_p (sectp->name, &names->loc_dwo))
9971 {
9972 /* There can be only one. */
9973 if (sections->loc.s.section != NULL)
9974 return 0;
9975 sections->loc.s.section = sectp;
9976 sections->loc.size = bfd_get_section_size (sectp);
9977 }
9978 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9979 {
9980 /* There can be only one. */
9981 if (sections->macinfo.s.section != NULL)
9982 return 0;
9983 sections->macinfo.s.section = sectp;
9984 sections->macinfo.size = bfd_get_section_size (sectp);
9985 }
9986 else if (section_is_p (sectp->name, &names->macro_dwo))
9987 {
9988 /* There can be only one. */
9989 if (sections->macro.s.section != NULL)
9990 return 0;
9991 sections->macro.s.section = sectp;
9992 sections->macro.size = bfd_get_section_size (sectp);
9993 }
9994 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9995 {
9996 /* There can be only one. */
9997 if (sections->str_offsets.s.section != NULL)
9998 return 0;
9999 sections->str_offsets.s.section = sectp;
10000 sections->str_offsets.size = bfd_get_section_size (sectp);
10001 }
10002 else
10003 {
10004 /* No other kind of section is valid. */
10005 return 0;
10006 }
10007
10008 return 1;
10009 }
10010
10011 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10012 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10013 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10014 This is for DWP version 1 files. */
10015
10016 static struct dwo_unit *
10017 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10018 uint32_t unit_index,
10019 const char *comp_dir,
10020 ULONGEST signature, int is_debug_types)
10021 {
10022 struct objfile *objfile = dwarf2_per_objfile->objfile;
10023 const struct dwp_hash_table *dwp_htab =
10024 is_debug_types ? dwp_file->tus : dwp_file->cus;
10025 bfd *dbfd = dwp_file->dbfd;
10026 const char *kind = is_debug_types ? "TU" : "CU";
10027 struct dwo_file *dwo_file;
10028 struct dwo_unit *dwo_unit;
10029 struct virtual_v1_dwo_sections sections;
10030 void **dwo_file_slot;
10031 char *virtual_dwo_name;
10032 struct dwarf2_section_info *cutu;
10033 struct cleanup *cleanups;
10034 int i;
10035
10036 gdb_assert (dwp_file->version == 1);
10037
10038 if (dwarf_read_debug)
10039 {
10040 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10041 kind,
10042 pulongest (unit_index), hex_string (signature),
10043 dwp_file->name);
10044 }
10045
10046 /* Fetch the sections of this DWO unit.
10047 Put a limit on the number of sections we look for so that bad data
10048 doesn't cause us to loop forever. */
10049
10050 #define MAX_NR_V1_DWO_SECTIONS \
10051 (1 /* .debug_info or .debug_types */ \
10052 + 1 /* .debug_abbrev */ \
10053 + 1 /* .debug_line */ \
10054 + 1 /* .debug_loc */ \
10055 + 1 /* .debug_str_offsets */ \
10056 + 1 /* .debug_macro or .debug_macinfo */ \
10057 + 1 /* trailing zero */)
10058
10059 memset (&sections, 0, sizeof (sections));
10060 cleanups = make_cleanup (null_cleanup, 0);
10061
10062 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10063 {
10064 asection *sectp;
10065 uint32_t section_nr =
10066 read_4_bytes (dbfd,
10067 dwp_htab->section_pool.v1.indices
10068 + (unit_index + i) * sizeof (uint32_t));
10069
10070 if (section_nr == 0)
10071 break;
10072 if (section_nr >= dwp_file->num_sections)
10073 {
10074 error (_("Dwarf Error: bad DWP hash table, section number too large"
10075 " [in module %s]"),
10076 dwp_file->name);
10077 }
10078
10079 sectp = dwp_file->elf_sections[section_nr];
10080 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10081 {
10082 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10083 " [in module %s]"),
10084 dwp_file->name);
10085 }
10086 }
10087
10088 if (i < 2
10089 || dwarf2_section_empty_p (&sections.info_or_types)
10090 || dwarf2_section_empty_p (&sections.abbrev))
10091 {
10092 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10093 " [in module %s]"),
10094 dwp_file->name);
10095 }
10096 if (i == MAX_NR_V1_DWO_SECTIONS)
10097 {
10098 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10099 " [in module %s]"),
10100 dwp_file->name);
10101 }
10102
10103 /* It's easier for the rest of the code if we fake a struct dwo_file and
10104 have dwo_unit "live" in that. At least for now.
10105
10106 The DWP file can be made up of a random collection of CUs and TUs.
10107 However, for each CU + set of TUs that came from the same original DWO
10108 file, we can combine them back into a virtual DWO file to save space
10109 (fewer struct dwo_file objects to allocate). Remember that for really
10110 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10111
10112 virtual_dwo_name =
10113 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10114 get_section_id (&sections.abbrev),
10115 get_section_id (&sections.line),
10116 get_section_id (&sections.loc),
10117 get_section_id (&sections.str_offsets));
10118 make_cleanup (xfree, virtual_dwo_name);
10119 /* Can we use an existing virtual DWO file? */
10120 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10121 /* Create one if necessary. */
10122 if (*dwo_file_slot == NULL)
10123 {
10124 if (dwarf_read_debug)
10125 {
10126 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10127 virtual_dwo_name);
10128 }
10129 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10130 dwo_file->dwo_name
10131 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10132 virtual_dwo_name,
10133 strlen (virtual_dwo_name));
10134 dwo_file->comp_dir = comp_dir;
10135 dwo_file->sections.abbrev = sections.abbrev;
10136 dwo_file->sections.line = sections.line;
10137 dwo_file->sections.loc = sections.loc;
10138 dwo_file->sections.macinfo = sections.macinfo;
10139 dwo_file->sections.macro = sections.macro;
10140 dwo_file->sections.str_offsets = sections.str_offsets;
10141 /* The "str" section is global to the entire DWP file. */
10142 dwo_file->sections.str = dwp_file->sections.str;
10143 /* The info or types section is assigned below to dwo_unit,
10144 there's no need to record it in dwo_file.
10145 Also, we can't simply record type sections in dwo_file because
10146 we record a pointer into the vector in dwo_unit. As we collect more
10147 types we'll grow the vector and eventually have to reallocate space
10148 for it, invalidating all copies of pointers into the previous
10149 contents. */
10150 *dwo_file_slot = dwo_file;
10151 }
10152 else
10153 {
10154 if (dwarf_read_debug)
10155 {
10156 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10157 virtual_dwo_name);
10158 }
10159 dwo_file = (struct dwo_file *) *dwo_file_slot;
10160 }
10161 do_cleanups (cleanups);
10162
10163 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10164 dwo_unit->dwo_file = dwo_file;
10165 dwo_unit->signature = signature;
10166 dwo_unit->section =
10167 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10168 *dwo_unit->section = sections.info_or_types;
10169 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10170
10171 return dwo_unit;
10172 }
10173
10174 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10175 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10176 piece within that section used by a TU/CU, return a virtual section
10177 of just that piece. */
10178
10179 static struct dwarf2_section_info
10180 create_dwp_v2_section (struct dwarf2_section_info *section,
10181 bfd_size_type offset, bfd_size_type size)
10182 {
10183 struct dwarf2_section_info result;
10184 asection *sectp;
10185
10186 gdb_assert (section != NULL);
10187 gdb_assert (!section->is_virtual);
10188
10189 memset (&result, 0, sizeof (result));
10190 result.s.containing_section = section;
10191 result.is_virtual = 1;
10192
10193 if (size == 0)
10194 return result;
10195
10196 sectp = get_section_bfd_section (section);
10197
10198 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10199 bounds of the real section. This is a pretty-rare event, so just
10200 flag an error (easier) instead of a warning and trying to cope. */
10201 if (sectp == NULL
10202 || offset + size > bfd_get_section_size (sectp))
10203 {
10204 bfd *abfd = sectp->owner;
10205
10206 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10207 " in section %s [in module %s]"),
10208 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10209 objfile_name (dwarf2_per_objfile->objfile));
10210 }
10211
10212 result.virtual_offset = offset;
10213 result.size = size;
10214 return result;
10215 }
10216
10217 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10218 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10219 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10220 This is for DWP version 2 files. */
10221
10222 static struct dwo_unit *
10223 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10224 uint32_t unit_index,
10225 const char *comp_dir,
10226 ULONGEST signature, int is_debug_types)
10227 {
10228 struct objfile *objfile = dwarf2_per_objfile->objfile;
10229 const struct dwp_hash_table *dwp_htab =
10230 is_debug_types ? dwp_file->tus : dwp_file->cus;
10231 bfd *dbfd = dwp_file->dbfd;
10232 const char *kind = is_debug_types ? "TU" : "CU";
10233 struct dwo_file *dwo_file;
10234 struct dwo_unit *dwo_unit;
10235 struct virtual_v2_dwo_sections sections;
10236 void **dwo_file_slot;
10237 char *virtual_dwo_name;
10238 struct dwarf2_section_info *cutu;
10239 struct cleanup *cleanups;
10240 int i;
10241
10242 gdb_assert (dwp_file->version == 2);
10243
10244 if (dwarf_read_debug)
10245 {
10246 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10247 kind,
10248 pulongest (unit_index), hex_string (signature),
10249 dwp_file->name);
10250 }
10251
10252 /* Fetch the section offsets of this DWO unit. */
10253
10254 memset (&sections, 0, sizeof (sections));
10255 cleanups = make_cleanup (null_cleanup, 0);
10256
10257 for (i = 0; i < dwp_htab->nr_columns; ++i)
10258 {
10259 uint32_t offset = read_4_bytes (dbfd,
10260 dwp_htab->section_pool.v2.offsets
10261 + (((unit_index - 1) * dwp_htab->nr_columns
10262 + i)
10263 * sizeof (uint32_t)));
10264 uint32_t size = read_4_bytes (dbfd,
10265 dwp_htab->section_pool.v2.sizes
10266 + (((unit_index - 1) * dwp_htab->nr_columns
10267 + i)
10268 * sizeof (uint32_t)));
10269
10270 switch (dwp_htab->section_pool.v2.section_ids[i])
10271 {
10272 case DW_SECT_INFO:
10273 case DW_SECT_TYPES:
10274 sections.info_or_types_offset = offset;
10275 sections.info_or_types_size = size;
10276 break;
10277 case DW_SECT_ABBREV:
10278 sections.abbrev_offset = offset;
10279 sections.abbrev_size = size;
10280 break;
10281 case DW_SECT_LINE:
10282 sections.line_offset = offset;
10283 sections.line_size = size;
10284 break;
10285 case DW_SECT_LOC:
10286 sections.loc_offset = offset;
10287 sections.loc_size = size;
10288 break;
10289 case DW_SECT_STR_OFFSETS:
10290 sections.str_offsets_offset = offset;
10291 sections.str_offsets_size = size;
10292 break;
10293 case DW_SECT_MACINFO:
10294 sections.macinfo_offset = offset;
10295 sections.macinfo_size = size;
10296 break;
10297 case DW_SECT_MACRO:
10298 sections.macro_offset = offset;
10299 sections.macro_size = size;
10300 break;
10301 }
10302 }
10303
10304 /* It's easier for the rest of the code if we fake a struct dwo_file and
10305 have dwo_unit "live" in that. At least for now.
10306
10307 The DWP file can be made up of a random collection of CUs and TUs.
10308 However, for each CU + set of TUs that came from the same original DWO
10309 file, we can combine them back into a virtual DWO file to save space
10310 (fewer struct dwo_file objects to allocate). Remember that for really
10311 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10312
10313 virtual_dwo_name =
10314 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10315 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10316 (long) (sections.line_size ? sections.line_offset : 0),
10317 (long) (sections.loc_size ? sections.loc_offset : 0),
10318 (long) (sections.str_offsets_size
10319 ? sections.str_offsets_offset : 0));
10320 make_cleanup (xfree, virtual_dwo_name);
10321 /* Can we use an existing virtual DWO file? */
10322 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10323 /* Create one if necessary. */
10324 if (*dwo_file_slot == NULL)
10325 {
10326 if (dwarf_read_debug)
10327 {
10328 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10329 virtual_dwo_name);
10330 }
10331 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10332 dwo_file->dwo_name
10333 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10334 virtual_dwo_name,
10335 strlen (virtual_dwo_name));
10336 dwo_file->comp_dir = comp_dir;
10337 dwo_file->sections.abbrev =
10338 create_dwp_v2_section (&dwp_file->sections.abbrev,
10339 sections.abbrev_offset, sections.abbrev_size);
10340 dwo_file->sections.line =
10341 create_dwp_v2_section (&dwp_file->sections.line,
10342 sections.line_offset, sections.line_size);
10343 dwo_file->sections.loc =
10344 create_dwp_v2_section (&dwp_file->sections.loc,
10345 sections.loc_offset, sections.loc_size);
10346 dwo_file->sections.macinfo =
10347 create_dwp_v2_section (&dwp_file->sections.macinfo,
10348 sections.macinfo_offset, sections.macinfo_size);
10349 dwo_file->sections.macro =
10350 create_dwp_v2_section (&dwp_file->sections.macro,
10351 sections.macro_offset, sections.macro_size);
10352 dwo_file->sections.str_offsets =
10353 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10354 sections.str_offsets_offset,
10355 sections.str_offsets_size);
10356 /* The "str" section is global to the entire DWP file. */
10357 dwo_file->sections.str = dwp_file->sections.str;
10358 /* The info or types section is assigned below to dwo_unit,
10359 there's no need to record it in dwo_file.
10360 Also, we can't simply record type sections in dwo_file because
10361 we record a pointer into the vector in dwo_unit. As we collect more
10362 types we'll grow the vector and eventually have to reallocate space
10363 for it, invalidating all copies of pointers into the previous
10364 contents. */
10365 *dwo_file_slot = dwo_file;
10366 }
10367 else
10368 {
10369 if (dwarf_read_debug)
10370 {
10371 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10372 virtual_dwo_name);
10373 }
10374 dwo_file = (struct dwo_file *) *dwo_file_slot;
10375 }
10376 do_cleanups (cleanups);
10377
10378 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10379 dwo_unit->dwo_file = dwo_file;
10380 dwo_unit->signature = signature;
10381 dwo_unit->section =
10382 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10383 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10384 ? &dwp_file->sections.types
10385 : &dwp_file->sections.info,
10386 sections.info_or_types_offset,
10387 sections.info_or_types_size);
10388 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10389
10390 return dwo_unit;
10391 }
10392
10393 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10394 Returns NULL if the signature isn't found. */
10395
10396 static struct dwo_unit *
10397 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10398 ULONGEST signature, int is_debug_types)
10399 {
10400 const struct dwp_hash_table *dwp_htab =
10401 is_debug_types ? dwp_file->tus : dwp_file->cus;
10402 bfd *dbfd = dwp_file->dbfd;
10403 uint32_t mask = dwp_htab->nr_slots - 1;
10404 uint32_t hash = signature & mask;
10405 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10406 unsigned int i;
10407 void **slot;
10408 struct dwo_unit find_dwo_cu, *dwo_cu;
10409
10410 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10411 find_dwo_cu.signature = signature;
10412 slot = htab_find_slot (is_debug_types
10413 ? dwp_file->loaded_tus
10414 : dwp_file->loaded_cus,
10415 &find_dwo_cu, INSERT);
10416
10417 if (*slot != NULL)
10418 return (struct dwo_unit *) *slot;
10419
10420 /* Use a for loop so that we don't loop forever on bad debug info. */
10421 for (i = 0; i < dwp_htab->nr_slots; ++i)
10422 {
10423 ULONGEST signature_in_table;
10424
10425 signature_in_table =
10426 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10427 if (signature_in_table == signature)
10428 {
10429 uint32_t unit_index =
10430 read_4_bytes (dbfd,
10431 dwp_htab->unit_table + hash * sizeof (uint32_t));
10432
10433 if (dwp_file->version == 1)
10434 {
10435 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10436 comp_dir, signature,
10437 is_debug_types);
10438 }
10439 else
10440 {
10441 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10442 comp_dir, signature,
10443 is_debug_types);
10444 }
10445 return (struct dwo_unit *) *slot;
10446 }
10447 if (signature_in_table == 0)
10448 return NULL;
10449 hash = (hash + hash2) & mask;
10450 }
10451
10452 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10453 " [in module %s]"),
10454 dwp_file->name);
10455 }
10456
10457 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10458 Open the file specified by FILE_NAME and hand it off to BFD for
10459 preliminary analysis. Return a newly initialized bfd *, which
10460 includes a canonicalized copy of FILE_NAME.
10461 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10462 SEARCH_CWD is true if the current directory is to be searched.
10463 It will be searched before debug-file-directory.
10464 If successful, the file is added to the bfd include table of the
10465 objfile's bfd (see gdb_bfd_record_inclusion).
10466 If unable to find/open the file, return NULL.
10467 NOTE: This function is derived from symfile_bfd_open. */
10468
10469 static bfd *
10470 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10471 {
10472 bfd *sym_bfd;
10473 int desc, flags;
10474 char *absolute_name;
10475 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10476 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10477 to debug_file_directory. */
10478 char *search_path;
10479 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10480
10481 if (search_cwd)
10482 {
10483 if (*debug_file_directory != '\0')
10484 search_path = concat (".", dirname_separator_string,
10485 debug_file_directory, (char *) NULL);
10486 else
10487 search_path = xstrdup (".");
10488 }
10489 else
10490 search_path = xstrdup (debug_file_directory);
10491
10492 flags = OPF_RETURN_REALPATH;
10493 if (is_dwp)
10494 flags |= OPF_SEARCH_IN_PATH;
10495 desc = openp (search_path, flags, file_name,
10496 O_RDONLY | O_BINARY, &absolute_name);
10497 xfree (search_path);
10498 if (desc < 0)
10499 return NULL;
10500
10501 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10502 xfree (absolute_name);
10503 if (sym_bfd == NULL)
10504 return NULL;
10505 bfd_set_cacheable (sym_bfd, 1);
10506
10507 if (!bfd_check_format (sym_bfd, bfd_object))
10508 {
10509 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10510 return NULL;
10511 }
10512
10513 /* Success. Record the bfd as having been included by the objfile's bfd.
10514 This is important because things like demangled_names_hash lives in the
10515 objfile's per_bfd space and may have references to things like symbol
10516 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10517 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10518
10519 return sym_bfd;
10520 }
10521
10522 /* Try to open DWO file FILE_NAME.
10523 COMP_DIR is the DW_AT_comp_dir attribute.
10524 The result is the bfd handle of the file.
10525 If there is a problem finding or opening the file, return NULL.
10526 Upon success, the canonicalized path of the file is stored in the bfd,
10527 same as symfile_bfd_open. */
10528
10529 static bfd *
10530 open_dwo_file (const char *file_name, const char *comp_dir)
10531 {
10532 bfd *abfd;
10533
10534 if (IS_ABSOLUTE_PATH (file_name))
10535 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10536
10537 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10538
10539 if (comp_dir != NULL)
10540 {
10541 char *path_to_try = concat (comp_dir, SLASH_STRING,
10542 file_name, (char *) NULL);
10543
10544 /* NOTE: If comp_dir is a relative path, this will also try the
10545 search path, which seems useful. */
10546 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10547 xfree (path_to_try);
10548 if (abfd != NULL)
10549 return abfd;
10550 }
10551
10552 /* That didn't work, try debug-file-directory, which, despite its name,
10553 is a list of paths. */
10554
10555 if (*debug_file_directory == '\0')
10556 return NULL;
10557
10558 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10559 }
10560
10561 /* This function is mapped across the sections and remembers the offset and
10562 size of each of the DWO debugging sections we are interested in. */
10563
10564 static void
10565 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10566 {
10567 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10568 const struct dwop_section_names *names = &dwop_section_names;
10569
10570 if (section_is_p (sectp->name, &names->abbrev_dwo))
10571 {
10572 dwo_sections->abbrev.s.section = sectp;
10573 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10574 }
10575 else if (section_is_p (sectp->name, &names->info_dwo))
10576 {
10577 dwo_sections->info.s.section = sectp;
10578 dwo_sections->info.size = bfd_get_section_size (sectp);
10579 }
10580 else if (section_is_p (sectp->name, &names->line_dwo))
10581 {
10582 dwo_sections->line.s.section = sectp;
10583 dwo_sections->line.size = bfd_get_section_size (sectp);
10584 }
10585 else if (section_is_p (sectp->name, &names->loc_dwo))
10586 {
10587 dwo_sections->loc.s.section = sectp;
10588 dwo_sections->loc.size = bfd_get_section_size (sectp);
10589 }
10590 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10591 {
10592 dwo_sections->macinfo.s.section = sectp;
10593 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10594 }
10595 else if (section_is_p (sectp->name, &names->macro_dwo))
10596 {
10597 dwo_sections->macro.s.section = sectp;
10598 dwo_sections->macro.size = bfd_get_section_size (sectp);
10599 }
10600 else if (section_is_p (sectp->name, &names->str_dwo))
10601 {
10602 dwo_sections->str.s.section = sectp;
10603 dwo_sections->str.size = bfd_get_section_size (sectp);
10604 }
10605 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10606 {
10607 dwo_sections->str_offsets.s.section = sectp;
10608 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10609 }
10610 else if (section_is_p (sectp->name, &names->types_dwo))
10611 {
10612 struct dwarf2_section_info type_section;
10613
10614 memset (&type_section, 0, sizeof (type_section));
10615 type_section.s.section = sectp;
10616 type_section.size = bfd_get_section_size (sectp);
10617 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10618 &type_section);
10619 }
10620 }
10621
10622 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10623 by PER_CU. This is for the non-DWP case.
10624 The result is NULL if DWO_NAME can't be found. */
10625
10626 static struct dwo_file *
10627 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10628 const char *dwo_name, const char *comp_dir)
10629 {
10630 struct objfile *objfile = dwarf2_per_objfile->objfile;
10631 struct dwo_file *dwo_file;
10632 bfd *dbfd;
10633 struct cleanup *cleanups;
10634
10635 dbfd = open_dwo_file (dwo_name, comp_dir);
10636 if (dbfd == NULL)
10637 {
10638 if (dwarf_read_debug)
10639 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10640 return NULL;
10641 }
10642 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10643 dwo_file->dwo_name = dwo_name;
10644 dwo_file->comp_dir = comp_dir;
10645 dwo_file->dbfd = dbfd;
10646
10647 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10648
10649 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10650
10651 dwo_file->cu = create_dwo_cu (dwo_file);
10652
10653 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10654 dwo_file->sections.types);
10655
10656 discard_cleanups (cleanups);
10657
10658 if (dwarf_read_debug)
10659 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10660
10661 return dwo_file;
10662 }
10663
10664 /* This function is mapped across the sections and remembers the offset and
10665 size of each of the DWP debugging sections common to version 1 and 2 that
10666 we are interested in. */
10667
10668 static void
10669 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10670 void *dwp_file_ptr)
10671 {
10672 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10673 const struct dwop_section_names *names = &dwop_section_names;
10674 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10675
10676 /* Record the ELF section number for later lookup: this is what the
10677 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10678 gdb_assert (elf_section_nr < dwp_file->num_sections);
10679 dwp_file->elf_sections[elf_section_nr] = sectp;
10680
10681 /* Look for specific sections that we need. */
10682 if (section_is_p (sectp->name, &names->str_dwo))
10683 {
10684 dwp_file->sections.str.s.section = sectp;
10685 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10686 }
10687 else if (section_is_p (sectp->name, &names->cu_index))
10688 {
10689 dwp_file->sections.cu_index.s.section = sectp;
10690 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10691 }
10692 else if (section_is_p (sectp->name, &names->tu_index))
10693 {
10694 dwp_file->sections.tu_index.s.section = sectp;
10695 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10696 }
10697 }
10698
10699 /* This function is mapped across the sections and remembers the offset and
10700 size of each of the DWP version 2 debugging sections that we are interested
10701 in. This is split into a separate function because we don't know if we
10702 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10703
10704 static void
10705 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10706 {
10707 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10708 const struct dwop_section_names *names = &dwop_section_names;
10709 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10710
10711 /* Record the ELF section number for later lookup: this is what the
10712 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10713 gdb_assert (elf_section_nr < dwp_file->num_sections);
10714 dwp_file->elf_sections[elf_section_nr] = sectp;
10715
10716 /* Look for specific sections that we need. */
10717 if (section_is_p (sectp->name, &names->abbrev_dwo))
10718 {
10719 dwp_file->sections.abbrev.s.section = sectp;
10720 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10721 }
10722 else if (section_is_p (sectp->name, &names->info_dwo))
10723 {
10724 dwp_file->sections.info.s.section = sectp;
10725 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10726 }
10727 else if (section_is_p (sectp->name, &names->line_dwo))
10728 {
10729 dwp_file->sections.line.s.section = sectp;
10730 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10731 }
10732 else if (section_is_p (sectp->name, &names->loc_dwo))
10733 {
10734 dwp_file->sections.loc.s.section = sectp;
10735 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10736 }
10737 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10738 {
10739 dwp_file->sections.macinfo.s.section = sectp;
10740 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10741 }
10742 else if (section_is_p (sectp->name, &names->macro_dwo))
10743 {
10744 dwp_file->sections.macro.s.section = sectp;
10745 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10746 }
10747 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10748 {
10749 dwp_file->sections.str_offsets.s.section = sectp;
10750 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10751 }
10752 else if (section_is_p (sectp->name, &names->types_dwo))
10753 {
10754 dwp_file->sections.types.s.section = sectp;
10755 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10756 }
10757 }
10758
10759 /* Hash function for dwp_file loaded CUs/TUs. */
10760
10761 static hashval_t
10762 hash_dwp_loaded_cutus (const void *item)
10763 {
10764 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10765
10766 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10767 return dwo_unit->signature;
10768 }
10769
10770 /* Equality function for dwp_file loaded CUs/TUs. */
10771
10772 static int
10773 eq_dwp_loaded_cutus (const void *a, const void *b)
10774 {
10775 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10776 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10777
10778 return dua->signature == dub->signature;
10779 }
10780
10781 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10782
10783 static htab_t
10784 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10785 {
10786 return htab_create_alloc_ex (3,
10787 hash_dwp_loaded_cutus,
10788 eq_dwp_loaded_cutus,
10789 NULL,
10790 &objfile->objfile_obstack,
10791 hashtab_obstack_allocate,
10792 dummy_obstack_deallocate);
10793 }
10794
10795 /* Try to open DWP file FILE_NAME.
10796 The result is the bfd handle of the file.
10797 If there is a problem finding or opening the file, return NULL.
10798 Upon success, the canonicalized path of the file is stored in the bfd,
10799 same as symfile_bfd_open. */
10800
10801 static bfd *
10802 open_dwp_file (const char *file_name)
10803 {
10804 bfd *abfd;
10805
10806 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10807 if (abfd != NULL)
10808 return abfd;
10809
10810 /* Work around upstream bug 15652.
10811 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10812 [Whether that's a "bug" is debatable, but it is getting in our way.]
10813 We have no real idea where the dwp file is, because gdb's realpath-ing
10814 of the executable's path may have discarded the needed info.
10815 [IWBN if the dwp file name was recorded in the executable, akin to
10816 .gnu_debuglink, but that doesn't exist yet.]
10817 Strip the directory from FILE_NAME and search again. */
10818 if (*debug_file_directory != '\0')
10819 {
10820 /* Don't implicitly search the current directory here.
10821 If the user wants to search "." to handle this case,
10822 it must be added to debug-file-directory. */
10823 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10824 0 /*search_cwd*/);
10825 }
10826
10827 return NULL;
10828 }
10829
10830 /* Initialize the use of the DWP file for the current objfile.
10831 By convention the name of the DWP file is ${objfile}.dwp.
10832 The result is NULL if it can't be found. */
10833
10834 static struct dwp_file *
10835 open_and_init_dwp_file (void)
10836 {
10837 struct objfile *objfile = dwarf2_per_objfile->objfile;
10838 struct dwp_file *dwp_file;
10839 char *dwp_name;
10840 bfd *dbfd;
10841 struct cleanup *cleanups;
10842
10843 /* Try to find first .dwp for the binary file before any symbolic links
10844 resolving. */
10845 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10846 cleanups = make_cleanup (xfree, dwp_name);
10847
10848 dbfd = open_dwp_file (dwp_name);
10849 if (dbfd == NULL
10850 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10851 {
10852 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10853 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10854 make_cleanup (xfree, dwp_name);
10855 dbfd = open_dwp_file (dwp_name);
10856 }
10857
10858 if (dbfd == NULL)
10859 {
10860 if (dwarf_read_debug)
10861 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10862 do_cleanups (cleanups);
10863 return NULL;
10864 }
10865 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10866 dwp_file->name = bfd_get_filename (dbfd);
10867 dwp_file->dbfd = dbfd;
10868 do_cleanups (cleanups);
10869
10870 /* +1: section 0 is unused */
10871 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10872 dwp_file->elf_sections =
10873 OBSTACK_CALLOC (&objfile->objfile_obstack,
10874 dwp_file->num_sections, asection *);
10875
10876 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10877
10878 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10879
10880 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10881
10882 /* The DWP file version is stored in the hash table. Oh well. */
10883 if (dwp_file->cus->version != dwp_file->tus->version)
10884 {
10885 /* Technically speaking, we should try to limp along, but this is
10886 pretty bizarre. We use pulongest here because that's the established
10887 portability solution (e.g, we cannot use %u for uint32_t). */
10888 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10889 " TU version %s [in DWP file %s]"),
10890 pulongest (dwp_file->cus->version),
10891 pulongest (dwp_file->tus->version), dwp_name);
10892 }
10893 dwp_file->version = dwp_file->cus->version;
10894
10895 if (dwp_file->version == 2)
10896 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10897
10898 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10899 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10900
10901 if (dwarf_read_debug)
10902 {
10903 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10904 fprintf_unfiltered (gdb_stdlog,
10905 " %s CUs, %s TUs\n",
10906 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10907 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10908 }
10909
10910 return dwp_file;
10911 }
10912
10913 /* Wrapper around open_and_init_dwp_file, only open it once. */
10914
10915 static struct dwp_file *
10916 get_dwp_file (void)
10917 {
10918 if (! dwarf2_per_objfile->dwp_checked)
10919 {
10920 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10921 dwarf2_per_objfile->dwp_checked = 1;
10922 }
10923 return dwarf2_per_objfile->dwp_file;
10924 }
10925
10926 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10927 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10928 or in the DWP file for the objfile, referenced by THIS_UNIT.
10929 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10930 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10931
10932 This is called, for example, when wanting to read a variable with a
10933 complex location. Therefore we don't want to do file i/o for every call.
10934 Therefore we don't want to look for a DWO file on every call.
10935 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10936 then we check if we've already seen DWO_NAME, and only THEN do we check
10937 for a DWO file.
10938
10939 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10940 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10941
10942 static struct dwo_unit *
10943 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10944 const char *dwo_name, const char *comp_dir,
10945 ULONGEST signature, int is_debug_types)
10946 {
10947 struct objfile *objfile = dwarf2_per_objfile->objfile;
10948 const char *kind = is_debug_types ? "TU" : "CU";
10949 void **dwo_file_slot;
10950 struct dwo_file *dwo_file;
10951 struct dwp_file *dwp_file;
10952
10953 /* First see if there's a DWP file.
10954 If we have a DWP file but didn't find the DWO inside it, don't
10955 look for the original DWO file. It makes gdb behave differently
10956 depending on whether one is debugging in the build tree. */
10957
10958 dwp_file = get_dwp_file ();
10959 if (dwp_file != NULL)
10960 {
10961 const struct dwp_hash_table *dwp_htab =
10962 is_debug_types ? dwp_file->tus : dwp_file->cus;
10963
10964 if (dwp_htab != NULL)
10965 {
10966 struct dwo_unit *dwo_cutu =
10967 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10968 signature, is_debug_types);
10969
10970 if (dwo_cutu != NULL)
10971 {
10972 if (dwarf_read_debug)
10973 {
10974 fprintf_unfiltered (gdb_stdlog,
10975 "Virtual DWO %s %s found: @%s\n",
10976 kind, hex_string (signature),
10977 host_address_to_string (dwo_cutu));
10978 }
10979 return dwo_cutu;
10980 }
10981 }
10982 }
10983 else
10984 {
10985 /* No DWP file, look for the DWO file. */
10986
10987 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10988 if (*dwo_file_slot == NULL)
10989 {
10990 /* Read in the file and build a table of the CUs/TUs it contains. */
10991 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10992 }
10993 /* NOTE: This will be NULL if unable to open the file. */
10994 dwo_file = (struct dwo_file *) *dwo_file_slot;
10995
10996 if (dwo_file != NULL)
10997 {
10998 struct dwo_unit *dwo_cutu = NULL;
10999
11000 if (is_debug_types && dwo_file->tus)
11001 {
11002 struct dwo_unit find_dwo_cutu;
11003
11004 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11005 find_dwo_cutu.signature = signature;
11006 dwo_cutu
11007 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11008 }
11009 else if (!is_debug_types && dwo_file->cu)
11010 {
11011 if (signature == dwo_file->cu->signature)
11012 dwo_cutu = dwo_file->cu;
11013 }
11014
11015 if (dwo_cutu != NULL)
11016 {
11017 if (dwarf_read_debug)
11018 {
11019 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11020 kind, dwo_name, hex_string (signature),
11021 host_address_to_string (dwo_cutu));
11022 }
11023 return dwo_cutu;
11024 }
11025 }
11026 }
11027
11028 /* We didn't find it. This could mean a dwo_id mismatch, or
11029 someone deleted the DWO/DWP file, or the search path isn't set up
11030 correctly to find the file. */
11031
11032 if (dwarf_read_debug)
11033 {
11034 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11035 kind, dwo_name, hex_string (signature));
11036 }
11037
11038 /* This is a warning and not a complaint because it can be caused by
11039 pilot error (e.g., user accidentally deleting the DWO). */
11040 {
11041 /* Print the name of the DWP file if we looked there, helps the user
11042 better diagnose the problem. */
11043 char *dwp_text = NULL;
11044 struct cleanup *cleanups;
11045
11046 if (dwp_file != NULL)
11047 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11048 cleanups = make_cleanup (xfree, dwp_text);
11049
11050 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11051 " [in module %s]"),
11052 kind, dwo_name, hex_string (signature),
11053 dwp_text != NULL ? dwp_text : "",
11054 this_unit->is_debug_types ? "TU" : "CU",
11055 this_unit->offset.sect_off, objfile_name (objfile));
11056
11057 do_cleanups (cleanups);
11058 }
11059 return NULL;
11060 }
11061
11062 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11063 See lookup_dwo_cutu_unit for details. */
11064
11065 static struct dwo_unit *
11066 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11067 const char *dwo_name, const char *comp_dir,
11068 ULONGEST signature)
11069 {
11070 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11071 }
11072
11073 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11074 See lookup_dwo_cutu_unit for details. */
11075
11076 static struct dwo_unit *
11077 lookup_dwo_type_unit (struct signatured_type *this_tu,
11078 const char *dwo_name, const char *comp_dir)
11079 {
11080 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11081 }
11082
11083 /* Traversal function for queue_and_load_all_dwo_tus. */
11084
11085 static int
11086 queue_and_load_dwo_tu (void **slot, void *info)
11087 {
11088 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11089 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11090 ULONGEST signature = dwo_unit->signature;
11091 struct signatured_type *sig_type =
11092 lookup_dwo_signatured_type (per_cu->cu, signature);
11093
11094 if (sig_type != NULL)
11095 {
11096 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11097
11098 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11099 a real dependency of PER_CU on SIG_TYPE. That is detected later
11100 while processing PER_CU. */
11101 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11102 load_full_type_unit (sig_cu);
11103 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11104 }
11105
11106 return 1;
11107 }
11108
11109 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11110 The DWO may have the only definition of the type, though it may not be
11111 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11112 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11113
11114 static void
11115 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11116 {
11117 struct dwo_unit *dwo_unit;
11118 struct dwo_file *dwo_file;
11119
11120 gdb_assert (!per_cu->is_debug_types);
11121 gdb_assert (get_dwp_file () == NULL);
11122 gdb_assert (per_cu->cu != NULL);
11123
11124 dwo_unit = per_cu->cu->dwo_unit;
11125 gdb_assert (dwo_unit != NULL);
11126
11127 dwo_file = dwo_unit->dwo_file;
11128 if (dwo_file->tus != NULL)
11129 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11130 }
11131
11132 /* Free all resources associated with DWO_FILE.
11133 Close the DWO file and munmap the sections.
11134 All memory should be on the objfile obstack. */
11135
11136 static void
11137 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11138 {
11139 int ix;
11140 struct dwarf2_section_info *section;
11141
11142 /* Note: dbfd is NULL for virtual DWO files. */
11143 gdb_bfd_unref (dwo_file->dbfd);
11144
11145 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11146 }
11147
11148 /* Wrapper for free_dwo_file for use in cleanups. */
11149
11150 static void
11151 free_dwo_file_cleanup (void *arg)
11152 {
11153 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11154 struct objfile *objfile = dwarf2_per_objfile->objfile;
11155
11156 free_dwo_file (dwo_file, objfile);
11157 }
11158
11159 /* Traversal function for free_dwo_files. */
11160
11161 static int
11162 free_dwo_file_from_slot (void **slot, void *info)
11163 {
11164 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11165 struct objfile *objfile = (struct objfile *) info;
11166
11167 free_dwo_file (dwo_file, objfile);
11168
11169 return 1;
11170 }
11171
11172 /* Free all resources associated with DWO_FILES. */
11173
11174 static void
11175 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11176 {
11177 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11178 }
11179 \f
11180 /* Read in various DIEs. */
11181
11182 /* qsort helper for inherit_abstract_dies. */
11183
11184 static int
11185 unsigned_int_compar (const void *ap, const void *bp)
11186 {
11187 unsigned int a = *(unsigned int *) ap;
11188 unsigned int b = *(unsigned int *) bp;
11189
11190 return (a > b) - (b > a);
11191 }
11192
11193 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11194 Inherit only the children of the DW_AT_abstract_origin DIE not being
11195 already referenced by DW_AT_abstract_origin from the children of the
11196 current DIE. */
11197
11198 static void
11199 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11200 {
11201 struct die_info *child_die;
11202 unsigned die_children_count;
11203 /* CU offsets which were referenced by children of the current DIE. */
11204 sect_offset *offsets;
11205 sect_offset *offsets_end, *offsetp;
11206 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11207 struct die_info *origin_die;
11208 /* Iterator of the ORIGIN_DIE children. */
11209 struct die_info *origin_child_die;
11210 struct cleanup *cleanups;
11211 struct attribute *attr;
11212 struct dwarf2_cu *origin_cu;
11213 struct pending **origin_previous_list_in_scope;
11214
11215 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11216 if (!attr)
11217 return;
11218
11219 /* Note that following die references may follow to a die in a
11220 different cu. */
11221
11222 origin_cu = cu;
11223 origin_die = follow_die_ref (die, attr, &origin_cu);
11224
11225 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11226 symbols in. */
11227 origin_previous_list_in_scope = origin_cu->list_in_scope;
11228 origin_cu->list_in_scope = cu->list_in_scope;
11229
11230 if (die->tag != origin_die->tag
11231 && !(die->tag == DW_TAG_inlined_subroutine
11232 && origin_die->tag == DW_TAG_subprogram))
11233 complaint (&symfile_complaints,
11234 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11235 die->offset.sect_off, origin_die->offset.sect_off);
11236
11237 child_die = die->child;
11238 die_children_count = 0;
11239 while (child_die && child_die->tag)
11240 {
11241 child_die = sibling_die (child_die);
11242 die_children_count++;
11243 }
11244 offsets = XNEWVEC (sect_offset, die_children_count);
11245 cleanups = make_cleanup (xfree, offsets);
11246
11247 offsets_end = offsets;
11248 for (child_die = die->child;
11249 child_die && child_die->tag;
11250 child_die = sibling_die (child_die))
11251 {
11252 struct die_info *child_origin_die;
11253 struct dwarf2_cu *child_origin_cu;
11254
11255 /* We are trying to process concrete instance entries:
11256 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11257 it's not relevant to our analysis here. i.e. detecting DIEs that are
11258 present in the abstract instance but not referenced in the concrete
11259 one. */
11260 if (child_die->tag == DW_TAG_GNU_call_site)
11261 continue;
11262
11263 /* For each CHILD_DIE, find the corresponding child of
11264 ORIGIN_DIE. If there is more than one layer of
11265 DW_AT_abstract_origin, follow them all; there shouldn't be,
11266 but GCC versions at least through 4.4 generate this (GCC PR
11267 40573). */
11268 child_origin_die = child_die;
11269 child_origin_cu = cu;
11270 while (1)
11271 {
11272 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11273 child_origin_cu);
11274 if (attr == NULL)
11275 break;
11276 child_origin_die = follow_die_ref (child_origin_die, attr,
11277 &child_origin_cu);
11278 }
11279
11280 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11281 counterpart may exist. */
11282 if (child_origin_die != child_die)
11283 {
11284 if (child_die->tag != child_origin_die->tag
11285 && !(child_die->tag == DW_TAG_inlined_subroutine
11286 && child_origin_die->tag == DW_TAG_subprogram))
11287 complaint (&symfile_complaints,
11288 _("Child DIE 0x%x and its abstract origin 0x%x have "
11289 "different tags"), child_die->offset.sect_off,
11290 child_origin_die->offset.sect_off);
11291 if (child_origin_die->parent != origin_die)
11292 complaint (&symfile_complaints,
11293 _("Child DIE 0x%x and its abstract origin 0x%x have "
11294 "different parents"), child_die->offset.sect_off,
11295 child_origin_die->offset.sect_off);
11296 else
11297 *offsets_end++ = child_origin_die->offset;
11298 }
11299 }
11300 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11301 unsigned_int_compar);
11302 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11303 if (offsetp[-1].sect_off == offsetp->sect_off)
11304 complaint (&symfile_complaints,
11305 _("Multiple children of DIE 0x%x refer "
11306 "to DIE 0x%x as their abstract origin"),
11307 die->offset.sect_off, offsetp->sect_off);
11308
11309 offsetp = offsets;
11310 origin_child_die = origin_die->child;
11311 while (origin_child_die && origin_child_die->tag)
11312 {
11313 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11314 while (offsetp < offsets_end
11315 && offsetp->sect_off < origin_child_die->offset.sect_off)
11316 offsetp++;
11317 if (offsetp >= offsets_end
11318 || offsetp->sect_off > origin_child_die->offset.sect_off)
11319 {
11320 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11321 Check whether we're already processing ORIGIN_CHILD_DIE.
11322 This can happen with mutually referenced abstract_origins.
11323 PR 16581. */
11324 if (!origin_child_die->in_process)
11325 process_die (origin_child_die, origin_cu);
11326 }
11327 origin_child_die = sibling_die (origin_child_die);
11328 }
11329 origin_cu->list_in_scope = origin_previous_list_in_scope;
11330
11331 do_cleanups (cleanups);
11332 }
11333
11334 static void
11335 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11336 {
11337 struct objfile *objfile = cu->objfile;
11338 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11339 struct context_stack *newobj;
11340 CORE_ADDR lowpc;
11341 CORE_ADDR highpc;
11342 struct die_info *child_die;
11343 struct attribute *attr, *call_line, *call_file;
11344 const char *name;
11345 CORE_ADDR baseaddr;
11346 struct block *block;
11347 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11348 VEC (symbolp) *template_args = NULL;
11349 struct template_symbol *templ_func = NULL;
11350
11351 if (inlined_func)
11352 {
11353 /* If we do not have call site information, we can't show the
11354 caller of this inlined function. That's too confusing, so
11355 only use the scope for local variables. */
11356 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11357 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11358 if (call_line == NULL || call_file == NULL)
11359 {
11360 read_lexical_block_scope (die, cu);
11361 return;
11362 }
11363 }
11364
11365 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11366
11367 name = dwarf2_name (die, cu);
11368
11369 /* Ignore functions with missing or empty names. These are actually
11370 illegal according to the DWARF standard. */
11371 if (name == NULL)
11372 {
11373 complaint (&symfile_complaints,
11374 _("missing name for subprogram DIE at %d"),
11375 die->offset.sect_off);
11376 return;
11377 }
11378
11379 /* Ignore functions with missing or invalid low and high pc attributes. */
11380 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11381 {
11382 attr = dwarf2_attr (die, DW_AT_external, cu);
11383 if (!attr || !DW_UNSND (attr))
11384 complaint (&symfile_complaints,
11385 _("cannot get low and high bounds "
11386 "for subprogram DIE at %d"),
11387 die->offset.sect_off);
11388 return;
11389 }
11390
11391 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11392 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11393
11394 /* If we have any template arguments, then we must allocate a
11395 different sort of symbol. */
11396 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11397 {
11398 if (child_die->tag == DW_TAG_template_type_param
11399 || child_die->tag == DW_TAG_template_value_param)
11400 {
11401 templ_func = allocate_template_symbol (objfile);
11402 templ_func->base.is_cplus_template_function = 1;
11403 break;
11404 }
11405 }
11406
11407 newobj = push_context (0, lowpc);
11408 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11409 (struct symbol *) templ_func);
11410
11411 /* If there is a location expression for DW_AT_frame_base, record
11412 it. */
11413 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11414 if (attr)
11415 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11416
11417 /* If there is a location for the static link, record it. */
11418 newobj->static_link = NULL;
11419 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11420 if (attr)
11421 {
11422 newobj->static_link
11423 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11424 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11425 }
11426
11427 cu->list_in_scope = &local_symbols;
11428
11429 if (die->child != NULL)
11430 {
11431 child_die = die->child;
11432 while (child_die && child_die->tag)
11433 {
11434 if (child_die->tag == DW_TAG_template_type_param
11435 || child_die->tag == DW_TAG_template_value_param)
11436 {
11437 struct symbol *arg = new_symbol (child_die, NULL, cu);
11438
11439 if (arg != NULL)
11440 VEC_safe_push (symbolp, template_args, arg);
11441 }
11442 else
11443 process_die (child_die, cu);
11444 child_die = sibling_die (child_die);
11445 }
11446 }
11447
11448 inherit_abstract_dies (die, cu);
11449
11450 /* If we have a DW_AT_specification, we might need to import using
11451 directives from the context of the specification DIE. See the
11452 comment in determine_prefix. */
11453 if (cu->language == language_cplus
11454 && dwarf2_attr (die, DW_AT_specification, cu))
11455 {
11456 struct dwarf2_cu *spec_cu = cu;
11457 struct die_info *spec_die = die_specification (die, &spec_cu);
11458
11459 while (spec_die)
11460 {
11461 child_die = spec_die->child;
11462 while (child_die && child_die->tag)
11463 {
11464 if (child_die->tag == DW_TAG_imported_module)
11465 process_die (child_die, spec_cu);
11466 child_die = sibling_die (child_die);
11467 }
11468
11469 /* In some cases, GCC generates specification DIEs that
11470 themselves contain DW_AT_specification attributes. */
11471 spec_die = die_specification (spec_die, &spec_cu);
11472 }
11473 }
11474
11475 newobj = pop_context ();
11476 /* Make a block for the local symbols within. */
11477 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11478 newobj->static_link, lowpc, highpc);
11479
11480 /* For C++, set the block's scope. */
11481 if ((cu->language == language_cplus
11482 || cu->language == language_fortran
11483 || cu->language == language_d)
11484 && cu->processing_has_namespace_info)
11485 block_set_scope (block, determine_prefix (die, cu),
11486 &objfile->objfile_obstack);
11487
11488 /* If we have address ranges, record them. */
11489 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11490
11491 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11492
11493 /* Attach template arguments to function. */
11494 if (! VEC_empty (symbolp, template_args))
11495 {
11496 gdb_assert (templ_func != NULL);
11497
11498 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11499 templ_func->template_arguments
11500 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11501 templ_func->n_template_arguments);
11502 memcpy (templ_func->template_arguments,
11503 VEC_address (symbolp, template_args),
11504 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11505 VEC_free (symbolp, template_args);
11506 }
11507
11508 /* In C++, we can have functions nested inside functions (e.g., when
11509 a function declares a class that has methods). This means that
11510 when we finish processing a function scope, we may need to go
11511 back to building a containing block's symbol lists. */
11512 local_symbols = newobj->locals;
11513 local_using_directives = newobj->local_using_directives;
11514
11515 /* If we've finished processing a top-level function, subsequent
11516 symbols go in the file symbol list. */
11517 if (outermost_context_p ())
11518 cu->list_in_scope = &file_symbols;
11519 }
11520
11521 /* Process all the DIES contained within a lexical block scope. Start
11522 a new scope, process the dies, and then close the scope. */
11523
11524 static void
11525 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11526 {
11527 struct objfile *objfile = cu->objfile;
11528 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11529 struct context_stack *newobj;
11530 CORE_ADDR lowpc, highpc;
11531 struct die_info *child_die;
11532 CORE_ADDR baseaddr;
11533
11534 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11535
11536 /* Ignore blocks with missing or invalid low and high pc attributes. */
11537 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11538 as multiple lexical blocks? Handling children in a sane way would
11539 be nasty. Might be easier to properly extend generic blocks to
11540 describe ranges. */
11541 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11542 return;
11543 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11544 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11545
11546 push_context (0, lowpc);
11547 if (die->child != NULL)
11548 {
11549 child_die = die->child;
11550 while (child_die && child_die->tag)
11551 {
11552 process_die (child_die, cu);
11553 child_die = sibling_die (child_die);
11554 }
11555 }
11556 inherit_abstract_dies (die, cu);
11557 newobj = pop_context ();
11558
11559 if (local_symbols != NULL || local_using_directives != NULL)
11560 {
11561 struct block *block
11562 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11563 newobj->start_addr, highpc);
11564
11565 /* Note that recording ranges after traversing children, as we
11566 do here, means that recording a parent's ranges entails
11567 walking across all its children's ranges as they appear in
11568 the address map, which is quadratic behavior.
11569
11570 It would be nicer to record the parent's ranges before
11571 traversing its children, simply overriding whatever you find
11572 there. But since we don't even decide whether to create a
11573 block until after we've traversed its children, that's hard
11574 to do. */
11575 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11576 }
11577 local_symbols = newobj->locals;
11578 local_using_directives = newobj->local_using_directives;
11579 }
11580
11581 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11582
11583 static void
11584 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11585 {
11586 struct objfile *objfile = cu->objfile;
11587 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11588 CORE_ADDR pc, baseaddr;
11589 struct attribute *attr;
11590 struct call_site *call_site, call_site_local;
11591 void **slot;
11592 int nparams;
11593 struct die_info *child_die;
11594
11595 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11596
11597 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11598 if (!attr)
11599 {
11600 complaint (&symfile_complaints,
11601 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11602 "DIE 0x%x [in module %s]"),
11603 die->offset.sect_off, objfile_name (objfile));
11604 return;
11605 }
11606 pc = attr_value_as_address (attr) + baseaddr;
11607 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11608
11609 if (cu->call_site_htab == NULL)
11610 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11611 NULL, &objfile->objfile_obstack,
11612 hashtab_obstack_allocate, NULL);
11613 call_site_local.pc = pc;
11614 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11615 if (*slot != NULL)
11616 {
11617 complaint (&symfile_complaints,
11618 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11619 "DIE 0x%x [in module %s]"),
11620 paddress (gdbarch, pc), die->offset.sect_off,
11621 objfile_name (objfile));
11622 return;
11623 }
11624
11625 /* Count parameters at the caller. */
11626
11627 nparams = 0;
11628 for (child_die = die->child; child_die && child_die->tag;
11629 child_die = sibling_die (child_die))
11630 {
11631 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11632 {
11633 complaint (&symfile_complaints,
11634 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11635 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11636 child_die->tag, child_die->offset.sect_off,
11637 objfile_name (objfile));
11638 continue;
11639 }
11640
11641 nparams++;
11642 }
11643
11644 call_site
11645 = ((struct call_site *)
11646 obstack_alloc (&objfile->objfile_obstack,
11647 sizeof (*call_site)
11648 + (sizeof (*call_site->parameter) * (nparams - 1))));
11649 *slot = call_site;
11650 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11651 call_site->pc = pc;
11652
11653 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11654 {
11655 struct die_info *func_die;
11656
11657 /* Skip also over DW_TAG_inlined_subroutine. */
11658 for (func_die = die->parent;
11659 func_die && func_die->tag != DW_TAG_subprogram
11660 && func_die->tag != DW_TAG_subroutine_type;
11661 func_die = func_die->parent);
11662
11663 /* DW_AT_GNU_all_call_sites is a superset
11664 of DW_AT_GNU_all_tail_call_sites. */
11665 if (func_die
11666 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11667 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11668 {
11669 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11670 not complete. But keep CALL_SITE for look ups via call_site_htab,
11671 both the initial caller containing the real return address PC and
11672 the final callee containing the current PC of a chain of tail
11673 calls do not need to have the tail call list complete. But any
11674 function candidate for a virtual tail call frame searched via
11675 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11676 determined unambiguously. */
11677 }
11678 else
11679 {
11680 struct type *func_type = NULL;
11681
11682 if (func_die)
11683 func_type = get_die_type (func_die, cu);
11684 if (func_type != NULL)
11685 {
11686 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11687
11688 /* Enlist this call site to the function. */
11689 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11690 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11691 }
11692 else
11693 complaint (&symfile_complaints,
11694 _("Cannot find function owning DW_TAG_GNU_call_site "
11695 "DIE 0x%x [in module %s]"),
11696 die->offset.sect_off, objfile_name (objfile));
11697 }
11698 }
11699
11700 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11701 if (attr == NULL)
11702 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11703 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11704 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11705 /* Keep NULL DWARF_BLOCK. */;
11706 else if (attr_form_is_block (attr))
11707 {
11708 struct dwarf2_locexpr_baton *dlbaton;
11709
11710 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11711 dlbaton->data = DW_BLOCK (attr)->data;
11712 dlbaton->size = DW_BLOCK (attr)->size;
11713 dlbaton->per_cu = cu->per_cu;
11714
11715 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11716 }
11717 else if (attr_form_is_ref (attr))
11718 {
11719 struct dwarf2_cu *target_cu = cu;
11720 struct die_info *target_die;
11721
11722 target_die = follow_die_ref (die, attr, &target_cu);
11723 gdb_assert (target_cu->objfile == objfile);
11724 if (die_is_declaration (target_die, target_cu))
11725 {
11726 const char *target_physname;
11727
11728 /* Prefer the mangled name; otherwise compute the demangled one. */
11729 target_physname = dwarf2_string_attr (target_die,
11730 DW_AT_linkage_name,
11731 target_cu);
11732 if (target_physname == NULL)
11733 target_physname = dwarf2_string_attr (target_die,
11734 DW_AT_MIPS_linkage_name,
11735 target_cu);
11736 if (target_physname == NULL)
11737 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11738 if (target_physname == NULL)
11739 complaint (&symfile_complaints,
11740 _("DW_AT_GNU_call_site_target target DIE has invalid "
11741 "physname, for referencing DIE 0x%x [in module %s]"),
11742 die->offset.sect_off, objfile_name (objfile));
11743 else
11744 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11745 }
11746 else
11747 {
11748 CORE_ADDR lowpc;
11749
11750 /* DW_AT_entry_pc should be preferred. */
11751 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11752 complaint (&symfile_complaints,
11753 _("DW_AT_GNU_call_site_target target DIE has invalid "
11754 "low pc, for referencing DIE 0x%x [in module %s]"),
11755 die->offset.sect_off, objfile_name (objfile));
11756 else
11757 {
11758 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11759 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11760 }
11761 }
11762 }
11763 else
11764 complaint (&symfile_complaints,
11765 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11766 "block nor reference, for DIE 0x%x [in module %s]"),
11767 die->offset.sect_off, objfile_name (objfile));
11768
11769 call_site->per_cu = cu->per_cu;
11770
11771 for (child_die = die->child;
11772 child_die && child_die->tag;
11773 child_die = sibling_die (child_die))
11774 {
11775 struct call_site_parameter *parameter;
11776 struct attribute *loc, *origin;
11777
11778 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11779 {
11780 /* Already printed the complaint above. */
11781 continue;
11782 }
11783
11784 gdb_assert (call_site->parameter_count < nparams);
11785 parameter = &call_site->parameter[call_site->parameter_count];
11786
11787 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11788 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11789 register is contained in DW_AT_GNU_call_site_value. */
11790
11791 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11792 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11793 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11794 {
11795 sect_offset offset;
11796
11797 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11798 offset = dwarf2_get_ref_die_offset (origin);
11799 if (!offset_in_cu_p (&cu->header, offset))
11800 {
11801 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11802 binding can be done only inside one CU. Such referenced DIE
11803 therefore cannot be even moved to DW_TAG_partial_unit. */
11804 complaint (&symfile_complaints,
11805 _("DW_AT_abstract_origin offset is not in CU for "
11806 "DW_TAG_GNU_call_site child DIE 0x%x "
11807 "[in module %s]"),
11808 child_die->offset.sect_off, objfile_name (objfile));
11809 continue;
11810 }
11811 parameter->u.param_offset.cu_off = (offset.sect_off
11812 - cu->header.offset.sect_off);
11813 }
11814 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11815 {
11816 complaint (&symfile_complaints,
11817 _("No DW_FORM_block* DW_AT_location for "
11818 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11819 child_die->offset.sect_off, objfile_name (objfile));
11820 continue;
11821 }
11822 else
11823 {
11824 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11825 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11826 if (parameter->u.dwarf_reg != -1)
11827 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11828 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11829 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11830 &parameter->u.fb_offset))
11831 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11832 else
11833 {
11834 complaint (&symfile_complaints,
11835 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11836 "for DW_FORM_block* DW_AT_location is supported for "
11837 "DW_TAG_GNU_call_site child DIE 0x%x "
11838 "[in module %s]"),
11839 child_die->offset.sect_off, objfile_name (objfile));
11840 continue;
11841 }
11842 }
11843
11844 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11845 if (!attr_form_is_block (attr))
11846 {
11847 complaint (&symfile_complaints,
11848 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11849 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11850 child_die->offset.sect_off, objfile_name (objfile));
11851 continue;
11852 }
11853 parameter->value = DW_BLOCK (attr)->data;
11854 parameter->value_size = DW_BLOCK (attr)->size;
11855
11856 /* Parameters are not pre-cleared by memset above. */
11857 parameter->data_value = NULL;
11858 parameter->data_value_size = 0;
11859 call_site->parameter_count++;
11860
11861 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11862 if (attr)
11863 {
11864 if (!attr_form_is_block (attr))
11865 complaint (&symfile_complaints,
11866 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11867 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11868 child_die->offset.sect_off, objfile_name (objfile));
11869 else
11870 {
11871 parameter->data_value = DW_BLOCK (attr)->data;
11872 parameter->data_value_size = DW_BLOCK (attr)->size;
11873 }
11874 }
11875 }
11876 }
11877
11878 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11879 Return 1 if the attributes are present and valid, otherwise, return 0.
11880 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11881
11882 static int
11883 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11884 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11885 struct partial_symtab *ranges_pst)
11886 {
11887 struct objfile *objfile = cu->objfile;
11888 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11889 struct comp_unit_head *cu_header = &cu->header;
11890 bfd *obfd = objfile->obfd;
11891 unsigned int addr_size = cu_header->addr_size;
11892 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11893 /* Base address selection entry. */
11894 CORE_ADDR base;
11895 int found_base;
11896 unsigned int dummy;
11897 const gdb_byte *buffer;
11898 int low_set;
11899 CORE_ADDR low = 0;
11900 CORE_ADDR high = 0;
11901 CORE_ADDR baseaddr;
11902
11903 found_base = cu->base_known;
11904 base = cu->base_address;
11905
11906 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11907 if (offset >= dwarf2_per_objfile->ranges.size)
11908 {
11909 complaint (&symfile_complaints,
11910 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11911 offset);
11912 return 0;
11913 }
11914 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11915
11916 low_set = 0;
11917
11918 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11919
11920 while (1)
11921 {
11922 CORE_ADDR range_beginning, range_end;
11923
11924 range_beginning = read_address (obfd, buffer, cu, &dummy);
11925 buffer += addr_size;
11926 range_end = read_address (obfd, buffer, cu, &dummy);
11927 buffer += addr_size;
11928 offset += 2 * addr_size;
11929
11930 /* An end of list marker is a pair of zero addresses. */
11931 if (range_beginning == 0 && range_end == 0)
11932 /* Found the end of list entry. */
11933 break;
11934
11935 /* Each base address selection entry is a pair of 2 values.
11936 The first is the largest possible address, the second is
11937 the base address. Check for a base address here. */
11938 if ((range_beginning & mask) == mask)
11939 {
11940 /* If we found the largest possible address, then we already
11941 have the base address in range_end. */
11942 base = range_end;
11943 found_base = 1;
11944 continue;
11945 }
11946
11947 if (!found_base)
11948 {
11949 /* We have no valid base address for the ranges
11950 data. */
11951 complaint (&symfile_complaints,
11952 _("Invalid .debug_ranges data (no base address)"));
11953 return 0;
11954 }
11955
11956 if (range_beginning > range_end)
11957 {
11958 /* Inverted range entries are invalid. */
11959 complaint (&symfile_complaints,
11960 _("Invalid .debug_ranges data (inverted range)"));
11961 return 0;
11962 }
11963
11964 /* Empty range entries have no effect. */
11965 if (range_beginning == range_end)
11966 continue;
11967
11968 range_beginning += base;
11969 range_end += base;
11970
11971 /* A not-uncommon case of bad debug info.
11972 Don't pollute the addrmap with bad data. */
11973 if (range_beginning + baseaddr == 0
11974 && !dwarf2_per_objfile->has_section_at_zero)
11975 {
11976 complaint (&symfile_complaints,
11977 _(".debug_ranges entry has start address of zero"
11978 " [in module %s]"), objfile_name (objfile));
11979 continue;
11980 }
11981
11982 if (ranges_pst != NULL)
11983 {
11984 CORE_ADDR lowpc;
11985 CORE_ADDR highpc;
11986
11987 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11988 range_beginning + baseaddr);
11989 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11990 range_end + baseaddr);
11991 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11992 ranges_pst);
11993 }
11994
11995 /* FIXME: This is recording everything as a low-high
11996 segment of consecutive addresses. We should have a
11997 data structure for discontiguous block ranges
11998 instead. */
11999 if (! low_set)
12000 {
12001 low = range_beginning;
12002 high = range_end;
12003 low_set = 1;
12004 }
12005 else
12006 {
12007 if (range_beginning < low)
12008 low = range_beginning;
12009 if (range_end > high)
12010 high = range_end;
12011 }
12012 }
12013
12014 if (! low_set)
12015 /* If the first entry is an end-of-list marker, the range
12016 describes an empty scope, i.e. no instructions. */
12017 return 0;
12018
12019 if (low_return)
12020 *low_return = low;
12021 if (high_return)
12022 *high_return = high;
12023 return 1;
12024 }
12025
12026 /* Get low and high pc attributes from a die. Return 1 if the attributes
12027 are present and valid, otherwise, return 0. Return -1 if the range is
12028 discontinuous, i.e. derived from DW_AT_ranges information. */
12029
12030 static int
12031 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12032 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12033 struct partial_symtab *pst)
12034 {
12035 struct attribute *attr;
12036 struct attribute *attr_high;
12037 CORE_ADDR low = 0;
12038 CORE_ADDR high = 0;
12039 int ret = 0;
12040
12041 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12042 if (attr_high)
12043 {
12044 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12045 if (attr)
12046 {
12047 low = attr_value_as_address (attr);
12048 high = attr_value_as_address (attr_high);
12049 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12050 high += low;
12051 }
12052 else
12053 /* Found high w/o low attribute. */
12054 return 0;
12055
12056 /* Found consecutive range of addresses. */
12057 ret = 1;
12058 }
12059 else
12060 {
12061 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12062 if (attr != NULL)
12063 {
12064 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12065 We take advantage of the fact that DW_AT_ranges does not appear
12066 in DW_TAG_compile_unit of DWO files. */
12067 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12068 unsigned int ranges_offset = (DW_UNSND (attr)
12069 + (need_ranges_base
12070 ? cu->ranges_base
12071 : 0));
12072
12073 /* Value of the DW_AT_ranges attribute is the offset in the
12074 .debug_ranges section. */
12075 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12076 return 0;
12077 /* Found discontinuous range of addresses. */
12078 ret = -1;
12079 }
12080 }
12081
12082 /* read_partial_die has also the strict LOW < HIGH requirement. */
12083 if (high <= low)
12084 return 0;
12085
12086 /* When using the GNU linker, .gnu.linkonce. sections are used to
12087 eliminate duplicate copies of functions and vtables and such.
12088 The linker will arbitrarily choose one and discard the others.
12089 The AT_*_pc values for such functions refer to local labels in
12090 these sections. If the section from that file was discarded, the
12091 labels are not in the output, so the relocs get a value of 0.
12092 If this is a discarded function, mark the pc bounds as invalid,
12093 so that GDB will ignore it. */
12094 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12095 return 0;
12096
12097 *lowpc = low;
12098 if (highpc)
12099 *highpc = high;
12100 return ret;
12101 }
12102
12103 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12104 its low and high PC addresses. Do nothing if these addresses could not
12105 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12106 and HIGHPC to the high address if greater than HIGHPC. */
12107
12108 static void
12109 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12110 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12111 struct dwarf2_cu *cu)
12112 {
12113 CORE_ADDR low, high;
12114 struct die_info *child = die->child;
12115
12116 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12117 {
12118 *lowpc = min (*lowpc, low);
12119 *highpc = max (*highpc, high);
12120 }
12121
12122 /* If the language does not allow nested subprograms (either inside
12123 subprograms or lexical blocks), we're done. */
12124 if (cu->language != language_ada)
12125 return;
12126
12127 /* Check all the children of the given DIE. If it contains nested
12128 subprograms, then check their pc bounds. Likewise, we need to
12129 check lexical blocks as well, as they may also contain subprogram
12130 definitions. */
12131 while (child && child->tag)
12132 {
12133 if (child->tag == DW_TAG_subprogram
12134 || child->tag == DW_TAG_lexical_block)
12135 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12136 child = sibling_die (child);
12137 }
12138 }
12139
12140 /* Get the low and high pc's represented by the scope DIE, and store
12141 them in *LOWPC and *HIGHPC. If the correct values can't be
12142 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12143
12144 static void
12145 get_scope_pc_bounds (struct die_info *die,
12146 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12147 struct dwarf2_cu *cu)
12148 {
12149 CORE_ADDR best_low = (CORE_ADDR) -1;
12150 CORE_ADDR best_high = (CORE_ADDR) 0;
12151 CORE_ADDR current_low, current_high;
12152
12153 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12154 {
12155 best_low = current_low;
12156 best_high = current_high;
12157 }
12158 else
12159 {
12160 struct die_info *child = die->child;
12161
12162 while (child && child->tag)
12163 {
12164 switch (child->tag) {
12165 case DW_TAG_subprogram:
12166 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12167 break;
12168 case DW_TAG_namespace:
12169 case DW_TAG_module:
12170 /* FIXME: carlton/2004-01-16: Should we do this for
12171 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12172 that current GCC's always emit the DIEs corresponding
12173 to definitions of methods of classes as children of a
12174 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12175 the DIEs giving the declarations, which could be
12176 anywhere). But I don't see any reason why the
12177 standards says that they have to be there. */
12178 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12179
12180 if (current_low != ((CORE_ADDR) -1))
12181 {
12182 best_low = min (best_low, current_low);
12183 best_high = max (best_high, current_high);
12184 }
12185 break;
12186 default:
12187 /* Ignore. */
12188 break;
12189 }
12190
12191 child = sibling_die (child);
12192 }
12193 }
12194
12195 *lowpc = best_low;
12196 *highpc = best_high;
12197 }
12198
12199 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12200 in DIE. */
12201
12202 static void
12203 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12204 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12205 {
12206 struct objfile *objfile = cu->objfile;
12207 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12208 struct attribute *attr;
12209 struct attribute *attr_high;
12210
12211 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12212 if (attr_high)
12213 {
12214 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12215 if (attr)
12216 {
12217 CORE_ADDR low = attr_value_as_address (attr);
12218 CORE_ADDR high = attr_value_as_address (attr_high);
12219
12220 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12221 high += low;
12222
12223 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12224 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12225 record_block_range (block, low, high - 1);
12226 }
12227 }
12228
12229 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12230 if (attr)
12231 {
12232 bfd *obfd = objfile->obfd;
12233 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12234 We take advantage of the fact that DW_AT_ranges does not appear
12235 in DW_TAG_compile_unit of DWO files. */
12236 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12237
12238 /* The value of the DW_AT_ranges attribute is the offset of the
12239 address range list in the .debug_ranges section. */
12240 unsigned long offset = (DW_UNSND (attr)
12241 + (need_ranges_base ? cu->ranges_base : 0));
12242 const gdb_byte *buffer;
12243
12244 /* For some target architectures, but not others, the
12245 read_address function sign-extends the addresses it returns.
12246 To recognize base address selection entries, we need a
12247 mask. */
12248 unsigned int addr_size = cu->header.addr_size;
12249 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12250
12251 /* The base address, to which the next pair is relative. Note
12252 that this 'base' is a DWARF concept: most entries in a range
12253 list are relative, to reduce the number of relocs against the
12254 debugging information. This is separate from this function's
12255 'baseaddr' argument, which GDB uses to relocate debugging
12256 information from a shared library based on the address at
12257 which the library was loaded. */
12258 CORE_ADDR base = cu->base_address;
12259 int base_known = cu->base_known;
12260
12261 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12262 if (offset >= dwarf2_per_objfile->ranges.size)
12263 {
12264 complaint (&symfile_complaints,
12265 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12266 offset);
12267 return;
12268 }
12269 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12270
12271 for (;;)
12272 {
12273 unsigned int bytes_read;
12274 CORE_ADDR start, end;
12275
12276 start = read_address (obfd, buffer, cu, &bytes_read);
12277 buffer += bytes_read;
12278 end = read_address (obfd, buffer, cu, &bytes_read);
12279 buffer += bytes_read;
12280
12281 /* Did we find the end of the range list? */
12282 if (start == 0 && end == 0)
12283 break;
12284
12285 /* Did we find a base address selection entry? */
12286 else if ((start & base_select_mask) == base_select_mask)
12287 {
12288 base = end;
12289 base_known = 1;
12290 }
12291
12292 /* We found an ordinary address range. */
12293 else
12294 {
12295 if (!base_known)
12296 {
12297 complaint (&symfile_complaints,
12298 _("Invalid .debug_ranges data "
12299 "(no base address)"));
12300 return;
12301 }
12302
12303 if (start > end)
12304 {
12305 /* Inverted range entries are invalid. */
12306 complaint (&symfile_complaints,
12307 _("Invalid .debug_ranges data "
12308 "(inverted range)"));
12309 return;
12310 }
12311
12312 /* Empty range entries have no effect. */
12313 if (start == end)
12314 continue;
12315
12316 start += base + baseaddr;
12317 end += base + baseaddr;
12318
12319 /* A not-uncommon case of bad debug info.
12320 Don't pollute the addrmap with bad data. */
12321 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12322 {
12323 complaint (&symfile_complaints,
12324 _(".debug_ranges entry has start address of zero"
12325 " [in module %s]"), objfile_name (objfile));
12326 continue;
12327 }
12328
12329 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12330 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12331 record_block_range (block, start, end - 1);
12332 }
12333 }
12334 }
12335 }
12336
12337 /* Check whether the producer field indicates either of GCC < 4.6, or the
12338 Intel C/C++ compiler, and cache the result in CU. */
12339
12340 static void
12341 check_producer (struct dwarf2_cu *cu)
12342 {
12343 const char *cs;
12344 int major, minor;
12345
12346 if (cu->producer == NULL)
12347 {
12348 /* For unknown compilers expect their behavior is DWARF version
12349 compliant.
12350
12351 GCC started to support .debug_types sections by -gdwarf-4 since
12352 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12353 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12354 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12355 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12356 }
12357 else if (producer_is_gcc (cu->producer, &major, &minor))
12358 {
12359 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12360 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12361 }
12362 else if (startswith (cu->producer, "Intel(R) C"))
12363 cu->producer_is_icc = 1;
12364 else
12365 {
12366 /* For other non-GCC compilers, expect their behavior is DWARF version
12367 compliant. */
12368 }
12369
12370 cu->checked_producer = 1;
12371 }
12372
12373 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12374 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12375 during 4.6.0 experimental. */
12376
12377 static int
12378 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12379 {
12380 if (!cu->checked_producer)
12381 check_producer (cu);
12382
12383 return cu->producer_is_gxx_lt_4_6;
12384 }
12385
12386 /* Return the default accessibility type if it is not overriden by
12387 DW_AT_accessibility. */
12388
12389 static enum dwarf_access_attribute
12390 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12391 {
12392 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12393 {
12394 /* The default DWARF 2 accessibility for members is public, the default
12395 accessibility for inheritance is private. */
12396
12397 if (die->tag != DW_TAG_inheritance)
12398 return DW_ACCESS_public;
12399 else
12400 return DW_ACCESS_private;
12401 }
12402 else
12403 {
12404 /* DWARF 3+ defines the default accessibility a different way. The same
12405 rules apply now for DW_TAG_inheritance as for the members and it only
12406 depends on the container kind. */
12407
12408 if (die->parent->tag == DW_TAG_class_type)
12409 return DW_ACCESS_private;
12410 else
12411 return DW_ACCESS_public;
12412 }
12413 }
12414
12415 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12416 offset. If the attribute was not found return 0, otherwise return
12417 1. If it was found but could not properly be handled, set *OFFSET
12418 to 0. */
12419
12420 static int
12421 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12422 LONGEST *offset)
12423 {
12424 struct attribute *attr;
12425
12426 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12427 if (attr != NULL)
12428 {
12429 *offset = 0;
12430
12431 /* Note that we do not check for a section offset first here.
12432 This is because DW_AT_data_member_location is new in DWARF 4,
12433 so if we see it, we can assume that a constant form is really
12434 a constant and not a section offset. */
12435 if (attr_form_is_constant (attr))
12436 *offset = dwarf2_get_attr_constant_value (attr, 0);
12437 else if (attr_form_is_section_offset (attr))
12438 dwarf2_complex_location_expr_complaint ();
12439 else if (attr_form_is_block (attr))
12440 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12441 else
12442 dwarf2_complex_location_expr_complaint ();
12443
12444 return 1;
12445 }
12446
12447 return 0;
12448 }
12449
12450 /* Add an aggregate field to the field list. */
12451
12452 static void
12453 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12454 struct dwarf2_cu *cu)
12455 {
12456 struct objfile *objfile = cu->objfile;
12457 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12458 struct nextfield *new_field;
12459 struct attribute *attr;
12460 struct field *fp;
12461 const char *fieldname = "";
12462
12463 /* Allocate a new field list entry and link it in. */
12464 new_field = XNEW (struct nextfield);
12465 make_cleanup (xfree, new_field);
12466 memset (new_field, 0, sizeof (struct nextfield));
12467
12468 if (die->tag == DW_TAG_inheritance)
12469 {
12470 new_field->next = fip->baseclasses;
12471 fip->baseclasses = new_field;
12472 }
12473 else
12474 {
12475 new_field->next = fip->fields;
12476 fip->fields = new_field;
12477 }
12478 fip->nfields++;
12479
12480 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12481 if (attr)
12482 new_field->accessibility = DW_UNSND (attr);
12483 else
12484 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12485 if (new_field->accessibility != DW_ACCESS_public)
12486 fip->non_public_fields = 1;
12487
12488 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12489 if (attr)
12490 new_field->virtuality = DW_UNSND (attr);
12491 else
12492 new_field->virtuality = DW_VIRTUALITY_none;
12493
12494 fp = &new_field->field;
12495
12496 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12497 {
12498 LONGEST offset;
12499
12500 /* Data member other than a C++ static data member. */
12501
12502 /* Get type of field. */
12503 fp->type = die_type (die, cu);
12504
12505 SET_FIELD_BITPOS (*fp, 0);
12506
12507 /* Get bit size of field (zero if none). */
12508 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12509 if (attr)
12510 {
12511 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12512 }
12513 else
12514 {
12515 FIELD_BITSIZE (*fp) = 0;
12516 }
12517
12518 /* Get bit offset of field. */
12519 if (handle_data_member_location (die, cu, &offset))
12520 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12521 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12522 if (attr)
12523 {
12524 if (gdbarch_bits_big_endian (gdbarch))
12525 {
12526 /* For big endian bits, the DW_AT_bit_offset gives the
12527 additional bit offset from the MSB of the containing
12528 anonymous object to the MSB of the field. We don't
12529 have to do anything special since we don't need to
12530 know the size of the anonymous object. */
12531 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12532 }
12533 else
12534 {
12535 /* For little endian bits, compute the bit offset to the
12536 MSB of the anonymous object, subtract off the number of
12537 bits from the MSB of the field to the MSB of the
12538 object, and then subtract off the number of bits of
12539 the field itself. The result is the bit offset of
12540 the LSB of the field. */
12541 int anonymous_size;
12542 int bit_offset = DW_UNSND (attr);
12543
12544 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12545 if (attr)
12546 {
12547 /* The size of the anonymous object containing
12548 the bit field is explicit, so use the
12549 indicated size (in bytes). */
12550 anonymous_size = DW_UNSND (attr);
12551 }
12552 else
12553 {
12554 /* The size of the anonymous object containing
12555 the bit field must be inferred from the type
12556 attribute of the data member containing the
12557 bit field. */
12558 anonymous_size = TYPE_LENGTH (fp->type);
12559 }
12560 SET_FIELD_BITPOS (*fp,
12561 (FIELD_BITPOS (*fp)
12562 + anonymous_size * bits_per_byte
12563 - bit_offset - FIELD_BITSIZE (*fp)));
12564 }
12565 }
12566
12567 /* Get name of field. */
12568 fieldname = dwarf2_name (die, cu);
12569 if (fieldname == NULL)
12570 fieldname = "";
12571
12572 /* The name is already allocated along with this objfile, so we don't
12573 need to duplicate it for the type. */
12574 fp->name = fieldname;
12575
12576 /* Change accessibility for artificial fields (e.g. virtual table
12577 pointer or virtual base class pointer) to private. */
12578 if (dwarf2_attr (die, DW_AT_artificial, cu))
12579 {
12580 FIELD_ARTIFICIAL (*fp) = 1;
12581 new_field->accessibility = DW_ACCESS_private;
12582 fip->non_public_fields = 1;
12583 }
12584 }
12585 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12586 {
12587 /* C++ static member. */
12588
12589 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12590 is a declaration, but all versions of G++ as of this writing
12591 (so through at least 3.2.1) incorrectly generate
12592 DW_TAG_variable tags. */
12593
12594 const char *physname;
12595
12596 /* Get name of field. */
12597 fieldname = dwarf2_name (die, cu);
12598 if (fieldname == NULL)
12599 return;
12600
12601 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12602 if (attr
12603 /* Only create a symbol if this is an external value.
12604 new_symbol checks this and puts the value in the global symbol
12605 table, which we want. If it is not external, new_symbol
12606 will try to put the value in cu->list_in_scope which is wrong. */
12607 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12608 {
12609 /* A static const member, not much different than an enum as far as
12610 we're concerned, except that we can support more types. */
12611 new_symbol (die, NULL, cu);
12612 }
12613
12614 /* Get physical name. */
12615 physname = dwarf2_physname (fieldname, die, cu);
12616
12617 /* The name is already allocated along with this objfile, so we don't
12618 need to duplicate it for the type. */
12619 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12620 FIELD_TYPE (*fp) = die_type (die, cu);
12621 FIELD_NAME (*fp) = fieldname;
12622 }
12623 else if (die->tag == DW_TAG_inheritance)
12624 {
12625 LONGEST offset;
12626
12627 /* C++ base class field. */
12628 if (handle_data_member_location (die, cu, &offset))
12629 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12630 FIELD_BITSIZE (*fp) = 0;
12631 FIELD_TYPE (*fp) = die_type (die, cu);
12632 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12633 fip->nbaseclasses++;
12634 }
12635 }
12636
12637 /* Add a typedef defined in the scope of the FIP's class. */
12638
12639 static void
12640 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12641 struct dwarf2_cu *cu)
12642 {
12643 struct objfile *objfile = cu->objfile;
12644 struct typedef_field_list *new_field;
12645 struct attribute *attr;
12646 struct typedef_field *fp;
12647 char *fieldname = "";
12648
12649 /* Allocate a new field list entry and link it in. */
12650 new_field = XCNEW (struct typedef_field_list);
12651 make_cleanup (xfree, new_field);
12652
12653 gdb_assert (die->tag == DW_TAG_typedef);
12654
12655 fp = &new_field->field;
12656
12657 /* Get name of field. */
12658 fp->name = dwarf2_name (die, cu);
12659 if (fp->name == NULL)
12660 return;
12661
12662 fp->type = read_type_die (die, cu);
12663
12664 new_field->next = fip->typedef_field_list;
12665 fip->typedef_field_list = new_field;
12666 fip->typedef_field_list_count++;
12667 }
12668
12669 /* Create the vector of fields, and attach it to the type. */
12670
12671 static void
12672 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12673 struct dwarf2_cu *cu)
12674 {
12675 int nfields = fip->nfields;
12676
12677 /* Record the field count, allocate space for the array of fields,
12678 and create blank accessibility bitfields if necessary. */
12679 TYPE_NFIELDS (type) = nfields;
12680 TYPE_FIELDS (type) = (struct field *)
12681 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12682 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12683
12684 if (fip->non_public_fields && cu->language != language_ada)
12685 {
12686 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12687
12688 TYPE_FIELD_PRIVATE_BITS (type) =
12689 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12690 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12691
12692 TYPE_FIELD_PROTECTED_BITS (type) =
12693 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12694 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12695
12696 TYPE_FIELD_IGNORE_BITS (type) =
12697 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12698 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12699 }
12700
12701 /* If the type has baseclasses, allocate and clear a bit vector for
12702 TYPE_FIELD_VIRTUAL_BITS. */
12703 if (fip->nbaseclasses && cu->language != language_ada)
12704 {
12705 int num_bytes = B_BYTES (fip->nbaseclasses);
12706 unsigned char *pointer;
12707
12708 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12709 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
12710 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12711 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12712 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12713 }
12714
12715 /* Copy the saved-up fields into the field vector. Start from the head of
12716 the list, adding to the tail of the field array, so that they end up in
12717 the same order in the array in which they were added to the list. */
12718 while (nfields-- > 0)
12719 {
12720 struct nextfield *fieldp;
12721
12722 if (fip->fields)
12723 {
12724 fieldp = fip->fields;
12725 fip->fields = fieldp->next;
12726 }
12727 else
12728 {
12729 fieldp = fip->baseclasses;
12730 fip->baseclasses = fieldp->next;
12731 }
12732
12733 TYPE_FIELD (type, nfields) = fieldp->field;
12734 switch (fieldp->accessibility)
12735 {
12736 case DW_ACCESS_private:
12737 if (cu->language != language_ada)
12738 SET_TYPE_FIELD_PRIVATE (type, nfields);
12739 break;
12740
12741 case DW_ACCESS_protected:
12742 if (cu->language != language_ada)
12743 SET_TYPE_FIELD_PROTECTED (type, nfields);
12744 break;
12745
12746 case DW_ACCESS_public:
12747 break;
12748
12749 default:
12750 /* Unknown accessibility. Complain and treat it as public. */
12751 {
12752 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12753 fieldp->accessibility);
12754 }
12755 break;
12756 }
12757 if (nfields < fip->nbaseclasses)
12758 {
12759 switch (fieldp->virtuality)
12760 {
12761 case DW_VIRTUALITY_virtual:
12762 case DW_VIRTUALITY_pure_virtual:
12763 if (cu->language == language_ada)
12764 error (_("unexpected virtuality in component of Ada type"));
12765 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12766 break;
12767 }
12768 }
12769 }
12770 }
12771
12772 /* Return true if this member function is a constructor, false
12773 otherwise. */
12774
12775 static int
12776 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12777 {
12778 const char *fieldname;
12779 const char *type_name;
12780 int len;
12781
12782 if (die->parent == NULL)
12783 return 0;
12784
12785 if (die->parent->tag != DW_TAG_structure_type
12786 && die->parent->tag != DW_TAG_union_type
12787 && die->parent->tag != DW_TAG_class_type)
12788 return 0;
12789
12790 fieldname = dwarf2_name (die, cu);
12791 type_name = dwarf2_name (die->parent, cu);
12792 if (fieldname == NULL || type_name == NULL)
12793 return 0;
12794
12795 len = strlen (fieldname);
12796 return (strncmp (fieldname, type_name, len) == 0
12797 && (type_name[len] == '\0' || type_name[len] == '<'));
12798 }
12799
12800 /* Add a member function to the proper fieldlist. */
12801
12802 static void
12803 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12804 struct type *type, struct dwarf2_cu *cu)
12805 {
12806 struct objfile *objfile = cu->objfile;
12807 struct attribute *attr;
12808 struct fnfieldlist *flp;
12809 int i;
12810 struct fn_field *fnp;
12811 const char *fieldname;
12812 struct nextfnfield *new_fnfield;
12813 struct type *this_type;
12814 enum dwarf_access_attribute accessibility;
12815
12816 if (cu->language == language_ada)
12817 error (_("unexpected member function in Ada type"));
12818
12819 /* Get name of member function. */
12820 fieldname = dwarf2_name (die, cu);
12821 if (fieldname == NULL)
12822 return;
12823
12824 /* Look up member function name in fieldlist. */
12825 for (i = 0; i < fip->nfnfields; i++)
12826 {
12827 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12828 break;
12829 }
12830
12831 /* Create new list element if necessary. */
12832 if (i < fip->nfnfields)
12833 flp = &fip->fnfieldlists[i];
12834 else
12835 {
12836 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12837 {
12838 fip->fnfieldlists = (struct fnfieldlist *)
12839 xrealloc (fip->fnfieldlists,
12840 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12841 * sizeof (struct fnfieldlist));
12842 if (fip->nfnfields == 0)
12843 make_cleanup (free_current_contents, &fip->fnfieldlists);
12844 }
12845 flp = &fip->fnfieldlists[fip->nfnfields];
12846 flp->name = fieldname;
12847 flp->length = 0;
12848 flp->head = NULL;
12849 i = fip->nfnfields++;
12850 }
12851
12852 /* Create a new member function field and chain it to the field list
12853 entry. */
12854 new_fnfield = XNEW (struct nextfnfield);
12855 make_cleanup (xfree, new_fnfield);
12856 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12857 new_fnfield->next = flp->head;
12858 flp->head = new_fnfield;
12859 flp->length++;
12860
12861 /* Fill in the member function field info. */
12862 fnp = &new_fnfield->fnfield;
12863
12864 /* Delay processing of the physname until later. */
12865 if (cu->language == language_cplus || cu->language == language_java)
12866 {
12867 add_to_method_list (type, i, flp->length - 1, fieldname,
12868 die, cu);
12869 }
12870 else
12871 {
12872 const char *physname = dwarf2_physname (fieldname, die, cu);
12873 fnp->physname = physname ? physname : "";
12874 }
12875
12876 fnp->type = alloc_type (objfile);
12877 this_type = read_type_die (die, cu);
12878 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12879 {
12880 int nparams = TYPE_NFIELDS (this_type);
12881
12882 /* TYPE is the domain of this method, and THIS_TYPE is the type
12883 of the method itself (TYPE_CODE_METHOD). */
12884 smash_to_method_type (fnp->type, type,
12885 TYPE_TARGET_TYPE (this_type),
12886 TYPE_FIELDS (this_type),
12887 TYPE_NFIELDS (this_type),
12888 TYPE_VARARGS (this_type));
12889
12890 /* Handle static member functions.
12891 Dwarf2 has no clean way to discern C++ static and non-static
12892 member functions. G++ helps GDB by marking the first
12893 parameter for non-static member functions (which is the this
12894 pointer) as artificial. We obtain this information from
12895 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12896 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12897 fnp->voffset = VOFFSET_STATIC;
12898 }
12899 else
12900 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12901 dwarf2_full_name (fieldname, die, cu));
12902
12903 /* Get fcontext from DW_AT_containing_type if present. */
12904 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12905 fnp->fcontext = die_containing_type (die, cu);
12906
12907 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12908 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12909
12910 /* Get accessibility. */
12911 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12912 if (attr)
12913 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12914 else
12915 accessibility = dwarf2_default_access_attribute (die, cu);
12916 switch (accessibility)
12917 {
12918 case DW_ACCESS_private:
12919 fnp->is_private = 1;
12920 break;
12921 case DW_ACCESS_protected:
12922 fnp->is_protected = 1;
12923 break;
12924 }
12925
12926 /* Check for artificial methods. */
12927 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12928 if (attr && DW_UNSND (attr) != 0)
12929 fnp->is_artificial = 1;
12930
12931 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12932
12933 /* Get index in virtual function table if it is a virtual member
12934 function. For older versions of GCC, this is an offset in the
12935 appropriate virtual table, as specified by DW_AT_containing_type.
12936 For everyone else, it is an expression to be evaluated relative
12937 to the object address. */
12938
12939 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12940 if (attr)
12941 {
12942 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12943 {
12944 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12945 {
12946 /* Old-style GCC. */
12947 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12948 }
12949 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12950 || (DW_BLOCK (attr)->size > 1
12951 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12952 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12953 {
12954 struct dwarf_block blk;
12955 int offset;
12956
12957 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12958 ? 1 : 2);
12959 blk.size = DW_BLOCK (attr)->size - offset;
12960 blk.data = DW_BLOCK (attr)->data + offset;
12961 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12962 if ((fnp->voffset % cu->header.addr_size) != 0)
12963 dwarf2_complex_location_expr_complaint ();
12964 else
12965 fnp->voffset /= cu->header.addr_size;
12966 fnp->voffset += 2;
12967 }
12968 else
12969 dwarf2_complex_location_expr_complaint ();
12970
12971 if (!fnp->fcontext)
12972 {
12973 /* If there is no `this' field and no DW_AT_containing_type,
12974 we cannot actually find a base class context for the
12975 vtable! */
12976 if (TYPE_NFIELDS (this_type) == 0
12977 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12978 {
12979 complaint (&symfile_complaints,
12980 _("cannot determine context for virtual member "
12981 "function \"%s\" (offset %d)"),
12982 fieldname, die->offset.sect_off);
12983 }
12984 else
12985 {
12986 fnp->fcontext
12987 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12988 }
12989 }
12990 }
12991 else if (attr_form_is_section_offset (attr))
12992 {
12993 dwarf2_complex_location_expr_complaint ();
12994 }
12995 else
12996 {
12997 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12998 fieldname);
12999 }
13000 }
13001 else
13002 {
13003 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13004 if (attr && DW_UNSND (attr))
13005 {
13006 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13007 complaint (&symfile_complaints,
13008 _("Member function \"%s\" (offset %d) is virtual "
13009 "but the vtable offset is not specified"),
13010 fieldname, die->offset.sect_off);
13011 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13012 TYPE_CPLUS_DYNAMIC (type) = 1;
13013 }
13014 }
13015 }
13016
13017 /* Create the vector of member function fields, and attach it to the type. */
13018
13019 static void
13020 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13021 struct dwarf2_cu *cu)
13022 {
13023 struct fnfieldlist *flp;
13024 int i;
13025
13026 if (cu->language == language_ada)
13027 error (_("unexpected member functions in Ada type"));
13028
13029 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13030 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13031 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13032
13033 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13034 {
13035 struct nextfnfield *nfp = flp->head;
13036 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13037 int k;
13038
13039 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13040 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13041 fn_flp->fn_fields = (struct fn_field *)
13042 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13043 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13044 fn_flp->fn_fields[k] = nfp->fnfield;
13045 }
13046
13047 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13048 }
13049
13050 /* Returns non-zero if NAME is the name of a vtable member in CU's
13051 language, zero otherwise. */
13052 static int
13053 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13054 {
13055 static const char vptr[] = "_vptr";
13056 static const char vtable[] = "vtable";
13057
13058 /* Look for the C++ and Java forms of the vtable. */
13059 if ((cu->language == language_java
13060 && startswith (name, vtable))
13061 || (startswith (name, vptr)
13062 && is_cplus_marker (name[sizeof (vptr) - 1])))
13063 return 1;
13064
13065 return 0;
13066 }
13067
13068 /* GCC outputs unnamed structures that are really pointers to member
13069 functions, with the ABI-specified layout. If TYPE describes
13070 such a structure, smash it into a member function type.
13071
13072 GCC shouldn't do this; it should just output pointer to member DIEs.
13073 This is GCC PR debug/28767. */
13074
13075 static void
13076 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13077 {
13078 struct type *pfn_type, *self_type, *new_type;
13079
13080 /* Check for a structure with no name and two children. */
13081 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13082 return;
13083
13084 /* Check for __pfn and __delta members. */
13085 if (TYPE_FIELD_NAME (type, 0) == NULL
13086 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13087 || TYPE_FIELD_NAME (type, 1) == NULL
13088 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13089 return;
13090
13091 /* Find the type of the method. */
13092 pfn_type = TYPE_FIELD_TYPE (type, 0);
13093 if (pfn_type == NULL
13094 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13095 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13096 return;
13097
13098 /* Look for the "this" argument. */
13099 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13100 if (TYPE_NFIELDS (pfn_type) == 0
13101 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13102 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13103 return;
13104
13105 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13106 new_type = alloc_type (objfile);
13107 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13108 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13109 TYPE_VARARGS (pfn_type));
13110 smash_to_methodptr_type (type, new_type);
13111 }
13112
13113 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13114 (icc). */
13115
13116 static int
13117 producer_is_icc (struct dwarf2_cu *cu)
13118 {
13119 if (!cu->checked_producer)
13120 check_producer (cu);
13121
13122 return cu->producer_is_icc;
13123 }
13124
13125 /* Called when we find the DIE that starts a structure or union scope
13126 (definition) to create a type for the structure or union. Fill in
13127 the type's name and general properties; the members will not be
13128 processed until process_structure_scope. A symbol table entry for
13129 the type will also not be done until process_structure_scope (assuming
13130 the type has a name).
13131
13132 NOTE: we need to call these functions regardless of whether or not the
13133 DIE has a DW_AT_name attribute, since it might be an anonymous
13134 structure or union. This gets the type entered into our set of
13135 user defined types. */
13136
13137 static struct type *
13138 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13139 {
13140 struct objfile *objfile = cu->objfile;
13141 struct type *type;
13142 struct attribute *attr;
13143 const char *name;
13144
13145 /* If the definition of this type lives in .debug_types, read that type.
13146 Don't follow DW_AT_specification though, that will take us back up
13147 the chain and we want to go down. */
13148 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13149 if (attr)
13150 {
13151 type = get_DW_AT_signature_type (die, attr, cu);
13152
13153 /* The type's CU may not be the same as CU.
13154 Ensure TYPE is recorded with CU in die_type_hash. */
13155 return set_die_type (die, type, cu);
13156 }
13157
13158 type = alloc_type (objfile);
13159 INIT_CPLUS_SPECIFIC (type);
13160
13161 name = dwarf2_name (die, cu);
13162 if (name != NULL)
13163 {
13164 if (cu->language == language_cplus
13165 || cu->language == language_java
13166 || cu->language == language_d)
13167 {
13168 const char *full_name = dwarf2_full_name (name, die, cu);
13169
13170 /* dwarf2_full_name might have already finished building the DIE's
13171 type. If so, there is no need to continue. */
13172 if (get_die_type (die, cu) != NULL)
13173 return get_die_type (die, cu);
13174
13175 TYPE_TAG_NAME (type) = full_name;
13176 if (die->tag == DW_TAG_structure_type
13177 || die->tag == DW_TAG_class_type)
13178 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13179 }
13180 else
13181 {
13182 /* The name is already allocated along with this objfile, so
13183 we don't need to duplicate it for the type. */
13184 TYPE_TAG_NAME (type) = name;
13185 if (die->tag == DW_TAG_class_type)
13186 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13187 }
13188 }
13189
13190 if (die->tag == DW_TAG_structure_type)
13191 {
13192 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13193 }
13194 else if (die->tag == DW_TAG_union_type)
13195 {
13196 TYPE_CODE (type) = TYPE_CODE_UNION;
13197 }
13198 else
13199 {
13200 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13201 }
13202
13203 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13204 TYPE_DECLARED_CLASS (type) = 1;
13205
13206 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13207 if (attr)
13208 {
13209 if (attr_form_is_constant (attr))
13210 TYPE_LENGTH (type) = DW_UNSND (attr);
13211 else
13212 {
13213 /* For the moment, dynamic type sizes are not supported
13214 by GDB's struct type. The actual size is determined
13215 on-demand when resolving the type of a given object,
13216 so set the type's length to zero for now. Otherwise,
13217 we record an expression as the length, and that expression
13218 could lead to a very large value, which could eventually
13219 lead to us trying to allocate that much memory when creating
13220 a value of that type. */
13221 TYPE_LENGTH (type) = 0;
13222 }
13223 }
13224 else
13225 {
13226 TYPE_LENGTH (type) = 0;
13227 }
13228
13229 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13230 {
13231 /* ICC does not output the required DW_AT_declaration
13232 on incomplete types, but gives them a size of zero. */
13233 TYPE_STUB (type) = 1;
13234 }
13235 else
13236 TYPE_STUB_SUPPORTED (type) = 1;
13237
13238 if (die_is_declaration (die, cu))
13239 TYPE_STUB (type) = 1;
13240 else if (attr == NULL && die->child == NULL
13241 && producer_is_realview (cu->producer))
13242 /* RealView does not output the required DW_AT_declaration
13243 on incomplete types. */
13244 TYPE_STUB (type) = 1;
13245
13246 /* We need to add the type field to the die immediately so we don't
13247 infinitely recurse when dealing with pointers to the structure
13248 type within the structure itself. */
13249 set_die_type (die, type, cu);
13250
13251 /* set_die_type should be already done. */
13252 set_descriptive_type (type, die, cu);
13253
13254 return type;
13255 }
13256
13257 /* Finish creating a structure or union type, including filling in
13258 its members and creating a symbol for it. */
13259
13260 static void
13261 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13262 {
13263 struct objfile *objfile = cu->objfile;
13264 struct die_info *child_die;
13265 struct type *type;
13266
13267 type = get_die_type (die, cu);
13268 if (type == NULL)
13269 type = read_structure_type (die, cu);
13270
13271 if (die->child != NULL && ! die_is_declaration (die, cu))
13272 {
13273 struct field_info fi;
13274 VEC (symbolp) *template_args = NULL;
13275 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13276
13277 memset (&fi, 0, sizeof (struct field_info));
13278
13279 child_die = die->child;
13280
13281 while (child_die && child_die->tag)
13282 {
13283 if (child_die->tag == DW_TAG_member
13284 || child_die->tag == DW_TAG_variable)
13285 {
13286 /* NOTE: carlton/2002-11-05: A C++ static data member
13287 should be a DW_TAG_member that is a declaration, but
13288 all versions of G++ as of this writing (so through at
13289 least 3.2.1) incorrectly generate DW_TAG_variable
13290 tags for them instead. */
13291 dwarf2_add_field (&fi, child_die, cu);
13292 }
13293 else if (child_die->tag == DW_TAG_subprogram)
13294 {
13295 /* C++ member function. */
13296 dwarf2_add_member_fn (&fi, child_die, type, cu);
13297 }
13298 else if (child_die->tag == DW_TAG_inheritance)
13299 {
13300 /* C++ base class field. */
13301 dwarf2_add_field (&fi, child_die, cu);
13302 }
13303 else if (child_die->tag == DW_TAG_typedef)
13304 dwarf2_add_typedef (&fi, child_die, cu);
13305 else if (child_die->tag == DW_TAG_template_type_param
13306 || child_die->tag == DW_TAG_template_value_param)
13307 {
13308 struct symbol *arg = new_symbol (child_die, NULL, cu);
13309
13310 if (arg != NULL)
13311 VEC_safe_push (symbolp, template_args, arg);
13312 }
13313
13314 child_die = sibling_die (child_die);
13315 }
13316
13317 /* Attach template arguments to type. */
13318 if (! VEC_empty (symbolp, template_args))
13319 {
13320 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13321 TYPE_N_TEMPLATE_ARGUMENTS (type)
13322 = VEC_length (symbolp, template_args);
13323 TYPE_TEMPLATE_ARGUMENTS (type)
13324 = XOBNEWVEC (&objfile->objfile_obstack,
13325 struct symbol *,
13326 TYPE_N_TEMPLATE_ARGUMENTS (type));
13327 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13328 VEC_address (symbolp, template_args),
13329 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13330 * sizeof (struct symbol *)));
13331 VEC_free (symbolp, template_args);
13332 }
13333
13334 /* Attach fields and member functions to the type. */
13335 if (fi.nfields)
13336 dwarf2_attach_fields_to_type (&fi, type, cu);
13337 if (fi.nfnfields)
13338 {
13339 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13340
13341 /* Get the type which refers to the base class (possibly this
13342 class itself) which contains the vtable pointer for the current
13343 class from the DW_AT_containing_type attribute. This use of
13344 DW_AT_containing_type is a GNU extension. */
13345
13346 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13347 {
13348 struct type *t = die_containing_type (die, cu);
13349
13350 set_type_vptr_basetype (type, t);
13351 if (type == t)
13352 {
13353 int i;
13354
13355 /* Our own class provides vtbl ptr. */
13356 for (i = TYPE_NFIELDS (t) - 1;
13357 i >= TYPE_N_BASECLASSES (t);
13358 --i)
13359 {
13360 const char *fieldname = TYPE_FIELD_NAME (t, i);
13361
13362 if (is_vtable_name (fieldname, cu))
13363 {
13364 set_type_vptr_fieldno (type, i);
13365 break;
13366 }
13367 }
13368
13369 /* Complain if virtual function table field not found. */
13370 if (i < TYPE_N_BASECLASSES (t))
13371 complaint (&symfile_complaints,
13372 _("virtual function table pointer "
13373 "not found when defining class '%s'"),
13374 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13375 "");
13376 }
13377 else
13378 {
13379 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13380 }
13381 }
13382 else if (cu->producer
13383 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13384 {
13385 /* The IBM XLC compiler does not provide direct indication
13386 of the containing type, but the vtable pointer is
13387 always named __vfp. */
13388
13389 int i;
13390
13391 for (i = TYPE_NFIELDS (type) - 1;
13392 i >= TYPE_N_BASECLASSES (type);
13393 --i)
13394 {
13395 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13396 {
13397 set_type_vptr_fieldno (type, i);
13398 set_type_vptr_basetype (type, type);
13399 break;
13400 }
13401 }
13402 }
13403 }
13404
13405 /* Copy fi.typedef_field_list linked list elements content into the
13406 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13407 if (fi.typedef_field_list)
13408 {
13409 int i = fi.typedef_field_list_count;
13410
13411 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13412 TYPE_TYPEDEF_FIELD_ARRAY (type)
13413 = ((struct typedef_field *)
13414 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13415 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13416
13417 /* Reverse the list order to keep the debug info elements order. */
13418 while (--i >= 0)
13419 {
13420 struct typedef_field *dest, *src;
13421
13422 dest = &TYPE_TYPEDEF_FIELD (type, i);
13423 src = &fi.typedef_field_list->field;
13424 fi.typedef_field_list = fi.typedef_field_list->next;
13425 *dest = *src;
13426 }
13427 }
13428
13429 do_cleanups (back_to);
13430
13431 if (HAVE_CPLUS_STRUCT (type))
13432 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13433 }
13434
13435 quirk_gcc_member_function_pointer (type, objfile);
13436
13437 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13438 snapshots) has been known to create a die giving a declaration
13439 for a class that has, as a child, a die giving a definition for a
13440 nested class. So we have to process our children even if the
13441 current die is a declaration. Normally, of course, a declaration
13442 won't have any children at all. */
13443
13444 child_die = die->child;
13445
13446 while (child_die != NULL && child_die->tag)
13447 {
13448 if (child_die->tag == DW_TAG_member
13449 || child_die->tag == DW_TAG_variable
13450 || child_die->tag == DW_TAG_inheritance
13451 || child_die->tag == DW_TAG_template_value_param
13452 || child_die->tag == DW_TAG_template_type_param)
13453 {
13454 /* Do nothing. */
13455 }
13456 else
13457 process_die (child_die, cu);
13458
13459 child_die = sibling_die (child_die);
13460 }
13461
13462 /* Do not consider external references. According to the DWARF standard,
13463 these DIEs are identified by the fact that they have no byte_size
13464 attribute, and a declaration attribute. */
13465 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13466 || !die_is_declaration (die, cu))
13467 new_symbol (die, type, cu);
13468 }
13469
13470 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13471 update TYPE using some information only available in DIE's children. */
13472
13473 static void
13474 update_enumeration_type_from_children (struct die_info *die,
13475 struct type *type,
13476 struct dwarf2_cu *cu)
13477 {
13478 struct obstack obstack;
13479 struct die_info *child_die;
13480 int unsigned_enum = 1;
13481 int flag_enum = 1;
13482 ULONGEST mask = 0;
13483 struct cleanup *old_chain;
13484
13485 obstack_init (&obstack);
13486 old_chain = make_cleanup_obstack_free (&obstack);
13487
13488 for (child_die = die->child;
13489 child_die != NULL && child_die->tag;
13490 child_die = sibling_die (child_die))
13491 {
13492 struct attribute *attr;
13493 LONGEST value;
13494 const gdb_byte *bytes;
13495 struct dwarf2_locexpr_baton *baton;
13496 const char *name;
13497
13498 if (child_die->tag != DW_TAG_enumerator)
13499 continue;
13500
13501 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13502 if (attr == NULL)
13503 continue;
13504
13505 name = dwarf2_name (child_die, cu);
13506 if (name == NULL)
13507 name = "<anonymous enumerator>";
13508
13509 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13510 &value, &bytes, &baton);
13511 if (value < 0)
13512 {
13513 unsigned_enum = 0;
13514 flag_enum = 0;
13515 }
13516 else if ((mask & value) != 0)
13517 flag_enum = 0;
13518 else
13519 mask |= value;
13520
13521 /* If we already know that the enum type is neither unsigned, nor
13522 a flag type, no need to look at the rest of the enumerates. */
13523 if (!unsigned_enum && !flag_enum)
13524 break;
13525 }
13526
13527 if (unsigned_enum)
13528 TYPE_UNSIGNED (type) = 1;
13529 if (flag_enum)
13530 TYPE_FLAG_ENUM (type) = 1;
13531
13532 do_cleanups (old_chain);
13533 }
13534
13535 /* Given a DW_AT_enumeration_type die, set its type. We do not
13536 complete the type's fields yet, or create any symbols. */
13537
13538 static struct type *
13539 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13540 {
13541 struct objfile *objfile = cu->objfile;
13542 struct type *type;
13543 struct attribute *attr;
13544 const char *name;
13545
13546 /* If the definition of this type lives in .debug_types, read that type.
13547 Don't follow DW_AT_specification though, that will take us back up
13548 the chain and we want to go down. */
13549 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13550 if (attr)
13551 {
13552 type = get_DW_AT_signature_type (die, attr, cu);
13553
13554 /* The type's CU may not be the same as CU.
13555 Ensure TYPE is recorded with CU in die_type_hash. */
13556 return set_die_type (die, type, cu);
13557 }
13558
13559 type = alloc_type (objfile);
13560
13561 TYPE_CODE (type) = TYPE_CODE_ENUM;
13562 name = dwarf2_full_name (NULL, die, cu);
13563 if (name != NULL)
13564 TYPE_TAG_NAME (type) = name;
13565
13566 attr = dwarf2_attr (die, DW_AT_type, cu);
13567 if (attr != NULL)
13568 {
13569 struct type *underlying_type = die_type (die, cu);
13570
13571 TYPE_TARGET_TYPE (type) = underlying_type;
13572 }
13573
13574 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13575 if (attr)
13576 {
13577 TYPE_LENGTH (type) = DW_UNSND (attr);
13578 }
13579 else
13580 {
13581 TYPE_LENGTH (type) = 0;
13582 }
13583
13584 /* The enumeration DIE can be incomplete. In Ada, any type can be
13585 declared as private in the package spec, and then defined only
13586 inside the package body. Such types are known as Taft Amendment
13587 Types. When another package uses such a type, an incomplete DIE
13588 may be generated by the compiler. */
13589 if (die_is_declaration (die, cu))
13590 TYPE_STUB (type) = 1;
13591
13592 /* Finish the creation of this type by using the enum's children.
13593 We must call this even when the underlying type has been provided
13594 so that we can determine if we're looking at a "flag" enum. */
13595 update_enumeration_type_from_children (die, type, cu);
13596
13597 /* If this type has an underlying type that is not a stub, then we
13598 may use its attributes. We always use the "unsigned" attribute
13599 in this situation, because ordinarily we guess whether the type
13600 is unsigned -- but the guess can be wrong and the underlying type
13601 can tell us the reality. However, we defer to a local size
13602 attribute if one exists, because this lets the compiler override
13603 the underlying type if needed. */
13604 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13605 {
13606 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13607 if (TYPE_LENGTH (type) == 0)
13608 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13609 }
13610
13611 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13612
13613 return set_die_type (die, type, cu);
13614 }
13615
13616 /* Given a pointer to a die which begins an enumeration, process all
13617 the dies that define the members of the enumeration, and create the
13618 symbol for the enumeration type.
13619
13620 NOTE: We reverse the order of the element list. */
13621
13622 static void
13623 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13624 {
13625 struct type *this_type;
13626
13627 this_type = get_die_type (die, cu);
13628 if (this_type == NULL)
13629 this_type = read_enumeration_type (die, cu);
13630
13631 if (die->child != NULL)
13632 {
13633 struct die_info *child_die;
13634 struct symbol *sym;
13635 struct field *fields = NULL;
13636 int num_fields = 0;
13637 const char *name;
13638
13639 child_die = die->child;
13640 while (child_die && child_die->tag)
13641 {
13642 if (child_die->tag != DW_TAG_enumerator)
13643 {
13644 process_die (child_die, cu);
13645 }
13646 else
13647 {
13648 name = dwarf2_name (child_die, cu);
13649 if (name)
13650 {
13651 sym = new_symbol (child_die, this_type, cu);
13652
13653 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13654 {
13655 fields = (struct field *)
13656 xrealloc (fields,
13657 (num_fields + DW_FIELD_ALLOC_CHUNK)
13658 * sizeof (struct field));
13659 }
13660
13661 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13662 FIELD_TYPE (fields[num_fields]) = NULL;
13663 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13664 FIELD_BITSIZE (fields[num_fields]) = 0;
13665
13666 num_fields++;
13667 }
13668 }
13669
13670 child_die = sibling_die (child_die);
13671 }
13672
13673 if (num_fields)
13674 {
13675 TYPE_NFIELDS (this_type) = num_fields;
13676 TYPE_FIELDS (this_type) = (struct field *)
13677 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13678 memcpy (TYPE_FIELDS (this_type), fields,
13679 sizeof (struct field) * num_fields);
13680 xfree (fields);
13681 }
13682 }
13683
13684 /* If we are reading an enum from a .debug_types unit, and the enum
13685 is a declaration, and the enum is not the signatured type in the
13686 unit, then we do not want to add a symbol for it. Adding a
13687 symbol would in some cases obscure the true definition of the
13688 enum, giving users an incomplete type when the definition is
13689 actually available. Note that we do not want to do this for all
13690 enums which are just declarations, because C++0x allows forward
13691 enum declarations. */
13692 if (cu->per_cu->is_debug_types
13693 && die_is_declaration (die, cu))
13694 {
13695 struct signatured_type *sig_type;
13696
13697 sig_type = (struct signatured_type *) cu->per_cu;
13698 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13699 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13700 return;
13701 }
13702
13703 new_symbol (die, this_type, cu);
13704 }
13705
13706 /* Extract all information from a DW_TAG_array_type DIE and put it in
13707 the DIE's type field. For now, this only handles one dimensional
13708 arrays. */
13709
13710 static struct type *
13711 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13712 {
13713 struct objfile *objfile = cu->objfile;
13714 struct die_info *child_die;
13715 struct type *type;
13716 struct type *element_type, *range_type, *index_type;
13717 struct type **range_types = NULL;
13718 struct attribute *attr;
13719 int ndim = 0;
13720 struct cleanup *back_to;
13721 const char *name;
13722 unsigned int bit_stride = 0;
13723
13724 element_type = die_type (die, cu);
13725
13726 /* The die_type call above may have already set the type for this DIE. */
13727 type = get_die_type (die, cu);
13728 if (type)
13729 return type;
13730
13731 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13732 if (attr != NULL)
13733 bit_stride = DW_UNSND (attr) * 8;
13734
13735 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13736 if (attr != NULL)
13737 bit_stride = DW_UNSND (attr);
13738
13739 /* Irix 6.2 native cc creates array types without children for
13740 arrays with unspecified length. */
13741 if (die->child == NULL)
13742 {
13743 index_type = objfile_type (objfile)->builtin_int;
13744 range_type = create_static_range_type (NULL, index_type, 0, -1);
13745 type = create_array_type_with_stride (NULL, element_type, range_type,
13746 bit_stride);
13747 return set_die_type (die, type, cu);
13748 }
13749
13750 back_to = make_cleanup (null_cleanup, NULL);
13751 child_die = die->child;
13752 while (child_die && child_die->tag)
13753 {
13754 if (child_die->tag == DW_TAG_subrange_type)
13755 {
13756 struct type *child_type = read_type_die (child_die, cu);
13757
13758 if (child_type != NULL)
13759 {
13760 /* The range type was succesfully read. Save it for the
13761 array type creation. */
13762 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13763 {
13764 range_types = (struct type **)
13765 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13766 * sizeof (struct type *));
13767 if (ndim == 0)
13768 make_cleanup (free_current_contents, &range_types);
13769 }
13770 range_types[ndim++] = child_type;
13771 }
13772 }
13773 child_die = sibling_die (child_die);
13774 }
13775
13776 /* Dwarf2 dimensions are output from left to right, create the
13777 necessary array types in backwards order. */
13778
13779 type = element_type;
13780
13781 if (read_array_order (die, cu) == DW_ORD_col_major)
13782 {
13783 int i = 0;
13784
13785 while (i < ndim)
13786 type = create_array_type_with_stride (NULL, type, range_types[i++],
13787 bit_stride);
13788 }
13789 else
13790 {
13791 while (ndim-- > 0)
13792 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13793 bit_stride);
13794 }
13795
13796 /* Understand Dwarf2 support for vector types (like they occur on
13797 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13798 array type. This is not part of the Dwarf2/3 standard yet, but a
13799 custom vendor extension. The main difference between a regular
13800 array and the vector variant is that vectors are passed by value
13801 to functions. */
13802 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13803 if (attr)
13804 make_vector_type (type);
13805
13806 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13807 implementation may choose to implement triple vectors using this
13808 attribute. */
13809 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13810 if (attr)
13811 {
13812 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13813 TYPE_LENGTH (type) = DW_UNSND (attr);
13814 else
13815 complaint (&symfile_complaints,
13816 _("DW_AT_byte_size for array type smaller "
13817 "than the total size of elements"));
13818 }
13819
13820 name = dwarf2_name (die, cu);
13821 if (name)
13822 TYPE_NAME (type) = name;
13823
13824 /* Install the type in the die. */
13825 set_die_type (die, type, cu);
13826
13827 /* set_die_type should be already done. */
13828 set_descriptive_type (type, die, cu);
13829
13830 do_cleanups (back_to);
13831
13832 return type;
13833 }
13834
13835 static enum dwarf_array_dim_ordering
13836 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13837 {
13838 struct attribute *attr;
13839
13840 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13841
13842 if (attr)
13843 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13844
13845 /* GNU F77 is a special case, as at 08/2004 array type info is the
13846 opposite order to the dwarf2 specification, but data is still
13847 laid out as per normal fortran.
13848
13849 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13850 version checking. */
13851
13852 if (cu->language == language_fortran
13853 && cu->producer && strstr (cu->producer, "GNU F77"))
13854 {
13855 return DW_ORD_row_major;
13856 }
13857
13858 switch (cu->language_defn->la_array_ordering)
13859 {
13860 case array_column_major:
13861 return DW_ORD_col_major;
13862 case array_row_major:
13863 default:
13864 return DW_ORD_row_major;
13865 };
13866 }
13867
13868 /* Extract all information from a DW_TAG_set_type DIE and put it in
13869 the DIE's type field. */
13870
13871 static struct type *
13872 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13873 {
13874 struct type *domain_type, *set_type;
13875 struct attribute *attr;
13876
13877 domain_type = die_type (die, cu);
13878
13879 /* The die_type call above may have already set the type for this DIE. */
13880 set_type = get_die_type (die, cu);
13881 if (set_type)
13882 return set_type;
13883
13884 set_type = create_set_type (NULL, domain_type);
13885
13886 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13887 if (attr)
13888 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13889
13890 return set_die_type (die, set_type, cu);
13891 }
13892
13893 /* A helper for read_common_block that creates a locexpr baton.
13894 SYM is the symbol which we are marking as computed.
13895 COMMON_DIE is the DIE for the common block.
13896 COMMON_LOC is the location expression attribute for the common
13897 block itself.
13898 MEMBER_LOC is the location expression attribute for the particular
13899 member of the common block that we are processing.
13900 CU is the CU from which the above come. */
13901
13902 static void
13903 mark_common_block_symbol_computed (struct symbol *sym,
13904 struct die_info *common_die,
13905 struct attribute *common_loc,
13906 struct attribute *member_loc,
13907 struct dwarf2_cu *cu)
13908 {
13909 struct objfile *objfile = dwarf2_per_objfile->objfile;
13910 struct dwarf2_locexpr_baton *baton;
13911 gdb_byte *ptr;
13912 unsigned int cu_off;
13913 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13914 LONGEST offset = 0;
13915
13916 gdb_assert (common_loc && member_loc);
13917 gdb_assert (attr_form_is_block (common_loc));
13918 gdb_assert (attr_form_is_block (member_loc)
13919 || attr_form_is_constant (member_loc));
13920
13921 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13922 baton->per_cu = cu->per_cu;
13923 gdb_assert (baton->per_cu);
13924
13925 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13926
13927 if (attr_form_is_constant (member_loc))
13928 {
13929 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13930 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13931 }
13932 else
13933 baton->size += DW_BLOCK (member_loc)->size;
13934
13935 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
13936 baton->data = ptr;
13937
13938 *ptr++ = DW_OP_call4;
13939 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13940 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13941 ptr += 4;
13942
13943 if (attr_form_is_constant (member_loc))
13944 {
13945 *ptr++ = DW_OP_addr;
13946 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13947 ptr += cu->header.addr_size;
13948 }
13949 else
13950 {
13951 /* We have to copy the data here, because DW_OP_call4 will only
13952 use a DW_AT_location attribute. */
13953 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13954 ptr += DW_BLOCK (member_loc)->size;
13955 }
13956
13957 *ptr++ = DW_OP_plus;
13958 gdb_assert (ptr - baton->data == baton->size);
13959
13960 SYMBOL_LOCATION_BATON (sym) = baton;
13961 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13962 }
13963
13964 /* Create appropriate locally-scoped variables for all the
13965 DW_TAG_common_block entries. Also create a struct common_block
13966 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13967 is used to sepate the common blocks name namespace from regular
13968 variable names. */
13969
13970 static void
13971 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13972 {
13973 struct attribute *attr;
13974
13975 attr = dwarf2_attr (die, DW_AT_location, cu);
13976 if (attr)
13977 {
13978 /* Support the .debug_loc offsets. */
13979 if (attr_form_is_block (attr))
13980 {
13981 /* Ok. */
13982 }
13983 else if (attr_form_is_section_offset (attr))
13984 {
13985 dwarf2_complex_location_expr_complaint ();
13986 attr = NULL;
13987 }
13988 else
13989 {
13990 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13991 "common block member");
13992 attr = NULL;
13993 }
13994 }
13995
13996 if (die->child != NULL)
13997 {
13998 struct objfile *objfile = cu->objfile;
13999 struct die_info *child_die;
14000 size_t n_entries = 0, size;
14001 struct common_block *common_block;
14002 struct symbol *sym;
14003
14004 for (child_die = die->child;
14005 child_die && child_die->tag;
14006 child_die = sibling_die (child_die))
14007 ++n_entries;
14008
14009 size = (sizeof (struct common_block)
14010 + (n_entries - 1) * sizeof (struct symbol *));
14011 common_block
14012 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14013 size);
14014 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14015 common_block->n_entries = 0;
14016
14017 for (child_die = die->child;
14018 child_die && child_die->tag;
14019 child_die = sibling_die (child_die))
14020 {
14021 /* Create the symbol in the DW_TAG_common_block block in the current
14022 symbol scope. */
14023 sym = new_symbol (child_die, NULL, cu);
14024 if (sym != NULL)
14025 {
14026 struct attribute *member_loc;
14027
14028 common_block->contents[common_block->n_entries++] = sym;
14029
14030 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14031 cu);
14032 if (member_loc)
14033 {
14034 /* GDB has handled this for a long time, but it is
14035 not specified by DWARF. It seems to have been
14036 emitted by gfortran at least as recently as:
14037 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14038 complaint (&symfile_complaints,
14039 _("Variable in common block has "
14040 "DW_AT_data_member_location "
14041 "- DIE at 0x%x [in module %s]"),
14042 child_die->offset.sect_off,
14043 objfile_name (cu->objfile));
14044
14045 if (attr_form_is_section_offset (member_loc))
14046 dwarf2_complex_location_expr_complaint ();
14047 else if (attr_form_is_constant (member_loc)
14048 || attr_form_is_block (member_loc))
14049 {
14050 if (attr)
14051 mark_common_block_symbol_computed (sym, die, attr,
14052 member_loc, cu);
14053 }
14054 else
14055 dwarf2_complex_location_expr_complaint ();
14056 }
14057 }
14058 }
14059
14060 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14061 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14062 }
14063 }
14064
14065 /* Create a type for a C++ namespace. */
14066
14067 static struct type *
14068 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14069 {
14070 struct objfile *objfile = cu->objfile;
14071 const char *previous_prefix, *name;
14072 int is_anonymous;
14073 struct type *type;
14074
14075 /* For extensions, reuse the type of the original namespace. */
14076 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14077 {
14078 struct die_info *ext_die;
14079 struct dwarf2_cu *ext_cu = cu;
14080
14081 ext_die = dwarf2_extension (die, &ext_cu);
14082 type = read_type_die (ext_die, ext_cu);
14083
14084 /* EXT_CU may not be the same as CU.
14085 Ensure TYPE is recorded with CU in die_type_hash. */
14086 return set_die_type (die, type, cu);
14087 }
14088
14089 name = namespace_name (die, &is_anonymous, cu);
14090
14091 /* Now build the name of the current namespace. */
14092
14093 previous_prefix = determine_prefix (die, cu);
14094 if (previous_prefix[0] != '\0')
14095 name = typename_concat (&objfile->objfile_obstack,
14096 previous_prefix, name, 0, cu);
14097
14098 /* Create the type. */
14099 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14100 objfile);
14101 TYPE_NAME (type) = name;
14102 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14103
14104 return set_die_type (die, type, cu);
14105 }
14106
14107 /* Read a namespace scope. */
14108
14109 static void
14110 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14111 {
14112 struct objfile *objfile = cu->objfile;
14113 int is_anonymous;
14114
14115 /* Add a symbol associated to this if we haven't seen the namespace
14116 before. Also, add a using directive if it's an anonymous
14117 namespace. */
14118
14119 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14120 {
14121 struct type *type;
14122
14123 type = read_type_die (die, cu);
14124 new_symbol (die, type, cu);
14125
14126 namespace_name (die, &is_anonymous, cu);
14127 if (is_anonymous)
14128 {
14129 const char *previous_prefix = determine_prefix (die, cu);
14130
14131 add_using_directive (using_directives (cu->language),
14132 previous_prefix, TYPE_NAME (type), NULL,
14133 NULL, NULL, 0, &objfile->objfile_obstack);
14134 }
14135 }
14136
14137 if (die->child != NULL)
14138 {
14139 struct die_info *child_die = die->child;
14140
14141 while (child_die && child_die->tag)
14142 {
14143 process_die (child_die, cu);
14144 child_die = sibling_die (child_die);
14145 }
14146 }
14147 }
14148
14149 /* Read a Fortran module as type. This DIE can be only a declaration used for
14150 imported module. Still we need that type as local Fortran "use ... only"
14151 declaration imports depend on the created type in determine_prefix. */
14152
14153 static struct type *
14154 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14155 {
14156 struct objfile *objfile = cu->objfile;
14157 const char *module_name;
14158 struct type *type;
14159
14160 module_name = dwarf2_name (die, cu);
14161 if (!module_name)
14162 complaint (&symfile_complaints,
14163 _("DW_TAG_module has no name, offset 0x%x"),
14164 die->offset.sect_off);
14165 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14166
14167 /* determine_prefix uses TYPE_TAG_NAME. */
14168 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14169
14170 return set_die_type (die, type, cu);
14171 }
14172
14173 /* Read a Fortran module. */
14174
14175 static void
14176 read_module (struct die_info *die, struct dwarf2_cu *cu)
14177 {
14178 struct die_info *child_die = die->child;
14179 struct type *type;
14180
14181 type = read_type_die (die, cu);
14182 new_symbol (die, type, cu);
14183
14184 while (child_die && child_die->tag)
14185 {
14186 process_die (child_die, cu);
14187 child_die = sibling_die (child_die);
14188 }
14189 }
14190
14191 /* Return the name of the namespace represented by DIE. Set
14192 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14193 namespace. */
14194
14195 static const char *
14196 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14197 {
14198 struct die_info *current_die;
14199 const char *name = NULL;
14200
14201 /* Loop through the extensions until we find a name. */
14202
14203 for (current_die = die;
14204 current_die != NULL;
14205 current_die = dwarf2_extension (die, &cu))
14206 {
14207 /* We don't use dwarf2_name here so that we can detect the absence
14208 of a name -> anonymous namespace. */
14209 name = dwarf2_string_attr (die, DW_AT_name, cu);
14210
14211 if (name != NULL)
14212 break;
14213 }
14214
14215 /* Is it an anonymous namespace? */
14216
14217 *is_anonymous = (name == NULL);
14218 if (*is_anonymous)
14219 name = CP_ANONYMOUS_NAMESPACE_STR;
14220
14221 return name;
14222 }
14223
14224 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14225 the user defined type vector. */
14226
14227 static struct type *
14228 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14229 {
14230 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14231 struct comp_unit_head *cu_header = &cu->header;
14232 struct type *type;
14233 struct attribute *attr_byte_size;
14234 struct attribute *attr_address_class;
14235 int byte_size, addr_class;
14236 struct type *target_type;
14237
14238 target_type = die_type (die, cu);
14239
14240 /* The die_type call above may have already set the type for this DIE. */
14241 type = get_die_type (die, cu);
14242 if (type)
14243 return type;
14244
14245 type = lookup_pointer_type (target_type);
14246
14247 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14248 if (attr_byte_size)
14249 byte_size = DW_UNSND (attr_byte_size);
14250 else
14251 byte_size = cu_header->addr_size;
14252
14253 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14254 if (attr_address_class)
14255 addr_class = DW_UNSND (attr_address_class);
14256 else
14257 addr_class = DW_ADDR_none;
14258
14259 /* If the pointer size or address class is different than the
14260 default, create a type variant marked as such and set the
14261 length accordingly. */
14262 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14263 {
14264 if (gdbarch_address_class_type_flags_p (gdbarch))
14265 {
14266 int type_flags;
14267
14268 type_flags = gdbarch_address_class_type_flags
14269 (gdbarch, byte_size, addr_class);
14270 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14271 == 0);
14272 type = make_type_with_address_space (type, type_flags);
14273 }
14274 else if (TYPE_LENGTH (type) != byte_size)
14275 {
14276 complaint (&symfile_complaints,
14277 _("invalid pointer size %d"), byte_size);
14278 }
14279 else
14280 {
14281 /* Should we also complain about unhandled address classes? */
14282 }
14283 }
14284
14285 TYPE_LENGTH (type) = byte_size;
14286 return set_die_type (die, type, cu);
14287 }
14288
14289 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14290 the user defined type vector. */
14291
14292 static struct type *
14293 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14294 {
14295 struct type *type;
14296 struct type *to_type;
14297 struct type *domain;
14298
14299 to_type = die_type (die, cu);
14300 domain = die_containing_type (die, cu);
14301
14302 /* The calls above may have already set the type for this DIE. */
14303 type = get_die_type (die, cu);
14304 if (type)
14305 return type;
14306
14307 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14308 type = lookup_methodptr_type (to_type);
14309 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14310 {
14311 struct type *new_type = alloc_type (cu->objfile);
14312
14313 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14314 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14315 TYPE_VARARGS (to_type));
14316 type = lookup_methodptr_type (new_type);
14317 }
14318 else
14319 type = lookup_memberptr_type (to_type, domain);
14320
14321 return set_die_type (die, type, cu);
14322 }
14323
14324 /* Extract all information from a DW_TAG_reference_type DIE and add to
14325 the user defined type vector. */
14326
14327 static struct type *
14328 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14329 {
14330 struct comp_unit_head *cu_header = &cu->header;
14331 struct type *type, *target_type;
14332 struct attribute *attr;
14333
14334 target_type = die_type (die, cu);
14335
14336 /* The die_type call above may have already set the type for this DIE. */
14337 type = get_die_type (die, cu);
14338 if (type)
14339 return type;
14340
14341 type = lookup_reference_type (target_type);
14342 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14343 if (attr)
14344 {
14345 TYPE_LENGTH (type) = DW_UNSND (attr);
14346 }
14347 else
14348 {
14349 TYPE_LENGTH (type) = cu_header->addr_size;
14350 }
14351 return set_die_type (die, type, cu);
14352 }
14353
14354 /* Add the given cv-qualifiers to the element type of the array. GCC
14355 outputs DWARF type qualifiers that apply to an array, not the
14356 element type. But GDB relies on the array element type to carry
14357 the cv-qualifiers. This mimics section 6.7.3 of the C99
14358 specification. */
14359
14360 static struct type *
14361 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14362 struct type *base_type, int cnst, int voltl)
14363 {
14364 struct type *el_type, *inner_array;
14365
14366 base_type = copy_type (base_type);
14367 inner_array = base_type;
14368
14369 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14370 {
14371 TYPE_TARGET_TYPE (inner_array) =
14372 copy_type (TYPE_TARGET_TYPE (inner_array));
14373 inner_array = TYPE_TARGET_TYPE (inner_array);
14374 }
14375
14376 el_type = TYPE_TARGET_TYPE (inner_array);
14377 cnst |= TYPE_CONST (el_type);
14378 voltl |= TYPE_VOLATILE (el_type);
14379 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14380
14381 return set_die_type (die, base_type, cu);
14382 }
14383
14384 static struct type *
14385 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14386 {
14387 struct type *base_type, *cv_type;
14388
14389 base_type = die_type (die, cu);
14390
14391 /* The die_type call above may have already set the type for this DIE. */
14392 cv_type = get_die_type (die, cu);
14393 if (cv_type)
14394 return cv_type;
14395
14396 /* In case the const qualifier is applied to an array type, the element type
14397 is so qualified, not the array type (section 6.7.3 of C99). */
14398 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14399 return add_array_cv_type (die, cu, base_type, 1, 0);
14400
14401 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14402 return set_die_type (die, cv_type, cu);
14403 }
14404
14405 static struct type *
14406 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14407 {
14408 struct type *base_type, *cv_type;
14409
14410 base_type = die_type (die, cu);
14411
14412 /* The die_type call above may have already set the type for this DIE. */
14413 cv_type = get_die_type (die, cu);
14414 if (cv_type)
14415 return cv_type;
14416
14417 /* In case the volatile qualifier is applied to an array type, the
14418 element type is so qualified, not the array type (section 6.7.3
14419 of C99). */
14420 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14421 return add_array_cv_type (die, cu, base_type, 0, 1);
14422
14423 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14424 return set_die_type (die, cv_type, cu);
14425 }
14426
14427 /* Handle DW_TAG_restrict_type. */
14428
14429 static struct type *
14430 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14431 {
14432 struct type *base_type, *cv_type;
14433
14434 base_type = die_type (die, cu);
14435
14436 /* The die_type call above may have already set the type for this DIE. */
14437 cv_type = get_die_type (die, cu);
14438 if (cv_type)
14439 return cv_type;
14440
14441 cv_type = make_restrict_type (base_type);
14442 return set_die_type (die, cv_type, cu);
14443 }
14444
14445 /* Handle DW_TAG_atomic_type. */
14446
14447 static struct type *
14448 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14449 {
14450 struct type *base_type, *cv_type;
14451
14452 base_type = die_type (die, cu);
14453
14454 /* The die_type call above may have already set the type for this DIE. */
14455 cv_type = get_die_type (die, cu);
14456 if (cv_type)
14457 return cv_type;
14458
14459 cv_type = make_atomic_type (base_type);
14460 return set_die_type (die, cv_type, cu);
14461 }
14462
14463 /* Extract all information from a DW_TAG_string_type DIE and add to
14464 the user defined type vector. It isn't really a user defined type,
14465 but it behaves like one, with other DIE's using an AT_user_def_type
14466 attribute to reference it. */
14467
14468 static struct type *
14469 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14470 {
14471 struct objfile *objfile = cu->objfile;
14472 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14473 struct type *type, *range_type, *index_type, *char_type;
14474 struct attribute *attr;
14475 unsigned int length;
14476
14477 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14478 if (attr)
14479 {
14480 length = DW_UNSND (attr);
14481 }
14482 else
14483 {
14484 /* Check for the DW_AT_byte_size attribute. */
14485 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14486 if (attr)
14487 {
14488 length = DW_UNSND (attr);
14489 }
14490 else
14491 {
14492 length = 1;
14493 }
14494 }
14495
14496 index_type = objfile_type (objfile)->builtin_int;
14497 range_type = create_static_range_type (NULL, index_type, 1, length);
14498 char_type = language_string_char_type (cu->language_defn, gdbarch);
14499 type = create_string_type (NULL, char_type, range_type);
14500
14501 return set_die_type (die, type, cu);
14502 }
14503
14504 /* Assuming that DIE corresponds to a function, returns nonzero
14505 if the function is prototyped. */
14506
14507 static int
14508 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14509 {
14510 struct attribute *attr;
14511
14512 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14513 if (attr && (DW_UNSND (attr) != 0))
14514 return 1;
14515
14516 /* The DWARF standard implies that the DW_AT_prototyped attribute
14517 is only meaninful for C, but the concept also extends to other
14518 languages that allow unprototyped functions (Eg: Objective C).
14519 For all other languages, assume that functions are always
14520 prototyped. */
14521 if (cu->language != language_c
14522 && cu->language != language_objc
14523 && cu->language != language_opencl)
14524 return 1;
14525
14526 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14527 prototyped and unprototyped functions; default to prototyped,
14528 since that is more common in modern code (and RealView warns
14529 about unprototyped functions). */
14530 if (producer_is_realview (cu->producer))
14531 return 1;
14532
14533 return 0;
14534 }
14535
14536 /* Handle DIES due to C code like:
14537
14538 struct foo
14539 {
14540 int (*funcp)(int a, long l);
14541 int b;
14542 };
14543
14544 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14545
14546 static struct type *
14547 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14548 {
14549 struct objfile *objfile = cu->objfile;
14550 struct type *type; /* Type that this function returns. */
14551 struct type *ftype; /* Function that returns above type. */
14552 struct attribute *attr;
14553
14554 type = die_type (die, cu);
14555
14556 /* The die_type call above may have already set the type for this DIE. */
14557 ftype = get_die_type (die, cu);
14558 if (ftype)
14559 return ftype;
14560
14561 ftype = lookup_function_type (type);
14562
14563 if (prototyped_function_p (die, cu))
14564 TYPE_PROTOTYPED (ftype) = 1;
14565
14566 /* Store the calling convention in the type if it's available in
14567 the subroutine die. Otherwise set the calling convention to
14568 the default value DW_CC_normal. */
14569 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14570 if (attr)
14571 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14572 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14573 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14574 else
14575 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14576
14577 /* Record whether the function returns normally to its caller or not
14578 if the DWARF producer set that information. */
14579 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14580 if (attr && (DW_UNSND (attr) != 0))
14581 TYPE_NO_RETURN (ftype) = 1;
14582
14583 /* We need to add the subroutine type to the die immediately so
14584 we don't infinitely recurse when dealing with parameters
14585 declared as the same subroutine type. */
14586 set_die_type (die, ftype, cu);
14587
14588 if (die->child != NULL)
14589 {
14590 struct type *void_type = objfile_type (objfile)->builtin_void;
14591 struct die_info *child_die;
14592 int nparams, iparams;
14593
14594 /* Count the number of parameters.
14595 FIXME: GDB currently ignores vararg functions, but knows about
14596 vararg member functions. */
14597 nparams = 0;
14598 child_die = die->child;
14599 while (child_die && child_die->tag)
14600 {
14601 if (child_die->tag == DW_TAG_formal_parameter)
14602 nparams++;
14603 else if (child_die->tag == DW_TAG_unspecified_parameters)
14604 TYPE_VARARGS (ftype) = 1;
14605 child_die = sibling_die (child_die);
14606 }
14607
14608 /* Allocate storage for parameters and fill them in. */
14609 TYPE_NFIELDS (ftype) = nparams;
14610 TYPE_FIELDS (ftype) = (struct field *)
14611 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14612
14613 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14614 even if we error out during the parameters reading below. */
14615 for (iparams = 0; iparams < nparams; iparams++)
14616 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14617
14618 iparams = 0;
14619 child_die = die->child;
14620 while (child_die && child_die->tag)
14621 {
14622 if (child_die->tag == DW_TAG_formal_parameter)
14623 {
14624 struct type *arg_type;
14625
14626 /* DWARF version 2 has no clean way to discern C++
14627 static and non-static member functions. G++ helps
14628 GDB by marking the first parameter for non-static
14629 member functions (which is the this pointer) as
14630 artificial. We pass this information to
14631 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14632
14633 DWARF version 3 added DW_AT_object_pointer, which GCC
14634 4.5 does not yet generate. */
14635 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14636 if (attr)
14637 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14638 else
14639 {
14640 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14641
14642 /* GCC/43521: In java, the formal parameter
14643 "this" is sometimes not marked with DW_AT_artificial. */
14644 if (cu->language == language_java)
14645 {
14646 const char *name = dwarf2_name (child_die, cu);
14647
14648 if (name && !strcmp (name, "this"))
14649 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14650 }
14651 }
14652 arg_type = die_type (child_die, cu);
14653
14654 /* RealView does not mark THIS as const, which the testsuite
14655 expects. GCC marks THIS as const in method definitions,
14656 but not in the class specifications (GCC PR 43053). */
14657 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14658 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14659 {
14660 int is_this = 0;
14661 struct dwarf2_cu *arg_cu = cu;
14662 const char *name = dwarf2_name (child_die, cu);
14663
14664 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14665 if (attr)
14666 {
14667 /* If the compiler emits this, use it. */
14668 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14669 is_this = 1;
14670 }
14671 else if (name && strcmp (name, "this") == 0)
14672 /* Function definitions will have the argument names. */
14673 is_this = 1;
14674 else if (name == NULL && iparams == 0)
14675 /* Declarations may not have the names, so like
14676 elsewhere in GDB, assume an artificial first
14677 argument is "this". */
14678 is_this = 1;
14679
14680 if (is_this)
14681 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14682 arg_type, 0);
14683 }
14684
14685 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14686 iparams++;
14687 }
14688 child_die = sibling_die (child_die);
14689 }
14690 }
14691
14692 return ftype;
14693 }
14694
14695 static struct type *
14696 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14697 {
14698 struct objfile *objfile = cu->objfile;
14699 const char *name = NULL;
14700 struct type *this_type, *target_type;
14701
14702 name = dwarf2_full_name (NULL, die, cu);
14703 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14704 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14705 TYPE_NAME (this_type) = name;
14706 set_die_type (die, this_type, cu);
14707 target_type = die_type (die, cu);
14708 if (target_type != this_type)
14709 TYPE_TARGET_TYPE (this_type) = target_type;
14710 else
14711 {
14712 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14713 spec and cause infinite loops in GDB. */
14714 complaint (&symfile_complaints,
14715 _("Self-referential DW_TAG_typedef "
14716 "- DIE at 0x%x [in module %s]"),
14717 die->offset.sect_off, objfile_name (objfile));
14718 TYPE_TARGET_TYPE (this_type) = NULL;
14719 }
14720 return this_type;
14721 }
14722
14723 /* Find a representation of a given base type and install
14724 it in the TYPE field of the die. */
14725
14726 static struct type *
14727 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14728 {
14729 struct objfile *objfile = cu->objfile;
14730 struct type *type;
14731 struct attribute *attr;
14732 int encoding = 0, size = 0;
14733 const char *name;
14734 enum type_code code = TYPE_CODE_INT;
14735 int type_flags = 0;
14736 struct type *target_type = NULL;
14737
14738 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14739 if (attr)
14740 {
14741 encoding = DW_UNSND (attr);
14742 }
14743 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14744 if (attr)
14745 {
14746 size = DW_UNSND (attr);
14747 }
14748 name = dwarf2_name (die, cu);
14749 if (!name)
14750 {
14751 complaint (&symfile_complaints,
14752 _("DW_AT_name missing from DW_TAG_base_type"));
14753 }
14754
14755 switch (encoding)
14756 {
14757 case DW_ATE_address:
14758 /* Turn DW_ATE_address into a void * pointer. */
14759 code = TYPE_CODE_PTR;
14760 type_flags |= TYPE_FLAG_UNSIGNED;
14761 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14762 break;
14763 case DW_ATE_boolean:
14764 code = TYPE_CODE_BOOL;
14765 type_flags |= TYPE_FLAG_UNSIGNED;
14766 break;
14767 case DW_ATE_complex_float:
14768 code = TYPE_CODE_COMPLEX;
14769 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14770 break;
14771 case DW_ATE_decimal_float:
14772 code = TYPE_CODE_DECFLOAT;
14773 break;
14774 case DW_ATE_float:
14775 code = TYPE_CODE_FLT;
14776 break;
14777 case DW_ATE_signed:
14778 break;
14779 case DW_ATE_unsigned:
14780 type_flags |= TYPE_FLAG_UNSIGNED;
14781 if (cu->language == language_fortran
14782 && name
14783 && startswith (name, "character("))
14784 code = TYPE_CODE_CHAR;
14785 break;
14786 case DW_ATE_signed_char:
14787 if (cu->language == language_ada || cu->language == language_m2
14788 || cu->language == language_pascal
14789 || cu->language == language_fortran)
14790 code = TYPE_CODE_CHAR;
14791 break;
14792 case DW_ATE_unsigned_char:
14793 if (cu->language == language_ada || cu->language == language_m2
14794 || cu->language == language_pascal
14795 || cu->language == language_fortran)
14796 code = TYPE_CODE_CHAR;
14797 type_flags |= TYPE_FLAG_UNSIGNED;
14798 break;
14799 case DW_ATE_UTF:
14800 /* We just treat this as an integer and then recognize the
14801 type by name elsewhere. */
14802 break;
14803
14804 default:
14805 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14806 dwarf_type_encoding_name (encoding));
14807 break;
14808 }
14809
14810 type = init_type (code, size, type_flags, NULL, objfile);
14811 TYPE_NAME (type) = name;
14812 TYPE_TARGET_TYPE (type) = target_type;
14813
14814 if (name && strcmp (name, "char") == 0)
14815 TYPE_NOSIGN (type) = 1;
14816
14817 return set_die_type (die, type, cu);
14818 }
14819
14820 /* Parse dwarf attribute if it's a block, reference or constant and put the
14821 resulting value of the attribute into struct bound_prop.
14822 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14823
14824 static int
14825 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14826 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14827 {
14828 struct dwarf2_property_baton *baton;
14829 struct obstack *obstack = &cu->objfile->objfile_obstack;
14830
14831 if (attr == NULL || prop == NULL)
14832 return 0;
14833
14834 if (attr_form_is_block (attr))
14835 {
14836 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14837 baton->referenced_type = NULL;
14838 baton->locexpr.per_cu = cu->per_cu;
14839 baton->locexpr.size = DW_BLOCK (attr)->size;
14840 baton->locexpr.data = DW_BLOCK (attr)->data;
14841 prop->data.baton = baton;
14842 prop->kind = PROP_LOCEXPR;
14843 gdb_assert (prop->data.baton != NULL);
14844 }
14845 else if (attr_form_is_ref (attr))
14846 {
14847 struct dwarf2_cu *target_cu = cu;
14848 struct die_info *target_die;
14849 struct attribute *target_attr;
14850
14851 target_die = follow_die_ref (die, attr, &target_cu);
14852 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14853 if (target_attr == NULL)
14854 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14855 target_cu);
14856 if (target_attr == NULL)
14857 return 0;
14858
14859 switch (target_attr->name)
14860 {
14861 case DW_AT_location:
14862 if (attr_form_is_section_offset (target_attr))
14863 {
14864 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14865 baton->referenced_type = die_type (target_die, target_cu);
14866 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14867 prop->data.baton = baton;
14868 prop->kind = PROP_LOCLIST;
14869 gdb_assert (prop->data.baton != NULL);
14870 }
14871 else if (attr_form_is_block (target_attr))
14872 {
14873 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14874 baton->referenced_type = die_type (target_die, target_cu);
14875 baton->locexpr.per_cu = cu->per_cu;
14876 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14877 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14878 prop->data.baton = baton;
14879 prop->kind = PROP_LOCEXPR;
14880 gdb_assert (prop->data.baton != NULL);
14881 }
14882 else
14883 {
14884 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14885 "dynamic property");
14886 return 0;
14887 }
14888 break;
14889 case DW_AT_data_member_location:
14890 {
14891 LONGEST offset;
14892
14893 if (!handle_data_member_location (target_die, target_cu,
14894 &offset))
14895 return 0;
14896
14897 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14898 baton->referenced_type = read_type_die (target_die->parent,
14899 target_cu);
14900 baton->offset_info.offset = offset;
14901 baton->offset_info.type = die_type (target_die, target_cu);
14902 prop->data.baton = baton;
14903 prop->kind = PROP_ADDR_OFFSET;
14904 break;
14905 }
14906 }
14907 }
14908 else if (attr_form_is_constant (attr))
14909 {
14910 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14911 prop->kind = PROP_CONST;
14912 }
14913 else
14914 {
14915 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14916 dwarf2_name (die, cu));
14917 return 0;
14918 }
14919
14920 return 1;
14921 }
14922
14923 /* Read the given DW_AT_subrange DIE. */
14924
14925 static struct type *
14926 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14927 {
14928 struct type *base_type, *orig_base_type;
14929 struct type *range_type;
14930 struct attribute *attr;
14931 struct dynamic_prop low, high;
14932 int low_default_is_valid;
14933 int high_bound_is_count = 0;
14934 const char *name;
14935 LONGEST negative_mask;
14936
14937 orig_base_type = die_type (die, cu);
14938 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14939 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14940 creating the range type, but we use the result of check_typedef
14941 when examining properties of the type. */
14942 base_type = check_typedef (orig_base_type);
14943
14944 /* The die_type call above may have already set the type for this DIE. */
14945 range_type = get_die_type (die, cu);
14946 if (range_type)
14947 return range_type;
14948
14949 low.kind = PROP_CONST;
14950 high.kind = PROP_CONST;
14951 high.data.const_val = 0;
14952
14953 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14954 omitting DW_AT_lower_bound. */
14955 switch (cu->language)
14956 {
14957 case language_c:
14958 case language_cplus:
14959 low.data.const_val = 0;
14960 low_default_is_valid = 1;
14961 break;
14962 case language_fortran:
14963 low.data.const_val = 1;
14964 low_default_is_valid = 1;
14965 break;
14966 case language_d:
14967 case language_java:
14968 case language_objc:
14969 low.data.const_val = 0;
14970 low_default_is_valid = (cu->header.version >= 4);
14971 break;
14972 case language_ada:
14973 case language_m2:
14974 case language_pascal:
14975 low.data.const_val = 1;
14976 low_default_is_valid = (cu->header.version >= 4);
14977 break;
14978 default:
14979 low.data.const_val = 0;
14980 low_default_is_valid = 0;
14981 break;
14982 }
14983
14984 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14985 if (attr)
14986 attr_to_dynamic_prop (attr, die, cu, &low);
14987 else if (!low_default_is_valid)
14988 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14989 "- DIE at 0x%x [in module %s]"),
14990 die->offset.sect_off, objfile_name (cu->objfile));
14991
14992 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14993 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14994 {
14995 attr = dwarf2_attr (die, DW_AT_count, cu);
14996 if (attr_to_dynamic_prop (attr, die, cu, &high))
14997 {
14998 /* If bounds are constant do the final calculation here. */
14999 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15000 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15001 else
15002 high_bound_is_count = 1;
15003 }
15004 }
15005
15006 /* Dwarf-2 specifications explicitly allows to create subrange types
15007 without specifying a base type.
15008 In that case, the base type must be set to the type of
15009 the lower bound, upper bound or count, in that order, if any of these
15010 three attributes references an object that has a type.
15011 If no base type is found, the Dwarf-2 specifications say that
15012 a signed integer type of size equal to the size of an address should
15013 be used.
15014 For the following C code: `extern char gdb_int [];'
15015 GCC produces an empty range DIE.
15016 FIXME: muller/2010-05-28: Possible references to object for low bound,
15017 high bound or count are not yet handled by this code. */
15018 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15019 {
15020 struct objfile *objfile = cu->objfile;
15021 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15022 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15023 struct type *int_type = objfile_type (objfile)->builtin_int;
15024
15025 /* Test "int", "long int", and "long long int" objfile types,
15026 and select the first one having a size above or equal to the
15027 architecture address size. */
15028 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15029 base_type = int_type;
15030 else
15031 {
15032 int_type = objfile_type (objfile)->builtin_long;
15033 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15034 base_type = int_type;
15035 else
15036 {
15037 int_type = objfile_type (objfile)->builtin_long_long;
15038 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15039 base_type = int_type;
15040 }
15041 }
15042 }
15043
15044 /* Normally, the DWARF producers are expected to use a signed
15045 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15046 But this is unfortunately not always the case, as witnessed
15047 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15048 is used instead. To work around that ambiguity, we treat
15049 the bounds as signed, and thus sign-extend their values, when
15050 the base type is signed. */
15051 negative_mask =
15052 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15053 if (low.kind == PROP_CONST
15054 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15055 low.data.const_val |= negative_mask;
15056 if (high.kind == PROP_CONST
15057 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15058 high.data.const_val |= negative_mask;
15059
15060 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15061
15062 if (high_bound_is_count)
15063 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15064
15065 /* Ada expects an empty array on no boundary attributes. */
15066 if (attr == NULL && cu->language != language_ada)
15067 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15068
15069 name = dwarf2_name (die, cu);
15070 if (name)
15071 TYPE_NAME (range_type) = name;
15072
15073 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15074 if (attr)
15075 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15076
15077 set_die_type (die, range_type, cu);
15078
15079 /* set_die_type should be already done. */
15080 set_descriptive_type (range_type, die, cu);
15081
15082 return range_type;
15083 }
15084
15085 static struct type *
15086 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15087 {
15088 struct type *type;
15089
15090 /* For now, we only support the C meaning of an unspecified type: void. */
15091
15092 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15093 TYPE_NAME (type) = dwarf2_name (die, cu);
15094
15095 return set_die_type (die, type, cu);
15096 }
15097
15098 /* Read a single die and all its descendents. Set the die's sibling
15099 field to NULL; set other fields in the die correctly, and set all
15100 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15101 location of the info_ptr after reading all of those dies. PARENT
15102 is the parent of the die in question. */
15103
15104 static struct die_info *
15105 read_die_and_children (const struct die_reader_specs *reader,
15106 const gdb_byte *info_ptr,
15107 const gdb_byte **new_info_ptr,
15108 struct die_info *parent)
15109 {
15110 struct die_info *die;
15111 const gdb_byte *cur_ptr;
15112 int has_children;
15113
15114 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15115 if (die == NULL)
15116 {
15117 *new_info_ptr = cur_ptr;
15118 return NULL;
15119 }
15120 store_in_ref_table (die, reader->cu);
15121
15122 if (has_children)
15123 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15124 else
15125 {
15126 die->child = NULL;
15127 *new_info_ptr = cur_ptr;
15128 }
15129
15130 die->sibling = NULL;
15131 die->parent = parent;
15132 return die;
15133 }
15134
15135 /* Read a die, all of its descendents, and all of its siblings; set
15136 all of the fields of all of the dies correctly. Arguments are as
15137 in read_die_and_children. */
15138
15139 static struct die_info *
15140 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15141 const gdb_byte *info_ptr,
15142 const gdb_byte **new_info_ptr,
15143 struct die_info *parent)
15144 {
15145 struct die_info *first_die, *last_sibling;
15146 const gdb_byte *cur_ptr;
15147
15148 cur_ptr = info_ptr;
15149 first_die = last_sibling = NULL;
15150
15151 while (1)
15152 {
15153 struct die_info *die
15154 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15155
15156 if (die == NULL)
15157 {
15158 *new_info_ptr = cur_ptr;
15159 return first_die;
15160 }
15161
15162 if (!first_die)
15163 first_die = die;
15164 else
15165 last_sibling->sibling = die;
15166
15167 last_sibling = die;
15168 }
15169 }
15170
15171 /* Read a die, all of its descendents, and all of its siblings; set
15172 all of the fields of all of the dies correctly. Arguments are as
15173 in read_die_and_children.
15174 This the main entry point for reading a DIE and all its children. */
15175
15176 static struct die_info *
15177 read_die_and_siblings (const struct die_reader_specs *reader,
15178 const gdb_byte *info_ptr,
15179 const gdb_byte **new_info_ptr,
15180 struct die_info *parent)
15181 {
15182 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15183 new_info_ptr, parent);
15184
15185 if (dwarf_die_debug)
15186 {
15187 fprintf_unfiltered (gdb_stdlog,
15188 "Read die from %s@0x%x of %s:\n",
15189 get_section_name (reader->die_section),
15190 (unsigned) (info_ptr - reader->die_section->buffer),
15191 bfd_get_filename (reader->abfd));
15192 dump_die (die, dwarf_die_debug);
15193 }
15194
15195 return die;
15196 }
15197
15198 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15199 attributes.
15200 The caller is responsible for filling in the extra attributes
15201 and updating (*DIEP)->num_attrs.
15202 Set DIEP to point to a newly allocated die with its information,
15203 except for its child, sibling, and parent fields.
15204 Set HAS_CHILDREN to tell whether the die has children or not. */
15205
15206 static const gdb_byte *
15207 read_full_die_1 (const struct die_reader_specs *reader,
15208 struct die_info **diep, const gdb_byte *info_ptr,
15209 int *has_children, int num_extra_attrs)
15210 {
15211 unsigned int abbrev_number, bytes_read, i;
15212 sect_offset offset;
15213 struct abbrev_info *abbrev;
15214 struct die_info *die;
15215 struct dwarf2_cu *cu = reader->cu;
15216 bfd *abfd = reader->abfd;
15217
15218 offset.sect_off = info_ptr - reader->buffer;
15219 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15220 info_ptr += bytes_read;
15221 if (!abbrev_number)
15222 {
15223 *diep = NULL;
15224 *has_children = 0;
15225 return info_ptr;
15226 }
15227
15228 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15229 if (!abbrev)
15230 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15231 abbrev_number,
15232 bfd_get_filename (abfd));
15233
15234 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15235 die->offset = offset;
15236 die->tag = abbrev->tag;
15237 die->abbrev = abbrev_number;
15238
15239 /* Make the result usable.
15240 The caller needs to update num_attrs after adding the extra
15241 attributes. */
15242 die->num_attrs = abbrev->num_attrs;
15243
15244 for (i = 0; i < abbrev->num_attrs; ++i)
15245 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15246 info_ptr);
15247
15248 *diep = die;
15249 *has_children = abbrev->has_children;
15250 return info_ptr;
15251 }
15252
15253 /* Read a die and all its attributes.
15254 Set DIEP to point to a newly allocated die with its information,
15255 except for its child, sibling, and parent fields.
15256 Set HAS_CHILDREN to tell whether the die has children or not. */
15257
15258 static const gdb_byte *
15259 read_full_die (const struct die_reader_specs *reader,
15260 struct die_info **diep, const gdb_byte *info_ptr,
15261 int *has_children)
15262 {
15263 const gdb_byte *result;
15264
15265 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15266
15267 if (dwarf_die_debug)
15268 {
15269 fprintf_unfiltered (gdb_stdlog,
15270 "Read die from %s@0x%x of %s:\n",
15271 get_section_name (reader->die_section),
15272 (unsigned) (info_ptr - reader->die_section->buffer),
15273 bfd_get_filename (reader->abfd));
15274 dump_die (*diep, dwarf_die_debug);
15275 }
15276
15277 return result;
15278 }
15279 \f
15280 /* Abbreviation tables.
15281
15282 In DWARF version 2, the description of the debugging information is
15283 stored in a separate .debug_abbrev section. Before we read any
15284 dies from a section we read in all abbreviations and install them
15285 in a hash table. */
15286
15287 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15288
15289 static struct abbrev_info *
15290 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15291 {
15292 struct abbrev_info *abbrev;
15293
15294 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15295 memset (abbrev, 0, sizeof (struct abbrev_info));
15296
15297 return abbrev;
15298 }
15299
15300 /* Add an abbreviation to the table. */
15301
15302 static void
15303 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15304 unsigned int abbrev_number,
15305 struct abbrev_info *abbrev)
15306 {
15307 unsigned int hash_number;
15308
15309 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15310 abbrev->next = abbrev_table->abbrevs[hash_number];
15311 abbrev_table->abbrevs[hash_number] = abbrev;
15312 }
15313
15314 /* Look up an abbrev in the table.
15315 Returns NULL if the abbrev is not found. */
15316
15317 static struct abbrev_info *
15318 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15319 unsigned int abbrev_number)
15320 {
15321 unsigned int hash_number;
15322 struct abbrev_info *abbrev;
15323
15324 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15325 abbrev = abbrev_table->abbrevs[hash_number];
15326
15327 while (abbrev)
15328 {
15329 if (abbrev->number == abbrev_number)
15330 return abbrev;
15331 abbrev = abbrev->next;
15332 }
15333 return NULL;
15334 }
15335
15336 /* Read in an abbrev table. */
15337
15338 static struct abbrev_table *
15339 abbrev_table_read_table (struct dwarf2_section_info *section,
15340 sect_offset offset)
15341 {
15342 struct objfile *objfile = dwarf2_per_objfile->objfile;
15343 bfd *abfd = get_section_bfd_owner (section);
15344 struct abbrev_table *abbrev_table;
15345 const gdb_byte *abbrev_ptr;
15346 struct abbrev_info *cur_abbrev;
15347 unsigned int abbrev_number, bytes_read, abbrev_name;
15348 unsigned int abbrev_form;
15349 struct attr_abbrev *cur_attrs;
15350 unsigned int allocated_attrs;
15351
15352 abbrev_table = XNEW (struct abbrev_table);
15353 abbrev_table->offset = offset;
15354 obstack_init (&abbrev_table->abbrev_obstack);
15355 abbrev_table->abbrevs =
15356 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15357 ABBREV_HASH_SIZE);
15358 memset (abbrev_table->abbrevs, 0,
15359 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15360
15361 dwarf2_read_section (objfile, section);
15362 abbrev_ptr = section->buffer + offset.sect_off;
15363 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15364 abbrev_ptr += bytes_read;
15365
15366 allocated_attrs = ATTR_ALLOC_CHUNK;
15367 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15368
15369 /* Loop until we reach an abbrev number of 0. */
15370 while (abbrev_number)
15371 {
15372 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15373
15374 /* read in abbrev header */
15375 cur_abbrev->number = abbrev_number;
15376 cur_abbrev->tag
15377 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15378 abbrev_ptr += bytes_read;
15379 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15380 abbrev_ptr += 1;
15381
15382 /* now read in declarations */
15383 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15384 abbrev_ptr += bytes_read;
15385 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15386 abbrev_ptr += bytes_read;
15387 while (abbrev_name)
15388 {
15389 if (cur_abbrev->num_attrs == allocated_attrs)
15390 {
15391 allocated_attrs += ATTR_ALLOC_CHUNK;
15392 cur_attrs
15393 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15394 }
15395
15396 cur_attrs[cur_abbrev->num_attrs].name
15397 = (enum dwarf_attribute) abbrev_name;
15398 cur_attrs[cur_abbrev->num_attrs++].form
15399 = (enum dwarf_form) abbrev_form;
15400 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15401 abbrev_ptr += bytes_read;
15402 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15403 abbrev_ptr += bytes_read;
15404 }
15405
15406 cur_abbrev->attrs =
15407 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15408 cur_abbrev->num_attrs);
15409 memcpy (cur_abbrev->attrs, cur_attrs,
15410 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15411
15412 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15413
15414 /* Get next abbreviation.
15415 Under Irix6 the abbreviations for a compilation unit are not
15416 always properly terminated with an abbrev number of 0.
15417 Exit loop if we encounter an abbreviation which we have
15418 already read (which means we are about to read the abbreviations
15419 for the next compile unit) or if the end of the abbreviation
15420 table is reached. */
15421 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15422 break;
15423 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15424 abbrev_ptr += bytes_read;
15425 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15426 break;
15427 }
15428
15429 xfree (cur_attrs);
15430 return abbrev_table;
15431 }
15432
15433 /* Free the resources held by ABBREV_TABLE. */
15434
15435 static void
15436 abbrev_table_free (struct abbrev_table *abbrev_table)
15437 {
15438 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15439 xfree (abbrev_table);
15440 }
15441
15442 /* Same as abbrev_table_free but as a cleanup.
15443 We pass in a pointer to the pointer to the table so that we can
15444 set the pointer to NULL when we're done. It also simplifies
15445 build_type_psymtabs_1. */
15446
15447 static void
15448 abbrev_table_free_cleanup (void *table_ptr)
15449 {
15450 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15451
15452 if (*abbrev_table_ptr != NULL)
15453 abbrev_table_free (*abbrev_table_ptr);
15454 *abbrev_table_ptr = NULL;
15455 }
15456
15457 /* Read the abbrev table for CU from ABBREV_SECTION. */
15458
15459 static void
15460 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15461 struct dwarf2_section_info *abbrev_section)
15462 {
15463 cu->abbrev_table =
15464 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15465 }
15466
15467 /* Release the memory used by the abbrev table for a compilation unit. */
15468
15469 static void
15470 dwarf2_free_abbrev_table (void *ptr_to_cu)
15471 {
15472 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15473
15474 if (cu->abbrev_table != NULL)
15475 abbrev_table_free (cu->abbrev_table);
15476 /* Set this to NULL so that we SEGV if we try to read it later,
15477 and also because free_comp_unit verifies this is NULL. */
15478 cu->abbrev_table = NULL;
15479 }
15480 \f
15481 /* Returns nonzero if TAG represents a type that we might generate a partial
15482 symbol for. */
15483
15484 static int
15485 is_type_tag_for_partial (int tag)
15486 {
15487 switch (tag)
15488 {
15489 #if 0
15490 /* Some types that would be reasonable to generate partial symbols for,
15491 that we don't at present. */
15492 case DW_TAG_array_type:
15493 case DW_TAG_file_type:
15494 case DW_TAG_ptr_to_member_type:
15495 case DW_TAG_set_type:
15496 case DW_TAG_string_type:
15497 case DW_TAG_subroutine_type:
15498 #endif
15499 case DW_TAG_base_type:
15500 case DW_TAG_class_type:
15501 case DW_TAG_interface_type:
15502 case DW_TAG_enumeration_type:
15503 case DW_TAG_structure_type:
15504 case DW_TAG_subrange_type:
15505 case DW_TAG_typedef:
15506 case DW_TAG_union_type:
15507 return 1;
15508 default:
15509 return 0;
15510 }
15511 }
15512
15513 /* Load all DIEs that are interesting for partial symbols into memory. */
15514
15515 static struct partial_die_info *
15516 load_partial_dies (const struct die_reader_specs *reader,
15517 const gdb_byte *info_ptr, int building_psymtab)
15518 {
15519 struct dwarf2_cu *cu = reader->cu;
15520 struct objfile *objfile = cu->objfile;
15521 struct partial_die_info *part_die;
15522 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15523 struct abbrev_info *abbrev;
15524 unsigned int bytes_read;
15525 unsigned int load_all = 0;
15526 int nesting_level = 1;
15527
15528 parent_die = NULL;
15529 last_die = NULL;
15530
15531 gdb_assert (cu->per_cu != NULL);
15532 if (cu->per_cu->load_all_dies)
15533 load_all = 1;
15534
15535 cu->partial_dies
15536 = htab_create_alloc_ex (cu->header.length / 12,
15537 partial_die_hash,
15538 partial_die_eq,
15539 NULL,
15540 &cu->comp_unit_obstack,
15541 hashtab_obstack_allocate,
15542 dummy_obstack_deallocate);
15543
15544 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15545
15546 while (1)
15547 {
15548 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15549
15550 /* A NULL abbrev means the end of a series of children. */
15551 if (abbrev == NULL)
15552 {
15553 if (--nesting_level == 0)
15554 {
15555 /* PART_DIE was probably the last thing allocated on the
15556 comp_unit_obstack, so we could call obstack_free
15557 here. We don't do that because the waste is small,
15558 and will be cleaned up when we're done with this
15559 compilation unit. This way, we're also more robust
15560 against other users of the comp_unit_obstack. */
15561 return first_die;
15562 }
15563 info_ptr += bytes_read;
15564 last_die = parent_die;
15565 parent_die = parent_die->die_parent;
15566 continue;
15567 }
15568
15569 /* Check for template arguments. We never save these; if
15570 they're seen, we just mark the parent, and go on our way. */
15571 if (parent_die != NULL
15572 && cu->language == language_cplus
15573 && (abbrev->tag == DW_TAG_template_type_param
15574 || abbrev->tag == DW_TAG_template_value_param))
15575 {
15576 parent_die->has_template_arguments = 1;
15577
15578 if (!load_all)
15579 {
15580 /* We don't need a partial DIE for the template argument. */
15581 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15582 continue;
15583 }
15584 }
15585
15586 /* We only recurse into c++ subprograms looking for template arguments.
15587 Skip their other children. */
15588 if (!load_all
15589 && cu->language == language_cplus
15590 && parent_die != NULL
15591 && parent_die->tag == DW_TAG_subprogram)
15592 {
15593 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15594 continue;
15595 }
15596
15597 /* Check whether this DIE is interesting enough to save. Normally
15598 we would not be interested in members here, but there may be
15599 later variables referencing them via DW_AT_specification (for
15600 static members). */
15601 if (!load_all
15602 && !is_type_tag_for_partial (abbrev->tag)
15603 && abbrev->tag != DW_TAG_constant
15604 && abbrev->tag != DW_TAG_enumerator
15605 && abbrev->tag != DW_TAG_subprogram
15606 && abbrev->tag != DW_TAG_lexical_block
15607 && abbrev->tag != DW_TAG_variable
15608 && abbrev->tag != DW_TAG_namespace
15609 && abbrev->tag != DW_TAG_module
15610 && abbrev->tag != DW_TAG_member
15611 && abbrev->tag != DW_TAG_imported_unit
15612 && abbrev->tag != DW_TAG_imported_declaration)
15613 {
15614 /* Otherwise we skip to the next sibling, if any. */
15615 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15616 continue;
15617 }
15618
15619 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15620 info_ptr);
15621
15622 /* This two-pass algorithm for processing partial symbols has a
15623 high cost in cache pressure. Thus, handle some simple cases
15624 here which cover the majority of C partial symbols. DIEs
15625 which neither have specification tags in them, nor could have
15626 specification tags elsewhere pointing at them, can simply be
15627 processed and discarded.
15628
15629 This segment is also optional; scan_partial_symbols and
15630 add_partial_symbol will handle these DIEs if we chain
15631 them in normally. When compilers which do not emit large
15632 quantities of duplicate debug information are more common,
15633 this code can probably be removed. */
15634
15635 /* Any complete simple types at the top level (pretty much all
15636 of them, for a language without namespaces), can be processed
15637 directly. */
15638 if (parent_die == NULL
15639 && part_die->has_specification == 0
15640 && part_die->is_declaration == 0
15641 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15642 || part_die->tag == DW_TAG_base_type
15643 || part_die->tag == DW_TAG_subrange_type))
15644 {
15645 if (building_psymtab && part_die->name != NULL)
15646 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15647 VAR_DOMAIN, LOC_TYPEDEF,
15648 &objfile->static_psymbols,
15649 0, cu->language, objfile);
15650 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15651 continue;
15652 }
15653
15654 /* The exception for DW_TAG_typedef with has_children above is
15655 a workaround of GCC PR debug/47510. In the case of this complaint
15656 type_name_no_tag_or_error will error on such types later.
15657
15658 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15659 it could not find the child DIEs referenced later, this is checked
15660 above. In correct DWARF DW_TAG_typedef should have no children. */
15661
15662 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15663 complaint (&symfile_complaints,
15664 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15665 "- DIE at 0x%x [in module %s]"),
15666 part_die->offset.sect_off, objfile_name (objfile));
15667
15668 /* If we're at the second level, and we're an enumerator, and
15669 our parent has no specification (meaning possibly lives in a
15670 namespace elsewhere), then we can add the partial symbol now
15671 instead of queueing it. */
15672 if (part_die->tag == DW_TAG_enumerator
15673 && parent_die != NULL
15674 && parent_die->die_parent == NULL
15675 && parent_die->tag == DW_TAG_enumeration_type
15676 && parent_die->has_specification == 0)
15677 {
15678 if (part_die->name == NULL)
15679 complaint (&symfile_complaints,
15680 _("malformed enumerator DIE ignored"));
15681 else if (building_psymtab)
15682 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15683 VAR_DOMAIN, LOC_CONST,
15684 (cu->language == language_cplus
15685 || cu->language == language_java)
15686 ? &objfile->global_psymbols
15687 : &objfile->static_psymbols,
15688 0, cu->language, objfile);
15689
15690 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15691 continue;
15692 }
15693
15694 /* We'll save this DIE so link it in. */
15695 part_die->die_parent = parent_die;
15696 part_die->die_sibling = NULL;
15697 part_die->die_child = NULL;
15698
15699 if (last_die && last_die == parent_die)
15700 last_die->die_child = part_die;
15701 else if (last_die)
15702 last_die->die_sibling = part_die;
15703
15704 last_die = part_die;
15705
15706 if (first_die == NULL)
15707 first_die = part_die;
15708
15709 /* Maybe add the DIE to the hash table. Not all DIEs that we
15710 find interesting need to be in the hash table, because we
15711 also have the parent/sibling/child chains; only those that we
15712 might refer to by offset later during partial symbol reading.
15713
15714 For now this means things that might have be the target of a
15715 DW_AT_specification, DW_AT_abstract_origin, or
15716 DW_AT_extension. DW_AT_extension will refer only to
15717 namespaces; DW_AT_abstract_origin refers to functions (and
15718 many things under the function DIE, but we do not recurse
15719 into function DIEs during partial symbol reading) and
15720 possibly variables as well; DW_AT_specification refers to
15721 declarations. Declarations ought to have the DW_AT_declaration
15722 flag. It happens that GCC forgets to put it in sometimes, but
15723 only for functions, not for types.
15724
15725 Adding more things than necessary to the hash table is harmless
15726 except for the performance cost. Adding too few will result in
15727 wasted time in find_partial_die, when we reread the compilation
15728 unit with load_all_dies set. */
15729
15730 if (load_all
15731 || abbrev->tag == DW_TAG_constant
15732 || abbrev->tag == DW_TAG_subprogram
15733 || abbrev->tag == DW_TAG_variable
15734 || abbrev->tag == DW_TAG_namespace
15735 || part_die->is_declaration)
15736 {
15737 void **slot;
15738
15739 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15740 part_die->offset.sect_off, INSERT);
15741 *slot = part_die;
15742 }
15743
15744 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15745
15746 /* For some DIEs we want to follow their children (if any). For C
15747 we have no reason to follow the children of structures; for other
15748 languages we have to, so that we can get at method physnames
15749 to infer fully qualified class names, for DW_AT_specification,
15750 and for C++ template arguments. For C++, we also look one level
15751 inside functions to find template arguments (if the name of the
15752 function does not already contain the template arguments).
15753
15754 For Ada, we need to scan the children of subprograms and lexical
15755 blocks as well because Ada allows the definition of nested
15756 entities that could be interesting for the debugger, such as
15757 nested subprograms for instance. */
15758 if (last_die->has_children
15759 && (load_all
15760 || last_die->tag == DW_TAG_namespace
15761 || last_die->tag == DW_TAG_module
15762 || last_die->tag == DW_TAG_enumeration_type
15763 || (cu->language == language_cplus
15764 && last_die->tag == DW_TAG_subprogram
15765 && (last_die->name == NULL
15766 || strchr (last_die->name, '<') == NULL))
15767 || (cu->language != language_c
15768 && (last_die->tag == DW_TAG_class_type
15769 || last_die->tag == DW_TAG_interface_type
15770 || last_die->tag == DW_TAG_structure_type
15771 || last_die->tag == DW_TAG_union_type))
15772 || (cu->language == language_ada
15773 && (last_die->tag == DW_TAG_subprogram
15774 || last_die->tag == DW_TAG_lexical_block))))
15775 {
15776 nesting_level++;
15777 parent_die = last_die;
15778 continue;
15779 }
15780
15781 /* Otherwise we skip to the next sibling, if any. */
15782 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15783
15784 /* Back to the top, do it again. */
15785 }
15786 }
15787
15788 /* Read a minimal amount of information into the minimal die structure. */
15789
15790 static const gdb_byte *
15791 read_partial_die (const struct die_reader_specs *reader,
15792 struct partial_die_info *part_die,
15793 struct abbrev_info *abbrev, unsigned int abbrev_len,
15794 const gdb_byte *info_ptr)
15795 {
15796 struct dwarf2_cu *cu = reader->cu;
15797 struct objfile *objfile = cu->objfile;
15798 const gdb_byte *buffer = reader->buffer;
15799 unsigned int i;
15800 struct attribute attr;
15801 int has_low_pc_attr = 0;
15802 int has_high_pc_attr = 0;
15803 int high_pc_relative = 0;
15804
15805 memset (part_die, 0, sizeof (struct partial_die_info));
15806
15807 part_die->offset.sect_off = info_ptr - buffer;
15808
15809 info_ptr += abbrev_len;
15810
15811 if (abbrev == NULL)
15812 return info_ptr;
15813
15814 part_die->tag = abbrev->tag;
15815 part_die->has_children = abbrev->has_children;
15816
15817 for (i = 0; i < abbrev->num_attrs; ++i)
15818 {
15819 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15820
15821 /* Store the data if it is of an attribute we want to keep in a
15822 partial symbol table. */
15823 switch (attr.name)
15824 {
15825 case DW_AT_name:
15826 switch (part_die->tag)
15827 {
15828 case DW_TAG_compile_unit:
15829 case DW_TAG_partial_unit:
15830 case DW_TAG_type_unit:
15831 /* Compilation units have a DW_AT_name that is a filename, not
15832 a source language identifier. */
15833 case DW_TAG_enumeration_type:
15834 case DW_TAG_enumerator:
15835 /* These tags always have simple identifiers already; no need
15836 to canonicalize them. */
15837 part_die->name = DW_STRING (&attr);
15838 break;
15839 default:
15840 part_die->name
15841 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15842 &objfile->per_bfd->storage_obstack);
15843 break;
15844 }
15845 break;
15846 case DW_AT_linkage_name:
15847 case DW_AT_MIPS_linkage_name:
15848 /* Note that both forms of linkage name might appear. We
15849 assume they will be the same, and we only store the last
15850 one we see. */
15851 if (cu->language == language_ada)
15852 part_die->name = DW_STRING (&attr);
15853 part_die->linkage_name = DW_STRING (&attr);
15854 break;
15855 case DW_AT_low_pc:
15856 has_low_pc_attr = 1;
15857 part_die->lowpc = attr_value_as_address (&attr);
15858 break;
15859 case DW_AT_high_pc:
15860 has_high_pc_attr = 1;
15861 part_die->highpc = attr_value_as_address (&attr);
15862 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15863 high_pc_relative = 1;
15864 break;
15865 case DW_AT_location:
15866 /* Support the .debug_loc offsets. */
15867 if (attr_form_is_block (&attr))
15868 {
15869 part_die->d.locdesc = DW_BLOCK (&attr);
15870 }
15871 else if (attr_form_is_section_offset (&attr))
15872 {
15873 dwarf2_complex_location_expr_complaint ();
15874 }
15875 else
15876 {
15877 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15878 "partial symbol information");
15879 }
15880 break;
15881 case DW_AT_external:
15882 part_die->is_external = DW_UNSND (&attr);
15883 break;
15884 case DW_AT_declaration:
15885 part_die->is_declaration = DW_UNSND (&attr);
15886 break;
15887 case DW_AT_type:
15888 part_die->has_type = 1;
15889 break;
15890 case DW_AT_abstract_origin:
15891 case DW_AT_specification:
15892 case DW_AT_extension:
15893 part_die->has_specification = 1;
15894 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15895 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15896 || cu->per_cu->is_dwz);
15897 break;
15898 case DW_AT_sibling:
15899 /* Ignore absolute siblings, they might point outside of
15900 the current compile unit. */
15901 if (attr.form == DW_FORM_ref_addr)
15902 complaint (&symfile_complaints,
15903 _("ignoring absolute DW_AT_sibling"));
15904 else
15905 {
15906 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15907 const gdb_byte *sibling_ptr = buffer + off;
15908
15909 if (sibling_ptr < info_ptr)
15910 complaint (&symfile_complaints,
15911 _("DW_AT_sibling points backwards"));
15912 else if (sibling_ptr > reader->buffer_end)
15913 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15914 else
15915 part_die->sibling = sibling_ptr;
15916 }
15917 break;
15918 case DW_AT_byte_size:
15919 part_die->has_byte_size = 1;
15920 break;
15921 case DW_AT_const_value:
15922 part_die->has_const_value = 1;
15923 break;
15924 case DW_AT_calling_convention:
15925 /* DWARF doesn't provide a way to identify a program's source-level
15926 entry point. DW_AT_calling_convention attributes are only meant
15927 to describe functions' calling conventions.
15928
15929 However, because it's a necessary piece of information in
15930 Fortran, and because DW_CC_program is the only piece of debugging
15931 information whose definition refers to a 'main program' at all,
15932 several compilers have begun marking Fortran main programs with
15933 DW_CC_program --- even when those functions use the standard
15934 calling conventions.
15935
15936 So until DWARF specifies a way to provide this information and
15937 compilers pick up the new representation, we'll support this
15938 practice. */
15939 if (DW_UNSND (&attr) == DW_CC_program
15940 && cu->language == language_fortran
15941 && part_die->name != NULL)
15942 set_objfile_main_name (objfile, part_die->name, language_fortran);
15943 break;
15944 case DW_AT_inline:
15945 if (DW_UNSND (&attr) == DW_INL_inlined
15946 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15947 part_die->may_be_inlined = 1;
15948 break;
15949
15950 case DW_AT_import:
15951 if (part_die->tag == DW_TAG_imported_unit)
15952 {
15953 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15954 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15955 || cu->per_cu->is_dwz);
15956 }
15957 break;
15958
15959 default:
15960 break;
15961 }
15962 }
15963
15964 if (high_pc_relative)
15965 part_die->highpc += part_die->lowpc;
15966
15967 if (has_low_pc_attr && has_high_pc_attr)
15968 {
15969 /* When using the GNU linker, .gnu.linkonce. sections are used to
15970 eliminate duplicate copies of functions and vtables and such.
15971 The linker will arbitrarily choose one and discard the others.
15972 The AT_*_pc values for such functions refer to local labels in
15973 these sections. If the section from that file was discarded, the
15974 labels are not in the output, so the relocs get a value of 0.
15975 If this is a discarded function, mark the pc bounds as invalid,
15976 so that GDB will ignore it. */
15977 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15978 {
15979 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15980
15981 complaint (&symfile_complaints,
15982 _("DW_AT_low_pc %s is zero "
15983 "for DIE at 0x%x [in module %s]"),
15984 paddress (gdbarch, part_die->lowpc),
15985 part_die->offset.sect_off, objfile_name (objfile));
15986 }
15987 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15988 else if (part_die->lowpc >= part_die->highpc)
15989 {
15990 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15991
15992 complaint (&symfile_complaints,
15993 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15994 "for DIE at 0x%x [in module %s]"),
15995 paddress (gdbarch, part_die->lowpc),
15996 paddress (gdbarch, part_die->highpc),
15997 part_die->offset.sect_off, objfile_name (objfile));
15998 }
15999 else
16000 part_die->has_pc_info = 1;
16001 }
16002
16003 return info_ptr;
16004 }
16005
16006 /* Find a cached partial DIE at OFFSET in CU. */
16007
16008 static struct partial_die_info *
16009 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
16010 {
16011 struct partial_die_info *lookup_die = NULL;
16012 struct partial_die_info part_die;
16013
16014 part_die.offset = offset;
16015 lookup_die = ((struct partial_die_info *)
16016 htab_find_with_hash (cu->partial_dies, &part_die,
16017 offset.sect_off));
16018
16019 return lookup_die;
16020 }
16021
16022 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16023 except in the case of .debug_types DIEs which do not reference
16024 outside their CU (they do however referencing other types via
16025 DW_FORM_ref_sig8). */
16026
16027 static struct partial_die_info *
16028 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16029 {
16030 struct objfile *objfile = cu->objfile;
16031 struct dwarf2_per_cu_data *per_cu = NULL;
16032 struct partial_die_info *pd = NULL;
16033
16034 if (offset_in_dwz == cu->per_cu->is_dwz
16035 && offset_in_cu_p (&cu->header, offset))
16036 {
16037 pd = find_partial_die_in_comp_unit (offset, cu);
16038 if (pd != NULL)
16039 return pd;
16040 /* We missed recording what we needed.
16041 Load all dies and try again. */
16042 per_cu = cu->per_cu;
16043 }
16044 else
16045 {
16046 /* TUs don't reference other CUs/TUs (except via type signatures). */
16047 if (cu->per_cu->is_debug_types)
16048 {
16049 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16050 " external reference to offset 0x%lx [in module %s].\n"),
16051 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16052 bfd_get_filename (objfile->obfd));
16053 }
16054 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16055 objfile);
16056
16057 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16058 load_partial_comp_unit (per_cu);
16059
16060 per_cu->cu->last_used = 0;
16061 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16062 }
16063
16064 /* If we didn't find it, and not all dies have been loaded,
16065 load them all and try again. */
16066
16067 if (pd == NULL && per_cu->load_all_dies == 0)
16068 {
16069 per_cu->load_all_dies = 1;
16070
16071 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16072 THIS_CU->cu may already be in use. So we can't just free it and
16073 replace its DIEs with the ones we read in. Instead, we leave those
16074 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16075 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16076 set. */
16077 load_partial_comp_unit (per_cu);
16078
16079 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16080 }
16081
16082 if (pd == NULL)
16083 internal_error (__FILE__, __LINE__,
16084 _("could not find partial DIE 0x%x "
16085 "in cache [from module %s]\n"),
16086 offset.sect_off, bfd_get_filename (objfile->obfd));
16087 return pd;
16088 }
16089
16090 /* See if we can figure out if the class lives in a namespace. We do
16091 this by looking for a member function; its demangled name will
16092 contain namespace info, if there is any. */
16093
16094 static void
16095 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16096 struct dwarf2_cu *cu)
16097 {
16098 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16099 what template types look like, because the demangler
16100 frequently doesn't give the same name as the debug info. We
16101 could fix this by only using the demangled name to get the
16102 prefix (but see comment in read_structure_type). */
16103
16104 struct partial_die_info *real_pdi;
16105 struct partial_die_info *child_pdi;
16106
16107 /* If this DIE (this DIE's specification, if any) has a parent, then
16108 we should not do this. We'll prepend the parent's fully qualified
16109 name when we create the partial symbol. */
16110
16111 real_pdi = struct_pdi;
16112 while (real_pdi->has_specification)
16113 real_pdi = find_partial_die (real_pdi->spec_offset,
16114 real_pdi->spec_is_dwz, cu);
16115
16116 if (real_pdi->die_parent != NULL)
16117 return;
16118
16119 for (child_pdi = struct_pdi->die_child;
16120 child_pdi != NULL;
16121 child_pdi = child_pdi->die_sibling)
16122 {
16123 if (child_pdi->tag == DW_TAG_subprogram
16124 && child_pdi->linkage_name != NULL)
16125 {
16126 char *actual_class_name
16127 = language_class_name_from_physname (cu->language_defn,
16128 child_pdi->linkage_name);
16129 if (actual_class_name != NULL)
16130 {
16131 struct_pdi->name
16132 = ((const char *)
16133 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16134 actual_class_name,
16135 strlen (actual_class_name)));
16136 xfree (actual_class_name);
16137 }
16138 break;
16139 }
16140 }
16141 }
16142
16143 /* Adjust PART_DIE before generating a symbol for it. This function
16144 may set the is_external flag or change the DIE's name. */
16145
16146 static void
16147 fixup_partial_die (struct partial_die_info *part_die,
16148 struct dwarf2_cu *cu)
16149 {
16150 /* Once we've fixed up a die, there's no point in doing so again.
16151 This also avoids a memory leak if we were to call
16152 guess_partial_die_structure_name multiple times. */
16153 if (part_die->fixup_called)
16154 return;
16155
16156 /* If we found a reference attribute and the DIE has no name, try
16157 to find a name in the referred to DIE. */
16158
16159 if (part_die->name == NULL && part_die->has_specification)
16160 {
16161 struct partial_die_info *spec_die;
16162
16163 spec_die = find_partial_die (part_die->spec_offset,
16164 part_die->spec_is_dwz, cu);
16165
16166 fixup_partial_die (spec_die, cu);
16167
16168 if (spec_die->name)
16169 {
16170 part_die->name = spec_die->name;
16171
16172 /* Copy DW_AT_external attribute if it is set. */
16173 if (spec_die->is_external)
16174 part_die->is_external = spec_die->is_external;
16175 }
16176 }
16177
16178 /* Set default names for some unnamed DIEs. */
16179
16180 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16181 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16182
16183 /* If there is no parent die to provide a namespace, and there are
16184 children, see if we can determine the namespace from their linkage
16185 name. */
16186 if (cu->language == language_cplus
16187 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16188 && part_die->die_parent == NULL
16189 && part_die->has_children
16190 && (part_die->tag == DW_TAG_class_type
16191 || part_die->tag == DW_TAG_structure_type
16192 || part_die->tag == DW_TAG_union_type))
16193 guess_partial_die_structure_name (part_die, cu);
16194
16195 /* GCC might emit a nameless struct or union that has a linkage
16196 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16197 if (part_die->name == NULL
16198 && (part_die->tag == DW_TAG_class_type
16199 || part_die->tag == DW_TAG_interface_type
16200 || part_die->tag == DW_TAG_structure_type
16201 || part_die->tag == DW_TAG_union_type)
16202 && part_die->linkage_name != NULL)
16203 {
16204 char *demangled;
16205
16206 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16207 if (demangled)
16208 {
16209 const char *base;
16210
16211 /* Strip any leading namespaces/classes, keep only the base name.
16212 DW_AT_name for named DIEs does not contain the prefixes. */
16213 base = strrchr (demangled, ':');
16214 if (base && base > demangled && base[-1] == ':')
16215 base++;
16216 else
16217 base = demangled;
16218
16219 part_die->name
16220 = ((const char *)
16221 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16222 base, strlen (base)));
16223 xfree (demangled);
16224 }
16225 }
16226
16227 part_die->fixup_called = 1;
16228 }
16229
16230 /* Read an attribute value described by an attribute form. */
16231
16232 static const gdb_byte *
16233 read_attribute_value (const struct die_reader_specs *reader,
16234 struct attribute *attr, unsigned form,
16235 const gdb_byte *info_ptr)
16236 {
16237 struct dwarf2_cu *cu = reader->cu;
16238 struct objfile *objfile = cu->objfile;
16239 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16240 bfd *abfd = reader->abfd;
16241 struct comp_unit_head *cu_header = &cu->header;
16242 unsigned int bytes_read;
16243 struct dwarf_block *blk;
16244
16245 attr->form = (enum dwarf_form) form;
16246 switch (form)
16247 {
16248 case DW_FORM_ref_addr:
16249 if (cu->header.version == 2)
16250 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16251 else
16252 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16253 &cu->header, &bytes_read);
16254 info_ptr += bytes_read;
16255 break;
16256 case DW_FORM_GNU_ref_alt:
16257 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16258 info_ptr += bytes_read;
16259 break;
16260 case DW_FORM_addr:
16261 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16262 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16263 info_ptr += bytes_read;
16264 break;
16265 case DW_FORM_block2:
16266 blk = dwarf_alloc_block (cu);
16267 blk->size = read_2_bytes (abfd, info_ptr);
16268 info_ptr += 2;
16269 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16270 info_ptr += blk->size;
16271 DW_BLOCK (attr) = blk;
16272 break;
16273 case DW_FORM_block4:
16274 blk = dwarf_alloc_block (cu);
16275 blk->size = read_4_bytes (abfd, info_ptr);
16276 info_ptr += 4;
16277 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16278 info_ptr += blk->size;
16279 DW_BLOCK (attr) = blk;
16280 break;
16281 case DW_FORM_data2:
16282 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16283 info_ptr += 2;
16284 break;
16285 case DW_FORM_data4:
16286 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16287 info_ptr += 4;
16288 break;
16289 case DW_FORM_data8:
16290 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16291 info_ptr += 8;
16292 break;
16293 case DW_FORM_sec_offset:
16294 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16295 info_ptr += bytes_read;
16296 break;
16297 case DW_FORM_string:
16298 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16299 DW_STRING_IS_CANONICAL (attr) = 0;
16300 info_ptr += bytes_read;
16301 break;
16302 case DW_FORM_strp:
16303 if (!cu->per_cu->is_dwz)
16304 {
16305 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16306 &bytes_read);
16307 DW_STRING_IS_CANONICAL (attr) = 0;
16308 info_ptr += bytes_read;
16309 break;
16310 }
16311 /* FALLTHROUGH */
16312 case DW_FORM_GNU_strp_alt:
16313 {
16314 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16315 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16316 &bytes_read);
16317
16318 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16319 DW_STRING_IS_CANONICAL (attr) = 0;
16320 info_ptr += bytes_read;
16321 }
16322 break;
16323 case DW_FORM_exprloc:
16324 case DW_FORM_block:
16325 blk = dwarf_alloc_block (cu);
16326 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16327 info_ptr += bytes_read;
16328 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16329 info_ptr += blk->size;
16330 DW_BLOCK (attr) = blk;
16331 break;
16332 case DW_FORM_block1:
16333 blk = dwarf_alloc_block (cu);
16334 blk->size = read_1_byte (abfd, info_ptr);
16335 info_ptr += 1;
16336 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16337 info_ptr += blk->size;
16338 DW_BLOCK (attr) = blk;
16339 break;
16340 case DW_FORM_data1:
16341 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16342 info_ptr += 1;
16343 break;
16344 case DW_FORM_flag:
16345 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16346 info_ptr += 1;
16347 break;
16348 case DW_FORM_flag_present:
16349 DW_UNSND (attr) = 1;
16350 break;
16351 case DW_FORM_sdata:
16352 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16353 info_ptr += bytes_read;
16354 break;
16355 case DW_FORM_udata:
16356 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16357 info_ptr += bytes_read;
16358 break;
16359 case DW_FORM_ref1:
16360 DW_UNSND (attr) = (cu->header.offset.sect_off
16361 + read_1_byte (abfd, info_ptr));
16362 info_ptr += 1;
16363 break;
16364 case DW_FORM_ref2:
16365 DW_UNSND (attr) = (cu->header.offset.sect_off
16366 + read_2_bytes (abfd, info_ptr));
16367 info_ptr += 2;
16368 break;
16369 case DW_FORM_ref4:
16370 DW_UNSND (attr) = (cu->header.offset.sect_off
16371 + read_4_bytes (abfd, info_ptr));
16372 info_ptr += 4;
16373 break;
16374 case DW_FORM_ref8:
16375 DW_UNSND (attr) = (cu->header.offset.sect_off
16376 + read_8_bytes (abfd, info_ptr));
16377 info_ptr += 8;
16378 break;
16379 case DW_FORM_ref_sig8:
16380 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16381 info_ptr += 8;
16382 break;
16383 case DW_FORM_ref_udata:
16384 DW_UNSND (attr) = (cu->header.offset.sect_off
16385 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16386 info_ptr += bytes_read;
16387 break;
16388 case DW_FORM_indirect:
16389 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16390 info_ptr += bytes_read;
16391 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16392 break;
16393 case DW_FORM_GNU_addr_index:
16394 if (reader->dwo_file == NULL)
16395 {
16396 /* For now flag a hard error.
16397 Later we can turn this into a complaint. */
16398 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16399 dwarf_form_name (form),
16400 bfd_get_filename (abfd));
16401 }
16402 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16403 info_ptr += bytes_read;
16404 break;
16405 case DW_FORM_GNU_str_index:
16406 if (reader->dwo_file == NULL)
16407 {
16408 /* For now flag a hard error.
16409 Later we can turn this into a complaint if warranted. */
16410 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16411 dwarf_form_name (form),
16412 bfd_get_filename (abfd));
16413 }
16414 {
16415 ULONGEST str_index =
16416 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16417
16418 DW_STRING (attr) = read_str_index (reader, str_index);
16419 DW_STRING_IS_CANONICAL (attr) = 0;
16420 info_ptr += bytes_read;
16421 }
16422 break;
16423 default:
16424 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16425 dwarf_form_name (form),
16426 bfd_get_filename (abfd));
16427 }
16428
16429 /* Super hack. */
16430 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16431 attr->form = DW_FORM_GNU_ref_alt;
16432
16433 /* We have seen instances where the compiler tried to emit a byte
16434 size attribute of -1 which ended up being encoded as an unsigned
16435 0xffffffff. Although 0xffffffff is technically a valid size value,
16436 an object of this size seems pretty unlikely so we can relatively
16437 safely treat these cases as if the size attribute was invalid and
16438 treat them as zero by default. */
16439 if (attr->name == DW_AT_byte_size
16440 && form == DW_FORM_data4
16441 && DW_UNSND (attr) >= 0xffffffff)
16442 {
16443 complaint
16444 (&symfile_complaints,
16445 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16446 hex_string (DW_UNSND (attr)));
16447 DW_UNSND (attr) = 0;
16448 }
16449
16450 return info_ptr;
16451 }
16452
16453 /* Read an attribute described by an abbreviated attribute. */
16454
16455 static const gdb_byte *
16456 read_attribute (const struct die_reader_specs *reader,
16457 struct attribute *attr, struct attr_abbrev *abbrev,
16458 const gdb_byte *info_ptr)
16459 {
16460 attr->name = abbrev->name;
16461 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16462 }
16463
16464 /* Read dwarf information from a buffer. */
16465
16466 static unsigned int
16467 read_1_byte (bfd *abfd, const gdb_byte *buf)
16468 {
16469 return bfd_get_8 (abfd, buf);
16470 }
16471
16472 static int
16473 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16474 {
16475 return bfd_get_signed_8 (abfd, buf);
16476 }
16477
16478 static unsigned int
16479 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16480 {
16481 return bfd_get_16 (abfd, buf);
16482 }
16483
16484 static int
16485 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16486 {
16487 return bfd_get_signed_16 (abfd, buf);
16488 }
16489
16490 static unsigned int
16491 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16492 {
16493 return bfd_get_32 (abfd, buf);
16494 }
16495
16496 static int
16497 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16498 {
16499 return bfd_get_signed_32 (abfd, buf);
16500 }
16501
16502 static ULONGEST
16503 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16504 {
16505 return bfd_get_64 (abfd, buf);
16506 }
16507
16508 static CORE_ADDR
16509 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16510 unsigned int *bytes_read)
16511 {
16512 struct comp_unit_head *cu_header = &cu->header;
16513 CORE_ADDR retval = 0;
16514
16515 if (cu_header->signed_addr_p)
16516 {
16517 switch (cu_header->addr_size)
16518 {
16519 case 2:
16520 retval = bfd_get_signed_16 (abfd, buf);
16521 break;
16522 case 4:
16523 retval = bfd_get_signed_32 (abfd, buf);
16524 break;
16525 case 8:
16526 retval = bfd_get_signed_64 (abfd, buf);
16527 break;
16528 default:
16529 internal_error (__FILE__, __LINE__,
16530 _("read_address: bad switch, signed [in module %s]"),
16531 bfd_get_filename (abfd));
16532 }
16533 }
16534 else
16535 {
16536 switch (cu_header->addr_size)
16537 {
16538 case 2:
16539 retval = bfd_get_16 (abfd, buf);
16540 break;
16541 case 4:
16542 retval = bfd_get_32 (abfd, buf);
16543 break;
16544 case 8:
16545 retval = bfd_get_64 (abfd, buf);
16546 break;
16547 default:
16548 internal_error (__FILE__, __LINE__,
16549 _("read_address: bad switch, "
16550 "unsigned [in module %s]"),
16551 bfd_get_filename (abfd));
16552 }
16553 }
16554
16555 *bytes_read = cu_header->addr_size;
16556 return retval;
16557 }
16558
16559 /* Read the initial length from a section. The (draft) DWARF 3
16560 specification allows the initial length to take up either 4 bytes
16561 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16562 bytes describe the length and all offsets will be 8 bytes in length
16563 instead of 4.
16564
16565 An older, non-standard 64-bit format is also handled by this
16566 function. The older format in question stores the initial length
16567 as an 8-byte quantity without an escape value. Lengths greater
16568 than 2^32 aren't very common which means that the initial 4 bytes
16569 is almost always zero. Since a length value of zero doesn't make
16570 sense for the 32-bit format, this initial zero can be considered to
16571 be an escape value which indicates the presence of the older 64-bit
16572 format. As written, the code can't detect (old format) lengths
16573 greater than 4GB. If it becomes necessary to handle lengths
16574 somewhat larger than 4GB, we could allow other small values (such
16575 as the non-sensical values of 1, 2, and 3) to also be used as
16576 escape values indicating the presence of the old format.
16577
16578 The value returned via bytes_read should be used to increment the
16579 relevant pointer after calling read_initial_length().
16580
16581 [ Note: read_initial_length() and read_offset() are based on the
16582 document entitled "DWARF Debugging Information Format", revision
16583 3, draft 8, dated November 19, 2001. This document was obtained
16584 from:
16585
16586 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16587
16588 This document is only a draft and is subject to change. (So beware.)
16589
16590 Details regarding the older, non-standard 64-bit format were
16591 determined empirically by examining 64-bit ELF files produced by
16592 the SGI toolchain on an IRIX 6.5 machine.
16593
16594 - Kevin, July 16, 2002
16595 ] */
16596
16597 static LONGEST
16598 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16599 {
16600 LONGEST length = bfd_get_32 (abfd, buf);
16601
16602 if (length == 0xffffffff)
16603 {
16604 length = bfd_get_64 (abfd, buf + 4);
16605 *bytes_read = 12;
16606 }
16607 else if (length == 0)
16608 {
16609 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16610 length = bfd_get_64 (abfd, buf);
16611 *bytes_read = 8;
16612 }
16613 else
16614 {
16615 *bytes_read = 4;
16616 }
16617
16618 return length;
16619 }
16620
16621 /* Cover function for read_initial_length.
16622 Returns the length of the object at BUF, and stores the size of the
16623 initial length in *BYTES_READ and stores the size that offsets will be in
16624 *OFFSET_SIZE.
16625 If the initial length size is not equivalent to that specified in
16626 CU_HEADER then issue a complaint.
16627 This is useful when reading non-comp-unit headers. */
16628
16629 static LONGEST
16630 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16631 const struct comp_unit_head *cu_header,
16632 unsigned int *bytes_read,
16633 unsigned int *offset_size)
16634 {
16635 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16636
16637 gdb_assert (cu_header->initial_length_size == 4
16638 || cu_header->initial_length_size == 8
16639 || cu_header->initial_length_size == 12);
16640
16641 if (cu_header->initial_length_size != *bytes_read)
16642 complaint (&symfile_complaints,
16643 _("intermixed 32-bit and 64-bit DWARF sections"));
16644
16645 *offset_size = (*bytes_read == 4) ? 4 : 8;
16646 return length;
16647 }
16648
16649 /* Read an offset from the data stream. The size of the offset is
16650 given by cu_header->offset_size. */
16651
16652 static LONGEST
16653 read_offset (bfd *abfd, const gdb_byte *buf,
16654 const struct comp_unit_head *cu_header,
16655 unsigned int *bytes_read)
16656 {
16657 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16658
16659 *bytes_read = cu_header->offset_size;
16660 return offset;
16661 }
16662
16663 /* Read an offset from the data stream. */
16664
16665 static LONGEST
16666 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16667 {
16668 LONGEST retval = 0;
16669
16670 switch (offset_size)
16671 {
16672 case 4:
16673 retval = bfd_get_32 (abfd, buf);
16674 break;
16675 case 8:
16676 retval = bfd_get_64 (abfd, buf);
16677 break;
16678 default:
16679 internal_error (__FILE__, __LINE__,
16680 _("read_offset_1: bad switch [in module %s]"),
16681 bfd_get_filename (abfd));
16682 }
16683
16684 return retval;
16685 }
16686
16687 static const gdb_byte *
16688 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16689 {
16690 /* If the size of a host char is 8 bits, we can return a pointer
16691 to the buffer, otherwise we have to copy the data to a buffer
16692 allocated on the temporary obstack. */
16693 gdb_assert (HOST_CHAR_BIT == 8);
16694 return buf;
16695 }
16696
16697 static const char *
16698 read_direct_string (bfd *abfd, const gdb_byte *buf,
16699 unsigned int *bytes_read_ptr)
16700 {
16701 /* If the size of a host char is 8 bits, we can return a pointer
16702 to the string, otherwise we have to copy the string to a buffer
16703 allocated on the temporary obstack. */
16704 gdb_assert (HOST_CHAR_BIT == 8);
16705 if (*buf == '\0')
16706 {
16707 *bytes_read_ptr = 1;
16708 return NULL;
16709 }
16710 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16711 return (const char *) buf;
16712 }
16713
16714 static const char *
16715 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16716 {
16717 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16718 if (dwarf2_per_objfile->str.buffer == NULL)
16719 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16720 bfd_get_filename (abfd));
16721 if (str_offset >= dwarf2_per_objfile->str.size)
16722 error (_("DW_FORM_strp pointing outside of "
16723 ".debug_str section [in module %s]"),
16724 bfd_get_filename (abfd));
16725 gdb_assert (HOST_CHAR_BIT == 8);
16726 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16727 return NULL;
16728 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16729 }
16730
16731 /* Read a string at offset STR_OFFSET in the .debug_str section from
16732 the .dwz file DWZ. Throw an error if the offset is too large. If
16733 the string consists of a single NUL byte, return NULL; otherwise
16734 return a pointer to the string. */
16735
16736 static const char *
16737 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16738 {
16739 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16740
16741 if (dwz->str.buffer == NULL)
16742 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16743 "section [in module %s]"),
16744 bfd_get_filename (dwz->dwz_bfd));
16745 if (str_offset >= dwz->str.size)
16746 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16747 ".debug_str section [in module %s]"),
16748 bfd_get_filename (dwz->dwz_bfd));
16749 gdb_assert (HOST_CHAR_BIT == 8);
16750 if (dwz->str.buffer[str_offset] == '\0')
16751 return NULL;
16752 return (const char *) (dwz->str.buffer + str_offset);
16753 }
16754
16755 static const char *
16756 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16757 const struct comp_unit_head *cu_header,
16758 unsigned int *bytes_read_ptr)
16759 {
16760 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16761
16762 return read_indirect_string_at_offset (abfd, str_offset);
16763 }
16764
16765 static ULONGEST
16766 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16767 unsigned int *bytes_read_ptr)
16768 {
16769 ULONGEST result;
16770 unsigned int num_read;
16771 int i, shift;
16772 unsigned char byte;
16773
16774 result = 0;
16775 shift = 0;
16776 num_read = 0;
16777 i = 0;
16778 while (1)
16779 {
16780 byte = bfd_get_8 (abfd, buf);
16781 buf++;
16782 num_read++;
16783 result |= ((ULONGEST) (byte & 127) << shift);
16784 if ((byte & 128) == 0)
16785 {
16786 break;
16787 }
16788 shift += 7;
16789 }
16790 *bytes_read_ptr = num_read;
16791 return result;
16792 }
16793
16794 static LONGEST
16795 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16796 unsigned int *bytes_read_ptr)
16797 {
16798 LONGEST result;
16799 int i, shift, num_read;
16800 unsigned char byte;
16801
16802 result = 0;
16803 shift = 0;
16804 num_read = 0;
16805 i = 0;
16806 while (1)
16807 {
16808 byte = bfd_get_8 (abfd, buf);
16809 buf++;
16810 num_read++;
16811 result |= ((LONGEST) (byte & 127) << shift);
16812 shift += 7;
16813 if ((byte & 128) == 0)
16814 {
16815 break;
16816 }
16817 }
16818 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16819 result |= -(((LONGEST) 1) << shift);
16820 *bytes_read_ptr = num_read;
16821 return result;
16822 }
16823
16824 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16825 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16826 ADDR_SIZE is the size of addresses from the CU header. */
16827
16828 static CORE_ADDR
16829 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16830 {
16831 struct objfile *objfile = dwarf2_per_objfile->objfile;
16832 bfd *abfd = objfile->obfd;
16833 const gdb_byte *info_ptr;
16834
16835 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16836 if (dwarf2_per_objfile->addr.buffer == NULL)
16837 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16838 objfile_name (objfile));
16839 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16840 error (_("DW_FORM_addr_index pointing outside of "
16841 ".debug_addr section [in module %s]"),
16842 objfile_name (objfile));
16843 info_ptr = (dwarf2_per_objfile->addr.buffer
16844 + addr_base + addr_index * addr_size);
16845 if (addr_size == 4)
16846 return bfd_get_32 (abfd, info_ptr);
16847 else
16848 return bfd_get_64 (abfd, info_ptr);
16849 }
16850
16851 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16852
16853 static CORE_ADDR
16854 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16855 {
16856 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16857 }
16858
16859 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16860
16861 static CORE_ADDR
16862 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16863 unsigned int *bytes_read)
16864 {
16865 bfd *abfd = cu->objfile->obfd;
16866 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16867
16868 return read_addr_index (cu, addr_index);
16869 }
16870
16871 /* Data structure to pass results from dwarf2_read_addr_index_reader
16872 back to dwarf2_read_addr_index. */
16873
16874 struct dwarf2_read_addr_index_data
16875 {
16876 ULONGEST addr_base;
16877 int addr_size;
16878 };
16879
16880 /* die_reader_func for dwarf2_read_addr_index. */
16881
16882 static void
16883 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16884 const gdb_byte *info_ptr,
16885 struct die_info *comp_unit_die,
16886 int has_children,
16887 void *data)
16888 {
16889 struct dwarf2_cu *cu = reader->cu;
16890 struct dwarf2_read_addr_index_data *aidata =
16891 (struct dwarf2_read_addr_index_data *) data;
16892
16893 aidata->addr_base = cu->addr_base;
16894 aidata->addr_size = cu->header.addr_size;
16895 }
16896
16897 /* Given an index in .debug_addr, fetch the value.
16898 NOTE: This can be called during dwarf expression evaluation,
16899 long after the debug information has been read, and thus per_cu->cu
16900 may no longer exist. */
16901
16902 CORE_ADDR
16903 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16904 unsigned int addr_index)
16905 {
16906 struct objfile *objfile = per_cu->objfile;
16907 struct dwarf2_cu *cu = per_cu->cu;
16908 ULONGEST addr_base;
16909 int addr_size;
16910
16911 /* This is intended to be called from outside this file. */
16912 dw2_setup (objfile);
16913
16914 /* We need addr_base and addr_size.
16915 If we don't have PER_CU->cu, we have to get it.
16916 Nasty, but the alternative is storing the needed info in PER_CU,
16917 which at this point doesn't seem justified: it's not clear how frequently
16918 it would get used and it would increase the size of every PER_CU.
16919 Entry points like dwarf2_per_cu_addr_size do a similar thing
16920 so we're not in uncharted territory here.
16921 Alas we need to be a bit more complicated as addr_base is contained
16922 in the DIE.
16923
16924 We don't need to read the entire CU(/TU).
16925 We just need the header and top level die.
16926
16927 IWBN to use the aging mechanism to let us lazily later discard the CU.
16928 For now we skip this optimization. */
16929
16930 if (cu != NULL)
16931 {
16932 addr_base = cu->addr_base;
16933 addr_size = cu->header.addr_size;
16934 }
16935 else
16936 {
16937 struct dwarf2_read_addr_index_data aidata;
16938
16939 /* Note: We can't use init_cutu_and_read_dies_simple here,
16940 we need addr_base. */
16941 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16942 dwarf2_read_addr_index_reader, &aidata);
16943 addr_base = aidata.addr_base;
16944 addr_size = aidata.addr_size;
16945 }
16946
16947 return read_addr_index_1 (addr_index, addr_base, addr_size);
16948 }
16949
16950 /* Given a DW_FORM_GNU_str_index, fetch the string.
16951 This is only used by the Fission support. */
16952
16953 static const char *
16954 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16955 {
16956 struct objfile *objfile = dwarf2_per_objfile->objfile;
16957 const char *objf_name = objfile_name (objfile);
16958 bfd *abfd = objfile->obfd;
16959 struct dwarf2_cu *cu = reader->cu;
16960 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16961 struct dwarf2_section_info *str_offsets_section =
16962 &reader->dwo_file->sections.str_offsets;
16963 const gdb_byte *info_ptr;
16964 ULONGEST str_offset;
16965 static const char form_name[] = "DW_FORM_GNU_str_index";
16966
16967 dwarf2_read_section (objfile, str_section);
16968 dwarf2_read_section (objfile, str_offsets_section);
16969 if (str_section->buffer == NULL)
16970 error (_("%s used without .debug_str.dwo section"
16971 " in CU at offset 0x%lx [in module %s]"),
16972 form_name, (long) cu->header.offset.sect_off, objf_name);
16973 if (str_offsets_section->buffer == NULL)
16974 error (_("%s used without .debug_str_offsets.dwo section"
16975 " in CU at offset 0x%lx [in module %s]"),
16976 form_name, (long) cu->header.offset.sect_off, objf_name);
16977 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16978 error (_("%s pointing outside of .debug_str_offsets.dwo"
16979 " section in CU at offset 0x%lx [in module %s]"),
16980 form_name, (long) cu->header.offset.sect_off, objf_name);
16981 info_ptr = (str_offsets_section->buffer
16982 + str_index * cu->header.offset_size);
16983 if (cu->header.offset_size == 4)
16984 str_offset = bfd_get_32 (abfd, info_ptr);
16985 else
16986 str_offset = bfd_get_64 (abfd, info_ptr);
16987 if (str_offset >= str_section->size)
16988 error (_("Offset from %s pointing outside of"
16989 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16990 form_name, (long) cu->header.offset.sect_off, objf_name);
16991 return (const char *) (str_section->buffer + str_offset);
16992 }
16993
16994 /* Return the length of an LEB128 number in BUF. */
16995
16996 static int
16997 leb128_size (const gdb_byte *buf)
16998 {
16999 const gdb_byte *begin = buf;
17000 gdb_byte byte;
17001
17002 while (1)
17003 {
17004 byte = *buf++;
17005 if ((byte & 128) == 0)
17006 return buf - begin;
17007 }
17008 }
17009
17010 static void
17011 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17012 {
17013 switch (lang)
17014 {
17015 case DW_LANG_C89:
17016 case DW_LANG_C99:
17017 case DW_LANG_C11:
17018 case DW_LANG_C:
17019 case DW_LANG_UPC:
17020 cu->language = language_c;
17021 break;
17022 case DW_LANG_C_plus_plus:
17023 case DW_LANG_C_plus_plus_11:
17024 case DW_LANG_C_plus_plus_14:
17025 cu->language = language_cplus;
17026 break;
17027 case DW_LANG_D:
17028 cu->language = language_d;
17029 break;
17030 case DW_LANG_Fortran77:
17031 case DW_LANG_Fortran90:
17032 case DW_LANG_Fortran95:
17033 case DW_LANG_Fortran03:
17034 case DW_LANG_Fortran08:
17035 cu->language = language_fortran;
17036 break;
17037 case DW_LANG_Go:
17038 cu->language = language_go;
17039 break;
17040 case DW_LANG_Mips_Assembler:
17041 cu->language = language_asm;
17042 break;
17043 case DW_LANG_Java:
17044 cu->language = language_java;
17045 break;
17046 case DW_LANG_Ada83:
17047 case DW_LANG_Ada95:
17048 cu->language = language_ada;
17049 break;
17050 case DW_LANG_Modula2:
17051 cu->language = language_m2;
17052 break;
17053 case DW_LANG_Pascal83:
17054 cu->language = language_pascal;
17055 break;
17056 case DW_LANG_ObjC:
17057 cu->language = language_objc;
17058 break;
17059 case DW_LANG_Cobol74:
17060 case DW_LANG_Cobol85:
17061 default:
17062 cu->language = language_minimal;
17063 break;
17064 }
17065 cu->language_defn = language_def (cu->language);
17066 }
17067
17068 /* Return the named attribute or NULL if not there. */
17069
17070 static struct attribute *
17071 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17072 {
17073 for (;;)
17074 {
17075 unsigned int i;
17076 struct attribute *spec = NULL;
17077
17078 for (i = 0; i < die->num_attrs; ++i)
17079 {
17080 if (die->attrs[i].name == name)
17081 return &die->attrs[i];
17082 if (die->attrs[i].name == DW_AT_specification
17083 || die->attrs[i].name == DW_AT_abstract_origin)
17084 spec = &die->attrs[i];
17085 }
17086
17087 if (!spec)
17088 break;
17089
17090 die = follow_die_ref (die, spec, &cu);
17091 }
17092
17093 return NULL;
17094 }
17095
17096 /* Return the named attribute or NULL if not there,
17097 but do not follow DW_AT_specification, etc.
17098 This is for use in contexts where we're reading .debug_types dies.
17099 Following DW_AT_specification, DW_AT_abstract_origin will take us
17100 back up the chain, and we want to go down. */
17101
17102 static struct attribute *
17103 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17104 {
17105 unsigned int i;
17106
17107 for (i = 0; i < die->num_attrs; ++i)
17108 if (die->attrs[i].name == name)
17109 return &die->attrs[i];
17110
17111 return NULL;
17112 }
17113
17114 /* Return the string associated with a string-typed attribute, or NULL if it
17115 is either not found or is of an incorrect type. */
17116
17117 static const char *
17118 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17119 {
17120 struct attribute *attr;
17121 const char *str = NULL;
17122
17123 attr = dwarf2_attr (die, name, cu);
17124
17125 if (attr != NULL)
17126 {
17127 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17128 || attr->form == DW_FORM_GNU_strp_alt)
17129 str = DW_STRING (attr);
17130 else
17131 complaint (&symfile_complaints,
17132 _("string type expected for attribute %s for "
17133 "DIE at 0x%x in module %s"),
17134 dwarf_attr_name (name), die->offset.sect_off,
17135 objfile_name (cu->objfile));
17136 }
17137
17138 return str;
17139 }
17140
17141 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17142 and holds a non-zero value. This function should only be used for
17143 DW_FORM_flag or DW_FORM_flag_present attributes. */
17144
17145 static int
17146 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17147 {
17148 struct attribute *attr = dwarf2_attr (die, name, cu);
17149
17150 return (attr && DW_UNSND (attr));
17151 }
17152
17153 static int
17154 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17155 {
17156 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17157 which value is non-zero. However, we have to be careful with
17158 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17159 (via dwarf2_flag_true_p) follows this attribute. So we may
17160 end up accidently finding a declaration attribute that belongs
17161 to a different DIE referenced by the specification attribute,
17162 even though the given DIE does not have a declaration attribute. */
17163 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17164 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17165 }
17166
17167 /* Return the die giving the specification for DIE, if there is
17168 one. *SPEC_CU is the CU containing DIE on input, and the CU
17169 containing the return value on output. If there is no
17170 specification, but there is an abstract origin, that is
17171 returned. */
17172
17173 static struct die_info *
17174 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17175 {
17176 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17177 *spec_cu);
17178
17179 if (spec_attr == NULL)
17180 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17181
17182 if (spec_attr == NULL)
17183 return NULL;
17184 else
17185 return follow_die_ref (die, spec_attr, spec_cu);
17186 }
17187
17188 /* Free the line_header structure *LH, and any arrays and strings it
17189 refers to.
17190 NOTE: This is also used as a "cleanup" function. */
17191
17192 static void
17193 free_line_header (struct line_header *lh)
17194 {
17195 if (lh->standard_opcode_lengths)
17196 xfree (lh->standard_opcode_lengths);
17197
17198 /* Remember that all the lh->file_names[i].name pointers are
17199 pointers into debug_line_buffer, and don't need to be freed. */
17200 if (lh->file_names)
17201 xfree (lh->file_names);
17202
17203 /* Similarly for the include directory names. */
17204 if (lh->include_dirs)
17205 xfree (lh->include_dirs);
17206
17207 xfree (lh);
17208 }
17209
17210 /* Stub for free_line_header to match void * callback types. */
17211
17212 static void
17213 free_line_header_voidp (void *arg)
17214 {
17215 struct line_header *lh = (struct line_header *) arg;
17216
17217 free_line_header (lh);
17218 }
17219
17220 /* Add an entry to LH's include directory table. */
17221
17222 static void
17223 add_include_dir (struct line_header *lh, const char *include_dir)
17224 {
17225 if (dwarf_line_debug >= 2)
17226 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17227 lh->num_include_dirs + 1, include_dir);
17228
17229 /* Grow the array if necessary. */
17230 if (lh->include_dirs_size == 0)
17231 {
17232 lh->include_dirs_size = 1; /* for testing */
17233 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17234 }
17235 else if (lh->num_include_dirs >= lh->include_dirs_size)
17236 {
17237 lh->include_dirs_size *= 2;
17238 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17239 lh->include_dirs_size);
17240 }
17241
17242 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17243 }
17244
17245 /* Add an entry to LH's file name table. */
17246
17247 static void
17248 add_file_name (struct line_header *lh,
17249 const char *name,
17250 unsigned int dir_index,
17251 unsigned int mod_time,
17252 unsigned int length)
17253 {
17254 struct file_entry *fe;
17255
17256 if (dwarf_line_debug >= 2)
17257 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17258 lh->num_file_names + 1, name);
17259
17260 /* Grow the array if necessary. */
17261 if (lh->file_names_size == 0)
17262 {
17263 lh->file_names_size = 1; /* for testing */
17264 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17265 }
17266 else if (lh->num_file_names >= lh->file_names_size)
17267 {
17268 lh->file_names_size *= 2;
17269 lh->file_names
17270 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
17271 }
17272
17273 fe = &lh->file_names[lh->num_file_names++];
17274 fe->name = name;
17275 fe->dir_index = dir_index;
17276 fe->mod_time = mod_time;
17277 fe->length = length;
17278 fe->included_p = 0;
17279 fe->symtab = NULL;
17280 }
17281
17282 /* A convenience function to find the proper .debug_line section for a CU. */
17283
17284 static struct dwarf2_section_info *
17285 get_debug_line_section (struct dwarf2_cu *cu)
17286 {
17287 struct dwarf2_section_info *section;
17288
17289 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17290 DWO file. */
17291 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17292 section = &cu->dwo_unit->dwo_file->sections.line;
17293 else if (cu->per_cu->is_dwz)
17294 {
17295 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17296
17297 section = &dwz->line;
17298 }
17299 else
17300 section = &dwarf2_per_objfile->line;
17301
17302 return section;
17303 }
17304
17305 /* Read the statement program header starting at OFFSET in
17306 .debug_line, or .debug_line.dwo. Return a pointer
17307 to a struct line_header, allocated using xmalloc.
17308 Returns NULL if there is a problem reading the header, e.g., if it
17309 has a version we don't understand.
17310
17311 NOTE: the strings in the include directory and file name tables of
17312 the returned object point into the dwarf line section buffer,
17313 and must not be freed. */
17314
17315 static struct line_header *
17316 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17317 {
17318 struct cleanup *back_to;
17319 struct line_header *lh;
17320 const gdb_byte *line_ptr;
17321 unsigned int bytes_read, offset_size;
17322 int i;
17323 const char *cur_dir, *cur_file;
17324 struct dwarf2_section_info *section;
17325 bfd *abfd;
17326
17327 section = get_debug_line_section (cu);
17328 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17329 if (section->buffer == NULL)
17330 {
17331 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17332 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17333 else
17334 complaint (&symfile_complaints, _("missing .debug_line section"));
17335 return 0;
17336 }
17337
17338 /* We can't do this until we know the section is non-empty.
17339 Only then do we know we have such a section. */
17340 abfd = get_section_bfd_owner (section);
17341
17342 /* Make sure that at least there's room for the total_length field.
17343 That could be 12 bytes long, but we're just going to fudge that. */
17344 if (offset + 4 >= section->size)
17345 {
17346 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17347 return 0;
17348 }
17349
17350 lh = XNEW (struct line_header);
17351 memset (lh, 0, sizeof (*lh));
17352 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17353 (void *) lh);
17354
17355 lh->offset.sect_off = offset;
17356 lh->offset_in_dwz = cu->per_cu->is_dwz;
17357
17358 line_ptr = section->buffer + offset;
17359
17360 /* Read in the header. */
17361 lh->total_length =
17362 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17363 &bytes_read, &offset_size);
17364 line_ptr += bytes_read;
17365 if (line_ptr + lh->total_length > (section->buffer + section->size))
17366 {
17367 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17368 do_cleanups (back_to);
17369 return 0;
17370 }
17371 lh->statement_program_end = line_ptr + lh->total_length;
17372 lh->version = read_2_bytes (abfd, line_ptr);
17373 line_ptr += 2;
17374 if (lh->version > 4)
17375 {
17376 /* This is a version we don't understand. The format could have
17377 changed in ways we don't handle properly so just punt. */
17378 complaint (&symfile_complaints,
17379 _("unsupported version in .debug_line section"));
17380 return NULL;
17381 }
17382 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17383 line_ptr += offset_size;
17384 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17385 line_ptr += 1;
17386 if (lh->version >= 4)
17387 {
17388 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17389 line_ptr += 1;
17390 }
17391 else
17392 lh->maximum_ops_per_instruction = 1;
17393
17394 if (lh->maximum_ops_per_instruction == 0)
17395 {
17396 lh->maximum_ops_per_instruction = 1;
17397 complaint (&symfile_complaints,
17398 _("invalid maximum_ops_per_instruction "
17399 "in `.debug_line' section"));
17400 }
17401
17402 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17403 line_ptr += 1;
17404 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17405 line_ptr += 1;
17406 lh->line_range = read_1_byte (abfd, line_ptr);
17407 line_ptr += 1;
17408 lh->opcode_base = read_1_byte (abfd, line_ptr);
17409 line_ptr += 1;
17410 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17411
17412 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17413 for (i = 1; i < lh->opcode_base; ++i)
17414 {
17415 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17416 line_ptr += 1;
17417 }
17418
17419 /* Read directory table. */
17420 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17421 {
17422 line_ptr += bytes_read;
17423 add_include_dir (lh, cur_dir);
17424 }
17425 line_ptr += bytes_read;
17426
17427 /* Read file name table. */
17428 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17429 {
17430 unsigned int dir_index, mod_time, length;
17431
17432 line_ptr += bytes_read;
17433 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17434 line_ptr += bytes_read;
17435 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17436 line_ptr += bytes_read;
17437 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17438 line_ptr += bytes_read;
17439
17440 add_file_name (lh, cur_file, dir_index, mod_time, length);
17441 }
17442 line_ptr += bytes_read;
17443 lh->statement_program_start = line_ptr;
17444
17445 if (line_ptr > (section->buffer + section->size))
17446 complaint (&symfile_complaints,
17447 _("line number info header doesn't "
17448 "fit in `.debug_line' section"));
17449
17450 discard_cleanups (back_to);
17451 return lh;
17452 }
17453
17454 /* Subroutine of dwarf_decode_lines to simplify it.
17455 Return the file name of the psymtab for included file FILE_INDEX
17456 in line header LH of PST.
17457 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17458 If space for the result is malloc'd, it will be freed by a cleanup.
17459 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17460
17461 The function creates dangling cleanup registration. */
17462
17463 static const char *
17464 psymtab_include_file_name (const struct line_header *lh, int file_index,
17465 const struct partial_symtab *pst,
17466 const char *comp_dir)
17467 {
17468 const struct file_entry fe = lh->file_names [file_index];
17469 const char *include_name = fe.name;
17470 const char *include_name_to_compare = include_name;
17471 const char *dir_name = NULL;
17472 const char *pst_filename;
17473 char *copied_name = NULL;
17474 int file_is_pst;
17475
17476 if (fe.dir_index && lh->include_dirs != NULL)
17477 dir_name = lh->include_dirs[fe.dir_index - 1];
17478
17479 if (!IS_ABSOLUTE_PATH (include_name)
17480 && (dir_name != NULL || comp_dir != NULL))
17481 {
17482 /* Avoid creating a duplicate psymtab for PST.
17483 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17484 Before we do the comparison, however, we need to account
17485 for DIR_NAME and COMP_DIR.
17486 First prepend dir_name (if non-NULL). If we still don't
17487 have an absolute path prepend comp_dir (if non-NULL).
17488 However, the directory we record in the include-file's
17489 psymtab does not contain COMP_DIR (to match the
17490 corresponding symtab(s)).
17491
17492 Example:
17493
17494 bash$ cd /tmp
17495 bash$ gcc -g ./hello.c
17496 include_name = "hello.c"
17497 dir_name = "."
17498 DW_AT_comp_dir = comp_dir = "/tmp"
17499 DW_AT_name = "./hello.c"
17500
17501 */
17502
17503 if (dir_name != NULL)
17504 {
17505 char *tem = concat (dir_name, SLASH_STRING,
17506 include_name, (char *)NULL);
17507
17508 make_cleanup (xfree, tem);
17509 include_name = tem;
17510 include_name_to_compare = include_name;
17511 }
17512 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17513 {
17514 char *tem = concat (comp_dir, SLASH_STRING,
17515 include_name, (char *)NULL);
17516
17517 make_cleanup (xfree, tem);
17518 include_name_to_compare = tem;
17519 }
17520 }
17521
17522 pst_filename = pst->filename;
17523 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17524 {
17525 copied_name = concat (pst->dirname, SLASH_STRING,
17526 pst_filename, (char *)NULL);
17527 pst_filename = copied_name;
17528 }
17529
17530 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17531
17532 if (copied_name != NULL)
17533 xfree (copied_name);
17534
17535 if (file_is_pst)
17536 return NULL;
17537 return include_name;
17538 }
17539
17540 /* State machine to track the state of the line number program. */
17541
17542 typedef struct
17543 {
17544 /* These are part of the standard DWARF line number state machine. */
17545
17546 unsigned char op_index;
17547 unsigned int file;
17548 unsigned int line;
17549 CORE_ADDR address;
17550 int is_stmt;
17551 unsigned int discriminator;
17552
17553 /* Additional bits of state we need to track. */
17554
17555 /* The last file that we called dwarf2_start_subfile for.
17556 This is only used for TLLs. */
17557 unsigned int last_file;
17558 /* The last file a line number was recorded for. */
17559 struct subfile *last_subfile;
17560
17561 /* The function to call to record a line. */
17562 record_line_ftype *record_line;
17563
17564 /* The last line number that was recorded, used to coalesce
17565 consecutive entries for the same line. This can happen, for
17566 example, when discriminators are present. PR 17276. */
17567 unsigned int last_line;
17568 int line_has_non_zero_discriminator;
17569 } lnp_state_machine;
17570
17571 /* There's a lot of static state to pass to dwarf_record_line.
17572 This keeps it all together. */
17573
17574 typedef struct
17575 {
17576 /* The gdbarch. */
17577 struct gdbarch *gdbarch;
17578
17579 /* The line number header. */
17580 struct line_header *line_header;
17581
17582 /* Non-zero if we're recording lines.
17583 Otherwise we're building partial symtabs and are just interested in
17584 finding include files mentioned by the line number program. */
17585 int record_lines_p;
17586 } lnp_reader_state;
17587
17588 /* Ignore this record_line request. */
17589
17590 static void
17591 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17592 {
17593 return;
17594 }
17595
17596 /* Return non-zero if we should add LINE to the line number table.
17597 LINE is the line to add, LAST_LINE is the last line that was added,
17598 LAST_SUBFILE is the subfile for LAST_LINE.
17599 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17600 had a non-zero discriminator.
17601
17602 We have to be careful in the presence of discriminators.
17603 E.g., for this line:
17604
17605 for (i = 0; i < 100000; i++);
17606
17607 clang can emit four line number entries for that one line,
17608 each with a different discriminator.
17609 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17610
17611 However, we want gdb to coalesce all four entries into one.
17612 Otherwise the user could stepi into the middle of the line and
17613 gdb would get confused about whether the pc really was in the
17614 middle of the line.
17615
17616 Things are further complicated by the fact that two consecutive
17617 line number entries for the same line is a heuristic used by gcc
17618 to denote the end of the prologue. So we can't just discard duplicate
17619 entries, we have to be selective about it. The heuristic we use is
17620 that we only collapse consecutive entries for the same line if at least
17621 one of those entries has a non-zero discriminator. PR 17276.
17622
17623 Note: Addresses in the line number state machine can never go backwards
17624 within one sequence, thus this coalescing is ok. */
17625
17626 static int
17627 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17628 int line_has_non_zero_discriminator,
17629 struct subfile *last_subfile)
17630 {
17631 if (current_subfile != last_subfile)
17632 return 1;
17633 if (line != last_line)
17634 return 1;
17635 /* Same line for the same file that we've seen already.
17636 As a last check, for pr 17276, only record the line if the line
17637 has never had a non-zero discriminator. */
17638 if (!line_has_non_zero_discriminator)
17639 return 1;
17640 return 0;
17641 }
17642
17643 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17644 in the line table of subfile SUBFILE. */
17645
17646 static void
17647 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17648 unsigned int line, CORE_ADDR address,
17649 record_line_ftype p_record_line)
17650 {
17651 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17652
17653 if (dwarf_line_debug)
17654 {
17655 fprintf_unfiltered (gdb_stdlog,
17656 "Recording line %u, file %s, address %s\n",
17657 line, lbasename (subfile->name),
17658 paddress (gdbarch, address));
17659 }
17660
17661 (*p_record_line) (subfile, line, addr);
17662 }
17663
17664 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17665 Mark the end of a set of line number records.
17666 The arguments are the same as for dwarf_record_line_1.
17667 If SUBFILE is NULL the request is ignored. */
17668
17669 static void
17670 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17671 CORE_ADDR address, record_line_ftype p_record_line)
17672 {
17673 if (subfile == NULL)
17674 return;
17675
17676 if (dwarf_line_debug)
17677 {
17678 fprintf_unfiltered (gdb_stdlog,
17679 "Finishing current line, file %s, address %s\n",
17680 lbasename (subfile->name),
17681 paddress (gdbarch, address));
17682 }
17683
17684 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17685 }
17686
17687 /* Record the line in STATE.
17688 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17689
17690 static void
17691 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17692 int end_sequence)
17693 {
17694 const struct line_header *lh = reader->line_header;
17695 unsigned int file, line, discriminator;
17696 int is_stmt;
17697
17698 file = state->file;
17699 line = state->line;
17700 is_stmt = state->is_stmt;
17701 discriminator = state->discriminator;
17702
17703 if (dwarf_line_debug)
17704 {
17705 fprintf_unfiltered (gdb_stdlog,
17706 "Processing actual line %u: file %u,"
17707 " address %s, is_stmt %u, discrim %u\n",
17708 line, file,
17709 paddress (reader->gdbarch, state->address),
17710 is_stmt, discriminator);
17711 }
17712
17713 if (file == 0 || file - 1 >= lh->num_file_names)
17714 dwarf2_debug_line_missing_file_complaint ();
17715 /* For now we ignore lines not starting on an instruction boundary.
17716 But not when processing end_sequence for compatibility with the
17717 previous version of the code. */
17718 else if (state->op_index == 0 || end_sequence)
17719 {
17720 lh->file_names[file - 1].included_p = 1;
17721 if (reader->record_lines_p && is_stmt)
17722 {
17723 if (state->last_subfile != current_subfile || end_sequence)
17724 {
17725 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17726 state->address, state->record_line);
17727 }
17728
17729 if (!end_sequence)
17730 {
17731 if (dwarf_record_line_p (line, state->last_line,
17732 state->line_has_non_zero_discriminator,
17733 state->last_subfile))
17734 {
17735 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17736 line, state->address,
17737 state->record_line);
17738 }
17739 state->last_subfile = current_subfile;
17740 state->last_line = line;
17741 }
17742 }
17743 }
17744 }
17745
17746 /* Initialize STATE for the start of a line number program. */
17747
17748 static void
17749 init_lnp_state_machine (lnp_state_machine *state,
17750 const lnp_reader_state *reader)
17751 {
17752 memset (state, 0, sizeof (*state));
17753
17754 /* Just starting, there is no "last file". */
17755 state->last_file = 0;
17756 state->last_subfile = NULL;
17757
17758 state->record_line = record_line;
17759
17760 state->last_line = 0;
17761 state->line_has_non_zero_discriminator = 0;
17762
17763 /* Initialize these according to the DWARF spec. */
17764 state->op_index = 0;
17765 state->file = 1;
17766 state->line = 1;
17767 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17768 was a line entry for it so that the backend has a chance to adjust it
17769 and also record it in case it needs it. This is currently used by MIPS
17770 code, cf. `mips_adjust_dwarf2_line'. */
17771 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17772 state->is_stmt = reader->line_header->default_is_stmt;
17773 state->discriminator = 0;
17774 }
17775
17776 /* Check address and if invalid nop-out the rest of the lines in this
17777 sequence. */
17778
17779 static void
17780 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17781 const gdb_byte *line_ptr,
17782 CORE_ADDR lowpc, CORE_ADDR address)
17783 {
17784 /* If address < lowpc then it's not a usable value, it's outside the
17785 pc range of the CU. However, we restrict the test to only address
17786 values of zero to preserve GDB's previous behaviour which is to
17787 handle the specific case of a function being GC'd by the linker. */
17788
17789 if (address == 0 && address < lowpc)
17790 {
17791 /* This line table is for a function which has been
17792 GCd by the linker. Ignore it. PR gdb/12528 */
17793
17794 struct objfile *objfile = cu->objfile;
17795 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17796
17797 complaint (&symfile_complaints,
17798 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17799 line_offset, objfile_name (objfile));
17800 state->record_line = noop_record_line;
17801 /* Note: sm.record_line is left as noop_record_line
17802 until we see DW_LNE_end_sequence. */
17803 }
17804 }
17805
17806 /* Subroutine of dwarf_decode_lines to simplify it.
17807 Process the line number information in LH.
17808 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17809 program in order to set included_p for every referenced header. */
17810
17811 static void
17812 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17813 const int decode_for_pst_p, CORE_ADDR lowpc)
17814 {
17815 const gdb_byte *line_ptr, *extended_end;
17816 const gdb_byte *line_end;
17817 unsigned int bytes_read, extended_len;
17818 unsigned char op_code, extended_op;
17819 CORE_ADDR baseaddr;
17820 struct objfile *objfile = cu->objfile;
17821 bfd *abfd = objfile->obfd;
17822 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17823 /* Non-zero if we're recording line info (as opposed to building partial
17824 symtabs). */
17825 int record_lines_p = !decode_for_pst_p;
17826 /* A collection of things we need to pass to dwarf_record_line. */
17827 lnp_reader_state reader_state;
17828
17829 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17830
17831 line_ptr = lh->statement_program_start;
17832 line_end = lh->statement_program_end;
17833
17834 reader_state.gdbarch = gdbarch;
17835 reader_state.line_header = lh;
17836 reader_state.record_lines_p = record_lines_p;
17837
17838 /* Read the statement sequences until there's nothing left. */
17839 while (line_ptr < line_end)
17840 {
17841 /* The DWARF line number program state machine. */
17842 lnp_state_machine state_machine;
17843 int end_sequence = 0;
17844
17845 /* Reset the state machine at the start of each sequence. */
17846 init_lnp_state_machine (&state_machine, &reader_state);
17847
17848 if (record_lines_p && lh->num_file_names >= state_machine.file)
17849 {
17850 /* Start a subfile for the current file of the state machine. */
17851 /* lh->include_dirs and lh->file_names are 0-based, but the
17852 directory and file name numbers in the statement program
17853 are 1-based. */
17854 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17855 const char *dir = NULL;
17856
17857 if (fe->dir_index && lh->include_dirs != NULL)
17858 dir = lh->include_dirs[fe->dir_index - 1];
17859
17860 dwarf2_start_subfile (fe->name, dir);
17861 }
17862
17863 /* Decode the table. */
17864 while (line_ptr < line_end && !end_sequence)
17865 {
17866 op_code = read_1_byte (abfd, line_ptr);
17867 line_ptr += 1;
17868
17869 if (op_code >= lh->opcode_base)
17870 {
17871 /* Special opcode. */
17872 unsigned char adj_opcode;
17873 CORE_ADDR addr_adj;
17874 int line_delta;
17875
17876 adj_opcode = op_code - lh->opcode_base;
17877 addr_adj = (((state_machine.op_index
17878 + (adj_opcode / lh->line_range))
17879 / lh->maximum_ops_per_instruction)
17880 * lh->minimum_instruction_length);
17881 state_machine.address
17882 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17883 state_machine.op_index = ((state_machine.op_index
17884 + (adj_opcode / lh->line_range))
17885 % lh->maximum_ops_per_instruction);
17886 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17887 state_machine.line += line_delta;
17888 if (line_delta != 0)
17889 state_machine.line_has_non_zero_discriminator
17890 = state_machine.discriminator != 0;
17891
17892 dwarf_record_line (&reader_state, &state_machine, 0);
17893 state_machine.discriminator = 0;
17894 }
17895 else switch (op_code)
17896 {
17897 case DW_LNS_extended_op:
17898 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17899 &bytes_read);
17900 line_ptr += bytes_read;
17901 extended_end = line_ptr + extended_len;
17902 extended_op = read_1_byte (abfd, line_ptr);
17903 line_ptr += 1;
17904 switch (extended_op)
17905 {
17906 case DW_LNE_end_sequence:
17907 state_machine.record_line = record_line;
17908 end_sequence = 1;
17909 break;
17910 case DW_LNE_set_address:
17911 {
17912 CORE_ADDR address
17913 = read_address (abfd, line_ptr, cu, &bytes_read);
17914
17915 line_ptr += bytes_read;
17916 check_line_address (cu, &state_machine, line_ptr,
17917 lowpc, address);
17918 state_machine.op_index = 0;
17919 address += baseaddr;
17920 state_machine.address
17921 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17922 }
17923 break;
17924 case DW_LNE_define_file:
17925 {
17926 const char *cur_file;
17927 unsigned int dir_index, mod_time, length;
17928
17929 cur_file = read_direct_string (abfd, line_ptr,
17930 &bytes_read);
17931 line_ptr += bytes_read;
17932 dir_index =
17933 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17934 line_ptr += bytes_read;
17935 mod_time =
17936 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17937 line_ptr += bytes_read;
17938 length =
17939 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17940 line_ptr += bytes_read;
17941 add_file_name (lh, cur_file, dir_index, mod_time, length);
17942 }
17943 break;
17944 case DW_LNE_set_discriminator:
17945 /* The discriminator is not interesting to the debugger;
17946 just ignore it. We still need to check its value though:
17947 if there are consecutive entries for the same
17948 (non-prologue) line we want to coalesce them.
17949 PR 17276. */
17950 state_machine.discriminator
17951 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17952 state_machine.line_has_non_zero_discriminator
17953 |= state_machine.discriminator != 0;
17954 line_ptr += bytes_read;
17955 break;
17956 default:
17957 complaint (&symfile_complaints,
17958 _("mangled .debug_line section"));
17959 return;
17960 }
17961 /* Make sure that we parsed the extended op correctly. If e.g.
17962 we expected a different address size than the producer used,
17963 we may have read the wrong number of bytes. */
17964 if (line_ptr != extended_end)
17965 {
17966 complaint (&symfile_complaints,
17967 _("mangled .debug_line section"));
17968 return;
17969 }
17970 break;
17971 case DW_LNS_copy:
17972 dwarf_record_line (&reader_state, &state_machine, 0);
17973 state_machine.discriminator = 0;
17974 break;
17975 case DW_LNS_advance_pc:
17976 {
17977 CORE_ADDR adjust
17978 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17979 CORE_ADDR addr_adj;
17980
17981 addr_adj = (((state_machine.op_index + adjust)
17982 / lh->maximum_ops_per_instruction)
17983 * lh->minimum_instruction_length);
17984 state_machine.address
17985 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17986 state_machine.op_index = ((state_machine.op_index + adjust)
17987 % lh->maximum_ops_per_instruction);
17988 line_ptr += bytes_read;
17989 }
17990 break;
17991 case DW_LNS_advance_line:
17992 {
17993 int line_delta
17994 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17995
17996 state_machine.line += line_delta;
17997 if (line_delta != 0)
17998 state_machine.line_has_non_zero_discriminator
17999 = state_machine.discriminator != 0;
18000 line_ptr += bytes_read;
18001 }
18002 break;
18003 case DW_LNS_set_file:
18004 {
18005 /* The arrays lh->include_dirs and lh->file_names are
18006 0-based, but the directory and file name numbers in
18007 the statement program are 1-based. */
18008 struct file_entry *fe;
18009 const char *dir = NULL;
18010
18011 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18012 &bytes_read);
18013 line_ptr += bytes_read;
18014 if (state_machine.file == 0
18015 || state_machine.file - 1 >= lh->num_file_names)
18016 dwarf2_debug_line_missing_file_complaint ();
18017 else
18018 {
18019 fe = &lh->file_names[state_machine.file - 1];
18020 if (fe->dir_index && lh->include_dirs != NULL)
18021 dir = lh->include_dirs[fe->dir_index - 1];
18022 if (record_lines_p)
18023 {
18024 state_machine.last_subfile = current_subfile;
18025 state_machine.line_has_non_zero_discriminator
18026 = state_machine.discriminator != 0;
18027 dwarf2_start_subfile (fe->name, dir);
18028 }
18029 }
18030 }
18031 break;
18032 case DW_LNS_set_column:
18033 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18034 line_ptr += bytes_read;
18035 break;
18036 case DW_LNS_negate_stmt:
18037 state_machine.is_stmt = (!state_machine.is_stmt);
18038 break;
18039 case DW_LNS_set_basic_block:
18040 break;
18041 /* Add to the address register of the state machine the
18042 address increment value corresponding to special opcode
18043 255. I.e., this value is scaled by the minimum
18044 instruction length since special opcode 255 would have
18045 scaled the increment. */
18046 case DW_LNS_const_add_pc:
18047 {
18048 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18049 CORE_ADDR addr_adj;
18050
18051 addr_adj = (((state_machine.op_index + adjust)
18052 / lh->maximum_ops_per_instruction)
18053 * lh->minimum_instruction_length);
18054 state_machine.address
18055 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18056 state_machine.op_index = ((state_machine.op_index + adjust)
18057 % lh->maximum_ops_per_instruction);
18058 }
18059 break;
18060 case DW_LNS_fixed_advance_pc:
18061 {
18062 CORE_ADDR addr_adj;
18063
18064 addr_adj = read_2_bytes (abfd, line_ptr);
18065 state_machine.address
18066 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18067 state_machine.op_index = 0;
18068 line_ptr += 2;
18069 }
18070 break;
18071 default:
18072 {
18073 /* Unknown standard opcode, ignore it. */
18074 int i;
18075
18076 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18077 {
18078 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18079 line_ptr += bytes_read;
18080 }
18081 }
18082 }
18083 }
18084
18085 if (!end_sequence)
18086 dwarf2_debug_line_missing_end_sequence_complaint ();
18087
18088 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18089 in which case we still finish recording the last line). */
18090 dwarf_record_line (&reader_state, &state_machine, 1);
18091 }
18092 }
18093
18094 /* Decode the Line Number Program (LNP) for the given line_header
18095 structure and CU. The actual information extracted and the type
18096 of structures created from the LNP depends on the value of PST.
18097
18098 1. If PST is NULL, then this procedure uses the data from the program
18099 to create all necessary symbol tables, and their linetables.
18100
18101 2. If PST is not NULL, this procedure reads the program to determine
18102 the list of files included by the unit represented by PST, and
18103 builds all the associated partial symbol tables.
18104
18105 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18106 It is used for relative paths in the line table.
18107 NOTE: When processing partial symtabs (pst != NULL),
18108 comp_dir == pst->dirname.
18109
18110 NOTE: It is important that psymtabs have the same file name (via strcmp)
18111 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18112 symtab we don't use it in the name of the psymtabs we create.
18113 E.g. expand_line_sal requires this when finding psymtabs to expand.
18114 A good testcase for this is mb-inline.exp.
18115
18116 LOWPC is the lowest address in CU (or 0 if not known).
18117
18118 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18119 for its PC<->lines mapping information. Otherwise only the filename
18120 table is read in. */
18121
18122 static void
18123 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18124 struct dwarf2_cu *cu, struct partial_symtab *pst,
18125 CORE_ADDR lowpc, int decode_mapping)
18126 {
18127 struct objfile *objfile = cu->objfile;
18128 const int decode_for_pst_p = (pst != NULL);
18129
18130 if (decode_mapping)
18131 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18132
18133 if (decode_for_pst_p)
18134 {
18135 int file_index;
18136
18137 /* Now that we're done scanning the Line Header Program, we can
18138 create the psymtab of each included file. */
18139 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18140 if (lh->file_names[file_index].included_p == 1)
18141 {
18142 const char *include_name =
18143 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18144 if (include_name != NULL)
18145 dwarf2_create_include_psymtab (include_name, pst, objfile);
18146 }
18147 }
18148 else
18149 {
18150 /* Make sure a symtab is created for every file, even files
18151 which contain only variables (i.e. no code with associated
18152 line numbers). */
18153 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18154 int i;
18155
18156 for (i = 0; i < lh->num_file_names; i++)
18157 {
18158 const char *dir = NULL;
18159 struct file_entry *fe;
18160
18161 fe = &lh->file_names[i];
18162 if (fe->dir_index && lh->include_dirs != NULL)
18163 dir = lh->include_dirs[fe->dir_index - 1];
18164 dwarf2_start_subfile (fe->name, dir);
18165
18166 if (current_subfile->symtab == NULL)
18167 {
18168 current_subfile->symtab
18169 = allocate_symtab (cust, current_subfile->name);
18170 }
18171 fe->symtab = current_subfile->symtab;
18172 }
18173 }
18174 }
18175
18176 /* Start a subfile for DWARF. FILENAME is the name of the file and
18177 DIRNAME the name of the source directory which contains FILENAME
18178 or NULL if not known.
18179 This routine tries to keep line numbers from identical absolute and
18180 relative file names in a common subfile.
18181
18182 Using the `list' example from the GDB testsuite, which resides in
18183 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18184 of /srcdir/list0.c yields the following debugging information for list0.c:
18185
18186 DW_AT_name: /srcdir/list0.c
18187 DW_AT_comp_dir: /compdir
18188 files.files[0].name: list0.h
18189 files.files[0].dir: /srcdir
18190 files.files[1].name: list0.c
18191 files.files[1].dir: /srcdir
18192
18193 The line number information for list0.c has to end up in a single
18194 subfile, so that `break /srcdir/list0.c:1' works as expected.
18195 start_subfile will ensure that this happens provided that we pass the
18196 concatenation of files.files[1].dir and files.files[1].name as the
18197 subfile's name. */
18198
18199 static void
18200 dwarf2_start_subfile (const char *filename, const char *dirname)
18201 {
18202 char *copy = NULL;
18203
18204 /* In order not to lose the line information directory,
18205 we concatenate it to the filename when it makes sense.
18206 Note that the Dwarf3 standard says (speaking of filenames in line
18207 information): ``The directory index is ignored for file names
18208 that represent full path names''. Thus ignoring dirname in the
18209 `else' branch below isn't an issue. */
18210
18211 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18212 {
18213 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18214 filename = copy;
18215 }
18216
18217 start_subfile (filename);
18218
18219 if (copy != NULL)
18220 xfree (copy);
18221 }
18222
18223 /* Start a symtab for DWARF.
18224 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18225
18226 static struct compunit_symtab *
18227 dwarf2_start_symtab (struct dwarf2_cu *cu,
18228 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18229 {
18230 struct compunit_symtab *cust
18231 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18232
18233 record_debugformat ("DWARF 2");
18234 record_producer (cu->producer);
18235
18236 /* We assume that we're processing GCC output. */
18237 processing_gcc_compilation = 2;
18238
18239 cu->processing_has_namespace_info = 0;
18240
18241 return cust;
18242 }
18243
18244 static void
18245 var_decode_location (struct attribute *attr, struct symbol *sym,
18246 struct dwarf2_cu *cu)
18247 {
18248 struct objfile *objfile = cu->objfile;
18249 struct comp_unit_head *cu_header = &cu->header;
18250
18251 /* NOTE drow/2003-01-30: There used to be a comment and some special
18252 code here to turn a symbol with DW_AT_external and a
18253 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18254 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18255 with some versions of binutils) where shared libraries could have
18256 relocations against symbols in their debug information - the
18257 minimal symbol would have the right address, but the debug info
18258 would not. It's no longer necessary, because we will explicitly
18259 apply relocations when we read in the debug information now. */
18260
18261 /* A DW_AT_location attribute with no contents indicates that a
18262 variable has been optimized away. */
18263 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18264 {
18265 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18266 return;
18267 }
18268
18269 /* Handle one degenerate form of location expression specially, to
18270 preserve GDB's previous behavior when section offsets are
18271 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18272 then mark this symbol as LOC_STATIC. */
18273
18274 if (attr_form_is_block (attr)
18275 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18276 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18277 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18278 && (DW_BLOCK (attr)->size
18279 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18280 {
18281 unsigned int dummy;
18282
18283 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18284 SYMBOL_VALUE_ADDRESS (sym) =
18285 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18286 else
18287 SYMBOL_VALUE_ADDRESS (sym) =
18288 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18289 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18290 fixup_symbol_section (sym, objfile);
18291 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18292 SYMBOL_SECTION (sym));
18293 return;
18294 }
18295
18296 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18297 expression evaluator, and use LOC_COMPUTED only when necessary
18298 (i.e. when the value of a register or memory location is
18299 referenced, or a thread-local block, etc.). Then again, it might
18300 not be worthwhile. I'm assuming that it isn't unless performance
18301 or memory numbers show me otherwise. */
18302
18303 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18304
18305 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18306 cu->has_loclist = 1;
18307 }
18308
18309 /* Given a pointer to a DWARF information entry, figure out if we need
18310 to make a symbol table entry for it, and if so, create a new entry
18311 and return a pointer to it.
18312 If TYPE is NULL, determine symbol type from the die, otherwise
18313 used the passed type.
18314 If SPACE is not NULL, use it to hold the new symbol. If it is
18315 NULL, allocate a new symbol on the objfile's obstack. */
18316
18317 static struct symbol *
18318 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18319 struct symbol *space)
18320 {
18321 struct objfile *objfile = cu->objfile;
18322 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18323 struct symbol *sym = NULL;
18324 const char *name;
18325 struct attribute *attr = NULL;
18326 struct attribute *attr2 = NULL;
18327 CORE_ADDR baseaddr;
18328 struct pending **list_to_add = NULL;
18329
18330 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18331
18332 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18333
18334 name = dwarf2_name (die, cu);
18335 if (name)
18336 {
18337 const char *linkagename;
18338 int suppress_add = 0;
18339
18340 if (space)
18341 sym = space;
18342 else
18343 sym = allocate_symbol (objfile);
18344 OBJSTAT (objfile, n_syms++);
18345
18346 /* Cache this symbol's name and the name's demangled form (if any). */
18347 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18348 linkagename = dwarf2_physname (name, die, cu);
18349 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18350
18351 /* Fortran does not have mangling standard and the mangling does differ
18352 between gfortran, iFort etc. */
18353 if (cu->language == language_fortran
18354 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18355 symbol_set_demangled_name (&(sym->ginfo),
18356 dwarf2_full_name (name, die, cu),
18357 NULL);
18358
18359 /* Default assumptions.
18360 Use the passed type or decode it from the die. */
18361 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18362 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18363 if (type != NULL)
18364 SYMBOL_TYPE (sym) = type;
18365 else
18366 SYMBOL_TYPE (sym) = die_type (die, cu);
18367 attr = dwarf2_attr (die,
18368 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18369 cu);
18370 if (attr)
18371 {
18372 SYMBOL_LINE (sym) = DW_UNSND (attr);
18373 }
18374
18375 attr = dwarf2_attr (die,
18376 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18377 cu);
18378 if (attr)
18379 {
18380 int file_index = DW_UNSND (attr);
18381
18382 if (cu->line_header == NULL
18383 || file_index > cu->line_header->num_file_names)
18384 complaint (&symfile_complaints,
18385 _("file index out of range"));
18386 else if (file_index > 0)
18387 {
18388 struct file_entry *fe;
18389
18390 fe = &cu->line_header->file_names[file_index - 1];
18391 symbol_set_symtab (sym, fe->symtab);
18392 }
18393 }
18394
18395 switch (die->tag)
18396 {
18397 case DW_TAG_label:
18398 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18399 if (attr)
18400 {
18401 CORE_ADDR addr;
18402
18403 addr = attr_value_as_address (attr);
18404 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18405 SYMBOL_VALUE_ADDRESS (sym) = addr;
18406 }
18407 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18408 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18409 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18410 add_symbol_to_list (sym, cu->list_in_scope);
18411 break;
18412 case DW_TAG_subprogram:
18413 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18414 finish_block. */
18415 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18416 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18417 if ((attr2 && (DW_UNSND (attr2) != 0))
18418 || cu->language == language_ada)
18419 {
18420 /* Subprograms marked external are stored as a global symbol.
18421 Ada subprograms, whether marked external or not, are always
18422 stored as a global symbol, because we want to be able to
18423 access them globally. For instance, we want to be able
18424 to break on a nested subprogram without having to
18425 specify the context. */
18426 list_to_add = &global_symbols;
18427 }
18428 else
18429 {
18430 list_to_add = cu->list_in_scope;
18431 }
18432 break;
18433 case DW_TAG_inlined_subroutine:
18434 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18435 finish_block. */
18436 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18437 SYMBOL_INLINED (sym) = 1;
18438 list_to_add = cu->list_in_scope;
18439 break;
18440 case DW_TAG_template_value_param:
18441 suppress_add = 1;
18442 /* Fall through. */
18443 case DW_TAG_constant:
18444 case DW_TAG_variable:
18445 case DW_TAG_member:
18446 /* Compilation with minimal debug info may result in
18447 variables with missing type entries. Change the
18448 misleading `void' type to something sensible. */
18449 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18450 SYMBOL_TYPE (sym)
18451 = objfile_type (objfile)->nodebug_data_symbol;
18452
18453 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18454 /* In the case of DW_TAG_member, we should only be called for
18455 static const members. */
18456 if (die->tag == DW_TAG_member)
18457 {
18458 /* dwarf2_add_field uses die_is_declaration,
18459 so we do the same. */
18460 gdb_assert (die_is_declaration (die, cu));
18461 gdb_assert (attr);
18462 }
18463 if (attr)
18464 {
18465 dwarf2_const_value (attr, sym, cu);
18466 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18467 if (!suppress_add)
18468 {
18469 if (attr2 && (DW_UNSND (attr2) != 0))
18470 list_to_add = &global_symbols;
18471 else
18472 list_to_add = cu->list_in_scope;
18473 }
18474 break;
18475 }
18476 attr = dwarf2_attr (die, DW_AT_location, cu);
18477 if (attr)
18478 {
18479 var_decode_location (attr, sym, cu);
18480 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18481
18482 /* Fortran explicitly imports any global symbols to the local
18483 scope by DW_TAG_common_block. */
18484 if (cu->language == language_fortran && die->parent
18485 && die->parent->tag == DW_TAG_common_block)
18486 attr2 = NULL;
18487
18488 if (SYMBOL_CLASS (sym) == LOC_STATIC
18489 && SYMBOL_VALUE_ADDRESS (sym) == 0
18490 && !dwarf2_per_objfile->has_section_at_zero)
18491 {
18492 /* When a static variable is eliminated by the linker,
18493 the corresponding debug information is not stripped
18494 out, but the variable address is set to null;
18495 do not add such variables into symbol table. */
18496 }
18497 else if (attr2 && (DW_UNSND (attr2) != 0))
18498 {
18499 /* Workaround gfortran PR debug/40040 - it uses
18500 DW_AT_location for variables in -fPIC libraries which may
18501 get overriden by other libraries/executable and get
18502 a different address. Resolve it by the minimal symbol
18503 which may come from inferior's executable using copy
18504 relocation. Make this workaround only for gfortran as for
18505 other compilers GDB cannot guess the minimal symbol
18506 Fortran mangling kind. */
18507 if (cu->language == language_fortran && die->parent
18508 && die->parent->tag == DW_TAG_module
18509 && cu->producer
18510 && startswith (cu->producer, "GNU Fortran"))
18511 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18512
18513 /* A variable with DW_AT_external is never static,
18514 but it may be block-scoped. */
18515 list_to_add = (cu->list_in_scope == &file_symbols
18516 ? &global_symbols : cu->list_in_scope);
18517 }
18518 else
18519 list_to_add = cu->list_in_scope;
18520 }
18521 else
18522 {
18523 /* We do not know the address of this symbol.
18524 If it is an external symbol and we have type information
18525 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18526 The address of the variable will then be determined from
18527 the minimal symbol table whenever the variable is
18528 referenced. */
18529 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18530
18531 /* Fortran explicitly imports any global symbols to the local
18532 scope by DW_TAG_common_block. */
18533 if (cu->language == language_fortran && die->parent
18534 && die->parent->tag == DW_TAG_common_block)
18535 {
18536 /* SYMBOL_CLASS doesn't matter here because
18537 read_common_block is going to reset it. */
18538 if (!suppress_add)
18539 list_to_add = cu->list_in_scope;
18540 }
18541 else if (attr2 && (DW_UNSND (attr2) != 0)
18542 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18543 {
18544 /* A variable with DW_AT_external is never static, but it
18545 may be block-scoped. */
18546 list_to_add = (cu->list_in_scope == &file_symbols
18547 ? &global_symbols : cu->list_in_scope);
18548
18549 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18550 }
18551 else if (!die_is_declaration (die, cu))
18552 {
18553 /* Use the default LOC_OPTIMIZED_OUT class. */
18554 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18555 if (!suppress_add)
18556 list_to_add = cu->list_in_scope;
18557 }
18558 }
18559 break;
18560 case DW_TAG_formal_parameter:
18561 /* If we are inside a function, mark this as an argument. If
18562 not, we might be looking at an argument to an inlined function
18563 when we do not have enough information to show inlined frames;
18564 pretend it's a local variable in that case so that the user can
18565 still see it. */
18566 if (context_stack_depth > 0
18567 && context_stack[context_stack_depth - 1].name != NULL)
18568 SYMBOL_IS_ARGUMENT (sym) = 1;
18569 attr = dwarf2_attr (die, DW_AT_location, cu);
18570 if (attr)
18571 {
18572 var_decode_location (attr, sym, cu);
18573 }
18574 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18575 if (attr)
18576 {
18577 dwarf2_const_value (attr, sym, cu);
18578 }
18579
18580 list_to_add = cu->list_in_scope;
18581 break;
18582 case DW_TAG_unspecified_parameters:
18583 /* From varargs functions; gdb doesn't seem to have any
18584 interest in this information, so just ignore it for now.
18585 (FIXME?) */
18586 break;
18587 case DW_TAG_template_type_param:
18588 suppress_add = 1;
18589 /* Fall through. */
18590 case DW_TAG_class_type:
18591 case DW_TAG_interface_type:
18592 case DW_TAG_structure_type:
18593 case DW_TAG_union_type:
18594 case DW_TAG_set_type:
18595 case DW_TAG_enumeration_type:
18596 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18597 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18598
18599 {
18600 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18601 really ever be static objects: otherwise, if you try
18602 to, say, break of a class's method and you're in a file
18603 which doesn't mention that class, it won't work unless
18604 the check for all static symbols in lookup_symbol_aux
18605 saves you. See the OtherFileClass tests in
18606 gdb.c++/namespace.exp. */
18607
18608 if (!suppress_add)
18609 {
18610 list_to_add = (cu->list_in_scope == &file_symbols
18611 && (cu->language == language_cplus
18612 || cu->language == language_java)
18613 ? &global_symbols : cu->list_in_scope);
18614
18615 /* The semantics of C++ state that "struct foo {
18616 ... }" also defines a typedef for "foo". A Java
18617 class declaration also defines a typedef for the
18618 class. */
18619 if (cu->language == language_cplus
18620 || cu->language == language_java
18621 || cu->language == language_ada
18622 || cu->language == language_d)
18623 {
18624 /* The symbol's name is already allocated along
18625 with this objfile, so we don't need to
18626 duplicate it for the type. */
18627 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18628 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18629 }
18630 }
18631 }
18632 break;
18633 case DW_TAG_typedef:
18634 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18635 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18636 list_to_add = cu->list_in_scope;
18637 break;
18638 case DW_TAG_base_type:
18639 case DW_TAG_subrange_type:
18640 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18641 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18642 list_to_add = cu->list_in_scope;
18643 break;
18644 case DW_TAG_enumerator:
18645 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18646 if (attr)
18647 {
18648 dwarf2_const_value (attr, sym, cu);
18649 }
18650 {
18651 /* NOTE: carlton/2003-11-10: See comment above in the
18652 DW_TAG_class_type, etc. block. */
18653
18654 list_to_add = (cu->list_in_scope == &file_symbols
18655 && (cu->language == language_cplus
18656 || cu->language == language_java)
18657 ? &global_symbols : cu->list_in_scope);
18658 }
18659 break;
18660 case DW_TAG_imported_declaration:
18661 case DW_TAG_namespace:
18662 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18663 list_to_add = &global_symbols;
18664 break;
18665 case DW_TAG_module:
18666 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18667 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18668 list_to_add = &global_symbols;
18669 break;
18670 case DW_TAG_common_block:
18671 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18672 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18673 add_symbol_to_list (sym, cu->list_in_scope);
18674 break;
18675 default:
18676 /* Not a tag we recognize. Hopefully we aren't processing
18677 trash data, but since we must specifically ignore things
18678 we don't recognize, there is nothing else we should do at
18679 this point. */
18680 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18681 dwarf_tag_name (die->tag));
18682 break;
18683 }
18684
18685 if (suppress_add)
18686 {
18687 sym->hash_next = objfile->template_symbols;
18688 objfile->template_symbols = sym;
18689 list_to_add = NULL;
18690 }
18691
18692 if (list_to_add != NULL)
18693 add_symbol_to_list (sym, list_to_add);
18694
18695 /* For the benefit of old versions of GCC, check for anonymous
18696 namespaces based on the demangled name. */
18697 if (!cu->processing_has_namespace_info
18698 && cu->language == language_cplus)
18699 cp_scan_for_anonymous_namespaces (sym, objfile);
18700 }
18701 return (sym);
18702 }
18703
18704 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18705
18706 static struct symbol *
18707 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18708 {
18709 return new_symbol_full (die, type, cu, NULL);
18710 }
18711
18712 /* Given an attr with a DW_FORM_dataN value in host byte order,
18713 zero-extend it as appropriate for the symbol's type. The DWARF
18714 standard (v4) is not entirely clear about the meaning of using
18715 DW_FORM_dataN for a constant with a signed type, where the type is
18716 wider than the data. The conclusion of a discussion on the DWARF
18717 list was that this is unspecified. We choose to always zero-extend
18718 because that is the interpretation long in use by GCC. */
18719
18720 static gdb_byte *
18721 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18722 struct dwarf2_cu *cu, LONGEST *value, int bits)
18723 {
18724 struct objfile *objfile = cu->objfile;
18725 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18726 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18727 LONGEST l = DW_UNSND (attr);
18728
18729 if (bits < sizeof (*value) * 8)
18730 {
18731 l &= ((LONGEST) 1 << bits) - 1;
18732 *value = l;
18733 }
18734 else if (bits == sizeof (*value) * 8)
18735 *value = l;
18736 else
18737 {
18738 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
18739 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18740 return bytes;
18741 }
18742
18743 return NULL;
18744 }
18745
18746 /* Read a constant value from an attribute. Either set *VALUE, or if
18747 the value does not fit in *VALUE, set *BYTES - either already
18748 allocated on the objfile obstack, or newly allocated on OBSTACK,
18749 or, set *BATON, if we translated the constant to a location
18750 expression. */
18751
18752 static void
18753 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18754 const char *name, struct obstack *obstack,
18755 struct dwarf2_cu *cu,
18756 LONGEST *value, const gdb_byte **bytes,
18757 struct dwarf2_locexpr_baton **baton)
18758 {
18759 struct objfile *objfile = cu->objfile;
18760 struct comp_unit_head *cu_header = &cu->header;
18761 struct dwarf_block *blk;
18762 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18763 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18764
18765 *value = 0;
18766 *bytes = NULL;
18767 *baton = NULL;
18768
18769 switch (attr->form)
18770 {
18771 case DW_FORM_addr:
18772 case DW_FORM_GNU_addr_index:
18773 {
18774 gdb_byte *data;
18775
18776 if (TYPE_LENGTH (type) != cu_header->addr_size)
18777 dwarf2_const_value_length_mismatch_complaint (name,
18778 cu_header->addr_size,
18779 TYPE_LENGTH (type));
18780 /* Symbols of this form are reasonably rare, so we just
18781 piggyback on the existing location code rather than writing
18782 a new implementation of symbol_computed_ops. */
18783 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
18784 (*baton)->per_cu = cu->per_cu;
18785 gdb_assert ((*baton)->per_cu);
18786
18787 (*baton)->size = 2 + cu_header->addr_size;
18788 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
18789 (*baton)->data = data;
18790
18791 data[0] = DW_OP_addr;
18792 store_unsigned_integer (&data[1], cu_header->addr_size,
18793 byte_order, DW_ADDR (attr));
18794 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18795 }
18796 break;
18797 case DW_FORM_string:
18798 case DW_FORM_strp:
18799 case DW_FORM_GNU_str_index:
18800 case DW_FORM_GNU_strp_alt:
18801 /* DW_STRING is already allocated on the objfile obstack, point
18802 directly to it. */
18803 *bytes = (const gdb_byte *) DW_STRING (attr);
18804 break;
18805 case DW_FORM_block1:
18806 case DW_FORM_block2:
18807 case DW_FORM_block4:
18808 case DW_FORM_block:
18809 case DW_FORM_exprloc:
18810 blk = DW_BLOCK (attr);
18811 if (TYPE_LENGTH (type) != blk->size)
18812 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18813 TYPE_LENGTH (type));
18814 *bytes = blk->data;
18815 break;
18816
18817 /* The DW_AT_const_value attributes are supposed to carry the
18818 symbol's value "represented as it would be on the target
18819 architecture." By the time we get here, it's already been
18820 converted to host endianness, so we just need to sign- or
18821 zero-extend it as appropriate. */
18822 case DW_FORM_data1:
18823 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18824 break;
18825 case DW_FORM_data2:
18826 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18827 break;
18828 case DW_FORM_data4:
18829 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18830 break;
18831 case DW_FORM_data8:
18832 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18833 break;
18834
18835 case DW_FORM_sdata:
18836 *value = DW_SND (attr);
18837 break;
18838
18839 case DW_FORM_udata:
18840 *value = DW_UNSND (attr);
18841 break;
18842
18843 default:
18844 complaint (&symfile_complaints,
18845 _("unsupported const value attribute form: '%s'"),
18846 dwarf_form_name (attr->form));
18847 *value = 0;
18848 break;
18849 }
18850 }
18851
18852
18853 /* Copy constant value from an attribute to a symbol. */
18854
18855 static void
18856 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18857 struct dwarf2_cu *cu)
18858 {
18859 struct objfile *objfile = cu->objfile;
18860 struct comp_unit_head *cu_header = &cu->header;
18861 LONGEST value;
18862 const gdb_byte *bytes;
18863 struct dwarf2_locexpr_baton *baton;
18864
18865 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18866 SYMBOL_PRINT_NAME (sym),
18867 &objfile->objfile_obstack, cu,
18868 &value, &bytes, &baton);
18869
18870 if (baton != NULL)
18871 {
18872 SYMBOL_LOCATION_BATON (sym) = baton;
18873 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18874 }
18875 else if (bytes != NULL)
18876 {
18877 SYMBOL_VALUE_BYTES (sym) = bytes;
18878 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18879 }
18880 else
18881 {
18882 SYMBOL_VALUE (sym) = value;
18883 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18884 }
18885 }
18886
18887 /* Return the type of the die in question using its DW_AT_type attribute. */
18888
18889 static struct type *
18890 die_type (struct die_info *die, struct dwarf2_cu *cu)
18891 {
18892 struct attribute *type_attr;
18893
18894 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18895 if (!type_attr)
18896 {
18897 /* A missing DW_AT_type represents a void type. */
18898 return objfile_type (cu->objfile)->builtin_void;
18899 }
18900
18901 return lookup_die_type (die, type_attr, cu);
18902 }
18903
18904 /* True iff CU's producer generates GNAT Ada auxiliary information
18905 that allows to find parallel types through that information instead
18906 of having to do expensive parallel lookups by type name. */
18907
18908 static int
18909 need_gnat_info (struct dwarf2_cu *cu)
18910 {
18911 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18912 of GNAT produces this auxiliary information, without any indication
18913 that it is produced. Part of enhancing the FSF version of GNAT
18914 to produce that information will be to put in place an indicator
18915 that we can use in order to determine whether the descriptive type
18916 info is available or not. One suggestion that has been made is
18917 to use a new attribute, attached to the CU die. For now, assume
18918 that the descriptive type info is not available. */
18919 return 0;
18920 }
18921
18922 /* Return the auxiliary type of the die in question using its
18923 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18924 attribute is not present. */
18925
18926 static struct type *
18927 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18928 {
18929 struct attribute *type_attr;
18930
18931 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18932 if (!type_attr)
18933 return NULL;
18934
18935 return lookup_die_type (die, type_attr, cu);
18936 }
18937
18938 /* If DIE has a descriptive_type attribute, then set the TYPE's
18939 descriptive type accordingly. */
18940
18941 static void
18942 set_descriptive_type (struct type *type, struct die_info *die,
18943 struct dwarf2_cu *cu)
18944 {
18945 struct type *descriptive_type = die_descriptive_type (die, cu);
18946
18947 if (descriptive_type)
18948 {
18949 ALLOCATE_GNAT_AUX_TYPE (type);
18950 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18951 }
18952 }
18953
18954 /* Return the containing type of the die in question using its
18955 DW_AT_containing_type attribute. */
18956
18957 static struct type *
18958 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18959 {
18960 struct attribute *type_attr;
18961
18962 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18963 if (!type_attr)
18964 error (_("Dwarf Error: Problem turning containing type into gdb type "
18965 "[in module %s]"), objfile_name (cu->objfile));
18966
18967 return lookup_die_type (die, type_attr, cu);
18968 }
18969
18970 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18971
18972 static struct type *
18973 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18974 {
18975 struct objfile *objfile = dwarf2_per_objfile->objfile;
18976 char *message, *saved;
18977
18978 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18979 objfile_name (objfile),
18980 cu->header.offset.sect_off,
18981 die->offset.sect_off);
18982 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
18983 message, strlen (message));
18984 xfree (message);
18985
18986 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18987 }
18988
18989 /* Look up the type of DIE in CU using its type attribute ATTR.
18990 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18991 DW_AT_containing_type.
18992 If there is no type substitute an error marker. */
18993
18994 static struct type *
18995 lookup_die_type (struct die_info *die, const struct attribute *attr,
18996 struct dwarf2_cu *cu)
18997 {
18998 struct objfile *objfile = cu->objfile;
18999 struct type *this_type;
19000
19001 gdb_assert (attr->name == DW_AT_type
19002 || attr->name == DW_AT_GNAT_descriptive_type
19003 || attr->name == DW_AT_containing_type);
19004
19005 /* First see if we have it cached. */
19006
19007 if (attr->form == DW_FORM_GNU_ref_alt)
19008 {
19009 struct dwarf2_per_cu_data *per_cu;
19010 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19011
19012 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19013 this_type = get_die_type_at_offset (offset, per_cu);
19014 }
19015 else if (attr_form_is_ref (attr))
19016 {
19017 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19018
19019 this_type = get_die_type_at_offset (offset, cu->per_cu);
19020 }
19021 else if (attr->form == DW_FORM_ref_sig8)
19022 {
19023 ULONGEST signature = DW_SIGNATURE (attr);
19024
19025 return get_signatured_type (die, signature, cu);
19026 }
19027 else
19028 {
19029 complaint (&symfile_complaints,
19030 _("Dwarf Error: Bad type attribute %s in DIE"
19031 " at 0x%x [in module %s]"),
19032 dwarf_attr_name (attr->name), die->offset.sect_off,
19033 objfile_name (objfile));
19034 return build_error_marker_type (cu, die);
19035 }
19036
19037 /* If not cached we need to read it in. */
19038
19039 if (this_type == NULL)
19040 {
19041 struct die_info *type_die = NULL;
19042 struct dwarf2_cu *type_cu = cu;
19043
19044 if (attr_form_is_ref (attr))
19045 type_die = follow_die_ref (die, attr, &type_cu);
19046 if (type_die == NULL)
19047 return build_error_marker_type (cu, die);
19048 /* If we find the type now, it's probably because the type came
19049 from an inter-CU reference and the type's CU got expanded before
19050 ours. */
19051 this_type = read_type_die (type_die, type_cu);
19052 }
19053
19054 /* If we still don't have a type use an error marker. */
19055
19056 if (this_type == NULL)
19057 return build_error_marker_type (cu, die);
19058
19059 return this_type;
19060 }
19061
19062 /* Return the type in DIE, CU.
19063 Returns NULL for invalid types.
19064
19065 This first does a lookup in die_type_hash,
19066 and only reads the die in if necessary.
19067
19068 NOTE: This can be called when reading in partial or full symbols. */
19069
19070 static struct type *
19071 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19072 {
19073 struct type *this_type;
19074
19075 this_type = get_die_type (die, cu);
19076 if (this_type)
19077 return this_type;
19078
19079 return read_type_die_1 (die, cu);
19080 }
19081
19082 /* Read the type in DIE, CU.
19083 Returns NULL for invalid types. */
19084
19085 static struct type *
19086 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19087 {
19088 struct type *this_type = NULL;
19089
19090 switch (die->tag)
19091 {
19092 case DW_TAG_class_type:
19093 case DW_TAG_interface_type:
19094 case DW_TAG_structure_type:
19095 case DW_TAG_union_type:
19096 this_type = read_structure_type (die, cu);
19097 break;
19098 case DW_TAG_enumeration_type:
19099 this_type = read_enumeration_type (die, cu);
19100 break;
19101 case DW_TAG_subprogram:
19102 case DW_TAG_subroutine_type:
19103 case DW_TAG_inlined_subroutine:
19104 this_type = read_subroutine_type (die, cu);
19105 break;
19106 case DW_TAG_array_type:
19107 this_type = read_array_type (die, cu);
19108 break;
19109 case DW_TAG_set_type:
19110 this_type = read_set_type (die, cu);
19111 break;
19112 case DW_TAG_pointer_type:
19113 this_type = read_tag_pointer_type (die, cu);
19114 break;
19115 case DW_TAG_ptr_to_member_type:
19116 this_type = read_tag_ptr_to_member_type (die, cu);
19117 break;
19118 case DW_TAG_reference_type:
19119 this_type = read_tag_reference_type (die, cu);
19120 break;
19121 case DW_TAG_const_type:
19122 this_type = read_tag_const_type (die, cu);
19123 break;
19124 case DW_TAG_volatile_type:
19125 this_type = read_tag_volatile_type (die, cu);
19126 break;
19127 case DW_TAG_restrict_type:
19128 this_type = read_tag_restrict_type (die, cu);
19129 break;
19130 case DW_TAG_string_type:
19131 this_type = read_tag_string_type (die, cu);
19132 break;
19133 case DW_TAG_typedef:
19134 this_type = read_typedef (die, cu);
19135 break;
19136 case DW_TAG_subrange_type:
19137 this_type = read_subrange_type (die, cu);
19138 break;
19139 case DW_TAG_base_type:
19140 this_type = read_base_type (die, cu);
19141 break;
19142 case DW_TAG_unspecified_type:
19143 this_type = read_unspecified_type (die, cu);
19144 break;
19145 case DW_TAG_namespace:
19146 this_type = read_namespace_type (die, cu);
19147 break;
19148 case DW_TAG_module:
19149 this_type = read_module_type (die, cu);
19150 break;
19151 case DW_TAG_atomic_type:
19152 this_type = read_tag_atomic_type (die, cu);
19153 break;
19154 default:
19155 complaint (&symfile_complaints,
19156 _("unexpected tag in read_type_die: '%s'"),
19157 dwarf_tag_name (die->tag));
19158 break;
19159 }
19160
19161 return this_type;
19162 }
19163
19164 /* See if we can figure out if the class lives in a namespace. We do
19165 this by looking for a member function; its demangled name will
19166 contain namespace info, if there is any.
19167 Return the computed name or NULL.
19168 Space for the result is allocated on the objfile's obstack.
19169 This is the full-die version of guess_partial_die_structure_name.
19170 In this case we know DIE has no useful parent. */
19171
19172 static char *
19173 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19174 {
19175 struct die_info *spec_die;
19176 struct dwarf2_cu *spec_cu;
19177 struct die_info *child;
19178
19179 spec_cu = cu;
19180 spec_die = die_specification (die, &spec_cu);
19181 if (spec_die != NULL)
19182 {
19183 die = spec_die;
19184 cu = spec_cu;
19185 }
19186
19187 for (child = die->child;
19188 child != NULL;
19189 child = child->sibling)
19190 {
19191 if (child->tag == DW_TAG_subprogram)
19192 {
19193 const char *linkage_name;
19194
19195 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19196 if (linkage_name == NULL)
19197 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19198 cu);
19199 if (linkage_name != NULL)
19200 {
19201 char *actual_name
19202 = language_class_name_from_physname (cu->language_defn,
19203 linkage_name);
19204 char *name = NULL;
19205
19206 if (actual_name != NULL)
19207 {
19208 const char *die_name = dwarf2_name (die, cu);
19209
19210 if (die_name != NULL
19211 && strcmp (die_name, actual_name) != 0)
19212 {
19213 /* Strip off the class name from the full name.
19214 We want the prefix. */
19215 int die_name_len = strlen (die_name);
19216 int actual_name_len = strlen (actual_name);
19217
19218 /* Test for '::' as a sanity check. */
19219 if (actual_name_len > die_name_len + 2
19220 && actual_name[actual_name_len
19221 - die_name_len - 1] == ':')
19222 name = (char *) obstack_copy0 (
19223 &cu->objfile->per_bfd->storage_obstack,
19224 actual_name, actual_name_len - die_name_len - 2);
19225 }
19226 }
19227 xfree (actual_name);
19228 return name;
19229 }
19230 }
19231 }
19232
19233 return NULL;
19234 }
19235
19236 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19237 prefix part in such case. See
19238 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19239
19240 static char *
19241 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19242 {
19243 struct attribute *attr;
19244 const char *base;
19245
19246 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19247 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19248 return NULL;
19249
19250 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19251 return NULL;
19252
19253 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19254 if (attr == NULL)
19255 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19256 if (attr == NULL || DW_STRING (attr) == NULL)
19257 return NULL;
19258
19259 /* dwarf2_name had to be already called. */
19260 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19261
19262 /* Strip the base name, keep any leading namespaces/classes. */
19263 base = strrchr (DW_STRING (attr), ':');
19264 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19265 return "";
19266
19267 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19268 DW_STRING (attr),
19269 &base[-1] - DW_STRING (attr));
19270 }
19271
19272 /* Return the name of the namespace/class that DIE is defined within,
19273 or "" if we can't tell. The caller should not xfree the result.
19274
19275 For example, if we're within the method foo() in the following
19276 code:
19277
19278 namespace N {
19279 class C {
19280 void foo () {
19281 }
19282 };
19283 }
19284
19285 then determine_prefix on foo's die will return "N::C". */
19286
19287 static const char *
19288 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19289 {
19290 struct die_info *parent, *spec_die;
19291 struct dwarf2_cu *spec_cu;
19292 struct type *parent_type;
19293 char *retval;
19294
19295 if (cu->language != language_cplus && cu->language != language_java
19296 && cu->language != language_fortran && cu->language != language_d)
19297 return "";
19298
19299 retval = anonymous_struct_prefix (die, cu);
19300 if (retval)
19301 return retval;
19302
19303 /* We have to be careful in the presence of DW_AT_specification.
19304 For example, with GCC 3.4, given the code
19305
19306 namespace N {
19307 void foo() {
19308 // Definition of N::foo.
19309 }
19310 }
19311
19312 then we'll have a tree of DIEs like this:
19313
19314 1: DW_TAG_compile_unit
19315 2: DW_TAG_namespace // N
19316 3: DW_TAG_subprogram // declaration of N::foo
19317 4: DW_TAG_subprogram // definition of N::foo
19318 DW_AT_specification // refers to die #3
19319
19320 Thus, when processing die #4, we have to pretend that we're in
19321 the context of its DW_AT_specification, namely the contex of die
19322 #3. */
19323 spec_cu = cu;
19324 spec_die = die_specification (die, &spec_cu);
19325 if (spec_die == NULL)
19326 parent = die->parent;
19327 else
19328 {
19329 parent = spec_die->parent;
19330 cu = spec_cu;
19331 }
19332
19333 if (parent == NULL)
19334 return "";
19335 else if (parent->building_fullname)
19336 {
19337 const char *name;
19338 const char *parent_name;
19339
19340 /* It has been seen on RealView 2.2 built binaries,
19341 DW_TAG_template_type_param types actually _defined_ as
19342 children of the parent class:
19343
19344 enum E {};
19345 template class <class Enum> Class{};
19346 Class<enum E> class_e;
19347
19348 1: DW_TAG_class_type (Class)
19349 2: DW_TAG_enumeration_type (E)
19350 3: DW_TAG_enumerator (enum1:0)
19351 3: DW_TAG_enumerator (enum2:1)
19352 ...
19353 2: DW_TAG_template_type_param
19354 DW_AT_type DW_FORM_ref_udata (E)
19355
19356 Besides being broken debug info, it can put GDB into an
19357 infinite loop. Consider:
19358
19359 When we're building the full name for Class<E>, we'll start
19360 at Class, and go look over its template type parameters,
19361 finding E. We'll then try to build the full name of E, and
19362 reach here. We're now trying to build the full name of E,
19363 and look over the parent DIE for containing scope. In the
19364 broken case, if we followed the parent DIE of E, we'd again
19365 find Class, and once again go look at its template type
19366 arguments, etc., etc. Simply don't consider such parent die
19367 as source-level parent of this die (it can't be, the language
19368 doesn't allow it), and break the loop here. */
19369 name = dwarf2_name (die, cu);
19370 parent_name = dwarf2_name (parent, cu);
19371 complaint (&symfile_complaints,
19372 _("template param type '%s' defined within parent '%s'"),
19373 name ? name : "<unknown>",
19374 parent_name ? parent_name : "<unknown>");
19375 return "";
19376 }
19377 else
19378 switch (parent->tag)
19379 {
19380 case DW_TAG_namespace:
19381 parent_type = read_type_die (parent, cu);
19382 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19383 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19384 Work around this problem here. */
19385 if (cu->language == language_cplus
19386 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19387 return "";
19388 /* We give a name to even anonymous namespaces. */
19389 return TYPE_TAG_NAME (parent_type);
19390 case DW_TAG_class_type:
19391 case DW_TAG_interface_type:
19392 case DW_TAG_structure_type:
19393 case DW_TAG_union_type:
19394 case DW_TAG_module:
19395 parent_type = read_type_die (parent, cu);
19396 if (TYPE_TAG_NAME (parent_type) != NULL)
19397 return TYPE_TAG_NAME (parent_type);
19398 else
19399 /* An anonymous structure is only allowed non-static data
19400 members; no typedefs, no member functions, et cetera.
19401 So it does not need a prefix. */
19402 return "";
19403 case DW_TAG_compile_unit:
19404 case DW_TAG_partial_unit:
19405 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19406 if (cu->language == language_cplus
19407 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19408 && die->child != NULL
19409 && (die->tag == DW_TAG_class_type
19410 || die->tag == DW_TAG_structure_type
19411 || die->tag == DW_TAG_union_type))
19412 {
19413 char *name = guess_full_die_structure_name (die, cu);
19414 if (name != NULL)
19415 return name;
19416 }
19417 return "";
19418 case DW_TAG_enumeration_type:
19419 parent_type = read_type_die (parent, cu);
19420 if (TYPE_DECLARED_CLASS (parent_type))
19421 {
19422 if (TYPE_TAG_NAME (parent_type) != NULL)
19423 return TYPE_TAG_NAME (parent_type);
19424 return "";
19425 }
19426 /* Fall through. */
19427 default:
19428 return determine_prefix (parent, cu);
19429 }
19430 }
19431
19432 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19433 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19434 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19435 an obconcat, otherwise allocate storage for the result. The CU argument is
19436 used to determine the language and hence, the appropriate separator. */
19437
19438 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19439
19440 static char *
19441 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19442 int physname, struct dwarf2_cu *cu)
19443 {
19444 const char *lead = "";
19445 const char *sep;
19446
19447 if (suffix == NULL || suffix[0] == '\0'
19448 || prefix == NULL || prefix[0] == '\0')
19449 sep = "";
19450 else if (cu->language == language_java)
19451 sep = ".";
19452 else if (cu->language == language_d)
19453 {
19454 /* For D, the 'main' function could be defined in any module, but it
19455 should never be prefixed. */
19456 if (strcmp (suffix, "D main") == 0)
19457 {
19458 prefix = "";
19459 sep = "";
19460 }
19461 else
19462 sep = ".";
19463 }
19464 else if (cu->language == language_fortran && physname)
19465 {
19466 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19467 DW_AT_MIPS_linkage_name is preferred and used instead. */
19468
19469 lead = "__";
19470 sep = "_MOD_";
19471 }
19472 else
19473 sep = "::";
19474
19475 if (prefix == NULL)
19476 prefix = "";
19477 if (suffix == NULL)
19478 suffix = "";
19479
19480 if (obs == NULL)
19481 {
19482 char *retval
19483 = ((char *)
19484 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
19485
19486 strcpy (retval, lead);
19487 strcat (retval, prefix);
19488 strcat (retval, sep);
19489 strcat (retval, suffix);
19490 return retval;
19491 }
19492 else
19493 {
19494 /* We have an obstack. */
19495 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19496 }
19497 }
19498
19499 /* Return sibling of die, NULL if no sibling. */
19500
19501 static struct die_info *
19502 sibling_die (struct die_info *die)
19503 {
19504 return die->sibling;
19505 }
19506
19507 /* Get name of a die, return NULL if not found. */
19508
19509 static const char *
19510 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19511 struct obstack *obstack)
19512 {
19513 if (name && cu->language == language_cplus)
19514 {
19515 char *canon_name = cp_canonicalize_string (name);
19516
19517 if (canon_name != NULL)
19518 {
19519 if (strcmp (canon_name, name) != 0)
19520 name = (const char *) obstack_copy0 (obstack, canon_name,
19521 strlen (canon_name));
19522 xfree (canon_name);
19523 }
19524 }
19525
19526 return name;
19527 }
19528
19529 /* Get name of a die, return NULL if not found.
19530 Anonymous namespaces are converted to their magic string. */
19531
19532 static const char *
19533 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19534 {
19535 struct attribute *attr;
19536
19537 attr = dwarf2_attr (die, DW_AT_name, cu);
19538 if ((!attr || !DW_STRING (attr))
19539 && die->tag != DW_TAG_namespace
19540 && die->tag != DW_TAG_class_type
19541 && die->tag != DW_TAG_interface_type
19542 && die->tag != DW_TAG_structure_type
19543 && die->tag != DW_TAG_union_type)
19544 return NULL;
19545
19546 switch (die->tag)
19547 {
19548 case DW_TAG_compile_unit:
19549 case DW_TAG_partial_unit:
19550 /* Compilation units have a DW_AT_name that is a filename, not
19551 a source language identifier. */
19552 case DW_TAG_enumeration_type:
19553 case DW_TAG_enumerator:
19554 /* These tags always have simple identifiers already; no need
19555 to canonicalize them. */
19556 return DW_STRING (attr);
19557
19558 case DW_TAG_namespace:
19559 if (attr != NULL && DW_STRING (attr) != NULL)
19560 return DW_STRING (attr);
19561 return CP_ANONYMOUS_NAMESPACE_STR;
19562
19563 case DW_TAG_subprogram:
19564 /* Java constructors will all be named "<init>", so return
19565 the class name when we see this special case. */
19566 if (cu->language == language_java
19567 && DW_STRING (attr) != NULL
19568 && strcmp (DW_STRING (attr), "<init>") == 0)
19569 {
19570 struct dwarf2_cu *spec_cu = cu;
19571 struct die_info *spec_die;
19572
19573 /* GCJ will output '<init>' for Java constructor names.
19574 For this special case, return the name of the parent class. */
19575
19576 /* GCJ may output subprogram DIEs with AT_specification set.
19577 If so, use the name of the specified DIE. */
19578 spec_die = die_specification (die, &spec_cu);
19579 if (spec_die != NULL)
19580 return dwarf2_name (spec_die, spec_cu);
19581
19582 do
19583 {
19584 die = die->parent;
19585 if (die->tag == DW_TAG_class_type)
19586 return dwarf2_name (die, cu);
19587 }
19588 while (die->tag != DW_TAG_compile_unit
19589 && die->tag != DW_TAG_partial_unit);
19590 }
19591 break;
19592
19593 case DW_TAG_class_type:
19594 case DW_TAG_interface_type:
19595 case DW_TAG_structure_type:
19596 case DW_TAG_union_type:
19597 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19598 structures or unions. These were of the form "._%d" in GCC 4.1,
19599 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19600 and GCC 4.4. We work around this problem by ignoring these. */
19601 if (attr && DW_STRING (attr)
19602 && (startswith (DW_STRING (attr), "._")
19603 || startswith (DW_STRING (attr), "<anonymous")))
19604 return NULL;
19605
19606 /* GCC might emit a nameless typedef that has a linkage name. See
19607 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19608 if (!attr || DW_STRING (attr) == NULL)
19609 {
19610 char *demangled = NULL;
19611
19612 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19613 if (attr == NULL)
19614 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19615
19616 if (attr == NULL || DW_STRING (attr) == NULL)
19617 return NULL;
19618
19619 /* Avoid demangling DW_STRING (attr) the second time on a second
19620 call for the same DIE. */
19621 if (!DW_STRING_IS_CANONICAL (attr))
19622 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19623
19624 if (demangled)
19625 {
19626 const char *base;
19627
19628 /* FIXME: we already did this for the partial symbol... */
19629 DW_STRING (attr)
19630 = ((const char *)
19631 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19632 demangled, strlen (demangled)));
19633 DW_STRING_IS_CANONICAL (attr) = 1;
19634 xfree (demangled);
19635
19636 /* Strip any leading namespaces/classes, keep only the base name.
19637 DW_AT_name for named DIEs does not contain the prefixes. */
19638 base = strrchr (DW_STRING (attr), ':');
19639 if (base && base > DW_STRING (attr) && base[-1] == ':')
19640 return &base[1];
19641 else
19642 return DW_STRING (attr);
19643 }
19644 }
19645 break;
19646
19647 default:
19648 break;
19649 }
19650
19651 if (!DW_STRING_IS_CANONICAL (attr))
19652 {
19653 DW_STRING (attr)
19654 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19655 &cu->objfile->per_bfd->storage_obstack);
19656 DW_STRING_IS_CANONICAL (attr) = 1;
19657 }
19658 return DW_STRING (attr);
19659 }
19660
19661 /* Return the die that this die in an extension of, or NULL if there
19662 is none. *EXT_CU is the CU containing DIE on input, and the CU
19663 containing the return value on output. */
19664
19665 static struct die_info *
19666 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19667 {
19668 struct attribute *attr;
19669
19670 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19671 if (attr == NULL)
19672 return NULL;
19673
19674 return follow_die_ref (die, attr, ext_cu);
19675 }
19676
19677 /* Convert a DIE tag into its string name. */
19678
19679 static const char *
19680 dwarf_tag_name (unsigned tag)
19681 {
19682 const char *name = get_DW_TAG_name (tag);
19683
19684 if (name == NULL)
19685 return "DW_TAG_<unknown>";
19686
19687 return name;
19688 }
19689
19690 /* Convert a DWARF attribute code into its string name. */
19691
19692 static const char *
19693 dwarf_attr_name (unsigned attr)
19694 {
19695 const char *name;
19696
19697 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19698 if (attr == DW_AT_MIPS_fde)
19699 return "DW_AT_MIPS_fde";
19700 #else
19701 if (attr == DW_AT_HP_block_index)
19702 return "DW_AT_HP_block_index";
19703 #endif
19704
19705 name = get_DW_AT_name (attr);
19706
19707 if (name == NULL)
19708 return "DW_AT_<unknown>";
19709
19710 return name;
19711 }
19712
19713 /* Convert a DWARF value form code into its string name. */
19714
19715 static const char *
19716 dwarf_form_name (unsigned form)
19717 {
19718 const char *name = get_DW_FORM_name (form);
19719
19720 if (name == NULL)
19721 return "DW_FORM_<unknown>";
19722
19723 return name;
19724 }
19725
19726 static char *
19727 dwarf_bool_name (unsigned mybool)
19728 {
19729 if (mybool)
19730 return "TRUE";
19731 else
19732 return "FALSE";
19733 }
19734
19735 /* Convert a DWARF type code into its string name. */
19736
19737 static const char *
19738 dwarf_type_encoding_name (unsigned enc)
19739 {
19740 const char *name = get_DW_ATE_name (enc);
19741
19742 if (name == NULL)
19743 return "DW_ATE_<unknown>";
19744
19745 return name;
19746 }
19747
19748 static void
19749 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19750 {
19751 unsigned int i;
19752
19753 print_spaces (indent, f);
19754 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19755 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19756
19757 if (die->parent != NULL)
19758 {
19759 print_spaces (indent, f);
19760 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19761 die->parent->offset.sect_off);
19762 }
19763
19764 print_spaces (indent, f);
19765 fprintf_unfiltered (f, " has children: %s\n",
19766 dwarf_bool_name (die->child != NULL));
19767
19768 print_spaces (indent, f);
19769 fprintf_unfiltered (f, " attributes:\n");
19770
19771 for (i = 0; i < die->num_attrs; ++i)
19772 {
19773 print_spaces (indent, f);
19774 fprintf_unfiltered (f, " %s (%s) ",
19775 dwarf_attr_name (die->attrs[i].name),
19776 dwarf_form_name (die->attrs[i].form));
19777
19778 switch (die->attrs[i].form)
19779 {
19780 case DW_FORM_addr:
19781 case DW_FORM_GNU_addr_index:
19782 fprintf_unfiltered (f, "address: ");
19783 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19784 break;
19785 case DW_FORM_block2:
19786 case DW_FORM_block4:
19787 case DW_FORM_block:
19788 case DW_FORM_block1:
19789 fprintf_unfiltered (f, "block: size %s",
19790 pulongest (DW_BLOCK (&die->attrs[i])->size));
19791 break;
19792 case DW_FORM_exprloc:
19793 fprintf_unfiltered (f, "expression: size %s",
19794 pulongest (DW_BLOCK (&die->attrs[i])->size));
19795 break;
19796 case DW_FORM_ref_addr:
19797 fprintf_unfiltered (f, "ref address: ");
19798 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19799 break;
19800 case DW_FORM_GNU_ref_alt:
19801 fprintf_unfiltered (f, "alt ref address: ");
19802 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19803 break;
19804 case DW_FORM_ref1:
19805 case DW_FORM_ref2:
19806 case DW_FORM_ref4:
19807 case DW_FORM_ref8:
19808 case DW_FORM_ref_udata:
19809 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19810 (long) (DW_UNSND (&die->attrs[i])));
19811 break;
19812 case DW_FORM_data1:
19813 case DW_FORM_data2:
19814 case DW_FORM_data4:
19815 case DW_FORM_data8:
19816 case DW_FORM_udata:
19817 case DW_FORM_sdata:
19818 fprintf_unfiltered (f, "constant: %s",
19819 pulongest (DW_UNSND (&die->attrs[i])));
19820 break;
19821 case DW_FORM_sec_offset:
19822 fprintf_unfiltered (f, "section offset: %s",
19823 pulongest (DW_UNSND (&die->attrs[i])));
19824 break;
19825 case DW_FORM_ref_sig8:
19826 fprintf_unfiltered (f, "signature: %s",
19827 hex_string (DW_SIGNATURE (&die->attrs[i])));
19828 break;
19829 case DW_FORM_string:
19830 case DW_FORM_strp:
19831 case DW_FORM_GNU_str_index:
19832 case DW_FORM_GNU_strp_alt:
19833 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19834 DW_STRING (&die->attrs[i])
19835 ? DW_STRING (&die->attrs[i]) : "",
19836 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19837 break;
19838 case DW_FORM_flag:
19839 if (DW_UNSND (&die->attrs[i]))
19840 fprintf_unfiltered (f, "flag: TRUE");
19841 else
19842 fprintf_unfiltered (f, "flag: FALSE");
19843 break;
19844 case DW_FORM_flag_present:
19845 fprintf_unfiltered (f, "flag: TRUE");
19846 break;
19847 case DW_FORM_indirect:
19848 /* The reader will have reduced the indirect form to
19849 the "base form" so this form should not occur. */
19850 fprintf_unfiltered (f,
19851 "unexpected attribute form: DW_FORM_indirect");
19852 break;
19853 default:
19854 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19855 die->attrs[i].form);
19856 break;
19857 }
19858 fprintf_unfiltered (f, "\n");
19859 }
19860 }
19861
19862 static void
19863 dump_die_for_error (struct die_info *die)
19864 {
19865 dump_die_shallow (gdb_stderr, 0, die);
19866 }
19867
19868 static void
19869 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19870 {
19871 int indent = level * 4;
19872
19873 gdb_assert (die != NULL);
19874
19875 if (level >= max_level)
19876 return;
19877
19878 dump_die_shallow (f, indent, die);
19879
19880 if (die->child != NULL)
19881 {
19882 print_spaces (indent, f);
19883 fprintf_unfiltered (f, " Children:");
19884 if (level + 1 < max_level)
19885 {
19886 fprintf_unfiltered (f, "\n");
19887 dump_die_1 (f, level + 1, max_level, die->child);
19888 }
19889 else
19890 {
19891 fprintf_unfiltered (f,
19892 " [not printed, max nesting level reached]\n");
19893 }
19894 }
19895
19896 if (die->sibling != NULL && level > 0)
19897 {
19898 dump_die_1 (f, level, max_level, die->sibling);
19899 }
19900 }
19901
19902 /* This is called from the pdie macro in gdbinit.in.
19903 It's not static so gcc will keep a copy callable from gdb. */
19904
19905 void
19906 dump_die (struct die_info *die, int max_level)
19907 {
19908 dump_die_1 (gdb_stdlog, 0, max_level, die);
19909 }
19910
19911 static void
19912 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19913 {
19914 void **slot;
19915
19916 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19917 INSERT);
19918
19919 *slot = die;
19920 }
19921
19922 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19923 required kind. */
19924
19925 static sect_offset
19926 dwarf2_get_ref_die_offset (const struct attribute *attr)
19927 {
19928 sect_offset retval = { DW_UNSND (attr) };
19929
19930 if (attr_form_is_ref (attr))
19931 return retval;
19932
19933 retval.sect_off = 0;
19934 complaint (&symfile_complaints,
19935 _("unsupported die ref attribute form: '%s'"),
19936 dwarf_form_name (attr->form));
19937 return retval;
19938 }
19939
19940 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19941 * the value held by the attribute is not constant. */
19942
19943 static LONGEST
19944 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19945 {
19946 if (attr->form == DW_FORM_sdata)
19947 return DW_SND (attr);
19948 else if (attr->form == DW_FORM_udata
19949 || attr->form == DW_FORM_data1
19950 || attr->form == DW_FORM_data2
19951 || attr->form == DW_FORM_data4
19952 || attr->form == DW_FORM_data8)
19953 return DW_UNSND (attr);
19954 else
19955 {
19956 complaint (&symfile_complaints,
19957 _("Attribute value is not a constant (%s)"),
19958 dwarf_form_name (attr->form));
19959 return default_value;
19960 }
19961 }
19962
19963 /* Follow reference or signature attribute ATTR of SRC_DIE.
19964 On entry *REF_CU is the CU of SRC_DIE.
19965 On exit *REF_CU is the CU of the result. */
19966
19967 static struct die_info *
19968 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19969 struct dwarf2_cu **ref_cu)
19970 {
19971 struct die_info *die;
19972
19973 if (attr_form_is_ref (attr))
19974 die = follow_die_ref (src_die, attr, ref_cu);
19975 else if (attr->form == DW_FORM_ref_sig8)
19976 die = follow_die_sig (src_die, attr, ref_cu);
19977 else
19978 {
19979 dump_die_for_error (src_die);
19980 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19981 objfile_name ((*ref_cu)->objfile));
19982 }
19983
19984 return die;
19985 }
19986
19987 /* Follow reference OFFSET.
19988 On entry *REF_CU is the CU of the source die referencing OFFSET.
19989 On exit *REF_CU is the CU of the result.
19990 Returns NULL if OFFSET is invalid. */
19991
19992 static struct die_info *
19993 follow_die_offset (sect_offset offset, int offset_in_dwz,
19994 struct dwarf2_cu **ref_cu)
19995 {
19996 struct die_info temp_die;
19997 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19998
19999 gdb_assert (cu->per_cu != NULL);
20000
20001 target_cu = cu;
20002
20003 if (cu->per_cu->is_debug_types)
20004 {
20005 /* .debug_types CUs cannot reference anything outside their CU.
20006 If they need to, they have to reference a signatured type via
20007 DW_FORM_ref_sig8. */
20008 if (! offset_in_cu_p (&cu->header, offset))
20009 return NULL;
20010 }
20011 else if (offset_in_dwz != cu->per_cu->is_dwz
20012 || ! offset_in_cu_p (&cu->header, offset))
20013 {
20014 struct dwarf2_per_cu_data *per_cu;
20015
20016 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20017 cu->objfile);
20018
20019 /* If necessary, add it to the queue and load its DIEs. */
20020 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20021 load_full_comp_unit (per_cu, cu->language);
20022
20023 target_cu = per_cu->cu;
20024 }
20025 else if (cu->dies == NULL)
20026 {
20027 /* We're loading full DIEs during partial symbol reading. */
20028 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20029 load_full_comp_unit (cu->per_cu, language_minimal);
20030 }
20031
20032 *ref_cu = target_cu;
20033 temp_die.offset = offset;
20034 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20035 &temp_die, offset.sect_off);
20036 }
20037
20038 /* Follow reference attribute ATTR of SRC_DIE.
20039 On entry *REF_CU is the CU of SRC_DIE.
20040 On exit *REF_CU is the CU of the result. */
20041
20042 static struct die_info *
20043 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20044 struct dwarf2_cu **ref_cu)
20045 {
20046 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20047 struct dwarf2_cu *cu = *ref_cu;
20048 struct die_info *die;
20049
20050 die = follow_die_offset (offset,
20051 (attr->form == DW_FORM_GNU_ref_alt
20052 || cu->per_cu->is_dwz),
20053 ref_cu);
20054 if (!die)
20055 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20056 "at 0x%x [in module %s]"),
20057 offset.sect_off, src_die->offset.sect_off,
20058 objfile_name (cu->objfile));
20059
20060 return die;
20061 }
20062
20063 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20064 Returned value is intended for DW_OP_call*. Returned
20065 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20066
20067 struct dwarf2_locexpr_baton
20068 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20069 struct dwarf2_per_cu_data *per_cu,
20070 CORE_ADDR (*get_frame_pc) (void *baton),
20071 void *baton)
20072 {
20073 struct dwarf2_cu *cu;
20074 struct die_info *die;
20075 struct attribute *attr;
20076 struct dwarf2_locexpr_baton retval;
20077
20078 dw2_setup (per_cu->objfile);
20079
20080 if (per_cu->cu == NULL)
20081 load_cu (per_cu);
20082 cu = per_cu->cu;
20083 if (cu == NULL)
20084 {
20085 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20086 Instead just throw an error, not much else we can do. */
20087 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20088 offset.sect_off, objfile_name (per_cu->objfile));
20089 }
20090
20091 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20092 if (!die)
20093 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20094 offset.sect_off, objfile_name (per_cu->objfile));
20095
20096 attr = dwarf2_attr (die, DW_AT_location, cu);
20097 if (!attr)
20098 {
20099 /* DWARF: "If there is no such attribute, then there is no effect.".
20100 DATA is ignored if SIZE is 0. */
20101
20102 retval.data = NULL;
20103 retval.size = 0;
20104 }
20105 else if (attr_form_is_section_offset (attr))
20106 {
20107 struct dwarf2_loclist_baton loclist_baton;
20108 CORE_ADDR pc = (*get_frame_pc) (baton);
20109 size_t size;
20110
20111 fill_in_loclist_baton (cu, &loclist_baton, attr);
20112
20113 retval.data = dwarf2_find_location_expression (&loclist_baton,
20114 &size, pc);
20115 retval.size = size;
20116 }
20117 else
20118 {
20119 if (!attr_form_is_block (attr))
20120 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20121 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20122 offset.sect_off, objfile_name (per_cu->objfile));
20123
20124 retval.data = DW_BLOCK (attr)->data;
20125 retval.size = DW_BLOCK (attr)->size;
20126 }
20127 retval.per_cu = cu->per_cu;
20128
20129 age_cached_comp_units ();
20130
20131 return retval;
20132 }
20133
20134 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20135 offset. */
20136
20137 struct dwarf2_locexpr_baton
20138 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20139 struct dwarf2_per_cu_data *per_cu,
20140 CORE_ADDR (*get_frame_pc) (void *baton),
20141 void *baton)
20142 {
20143 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20144
20145 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20146 }
20147
20148 /* Write a constant of a given type as target-ordered bytes into
20149 OBSTACK. */
20150
20151 static const gdb_byte *
20152 write_constant_as_bytes (struct obstack *obstack,
20153 enum bfd_endian byte_order,
20154 struct type *type,
20155 ULONGEST value,
20156 LONGEST *len)
20157 {
20158 gdb_byte *result;
20159
20160 *len = TYPE_LENGTH (type);
20161 result = (gdb_byte *) obstack_alloc (obstack, *len);
20162 store_unsigned_integer (result, *len, byte_order, value);
20163
20164 return result;
20165 }
20166
20167 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20168 pointer to the constant bytes and set LEN to the length of the
20169 data. If memory is needed, allocate it on OBSTACK. If the DIE
20170 does not have a DW_AT_const_value, return NULL. */
20171
20172 const gdb_byte *
20173 dwarf2_fetch_constant_bytes (sect_offset offset,
20174 struct dwarf2_per_cu_data *per_cu,
20175 struct obstack *obstack,
20176 LONGEST *len)
20177 {
20178 struct dwarf2_cu *cu;
20179 struct die_info *die;
20180 struct attribute *attr;
20181 const gdb_byte *result = NULL;
20182 struct type *type;
20183 LONGEST value;
20184 enum bfd_endian byte_order;
20185
20186 dw2_setup (per_cu->objfile);
20187
20188 if (per_cu->cu == NULL)
20189 load_cu (per_cu);
20190 cu = per_cu->cu;
20191 if (cu == NULL)
20192 {
20193 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20194 Instead just throw an error, not much else we can do. */
20195 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20196 offset.sect_off, objfile_name (per_cu->objfile));
20197 }
20198
20199 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20200 if (!die)
20201 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20202 offset.sect_off, objfile_name (per_cu->objfile));
20203
20204
20205 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20206 if (attr == NULL)
20207 return NULL;
20208
20209 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20210 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20211
20212 switch (attr->form)
20213 {
20214 case DW_FORM_addr:
20215 case DW_FORM_GNU_addr_index:
20216 {
20217 gdb_byte *tem;
20218
20219 *len = cu->header.addr_size;
20220 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20221 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20222 result = tem;
20223 }
20224 break;
20225 case DW_FORM_string:
20226 case DW_FORM_strp:
20227 case DW_FORM_GNU_str_index:
20228 case DW_FORM_GNU_strp_alt:
20229 /* DW_STRING is already allocated on the objfile obstack, point
20230 directly to it. */
20231 result = (const gdb_byte *) DW_STRING (attr);
20232 *len = strlen (DW_STRING (attr));
20233 break;
20234 case DW_FORM_block1:
20235 case DW_FORM_block2:
20236 case DW_FORM_block4:
20237 case DW_FORM_block:
20238 case DW_FORM_exprloc:
20239 result = DW_BLOCK (attr)->data;
20240 *len = DW_BLOCK (attr)->size;
20241 break;
20242
20243 /* The DW_AT_const_value attributes are supposed to carry the
20244 symbol's value "represented as it would be on the target
20245 architecture." By the time we get here, it's already been
20246 converted to host endianness, so we just need to sign- or
20247 zero-extend it as appropriate. */
20248 case DW_FORM_data1:
20249 type = die_type (die, cu);
20250 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20251 if (result == NULL)
20252 result = write_constant_as_bytes (obstack, byte_order,
20253 type, value, len);
20254 break;
20255 case DW_FORM_data2:
20256 type = die_type (die, cu);
20257 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20258 if (result == NULL)
20259 result = write_constant_as_bytes (obstack, byte_order,
20260 type, value, len);
20261 break;
20262 case DW_FORM_data4:
20263 type = die_type (die, cu);
20264 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20265 if (result == NULL)
20266 result = write_constant_as_bytes (obstack, byte_order,
20267 type, value, len);
20268 break;
20269 case DW_FORM_data8:
20270 type = die_type (die, cu);
20271 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20272 if (result == NULL)
20273 result = write_constant_as_bytes (obstack, byte_order,
20274 type, value, len);
20275 break;
20276
20277 case DW_FORM_sdata:
20278 type = die_type (die, cu);
20279 result = write_constant_as_bytes (obstack, byte_order,
20280 type, DW_SND (attr), len);
20281 break;
20282
20283 case DW_FORM_udata:
20284 type = die_type (die, cu);
20285 result = write_constant_as_bytes (obstack, byte_order,
20286 type, DW_UNSND (attr), len);
20287 break;
20288
20289 default:
20290 complaint (&symfile_complaints,
20291 _("unsupported const value attribute form: '%s'"),
20292 dwarf_form_name (attr->form));
20293 break;
20294 }
20295
20296 return result;
20297 }
20298
20299 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20300 PER_CU. */
20301
20302 struct type *
20303 dwarf2_get_die_type (cu_offset die_offset,
20304 struct dwarf2_per_cu_data *per_cu)
20305 {
20306 sect_offset die_offset_sect;
20307
20308 dw2_setup (per_cu->objfile);
20309
20310 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20311 return get_die_type_at_offset (die_offset_sect, per_cu);
20312 }
20313
20314 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20315 On entry *REF_CU is the CU of SRC_DIE.
20316 On exit *REF_CU is the CU of the result.
20317 Returns NULL if the referenced DIE isn't found. */
20318
20319 static struct die_info *
20320 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20321 struct dwarf2_cu **ref_cu)
20322 {
20323 struct objfile *objfile = (*ref_cu)->objfile;
20324 struct die_info temp_die;
20325 struct dwarf2_cu *sig_cu;
20326 struct die_info *die;
20327
20328 /* While it might be nice to assert sig_type->type == NULL here,
20329 we can get here for DW_AT_imported_declaration where we need
20330 the DIE not the type. */
20331
20332 /* If necessary, add it to the queue and load its DIEs. */
20333
20334 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20335 read_signatured_type (sig_type);
20336
20337 sig_cu = sig_type->per_cu.cu;
20338 gdb_assert (sig_cu != NULL);
20339 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20340 temp_die.offset = sig_type->type_offset_in_section;
20341 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20342 temp_die.offset.sect_off);
20343 if (die)
20344 {
20345 /* For .gdb_index version 7 keep track of included TUs.
20346 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20347 if (dwarf2_per_objfile->index_table != NULL
20348 && dwarf2_per_objfile->index_table->version <= 7)
20349 {
20350 VEC_safe_push (dwarf2_per_cu_ptr,
20351 (*ref_cu)->per_cu->imported_symtabs,
20352 sig_cu->per_cu);
20353 }
20354
20355 *ref_cu = sig_cu;
20356 return die;
20357 }
20358
20359 return NULL;
20360 }
20361
20362 /* Follow signatured type referenced by ATTR in SRC_DIE.
20363 On entry *REF_CU is the CU of SRC_DIE.
20364 On exit *REF_CU is the CU of the result.
20365 The result is the DIE of the type.
20366 If the referenced type cannot be found an error is thrown. */
20367
20368 static struct die_info *
20369 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20370 struct dwarf2_cu **ref_cu)
20371 {
20372 ULONGEST signature = DW_SIGNATURE (attr);
20373 struct signatured_type *sig_type;
20374 struct die_info *die;
20375
20376 gdb_assert (attr->form == DW_FORM_ref_sig8);
20377
20378 sig_type = lookup_signatured_type (*ref_cu, signature);
20379 /* sig_type will be NULL if the signatured type is missing from
20380 the debug info. */
20381 if (sig_type == NULL)
20382 {
20383 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20384 " from DIE at 0x%x [in module %s]"),
20385 hex_string (signature), src_die->offset.sect_off,
20386 objfile_name ((*ref_cu)->objfile));
20387 }
20388
20389 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20390 if (die == NULL)
20391 {
20392 dump_die_for_error (src_die);
20393 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20394 " from DIE at 0x%x [in module %s]"),
20395 hex_string (signature), src_die->offset.sect_off,
20396 objfile_name ((*ref_cu)->objfile));
20397 }
20398
20399 return die;
20400 }
20401
20402 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20403 reading in and processing the type unit if necessary. */
20404
20405 static struct type *
20406 get_signatured_type (struct die_info *die, ULONGEST signature,
20407 struct dwarf2_cu *cu)
20408 {
20409 struct signatured_type *sig_type;
20410 struct dwarf2_cu *type_cu;
20411 struct die_info *type_die;
20412 struct type *type;
20413
20414 sig_type = lookup_signatured_type (cu, signature);
20415 /* sig_type will be NULL if the signatured type is missing from
20416 the debug info. */
20417 if (sig_type == NULL)
20418 {
20419 complaint (&symfile_complaints,
20420 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20421 " from DIE at 0x%x [in module %s]"),
20422 hex_string (signature), die->offset.sect_off,
20423 objfile_name (dwarf2_per_objfile->objfile));
20424 return build_error_marker_type (cu, die);
20425 }
20426
20427 /* If we already know the type we're done. */
20428 if (sig_type->type != NULL)
20429 return sig_type->type;
20430
20431 type_cu = cu;
20432 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20433 if (type_die != NULL)
20434 {
20435 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20436 is created. This is important, for example, because for c++ classes
20437 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20438 type = read_type_die (type_die, type_cu);
20439 if (type == NULL)
20440 {
20441 complaint (&symfile_complaints,
20442 _("Dwarf Error: Cannot build signatured type %s"
20443 " referenced from DIE at 0x%x [in module %s]"),
20444 hex_string (signature), die->offset.sect_off,
20445 objfile_name (dwarf2_per_objfile->objfile));
20446 type = build_error_marker_type (cu, die);
20447 }
20448 }
20449 else
20450 {
20451 complaint (&symfile_complaints,
20452 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20453 " from DIE at 0x%x [in module %s]"),
20454 hex_string (signature), die->offset.sect_off,
20455 objfile_name (dwarf2_per_objfile->objfile));
20456 type = build_error_marker_type (cu, die);
20457 }
20458 sig_type->type = type;
20459
20460 return type;
20461 }
20462
20463 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20464 reading in and processing the type unit if necessary. */
20465
20466 static struct type *
20467 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20468 struct dwarf2_cu *cu) /* ARI: editCase function */
20469 {
20470 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20471 if (attr_form_is_ref (attr))
20472 {
20473 struct dwarf2_cu *type_cu = cu;
20474 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20475
20476 return read_type_die (type_die, type_cu);
20477 }
20478 else if (attr->form == DW_FORM_ref_sig8)
20479 {
20480 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20481 }
20482 else
20483 {
20484 complaint (&symfile_complaints,
20485 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20486 " at 0x%x [in module %s]"),
20487 dwarf_form_name (attr->form), die->offset.sect_off,
20488 objfile_name (dwarf2_per_objfile->objfile));
20489 return build_error_marker_type (cu, die);
20490 }
20491 }
20492
20493 /* Load the DIEs associated with type unit PER_CU into memory. */
20494
20495 static void
20496 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20497 {
20498 struct signatured_type *sig_type;
20499
20500 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20501 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20502
20503 /* We have the per_cu, but we need the signatured_type.
20504 Fortunately this is an easy translation. */
20505 gdb_assert (per_cu->is_debug_types);
20506 sig_type = (struct signatured_type *) per_cu;
20507
20508 gdb_assert (per_cu->cu == NULL);
20509
20510 read_signatured_type (sig_type);
20511
20512 gdb_assert (per_cu->cu != NULL);
20513 }
20514
20515 /* die_reader_func for read_signatured_type.
20516 This is identical to load_full_comp_unit_reader,
20517 but is kept separate for now. */
20518
20519 static void
20520 read_signatured_type_reader (const struct die_reader_specs *reader,
20521 const gdb_byte *info_ptr,
20522 struct die_info *comp_unit_die,
20523 int has_children,
20524 void *data)
20525 {
20526 struct dwarf2_cu *cu = reader->cu;
20527
20528 gdb_assert (cu->die_hash == NULL);
20529 cu->die_hash =
20530 htab_create_alloc_ex (cu->header.length / 12,
20531 die_hash,
20532 die_eq,
20533 NULL,
20534 &cu->comp_unit_obstack,
20535 hashtab_obstack_allocate,
20536 dummy_obstack_deallocate);
20537
20538 if (has_children)
20539 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20540 &info_ptr, comp_unit_die);
20541 cu->dies = comp_unit_die;
20542 /* comp_unit_die is not stored in die_hash, no need. */
20543
20544 /* We try not to read any attributes in this function, because not
20545 all CUs needed for references have been loaded yet, and symbol
20546 table processing isn't initialized. But we have to set the CU language,
20547 or we won't be able to build types correctly.
20548 Similarly, if we do not read the producer, we can not apply
20549 producer-specific interpretation. */
20550 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20551 }
20552
20553 /* Read in a signatured type and build its CU and DIEs.
20554 If the type is a stub for the real type in a DWO file,
20555 read in the real type from the DWO file as well. */
20556
20557 static void
20558 read_signatured_type (struct signatured_type *sig_type)
20559 {
20560 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20561
20562 gdb_assert (per_cu->is_debug_types);
20563 gdb_assert (per_cu->cu == NULL);
20564
20565 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20566 read_signatured_type_reader, NULL);
20567 sig_type->per_cu.tu_read = 1;
20568 }
20569
20570 /* Decode simple location descriptions.
20571 Given a pointer to a dwarf block that defines a location, compute
20572 the location and return the value.
20573
20574 NOTE drow/2003-11-18: This function is called in two situations
20575 now: for the address of static or global variables (partial symbols
20576 only) and for offsets into structures which are expected to be
20577 (more or less) constant. The partial symbol case should go away,
20578 and only the constant case should remain. That will let this
20579 function complain more accurately. A few special modes are allowed
20580 without complaint for global variables (for instance, global
20581 register values and thread-local values).
20582
20583 A location description containing no operations indicates that the
20584 object is optimized out. The return value is 0 for that case.
20585 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20586 callers will only want a very basic result and this can become a
20587 complaint.
20588
20589 Note that stack[0] is unused except as a default error return. */
20590
20591 static CORE_ADDR
20592 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20593 {
20594 struct objfile *objfile = cu->objfile;
20595 size_t i;
20596 size_t size = blk->size;
20597 const gdb_byte *data = blk->data;
20598 CORE_ADDR stack[64];
20599 int stacki;
20600 unsigned int bytes_read, unsnd;
20601 gdb_byte op;
20602
20603 i = 0;
20604 stacki = 0;
20605 stack[stacki] = 0;
20606 stack[++stacki] = 0;
20607
20608 while (i < size)
20609 {
20610 op = data[i++];
20611 switch (op)
20612 {
20613 case DW_OP_lit0:
20614 case DW_OP_lit1:
20615 case DW_OP_lit2:
20616 case DW_OP_lit3:
20617 case DW_OP_lit4:
20618 case DW_OP_lit5:
20619 case DW_OP_lit6:
20620 case DW_OP_lit7:
20621 case DW_OP_lit8:
20622 case DW_OP_lit9:
20623 case DW_OP_lit10:
20624 case DW_OP_lit11:
20625 case DW_OP_lit12:
20626 case DW_OP_lit13:
20627 case DW_OP_lit14:
20628 case DW_OP_lit15:
20629 case DW_OP_lit16:
20630 case DW_OP_lit17:
20631 case DW_OP_lit18:
20632 case DW_OP_lit19:
20633 case DW_OP_lit20:
20634 case DW_OP_lit21:
20635 case DW_OP_lit22:
20636 case DW_OP_lit23:
20637 case DW_OP_lit24:
20638 case DW_OP_lit25:
20639 case DW_OP_lit26:
20640 case DW_OP_lit27:
20641 case DW_OP_lit28:
20642 case DW_OP_lit29:
20643 case DW_OP_lit30:
20644 case DW_OP_lit31:
20645 stack[++stacki] = op - DW_OP_lit0;
20646 break;
20647
20648 case DW_OP_reg0:
20649 case DW_OP_reg1:
20650 case DW_OP_reg2:
20651 case DW_OP_reg3:
20652 case DW_OP_reg4:
20653 case DW_OP_reg5:
20654 case DW_OP_reg6:
20655 case DW_OP_reg7:
20656 case DW_OP_reg8:
20657 case DW_OP_reg9:
20658 case DW_OP_reg10:
20659 case DW_OP_reg11:
20660 case DW_OP_reg12:
20661 case DW_OP_reg13:
20662 case DW_OP_reg14:
20663 case DW_OP_reg15:
20664 case DW_OP_reg16:
20665 case DW_OP_reg17:
20666 case DW_OP_reg18:
20667 case DW_OP_reg19:
20668 case DW_OP_reg20:
20669 case DW_OP_reg21:
20670 case DW_OP_reg22:
20671 case DW_OP_reg23:
20672 case DW_OP_reg24:
20673 case DW_OP_reg25:
20674 case DW_OP_reg26:
20675 case DW_OP_reg27:
20676 case DW_OP_reg28:
20677 case DW_OP_reg29:
20678 case DW_OP_reg30:
20679 case DW_OP_reg31:
20680 stack[++stacki] = op - DW_OP_reg0;
20681 if (i < size)
20682 dwarf2_complex_location_expr_complaint ();
20683 break;
20684
20685 case DW_OP_regx:
20686 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20687 i += bytes_read;
20688 stack[++stacki] = unsnd;
20689 if (i < size)
20690 dwarf2_complex_location_expr_complaint ();
20691 break;
20692
20693 case DW_OP_addr:
20694 stack[++stacki] = read_address (objfile->obfd, &data[i],
20695 cu, &bytes_read);
20696 i += bytes_read;
20697 break;
20698
20699 case DW_OP_const1u:
20700 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20701 i += 1;
20702 break;
20703
20704 case DW_OP_const1s:
20705 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20706 i += 1;
20707 break;
20708
20709 case DW_OP_const2u:
20710 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20711 i += 2;
20712 break;
20713
20714 case DW_OP_const2s:
20715 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20716 i += 2;
20717 break;
20718
20719 case DW_OP_const4u:
20720 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20721 i += 4;
20722 break;
20723
20724 case DW_OP_const4s:
20725 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20726 i += 4;
20727 break;
20728
20729 case DW_OP_const8u:
20730 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20731 i += 8;
20732 break;
20733
20734 case DW_OP_constu:
20735 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20736 &bytes_read);
20737 i += bytes_read;
20738 break;
20739
20740 case DW_OP_consts:
20741 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20742 i += bytes_read;
20743 break;
20744
20745 case DW_OP_dup:
20746 stack[stacki + 1] = stack[stacki];
20747 stacki++;
20748 break;
20749
20750 case DW_OP_plus:
20751 stack[stacki - 1] += stack[stacki];
20752 stacki--;
20753 break;
20754
20755 case DW_OP_plus_uconst:
20756 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20757 &bytes_read);
20758 i += bytes_read;
20759 break;
20760
20761 case DW_OP_minus:
20762 stack[stacki - 1] -= stack[stacki];
20763 stacki--;
20764 break;
20765
20766 case DW_OP_deref:
20767 /* If we're not the last op, then we definitely can't encode
20768 this using GDB's address_class enum. This is valid for partial
20769 global symbols, although the variable's address will be bogus
20770 in the psymtab. */
20771 if (i < size)
20772 dwarf2_complex_location_expr_complaint ();
20773 break;
20774
20775 case DW_OP_GNU_push_tls_address:
20776 /* The top of the stack has the offset from the beginning
20777 of the thread control block at which the variable is located. */
20778 /* Nothing should follow this operator, so the top of stack would
20779 be returned. */
20780 /* This is valid for partial global symbols, but the variable's
20781 address will be bogus in the psymtab. Make it always at least
20782 non-zero to not look as a variable garbage collected by linker
20783 which have DW_OP_addr 0. */
20784 if (i < size)
20785 dwarf2_complex_location_expr_complaint ();
20786 stack[stacki]++;
20787 break;
20788
20789 case DW_OP_GNU_uninit:
20790 break;
20791
20792 case DW_OP_GNU_addr_index:
20793 case DW_OP_GNU_const_index:
20794 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20795 &bytes_read);
20796 i += bytes_read;
20797 break;
20798
20799 default:
20800 {
20801 const char *name = get_DW_OP_name (op);
20802
20803 if (name)
20804 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20805 name);
20806 else
20807 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20808 op);
20809 }
20810
20811 return (stack[stacki]);
20812 }
20813
20814 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20815 outside of the allocated space. Also enforce minimum>0. */
20816 if (stacki >= ARRAY_SIZE (stack) - 1)
20817 {
20818 complaint (&symfile_complaints,
20819 _("location description stack overflow"));
20820 return 0;
20821 }
20822
20823 if (stacki <= 0)
20824 {
20825 complaint (&symfile_complaints,
20826 _("location description stack underflow"));
20827 return 0;
20828 }
20829 }
20830 return (stack[stacki]);
20831 }
20832
20833 /* memory allocation interface */
20834
20835 static struct dwarf_block *
20836 dwarf_alloc_block (struct dwarf2_cu *cu)
20837 {
20838 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
20839 }
20840
20841 static struct die_info *
20842 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20843 {
20844 struct die_info *die;
20845 size_t size = sizeof (struct die_info);
20846
20847 if (num_attrs > 1)
20848 size += (num_attrs - 1) * sizeof (struct attribute);
20849
20850 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20851 memset (die, 0, sizeof (struct die_info));
20852 return (die);
20853 }
20854
20855 \f
20856 /* Macro support. */
20857
20858 /* Return file name relative to the compilation directory of file number I in
20859 *LH's file name table. The result is allocated using xmalloc; the caller is
20860 responsible for freeing it. */
20861
20862 static char *
20863 file_file_name (int file, struct line_header *lh)
20864 {
20865 /* Is the file number a valid index into the line header's file name
20866 table? Remember that file numbers start with one, not zero. */
20867 if (1 <= file && file <= lh->num_file_names)
20868 {
20869 struct file_entry *fe = &lh->file_names[file - 1];
20870
20871 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20872 || lh->include_dirs == NULL)
20873 return xstrdup (fe->name);
20874 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20875 fe->name, (char *) NULL);
20876 }
20877 else
20878 {
20879 /* The compiler produced a bogus file number. We can at least
20880 record the macro definitions made in the file, even if we
20881 won't be able to find the file by name. */
20882 char fake_name[80];
20883
20884 xsnprintf (fake_name, sizeof (fake_name),
20885 "<bad macro file number %d>", file);
20886
20887 complaint (&symfile_complaints,
20888 _("bad file number in macro information (%d)"),
20889 file);
20890
20891 return xstrdup (fake_name);
20892 }
20893 }
20894
20895 /* Return the full name of file number I in *LH's file name table.
20896 Use COMP_DIR as the name of the current directory of the
20897 compilation. The result is allocated using xmalloc; the caller is
20898 responsible for freeing it. */
20899 static char *
20900 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20901 {
20902 /* Is the file number a valid index into the line header's file name
20903 table? Remember that file numbers start with one, not zero. */
20904 if (1 <= file && file <= lh->num_file_names)
20905 {
20906 char *relative = file_file_name (file, lh);
20907
20908 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20909 return relative;
20910 return reconcat (relative, comp_dir, SLASH_STRING,
20911 relative, (char *) NULL);
20912 }
20913 else
20914 return file_file_name (file, lh);
20915 }
20916
20917
20918 static struct macro_source_file *
20919 macro_start_file (int file, int line,
20920 struct macro_source_file *current_file,
20921 struct line_header *lh)
20922 {
20923 /* File name relative to the compilation directory of this source file. */
20924 char *file_name = file_file_name (file, lh);
20925
20926 if (! current_file)
20927 {
20928 /* Note: We don't create a macro table for this compilation unit
20929 at all until we actually get a filename. */
20930 struct macro_table *macro_table = get_macro_table ();
20931
20932 /* If we have no current file, then this must be the start_file
20933 directive for the compilation unit's main source file. */
20934 current_file = macro_set_main (macro_table, file_name);
20935 macro_define_special (macro_table);
20936 }
20937 else
20938 current_file = macro_include (current_file, line, file_name);
20939
20940 xfree (file_name);
20941
20942 return current_file;
20943 }
20944
20945
20946 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20947 followed by a null byte. */
20948 static char *
20949 copy_string (const char *buf, int len)
20950 {
20951 char *s = (char *) xmalloc (len + 1);
20952
20953 memcpy (s, buf, len);
20954 s[len] = '\0';
20955 return s;
20956 }
20957
20958
20959 static const char *
20960 consume_improper_spaces (const char *p, const char *body)
20961 {
20962 if (*p == ' ')
20963 {
20964 complaint (&symfile_complaints,
20965 _("macro definition contains spaces "
20966 "in formal argument list:\n`%s'"),
20967 body);
20968
20969 while (*p == ' ')
20970 p++;
20971 }
20972
20973 return p;
20974 }
20975
20976
20977 static void
20978 parse_macro_definition (struct macro_source_file *file, int line,
20979 const char *body)
20980 {
20981 const char *p;
20982
20983 /* The body string takes one of two forms. For object-like macro
20984 definitions, it should be:
20985
20986 <macro name> " " <definition>
20987
20988 For function-like macro definitions, it should be:
20989
20990 <macro name> "() " <definition>
20991 or
20992 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20993
20994 Spaces may appear only where explicitly indicated, and in the
20995 <definition>.
20996
20997 The Dwarf 2 spec says that an object-like macro's name is always
20998 followed by a space, but versions of GCC around March 2002 omit
20999 the space when the macro's definition is the empty string.
21000
21001 The Dwarf 2 spec says that there should be no spaces between the
21002 formal arguments in a function-like macro's formal argument list,
21003 but versions of GCC around March 2002 include spaces after the
21004 commas. */
21005
21006
21007 /* Find the extent of the macro name. The macro name is terminated
21008 by either a space or null character (for an object-like macro) or
21009 an opening paren (for a function-like macro). */
21010 for (p = body; *p; p++)
21011 if (*p == ' ' || *p == '(')
21012 break;
21013
21014 if (*p == ' ' || *p == '\0')
21015 {
21016 /* It's an object-like macro. */
21017 int name_len = p - body;
21018 char *name = copy_string (body, name_len);
21019 const char *replacement;
21020
21021 if (*p == ' ')
21022 replacement = body + name_len + 1;
21023 else
21024 {
21025 dwarf2_macro_malformed_definition_complaint (body);
21026 replacement = body + name_len;
21027 }
21028
21029 macro_define_object (file, line, name, replacement);
21030
21031 xfree (name);
21032 }
21033 else if (*p == '(')
21034 {
21035 /* It's a function-like macro. */
21036 char *name = copy_string (body, p - body);
21037 int argc = 0;
21038 int argv_size = 1;
21039 char **argv = XNEWVEC (char *, argv_size);
21040
21041 p++;
21042
21043 p = consume_improper_spaces (p, body);
21044
21045 /* Parse the formal argument list. */
21046 while (*p && *p != ')')
21047 {
21048 /* Find the extent of the current argument name. */
21049 const char *arg_start = p;
21050
21051 while (*p && *p != ',' && *p != ')' && *p != ' ')
21052 p++;
21053
21054 if (! *p || p == arg_start)
21055 dwarf2_macro_malformed_definition_complaint (body);
21056 else
21057 {
21058 /* Make sure argv has room for the new argument. */
21059 if (argc >= argv_size)
21060 {
21061 argv_size *= 2;
21062 argv = XRESIZEVEC (char *, argv, argv_size);
21063 }
21064
21065 argv[argc++] = copy_string (arg_start, p - arg_start);
21066 }
21067
21068 p = consume_improper_spaces (p, body);
21069
21070 /* Consume the comma, if present. */
21071 if (*p == ',')
21072 {
21073 p++;
21074
21075 p = consume_improper_spaces (p, body);
21076 }
21077 }
21078
21079 if (*p == ')')
21080 {
21081 p++;
21082
21083 if (*p == ' ')
21084 /* Perfectly formed definition, no complaints. */
21085 macro_define_function (file, line, name,
21086 argc, (const char **) argv,
21087 p + 1);
21088 else if (*p == '\0')
21089 {
21090 /* Complain, but do define it. */
21091 dwarf2_macro_malformed_definition_complaint (body);
21092 macro_define_function (file, line, name,
21093 argc, (const char **) argv,
21094 p);
21095 }
21096 else
21097 /* Just complain. */
21098 dwarf2_macro_malformed_definition_complaint (body);
21099 }
21100 else
21101 /* Just complain. */
21102 dwarf2_macro_malformed_definition_complaint (body);
21103
21104 xfree (name);
21105 {
21106 int i;
21107
21108 for (i = 0; i < argc; i++)
21109 xfree (argv[i]);
21110 }
21111 xfree (argv);
21112 }
21113 else
21114 dwarf2_macro_malformed_definition_complaint (body);
21115 }
21116
21117 /* Skip some bytes from BYTES according to the form given in FORM.
21118 Returns the new pointer. */
21119
21120 static const gdb_byte *
21121 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21122 enum dwarf_form form,
21123 unsigned int offset_size,
21124 struct dwarf2_section_info *section)
21125 {
21126 unsigned int bytes_read;
21127
21128 switch (form)
21129 {
21130 case DW_FORM_data1:
21131 case DW_FORM_flag:
21132 ++bytes;
21133 break;
21134
21135 case DW_FORM_data2:
21136 bytes += 2;
21137 break;
21138
21139 case DW_FORM_data4:
21140 bytes += 4;
21141 break;
21142
21143 case DW_FORM_data8:
21144 bytes += 8;
21145 break;
21146
21147 case DW_FORM_string:
21148 read_direct_string (abfd, bytes, &bytes_read);
21149 bytes += bytes_read;
21150 break;
21151
21152 case DW_FORM_sec_offset:
21153 case DW_FORM_strp:
21154 case DW_FORM_GNU_strp_alt:
21155 bytes += offset_size;
21156 break;
21157
21158 case DW_FORM_block:
21159 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21160 bytes += bytes_read;
21161 break;
21162
21163 case DW_FORM_block1:
21164 bytes += 1 + read_1_byte (abfd, bytes);
21165 break;
21166 case DW_FORM_block2:
21167 bytes += 2 + read_2_bytes (abfd, bytes);
21168 break;
21169 case DW_FORM_block4:
21170 bytes += 4 + read_4_bytes (abfd, bytes);
21171 break;
21172
21173 case DW_FORM_sdata:
21174 case DW_FORM_udata:
21175 case DW_FORM_GNU_addr_index:
21176 case DW_FORM_GNU_str_index:
21177 bytes = gdb_skip_leb128 (bytes, buffer_end);
21178 if (bytes == NULL)
21179 {
21180 dwarf2_section_buffer_overflow_complaint (section);
21181 return NULL;
21182 }
21183 break;
21184
21185 default:
21186 {
21187 complain:
21188 complaint (&symfile_complaints,
21189 _("invalid form 0x%x in `%s'"),
21190 form, get_section_name (section));
21191 return NULL;
21192 }
21193 }
21194
21195 return bytes;
21196 }
21197
21198 /* A helper for dwarf_decode_macros that handles skipping an unknown
21199 opcode. Returns an updated pointer to the macro data buffer; or,
21200 on error, issues a complaint and returns NULL. */
21201
21202 static const gdb_byte *
21203 skip_unknown_opcode (unsigned int opcode,
21204 const gdb_byte **opcode_definitions,
21205 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21206 bfd *abfd,
21207 unsigned int offset_size,
21208 struct dwarf2_section_info *section)
21209 {
21210 unsigned int bytes_read, i;
21211 unsigned long arg;
21212 const gdb_byte *defn;
21213
21214 if (opcode_definitions[opcode] == NULL)
21215 {
21216 complaint (&symfile_complaints,
21217 _("unrecognized DW_MACFINO opcode 0x%x"),
21218 opcode);
21219 return NULL;
21220 }
21221
21222 defn = opcode_definitions[opcode];
21223 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21224 defn += bytes_read;
21225
21226 for (i = 0; i < arg; ++i)
21227 {
21228 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21229 (enum dwarf_form) defn[i], offset_size,
21230 section);
21231 if (mac_ptr == NULL)
21232 {
21233 /* skip_form_bytes already issued the complaint. */
21234 return NULL;
21235 }
21236 }
21237
21238 return mac_ptr;
21239 }
21240
21241 /* A helper function which parses the header of a macro section.
21242 If the macro section is the extended (for now called "GNU") type,
21243 then this updates *OFFSET_SIZE. Returns a pointer to just after
21244 the header, or issues a complaint and returns NULL on error. */
21245
21246 static const gdb_byte *
21247 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21248 bfd *abfd,
21249 const gdb_byte *mac_ptr,
21250 unsigned int *offset_size,
21251 int section_is_gnu)
21252 {
21253 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21254
21255 if (section_is_gnu)
21256 {
21257 unsigned int version, flags;
21258
21259 version = read_2_bytes (abfd, mac_ptr);
21260 if (version != 4)
21261 {
21262 complaint (&symfile_complaints,
21263 _("unrecognized version `%d' in .debug_macro section"),
21264 version);
21265 return NULL;
21266 }
21267 mac_ptr += 2;
21268
21269 flags = read_1_byte (abfd, mac_ptr);
21270 ++mac_ptr;
21271 *offset_size = (flags & 1) ? 8 : 4;
21272
21273 if ((flags & 2) != 0)
21274 /* We don't need the line table offset. */
21275 mac_ptr += *offset_size;
21276
21277 /* Vendor opcode descriptions. */
21278 if ((flags & 4) != 0)
21279 {
21280 unsigned int i, count;
21281
21282 count = read_1_byte (abfd, mac_ptr);
21283 ++mac_ptr;
21284 for (i = 0; i < count; ++i)
21285 {
21286 unsigned int opcode, bytes_read;
21287 unsigned long arg;
21288
21289 opcode = read_1_byte (abfd, mac_ptr);
21290 ++mac_ptr;
21291 opcode_definitions[opcode] = mac_ptr;
21292 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21293 mac_ptr += bytes_read;
21294 mac_ptr += arg;
21295 }
21296 }
21297 }
21298
21299 return mac_ptr;
21300 }
21301
21302 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21303 including DW_MACRO_GNU_transparent_include. */
21304
21305 static void
21306 dwarf_decode_macro_bytes (bfd *abfd,
21307 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21308 struct macro_source_file *current_file,
21309 struct line_header *lh,
21310 struct dwarf2_section_info *section,
21311 int section_is_gnu, int section_is_dwz,
21312 unsigned int offset_size,
21313 htab_t include_hash)
21314 {
21315 struct objfile *objfile = dwarf2_per_objfile->objfile;
21316 enum dwarf_macro_record_type macinfo_type;
21317 int at_commandline;
21318 const gdb_byte *opcode_definitions[256];
21319
21320 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21321 &offset_size, section_is_gnu);
21322 if (mac_ptr == NULL)
21323 {
21324 /* We already issued a complaint. */
21325 return;
21326 }
21327
21328 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21329 GDB is still reading the definitions from command line. First
21330 DW_MACINFO_start_file will need to be ignored as it was already executed
21331 to create CURRENT_FILE for the main source holding also the command line
21332 definitions. On first met DW_MACINFO_start_file this flag is reset to
21333 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21334
21335 at_commandline = 1;
21336
21337 do
21338 {
21339 /* Do we at least have room for a macinfo type byte? */
21340 if (mac_ptr >= mac_end)
21341 {
21342 dwarf2_section_buffer_overflow_complaint (section);
21343 break;
21344 }
21345
21346 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21347 mac_ptr++;
21348
21349 /* Note that we rely on the fact that the corresponding GNU and
21350 DWARF constants are the same. */
21351 switch (macinfo_type)
21352 {
21353 /* A zero macinfo type indicates the end of the macro
21354 information. */
21355 case 0:
21356 break;
21357
21358 case DW_MACRO_GNU_define:
21359 case DW_MACRO_GNU_undef:
21360 case DW_MACRO_GNU_define_indirect:
21361 case DW_MACRO_GNU_undef_indirect:
21362 case DW_MACRO_GNU_define_indirect_alt:
21363 case DW_MACRO_GNU_undef_indirect_alt:
21364 {
21365 unsigned int bytes_read;
21366 int line;
21367 const char *body;
21368 int is_define;
21369
21370 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21371 mac_ptr += bytes_read;
21372
21373 if (macinfo_type == DW_MACRO_GNU_define
21374 || macinfo_type == DW_MACRO_GNU_undef)
21375 {
21376 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21377 mac_ptr += bytes_read;
21378 }
21379 else
21380 {
21381 LONGEST str_offset;
21382
21383 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21384 mac_ptr += offset_size;
21385
21386 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21387 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21388 || section_is_dwz)
21389 {
21390 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21391
21392 body = read_indirect_string_from_dwz (dwz, str_offset);
21393 }
21394 else
21395 body = read_indirect_string_at_offset (abfd, str_offset);
21396 }
21397
21398 is_define = (macinfo_type == DW_MACRO_GNU_define
21399 || macinfo_type == DW_MACRO_GNU_define_indirect
21400 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21401 if (! current_file)
21402 {
21403 /* DWARF violation as no main source is present. */
21404 complaint (&symfile_complaints,
21405 _("debug info with no main source gives macro %s "
21406 "on line %d: %s"),
21407 is_define ? _("definition") : _("undefinition"),
21408 line, body);
21409 break;
21410 }
21411 if ((line == 0 && !at_commandline)
21412 || (line != 0 && at_commandline))
21413 complaint (&symfile_complaints,
21414 _("debug info gives %s macro %s with %s line %d: %s"),
21415 at_commandline ? _("command-line") : _("in-file"),
21416 is_define ? _("definition") : _("undefinition"),
21417 line == 0 ? _("zero") : _("non-zero"), line, body);
21418
21419 if (is_define)
21420 parse_macro_definition (current_file, line, body);
21421 else
21422 {
21423 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21424 || macinfo_type == DW_MACRO_GNU_undef_indirect
21425 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21426 macro_undef (current_file, line, body);
21427 }
21428 }
21429 break;
21430
21431 case DW_MACRO_GNU_start_file:
21432 {
21433 unsigned int bytes_read;
21434 int line, file;
21435
21436 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21437 mac_ptr += bytes_read;
21438 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21439 mac_ptr += bytes_read;
21440
21441 if ((line == 0 && !at_commandline)
21442 || (line != 0 && at_commandline))
21443 complaint (&symfile_complaints,
21444 _("debug info gives source %d included "
21445 "from %s at %s line %d"),
21446 file, at_commandline ? _("command-line") : _("file"),
21447 line == 0 ? _("zero") : _("non-zero"), line);
21448
21449 if (at_commandline)
21450 {
21451 /* This DW_MACRO_GNU_start_file was executed in the
21452 pass one. */
21453 at_commandline = 0;
21454 }
21455 else
21456 current_file = macro_start_file (file, line, current_file, lh);
21457 }
21458 break;
21459
21460 case DW_MACRO_GNU_end_file:
21461 if (! current_file)
21462 complaint (&symfile_complaints,
21463 _("macro debug info has an unmatched "
21464 "`close_file' directive"));
21465 else
21466 {
21467 current_file = current_file->included_by;
21468 if (! current_file)
21469 {
21470 enum dwarf_macro_record_type next_type;
21471
21472 /* GCC circa March 2002 doesn't produce the zero
21473 type byte marking the end of the compilation
21474 unit. Complain if it's not there, but exit no
21475 matter what. */
21476
21477 /* Do we at least have room for a macinfo type byte? */
21478 if (mac_ptr >= mac_end)
21479 {
21480 dwarf2_section_buffer_overflow_complaint (section);
21481 return;
21482 }
21483
21484 /* We don't increment mac_ptr here, so this is just
21485 a look-ahead. */
21486 next_type
21487 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21488 mac_ptr);
21489 if (next_type != 0)
21490 complaint (&symfile_complaints,
21491 _("no terminating 0-type entry for "
21492 "macros in `.debug_macinfo' section"));
21493
21494 return;
21495 }
21496 }
21497 break;
21498
21499 case DW_MACRO_GNU_transparent_include:
21500 case DW_MACRO_GNU_transparent_include_alt:
21501 {
21502 LONGEST offset;
21503 void **slot;
21504 bfd *include_bfd = abfd;
21505 struct dwarf2_section_info *include_section = section;
21506 struct dwarf2_section_info alt_section;
21507 const gdb_byte *include_mac_end = mac_end;
21508 int is_dwz = section_is_dwz;
21509 const gdb_byte *new_mac_ptr;
21510
21511 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21512 mac_ptr += offset_size;
21513
21514 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21515 {
21516 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21517
21518 dwarf2_read_section (objfile, &dwz->macro);
21519
21520 include_section = &dwz->macro;
21521 include_bfd = get_section_bfd_owner (include_section);
21522 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21523 is_dwz = 1;
21524 }
21525
21526 new_mac_ptr = include_section->buffer + offset;
21527 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21528
21529 if (*slot != NULL)
21530 {
21531 /* This has actually happened; see
21532 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21533 complaint (&symfile_complaints,
21534 _("recursive DW_MACRO_GNU_transparent_include in "
21535 ".debug_macro section"));
21536 }
21537 else
21538 {
21539 *slot = (void *) new_mac_ptr;
21540
21541 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21542 include_mac_end, current_file, lh,
21543 section, section_is_gnu, is_dwz,
21544 offset_size, include_hash);
21545
21546 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21547 }
21548 }
21549 break;
21550
21551 case DW_MACINFO_vendor_ext:
21552 if (!section_is_gnu)
21553 {
21554 unsigned int bytes_read;
21555 int constant;
21556
21557 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21558 mac_ptr += bytes_read;
21559 read_direct_string (abfd, mac_ptr, &bytes_read);
21560 mac_ptr += bytes_read;
21561
21562 /* We don't recognize any vendor extensions. */
21563 break;
21564 }
21565 /* FALLTHROUGH */
21566
21567 default:
21568 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21569 mac_ptr, mac_end, abfd, offset_size,
21570 section);
21571 if (mac_ptr == NULL)
21572 return;
21573 break;
21574 }
21575 } while (macinfo_type != 0);
21576 }
21577
21578 static void
21579 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21580 int section_is_gnu)
21581 {
21582 struct objfile *objfile = dwarf2_per_objfile->objfile;
21583 struct line_header *lh = cu->line_header;
21584 bfd *abfd;
21585 const gdb_byte *mac_ptr, *mac_end;
21586 struct macro_source_file *current_file = 0;
21587 enum dwarf_macro_record_type macinfo_type;
21588 unsigned int offset_size = cu->header.offset_size;
21589 const gdb_byte *opcode_definitions[256];
21590 struct cleanup *cleanup;
21591 htab_t include_hash;
21592 void **slot;
21593 struct dwarf2_section_info *section;
21594 const char *section_name;
21595
21596 if (cu->dwo_unit != NULL)
21597 {
21598 if (section_is_gnu)
21599 {
21600 section = &cu->dwo_unit->dwo_file->sections.macro;
21601 section_name = ".debug_macro.dwo";
21602 }
21603 else
21604 {
21605 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21606 section_name = ".debug_macinfo.dwo";
21607 }
21608 }
21609 else
21610 {
21611 if (section_is_gnu)
21612 {
21613 section = &dwarf2_per_objfile->macro;
21614 section_name = ".debug_macro";
21615 }
21616 else
21617 {
21618 section = &dwarf2_per_objfile->macinfo;
21619 section_name = ".debug_macinfo";
21620 }
21621 }
21622
21623 dwarf2_read_section (objfile, section);
21624 if (section->buffer == NULL)
21625 {
21626 complaint (&symfile_complaints, _("missing %s section"), section_name);
21627 return;
21628 }
21629 abfd = get_section_bfd_owner (section);
21630
21631 /* First pass: Find the name of the base filename.
21632 This filename is needed in order to process all macros whose definition
21633 (or undefinition) comes from the command line. These macros are defined
21634 before the first DW_MACINFO_start_file entry, and yet still need to be
21635 associated to the base file.
21636
21637 To determine the base file name, we scan the macro definitions until we
21638 reach the first DW_MACINFO_start_file entry. We then initialize
21639 CURRENT_FILE accordingly so that any macro definition found before the
21640 first DW_MACINFO_start_file can still be associated to the base file. */
21641
21642 mac_ptr = section->buffer + offset;
21643 mac_end = section->buffer + section->size;
21644
21645 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21646 &offset_size, section_is_gnu);
21647 if (mac_ptr == NULL)
21648 {
21649 /* We already issued a complaint. */
21650 return;
21651 }
21652
21653 do
21654 {
21655 /* Do we at least have room for a macinfo type byte? */
21656 if (mac_ptr >= mac_end)
21657 {
21658 /* Complaint is printed during the second pass as GDB will probably
21659 stop the first pass earlier upon finding
21660 DW_MACINFO_start_file. */
21661 break;
21662 }
21663
21664 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21665 mac_ptr++;
21666
21667 /* Note that we rely on the fact that the corresponding GNU and
21668 DWARF constants are the same. */
21669 switch (macinfo_type)
21670 {
21671 /* A zero macinfo type indicates the end of the macro
21672 information. */
21673 case 0:
21674 break;
21675
21676 case DW_MACRO_GNU_define:
21677 case DW_MACRO_GNU_undef:
21678 /* Only skip the data by MAC_PTR. */
21679 {
21680 unsigned int bytes_read;
21681
21682 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21683 mac_ptr += bytes_read;
21684 read_direct_string (abfd, mac_ptr, &bytes_read);
21685 mac_ptr += bytes_read;
21686 }
21687 break;
21688
21689 case DW_MACRO_GNU_start_file:
21690 {
21691 unsigned int bytes_read;
21692 int line, file;
21693
21694 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21695 mac_ptr += bytes_read;
21696 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21697 mac_ptr += bytes_read;
21698
21699 current_file = macro_start_file (file, line, current_file, lh);
21700 }
21701 break;
21702
21703 case DW_MACRO_GNU_end_file:
21704 /* No data to skip by MAC_PTR. */
21705 break;
21706
21707 case DW_MACRO_GNU_define_indirect:
21708 case DW_MACRO_GNU_undef_indirect:
21709 case DW_MACRO_GNU_define_indirect_alt:
21710 case DW_MACRO_GNU_undef_indirect_alt:
21711 {
21712 unsigned int bytes_read;
21713
21714 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21715 mac_ptr += bytes_read;
21716 mac_ptr += offset_size;
21717 }
21718 break;
21719
21720 case DW_MACRO_GNU_transparent_include:
21721 case DW_MACRO_GNU_transparent_include_alt:
21722 /* Note that, according to the spec, a transparent include
21723 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21724 skip this opcode. */
21725 mac_ptr += offset_size;
21726 break;
21727
21728 case DW_MACINFO_vendor_ext:
21729 /* Only skip the data by MAC_PTR. */
21730 if (!section_is_gnu)
21731 {
21732 unsigned int bytes_read;
21733
21734 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21735 mac_ptr += bytes_read;
21736 read_direct_string (abfd, mac_ptr, &bytes_read);
21737 mac_ptr += bytes_read;
21738 }
21739 /* FALLTHROUGH */
21740
21741 default:
21742 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21743 mac_ptr, mac_end, abfd, offset_size,
21744 section);
21745 if (mac_ptr == NULL)
21746 return;
21747 break;
21748 }
21749 } while (macinfo_type != 0 && current_file == NULL);
21750
21751 /* Second pass: Process all entries.
21752
21753 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21754 command-line macro definitions/undefinitions. This flag is unset when we
21755 reach the first DW_MACINFO_start_file entry. */
21756
21757 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21758 NULL, xcalloc, xfree);
21759 cleanup = make_cleanup_htab_delete (include_hash);
21760 mac_ptr = section->buffer + offset;
21761 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21762 *slot = (void *) mac_ptr;
21763 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21764 current_file, lh, section,
21765 section_is_gnu, 0, offset_size, include_hash);
21766 do_cleanups (cleanup);
21767 }
21768
21769 /* Check if the attribute's form is a DW_FORM_block*
21770 if so return true else false. */
21771
21772 static int
21773 attr_form_is_block (const struct attribute *attr)
21774 {
21775 return (attr == NULL ? 0 :
21776 attr->form == DW_FORM_block1
21777 || attr->form == DW_FORM_block2
21778 || attr->form == DW_FORM_block4
21779 || attr->form == DW_FORM_block
21780 || attr->form == DW_FORM_exprloc);
21781 }
21782
21783 /* Return non-zero if ATTR's value is a section offset --- classes
21784 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21785 You may use DW_UNSND (attr) to retrieve such offsets.
21786
21787 Section 7.5.4, "Attribute Encodings", explains that no attribute
21788 may have a value that belongs to more than one of these classes; it
21789 would be ambiguous if we did, because we use the same forms for all
21790 of them. */
21791
21792 static int
21793 attr_form_is_section_offset (const struct attribute *attr)
21794 {
21795 return (attr->form == DW_FORM_data4
21796 || attr->form == DW_FORM_data8
21797 || attr->form == DW_FORM_sec_offset);
21798 }
21799
21800 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21801 zero otherwise. When this function returns true, you can apply
21802 dwarf2_get_attr_constant_value to it.
21803
21804 However, note that for some attributes you must check
21805 attr_form_is_section_offset before using this test. DW_FORM_data4
21806 and DW_FORM_data8 are members of both the constant class, and of
21807 the classes that contain offsets into other debug sections
21808 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21809 that, if an attribute's can be either a constant or one of the
21810 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21811 taken as section offsets, not constants. */
21812
21813 static int
21814 attr_form_is_constant (const struct attribute *attr)
21815 {
21816 switch (attr->form)
21817 {
21818 case DW_FORM_sdata:
21819 case DW_FORM_udata:
21820 case DW_FORM_data1:
21821 case DW_FORM_data2:
21822 case DW_FORM_data4:
21823 case DW_FORM_data8:
21824 return 1;
21825 default:
21826 return 0;
21827 }
21828 }
21829
21830
21831 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21832 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21833
21834 static int
21835 attr_form_is_ref (const struct attribute *attr)
21836 {
21837 switch (attr->form)
21838 {
21839 case DW_FORM_ref_addr:
21840 case DW_FORM_ref1:
21841 case DW_FORM_ref2:
21842 case DW_FORM_ref4:
21843 case DW_FORM_ref8:
21844 case DW_FORM_ref_udata:
21845 case DW_FORM_GNU_ref_alt:
21846 return 1;
21847 default:
21848 return 0;
21849 }
21850 }
21851
21852 /* Return the .debug_loc section to use for CU.
21853 For DWO files use .debug_loc.dwo. */
21854
21855 static struct dwarf2_section_info *
21856 cu_debug_loc_section (struct dwarf2_cu *cu)
21857 {
21858 if (cu->dwo_unit)
21859 return &cu->dwo_unit->dwo_file->sections.loc;
21860 return &dwarf2_per_objfile->loc;
21861 }
21862
21863 /* A helper function that fills in a dwarf2_loclist_baton. */
21864
21865 static void
21866 fill_in_loclist_baton (struct dwarf2_cu *cu,
21867 struct dwarf2_loclist_baton *baton,
21868 const struct attribute *attr)
21869 {
21870 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21871
21872 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21873
21874 baton->per_cu = cu->per_cu;
21875 gdb_assert (baton->per_cu);
21876 /* We don't know how long the location list is, but make sure we
21877 don't run off the edge of the section. */
21878 baton->size = section->size - DW_UNSND (attr);
21879 baton->data = section->buffer + DW_UNSND (attr);
21880 baton->base_address = cu->base_address;
21881 baton->from_dwo = cu->dwo_unit != NULL;
21882 }
21883
21884 static void
21885 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21886 struct dwarf2_cu *cu, int is_block)
21887 {
21888 struct objfile *objfile = dwarf2_per_objfile->objfile;
21889 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21890
21891 if (attr_form_is_section_offset (attr)
21892 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21893 the section. If so, fall through to the complaint in the
21894 other branch. */
21895 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21896 {
21897 struct dwarf2_loclist_baton *baton;
21898
21899 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
21900
21901 fill_in_loclist_baton (cu, baton, attr);
21902
21903 if (cu->base_known == 0)
21904 complaint (&symfile_complaints,
21905 _("Location list used without "
21906 "specifying the CU base address."));
21907
21908 SYMBOL_ACLASS_INDEX (sym) = (is_block
21909 ? dwarf2_loclist_block_index
21910 : dwarf2_loclist_index);
21911 SYMBOL_LOCATION_BATON (sym) = baton;
21912 }
21913 else
21914 {
21915 struct dwarf2_locexpr_baton *baton;
21916
21917 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
21918 baton->per_cu = cu->per_cu;
21919 gdb_assert (baton->per_cu);
21920
21921 if (attr_form_is_block (attr))
21922 {
21923 /* Note that we're just copying the block's data pointer
21924 here, not the actual data. We're still pointing into the
21925 info_buffer for SYM's objfile; right now we never release
21926 that buffer, but when we do clean up properly this may
21927 need to change. */
21928 baton->size = DW_BLOCK (attr)->size;
21929 baton->data = DW_BLOCK (attr)->data;
21930 }
21931 else
21932 {
21933 dwarf2_invalid_attrib_class_complaint ("location description",
21934 SYMBOL_NATURAL_NAME (sym));
21935 baton->size = 0;
21936 }
21937
21938 SYMBOL_ACLASS_INDEX (sym) = (is_block
21939 ? dwarf2_locexpr_block_index
21940 : dwarf2_locexpr_index);
21941 SYMBOL_LOCATION_BATON (sym) = baton;
21942 }
21943 }
21944
21945 /* Return the OBJFILE associated with the compilation unit CU. If CU
21946 came from a separate debuginfo file, then the master objfile is
21947 returned. */
21948
21949 struct objfile *
21950 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21951 {
21952 struct objfile *objfile = per_cu->objfile;
21953
21954 /* Return the master objfile, so that we can report and look up the
21955 correct file containing this variable. */
21956 if (objfile->separate_debug_objfile_backlink)
21957 objfile = objfile->separate_debug_objfile_backlink;
21958
21959 return objfile;
21960 }
21961
21962 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21963 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21964 CU_HEADERP first. */
21965
21966 static const struct comp_unit_head *
21967 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21968 struct dwarf2_per_cu_data *per_cu)
21969 {
21970 const gdb_byte *info_ptr;
21971
21972 if (per_cu->cu)
21973 return &per_cu->cu->header;
21974
21975 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21976
21977 memset (cu_headerp, 0, sizeof (*cu_headerp));
21978 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21979
21980 return cu_headerp;
21981 }
21982
21983 /* Return the address size given in the compilation unit header for CU. */
21984
21985 int
21986 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21987 {
21988 struct comp_unit_head cu_header_local;
21989 const struct comp_unit_head *cu_headerp;
21990
21991 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21992
21993 return cu_headerp->addr_size;
21994 }
21995
21996 /* Return the offset size given in the compilation unit header for CU. */
21997
21998 int
21999 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22000 {
22001 struct comp_unit_head cu_header_local;
22002 const struct comp_unit_head *cu_headerp;
22003
22004 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22005
22006 return cu_headerp->offset_size;
22007 }
22008
22009 /* See its dwarf2loc.h declaration. */
22010
22011 int
22012 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22013 {
22014 struct comp_unit_head cu_header_local;
22015 const struct comp_unit_head *cu_headerp;
22016
22017 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22018
22019 if (cu_headerp->version == 2)
22020 return cu_headerp->addr_size;
22021 else
22022 return cu_headerp->offset_size;
22023 }
22024
22025 /* Return the text offset of the CU. The returned offset comes from
22026 this CU's objfile. If this objfile came from a separate debuginfo
22027 file, then the offset may be different from the corresponding
22028 offset in the parent objfile. */
22029
22030 CORE_ADDR
22031 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22032 {
22033 struct objfile *objfile = per_cu->objfile;
22034
22035 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22036 }
22037
22038 /* Locate the .debug_info compilation unit from CU's objfile which contains
22039 the DIE at OFFSET. Raises an error on failure. */
22040
22041 static struct dwarf2_per_cu_data *
22042 dwarf2_find_containing_comp_unit (sect_offset offset,
22043 unsigned int offset_in_dwz,
22044 struct objfile *objfile)
22045 {
22046 struct dwarf2_per_cu_data *this_cu;
22047 int low, high;
22048 const sect_offset *cu_off;
22049
22050 low = 0;
22051 high = dwarf2_per_objfile->n_comp_units - 1;
22052 while (high > low)
22053 {
22054 struct dwarf2_per_cu_data *mid_cu;
22055 int mid = low + (high - low) / 2;
22056
22057 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22058 cu_off = &mid_cu->offset;
22059 if (mid_cu->is_dwz > offset_in_dwz
22060 || (mid_cu->is_dwz == offset_in_dwz
22061 && cu_off->sect_off >= offset.sect_off))
22062 high = mid;
22063 else
22064 low = mid + 1;
22065 }
22066 gdb_assert (low == high);
22067 this_cu = dwarf2_per_objfile->all_comp_units[low];
22068 cu_off = &this_cu->offset;
22069 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22070 {
22071 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22072 error (_("Dwarf Error: could not find partial DIE containing "
22073 "offset 0x%lx [in module %s]"),
22074 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22075
22076 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22077 <= offset.sect_off);
22078 return dwarf2_per_objfile->all_comp_units[low-1];
22079 }
22080 else
22081 {
22082 this_cu = dwarf2_per_objfile->all_comp_units[low];
22083 if (low == dwarf2_per_objfile->n_comp_units - 1
22084 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22085 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22086 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22087 return this_cu;
22088 }
22089 }
22090
22091 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22092
22093 static void
22094 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22095 {
22096 memset (cu, 0, sizeof (*cu));
22097 per_cu->cu = cu;
22098 cu->per_cu = per_cu;
22099 cu->objfile = per_cu->objfile;
22100 obstack_init (&cu->comp_unit_obstack);
22101 }
22102
22103 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22104
22105 static void
22106 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22107 enum language pretend_language)
22108 {
22109 struct attribute *attr;
22110
22111 /* Set the language we're debugging. */
22112 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22113 if (attr)
22114 set_cu_language (DW_UNSND (attr), cu);
22115 else
22116 {
22117 cu->language = pretend_language;
22118 cu->language_defn = language_def (cu->language);
22119 }
22120
22121 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22122 }
22123
22124 /* Release one cached compilation unit, CU. We unlink it from the tree
22125 of compilation units, but we don't remove it from the read_in_chain;
22126 the caller is responsible for that.
22127 NOTE: DATA is a void * because this function is also used as a
22128 cleanup routine. */
22129
22130 static void
22131 free_heap_comp_unit (void *data)
22132 {
22133 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22134
22135 gdb_assert (cu->per_cu != NULL);
22136 cu->per_cu->cu = NULL;
22137 cu->per_cu = NULL;
22138
22139 obstack_free (&cu->comp_unit_obstack, NULL);
22140
22141 xfree (cu);
22142 }
22143
22144 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22145 when we're finished with it. We can't free the pointer itself, but be
22146 sure to unlink it from the cache. Also release any associated storage. */
22147
22148 static void
22149 free_stack_comp_unit (void *data)
22150 {
22151 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22152
22153 gdb_assert (cu->per_cu != NULL);
22154 cu->per_cu->cu = NULL;
22155 cu->per_cu = NULL;
22156
22157 obstack_free (&cu->comp_unit_obstack, NULL);
22158 cu->partial_dies = NULL;
22159 }
22160
22161 /* Free all cached compilation units. */
22162
22163 static void
22164 free_cached_comp_units (void *data)
22165 {
22166 struct dwarf2_per_cu_data *per_cu, **last_chain;
22167
22168 per_cu = dwarf2_per_objfile->read_in_chain;
22169 last_chain = &dwarf2_per_objfile->read_in_chain;
22170 while (per_cu != NULL)
22171 {
22172 struct dwarf2_per_cu_data *next_cu;
22173
22174 next_cu = per_cu->cu->read_in_chain;
22175
22176 free_heap_comp_unit (per_cu->cu);
22177 *last_chain = next_cu;
22178
22179 per_cu = next_cu;
22180 }
22181 }
22182
22183 /* Increase the age counter on each cached compilation unit, and free
22184 any that are too old. */
22185
22186 static void
22187 age_cached_comp_units (void)
22188 {
22189 struct dwarf2_per_cu_data *per_cu, **last_chain;
22190
22191 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22192 per_cu = dwarf2_per_objfile->read_in_chain;
22193 while (per_cu != NULL)
22194 {
22195 per_cu->cu->last_used ++;
22196 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22197 dwarf2_mark (per_cu->cu);
22198 per_cu = per_cu->cu->read_in_chain;
22199 }
22200
22201 per_cu = dwarf2_per_objfile->read_in_chain;
22202 last_chain = &dwarf2_per_objfile->read_in_chain;
22203 while (per_cu != NULL)
22204 {
22205 struct dwarf2_per_cu_data *next_cu;
22206
22207 next_cu = per_cu->cu->read_in_chain;
22208
22209 if (!per_cu->cu->mark)
22210 {
22211 free_heap_comp_unit (per_cu->cu);
22212 *last_chain = next_cu;
22213 }
22214 else
22215 last_chain = &per_cu->cu->read_in_chain;
22216
22217 per_cu = next_cu;
22218 }
22219 }
22220
22221 /* Remove a single compilation unit from the cache. */
22222
22223 static void
22224 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22225 {
22226 struct dwarf2_per_cu_data *per_cu, **last_chain;
22227
22228 per_cu = dwarf2_per_objfile->read_in_chain;
22229 last_chain = &dwarf2_per_objfile->read_in_chain;
22230 while (per_cu != NULL)
22231 {
22232 struct dwarf2_per_cu_data *next_cu;
22233
22234 next_cu = per_cu->cu->read_in_chain;
22235
22236 if (per_cu == target_per_cu)
22237 {
22238 free_heap_comp_unit (per_cu->cu);
22239 per_cu->cu = NULL;
22240 *last_chain = next_cu;
22241 break;
22242 }
22243 else
22244 last_chain = &per_cu->cu->read_in_chain;
22245
22246 per_cu = next_cu;
22247 }
22248 }
22249
22250 /* Release all extra memory associated with OBJFILE. */
22251
22252 void
22253 dwarf2_free_objfile (struct objfile *objfile)
22254 {
22255 dwarf2_per_objfile
22256 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22257 dwarf2_objfile_data_key);
22258
22259 if (dwarf2_per_objfile == NULL)
22260 return;
22261
22262 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22263 free_cached_comp_units (NULL);
22264
22265 if (dwarf2_per_objfile->quick_file_names_table)
22266 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22267
22268 if (dwarf2_per_objfile->line_header_hash)
22269 htab_delete (dwarf2_per_objfile->line_header_hash);
22270
22271 /* Everything else should be on the objfile obstack. */
22272 }
22273
22274 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22275 We store these in a hash table separate from the DIEs, and preserve them
22276 when the DIEs are flushed out of cache.
22277
22278 The CU "per_cu" pointer is needed because offset alone is not enough to
22279 uniquely identify the type. A file may have multiple .debug_types sections,
22280 or the type may come from a DWO file. Furthermore, while it's more logical
22281 to use per_cu->section+offset, with Fission the section with the data is in
22282 the DWO file but we don't know that section at the point we need it.
22283 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22284 because we can enter the lookup routine, get_die_type_at_offset, from
22285 outside this file, and thus won't necessarily have PER_CU->cu.
22286 Fortunately, PER_CU is stable for the life of the objfile. */
22287
22288 struct dwarf2_per_cu_offset_and_type
22289 {
22290 const struct dwarf2_per_cu_data *per_cu;
22291 sect_offset offset;
22292 struct type *type;
22293 };
22294
22295 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22296
22297 static hashval_t
22298 per_cu_offset_and_type_hash (const void *item)
22299 {
22300 const struct dwarf2_per_cu_offset_and_type *ofs
22301 = (const struct dwarf2_per_cu_offset_and_type *) item;
22302
22303 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22304 }
22305
22306 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22307
22308 static int
22309 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22310 {
22311 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22312 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22313 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22314 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22315
22316 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22317 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22318 }
22319
22320 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22321 table if necessary. For convenience, return TYPE.
22322
22323 The DIEs reading must have careful ordering to:
22324 * Not cause infite loops trying to read in DIEs as a prerequisite for
22325 reading current DIE.
22326 * Not trying to dereference contents of still incompletely read in types
22327 while reading in other DIEs.
22328 * Enable referencing still incompletely read in types just by a pointer to
22329 the type without accessing its fields.
22330
22331 Therefore caller should follow these rules:
22332 * Try to fetch any prerequisite types we may need to build this DIE type
22333 before building the type and calling set_die_type.
22334 * After building type call set_die_type for current DIE as soon as
22335 possible before fetching more types to complete the current type.
22336 * Make the type as complete as possible before fetching more types. */
22337
22338 static struct type *
22339 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22340 {
22341 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22342 struct objfile *objfile = cu->objfile;
22343 struct attribute *attr;
22344 struct dynamic_prop prop;
22345
22346 /* For Ada types, make sure that the gnat-specific data is always
22347 initialized (if not already set). There are a few types where
22348 we should not be doing so, because the type-specific area is
22349 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22350 where the type-specific area is used to store the floatformat).
22351 But this is not a problem, because the gnat-specific information
22352 is actually not needed for these types. */
22353 if (need_gnat_info (cu)
22354 && TYPE_CODE (type) != TYPE_CODE_FUNC
22355 && TYPE_CODE (type) != TYPE_CODE_FLT
22356 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22357 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22358 && TYPE_CODE (type) != TYPE_CODE_METHOD
22359 && !HAVE_GNAT_AUX_INFO (type))
22360 INIT_GNAT_SPECIFIC (type);
22361
22362 /* Read DW_AT_allocated and set in type. */
22363 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22364 if (attr_form_is_block (attr))
22365 {
22366 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22367 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22368 }
22369 else if (attr != NULL)
22370 {
22371 complaint (&symfile_complaints,
22372 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22373 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22374 die->offset.sect_off);
22375 }
22376
22377 /* Read DW_AT_associated and set in type. */
22378 attr = dwarf2_attr (die, DW_AT_associated, cu);
22379 if (attr_form_is_block (attr))
22380 {
22381 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22382 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22383 }
22384 else if (attr != NULL)
22385 {
22386 complaint (&symfile_complaints,
22387 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22388 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22389 die->offset.sect_off);
22390 }
22391
22392 /* Read DW_AT_data_location and set in type. */
22393 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22394 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22395 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22396
22397 if (dwarf2_per_objfile->die_type_hash == NULL)
22398 {
22399 dwarf2_per_objfile->die_type_hash =
22400 htab_create_alloc_ex (127,
22401 per_cu_offset_and_type_hash,
22402 per_cu_offset_and_type_eq,
22403 NULL,
22404 &objfile->objfile_obstack,
22405 hashtab_obstack_allocate,
22406 dummy_obstack_deallocate);
22407 }
22408
22409 ofs.per_cu = cu->per_cu;
22410 ofs.offset = die->offset;
22411 ofs.type = type;
22412 slot = (struct dwarf2_per_cu_offset_and_type **)
22413 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22414 if (*slot)
22415 complaint (&symfile_complaints,
22416 _("A problem internal to GDB: DIE 0x%x has type already set"),
22417 die->offset.sect_off);
22418 *slot = XOBNEW (&objfile->objfile_obstack,
22419 struct dwarf2_per_cu_offset_and_type);
22420 **slot = ofs;
22421 return type;
22422 }
22423
22424 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22425 or return NULL if the die does not have a saved type. */
22426
22427 static struct type *
22428 get_die_type_at_offset (sect_offset offset,
22429 struct dwarf2_per_cu_data *per_cu)
22430 {
22431 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22432
22433 if (dwarf2_per_objfile->die_type_hash == NULL)
22434 return NULL;
22435
22436 ofs.per_cu = per_cu;
22437 ofs.offset = offset;
22438 slot = ((struct dwarf2_per_cu_offset_and_type *)
22439 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
22440 if (slot)
22441 return slot->type;
22442 else
22443 return NULL;
22444 }
22445
22446 /* Look up the type for DIE in CU in die_type_hash,
22447 or return NULL if DIE does not have a saved type. */
22448
22449 static struct type *
22450 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22451 {
22452 return get_die_type_at_offset (die->offset, cu->per_cu);
22453 }
22454
22455 /* Add a dependence relationship from CU to REF_PER_CU. */
22456
22457 static void
22458 dwarf2_add_dependence (struct dwarf2_cu *cu,
22459 struct dwarf2_per_cu_data *ref_per_cu)
22460 {
22461 void **slot;
22462
22463 if (cu->dependencies == NULL)
22464 cu->dependencies
22465 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22466 NULL, &cu->comp_unit_obstack,
22467 hashtab_obstack_allocate,
22468 dummy_obstack_deallocate);
22469
22470 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22471 if (*slot == NULL)
22472 *slot = ref_per_cu;
22473 }
22474
22475 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22476 Set the mark field in every compilation unit in the
22477 cache that we must keep because we are keeping CU. */
22478
22479 static int
22480 dwarf2_mark_helper (void **slot, void *data)
22481 {
22482 struct dwarf2_per_cu_data *per_cu;
22483
22484 per_cu = (struct dwarf2_per_cu_data *) *slot;
22485
22486 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22487 reading of the chain. As such dependencies remain valid it is not much
22488 useful to track and undo them during QUIT cleanups. */
22489 if (per_cu->cu == NULL)
22490 return 1;
22491
22492 if (per_cu->cu->mark)
22493 return 1;
22494 per_cu->cu->mark = 1;
22495
22496 if (per_cu->cu->dependencies != NULL)
22497 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22498
22499 return 1;
22500 }
22501
22502 /* Set the mark field in CU and in every other compilation unit in the
22503 cache that we must keep because we are keeping CU. */
22504
22505 static void
22506 dwarf2_mark (struct dwarf2_cu *cu)
22507 {
22508 if (cu->mark)
22509 return;
22510 cu->mark = 1;
22511 if (cu->dependencies != NULL)
22512 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22513 }
22514
22515 static void
22516 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22517 {
22518 while (per_cu)
22519 {
22520 per_cu->cu->mark = 0;
22521 per_cu = per_cu->cu->read_in_chain;
22522 }
22523 }
22524
22525 /* Trivial hash function for partial_die_info: the hash value of a DIE
22526 is its offset in .debug_info for this objfile. */
22527
22528 static hashval_t
22529 partial_die_hash (const void *item)
22530 {
22531 const struct partial_die_info *part_die
22532 = (const struct partial_die_info *) item;
22533
22534 return part_die->offset.sect_off;
22535 }
22536
22537 /* Trivial comparison function for partial_die_info structures: two DIEs
22538 are equal if they have the same offset. */
22539
22540 static int
22541 partial_die_eq (const void *item_lhs, const void *item_rhs)
22542 {
22543 const struct partial_die_info *part_die_lhs
22544 = (const struct partial_die_info *) item_lhs;
22545 const struct partial_die_info *part_die_rhs
22546 = (const struct partial_die_info *) item_rhs;
22547
22548 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22549 }
22550
22551 static struct cmd_list_element *set_dwarf_cmdlist;
22552 static struct cmd_list_element *show_dwarf_cmdlist;
22553
22554 static void
22555 set_dwarf_cmd (char *args, int from_tty)
22556 {
22557 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22558 gdb_stdout);
22559 }
22560
22561 static void
22562 show_dwarf_cmd (char *args, int from_tty)
22563 {
22564 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22565 }
22566
22567 /* Free data associated with OBJFILE, if necessary. */
22568
22569 static void
22570 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22571 {
22572 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
22573 int ix;
22574
22575 /* Make sure we don't accidentally use dwarf2_per_objfile while
22576 cleaning up. */
22577 dwarf2_per_objfile = NULL;
22578
22579 for (ix = 0; ix < data->n_comp_units; ++ix)
22580 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22581
22582 for (ix = 0; ix < data->n_type_units; ++ix)
22583 VEC_free (dwarf2_per_cu_ptr,
22584 data->all_type_units[ix]->per_cu.imported_symtabs);
22585 xfree (data->all_type_units);
22586
22587 VEC_free (dwarf2_section_info_def, data->types);
22588
22589 if (data->dwo_files)
22590 free_dwo_files (data->dwo_files, objfile);
22591 if (data->dwp_file)
22592 gdb_bfd_unref (data->dwp_file->dbfd);
22593
22594 if (data->dwz_file && data->dwz_file->dwz_bfd)
22595 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22596 }
22597
22598 \f
22599 /* The "save gdb-index" command. */
22600
22601 /* The contents of the hash table we create when building the string
22602 table. */
22603 struct strtab_entry
22604 {
22605 offset_type offset;
22606 const char *str;
22607 };
22608
22609 /* Hash function for a strtab_entry.
22610
22611 Function is used only during write_hash_table so no index format backward
22612 compatibility is needed. */
22613
22614 static hashval_t
22615 hash_strtab_entry (const void *e)
22616 {
22617 const struct strtab_entry *entry = (const struct strtab_entry *) e;
22618 return mapped_index_string_hash (INT_MAX, entry->str);
22619 }
22620
22621 /* Equality function for a strtab_entry. */
22622
22623 static int
22624 eq_strtab_entry (const void *a, const void *b)
22625 {
22626 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22627 const struct strtab_entry *eb = (const struct strtab_entry *) b;
22628 return !strcmp (ea->str, eb->str);
22629 }
22630
22631 /* Create a strtab_entry hash table. */
22632
22633 static htab_t
22634 create_strtab (void)
22635 {
22636 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22637 xfree, xcalloc, xfree);
22638 }
22639
22640 /* Add a string to the constant pool. Return the string's offset in
22641 host order. */
22642
22643 static offset_type
22644 add_string (htab_t table, struct obstack *cpool, const char *str)
22645 {
22646 void **slot;
22647 struct strtab_entry entry;
22648 struct strtab_entry *result;
22649
22650 entry.str = str;
22651 slot = htab_find_slot (table, &entry, INSERT);
22652 if (*slot)
22653 result = (struct strtab_entry *) *slot;
22654 else
22655 {
22656 result = XNEW (struct strtab_entry);
22657 result->offset = obstack_object_size (cpool);
22658 result->str = str;
22659 obstack_grow_str0 (cpool, str);
22660 *slot = result;
22661 }
22662 return result->offset;
22663 }
22664
22665 /* An entry in the symbol table. */
22666 struct symtab_index_entry
22667 {
22668 /* The name of the symbol. */
22669 const char *name;
22670 /* The offset of the name in the constant pool. */
22671 offset_type index_offset;
22672 /* A sorted vector of the indices of all the CUs that hold an object
22673 of this name. */
22674 VEC (offset_type) *cu_indices;
22675 };
22676
22677 /* The symbol table. This is a power-of-2-sized hash table. */
22678 struct mapped_symtab
22679 {
22680 offset_type n_elements;
22681 offset_type size;
22682 struct symtab_index_entry **data;
22683 };
22684
22685 /* Hash function for a symtab_index_entry. */
22686
22687 static hashval_t
22688 hash_symtab_entry (const void *e)
22689 {
22690 const struct symtab_index_entry *entry
22691 = (const struct symtab_index_entry *) e;
22692 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22693 sizeof (offset_type) * VEC_length (offset_type,
22694 entry->cu_indices),
22695 0);
22696 }
22697
22698 /* Equality function for a symtab_index_entry. */
22699
22700 static int
22701 eq_symtab_entry (const void *a, const void *b)
22702 {
22703 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22704 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
22705 int len = VEC_length (offset_type, ea->cu_indices);
22706 if (len != VEC_length (offset_type, eb->cu_indices))
22707 return 0;
22708 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22709 VEC_address (offset_type, eb->cu_indices),
22710 sizeof (offset_type) * len);
22711 }
22712
22713 /* Destroy a symtab_index_entry. */
22714
22715 static void
22716 delete_symtab_entry (void *p)
22717 {
22718 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
22719 VEC_free (offset_type, entry->cu_indices);
22720 xfree (entry);
22721 }
22722
22723 /* Create a hash table holding symtab_index_entry objects. */
22724
22725 static htab_t
22726 create_symbol_hash_table (void)
22727 {
22728 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22729 delete_symtab_entry, xcalloc, xfree);
22730 }
22731
22732 /* Create a new mapped symtab object. */
22733
22734 static struct mapped_symtab *
22735 create_mapped_symtab (void)
22736 {
22737 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22738 symtab->n_elements = 0;
22739 symtab->size = 1024;
22740 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22741 return symtab;
22742 }
22743
22744 /* Destroy a mapped_symtab. */
22745
22746 static void
22747 cleanup_mapped_symtab (void *p)
22748 {
22749 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
22750 /* The contents of the array are freed when the other hash table is
22751 destroyed. */
22752 xfree (symtab->data);
22753 xfree (symtab);
22754 }
22755
22756 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22757 the slot.
22758
22759 Function is used only during write_hash_table so no index format backward
22760 compatibility is needed. */
22761
22762 static struct symtab_index_entry **
22763 find_slot (struct mapped_symtab *symtab, const char *name)
22764 {
22765 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22766
22767 index = hash & (symtab->size - 1);
22768 step = ((hash * 17) & (symtab->size - 1)) | 1;
22769
22770 for (;;)
22771 {
22772 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22773 return &symtab->data[index];
22774 index = (index + step) & (symtab->size - 1);
22775 }
22776 }
22777
22778 /* Expand SYMTAB's hash table. */
22779
22780 static void
22781 hash_expand (struct mapped_symtab *symtab)
22782 {
22783 offset_type old_size = symtab->size;
22784 offset_type i;
22785 struct symtab_index_entry **old_entries = symtab->data;
22786
22787 symtab->size *= 2;
22788 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22789
22790 for (i = 0; i < old_size; ++i)
22791 {
22792 if (old_entries[i])
22793 {
22794 struct symtab_index_entry **slot = find_slot (symtab,
22795 old_entries[i]->name);
22796 *slot = old_entries[i];
22797 }
22798 }
22799
22800 xfree (old_entries);
22801 }
22802
22803 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22804 CU_INDEX is the index of the CU in which the symbol appears.
22805 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22806
22807 static void
22808 add_index_entry (struct mapped_symtab *symtab, const char *name,
22809 int is_static, gdb_index_symbol_kind kind,
22810 offset_type cu_index)
22811 {
22812 struct symtab_index_entry **slot;
22813 offset_type cu_index_and_attrs;
22814
22815 ++symtab->n_elements;
22816 if (4 * symtab->n_elements / 3 >= symtab->size)
22817 hash_expand (symtab);
22818
22819 slot = find_slot (symtab, name);
22820 if (!*slot)
22821 {
22822 *slot = XNEW (struct symtab_index_entry);
22823 (*slot)->name = name;
22824 /* index_offset is set later. */
22825 (*slot)->cu_indices = NULL;
22826 }
22827
22828 cu_index_and_attrs = 0;
22829 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22830 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22831 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22832
22833 /* We don't want to record an index value twice as we want to avoid the
22834 duplication.
22835 We process all global symbols and then all static symbols
22836 (which would allow us to avoid the duplication by only having to check
22837 the last entry pushed), but a symbol could have multiple kinds in one CU.
22838 To keep things simple we don't worry about the duplication here and
22839 sort and uniqufy the list after we've processed all symbols. */
22840 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22841 }
22842
22843 /* qsort helper routine for uniquify_cu_indices. */
22844
22845 static int
22846 offset_type_compare (const void *ap, const void *bp)
22847 {
22848 offset_type a = *(offset_type *) ap;
22849 offset_type b = *(offset_type *) bp;
22850
22851 return (a > b) - (b > a);
22852 }
22853
22854 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22855
22856 static void
22857 uniquify_cu_indices (struct mapped_symtab *symtab)
22858 {
22859 int i;
22860
22861 for (i = 0; i < symtab->size; ++i)
22862 {
22863 struct symtab_index_entry *entry = symtab->data[i];
22864
22865 if (entry
22866 && entry->cu_indices != NULL)
22867 {
22868 unsigned int next_to_insert, next_to_check;
22869 offset_type last_value;
22870
22871 qsort (VEC_address (offset_type, entry->cu_indices),
22872 VEC_length (offset_type, entry->cu_indices),
22873 sizeof (offset_type), offset_type_compare);
22874
22875 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22876 next_to_insert = 1;
22877 for (next_to_check = 1;
22878 next_to_check < VEC_length (offset_type, entry->cu_indices);
22879 ++next_to_check)
22880 {
22881 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22882 != last_value)
22883 {
22884 last_value = VEC_index (offset_type, entry->cu_indices,
22885 next_to_check);
22886 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22887 last_value);
22888 ++next_to_insert;
22889 }
22890 }
22891 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22892 }
22893 }
22894 }
22895
22896 /* Add a vector of indices to the constant pool. */
22897
22898 static offset_type
22899 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22900 struct symtab_index_entry *entry)
22901 {
22902 void **slot;
22903
22904 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22905 if (!*slot)
22906 {
22907 offset_type len = VEC_length (offset_type, entry->cu_indices);
22908 offset_type val = MAYBE_SWAP (len);
22909 offset_type iter;
22910 int i;
22911
22912 *slot = entry;
22913 entry->index_offset = obstack_object_size (cpool);
22914
22915 obstack_grow (cpool, &val, sizeof (val));
22916 for (i = 0;
22917 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22918 ++i)
22919 {
22920 val = MAYBE_SWAP (iter);
22921 obstack_grow (cpool, &val, sizeof (val));
22922 }
22923 }
22924 else
22925 {
22926 struct symtab_index_entry *old_entry
22927 = (struct symtab_index_entry *) *slot;
22928 entry->index_offset = old_entry->index_offset;
22929 entry = old_entry;
22930 }
22931 return entry->index_offset;
22932 }
22933
22934 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22935 constant pool entries going into the obstack CPOOL. */
22936
22937 static void
22938 write_hash_table (struct mapped_symtab *symtab,
22939 struct obstack *output, struct obstack *cpool)
22940 {
22941 offset_type i;
22942 htab_t symbol_hash_table;
22943 htab_t str_table;
22944
22945 symbol_hash_table = create_symbol_hash_table ();
22946 str_table = create_strtab ();
22947
22948 /* We add all the index vectors to the constant pool first, to
22949 ensure alignment is ok. */
22950 for (i = 0; i < symtab->size; ++i)
22951 {
22952 if (symtab->data[i])
22953 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22954 }
22955
22956 /* Now write out the hash table. */
22957 for (i = 0; i < symtab->size; ++i)
22958 {
22959 offset_type str_off, vec_off;
22960
22961 if (symtab->data[i])
22962 {
22963 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22964 vec_off = symtab->data[i]->index_offset;
22965 }
22966 else
22967 {
22968 /* While 0 is a valid constant pool index, it is not valid
22969 to have 0 for both offsets. */
22970 str_off = 0;
22971 vec_off = 0;
22972 }
22973
22974 str_off = MAYBE_SWAP (str_off);
22975 vec_off = MAYBE_SWAP (vec_off);
22976
22977 obstack_grow (output, &str_off, sizeof (str_off));
22978 obstack_grow (output, &vec_off, sizeof (vec_off));
22979 }
22980
22981 htab_delete (str_table);
22982 htab_delete (symbol_hash_table);
22983 }
22984
22985 /* Struct to map psymtab to CU index in the index file. */
22986 struct psymtab_cu_index_map
22987 {
22988 struct partial_symtab *psymtab;
22989 unsigned int cu_index;
22990 };
22991
22992 static hashval_t
22993 hash_psymtab_cu_index (const void *item)
22994 {
22995 const struct psymtab_cu_index_map *map
22996 = (const struct psymtab_cu_index_map *) item;
22997
22998 return htab_hash_pointer (map->psymtab);
22999 }
23000
23001 static int
23002 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
23003 {
23004 const struct psymtab_cu_index_map *lhs
23005 = (const struct psymtab_cu_index_map *) item_lhs;
23006 const struct psymtab_cu_index_map *rhs
23007 = (const struct psymtab_cu_index_map *) item_rhs;
23008
23009 return lhs->psymtab == rhs->psymtab;
23010 }
23011
23012 /* Helper struct for building the address table. */
23013 struct addrmap_index_data
23014 {
23015 struct objfile *objfile;
23016 struct obstack *addr_obstack;
23017 htab_t cu_index_htab;
23018
23019 /* Non-zero if the previous_* fields are valid.
23020 We can't write an entry until we see the next entry (since it is only then
23021 that we know the end of the entry). */
23022 int previous_valid;
23023 /* Index of the CU in the table of all CUs in the index file. */
23024 unsigned int previous_cu_index;
23025 /* Start address of the CU. */
23026 CORE_ADDR previous_cu_start;
23027 };
23028
23029 /* Write an address entry to OBSTACK. */
23030
23031 static void
23032 add_address_entry (struct objfile *objfile, struct obstack *obstack,
23033 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23034 {
23035 offset_type cu_index_to_write;
23036 gdb_byte addr[8];
23037 CORE_ADDR baseaddr;
23038
23039 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23040
23041 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23042 obstack_grow (obstack, addr, 8);
23043 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23044 obstack_grow (obstack, addr, 8);
23045 cu_index_to_write = MAYBE_SWAP (cu_index);
23046 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23047 }
23048
23049 /* Worker function for traversing an addrmap to build the address table. */
23050
23051 static int
23052 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23053 {
23054 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23055 struct partial_symtab *pst = (struct partial_symtab *) obj;
23056
23057 if (data->previous_valid)
23058 add_address_entry (data->objfile, data->addr_obstack,
23059 data->previous_cu_start, start_addr,
23060 data->previous_cu_index);
23061
23062 data->previous_cu_start = start_addr;
23063 if (pst != NULL)
23064 {
23065 struct psymtab_cu_index_map find_map, *map;
23066 find_map.psymtab = pst;
23067 map = ((struct psymtab_cu_index_map *)
23068 htab_find (data->cu_index_htab, &find_map));
23069 gdb_assert (map != NULL);
23070 data->previous_cu_index = map->cu_index;
23071 data->previous_valid = 1;
23072 }
23073 else
23074 data->previous_valid = 0;
23075
23076 return 0;
23077 }
23078
23079 /* Write OBJFILE's address map to OBSTACK.
23080 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23081 in the index file. */
23082
23083 static void
23084 write_address_map (struct objfile *objfile, struct obstack *obstack,
23085 htab_t cu_index_htab)
23086 {
23087 struct addrmap_index_data addrmap_index_data;
23088
23089 /* When writing the address table, we have to cope with the fact that
23090 the addrmap iterator only provides the start of a region; we have to
23091 wait until the next invocation to get the start of the next region. */
23092
23093 addrmap_index_data.objfile = objfile;
23094 addrmap_index_data.addr_obstack = obstack;
23095 addrmap_index_data.cu_index_htab = cu_index_htab;
23096 addrmap_index_data.previous_valid = 0;
23097
23098 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23099 &addrmap_index_data);
23100
23101 /* It's highly unlikely the last entry (end address = 0xff...ff)
23102 is valid, but we should still handle it.
23103 The end address is recorded as the start of the next region, but that
23104 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23105 anyway. */
23106 if (addrmap_index_data.previous_valid)
23107 add_address_entry (objfile, obstack,
23108 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23109 addrmap_index_data.previous_cu_index);
23110 }
23111
23112 /* Return the symbol kind of PSYM. */
23113
23114 static gdb_index_symbol_kind
23115 symbol_kind (struct partial_symbol *psym)
23116 {
23117 domain_enum domain = PSYMBOL_DOMAIN (psym);
23118 enum address_class aclass = PSYMBOL_CLASS (psym);
23119
23120 switch (domain)
23121 {
23122 case VAR_DOMAIN:
23123 switch (aclass)
23124 {
23125 case LOC_BLOCK:
23126 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23127 case LOC_TYPEDEF:
23128 return GDB_INDEX_SYMBOL_KIND_TYPE;
23129 case LOC_COMPUTED:
23130 case LOC_CONST_BYTES:
23131 case LOC_OPTIMIZED_OUT:
23132 case LOC_STATIC:
23133 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23134 case LOC_CONST:
23135 /* Note: It's currently impossible to recognize psyms as enum values
23136 short of reading the type info. For now punt. */
23137 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23138 default:
23139 /* There are other LOC_FOO values that one might want to classify
23140 as variables, but dwarf2read.c doesn't currently use them. */
23141 return GDB_INDEX_SYMBOL_KIND_OTHER;
23142 }
23143 case STRUCT_DOMAIN:
23144 return GDB_INDEX_SYMBOL_KIND_TYPE;
23145 default:
23146 return GDB_INDEX_SYMBOL_KIND_OTHER;
23147 }
23148 }
23149
23150 /* Add a list of partial symbols to SYMTAB. */
23151
23152 static void
23153 write_psymbols (struct mapped_symtab *symtab,
23154 htab_t psyms_seen,
23155 struct partial_symbol **psymp,
23156 int count,
23157 offset_type cu_index,
23158 int is_static)
23159 {
23160 for (; count-- > 0; ++psymp)
23161 {
23162 struct partial_symbol *psym = *psymp;
23163 void **slot;
23164
23165 if (SYMBOL_LANGUAGE (psym) == language_ada)
23166 error (_("Ada is not currently supported by the index"));
23167
23168 /* Only add a given psymbol once. */
23169 slot = htab_find_slot (psyms_seen, psym, INSERT);
23170 if (!*slot)
23171 {
23172 gdb_index_symbol_kind kind = symbol_kind (psym);
23173
23174 *slot = psym;
23175 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23176 is_static, kind, cu_index);
23177 }
23178 }
23179 }
23180
23181 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23182 exception if there is an error. */
23183
23184 static void
23185 write_obstack (FILE *file, struct obstack *obstack)
23186 {
23187 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23188 file)
23189 != obstack_object_size (obstack))
23190 error (_("couldn't data write to file"));
23191 }
23192
23193 /* Unlink a file if the argument is not NULL. */
23194
23195 static void
23196 unlink_if_set (void *p)
23197 {
23198 char **filename = (char **) p;
23199 if (*filename)
23200 unlink (*filename);
23201 }
23202
23203 /* A helper struct used when iterating over debug_types. */
23204 struct signatured_type_index_data
23205 {
23206 struct objfile *objfile;
23207 struct mapped_symtab *symtab;
23208 struct obstack *types_list;
23209 htab_t psyms_seen;
23210 int cu_index;
23211 };
23212
23213 /* A helper function that writes a single signatured_type to an
23214 obstack. */
23215
23216 static int
23217 write_one_signatured_type (void **slot, void *d)
23218 {
23219 struct signatured_type_index_data *info
23220 = (struct signatured_type_index_data *) d;
23221 struct signatured_type *entry = (struct signatured_type *) *slot;
23222 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23223 gdb_byte val[8];
23224
23225 write_psymbols (info->symtab,
23226 info->psyms_seen,
23227 info->objfile->global_psymbols.list
23228 + psymtab->globals_offset,
23229 psymtab->n_global_syms, info->cu_index,
23230 0);
23231 write_psymbols (info->symtab,
23232 info->psyms_seen,
23233 info->objfile->static_psymbols.list
23234 + psymtab->statics_offset,
23235 psymtab->n_static_syms, info->cu_index,
23236 1);
23237
23238 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23239 entry->per_cu.offset.sect_off);
23240 obstack_grow (info->types_list, val, 8);
23241 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23242 entry->type_offset_in_tu.cu_off);
23243 obstack_grow (info->types_list, val, 8);
23244 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23245 obstack_grow (info->types_list, val, 8);
23246
23247 ++info->cu_index;
23248
23249 return 1;
23250 }
23251
23252 /* Recurse into all "included" dependencies and write their symbols as
23253 if they appeared in this psymtab. */
23254
23255 static void
23256 recursively_write_psymbols (struct objfile *objfile,
23257 struct partial_symtab *psymtab,
23258 struct mapped_symtab *symtab,
23259 htab_t psyms_seen,
23260 offset_type cu_index)
23261 {
23262 int i;
23263
23264 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23265 if (psymtab->dependencies[i]->user != NULL)
23266 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23267 symtab, psyms_seen, cu_index);
23268
23269 write_psymbols (symtab,
23270 psyms_seen,
23271 objfile->global_psymbols.list + psymtab->globals_offset,
23272 psymtab->n_global_syms, cu_index,
23273 0);
23274 write_psymbols (symtab,
23275 psyms_seen,
23276 objfile->static_psymbols.list + psymtab->statics_offset,
23277 psymtab->n_static_syms, cu_index,
23278 1);
23279 }
23280
23281 /* Create an index file for OBJFILE in the directory DIR. */
23282
23283 static void
23284 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23285 {
23286 struct cleanup *cleanup;
23287 char *filename, *cleanup_filename;
23288 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23289 struct obstack cu_list, types_cu_list;
23290 int i;
23291 FILE *out_file;
23292 struct mapped_symtab *symtab;
23293 offset_type val, size_of_contents, total_len;
23294 struct stat st;
23295 htab_t psyms_seen;
23296 htab_t cu_index_htab;
23297 struct psymtab_cu_index_map *psymtab_cu_index_map;
23298
23299 if (dwarf2_per_objfile->using_index)
23300 error (_("Cannot use an index to create the index"));
23301
23302 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23303 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23304
23305 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23306 return;
23307
23308 if (stat (objfile_name (objfile), &st) < 0)
23309 perror_with_name (objfile_name (objfile));
23310
23311 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23312 INDEX_SUFFIX, (char *) NULL);
23313 cleanup = make_cleanup (xfree, filename);
23314
23315 out_file = gdb_fopen_cloexec (filename, "wb");
23316 if (!out_file)
23317 error (_("Can't open `%s' for writing"), filename);
23318
23319 cleanup_filename = filename;
23320 make_cleanup (unlink_if_set, &cleanup_filename);
23321
23322 symtab = create_mapped_symtab ();
23323 make_cleanup (cleanup_mapped_symtab, symtab);
23324
23325 obstack_init (&addr_obstack);
23326 make_cleanup_obstack_free (&addr_obstack);
23327
23328 obstack_init (&cu_list);
23329 make_cleanup_obstack_free (&cu_list);
23330
23331 obstack_init (&types_cu_list);
23332 make_cleanup_obstack_free (&types_cu_list);
23333
23334 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23335 NULL, xcalloc, xfree);
23336 make_cleanup_htab_delete (psyms_seen);
23337
23338 /* While we're scanning CU's create a table that maps a psymtab pointer
23339 (which is what addrmap records) to its index (which is what is recorded
23340 in the index file). This will later be needed to write the address
23341 table. */
23342 cu_index_htab = htab_create_alloc (100,
23343 hash_psymtab_cu_index,
23344 eq_psymtab_cu_index,
23345 NULL, xcalloc, xfree);
23346 make_cleanup_htab_delete (cu_index_htab);
23347 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23348 dwarf2_per_objfile->n_comp_units);
23349 make_cleanup (xfree, psymtab_cu_index_map);
23350
23351 /* The CU list is already sorted, so we don't need to do additional
23352 work here. Also, the debug_types entries do not appear in
23353 all_comp_units, but only in their own hash table. */
23354 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23355 {
23356 struct dwarf2_per_cu_data *per_cu
23357 = dwarf2_per_objfile->all_comp_units[i];
23358 struct partial_symtab *psymtab = per_cu->v.psymtab;
23359 gdb_byte val[8];
23360 struct psymtab_cu_index_map *map;
23361 void **slot;
23362
23363 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23364 It may be referenced from a local scope but in such case it does not
23365 need to be present in .gdb_index. */
23366 if (psymtab == NULL)
23367 continue;
23368
23369 if (psymtab->user == NULL)
23370 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23371
23372 map = &psymtab_cu_index_map[i];
23373 map->psymtab = psymtab;
23374 map->cu_index = i;
23375 slot = htab_find_slot (cu_index_htab, map, INSERT);
23376 gdb_assert (slot != NULL);
23377 gdb_assert (*slot == NULL);
23378 *slot = map;
23379
23380 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23381 per_cu->offset.sect_off);
23382 obstack_grow (&cu_list, val, 8);
23383 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23384 obstack_grow (&cu_list, val, 8);
23385 }
23386
23387 /* Dump the address map. */
23388 write_address_map (objfile, &addr_obstack, cu_index_htab);
23389
23390 /* Write out the .debug_type entries, if any. */
23391 if (dwarf2_per_objfile->signatured_types)
23392 {
23393 struct signatured_type_index_data sig_data;
23394
23395 sig_data.objfile = objfile;
23396 sig_data.symtab = symtab;
23397 sig_data.types_list = &types_cu_list;
23398 sig_data.psyms_seen = psyms_seen;
23399 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23400 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23401 write_one_signatured_type, &sig_data);
23402 }
23403
23404 /* Now that we've processed all symbols we can shrink their cu_indices
23405 lists. */
23406 uniquify_cu_indices (symtab);
23407
23408 obstack_init (&constant_pool);
23409 make_cleanup_obstack_free (&constant_pool);
23410 obstack_init (&symtab_obstack);
23411 make_cleanup_obstack_free (&symtab_obstack);
23412 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23413
23414 obstack_init (&contents);
23415 make_cleanup_obstack_free (&contents);
23416 size_of_contents = 6 * sizeof (offset_type);
23417 total_len = size_of_contents;
23418
23419 /* The version number. */
23420 val = MAYBE_SWAP (8);
23421 obstack_grow (&contents, &val, sizeof (val));
23422
23423 /* The offset of the CU list from the start of the file. */
23424 val = MAYBE_SWAP (total_len);
23425 obstack_grow (&contents, &val, sizeof (val));
23426 total_len += obstack_object_size (&cu_list);
23427
23428 /* The offset of the types CU list from the start of the file. */
23429 val = MAYBE_SWAP (total_len);
23430 obstack_grow (&contents, &val, sizeof (val));
23431 total_len += obstack_object_size (&types_cu_list);
23432
23433 /* The offset of the address table from the start of the file. */
23434 val = MAYBE_SWAP (total_len);
23435 obstack_grow (&contents, &val, sizeof (val));
23436 total_len += obstack_object_size (&addr_obstack);
23437
23438 /* The offset of the symbol table from the start of the file. */
23439 val = MAYBE_SWAP (total_len);
23440 obstack_grow (&contents, &val, sizeof (val));
23441 total_len += obstack_object_size (&symtab_obstack);
23442
23443 /* The offset of the constant pool from the start of the file. */
23444 val = MAYBE_SWAP (total_len);
23445 obstack_grow (&contents, &val, sizeof (val));
23446 total_len += obstack_object_size (&constant_pool);
23447
23448 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23449
23450 write_obstack (out_file, &contents);
23451 write_obstack (out_file, &cu_list);
23452 write_obstack (out_file, &types_cu_list);
23453 write_obstack (out_file, &addr_obstack);
23454 write_obstack (out_file, &symtab_obstack);
23455 write_obstack (out_file, &constant_pool);
23456
23457 fclose (out_file);
23458
23459 /* We want to keep the file, so we set cleanup_filename to NULL
23460 here. See unlink_if_set. */
23461 cleanup_filename = NULL;
23462
23463 do_cleanups (cleanup);
23464 }
23465
23466 /* Implementation of the `save gdb-index' command.
23467
23468 Note that the file format used by this command is documented in the
23469 GDB manual. Any changes here must be documented there. */
23470
23471 static void
23472 save_gdb_index_command (char *arg, int from_tty)
23473 {
23474 struct objfile *objfile;
23475
23476 if (!arg || !*arg)
23477 error (_("usage: save gdb-index DIRECTORY"));
23478
23479 ALL_OBJFILES (objfile)
23480 {
23481 struct stat st;
23482
23483 /* If the objfile does not correspond to an actual file, skip it. */
23484 if (stat (objfile_name (objfile), &st) < 0)
23485 continue;
23486
23487 dwarf2_per_objfile
23488 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23489 dwarf2_objfile_data_key);
23490 if (dwarf2_per_objfile)
23491 {
23492
23493 TRY
23494 {
23495 write_psymtabs_to_index (objfile, arg);
23496 }
23497 CATCH (except, RETURN_MASK_ERROR)
23498 {
23499 exception_fprintf (gdb_stderr, except,
23500 _("Error while writing index for `%s': "),
23501 objfile_name (objfile));
23502 }
23503 END_CATCH
23504 }
23505 }
23506 }
23507
23508 \f
23509
23510 int dwarf_always_disassemble;
23511
23512 static void
23513 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23514 struct cmd_list_element *c, const char *value)
23515 {
23516 fprintf_filtered (file,
23517 _("Whether to always disassemble "
23518 "DWARF expressions is %s.\n"),
23519 value);
23520 }
23521
23522 static void
23523 show_check_physname (struct ui_file *file, int from_tty,
23524 struct cmd_list_element *c, const char *value)
23525 {
23526 fprintf_filtered (file,
23527 _("Whether to check \"physname\" is %s.\n"),
23528 value);
23529 }
23530
23531 void _initialize_dwarf2_read (void);
23532
23533 void
23534 _initialize_dwarf2_read (void)
23535 {
23536 struct cmd_list_element *c;
23537
23538 dwarf2_objfile_data_key
23539 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23540
23541 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23542 Set DWARF specific variables.\n\
23543 Configure DWARF variables such as the cache size"),
23544 &set_dwarf_cmdlist, "maintenance set dwarf ",
23545 0/*allow-unknown*/, &maintenance_set_cmdlist);
23546
23547 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23548 Show DWARF specific variables\n\
23549 Show DWARF variables such as the cache size"),
23550 &show_dwarf_cmdlist, "maintenance show dwarf ",
23551 0/*allow-unknown*/, &maintenance_show_cmdlist);
23552
23553 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23554 &dwarf_max_cache_age, _("\
23555 Set the upper bound on the age of cached DWARF compilation units."), _("\
23556 Show the upper bound on the age of cached DWARF compilation units."), _("\
23557 A higher limit means that cached compilation units will be stored\n\
23558 in memory longer, and more total memory will be used. Zero disables\n\
23559 caching, which can slow down startup."),
23560 NULL,
23561 show_dwarf_max_cache_age,
23562 &set_dwarf_cmdlist,
23563 &show_dwarf_cmdlist);
23564
23565 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23566 &dwarf_always_disassemble, _("\
23567 Set whether `info address' always disassembles DWARF expressions."), _("\
23568 Show whether `info address' always disassembles DWARF expressions."), _("\
23569 When enabled, DWARF expressions are always printed in an assembly-like\n\
23570 syntax. When disabled, expressions will be printed in a more\n\
23571 conversational style, when possible."),
23572 NULL,
23573 show_dwarf_always_disassemble,
23574 &set_dwarf_cmdlist,
23575 &show_dwarf_cmdlist);
23576
23577 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23578 Set debugging of the DWARF reader."), _("\
23579 Show debugging of the DWARF reader."), _("\
23580 When enabled (non-zero), debugging messages are printed during DWARF\n\
23581 reading and symtab expansion. A value of 1 (one) provides basic\n\
23582 information. A value greater than 1 provides more verbose information."),
23583 NULL,
23584 NULL,
23585 &setdebuglist, &showdebuglist);
23586
23587 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23588 Set debugging of the DWARF DIE reader."), _("\
23589 Show debugging of the DWARF DIE reader."), _("\
23590 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23591 The value is the maximum depth to print."),
23592 NULL,
23593 NULL,
23594 &setdebuglist, &showdebuglist);
23595
23596 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23597 Set debugging of the dwarf line reader."), _("\
23598 Show debugging of the dwarf line reader."), _("\
23599 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23600 A value of 1 (one) provides basic information.\n\
23601 A value greater than 1 provides more verbose information."),
23602 NULL,
23603 NULL,
23604 &setdebuglist, &showdebuglist);
23605
23606 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23607 Set cross-checking of \"physname\" code against demangler."), _("\
23608 Show cross-checking of \"physname\" code against demangler."), _("\
23609 When enabled, GDB's internal \"physname\" code is checked against\n\
23610 the demangler."),
23611 NULL, show_check_physname,
23612 &setdebuglist, &showdebuglist);
23613
23614 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23615 no_class, &use_deprecated_index_sections, _("\
23616 Set whether to use deprecated gdb_index sections."), _("\
23617 Show whether to use deprecated gdb_index sections."), _("\
23618 When enabled, deprecated .gdb_index sections are used anyway.\n\
23619 Normally they are ignored either because of a missing feature or\n\
23620 performance issue.\n\
23621 Warning: This option must be enabled before gdb reads the file."),
23622 NULL,
23623 NULL,
23624 &setlist, &showlist);
23625
23626 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23627 _("\
23628 Save a gdb-index file.\n\
23629 Usage: save gdb-index DIRECTORY"),
23630 &save_cmdlist);
23631 set_cmd_completer (c, filename_completer);
23632
23633 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23634 &dwarf2_locexpr_funcs);
23635 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23636 &dwarf2_loclist_funcs);
23637
23638 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23639 &dwarf2_block_frame_base_locexpr_funcs);
23640 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23641 &dwarf2_block_frame_base_loclist_funcs);
23642 }