Add support for the Rust language
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2016 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72 #include "namespace.h"
73
74 #include <fcntl.h>
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83 static unsigned int dwarf_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf_die_debug = 0;
87
88 /* When non-zero, dump line number entries as they are read in. */
89 static unsigned int dwarf_line_debug = 0;
90
91 /* When non-zero, cross-check physname against demangler. */
92 static int check_physname = 0;
93
94 /* When non-zero, do not reject deprecated .gdb_index sections. */
95 static int use_deprecated_index_sections = 0;
96
97 static const struct objfile_data *dwarf2_objfile_data_key;
98
99 /* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101 static int dwarf2_locexpr_index;
102 static int dwarf2_loclist_index;
103 static int dwarf2_locexpr_block_index;
104 static int dwarf2_loclist_block_index;
105
106 /* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
122 struct dwarf2_section_info
123 {
124 union
125 {
126 /* If this is a real section, the bfd section. */
127 asection *section;
128 /* If this is a virtual section, pointer to the containing ("real")
129 section. */
130 struct dwarf2_section_info *containing_section;
131 } s;
132 /* Pointer to section data, only valid if readin. */
133 const gdb_byte *buffer;
134 /* The size of the section, real or virtual. */
135 bfd_size_type size;
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
139 /* True if we have tried to read this section. */
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.section and s.containing_section to use. */
143 char is_virtual;
144 };
145
146 typedef struct dwarf2_section_info dwarf2_section_info_def;
147 DEF_VEC_O (dwarf2_section_info_def);
148
149 /* All offsets in the index are of this type. It must be
150 architecture-independent. */
151 typedef uint32_t offset_type;
152
153 DEF_VEC_I (offset_type);
154
155 /* Ensure only legit values are used. */
156 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
171 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index
180 {
181 /* Index data format version. */
182 int version;
183
184 /* The total length of the buffer. */
185 off_t total_size;
186
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
189
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
192
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
195
196 /* Size in slots, each slot is 2 offset_types. */
197 offset_type symbol_table_slots;
198
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201 };
202
203 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204 DEF_VEC_P (dwarf2_per_cu_ptr);
205
206 struct tu_stats
207 {
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213 };
214
215 /* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
218 struct dwarf2_per_objfile
219 {
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
225 struct dwarf2_section_info macro;
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
228 struct dwarf2_section_info addr;
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
231 struct dwarf2_section_info gdb_index;
232
233 VEC (dwarf2_section_info_def) *types;
234
235 /* Back link. */
236 struct objfile *objfile;
237
238 /* Table of all the compilation units. This is used to locate
239 the target compilation unit of a particular reference. */
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
245 /* The number of .debug_types-related CUs. */
246 int n_type_units;
247
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
254 struct signatured_type **all_type_units;
255
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
259
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
266 struct tu_stats tu_stats;
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
289
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
292 unsigned char using_index;
293
294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
295 struct mapped_index *index_table;
296
297 /* When using index_table, this keeps track of all quick_file_names entries.
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
304 htab_t quick_file_names_table;
305
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
309
310 /* Table mapping type DIEs to their struct type *.
311 This is NULL if not allocated yet.
312 The mapping is done via (CU/TU + DIE offset) -> type. */
313 htab_t die_type_hash;
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
320 };
321
322 static struct dwarf2_per_objfile *dwarf2_per_objfile;
323
324 /* Default names of the debugging sections. */
325
326 /* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
329 static const struct dwarf2_debug_sections dwarf2_elf_names =
330 {
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
336 { ".debug_macro", ".zdebug_macro" },
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
340 { ".debug_addr", ".zdebug_addr" },
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
343 { ".gdb_index", ".zgdb_index" },
344 23
345 };
346
347 /* List of DWO/DWP sections. */
348
349 static const struct dwop_section_names
350 {
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
362 }
363 dwop_section_names =
364 {
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
376 };
377
378 /* local data types */
379
380 /* The data in a compilation unit header, after target2host
381 translation, looks like this. */
382 struct comp_unit_head
383 {
384 unsigned int length;
385 short version;
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
388 sect_offset abbrev_offset;
389
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
392
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
395
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
398 sect_offset offset;
399
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
402 cu_offset first_die_offset;
403 };
404
405 /* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407 struct delayed_method_info
408 {
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423 };
424
425 typedef struct delayed_method_info delayed_method_info;
426 DEF_VEC_O (delayed_method_info);
427
428 /* Internal state when decoding a particular compilation unit. */
429 struct dwarf2_cu
430 {
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
434 /* The header of the compilation unit. */
435 struct comp_unit_head header;
436
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
447 const char *producer;
448
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
464
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
479 /* Backlink to our per_cu entry. */
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
487 htab_t die_hash;
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE. */
521 ULONGEST addr_base;
522
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE.
526 Also note that the value is zero in the non-DWO case so this value can
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
533 ULONGEST ranges_base;
534
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 unsigned int has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
550 unsigned int producer_is_gcc_lt_4_3 : 1;
551 unsigned int producer_is_icc : 1;
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
558 };
559
560 /* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
562 read_symtab_private field of the psymtab. */
563
564 struct dwarf2_per_cu_data
565 {
566 /* The start offset and length of this compilation unit.
567 NOTE: Unlike comp_unit_head.length, this length includes
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
571 sect_offset offset;
572 unsigned int length;
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
576 unsigned int queued : 1;
577
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
587 unsigned int is_debug_types : 1;
588
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
611 struct dwarf2_section_info *section;
612
613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
616 struct dwarf2_cu *cu;
617
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
621 struct objfile *objfile;
622
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
628 or NULL for unread partial units. */
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
634
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
654 };
655
656 /* Entry in the signatured_types hash table. */
657
658 struct signatured_type
659 {
660 /* The "per_cu" object of this type.
661 This struct is used iff per_cu.is_debug_types.
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
666 /* The type's signature. */
667 ULONGEST signature;
668
669 /* Offset in the TU of the type's DIE, as read from the TU header.
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
693 };
694
695 typedef struct signatured_type *sig_type_ptr;
696 DEF_VEC_P (sig_type_ptr);
697
698 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701 struct stmt_list_hash
702 {
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708 };
709
710 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713 struct type_unit_group
714 {
715 /* dwarf2read.c's main "handle" on a TU symtab.
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
720 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
721 struct dwarf2_per_cu_data per_cu;
722
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
727
728 /* The compunit symtab.
729 Type units in a group needn't all be defined in the same source file,
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
732
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749 };
750
751 /* These sections are what may appear in a (real or virtual) DWO file. */
752
753 struct dwo_sections
754 {
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
764 VEC (dwarf2_section_info_def) *types;
765 };
766
767 /* CUs/TUs in DWP/DWO files. */
768
769 struct dwo_unit
770 {
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
780 struct dwarf2_section_info *section;
781
782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788 };
789
790 /* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794 enum dwp_v2_section_ids
795 {
796 DW_SECT_MIN = 1
797 };
798
799 /* Data for one DWO file.
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
809
810 struct dwo_file
811 {
812 /* The DW_AT_GNU_dwo_name attribute.
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
820
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
824
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
828 struct dwo_sections sections;
829
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840 };
841
842 /* These sections are what may appear in a DWP file. */
843
844 struct dwp_sections
845 {
846 /* These are used by both DWP version 1 and 2. */
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
867 };
868
869 /* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
871
872 struct virtual_v1_dwo_sections
873 {
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
881 That is recorded here, and copied to dwo_unit.section. */
882 struct dwarf2_section_info info_or_types;
883 };
884
885 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890 struct virtual_v2_dwo_sections
891 {
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914 };
915
916 /* Contents of DWP hash tables. */
917
918 struct dwp_hash_table
919 {
920 uint32_t version, nr_columns;
921 uint32_t nr_units, nr_slots;
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933 #define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
945 };
946
947 /* Data for one DWP file. */
948
949 struct dwp_file
950 {
951 /* Name of the file. */
952 const char *name;
953
954 /* File format version. */
955 int version;
956
957 /* The bfd. */
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
963 /* Table of CUs in the file. */
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
972
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
975 unsigned int num_sections;
976 asection **elf_sections;
977 };
978
979 /* This represents a '.dwz' file. */
980
981 struct dwz_file
982 {
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
989 struct dwarf2_section_info gdb_index;
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993 };
994
995 /* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
998 struct exists to abstract away the constant parameters of die reading. */
999
1000 struct die_reader_specs
1001 {
1002 /* The bfd of die_section. */
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1009 struct dwo_file *dwo_file;
1010
1011 /* The section the die comes from.
1012 This is either .debug_info or .debug_types, or the .dwo variants. */
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
1016 const gdb_byte *buffer;
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
1023 };
1024
1025 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1026 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1027 const gdb_byte *info_ptr,
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
1032 struct file_entry
1033 {
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
1042 };
1043
1044 /* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047 struct line_header
1048 {
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
1059 unsigned char maximum_ops_per_instruction;
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
1076 const char **include_dirs;
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
1082 struct file_entry *file_names;
1083
1084 /* The start and end of the statement program following this
1085 header. These point into dwarf2_per_objfile->line_buffer. */
1086 const gdb_byte *statement_program_start, *statement_program_end;
1087 };
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info
1092 {
1093 /* Offset of this DIE. */
1094 sect_offset offset;
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
1106 unsigned int may_be_inlined : 1;
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
1130 /* The name of this DIE. Normally the value of DW_AT_name, but
1131 sometimes a default name for unnamed DIEs. */
1132 const char *name;
1133
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
1140 const char *scope;
1141
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
1155
1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1157 DW_AT_sibling, if any. */
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
1160 const gdb_byte *sibling;
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
1165 sect_offset spec_offset;
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
1170 };
1171
1172 /* This data structure holds the information of an abbrev. */
1173 struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183 struct attr_abbrev
1184 {
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
1187 };
1188
1189 /* Size of abbrev_table.abbrev_hash_table. */
1190 #define ABBREV_HASH_SIZE 121
1191
1192 /* Top level data structure to contain an abbreviation table. */
1193
1194 struct abbrev_table
1195 {
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208 };
1209
1210 /* Attributes have a name and a value. */
1211 struct attribute
1212 {
1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
1221 union
1222 {
1223 const char *str;
1224 struct dwarf_block *blk;
1225 ULONGEST unsnd;
1226 LONGEST snd;
1227 CORE_ADDR addr;
1228 ULONGEST signature;
1229 }
1230 u;
1231 };
1232
1233 /* This data structure holds a complete die structure. */
1234 struct die_info
1235 {
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1245
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
1252 /* Offset in .debug_info or .debug_types section. */
1253 sect_offset offset;
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
1258 together via their SIBLING fields. */
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
1262
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
1267 };
1268
1269 /* Get at parts of an attribute structure. */
1270
1271 #define DW_STRING(attr) ((attr)->u.str)
1272 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1273 #define DW_UNSND(attr) ((attr)->u.unsnd)
1274 #define DW_BLOCK(attr) ((attr)->u.blk)
1275 #define DW_SND(attr) ((attr)->u.snd)
1276 #define DW_ADDR(attr) ((attr)->u.addr)
1277 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1278
1279 /* Blocks are a bunch of untyped bytes. */
1280 struct dwarf_block
1281 {
1282 size_t size;
1283
1284 /* Valid only if SIZE is not zero. */
1285 const gdb_byte *data;
1286 };
1287
1288 #ifndef ATTR_ALLOC_CHUNK
1289 #define ATTR_ALLOC_CHUNK 4
1290 #endif
1291
1292 /* Allocate fields for structs, unions and enums in this size. */
1293 #ifndef DW_FIELD_ALLOC_CHUNK
1294 #define DW_FIELD_ALLOC_CHUNK 4
1295 #endif
1296
1297 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300 static int bits_per_byte = 8;
1301
1302 struct nextfield
1303 {
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308 };
1309
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 };
1315
1316 struct fnfieldlist
1317 {
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321 };
1322
1323 struct typedef_field_list
1324 {
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327 };
1328
1329 /* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332 struct field_info
1333 {
1334 /* List of data member and baseclasses fields. */
1335 struct nextfield *fields, *baseclasses;
1336
1337 /* Number of fields (including baseclasses). */
1338 int nfields;
1339
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
1342
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
1345
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
1348 struct nextfnfield *fnfields;
1349
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
1353 struct fnfieldlist *fnfieldlists;
1354
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1360 struct typedef_field_list *typedef_field_list;
1361 unsigned typedef_field_list_count;
1362 };
1363
1364 /* One item on the queue of compilation units to read in full symbols
1365 for. */
1366 struct dwarf2_queue_item
1367 {
1368 struct dwarf2_per_cu_data *per_cu;
1369 enum language pretend_language;
1370 struct dwarf2_queue_item *next;
1371 };
1372
1373 /* The current queue. */
1374 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
1376 /* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
1381 static int dwarf_max_cache_age = 5;
1382 static void
1383 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
1385 {
1386 fprintf_filtered (file, _("The upper bound on the age of cached "
1387 "DWARF compilation units is %s.\n"),
1388 value);
1389 }
1390 \f
1391 /* local function prototypes */
1392
1393 static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395 static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
1397 static void dwarf2_locate_sections (bfd *, asection *, void *);
1398
1399 static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
1402 static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
1405 static void dwarf2_build_psymtabs_hard (struct objfile *);
1406
1407 static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
1409 int, struct dwarf2_cu *);
1410
1411 static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
1413
1414 static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1416 int set_addrmap, struct dwarf2_cu *cu);
1417
1418 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1419 CORE_ADDR *highpc, int set_addrmap,
1420 struct dwarf2_cu *cu);
1421
1422 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
1424
1425 static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1427 int need_pc, struct dwarf2_cu *cu);
1428
1429 static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
1431
1432 static void psymtab_to_symtab_1 (struct partial_symtab *);
1433
1434 static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437 static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440 static void abbrev_table_free (struct abbrev_table *);
1441
1442 static void abbrev_table_free_cleanup (void *);
1443
1444 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
1446
1447 static void dwarf2_free_abbrev_table (void *);
1448
1449 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1450
1451 static struct partial_die_info *load_partial_dies
1452 (const struct die_reader_specs *, const gdb_byte *, int);
1453
1454 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
1459
1460 static struct partial_die_info *find_partial_die (sect_offset, int,
1461 struct dwarf2_cu *);
1462
1463 static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
1466 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
1469
1470 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1471
1472 static int read_1_signed_byte (bfd *, const gdb_byte *);
1473
1474 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1475
1476 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1477
1478 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1479
1480 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1481 unsigned int *);
1482
1483 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_checked_initial_length_and_offset
1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1487 unsigned int *, unsigned int *);
1488
1489 static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
1491 unsigned int *);
1492
1493 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1494
1495 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
1498 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1499
1500 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1501
1502 static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
1505
1506 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1507
1508 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1509
1510 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
1514 unsigned int *);
1515
1516 static const char *read_str_index (const struct die_reader_specs *reader,
1517 ULONGEST str_index);
1518
1519 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1520
1521 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
1523
1524 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1525 unsigned int);
1526
1527 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
1530 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
1533 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1534
1535 static struct die_info *die_specification (struct die_info *die,
1536 struct dwarf2_cu **);
1537
1538 static void free_line_header (struct line_header *lh);
1539
1540 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
1542
1543 static void dwarf_decode_lines (struct line_header *, const char *,
1544 struct dwarf2_cu *, struct partial_symtab *,
1545 CORE_ADDR, int decode_mapping);
1546
1547 static void dwarf2_start_subfile (const char *, const char *);
1548
1549 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
1552
1553 static struct symbol *new_symbol (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
1559 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1560 struct dwarf2_cu *);
1561
1562 static void dwarf2_const_value_attr (const struct attribute *attr,
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
1566 struct dwarf2_cu *cu, LONGEST *value,
1567 const gdb_byte **bytes,
1568 struct dwarf2_locexpr_baton **baton);
1569
1570 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1571
1572 static int need_gnat_info (struct dwarf2_cu *);
1573
1574 static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
1576
1577 static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
1580 static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
1582
1583 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1584 struct dwarf2_cu *);
1585
1586 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1587
1588 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
1590 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1591
1592 static char *typename_concat (struct obstack *obs, const char *prefix,
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
1595
1596 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1597
1598 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
1600 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1601
1602 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1603
1604 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
1606 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
1609 static int dwarf2_get_pc_bounds (struct die_info *,
1610 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1611 struct partial_symtab *);
1612
1613 static void get_scope_pc_bounds (struct die_info *,
1614 CORE_ADDR *, CORE_ADDR *,
1615 struct dwarf2_cu *);
1616
1617 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1618 CORE_ADDR, struct dwarf2_cu *);
1619
1620 static void dwarf2_add_field (struct field_info *, struct die_info *,
1621 struct dwarf2_cu *);
1622
1623 static void dwarf2_attach_fields_to_type (struct field_info *,
1624 struct type *, struct dwarf2_cu *);
1625
1626 static void dwarf2_add_member_fn (struct field_info *,
1627 struct die_info *, struct type *,
1628 struct dwarf2_cu *);
1629
1630 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1631 struct type *,
1632 struct dwarf2_cu *);
1633
1634 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1635
1636 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1637
1638 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1639
1640 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1641
1642 static struct using_direct **using_directives (enum language);
1643
1644 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1645
1646 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1647
1648 static struct type *read_module_type (struct die_info *die,
1649 struct dwarf2_cu *cu);
1650
1651 static const char *namespace_name (struct die_info *die,
1652 int *is_anonymous, struct dwarf2_cu *);
1653
1654 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1655
1656 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1657
1658 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1659 struct dwarf2_cu *);
1660
1661 static struct die_info *read_die_and_siblings_1
1662 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1663 struct die_info *);
1664
1665 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1666 const gdb_byte *info_ptr,
1667 const gdb_byte **new_info_ptr,
1668 struct die_info *parent);
1669
1670 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1671 struct die_info **, const gdb_byte *,
1672 int *, int);
1673
1674 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1675 struct die_info **, const gdb_byte *,
1676 int *);
1677
1678 static void process_die (struct die_info *, struct dwarf2_cu *);
1679
1680 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1681 struct obstack *);
1682
1683 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1684
1685 static const char *dwarf2_full_name (const char *name,
1686 struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
1689 static const char *dwarf2_physname (const char *name, struct die_info *die,
1690 struct dwarf2_cu *cu);
1691
1692 static struct die_info *dwarf2_extension (struct die_info *die,
1693 struct dwarf2_cu **);
1694
1695 static const char *dwarf_tag_name (unsigned int);
1696
1697 static const char *dwarf_attr_name (unsigned int);
1698
1699 static const char *dwarf_form_name (unsigned int);
1700
1701 static char *dwarf_bool_name (unsigned int);
1702
1703 static const char *dwarf_type_encoding_name (unsigned int);
1704
1705 static struct die_info *sibling_die (struct die_info *);
1706
1707 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1708
1709 static void dump_die_for_error (struct die_info *);
1710
1711 static void dump_die_1 (struct ui_file *, int level, int max_level,
1712 struct die_info *);
1713
1714 /*static*/ void dump_die (struct die_info *, int max_level);
1715
1716 static void store_in_ref_table (struct die_info *,
1717 struct dwarf2_cu *);
1718
1719 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1720
1721 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1722
1723 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1724 const struct attribute *,
1725 struct dwarf2_cu **);
1726
1727 static struct die_info *follow_die_ref (struct die_info *,
1728 const struct attribute *,
1729 struct dwarf2_cu **);
1730
1731 static struct die_info *follow_die_sig (struct die_info *,
1732 const struct attribute *,
1733 struct dwarf2_cu **);
1734
1735 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1736 struct dwarf2_cu *);
1737
1738 static struct type *get_DW_AT_signature_type (struct die_info *,
1739 const struct attribute *,
1740 struct dwarf2_cu *);
1741
1742 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1743
1744 static void read_signatured_type (struct signatured_type *);
1745
1746 static int attr_to_dynamic_prop (const struct attribute *attr,
1747 struct die_info *die, struct dwarf2_cu *cu,
1748 struct dynamic_prop *prop);
1749
1750 /* memory allocation interface */
1751
1752 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1753
1754 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1755
1756 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1757
1758 static int attr_form_is_block (const struct attribute *);
1759
1760 static int attr_form_is_section_offset (const struct attribute *);
1761
1762 static int attr_form_is_constant (const struct attribute *);
1763
1764 static int attr_form_is_ref (const struct attribute *);
1765
1766 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1767 struct dwarf2_loclist_baton *baton,
1768 const struct attribute *attr);
1769
1770 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1771 struct symbol *sym,
1772 struct dwarf2_cu *cu,
1773 int is_block);
1774
1775 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1776 const gdb_byte *info_ptr,
1777 struct abbrev_info *abbrev);
1778
1779 static void free_stack_comp_unit (void *);
1780
1781 static hashval_t partial_die_hash (const void *item);
1782
1783 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1784
1785 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1786 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1787
1788 static void init_one_comp_unit (struct dwarf2_cu *cu,
1789 struct dwarf2_per_cu_data *per_cu);
1790
1791 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1792 struct die_info *comp_unit_die,
1793 enum language pretend_language);
1794
1795 static void free_heap_comp_unit (void *);
1796
1797 static void free_cached_comp_units (void *);
1798
1799 static void age_cached_comp_units (void);
1800
1801 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1802
1803 static struct type *set_die_type (struct die_info *, struct type *,
1804 struct dwarf2_cu *);
1805
1806 static void create_all_comp_units (struct objfile *);
1807
1808 static int create_all_type_units (struct objfile *);
1809
1810 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1811 enum language);
1812
1813 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1814 enum language);
1815
1816 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1817 enum language);
1818
1819 static void dwarf2_add_dependence (struct dwarf2_cu *,
1820 struct dwarf2_per_cu_data *);
1821
1822 static void dwarf2_mark (struct dwarf2_cu *);
1823
1824 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1825
1826 static struct type *get_die_type_at_offset (sect_offset,
1827 struct dwarf2_per_cu_data *);
1828
1829 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1830
1831 static void dwarf2_release_queue (void *dummy);
1832
1833 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1834 enum language pretend_language);
1835
1836 static void process_queue (void);
1837
1838 static void find_file_and_directory (struct die_info *die,
1839 struct dwarf2_cu *cu,
1840 const char **name, const char **comp_dir);
1841
1842 static char *file_full_name (int file, struct line_header *lh,
1843 const char *comp_dir);
1844
1845 static const gdb_byte *read_and_check_comp_unit_head
1846 (struct comp_unit_head *header,
1847 struct dwarf2_section_info *section,
1848 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1849 int is_debug_types_section);
1850
1851 static void init_cutu_and_read_dies
1852 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1853 int use_existing_cu, int keep,
1854 die_reader_func_ftype *die_reader_func, void *data);
1855
1856 static void init_cutu_and_read_dies_simple
1857 (struct dwarf2_per_cu_data *this_cu,
1858 die_reader_func_ftype *die_reader_func, void *data);
1859
1860 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1861
1862 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1863
1864 static struct dwo_unit *lookup_dwo_unit_in_dwp
1865 (struct dwp_file *dwp_file, const char *comp_dir,
1866 ULONGEST signature, int is_debug_types);
1867
1868 static struct dwp_file *get_dwp_file (void);
1869
1870 static struct dwo_unit *lookup_dwo_comp_unit
1871 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1872
1873 static struct dwo_unit *lookup_dwo_type_unit
1874 (struct signatured_type *, const char *, const char *);
1875
1876 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1877
1878 static void free_dwo_file_cleanup (void *);
1879
1880 static void process_cu_includes (void);
1881
1882 static void check_producer (struct dwarf2_cu *cu);
1883
1884 static void free_line_header_voidp (void *arg);
1885 \f
1886 /* Various complaints about symbol reading that don't abort the process. */
1887
1888 static void
1889 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1890 {
1891 complaint (&symfile_complaints,
1892 _("statement list doesn't fit in .debug_line section"));
1893 }
1894
1895 static void
1896 dwarf2_debug_line_missing_file_complaint (void)
1897 {
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line data without a file"));
1900 }
1901
1902 static void
1903 dwarf2_debug_line_missing_end_sequence_complaint (void)
1904 {
1905 complaint (&symfile_complaints,
1906 _(".debug_line section has line "
1907 "program sequence without an end"));
1908 }
1909
1910 static void
1911 dwarf2_complex_location_expr_complaint (void)
1912 {
1913 complaint (&symfile_complaints, _("location expression too complex"));
1914 }
1915
1916 static void
1917 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1918 int arg3)
1919 {
1920 complaint (&symfile_complaints,
1921 _("const value length mismatch for '%s', got %d, expected %d"),
1922 arg1, arg2, arg3);
1923 }
1924
1925 static void
1926 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1927 {
1928 complaint (&symfile_complaints,
1929 _("debug info runs off end of %s section"
1930 " [in module %s]"),
1931 get_section_name (section),
1932 get_section_file_name (section));
1933 }
1934
1935 static void
1936 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1937 {
1938 complaint (&symfile_complaints,
1939 _("macro debug info contains a "
1940 "malformed macro definition:\n`%s'"),
1941 arg1);
1942 }
1943
1944 static void
1945 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1946 {
1947 complaint (&symfile_complaints,
1948 _("invalid attribute class or form for '%s' in '%s'"),
1949 arg1, arg2);
1950 }
1951
1952 /* Hash function for line_header_hash. */
1953
1954 static hashval_t
1955 line_header_hash (const struct line_header *ofs)
1956 {
1957 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1958 }
1959
1960 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1961
1962 static hashval_t
1963 line_header_hash_voidp (const void *item)
1964 {
1965 const struct line_header *ofs = (const struct line_header *) item;
1966
1967 return line_header_hash (ofs);
1968 }
1969
1970 /* Equality function for line_header_hash. */
1971
1972 static int
1973 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1974 {
1975 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1976 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1977
1978 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1979 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1980 }
1981
1982 \f
1983 #if WORDS_BIGENDIAN
1984
1985 /* Convert VALUE between big- and little-endian. */
1986 static offset_type
1987 byte_swap (offset_type value)
1988 {
1989 offset_type result;
1990
1991 result = (value & 0xff) << 24;
1992 result |= (value & 0xff00) << 8;
1993 result |= (value & 0xff0000) >> 8;
1994 result |= (value & 0xff000000) >> 24;
1995 return result;
1996 }
1997
1998 #define MAYBE_SWAP(V) byte_swap (V)
1999
2000 #else
2001 #define MAYBE_SWAP(V) (V)
2002 #endif /* WORDS_BIGENDIAN */
2003
2004 /* Read the given attribute value as an address, taking the attribute's
2005 form into account. */
2006
2007 static CORE_ADDR
2008 attr_value_as_address (struct attribute *attr)
2009 {
2010 CORE_ADDR addr;
2011
2012 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2013 {
2014 /* Aside from a few clearly defined exceptions, attributes that
2015 contain an address must always be in DW_FORM_addr form.
2016 Unfortunately, some compilers happen to be violating this
2017 requirement by encoding addresses using other forms, such
2018 as DW_FORM_data4 for example. For those broken compilers,
2019 we try to do our best, without any guarantee of success,
2020 to interpret the address correctly. It would also be nice
2021 to generate a complaint, but that would require us to maintain
2022 a list of legitimate cases where a non-address form is allowed,
2023 as well as update callers to pass in at least the CU's DWARF
2024 version. This is more overhead than what we're willing to
2025 expand for a pretty rare case. */
2026 addr = DW_UNSND (attr);
2027 }
2028 else
2029 addr = DW_ADDR (attr);
2030
2031 return addr;
2032 }
2033
2034 /* The suffix for an index file. */
2035 #define INDEX_SUFFIX ".gdb-index"
2036
2037 /* Try to locate the sections we need for DWARF 2 debugging
2038 information and return true if we have enough to do something.
2039 NAMES points to the dwarf2 section names, or is NULL if the standard
2040 ELF names are used. */
2041
2042 int
2043 dwarf2_has_info (struct objfile *objfile,
2044 const struct dwarf2_debug_sections *names)
2045 {
2046 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2047 objfile_data (objfile, dwarf2_objfile_data_key));
2048 if (!dwarf2_per_objfile)
2049 {
2050 /* Initialize per-objfile state. */
2051 struct dwarf2_per_objfile *data
2052 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2053
2054 memset (data, 0, sizeof (*data));
2055 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2056 dwarf2_per_objfile = data;
2057
2058 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2059 (void *) names);
2060 dwarf2_per_objfile->objfile = objfile;
2061 }
2062 return (!dwarf2_per_objfile->info.is_virtual
2063 && dwarf2_per_objfile->info.s.section != NULL
2064 && !dwarf2_per_objfile->abbrev.is_virtual
2065 && dwarf2_per_objfile->abbrev.s.section != NULL);
2066 }
2067
2068 /* Return the containing section of virtual section SECTION. */
2069
2070 static struct dwarf2_section_info *
2071 get_containing_section (const struct dwarf2_section_info *section)
2072 {
2073 gdb_assert (section->is_virtual);
2074 return section->s.containing_section;
2075 }
2076
2077 /* Return the bfd owner of SECTION. */
2078
2079 static struct bfd *
2080 get_section_bfd_owner (const struct dwarf2_section_info *section)
2081 {
2082 if (section->is_virtual)
2083 {
2084 section = get_containing_section (section);
2085 gdb_assert (!section->is_virtual);
2086 }
2087 return section->s.section->owner;
2088 }
2089
2090 /* Return the bfd section of SECTION.
2091 Returns NULL if the section is not present. */
2092
2093 static asection *
2094 get_section_bfd_section (const struct dwarf2_section_info *section)
2095 {
2096 if (section->is_virtual)
2097 {
2098 section = get_containing_section (section);
2099 gdb_assert (!section->is_virtual);
2100 }
2101 return section->s.section;
2102 }
2103
2104 /* Return the name of SECTION. */
2105
2106 static const char *
2107 get_section_name (const struct dwarf2_section_info *section)
2108 {
2109 asection *sectp = get_section_bfd_section (section);
2110
2111 gdb_assert (sectp != NULL);
2112 return bfd_section_name (get_section_bfd_owner (section), sectp);
2113 }
2114
2115 /* Return the name of the file SECTION is in. */
2116
2117 static const char *
2118 get_section_file_name (const struct dwarf2_section_info *section)
2119 {
2120 bfd *abfd = get_section_bfd_owner (section);
2121
2122 return bfd_get_filename (abfd);
2123 }
2124
2125 /* Return the id of SECTION.
2126 Returns 0 if SECTION doesn't exist. */
2127
2128 static int
2129 get_section_id (const struct dwarf2_section_info *section)
2130 {
2131 asection *sectp = get_section_bfd_section (section);
2132
2133 if (sectp == NULL)
2134 return 0;
2135 return sectp->id;
2136 }
2137
2138 /* Return the flags of SECTION.
2139 SECTION (or containing section if this is a virtual section) must exist. */
2140
2141 static int
2142 get_section_flags (const struct dwarf2_section_info *section)
2143 {
2144 asection *sectp = get_section_bfd_section (section);
2145
2146 gdb_assert (sectp != NULL);
2147 return bfd_get_section_flags (sectp->owner, sectp);
2148 }
2149
2150 /* When loading sections, we look either for uncompressed section or for
2151 compressed section names. */
2152
2153 static int
2154 section_is_p (const char *section_name,
2155 const struct dwarf2_section_names *names)
2156 {
2157 if (names->normal != NULL
2158 && strcmp (section_name, names->normal) == 0)
2159 return 1;
2160 if (names->compressed != NULL
2161 && strcmp (section_name, names->compressed) == 0)
2162 return 1;
2163 return 0;
2164 }
2165
2166 /* This function is mapped across the sections and remembers the
2167 offset and size of each of the debugging sections we are interested
2168 in. */
2169
2170 static void
2171 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2172 {
2173 const struct dwarf2_debug_sections *names;
2174 flagword aflag = bfd_get_section_flags (abfd, sectp);
2175
2176 if (vnames == NULL)
2177 names = &dwarf2_elf_names;
2178 else
2179 names = (const struct dwarf2_debug_sections *) vnames;
2180
2181 if ((aflag & SEC_HAS_CONTENTS) == 0)
2182 {
2183 }
2184 else if (section_is_p (sectp->name, &names->info))
2185 {
2186 dwarf2_per_objfile->info.s.section = sectp;
2187 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2188 }
2189 else if (section_is_p (sectp->name, &names->abbrev))
2190 {
2191 dwarf2_per_objfile->abbrev.s.section = sectp;
2192 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2193 }
2194 else if (section_is_p (sectp->name, &names->line))
2195 {
2196 dwarf2_per_objfile->line.s.section = sectp;
2197 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2198 }
2199 else if (section_is_p (sectp->name, &names->loc))
2200 {
2201 dwarf2_per_objfile->loc.s.section = sectp;
2202 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2203 }
2204 else if (section_is_p (sectp->name, &names->macinfo))
2205 {
2206 dwarf2_per_objfile->macinfo.s.section = sectp;
2207 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2208 }
2209 else if (section_is_p (sectp->name, &names->macro))
2210 {
2211 dwarf2_per_objfile->macro.s.section = sectp;
2212 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2213 }
2214 else if (section_is_p (sectp->name, &names->str))
2215 {
2216 dwarf2_per_objfile->str.s.section = sectp;
2217 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2218 }
2219 else if (section_is_p (sectp->name, &names->addr))
2220 {
2221 dwarf2_per_objfile->addr.s.section = sectp;
2222 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2223 }
2224 else if (section_is_p (sectp->name, &names->frame))
2225 {
2226 dwarf2_per_objfile->frame.s.section = sectp;
2227 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2228 }
2229 else if (section_is_p (sectp->name, &names->eh_frame))
2230 {
2231 dwarf2_per_objfile->eh_frame.s.section = sectp;
2232 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2233 }
2234 else if (section_is_p (sectp->name, &names->ranges))
2235 {
2236 dwarf2_per_objfile->ranges.s.section = sectp;
2237 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2238 }
2239 else if (section_is_p (sectp->name, &names->types))
2240 {
2241 struct dwarf2_section_info type_section;
2242
2243 memset (&type_section, 0, sizeof (type_section));
2244 type_section.s.section = sectp;
2245 type_section.size = bfd_get_section_size (sectp);
2246
2247 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2248 &type_section);
2249 }
2250 else if (section_is_p (sectp->name, &names->gdb_index))
2251 {
2252 dwarf2_per_objfile->gdb_index.s.section = sectp;
2253 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2254 }
2255
2256 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2257 && bfd_section_vma (abfd, sectp) == 0)
2258 dwarf2_per_objfile->has_section_at_zero = 1;
2259 }
2260
2261 /* A helper function that decides whether a section is empty,
2262 or not present. */
2263
2264 static int
2265 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2266 {
2267 if (section->is_virtual)
2268 return section->size == 0;
2269 return section->s.section == NULL || section->size == 0;
2270 }
2271
2272 /* Read the contents of the section INFO.
2273 OBJFILE is the main object file, but not necessarily the file where
2274 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2275 of the DWO file.
2276 If the section is compressed, uncompress it before returning. */
2277
2278 static void
2279 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2280 {
2281 asection *sectp;
2282 bfd *abfd;
2283 gdb_byte *buf, *retbuf;
2284
2285 if (info->readin)
2286 return;
2287 info->buffer = NULL;
2288 info->readin = 1;
2289
2290 if (dwarf2_section_empty_p (info))
2291 return;
2292
2293 sectp = get_section_bfd_section (info);
2294
2295 /* If this is a virtual section we need to read in the real one first. */
2296 if (info->is_virtual)
2297 {
2298 struct dwarf2_section_info *containing_section =
2299 get_containing_section (info);
2300
2301 gdb_assert (sectp != NULL);
2302 if ((sectp->flags & SEC_RELOC) != 0)
2303 {
2304 error (_("Dwarf Error: DWP format V2 with relocations is not"
2305 " supported in section %s [in module %s]"),
2306 get_section_name (info), get_section_file_name (info));
2307 }
2308 dwarf2_read_section (objfile, containing_section);
2309 /* Other code should have already caught virtual sections that don't
2310 fit. */
2311 gdb_assert (info->virtual_offset + info->size
2312 <= containing_section->size);
2313 /* If the real section is empty or there was a problem reading the
2314 section we shouldn't get here. */
2315 gdb_assert (containing_section->buffer != NULL);
2316 info->buffer = containing_section->buffer + info->virtual_offset;
2317 return;
2318 }
2319
2320 /* If the section has relocations, we must read it ourselves.
2321 Otherwise we attach it to the BFD. */
2322 if ((sectp->flags & SEC_RELOC) == 0)
2323 {
2324 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2325 return;
2326 }
2327
2328 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2329 info->buffer = buf;
2330
2331 /* When debugging .o files, we may need to apply relocations; see
2332 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2333 We never compress sections in .o files, so we only need to
2334 try this when the section is not compressed. */
2335 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2336 if (retbuf != NULL)
2337 {
2338 info->buffer = retbuf;
2339 return;
2340 }
2341
2342 abfd = get_section_bfd_owner (info);
2343 gdb_assert (abfd != NULL);
2344
2345 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2346 || bfd_bread (buf, info->size, abfd) != info->size)
2347 {
2348 error (_("Dwarf Error: Can't read DWARF data"
2349 " in section %s [in module %s]"),
2350 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2351 }
2352 }
2353
2354 /* A helper function that returns the size of a section in a safe way.
2355 If you are positive that the section has been read before using the
2356 size, then it is safe to refer to the dwarf2_section_info object's
2357 "size" field directly. In other cases, you must call this
2358 function, because for compressed sections the size field is not set
2359 correctly until the section has been read. */
2360
2361 static bfd_size_type
2362 dwarf2_section_size (struct objfile *objfile,
2363 struct dwarf2_section_info *info)
2364 {
2365 if (!info->readin)
2366 dwarf2_read_section (objfile, info);
2367 return info->size;
2368 }
2369
2370 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2371 SECTION_NAME. */
2372
2373 void
2374 dwarf2_get_section_info (struct objfile *objfile,
2375 enum dwarf2_section_enum sect,
2376 asection **sectp, const gdb_byte **bufp,
2377 bfd_size_type *sizep)
2378 {
2379 struct dwarf2_per_objfile *data
2380 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2381 dwarf2_objfile_data_key);
2382 struct dwarf2_section_info *info;
2383
2384 /* We may see an objfile without any DWARF, in which case we just
2385 return nothing. */
2386 if (data == NULL)
2387 {
2388 *sectp = NULL;
2389 *bufp = NULL;
2390 *sizep = 0;
2391 return;
2392 }
2393 switch (sect)
2394 {
2395 case DWARF2_DEBUG_FRAME:
2396 info = &data->frame;
2397 break;
2398 case DWARF2_EH_FRAME:
2399 info = &data->eh_frame;
2400 break;
2401 default:
2402 gdb_assert_not_reached ("unexpected section");
2403 }
2404
2405 dwarf2_read_section (objfile, info);
2406
2407 *sectp = get_section_bfd_section (info);
2408 *bufp = info->buffer;
2409 *sizep = info->size;
2410 }
2411
2412 /* A helper function to find the sections for a .dwz file. */
2413
2414 static void
2415 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2416 {
2417 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2418
2419 /* Note that we only support the standard ELF names, because .dwz
2420 is ELF-only (at the time of writing). */
2421 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2422 {
2423 dwz_file->abbrev.s.section = sectp;
2424 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2425 }
2426 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2427 {
2428 dwz_file->info.s.section = sectp;
2429 dwz_file->info.size = bfd_get_section_size (sectp);
2430 }
2431 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2432 {
2433 dwz_file->str.s.section = sectp;
2434 dwz_file->str.size = bfd_get_section_size (sectp);
2435 }
2436 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2437 {
2438 dwz_file->line.s.section = sectp;
2439 dwz_file->line.size = bfd_get_section_size (sectp);
2440 }
2441 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2442 {
2443 dwz_file->macro.s.section = sectp;
2444 dwz_file->macro.size = bfd_get_section_size (sectp);
2445 }
2446 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2447 {
2448 dwz_file->gdb_index.s.section = sectp;
2449 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2450 }
2451 }
2452
2453 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2454 there is no .gnu_debugaltlink section in the file. Error if there
2455 is such a section but the file cannot be found. */
2456
2457 static struct dwz_file *
2458 dwarf2_get_dwz_file (void)
2459 {
2460 bfd *dwz_bfd;
2461 char *data;
2462 struct cleanup *cleanup;
2463 const char *filename;
2464 struct dwz_file *result;
2465 bfd_size_type buildid_len_arg;
2466 size_t buildid_len;
2467 bfd_byte *buildid;
2468
2469 if (dwarf2_per_objfile->dwz_file != NULL)
2470 return dwarf2_per_objfile->dwz_file;
2471
2472 bfd_set_error (bfd_error_no_error);
2473 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2474 &buildid_len_arg, &buildid);
2475 if (data == NULL)
2476 {
2477 if (bfd_get_error () == bfd_error_no_error)
2478 return NULL;
2479 error (_("could not read '.gnu_debugaltlink' section: %s"),
2480 bfd_errmsg (bfd_get_error ()));
2481 }
2482 cleanup = make_cleanup (xfree, data);
2483 make_cleanup (xfree, buildid);
2484
2485 buildid_len = (size_t) buildid_len_arg;
2486
2487 filename = (const char *) data;
2488 if (!IS_ABSOLUTE_PATH (filename))
2489 {
2490 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2491 char *rel;
2492
2493 make_cleanup (xfree, abs);
2494 abs = ldirname (abs);
2495 make_cleanup (xfree, abs);
2496
2497 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2498 make_cleanup (xfree, rel);
2499 filename = rel;
2500 }
2501
2502 /* First try the file name given in the section. If that doesn't
2503 work, try to use the build-id instead. */
2504 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2505 if (dwz_bfd != NULL)
2506 {
2507 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2508 {
2509 gdb_bfd_unref (dwz_bfd);
2510 dwz_bfd = NULL;
2511 }
2512 }
2513
2514 if (dwz_bfd == NULL)
2515 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2516
2517 if (dwz_bfd == NULL)
2518 error (_("could not find '.gnu_debugaltlink' file for %s"),
2519 objfile_name (dwarf2_per_objfile->objfile));
2520
2521 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2522 struct dwz_file);
2523 result->dwz_bfd = dwz_bfd;
2524
2525 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2526
2527 do_cleanups (cleanup);
2528
2529 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2530 dwarf2_per_objfile->dwz_file = result;
2531 return result;
2532 }
2533 \f
2534 /* DWARF quick_symbols_functions support. */
2535
2536 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2537 unique line tables, so we maintain a separate table of all .debug_line
2538 derived entries to support the sharing.
2539 All the quick functions need is the list of file names. We discard the
2540 line_header when we're done and don't need to record it here. */
2541 struct quick_file_names
2542 {
2543 /* The data used to construct the hash key. */
2544 struct stmt_list_hash hash;
2545
2546 /* The number of entries in file_names, real_names. */
2547 unsigned int num_file_names;
2548
2549 /* The file names from the line table, after being run through
2550 file_full_name. */
2551 const char **file_names;
2552
2553 /* The file names from the line table after being run through
2554 gdb_realpath. These are computed lazily. */
2555 const char **real_names;
2556 };
2557
2558 /* When using the index (and thus not using psymtabs), each CU has an
2559 object of this type. This is used to hold information needed by
2560 the various "quick" methods. */
2561 struct dwarf2_per_cu_quick_data
2562 {
2563 /* The file table. This can be NULL if there was no file table
2564 or it's currently not read in.
2565 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2566 struct quick_file_names *file_names;
2567
2568 /* The corresponding symbol table. This is NULL if symbols for this
2569 CU have not yet been read. */
2570 struct compunit_symtab *compunit_symtab;
2571
2572 /* A temporary mark bit used when iterating over all CUs in
2573 expand_symtabs_matching. */
2574 unsigned int mark : 1;
2575
2576 /* True if we've tried to read the file table and found there isn't one.
2577 There will be no point in trying to read it again next time. */
2578 unsigned int no_file_data : 1;
2579 };
2580
2581 /* Utility hash function for a stmt_list_hash. */
2582
2583 static hashval_t
2584 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2585 {
2586 hashval_t v = 0;
2587
2588 if (stmt_list_hash->dwo_unit != NULL)
2589 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2590 v += stmt_list_hash->line_offset.sect_off;
2591 return v;
2592 }
2593
2594 /* Utility equality function for a stmt_list_hash. */
2595
2596 static int
2597 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2598 const struct stmt_list_hash *rhs)
2599 {
2600 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2601 return 0;
2602 if (lhs->dwo_unit != NULL
2603 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2604 return 0;
2605
2606 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2607 }
2608
2609 /* Hash function for a quick_file_names. */
2610
2611 static hashval_t
2612 hash_file_name_entry (const void *e)
2613 {
2614 const struct quick_file_names *file_data
2615 = (const struct quick_file_names *) e;
2616
2617 return hash_stmt_list_entry (&file_data->hash);
2618 }
2619
2620 /* Equality function for a quick_file_names. */
2621
2622 static int
2623 eq_file_name_entry (const void *a, const void *b)
2624 {
2625 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2626 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2627
2628 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2629 }
2630
2631 /* Delete function for a quick_file_names. */
2632
2633 static void
2634 delete_file_name_entry (void *e)
2635 {
2636 struct quick_file_names *file_data = (struct quick_file_names *) e;
2637 int i;
2638
2639 for (i = 0; i < file_data->num_file_names; ++i)
2640 {
2641 xfree ((void*) file_data->file_names[i]);
2642 if (file_data->real_names)
2643 xfree ((void*) file_data->real_names[i]);
2644 }
2645
2646 /* The space for the struct itself lives on objfile_obstack,
2647 so we don't free it here. */
2648 }
2649
2650 /* Create a quick_file_names hash table. */
2651
2652 static htab_t
2653 create_quick_file_names_table (unsigned int nr_initial_entries)
2654 {
2655 return htab_create_alloc (nr_initial_entries,
2656 hash_file_name_entry, eq_file_name_entry,
2657 delete_file_name_entry, xcalloc, xfree);
2658 }
2659
2660 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2661 have to be created afterwards. You should call age_cached_comp_units after
2662 processing PER_CU->CU. dw2_setup must have been already called. */
2663
2664 static void
2665 load_cu (struct dwarf2_per_cu_data *per_cu)
2666 {
2667 if (per_cu->is_debug_types)
2668 load_full_type_unit (per_cu);
2669 else
2670 load_full_comp_unit (per_cu, language_minimal);
2671
2672 if (per_cu->cu == NULL)
2673 return; /* Dummy CU. */
2674
2675 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2676 }
2677
2678 /* Read in the symbols for PER_CU. */
2679
2680 static void
2681 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2682 {
2683 struct cleanup *back_to;
2684
2685 /* Skip type_unit_groups, reading the type units they contain
2686 is handled elsewhere. */
2687 if (IS_TYPE_UNIT_GROUP (per_cu))
2688 return;
2689
2690 back_to = make_cleanup (dwarf2_release_queue, NULL);
2691
2692 if (dwarf2_per_objfile->using_index
2693 ? per_cu->v.quick->compunit_symtab == NULL
2694 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2695 {
2696 queue_comp_unit (per_cu, language_minimal);
2697 load_cu (per_cu);
2698
2699 /* If we just loaded a CU from a DWO, and we're working with an index
2700 that may badly handle TUs, load all the TUs in that DWO as well.
2701 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2702 if (!per_cu->is_debug_types
2703 && per_cu->cu != NULL
2704 && per_cu->cu->dwo_unit != NULL
2705 && dwarf2_per_objfile->index_table != NULL
2706 && dwarf2_per_objfile->index_table->version <= 7
2707 /* DWP files aren't supported yet. */
2708 && get_dwp_file () == NULL)
2709 queue_and_load_all_dwo_tus (per_cu);
2710 }
2711
2712 process_queue ();
2713
2714 /* Age the cache, releasing compilation units that have not
2715 been used recently. */
2716 age_cached_comp_units ();
2717
2718 do_cleanups (back_to);
2719 }
2720
2721 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2722 the objfile from which this CU came. Returns the resulting symbol
2723 table. */
2724
2725 static struct compunit_symtab *
2726 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2727 {
2728 gdb_assert (dwarf2_per_objfile->using_index);
2729 if (!per_cu->v.quick->compunit_symtab)
2730 {
2731 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2732 increment_reading_symtab ();
2733 dw2_do_instantiate_symtab (per_cu);
2734 process_cu_includes ();
2735 do_cleanups (back_to);
2736 }
2737
2738 return per_cu->v.quick->compunit_symtab;
2739 }
2740
2741 /* Return the CU/TU given its index.
2742
2743 This is intended for loops like:
2744
2745 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2746 + dwarf2_per_objfile->n_type_units); ++i)
2747 {
2748 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2749
2750 ...;
2751 }
2752 */
2753
2754 static struct dwarf2_per_cu_data *
2755 dw2_get_cutu (int index)
2756 {
2757 if (index >= dwarf2_per_objfile->n_comp_units)
2758 {
2759 index -= dwarf2_per_objfile->n_comp_units;
2760 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2761 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2762 }
2763
2764 return dwarf2_per_objfile->all_comp_units[index];
2765 }
2766
2767 /* Return the CU given its index.
2768 This differs from dw2_get_cutu in that it's for when you know INDEX
2769 refers to a CU. */
2770
2771 static struct dwarf2_per_cu_data *
2772 dw2_get_cu (int index)
2773 {
2774 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2775
2776 return dwarf2_per_objfile->all_comp_units[index];
2777 }
2778
2779 /* A helper for create_cus_from_index that handles a given list of
2780 CUs. */
2781
2782 static void
2783 create_cus_from_index_list (struct objfile *objfile,
2784 const gdb_byte *cu_list, offset_type n_elements,
2785 struct dwarf2_section_info *section,
2786 int is_dwz,
2787 int base_offset)
2788 {
2789 offset_type i;
2790
2791 for (i = 0; i < n_elements; i += 2)
2792 {
2793 struct dwarf2_per_cu_data *the_cu;
2794 ULONGEST offset, length;
2795
2796 gdb_static_assert (sizeof (ULONGEST) >= 8);
2797 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2798 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2799 cu_list += 2 * 8;
2800
2801 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2802 struct dwarf2_per_cu_data);
2803 the_cu->offset.sect_off = offset;
2804 the_cu->length = length;
2805 the_cu->objfile = objfile;
2806 the_cu->section = section;
2807 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2808 struct dwarf2_per_cu_quick_data);
2809 the_cu->is_dwz = is_dwz;
2810 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2811 }
2812 }
2813
2814 /* Read the CU list from the mapped index, and use it to create all
2815 the CU objects for this objfile. */
2816
2817 static void
2818 create_cus_from_index (struct objfile *objfile,
2819 const gdb_byte *cu_list, offset_type cu_list_elements,
2820 const gdb_byte *dwz_list, offset_type dwz_elements)
2821 {
2822 struct dwz_file *dwz;
2823
2824 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2825 dwarf2_per_objfile->all_comp_units =
2826 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2827 dwarf2_per_objfile->n_comp_units);
2828
2829 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2830 &dwarf2_per_objfile->info, 0, 0);
2831
2832 if (dwz_elements == 0)
2833 return;
2834
2835 dwz = dwarf2_get_dwz_file ();
2836 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2837 cu_list_elements / 2);
2838 }
2839
2840 /* Create the signatured type hash table from the index. */
2841
2842 static void
2843 create_signatured_type_table_from_index (struct objfile *objfile,
2844 struct dwarf2_section_info *section,
2845 const gdb_byte *bytes,
2846 offset_type elements)
2847 {
2848 offset_type i;
2849 htab_t sig_types_hash;
2850
2851 dwarf2_per_objfile->n_type_units
2852 = dwarf2_per_objfile->n_allocated_type_units
2853 = elements / 3;
2854 dwarf2_per_objfile->all_type_units =
2855 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2856
2857 sig_types_hash = allocate_signatured_type_table (objfile);
2858
2859 for (i = 0; i < elements; i += 3)
2860 {
2861 struct signatured_type *sig_type;
2862 ULONGEST offset, type_offset_in_tu, signature;
2863 void **slot;
2864
2865 gdb_static_assert (sizeof (ULONGEST) >= 8);
2866 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2867 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2868 BFD_ENDIAN_LITTLE);
2869 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2870 bytes += 3 * 8;
2871
2872 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2873 struct signatured_type);
2874 sig_type->signature = signature;
2875 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2876 sig_type->per_cu.is_debug_types = 1;
2877 sig_type->per_cu.section = section;
2878 sig_type->per_cu.offset.sect_off = offset;
2879 sig_type->per_cu.objfile = objfile;
2880 sig_type->per_cu.v.quick
2881 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2882 struct dwarf2_per_cu_quick_data);
2883
2884 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2885 *slot = sig_type;
2886
2887 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2888 }
2889
2890 dwarf2_per_objfile->signatured_types = sig_types_hash;
2891 }
2892
2893 /* Read the address map data from the mapped index, and use it to
2894 populate the objfile's psymtabs_addrmap. */
2895
2896 static void
2897 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2898 {
2899 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2900 const gdb_byte *iter, *end;
2901 struct obstack temp_obstack;
2902 struct addrmap *mutable_map;
2903 struct cleanup *cleanup;
2904 CORE_ADDR baseaddr;
2905
2906 obstack_init (&temp_obstack);
2907 cleanup = make_cleanup_obstack_free (&temp_obstack);
2908 mutable_map = addrmap_create_mutable (&temp_obstack);
2909
2910 iter = index->address_table;
2911 end = iter + index->address_table_size;
2912
2913 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2914
2915 while (iter < end)
2916 {
2917 ULONGEST hi, lo, cu_index;
2918 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2919 iter += 8;
2920 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2921 iter += 8;
2922 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2923 iter += 4;
2924
2925 if (lo > hi)
2926 {
2927 complaint (&symfile_complaints,
2928 _(".gdb_index address table has invalid range (%s - %s)"),
2929 hex_string (lo), hex_string (hi));
2930 continue;
2931 }
2932
2933 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2934 {
2935 complaint (&symfile_complaints,
2936 _(".gdb_index address table has invalid CU number %u"),
2937 (unsigned) cu_index);
2938 continue;
2939 }
2940
2941 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2942 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2943 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2944 }
2945
2946 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2947 &objfile->objfile_obstack);
2948 do_cleanups (cleanup);
2949 }
2950
2951 /* The hash function for strings in the mapped index. This is the same as
2952 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2953 implementation. This is necessary because the hash function is tied to the
2954 format of the mapped index file. The hash values do not have to match with
2955 SYMBOL_HASH_NEXT.
2956
2957 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2958
2959 static hashval_t
2960 mapped_index_string_hash (int index_version, const void *p)
2961 {
2962 const unsigned char *str = (const unsigned char *) p;
2963 hashval_t r = 0;
2964 unsigned char c;
2965
2966 while ((c = *str++) != 0)
2967 {
2968 if (index_version >= 5)
2969 c = tolower (c);
2970 r = r * 67 + c - 113;
2971 }
2972
2973 return r;
2974 }
2975
2976 /* Find a slot in the mapped index INDEX for the object named NAME.
2977 If NAME is found, set *VEC_OUT to point to the CU vector in the
2978 constant pool and return 1. If NAME cannot be found, return 0. */
2979
2980 static int
2981 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2982 offset_type **vec_out)
2983 {
2984 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2985 offset_type hash;
2986 offset_type slot, step;
2987 int (*cmp) (const char *, const char *);
2988
2989 if (current_language->la_language == language_cplus
2990 || current_language->la_language == language_java
2991 || current_language->la_language == language_fortran
2992 || current_language->la_language == language_d)
2993 {
2994 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2995 not contain any. */
2996
2997 if (strchr (name, '(') != NULL)
2998 {
2999 char *without_params = cp_remove_params (name);
3000
3001 if (without_params != NULL)
3002 {
3003 make_cleanup (xfree, without_params);
3004 name = without_params;
3005 }
3006 }
3007 }
3008
3009 /* Index version 4 did not support case insensitive searches. But the
3010 indices for case insensitive languages are built in lowercase, therefore
3011 simulate our NAME being searched is also lowercased. */
3012 hash = mapped_index_string_hash ((index->version == 4
3013 && case_sensitivity == case_sensitive_off
3014 ? 5 : index->version),
3015 name);
3016
3017 slot = hash & (index->symbol_table_slots - 1);
3018 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3019 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3020
3021 for (;;)
3022 {
3023 /* Convert a slot number to an offset into the table. */
3024 offset_type i = 2 * slot;
3025 const char *str;
3026 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3027 {
3028 do_cleanups (back_to);
3029 return 0;
3030 }
3031
3032 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3033 if (!cmp (name, str))
3034 {
3035 *vec_out = (offset_type *) (index->constant_pool
3036 + MAYBE_SWAP (index->symbol_table[i + 1]));
3037 do_cleanups (back_to);
3038 return 1;
3039 }
3040
3041 slot = (slot + step) & (index->symbol_table_slots - 1);
3042 }
3043 }
3044
3045 /* A helper function that reads the .gdb_index from SECTION and fills
3046 in MAP. FILENAME is the name of the file containing the section;
3047 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3048 ok to use deprecated sections.
3049
3050 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3051 out parameters that are filled in with information about the CU and
3052 TU lists in the section.
3053
3054 Returns 1 if all went well, 0 otherwise. */
3055
3056 static int
3057 read_index_from_section (struct objfile *objfile,
3058 const char *filename,
3059 int deprecated_ok,
3060 struct dwarf2_section_info *section,
3061 struct mapped_index *map,
3062 const gdb_byte **cu_list,
3063 offset_type *cu_list_elements,
3064 const gdb_byte **types_list,
3065 offset_type *types_list_elements)
3066 {
3067 const gdb_byte *addr;
3068 offset_type version;
3069 offset_type *metadata;
3070 int i;
3071
3072 if (dwarf2_section_empty_p (section))
3073 return 0;
3074
3075 /* Older elfutils strip versions could keep the section in the main
3076 executable while splitting it for the separate debug info file. */
3077 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3078 return 0;
3079
3080 dwarf2_read_section (objfile, section);
3081
3082 addr = section->buffer;
3083 /* Version check. */
3084 version = MAYBE_SWAP (*(offset_type *) addr);
3085 /* Versions earlier than 3 emitted every copy of a psymbol. This
3086 causes the index to behave very poorly for certain requests. Version 3
3087 contained incomplete addrmap. So, it seems better to just ignore such
3088 indices. */
3089 if (version < 4)
3090 {
3091 static int warning_printed = 0;
3092 if (!warning_printed)
3093 {
3094 warning (_("Skipping obsolete .gdb_index section in %s."),
3095 filename);
3096 warning_printed = 1;
3097 }
3098 return 0;
3099 }
3100 /* Index version 4 uses a different hash function than index version
3101 5 and later.
3102
3103 Versions earlier than 6 did not emit psymbols for inlined
3104 functions. Using these files will cause GDB not to be able to
3105 set breakpoints on inlined functions by name, so we ignore these
3106 indices unless the user has done
3107 "set use-deprecated-index-sections on". */
3108 if (version < 6 && !deprecated_ok)
3109 {
3110 static int warning_printed = 0;
3111 if (!warning_printed)
3112 {
3113 warning (_("\
3114 Skipping deprecated .gdb_index section in %s.\n\
3115 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3116 to use the section anyway."),
3117 filename);
3118 warning_printed = 1;
3119 }
3120 return 0;
3121 }
3122 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3123 of the TU (for symbols coming from TUs),
3124 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3125 Plus gold-generated indices can have duplicate entries for global symbols,
3126 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3127 These are just performance bugs, and we can't distinguish gdb-generated
3128 indices from gold-generated ones, so issue no warning here. */
3129
3130 /* Indexes with higher version than the one supported by GDB may be no
3131 longer backward compatible. */
3132 if (version > 8)
3133 return 0;
3134
3135 map->version = version;
3136 map->total_size = section->size;
3137
3138 metadata = (offset_type *) (addr + sizeof (offset_type));
3139
3140 i = 0;
3141 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3142 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3143 / 8);
3144 ++i;
3145
3146 *types_list = addr + MAYBE_SWAP (metadata[i]);
3147 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3148 - MAYBE_SWAP (metadata[i]))
3149 / 8);
3150 ++i;
3151
3152 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3153 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3154 - MAYBE_SWAP (metadata[i]));
3155 ++i;
3156
3157 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3158 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3159 - MAYBE_SWAP (metadata[i]))
3160 / (2 * sizeof (offset_type)));
3161 ++i;
3162
3163 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3164
3165 return 1;
3166 }
3167
3168
3169 /* Read the index file. If everything went ok, initialize the "quick"
3170 elements of all the CUs and return 1. Otherwise, return 0. */
3171
3172 static int
3173 dwarf2_read_index (struct objfile *objfile)
3174 {
3175 struct mapped_index local_map, *map;
3176 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3177 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3178 struct dwz_file *dwz;
3179
3180 if (!read_index_from_section (objfile, objfile_name (objfile),
3181 use_deprecated_index_sections,
3182 &dwarf2_per_objfile->gdb_index, &local_map,
3183 &cu_list, &cu_list_elements,
3184 &types_list, &types_list_elements))
3185 return 0;
3186
3187 /* Don't use the index if it's empty. */
3188 if (local_map.symbol_table_slots == 0)
3189 return 0;
3190
3191 /* If there is a .dwz file, read it so we can get its CU list as
3192 well. */
3193 dwz = dwarf2_get_dwz_file ();
3194 if (dwz != NULL)
3195 {
3196 struct mapped_index dwz_map;
3197 const gdb_byte *dwz_types_ignore;
3198 offset_type dwz_types_elements_ignore;
3199
3200 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3201 1,
3202 &dwz->gdb_index, &dwz_map,
3203 &dwz_list, &dwz_list_elements,
3204 &dwz_types_ignore,
3205 &dwz_types_elements_ignore))
3206 {
3207 warning (_("could not read '.gdb_index' section from %s; skipping"),
3208 bfd_get_filename (dwz->dwz_bfd));
3209 return 0;
3210 }
3211 }
3212
3213 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3214 dwz_list_elements);
3215
3216 if (types_list_elements)
3217 {
3218 struct dwarf2_section_info *section;
3219
3220 /* We can only handle a single .debug_types when we have an
3221 index. */
3222 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3223 return 0;
3224
3225 section = VEC_index (dwarf2_section_info_def,
3226 dwarf2_per_objfile->types, 0);
3227
3228 create_signatured_type_table_from_index (objfile, section, types_list,
3229 types_list_elements);
3230 }
3231
3232 create_addrmap_from_index (objfile, &local_map);
3233
3234 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3235 *map = local_map;
3236
3237 dwarf2_per_objfile->index_table = map;
3238 dwarf2_per_objfile->using_index = 1;
3239 dwarf2_per_objfile->quick_file_names_table =
3240 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3241
3242 return 1;
3243 }
3244
3245 /* A helper for the "quick" functions which sets the global
3246 dwarf2_per_objfile according to OBJFILE. */
3247
3248 static void
3249 dw2_setup (struct objfile *objfile)
3250 {
3251 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3252 objfile_data (objfile, dwarf2_objfile_data_key));
3253 gdb_assert (dwarf2_per_objfile);
3254 }
3255
3256 /* die_reader_func for dw2_get_file_names. */
3257
3258 static void
3259 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3260 const gdb_byte *info_ptr,
3261 struct die_info *comp_unit_die,
3262 int has_children,
3263 void *data)
3264 {
3265 struct dwarf2_cu *cu = reader->cu;
3266 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3267 struct objfile *objfile = dwarf2_per_objfile->objfile;
3268 struct dwarf2_per_cu_data *lh_cu;
3269 struct line_header *lh;
3270 struct attribute *attr;
3271 int i;
3272 const char *name, *comp_dir;
3273 void **slot;
3274 struct quick_file_names *qfn;
3275 unsigned int line_offset;
3276
3277 gdb_assert (! this_cu->is_debug_types);
3278
3279 /* Our callers never want to match partial units -- instead they
3280 will match the enclosing full CU. */
3281 if (comp_unit_die->tag == DW_TAG_partial_unit)
3282 {
3283 this_cu->v.quick->no_file_data = 1;
3284 return;
3285 }
3286
3287 lh_cu = this_cu;
3288 lh = NULL;
3289 slot = NULL;
3290 line_offset = 0;
3291
3292 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3293 if (attr)
3294 {
3295 struct quick_file_names find_entry;
3296
3297 line_offset = DW_UNSND (attr);
3298
3299 /* We may have already read in this line header (TU line header sharing).
3300 If we have we're done. */
3301 find_entry.hash.dwo_unit = cu->dwo_unit;
3302 find_entry.hash.line_offset.sect_off = line_offset;
3303 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3304 &find_entry, INSERT);
3305 if (*slot != NULL)
3306 {
3307 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3308 return;
3309 }
3310
3311 lh = dwarf_decode_line_header (line_offset, cu);
3312 }
3313 if (lh == NULL)
3314 {
3315 lh_cu->v.quick->no_file_data = 1;
3316 return;
3317 }
3318
3319 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3320 qfn->hash.dwo_unit = cu->dwo_unit;
3321 qfn->hash.line_offset.sect_off = line_offset;
3322 gdb_assert (slot != NULL);
3323 *slot = qfn;
3324
3325 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3326
3327 qfn->num_file_names = lh->num_file_names;
3328 qfn->file_names =
3329 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3330 for (i = 0; i < lh->num_file_names; ++i)
3331 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3332 qfn->real_names = NULL;
3333
3334 free_line_header (lh);
3335
3336 lh_cu->v.quick->file_names = qfn;
3337 }
3338
3339 /* A helper for the "quick" functions which attempts to read the line
3340 table for THIS_CU. */
3341
3342 static struct quick_file_names *
3343 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3344 {
3345 /* This should never be called for TUs. */
3346 gdb_assert (! this_cu->is_debug_types);
3347 /* Nor type unit groups. */
3348 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3349
3350 if (this_cu->v.quick->file_names != NULL)
3351 return this_cu->v.quick->file_names;
3352 /* If we know there is no line data, no point in looking again. */
3353 if (this_cu->v.quick->no_file_data)
3354 return NULL;
3355
3356 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3357
3358 if (this_cu->v.quick->no_file_data)
3359 return NULL;
3360 return this_cu->v.quick->file_names;
3361 }
3362
3363 /* A helper for the "quick" functions which computes and caches the
3364 real path for a given file name from the line table. */
3365
3366 static const char *
3367 dw2_get_real_path (struct objfile *objfile,
3368 struct quick_file_names *qfn, int index)
3369 {
3370 if (qfn->real_names == NULL)
3371 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3372 qfn->num_file_names, const char *);
3373
3374 if (qfn->real_names[index] == NULL)
3375 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3376
3377 return qfn->real_names[index];
3378 }
3379
3380 static struct symtab *
3381 dw2_find_last_source_symtab (struct objfile *objfile)
3382 {
3383 struct compunit_symtab *cust;
3384 int index;
3385
3386 dw2_setup (objfile);
3387 index = dwarf2_per_objfile->n_comp_units - 1;
3388 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3389 if (cust == NULL)
3390 return NULL;
3391 return compunit_primary_filetab (cust);
3392 }
3393
3394 /* Traversal function for dw2_forget_cached_source_info. */
3395
3396 static int
3397 dw2_free_cached_file_names (void **slot, void *info)
3398 {
3399 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3400
3401 if (file_data->real_names)
3402 {
3403 int i;
3404
3405 for (i = 0; i < file_data->num_file_names; ++i)
3406 {
3407 xfree ((void*) file_data->real_names[i]);
3408 file_data->real_names[i] = NULL;
3409 }
3410 }
3411
3412 return 1;
3413 }
3414
3415 static void
3416 dw2_forget_cached_source_info (struct objfile *objfile)
3417 {
3418 dw2_setup (objfile);
3419
3420 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3421 dw2_free_cached_file_names, NULL);
3422 }
3423
3424 /* Helper function for dw2_map_symtabs_matching_filename that expands
3425 the symtabs and calls the iterator. */
3426
3427 static int
3428 dw2_map_expand_apply (struct objfile *objfile,
3429 struct dwarf2_per_cu_data *per_cu,
3430 const char *name, const char *real_path,
3431 int (*callback) (struct symtab *, void *),
3432 void *data)
3433 {
3434 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3435
3436 /* Don't visit already-expanded CUs. */
3437 if (per_cu->v.quick->compunit_symtab)
3438 return 0;
3439
3440 /* This may expand more than one symtab, and we want to iterate over
3441 all of them. */
3442 dw2_instantiate_symtab (per_cu);
3443
3444 return iterate_over_some_symtabs (name, real_path, callback, data,
3445 objfile->compunit_symtabs, last_made);
3446 }
3447
3448 /* Implementation of the map_symtabs_matching_filename method. */
3449
3450 static int
3451 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3452 const char *real_path,
3453 int (*callback) (struct symtab *, void *),
3454 void *data)
3455 {
3456 int i;
3457 const char *name_basename = lbasename (name);
3458
3459 dw2_setup (objfile);
3460
3461 /* The rule is CUs specify all the files, including those used by
3462 any TU, so there's no need to scan TUs here. */
3463
3464 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3465 {
3466 int j;
3467 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3468 struct quick_file_names *file_data;
3469
3470 /* We only need to look at symtabs not already expanded. */
3471 if (per_cu->v.quick->compunit_symtab)
3472 continue;
3473
3474 file_data = dw2_get_file_names (per_cu);
3475 if (file_data == NULL)
3476 continue;
3477
3478 for (j = 0; j < file_data->num_file_names; ++j)
3479 {
3480 const char *this_name = file_data->file_names[j];
3481 const char *this_real_name;
3482
3483 if (compare_filenames_for_search (this_name, name))
3484 {
3485 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3486 callback, data))
3487 return 1;
3488 continue;
3489 }
3490
3491 /* Before we invoke realpath, which can get expensive when many
3492 files are involved, do a quick comparison of the basenames. */
3493 if (! basenames_may_differ
3494 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3495 continue;
3496
3497 this_real_name = dw2_get_real_path (objfile, file_data, j);
3498 if (compare_filenames_for_search (this_real_name, name))
3499 {
3500 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3501 callback, data))
3502 return 1;
3503 continue;
3504 }
3505
3506 if (real_path != NULL)
3507 {
3508 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3509 gdb_assert (IS_ABSOLUTE_PATH (name));
3510 if (this_real_name != NULL
3511 && FILENAME_CMP (real_path, this_real_name) == 0)
3512 {
3513 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3514 callback, data))
3515 return 1;
3516 continue;
3517 }
3518 }
3519 }
3520 }
3521
3522 return 0;
3523 }
3524
3525 /* Struct used to manage iterating over all CUs looking for a symbol. */
3526
3527 struct dw2_symtab_iterator
3528 {
3529 /* The internalized form of .gdb_index. */
3530 struct mapped_index *index;
3531 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3532 int want_specific_block;
3533 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3534 Unused if !WANT_SPECIFIC_BLOCK. */
3535 int block_index;
3536 /* The kind of symbol we're looking for. */
3537 domain_enum domain;
3538 /* The list of CUs from the index entry of the symbol,
3539 or NULL if not found. */
3540 offset_type *vec;
3541 /* The next element in VEC to look at. */
3542 int next;
3543 /* The number of elements in VEC, or zero if there is no match. */
3544 int length;
3545 /* Have we seen a global version of the symbol?
3546 If so we can ignore all further global instances.
3547 This is to work around gold/15646, inefficient gold-generated
3548 indices. */
3549 int global_seen;
3550 };
3551
3552 /* Initialize the index symtab iterator ITER.
3553 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3554 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3555
3556 static void
3557 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3558 struct mapped_index *index,
3559 int want_specific_block,
3560 int block_index,
3561 domain_enum domain,
3562 const char *name)
3563 {
3564 iter->index = index;
3565 iter->want_specific_block = want_specific_block;
3566 iter->block_index = block_index;
3567 iter->domain = domain;
3568 iter->next = 0;
3569 iter->global_seen = 0;
3570
3571 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3572 iter->length = MAYBE_SWAP (*iter->vec);
3573 else
3574 {
3575 iter->vec = NULL;
3576 iter->length = 0;
3577 }
3578 }
3579
3580 /* Return the next matching CU or NULL if there are no more. */
3581
3582 static struct dwarf2_per_cu_data *
3583 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3584 {
3585 for ( ; iter->next < iter->length; ++iter->next)
3586 {
3587 offset_type cu_index_and_attrs =
3588 MAYBE_SWAP (iter->vec[iter->next + 1]);
3589 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3590 struct dwarf2_per_cu_data *per_cu;
3591 int want_static = iter->block_index != GLOBAL_BLOCK;
3592 /* This value is only valid for index versions >= 7. */
3593 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3594 gdb_index_symbol_kind symbol_kind =
3595 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3596 /* Only check the symbol attributes if they're present.
3597 Indices prior to version 7 don't record them,
3598 and indices >= 7 may elide them for certain symbols
3599 (gold does this). */
3600 int attrs_valid =
3601 (iter->index->version >= 7
3602 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3603
3604 /* Don't crash on bad data. */
3605 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3606 + dwarf2_per_objfile->n_type_units))
3607 {
3608 complaint (&symfile_complaints,
3609 _(".gdb_index entry has bad CU index"
3610 " [in module %s]"),
3611 objfile_name (dwarf2_per_objfile->objfile));
3612 continue;
3613 }
3614
3615 per_cu = dw2_get_cutu (cu_index);
3616
3617 /* Skip if already read in. */
3618 if (per_cu->v.quick->compunit_symtab)
3619 continue;
3620
3621 /* Check static vs global. */
3622 if (attrs_valid)
3623 {
3624 if (iter->want_specific_block
3625 && want_static != is_static)
3626 continue;
3627 /* Work around gold/15646. */
3628 if (!is_static && iter->global_seen)
3629 continue;
3630 if (!is_static)
3631 iter->global_seen = 1;
3632 }
3633
3634 /* Only check the symbol's kind if it has one. */
3635 if (attrs_valid)
3636 {
3637 switch (iter->domain)
3638 {
3639 case VAR_DOMAIN:
3640 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3641 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3642 /* Some types are also in VAR_DOMAIN. */
3643 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3644 continue;
3645 break;
3646 case STRUCT_DOMAIN:
3647 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3648 continue;
3649 break;
3650 case LABEL_DOMAIN:
3651 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3652 continue;
3653 break;
3654 default:
3655 break;
3656 }
3657 }
3658
3659 ++iter->next;
3660 return per_cu;
3661 }
3662
3663 return NULL;
3664 }
3665
3666 static struct compunit_symtab *
3667 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3668 const char *name, domain_enum domain)
3669 {
3670 struct compunit_symtab *stab_best = NULL;
3671 struct mapped_index *index;
3672
3673 dw2_setup (objfile);
3674
3675 index = dwarf2_per_objfile->index_table;
3676
3677 /* index is NULL if OBJF_READNOW. */
3678 if (index)
3679 {
3680 struct dw2_symtab_iterator iter;
3681 struct dwarf2_per_cu_data *per_cu;
3682
3683 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3684
3685 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3686 {
3687 struct symbol *sym, *with_opaque = NULL;
3688 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3689 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3690 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3691
3692 sym = block_find_symbol (block, name, domain,
3693 block_find_non_opaque_type_preferred,
3694 &with_opaque);
3695
3696 /* Some caution must be observed with overloaded functions
3697 and methods, since the index will not contain any overload
3698 information (but NAME might contain it). */
3699
3700 if (sym != NULL
3701 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3702 return stab;
3703 if (with_opaque != NULL
3704 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3705 stab_best = stab;
3706
3707 /* Keep looking through other CUs. */
3708 }
3709 }
3710
3711 return stab_best;
3712 }
3713
3714 static void
3715 dw2_print_stats (struct objfile *objfile)
3716 {
3717 int i, total, count;
3718
3719 dw2_setup (objfile);
3720 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3721 count = 0;
3722 for (i = 0; i < total; ++i)
3723 {
3724 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3725
3726 if (!per_cu->v.quick->compunit_symtab)
3727 ++count;
3728 }
3729 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3730 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3731 }
3732
3733 /* This dumps minimal information about the index.
3734 It is called via "mt print objfiles".
3735 One use is to verify .gdb_index has been loaded by the
3736 gdb.dwarf2/gdb-index.exp testcase. */
3737
3738 static void
3739 dw2_dump (struct objfile *objfile)
3740 {
3741 dw2_setup (objfile);
3742 gdb_assert (dwarf2_per_objfile->using_index);
3743 printf_filtered (".gdb_index:");
3744 if (dwarf2_per_objfile->index_table != NULL)
3745 {
3746 printf_filtered (" version %d\n",
3747 dwarf2_per_objfile->index_table->version);
3748 }
3749 else
3750 printf_filtered (" faked for \"readnow\"\n");
3751 printf_filtered ("\n");
3752 }
3753
3754 static void
3755 dw2_relocate (struct objfile *objfile,
3756 const struct section_offsets *new_offsets,
3757 const struct section_offsets *delta)
3758 {
3759 /* There's nothing to relocate here. */
3760 }
3761
3762 static void
3763 dw2_expand_symtabs_for_function (struct objfile *objfile,
3764 const char *func_name)
3765 {
3766 struct mapped_index *index;
3767
3768 dw2_setup (objfile);
3769
3770 index = dwarf2_per_objfile->index_table;
3771
3772 /* index is NULL if OBJF_READNOW. */
3773 if (index)
3774 {
3775 struct dw2_symtab_iterator iter;
3776 struct dwarf2_per_cu_data *per_cu;
3777
3778 /* Note: It doesn't matter what we pass for block_index here. */
3779 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3780 func_name);
3781
3782 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3783 dw2_instantiate_symtab (per_cu);
3784 }
3785 }
3786
3787 static void
3788 dw2_expand_all_symtabs (struct objfile *objfile)
3789 {
3790 int i;
3791
3792 dw2_setup (objfile);
3793
3794 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3795 + dwarf2_per_objfile->n_type_units); ++i)
3796 {
3797 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3798
3799 dw2_instantiate_symtab (per_cu);
3800 }
3801 }
3802
3803 static void
3804 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3805 const char *fullname)
3806 {
3807 int i;
3808
3809 dw2_setup (objfile);
3810
3811 /* We don't need to consider type units here.
3812 This is only called for examining code, e.g. expand_line_sal.
3813 There can be an order of magnitude (or more) more type units
3814 than comp units, and we avoid them if we can. */
3815
3816 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3817 {
3818 int j;
3819 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3820 struct quick_file_names *file_data;
3821
3822 /* We only need to look at symtabs not already expanded. */
3823 if (per_cu->v.quick->compunit_symtab)
3824 continue;
3825
3826 file_data = dw2_get_file_names (per_cu);
3827 if (file_data == NULL)
3828 continue;
3829
3830 for (j = 0; j < file_data->num_file_names; ++j)
3831 {
3832 const char *this_fullname = file_data->file_names[j];
3833
3834 if (filename_cmp (this_fullname, fullname) == 0)
3835 {
3836 dw2_instantiate_symtab (per_cu);
3837 break;
3838 }
3839 }
3840 }
3841 }
3842
3843 static void
3844 dw2_map_matching_symbols (struct objfile *objfile,
3845 const char * name, domain_enum domain,
3846 int global,
3847 int (*callback) (struct block *,
3848 struct symbol *, void *),
3849 void *data, symbol_compare_ftype *match,
3850 symbol_compare_ftype *ordered_compare)
3851 {
3852 /* Currently unimplemented; used for Ada. The function can be called if the
3853 current language is Ada for a non-Ada objfile using GNU index. As Ada
3854 does not look for non-Ada symbols this function should just return. */
3855 }
3856
3857 static void
3858 dw2_expand_symtabs_matching
3859 (struct objfile *objfile,
3860 expand_symtabs_file_matcher_ftype *file_matcher,
3861 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3862 expand_symtabs_exp_notify_ftype *expansion_notify,
3863 enum search_domain kind,
3864 void *data)
3865 {
3866 int i;
3867 offset_type iter;
3868 struct mapped_index *index;
3869
3870 dw2_setup (objfile);
3871
3872 /* index_table is NULL if OBJF_READNOW. */
3873 if (!dwarf2_per_objfile->index_table)
3874 return;
3875 index = dwarf2_per_objfile->index_table;
3876
3877 if (file_matcher != NULL)
3878 {
3879 struct cleanup *cleanup;
3880 htab_t visited_found, visited_not_found;
3881
3882 visited_found = htab_create_alloc (10,
3883 htab_hash_pointer, htab_eq_pointer,
3884 NULL, xcalloc, xfree);
3885 cleanup = make_cleanup_htab_delete (visited_found);
3886 visited_not_found = htab_create_alloc (10,
3887 htab_hash_pointer, htab_eq_pointer,
3888 NULL, xcalloc, xfree);
3889 make_cleanup_htab_delete (visited_not_found);
3890
3891 /* The rule is CUs specify all the files, including those used by
3892 any TU, so there's no need to scan TUs here. */
3893
3894 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3895 {
3896 int j;
3897 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3898 struct quick_file_names *file_data;
3899 void **slot;
3900
3901 QUIT;
3902
3903 per_cu->v.quick->mark = 0;
3904
3905 /* We only need to look at symtabs not already expanded. */
3906 if (per_cu->v.quick->compunit_symtab)
3907 continue;
3908
3909 file_data = dw2_get_file_names (per_cu);
3910 if (file_data == NULL)
3911 continue;
3912
3913 if (htab_find (visited_not_found, file_data) != NULL)
3914 continue;
3915 else if (htab_find (visited_found, file_data) != NULL)
3916 {
3917 per_cu->v.quick->mark = 1;
3918 continue;
3919 }
3920
3921 for (j = 0; j < file_data->num_file_names; ++j)
3922 {
3923 const char *this_real_name;
3924
3925 if (file_matcher (file_data->file_names[j], data, 0))
3926 {
3927 per_cu->v.quick->mark = 1;
3928 break;
3929 }
3930
3931 /* Before we invoke realpath, which can get expensive when many
3932 files are involved, do a quick comparison of the basenames. */
3933 if (!basenames_may_differ
3934 && !file_matcher (lbasename (file_data->file_names[j]),
3935 data, 1))
3936 continue;
3937
3938 this_real_name = dw2_get_real_path (objfile, file_data, j);
3939 if (file_matcher (this_real_name, data, 0))
3940 {
3941 per_cu->v.quick->mark = 1;
3942 break;
3943 }
3944 }
3945
3946 slot = htab_find_slot (per_cu->v.quick->mark
3947 ? visited_found
3948 : visited_not_found,
3949 file_data, INSERT);
3950 *slot = file_data;
3951 }
3952
3953 do_cleanups (cleanup);
3954 }
3955
3956 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3957 {
3958 offset_type idx = 2 * iter;
3959 const char *name;
3960 offset_type *vec, vec_len, vec_idx;
3961 int global_seen = 0;
3962
3963 QUIT;
3964
3965 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3966 continue;
3967
3968 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3969
3970 if (! (*symbol_matcher) (name, data))
3971 continue;
3972
3973 /* The name was matched, now expand corresponding CUs that were
3974 marked. */
3975 vec = (offset_type *) (index->constant_pool
3976 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3977 vec_len = MAYBE_SWAP (vec[0]);
3978 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3979 {
3980 struct dwarf2_per_cu_data *per_cu;
3981 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3982 /* This value is only valid for index versions >= 7. */
3983 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3984 gdb_index_symbol_kind symbol_kind =
3985 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3986 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3987 /* Only check the symbol attributes if they're present.
3988 Indices prior to version 7 don't record them,
3989 and indices >= 7 may elide them for certain symbols
3990 (gold does this). */
3991 int attrs_valid =
3992 (index->version >= 7
3993 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3994
3995 /* Work around gold/15646. */
3996 if (attrs_valid)
3997 {
3998 if (!is_static && global_seen)
3999 continue;
4000 if (!is_static)
4001 global_seen = 1;
4002 }
4003
4004 /* Only check the symbol's kind if it has one. */
4005 if (attrs_valid)
4006 {
4007 switch (kind)
4008 {
4009 case VARIABLES_DOMAIN:
4010 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4011 continue;
4012 break;
4013 case FUNCTIONS_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4015 continue;
4016 break;
4017 case TYPES_DOMAIN:
4018 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4019 continue;
4020 break;
4021 default:
4022 break;
4023 }
4024 }
4025
4026 /* Don't crash on bad data. */
4027 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4028 + dwarf2_per_objfile->n_type_units))
4029 {
4030 complaint (&symfile_complaints,
4031 _(".gdb_index entry has bad CU index"
4032 " [in module %s]"), objfile_name (objfile));
4033 continue;
4034 }
4035
4036 per_cu = dw2_get_cutu (cu_index);
4037 if (file_matcher == NULL || per_cu->v.quick->mark)
4038 {
4039 int symtab_was_null =
4040 (per_cu->v.quick->compunit_symtab == NULL);
4041
4042 dw2_instantiate_symtab (per_cu);
4043
4044 if (expansion_notify != NULL
4045 && symtab_was_null
4046 && per_cu->v.quick->compunit_symtab != NULL)
4047 {
4048 expansion_notify (per_cu->v.quick->compunit_symtab,
4049 data);
4050 }
4051 }
4052 }
4053 }
4054 }
4055
4056 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4057 symtab. */
4058
4059 static struct compunit_symtab *
4060 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4061 CORE_ADDR pc)
4062 {
4063 int i;
4064
4065 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4066 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4067 return cust;
4068
4069 if (cust->includes == NULL)
4070 return NULL;
4071
4072 for (i = 0; cust->includes[i]; ++i)
4073 {
4074 struct compunit_symtab *s = cust->includes[i];
4075
4076 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4077 if (s != NULL)
4078 return s;
4079 }
4080
4081 return NULL;
4082 }
4083
4084 static struct compunit_symtab *
4085 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4086 struct bound_minimal_symbol msymbol,
4087 CORE_ADDR pc,
4088 struct obj_section *section,
4089 int warn_if_readin)
4090 {
4091 struct dwarf2_per_cu_data *data;
4092 struct compunit_symtab *result;
4093
4094 dw2_setup (objfile);
4095
4096 if (!objfile->psymtabs_addrmap)
4097 return NULL;
4098
4099 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4100 pc);
4101 if (!data)
4102 return NULL;
4103
4104 if (warn_if_readin && data->v.quick->compunit_symtab)
4105 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4106 paddress (get_objfile_arch (objfile), pc));
4107
4108 result
4109 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4110 pc);
4111 gdb_assert (result != NULL);
4112 return result;
4113 }
4114
4115 static void
4116 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4117 void *data, int need_fullname)
4118 {
4119 int i;
4120 struct cleanup *cleanup;
4121 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4122 NULL, xcalloc, xfree);
4123
4124 cleanup = make_cleanup_htab_delete (visited);
4125 dw2_setup (objfile);
4126
4127 /* The rule is CUs specify all the files, including those used by
4128 any TU, so there's no need to scan TUs here.
4129 We can ignore file names coming from already-expanded CUs. */
4130
4131 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4132 {
4133 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4134
4135 if (per_cu->v.quick->compunit_symtab)
4136 {
4137 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4138 INSERT);
4139
4140 *slot = per_cu->v.quick->file_names;
4141 }
4142 }
4143
4144 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4145 {
4146 int j;
4147 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4148 struct quick_file_names *file_data;
4149 void **slot;
4150
4151 /* We only need to look at symtabs not already expanded. */
4152 if (per_cu->v.quick->compunit_symtab)
4153 continue;
4154
4155 file_data = dw2_get_file_names (per_cu);
4156 if (file_data == NULL)
4157 continue;
4158
4159 slot = htab_find_slot (visited, file_data, INSERT);
4160 if (*slot)
4161 {
4162 /* Already visited. */
4163 continue;
4164 }
4165 *slot = file_data;
4166
4167 for (j = 0; j < file_data->num_file_names; ++j)
4168 {
4169 const char *this_real_name;
4170
4171 if (need_fullname)
4172 this_real_name = dw2_get_real_path (objfile, file_data, j);
4173 else
4174 this_real_name = NULL;
4175 (*fun) (file_data->file_names[j], this_real_name, data);
4176 }
4177 }
4178
4179 do_cleanups (cleanup);
4180 }
4181
4182 static int
4183 dw2_has_symbols (struct objfile *objfile)
4184 {
4185 return 1;
4186 }
4187
4188 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4189 {
4190 dw2_has_symbols,
4191 dw2_find_last_source_symtab,
4192 dw2_forget_cached_source_info,
4193 dw2_map_symtabs_matching_filename,
4194 dw2_lookup_symbol,
4195 dw2_print_stats,
4196 dw2_dump,
4197 dw2_relocate,
4198 dw2_expand_symtabs_for_function,
4199 dw2_expand_all_symtabs,
4200 dw2_expand_symtabs_with_fullname,
4201 dw2_map_matching_symbols,
4202 dw2_expand_symtabs_matching,
4203 dw2_find_pc_sect_compunit_symtab,
4204 dw2_map_symbol_filenames
4205 };
4206
4207 /* Initialize for reading DWARF for this objfile. Return 0 if this
4208 file will use psymtabs, or 1 if using the GNU index. */
4209
4210 int
4211 dwarf2_initialize_objfile (struct objfile *objfile)
4212 {
4213 /* If we're about to read full symbols, don't bother with the
4214 indices. In this case we also don't care if some other debug
4215 format is making psymtabs, because they are all about to be
4216 expanded anyway. */
4217 if ((objfile->flags & OBJF_READNOW))
4218 {
4219 int i;
4220
4221 dwarf2_per_objfile->using_index = 1;
4222 create_all_comp_units (objfile);
4223 create_all_type_units (objfile);
4224 dwarf2_per_objfile->quick_file_names_table =
4225 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4226
4227 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4228 + dwarf2_per_objfile->n_type_units); ++i)
4229 {
4230 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4231
4232 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4233 struct dwarf2_per_cu_quick_data);
4234 }
4235
4236 /* Return 1 so that gdb sees the "quick" functions. However,
4237 these functions will be no-ops because we will have expanded
4238 all symtabs. */
4239 return 1;
4240 }
4241
4242 if (dwarf2_read_index (objfile))
4243 return 1;
4244
4245 return 0;
4246 }
4247
4248 \f
4249
4250 /* Build a partial symbol table. */
4251
4252 void
4253 dwarf2_build_psymtabs (struct objfile *objfile)
4254 {
4255
4256 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4257 {
4258 init_psymbol_list (objfile, 1024);
4259 }
4260
4261 TRY
4262 {
4263 /* This isn't really ideal: all the data we allocate on the
4264 objfile's obstack is still uselessly kept around. However,
4265 freeing it seems unsafe. */
4266 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4267
4268 dwarf2_build_psymtabs_hard (objfile);
4269 discard_cleanups (cleanups);
4270 }
4271 CATCH (except, RETURN_MASK_ERROR)
4272 {
4273 exception_print (gdb_stderr, except);
4274 }
4275 END_CATCH
4276 }
4277
4278 /* Return the total length of the CU described by HEADER. */
4279
4280 static unsigned int
4281 get_cu_length (const struct comp_unit_head *header)
4282 {
4283 return header->initial_length_size + header->length;
4284 }
4285
4286 /* Return TRUE if OFFSET is within CU_HEADER. */
4287
4288 static inline int
4289 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4290 {
4291 sect_offset bottom = { cu_header->offset.sect_off };
4292 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4293
4294 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4295 }
4296
4297 /* Find the base address of the compilation unit for range lists and
4298 location lists. It will normally be specified by DW_AT_low_pc.
4299 In DWARF-3 draft 4, the base address could be overridden by
4300 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4301 compilation units with discontinuous ranges. */
4302
4303 static void
4304 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4305 {
4306 struct attribute *attr;
4307
4308 cu->base_known = 0;
4309 cu->base_address = 0;
4310
4311 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4312 if (attr)
4313 {
4314 cu->base_address = attr_value_as_address (attr);
4315 cu->base_known = 1;
4316 }
4317 else
4318 {
4319 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4320 if (attr)
4321 {
4322 cu->base_address = attr_value_as_address (attr);
4323 cu->base_known = 1;
4324 }
4325 }
4326 }
4327
4328 /* Read in the comp unit header information from the debug_info at info_ptr.
4329 NOTE: This leaves members offset, first_die_offset to be filled in
4330 by the caller. */
4331
4332 static const gdb_byte *
4333 read_comp_unit_head (struct comp_unit_head *cu_header,
4334 const gdb_byte *info_ptr, bfd *abfd)
4335 {
4336 int signed_addr;
4337 unsigned int bytes_read;
4338
4339 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4340 cu_header->initial_length_size = bytes_read;
4341 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4342 info_ptr += bytes_read;
4343 cu_header->version = read_2_bytes (abfd, info_ptr);
4344 info_ptr += 2;
4345 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4346 &bytes_read);
4347 info_ptr += bytes_read;
4348 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4349 info_ptr += 1;
4350 signed_addr = bfd_get_sign_extend_vma (abfd);
4351 if (signed_addr < 0)
4352 internal_error (__FILE__, __LINE__,
4353 _("read_comp_unit_head: dwarf from non elf file"));
4354 cu_header->signed_addr_p = signed_addr;
4355
4356 return info_ptr;
4357 }
4358
4359 /* Helper function that returns the proper abbrev section for
4360 THIS_CU. */
4361
4362 static struct dwarf2_section_info *
4363 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4364 {
4365 struct dwarf2_section_info *abbrev;
4366
4367 if (this_cu->is_dwz)
4368 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4369 else
4370 abbrev = &dwarf2_per_objfile->abbrev;
4371
4372 return abbrev;
4373 }
4374
4375 /* Subroutine of read_and_check_comp_unit_head and
4376 read_and_check_type_unit_head to simplify them.
4377 Perform various error checking on the header. */
4378
4379 static void
4380 error_check_comp_unit_head (struct comp_unit_head *header,
4381 struct dwarf2_section_info *section,
4382 struct dwarf2_section_info *abbrev_section)
4383 {
4384 const char *filename = get_section_file_name (section);
4385
4386 if (header->version != 2 && header->version != 3 && header->version != 4)
4387 error (_("Dwarf Error: wrong version in compilation unit header "
4388 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4389 filename);
4390
4391 if (header->abbrev_offset.sect_off
4392 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4393 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4394 "(offset 0x%lx + 6) [in module %s]"),
4395 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4396 filename);
4397
4398 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4399 avoid potential 32-bit overflow. */
4400 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4401 > section->size)
4402 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4403 "(offset 0x%lx + 0) [in module %s]"),
4404 (long) header->length, (long) header->offset.sect_off,
4405 filename);
4406 }
4407
4408 /* Read in a CU/TU header and perform some basic error checking.
4409 The contents of the header are stored in HEADER.
4410 The result is a pointer to the start of the first DIE. */
4411
4412 static const gdb_byte *
4413 read_and_check_comp_unit_head (struct comp_unit_head *header,
4414 struct dwarf2_section_info *section,
4415 struct dwarf2_section_info *abbrev_section,
4416 const gdb_byte *info_ptr,
4417 int is_debug_types_section)
4418 {
4419 const gdb_byte *beg_of_comp_unit = info_ptr;
4420 bfd *abfd = get_section_bfd_owner (section);
4421
4422 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4423
4424 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4425
4426 /* If we're reading a type unit, skip over the signature and
4427 type_offset fields. */
4428 if (is_debug_types_section)
4429 info_ptr += 8 /*signature*/ + header->offset_size;
4430
4431 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4432
4433 error_check_comp_unit_head (header, section, abbrev_section);
4434
4435 return info_ptr;
4436 }
4437
4438 /* Read in the types comp unit header information from .debug_types entry at
4439 types_ptr. The result is a pointer to one past the end of the header. */
4440
4441 static const gdb_byte *
4442 read_and_check_type_unit_head (struct comp_unit_head *header,
4443 struct dwarf2_section_info *section,
4444 struct dwarf2_section_info *abbrev_section,
4445 const gdb_byte *info_ptr,
4446 ULONGEST *signature,
4447 cu_offset *type_offset_in_tu)
4448 {
4449 const gdb_byte *beg_of_comp_unit = info_ptr;
4450 bfd *abfd = get_section_bfd_owner (section);
4451
4452 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4453
4454 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4455
4456 /* If we're reading a type unit, skip over the signature and
4457 type_offset fields. */
4458 if (signature != NULL)
4459 *signature = read_8_bytes (abfd, info_ptr);
4460 info_ptr += 8;
4461 if (type_offset_in_tu != NULL)
4462 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4463 header->offset_size);
4464 info_ptr += header->offset_size;
4465
4466 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4467
4468 error_check_comp_unit_head (header, section, abbrev_section);
4469
4470 return info_ptr;
4471 }
4472
4473 /* Fetch the abbreviation table offset from a comp or type unit header. */
4474
4475 static sect_offset
4476 read_abbrev_offset (struct dwarf2_section_info *section,
4477 sect_offset offset)
4478 {
4479 bfd *abfd = get_section_bfd_owner (section);
4480 const gdb_byte *info_ptr;
4481 unsigned int length, initial_length_size, offset_size;
4482 sect_offset abbrev_offset;
4483
4484 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4485 info_ptr = section->buffer + offset.sect_off;
4486 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4487 offset_size = initial_length_size == 4 ? 4 : 8;
4488 info_ptr += initial_length_size + 2 /*version*/;
4489 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4490 return abbrev_offset;
4491 }
4492
4493 /* Allocate a new partial symtab for file named NAME and mark this new
4494 partial symtab as being an include of PST. */
4495
4496 static void
4497 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4498 struct objfile *objfile)
4499 {
4500 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4501
4502 if (!IS_ABSOLUTE_PATH (subpst->filename))
4503 {
4504 /* It shares objfile->objfile_obstack. */
4505 subpst->dirname = pst->dirname;
4506 }
4507
4508 subpst->textlow = 0;
4509 subpst->texthigh = 0;
4510
4511 subpst->dependencies
4512 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4513 subpst->dependencies[0] = pst;
4514 subpst->number_of_dependencies = 1;
4515
4516 subpst->globals_offset = 0;
4517 subpst->n_global_syms = 0;
4518 subpst->statics_offset = 0;
4519 subpst->n_static_syms = 0;
4520 subpst->compunit_symtab = NULL;
4521 subpst->read_symtab = pst->read_symtab;
4522 subpst->readin = 0;
4523
4524 /* No private part is necessary for include psymtabs. This property
4525 can be used to differentiate between such include psymtabs and
4526 the regular ones. */
4527 subpst->read_symtab_private = NULL;
4528 }
4529
4530 /* Read the Line Number Program data and extract the list of files
4531 included by the source file represented by PST. Build an include
4532 partial symtab for each of these included files. */
4533
4534 static void
4535 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4536 struct die_info *die,
4537 struct partial_symtab *pst)
4538 {
4539 struct line_header *lh = NULL;
4540 struct attribute *attr;
4541
4542 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4543 if (attr)
4544 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4545 if (lh == NULL)
4546 return; /* No linetable, so no includes. */
4547
4548 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4549 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4550
4551 free_line_header (lh);
4552 }
4553
4554 static hashval_t
4555 hash_signatured_type (const void *item)
4556 {
4557 const struct signatured_type *sig_type
4558 = (const struct signatured_type *) item;
4559
4560 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4561 return sig_type->signature;
4562 }
4563
4564 static int
4565 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4566 {
4567 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4568 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4569
4570 return lhs->signature == rhs->signature;
4571 }
4572
4573 /* Allocate a hash table for signatured types. */
4574
4575 static htab_t
4576 allocate_signatured_type_table (struct objfile *objfile)
4577 {
4578 return htab_create_alloc_ex (41,
4579 hash_signatured_type,
4580 eq_signatured_type,
4581 NULL,
4582 &objfile->objfile_obstack,
4583 hashtab_obstack_allocate,
4584 dummy_obstack_deallocate);
4585 }
4586
4587 /* A helper function to add a signatured type CU to a table. */
4588
4589 static int
4590 add_signatured_type_cu_to_table (void **slot, void *datum)
4591 {
4592 struct signatured_type *sigt = (struct signatured_type *) *slot;
4593 struct signatured_type ***datap = (struct signatured_type ***) datum;
4594
4595 **datap = sigt;
4596 ++*datap;
4597
4598 return 1;
4599 }
4600
4601 /* Create the hash table of all entries in the .debug_types
4602 (or .debug_types.dwo) section(s).
4603 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4604 otherwise it is NULL.
4605
4606 The result is a pointer to the hash table or NULL if there are no types.
4607
4608 Note: This function processes DWO files only, not DWP files. */
4609
4610 static htab_t
4611 create_debug_types_hash_table (struct dwo_file *dwo_file,
4612 VEC (dwarf2_section_info_def) *types)
4613 {
4614 struct objfile *objfile = dwarf2_per_objfile->objfile;
4615 htab_t types_htab = NULL;
4616 int ix;
4617 struct dwarf2_section_info *section;
4618 struct dwarf2_section_info *abbrev_section;
4619
4620 if (VEC_empty (dwarf2_section_info_def, types))
4621 return NULL;
4622
4623 abbrev_section = (dwo_file != NULL
4624 ? &dwo_file->sections.abbrev
4625 : &dwarf2_per_objfile->abbrev);
4626
4627 if (dwarf_read_debug)
4628 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4629 dwo_file ? ".dwo" : "",
4630 get_section_file_name (abbrev_section));
4631
4632 for (ix = 0;
4633 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4634 ++ix)
4635 {
4636 bfd *abfd;
4637 const gdb_byte *info_ptr, *end_ptr;
4638
4639 dwarf2_read_section (objfile, section);
4640 info_ptr = section->buffer;
4641
4642 if (info_ptr == NULL)
4643 continue;
4644
4645 /* We can't set abfd until now because the section may be empty or
4646 not present, in which case the bfd is unknown. */
4647 abfd = get_section_bfd_owner (section);
4648
4649 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4650 because we don't need to read any dies: the signature is in the
4651 header. */
4652
4653 end_ptr = info_ptr + section->size;
4654 while (info_ptr < end_ptr)
4655 {
4656 sect_offset offset;
4657 cu_offset type_offset_in_tu;
4658 ULONGEST signature;
4659 struct signatured_type *sig_type;
4660 struct dwo_unit *dwo_tu;
4661 void **slot;
4662 const gdb_byte *ptr = info_ptr;
4663 struct comp_unit_head header;
4664 unsigned int length;
4665
4666 offset.sect_off = ptr - section->buffer;
4667
4668 /* We need to read the type's signature in order to build the hash
4669 table, but we don't need anything else just yet. */
4670
4671 ptr = read_and_check_type_unit_head (&header, section,
4672 abbrev_section, ptr,
4673 &signature, &type_offset_in_tu);
4674
4675 length = get_cu_length (&header);
4676
4677 /* Skip dummy type units. */
4678 if (ptr >= info_ptr + length
4679 || peek_abbrev_code (abfd, ptr) == 0)
4680 {
4681 info_ptr += length;
4682 continue;
4683 }
4684
4685 if (types_htab == NULL)
4686 {
4687 if (dwo_file)
4688 types_htab = allocate_dwo_unit_table (objfile);
4689 else
4690 types_htab = allocate_signatured_type_table (objfile);
4691 }
4692
4693 if (dwo_file)
4694 {
4695 sig_type = NULL;
4696 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4697 struct dwo_unit);
4698 dwo_tu->dwo_file = dwo_file;
4699 dwo_tu->signature = signature;
4700 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4701 dwo_tu->section = section;
4702 dwo_tu->offset = offset;
4703 dwo_tu->length = length;
4704 }
4705 else
4706 {
4707 /* N.B.: type_offset is not usable if this type uses a DWO file.
4708 The real type_offset is in the DWO file. */
4709 dwo_tu = NULL;
4710 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4711 struct signatured_type);
4712 sig_type->signature = signature;
4713 sig_type->type_offset_in_tu = type_offset_in_tu;
4714 sig_type->per_cu.objfile = objfile;
4715 sig_type->per_cu.is_debug_types = 1;
4716 sig_type->per_cu.section = section;
4717 sig_type->per_cu.offset = offset;
4718 sig_type->per_cu.length = length;
4719 }
4720
4721 slot = htab_find_slot (types_htab,
4722 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4723 INSERT);
4724 gdb_assert (slot != NULL);
4725 if (*slot != NULL)
4726 {
4727 sect_offset dup_offset;
4728
4729 if (dwo_file)
4730 {
4731 const struct dwo_unit *dup_tu
4732 = (const struct dwo_unit *) *slot;
4733
4734 dup_offset = dup_tu->offset;
4735 }
4736 else
4737 {
4738 const struct signatured_type *dup_tu
4739 = (const struct signatured_type *) *slot;
4740
4741 dup_offset = dup_tu->per_cu.offset;
4742 }
4743
4744 complaint (&symfile_complaints,
4745 _("debug type entry at offset 0x%x is duplicate to"
4746 " the entry at offset 0x%x, signature %s"),
4747 offset.sect_off, dup_offset.sect_off,
4748 hex_string (signature));
4749 }
4750 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4751
4752 if (dwarf_read_debug > 1)
4753 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4754 offset.sect_off,
4755 hex_string (signature));
4756
4757 info_ptr += length;
4758 }
4759 }
4760
4761 return types_htab;
4762 }
4763
4764 /* Create the hash table of all entries in the .debug_types section,
4765 and initialize all_type_units.
4766 The result is zero if there is an error (e.g. missing .debug_types section),
4767 otherwise non-zero. */
4768
4769 static int
4770 create_all_type_units (struct objfile *objfile)
4771 {
4772 htab_t types_htab;
4773 struct signatured_type **iter;
4774
4775 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4776 if (types_htab == NULL)
4777 {
4778 dwarf2_per_objfile->signatured_types = NULL;
4779 return 0;
4780 }
4781
4782 dwarf2_per_objfile->signatured_types = types_htab;
4783
4784 dwarf2_per_objfile->n_type_units
4785 = dwarf2_per_objfile->n_allocated_type_units
4786 = htab_elements (types_htab);
4787 dwarf2_per_objfile->all_type_units =
4788 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4789 iter = &dwarf2_per_objfile->all_type_units[0];
4790 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4791 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4792 == dwarf2_per_objfile->n_type_units);
4793
4794 return 1;
4795 }
4796
4797 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4798 If SLOT is non-NULL, it is the entry to use in the hash table.
4799 Otherwise we find one. */
4800
4801 static struct signatured_type *
4802 add_type_unit (ULONGEST sig, void **slot)
4803 {
4804 struct objfile *objfile = dwarf2_per_objfile->objfile;
4805 int n_type_units = dwarf2_per_objfile->n_type_units;
4806 struct signatured_type *sig_type;
4807
4808 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4809 ++n_type_units;
4810 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4811 {
4812 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4813 dwarf2_per_objfile->n_allocated_type_units = 1;
4814 dwarf2_per_objfile->n_allocated_type_units *= 2;
4815 dwarf2_per_objfile->all_type_units
4816 = XRESIZEVEC (struct signatured_type *,
4817 dwarf2_per_objfile->all_type_units,
4818 dwarf2_per_objfile->n_allocated_type_units);
4819 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4820 }
4821 dwarf2_per_objfile->n_type_units = n_type_units;
4822
4823 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4824 struct signatured_type);
4825 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4826 sig_type->signature = sig;
4827 sig_type->per_cu.is_debug_types = 1;
4828 if (dwarf2_per_objfile->using_index)
4829 {
4830 sig_type->per_cu.v.quick =
4831 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4832 struct dwarf2_per_cu_quick_data);
4833 }
4834
4835 if (slot == NULL)
4836 {
4837 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4838 sig_type, INSERT);
4839 }
4840 gdb_assert (*slot == NULL);
4841 *slot = sig_type;
4842 /* The rest of sig_type must be filled in by the caller. */
4843 return sig_type;
4844 }
4845
4846 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4847 Fill in SIG_ENTRY with DWO_ENTRY. */
4848
4849 static void
4850 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4851 struct signatured_type *sig_entry,
4852 struct dwo_unit *dwo_entry)
4853 {
4854 /* Make sure we're not clobbering something we don't expect to. */
4855 gdb_assert (! sig_entry->per_cu.queued);
4856 gdb_assert (sig_entry->per_cu.cu == NULL);
4857 if (dwarf2_per_objfile->using_index)
4858 {
4859 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4860 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4861 }
4862 else
4863 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4864 gdb_assert (sig_entry->signature == dwo_entry->signature);
4865 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4866 gdb_assert (sig_entry->type_unit_group == NULL);
4867 gdb_assert (sig_entry->dwo_unit == NULL);
4868
4869 sig_entry->per_cu.section = dwo_entry->section;
4870 sig_entry->per_cu.offset = dwo_entry->offset;
4871 sig_entry->per_cu.length = dwo_entry->length;
4872 sig_entry->per_cu.reading_dwo_directly = 1;
4873 sig_entry->per_cu.objfile = objfile;
4874 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4875 sig_entry->dwo_unit = dwo_entry;
4876 }
4877
4878 /* Subroutine of lookup_signatured_type.
4879 If we haven't read the TU yet, create the signatured_type data structure
4880 for a TU to be read in directly from a DWO file, bypassing the stub.
4881 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4882 using .gdb_index, then when reading a CU we want to stay in the DWO file
4883 containing that CU. Otherwise we could end up reading several other DWO
4884 files (due to comdat folding) to process the transitive closure of all the
4885 mentioned TUs, and that can be slow. The current DWO file will have every
4886 type signature that it needs.
4887 We only do this for .gdb_index because in the psymtab case we already have
4888 to read all the DWOs to build the type unit groups. */
4889
4890 static struct signatured_type *
4891 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4892 {
4893 struct objfile *objfile = dwarf2_per_objfile->objfile;
4894 struct dwo_file *dwo_file;
4895 struct dwo_unit find_dwo_entry, *dwo_entry;
4896 struct signatured_type find_sig_entry, *sig_entry;
4897 void **slot;
4898
4899 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4900
4901 /* If TU skeletons have been removed then we may not have read in any
4902 TUs yet. */
4903 if (dwarf2_per_objfile->signatured_types == NULL)
4904 {
4905 dwarf2_per_objfile->signatured_types
4906 = allocate_signatured_type_table (objfile);
4907 }
4908
4909 /* We only ever need to read in one copy of a signatured type.
4910 Use the global signatured_types array to do our own comdat-folding
4911 of types. If this is the first time we're reading this TU, and
4912 the TU has an entry in .gdb_index, replace the recorded data from
4913 .gdb_index with this TU. */
4914
4915 find_sig_entry.signature = sig;
4916 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4917 &find_sig_entry, INSERT);
4918 sig_entry = (struct signatured_type *) *slot;
4919
4920 /* We can get here with the TU already read, *or* in the process of being
4921 read. Don't reassign the global entry to point to this DWO if that's
4922 the case. Also note that if the TU is already being read, it may not
4923 have come from a DWO, the program may be a mix of Fission-compiled
4924 code and non-Fission-compiled code. */
4925
4926 /* Have we already tried to read this TU?
4927 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4928 needn't exist in the global table yet). */
4929 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4930 return sig_entry;
4931
4932 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4933 dwo_unit of the TU itself. */
4934 dwo_file = cu->dwo_unit->dwo_file;
4935
4936 /* Ok, this is the first time we're reading this TU. */
4937 if (dwo_file->tus == NULL)
4938 return NULL;
4939 find_dwo_entry.signature = sig;
4940 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
4941 if (dwo_entry == NULL)
4942 return NULL;
4943
4944 /* If the global table doesn't have an entry for this TU, add one. */
4945 if (sig_entry == NULL)
4946 sig_entry = add_type_unit (sig, slot);
4947
4948 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4949 sig_entry->per_cu.tu_read = 1;
4950 return sig_entry;
4951 }
4952
4953 /* Subroutine of lookup_signatured_type.
4954 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4955 then try the DWP file. If the TU stub (skeleton) has been removed then
4956 it won't be in .gdb_index. */
4957
4958 static struct signatured_type *
4959 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4960 {
4961 struct objfile *objfile = dwarf2_per_objfile->objfile;
4962 struct dwp_file *dwp_file = get_dwp_file ();
4963 struct dwo_unit *dwo_entry;
4964 struct signatured_type find_sig_entry, *sig_entry;
4965 void **slot;
4966
4967 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4968 gdb_assert (dwp_file != NULL);
4969
4970 /* If TU skeletons have been removed then we may not have read in any
4971 TUs yet. */
4972 if (dwarf2_per_objfile->signatured_types == NULL)
4973 {
4974 dwarf2_per_objfile->signatured_types
4975 = allocate_signatured_type_table (objfile);
4976 }
4977
4978 find_sig_entry.signature = sig;
4979 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4980 &find_sig_entry, INSERT);
4981 sig_entry = (struct signatured_type *) *slot;
4982
4983 /* Have we already tried to read this TU?
4984 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4985 needn't exist in the global table yet). */
4986 if (sig_entry != NULL)
4987 return sig_entry;
4988
4989 if (dwp_file->tus == NULL)
4990 return NULL;
4991 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4992 sig, 1 /* is_debug_types */);
4993 if (dwo_entry == NULL)
4994 return NULL;
4995
4996 sig_entry = add_type_unit (sig, slot);
4997 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4998
4999 return sig_entry;
5000 }
5001
5002 /* Lookup a signature based type for DW_FORM_ref_sig8.
5003 Returns NULL if signature SIG is not present in the table.
5004 It is up to the caller to complain about this. */
5005
5006 static struct signatured_type *
5007 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5008 {
5009 if (cu->dwo_unit
5010 && dwarf2_per_objfile->using_index)
5011 {
5012 /* We're in a DWO/DWP file, and we're using .gdb_index.
5013 These cases require special processing. */
5014 if (get_dwp_file () == NULL)
5015 return lookup_dwo_signatured_type (cu, sig);
5016 else
5017 return lookup_dwp_signatured_type (cu, sig);
5018 }
5019 else
5020 {
5021 struct signatured_type find_entry, *entry;
5022
5023 if (dwarf2_per_objfile->signatured_types == NULL)
5024 return NULL;
5025 find_entry.signature = sig;
5026 entry = ((struct signatured_type *)
5027 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5028 return entry;
5029 }
5030 }
5031 \f
5032 /* Low level DIE reading support. */
5033
5034 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5035
5036 static void
5037 init_cu_die_reader (struct die_reader_specs *reader,
5038 struct dwarf2_cu *cu,
5039 struct dwarf2_section_info *section,
5040 struct dwo_file *dwo_file)
5041 {
5042 gdb_assert (section->readin && section->buffer != NULL);
5043 reader->abfd = get_section_bfd_owner (section);
5044 reader->cu = cu;
5045 reader->dwo_file = dwo_file;
5046 reader->die_section = section;
5047 reader->buffer = section->buffer;
5048 reader->buffer_end = section->buffer + section->size;
5049 reader->comp_dir = NULL;
5050 }
5051
5052 /* Subroutine of init_cutu_and_read_dies to simplify it.
5053 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5054 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5055 already.
5056
5057 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5058 from it to the DIE in the DWO. If NULL we are skipping the stub.
5059 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5060 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5061 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5062 STUB_COMP_DIR may be non-NULL.
5063 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5064 are filled in with the info of the DIE from the DWO file.
5065 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5066 provided an abbrev table to use.
5067 The result is non-zero if a valid (non-dummy) DIE was found. */
5068
5069 static int
5070 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5071 struct dwo_unit *dwo_unit,
5072 int abbrev_table_provided,
5073 struct die_info *stub_comp_unit_die,
5074 const char *stub_comp_dir,
5075 struct die_reader_specs *result_reader,
5076 const gdb_byte **result_info_ptr,
5077 struct die_info **result_comp_unit_die,
5078 int *result_has_children)
5079 {
5080 struct objfile *objfile = dwarf2_per_objfile->objfile;
5081 struct dwarf2_cu *cu = this_cu->cu;
5082 struct dwarf2_section_info *section;
5083 bfd *abfd;
5084 const gdb_byte *begin_info_ptr, *info_ptr;
5085 ULONGEST signature; /* Or dwo_id. */
5086 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5087 int i,num_extra_attrs;
5088 struct dwarf2_section_info *dwo_abbrev_section;
5089 struct attribute *attr;
5090 struct die_info *comp_unit_die;
5091
5092 /* At most one of these may be provided. */
5093 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5094
5095 /* These attributes aren't processed until later:
5096 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5097 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5098 referenced later. However, these attributes are found in the stub
5099 which we won't have later. In order to not impose this complication
5100 on the rest of the code, we read them here and copy them to the
5101 DWO CU/TU die. */
5102
5103 stmt_list = NULL;
5104 low_pc = NULL;
5105 high_pc = NULL;
5106 ranges = NULL;
5107 comp_dir = NULL;
5108
5109 if (stub_comp_unit_die != NULL)
5110 {
5111 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5112 DWO file. */
5113 if (! this_cu->is_debug_types)
5114 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5115 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5116 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5117 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5118 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5119
5120 /* There should be a DW_AT_addr_base attribute here (if needed).
5121 We need the value before we can process DW_FORM_GNU_addr_index. */
5122 cu->addr_base = 0;
5123 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5124 if (attr)
5125 cu->addr_base = DW_UNSND (attr);
5126
5127 /* There should be a DW_AT_ranges_base attribute here (if needed).
5128 We need the value before we can process DW_AT_ranges. */
5129 cu->ranges_base = 0;
5130 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5131 if (attr)
5132 cu->ranges_base = DW_UNSND (attr);
5133 }
5134 else if (stub_comp_dir != NULL)
5135 {
5136 /* Reconstruct the comp_dir attribute to simplify the code below. */
5137 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5138 comp_dir->name = DW_AT_comp_dir;
5139 comp_dir->form = DW_FORM_string;
5140 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5141 DW_STRING (comp_dir) = stub_comp_dir;
5142 }
5143
5144 /* Set up for reading the DWO CU/TU. */
5145 cu->dwo_unit = dwo_unit;
5146 section = dwo_unit->section;
5147 dwarf2_read_section (objfile, section);
5148 abfd = get_section_bfd_owner (section);
5149 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5150 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5151 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5152
5153 if (this_cu->is_debug_types)
5154 {
5155 ULONGEST header_signature;
5156 cu_offset type_offset_in_tu;
5157 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5158
5159 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5160 dwo_abbrev_section,
5161 info_ptr,
5162 &header_signature,
5163 &type_offset_in_tu);
5164 /* This is not an assert because it can be caused by bad debug info. */
5165 if (sig_type->signature != header_signature)
5166 {
5167 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5168 " TU at offset 0x%x [in module %s]"),
5169 hex_string (sig_type->signature),
5170 hex_string (header_signature),
5171 dwo_unit->offset.sect_off,
5172 bfd_get_filename (abfd));
5173 }
5174 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5175 /* For DWOs coming from DWP files, we don't know the CU length
5176 nor the type's offset in the TU until now. */
5177 dwo_unit->length = get_cu_length (&cu->header);
5178 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5179
5180 /* Establish the type offset that can be used to lookup the type.
5181 For DWO files, we don't know it until now. */
5182 sig_type->type_offset_in_section.sect_off =
5183 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5184 }
5185 else
5186 {
5187 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5188 dwo_abbrev_section,
5189 info_ptr, 0);
5190 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5191 /* For DWOs coming from DWP files, we don't know the CU length
5192 until now. */
5193 dwo_unit->length = get_cu_length (&cu->header);
5194 }
5195
5196 /* Replace the CU's original abbrev table with the DWO's.
5197 Reminder: We can't read the abbrev table until we've read the header. */
5198 if (abbrev_table_provided)
5199 {
5200 /* Don't free the provided abbrev table, the caller of
5201 init_cutu_and_read_dies owns it. */
5202 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5203 /* Ensure the DWO abbrev table gets freed. */
5204 make_cleanup (dwarf2_free_abbrev_table, cu);
5205 }
5206 else
5207 {
5208 dwarf2_free_abbrev_table (cu);
5209 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5210 /* Leave any existing abbrev table cleanup as is. */
5211 }
5212
5213 /* Read in the die, but leave space to copy over the attributes
5214 from the stub. This has the benefit of simplifying the rest of
5215 the code - all the work to maintain the illusion of a single
5216 DW_TAG_{compile,type}_unit DIE is done here. */
5217 num_extra_attrs = ((stmt_list != NULL)
5218 + (low_pc != NULL)
5219 + (high_pc != NULL)
5220 + (ranges != NULL)
5221 + (comp_dir != NULL));
5222 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5223 result_has_children, num_extra_attrs);
5224
5225 /* Copy over the attributes from the stub to the DIE we just read in. */
5226 comp_unit_die = *result_comp_unit_die;
5227 i = comp_unit_die->num_attrs;
5228 if (stmt_list != NULL)
5229 comp_unit_die->attrs[i++] = *stmt_list;
5230 if (low_pc != NULL)
5231 comp_unit_die->attrs[i++] = *low_pc;
5232 if (high_pc != NULL)
5233 comp_unit_die->attrs[i++] = *high_pc;
5234 if (ranges != NULL)
5235 comp_unit_die->attrs[i++] = *ranges;
5236 if (comp_dir != NULL)
5237 comp_unit_die->attrs[i++] = *comp_dir;
5238 comp_unit_die->num_attrs += num_extra_attrs;
5239
5240 if (dwarf_die_debug)
5241 {
5242 fprintf_unfiltered (gdb_stdlog,
5243 "Read die from %s@0x%x of %s:\n",
5244 get_section_name (section),
5245 (unsigned) (begin_info_ptr - section->buffer),
5246 bfd_get_filename (abfd));
5247 dump_die (comp_unit_die, dwarf_die_debug);
5248 }
5249
5250 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5251 TUs by skipping the stub and going directly to the entry in the DWO file.
5252 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5253 to get it via circuitous means. Blech. */
5254 if (comp_dir != NULL)
5255 result_reader->comp_dir = DW_STRING (comp_dir);
5256
5257 /* Skip dummy compilation units. */
5258 if (info_ptr >= begin_info_ptr + dwo_unit->length
5259 || peek_abbrev_code (abfd, info_ptr) == 0)
5260 return 0;
5261
5262 *result_info_ptr = info_ptr;
5263 return 1;
5264 }
5265
5266 /* Subroutine of init_cutu_and_read_dies to simplify it.
5267 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5268 Returns NULL if the specified DWO unit cannot be found. */
5269
5270 static struct dwo_unit *
5271 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5272 struct die_info *comp_unit_die)
5273 {
5274 struct dwarf2_cu *cu = this_cu->cu;
5275 struct attribute *attr;
5276 ULONGEST signature;
5277 struct dwo_unit *dwo_unit;
5278 const char *comp_dir, *dwo_name;
5279
5280 gdb_assert (cu != NULL);
5281
5282 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5283 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5284 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5285
5286 if (this_cu->is_debug_types)
5287 {
5288 struct signatured_type *sig_type;
5289
5290 /* Since this_cu is the first member of struct signatured_type,
5291 we can go from a pointer to one to a pointer to the other. */
5292 sig_type = (struct signatured_type *) this_cu;
5293 signature = sig_type->signature;
5294 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5295 }
5296 else
5297 {
5298 struct attribute *attr;
5299
5300 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5301 if (! attr)
5302 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5303 " [in module %s]"),
5304 dwo_name, objfile_name (this_cu->objfile));
5305 signature = DW_UNSND (attr);
5306 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5307 signature);
5308 }
5309
5310 return dwo_unit;
5311 }
5312
5313 /* Subroutine of init_cutu_and_read_dies to simplify it.
5314 See it for a description of the parameters.
5315 Read a TU directly from a DWO file, bypassing the stub.
5316
5317 Note: This function could be a little bit simpler if we shared cleanups
5318 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5319 to do, so we keep this function self-contained. Or we could move this
5320 into our caller, but it's complex enough already. */
5321
5322 static void
5323 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5324 int use_existing_cu, int keep,
5325 die_reader_func_ftype *die_reader_func,
5326 void *data)
5327 {
5328 struct dwarf2_cu *cu;
5329 struct signatured_type *sig_type;
5330 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5331 struct die_reader_specs reader;
5332 const gdb_byte *info_ptr;
5333 struct die_info *comp_unit_die;
5334 int has_children;
5335
5336 /* Verify we can do the following downcast, and that we have the
5337 data we need. */
5338 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5339 sig_type = (struct signatured_type *) this_cu;
5340 gdb_assert (sig_type->dwo_unit != NULL);
5341
5342 cleanups = make_cleanup (null_cleanup, NULL);
5343
5344 if (use_existing_cu && this_cu->cu != NULL)
5345 {
5346 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5347 cu = this_cu->cu;
5348 /* There's no need to do the rereading_dwo_cu handling that
5349 init_cutu_and_read_dies does since we don't read the stub. */
5350 }
5351 else
5352 {
5353 /* If !use_existing_cu, this_cu->cu must be NULL. */
5354 gdb_assert (this_cu->cu == NULL);
5355 cu = XNEW (struct dwarf2_cu);
5356 init_one_comp_unit (cu, this_cu);
5357 /* If an error occurs while loading, release our storage. */
5358 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5359 }
5360
5361 /* A future optimization, if needed, would be to use an existing
5362 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5363 could share abbrev tables. */
5364
5365 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5366 0 /* abbrev_table_provided */,
5367 NULL /* stub_comp_unit_die */,
5368 sig_type->dwo_unit->dwo_file->comp_dir,
5369 &reader, &info_ptr,
5370 &comp_unit_die, &has_children) == 0)
5371 {
5372 /* Dummy die. */
5373 do_cleanups (cleanups);
5374 return;
5375 }
5376
5377 /* All the "real" work is done here. */
5378 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5379
5380 /* This duplicates the code in init_cutu_and_read_dies,
5381 but the alternative is making the latter more complex.
5382 This function is only for the special case of using DWO files directly:
5383 no point in overly complicating the general case just to handle this. */
5384 if (free_cu_cleanup != NULL)
5385 {
5386 if (keep)
5387 {
5388 /* We've successfully allocated this compilation unit. Let our
5389 caller clean it up when finished with it. */
5390 discard_cleanups (free_cu_cleanup);
5391
5392 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5393 So we have to manually free the abbrev table. */
5394 dwarf2_free_abbrev_table (cu);
5395
5396 /* Link this CU into read_in_chain. */
5397 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5398 dwarf2_per_objfile->read_in_chain = this_cu;
5399 }
5400 else
5401 do_cleanups (free_cu_cleanup);
5402 }
5403
5404 do_cleanups (cleanups);
5405 }
5406
5407 /* Initialize a CU (or TU) and read its DIEs.
5408 If the CU defers to a DWO file, read the DWO file as well.
5409
5410 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5411 Otherwise the table specified in the comp unit header is read in and used.
5412 This is an optimization for when we already have the abbrev table.
5413
5414 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5415 Otherwise, a new CU is allocated with xmalloc.
5416
5417 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5418 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5419
5420 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5421 linker) then DIE_READER_FUNC will not get called. */
5422
5423 static void
5424 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5425 struct abbrev_table *abbrev_table,
5426 int use_existing_cu, int keep,
5427 die_reader_func_ftype *die_reader_func,
5428 void *data)
5429 {
5430 struct objfile *objfile = dwarf2_per_objfile->objfile;
5431 struct dwarf2_section_info *section = this_cu->section;
5432 bfd *abfd = get_section_bfd_owner (section);
5433 struct dwarf2_cu *cu;
5434 const gdb_byte *begin_info_ptr, *info_ptr;
5435 struct die_reader_specs reader;
5436 struct die_info *comp_unit_die;
5437 int has_children;
5438 struct attribute *attr;
5439 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5440 struct signatured_type *sig_type = NULL;
5441 struct dwarf2_section_info *abbrev_section;
5442 /* Non-zero if CU currently points to a DWO file and we need to
5443 reread it. When this happens we need to reread the skeleton die
5444 before we can reread the DWO file (this only applies to CUs, not TUs). */
5445 int rereading_dwo_cu = 0;
5446
5447 if (dwarf_die_debug)
5448 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5449 this_cu->is_debug_types ? "type" : "comp",
5450 this_cu->offset.sect_off);
5451
5452 if (use_existing_cu)
5453 gdb_assert (keep);
5454
5455 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5456 file (instead of going through the stub), short-circuit all of this. */
5457 if (this_cu->reading_dwo_directly)
5458 {
5459 /* Narrow down the scope of possibilities to have to understand. */
5460 gdb_assert (this_cu->is_debug_types);
5461 gdb_assert (abbrev_table == NULL);
5462 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5463 die_reader_func, data);
5464 return;
5465 }
5466
5467 cleanups = make_cleanup (null_cleanup, NULL);
5468
5469 /* This is cheap if the section is already read in. */
5470 dwarf2_read_section (objfile, section);
5471
5472 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5473
5474 abbrev_section = get_abbrev_section_for_cu (this_cu);
5475
5476 if (use_existing_cu && this_cu->cu != NULL)
5477 {
5478 cu = this_cu->cu;
5479 /* If this CU is from a DWO file we need to start over, we need to
5480 refetch the attributes from the skeleton CU.
5481 This could be optimized by retrieving those attributes from when we
5482 were here the first time: the previous comp_unit_die was stored in
5483 comp_unit_obstack. But there's no data yet that we need this
5484 optimization. */
5485 if (cu->dwo_unit != NULL)
5486 rereading_dwo_cu = 1;
5487 }
5488 else
5489 {
5490 /* If !use_existing_cu, this_cu->cu must be NULL. */
5491 gdb_assert (this_cu->cu == NULL);
5492 cu = XNEW (struct dwarf2_cu);
5493 init_one_comp_unit (cu, this_cu);
5494 /* If an error occurs while loading, release our storage. */
5495 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5496 }
5497
5498 /* Get the header. */
5499 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5500 {
5501 /* We already have the header, there's no need to read it in again. */
5502 info_ptr += cu->header.first_die_offset.cu_off;
5503 }
5504 else
5505 {
5506 if (this_cu->is_debug_types)
5507 {
5508 ULONGEST signature;
5509 cu_offset type_offset_in_tu;
5510
5511 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5512 abbrev_section, info_ptr,
5513 &signature,
5514 &type_offset_in_tu);
5515
5516 /* Since per_cu is the first member of struct signatured_type,
5517 we can go from a pointer to one to a pointer to the other. */
5518 sig_type = (struct signatured_type *) this_cu;
5519 gdb_assert (sig_type->signature == signature);
5520 gdb_assert (sig_type->type_offset_in_tu.cu_off
5521 == type_offset_in_tu.cu_off);
5522 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5523
5524 /* LENGTH has not been set yet for type units if we're
5525 using .gdb_index. */
5526 this_cu->length = get_cu_length (&cu->header);
5527
5528 /* Establish the type offset that can be used to lookup the type. */
5529 sig_type->type_offset_in_section.sect_off =
5530 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5531 }
5532 else
5533 {
5534 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5535 abbrev_section,
5536 info_ptr, 0);
5537
5538 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5539 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5540 }
5541 }
5542
5543 /* Skip dummy compilation units. */
5544 if (info_ptr >= begin_info_ptr + this_cu->length
5545 || peek_abbrev_code (abfd, info_ptr) == 0)
5546 {
5547 do_cleanups (cleanups);
5548 return;
5549 }
5550
5551 /* If we don't have them yet, read the abbrevs for this compilation unit.
5552 And if we need to read them now, make sure they're freed when we're
5553 done. Note that it's important that if the CU had an abbrev table
5554 on entry we don't free it when we're done: Somewhere up the call stack
5555 it may be in use. */
5556 if (abbrev_table != NULL)
5557 {
5558 gdb_assert (cu->abbrev_table == NULL);
5559 gdb_assert (cu->header.abbrev_offset.sect_off
5560 == abbrev_table->offset.sect_off);
5561 cu->abbrev_table = abbrev_table;
5562 }
5563 else if (cu->abbrev_table == NULL)
5564 {
5565 dwarf2_read_abbrevs (cu, abbrev_section);
5566 make_cleanup (dwarf2_free_abbrev_table, cu);
5567 }
5568 else if (rereading_dwo_cu)
5569 {
5570 dwarf2_free_abbrev_table (cu);
5571 dwarf2_read_abbrevs (cu, abbrev_section);
5572 }
5573
5574 /* Read the top level CU/TU die. */
5575 init_cu_die_reader (&reader, cu, section, NULL);
5576 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5577
5578 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5579 from the DWO file.
5580 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5581 DWO CU, that this test will fail (the attribute will not be present). */
5582 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5583 if (attr)
5584 {
5585 struct dwo_unit *dwo_unit;
5586 struct die_info *dwo_comp_unit_die;
5587
5588 if (has_children)
5589 {
5590 complaint (&symfile_complaints,
5591 _("compilation unit with DW_AT_GNU_dwo_name"
5592 " has children (offset 0x%x) [in module %s]"),
5593 this_cu->offset.sect_off, bfd_get_filename (abfd));
5594 }
5595 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5596 if (dwo_unit != NULL)
5597 {
5598 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5599 abbrev_table != NULL,
5600 comp_unit_die, NULL,
5601 &reader, &info_ptr,
5602 &dwo_comp_unit_die, &has_children) == 0)
5603 {
5604 /* Dummy die. */
5605 do_cleanups (cleanups);
5606 return;
5607 }
5608 comp_unit_die = dwo_comp_unit_die;
5609 }
5610 else
5611 {
5612 /* Yikes, we couldn't find the rest of the DIE, we only have
5613 the stub. A complaint has already been logged. There's
5614 not much more we can do except pass on the stub DIE to
5615 die_reader_func. We don't want to throw an error on bad
5616 debug info. */
5617 }
5618 }
5619
5620 /* All of the above is setup for this call. Yikes. */
5621 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5622
5623 /* Done, clean up. */
5624 if (free_cu_cleanup != NULL)
5625 {
5626 if (keep)
5627 {
5628 /* We've successfully allocated this compilation unit. Let our
5629 caller clean it up when finished with it. */
5630 discard_cleanups (free_cu_cleanup);
5631
5632 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5633 So we have to manually free the abbrev table. */
5634 dwarf2_free_abbrev_table (cu);
5635
5636 /* Link this CU into read_in_chain. */
5637 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5638 dwarf2_per_objfile->read_in_chain = this_cu;
5639 }
5640 else
5641 do_cleanups (free_cu_cleanup);
5642 }
5643
5644 do_cleanups (cleanups);
5645 }
5646
5647 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5648 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5649 to have already done the lookup to find the DWO file).
5650
5651 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5652 THIS_CU->is_debug_types, but nothing else.
5653
5654 We fill in THIS_CU->length.
5655
5656 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5657 linker) then DIE_READER_FUNC will not get called.
5658
5659 THIS_CU->cu is always freed when done.
5660 This is done in order to not leave THIS_CU->cu in a state where we have
5661 to care whether it refers to the "main" CU or the DWO CU. */
5662
5663 static void
5664 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5665 struct dwo_file *dwo_file,
5666 die_reader_func_ftype *die_reader_func,
5667 void *data)
5668 {
5669 struct objfile *objfile = dwarf2_per_objfile->objfile;
5670 struct dwarf2_section_info *section = this_cu->section;
5671 bfd *abfd = get_section_bfd_owner (section);
5672 struct dwarf2_section_info *abbrev_section;
5673 struct dwarf2_cu cu;
5674 const gdb_byte *begin_info_ptr, *info_ptr;
5675 struct die_reader_specs reader;
5676 struct cleanup *cleanups;
5677 struct die_info *comp_unit_die;
5678 int has_children;
5679
5680 if (dwarf_die_debug)
5681 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5682 this_cu->is_debug_types ? "type" : "comp",
5683 this_cu->offset.sect_off);
5684
5685 gdb_assert (this_cu->cu == NULL);
5686
5687 abbrev_section = (dwo_file != NULL
5688 ? &dwo_file->sections.abbrev
5689 : get_abbrev_section_for_cu (this_cu));
5690
5691 /* This is cheap if the section is already read in. */
5692 dwarf2_read_section (objfile, section);
5693
5694 init_one_comp_unit (&cu, this_cu);
5695
5696 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5697
5698 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5699 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5700 abbrev_section, info_ptr,
5701 this_cu->is_debug_types);
5702
5703 this_cu->length = get_cu_length (&cu.header);
5704
5705 /* Skip dummy compilation units. */
5706 if (info_ptr >= begin_info_ptr + this_cu->length
5707 || peek_abbrev_code (abfd, info_ptr) == 0)
5708 {
5709 do_cleanups (cleanups);
5710 return;
5711 }
5712
5713 dwarf2_read_abbrevs (&cu, abbrev_section);
5714 make_cleanup (dwarf2_free_abbrev_table, &cu);
5715
5716 init_cu_die_reader (&reader, &cu, section, dwo_file);
5717 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5718
5719 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5720
5721 do_cleanups (cleanups);
5722 }
5723
5724 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5725 does not lookup the specified DWO file.
5726 This cannot be used to read DWO files.
5727
5728 THIS_CU->cu is always freed when done.
5729 This is done in order to not leave THIS_CU->cu in a state where we have
5730 to care whether it refers to the "main" CU or the DWO CU.
5731 We can revisit this if the data shows there's a performance issue. */
5732
5733 static void
5734 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5735 die_reader_func_ftype *die_reader_func,
5736 void *data)
5737 {
5738 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5739 }
5740 \f
5741 /* Type Unit Groups.
5742
5743 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5744 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5745 so that all types coming from the same compilation (.o file) are grouped
5746 together. A future step could be to put the types in the same symtab as
5747 the CU the types ultimately came from. */
5748
5749 static hashval_t
5750 hash_type_unit_group (const void *item)
5751 {
5752 const struct type_unit_group *tu_group
5753 = (const struct type_unit_group *) item;
5754
5755 return hash_stmt_list_entry (&tu_group->hash);
5756 }
5757
5758 static int
5759 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5760 {
5761 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5762 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5763
5764 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5765 }
5766
5767 /* Allocate a hash table for type unit groups. */
5768
5769 static htab_t
5770 allocate_type_unit_groups_table (void)
5771 {
5772 return htab_create_alloc_ex (3,
5773 hash_type_unit_group,
5774 eq_type_unit_group,
5775 NULL,
5776 &dwarf2_per_objfile->objfile->objfile_obstack,
5777 hashtab_obstack_allocate,
5778 dummy_obstack_deallocate);
5779 }
5780
5781 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5782 partial symtabs. We combine several TUs per psymtab to not let the size
5783 of any one psymtab grow too big. */
5784 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5785 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5786
5787 /* Helper routine for get_type_unit_group.
5788 Create the type_unit_group object used to hold one or more TUs. */
5789
5790 static struct type_unit_group *
5791 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5792 {
5793 struct objfile *objfile = dwarf2_per_objfile->objfile;
5794 struct dwarf2_per_cu_data *per_cu;
5795 struct type_unit_group *tu_group;
5796
5797 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5798 struct type_unit_group);
5799 per_cu = &tu_group->per_cu;
5800 per_cu->objfile = objfile;
5801
5802 if (dwarf2_per_objfile->using_index)
5803 {
5804 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5805 struct dwarf2_per_cu_quick_data);
5806 }
5807 else
5808 {
5809 unsigned int line_offset = line_offset_struct.sect_off;
5810 struct partial_symtab *pst;
5811 char *name;
5812
5813 /* Give the symtab a useful name for debug purposes. */
5814 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5815 name = xstrprintf ("<type_units_%d>",
5816 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5817 else
5818 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5819
5820 pst = create_partial_symtab (per_cu, name);
5821 pst->anonymous = 1;
5822
5823 xfree (name);
5824 }
5825
5826 tu_group->hash.dwo_unit = cu->dwo_unit;
5827 tu_group->hash.line_offset = line_offset_struct;
5828
5829 return tu_group;
5830 }
5831
5832 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5833 STMT_LIST is a DW_AT_stmt_list attribute. */
5834
5835 static struct type_unit_group *
5836 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5837 {
5838 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5839 struct type_unit_group *tu_group;
5840 void **slot;
5841 unsigned int line_offset;
5842 struct type_unit_group type_unit_group_for_lookup;
5843
5844 if (dwarf2_per_objfile->type_unit_groups == NULL)
5845 {
5846 dwarf2_per_objfile->type_unit_groups =
5847 allocate_type_unit_groups_table ();
5848 }
5849
5850 /* Do we need to create a new group, or can we use an existing one? */
5851
5852 if (stmt_list)
5853 {
5854 line_offset = DW_UNSND (stmt_list);
5855 ++tu_stats->nr_symtab_sharers;
5856 }
5857 else
5858 {
5859 /* Ugh, no stmt_list. Rare, but we have to handle it.
5860 We can do various things here like create one group per TU or
5861 spread them over multiple groups to split up the expansion work.
5862 To avoid worst case scenarios (too many groups or too large groups)
5863 we, umm, group them in bunches. */
5864 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5865 | (tu_stats->nr_stmt_less_type_units
5866 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5867 ++tu_stats->nr_stmt_less_type_units;
5868 }
5869
5870 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5871 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5872 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5873 &type_unit_group_for_lookup, INSERT);
5874 if (*slot != NULL)
5875 {
5876 tu_group = (struct type_unit_group *) *slot;
5877 gdb_assert (tu_group != NULL);
5878 }
5879 else
5880 {
5881 sect_offset line_offset_struct;
5882
5883 line_offset_struct.sect_off = line_offset;
5884 tu_group = create_type_unit_group (cu, line_offset_struct);
5885 *slot = tu_group;
5886 ++tu_stats->nr_symtabs;
5887 }
5888
5889 return tu_group;
5890 }
5891 \f
5892 /* Partial symbol tables. */
5893
5894 /* Create a psymtab named NAME and assign it to PER_CU.
5895
5896 The caller must fill in the following details:
5897 dirname, textlow, texthigh. */
5898
5899 static struct partial_symtab *
5900 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5901 {
5902 struct objfile *objfile = per_cu->objfile;
5903 struct partial_symtab *pst;
5904
5905 pst = start_psymtab_common (objfile, name, 0,
5906 objfile->global_psymbols.next,
5907 objfile->static_psymbols.next);
5908
5909 pst->psymtabs_addrmap_supported = 1;
5910
5911 /* This is the glue that links PST into GDB's symbol API. */
5912 pst->read_symtab_private = per_cu;
5913 pst->read_symtab = dwarf2_read_symtab;
5914 per_cu->v.psymtab = pst;
5915
5916 return pst;
5917 }
5918
5919 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5920 type. */
5921
5922 struct process_psymtab_comp_unit_data
5923 {
5924 /* True if we are reading a DW_TAG_partial_unit. */
5925
5926 int want_partial_unit;
5927
5928 /* The "pretend" language that is used if the CU doesn't declare a
5929 language. */
5930
5931 enum language pretend_language;
5932 };
5933
5934 /* die_reader_func for process_psymtab_comp_unit. */
5935
5936 static void
5937 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5938 const gdb_byte *info_ptr,
5939 struct die_info *comp_unit_die,
5940 int has_children,
5941 void *data)
5942 {
5943 struct dwarf2_cu *cu = reader->cu;
5944 struct objfile *objfile = cu->objfile;
5945 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5946 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5947 CORE_ADDR baseaddr;
5948 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5949 struct partial_symtab *pst;
5950 int has_pc_info;
5951 const char *filename;
5952 struct process_psymtab_comp_unit_data *info
5953 = (struct process_psymtab_comp_unit_data *) data;
5954
5955 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5956 return;
5957
5958 gdb_assert (! per_cu->is_debug_types);
5959
5960 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5961
5962 cu->list_in_scope = &file_symbols;
5963
5964 /* Allocate a new partial symbol table structure. */
5965 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5966 if (filename == NULL)
5967 filename = "";
5968
5969 pst = create_partial_symtab (per_cu, filename);
5970
5971 /* This must be done before calling dwarf2_build_include_psymtabs. */
5972 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5973
5974 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5975
5976 dwarf2_find_base_address (comp_unit_die, cu);
5977
5978 /* Possibly set the default values of LOWPC and HIGHPC from
5979 `DW_AT_ranges'. */
5980 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5981 &best_highpc, cu, pst);
5982 if (has_pc_info == 1 && best_lowpc < best_highpc)
5983 /* Store the contiguous range if it is not empty; it can be empty for
5984 CUs with no code. */
5985 addrmap_set_empty (objfile->psymtabs_addrmap,
5986 gdbarch_adjust_dwarf2_addr (gdbarch,
5987 best_lowpc + baseaddr),
5988 gdbarch_adjust_dwarf2_addr (gdbarch,
5989 best_highpc + baseaddr) - 1,
5990 pst);
5991
5992 /* Check if comp unit has_children.
5993 If so, read the rest of the partial symbols from this comp unit.
5994 If not, there's no more debug_info for this comp unit. */
5995 if (has_children)
5996 {
5997 struct partial_die_info *first_die;
5998 CORE_ADDR lowpc, highpc;
5999
6000 lowpc = ((CORE_ADDR) -1);
6001 highpc = ((CORE_ADDR) 0);
6002
6003 first_die = load_partial_dies (reader, info_ptr, 1);
6004
6005 scan_partial_symbols (first_die, &lowpc, &highpc,
6006 ! has_pc_info, cu);
6007
6008 /* If we didn't find a lowpc, set it to highpc to avoid
6009 complaints from `maint check'. */
6010 if (lowpc == ((CORE_ADDR) -1))
6011 lowpc = highpc;
6012
6013 /* If the compilation unit didn't have an explicit address range,
6014 then use the information extracted from its child dies. */
6015 if (! has_pc_info)
6016 {
6017 best_lowpc = lowpc;
6018 best_highpc = highpc;
6019 }
6020 }
6021 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6022 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6023
6024 end_psymtab_common (objfile, pst);
6025
6026 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6027 {
6028 int i;
6029 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6030 struct dwarf2_per_cu_data *iter;
6031
6032 /* Fill in 'dependencies' here; we fill in 'users' in a
6033 post-pass. */
6034 pst->number_of_dependencies = len;
6035 pst->dependencies =
6036 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6037 for (i = 0;
6038 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6039 i, iter);
6040 ++i)
6041 pst->dependencies[i] = iter->v.psymtab;
6042
6043 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6044 }
6045
6046 /* Get the list of files included in the current compilation unit,
6047 and build a psymtab for each of them. */
6048 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6049
6050 if (dwarf_read_debug)
6051 {
6052 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6053
6054 fprintf_unfiltered (gdb_stdlog,
6055 "Psymtab for %s unit @0x%x: %s - %s"
6056 ", %d global, %d static syms\n",
6057 per_cu->is_debug_types ? "type" : "comp",
6058 per_cu->offset.sect_off,
6059 paddress (gdbarch, pst->textlow),
6060 paddress (gdbarch, pst->texthigh),
6061 pst->n_global_syms, pst->n_static_syms);
6062 }
6063 }
6064
6065 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6066 Process compilation unit THIS_CU for a psymtab. */
6067
6068 static void
6069 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6070 int want_partial_unit,
6071 enum language pretend_language)
6072 {
6073 struct process_psymtab_comp_unit_data info;
6074
6075 /* If this compilation unit was already read in, free the
6076 cached copy in order to read it in again. This is
6077 necessary because we skipped some symbols when we first
6078 read in the compilation unit (see load_partial_dies).
6079 This problem could be avoided, but the benefit is unclear. */
6080 if (this_cu->cu != NULL)
6081 free_one_cached_comp_unit (this_cu);
6082
6083 gdb_assert (! this_cu->is_debug_types);
6084 info.want_partial_unit = want_partial_unit;
6085 info.pretend_language = pretend_language;
6086 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6087 process_psymtab_comp_unit_reader,
6088 &info);
6089
6090 /* Age out any secondary CUs. */
6091 age_cached_comp_units ();
6092 }
6093
6094 /* Reader function for build_type_psymtabs. */
6095
6096 static void
6097 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6098 const gdb_byte *info_ptr,
6099 struct die_info *type_unit_die,
6100 int has_children,
6101 void *data)
6102 {
6103 struct objfile *objfile = dwarf2_per_objfile->objfile;
6104 struct dwarf2_cu *cu = reader->cu;
6105 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6106 struct signatured_type *sig_type;
6107 struct type_unit_group *tu_group;
6108 struct attribute *attr;
6109 struct partial_die_info *first_die;
6110 CORE_ADDR lowpc, highpc;
6111 struct partial_symtab *pst;
6112
6113 gdb_assert (data == NULL);
6114 gdb_assert (per_cu->is_debug_types);
6115 sig_type = (struct signatured_type *) per_cu;
6116
6117 if (! has_children)
6118 return;
6119
6120 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6121 tu_group = get_type_unit_group (cu, attr);
6122
6123 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6124
6125 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6126 cu->list_in_scope = &file_symbols;
6127 pst = create_partial_symtab (per_cu, "");
6128 pst->anonymous = 1;
6129
6130 first_die = load_partial_dies (reader, info_ptr, 1);
6131
6132 lowpc = (CORE_ADDR) -1;
6133 highpc = (CORE_ADDR) 0;
6134 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6135
6136 end_psymtab_common (objfile, pst);
6137 }
6138
6139 /* Struct used to sort TUs by their abbreviation table offset. */
6140
6141 struct tu_abbrev_offset
6142 {
6143 struct signatured_type *sig_type;
6144 sect_offset abbrev_offset;
6145 };
6146
6147 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6148
6149 static int
6150 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6151 {
6152 const struct tu_abbrev_offset * const *a
6153 = (const struct tu_abbrev_offset * const*) ap;
6154 const struct tu_abbrev_offset * const *b
6155 = (const struct tu_abbrev_offset * const*) bp;
6156 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6157 unsigned int boff = (*b)->abbrev_offset.sect_off;
6158
6159 return (aoff > boff) - (aoff < boff);
6160 }
6161
6162 /* Efficiently read all the type units.
6163 This does the bulk of the work for build_type_psymtabs.
6164
6165 The efficiency is because we sort TUs by the abbrev table they use and
6166 only read each abbrev table once. In one program there are 200K TUs
6167 sharing 8K abbrev tables.
6168
6169 The main purpose of this function is to support building the
6170 dwarf2_per_objfile->type_unit_groups table.
6171 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6172 can collapse the search space by grouping them by stmt_list.
6173 The savings can be significant, in the same program from above the 200K TUs
6174 share 8K stmt_list tables.
6175
6176 FUNC is expected to call get_type_unit_group, which will create the
6177 struct type_unit_group if necessary and add it to
6178 dwarf2_per_objfile->type_unit_groups. */
6179
6180 static void
6181 build_type_psymtabs_1 (void)
6182 {
6183 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6184 struct cleanup *cleanups;
6185 struct abbrev_table *abbrev_table;
6186 sect_offset abbrev_offset;
6187 struct tu_abbrev_offset *sorted_by_abbrev;
6188 int i;
6189
6190 /* It's up to the caller to not call us multiple times. */
6191 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6192
6193 if (dwarf2_per_objfile->n_type_units == 0)
6194 return;
6195
6196 /* TUs typically share abbrev tables, and there can be way more TUs than
6197 abbrev tables. Sort by abbrev table to reduce the number of times we
6198 read each abbrev table in.
6199 Alternatives are to punt or to maintain a cache of abbrev tables.
6200 This is simpler and efficient enough for now.
6201
6202 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6203 symtab to use). Typically TUs with the same abbrev offset have the same
6204 stmt_list value too so in practice this should work well.
6205
6206 The basic algorithm here is:
6207
6208 sort TUs by abbrev table
6209 for each TU with same abbrev table:
6210 read abbrev table if first user
6211 read TU top level DIE
6212 [IWBN if DWO skeletons had DW_AT_stmt_list]
6213 call FUNC */
6214
6215 if (dwarf_read_debug)
6216 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6217
6218 /* Sort in a separate table to maintain the order of all_type_units
6219 for .gdb_index: TU indices directly index all_type_units. */
6220 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6221 dwarf2_per_objfile->n_type_units);
6222 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6223 {
6224 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6225
6226 sorted_by_abbrev[i].sig_type = sig_type;
6227 sorted_by_abbrev[i].abbrev_offset =
6228 read_abbrev_offset (sig_type->per_cu.section,
6229 sig_type->per_cu.offset);
6230 }
6231 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6232 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6233 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6234
6235 abbrev_offset.sect_off = ~(unsigned) 0;
6236 abbrev_table = NULL;
6237 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6238
6239 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6240 {
6241 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6242
6243 /* Switch to the next abbrev table if necessary. */
6244 if (abbrev_table == NULL
6245 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6246 {
6247 if (abbrev_table != NULL)
6248 {
6249 abbrev_table_free (abbrev_table);
6250 /* Reset to NULL in case abbrev_table_read_table throws
6251 an error: abbrev_table_free_cleanup will get called. */
6252 abbrev_table = NULL;
6253 }
6254 abbrev_offset = tu->abbrev_offset;
6255 abbrev_table =
6256 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6257 abbrev_offset);
6258 ++tu_stats->nr_uniq_abbrev_tables;
6259 }
6260
6261 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6262 build_type_psymtabs_reader, NULL);
6263 }
6264
6265 do_cleanups (cleanups);
6266 }
6267
6268 /* Print collected type unit statistics. */
6269
6270 static void
6271 print_tu_stats (void)
6272 {
6273 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6274
6275 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6276 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6277 dwarf2_per_objfile->n_type_units);
6278 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6279 tu_stats->nr_uniq_abbrev_tables);
6280 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6281 tu_stats->nr_symtabs);
6282 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6283 tu_stats->nr_symtab_sharers);
6284 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6285 tu_stats->nr_stmt_less_type_units);
6286 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6287 tu_stats->nr_all_type_units_reallocs);
6288 }
6289
6290 /* Traversal function for build_type_psymtabs. */
6291
6292 static int
6293 build_type_psymtab_dependencies (void **slot, void *info)
6294 {
6295 struct objfile *objfile = dwarf2_per_objfile->objfile;
6296 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6297 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6298 struct partial_symtab *pst = per_cu->v.psymtab;
6299 int len = VEC_length (sig_type_ptr, tu_group->tus);
6300 struct signatured_type *iter;
6301 int i;
6302
6303 gdb_assert (len > 0);
6304 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6305
6306 pst->number_of_dependencies = len;
6307 pst->dependencies =
6308 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6309 for (i = 0;
6310 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6311 ++i)
6312 {
6313 gdb_assert (iter->per_cu.is_debug_types);
6314 pst->dependencies[i] = iter->per_cu.v.psymtab;
6315 iter->type_unit_group = tu_group;
6316 }
6317
6318 VEC_free (sig_type_ptr, tu_group->tus);
6319
6320 return 1;
6321 }
6322
6323 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6324 Build partial symbol tables for the .debug_types comp-units. */
6325
6326 static void
6327 build_type_psymtabs (struct objfile *objfile)
6328 {
6329 if (! create_all_type_units (objfile))
6330 return;
6331
6332 build_type_psymtabs_1 ();
6333 }
6334
6335 /* Traversal function for process_skeletonless_type_unit.
6336 Read a TU in a DWO file and build partial symbols for it. */
6337
6338 static int
6339 process_skeletonless_type_unit (void **slot, void *info)
6340 {
6341 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6342 struct objfile *objfile = (struct objfile *) info;
6343 struct signatured_type find_entry, *entry;
6344
6345 /* If this TU doesn't exist in the global table, add it and read it in. */
6346
6347 if (dwarf2_per_objfile->signatured_types == NULL)
6348 {
6349 dwarf2_per_objfile->signatured_types
6350 = allocate_signatured_type_table (objfile);
6351 }
6352
6353 find_entry.signature = dwo_unit->signature;
6354 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6355 INSERT);
6356 /* If we've already seen this type there's nothing to do. What's happening
6357 is we're doing our own version of comdat-folding here. */
6358 if (*slot != NULL)
6359 return 1;
6360
6361 /* This does the job that create_all_type_units would have done for
6362 this TU. */
6363 entry = add_type_unit (dwo_unit->signature, slot);
6364 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6365 *slot = entry;
6366
6367 /* This does the job that build_type_psymtabs_1 would have done. */
6368 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6369 build_type_psymtabs_reader, NULL);
6370
6371 return 1;
6372 }
6373
6374 /* Traversal function for process_skeletonless_type_units. */
6375
6376 static int
6377 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6378 {
6379 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6380
6381 if (dwo_file->tus != NULL)
6382 {
6383 htab_traverse_noresize (dwo_file->tus,
6384 process_skeletonless_type_unit, info);
6385 }
6386
6387 return 1;
6388 }
6389
6390 /* Scan all TUs of DWO files, verifying we've processed them.
6391 This is needed in case a TU was emitted without its skeleton.
6392 Note: This can't be done until we know what all the DWO files are. */
6393
6394 static void
6395 process_skeletonless_type_units (struct objfile *objfile)
6396 {
6397 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6398 if (get_dwp_file () == NULL
6399 && dwarf2_per_objfile->dwo_files != NULL)
6400 {
6401 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6402 process_dwo_file_for_skeletonless_type_units,
6403 objfile);
6404 }
6405 }
6406
6407 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6408
6409 static void
6410 psymtabs_addrmap_cleanup (void *o)
6411 {
6412 struct objfile *objfile = (struct objfile *) o;
6413
6414 objfile->psymtabs_addrmap = NULL;
6415 }
6416
6417 /* Compute the 'user' field for each psymtab in OBJFILE. */
6418
6419 static void
6420 set_partial_user (struct objfile *objfile)
6421 {
6422 int i;
6423
6424 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6425 {
6426 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6427 struct partial_symtab *pst = per_cu->v.psymtab;
6428 int j;
6429
6430 if (pst == NULL)
6431 continue;
6432
6433 for (j = 0; j < pst->number_of_dependencies; ++j)
6434 {
6435 /* Set the 'user' field only if it is not already set. */
6436 if (pst->dependencies[j]->user == NULL)
6437 pst->dependencies[j]->user = pst;
6438 }
6439 }
6440 }
6441
6442 /* Build the partial symbol table by doing a quick pass through the
6443 .debug_info and .debug_abbrev sections. */
6444
6445 static void
6446 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6447 {
6448 struct cleanup *back_to, *addrmap_cleanup;
6449 struct obstack temp_obstack;
6450 int i;
6451
6452 if (dwarf_read_debug)
6453 {
6454 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6455 objfile_name (objfile));
6456 }
6457
6458 dwarf2_per_objfile->reading_partial_symbols = 1;
6459
6460 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6461
6462 /* Any cached compilation units will be linked by the per-objfile
6463 read_in_chain. Make sure to free them when we're done. */
6464 back_to = make_cleanup (free_cached_comp_units, NULL);
6465
6466 build_type_psymtabs (objfile);
6467
6468 create_all_comp_units (objfile);
6469
6470 /* Create a temporary address map on a temporary obstack. We later
6471 copy this to the final obstack. */
6472 obstack_init (&temp_obstack);
6473 make_cleanup_obstack_free (&temp_obstack);
6474 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6475 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6476
6477 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6478 {
6479 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6480
6481 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6482 }
6483
6484 /* This has to wait until we read the CUs, we need the list of DWOs. */
6485 process_skeletonless_type_units (objfile);
6486
6487 /* Now that all TUs have been processed we can fill in the dependencies. */
6488 if (dwarf2_per_objfile->type_unit_groups != NULL)
6489 {
6490 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6491 build_type_psymtab_dependencies, NULL);
6492 }
6493
6494 if (dwarf_read_debug)
6495 print_tu_stats ();
6496
6497 set_partial_user (objfile);
6498
6499 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6500 &objfile->objfile_obstack);
6501 discard_cleanups (addrmap_cleanup);
6502
6503 do_cleanups (back_to);
6504
6505 if (dwarf_read_debug)
6506 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6507 objfile_name (objfile));
6508 }
6509
6510 /* die_reader_func for load_partial_comp_unit. */
6511
6512 static void
6513 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6514 const gdb_byte *info_ptr,
6515 struct die_info *comp_unit_die,
6516 int has_children,
6517 void *data)
6518 {
6519 struct dwarf2_cu *cu = reader->cu;
6520
6521 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6522
6523 /* Check if comp unit has_children.
6524 If so, read the rest of the partial symbols from this comp unit.
6525 If not, there's no more debug_info for this comp unit. */
6526 if (has_children)
6527 load_partial_dies (reader, info_ptr, 0);
6528 }
6529
6530 /* Load the partial DIEs for a secondary CU into memory.
6531 This is also used when rereading a primary CU with load_all_dies. */
6532
6533 static void
6534 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6535 {
6536 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6537 load_partial_comp_unit_reader, NULL);
6538 }
6539
6540 static void
6541 read_comp_units_from_section (struct objfile *objfile,
6542 struct dwarf2_section_info *section,
6543 unsigned int is_dwz,
6544 int *n_allocated,
6545 int *n_comp_units,
6546 struct dwarf2_per_cu_data ***all_comp_units)
6547 {
6548 const gdb_byte *info_ptr;
6549 bfd *abfd = get_section_bfd_owner (section);
6550
6551 if (dwarf_read_debug)
6552 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6553 get_section_name (section),
6554 get_section_file_name (section));
6555
6556 dwarf2_read_section (objfile, section);
6557
6558 info_ptr = section->buffer;
6559
6560 while (info_ptr < section->buffer + section->size)
6561 {
6562 unsigned int length, initial_length_size;
6563 struct dwarf2_per_cu_data *this_cu;
6564 sect_offset offset;
6565
6566 offset.sect_off = info_ptr - section->buffer;
6567
6568 /* Read just enough information to find out where the next
6569 compilation unit is. */
6570 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6571
6572 /* Save the compilation unit for later lookup. */
6573 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6574 memset (this_cu, 0, sizeof (*this_cu));
6575 this_cu->offset = offset;
6576 this_cu->length = length + initial_length_size;
6577 this_cu->is_dwz = is_dwz;
6578 this_cu->objfile = objfile;
6579 this_cu->section = section;
6580
6581 if (*n_comp_units == *n_allocated)
6582 {
6583 *n_allocated *= 2;
6584 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6585 *all_comp_units, *n_allocated);
6586 }
6587 (*all_comp_units)[*n_comp_units] = this_cu;
6588 ++*n_comp_units;
6589
6590 info_ptr = info_ptr + this_cu->length;
6591 }
6592 }
6593
6594 /* Create a list of all compilation units in OBJFILE.
6595 This is only done for -readnow and building partial symtabs. */
6596
6597 static void
6598 create_all_comp_units (struct objfile *objfile)
6599 {
6600 int n_allocated;
6601 int n_comp_units;
6602 struct dwarf2_per_cu_data **all_comp_units;
6603 struct dwz_file *dwz;
6604
6605 n_comp_units = 0;
6606 n_allocated = 10;
6607 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6608
6609 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6610 &n_allocated, &n_comp_units, &all_comp_units);
6611
6612 dwz = dwarf2_get_dwz_file ();
6613 if (dwz != NULL)
6614 read_comp_units_from_section (objfile, &dwz->info, 1,
6615 &n_allocated, &n_comp_units,
6616 &all_comp_units);
6617
6618 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6619 struct dwarf2_per_cu_data *,
6620 n_comp_units);
6621 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6622 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6623 xfree (all_comp_units);
6624 dwarf2_per_objfile->n_comp_units = n_comp_units;
6625 }
6626
6627 /* Process all loaded DIEs for compilation unit CU, starting at
6628 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6629 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6630 DW_AT_ranges). See the comments of add_partial_subprogram on how
6631 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6632
6633 static void
6634 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6635 CORE_ADDR *highpc, int set_addrmap,
6636 struct dwarf2_cu *cu)
6637 {
6638 struct partial_die_info *pdi;
6639
6640 /* Now, march along the PDI's, descending into ones which have
6641 interesting children but skipping the children of the other ones,
6642 until we reach the end of the compilation unit. */
6643
6644 pdi = first_die;
6645
6646 while (pdi != NULL)
6647 {
6648 fixup_partial_die (pdi, cu);
6649
6650 /* Anonymous namespaces or modules have no name but have interesting
6651 children, so we need to look at them. Ditto for anonymous
6652 enums. */
6653
6654 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6655 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6656 || pdi->tag == DW_TAG_imported_unit)
6657 {
6658 switch (pdi->tag)
6659 {
6660 case DW_TAG_subprogram:
6661 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6662 break;
6663 case DW_TAG_constant:
6664 case DW_TAG_variable:
6665 case DW_TAG_typedef:
6666 case DW_TAG_union_type:
6667 if (!pdi->is_declaration)
6668 {
6669 add_partial_symbol (pdi, cu);
6670 }
6671 break;
6672 case DW_TAG_class_type:
6673 case DW_TAG_interface_type:
6674 case DW_TAG_structure_type:
6675 if (!pdi->is_declaration)
6676 {
6677 add_partial_symbol (pdi, cu);
6678 }
6679 break;
6680 case DW_TAG_enumeration_type:
6681 if (!pdi->is_declaration)
6682 add_partial_enumeration (pdi, cu);
6683 break;
6684 case DW_TAG_base_type:
6685 case DW_TAG_subrange_type:
6686 /* File scope base type definitions are added to the partial
6687 symbol table. */
6688 add_partial_symbol (pdi, cu);
6689 break;
6690 case DW_TAG_namespace:
6691 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6692 break;
6693 case DW_TAG_module:
6694 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6695 break;
6696 case DW_TAG_imported_unit:
6697 {
6698 struct dwarf2_per_cu_data *per_cu;
6699
6700 /* For now we don't handle imported units in type units. */
6701 if (cu->per_cu->is_debug_types)
6702 {
6703 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6704 " supported in type units [in module %s]"),
6705 objfile_name (cu->objfile));
6706 }
6707
6708 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6709 pdi->is_dwz,
6710 cu->objfile);
6711
6712 /* Go read the partial unit, if needed. */
6713 if (per_cu->v.psymtab == NULL)
6714 process_psymtab_comp_unit (per_cu, 1, cu->language);
6715
6716 VEC_safe_push (dwarf2_per_cu_ptr,
6717 cu->per_cu->imported_symtabs, per_cu);
6718 }
6719 break;
6720 case DW_TAG_imported_declaration:
6721 add_partial_symbol (pdi, cu);
6722 break;
6723 default:
6724 break;
6725 }
6726 }
6727
6728 /* If the die has a sibling, skip to the sibling. */
6729
6730 pdi = pdi->die_sibling;
6731 }
6732 }
6733
6734 /* Functions used to compute the fully scoped name of a partial DIE.
6735
6736 Normally, this is simple. For C++, the parent DIE's fully scoped
6737 name is concatenated with "::" and the partial DIE's name. For
6738 Java, the same thing occurs except that "." is used instead of "::".
6739 Enumerators are an exception; they use the scope of their parent
6740 enumeration type, i.e. the name of the enumeration type is not
6741 prepended to the enumerator.
6742
6743 There are two complexities. One is DW_AT_specification; in this
6744 case "parent" means the parent of the target of the specification,
6745 instead of the direct parent of the DIE. The other is compilers
6746 which do not emit DW_TAG_namespace; in this case we try to guess
6747 the fully qualified name of structure types from their members'
6748 linkage names. This must be done using the DIE's children rather
6749 than the children of any DW_AT_specification target. We only need
6750 to do this for structures at the top level, i.e. if the target of
6751 any DW_AT_specification (if any; otherwise the DIE itself) does not
6752 have a parent. */
6753
6754 /* Compute the scope prefix associated with PDI's parent, in
6755 compilation unit CU. The result will be allocated on CU's
6756 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6757 field. NULL is returned if no prefix is necessary. */
6758 static const char *
6759 partial_die_parent_scope (struct partial_die_info *pdi,
6760 struct dwarf2_cu *cu)
6761 {
6762 const char *grandparent_scope;
6763 struct partial_die_info *parent, *real_pdi;
6764
6765 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6766 then this means the parent of the specification DIE. */
6767
6768 real_pdi = pdi;
6769 while (real_pdi->has_specification)
6770 real_pdi = find_partial_die (real_pdi->spec_offset,
6771 real_pdi->spec_is_dwz, cu);
6772
6773 parent = real_pdi->die_parent;
6774 if (parent == NULL)
6775 return NULL;
6776
6777 if (parent->scope_set)
6778 return parent->scope;
6779
6780 fixup_partial_die (parent, cu);
6781
6782 grandparent_scope = partial_die_parent_scope (parent, cu);
6783
6784 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6785 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6786 Work around this problem here. */
6787 if (cu->language == language_cplus
6788 && parent->tag == DW_TAG_namespace
6789 && strcmp (parent->name, "::") == 0
6790 && grandparent_scope == NULL)
6791 {
6792 parent->scope = NULL;
6793 parent->scope_set = 1;
6794 return NULL;
6795 }
6796
6797 if (pdi->tag == DW_TAG_enumerator)
6798 /* Enumerators should not get the name of the enumeration as a prefix. */
6799 parent->scope = grandparent_scope;
6800 else if (parent->tag == DW_TAG_namespace
6801 || parent->tag == DW_TAG_module
6802 || parent->tag == DW_TAG_structure_type
6803 || parent->tag == DW_TAG_class_type
6804 || parent->tag == DW_TAG_interface_type
6805 || parent->tag == DW_TAG_union_type
6806 || parent->tag == DW_TAG_enumeration_type)
6807 {
6808 if (grandparent_scope == NULL)
6809 parent->scope = parent->name;
6810 else
6811 parent->scope = typename_concat (&cu->comp_unit_obstack,
6812 grandparent_scope,
6813 parent->name, 0, cu);
6814 }
6815 else
6816 {
6817 /* FIXME drow/2004-04-01: What should we be doing with
6818 function-local names? For partial symbols, we should probably be
6819 ignoring them. */
6820 complaint (&symfile_complaints,
6821 _("unhandled containing DIE tag %d for DIE at %d"),
6822 parent->tag, pdi->offset.sect_off);
6823 parent->scope = grandparent_scope;
6824 }
6825
6826 parent->scope_set = 1;
6827 return parent->scope;
6828 }
6829
6830 /* Return the fully scoped name associated with PDI, from compilation unit
6831 CU. The result will be allocated with malloc. */
6832
6833 static char *
6834 partial_die_full_name (struct partial_die_info *pdi,
6835 struct dwarf2_cu *cu)
6836 {
6837 const char *parent_scope;
6838
6839 /* If this is a template instantiation, we can not work out the
6840 template arguments from partial DIEs. So, unfortunately, we have
6841 to go through the full DIEs. At least any work we do building
6842 types here will be reused if full symbols are loaded later. */
6843 if (pdi->has_template_arguments)
6844 {
6845 fixup_partial_die (pdi, cu);
6846
6847 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6848 {
6849 struct die_info *die;
6850 struct attribute attr;
6851 struct dwarf2_cu *ref_cu = cu;
6852
6853 /* DW_FORM_ref_addr is using section offset. */
6854 attr.name = (enum dwarf_attribute) 0;
6855 attr.form = DW_FORM_ref_addr;
6856 attr.u.unsnd = pdi->offset.sect_off;
6857 die = follow_die_ref (NULL, &attr, &ref_cu);
6858
6859 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6860 }
6861 }
6862
6863 parent_scope = partial_die_parent_scope (pdi, cu);
6864 if (parent_scope == NULL)
6865 return NULL;
6866 else
6867 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6868 }
6869
6870 static void
6871 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6872 {
6873 struct objfile *objfile = cu->objfile;
6874 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6875 CORE_ADDR addr = 0;
6876 const char *actual_name = NULL;
6877 CORE_ADDR baseaddr;
6878 char *built_actual_name;
6879
6880 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6881
6882 built_actual_name = partial_die_full_name (pdi, cu);
6883 if (built_actual_name != NULL)
6884 actual_name = built_actual_name;
6885
6886 if (actual_name == NULL)
6887 actual_name = pdi->name;
6888
6889 switch (pdi->tag)
6890 {
6891 case DW_TAG_subprogram:
6892 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6893 if (pdi->is_external || cu->language == language_ada)
6894 {
6895 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6896 of the global scope. But in Ada, we want to be able to access
6897 nested procedures globally. So all Ada subprograms are stored
6898 in the global scope. */
6899 add_psymbol_to_list (actual_name, strlen (actual_name),
6900 built_actual_name != NULL,
6901 VAR_DOMAIN, LOC_BLOCK,
6902 &objfile->global_psymbols,
6903 addr, cu->language, objfile);
6904 }
6905 else
6906 {
6907 add_psymbol_to_list (actual_name, strlen (actual_name),
6908 built_actual_name != NULL,
6909 VAR_DOMAIN, LOC_BLOCK,
6910 &objfile->static_psymbols,
6911 addr, cu->language, objfile);
6912 }
6913 break;
6914 case DW_TAG_constant:
6915 {
6916 struct psymbol_allocation_list *list;
6917
6918 if (pdi->is_external)
6919 list = &objfile->global_psymbols;
6920 else
6921 list = &objfile->static_psymbols;
6922 add_psymbol_to_list (actual_name, strlen (actual_name),
6923 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6924 list, 0, cu->language, objfile);
6925 }
6926 break;
6927 case DW_TAG_variable:
6928 if (pdi->d.locdesc)
6929 addr = decode_locdesc (pdi->d.locdesc, cu);
6930
6931 if (pdi->d.locdesc
6932 && addr == 0
6933 && !dwarf2_per_objfile->has_section_at_zero)
6934 {
6935 /* A global or static variable may also have been stripped
6936 out by the linker if unused, in which case its address
6937 will be nullified; do not add such variables into partial
6938 symbol table then. */
6939 }
6940 else if (pdi->is_external)
6941 {
6942 /* Global Variable.
6943 Don't enter into the minimal symbol tables as there is
6944 a minimal symbol table entry from the ELF symbols already.
6945 Enter into partial symbol table if it has a location
6946 descriptor or a type.
6947 If the location descriptor is missing, new_symbol will create
6948 a LOC_UNRESOLVED symbol, the address of the variable will then
6949 be determined from the minimal symbol table whenever the variable
6950 is referenced.
6951 The address for the partial symbol table entry is not
6952 used by GDB, but it comes in handy for debugging partial symbol
6953 table building. */
6954
6955 if (pdi->d.locdesc || pdi->has_type)
6956 add_psymbol_to_list (actual_name, strlen (actual_name),
6957 built_actual_name != NULL,
6958 VAR_DOMAIN, LOC_STATIC,
6959 &objfile->global_psymbols,
6960 addr + baseaddr,
6961 cu->language, objfile);
6962 }
6963 else
6964 {
6965 int has_loc = pdi->d.locdesc != NULL;
6966
6967 /* Static Variable. Skip symbols whose value we cannot know (those
6968 without location descriptors or constant values). */
6969 if (!has_loc && !pdi->has_const_value)
6970 {
6971 xfree (built_actual_name);
6972 return;
6973 }
6974
6975 add_psymbol_to_list (actual_name, strlen (actual_name),
6976 built_actual_name != NULL,
6977 VAR_DOMAIN, LOC_STATIC,
6978 &objfile->static_psymbols,
6979 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6980 cu->language, objfile);
6981 }
6982 break;
6983 case DW_TAG_typedef:
6984 case DW_TAG_base_type:
6985 case DW_TAG_subrange_type:
6986 add_psymbol_to_list (actual_name, strlen (actual_name),
6987 built_actual_name != NULL,
6988 VAR_DOMAIN, LOC_TYPEDEF,
6989 &objfile->static_psymbols,
6990 0, cu->language, objfile);
6991 break;
6992 case DW_TAG_imported_declaration:
6993 case DW_TAG_namespace:
6994 add_psymbol_to_list (actual_name, strlen (actual_name),
6995 built_actual_name != NULL,
6996 VAR_DOMAIN, LOC_TYPEDEF,
6997 &objfile->global_psymbols,
6998 0, cu->language, objfile);
6999 break;
7000 case DW_TAG_module:
7001 add_psymbol_to_list (actual_name, strlen (actual_name),
7002 built_actual_name != NULL,
7003 MODULE_DOMAIN, LOC_TYPEDEF,
7004 &objfile->global_psymbols,
7005 0, cu->language, objfile);
7006 break;
7007 case DW_TAG_class_type:
7008 case DW_TAG_interface_type:
7009 case DW_TAG_structure_type:
7010 case DW_TAG_union_type:
7011 case DW_TAG_enumeration_type:
7012 /* Skip external references. The DWARF standard says in the section
7013 about "Structure, Union, and Class Type Entries": "An incomplete
7014 structure, union or class type is represented by a structure,
7015 union or class entry that does not have a byte size attribute
7016 and that has a DW_AT_declaration attribute." */
7017 if (!pdi->has_byte_size && pdi->is_declaration)
7018 {
7019 xfree (built_actual_name);
7020 return;
7021 }
7022
7023 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7024 static vs. global. */
7025 add_psymbol_to_list (actual_name, strlen (actual_name),
7026 built_actual_name != NULL,
7027 STRUCT_DOMAIN, LOC_TYPEDEF,
7028 (cu->language == language_cplus
7029 || cu->language == language_java)
7030 ? &objfile->global_psymbols
7031 : &objfile->static_psymbols,
7032 0, cu->language, objfile);
7033
7034 break;
7035 case DW_TAG_enumerator:
7036 add_psymbol_to_list (actual_name, strlen (actual_name),
7037 built_actual_name != NULL,
7038 VAR_DOMAIN, LOC_CONST,
7039 (cu->language == language_cplus
7040 || cu->language == language_java)
7041 ? &objfile->global_psymbols
7042 : &objfile->static_psymbols,
7043 0, cu->language, objfile);
7044 break;
7045 default:
7046 break;
7047 }
7048
7049 xfree (built_actual_name);
7050 }
7051
7052 /* Read a partial die corresponding to a namespace; also, add a symbol
7053 corresponding to that namespace to the symbol table. NAMESPACE is
7054 the name of the enclosing namespace. */
7055
7056 static void
7057 add_partial_namespace (struct partial_die_info *pdi,
7058 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7059 int set_addrmap, struct dwarf2_cu *cu)
7060 {
7061 /* Add a symbol for the namespace. */
7062
7063 add_partial_symbol (pdi, cu);
7064
7065 /* Now scan partial symbols in that namespace. */
7066
7067 if (pdi->has_children)
7068 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7069 }
7070
7071 /* Read a partial die corresponding to a Fortran module. */
7072
7073 static void
7074 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7075 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7076 {
7077 /* Add a symbol for the namespace. */
7078
7079 add_partial_symbol (pdi, cu);
7080
7081 /* Now scan partial symbols in that module. */
7082
7083 if (pdi->has_children)
7084 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7085 }
7086
7087 /* Read a partial die corresponding to a subprogram and create a partial
7088 symbol for that subprogram. When the CU language allows it, this
7089 routine also defines a partial symbol for each nested subprogram
7090 that this subprogram contains. If SET_ADDRMAP is true, record the
7091 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7092 and highest PC values found in PDI.
7093
7094 PDI may also be a lexical block, in which case we simply search
7095 recursively for subprograms defined inside that lexical block.
7096 Again, this is only performed when the CU language allows this
7097 type of definitions. */
7098
7099 static void
7100 add_partial_subprogram (struct partial_die_info *pdi,
7101 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7102 int set_addrmap, struct dwarf2_cu *cu)
7103 {
7104 if (pdi->tag == DW_TAG_subprogram)
7105 {
7106 if (pdi->has_pc_info)
7107 {
7108 if (pdi->lowpc < *lowpc)
7109 *lowpc = pdi->lowpc;
7110 if (pdi->highpc > *highpc)
7111 *highpc = pdi->highpc;
7112 if (set_addrmap)
7113 {
7114 struct objfile *objfile = cu->objfile;
7115 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7116 CORE_ADDR baseaddr;
7117 CORE_ADDR highpc;
7118 CORE_ADDR lowpc;
7119
7120 baseaddr = ANOFFSET (objfile->section_offsets,
7121 SECT_OFF_TEXT (objfile));
7122 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7123 pdi->lowpc + baseaddr);
7124 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7125 pdi->highpc + baseaddr);
7126 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7127 cu->per_cu->v.psymtab);
7128 }
7129 }
7130
7131 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7132 {
7133 if (!pdi->is_declaration)
7134 /* Ignore subprogram DIEs that do not have a name, they are
7135 illegal. Do not emit a complaint at this point, we will
7136 do so when we convert this psymtab into a symtab. */
7137 if (pdi->name)
7138 add_partial_symbol (pdi, cu);
7139 }
7140 }
7141
7142 if (! pdi->has_children)
7143 return;
7144
7145 if (cu->language == language_ada)
7146 {
7147 pdi = pdi->die_child;
7148 while (pdi != NULL)
7149 {
7150 fixup_partial_die (pdi, cu);
7151 if (pdi->tag == DW_TAG_subprogram
7152 || pdi->tag == DW_TAG_lexical_block)
7153 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7154 pdi = pdi->die_sibling;
7155 }
7156 }
7157 }
7158
7159 /* Read a partial die corresponding to an enumeration type. */
7160
7161 static void
7162 add_partial_enumeration (struct partial_die_info *enum_pdi,
7163 struct dwarf2_cu *cu)
7164 {
7165 struct partial_die_info *pdi;
7166
7167 if (enum_pdi->name != NULL)
7168 add_partial_symbol (enum_pdi, cu);
7169
7170 pdi = enum_pdi->die_child;
7171 while (pdi)
7172 {
7173 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7174 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7175 else
7176 add_partial_symbol (pdi, cu);
7177 pdi = pdi->die_sibling;
7178 }
7179 }
7180
7181 /* Return the initial uleb128 in the die at INFO_PTR. */
7182
7183 static unsigned int
7184 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7185 {
7186 unsigned int bytes_read;
7187
7188 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7189 }
7190
7191 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7192 Return the corresponding abbrev, or NULL if the number is zero (indicating
7193 an empty DIE). In either case *BYTES_READ will be set to the length of
7194 the initial number. */
7195
7196 static struct abbrev_info *
7197 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7198 struct dwarf2_cu *cu)
7199 {
7200 bfd *abfd = cu->objfile->obfd;
7201 unsigned int abbrev_number;
7202 struct abbrev_info *abbrev;
7203
7204 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7205
7206 if (abbrev_number == 0)
7207 return NULL;
7208
7209 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7210 if (!abbrev)
7211 {
7212 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7213 " at offset 0x%x [in module %s]"),
7214 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7215 cu->header.offset.sect_off, bfd_get_filename (abfd));
7216 }
7217
7218 return abbrev;
7219 }
7220
7221 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7222 Returns a pointer to the end of a series of DIEs, terminated by an empty
7223 DIE. Any children of the skipped DIEs will also be skipped. */
7224
7225 static const gdb_byte *
7226 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7227 {
7228 struct dwarf2_cu *cu = reader->cu;
7229 struct abbrev_info *abbrev;
7230 unsigned int bytes_read;
7231
7232 while (1)
7233 {
7234 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7235 if (abbrev == NULL)
7236 return info_ptr + bytes_read;
7237 else
7238 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7239 }
7240 }
7241
7242 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7243 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7244 abbrev corresponding to that skipped uleb128 should be passed in
7245 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7246 children. */
7247
7248 static const gdb_byte *
7249 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7250 struct abbrev_info *abbrev)
7251 {
7252 unsigned int bytes_read;
7253 struct attribute attr;
7254 bfd *abfd = reader->abfd;
7255 struct dwarf2_cu *cu = reader->cu;
7256 const gdb_byte *buffer = reader->buffer;
7257 const gdb_byte *buffer_end = reader->buffer_end;
7258 unsigned int form, i;
7259
7260 for (i = 0; i < abbrev->num_attrs; i++)
7261 {
7262 /* The only abbrev we care about is DW_AT_sibling. */
7263 if (abbrev->attrs[i].name == DW_AT_sibling)
7264 {
7265 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7266 if (attr.form == DW_FORM_ref_addr)
7267 complaint (&symfile_complaints,
7268 _("ignoring absolute DW_AT_sibling"));
7269 else
7270 {
7271 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7272 const gdb_byte *sibling_ptr = buffer + off;
7273
7274 if (sibling_ptr < info_ptr)
7275 complaint (&symfile_complaints,
7276 _("DW_AT_sibling points backwards"));
7277 else if (sibling_ptr > reader->buffer_end)
7278 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7279 else
7280 return sibling_ptr;
7281 }
7282 }
7283
7284 /* If it isn't DW_AT_sibling, skip this attribute. */
7285 form = abbrev->attrs[i].form;
7286 skip_attribute:
7287 switch (form)
7288 {
7289 case DW_FORM_ref_addr:
7290 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7291 and later it is offset sized. */
7292 if (cu->header.version == 2)
7293 info_ptr += cu->header.addr_size;
7294 else
7295 info_ptr += cu->header.offset_size;
7296 break;
7297 case DW_FORM_GNU_ref_alt:
7298 info_ptr += cu->header.offset_size;
7299 break;
7300 case DW_FORM_addr:
7301 info_ptr += cu->header.addr_size;
7302 break;
7303 case DW_FORM_data1:
7304 case DW_FORM_ref1:
7305 case DW_FORM_flag:
7306 info_ptr += 1;
7307 break;
7308 case DW_FORM_flag_present:
7309 break;
7310 case DW_FORM_data2:
7311 case DW_FORM_ref2:
7312 info_ptr += 2;
7313 break;
7314 case DW_FORM_data4:
7315 case DW_FORM_ref4:
7316 info_ptr += 4;
7317 break;
7318 case DW_FORM_data8:
7319 case DW_FORM_ref8:
7320 case DW_FORM_ref_sig8:
7321 info_ptr += 8;
7322 break;
7323 case DW_FORM_string:
7324 read_direct_string (abfd, info_ptr, &bytes_read);
7325 info_ptr += bytes_read;
7326 break;
7327 case DW_FORM_sec_offset:
7328 case DW_FORM_strp:
7329 case DW_FORM_GNU_strp_alt:
7330 info_ptr += cu->header.offset_size;
7331 break;
7332 case DW_FORM_exprloc:
7333 case DW_FORM_block:
7334 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7335 info_ptr += bytes_read;
7336 break;
7337 case DW_FORM_block1:
7338 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7339 break;
7340 case DW_FORM_block2:
7341 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7342 break;
7343 case DW_FORM_block4:
7344 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7345 break;
7346 case DW_FORM_sdata:
7347 case DW_FORM_udata:
7348 case DW_FORM_ref_udata:
7349 case DW_FORM_GNU_addr_index:
7350 case DW_FORM_GNU_str_index:
7351 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7352 break;
7353 case DW_FORM_indirect:
7354 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7355 info_ptr += bytes_read;
7356 /* We need to continue parsing from here, so just go back to
7357 the top. */
7358 goto skip_attribute;
7359
7360 default:
7361 error (_("Dwarf Error: Cannot handle %s "
7362 "in DWARF reader [in module %s]"),
7363 dwarf_form_name (form),
7364 bfd_get_filename (abfd));
7365 }
7366 }
7367
7368 if (abbrev->has_children)
7369 return skip_children (reader, info_ptr);
7370 else
7371 return info_ptr;
7372 }
7373
7374 /* Locate ORIG_PDI's sibling.
7375 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7376
7377 static const gdb_byte *
7378 locate_pdi_sibling (const struct die_reader_specs *reader,
7379 struct partial_die_info *orig_pdi,
7380 const gdb_byte *info_ptr)
7381 {
7382 /* Do we know the sibling already? */
7383
7384 if (orig_pdi->sibling)
7385 return orig_pdi->sibling;
7386
7387 /* Are there any children to deal with? */
7388
7389 if (!orig_pdi->has_children)
7390 return info_ptr;
7391
7392 /* Skip the children the long way. */
7393
7394 return skip_children (reader, info_ptr);
7395 }
7396
7397 /* Expand this partial symbol table into a full symbol table. SELF is
7398 not NULL. */
7399
7400 static void
7401 dwarf2_read_symtab (struct partial_symtab *self,
7402 struct objfile *objfile)
7403 {
7404 if (self->readin)
7405 {
7406 warning (_("bug: psymtab for %s is already read in."),
7407 self->filename);
7408 }
7409 else
7410 {
7411 if (info_verbose)
7412 {
7413 printf_filtered (_("Reading in symbols for %s..."),
7414 self->filename);
7415 gdb_flush (gdb_stdout);
7416 }
7417
7418 /* Restore our global data. */
7419 dwarf2_per_objfile
7420 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7421 dwarf2_objfile_data_key);
7422
7423 /* If this psymtab is constructed from a debug-only objfile, the
7424 has_section_at_zero flag will not necessarily be correct. We
7425 can get the correct value for this flag by looking at the data
7426 associated with the (presumably stripped) associated objfile. */
7427 if (objfile->separate_debug_objfile_backlink)
7428 {
7429 struct dwarf2_per_objfile *dpo_backlink
7430 = ((struct dwarf2_per_objfile *)
7431 objfile_data (objfile->separate_debug_objfile_backlink,
7432 dwarf2_objfile_data_key));
7433
7434 dwarf2_per_objfile->has_section_at_zero
7435 = dpo_backlink->has_section_at_zero;
7436 }
7437
7438 dwarf2_per_objfile->reading_partial_symbols = 0;
7439
7440 psymtab_to_symtab_1 (self);
7441
7442 /* Finish up the debug error message. */
7443 if (info_verbose)
7444 printf_filtered (_("done.\n"));
7445 }
7446
7447 process_cu_includes ();
7448 }
7449 \f
7450 /* Reading in full CUs. */
7451
7452 /* Add PER_CU to the queue. */
7453
7454 static void
7455 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7456 enum language pretend_language)
7457 {
7458 struct dwarf2_queue_item *item;
7459
7460 per_cu->queued = 1;
7461 item = XNEW (struct dwarf2_queue_item);
7462 item->per_cu = per_cu;
7463 item->pretend_language = pretend_language;
7464 item->next = NULL;
7465
7466 if (dwarf2_queue == NULL)
7467 dwarf2_queue = item;
7468 else
7469 dwarf2_queue_tail->next = item;
7470
7471 dwarf2_queue_tail = item;
7472 }
7473
7474 /* If PER_CU is not yet queued, add it to the queue.
7475 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7476 dependency.
7477 The result is non-zero if PER_CU was queued, otherwise the result is zero
7478 meaning either PER_CU is already queued or it is already loaded.
7479
7480 N.B. There is an invariant here that if a CU is queued then it is loaded.
7481 The caller is required to load PER_CU if we return non-zero. */
7482
7483 static int
7484 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7485 struct dwarf2_per_cu_data *per_cu,
7486 enum language pretend_language)
7487 {
7488 /* We may arrive here during partial symbol reading, if we need full
7489 DIEs to process an unusual case (e.g. template arguments). Do
7490 not queue PER_CU, just tell our caller to load its DIEs. */
7491 if (dwarf2_per_objfile->reading_partial_symbols)
7492 {
7493 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7494 return 1;
7495 return 0;
7496 }
7497
7498 /* Mark the dependence relation so that we don't flush PER_CU
7499 too early. */
7500 if (dependent_cu != NULL)
7501 dwarf2_add_dependence (dependent_cu, per_cu);
7502
7503 /* If it's already on the queue, we have nothing to do. */
7504 if (per_cu->queued)
7505 return 0;
7506
7507 /* If the compilation unit is already loaded, just mark it as
7508 used. */
7509 if (per_cu->cu != NULL)
7510 {
7511 per_cu->cu->last_used = 0;
7512 return 0;
7513 }
7514
7515 /* Add it to the queue. */
7516 queue_comp_unit (per_cu, pretend_language);
7517
7518 return 1;
7519 }
7520
7521 /* Process the queue. */
7522
7523 static void
7524 process_queue (void)
7525 {
7526 struct dwarf2_queue_item *item, *next_item;
7527
7528 if (dwarf_read_debug)
7529 {
7530 fprintf_unfiltered (gdb_stdlog,
7531 "Expanding one or more symtabs of objfile %s ...\n",
7532 objfile_name (dwarf2_per_objfile->objfile));
7533 }
7534
7535 /* The queue starts out with one item, but following a DIE reference
7536 may load a new CU, adding it to the end of the queue. */
7537 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7538 {
7539 if ((dwarf2_per_objfile->using_index
7540 ? !item->per_cu->v.quick->compunit_symtab
7541 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7542 /* Skip dummy CUs. */
7543 && item->per_cu->cu != NULL)
7544 {
7545 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7546 unsigned int debug_print_threshold;
7547 char buf[100];
7548
7549 if (per_cu->is_debug_types)
7550 {
7551 struct signatured_type *sig_type =
7552 (struct signatured_type *) per_cu;
7553
7554 sprintf (buf, "TU %s at offset 0x%x",
7555 hex_string (sig_type->signature),
7556 per_cu->offset.sect_off);
7557 /* There can be 100s of TUs.
7558 Only print them in verbose mode. */
7559 debug_print_threshold = 2;
7560 }
7561 else
7562 {
7563 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7564 debug_print_threshold = 1;
7565 }
7566
7567 if (dwarf_read_debug >= debug_print_threshold)
7568 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7569
7570 if (per_cu->is_debug_types)
7571 process_full_type_unit (per_cu, item->pretend_language);
7572 else
7573 process_full_comp_unit (per_cu, item->pretend_language);
7574
7575 if (dwarf_read_debug >= debug_print_threshold)
7576 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7577 }
7578
7579 item->per_cu->queued = 0;
7580 next_item = item->next;
7581 xfree (item);
7582 }
7583
7584 dwarf2_queue_tail = NULL;
7585
7586 if (dwarf_read_debug)
7587 {
7588 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7589 objfile_name (dwarf2_per_objfile->objfile));
7590 }
7591 }
7592
7593 /* Free all allocated queue entries. This function only releases anything if
7594 an error was thrown; if the queue was processed then it would have been
7595 freed as we went along. */
7596
7597 static void
7598 dwarf2_release_queue (void *dummy)
7599 {
7600 struct dwarf2_queue_item *item, *last;
7601
7602 item = dwarf2_queue;
7603 while (item)
7604 {
7605 /* Anything still marked queued is likely to be in an
7606 inconsistent state, so discard it. */
7607 if (item->per_cu->queued)
7608 {
7609 if (item->per_cu->cu != NULL)
7610 free_one_cached_comp_unit (item->per_cu);
7611 item->per_cu->queued = 0;
7612 }
7613
7614 last = item;
7615 item = item->next;
7616 xfree (last);
7617 }
7618
7619 dwarf2_queue = dwarf2_queue_tail = NULL;
7620 }
7621
7622 /* Read in full symbols for PST, and anything it depends on. */
7623
7624 static void
7625 psymtab_to_symtab_1 (struct partial_symtab *pst)
7626 {
7627 struct dwarf2_per_cu_data *per_cu;
7628 int i;
7629
7630 if (pst->readin)
7631 return;
7632
7633 for (i = 0; i < pst->number_of_dependencies; i++)
7634 if (!pst->dependencies[i]->readin
7635 && pst->dependencies[i]->user == NULL)
7636 {
7637 /* Inform about additional files that need to be read in. */
7638 if (info_verbose)
7639 {
7640 /* FIXME: i18n: Need to make this a single string. */
7641 fputs_filtered (" ", gdb_stdout);
7642 wrap_here ("");
7643 fputs_filtered ("and ", gdb_stdout);
7644 wrap_here ("");
7645 printf_filtered ("%s...", pst->dependencies[i]->filename);
7646 wrap_here (""); /* Flush output. */
7647 gdb_flush (gdb_stdout);
7648 }
7649 psymtab_to_symtab_1 (pst->dependencies[i]);
7650 }
7651
7652 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7653
7654 if (per_cu == NULL)
7655 {
7656 /* It's an include file, no symbols to read for it.
7657 Everything is in the parent symtab. */
7658 pst->readin = 1;
7659 return;
7660 }
7661
7662 dw2_do_instantiate_symtab (per_cu);
7663 }
7664
7665 /* Trivial hash function for die_info: the hash value of a DIE
7666 is its offset in .debug_info for this objfile. */
7667
7668 static hashval_t
7669 die_hash (const void *item)
7670 {
7671 const struct die_info *die = (const struct die_info *) item;
7672
7673 return die->offset.sect_off;
7674 }
7675
7676 /* Trivial comparison function for die_info structures: two DIEs
7677 are equal if they have the same offset. */
7678
7679 static int
7680 die_eq (const void *item_lhs, const void *item_rhs)
7681 {
7682 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7683 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7684
7685 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7686 }
7687
7688 /* die_reader_func for load_full_comp_unit.
7689 This is identical to read_signatured_type_reader,
7690 but is kept separate for now. */
7691
7692 static void
7693 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7694 const gdb_byte *info_ptr,
7695 struct die_info *comp_unit_die,
7696 int has_children,
7697 void *data)
7698 {
7699 struct dwarf2_cu *cu = reader->cu;
7700 enum language *language_ptr = (enum language *) data;
7701
7702 gdb_assert (cu->die_hash == NULL);
7703 cu->die_hash =
7704 htab_create_alloc_ex (cu->header.length / 12,
7705 die_hash,
7706 die_eq,
7707 NULL,
7708 &cu->comp_unit_obstack,
7709 hashtab_obstack_allocate,
7710 dummy_obstack_deallocate);
7711
7712 if (has_children)
7713 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7714 &info_ptr, comp_unit_die);
7715 cu->dies = comp_unit_die;
7716 /* comp_unit_die is not stored in die_hash, no need. */
7717
7718 /* We try not to read any attributes in this function, because not
7719 all CUs needed for references have been loaded yet, and symbol
7720 table processing isn't initialized. But we have to set the CU language,
7721 or we won't be able to build types correctly.
7722 Similarly, if we do not read the producer, we can not apply
7723 producer-specific interpretation. */
7724 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7725 }
7726
7727 /* Load the DIEs associated with PER_CU into memory. */
7728
7729 static void
7730 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7731 enum language pretend_language)
7732 {
7733 gdb_assert (! this_cu->is_debug_types);
7734
7735 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7736 load_full_comp_unit_reader, &pretend_language);
7737 }
7738
7739 /* Add a DIE to the delayed physname list. */
7740
7741 static void
7742 add_to_method_list (struct type *type, int fnfield_index, int index,
7743 const char *name, struct die_info *die,
7744 struct dwarf2_cu *cu)
7745 {
7746 struct delayed_method_info mi;
7747 mi.type = type;
7748 mi.fnfield_index = fnfield_index;
7749 mi.index = index;
7750 mi.name = name;
7751 mi.die = die;
7752 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7753 }
7754
7755 /* A cleanup for freeing the delayed method list. */
7756
7757 static void
7758 free_delayed_list (void *ptr)
7759 {
7760 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7761 if (cu->method_list != NULL)
7762 {
7763 VEC_free (delayed_method_info, cu->method_list);
7764 cu->method_list = NULL;
7765 }
7766 }
7767
7768 /* Compute the physnames of any methods on the CU's method list.
7769
7770 The computation of method physnames is delayed in order to avoid the
7771 (bad) condition that one of the method's formal parameters is of an as yet
7772 incomplete type. */
7773
7774 static void
7775 compute_delayed_physnames (struct dwarf2_cu *cu)
7776 {
7777 int i;
7778 struct delayed_method_info *mi;
7779 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7780 {
7781 const char *physname;
7782 struct fn_fieldlist *fn_flp
7783 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7784 physname = dwarf2_physname (mi->name, mi->die, cu);
7785 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7786 = physname ? physname : "";
7787 }
7788 }
7789
7790 /* Go objects should be embedded in a DW_TAG_module DIE,
7791 and it's not clear if/how imported objects will appear.
7792 To keep Go support simple until that's worked out,
7793 go back through what we've read and create something usable.
7794 We could do this while processing each DIE, and feels kinda cleaner,
7795 but that way is more invasive.
7796 This is to, for example, allow the user to type "p var" or "b main"
7797 without having to specify the package name, and allow lookups
7798 of module.object to work in contexts that use the expression
7799 parser. */
7800
7801 static void
7802 fixup_go_packaging (struct dwarf2_cu *cu)
7803 {
7804 char *package_name = NULL;
7805 struct pending *list;
7806 int i;
7807
7808 for (list = global_symbols; list != NULL; list = list->next)
7809 {
7810 for (i = 0; i < list->nsyms; ++i)
7811 {
7812 struct symbol *sym = list->symbol[i];
7813
7814 if (SYMBOL_LANGUAGE (sym) == language_go
7815 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7816 {
7817 char *this_package_name = go_symbol_package_name (sym);
7818
7819 if (this_package_name == NULL)
7820 continue;
7821 if (package_name == NULL)
7822 package_name = this_package_name;
7823 else
7824 {
7825 if (strcmp (package_name, this_package_name) != 0)
7826 complaint (&symfile_complaints,
7827 _("Symtab %s has objects from two different Go packages: %s and %s"),
7828 (symbol_symtab (sym) != NULL
7829 ? symtab_to_filename_for_display
7830 (symbol_symtab (sym))
7831 : objfile_name (cu->objfile)),
7832 this_package_name, package_name);
7833 xfree (this_package_name);
7834 }
7835 }
7836 }
7837 }
7838
7839 if (package_name != NULL)
7840 {
7841 struct objfile *objfile = cu->objfile;
7842 const char *saved_package_name
7843 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7844 package_name,
7845 strlen (package_name));
7846 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7847 saved_package_name, objfile);
7848 struct symbol *sym;
7849
7850 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7851
7852 sym = allocate_symbol (objfile);
7853 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7854 SYMBOL_SET_NAMES (sym, saved_package_name,
7855 strlen (saved_package_name), 0, objfile);
7856 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7857 e.g., "main" finds the "main" module and not C's main(). */
7858 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7859 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7860 SYMBOL_TYPE (sym) = type;
7861
7862 add_symbol_to_list (sym, &global_symbols);
7863
7864 xfree (package_name);
7865 }
7866 }
7867
7868 /* Return the symtab for PER_CU. This works properly regardless of
7869 whether we're using the index or psymtabs. */
7870
7871 static struct compunit_symtab *
7872 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7873 {
7874 return (dwarf2_per_objfile->using_index
7875 ? per_cu->v.quick->compunit_symtab
7876 : per_cu->v.psymtab->compunit_symtab);
7877 }
7878
7879 /* A helper function for computing the list of all symbol tables
7880 included by PER_CU. */
7881
7882 static void
7883 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7884 htab_t all_children, htab_t all_type_symtabs,
7885 struct dwarf2_per_cu_data *per_cu,
7886 struct compunit_symtab *immediate_parent)
7887 {
7888 void **slot;
7889 int ix;
7890 struct compunit_symtab *cust;
7891 struct dwarf2_per_cu_data *iter;
7892
7893 slot = htab_find_slot (all_children, per_cu, INSERT);
7894 if (*slot != NULL)
7895 {
7896 /* This inclusion and its children have been processed. */
7897 return;
7898 }
7899
7900 *slot = per_cu;
7901 /* Only add a CU if it has a symbol table. */
7902 cust = get_compunit_symtab (per_cu);
7903 if (cust != NULL)
7904 {
7905 /* If this is a type unit only add its symbol table if we haven't
7906 seen it yet (type unit per_cu's can share symtabs). */
7907 if (per_cu->is_debug_types)
7908 {
7909 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7910 if (*slot == NULL)
7911 {
7912 *slot = cust;
7913 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7914 if (cust->user == NULL)
7915 cust->user = immediate_parent;
7916 }
7917 }
7918 else
7919 {
7920 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7921 if (cust->user == NULL)
7922 cust->user = immediate_parent;
7923 }
7924 }
7925
7926 for (ix = 0;
7927 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7928 ++ix)
7929 {
7930 recursively_compute_inclusions (result, all_children,
7931 all_type_symtabs, iter, cust);
7932 }
7933 }
7934
7935 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7936 PER_CU. */
7937
7938 static void
7939 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7940 {
7941 gdb_assert (! per_cu->is_debug_types);
7942
7943 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7944 {
7945 int ix, len;
7946 struct dwarf2_per_cu_data *per_cu_iter;
7947 struct compunit_symtab *compunit_symtab_iter;
7948 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7949 htab_t all_children, all_type_symtabs;
7950 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7951
7952 /* If we don't have a symtab, we can just skip this case. */
7953 if (cust == NULL)
7954 return;
7955
7956 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7957 NULL, xcalloc, xfree);
7958 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7959 NULL, xcalloc, xfree);
7960
7961 for (ix = 0;
7962 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7963 ix, per_cu_iter);
7964 ++ix)
7965 {
7966 recursively_compute_inclusions (&result_symtabs, all_children,
7967 all_type_symtabs, per_cu_iter,
7968 cust);
7969 }
7970
7971 /* Now we have a transitive closure of all the included symtabs. */
7972 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7973 cust->includes
7974 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7975 struct compunit_symtab *, len + 1);
7976 for (ix = 0;
7977 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7978 compunit_symtab_iter);
7979 ++ix)
7980 cust->includes[ix] = compunit_symtab_iter;
7981 cust->includes[len] = NULL;
7982
7983 VEC_free (compunit_symtab_ptr, result_symtabs);
7984 htab_delete (all_children);
7985 htab_delete (all_type_symtabs);
7986 }
7987 }
7988
7989 /* Compute the 'includes' field for the symtabs of all the CUs we just
7990 read. */
7991
7992 static void
7993 process_cu_includes (void)
7994 {
7995 int ix;
7996 struct dwarf2_per_cu_data *iter;
7997
7998 for (ix = 0;
7999 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8000 ix, iter);
8001 ++ix)
8002 {
8003 if (! iter->is_debug_types)
8004 compute_compunit_symtab_includes (iter);
8005 }
8006
8007 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8008 }
8009
8010 /* Generate full symbol information for PER_CU, whose DIEs have
8011 already been loaded into memory. */
8012
8013 static void
8014 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8015 enum language pretend_language)
8016 {
8017 struct dwarf2_cu *cu = per_cu->cu;
8018 struct objfile *objfile = per_cu->objfile;
8019 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8020 CORE_ADDR lowpc, highpc;
8021 struct compunit_symtab *cust;
8022 struct cleanup *back_to, *delayed_list_cleanup;
8023 CORE_ADDR baseaddr;
8024 struct block *static_block;
8025 CORE_ADDR addr;
8026
8027 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8028
8029 buildsym_init ();
8030 back_to = make_cleanup (really_free_pendings, NULL);
8031 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8032
8033 cu->list_in_scope = &file_symbols;
8034
8035 cu->language = pretend_language;
8036 cu->language_defn = language_def (cu->language);
8037
8038 /* Do line number decoding in read_file_scope () */
8039 process_die (cu->dies, cu);
8040
8041 /* For now fudge the Go package. */
8042 if (cu->language == language_go)
8043 fixup_go_packaging (cu);
8044
8045 /* Now that we have processed all the DIEs in the CU, all the types
8046 should be complete, and it should now be safe to compute all of the
8047 physnames. */
8048 compute_delayed_physnames (cu);
8049 do_cleanups (delayed_list_cleanup);
8050
8051 /* Some compilers don't define a DW_AT_high_pc attribute for the
8052 compilation unit. If the DW_AT_high_pc is missing, synthesize
8053 it, by scanning the DIE's below the compilation unit. */
8054 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8055
8056 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8057 static_block = end_symtab_get_static_block (addr, 0, 1);
8058
8059 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8060 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8061 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8062 addrmap to help ensure it has an accurate map of pc values belonging to
8063 this comp unit. */
8064 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8065
8066 cust = end_symtab_from_static_block (static_block,
8067 SECT_OFF_TEXT (objfile), 0);
8068
8069 if (cust != NULL)
8070 {
8071 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8072
8073 /* Set symtab language to language from DW_AT_language. If the
8074 compilation is from a C file generated by language preprocessors, do
8075 not set the language if it was already deduced by start_subfile. */
8076 if (!(cu->language == language_c
8077 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8078 COMPUNIT_FILETABS (cust)->language = cu->language;
8079
8080 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8081 produce DW_AT_location with location lists but it can be possibly
8082 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8083 there were bugs in prologue debug info, fixed later in GCC-4.5
8084 by "unwind info for epilogues" patch (which is not directly related).
8085
8086 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8087 needed, it would be wrong due to missing DW_AT_producer there.
8088
8089 Still one can confuse GDB by using non-standard GCC compilation
8090 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8091 */
8092 if (cu->has_loclist && gcc_4_minor >= 5)
8093 cust->locations_valid = 1;
8094
8095 if (gcc_4_minor >= 5)
8096 cust->epilogue_unwind_valid = 1;
8097
8098 cust->call_site_htab = cu->call_site_htab;
8099 }
8100
8101 if (dwarf2_per_objfile->using_index)
8102 per_cu->v.quick->compunit_symtab = cust;
8103 else
8104 {
8105 struct partial_symtab *pst = per_cu->v.psymtab;
8106 pst->compunit_symtab = cust;
8107 pst->readin = 1;
8108 }
8109
8110 /* Push it for inclusion processing later. */
8111 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8112
8113 do_cleanups (back_to);
8114 }
8115
8116 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8117 already been loaded into memory. */
8118
8119 static void
8120 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8121 enum language pretend_language)
8122 {
8123 struct dwarf2_cu *cu = per_cu->cu;
8124 struct objfile *objfile = per_cu->objfile;
8125 struct compunit_symtab *cust;
8126 struct cleanup *back_to, *delayed_list_cleanup;
8127 struct signatured_type *sig_type;
8128
8129 gdb_assert (per_cu->is_debug_types);
8130 sig_type = (struct signatured_type *) per_cu;
8131
8132 buildsym_init ();
8133 back_to = make_cleanup (really_free_pendings, NULL);
8134 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8135
8136 cu->list_in_scope = &file_symbols;
8137
8138 cu->language = pretend_language;
8139 cu->language_defn = language_def (cu->language);
8140
8141 /* The symbol tables are set up in read_type_unit_scope. */
8142 process_die (cu->dies, cu);
8143
8144 /* For now fudge the Go package. */
8145 if (cu->language == language_go)
8146 fixup_go_packaging (cu);
8147
8148 /* Now that we have processed all the DIEs in the CU, all the types
8149 should be complete, and it should now be safe to compute all of the
8150 physnames. */
8151 compute_delayed_physnames (cu);
8152 do_cleanups (delayed_list_cleanup);
8153
8154 /* TUs share symbol tables.
8155 If this is the first TU to use this symtab, complete the construction
8156 of it with end_expandable_symtab. Otherwise, complete the addition of
8157 this TU's symbols to the existing symtab. */
8158 if (sig_type->type_unit_group->compunit_symtab == NULL)
8159 {
8160 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8161 sig_type->type_unit_group->compunit_symtab = cust;
8162
8163 if (cust != NULL)
8164 {
8165 /* Set symtab language to language from DW_AT_language. If the
8166 compilation is from a C file generated by language preprocessors,
8167 do not set the language if it was already deduced by
8168 start_subfile. */
8169 if (!(cu->language == language_c
8170 && COMPUNIT_FILETABS (cust)->language != language_c))
8171 COMPUNIT_FILETABS (cust)->language = cu->language;
8172 }
8173 }
8174 else
8175 {
8176 augment_type_symtab ();
8177 cust = sig_type->type_unit_group->compunit_symtab;
8178 }
8179
8180 if (dwarf2_per_objfile->using_index)
8181 per_cu->v.quick->compunit_symtab = cust;
8182 else
8183 {
8184 struct partial_symtab *pst = per_cu->v.psymtab;
8185 pst->compunit_symtab = cust;
8186 pst->readin = 1;
8187 }
8188
8189 do_cleanups (back_to);
8190 }
8191
8192 /* Process an imported unit DIE. */
8193
8194 static void
8195 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8196 {
8197 struct attribute *attr;
8198
8199 /* For now we don't handle imported units in type units. */
8200 if (cu->per_cu->is_debug_types)
8201 {
8202 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8203 " supported in type units [in module %s]"),
8204 objfile_name (cu->objfile));
8205 }
8206
8207 attr = dwarf2_attr (die, DW_AT_import, cu);
8208 if (attr != NULL)
8209 {
8210 struct dwarf2_per_cu_data *per_cu;
8211 sect_offset offset;
8212 int is_dwz;
8213
8214 offset = dwarf2_get_ref_die_offset (attr);
8215 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8216 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8217
8218 /* If necessary, add it to the queue and load its DIEs. */
8219 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8220 load_full_comp_unit (per_cu, cu->language);
8221
8222 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8223 per_cu);
8224 }
8225 }
8226
8227 /* Reset the in_process bit of a die. */
8228
8229 static void
8230 reset_die_in_process (void *arg)
8231 {
8232 struct die_info *die = (struct die_info *) arg;
8233
8234 die->in_process = 0;
8235 }
8236
8237 /* Process a die and its children. */
8238
8239 static void
8240 process_die (struct die_info *die, struct dwarf2_cu *cu)
8241 {
8242 struct cleanup *in_process;
8243
8244 /* We should only be processing those not already in process. */
8245 gdb_assert (!die->in_process);
8246
8247 die->in_process = 1;
8248 in_process = make_cleanup (reset_die_in_process,die);
8249
8250 switch (die->tag)
8251 {
8252 case DW_TAG_padding:
8253 break;
8254 case DW_TAG_compile_unit:
8255 case DW_TAG_partial_unit:
8256 read_file_scope (die, cu);
8257 break;
8258 case DW_TAG_type_unit:
8259 read_type_unit_scope (die, cu);
8260 break;
8261 case DW_TAG_subprogram:
8262 case DW_TAG_inlined_subroutine:
8263 read_func_scope (die, cu);
8264 break;
8265 case DW_TAG_lexical_block:
8266 case DW_TAG_try_block:
8267 case DW_TAG_catch_block:
8268 read_lexical_block_scope (die, cu);
8269 break;
8270 case DW_TAG_GNU_call_site:
8271 read_call_site_scope (die, cu);
8272 break;
8273 case DW_TAG_class_type:
8274 case DW_TAG_interface_type:
8275 case DW_TAG_structure_type:
8276 case DW_TAG_union_type:
8277 process_structure_scope (die, cu);
8278 break;
8279 case DW_TAG_enumeration_type:
8280 process_enumeration_scope (die, cu);
8281 break;
8282
8283 /* These dies have a type, but processing them does not create
8284 a symbol or recurse to process the children. Therefore we can
8285 read them on-demand through read_type_die. */
8286 case DW_TAG_subroutine_type:
8287 case DW_TAG_set_type:
8288 case DW_TAG_array_type:
8289 case DW_TAG_pointer_type:
8290 case DW_TAG_ptr_to_member_type:
8291 case DW_TAG_reference_type:
8292 case DW_TAG_string_type:
8293 break;
8294
8295 case DW_TAG_base_type:
8296 case DW_TAG_subrange_type:
8297 case DW_TAG_typedef:
8298 /* Add a typedef symbol for the type definition, if it has a
8299 DW_AT_name. */
8300 new_symbol (die, read_type_die (die, cu), cu);
8301 break;
8302 case DW_TAG_common_block:
8303 read_common_block (die, cu);
8304 break;
8305 case DW_TAG_common_inclusion:
8306 break;
8307 case DW_TAG_namespace:
8308 cu->processing_has_namespace_info = 1;
8309 read_namespace (die, cu);
8310 break;
8311 case DW_TAG_module:
8312 cu->processing_has_namespace_info = 1;
8313 read_module (die, cu);
8314 break;
8315 case DW_TAG_imported_declaration:
8316 cu->processing_has_namespace_info = 1;
8317 if (read_namespace_alias (die, cu))
8318 break;
8319 /* The declaration is not a global namespace alias: fall through. */
8320 case DW_TAG_imported_module:
8321 cu->processing_has_namespace_info = 1;
8322 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8323 || cu->language != language_fortran))
8324 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8325 dwarf_tag_name (die->tag));
8326 read_import_statement (die, cu);
8327 break;
8328
8329 case DW_TAG_imported_unit:
8330 process_imported_unit_die (die, cu);
8331 break;
8332
8333 default:
8334 new_symbol (die, NULL, cu);
8335 break;
8336 }
8337
8338 do_cleanups (in_process);
8339 }
8340 \f
8341 /* DWARF name computation. */
8342
8343 /* A helper function for dwarf2_compute_name which determines whether DIE
8344 needs to have the name of the scope prepended to the name listed in the
8345 die. */
8346
8347 static int
8348 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8349 {
8350 struct attribute *attr;
8351
8352 switch (die->tag)
8353 {
8354 case DW_TAG_namespace:
8355 case DW_TAG_typedef:
8356 case DW_TAG_class_type:
8357 case DW_TAG_interface_type:
8358 case DW_TAG_structure_type:
8359 case DW_TAG_union_type:
8360 case DW_TAG_enumeration_type:
8361 case DW_TAG_enumerator:
8362 case DW_TAG_subprogram:
8363 case DW_TAG_inlined_subroutine:
8364 case DW_TAG_member:
8365 case DW_TAG_imported_declaration:
8366 return 1;
8367
8368 case DW_TAG_variable:
8369 case DW_TAG_constant:
8370 /* We only need to prefix "globally" visible variables. These include
8371 any variable marked with DW_AT_external or any variable that
8372 lives in a namespace. [Variables in anonymous namespaces
8373 require prefixing, but they are not DW_AT_external.] */
8374
8375 if (dwarf2_attr (die, DW_AT_specification, cu))
8376 {
8377 struct dwarf2_cu *spec_cu = cu;
8378
8379 return die_needs_namespace (die_specification (die, &spec_cu),
8380 spec_cu);
8381 }
8382
8383 attr = dwarf2_attr (die, DW_AT_external, cu);
8384 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8385 && die->parent->tag != DW_TAG_module)
8386 return 0;
8387 /* A variable in a lexical block of some kind does not need a
8388 namespace, even though in C++ such variables may be external
8389 and have a mangled name. */
8390 if (die->parent->tag == DW_TAG_lexical_block
8391 || die->parent->tag == DW_TAG_try_block
8392 || die->parent->tag == DW_TAG_catch_block
8393 || die->parent->tag == DW_TAG_subprogram)
8394 return 0;
8395 return 1;
8396
8397 default:
8398 return 0;
8399 }
8400 }
8401
8402 /* Retrieve the last character from a mem_file. */
8403
8404 static void
8405 do_ui_file_peek_last (void *object, const char *buffer, long length)
8406 {
8407 char *last_char_p = (char *) object;
8408
8409 if (length > 0)
8410 *last_char_p = buffer[length - 1];
8411 }
8412
8413 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8414 compute the physname for the object, which include a method's:
8415 - formal parameters (C++/Java),
8416 - receiver type (Go),
8417 - return type (Java).
8418
8419 The term "physname" is a bit confusing.
8420 For C++, for example, it is the demangled name.
8421 For Go, for example, it's the mangled name.
8422
8423 For Ada, return the DIE's linkage name rather than the fully qualified
8424 name. PHYSNAME is ignored..
8425
8426 The result is allocated on the objfile_obstack and canonicalized. */
8427
8428 static const char *
8429 dwarf2_compute_name (const char *name,
8430 struct die_info *die, struct dwarf2_cu *cu,
8431 int physname)
8432 {
8433 struct objfile *objfile = cu->objfile;
8434
8435 if (name == NULL)
8436 name = dwarf2_name (die, cu);
8437
8438 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8439 but otherwise compute it by typename_concat inside GDB.
8440 FIXME: Actually this is not really true, or at least not always true.
8441 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8442 Fortran names because there is no mangling standard. So new_symbol_full
8443 will set the demangled name to the result of dwarf2_full_name, and it is
8444 the demangled name that GDB uses if it exists. */
8445 if (cu->language == language_ada
8446 || (cu->language == language_fortran && physname))
8447 {
8448 /* For Ada unit, we prefer the linkage name over the name, as
8449 the former contains the exported name, which the user expects
8450 to be able to reference. Ideally, we want the user to be able
8451 to reference this entity using either natural or linkage name,
8452 but we haven't started looking at this enhancement yet. */
8453 const char *linkage_name;
8454
8455 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8456 if (linkage_name == NULL)
8457 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8458 if (linkage_name != NULL)
8459 return linkage_name;
8460 }
8461
8462 /* These are the only languages we know how to qualify names in. */
8463 if (name != NULL
8464 && (cu->language == language_cplus || cu->language == language_java
8465 || cu->language == language_fortran || cu->language == language_d
8466 || cu->language == language_rust))
8467 {
8468 if (die_needs_namespace (die, cu))
8469 {
8470 long length;
8471 const char *prefix;
8472 struct ui_file *buf;
8473 char *intermediate_name;
8474 const char *canonical_name = NULL;
8475
8476 prefix = determine_prefix (die, cu);
8477 buf = mem_fileopen ();
8478 if (*prefix != '\0')
8479 {
8480 char *prefixed_name = typename_concat (NULL, prefix, name,
8481 physname, cu);
8482
8483 fputs_unfiltered (prefixed_name, buf);
8484 xfree (prefixed_name);
8485 }
8486 else
8487 fputs_unfiltered (name, buf);
8488
8489 /* Template parameters may be specified in the DIE's DW_AT_name, or
8490 as children with DW_TAG_template_type_param or
8491 DW_TAG_value_type_param. If the latter, add them to the name
8492 here. If the name already has template parameters, then
8493 skip this step; some versions of GCC emit both, and
8494 it is more efficient to use the pre-computed name.
8495
8496 Something to keep in mind about this process: it is very
8497 unlikely, or in some cases downright impossible, to produce
8498 something that will match the mangled name of a function.
8499 If the definition of the function has the same debug info,
8500 we should be able to match up with it anyway. But fallbacks
8501 using the minimal symbol, for instance to find a method
8502 implemented in a stripped copy of libstdc++, will not work.
8503 If we do not have debug info for the definition, we will have to
8504 match them up some other way.
8505
8506 When we do name matching there is a related problem with function
8507 templates; two instantiated function templates are allowed to
8508 differ only by their return types, which we do not add here. */
8509
8510 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8511 {
8512 struct attribute *attr;
8513 struct die_info *child;
8514 int first = 1;
8515
8516 die->building_fullname = 1;
8517
8518 for (child = die->child; child != NULL; child = child->sibling)
8519 {
8520 struct type *type;
8521 LONGEST value;
8522 const gdb_byte *bytes;
8523 struct dwarf2_locexpr_baton *baton;
8524 struct value *v;
8525
8526 if (child->tag != DW_TAG_template_type_param
8527 && child->tag != DW_TAG_template_value_param)
8528 continue;
8529
8530 if (first)
8531 {
8532 fputs_unfiltered ("<", buf);
8533 first = 0;
8534 }
8535 else
8536 fputs_unfiltered (", ", buf);
8537
8538 attr = dwarf2_attr (child, DW_AT_type, cu);
8539 if (attr == NULL)
8540 {
8541 complaint (&symfile_complaints,
8542 _("template parameter missing DW_AT_type"));
8543 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8544 continue;
8545 }
8546 type = die_type (child, cu);
8547
8548 if (child->tag == DW_TAG_template_type_param)
8549 {
8550 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8551 continue;
8552 }
8553
8554 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8555 if (attr == NULL)
8556 {
8557 complaint (&symfile_complaints,
8558 _("template parameter missing "
8559 "DW_AT_const_value"));
8560 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8561 continue;
8562 }
8563
8564 dwarf2_const_value_attr (attr, type, name,
8565 &cu->comp_unit_obstack, cu,
8566 &value, &bytes, &baton);
8567
8568 if (TYPE_NOSIGN (type))
8569 /* GDB prints characters as NUMBER 'CHAR'. If that's
8570 changed, this can use value_print instead. */
8571 c_printchar (value, type, buf);
8572 else
8573 {
8574 struct value_print_options opts;
8575
8576 if (baton != NULL)
8577 v = dwarf2_evaluate_loc_desc (type, NULL,
8578 baton->data,
8579 baton->size,
8580 baton->per_cu);
8581 else if (bytes != NULL)
8582 {
8583 v = allocate_value (type);
8584 memcpy (value_contents_writeable (v), bytes,
8585 TYPE_LENGTH (type));
8586 }
8587 else
8588 v = value_from_longest (type, value);
8589
8590 /* Specify decimal so that we do not depend on
8591 the radix. */
8592 get_formatted_print_options (&opts, 'd');
8593 opts.raw = 1;
8594 value_print (v, buf, &opts);
8595 release_value (v);
8596 value_free (v);
8597 }
8598 }
8599
8600 die->building_fullname = 0;
8601
8602 if (!first)
8603 {
8604 /* Close the argument list, with a space if necessary
8605 (nested templates). */
8606 char last_char = '\0';
8607 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8608 if (last_char == '>')
8609 fputs_unfiltered (" >", buf);
8610 else
8611 fputs_unfiltered (">", buf);
8612 }
8613 }
8614
8615 /* For Java and C++ methods, append formal parameter type
8616 information, if PHYSNAME. */
8617
8618 if (physname && die->tag == DW_TAG_subprogram
8619 && (cu->language == language_cplus
8620 || cu->language == language_java))
8621 {
8622 struct type *type = read_type_die (die, cu);
8623
8624 c_type_print_args (type, buf, 1, cu->language,
8625 &type_print_raw_options);
8626
8627 if (cu->language == language_java)
8628 {
8629 /* For java, we must append the return type to method
8630 names. */
8631 if (die->tag == DW_TAG_subprogram)
8632 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8633 0, 0, &type_print_raw_options);
8634 }
8635 else if (cu->language == language_cplus)
8636 {
8637 /* Assume that an artificial first parameter is
8638 "this", but do not crash if it is not. RealView
8639 marks unnamed (and thus unused) parameters as
8640 artificial; there is no way to differentiate
8641 the two cases. */
8642 if (TYPE_NFIELDS (type) > 0
8643 && TYPE_FIELD_ARTIFICIAL (type, 0)
8644 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8645 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8646 0))))
8647 fputs_unfiltered (" const", buf);
8648 }
8649 }
8650
8651 intermediate_name = ui_file_xstrdup (buf, &length);
8652 ui_file_delete (buf);
8653
8654 if (cu->language == language_cplus)
8655 canonical_name
8656 = dwarf2_canonicalize_name (intermediate_name, cu,
8657 &objfile->per_bfd->storage_obstack);
8658
8659 /* If we only computed INTERMEDIATE_NAME, or if
8660 INTERMEDIATE_NAME is already canonical, then we need to
8661 copy it to the appropriate obstack. */
8662 if (canonical_name == NULL || canonical_name == intermediate_name)
8663 name = ((const char *)
8664 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8665 intermediate_name,
8666 strlen (intermediate_name)));
8667 else
8668 name = canonical_name;
8669
8670 xfree (intermediate_name);
8671 }
8672 }
8673
8674 return name;
8675 }
8676
8677 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8678 If scope qualifiers are appropriate they will be added. The result
8679 will be allocated on the storage_obstack, or NULL if the DIE does
8680 not have a name. NAME may either be from a previous call to
8681 dwarf2_name or NULL.
8682
8683 The output string will be canonicalized (if C++/Java). */
8684
8685 static const char *
8686 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8687 {
8688 return dwarf2_compute_name (name, die, cu, 0);
8689 }
8690
8691 /* Construct a physname for the given DIE in CU. NAME may either be
8692 from a previous call to dwarf2_name or NULL. The result will be
8693 allocated on the objfile_objstack or NULL if the DIE does not have a
8694 name.
8695
8696 The output string will be canonicalized (if C++/Java). */
8697
8698 static const char *
8699 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8700 {
8701 struct objfile *objfile = cu->objfile;
8702 const char *retval, *mangled = NULL, *canon = NULL;
8703 struct cleanup *back_to;
8704 int need_copy = 1;
8705
8706 /* In this case dwarf2_compute_name is just a shortcut not building anything
8707 on its own. */
8708 if (!die_needs_namespace (die, cu))
8709 return dwarf2_compute_name (name, die, cu, 1);
8710
8711 back_to = make_cleanup (null_cleanup, NULL);
8712
8713 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8714 if (mangled == NULL)
8715 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8716
8717 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8718 has computed. */
8719 if (mangled != NULL)
8720 {
8721 char *demangled;
8722
8723 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8724 type. It is easier for GDB users to search for such functions as
8725 `name(params)' than `long name(params)'. In such case the minimal
8726 symbol names do not match the full symbol names but for template
8727 functions there is never a need to look up their definition from their
8728 declaration so the only disadvantage remains the minimal symbol
8729 variant `long name(params)' does not have the proper inferior type.
8730 */
8731
8732 if (cu->language == language_go)
8733 {
8734 /* This is a lie, but we already lie to the caller new_symbol_full.
8735 new_symbol_full assumes we return the mangled name.
8736 This just undoes that lie until things are cleaned up. */
8737 demangled = NULL;
8738 }
8739 else
8740 {
8741 demangled = gdb_demangle (mangled,
8742 (DMGL_PARAMS | DMGL_ANSI
8743 | (cu->language == language_java
8744 ? DMGL_JAVA | DMGL_RET_POSTFIX
8745 : DMGL_RET_DROP)));
8746 }
8747 if (demangled)
8748 {
8749 make_cleanup (xfree, demangled);
8750 canon = demangled;
8751 }
8752 else
8753 {
8754 canon = mangled;
8755 need_copy = 0;
8756 }
8757 }
8758
8759 if (canon == NULL || check_physname)
8760 {
8761 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8762
8763 if (canon != NULL && strcmp (physname, canon) != 0)
8764 {
8765 /* It may not mean a bug in GDB. The compiler could also
8766 compute DW_AT_linkage_name incorrectly. But in such case
8767 GDB would need to be bug-to-bug compatible. */
8768
8769 complaint (&symfile_complaints,
8770 _("Computed physname <%s> does not match demangled <%s> "
8771 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8772 physname, canon, mangled, die->offset.sect_off,
8773 objfile_name (objfile));
8774
8775 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8776 is available here - over computed PHYSNAME. It is safer
8777 against both buggy GDB and buggy compilers. */
8778
8779 retval = canon;
8780 }
8781 else
8782 {
8783 retval = physname;
8784 need_copy = 0;
8785 }
8786 }
8787 else
8788 retval = canon;
8789
8790 if (need_copy)
8791 retval = ((const char *)
8792 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8793 retval, strlen (retval)));
8794
8795 do_cleanups (back_to);
8796 return retval;
8797 }
8798
8799 /* Inspect DIE in CU for a namespace alias. If one exists, record
8800 a new symbol for it.
8801
8802 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8803
8804 static int
8805 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8806 {
8807 struct attribute *attr;
8808
8809 /* If the die does not have a name, this is not a namespace
8810 alias. */
8811 attr = dwarf2_attr (die, DW_AT_name, cu);
8812 if (attr != NULL)
8813 {
8814 int num;
8815 struct die_info *d = die;
8816 struct dwarf2_cu *imported_cu = cu;
8817
8818 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8819 keep inspecting DIEs until we hit the underlying import. */
8820 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8821 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8822 {
8823 attr = dwarf2_attr (d, DW_AT_import, cu);
8824 if (attr == NULL)
8825 break;
8826
8827 d = follow_die_ref (d, attr, &imported_cu);
8828 if (d->tag != DW_TAG_imported_declaration)
8829 break;
8830 }
8831
8832 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8833 {
8834 complaint (&symfile_complaints,
8835 _("DIE at 0x%x has too many recursively imported "
8836 "declarations"), d->offset.sect_off);
8837 return 0;
8838 }
8839
8840 if (attr != NULL)
8841 {
8842 struct type *type;
8843 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8844
8845 type = get_die_type_at_offset (offset, cu->per_cu);
8846 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8847 {
8848 /* This declaration is a global namespace alias. Add
8849 a symbol for it whose type is the aliased namespace. */
8850 new_symbol (die, type, cu);
8851 return 1;
8852 }
8853 }
8854 }
8855
8856 return 0;
8857 }
8858
8859 /* Return the using directives repository (global or local?) to use in the
8860 current context for LANGUAGE.
8861
8862 For Ada, imported declarations can materialize renamings, which *may* be
8863 global. However it is impossible (for now?) in DWARF to distinguish
8864 "external" imported declarations and "static" ones. As all imported
8865 declarations seem to be static in all other languages, make them all CU-wide
8866 global only in Ada. */
8867
8868 static struct using_direct **
8869 using_directives (enum language language)
8870 {
8871 if (language == language_ada && context_stack_depth == 0)
8872 return &global_using_directives;
8873 else
8874 return &local_using_directives;
8875 }
8876
8877 /* Read the import statement specified by the given die and record it. */
8878
8879 static void
8880 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8881 {
8882 struct objfile *objfile = cu->objfile;
8883 struct attribute *import_attr;
8884 struct die_info *imported_die, *child_die;
8885 struct dwarf2_cu *imported_cu;
8886 const char *imported_name;
8887 const char *imported_name_prefix;
8888 const char *canonical_name;
8889 const char *import_alias;
8890 const char *imported_declaration = NULL;
8891 const char *import_prefix;
8892 VEC (const_char_ptr) *excludes = NULL;
8893 struct cleanup *cleanups;
8894
8895 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8896 if (import_attr == NULL)
8897 {
8898 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8899 dwarf_tag_name (die->tag));
8900 return;
8901 }
8902
8903 imported_cu = cu;
8904 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8905 imported_name = dwarf2_name (imported_die, imported_cu);
8906 if (imported_name == NULL)
8907 {
8908 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8909
8910 The import in the following code:
8911 namespace A
8912 {
8913 typedef int B;
8914 }
8915
8916 int main ()
8917 {
8918 using A::B;
8919 B b;
8920 return b;
8921 }
8922
8923 ...
8924 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8925 <52> DW_AT_decl_file : 1
8926 <53> DW_AT_decl_line : 6
8927 <54> DW_AT_import : <0x75>
8928 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8929 <59> DW_AT_name : B
8930 <5b> DW_AT_decl_file : 1
8931 <5c> DW_AT_decl_line : 2
8932 <5d> DW_AT_type : <0x6e>
8933 ...
8934 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8935 <76> DW_AT_byte_size : 4
8936 <77> DW_AT_encoding : 5 (signed)
8937
8938 imports the wrong die ( 0x75 instead of 0x58 ).
8939 This case will be ignored until the gcc bug is fixed. */
8940 return;
8941 }
8942
8943 /* Figure out the local name after import. */
8944 import_alias = dwarf2_name (die, cu);
8945
8946 /* Figure out where the statement is being imported to. */
8947 import_prefix = determine_prefix (die, cu);
8948
8949 /* Figure out what the scope of the imported die is and prepend it
8950 to the name of the imported die. */
8951 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8952
8953 if (imported_die->tag != DW_TAG_namespace
8954 && imported_die->tag != DW_TAG_module)
8955 {
8956 imported_declaration = imported_name;
8957 canonical_name = imported_name_prefix;
8958 }
8959 else if (strlen (imported_name_prefix) > 0)
8960 canonical_name = obconcat (&objfile->objfile_obstack,
8961 imported_name_prefix,
8962 (cu->language == language_d ? "." : "::"),
8963 imported_name, (char *) NULL);
8964 else
8965 canonical_name = imported_name;
8966
8967 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8968
8969 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8970 for (child_die = die->child; child_die && child_die->tag;
8971 child_die = sibling_die (child_die))
8972 {
8973 /* DWARF-4: A Fortran use statement with a “rename list” may be
8974 represented by an imported module entry with an import attribute
8975 referring to the module and owned entries corresponding to those
8976 entities that are renamed as part of being imported. */
8977
8978 if (child_die->tag != DW_TAG_imported_declaration)
8979 {
8980 complaint (&symfile_complaints,
8981 _("child DW_TAG_imported_declaration expected "
8982 "- DIE at 0x%x [in module %s]"),
8983 child_die->offset.sect_off, objfile_name (objfile));
8984 continue;
8985 }
8986
8987 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8988 if (import_attr == NULL)
8989 {
8990 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8991 dwarf_tag_name (child_die->tag));
8992 continue;
8993 }
8994
8995 imported_cu = cu;
8996 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8997 &imported_cu);
8998 imported_name = dwarf2_name (imported_die, imported_cu);
8999 if (imported_name == NULL)
9000 {
9001 complaint (&symfile_complaints,
9002 _("child DW_TAG_imported_declaration has unknown "
9003 "imported name - DIE at 0x%x [in module %s]"),
9004 child_die->offset.sect_off, objfile_name (objfile));
9005 continue;
9006 }
9007
9008 VEC_safe_push (const_char_ptr, excludes, imported_name);
9009
9010 process_die (child_die, cu);
9011 }
9012
9013 add_using_directive (using_directives (cu->language),
9014 import_prefix,
9015 canonical_name,
9016 import_alias,
9017 imported_declaration,
9018 excludes,
9019 0,
9020 &objfile->objfile_obstack);
9021
9022 do_cleanups (cleanups);
9023 }
9024
9025 /* Cleanup function for handle_DW_AT_stmt_list. */
9026
9027 static void
9028 free_cu_line_header (void *arg)
9029 {
9030 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
9031
9032 free_line_header (cu->line_header);
9033 cu->line_header = NULL;
9034 }
9035
9036 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9037 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9038 this, it was first present in GCC release 4.3.0. */
9039
9040 static int
9041 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9042 {
9043 if (!cu->checked_producer)
9044 check_producer (cu);
9045
9046 return cu->producer_is_gcc_lt_4_3;
9047 }
9048
9049 static void
9050 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9051 const char **name, const char **comp_dir)
9052 {
9053 /* Find the filename. Do not use dwarf2_name here, since the filename
9054 is not a source language identifier. */
9055 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9056 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9057
9058 if (*comp_dir == NULL
9059 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9060 && IS_ABSOLUTE_PATH (*name))
9061 {
9062 char *d = ldirname (*name);
9063
9064 *comp_dir = d;
9065 if (d != NULL)
9066 make_cleanup (xfree, d);
9067 }
9068 if (*comp_dir != NULL)
9069 {
9070 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9071 directory, get rid of it. */
9072 const char *cp = strchr (*comp_dir, ':');
9073
9074 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9075 *comp_dir = cp + 1;
9076 }
9077
9078 if (*name == NULL)
9079 *name = "<unknown>";
9080 }
9081
9082 /* Handle DW_AT_stmt_list for a compilation unit.
9083 DIE is the DW_TAG_compile_unit die for CU.
9084 COMP_DIR is the compilation directory. LOWPC is passed to
9085 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9086
9087 static void
9088 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9089 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9090 {
9091 struct objfile *objfile = dwarf2_per_objfile->objfile;
9092 struct attribute *attr;
9093 unsigned int line_offset;
9094 struct line_header line_header_local;
9095 hashval_t line_header_local_hash;
9096 unsigned u;
9097 void **slot;
9098 int decode_mapping;
9099
9100 gdb_assert (! cu->per_cu->is_debug_types);
9101
9102 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9103 if (attr == NULL)
9104 return;
9105
9106 line_offset = DW_UNSND (attr);
9107
9108 /* The line header hash table is only created if needed (it exists to
9109 prevent redundant reading of the line table for partial_units).
9110 If we're given a partial_unit, we'll need it. If we're given a
9111 compile_unit, then use the line header hash table if it's already
9112 created, but don't create one just yet. */
9113
9114 if (dwarf2_per_objfile->line_header_hash == NULL
9115 && die->tag == DW_TAG_partial_unit)
9116 {
9117 dwarf2_per_objfile->line_header_hash
9118 = htab_create_alloc_ex (127, line_header_hash_voidp,
9119 line_header_eq_voidp,
9120 free_line_header_voidp,
9121 &objfile->objfile_obstack,
9122 hashtab_obstack_allocate,
9123 dummy_obstack_deallocate);
9124 }
9125
9126 line_header_local.offset.sect_off = line_offset;
9127 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9128 line_header_local_hash = line_header_hash (&line_header_local);
9129 if (dwarf2_per_objfile->line_header_hash != NULL)
9130 {
9131 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9132 &line_header_local,
9133 line_header_local_hash, NO_INSERT);
9134
9135 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9136 is not present in *SLOT (since if there is something in *SLOT then
9137 it will be for a partial_unit). */
9138 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9139 {
9140 gdb_assert (*slot != NULL);
9141 cu->line_header = (struct line_header *) *slot;
9142 return;
9143 }
9144 }
9145
9146 /* dwarf_decode_line_header does not yet provide sufficient information.
9147 We always have to call also dwarf_decode_lines for it. */
9148 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9149 if (cu->line_header == NULL)
9150 return;
9151
9152 if (dwarf2_per_objfile->line_header_hash == NULL)
9153 slot = NULL;
9154 else
9155 {
9156 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9157 &line_header_local,
9158 line_header_local_hash, INSERT);
9159 gdb_assert (slot != NULL);
9160 }
9161 if (slot != NULL && *slot == NULL)
9162 {
9163 /* This newly decoded line number information unit will be owned
9164 by line_header_hash hash table. */
9165 *slot = cu->line_header;
9166 }
9167 else
9168 {
9169 /* We cannot free any current entry in (*slot) as that struct line_header
9170 may be already used by multiple CUs. Create only temporary decoded
9171 line_header for this CU - it may happen at most once for each line
9172 number information unit. And if we're not using line_header_hash
9173 then this is what we want as well. */
9174 gdb_assert (die->tag != DW_TAG_partial_unit);
9175 make_cleanup (free_cu_line_header, cu);
9176 }
9177 decode_mapping = (die->tag != DW_TAG_partial_unit);
9178 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9179 decode_mapping);
9180 }
9181
9182 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9183
9184 static void
9185 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9186 {
9187 struct objfile *objfile = dwarf2_per_objfile->objfile;
9188 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9189 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9190 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9191 CORE_ADDR highpc = ((CORE_ADDR) 0);
9192 struct attribute *attr;
9193 const char *name = NULL;
9194 const char *comp_dir = NULL;
9195 struct die_info *child_die;
9196 CORE_ADDR baseaddr;
9197
9198 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9199
9200 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9201
9202 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9203 from finish_block. */
9204 if (lowpc == ((CORE_ADDR) -1))
9205 lowpc = highpc;
9206 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9207
9208 find_file_and_directory (die, cu, &name, &comp_dir);
9209
9210 prepare_one_comp_unit (cu, die, cu->language);
9211
9212 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9213 standardised yet. As a workaround for the language detection we fall
9214 back to the DW_AT_producer string. */
9215 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9216 cu->language = language_opencl;
9217
9218 /* Similar hack for Go. */
9219 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9220 set_cu_language (DW_LANG_Go, cu);
9221
9222 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9223
9224 /* Decode line number information if present. We do this before
9225 processing child DIEs, so that the line header table is available
9226 for DW_AT_decl_file. */
9227 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9228
9229 /* Process all dies in compilation unit. */
9230 if (die->child != NULL)
9231 {
9232 child_die = die->child;
9233 while (child_die && child_die->tag)
9234 {
9235 process_die (child_die, cu);
9236 child_die = sibling_die (child_die);
9237 }
9238 }
9239
9240 /* Decode macro information, if present. Dwarf 2 macro information
9241 refers to information in the line number info statement program
9242 header, so we can only read it if we've read the header
9243 successfully. */
9244 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9245 if (attr && cu->line_header)
9246 {
9247 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9248 complaint (&symfile_complaints,
9249 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9250
9251 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9252 }
9253 else
9254 {
9255 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9256 if (attr && cu->line_header)
9257 {
9258 unsigned int macro_offset = DW_UNSND (attr);
9259
9260 dwarf_decode_macros (cu, macro_offset, 0);
9261 }
9262 }
9263
9264 do_cleanups (back_to);
9265 }
9266
9267 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9268 Create the set of symtabs used by this TU, or if this TU is sharing
9269 symtabs with another TU and the symtabs have already been created
9270 then restore those symtabs in the line header.
9271 We don't need the pc/line-number mapping for type units. */
9272
9273 static void
9274 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9275 {
9276 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9277 struct type_unit_group *tu_group;
9278 int first_time;
9279 struct line_header *lh;
9280 struct attribute *attr;
9281 unsigned int i, line_offset;
9282 struct signatured_type *sig_type;
9283
9284 gdb_assert (per_cu->is_debug_types);
9285 sig_type = (struct signatured_type *) per_cu;
9286
9287 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9288
9289 /* If we're using .gdb_index (includes -readnow) then
9290 per_cu->type_unit_group may not have been set up yet. */
9291 if (sig_type->type_unit_group == NULL)
9292 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9293 tu_group = sig_type->type_unit_group;
9294
9295 /* If we've already processed this stmt_list there's no real need to
9296 do it again, we could fake it and just recreate the part we need
9297 (file name,index -> symtab mapping). If data shows this optimization
9298 is useful we can do it then. */
9299 first_time = tu_group->compunit_symtab == NULL;
9300
9301 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9302 debug info. */
9303 lh = NULL;
9304 if (attr != NULL)
9305 {
9306 line_offset = DW_UNSND (attr);
9307 lh = dwarf_decode_line_header (line_offset, cu);
9308 }
9309 if (lh == NULL)
9310 {
9311 if (first_time)
9312 dwarf2_start_symtab (cu, "", NULL, 0);
9313 else
9314 {
9315 gdb_assert (tu_group->symtabs == NULL);
9316 restart_symtab (tu_group->compunit_symtab, "", 0);
9317 }
9318 return;
9319 }
9320
9321 cu->line_header = lh;
9322 make_cleanup (free_cu_line_header, cu);
9323
9324 if (first_time)
9325 {
9326 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9327
9328 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9329 still initializing it, and our caller (a few levels up)
9330 process_full_type_unit still needs to know if this is the first
9331 time. */
9332
9333 tu_group->num_symtabs = lh->num_file_names;
9334 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9335
9336 for (i = 0; i < lh->num_file_names; ++i)
9337 {
9338 const char *dir = NULL;
9339 struct file_entry *fe = &lh->file_names[i];
9340
9341 if (fe->dir_index && lh->include_dirs != NULL)
9342 dir = lh->include_dirs[fe->dir_index - 1];
9343 dwarf2_start_subfile (fe->name, dir);
9344
9345 if (current_subfile->symtab == NULL)
9346 {
9347 /* NOTE: start_subfile will recognize when it's been passed
9348 a file it has already seen. So we can't assume there's a
9349 simple mapping from lh->file_names to subfiles, plus
9350 lh->file_names may contain dups. */
9351 current_subfile->symtab
9352 = allocate_symtab (cust, current_subfile->name);
9353 }
9354
9355 fe->symtab = current_subfile->symtab;
9356 tu_group->symtabs[i] = fe->symtab;
9357 }
9358 }
9359 else
9360 {
9361 restart_symtab (tu_group->compunit_symtab, "", 0);
9362
9363 for (i = 0; i < lh->num_file_names; ++i)
9364 {
9365 struct file_entry *fe = &lh->file_names[i];
9366
9367 fe->symtab = tu_group->symtabs[i];
9368 }
9369 }
9370
9371 /* The main symtab is allocated last. Type units don't have DW_AT_name
9372 so they don't have a "real" (so to speak) symtab anyway.
9373 There is later code that will assign the main symtab to all symbols
9374 that don't have one. We need to handle the case of a symbol with a
9375 missing symtab (DW_AT_decl_file) anyway. */
9376 }
9377
9378 /* Process DW_TAG_type_unit.
9379 For TUs we want to skip the first top level sibling if it's not the
9380 actual type being defined by this TU. In this case the first top
9381 level sibling is there to provide context only. */
9382
9383 static void
9384 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9385 {
9386 struct die_info *child_die;
9387
9388 prepare_one_comp_unit (cu, die, language_minimal);
9389
9390 /* Initialize (or reinitialize) the machinery for building symtabs.
9391 We do this before processing child DIEs, so that the line header table
9392 is available for DW_AT_decl_file. */
9393 setup_type_unit_groups (die, cu);
9394
9395 if (die->child != NULL)
9396 {
9397 child_die = die->child;
9398 while (child_die && child_die->tag)
9399 {
9400 process_die (child_die, cu);
9401 child_die = sibling_die (child_die);
9402 }
9403 }
9404 }
9405 \f
9406 /* DWO/DWP files.
9407
9408 http://gcc.gnu.org/wiki/DebugFission
9409 http://gcc.gnu.org/wiki/DebugFissionDWP
9410
9411 To simplify handling of both DWO files ("object" files with the DWARF info)
9412 and DWP files (a file with the DWOs packaged up into one file), we treat
9413 DWP files as having a collection of virtual DWO files. */
9414
9415 static hashval_t
9416 hash_dwo_file (const void *item)
9417 {
9418 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9419 hashval_t hash;
9420
9421 hash = htab_hash_string (dwo_file->dwo_name);
9422 if (dwo_file->comp_dir != NULL)
9423 hash += htab_hash_string (dwo_file->comp_dir);
9424 return hash;
9425 }
9426
9427 static int
9428 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9429 {
9430 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9431 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9432
9433 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9434 return 0;
9435 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9436 return lhs->comp_dir == rhs->comp_dir;
9437 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9438 }
9439
9440 /* Allocate a hash table for DWO files. */
9441
9442 static htab_t
9443 allocate_dwo_file_hash_table (void)
9444 {
9445 struct objfile *objfile = dwarf2_per_objfile->objfile;
9446
9447 return htab_create_alloc_ex (41,
9448 hash_dwo_file,
9449 eq_dwo_file,
9450 NULL,
9451 &objfile->objfile_obstack,
9452 hashtab_obstack_allocate,
9453 dummy_obstack_deallocate);
9454 }
9455
9456 /* Lookup DWO file DWO_NAME. */
9457
9458 static void **
9459 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9460 {
9461 struct dwo_file find_entry;
9462 void **slot;
9463
9464 if (dwarf2_per_objfile->dwo_files == NULL)
9465 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9466
9467 memset (&find_entry, 0, sizeof (find_entry));
9468 find_entry.dwo_name = dwo_name;
9469 find_entry.comp_dir = comp_dir;
9470 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9471
9472 return slot;
9473 }
9474
9475 static hashval_t
9476 hash_dwo_unit (const void *item)
9477 {
9478 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9479
9480 /* This drops the top 32 bits of the id, but is ok for a hash. */
9481 return dwo_unit->signature;
9482 }
9483
9484 static int
9485 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9486 {
9487 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9488 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9489
9490 /* The signature is assumed to be unique within the DWO file.
9491 So while object file CU dwo_id's always have the value zero,
9492 that's OK, assuming each object file DWO file has only one CU,
9493 and that's the rule for now. */
9494 return lhs->signature == rhs->signature;
9495 }
9496
9497 /* Allocate a hash table for DWO CUs,TUs.
9498 There is one of these tables for each of CUs,TUs for each DWO file. */
9499
9500 static htab_t
9501 allocate_dwo_unit_table (struct objfile *objfile)
9502 {
9503 /* Start out with a pretty small number.
9504 Generally DWO files contain only one CU and maybe some TUs. */
9505 return htab_create_alloc_ex (3,
9506 hash_dwo_unit,
9507 eq_dwo_unit,
9508 NULL,
9509 &objfile->objfile_obstack,
9510 hashtab_obstack_allocate,
9511 dummy_obstack_deallocate);
9512 }
9513
9514 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9515
9516 struct create_dwo_cu_data
9517 {
9518 struct dwo_file *dwo_file;
9519 struct dwo_unit dwo_unit;
9520 };
9521
9522 /* die_reader_func for create_dwo_cu. */
9523
9524 static void
9525 create_dwo_cu_reader (const struct die_reader_specs *reader,
9526 const gdb_byte *info_ptr,
9527 struct die_info *comp_unit_die,
9528 int has_children,
9529 void *datap)
9530 {
9531 struct dwarf2_cu *cu = reader->cu;
9532 sect_offset offset = cu->per_cu->offset;
9533 struct dwarf2_section_info *section = cu->per_cu->section;
9534 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9535 struct dwo_file *dwo_file = data->dwo_file;
9536 struct dwo_unit *dwo_unit = &data->dwo_unit;
9537 struct attribute *attr;
9538
9539 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9540 if (attr == NULL)
9541 {
9542 complaint (&symfile_complaints,
9543 _("Dwarf Error: debug entry at offset 0x%x is missing"
9544 " its dwo_id [in module %s]"),
9545 offset.sect_off, dwo_file->dwo_name);
9546 return;
9547 }
9548
9549 dwo_unit->dwo_file = dwo_file;
9550 dwo_unit->signature = DW_UNSND (attr);
9551 dwo_unit->section = section;
9552 dwo_unit->offset = offset;
9553 dwo_unit->length = cu->per_cu->length;
9554
9555 if (dwarf_read_debug)
9556 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9557 offset.sect_off, hex_string (dwo_unit->signature));
9558 }
9559
9560 /* Create the dwo_unit for the lone CU in DWO_FILE.
9561 Note: This function processes DWO files only, not DWP files. */
9562
9563 static struct dwo_unit *
9564 create_dwo_cu (struct dwo_file *dwo_file)
9565 {
9566 struct objfile *objfile = dwarf2_per_objfile->objfile;
9567 struct dwarf2_section_info *section = &dwo_file->sections.info;
9568 const gdb_byte *info_ptr, *end_ptr;
9569 struct create_dwo_cu_data create_dwo_cu_data;
9570 struct dwo_unit *dwo_unit;
9571
9572 dwarf2_read_section (objfile, section);
9573 info_ptr = section->buffer;
9574
9575 if (info_ptr == NULL)
9576 return NULL;
9577
9578 if (dwarf_read_debug)
9579 {
9580 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9581 get_section_name (section),
9582 get_section_file_name (section));
9583 }
9584
9585 create_dwo_cu_data.dwo_file = dwo_file;
9586 dwo_unit = NULL;
9587
9588 end_ptr = info_ptr + section->size;
9589 while (info_ptr < end_ptr)
9590 {
9591 struct dwarf2_per_cu_data per_cu;
9592
9593 memset (&create_dwo_cu_data.dwo_unit, 0,
9594 sizeof (create_dwo_cu_data.dwo_unit));
9595 memset (&per_cu, 0, sizeof (per_cu));
9596 per_cu.objfile = objfile;
9597 per_cu.is_debug_types = 0;
9598 per_cu.offset.sect_off = info_ptr - section->buffer;
9599 per_cu.section = section;
9600
9601 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9602 create_dwo_cu_reader,
9603 &create_dwo_cu_data);
9604
9605 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9606 {
9607 /* If we've already found one, complain. We only support one
9608 because having more than one requires hacking the dwo_name of
9609 each to match, which is highly unlikely to happen. */
9610 if (dwo_unit != NULL)
9611 {
9612 complaint (&symfile_complaints,
9613 _("Multiple CUs in DWO file %s [in module %s]"),
9614 dwo_file->dwo_name, objfile_name (objfile));
9615 break;
9616 }
9617
9618 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9619 *dwo_unit = create_dwo_cu_data.dwo_unit;
9620 }
9621
9622 info_ptr += per_cu.length;
9623 }
9624
9625 return dwo_unit;
9626 }
9627
9628 /* DWP file .debug_{cu,tu}_index section format:
9629 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9630
9631 DWP Version 1:
9632
9633 Both index sections have the same format, and serve to map a 64-bit
9634 signature to a set of section numbers. Each section begins with a header,
9635 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9636 indexes, and a pool of 32-bit section numbers. The index sections will be
9637 aligned at 8-byte boundaries in the file.
9638
9639 The index section header consists of:
9640
9641 V, 32 bit version number
9642 -, 32 bits unused
9643 N, 32 bit number of compilation units or type units in the index
9644 M, 32 bit number of slots in the hash table
9645
9646 Numbers are recorded using the byte order of the application binary.
9647
9648 The hash table begins at offset 16 in the section, and consists of an array
9649 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9650 order of the application binary). Unused slots in the hash table are 0.
9651 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9652
9653 The parallel table begins immediately after the hash table
9654 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9655 array of 32-bit indexes (using the byte order of the application binary),
9656 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9657 table contains a 32-bit index into the pool of section numbers. For unused
9658 hash table slots, the corresponding entry in the parallel table will be 0.
9659
9660 The pool of section numbers begins immediately following the hash table
9661 (at offset 16 + 12 * M from the beginning of the section). The pool of
9662 section numbers consists of an array of 32-bit words (using the byte order
9663 of the application binary). Each item in the array is indexed starting
9664 from 0. The hash table entry provides the index of the first section
9665 number in the set. Additional section numbers in the set follow, and the
9666 set is terminated by a 0 entry (section number 0 is not used in ELF).
9667
9668 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9669 section must be the first entry in the set, and the .debug_abbrev.dwo must
9670 be the second entry. Other members of the set may follow in any order.
9671
9672 ---
9673
9674 DWP Version 2:
9675
9676 DWP Version 2 combines all the .debug_info, etc. sections into one,
9677 and the entries in the index tables are now offsets into these sections.
9678 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9679 section.
9680
9681 Index Section Contents:
9682 Header
9683 Hash Table of Signatures dwp_hash_table.hash_table
9684 Parallel Table of Indices dwp_hash_table.unit_table
9685 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9686 Table of Section Sizes dwp_hash_table.v2.sizes
9687
9688 The index section header consists of:
9689
9690 V, 32 bit version number
9691 L, 32 bit number of columns in the table of section offsets
9692 N, 32 bit number of compilation units or type units in the index
9693 M, 32 bit number of slots in the hash table
9694
9695 Numbers are recorded using the byte order of the application binary.
9696
9697 The hash table has the same format as version 1.
9698 The parallel table of indices has the same format as version 1,
9699 except that the entries are origin-1 indices into the table of sections
9700 offsets and the table of section sizes.
9701
9702 The table of offsets begins immediately following the parallel table
9703 (at offset 16 + 12 * M from the beginning of the section). The table is
9704 a two-dimensional array of 32-bit words (using the byte order of the
9705 application binary), with L columns and N+1 rows, in row-major order.
9706 Each row in the array is indexed starting from 0. The first row provides
9707 a key to the remaining rows: each column in this row provides an identifier
9708 for a debug section, and the offsets in the same column of subsequent rows
9709 refer to that section. The section identifiers are:
9710
9711 DW_SECT_INFO 1 .debug_info.dwo
9712 DW_SECT_TYPES 2 .debug_types.dwo
9713 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9714 DW_SECT_LINE 4 .debug_line.dwo
9715 DW_SECT_LOC 5 .debug_loc.dwo
9716 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9717 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9718 DW_SECT_MACRO 8 .debug_macro.dwo
9719
9720 The offsets provided by the CU and TU index sections are the base offsets
9721 for the contributions made by each CU or TU to the corresponding section
9722 in the package file. Each CU and TU header contains an abbrev_offset
9723 field, used to find the abbreviations table for that CU or TU within the
9724 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9725 be interpreted as relative to the base offset given in the index section.
9726 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9727 should be interpreted as relative to the base offset for .debug_line.dwo,
9728 and offsets into other debug sections obtained from DWARF attributes should
9729 also be interpreted as relative to the corresponding base offset.
9730
9731 The table of sizes begins immediately following the table of offsets.
9732 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9733 with L columns and N rows, in row-major order. Each row in the array is
9734 indexed starting from 1 (row 0 is shared by the two tables).
9735
9736 ---
9737
9738 Hash table lookup is handled the same in version 1 and 2:
9739
9740 We assume that N and M will not exceed 2^32 - 1.
9741 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9742
9743 Given a 64-bit compilation unit signature or a type signature S, an entry
9744 in the hash table is located as follows:
9745
9746 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9747 the low-order k bits all set to 1.
9748
9749 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9750
9751 3) If the hash table entry at index H matches the signature, use that
9752 entry. If the hash table entry at index H is unused (all zeroes),
9753 terminate the search: the signature is not present in the table.
9754
9755 4) Let H = (H + H') modulo M. Repeat at Step 3.
9756
9757 Because M > N and H' and M are relatively prime, the search is guaranteed
9758 to stop at an unused slot or find the match. */
9759
9760 /* Create a hash table to map DWO IDs to their CU/TU entry in
9761 .debug_{info,types}.dwo in DWP_FILE.
9762 Returns NULL if there isn't one.
9763 Note: This function processes DWP files only, not DWO files. */
9764
9765 static struct dwp_hash_table *
9766 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9767 {
9768 struct objfile *objfile = dwarf2_per_objfile->objfile;
9769 bfd *dbfd = dwp_file->dbfd;
9770 const gdb_byte *index_ptr, *index_end;
9771 struct dwarf2_section_info *index;
9772 uint32_t version, nr_columns, nr_units, nr_slots;
9773 struct dwp_hash_table *htab;
9774
9775 if (is_debug_types)
9776 index = &dwp_file->sections.tu_index;
9777 else
9778 index = &dwp_file->sections.cu_index;
9779
9780 if (dwarf2_section_empty_p (index))
9781 return NULL;
9782 dwarf2_read_section (objfile, index);
9783
9784 index_ptr = index->buffer;
9785 index_end = index_ptr + index->size;
9786
9787 version = read_4_bytes (dbfd, index_ptr);
9788 index_ptr += 4;
9789 if (version == 2)
9790 nr_columns = read_4_bytes (dbfd, index_ptr);
9791 else
9792 nr_columns = 0;
9793 index_ptr += 4;
9794 nr_units = read_4_bytes (dbfd, index_ptr);
9795 index_ptr += 4;
9796 nr_slots = read_4_bytes (dbfd, index_ptr);
9797 index_ptr += 4;
9798
9799 if (version != 1 && version != 2)
9800 {
9801 error (_("Dwarf Error: unsupported DWP file version (%s)"
9802 " [in module %s]"),
9803 pulongest (version), dwp_file->name);
9804 }
9805 if (nr_slots != (nr_slots & -nr_slots))
9806 {
9807 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9808 " is not power of 2 [in module %s]"),
9809 pulongest (nr_slots), dwp_file->name);
9810 }
9811
9812 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9813 htab->version = version;
9814 htab->nr_columns = nr_columns;
9815 htab->nr_units = nr_units;
9816 htab->nr_slots = nr_slots;
9817 htab->hash_table = index_ptr;
9818 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9819
9820 /* Exit early if the table is empty. */
9821 if (nr_slots == 0 || nr_units == 0
9822 || (version == 2 && nr_columns == 0))
9823 {
9824 /* All must be zero. */
9825 if (nr_slots != 0 || nr_units != 0
9826 || (version == 2 && nr_columns != 0))
9827 {
9828 complaint (&symfile_complaints,
9829 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9830 " all zero [in modules %s]"),
9831 dwp_file->name);
9832 }
9833 return htab;
9834 }
9835
9836 if (version == 1)
9837 {
9838 htab->section_pool.v1.indices =
9839 htab->unit_table + sizeof (uint32_t) * nr_slots;
9840 /* It's harder to decide whether the section is too small in v1.
9841 V1 is deprecated anyway so we punt. */
9842 }
9843 else
9844 {
9845 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9846 int *ids = htab->section_pool.v2.section_ids;
9847 /* Reverse map for error checking. */
9848 int ids_seen[DW_SECT_MAX + 1];
9849 int i;
9850
9851 if (nr_columns < 2)
9852 {
9853 error (_("Dwarf Error: bad DWP hash table, too few columns"
9854 " in section table [in module %s]"),
9855 dwp_file->name);
9856 }
9857 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9858 {
9859 error (_("Dwarf Error: bad DWP hash table, too many columns"
9860 " in section table [in module %s]"),
9861 dwp_file->name);
9862 }
9863 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9864 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9865 for (i = 0; i < nr_columns; ++i)
9866 {
9867 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9868
9869 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9870 {
9871 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9872 " in section table [in module %s]"),
9873 id, dwp_file->name);
9874 }
9875 if (ids_seen[id] != -1)
9876 {
9877 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9878 " id %d in section table [in module %s]"),
9879 id, dwp_file->name);
9880 }
9881 ids_seen[id] = i;
9882 ids[i] = id;
9883 }
9884 /* Must have exactly one info or types section. */
9885 if (((ids_seen[DW_SECT_INFO] != -1)
9886 + (ids_seen[DW_SECT_TYPES] != -1))
9887 != 1)
9888 {
9889 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9890 " DWO info/types section [in module %s]"),
9891 dwp_file->name);
9892 }
9893 /* Must have an abbrev section. */
9894 if (ids_seen[DW_SECT_ABBREV] == -1)
9895 {
9896 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9897 " section [in module %s]"),
9898 dwp_file->name);
9899 }
9900 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9901 htab->section_pool.v2.sizes =
9902 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9903 * nr_units * nr_columns);
9904 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9905 * nr_units * nr_columns))
9906 > index_end)
9907 {
9908 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9909 " [in module %s]"),
9910 dwp_file->name);
9911 }
9912 }
9913
9914 return htab;
9915 }
9916
9917 /* Update SECTIONS with the data from SECTP.
9918
9919 This function is like the other "locate" section routines that are
9920 passed to bfd_map_over_sections, but in this context the sections to
9921 read comes from the DWP V1 hash table, not the full ELF section table.
9922
9923 The result is non-zero for success, or zero if an error was found. */
9924
9925 static int
9926 locate_v1_virtual_dwo_sections (asection *sectp,
9927 struct virtual_v1_dwo_sections *sections)
9928 {
9929 const struct dwop_section_names *names = &dwop_section_names;
9930
9931 if (section_is_p (sectp->name, &names->abbrev_dwo))
9932 {
9933 /* There can be only one. */
9934 if (sections->abbrev.s.section != NULL)
9935 return 0;
9936 sections->abbrev.s.section = sectp;
9937 sections->abbrev.size = bfd_get_section_size (sectp);
9938 }
9939 else if (section_is_p (sectp->name, &names->info_dwo)
9940 || section_is_p (sectp->name, &names->types_dwo))
9941 {
9942 /* There can be only one. */
9943 if (sections->info_or_types.s.section != NULL)
9944 return 0;
9945 sections->info_or_types.s.section = sectp;
9946 sections->info_or_types.size = bfd_get_section_size (sectp);
9947 }
9948 else if (section_is_p (sectp->name, &names->line_dwo))
9949 {
9950 /* There can be only one. */
9951 if (sections->line.s.section != NULL)
9952 return 0;
9953 sections->line.s.section = sectp;
9954 sections->line.size = bfd_get_section_size (sectp);
9955 }
9956 else if (section_is_p (sectp->name, &names->loc_dwo))
9957 {
9958 /* There can be only one. */
9959 if (sections->loc.s.section != NULL)
9960 return 0;
9961 sections->loc.s.section = sectp;
9962 sections->loc.size = bfd_get_section_size (sectp);
9963 }
9964 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9965 {
9966 /* There can be only one. */
9967 if (sections->macinfo.s.section != NULL)
9968 return 0;
9969 sections->macinfo.s.section = sectp;
9970 sections->macinfo.size = bfd_get_section_size (sectp);
9971 }
9972 else if (section_is_p (sectp->name, &names->macro_dwo))
9973 {
9974 /* There can be only one. */
9975 if (sections->macro.s.section != NULL)
9976 return 0;
9977 sections->macro.s.section = sectp;
9978 sections->macro.size = bfd_get_section_size (sectp);
9979 }
9980 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9981 {
9982 /* There can be only one. */
9983 if (sections->str_offsets.s.section != NULL)
9984 return 0;
9985 sections->str_offsets.s.section = sectp;
9986 sections->str_offsets.size = bfd_get_section_size (sectp);
9987 }
9988 else
9989 {
9990 /* No other kind of section is valid. */
9991 return 0;
9992 }
9993
9994 return 1;
9995 }
9996
9997 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9998 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9999 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10000 This is for DWP version 1 files. */
10001
10002 static struct dwo_unit *
10003 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10004 uint32_t unit_index,
10005 const char *comp_dir,
10006 ULONGEST signature, int is_debug_types)
10007 {
10008 struct objfile *objfile = dwarf2_per_objfile->objfile;
10009 const struct dwp_hash_table *dwp_htab =
10010 is_debug_types ? dwp_file->tus : dwp_file->cus;
10011 bfd *dbfd = dwp_file->dbfd;
10012 const char *kind = is_debug_types ? "TU" : "CU";
10013 struct dwo_file *dwo_file;
10014 struct dwo_unit *dwo_unit;
10015 struct virtual_v1_dwo_sections sections;
10016 void **dwo_file_slot;
10017 char *virtual_dwo_name;
10018 struct cleanup *cleanups;
10019 int i;
10020
10021 gdb_assert (dwp_file->version == 1);
10022
10023 if (dwarf_read_debug)
10024 {
10025 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10026 kind,
10027 pulongest (unit_index), hex_string (signature),
10028 dwp_file->name);
10029 }
10030
10031 /* Fetch the sections of this DWO unit.
10032 Put a limit on the number of sections we look for so that bad data
10033 doesn't cause us to loop forever. */
10034
10035 #define MAX_NR_V1_DWO_SECTIONS \
10036 (1 /* .debug_info or .debug_types */ \
10037 + 1 /* .debug_abbrev */ \
10038 + 1 /* .debug_line */ \
10039 + 1 /* .debug_loc */ \
10040 + 1 /* .debug_str_offsets */ \
10041 + 1 /* .debug_macro or .debug_macinfo */ \
10042 + 1 /* trailing zero */)
10043
10044 memset (&sections, 0, sizeof (sections));
10045 cleanups = make_cleanup (null_cleanup, 0);
10046
10047 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10048 {
10049 asection *sectp;
10050 uint32_t section_nr =
10051 read_4_bytes (dbfd,
10052 dwp_htab->section_pool.v1.indices
10053 + (unit_index + i) * sizeof (uint32_t));
10054
10055 if (section_nr == 0)
10056 break;
10057 if (section_nr >= dwp_file->num_sections)
10058 {
10059 error (_("Dwarf Error: bad DWP hash table, section number too large"
10060 " [in module %s]"),
10061 dwp_file->name);
10062 }
10063
10064 sectp = dwp_file->elf_sections[section_nr];
10065 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10066 {
10067 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10068 " [in module %s]"),
10069 dwp_file->name);
10070 }
10071 }
10072
10073 if (i < 2
10074 || dwarf2_section_empty_p (&sections.info_or_types)
10075 || dwarf2_section_empty_p (&sections.abbrev))
10076 {
10077 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10078 " [in module %s]"),
10079 dwp_file->name);
10080 }
10081 if (i == MAX_NR_V1_DWO_SECTIONS)
10082 {
10083 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10084 " [in module %s]"),
10085 dwp_file->name);
10086 }
10087
10088 /* It's easier for the rest of the code if we fake a struct dwo_file and
10089 have dwo_unit "live" in that. At least for now.
10090
10091 The DWP file can be made up of a random collection of CUs and TUs.
10092 However, for each CU + set of TUs that came from the same original DWO
10093 file, we can combine them back into a virtual DWO file to save space
10094 (fewer struct dwo_file objects to allocate). Remember that for really
10095 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10096
10097 virtual_dwo_name =
10098 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10099 get_section_id (&sections.abbrev),
10100 get_section_id (&sections.line),
10101 get_section_id (&sections.loc),
10102 get_section_id (&sections.str_offsets));
10103 make_cleanup (xfree, virtual_dwo_name);
10104 /* Can we use an existing virtual DWO file? */
10105 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10106 /* Create one if necessary. */
10107 if (*dwo_file_slot == NULL)
10108 {
10109 if (dwarf_read_debug)
10110 {
10111 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10112 virtual_dwo_name);
10113 }
10114 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10115 dwo_file->dwo_name
10116 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10117 virtual_dwo_name,
10118 strlen (virtual_dwo_name));
10119 dwo_file->comp_dir = comp_dir;
10120 dwo_file->sections.abbrev = sections.abbrev;
10121 dwo_file->sections.line = sections.line;
10122 dwo_file->sections.loc = sections.loc;
10123 dwo_file->sections.macinfo = sections.macinfo;
10124 dwo_file->sections.macro = sections.macro;
10125 dwo_file->sections.str_offsets = sections.str_offsets;
10126 /* The "str" section is global to the entire DWP file. */
10127 dwo_file->sections.str = dwp_file->sections.str;
10128 /* The info or types section is assigned below to dwo_unit,
10129 there's no need to record it in dwo_file.
10130 Also, we can't simply record type sections in dwo_file because
10131 we record a pointer into the vector in dwo_unit. As we collect more
10132 types we'll grow the vector and eventually have to reallocate space
10133 for it, invalidating all copies of pointers into the previous
10134 contents. */
10135 *dwo_file_slot = dwo_file;
10136 }
10137 else
10138 {
10139 if (dwarf_read_debug)
10140 {
10141 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10142 virtual_dwo_name);
10143 }
10144 dwo_file = (struct dwo_file *) *dwo_file_slot;
10145 }
10146 do_cleanups (cleanups);
10147
10148 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10149 dwo_unit->dwo_file = dwo_file;
10150 dwo_unit->signature = signature;
10151 dwo_unit->section =
10152 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10153 *dwo_unit->section = sections.info_or_types;
10154 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10155
10156 return dwo_unit;
10157 }
10158
10159 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10160 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10161 piece within that section used by a TU/CU, return a virtual section
10162 of just that piece. */
10163
10164 static struct dwarf2_section_info
10165 create_dwp_v2_section (struct dwarf2_section_info *section,
10166 bfd_size_type offset, bfd_size_type size)
10167 {
10168 struct dwarf2_section_info result;
10169 asection *sectp;
10170
10171 gdb_assert (section != NULL);
10172 gdb_assert (!section->is_virtual);
10173
10174 memset (&result, 0, sizeof (result));
10175 result.s.containing_section = section;
10176 result.is_virtual = 1;
10177
10178 if (size == 0)
10179 return result;
10180
10181 sectp = get_section_bfd_section (section);
10182
10183 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10184 bounds of the real section. This is a pretty-rare event, so just
10185 flag an error (easier) instead of a warning and trying to cope. */
10186 if (sectp == NULL
10187 || offset + size > bfd_get_section_size (sectp))
10188 {
10189 bfd *abfd = sectp->owner;
10190
10191 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10192 " in section %s [in module %s]"),
10193 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10194 objfile_name (dwarf2_per_objfile->objfile));
10195 }
10196
10197 result.virtual_offset = offset;
10198 result.size = size;
10199 return result;
10200 }
10201
10202 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10203 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10204 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10205 This is for DWP version 2 files. */
10206
10207 static struct dwo_unit *
10208 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10209 uint32_t unit_index,
10210 const char *comp_dir,
10211 ULONGEST signature, int is_debug_types)
10212 {
10213 struct objfile *objfile = dwarf2_per_objfile->objfile;
10214 const struct dwp_hash_table *dwp_htab =
10215 is_debug_types ? dwp_file->tus : dwp_file->cus;
10216 bfd *dbfd = dwp_file->dbfd;
10217 const char *kind = is_debug_types ? "TU" : "CU";
10218 struct dwo_file *dwo_file;
10219 struct dwo_unit *dwo_unit;
10220 struct virtual_v2_dwo_sections sections;
10221 void **dwo_file_slot;
10222 char *virtual_dwo_name;
10223 struct cleanup *cleanups;
10224 int i;
10225
10226 gdb_assert (dwp_file->version == 2);
10227
10228 if (dwarf_read_debug)
10229 {
10230 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10231 kind,
10232 pulongest (unit_index), hex_string (signature),
10233 dwp_file->name);
10234 }
10235
10236 /* Fetch the section offsets of this DWO unit. */
10237
10238 memset (&sections, 0, sizeof (sections));
10239 cleanups = make_cleanup (null_cleanup, 0);
10240
10241 for (i = 0; i < dwp_htab->nr_columns; ++i)
10242 {
10243 uint32_t offset = read_4_bytes (dbfd,
10244 dwp_htab->section_pool.v2.offsets
10245 + (((unit_index - 1) * dwp_htab->nr_columns
10246 + i)
10247 * sizeof (uint32_t)));
10248 uint32_t size = read_4_bytes (dbfd,
10249 dwp_htab->section_pool.v2.sizes
10250 + (((unit_index - 1) * dwp_htab->nr_columns
10251 + i)
10252 * sizeof (uint32_t)));
10253
10254 switch (dwp_htab->section_pool.v2.section_ids[i])
10255 {
10256 case DW_SECT_INFO:
10257 case DW_SECT_TYPES:
10258 sections.info_or_types_offset = offset;
10259 sections.info_or_types_size = size;
10260 break;
10261 case DW_SECT_ABBREV:
10262 sections.abbrev_offset = offset;
10263 sections.abbrev_size = size;
10264 break;
10265 case DW_SECT_LINE:
10266 sections.line_offset = offset;
10267 sections.line_size = size;
10268 break;
10269 case DW_SECT_LOC:
10270 sections.loc_offset = offset;
10271 sections.loc_size = size;
10272 break;
10273 case DW_SECT_STR_OFFSETS:
10274 sections.str_offsets_offset = offset;
10275 sections.str_offsets_size = size;
10276 break;
10277 case DW_SECT_MACINFO:
10278 sections.macinfo_offset = offset;
10279 sections.macinfo_size = size;
10280 break;
10281 case DW_SECT_MACRO:
10282 sections.macro_offset = offset;
10283 sections.macro_size = size;
10284 break;
10285 }
10286 }
10287
10288 /* It's easier for the rest of the code if we fake a struct dwo_file and
10289 have dwo_unit "live" in that. At least for now.
10290
10291 The DWP file can be made up of a random collection of CUs and TUs.
10292 However, for each CU + set of TUs that came from the same original DWO
10293 file, we can combine them back into a virtual DWO file to save space
10294 (fewer struct dwo_file objects to allocate). Remember that for really
10295 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10296
10297 virtual_dwo_name =
10298 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10299 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10300 (long) (sections.line_size ? sections.line_offset : 0),
10301 (long) (sections.loc_size ? sections.loc_offset : 0),
10302 (long) (sections.str_offsets_size
10303 ? sections.str_offsets_offset : 0));
10304 make_cleanup (xfree, virtual_dwo_name);
10305 /* Can we use an existing virtual DWO file? */
10306 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10307 /* Create one if necessary. */
10308 if (*dwo_file_slot == NULL)
10309 {
10310 if (dwarf_read_debug)
10311 {
10312 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10313 virtual_dwo_name);
10314 }
10315 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10316 dwo_file->dwo_name
10317 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10318 virtual_dwo_name,
10319 strlen (virtual_dwo_name));
10320 dwo_file->comp_dir = comp_dir;
10321 dwo_file->sections.abbrev =
10322 create_dwp_v2_section (&dwp_file->sections.abbrev,
10323 sections.abbrev_offset, sections.abbrev_size);
10324 dwo_file->sections.line =
10325 create_dwp_v2_section (&dwp_file->sections.line,
10326 sections.line_offset, sections.line_size);
10327 dwo_file->sections.loc =
10328 create_dwp_v2_section (&dwp_file->sections.loc,
10329 sections.loc_offset, sections.loc_size);
10330 dwo_file->sections.macinfo =
10331 create_dwp_v2_section (&dwp_file->sections.macinfo,
10332 sections.macinfo_offset, sections.macinfo_size);
10333 dwo_file->sections.macro =
10334 create_dwp_v2_section (&dwp_file->sections.macro,
10335 sections.macro_offset, sections.macro_size);
10336 dwo_file->sections.str_offsets =
10337 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10338 sections.str_offsets_offset,
10339 sections.str_offsets_size);
10340 /* The "str" section is global to the entire DWP file. */
10341 dwo_file->sections.str = dwp_file->sections.str;
10342 /* The info or types section is assigned below to dwo_unit,
10343 there's no need to record it in dwo_file.
10344 Also, we can't simply record type sections in dwo_file because
10345 we record a pointer into the vector in dwo_unit. As we collect more
10346 types we'll grow the vector and eventually have to reallocate space
10347 for it, invalidating all copies of pointers into the previous
10348 contents. */
10349 *dwo_file_slot = dwo_file;
10350 }
10351 else
10352 {
10353 if (dwarf_read_debug)
10354 {
10355 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10356 virtual_dwo_name);
10357 }
10358 dwo_file = (struct dwo_file *) *dwo_file_slot;
10359 }
10360 do_cleanups (cleanups);
10361
10362 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10363 dwo_unit->dwo_file = dwo_file;
10364 dwo_unit->signature = signature;
10365 dwo_unit->section =
10366 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10367 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10368 ? &dwp_file->sections.types
10369 : &dwp_file->sections.info,
10370 sections.info_or_types_offset,
10371 sections.info_or_types_size);
10372 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10373
10374 return dwo_unit;
10375 }
10376
10377 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10378 Returns NULL if the signature isn't found. */
10379
10380 static struct dwo_unit *
10381 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10382 ULONGEST signature, int is_debug_types)
10383 {
10384 const struct dwp_hash_table *dwp_htab =
10385 is_debug_types ? dwp_file->tus : dwp_file->cus;
10386 bfd *dbfd = dwp_file->dbfd;
10387 uint32_t mask = dwp_htab->nr_slots - 1;
10388 uint32_t hash = signature & mask;
10389 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10390 unsigned int i;
10391 void **slot;
10392 struct dwo_unit find_dwo_cu;
10393
10394 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10395 find_dwo_cu.signature = signature;
10396 slot = htab_find_slot (is_debug_types
10397 ? dwp_file->loaded_tus
10398 : dwp_file->loaded_cus,
10399 &find_dwo_cu, INSERT);
10400
10401 if (*slot != NULL)
10402 return (struct dwo_unit *) *slot;
10403
10404 /* Use a for loop so that we don't loop forever on bad debug info. */
10405 for (i = 0; i < dwp_htab->nr_slots; ++i)
10406 {
10407 ULONGEST signature_in_table;
10408
10409 signature_in_table =
10410 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10411 if (signature_in_table == signature)
10412 {
10413 uint32_t unit_index =
10414 read_4_bytes (dbfd,
10415 dwp_htab->unit_table + hash * sizeof (uint32_t));
10416
10417 if (dwp_file->version == 1)
10418 {
10419 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10420 comp_dir, signature,
10421 is_debug_types);
10422 }
10423 else
10424 {
10425 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10426 comp_dir, signature,
10427 is_debug_types);
10428 }
10429 return (struct dwo_unit *) *slot;
10430 }
10431 if (signature_in_table == 0)
10432 return NULL;
10433 hash = (hash + hash2) & mask;
10434 }
10435
10436 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10437 " [in module %s]"),
10438 dwp_file->name);
10439 }
10440
10441 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10442 Open the file specified by FILE_NAME and hand it off to BFD for
10443 preliminary analysis. Return a newly initialized bfd *, which
10444 includes a canonicalized copy of FILE_NAME.
10445 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10446 SEARCH_CWD is true if the current directory is to be searched.
10447 It will be searched before debug-file-directory.
10448 If successful, the file is added to the bfd include table of the
10449 objfile's bfd (see gdb_bfd_record_inclusion).
10450 If unable to find/open the file, return NULL.
10451 NOTE: This function is derived from symfile_bfd_open. */
10452
10453 static bfd *
10454 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10455 {
10456 bfd *sym_bfd;
10457 int desc, flags;
10458 char *absolute_name;
10459 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10460 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10461 to debug_file_directory. */
10462 char *search_path;
10463 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10464
10465 if (search_cwd)
10466 {
10467 if (*debug_file_directory != '\0')
10468 search_path = concat (".", dirname_separator_string,
10469 debug_file_directory, (char *) NULL);
10470 else
10471 search_path = xstrdup (".");
10472 }
10473 else
10474 search_path = xstrdup (debug_file_directory);
10475
10476 flags = OPF_RETURN_REALPATH;
10477 if (is_dwp)
10478 flags |= OPF_SEARCH_IN_PATH;
10479 desc = openp (search_path, flags, file_name,
10480 O_RDONLY | O_BINARY, &absolute_name);
10481 xfree (search_path);
10482 if (desc < 0)
10483 return NULL;
10484
10485 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10486 xfree (absolute_name);
10487 if (sym_bfd == NULL)
10488 return NULL;
10489 bfd_set_cacheable (sym_bfd, 1);
10490
10491 if (!bfd_check_format (sym_bfd, bfd_object))
10492 {
10493 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10494 return NULL;
10495 }
10496
10497 /* Success. Record the bfd as having been included by the objfile's bfd.
10498 This is important because things like demangled_names_hash lives in the
10499 objfile's per_bfd space and may have references to things like symbol
10500 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10501 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10502
10503 return sym_bfd;
10504 }
10505
10506 /* Try to open DWO file FILE_NAME.
10507 COMP_DIR is the DW_AT_comp_dir attribute.
10508 The result is the bfd handle of the file.
10509 If there is a problem finding or opening the file, return NULL.
10510 Upon success, the canonicalized path of the file is stored in the bfd,
10511 same as symfile_bfd_open. */
10512
10513 static bfd *
10514 open_dwo_file (const char *file_name, const char *comp_dir)
10515 {
10516 bfd *abfd;
10517
10518 if (IS_ABSOLUTE_PATH (file_name))
10519 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10520
10521 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10522
10523 if (comp_dir != NULL)
10524 {
10525 char *path_to_try = concat (comp_dir, SLASH_STRING,
10526 file_name, (char *) NULL);
10527
10528 /* NOTE: If comp_dir is a relative path, this will also try the
10529 search path, which seems useful. */
10530 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10531 xfree (path_to_try);
10532 if (abfd != NULL)
10533 return abfd;
10534 }
10535
10536 /* That didn't work, try debug-file-directory, which, despite its name,
10537 is a list of paths. */
10538
10539 if (*debug_file_directory == '\0')
10540 return NULL;
10541
10542 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10543 }
10544
10545 /* This function is mapped across the sections and remembers the offset and
10546 size of each of the DWO debugging sections we are interested in. */
10547
10548 static void
10549 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10550 {
10551 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10552 const struct dwop_section_names *names = &dwop_section_names;
10553
10554 if (section_is_p (sectp->name, &names->abbrev_dwo))
10555 {
10556 dwo_sections->abbrev.s.section = sectp;
10557 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10558 }
10559 else if (section_is_p (sectp->name, &names->info_dwo))
10560 {
10561 dwo_sections->info.s.section = sectp;
10562 dwo_sections->info.size = bfd_get_section_size (sectp);
10563 }
10564 else if (section_is_p (sectp->name, &names->line_dwo))
10565 {
10566 dwo_sections->line.s.section = sectp;
10567 dwo_sections->line.size = bfd_get_section_size (sectp);
10568 }
10569 else if (section_is_p (sectp->name, &names->loc_dwo))
10570 {
10571 dwo_sections->loc.s.section = sectp;
10572 dwo_sections->loc.size = bfd_get_section_size (sectp);
10573 }
10574 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10575 {
10576 dwo_sections->macinfo.s.section = sectp;
10577 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10578 }
10579 else if (section_is_p (sectp->name, &names->macro_dwo))
10580 {
10581 dwo_sections->macro.s.section = sectp;
10582 dwo_sections->macro.size = bfd_get_section_size (sectp);
10583 }
10584 else if (section_is_p (sectp->name, &names->str_dwo))
10585 {
10586 dwo_sections->str.s.section = sectp;
10587 dwo_sections->str.size = bfd_get_section_size (sectp);
10588 }
10589 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10590 {
10591 dwo_sections->str_offsets.s.section = sectp;
10592 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10593 }
10594 else if (section_is_p (sectp->name, &names->types_dwo))
10595 {
10596 struct dwarf2_section_info type_section;
10597
10598 memset (&type_section, 0, sizeof (type_section));
10599 type_section.s.section = sectp;
10600 type_section.size = bfd_get_section_size (sectp);
10601 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10602 &type_section);
10603 }
10604 }
10605
10606 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10607 by PER_CU. This is for the non-DWP case.
10608 The result is NULL if DWO_NAME can't be found. */
10609
10610 static struct dwo_file *
10611 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10612 const char *dwo_name, const char *comp_dir)
10613 {
10614 struct objfile *objfile = dwarf2_per_objfile->objfile;
10615 struct dwo_file *dwo_file;
10616 bfd *dbfd;
10617 struct cleanup *cleanups;
10618
10619 dbfd = open_dwo_file (dwo_name, comp_dir);
10620 if (dbfd == NULL)
10621 {
10622 if (dwarf_read_debug)
10623 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10624 return NULL;
10625 }
10626 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10627 dwo_file->dwo_name = dwo_name;
10628 dwo_file->comp_dir = comp_dir;
10629 dwo_file->dbfd = dbfd;
10630
10631 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10632
10633 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10634
10635 dwo_file->cu = create_dwo_cu (dwo_file);
10636
10637 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10638 dwo_file->sections.types);
10639
10640 discard_cleanups (cleanups);
10641
10642 if (dwarf_read_debug)
10643 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10644
10645 return dwo_file;
10646 }
10647
10648 /* This function is mapped across the sections and remembers the offset and
10649 size of each of the DWP debugging sections common to version 1 and 2 that
10650 we are interested in. */
10651
10652 static void
10653 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10654 void *dwp_file_ptr)
10655 {
10656 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10657 const struct dwop_section_names *names = &dwop_section_names;
10658 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10659
10660 /* Record the ELF section number for later lookup: this is what the
10661 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10662 gdb_assert (elf_section_nr < dwp_file->num_sections);
10663 dwp_file->elf_sections[elf_section_nr] = sectp;
10664
10665 /* Look for specific sections that we need. */
10666 if (section_is_p (sectp->name, &names->str_dwo))
10667 {
10668 dwp_file->sections.str.s.section = sectp;
10669 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10670 }
10671 else if (section_is_p (sectp->name, &names->cu_index))
10672 {
10673 dwp_file->sections.cu_index.s.section = sectp;
10674 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10675 }
10676 else if (section_is_p (sectp->name, &names->tu_index))
10677 {
10678 dwp_file->sections.tu_index.s.section = sectp;
10679 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10680 }
10681 }
10682
10683 /* This function is mapped across the sections and remembers the offset and
10684 size of each of the DWP version 2 debugging sections that we are interested
10685 in. This is split into a separate function because we don't know if we
10686 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10687
10688 static void
10689 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10690 {
10691 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10692 const struct dwop_section_names *names = &dwop_section_names;
10693 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10694
10695 /* Record the ELF section number for later lookup: this is what the
10696 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10697 gdb_assert (elf_section_nr < dwp_file->num_sections);
10698 dwp_file->elf_sections[elf_section_nr] = sectp;
10699
10700 /* Look for specific sections that we need. */
10701 if (section_is_p (sectp->name, &names->abbrev_dwo))
10702 {
10703 dwp_file->sections.abbrev.s.section = sectp;
10704 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10705 }
10706 else if (section_is_p (sectp->name, &names->info_dwo))
10707 {
10708 dwp_file->sections.info.s.section = sectp;
10709 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10710 }
10711 else if (section_is_p (sectp->name, &names->line_dwo))
10712 {
10713 dwp_file->sections.line.s.section = sectp;
10714 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10715 }
10716 else if (section_is_p (sectp->name, &names->loc_dwo))
10717 {
10718 dwp_file->sections.loc.s.section = sectp;
10719 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10720 }
10721 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10722 {
10723 dwp_file->sections.macinfo.s.section = sectp;
10724 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10725 }
10726 else if (section_is_p (sectp->name, &names->macro_dwo))
10727 {
10728 dwp_file->sections.macro.s.section = sectp;
10729 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10730 }
10731 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10732 {
10733 dwp_file->sections.str_offsets.s.section = sectp;
10734 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10735 }
10736 else if (section_is_p (sectp->name, &names->types_dwo))
10737 {
10738 dwp_file->sections.types.s.section = sectp;
10739 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10740 }
10741 }
10742
10743 /* Hash function for dwp_file loaded CUs/TUs. */
10744
10745 static hashval_t
10746 hash_dwp_loaded_cutus (const void *item)
10747 {
10748 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10749
10750 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10751 return dwo_unit->signature;
10752 }
10753
10754 /* Equality function for dwp_file loaded CUs/TUs. */
10755
10756 static int
10757 eq_dwp_loaded_cutus (const void *a, const void *b)
10758 {
10759 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10760 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10761
10762 return dua->signature == dub->signature;
10763 }
10764
10765 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10766
10767 static htab_t
10768 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10769 {
10770 return htab_create_alloc_ex (3,
10771 hash_dwp_loaded_cutus,
10772 eq_dwp_loaded_cutus,
10773 NULL,
10774 &objfile->objfile_obstack,
10775 hashtab_obstack_allocate,
10776 dummy_obstack_deallocate);
10777 }
10778
10779 /* Try to open DWP file FILE_NAME.
10780 The result is the bfd handle of the file.
10781 If there is a problem finding or opening the file, return NULL.
10782 Upon success, the canonicalized path of the file is stored in the bfd,
10783 same as symfile_bfd_open. */
10784
10785 static bfd *
10786 open_dwp_file (const char *file_name)
10787 {
10788 bfd *abfd;
10789
10790 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10791 if (abfd != NULL)
10792 return abfd;
10793
10794 /* Work around upstream bug 15652.
10795 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10796 [Whether that's a "bug" is debatable, but it is getting in our way.]
10797 We have no real idea where the dwp file is, because gdb's realpath-ing
10798 of the executable's path may have discarded the needed info.
10799 [IWBN if the dwp file name was recorded in the executable, akin to
10800 .gnu_debuglink, but that doesn't exist yet.]
10801 Strip the directory from FILE_NAME and search again. */
10802 if (*debug_file_directory != '\0')
10803 {
10804 /* Don't implicitly search the current directory here.
10805 If the user wants to search "." to handle this case,
10806 it must be added to debug-file-directory. */
10807 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10808 0 /*search_cwd*/);
10809 }
10810
10811 return NULL;
10812 }
10813
10814 /* Initialize the use of the DWP file for the current objfile.
10815 By convention the name of the DWP file is ${objfile}.dwp.
10816 The result is NULL if it can't be found. */
10817
10818 static struct dwp_file *
10819 open_and_init_dwp_file (void)
10820 {
10821 struct objfile *objfile = dwarf2_per_objfile->objfile;
10822 struct dwp_file *dwp_file;
10823 char *dwp_name;
10824 bfd *dbfd;
10825 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
10826
10827 /* Try to find first .dwp for the binary file before any symbolic links
10828 resolving. */
10829
10830 /* If the objfile is a debug file, find the name of the real binary
10831 file and get the name of dwp file from there. */
10832 if (objfile->separate_debug_objfile_backlink != NULL)
10833 {
10834 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10835 const char *backlink_basename = lbasename (backlink->original_name);
10836 char *debug_dirname = ldirname (objfile->original_name);
10837
10838 make_cleanup (xfree, debug_dirname);
10839 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10840 SLASH_STRING, backlink_basename);
10841 }
10842 else
10843 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10844 make_cleanup (xfree, dwp_name);
10845
10846 dbfd = open_dwp_file (dwp_name);
10847 if (dbfd == NULL
10848 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10849 {
10850 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10851 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10852 make_cleanup (xfree, dwp_name);
10853 dbfd = open_dwp_file (dwp_name);
10854 }
10855
10856 if (dbfd == NULL)
10857 {
10858 if (dwarf_read_debug)
10859 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10860 do_cleanups (cleanups);
10861 return NULL;
10862 }
10863 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10864 dwp_file->name = bfd_get_filename (dbfd);
10865 dwp_file->dbfd = dbfd;
10866 do_cleanups (cleanups);
10867
10868 /* +1: section 0 is unused */
10869 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10870 dwp_file->elf_sections =
10871 OBSTACK_CALLOC (&objfile->objfile_obstack,
10872 dwp_file->num_sections, asection *);
10873
10874 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10875
10876 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10877
10878 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10879
10880 /* The DWP file version is stored in the hash table. Oh well. */
10881 if (dwp_file->cus->version != dwp_file->tus->version)
10882 {
10883 /* Technically speaking, we should try to limp along, but this is
10884 pretty bizarre. We use pulongest here because that's the established
10885 portability solution (e.g, we cannot use %u for uint32_t). */
10886 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10887 " TU version %s [in DWP file %s]"),
10888 pulongest (dwp_file->cus->version),
10889 pulongest (dwp_file->tus->version), dwp_name);
10890 }
10891 dwp_file->version = dwp_file->cus->version;
10892
10893 if (dwp_file->version == 2)
10894 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10895
10896 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10897 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10898
10899 if (dwarf_read_debug)
10900 {
10901 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10902 fprintf_unfiltered (gdb_stdlog,
10903 " %s CUs, %s TUs\n",
10904 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10905 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10906 }
10907
10908 return dwp_file;
10909 }
10910
10911 /* Wrapper around open_and_init_dwp_file, only open it once. */
10912
10913 static struct dwp_file *
10914 get_dwp_file (void)
10915 {
10916 if (! dwarf2_per_objfile->dwp_checked)
10917 {
10918 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10919 dwarf2_per_objfile->dwp_checked = 1;
10920 }
10921 return dwarf2_per_objfile->dwp_file;
10922 }
10923
10924 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10925 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10926 or in the DWP file for the objfile, referenced by THIS_UNIT.
10927 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10928 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10929
10930 This is called, for example, when wanting to read a variable with a
10931 complex location. Therefore we don't want to do file i/o for every call.
10932 Therefore we don't want to look for a DWO file on every call.
10933 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10934 then we check if we've already seen DWO_NAME, and only THEN do we check
10935 for a DWO file.
10936
10937 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10938 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10939
10940 static struct dwo_unit *
10941 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10942 const char *dwo_name, const char *comp_dir,
10943 ULONGEST signature, int is_debug_types)
10944 {
10945 struct objfile *objfile = dwarf2_per_objfile->objfile;
10946 const char *kind = is_debug_types ? "TU" : "CU";
10947 void **dwo_file_slot;
10948 struct dwo_file *dwo_file;
10949 struct dwp_file *dwp_file;
10950
10951 /* First see if there's a DWP file.
10952 If we have a DWP file but didn't find the DWO inside it, don't
10953 look for the original DWO file. It makes gdb behave differently
10954 depending on whether one is debugging in the build tree. */
10955
10956 dwp_file = get_dwp_file ();
10957 if (dwp_file != NULL)
10958 {
10959 const struct dwp_hash_table *dwp_htab =
10960 is_debug_types ? dwp_file->tus : dwp_file->cus;
10961
10962 if (dwp_htab != NULL)
10963 {
10964 struct dwo_unit *dwo_cutu =
10965 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10966 signature, is_debug_types);
10967
10968 if (dwo_cutu != NULL)
10969 {
10970 if (dwarf_read_debug)
10971 {
10972 fprintf_unfiltered (gdb_stdlog,
10973 "Virtual DWO %s %s found: @%s\n",
10974 kind, hex_string (signature),
10975 host_address_to_string (dwo_cutu));
10976 }
10977 return dwo_cutu;
10978 }
10979 }
10980 }
10981 else
10982 {
10983 /* No DWP file, look for the DWO file. */
10984
10985 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10986 if (*dwo_file_slot == NULL)
10987 {
10988 /* Read in the file and build a table of the CUs/TUs it contains. */
10989 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10990 }
10991 /* NOTE: This will be NULL if unable to open the file. */
10992 dwo_file = (struct dwo_file *) *dwo_file_slot;
10993
10994 if (dwo_file != NULL)
10995 {
10996 struct dwo_unit *dwo_cutu = NULL;
10997
10998 if (is_debug_types && dwo_file->tus)
10999 {
11000 struct dwo_unit find_dwo_cutu;
11001
11002 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11003 find_dwo_cutu.signature = signature;
11004 dwo_cutu
11005 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11006 }
11007 else if (!is_debug_types && dwo_file->cu)
11008 {
11009 if (signature == dwo_file->cu->signature)
11010 dwo_cutu = dwo_file->cu;
11011 }
11012
11013 if (dwo_cutu != NULL)
11014 {
11015 if (dwarf_read_debug)
11016 {
11017 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11018 kind, dwo_name, hex_string (signature),
11019 host_address_to_string (dwo_cutu));
11020 }
11021 return dwo_cutu;
11022 }
11023 }
11024 }
11025
11026 /* We didn't find it. This could mean a dwo_id mismatch, or
11027 someone deleted the DWO/DWP file, or the search path isn't set up
11028 correctly to find the file. */
11029
11030 if (dwarf_read_debug)
11031 {
11032 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11033 kind, dwo_name, hex_string (signature));
11034 }
11035
11036 /* This is a warning and not a complaint because it can be caused by
11037 pilot error (e.g., user accidentally deleting the DWO). */
11038 {
11039 /* Print the name of the DWP file if we looked there, helps the user
11040 better diagnose the problem. */
11041 char *dwp_text = NULL;
11042 struct cleanup *cleanups;
11043
11044 if (dwp_file != NULL)
11045 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11046 cleanups = make_cleanup (xfree, dwp_text);
11047
11048 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11049 " [in module %s]"),
11050 kind, dwo_name, hex_string (signature),
11051 dwp_text != NULL ? dwp_text : "",
11052 this_unit->is_debug_types ? "TU" : "CU",
11053 this_unit->offset.sect_off, objfile_name (objfile));
11054
11055 do_cleanups (cleanups);
11056 }
11057 return NULL;
11058 }
11059
11060 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11061 See lookup_dwo_cutu_unit for details. */
11062
11063 static struct dwo_unit *
11064 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11065 const char *dwo_name, const char *comp_dir,
11066 ULONGEST signature)
11067 {
11068 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11069 }
11070
11071 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11072 See lookup_dwo_cutu_unit for details. */
11073
11074 static struct dwo_unit *
11075 lookup_dwo_type_unit (struct signatured_type *this_tu,
11076 const char *dwo_name, const char *comp_dir)
11077 {
11078 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11079 }
11080
11081 /* Traversal function for queue_and_load_all_dwo_tus. */
11082
11083 static int
11084 queue_and_load_dwo_tu (void **slot, void *info)
11085 {
11086 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11087 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11088 ULONGEST signature = dwo_unit->signature;
11089 struct signatured_type *sig_type =
11090 lookup_dwo_signatured_type (per_cu->cu, signature);
11091
11092 if (sig_type != NULL)
11093 {
11094 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11095
11096 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11097 a real dependency of PER_CU on SIG_TYPE. That is detected later
11098 while processing PER_CU. */
11099 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11100 load_full_type_unit (sig_cu);
11101 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11102 }
11103
11104 return 1;
11105 }
11106
11107 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11108 The DWO may have the only definition of the type, though it may not be
11109 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11110 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11111
11112 static void
11113 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11114 {
11115 struct dwo_unit *dwo_unit;
11116 struct dwo_file *dwo_file;
11117
11118 gdb_assert (!per_cu->is_debug_types);
11119 gdb_assert (get_dwp_file () == NULL);
11120 gdb_assert (per_cu->cu != NULL);
11121
11122 dwo_unit = per_cu->cu->dwo_unit;
11123 gdb_assert (dwo_unit != NULL);
11124
11125 dwo_file = dwo_unit->dwo_file;
11126 if (dwo_file->tus != NULL)
11127 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11128 }
11129
11130 /* Free all resources associated with DWO_FILE.
11131 Close the DWO file and munmap the sections.
11132 All memory should be on the objfile obstack. */
11133
11134 static void
11135 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11136 {
11137
11138 /* Note: dbfd is NULL for virtual DWO files. */
11139 gdb_bfd_unref (dwo_file->dbfd);
11140
11141 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11142 }
11143
11144 /* Wrapper for free_dwo_file for use in cleanups. */
11145
11146 static void
11147 free_dwo_file_cleanup (void *arg)
11148 {
11149 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11150 struct objfile *objfile = dwarf2_per_objfile->objfile;
11151
11152 free_dwo_file (dwo_file, objfile);
11153 }
11154
11155 /* Traversal function for free_dwo_files. */
11156
11157 static int
11158 free_dwo_file_from_slot (void **slot, void *info)
11159 {
11160 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11161 struct objfile *objfile = (struct objfile *) info;
11162
11163 free_dwo_file (dwo_file, objfile);
11164
11165 return 1;
11166 }
11167
11168 /* Free all resources associated with DWO_FILES. */
11169
11170 static void
11171 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11172 {
11173 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11174 }
11175 \f
11176 /* Read in various DIEs. */
11177
11178 /* qsort helper for inherit_abstract_dies. */
11179
11180 static int
11181 unsigned_int_compar (const void *ap, const void *bp)
11182 {
11183 unsigned int a = *(unsigned int *) ap;
11184 unsigned int b = *(unsigned int *) bp;
11185
11186 return (a > b) - (b > a);
11187 }
11188
11189 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11190 Inherit only the children of the DW_AT_abstract_origin DIE not being
11191 already referenced by DW_AT_abstract_origin from the children of the
11192 current DIE. */
11193
11194 static void
11195 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11196 {
11197 struct die_info *child_die;
11198 unsigned die_children_count;
11199 /* CU offsets which were referenced by children of the current DIE. */
11200 sect_offset *offsets;
11201 sect_offset *offsets_end, *offsetp;
11202 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11203 struct die_info *origin_die;
11204 /* Iterator of the ORIGIN_DIE children. */
11205 struct die_info *origin_child_die;
11206 struct cleanup *cleanups;
11207 struct attribute *attr;
11208 struct dwarf2_cu *origin_cu;
11209 struct pending **origin_previous_list_in_scope;
11210
11211 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11212 if (!attr)
11213 return;
11214
11215 /* Note that following die references may follow to a die in a
11216 different cu. */
11217
11218 origin_cu = cu;
11219 origin_die = follow_die_ref (die, attr, &origin_cu);
11220
11221 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11222 symbols in. */
11223 origin_previous_list_in_scope = origin_cu->list_in_scope;
11224 origin_cu->list_in_scope = cu->list_in_scope;
11225
11226 if (die->tag != origin_die->tag
11227 && !(die->tag == DW_TAG_inlined_subroutine
11228 && origin_die->tag == DW_TAG_subprogram))
11229 complaint (&symfile_complaints,
11230 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11231 die->offset.sect_off, origin_die->offset.sect_off);
11232
11233 child_die = die->child;
11234 die_children_count = 0;
11235 while (child_die && child_die->tag)
11236 {
11237 child_die = sibling_die (child_die);
11238 die_children_count++;
11239 }
11240 offsets = XNEWVEC (sect_offset, die_children_count);
11241 cleanups = make_cleanup (xfree, offsets);
11242
11243 offsets_end = offsets;
11244 for (child_die = die->child;
11245 child_die && child_die->tag;
11246 child_die = sibling_die (child_die))
11247 {
11248 struct die_info *child_origin_die;
11249 struct dwarf2_cu *child_origin_cu;
11250
11251 /* We are trying to process concrete instance entries:
11252 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11253 it's not relevant to our analysis here. i.e. detecting DIEs that are
11254 present in the abstract instance but not referenced in the concrete
11255 one. */
11256 if (child_die->tag == DW_TAG_GNU_call_site)
11257 continue;
11258
11259 /* For each CHILD_DIE, find the corresponding child of
11260 ORIGIN_DIE. If there is more than one layer of
11261 DW_AT_abstract_origin, follow them all; there shouldn't be,
11262 but GCC versions at least through 4.4 generate this (GCC PR
11263 40573). */
11264 child_origin_die = child_die;
11265 child_origin_cu = cu;
11266 while (1)
11267 {
11268 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11269 child_origin_cu);
11270 if (attr == NULL)
11271 break;
11272 child_origin_die = follow_die_ref (child_origin_die, attr,
11273 &child_origin_cu);
11274 }
11275
11276 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11277 counterpart may exist. */
11278 if (child_origin_die != child_die)
11279 {
11280 if (child_die->tag != child_origin_die->tag
11281 && !(child_die->tag == DW_TAG_inlined_subroutine
11282 && child_origin_die->tag == DW_TAG_subprogram))
11283 complaint (&symfile_complaints,
11284 _("Child DIE 0x%x and its abstract origin 0x%x have "
11285 "different tags"), child_die->offset.sect_off,
11286 child_origin_die->offset.sect_off);
11287 if (child_origin_die->parent != origin_die)
11288 complaint (&symfile_complaints,
11289 _("Child DIE 0x%x and its abstract origin 0x%x have "
11290 "different parents"), child_die->offset.sect_off,
11291 child_origin_die->offset.sect_off);
11292 else
11293 *offsets_end++ = child_origin_die->offset;
11294 }
11295 }
11296 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11297 unsigned_int_compar);
11298 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11299 if (offsetp[-1].sect_off == offsetp->sect_off)
11300 complaint (&symfile_complaints,
11301 _("Multiple children of DIE 0x%x refer "
11302 "to DIE 0x%x as their abstract origin"),
11303 die->offset.sect_off, offsetp->sect_off);
11304
11305 offsetp = offsets;
11306 origin_child_die = origin_die->child;
11307 while (origin_child_die && origin_child_die->tag)
11308 {
11309 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11310 while (offsetp < offsets_end
11311 && offsetp->sect_off < origin_child_die->offset.sect_off)
11312 offsetp++;
11313 if (offsetp >= offsets_end
11314 || offsetp->sect_off > origin_child_die->offset.sect_off)
11315 {
11316 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11317 Check whether we're already processing ORIGIN_CHILD_DIE.
11318 This can happen with mutually referenced abstract_origins.
11319 PR 16581. */
11320 if (!origin_child_die->in_process)
11321 process_die (origin_child_die, origin_cu);
11322 }
11323 origin_child_die = sibling_die (origin_child_die);
11324 }
11325 origin_cu->list_in_scope = origin_previous_list_in_scope;
11326
11327 do_cleanups (cleanups);
11328 }
11329
11330 static void
11331 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11332 {
11333 struct objfile *objfile = cu->objfile;
11334 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11335 struct context_stack *newobj;
11336 CORE_ADDR lowpc;
11337 CORE_ADDR highpc;
11338 struct die_info *child_die;
11339 struct attribute *attr, *call_line, *call_file;
11340 const char *name;
11341 CORE_ADDR baseaddr;
11342 struct block *block;
11343 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11344 VEC (symbolp) *template_args = NULL;
11345 struct template_symbol *templ_func = NULL;
11346
11347 if (inlined_func)
11348 {
11349 /* If we do not have call site information, we can't show the
11350 caller of this inlined function. That's too confusing, so
11351 only use the scope for local variables. */
11352 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11353 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11354 if (call_line == NULL || call_file == NULL)
11355 {
11356 read_lexical_block_scope (die, cu);
11357 return;
11358 }
11359 }
11360
11361 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11362
11363 name = dwarf2_name (die, cu);
11364
11365 /* Ignore functions with missing or empty names. These are actually
11366 illegal according to the DWARF standard. */
11367 if (name == NULL)
11368 {
11369 complaint (&symfile_complaints,
11370 _("missing name for subprogram DIE at %d"),
11371 die->offset.sect_off);
11372 return;
11373 }
11374
11375 /* Ignore functions with missing or invalid low and high pc attributes. */
11376 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11377 {
11378 attr = dwarf2_attr (die, DW_AT_external, cu);
11379 if (!attr || !DW_UNSND (attr))
11380 complaint (&symfile_complaints,
11381 _("cannot get low and high bounds "
11382 "for subprogram DIE at %d"),
11383 die->offset.sect_off);
11384 return;
11385 }
11386
11387 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11388 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11389
11390 /* If we have any template arguments, then we must allocate a
11391 different sort of symbol. */
11392 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11393 {
11394 if (child_die->tag == DW_TAG_template_type_param
11395 || child_die->tag == DW_TAG_template_value_param)
11396 {
11397 templ_func = allocate_template_symbol (objfile);
11398 templ_func->base.is_cplus_template_function = 1;
11399 break;
11400 }
11401 }
11402
11403 newobj = push_context (0, lowpc);
11404 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11405 (struct symbol *) templ_func);
11406
11407 /* If there is a location expression for DW_AT_frame_base, record
11408 it. */
11409 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11410 if (attr)
11411 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11412
11413 /* If there is a location for the static link, record it. */
11414 newobj->static_link = NULL;
11415 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11416 if (attr)
11417 {
11418 newobj->static_link
11419 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11420 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11421 }
11422
11423 cu->list_in_scope = &local_symbols;
11424
11425 if (die->child != NULL)
11426 {
11427 child_die = die->child;
11428 while (child_die && child_die->tag)
11429 {
11430 if (child_die->tag == DW_TAG_template_type_param
11431 || child_die->tag == DW_TAG_template_value_param)
11432 {
11433 struct symbol *arg = new_symbol (child_die, NULL, cu);
11434
11435 if (arg != NULL)
11436 VEC_safe_push (symbolp, template_args, arg);
11437 }
11438 else
11439 process_die (child_die, cu);
11440 child_die = sibling_die (child_die);
11441 }
11442 }
11443
11444 inherit_abstract_dies (die, cu);
11445
11446 /* If we have a DW_AT_specification, we might need to import using
11447 directives from the context of the specification DIE. See the
11448 comment in determine_prefix. */
11449 if (cu->language == language_cplus
11450 && dwarf2_attr (die, DW_AT_specification, cu))
11451 {
11452 struct dwarf2_cu *spec_cu = cu;
11453 struct die_info *spec_die = die_specification (die, &spec_cu);
11454
11455 while (spec_die)
11456 {
11457 child_die = spec_die->child;
11458 while (child_die && child_die->tag)
11459 {
11460 if (child_die->tag == DW_TAG_imported_module)
11461 process_die (child_die, spec_cu);
11462 child_die = sibling_die (child_die);
11463 }
11464
11465 /* In some cases, GCC generates specification DIEs that
11466 themselves contain DW_AT_specification attributes. */
11467 spec_die = die_specification (spec_die, &spec_cu);
11468 }
11469 }
11470
11471 newobj = pop_context ();
11472 /* Make a block for the local symbols within. */
11473 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11474 newobj->static_link, lowpc, highpc);
11475
11476 /* For C++, set the block's scope. */
11477 if ((cu->language == language_cplus
11478 || cu->language == language_fortran
11479 || cu->language == language_d
11480 || cu->language == language_rust)
11481 && cu->processing_has_namespace_info)
11482 block_set_scope (block, determine_prefix (die, cu),
11483 &objfile->objfile_obstack);
11484
11485 /* If we have address ranges, record them. */
11486 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11487
11488 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11489
11490 /* Attach template arguments to function. */
11491 if (! VEC_empty (symbolp, template_args))
11492 {
11493 gdb_assert (templ_func != NULL);
11494
11495 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11496 templ_func->template_arguments
11497 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11498 templ_func->n_template_arguments);
11499 memcpy (templ_func->template_arguments,
11500 VEC_address (symbolp, template_args),
11501 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11502 VEC_free (symbolp, template_args);
11503 }
11504
11505 /* In C++, we can have functions nested inside functions (e.g., when
11506 a function declares a class that has methods). This means that
11507 when we finish processing a function scope, we may need to go
11508 back to building a containing block's symbol lists. */
11509 local_symbols = newobj->locals;
11510 local_using_directives = newobj->local_using_directives;
11511
11512 /* If we've finished processing a top-level function, subsequent
11513 symbols go in the file symbol list. */
11514 if (outermost_context_p ())
11515 cu->list_in_scope = &file_symbols;
11516 }
11517
11518 /* Process all the DIES contained within a lexical block scope. Start
11519 a new scope, process the dies, and then close the scope. */
11520
11521 static void
11522 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11523 {
11524 struct objfile *objfile = cu->objfile;
11525 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11526 struct context_stack *newobj;
11527 CORE_ADDR lowpc, highpc;
11528 struct die_info *child_die;
11529 CORE_ADDR baseaddr;
11530
11531 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11532
11533 /* Ignore blocks with missing or invalid low and high pc attributes. */
11534 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11535 as multiple lexical blocks? Handling children in a sane way would
11536 be nasty. Might be easier to properly extend generic blocks to
11537 describe ranges. */
11538 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11539 return;
11540 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11541 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11542
11543 push_context (0, lowpc);
11544 if (die->child != NULL)
11545 {
11546 child_die = die->child;
11547 while (child_die && child_die->tag)
11548 {
11549 process_die (child_die, cu);
11550 child_die = sibling_die (child_die);
11551 }
11552 }
11553 inherit_abstract_dies (die, cu);
11554 newobj = pop_context ();
11555
11556 if (local_symbols != NULL || local_using_directives != NULL)
11557 {
11558 struct block *block
11559 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11560 newobj->start_addr, highpc);
11561
11562 /* Note that recording ranges after traversing children, as we
11563 do here, means that recording a parent's ranges entails
11564 walking across all its children's ranges as they appear in
11565 the address map, which is quadratic behavior.
11566
11567 It would be nicer to record the parent's ranges before
11568 traversing its children, simply overriding whatever you find
11569 there. But since we don't even decide whether to create a
11570 block until after we've traversed its children, that's hard
11571 to do. */
11572 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11573 }
11574 local_symbols = newobj->locals;
11575 local_using_directives = newobj->local_using_directives;
11576 }
11577
11578 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11579
11580 static void
11581 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11582 {
11583 struct objfile *objfile = cu->objfile;
11584 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11585 CORE_ADDR pc, baseaddr;
11586 struct attribute *attr;
11587 struct call_site *call_site, call_site_local;
11588 void **slot;
11589 int nparams;
11590 struct die_info *child_die;
11591
11592 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11593
11594 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11595 if (!attr)
11596 {
11597 complaint (&symfile_complaints,
11598 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11599 "DIE 0x%x [in module %s]"),
11600 die->offset.sect_off, objfile_name (objfile));
11601 return;
11602 }
11603 pc = attr_value_as_address (attr) + baseaddr;
11604 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11605
11606 if (cu->call_site_htab == NULL)
11607 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11608 NULL, &objfile->objfile_obstack,
11609 hashtab_obstack_allocate, NULL);
11610 call_site_local.pc = pc;
11611 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11612 if (*slot != NULL)
11613 {
11614 complaint (&symfile_complaints,
11615 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11616 "DIE 0x%x [in module %s]"),
11617 paddress (gdbarch, pc), die->offset.sect_off,
11618 objfile_name (objfile));
11619 return;
11620 }
11621
11622 /* Count parameters at the caller. */
11623
11624 nparams = 0;
11625 for (child_die = die->child; child_die && child_die->tag;
11626 child_die = sibling_die (child_die))
11627 {
11628 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11629 {
11630 complaint (&symfile_complaints,
11631 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11632 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11633 child_die->tag, child_die->offset.sect_off,
11634 objfile_name (objfile));
11635 continue;
11636 }
11637
11638 nparams++;
11639 }
11640
11641 call_site
11642 = ((struct call_site *)
11643 obstack_alloc (&objfile->objfile_obstack,
11644 sizeof (*call_site)
11645 + (sizeof (*call_site->parameter) * (nparams - 1))));
11646 *slot = call_site;
11647 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11648 call_site->pc = pc;
11649
11650 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11651 {
11652 struct die_info *func_die;
11653
11654 /* Skip also over DW_TAG_inlined_subroutine. */
11655 for (func_die = die->parent;
11656 func_die && func_die->tag != DW_TAG_subprogram
11657 && func_die->tag != DW_TAG_subroutine_type;
11658 func_die = func_die->parent);
11659
11660 /* DW_AT_GNU_all_call_sites is a superset
11661 of DW_AT_GNU_all_tail_call_sites. */
11662 if (func_die
11663 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11664 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11665 {
11666 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11667 not complete. But keep CALL_SITE for look ups via call_site_htab,
11668 both the initial caller containing the real return address PC and
11669 the final callee containing the current PC of a chain of tail
11670 calls do not need to have the tail call list complete. But any
11671 function candidate for a virtual tail call frame searched via
11672 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11673 determined unambiguously. */
11674 }
11675 else
11676 {
11677 struct type *func_type = NULL;
11678
11679 if (func_die)
11680 func_type = get_die_type (func_die, cu);
11681 if (func_type != NULL)
11682 {
11683 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11684
11685 /* Enlist this call site to the function. */
11686 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11687 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11688 }
11689 else
11690 complaint (&symfile_complaints,
11691 _("Cannot find function owning DW_TAG_GNU_call_site "
11692 "DIE 0x%x [in module %s]"),
11693 die->offset.sect_off, objfile_name (objfile));
11694 }
11695 }
11696
11697 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11698 if (attr == NULL)
11699 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11700 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11701 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11702 /* Keep NULL DWARF_BLOCK. */;
11703 else if (attr_form_is_block (attr))
11704 {
11705 struct dwarf2_locexpr_baton *dlbaton;
11706
11707 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11708 dlbaton->data = DW_BLOCK (attr)->data;
11709 dlbaton->size = DW_BLOCK (attr)->size;
11710 dlbaton->per_cu = cu->per_cu;
11711
11712 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11713 }
11714 else if (attr_form_is_ref (attr))
11715 {
11716 struct dwarf2_cu *target_cu = cu;
11717 struct die_info *target_die;
11718
11719 target_die = follow_die_ref (die, attr, &target_cu);
11720 gdb_assert (target_cu->objfile == objfile);
11721 if (die_is_declaration (target_die, target_cu))
11722 {
11723 const char *target_physname;
11724
11725 /* Prefer the mangled name; otherwise compute the demangled one. */
11726 target_physname = dwarf2_string_attr (target_die,
11727 DW_AT_linkage_name,
11728 target_cu);
11729 if (target_physname == NULL)
11730 target_physname = dwarf2_string_attr (target_die,
11731 DW_AT_MIPS_linkage_name,
11732 target_cu);
11733 if (target_physname == NULL)
11734 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11735 if (target_physname == NULL)
11736 complaint (&symfile_complaints,
11737 _("DW_AT_GNU_call_site_target target DIE has invalid "
11738 "physname, for referencing DIE 0x%x [in module %s]"),
11739 die->offset.sect_off, objfile_name (objfile));
11740 else
11741 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11742 }
11743 else
11744 {
11745 CORE_ADDR lowpc;
11746
11747 /* DW_AT_entry_pc should be preferred. */
11748 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11749 complaint (&symfile_complaints,
11750 _("DW_AT_GNU_call_site_target target DIE has invalid "
11751 "low pc, for referencing DIE 0x%x [in module %s]"),
11752 die->offset.sect_off, objfile_name (objfile));
11753 else
11754 {
11755 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11756 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11757 }
11758 }
11759 }
11760 else
11761 complaint (&symfile_complaints,
11762 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11763 "block nor reference, for DIE 0x%x [in module %s]"),
11764 die->offset.sect_off, objfile_name (objfile));
11765
11766 call_site->per_cu = cu->per_cu;
11767
11768 for (child_die = die->child;
11769 child_die && child_die->tag;
11770 child_die = sibling_die (child_die))
11771 {
11772 struct call_site_parameter *parameter;
11773 struct attribute *loc, *origin;
11774
11775 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11776 {
11777 /* Already printed the complaint above. */
11778 continue;
11779 }
11780
11781 gdb_assert (call_site->parameter_count < nparams);
11782 parameter = &call_site->parameter[call_site->parameter_count];
11783
11784 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11785 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11786 register is contained in DW_AT_GNU_call_site_value. */
11787
11788 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11789 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11790 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11791 {
11792 sect_offset offset;
11793
11794 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11795 offset = dwarf2_get_ref_die_offset (origin);
11796 if (!offset_in_cu_p (&cu->header, offset))
11797 {
11798 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11799 binding can be done only inside one CU. Such referenced DIE
11800 therefore cannot be even moved to DW_TAG_partial_unit. */
11801 complaint (&symfile_complaints,
11802 _("DW_AT_abstract_origin offset is not in CU for "
11803 "DW_TAG_GNU_call_site child DIE 0x%x "
11804 "[in module %s]"),
11805 child_die->offset.sect_off, objfile_name (objfile));
11806 continue;
11807 }
11808 parameter->u.param_offset.cu_off = (offset.sect_off
11809 - cu->header.offset.sect_off);
11810 }
11811 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11812 {
11813 complaint (&symfile_complaints,
11814 _("No DW_FORM_block* DW_AT_location for "
11815 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11816 child_die->offset.sect_off, objfile_name (objfile));
11817 continue;
11818 }
11819 else
11820 {
11821 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11822 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11823 if (parameter->u.dwarf_reg != -1)
11824 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11825 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11826 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11827 &parameter->u.fb_offset))
11828 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11829 else
11830 {
11831 complaint (&symfile_complaints,
11832 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11833 "for DW_FORM_block* DW_AT_location is supported for "
11834 "DW_TAG_GNU_call_site child DIE 0x%x "
11835 "[in module %s]"),
11836 child_die->offset.sect_off, objfile_name (objfile));
11837 continue;
11838 }
11839 }
11840
11841 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11842 if (!attr_form_is_block (attr))
11843 {
11844 complaint (&symfile_complaints,
11845 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11846 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11847 child_die->offset.sect_off, objfile_name (objfile));
11848 continue;
11849 }
11850 parameter->value = DW_BLOCK (attr)->data;
11851 parameter->value_size = DW_BLOCK (attr)->size;
11852
11853 /* Parameters are not pre-cleared by memset above. */
11854 parameter->data_value = NULL;
11855 parameter->data_value_size = 0;
11856 call_site->parameter_count++;
11857
11858 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11859 if (attr)
11860 {
11861 if (!attr_form_is_block (attr))
11862 complaint (&symfile_complaints,
11863 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11864 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11865 child_die->offset.sect_off, objfile_name (objfile));
11866 else
11867 {
11868 parameter->data_value = DW_BLOCK (attr)->data;
11869 parameter->data_value_size = DW_BLOCK (attr)->size;
11870 }
11871 }
11872 }
11873 }
11874
11875 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11876 Return 1 if the attributes are present and valid, otherwise, return 0.
11877 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11878
11879 static int
11880 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11881 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11882 struct partial_symtab *ranges_pst)
11883 {
11884 struct objfile *objfile = cu->objfile;
11885 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11886 struct comp_unit_head *cu_header = &cu->header;
11887 bfd *obfd = objfile->obfd;
11888 unsigned int addr_size = cu_header->addr_size;
11889 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11890 /* Base address selection entry. */
11891 CORE_ADDR base;
11892 int found_base;
11893 unsigned int dummy;
11894 const gdb_byte *buffer;
11895 int low_set;
11896 CORE_ADDR low = 0;
11897 CORE_ADDR high = 0;
11898 CORE_ADDR baseaddr;
11899
11900 found_base = cu->base_known;
11901 base = cu->base_address;
11902
11903 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11904 if (offset >= dwarf2_per_objfile->ranges.size)
11905 {
11906 complaint (&symfile_complaints,
11907 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11908 offset);
11909 return 0;
11910 }
11911 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11912
11913 low_set = 0;
11914
11915 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11916
11917 while (1)
11918 {
11919 CORE_ADDR range_beginning, range_end;
11920
11921 range_beginning = read_address (obfd, buffer, cu, &dummy);
11922 buffer += addr_size;
11923 range_end = read_address (obfd, buffer, cu, &dummy);
11924 buffer += addr_size;
11925 offset += 2 * addr_size;
11926
11927 /* An end of list marker is a pair of zero addresses. */
11928 if (range_beginning == 0 && range_end == 0)
11929 /* Found the end of list entry. */
11930 break;
11931
11932 /* Each base address selection entry is a pair of 2 values.
11933 The first is the largest possible address, the second is
11934 the base address. Check for a base address here. */
11935 if ((range_beginning & mask) == mask)
11936 {
11937 /* If we found the largest possible address, then we already
11938 have the base address in range_end. */
11939 base = range_end;
11940 found_base = 1;
11941 continue;
11942 }
11943
11944 if (!found_base)
11945 {
11946 /* We have no valid base address for the ranges
11947 data. */
11948 complaint (&symfile_complaints,
11949 _("Invalid .debug_ranges data (no base address)"));
11950 return 0;
11951 }
11952
11953 if (range_beginning > range_end)
11954 {
11955 /* Inverted range entries are invalid. */
11956 complaint (&symfile_complaints,
11957 _("Invalid .debug_ranges data (inverted range)"));
11958 return 0;
11959 }
11960
11961 /* Empty range entries have no effect. */
11962 if (range_beginning == range_end)
11963 continue;
11964
11965 range_beginning += base;
11966 range_end += base;
11967
11968 /* A not-uncommon case of bad debug info.
11969 Don't pollute the addrmap with bad data. */
11970 if (range_beginning + baseaddr == 0
11971 && !dwarf2_per_objfile->has_section_at_zero)
11972 {
11973 complaint (&symfile_complaints,
11974 _(".debug_ranges entry has start address of zero"
11975 " [in module %s]"), objfile_name (objfile));
11976 continue;
11977 }
11978
11979 if (ranges_pst != NULL)
11980 {
11981 CORE_ADDR lowpc;
11982 CORE_ADDR highpc;
11983
11984 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11985 range_beginning + baseaddr);
11986 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11987 range_end + baseaddr);
11988 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11989 ranges_pst);
11990 }
11991
11992 /* FIXME: This is recording everything as a low-high
11993 segment of consecutive addresses. We should have a
11994 data structure for discontiguous block ranges
11995 instead. */
11996 if (! low_set)
11997 {
11998 low = range_beginning;
11999 high = range_end;
12000 low_set = 1;
12001 }
12002 else
12003 {
12004 if (range_beginning < low)
12005 low = range_beginning;
12006 if (range_end > high)
12007 high = range_end;
12008 }
12009 }
12010
12011 if (! low_set)
12012 /* If the first entry is an end-of-list marker, the range
12013 describes an empty scope, i.e. no instructions. */
12014 return 0;
12015
12016 if (low_return)
12017 *low_return = low;
12018 if (high_return)
12019 *high_return = high;
12020 return 1;
12021 }
12022
12023 /* Get low and high pc attributes from a die. Return 1 if the attributes
12024 are present and valid, otherwise, return 0. Return -1 if the range is
12025 discontinuous, i.e. derived from DW_AT_ranges information. */
12026
12027 static int
12028 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12029 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12030 struct partial_symtab *pst)
12031 {
12032 struct attribute *attr;
12033 struct attribute *attr_high;
12034 CORE_ADDR low = 0;
12035 CORE_ADDR high = 0;
12036 int ret = 0;
12037
12038 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12039 if (attr_high)
12040 {
12041 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12042 if (attr)
12043 {
12044 low = attr_value_as_address (attr);
12045 high = attr_value_as_address (attr_high);
12046 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12047 high += low;
12048 }
12049 else
12050 /* Found high w/o low attribute. */
12051 return 0;
12052
12053 /* Found consecutive range of addresses. */
12054 ret = 1;
12055 }
12056 else
12057 {
12058 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12059 if (attr != NULL)
12060 {
12061 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12062 We take advantage of the fact that DW_AT_ranges does not appear
12063 in DW_TAG_compile_unit of DWO files. */
12064 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12065 unsigned int ranges_offset = (DW_UNSND (attr)
12066 + (need_ranges_base
12067 ? cu->ranges_base
12068 : 0));
12069
12070 /* Value of the DW_AT_ranges attribute is the offset in the
12071 .debug_ranges section. */
12072 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12073 return 0;
12074 /* Found discontinuous range of addresses. */
12075 ret = -1;
12076 }
12077 }
12078
12079 /* read_partial_die has also the strict LOW < HIGH requirement. */
12080 if (high <= low)
12081 return 0;
12082
12083 /* When using the GNU linker, .gnu.linkonce. sections are used to
12084 eliminate duplicate copies of functions and vtables and such.
12085 The linker will arbitrarily choose one and discard the others.
12086 The AT_*_pc values for such functions refer to local labels in
12087 these sections. If the section from that file was discarded, the
12088 labels are not in the output, so the relocs get a value of 0.
12089 If this is a discarded function, mark the pc bounds as invalid,
12090 so that GDB will ignore it. */
12091 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12092 return 0;
12093
12094 *lowpc = low;
12095 if (highpc)
12096 *highpc = high;
12097 return ret;
12098 }
12099
12100 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12101 its low and high PC addresses. Do nothing if these addresses could not
12102 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12103 and HIGHPC to the high address if greater than HIGHPC. */
12104
12105 static void
12106 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12107 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12108 struct dwarf2_cu *cu)
12109 {
12110 CORE_ADDR low, high;
12111 struct die_info *child = die->child;
12112
12113 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12114 {
12115 *lowpc = min (*lowpc, low);
12116 *highpc = max (*highpc, high);
12117 }
12118
12119 /* If the language does not allow nested subprograms (either inside
12120 subprograms or lexical blocks), we're done. */
12121 if (cu->language != language_ada)
12122 return;
12123
12124 /* Check all the children of the given DIE. If it contains nested
12125 subprograms, then check their pc bounds. Likewise, we need to
12126 check lexical blocks as well, as they may also contain subprogram
12127 definitions. */
12128 while (child && child->tag)
12129 {
12130 if (child->tag == DW_TAG_subprogram
12131 || child->tag == DW_TAG_lexical_block)
12132 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12133 child = sibling_die (child);
12134 }
12135 }
12136
12137 /* Get the low and high pc's represented by the scope DIE, and store
12138 them in *LOWPC and *HIGHPC. If the correct values can't be
12139 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12140
12141 static void
12142 get_scope_pc_bounds (struct die_info *die,
12143 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12144 struct dwarf2_cu *cu)
12145 {
12146 CORE_ADDR best_low = (CORE_ADDR) -1;
12147 CORE_ADDR best_high = (CORE_ADDR) 0;
12148 CORE_ADDR current_low, current_high;
12149
12150 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12151 {
12152 best_low = current_low;
12153 best_high = current_high;
12154 }
12155 else
12156 {
12157 struct die_info *child = die->child;
12158
12159 while (child && child->tag)
12160 {
12161 switch (child->tag) {
12162 case DW_TAG_subprogram:
12163 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12164 break;
12165 case DW_TAG_namespace:
12166 case DW_TAG_module:
12167 /* FIXME: carlton/2004-01-16: Should we do this for
12168 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12169 that current GCC's always emit the DIEs corresponding
12170 to definitions of methods of classes as children of a
12171 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12172 the DIEs giving the declarations, which could be
12173 anywhere). But I don't see any reason why the
12174 standards says that they have to be there. */
12175 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12176
12177 if (current_low != ((CORE_ADDR) -1))
12178 {
12179 best_low = min (best_low, current_low);
12180 best_high = max (best_high, current_high);
12181 }
12182 break;
12183 default:
12184 /* Ignore. */
12185 break;
12186 }
12187
12188 child = sibling_die (child);
12189 }
12190 }
12191
12192 *lowpc = best_low;
12193 *highpc = best_high;
12194 }
12195
12196 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12197 in DIE. */
12198
12199 static void
12200 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12201 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12202 {
12203 struct objfile *objfile = cu->objfile;
12204 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12205 struct attribute *attr;
12206 struct attribute *attr_high;
12207
12208 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12209 if (attr_high)
12210 {
12211 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12212 if (attr)
12213 {
12214 CORE_ADDR low = attr_value_as_address (attr);
12215 CORE_ADDR high = attr_value_as_address (attr_high);
12216
12217 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12218 high += low;
12219
12220 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12221 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12222 record_block_range (block, low, high - 1);
12223 }
12224 }
12225
12226 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12227 if (attr)
12228 {
12229 bfd *obfd = objfile->obfd;
12230 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12231 We take advantage of the fact that DW_AT_ranges does not appear
12232 in DW_TAG_compile_unit of DWO files. */
12233 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12234
12235 /* The value of the DW_AT_ranges attribute is the offset of the
12236 address range list in the .debug_ranges section. */
12237 unsigned long offset = (DW_UNSND (attr)
12238 + (need_ranges_base ? cu->ranges_base : 0));
12239 const gdb_byte *buffer;
12240
12241 /* For some target architectures, but not others, the
12242 read_address function sign-extends the addresses it returns.
12243 To recognize base address selection entries, we need a
12244 mask. */
12245 unsigned int addr_size = cu->header.addr_size;
12246 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12247
12248 /* The base address, to which the next pair is relative. Note
12249 that this 'base' is a DWARF concept: most entries in a range
12250 list are relative, to reduce the number of relocs against the
12251 debugging information. This is separate from this function's
12252 'baseaddr' argument, which GDB uses to relocate debugging
12253 information from a shared library based on the address at
12254 which the library was loaded. */
12255 CORE_ADDR base = cu->base_address;
12256 int base_known = cu->base_known;
12257
12258 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12259 if (offset >= dwarf2_per_objfile->ranges.size)
12260 {
12261 complaint (&symfile_complaints,
12262 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12263 offset);
12264 return;
12265 }
12266 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12267
12268 for (;;)
12269 {
12270 unsigned int bytes_read;
12271 CORE_ADDR start, end;
12272
12273 start = read_address (obfd, buffer, cu, &bytes_read);
12274 buffer += bytes_read;
12275 end = read_address (obfd, buffer, cu, &bytes_read);
12276 buffer += bytes_read;
12277
12278 /* Did we find the end of the range list? */
12279 if (start == 0 && end == 0)
12280 break;
12281
12282 /* Did we find a base address selection entry? */
12283 else if ((start & base_select_mask) == base_select_mask)
12284 {
12285 base = end;
12286 base_known = 1;
12287 }
12288
12289 /* We found an ordinary address range. */
12290 else
12291 {
12292 if (!base_known)
12293 {
12294 complaint (&symfile_complaints,
12295 _("Invalid .debug_ranges data "
12296 "(no base address)"));
12297 return;
12298 }
12299
12300 if (start > end)
12301 {
12302 /* Inverted range entries are invalid. */
12303 complaint (&symfile_complaints,
12304 _("Invalid .debug_ranges data "
12305 "(inverted range)"));
12306 return;
12307 }
12308
12309 /* Empty range entries have no effect. */
12310 if (start == end)
12311 continue;
12312
12313 start += base + baseaddr;
12314 end += base + baseaddr;
12315
12316 /* A not-uncommon case of bad debug info.
12317 Don't pollute the addrmap with bad data. */
12318 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12319 {
12320 complaint (&symfile_complaints,
12321 _(".debug_ranges entry has start address of zero"
12322 " [in module %s]"), objfile_name (objfile));
12323 continue;
12324 }
12325
12326 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12327 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12328 record_block_range (block, start, end - 1);
12329 }
12330 }
12331 }
12332 }
12333
12334 /* Check whether the producer field indicates either of GCC < 4.6, or the
12335 Intel C/C++ compiler, and cache the result in CU. */
12336
12337 static void
12338 check_producer (struct dwarf2_cu *cu)
12339 {
12340 int major, minor;
12341
12342 if (cu->producer == NULL)
12343 {
12344 /* For unknown compilers expect their behavior is DWARF version
12345 compliant.
12346
12347 GCC started to support .debug_types sections by -gdwarf-4 since
12348 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12349 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12350 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12351 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12352 }
12353 else if (producer_is_gcc (cu->producer, &major, &minor))
12354 {
12355 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12356 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12357 }
12358 else if (startswith (cu->producer, "Intel(R) C"))
12359 cu->producer_is_icc = 1;
12360 else
12361 {
12362 /* For other non-GCC compilers, expect their behavior is DWARF version
12363 compliant. */
12364 }
12365
12366 cu->checked_producer = 1;
12367 }
12368
12369 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12370 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12371 during 4.6.0 experimental. */
12372
12373 static int
12374 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12375 {
12376 if (!cu->checked_producer)
12377 check_producer (cu);
12378
12379 return cu->producer_is_gxx_lt_4_6;
12380 }
12381
12382 /* Return the default accessibility type if it is not overriden by
12383 DW_AT_accessibility. */
12384
12385 static enum dwarf_access_attribute
12386 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12387 {
12388 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12389 {
12390 /* The default DWARF 2 accessibility for members is public, the default
12391 accessibility for inheritance is private. */
12392
12393 if (die->tag != DW_TAG_inheritance)
12394 return DW_ACCESS_public;
12395 else
12396 return DW_ACCESS_private;
12397 }
12398 else
12399 {
12400 /* DWARF 3+ defines the default accessibility a different way. The same
12401 rules apply now for DW_TAG_inheritance as for the members and it only
12402 depends on the container kind. */
12403
12404 if (die->parent->tag == DW_TAG_class_type)
12405 return DW_ACCESS_private;
12406 else
12407 return DW_ACCESS_public;
12408 }
12409 }
12410
12411 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12412 offset. If the attribute was not found return 0, otherwise return
12413 1. If it was found but could not properly be handled, set *OFFSET
12414 to 0. */
12415
12416 static int
12417 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12418 LONGEST *offset)
12419 {
12420 struct attribute *attr;
12421
12422 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12423 if (attr != NULL)
12424 {
12425 *offset = 0;
12426
12427 /* Note that we do not check for a section offset first here.
12428 This is because DW_AT_data_member_location is new in DWARF 4,
12429 so if we see it, we can assume that a constant form is really
12430 a constant and not a section offset. */
12431 if (attr_form_is_constant (attr))
12432 *offset = dwarf2_get_attr_constant_value (attr, 0);
12433 else if (attr_form_is_section_offset (attr))
12434 dwarf2_complex_location_expr_complaint ();
12435 else if (attr_form_is_block (attr))
12436 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12437 else
12438 dwarf2_complex_location_expr_complaint ();
12439
12440 return 1;
12441 }
12442
12443 return 0;
12444 }
12445
12446 /* Add an aggregate field to the field list. */
12447
12448 static void
12449 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12450 struct dwarf2_cu *cu)
12451 {
12452 struct objfile *objfile = cu->objfile;
12453 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12454 struct nextfield *new_field;
12455 struct attribute *attr;
12456 struct field *fp;
12457 const char *fieldname = "";
12458
12459 /* Allocate a new field list entry and link it in. */
12460 new_field = XNEW (struct nextfield);
12461 make_cleanup (xfree, new_field);
12462 memset (new_field, 0, sizeof (struct nextfield));
12463
12464 if (die->tag == DW_TAG_inheritance)
12465 {
12466 new_field->next = fip->baseclasses;
12467 fip->baseclasses = new_field;
12468 }
12469 else
12470 {
12471 new_field->next = fip->fields;
12472 fip->fields = new_field;
12473 }
12474 fip->nfields++;
12475
12476 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12477 if (attr)
12478 new_field->accessibility = DW_UNSND (attr);
12479 else
12480 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12481 if (new_field->accessibility != DW_ACCESS_public)
12482 fip->non_public_fields = 1;
12483
12484 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12485 if (attr)
12486 new_field->virtuality = DW_UNSND (attr);
12487 else
12488 new_field->virtuality = DW_VIRTUALITY_none;
12489
12490 fp = &new_field->field;
12491
12492 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12493 {
12494 LONGEST offset;
12495
12496 /* Data member other than a C++ static data member. */
12497
12498 /* Get type of field. */
12499 fp->type = die_type (die, cu);
12500
12501 SET_FIELD_BITPOS (*fp, 0);
12502
12503 /* Get bit size of field (zero if none). */
12504 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12505 if (attr)
12506 {
12507 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12508 }
12509 else
12510 {
12511 FIELD_BITSIZE (*fp) = 0;
12512 }
12513
12514 /* Get bit offset of field. */
12515 if (handle_data_member_location (die, cu, &offset))
12516 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12517 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12518 if (attr)
12519 {
12520 if (gdbarch_bits_big_endian (gdbarch))
12521 {
12522 /* For big endian bits, the DW_AT_bit_offset gives the
12523 additional bit offset from the MSB of the containing
12524 anonymous object to the MSB of the field. We don't
12525 have to do anything special since we don't need to
12526 know the size of the anonymous object. */
12527 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12528 }
12529 else
12530 {
12531 /* For little endian bits, compute the bit offset to the
12532 MSB of the anonymous object, subtract off the number of
12533 bits from the MSB of the field to the MSB of the
12534 object, and then subtract off the number of bits of
12535 the field itself. The result is the bit offset of
12536 the LSB of the field. */
12537 int anonymous_size;
12538 int bit_offset = DW_UNSND (attr);
12539
12540 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12541 if (attr)
12542 {
12543 /* The size of the anonymous object containing
12544 the bit field is explicit, so use the
12545 indicated size (in bytes). */
12546 anonymous_size = DW_UNSND (attr);
12547 }
12548 else
12549 {
12550 /* The size of the anonymous object containing
12551 the bit field must be inferred from the type
12552 attribute of the data member containing the
12553 bit field. */
12554 anonymous_size = TYPE_LENGTH (fp->type);
12555 }
12556 SET_FIELD_BITPOS (*fp,
12557 (FIELD_BITPOS (*fp)
12558 + anonymous_size * bits_per_byte
12559 - bit_offset - FIELD_BITSIZE (*fp)));
12560 }
12561 }
12562
12563 /* Get name of field. */
12564 fieldname = dwarf2_name (die, cu);
12565 if (fieldname == NULL)
12566 fieldname = "";
12567
12568 /* The name is already allocated along with this objfile, so we don't
12569 need to duplicate it for the type. */
12570 fp->name = fieldname;
12571
12572 /* Change accessibility for artificial fields (e.g. virtual table
12573 pointer or virtual base class pointer) to private. */
12574 if (dwarf2_attr (die, DW_AT_artificial, cu))
12575 {
12576 FIELD_ARTIFICIAL (*fp) = 1;
12577 new_field->accessibility = DW_ACCESS_private;
12578 fip->non_public_fields = 1;
12579 }
12580 }
12581 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12582 {
12583 /* C++ static member. */
12584
12585 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12586 is a declaration, but all versions of G++ as of this writing
12587 (so through at least 3.2.1) incorrectly generate
12588 DW_TAG_variable tags. */
12589
12590 const char *physname;
12591
12592 /* Get name of field. */
12593 fieldname = dwarf2_name (die, cu);
12594 if (fieldname == NULL)
12595 return;
12596
12597 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12598 if (attr
12599 /* Only create a symbol if this is an external value.
12600 new_symbol checks this and puts the value in the global symbol
12601 table, which we want. If it is not external, new_symbol
12602 will try to put the value in cu->list_in_scope which is wrong. */
12603 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12604 {
12605 /* A static const member, not much different than an enum as far as
12606 we're concerned, except that we can support more types. */
12607 new_symbol (die, NULL, cu);
12608 }
12609
12610 /* Get physical name. */
12611 physname = dwarf2_physname (fieldname, die, cu);
12612
12613 /* The name is already allocated along with this objfile, so we don't
12614 need to duplicate it for the type. */
12615 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12616 FIELD_TYPE (*fp) = die_type (die, cu);
12617 FIELD_NAME (*fp) = fieldname;
12618 }
12619 else if (die->tag == DW_TAG_inheritance)
12620 {
12621 LONGEST offset;
12622
12623 /* C++ base class field. */
12624 if (handle_data_member_location (die, cu, &offset))
12625 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12626 FIELD_BITSIZE (*fp) = 0;
12627 FIELD_TYPE (*fp) = die_type (die, cu);
12628 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12629 fip->nbaseclasses++;
12630 }
12631 }
12632
12633 /* Add a typedef defined in the scope of the FIP's class. */
12634
12635 static void
12636 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12637 struct dwarf2_cu *cu)
12638 {
12639 struct typedef_field_list *new_field;
12640 struct typedef_field *fp;
12641
12642 /* Allocate a new field list entry and link it in. */
12643 new_field = XCNEW (struct typedef_field_list);
12644 make_cleanup (xfree, new_field);
12645
12646 gdb_assert (die->tag == DW_TAG_typedef);
12647
12648 fp = &new_field->field;
12649
12650 /* Get name of field. */
12651 fp->name = dwarf2_name (die, cu);
12652 if (fp->name == NULL)
12653 return;
12654
12655 fp->type = read_type_die (die, cu);
12656
12657 new_field->next = fip->typedef_field_list;
12658 fip->typedef_field_list = new_field;
12659 fip->typedef_field_list_count++;
12660 }
12661
12662 /* Create the vector of fields, and attach it to the type. */
12663
12664 static void
12665 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12666 struct dwarf2_cu *cu)
12667 {
12668 int nfields = fip->nfields;
12669
12670 /* Record the field count, allocate space for the array of fields,
12671 and create blank accessibility bitfields if necessary. */
12672 TYPE_NFIELDS (type) = nfields;
12673 TYPE_FIELDS (type) = (struct field *)
12674 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12675 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12676
12677 if (fip->non_public_fields && cu->language != language_ada)
12678 {
12679 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12680
12681 TYPE_FIELD_PRIVATE_BITS (type) =
12682 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12683 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12684
12685 TYPE_FIELD_PROTECTED_BITS (type) =
12686 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12687 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12688
12689 TYPE_FIELD_IGNORE_BITS (type) =
12690 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12691 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12692 }
12693
12694 /* If the type has baseclasses, allocate and clear a bit vector for
12695 TYPE_FIELD_VIRTUAL_BITS. */
12696 if (fip->nbaseclasses && cu->language != language_ada)
12697 {
12698 int num_bytes = B_BYTES (fip->nbaseclasses);
12699 unsigned char *pointer;
12700
12701 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12702 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
12703 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12704 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12705 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12706 }
12707
12708 /* Copy the saved-up fields into the field vector. Start from the head of
12709 the list, adding to the tail of the field array, so that they end up in
12710 the same order in the array in which they were added to the list. */
12711 while (nfields-- > 0)
12712 {
12713 struct nextfield *fieldp;
12714
12715 if (fip->fields)
12716 {
12717 fieldp = fip->fields;
12718 fip->fields = fieldp->next;
12719 }
12720 else
12721 {
12722 fieldp = fip->baseclasses;
12723 fip->baseclasses = fieldp->next;
12724 }
12725
12726 TYPE_FIELD (type, nfields) = fieldp->field;
12727 switch (fieldp->accessibility)
12728 {
12729 case DW_ACCESS_private:
12730 if (cu->language != language_ada)
12731 SET_TYPE_FIELD_PRIVATE (type, nfields);
12732 break;
12733
12734 case DW_ACCESS_protected:
12735 if (cu->language != language_ada)
12736 SET_TYPE_FIELD_PROTECTED (type, nfields);
12737 break;
12738
12739 case DW_ACCESS_public:
12740 break;
12741
12742 default:
12743 /* Unknown accessibility. Complain and treat it as public. */
12744 {
12745 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12746 fieldp->accessibility);
12747 }
12748 break;
12749 }
12750 if (nfields < fip->nbaseclasses)
12751 {
12752 switch (fieldp->virtuality)
12753 {
12754 case DW_VIRTUALITY_virtual:
12755 case DW_VIRTUALITY_pure_virtual:
12756 if (cu->language == language_ada)
12757 error (_("unexpected virtuality in component of Ada type"));
12758 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12759 break;
12760 }
12761 }
12762 }
12763 }
12764
12765 /* Return true if this member function is a constructor, false
12766 otherwise. */
12767
12768 static int
12769 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12770 {
12771 const char *fieldname;
12772 const char *type_name;
12773 int len;
12774
12775 if (die->parent == NULL)
12776 return 0;
12777
12778 if (die->parent->tag != DW_TAG_structure_type
12779 && die->parent->tag != DW_TAG_union_type
12780 && die->parent->tag != DW_TAG_class_type)
12781 return 0;
12782
12783 fieldname = dwarf2_name (die, cu);
12784 type_name = dwarf2_name (die->parent, cu);
12785 if (fieldname == NULL || type_name == NULL)
12786 return 0;
12787
12788 len = strlen (fieldname);
12789 return (strncmp (fieldname, type_name, len) == 0
12790 && (type_name[len] == '\0' || type_name[len] == '<'));
12791 }
12792
12793 /* Add a member function to the proper fieldlist. */
12794
12795 static void
12796 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12797 struct type *type, struct dwarf2_cu *cu)
12798 {
12799 struct objfile *objfile = cu->objfile;
12800 struct attribute *attr;
12801 struct fnfieldlist *flp;
12802 int i;
12803 struct fn_field *fnp;
12804 const char *fieldname;
12805 struct nextfnfield *new_fnfield;
12806 struct type *this_type;
12807 enum dwarf_access_attribute accessibility;
12808
12809 if (cu->language == language_ada)
12810 error (_("unexpected member function in Ada type"));
12811
12812 /* Get name of member function. */
12813 fieldname = dwarf2_name (die, cu);
12814 if (fieldname == NULL)
12815 return;
12816
12817 /* Look up member function name in fieldlist. */
12818 for (i = 0; i < fip->nfnfields; i++)
12819 {
12820 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12821 break;
12822 }
12823
12824 /* Create new list element if necessary. */
12825 if (i < fip->nfnfields)
12826 flp = &fip->fnfieldlists[i];
12827 else
12828 {
12829 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12830 {
12831 fip->fnfieldlists = (struct fnfieldlist *)
12832 xrealloc (fip->fnfieldlists,
12833 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12834 * sizeof (struct fnfieldlist));
12835 if (fip->nfnfields == 0)
12836 make_cleanup (free_current_contents, &fip->fnfieldlists);
12837 }
12838 flp = &fip->fnfieldlists[fip->nfnfields];
12839 flp->name = fieldname;
12840 flp->length = 0;
12841 flp->head = NULL;
12842 i = fip->nfnfields++;
12843 }
12844
12845 /* Create a new member function field and chain it to the field list
12846 entry. */
12847 new_fnfield = XNEW (struct nextfnfield);
12848 make_cleanup (xfree, new_fnfield);
12849 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12850 new_fnfield->next = flp->head;
12851 flp->head = new_fnfield;
12852 flp->length++;
12853
12854 /* Fill in the member function field info. */
12855 fnp = &new_fnfield->fnfield;
12856
12857 /* Delay processing of the physname until later. */
12858 if (cu->language == language_cplus || cu->language == language_java)
12859 {
12860 add_to_method_list (type, i, flp->length - 1, fieldname,
12861 die, cu);
12862 }
12863 else
12864 {
12865 const char *physname = dwarf2_physname (fieldname, die, cu);
12866 fnp->physname = physname ? physname : "";
12867 }
12868
12869 fnp->type = alloc_type (objfile);
12870 this_type = read_type_die (die, cu);
12871 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12872 {
12873 int nparams = TYPE_NFIELDS (this_type);
12874
12875 /* TYPE is the domain of this method, and THIS_TYPE is the type
12876 of the method itself (TYPE_CODE_METHOD). */
12877 smash_to_method_type (fnp->type, type,
12878 TYPE_TARGET_TYPE (this_type),
12879 TYPE_FIELDS (this_type),
12880 TYPE_NFIELDS (this_type),
12881 TYPE_VARARGS (this_type));
12882
12883 /* Handle static member functions.
12884 Dwarf2 has no clean way to discern C++ static and non-static
12885 member functions. G++ helps GDB by marking the first
12886 parameter for non-static member functions (which is the this
12887 pointer) as artificial. We obtain this information from
12888 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12889 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12890 fnp->voffset = VOFFSET_STATIC;
12891 }
12892 else
12893 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12894 dwarf2_full_name (fieldname, die, cu));
12895
12896 /* Get fcontext from DW_AT_containing_type if present. */
12897 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12898 fnp->fcontext = die_containing_type (die, cu);
12899
12900 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12901 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12902
12903 /* Get accessibility. */
12904 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12905 if (attr)
12906 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12907 else
12908 accessibility = dwarf2_default_access_attribute (die, cu);
12909 switch (accessibility)
12910 {
12911 case DW_ACCESS_private:
12912 fnp->is_private = 1;
12913 break;
12914 case DW_ACCESS_protected:
12915 fnp->is_protected = 1;
12916 break;
12917 }
12918
12919 /* Check for artificial methods. */
12920 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12921 if (attr && DW_UNSND (attr) != 0)
12922 fnp->is_artificial = 1;
12923
12924 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12925
12926 /* Get index in virtual function table if it is a virtual member
12927 function. For older versions of GCC, this is an offset in the
12928 appropriate virtual table, as specified by DW_AT_containing_type.
12929 For everyone else, it is an expression to be evaluated relative
12930 to the object address. */
12931
12932 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12933 if (attr)
12934 {
12935 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12936 {
12937 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12938 {
12939 /* Old-style GCC. */
12940 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12941 }
12942 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12943 || (DW_BLOCK (attr)->size > 1
12944 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12945 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12946 {
12947 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12948 if ((fnp->voffset % cu->header.addr_size) != 0)
12949 dwarf2_complex_location_expr_complaint ();
12950 else
12951 fnp->voffset /= cu->header.addr_size;
12952 fnp->voffset += 2;
12953 }
12954 else
12955 dwarf2_complex_location_expr_complaint ();
12956
12957 if (!fnp->fcontext)
12958 {
12959 /* If there is no `this' field and no DW_AT_containing_type,
12960 we cannot actually find a base class context for the
12961 vtable! */
12962 if (TYPE_NFIELDS (this_type) == 0
12963 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12964 {
12965 complaint (&symfile_complaints,
12966 _("cannot determine context for virtual member "
12967 "function \"%s\" (offset %d)"),
12968 fieldname, die->offset.sect_off);
12969 }
12970 else
12971 {
12972 fnp->fcontext
12973 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12974 }
12975 }
12976 }
12977 else if (attr_form_is_section_offset (attr))
12978 {
12979 dwarf2_complex_location_expr_complaint ();
12980 }
12981 else
12982 {
12983 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12984 fieldname);
12985 }
12986 }
12987 else
12988 {
12989 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12990 if (attr && DW_UNSND (attr))
12991 {
12992 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12993 complaint (&symfile_complaints,
12994 _("Member function \"%s\" (offset %d) is virtual "
12995 "but the vtable offset is not specified"),
12996 fieldname, die->offset.sect_off);
12997 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12998 TYPE_CPLUS_DYNAMIC (type) = 1;
12999 }
13000 }
13001 }
13002
13003 /* Create the vector of member function fields, and attach it to the type. */
13004
13005 static void
13006 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13007 struct dwarf2_cu *cu)
13008 {
13009 struct fnfieldlist *flp;
13010 int i;
13011
13012 if (cu->language == language_ada)
13013 error (_("unexpected member functions in Ada type"));
13014
13015 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13016 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13017 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13018
13019 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13020 {
13021 struct nextfnfield *nfp = flp->head;
13022 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13023 int k;
13024
13025 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13026 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13027 fn_flp->fn_fields = (struct fn_field *)
13028 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13029 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13030 fn_flp->fn_fields[k] = nfp->fnfield;
13031 }
13032
13033 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13034 }
13035
13036 /* Returns non-zero if NAME is the name of a vtable member in CU's
13037 language, zero otherwise. */
13038 static int
13039 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13040 {
13041 static const char vptr[] = "_vptr";
13042 static const char vtable[] = "vtable";
13043
13044 /* Look for the C++ and Java forms of the vtable. */
13045 if ((cu->language == language_java
13046 && startswith (name, vtable))
13047 || (startswith (name, vptr)
13048 && is_cplus_marker (name[sizeof (vptr) - 1])))
13049 return 1;
13050
13051 return 0;
13052 }
13053
13054 /* GCC outputs unnamed structures that are really pointers to member
13055 functions, with the ABI-specified layout. If TYPE describes
13056 such a structure, smash it into a member function type.
13057
13058 GCC shouldn't do this; it should just output pointer to member DIEs.
13059 This is GCC PR debug/28767. */
13060
13061 static void
13062 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13063 {
13064 struct type *pfn_type, *self_type, *new_type;
13065
13066 /* Check for a structure with no name and two children. */
13067 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13068 return;
13069
13070 /* Check for __pfn and __delta members. */
13071 if (TYPE_FIELD_NAME (type, 0) == NULL
13072 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13073 || TYPE_FIELD_NAME (type, 1) == NULL
13074 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13075 return;
13076
13077 /* Find the type of the method. */
13078 pfn_type = TYPE_FIELD_TYPE (type, 0);
13079 if (pfn_type == NULL
13080 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13081 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13082 return;
13083
13084 /* Look for the "this" argument. */
13085 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13086 if (TYPE_NFIELDS (pfn_type) == 0
13087 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13088 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13089 return;
13090
13091 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13092 new_type = alloc_type (objfile);
13093 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13094 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13095 TYPE_VARARGS (pfn_type));
13096 smash_to_methodptr_type (type, new_type);
13097 }
13098
13099 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13100 (icc). */
13101
13102 static int
13103 producer_is_icc (struct dwarf2_cu *cu)
13104 {
13105 if (!cu->checked_producer)
13106 check_producer (cu);
13107
13108 return cu->producer_is_icc;
13109 }
13110
13111 /* Called when we find the DIE that starts a structure or union scope
13112 (definition) to create a type for the structure or union. Fill in
13113 the type's name and general properties; the members will not be
13114 processed until process_structure_scope. A symbol table entry for
13115 the type will also not be done until process_structure_scope (assuming
13116 the type has a name).
13117
13118 NOTE: we need to call these functions regardless of whether or not the
13119 DIE has a DW_AT_name attribute, since it might be an anonymous
13120 structure or union. This gets the type entered into our set of
13121 user defined types. */
13122
13123 static struct type *
13124 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13125 {
13126 struct objfile *objfile = cu->objfile;
13127 struct type *type;
13128 struct attribute *attr;
13129 const char *name;
13130
13131 /* If the definition of this type lives in .debug_types, read that type.
13132 Don't follow DW_AT_specification though, that will take us back up
13133 the chain and we want to go down. */
13134 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13135 if (attr)
13136 {
13137 type = get_DW_AT_signature_type (die, attr, cu);
13138
13139 /* The type's CU may not be the same as CU.
13140 Ensure TYPE is recorded with CU in die_type_hash. */
13141 return set_die_type (die, type, cu);
13142 }
13143
13144 type = alloc_type (objfile);
13145 INIT_CPLUS_SPECIFIC (type);
13146
13147 name = dwarf2_name (die, cu);
13148 if (name != NULL)
13149 {
13150 if (cu->language == language_cplus
13151 || cu->language == language_java
13152 || cu->language == language_d
13153 || cu->language == language_rust)
13154 {
13155 const char *full_name = dwarf2_full_name (name, die, cu);
13156
13157 /* dwarf2_full_name might have already finished building the DIE's
13158 type. If so, there is no need to continue. */
13159 if (get_die_type (die, cu) != NULL)
13160 return get_die_type (die, cu);
13161
13162 TYPE_TAG_NAME (type) = full_name;
13163 if (die->tag == DW_TAG_structure_type
13164 || die->tag == DW_TAG_class_type)
13165 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13166 }
13167 else
13168 {
13169 /* The name is already allocated along with this objfile, so
13170 we don't need to duplicate it for the type. */
13171 TYPE_TAG_NAME (type) = name;
13172 if (die->tag == DW_TAG_class_type)
13173 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13174 }
13175 }
13176
13177 if (die->tag == DW_TAG_structure_type)
13178 {
13179 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13180 }
13181 else if (die->tag == DW_TAG_union_type)
13182 {
13183 TYPE_CODE (type) = TYPE_CODE_UNION;
13184 }
13185 else
13186 {
13187 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13188 }
13189
13190 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13191 TYPE_DECLARED_CLASS (type) = 1;
13192
13193 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13194 if (attr)
13195 {
13196 if (attr_form_is_constant (attr))
13197 TYPE_LENGTH (type) = DW_UNSND (attr);
13198 else
13199 {
13200 /* For the moment, dynamic type sizes are not supported
13201 by GDB's struct type. The actual size is determined
13202 on-demand when resolving the type of a given object,
13203 so set the type's length to zero for now. Otherwise,
13204 we record an expression as the length, and that expression
13205 could lead to a very large value, which could eventually
13206 lead to us trying to allocate that much memory when creating
13207 a value of that type. */
13208 TYPE_LENGTH (type) = 0;
13209 }
13210 }
13211 else
13212 {
13213 TYPE_LENGTH (type) = 0;
13214 }
13215
13216 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13217 {
13218 /* ICC does not output the required DW_AT_declaration
13219 on incomplete types, but gives them a size of zero. */
13220 TYPE_STUB (type) = 1;
13221 }
13222 else
13223 TYPE_STUB_SUPPORTED (type) = 1;
13224
13225 if (die_is_declaration (die, cu))
13226 TYPE_STUB (type) = 1;
13227 else if (attr == NULL && die->child == NULL
13228 && producer_is_realview (cu->producer))
13229 /* RealView does not output the required DW_AT_declaration
13230 on incomplete types. */
13231 TYPE_STUB (type) = 1;
13232
13233 /* We need to add the type field to the die immediately so we don't
13234 infinitely recurse when dealing with pointers to the structure
13235 type within the structure itself. */
13236 set_die_type (die, type, cu);
13237
13238 /* set_die_type should be already done. */
13239 set_descriptive_type (type, die, cu);
13240
13241 return type;
13242 }
13243
13244 /* Finish creating a structure or union type, including filling in
13245 its members and creating a symbol for it. */
13246
13247 static void
13248 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13249 {
13250 struct objfile *objfile = cu->objfile;
13251 struct die_info *child_die;
13252 struct type *type;
13253
13254 type = get_die_type (die, cu);
13255 if (type == NULL)
13256 type = read_structure_type (die, cu);
13257
13258 if (die->child != NULL && ! die_is_declaration (die, cu))
13259 {
13260 struct field_info fi;
13261 VEC (symbolp) *template_args = NULL;
13262 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13263
13264 memset (&fi, 0, sizeof (struct field_info));
13265
13266 child_die = die->child;
13267
13268 while (child_die && child_die->tag)
13269 {
13270 if (child_die->tag == DW_TAG_member
13271 || child_die->tag == DW_TAG_variable)
13272 {
13273 /* NOTE: carlton/2002-11-05: A C++ static data member
13274 should be a DW_TAG_member that is a declaration, but
13275 all versions of G++ as of this writing (so through at
13276 least 3.2.1) incorrectly generate DW_TAG_variable
13277 tags for them instead. */
13278 dwarf2_add_field (&fi, child_die, cu);
13279 }
13280 else if (child_die->tag == DW_TAG_subprogram)
13281 {
13282 /* C++ member function. */
13283 dwarf2_add_member_fn (&fi, child_die, type, cu);
13284 }
13285 else if (child_die->tag == DW_TAG_inheritance)
13286 {
13287 /* C++ base class field. */
13288 dwarf2_add_field (&fi, child_die, cu);
13289 }
13290 else if (child_die->tag == DW_TAG_typedef)
13291 dwarf2_add_typedef (&fi, child_die, cu);
13292 else if (child_die->tag == DW_TAG_template_type_param
13293 || child_die->tag == DW_TAG_template_value_param)
13294 {
13295 struct symbol *arg = new_symbol (child_die, NULL, cu);
13296
13297 if (arg != NULL)
13298 VEC_safe_push (symbolp, template_args, arg);
13299 }
13300
13301 child_die = sibling_die (child_die);
13302 }
13303
13304 /* Attach template arguments to type. */
13305 if (! VEC_empty (symbolp, template_args))
13306 {
13307 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13308 TYPE_N_TEMPLATE_ARGUMENTS (type)
13309 = VEC_length (symbolp, template_args);
13310 TYPE_TEMPLATE_ARGUMENTS (type)
13311 = XOBNEWVEC (&objfile->objfile_obstack,
13312 struct symbol *,
13313 TYPE_N_TEMPLATE_ARGUMENTS (type));
13314 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13315 VEC_address (symbolp, template_args),
13316 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13317 * sizeof (struct symbol *)));
13318 VEC_free (symbolp, template_args);
13319 }
13320
13321 /* Attach fields and member functions to the type. */
13322 if (fi.nfields)
13323 dwarf2_attach_fields_to_type (&fi, type, cu);
13324 if (fi.nfnfields)
13325 {
13326 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13327
13328 /* Get the type which refers to the base class (possibly this
13329 class itself) which contains the vtable pointer for the current
13330 class from the DW_AT_containing_type attribute. This use of
13331 DW_AT_containing_type is a GNU extension. */
13332
13333 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13334 {
13335 struct type *t = die_containing_type (die, cu);
13336
13337 set_type_vptr_basetype (type, t);
13338 if (type == t)
13339 {
13340 int i;
13341
13342 /* Our own class provides vtbl ptr. */
13343 for (i = TYPE_NFIELDS (t) - 1;
13344 i >= TYPE_N_BASECLASSES (t);
13345 --i)
13346 {
13347 const char *fieldname = TYPE_FIELD_NAME (t, i);
13348
13349 if (is_vtable_name (fieldname, cu))
13350 {
13351 set_type_vptr_fieldno (type, i);
13352 break;
13353 }
13354 }
13355
13356 /* Complain if virtual function table field not found. */
13357 if (i < TYPE_N_BASECLASSES (t))
13358 complaint (&symfile_complaints,
13359 _("virtual function table pointer "
13360 "not found when defining class '%s'"),
13361 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13362 "");
13363 }
13364 else
13365 {
13366 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13367 }
13368 }
13369 else if (cu->producer
13370 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13371 {
13372 /* The IBM XLC compiler does not provide direct indication
13373 of the containing type, but the vtable pointer is
13374 always named __vfp. */
13375
13376 int i;
13377
13378 for (i = TYPE_NFIELDS (type) - 1;
13379 i >= TYPE_N_BASECLASSES (type);
13380 --i)
13381 {
13382 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13383 {
13384 set_type_vptr_fieldno (type, i);
13385 set_type_vptr_basetype (type, type);
13386 break;
13387 }
13388 }
13389 }
13390 }
13391
13392 /* Copy fi.typedef_field_list linked list elements content into the
13393 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13394 if (fi.typedef_field_list)
13395 {
13396 int i = fi.typedef_field_list_count;
13397
13398 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13399 TYPE_TYPEDEF_FIELD_ARRAY (type)
13400 = ((struct typedef_field *)
13401 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13402 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13403
13404 /* Reverse the list order to keep the debug info elements order. */
13405 while (--i >= 0)
13406 {
13407 struct typedef_field *dest, *src;
13408
13409 dest = &TYPE_TYPEDEF_FIELD (type, i);
13410 src = &fi.typedef_field_list->field;
13411 fi.typedef_field_list = fi.typedef_field_list->next;
13412 *dest = *src;
13413 }
13414 }
13415
13416 do_cleanups (back_to);
13417
13418 if (HAVE_CPLUS_STRUCT (type))
13419 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13420 }
13421
13422 quirk_gcc_member_function_pointer (type, objfile);
13423
13424 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13425 snapshots) has been known to create a die giving a declaration
13426 for a class that has, as a child, a die giving a definition for a
13427 nested class. So we have to process our children even if the
13428 current die is a declaration. Normally, of course, a declaration
13429 won't have any children at all. */
13430
13431 child_die = die->child;
13432
13433 while (child_die != NULL && child_die->tag)
13434 {
13435 if (child_die->tag == DW_TAG_member
13436 || child_die->tag == DW_TAG_variable
13437 || child_die->tag == DW_TAG_inheritance
13438 || child_die->tag == DW_TAG_template_value_param
13439 || child_die->tag == DW_TAG_template_type_param)
13440 {
13441 /* Do nothing. */
13442 }
13443 else
13444 process_die (child_die, cu);
13445
13446 child_die = sibling_die (child_die);
13447 }
13448
13449 /* Do not consider external references. According to the DWARF standard,
13450 these DIEs are identified by the fact that they have no byte_size
13451 attribute, and a declaration attribute. */
13452 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13453 || !die_is_declaration (die, cu))
13454 new_symbol (die, type, cu);
13455 }
13456
13457 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13458 update TYPE using some information only available in DIE's children. */
13459
13460 static void
13461 update_enumeration_type_from_children (struct die_info *die,
13462 struct type *type,
13463 struct dwarf2_cu *cu)
13464 {
13465 struct obstack obstack;
13466 struct die_info *child_die;
13467 int unsigned_enum = 1;
13468 int flag_enum = 1;
13469 ULONGEST mask = 0;
13470 struct cleanup *old_chain;
13471
13472 obstack_init (&obstack);
13473 old_chain = make_cleanup_obstack_free (&obstack);
13474
13475 for (child_die = die->child;
13476 child_die != NULL && child_die->tag;
13477 child_die = sibling_die (child_die))
13478 {
13479 struct attribute *attr;
13480 LONGEST value;
13481 const gdb_byte *bytes;
13482 struct dwarf2_locexpr_baton *baton;
13483 const char *name;
13484
13485 if (child_die->tag != DW_TAG_enumerator)
13486 continue;
13487
13488 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13489 if (attr == NULL)
13490 continue;
13491
13492 name = dwarf2_name (child_die, cu);
13493 if (name == NULL)
13494 name = "<anonymous enumerator>";
13495
13496 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13497 &value, &bytes, &baton);
13498 if (value < 0)
13499 {
13500 unsigned_enum = 0;
13501 flag_enum = 0;
13502 }
13503 else if ((mask & value) != 0)
13504 flag_enum = 0;
13505 else
13506 mask |= value;
13507
13508 /* If we already know that the enum type is neither unsigned, nor
13509 a flag type, no need to look at the rest of the enumerates. */
13510 if (!unsigned_enum && !flag_enum)
13511 break;
13512 }
13513
13514 if (unsigned_enum)
13515 TYPE_UNSIGNED (type) = 1;
13516 if (flag_enum)
13517 TYPE_FLAG_ENUM (type) = 1;
13518
13519 do_cleanups (old_chain);
13520 }
13521
13522 /* Given a DW_AT_enumeration_type die, set its type. We do not
13523 complete the type's fields yet, or create any symbols. */
13524
13525 static struct type *
13526 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13527 {
13528 struct objfile *objfile = cu->objfile;
13529 struct type *type;
13530 struct attribute *attr;
13531 const char *name;
13532
13533 /* If the definition of this type lives in .debug_types, read that type.
13534 Don't follow DW_AT_specification though, that will take us back up
13535 the chain and we want to go down. */
13536 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13537 if (attr)
13538 {
13539 type = get_DW_AT_signature_type (die, attr, cu);
13540
13541 /* The type's CU may not be the same as CU.
13542 Ensure TYPE is recorded with CU in die_type_hash. */
13543 return set_die_type (die, type, cu);
13544 }
13545
13546 type = alloc_type (objfile);
13547
13548 TYPE_CODE (type) = TYPE_CODE_ENUM;
13549 name = dwarf2_full_name (NULL, die, cu);
13550 if (name != NULL)
13551 TYPE_TAG_NAME (type) = name;
13552
13553 attr = dwarf2_attr (die, DW_AT_type, cu);
13554 if (attr != NULL)
13555 {
13556 struct type *underlying_type = die_type (die, cu);
13557
13558 TYPE_TARGET_TYPE (type) = underlying_type;
13559 }
13560
13561 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13562 if (attr)
13563 {
13564 TYPE_LENGTH (type) = DW_UNSND (attr);
13565 }
13566 else
13567 {
13568 TYPE_LENGTH (type) = 0;
13569 }
13570
13571 /* The enumeration DIE can be incomplete. In Ada, any type can be
13572 declared as private in the package spec, and then defined only
13573 inside the package body. Such types are known as Taft Amendment
13574 Types. When another package uses such a type, an incomplete DIE
13575 may be generated by the compiler. */
13576 if (die_is_declaration (die, cu))
13577 TYPE_STUB (type) = 1;
13578
13579 /* Finish the creation of this type by using the enum's children.
13580 We must call this even when the underlying type has been provided
13581 so that we can determine if we're looking at a "flag" enum. */
13582 update_enumeration_type_from_children (die, type, cu);
13583
13584 /* If this type has an underlying type that is not a stub, then we
13585 may use its attributes. We always use the "unsigned" attribute
13586 in this situation, because ordinarily we guess whether the type
13587 is unsigned -- but the guess can be wrong and the underlying type
13588 can tell us the reality. However, we defer to a local size
13589 attribute if one exists, because this lets the compiler override
13590 the underlying type if needed. */
13591 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13592 {
13593 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13594 if (TYPE_LENGTH (type) == 0)
13595 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13596 }
13597
13598 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13599
13600 return set_die_type (die, type, cu);
13601 }
13602
13603 /* Given a pointer to a die which begins an enumeration, process all
13604 the dies that define the members of the enumeration, and create the
13605 symbol for the enumeration type.
13606
13607 NOTE: We reverse the order of the element list. */
13608
13609 static void
13610 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13611 {
13612 struct type *this_type;
13613
13614 this_type = get_die_type (die, cu);
13615 if (this_type == NULL)
13616 this_type = read_enumeration_type (die, cu);
13617
13618 if (die->child != NULL)
13619 {
13620 struct die_info *child_die;
13621 struct symbol *sym;
13622 struct field *fields = NULL;
13623 int num_fields = 0;
13624 const char *name;
13625
13626 child_die = die->child;
13627 while (child_die && child_die->tag)
13628 {
13629 if (child_die->tag != DW_TAG_enumerator)
13630 {
13631 process_die (child_die, cu);
13632 }
13633 else
13634 {
13635 name = dwarf2_name (child_die, cu);
13636 if (name)
13637 {
13638 sym = new_symbol (child_die, this_type, cu);
13639
13640 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13641 {
13642 fields = (struct field *)
13643 xrealloc (fields,
13644 (num_fields + DW_FIELD_ALLOC_CHUNK)
13645 * sizeof (struct field));
13646 }
13647
13648 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13649 FIELD_TYPE (fields[num_fields]) = NULL;
13650 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13651 FIELD_BITSIZE (fields[num_fields]) = 0;
13652
13653 num_fields++;
13654 }
13655 }
13656
13657 child_die = sibling_die (child_die);
13658 }
13659
13660 if (num_fields)
13661 {
13662 TYPE_NFIELDS (this_type) = num_fields;
13663 TYPE_FIELDS (this_type) = (struct field *)
13664 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13665 memcpy (TYPE_FIELDS (this_type), fields,
13666 sizeof (struct field) * num_fields);
13667 xfree (fields);
13668 }
13669 }
13670
13671 /* If we are reading an enum from a .debug_types unit, and the enum
13672 is a declaration, and the enum is not the signatured type in the
13673 unit, then we do not want to add a symbol for it. Adding a
13674 symbol would in some cases obscure the true definition of the
13675 enum, giving users an incomplete type when the definition is
13676 actually available. Note that we do not want to do this for all
13677 enums which are just declarations, because C++0x allows forward
13678 enum declarations. */
13679 if (cu->per_cu->is_debug_types
13680 && die_is_declaration (die, cu))
13681 {
13682 struct signatured_type *sig_type;
13683
13684 sig_type = (struct signatured_type *) cu->per_cu;
13685 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13686 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13687 return;
13688 }
13689
13690 new_symbol (die, this_type, cu);
13691 }
13692
13693 /* Extract all information from a DW_TAG_array_type DIE and put it in
13694 the DIE's type field. For now, this only handles one dimensional
13695 arrays. */
13696
13697 static struct type *
13698 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13699 {
13700 struct objfile *objfile = cu->objfile;
13701 struct die_info *child_die;
13702 struct type *type;
13703 struct type *element_type, *range_type, *index_type;
13704 struct type **range_types = NULL;
13705 struct attribute *attr;
13706 int ndim = 0;
13707 struct cleanup *back_to;
13708 const char *name;
13709 unsigned int bit_stride = 0;
13710
13711 element_type = die_type (die, cu);
13712
13713 /* The die_type call above may have already set the type for this DIE. */
13714 type = get_die_type (die, cu);
13715 if (type)
13716 return type;
13717
13718 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13719 if (attr != NULL)
13720 bit_stride = DW_UNSND (attr) * 8;
13721
13722 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13723 if (attr != NULL)
13724 bit_stride = DW_UNSND (attr);
13725
13726 /* Irix 6.2 native cc creates array types without children for
13727 arrays with unspecified length. */
13728 if (die->child == NULL)
13729 {
13730 index_type = objfile_type (objfile)->builtin_int;
13731 range_type = create_static_range_type (NULL, index_type, 0, -1);
13732 type = create_array_type_with_stride (NULL, element_type, range_type,
13733 bit_stride);
13734 return set_die_type (die, type, cu);
13735 }
13736
13737 back_to = make_cleanup (null_cleanup, NULL);
13738 child_die = die->child;
13739 while (child_die && child_die->tag)
13740 {
13741 if (child_die->tag == DW_TAG_subrange_type)
13742 {
13743 struct type *child_type = read_type_die (child_die, cu);
13744
13745 if (child_type != NULL)
13746 {
13747 /* The range type was succesfully read. Save it for the
13748 array type creation. */
13749 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13750 {
13751 range_types = (struct type **)
13752 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13753 * sizeof (struct type *));
13754 if (ndim == 0)
13755 make_cleanup (free_current_contents, &range_types);
13756 }
13757 range_types[ndim++] = child_type;
13758 }
13759 }
13760 child_die = sibling_die (child_die);
13761 }
13762
13763 /* Dwarf2 dimensions are output from left to right, create the
13764 necessary array types in backwards order. */
13765
13766 type = element_type;
13767
13768 if (read_array_order (die, cu) == DW_ORD_col_major)
13769 {
13770 int i = 0;
13771
13772 while (i < ndim)
13773 type = create_array_type_with_stride (NULL, type, range_types[i++],
13774 bit_stride);
13775 }
13776 else
13777 {
13778 while (ndim-- > 0)
13779 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13780 bit_stride);
13781 }
13782
13783 /* Understand Dwarf2 support for vector types (like they occur on
13784 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13785 array type. This is not part of the Dwarf2/3 standard yet, but a
13786 custom vendor extension. The main difference between a regular
13787 array and the vector variant is that vectors are passed by value
13788 to functions. */
13789 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13790 if (attr)
13791 make_vector_type (type);
13792
13793 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13794 implementation may choose to implement triple vectors using this
13795 attribute. */
13796 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13797 if (attr)
13798 {
13799 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13800 TYPE_LENGTH (type) = DW_UNSND (attr);
13801 else
13802 complaint (&symfile_complaints,
13803 _("DW_AT_byte_size for array type smaller "
13804 "than the total size of elements"));
13805 }
13806
13807 name = dwarf2_name (die, cu);
13808 if (name)
13809 TYPE_NAME (type) = name;
13810
13811 /* Install the type in the die. */
13812 set_die_type (die, type, cu);
13813
13814 /* set_die_type should be already done. */
13815 set_descriptive_type (type, die, cu);
13816
13817 do_cleanups (back_to);
13818
13819 return type;
13820 }
13821
13822 static enum dwarf_array_dim_ordering
13823 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13824 {
13825 struct attribute *attr;
13826
13827 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13828
13829 if (attr)
13830 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13831
13832 /* GNU F77 is a special case, as at 08/2004 array type info is the
13833 opposite order to the dwarf2 specification, but data is still
13834 laid out as per normal fortran.
13835
13836 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13837 version checking. */
13838
13839 if (cu->language == language_fortran
13840 && cu->producer && strstr (cu->producer, "GNU F77"))
13841 {
13842 return DW_ORD_row_major;
13843 }
13844
13845 switch (cu->language_defn->la_array_ordering)
13846 {
13847 case array_column_major:
13848 return DW_ORD_col_major;
13849 case array_row_major:
13850 default:
13851 return DW_ORD_row_major;
13852 };
13853 }
13854
13855 /* Extract all information from a DW_TAG_set_type DIE and put it in
13856 the DIE's type field. */
13857
13858 static struct type *
13859 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13860 {
13861 struct type *domain_type, *set_type;
13862 struct attribute *attr;
13863
13864 domain_type = die_type (die, cu);
13865
13866 /* The die_type call above may have already set the type for this DIE. */
13867 set_type = get_die_type (die, cu);
13868 if (set_type)
13869 return set_type;
13870
13871 set_type = create_set_type (NULL, domain_type);
13872
13873 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13874 if (attr)
13875 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13876
13877 return set_die_type (die, set_type, cu);
13878 }
13879
13880 /* A helper for read_common_block that creates a locexpr baton.
13881 SYM is the symbol which we are marking as computed.
13882 COMMON_DIE is the DIE for the common block.
13883 COMMON_LOC is the location expression attribute for the common
13884 block itself.
13885 MEMBER_LOC is the location expression attribute for the particular
13886 member of the common block that we are processing.
13887 CU is the CU from which the above come. */
13888
13889 static void
13890 mark_common_block_symbol_computed (struct symbol *sym,
13891 struct die_info *common_die,
13892 struct attribute *common_loc,
13893 struct attribute *member_loc,
13894 struct dwarf2_cu *cu)
13895 {
13896 struct objfile *objfile = dwarf2_per_objfile->objfile;
13897 struct dwarf2_locexpr_baton *baton;
13898 gdb_byte *ptr;
13899 unsigned int cu_off;
13900 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13901 LONGEST offset = 0;
13902
13903 gdb_assert (common_loc && member_loc);
13904 gdb_assert (attr_form_is_block (common_loc));
13905 gdb_assert (attr_form_is_block (member_loc)
13906 || attr_form_is_constant (member_loc));
13907
13908 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13909 baton->per_cu = cu->per_cu;
13910 gdb_assert (baton->per_cu);
13911
13912 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13913
13914 if (attr_form_is_constant (member_loc))
13915 {
13916 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13917 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13918 }
13919 else
13920 baton->size += DW_BLOCK (member_loc)->size;
13921
13922 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
13923 baton->data = ptr;
13924
13925 *ptr++ = DW_OP_call4;
13926 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13927 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13928 ptr += 4;
13929
13930 if (attr_form_is_constant (member_loc))
13931 {
13932 *ptr++ = DW_OP_addr;
13933 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13934 ptr += cu->header.addr_size;
13935 }
13936 else
13937 {
13938 /* We have to copy the data here, because DW_OP_call4 will only
13939 use a DW_AT_location attribute. */
13940 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13941 ptr += DW_BLOCK (member_loc)->size;
13942 }
13943
13944 *ptr++ = DW_OP_plus;
13945 gdb_assert (ptr - baton->data == baton->size);
13946
13947 SYMBOL_LOCATION_BATON (sym) = baton;
13948 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13949 }
13950
13951 /* Create appropriate locally-scoped variables for all the
13952 DW_TAG_common_block entries. Also create a struct common_block
13953 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13954 is used to sepate the common blocks name namespace from regular
13955 variable names. */
13956
13957 static void
13958 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13959 {
13960 struct attribute *attr;
13961
13962 attr = dwarf2_attr (die, DW_AT_location, cu);
13963 if (attr)
13964 {
13965 /* Support the .debug_loc offsets. */
13966 if (attr_form_is_block (attr))
13967 {
13968 /* Ok. */
13969 }
13970 else if (attr_form_is_section_offset (attr))
13971 {
13972 dwarf2_complex_location_expr_complaint ();
13973 attr = NULL;
13974 }
13975 else
13976 {
13977 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13978 "common block member");
13979 attr = NULL;
13980 }
13981 }
13982
13983 if (die->child != NULL)
13984 {
13985 struct objfile *objfile = cu->objfile;
13986 struct die_info *child_die;
13987 size_t n_entries = 0, size;
13988 struct common_block *common_block;
13989 struct symbol *sym;
13990
13991 for (child_die = die->child;
13992 child_die && child_die->tag;
13993 child_die = sibling_die (child_die))
13994 ++n_entries;
13995
13996 size = (sizeof (struct common_block)
13997 + (n_entries - 1) * sizeof (struct symbol *));
13998 common_block
13999 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14000 size);
14001 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14002 common_block->n_entries = 0;
14003
14004 for (child_die = die->child;
14005 child_die && child_die->tag;
14006 child_die = sibling_die (child_die))
14007 {
14008 /* Create the symbol in the DW_TAG_common_block block in the current
14009 symbol scope. */
14010 sym = new_symbol (child_die, NULL, cu);
14011 if (sym != NULL)
14012 {
14013 struct attribute *member_loc;
14014
14015 common_block->contents[common_block->n_entries++] = sym;
14016
14017 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14018 cu);
14019 if (member_loc)
14020 {
14021 /* GDB has handled this for a long time, but it is
14022 not specified by DWARF. It seems to have been
14023 emitted by gfortran at least as recently as:
14024 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14025 complaint (&symfile_complaints,
14026 _("Variable in common block has "
14027 "DW_AT_data_member_location "
14028 "- DIE at 0x%x [in module %s]"),
14029 child_die->offset.sect_off,
14030 objfile_name (cu->objfile));
14031
14032 if (attr_form_is_section_offset (member_loc))
14033 dwarf2_complex_location_expr_complaint ();
14034 else if (attr_form_is_constant (member_loc)
14035 || attr_form_is_block (member_loc))
14036 {
14037 if (attr)
14038 mark_common_block_symbol_computed (sym, die, attr,
14039 member_loc, cu);
14040 }
14041 else
14042 dwarf2_complex_location_expr_complaint ();
14043 }
14044 }
14045 }
14046
14047 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14048 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14049 }
14050 }
14051
14052 /* Create a type for a C++ namespace. */
14053
14054 static struct type *
14055 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14056 {
14057 struct objfile *objfile = cu->objfile;
14058 const char *previous_prefix, *name;
14059 int is_anonymous;
14060 struct type *type;
14061
14062 /* For extensions, reuse the type of the original namespace. */
14063 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14064 {
14065 struct die_info *ext_die;
14066 struct dwarf2_cu *ext_cu = cu;
14067
14068 ext_die = dwarf2_extension (die, &ext_cu);
14069 type = read_type_die (ext_die, ext_cu);
14070
14071 /* EXT_CU may not be the same as CU.
14072 Ensure TYPE is recorded with CU in die_type_hash. */
14073 return set_die_type (die, type, cu);
14074 }
14075
14076 name = namespace_name (die, &is_anonymous, cu);
14077
14078 /* Now build the name of the current namespace. */
14079
14080 previous_prefix = determine_prefix (die, cu);
14081 if (previous_prefix[0] != '\0')
14082 name = typename_concat (&objfile->objfile_obstack,
14083 previous_prefix, name, 0, cu);
14084
14085 /* Create the type. */
14086 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14087 objfile);
14088 TYPE_NAME (type) = name;
14089 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14090
14091 return set_die_type (die, type, cu);
14092 }
14093
14094 /* Read a namespace scope. */
14095
14096 static void
14097 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14098 {
14099 struct objfile *objfile = cu->objfile;
14100 int is_anonymous;
14101
14102 /* Add a symbol associated to this if we haven't seen the namespace
14103 before. Also, add a using directive if it's an anonymous
14104 namespace. */
14105
14106 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14107 {
14108 struct type *type;
14109
14110 type = read_type_die (die, cu);
14111 new_symbol (die, type, cu);
14112
14113 namespace_name (die, &is_anonymous, cu);
14114 if (is_anonymous)
14115 {
14116 const char *previous_prefix = determine_prefix (die, cu);
14117
14118 add_using_directive (using_directives (cu->language),
14119 previous_prefix, TYPE_NAME (type), NULL,
14120 NULL, NULL, 0, &objfile->objfile_obstack);
14121 }
14122 }
14123
14124 if (die->child != NULL)
14125 {
14126 struct die_info *child_die = die->child;
14127
14128 while (child_die && child_die->tag)
14129 {
14130 process_die (child_die, cu);
14131 child_die = sibling_die (child_die);
14132 }
14133 }
14134 }
14135
14136 /* Read a Fortran module as type. This DIE can be only a declaration used for
14137 imported module. Still we need that type as local Fortran "use ... only"
14138 declaration imports depend on the created type in determine_prefix. */
14139
14140 static struct type *
14141 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14142 {
14143 struct objfile *objfile = cu->objfile;
14144 const char *module_name;
14145 struct type *type;
14146
14147 module_name = dwarf2_name (die, cu);
14148 if (!module_name)
14149 complaint (&symfile_complaints,
14150 _("DW_TAG_module has no name, offset 0x%x"),
14151 die->offset.sect_off);
14152 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14153
14154 /* determine_prefix uses TYPE_TAG_NAME. */
14155 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14156
14157 return set_die_type (die, type, cu);
14158 }
14159
14160 /* Read a Fortran module. */
14161
14162 static void
14163 read_module (struct die_info *die, struct dwarf2_cu *cu)
14164 {
14165 struct die_info *child_die = die->child;
14166 struct type *type;
14167
14168 type = read_type_die (die, cu);
14169 new_symbol (die, type, cu);
14170
14171 while (child_die && child_die->tag)
14172 {
14173 process_die (child_die, cu);
14174 child_die = sibling_die (child_die);
14175 }
14176 }
14177
14178 /* Return the name of the namespace represented by DIE. Set
14179 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14180 namespace. */
14181
14182 static const char *
14183 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14184 {
14185 struct die_info *current_die;
14186 const char *name = NULL;
14187
14188 /* Loop through the extensions until we find a name. */
14189
14190 for (current_die = die;
14191 current_die != NULL;
14192 current_die = dwarf2_extension (die, &cu))
14193 {
14194 /* We don't use dwarf2_name here so that we can detect the absence
14195 of a name -> anonymous namespace. */
14196 name = dwarf2_string_attr (die, DW_AT_name, cu);
14197
14198 if (name != NULL)
14199 break;
14200 }
14201
14202 /* Is it an anonymous namespace? */
14203
14204 *is_anonymous = (name == NULL);
14205 if (*is_anonymous)
14206 name = CP_ANONYMOUS_NAMESPACE_STR;
14207
14208 return name;
14209 }
14210
14211 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14212 the user defined type vector. */
14213
14214 static struct type *
14215 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14216 {
14217 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14218 struct comp_unit_head *cu_header = &cu->header;
14219 struct type *type;
14220 struct attribute *attr_byte_size;
14221 struct attribute *attr_address_class;
14222 int byte_size, addr_class;
14223 struct type *target_type;
14224
14225 target_type = die_type (die, cu);
14226
14227 /* The die_type call above may have already set the type for this DIE. */
14228 type = get_die_type (die, cu);
14229 if (type)
14230 return type;
14231
14232 type = lookup_pointer_type (target_type);
14233
14234 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14235 if (attr_byte_size)
14236 byte_size = DW_UNSND (attr_byte_size);
14237 else
14238 byte_size = cu_header->addr_size;
14239
14240 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14241 if (attr_address_class)
14242 addr_class = DW_UNSND (attr_address_class);
14243 else
14244 addr_class = DW_ADDR_none;
14245
14246 /* If the pointer size or address class is different than the
14247 default, create a type variant marked as such and set the
14248 length accordingly. */
14249 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14250 {
14251 if (gdbarch_address_class_type_flags_p (gdbarch))
14252 {
14253 int type_flags;
14254
14255 type_flags = gdbarch_address_class_type_flags
14256 (gdbarch, byte_size, addr_class);
14257 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14258 == 0);
14259 type = make_type_with_address_space (type, type_flags);
14260 }
14261 else if (TYPE_LENGTH (type) != byte_size)
14262 {
14263 complaint (&symfile_complaints,
14264 _("invalid pointer size %d"), byte_size);
14265 }
14266 else
14267 {
14268 /* Should we also complain about unhandled address classes? */
14269 }
14270 }
14271
14272 TYPE_LENGTH (type) = byte_size;
14273 return set_die_type (die, type, cu);
14274 }
14275
14276 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14277 the user defined type vector. */
14278
14279 static struct type *
14280 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14281 {
14282 struct type *type;
14283 struct type *to_type;
14284 struct type *domain;
14285
14286 to_type = die_type (die, cu);
14287 domain = die_containing_type (die, cu);
14288
14289 /* The calls above may have already set the type for this DIE. */
14290 type = get_die_type (die, cu);
14291 if (type)
14292 return type;
14293
14294 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14295 type = lookup_methodptr_type (to_type);
14296 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14297 {
14298 struct type *new_type = alloc_type (cu->objfile);
14299
14300 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14301 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14302 TYPE_VARARGS (to_type));
14303 type = lookup_methodptr_type (new_type);
14304 }
14305 else
14306 type = lookup_memberptr_type (to_type, domain);
14307
14308 return set_die_type (die, type, cu);
14309 }
14310
14311 /* Extract all information from a DW_TAG_reference_type DIE and add to
14312 the user defined type vector. */
14313
14314 static struct type *
14315 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14316 {
14317 struct comp_unit_head *cu_header = &cu->header;
14318 struct type *type, *target_type;
14319 struct attribute *attr;
14320
14321 target_type = die_type (die, cu);
14322
14323 /* The die_type call above may have already set the type for this DIE. */
14324 type = get_die_type (die, cu);
14325 if (type)
14326 return type;
14327
14328 type = lookup_reference_type (target_type);
14329 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14330 if (attr)
14331 {
14332 TYPE_LENGTH (type) = DW_UNSND (attr);
14333 }
14334 else
14335 {
14336 TYPE_LENGTH (type) = cu_header->addr_size;
14337 }
14338 return set_die_type (die, type, cu);
14339 }
14340
14341 /* Add the given cv-qualifiers to the element type of the array. GCC
14342 outputs DWARF type qualifiers that apply to an array, not the
14343 element type. But GDB relies on the array element type to carry
14344 the cv-qualifiers. This mimics section 6.7.3 of the C99
14345 specification. */
14346
14347 static struct type *
14348 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14349 struct type *base_type, int cnst, int voltl)
14350 {
14351 struct type *el_type, *inner_array;
14352
14353 base_type = copy_type (base_type);
14354 inner_array = base_type;
14355
14356 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14357 {
14358 TYPE_TARGET_TYPE (inner_array) =
14359 copy_type (TYPE_TARGET_TYPE (inner_array));
14360 inner_array = TYPE_TARGET_TYPE (inner_array);
14361 }
14362
14363 el_type = TYPE_TARGET_TYPE (inner_array);
14364 cnst |= TYPE_CONST (el_type);
14365 voltl |= TYPE_VOLATILE (el_type);
14366 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14367
14368 return set_die_type (die, base_type, cu);
14369 }
14370
14371 static struct type *
14372 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14373 {
14374 struct type *base_type, *cv_type;
14375
14376 base_type = die_type (die, cu);
14377
14378 /* The die_type call above may have already set the type for this DIE. */
14379 cv_type = get_die_type (die, cu);
14380 if (cv_type)
14381 return cv_type;
14382
14383 /* In case the const qualifier is applied to an array type, the element type
14384 is so qualified, not the array type (section 6.7.3 of C99). */
14385 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14386 return add_array_cv_type (die, cu, base_type, 1, 0);
14387
14388 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14389 return set_die_type (die, cv_type, cu);
14390 }
14391
14392 static struct type *
14393 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14394 {
14395 struct type *base_type, *cv_type;
14396
14397 base_type = die_type (die, cu);
14398
14399 /* The die_type call above may have already set the type for this DIE. */
14400 cv_type = get_die_type (die, cu);
14401 if (cv_type)
14402 return cv_type;
14403
14404 /* In case the volatile qualifier is applied to an array type, the
14405 element type is so qualified, not the array type (section 6.7.3
14406 of C99). */
14407 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14408 return add_array_cv_type (die, cu, base_type, 0, 1);
14409
14410 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14411 return set_die_type (die, cv_type, cu);
14412 }
14413
14414 /* Handle DW_TAG_restrict_type. */
14415
14416 static struct type *
14417 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14418 {
14419 struct type *base_type, *cv_type;
14420
14421 base_type = die_type (die, cu);
14422
14423 /* The die_type call above may have already set the type for this DIE. */
14424 cv_type = get_die_type (die, cu);
14425 if (cv_type)
14426 return cv_type;
14427
14428 cv_type = make_restrict_type (base_type);
14429 return set_die_type (die, cv_type, cu);
14430 }
14431
14432 /* Handle DW_TAG_atomic_type. */
14433
14434 static struct type *
14435 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14436 {
14437 struct type *base_type, *cv_type;
14438
14439 base_type = die_type (die, cu);
14440
14441 /* The die_type call above may have already set the type for this DIE. */
14442 cv_type = get_die_type (die, cu);
14443 if (cv_type)
14444 return cv_type;
14445
14446 cv_type = make_atomic_type (base_type);
14447 return set_die_type (die, cv_type, cu);
14448 }
14449
14450 /* Extract all information from a DW_TAG_string_type DIE and add to
14451 the user defined type vector. It isn't really a user defined type,
14452 but it behaves like one, with other DIE's using an AT_user_def_type
14453 attribute to reference it. */
14454
14455 static struct type *
14456 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14457 {
14458 struct objfile *objfile = cu->objfile;
14459 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14460 struct type *type, *range_type, *index_type, *char_type;
14461 struct attribute *attr;
14462 unsigned int length;
14463
14464 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14465 if (attr)
14466 {
14467 length = DW_UNSND (attr);
14468 }
14469 else
14470 {
14471 /* Check for the DW_AT_byte_size attribute. */
14472 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14473 if (attr)
14474 {
14475 length = DW_UNSND (attr);
14476 }
14477 else
14478 {
14479 length = 1;
14480 }
14481 }
14482
14483 index_type = objfile_type (objfile)->builtin_int;
14484 range_type = create_static_range_type (NULL, index_type, 1, length);
14485 char_type = language_string_char_type (cu->language_defn, gdbarch);
14486 type = create_string_type (NULL, char_type, range_type);
14487
14488 return set_die_type (die, type, cu);
14489 }
14490
14491 /* Assuming that DIE corresponds to a function, returns nonzero
14492 if the function is prototyped. */
14493
14494 static int
14495 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14496 {
14497 struct attribute *attr;
14498
14499 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14500 if (attr && (DW_UNSND (attr) != 0))
14501 return 1;
14502
14503 /* The DWARF standard implies that the DW_AT_prototyped attribute
14504 is only meaninful for C, but the concept also extends to other
14505 languages that allow unprototyped functions (Eg: Objective C).
14506 For all other languages, assume that functions are always
14507 prototyped. */
14508 if (cu->language != language_c
14509 && cu->language != language_objc
14510 && cu->language != language_opencl)
14511 return 1;
14512
14513 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14514 prototyped and unprototyped functions; default to prototyped,
14515 since that is more common in modern code (and RealView warns
14516 about unprototyped functions). */
14517 if (producer_is_realview (cu->producer))
14518 return 1;
14519
14520 return 0;
14521 }
14522
14523 /* Handle DIES due to C code like:
14524
14525 struct foo
14526 {
14527 int (*funcp)(int a, long l);
14528 int b;
14529 };
14530
14531 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14532
14533 static struct type *
14534 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14535 {
14536 struct objfile *objfile = cu->objfile;
14537 struct type *type; /* Type that this function returns. */
14538 struct type *ftype; /* Function that returns above type. */
14539 struct attribute *attr;
14540
14541 type = die_type (die, cu);
14542
14543 /* The die_type call above may have already set the type for this DIE. */
14544 ftype = get_die_type (die, cu);
14545 if (ftype)
14546 return ftype;
14547
14548 ftype = lookup_function_type (type);
14549
14550 if (prototyped_function_p (die, cu))
14551 TYPE_PROTOTYPED (ftype) = 1;
14552
14553 /* Store the calling convention in the type if it's available in
14554 the subroutine die. Otherwise set the calling convention to
14555 the default value DW_CC_normal. */
14556 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14557 if (attr)
14558 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14559 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14560 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14561 else
14562 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14563
14564 /* Record whether the function returns normally to its caller or not
14565 if the DWARF producer set that information. */
14566 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14567 if (attr && (DW_UNSND (attr) != 0))
14568 TYPE_NO_RETURN (ftype) = 1;
14569
14570 /* We need to add the subroutine type to the die immediately so
14571 we don't infinitely recurse when dealing with parameters
14572 declared as the same subroutine type. */
14573 set_die_type (die, ftype, cu);
14574
14575 if (die->child != NULL)
14576 {
14577 struct type *void_type = objfile_type (objfile)->builtin_void;
14578 struct die_info *child_die;
14579 int nparams, iparams;
14580
14581 /* Count the number of parameters.
14582 FIXME: GDB currently ignores vararg functions, but knows about
14583 vararg member functions. */
14584 nparams = 0;
14585 child_die = die->child;
14586 while (child_die && child_die->tag)
14587 {
14588 if (child_die->tag == DW_TAG_formal_parameter)
14589 nparams++;
14590 else if (child_die->tag == DW_TAG_unspecified_parameters)
14591 TYPE_VARARGS (ftype) = 1;
14592 child_die = sibling_die (child_die);
14593 }
14594
14595 /* Allocate storage for parameters and fill them in. */
14596 TYPE_NFIELDS (ftype) = nparams;
14597 TYPE_FIELDS (ftype) = (struct field *)
14598 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14599
14600 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14601 even if we error out during the parameters reading below. */
14602 for (iparams = 0; iparams < nparams; iparams++)
14603 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14604
14605 iparams = 0;
14606 child_die = die->child;
14607 while (child_die && child_die->tag)
14608 {
14609 if (child_die->tag == DW_TAG_formal_parameter)
14610 {
14611 struct type *arg_type;
14612
14613 /* DWARF version 2 has no clean way to discern C++
14614 static and non-static member functions. G++ helps
14615 GDB by marking the first parameter for non-static
14616 member functions (which is the this pointer) as
14617 artificial. We pass this information to
14618 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14619
14620 DWARF version 3 added DW_AT_object_pointer, which GCC
14621 4.5 does not yet generate. */
14622 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14623 if (attr)
14624 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14625 else
14626 {
14627 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14628
14629 /* GCC/43521: In java, the formal parameter
14630 "this" is sometimes not marked with DW_AT_artificial. */
14631 if (cu->language == language_java)
14632 {
14633 const char *name = dwarf2_name (child_die, cu);
14634
14635 if (name && !strcmp (name, "this"))
14636 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14637 }
14638 }
14639 arg_type = die_type (child_die, cu);
14640
14641 /* RealView does not mark THIS as const, which the testsuite
14642 expects. GCC marks THIS as const in method definitions,
14643 but not in the class specifications (GCC PR 43053). */
14644 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14645 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14646 {
14647 int is_this = 0;
14648 struct dwarf2_cu *arg_cu = cu;
14649 const char *name = dwarf2_name (child_die, cu);
14650
14651 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14652 if (attr)
14653 {
14654 /* If the compiler emits this, use it. */
14655 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14656 is_this = 1;
14657 }
14658 else if (name && strcmp (name, "this") == 0)
14659 /* Function definitions will have the argument names. */
14660 is_this = 1;
14661 else if (name == NULL && iparams == 0)
14662 /* Declarations may not have the names, so like
14663 elsewhere in GDB, assume an artificial first
14664 argument is "this". */
14665 is_this = 1;
14666
14667 if (is_this)
14668 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14669 arg_type, 0);
14670 }
14671
14672 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14673 iparams++;
14674 }
14675 child_die = sibling_die (child_die);
14676 }
14677 }
14678
14679 return ftype;
14680 }
14681
14682 static struct type *
14683 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14684 {
14685 struct objfile *objfile = cu->objfile;
14686 const char *name = NULL;
14687 struct type *this_type, *target_type;
14688
14689 name = dwarf2_full_name (NULL, die, cu);
14690 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14691 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14692 TYPE_NAME (this_type) = name;
14693 set_die_type (die, this_type, cu);
14694 target_type = die_type (die, cu);
14695 if (target_type != this_type)
14696 TYPE_TARGET_TYPE (this_type) = target_type;
14697 else
14698 {
14699 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14700 spec and cause infinite loops in GDB. */
14701 complaint (&symfile_complaints,
14702 _("Self-referential DW_TAG_typedef "
14703 "- DIE at 0x%x [in module %s]"),
14704 die->offset.sect_off, objfile_name (objfile));
14705 TYPE_TARGET_TYPE (this_type) = NULL;
14706 }
14707 return this_type;
14708 }
14709
14710 /* Find a representation of a given base type and install
14711 it in the TYPE field of the die. */
14712
14713 static struct type *
14714 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14715 {
14716 struct objfile *objfile = cu->objfile;
14717 struct type *type;
14718 struct attribute *attr;
14719 int encoding = 0, size = 0;
14720 const char *name;
14721 enum type_code code = TYPE_CODE_INT;
14722 int type_flags = 0;
14723 struct type *target_type = NULL;
14724
14725 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14726 if (attr)
14727 {
14728 encoding = DW_UNSND (attr);
14729 }
14730 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14731 if (attr)
14732 {
14733 size = DW_UNSND (attr);
14734 }
14735 name = dwarf2_name (die, cu);
14736 if (!name)
14737 {
14738 complaint (&symfile_complaints,
14739 _("DW_AT_name missing from DW_TAG_base_type"));
14740 }
14741
14742 switch (encoding)
14743 {
14744 case DW_ATE_address:
14745 /* Turn DW_ATE_address into a void * pointer. */
14746 code = TYPE_CODE_PTR;
14747 type_flags |= TYPE_FLAG_UNSIGNED;
14748 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14749 break;
14750 case DW_ATE_boolean:
14751 code = TYPE_CODE_BOOL;
14752 type_flags |= TYPE_FLAG_UNSIGNED;
14753 break;
14754 case DW_ATE_complex_float:
14755 code = TYPE_CODE_COMPLEX;
14756 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14757 break;
14758 case DW_ATE_decimal_float:
14759 code = TYPE_CODE_DECFLOAT;
14760 break;
14761 case DW_ATE_float:
14762 code = TYPE_CODE_FLT;
14763 break;
14764 case DW_ATE_signed:
14765 break;
14766 case DW_ATE_unsigned:
14767 type_flags |= TYPE_FLAG_UNSIGNED;
14768 if (cu->language == language_fortran
14769 && name
14770 && startswith (name, "character("))
14771 code = TYPE_CODE_CHAR;
14772 break;
14773 case DW_ATE_signed_char:
14774 if (cu->language == language_ada || cu->language == language_m2
14775 || cu->language == language_pascal
14776 || cu->language == language_fortran)
14777 code = TYPE_CODE_CHAR;
14778 break;
14779 case DW_ATE_unsigned_char:
14780 if (cu->language == language_ada || cu->language == language_m2
14781 || cu->language == language_pascal
14782 || cu->language == language_fortran
14783 || cu->language == language_rust)
14784 code = TYPE_CODE_CHAR;
14785 type_flags |= TYPE_FLAG_UNSIGNED;
14786 break;
14787 case DW_ATE_UTF:
14788 /* We just treat this as an integer and then recognize the
14789 type by name elsewhere. */
14790 break;
14791
14792 default:
14793 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14794 dwarf_type_encoding_name (encoding));
14795 break;
14796 }
14797
14798 type = init_type (code, size, type_flags, NULL, objfile);
14799 TYPE_NAME (type) = name;
14800 TYPE_TARGET_TYPE (type) = target_type;
14801
14802 if (name && strcmp (name, "char") == 0)
14803 TYPE_NOSIGN (type) = 1;
14804
14805 return set_die_type (die, type, cu);
14806 }
14807
14808 /* Parse dwarf attribute if it's a block, reference or constant and put the
14809 resulting value of the attribute into struct bound_prop.
14810 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14811
14812 static int
14813 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14814 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14815 {
14816 struct dwarf2_property_baton *baton;
14817 struct obstack *obstack = &cu->objfile->objfile_obstack;
14818
14819 if (attr == NULL || prop == NULL)
14820 return 0;
14821
14822 if (attr_form_is_block (attr))
14823 {
14824 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14825 baton->referenced_type = NULL;
14826 baton->locexpr.per_cu = cu->per_cu;
14827 baton->locexpr.size = DW_BLOCK (attr)->size;
14828 baton->locexpr.data = DW_BLOCK (attr)->data;
14829 prop->data.baton = baton;
14830 prop->kind = PROP_LOCEXPR;
14831 gdb_assert (prop->data.baton != NULL);
14832 }
14833 else if (attr_form_is_ref (attr))
14834 {
14835 struct dwarf2_cu *target_cu = cu;
14836 struct die_info *target_die;
14837 struct attribute *target_attr;
14838
14839 target_die = follow_die_ref (die, attr, &target_cu);
14840 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14841 if (target_attr == NULL)
14842 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14843 target_cu);
14844 if (target_attr == NULL)
14845 return 0;
14846
14847 switch (target_attr->name)
14848 {
14849 case DW_AT_location:
14850 if (attr_form_is_section_offset (target_attr))
14851 {
14852 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14853 baton->referenced_type = die_type (target_die, target_cu);
14854 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14855 prop->data.baton = baton;
14856 prop->kind = PROP_LOCLIST;
14857 gdb_assert (prop->data.baton != NULL);
14858 }
14859 else if (attr_form_is_block (target_attr))
14860 {
14861 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14862 baton->referenced_type = die_type (target_die, target_cu);
14863 baton->locexpr.per_cu = cu->per_cu;
14864 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14865 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14866 prop->data.baton = baton;
14867 prop->kind = PROP_LOCEXPR;
14868 gdb_assert (prop->data.baton != NULL);
14869 }
14870 else
14871 {
14872 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14873 "dynamic property");
14874 return 0;
14875 }
14876 break;
14877 case DW_AT_data_member_location:
14878 {
14879 LONGEST offset;
14880
14881 if (!handle_data_member_location (target_die, target_cu,
14882 &offset))
14883 return 0;
14884
14885 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14886 baton->referenced_type = read_type_die (target_die->parent,
14887 target_cu);
14888 baton->offset_info.offset = offset;
14889 baton->offset_info.type = die_type (target_die, target_cu);
14890 prop->data.baton = baton;
14891 prop->kind = PROP_ADDR_OFFSET;
14892 break;
14893 }
14894 }
14895 }
14896 else if (attr_form_is_constant (attr))
14897 {
14898 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14899 prop->kind = PROP_CONST;
14900 }
14901 else
14902 {
14903 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14904 dwarf2_name (die, cu));
14905 return 0;
14906 }
14907
14908 return 1;
14909 }
14910
14911 /* Read the given DW_AT_subrange DIE. */
14912
14913 static struct type *
14914 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14915 {
14916 struct type *base_type, *orig_base_type;
14917 struct type *range_type;
14918 struct attribute *attr;
14919 struct dynamic_prop low, high;
14920 int low_default_is_valid;
14921 int high_bound_is_count = 0;
14922 const char *name;
14923 LONGEST negative_mask;
14924
14925 orig_base_type = die_type (die, cu);
14926 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14927 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14928 creating the range type, but we use the result of check_typedef
14929 when examining properties of the type. */
14930 base_type = check_typedef (orig_base_type);
14931
14932 /* The die_type call above may have already set the type for this DIE. */
14933 range_type = get_die_type (die, cu);
14934 if (range_type)
14935 return range_type;
14936
14937 low.kind = PROP_CONST;
14938 high.kind = PROP_CONST;
14939 high.data.const_val = 0;
14940
14941 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14942 omitting DW_AT_lower_bound. */
14943 switch (cu->language)
14944 {
14945 case language_c:
14946 case language_cplus:
14947 low.data.const_val = 0;
14948 low_default_is_valid = 1;
14949 break;
14950 case language_fortran:
14951 low.data.const_val = 1;
14952 low_default_is_valid = 1;
14953 break;
14954 case language_d:
14955 case language_java:
14956 case language_objc:
14957 case language_rust:
14958 low.data.const_val = 0;
14959 low_default_is_valid = (cu->header.version >= 4);
14960 break;
14961 case language_ada:
14962 case language_m2:
14963 case language_pascal:
14964 low.data.const_val = 1;
14965 low_default_is_valid = (cu->header.version >= 4);
14966 break;
14967 default:
14968 low.data.const_val = 0;
14969 low_default_is_valid = 0;
14970 break;
14971 }
14972
14973 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14974 if (attr)
14975 attr_to_dynamic_prop (attr, die, cu, &low);
14976 else if (!low_default_is_valid)
14977 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14978 "- DIE at 0x%x [in module %s]"),
14979 die->offset.sect_off, objfile_name (cu->objfile));
14980
14981 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14982 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14983 {
14984 attr = dwarf2_attr (die, DW_AT_count, cu);
14985 if (attr_to_dynamic_prop (attr, die, cu, &high))
14986 {
14987 /* If bounds are constant do the final calculation here. */
14988 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14989 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14990 else
14991 high_bound_is_count = 1;
14992 }
14993 }
14994
14995 /* Dwarf-2 specifications explicitly allows to create subrange types
14996 without specifying a base type.
14997 In that case, the base type must be set to the type of
14998 the lower bound, upper bound or count, in that order, if any of these
14999 three attributes references an object that has a type.
15000 If no base type is found, the Dwarf-2 specifications say that
15001 a signed integer type of size equal to the size of an address should
15002 be used.
15003 For the following C code: `extern char gdb_int [];'
15004 GCC produces an empty range DIE.
15005 FIXME: muller/2010-05-28: Possible references to object for low bound,
15006 high bound or count are not yet handled by this code. */
15007 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15008 {
15009 struct objfile *objfile = cu->objfile;
15010 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15011 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15012 struct type *int_type = objfile_type (objfile)->builtin_int;
15013
15014 /* Test "int", "long int", and "long long int" objfile types,
15015 and select the first one having a size above or equal to the
15016 architecture address size. */
15017 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15018 base_type = int_type;
15019 else
15020 {
15021 int_type = objfile_type (objfile)->builtin_long;
15022 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15023 base_type = int_type;
15024 else
15025 {
15026 int_type = objfile_type (objfile)->builtin_long_long;
15027 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15028 base_type = int_type;
15029 }
15030 }
15031 }
15032
15033 /* Normally, the DWARF producers are expected to use a signed
15034 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15035 But this is unfortunately not always the case, as witnessed
15036 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15037 is used instead. To work around that ambiguity, we treat
15038 the bounds as signed, and thus sign-extend their values, when
15039 the base type is signed. */
15040 negative_mask =
15041 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15042 if (low.kind == PROP_CONST
15043 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15044 low.data.const_val |= negative_mask;
15045 if (high.kind == PROP_CONST
15046 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15047 high.data.const_val |= negative_mask;
15048
15049 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15050
15051 if (high_bound_is_count)
15052 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15053
15054 /* Ada expects an empty array on no boundary attributes. */
15055 if (attr == NULL && cu->language != language_ada)
15056 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15057
15058 name = dwarf2_name (die, cu);
15059 if (name)
15060 TYPE_NAME (range_type) = name;
15061
15062 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15063 if (attr)
15064 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15065
15066 set_die_type (die, range_type, cu);
15067
15068 /* set_die_type should be already done. */
15069 set_descriptive_type (range_type, die, cu);
15070
15071 return range_type;
15072 }
15073
15074 static struct type *
15075 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15076 {
15077 struct type *type;
15078
15079 /* For now, we only support the C meaning of an unspecified type: void. */
15080
15081 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15082 TYPE_NAME (type) = dwarf2_name (die, cu);
15083
15084 return set_die_type (die, type, cu);
15085 }
15086
15087 /* Read a single die and all its descendents. Set the die's sibling
15088 field to NULL; set other fields in the die correctly, and set all
15089 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15090 location of the info_ptr after reading all of those dies. PARENT
15091 is the parent of the die in question. */
15092
15093 static struct die_info *
15094 read_die_and_children (const struct die_reader_specs *reader,
15095 const gdb_byte *info_ptr,
15096 const gdb_byte **new_info_ptr,
15097 struct die_info *parent)
15098 {
15099 struct die_info *die;
15100 const gdb_byte *cur_ptr;
15101 int has_children;
15102
15103 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15104 if (die == NULL)
15105 {
15106 *new_info_ptr = cur_ptr;
15107 return NULL;
15108 }
15109 store_in_ref_table (die, reader->cu);
15110
15111 if (has_children)
15112 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15113 else
15114 {
15115 die->child = NULL;
15116 *new_info_ptr = cur_ptr;
15117 }
15118
15119 die->sibling = NULL;
15120 die->parent = parent;
15121 return die;
15122 }
15123
15124 /* Read a die, all of its descendents, and all of its siblings; set
15125 all of the fields of all of the dies correctly. Arguments are as
15126 in read_die_and_children. */
15127
15128 static struct die_info *
15129 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15130 const gdb_byte *info_ptr,
15131 const gdb_byte **new_info_ptr,
15132 struct die_info *parent)
15133 {
15134 struct die_info *first_die, *last_sibling;
15135 const gdb_byte *cur_ptr;
15136
15137 cur_ptr = info_ptr;
15138 first_die = last_sibling = NULL;
15139
15140 while (1)
15141 {
15142 struct die_info *die
15143 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15144
15145 if (die == NULL)
15146 {
15147 *new_info_ptr = cur_ptr;
15148 return first_die;
15149 }
15150
15151 if (!first_die)
15152 first_die = die;
15153 else
15154 last_sibling->sibling = die;
15155
15156 last_sibling = die;
15157 }
15158 }
15159
15160 /* Read a die, all of its descendents, and all of its siblings; set
15161 all of the fields of all of the dies correctly. Arguments are as
15162 in read_die_and_children.
15163 This the main entry point for reading a DIE and all its children. */
15164
15165 static struct die_info *
15166 read_die_and_siblings (const struct die_reader_specs *reader,
15167 const gdb_byte *info_ptr,
15168 const gdb_byte **new_info_ptr,
15169 struct die_info *parent)
15170 {
15171 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15172 new_info_ptr, parent);
15173
15174 if (dwarf_die_debug)
15175 {
15176 fprintf_unfiltered (gdb_stdlog,
15177 "Read die from %s@0x%x of %s:\n",
15178 get_section_name (reader->die_section),
15179 (unsigned) (info_ptr - reader->die_section->buffer),
15180 bfd_get_filename (reader->abfd));
15181 dump_die (die, dwarf_die_debug);
15182 }
15183
15184 return die;
15185 }
15186
15187 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15188 attributes.
15189 The caller is responsible for filling in the extra attributes
15190 and updating (*DIEP)->num_attrs.
15191 Set DIEP to point to a newly allocated die with its information,
15192 except for its child, sibling, and parent fields.
15193 Set HAS_CHILDREN to tell whether the die has children or not. */
15194
15195 static const gdb_byte *
15196 read_full_die_1 (const struct die_reader_specs *reader,
15197 struct die_info **diep, const gdb_byte *info_ptr,
15198 int *has_children, int num_extra_attrs)
15199 {
15200 unsigned int abbrev_number, bytes_read, i;
15201 sect_offset offset;
15202 struct abbrev_info *abbrev;
15203 struct die_info *die;
15204 struct dwarf2_cu *cu = reader->cu;
15205 bfd *abfd = reader->abfd;
15206
15207 offset.sect_off = info_ptr - reader->buffer;
15208 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15209 info_ptr += bytes_read;
15210 if (!abbrev_number)
15211 {
15212 *diep = NULL;
15213 *has_children = 0;
15214 return info_ptr;
15215 }
15216
15217 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15218 if (!abbrev)
15219 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15220 abbrev_number,
15221 bfd_get_filename (abfd));
15222
15223 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15224 die->offset = offset;
15225 die->tag = abbrev->tag;
15226 die->abbrev = abbrev_number;
15227
15228 /* Make the result usable.
15229 The caller needs to update num_attrs after adding the extra
15230 attributes. */
15231 die->num_attrs = abbrev->num_attrs;
15232
15233 for (i = 0; i < abbrev->num_attrs; ++i)
15234 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15235 info_ptr);
15236
15237 *diep = die;
15238 *has_children = abbrev->has_children;
15239 return info_ptr;
15240 }
15241
15242 /* Read a die and all its attributes.
15243 Set DIEP to point to a newly allocated die with its information,
15244 except for its child, sibling, and parent fields.
15245 Set HAS_CHILDREN to tell whether the die has children or not. */
15246
15247 static const gdb_byte *
15248 read_full_die (const struct die_reader_specs *reader,
15249 struct die_info **diep, const gdb_byte *info_ptr,
15250 int *has_children)
15251 {
15252 const gdb_byte *result;
15253
15254 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15255
15256 if (dwarf_die_debug)
15257 {
15258 fprintf_unfiltered (gdb_stdlog,
15259 "Read die from %s@0x%x of %s:\n",
15260 get_section_name (reader->die_section),
15261 (unsigned) (info_ptr - reader->die_section->buffer),
15262 bfd_get_filename (reader->abfd));
15263 dump_die (*diep, dwarf_die_debug);
15264 }
15265
15266 return result;
15267 }
15268 \f
15269 /* Abbreviation tables.
15270
15271 In DWARF version 2, the description of the debugging information is
15272 stored in a separate .debug_abbrev section. Before we read any
15273 dies from a section we read in all abbreviations and install them
15274 in a hash table. */
15275
15276 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15277
15278 static struct abbrev_info *
15279 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15280 {
15281 struct abbrev_info *abbrev;
15282
15283 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15284 memset (abbrev, 0, sizeof (struct abbrev_info));
15285
15286 return abbrev;
15287 }
15288
15289 /* Add an abbreviation to the table. */
15290
15291 static void
15292 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15293 unsigned int abbrev_number,
15294 struct abbrev_info *abbrev)
15295 {
15296 unsigned int hash_number;
15297
15298 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15299 abbrev->next = abbrev_table->abbrevs[hash_number];
15300 abbrev_table->abbrevs[hash_number] = abbrev;
15301 }
15302
15303 /* Look up an abbrev in the table.
15304 Returns NULL if the abbrev is not found. */
15305
15306 static struct abbrev_info *
15307 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15308 unsigned int abbrev_number)
15309 {
15310 unsigned int hash_number;
15311 struct abbrev_info *abbrev;
15312
15313 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15314 abbrev = abbrev_table->abbrevs[hash_number];
15315
15316 while (abbrev)
15317 {
15318 if (abbrev->number == abbrev_number)
15319 return abbrev;
15320 abbrev = abbrev->next;
15321 }
15322 return NULL;
15323 }
15324
15325 /* Read in an abbrev table. */
15326
15327 static struct abbrev_table *
15328 abbrev_table_read_table (struct dwarf2_section_info *section,
15329 sect_offset offset)
15330 {
15331 struct objfile *objfile = dwarf2_per_objfile->objfile;
15332 bfd *abfd = get_section_bfd_owner (section);
15333 struct abbrev_table *abbrev_table;
15334 const gdb_byte *abbrev_ptr;
15335 struct abbrev_info *cur_abbrev;
15336 unsigned int abbrev_number, bytes_read, abbrev_name;
15337 unsigned int abbrev_form;
15338 struct attr_abbrev *cur_attrs;
15339 unsigned int allocated_attrs;
15340
15341 abbrev_table = XNEW (struct abbrev_table);
15342 abbrev_table->offset = offset;
15343 obstack_init (&abbrev_table->abbrev_obstack);
15344 abbrev_table->abbrevs =
15345 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15346 ABBREV_HASH_SIZE);
15347 memset (abbrev_table->abbrevs, 0,
15348 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15349
15350 dwarf2_read_section (objfile, section);
15351 abbrev_ptr = section->buffer + offset.sect_off;
15352 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15353 abbrev_ptr += bytes_read;
15354
15355 allocated_attrs = ATTR_ALLOC_CHUNK;
15356 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15357
15358 /* Loop until we reach an abbrev number of 0. */
15359 while (abbrev_number)
15360 {
15361 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15362
15363 /* read in abbrev header */
15364 cur_abbrev->number = abbrev_number;
15365 cur_abbrev->tag
15366 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15367 abbrev_ptr += bytes_read;
15368 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15369 abbrev_ptr += 1;
15370
15371 /* now read in declarations */
15372 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15373 abbrev_ptr += bytes_read;
15374 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15375 abbrev_ptr += bytes_read;
15376 while (abbrev_name)
15377 {
15378 if (cur_abbrev->num_attrs == allocated_attrs)
15379 {
15380 allocated_attrs += ATTR_ALLOC_CHUNK;
15381 cur_attrs
15382 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15383 }
15384
15385 cur_attrs[cur_abbrev->num_attrs].name
15386 = (enum dwarf_attribute) abbrev_name;
15387 cur_attrs[cur_abbrev->num_attrs++].form
15388 = (enum dwarf_form) abbrev_form;
15389 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15390 abbrev_ptr += bytes_read;
15391 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15392 abbrev_ptr += bytes_read;
15393 }
15394
15395 cur_abbrev->attrs =
15396 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15397 cur_abbrev->num_attrs);
15398 memcpy (cur_abbrev->attrs, cur_attrs,
15399 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15400
15401 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15402
15403 /* Get next abbreviation.
15404 Under Irix6 the abbreviations for a compilation unit are not
15405 always properly terminated with an abbrev number of 0.
15406 Exit loop if we encounter an abbreviation which we have
15407 already read (which means we are about to read the abbreviations
15408 for the next compile unit) or if the end of the abbreviation
15409 table is reached. */
15410 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15411 break;
15412 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15413 abbrev_ptr += bytes_read;
15414 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15415 break;
15416 }
15417
15418 xfree (cur_attrs);
15419 return abbrev_table;
15420 }
15421
15422 /* Free the resources held by ABBREV_TABLE. */
15423
15424 static void
15425 abbrev_table_free (struct abbrev_table *abbrev_table)
15426 {
15427 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15428 xfree (abbrev_table);
15429 }
15430
15431 /* Same as abbrev_table_free but as a cleanup.
15432 We pass in a pointer to the pointer to the table so that we can
15433 set the pointer to NULL when we're done. It also simplifies
15434 build_type_psymtabs_1. */
15435
15436 static void
15437 abbrev_table_free_cleanup (void *table_ptr)
15438 {
15439 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15440
15441 if (*abbrev_table_ptr != NULL)
15442 abbrev_table_free (*abbrev_table_ptr);
15443 *abbrev_table_ptr = NULL;
15444 }
15445
15446 /* Read the abbrev table for CU from ABBREV_SECTION. */
15447
15448 static void
15449 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15450 struct dwarf2_section_info *abbrev_section)
15451 {
15452 cu->abbrev_table =
15453 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15454 }
15455
15456 /* Release the memory used by the abbrev table for a compilation unit. */
15457
15458 static void
15459 dwarf2_free_abbrev_table (void *ptr_to_cu)
15460 {
15461 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15462
15463 if (cu->abbrev_table != NULL)
15464 abbrev_table_free (cu->abbrev_table);
15465 /* Set this to NULL so that we SEGV if we try to read it later,
15466 and also because free_comp_unit verifies this is NULL. */
15467 cu->abbrev_table = NULL;
15468 }
15469 \f
15470 /* Returns nonzero if TAG represents a type that we might generate a partial
15471 symbol for. */
15472
15473 static int
15474 is_type_tag_for_partial (int tag)
15475 {
15476 switch (tag)
15477 {
15478 #if 0
15479 /* Some types that would be reasonable to generate partial symbols for,
15480 that we don't at present. */
15481 case DW_TAG_array_type:
15482 case DW_TAG_file_type:
15483 case DW_TAG_ptr_to_member_type:
15484 case DW_TAG_set_type:
15485 case DW_TAG_string_type:
15486 case DW_TAG_subroutine_type:
15487 #endif
15488 case DW_TAG_base_type:
15489 case DW_TAG_class_type:
15490 case DW_TAG_interface_type:
15491 case DW_TAG_enumeration_type:
15492 case DW_TAG_structure_type:
15493 case DW_TAG_subrange_type:
15494 case DW_TAG_typedef:
15495 case DW_TAG_union_type:
15496 return 1;
15497 default:
15498 return 0;
15499 }
15500 }
15501
15502 /* Load all DIEs that are interesting for partial symbols into memory. */
15503
15504 static struct partial_die_info *
15505 load_partial_dies (const struct die_reader_specs *reader,
15506 const gdb_byte *info_ptr, int building_psymtab)
15507 {
15508 struct dwarf2_cu *cu = reader->cu;
15509 struct objfile *objfile = cu->objfile;
15510 struct partial_die_info *part_die;
15511 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15512 struct abbrev_info *abbrev;
15513 unsigned int bytes_read;
15514 unsigned int load_all = 0;
15515 int nesting_level = 1;
15516
15517 parent_die = NULL;
15518 last_die = NULL;
15519
15520 gdb_assert (cu->per_cu != NULL);
15521 if (cu->per_cu->load_all_dies)
15522 load_all = 1;
15523
15524 cu->partial_dies
15525 = htab_create_alloc_ex (cu->header.length / 12,
15526 partial_die_hash,
15527 partial_die_eq,
15528 NULL,
15529 &cu->comp_unit_obstack,
15530 hashtab_obstack_allocate,
15531 dummy_obstack_deallocate);
15532
15533 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15534
15535 while (1)
15536 {
15537 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15538
15539 /* A NULL abbrev means the end of a series of children. */
15540 if (abbrev == NULL)
15541 {
15542 if (--nesting_level == 0)
15543 {
15544 /* PART_DIE was probably the last thing allocated on the
15545 comp_unit_obstack, so we could call obstack_free
15546 here. We don't do that because the waste is small,
15547 and will be cleaned up when we're done with this
15548 compilation unit. This way, we're also more robust
15549 against other users of the comp_unit_obstack. */
15550 return first_die;
15551 }
15552 info_ptr += bytes_read;
15553 last_die = parent_die;
15554 parent_die = parent_die->die_parent;
15555 continue;
15556 }
15557
15558 /* Check for template arguments. We never save these; if
15559 they're seen, we just mark the parent, and go on our way. */
15560 if (parent_die != NULL
15561 && cu->language == language_cplus
15562 && (abbrev->tag == DW_TAG_template_type_param
15563 || abbrev->tag == DW_TAG_template_value_param))
15564 {
15565 parent_die->has_template_arguments = 1;
15566
15567 if (!load_all)
15568 {
15569 /* We don't need a partial DIE for the template argument. */
15570 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15571 continue;
15572 }
15573 }
15574
15575 /* We only recurse into c++ subprograms looking for template arguments.
15576 Skip their other children. */
15577 if (!load_all
15578 && cu->language == language_cplus
15579 && parent_die != NULL
15580 && parent_die->tag == DW_TAG_subprogram)
15581 {
15582 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15583 continue;
15584 }
15585
15586 /* Check whether this DIE is interesting enough to save. Normally
15587 we would not be interested in members here, but there may be
15588 later variables referencing them via DW_AT_specification (for
15589 static members). */
15590 if (!load_all
15591 && !is_type_tag_for_partial (abbrev->tag)
15592 && abbrev->tag != DW_TAG_constant
15593 && abbrev->tag != DW_TAG_enumerator
15594 && abbrev->tag != DW_TAG_subprogram
15595 && abbrev->tag != DW_TAG_lexical_block
15596 && abbrev->tag != DW_TAG_variable
15597 && abbrev->tag != DW_TAG_namespace
15598 && abbrev->tag != DW_TAG_module
15599 && abbrev->tag != DW_TAG_member
15600 && abbrev->tag != DW_TAG_imported_unit
15601 && abbrev->tag != DW_TAG_imported_declaration)
15602 {
15603 /* Otherwise we skip to the next sibling, if any. */
15604 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15605 continue;
15606 }
15607
15608 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15609 info_ptr);
15610
15611 /* This two-pass algorithm for processing partial symbols has a
15612 high cost in cache pressure. Thus, handle some simple cases
15613 here which cover the majority of C partial symbols. DIEs
15614 which neither have specification tags in them, nor could have
15615 specification tags elsewhere pointing at them, can simply be
15616 processed and discarded.
15617
15618 This segment is also optional; scan_partial_symbols and
15619 add_partial_symbol will handle these DIEs if we chain
15620 them in normally. When compilers which do not emit large
15621 quantities of duplicate debug information are more common,
15622 this code can probably be removed. */
15623
15624 /* Any complete simple types at the top level (pretty much all
15625 of them, for a language without namespaces), can be processed
15626 directly. */
15627 if (parent_die == NULL
15628 && part_die->has_specification == 0
15629 && part_die->is_declaration == 0
15630 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15631 || part_die->tag == DW_TAG_base_type
15632 || part_die->tag == DW_TAG_subrange_type))
15633 {
15634 if (building_psymtab && part_die->name != NULL)
15635 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15636 VAR_DOMAIN, LOC_TYPEDEF,
15637 &objfile->static_psymbols,
15638 0, cu->language, objfile);
15639 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15640 continue;
15641 }
15642
15643 /* The exception for DW_TAG_typedef with has_children above is
15644 a workaround of GCC PR debug/47510. In the case of this complaint
15645 type_name_no_tag_or_error will error on such types later.
15646
15647 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15648 it could not find the child DIEs referenced later, this is checked
15649 above. In correct DWARF DW_TAG_typedef should have no children. */
15650
15651 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15652 complaint (&symfile_complaints,
15653 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15654 "- DIE at 0x%x [in module %s]"),
15655 part_die->offset.sect_off, objfile_name (objfile));
15656
15657 /* If we're at the second level, and we're an enumerator, and
15658 our parent has no specification (meaning possibly lives in a
15659 namespace elsewhere), then we can add the partial symbol now
15660 instead of queueing it. */
15661 if (part_die->tag == DW_TAG_enumerator
15662 && parent_die != NULL
15663 && parent_die->die_parent == NULL
15664 && parent_die->tag == DW_TAG_enumeration_type
15665 && parent_die->has_specification == 0)
15666 {
15667 if (part_die->name == NULL)
15668 complaint (&symfile_complaints,
15669 _("malformed enumerator DIE ignored"));
15670 else if (building_psymtab)
15671 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15672 VAR_DOMAIN, LOC_CONST,
15673 (cu->language == language_cplus
15674 || cu->language == language_java)
15675 ? &objfile->global_psymbols
15676 : &objfile->static_psymbols,
15677 0, cu->language, objfile);
15678
15679 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15680 continue;
15681 }
15682
15683 /* We'll save this DIE so link it in. */
15684 part_die->die_parent = parent_die;
15685 part_die->die_sibling = NULL;
15686 part_die->die_child = NULL;
15687
15688 if (last_die && last_die == parent_die)
15689 last_die->die_child = part_die;
15690 else if (last_die)
15691 last_die->die_sibling = part_die;
15692
15693 last_die = part_die;
15694
15695 if (first_die == NULL)
15696 first_die = part_die;
15697
15698 /* Maybe add the DIE to the hash table. Not all DIEs that we
15699 find interesting need to be in the hash table, because we
15700 also have the parent/sibling/child chains; only those that we
15701 might refer to by offset later during partial symbol reading.
15702
15703 For now this means things that might have be the target of a
15704 DW_AT_specification, DW_AT_abstract_origin, or
15705 DW_AT_extension. DW_AT_extension will refer only to
15706 namespaces; DW_AT_abstract_origin refers to functions (and
15707 many things under the function DIE, but we do not recurse
15708 into function DIEs during partial symbol reading) and
15709 possibly variables as well; DW_AT_specification refers to
15710 declarations. Declarations ought to have the DW_AT_declaration
15711 flag. It happens that GCC forgets to put it in sometimes, but
15712 only for functions, not for types.
15713
15714 Adding more things than necessary to the hash table is harmless
15715 except for the performance cost. Adding too few will result in
15716 wasted time in find_partial_die, when we reread the compilation
15717 unit with load_all_dies set. */
15718
15719 if (load_all
15720 || abbrev->tag == DW_TAG_constant
15721 || abbrev->tag == DW_TAG_subprogram
15722 || abbrev->tag == DW_TAG_variable
15723 || abbrev->tag == DW_TAG_namespace
15724 || part_die->is_declaration)
15725 {
15726 void **slot;
15727
15728 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15729 part_die->offset.sect_off, INSERT);
15730 *slot = part_die;
15731 }
15732
15733 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15734
15735 /* For some DIEs we want to follow their children (if any). For C
15736 we have no reason to follow the children of structures; for other
15737 languages we have to, so that we can get at method physnames
15738 to infer fully qualified class names, for DW_AT_specification,
15739 and for C++ template arguments. For C++, we also look one level
15740 inside functions to find template arguments (if the name of the
15741 function does not already contain the template arguments).
15742
15743 For Ada, we need to scan the children of subprograms and lexical
15744 blocks as well because Ada allows the definition of nested
15745 entities that could be interesting for the debugger, such as
15746 nested subprograms for instance. */
15747 if (last_die->has_children
15748 && (load_all
15749 || last_die->tag == DW_TAG_namespace
15750 || last_die->tag == DW_TAG_module
15751 || last_die->tag == DW_TAG_enumeration_type
15752 || (cu->language == language_cplus
15753 && last_die->tag == DW_TAG_subprogram
15754 && (last_die->name == NULL
15755 || strchr (last_die->name, '<') == NULL))
15756 || (cu->language != language_c
15757 && (last_die->tag == DW_TAG_class_type
15758 || last_die->tag == DW_TAG_interface_type
15759 || last_die->tag == DW_TAG_structure_type
15760 || last_die->tag == DW_TAG_union_type))
15761 || (cu->language == language_ada
15762 && (last_die->tag == DW_TAG_subprogram
15763 || last_die->tag == DW_TAG_lexical_block))))
15764 {
15765 nesting_level++;
15766 parent_die = last_die;
15767 continue;
15768 }
15769
15770 /* Otherwise we skip to the next sibling, if any. */
15771 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15772
15773 /* Back to the top, do it again. */
15774 }
15775 }
15776
15777 /* Read a minimal amount of information into the minimal die structure. */
15778
15779 static const gdb_byte *
15780 read_partial_die (const struct die_reader_specs *reader,
15781 struct partial_die_info *part_die,
15782 struct abbrev_info *abbrev, unsigned int abbrev_len,
15783 const gdb_byte *info_ptr)
15784 {
15785 struct dwarf2_cu *cu = reader->cu;
15786 struct objfile *objfile = cu->objfile;
15787 const gdb_byte *buffer = reader->buffer;
15788 unsigned int i;
15789 struct attribute attr;
15790 int has_low_pc_attr = 0;
15791 int has_high_pc_attr = 0;
15792 int high_pc_relative = 0;
15793
15794 memset (part_die, 0, sizeof (struct partial_die_info));
15795
15796 part_die->offset.sect_off = info_ptr - buffer;
15797
15798 info_ptr += abbrev_len;
15799
15800 if (abbrev == NULL)
15801 return info_ptr;
15802
15803 part_die->tag = abbrev->tag;
15804 part_die->has_children = abbrev->has_children;
15805
15806 for (i = 0; i < abbrev->num_attrs; ++i)
15807 {
15808 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15809
15810 /* Store the data if it is of an attribute we want to keep in a
15811 partial symbol table. */
15812 switch (attr.name)
15813 {
15814 case DW_AT_name:
15815 switch (part_die->tag)
15816 {
15817 case DW_TAG_compile_unit:
15818 case DW_TAG_partial_unit:
15819 case DW_TAG_type_unit:
15820 /* Compilation units have a DW_AT_name that is a filename, not
15821 a source language identifier. */
15822 case DW_TAG_enumeration_type:
15823 case DW_TAG_enumerator:
15824 /* These tags always have simple identifiers already; no need
15825 to canonicalize them. */
15826 part_die->name = DW_STRING (&attr);
15827 break;
15828 default:
15829 part_die->name
15830 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15831 &objfile->per_bfd->storage_obstack);
15832 break;
15833 }
15834 break;
15835 case DW_AT_linkage_name:
15836 case DW_AT_MIPS_linkage_name:
15837 /* Note that both forms of linkage name might appear. We
15838 assume they will be the same, and we only store the last
15839 one we see. */
15840 if (cu->language == language_ada)
15841 part_die->name = DW_STRING (&attr);
15842 part_die->linkage_name = DW_STRING (&attr);
15843 break;
15844 case DW_AT_low_pc:
15845 has_low_pc_attr = 1;
15846 part_die->lowpc = attr_value_as_address (&attr);
15847 break;
15848 case DW_AT_high_pc:
15849 has_high_pc_attr = 1;
15850 part_die->highpc = attr_value_as_address (&attr);
15851 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15852 high_pc_relative = 1;
15853 break;
15854 case DW_AT_location:
15855 /* Support the .debug_loc offsets. */
15856 if (attr_form_is_block (&attr))
15857 {
15858 part_die->d.locdesc = DW_BLOCK (&attr);
15859 }
15860 else if (attr_form_is_section_offset (&attr))
15861 {
15862 dwarf2_complex_location_expr_complaint ();
15863 }
15864 else
15865 {
15866 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15867 "partial symbol information");
15868 }
15869 break;
15870 case DW_AT_external:
15871 part_die->is_external = DW_UNSND (&attr);
15872 break;
15873 case DW_AT_declaration:
15874 part_die->is_declaration = DW_UNSND (&attr);
15875 break;
15876 case DW_AT_type:
15877 part_die->has_type = 1;
15878 break;
15879 case DW_AT_abstract_origin:
15880 case DW_AT_specification:
15881 case DW_AT_extension:
15882 part_die->has_specification = 1;
15883 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15884 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15885 || cu->per_cu->is_dwz);
15886 break;
15887 case DW_AT_sibling:
15888 /* Ignore absolute siblings, they might point outside of
15889 the current compile unit. */
15890 if (attr.form == DW_FORM_ref_addr)
15891 complaint (&symfile_complaints,
15892 _("ignoring absolute DW_AT_sibling"));
15893 else
15894 {
15895 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15896 const gdb_byte *sibling_ptr = buffer + off;
15897
15898 if (sibling_ptr < info_ptr)
15899 complaint (&symfile_complaints,
15900 _("DW_AT_sibling points backwards"));
15901 else if (sibling_ptr > reader->buffer_end)
15902 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15903 else
15904 part_die->sibling = sibling_ptr;
15905 }
15906 break;
15907 case DW_AT_byte_size:
15908 part_die->has_byte_size = 1;
15909 break;
15910 case DW_AT_const_value:
15911 part_die->has_const_value = 1;
15912 break;
15913 case DW_AT_calling_convention:
15914 /* DWARF doesn't provide a way to identify a program's source-level
15915 entry point. DW_AT_calling_convention attributes are only meant
15916 to describe functions' calling conventions.
15917
15918 However, because it's a necessary piece of information in
15919 Fortran, and because DW_CC_program is the only piece of debugging
15920 information whose definition refers to a 'main program' at all,
15921 several compilers have begun marking Fortran main programs with
15922 DW_CC_program --- even when those functions use the standard
15923 calling conventions.
15924
15925 So until DWARF specifies a way to provide this information and
15926 compilers pick up the new representation, we'll support this
15927 practice. */
15928 if (DW_UNSND (&attr) == DW_CC_program
15929 && cu->language == language_fortran
15930 && part_die->name != NULL)
15931 set_objfile_main_name (objfile, part_die->name, language_fortran);
15932 break;
15933 case DW_AT_inline:
15934 if (DW_UNSND (&attr) == DW_INL_inlined
15935 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15936 part_die->may_be_inlined = 1;
15937 break;
15938
15939 case DW_AT_import:
15940 if (part_die->tag == DW_TAG_imported_unit)
15941 {
15942 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15943 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15944 || cu->per_cu->is_dwz);
15945 }
15946 break;
15947
15948 default:
15949 break;
15950 }
15951 }
15952
15953 if (high_pc_relative)
15954 part_die->highpc += part_die->lowpc;
15955
15956 if (has_low_pc_attr && has_high_pc_attr)
15957 {
15958 /* When using the GNU linker, .gnu.linkonce. sections are used to
15959 eliminate duplicate copies of functions and vtables and such.
15960 The linker will arbitrarily choose one and discard the others.
15961 The AT_*_pc values for such functions refer to local labels in
15962 these sections. If the section from that file was discarded, the
15963 labels are not in the output, so the relocs get a value of 0.
15964 If this is a discarded function, mark the pc bounds as invalid,
15965 so that GDB will ignore it. */
15966 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15967 {
15968 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15969
15970 complaint (&symfile_complaints,
15971 _("DW_AT_low_pc %s is zero "
15972 "for DIE at 0x%x [in module %s]"),
15973 paddress (gdbarch, part_die->lowpc),
15974 part_die->offset.sect_off, objfile_name (objfile));
15975 }
15976 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15977 else if (part_die->lowpc >= part_die->highpc)
15978 {
15979 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15980
15981 complaint (&symfile_complaints,
15982 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15983 "for DIE at 0x%x [in module %s]"),
15984 paddress (gdbarch, part_die->lowpc),
15985 paddress (gdbarch, part_die->highpc),
15986 part_die->offset.sect_off, objfile_name (objfile));
15987 }
15988 else
15989 part_die->has_pc_info = 1;
15990 }
15991
15992 return info_ptr;
15993 }
15994
15995 /* Find a cached partial DIE at OFFSET in CU. */
15996
15997 static struct partial_die_info *
15998 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15999 {
16000 struct partial_die_info *lookup_die = NULL;
16001 struct partial_die_info part_die;
16002
16003 part_die.offset = offset;
16004 lookup_die = ((struct partial_die_info *)
16005 htab_find_with_hash (cu->partial_dies, &part_die,
16006 offset.sect_off));
16007
16008 return lookup_die;
16009 }
16010
16011 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16012 except in the case of .debug_types DIEs which do not reference
16013 outside their CU (they do however referencing other types via
16014 DW_FORM_ref_sig8). */
16015
16016 static struct partial_die_info *
16017 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16018 {
16019 struct objfile *objfile = cu->objfile;
16020 struct dwarf2_per_cu_data *per_cu = NULL;
16021 struct partial_die_info *pd = NULL;
16022
16023 if (offset_in_dwz == cu->per_cu->is_dwz
16024 && offset_in_cu_p (&cu->header, offset))
16025 {
16026 pd = find_partial_die_in_comp_unit (offset, cu);
16027 if (pd != NULL)
16028 return pd;
16029 /* We missed recording what we needed.
16030 Load all dies and try again. */
16031 per_cu = cu->per_cu;
16032 }
16033 else
16034 {
16035 /* TUs don't reference other CUs/TUs (except via type signatures). */
16036 if (cu->per_cu->is_debug_types)
16037 {
16038 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16039 " external reference to offset 0x%lx [in module %s].\n"),
16040 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16041 bfd_get_filename (objfile->obfd));
16042 }
16043 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16044 objfile);
16045
16046 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16047 load_partial_comp_unit (per_cu);
16048
16049 per_cu->cu->last_used = 0;
16050 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16051 }
16052
16053 /* If we didn't find it, and not all dies have been loaded,
16054 load them all and try again. */
16055
16056 if (pd == NULL && per_cu->load_all_dies == 0)
16057 {
16058 per_cu->load_all_dies = 1;
16059
16060 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16061 THIS_CU->cu may already be in use. So we can't just free it and
16062 replace its DIEs with the ones we read in. Instead, we leave those
16063 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16064 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16065 set. */
16066 load_partial_comp_unit (per_cu);
16067
16068 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16069 }
16070
16071 if (pd == NULL)
16072 internal_error (__FILE__, __LINE__,
16073 _("could not find partial DIE 0x%x "
16074 "in cache [from module %s]\n"),
16075 offset.sect_off, bfd_get_filename (objfile->obfd));
16076 return pd;
16077 }
16078
16079 /* See if we can figure out if the class lives in a namespace. We do
16080 this by looking for a member function; its demangled name will
16081 contain namespace info, if there is any. */
16082
16083 static void
16084 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16085 struct dwarf2_cu *cu)
16086 {
16087 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16088 what template types look like, because the demangler
16089 frequently doesn't give the same name as the debug info. We
16090 could fix this by only using the demangled name to get the
16091 prefix (but see comment in read_structure_type). */
16092
16093 struct partial_die_info *real_pdi;
16094 struct partial_die_info *child_pdi;
16095
16096 /* If this DIE (this DIE's specification, if any) has a parent, then
16097 we should not do this. We'll prepend the parent's fully qualified
16098 name when we create the partial symbol. */
16099
16100 real_pdi = struct_pdi;
16101 while (real_pdi->has_specification)
16102 real_pdi = find_partial_die (real_pdi->spec_offset,
16103 real_pdi->spec_is_dwz, cu);
16104
16105 if (real_pdi->die_parent != NULL)
16106 return;
16107
16108 for (child_pdi = struct_pdi->die_child;
16109 child_pdi != NULL;
16110 child_pdi = child_pdi->die_sibling)
16111 {
16112 if (child_pdi->tag == DW_TAG_subprogram
16113 && child_pdi->linkage_name != NULL)
16114 {
16115 char *actual_class_name
16116 = language_class_name_from_physname (cu->language_defn,
16117 child_pdi->linkage_name);
16118 if (actual_class_name != NULL)
16119 {
16120 struct_pdi->name
16121 = ((const char *)
16122 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16123 actual_class_name,
16124 strlen (actual_class_name)));
16125 xfree (actual_class_name);
16126 }
16127 break;
16128 }
16129 }
16130 }
16131
16132 /* Adjust PART_DIE before generating a symbol for it. This function
16133 may set the is_external flag or change the DIE's name. */
16134
16135 static void
16136 fixup_partial_die (struct partial_die_info *part_die,
16137 struct dwarf2_cu *cu)
16138 {
16139 /* Once we've fixed up a die, there's no point in doing so again.
16140 This also avoids a memory leak if we were to call
16141 guess_partial_die_structure_name multiple times. */
16142 if (part_die->fixup_called)
16143 return;
16144
16145 /* If we found a reference attribute and the DIE has no name, try
16146 to find a name in the referred to DIE. */
16147
16148 if (part_die->name == NULL && part_die->has_specification)
16149 {
16150 struct partial_die_info *spec_die;
16151
16152 spec_die = find_partial_die (part_die->spec_offset,
16153 part_die->spec_is_dwz, cu);
16154
16155 fixup_partial_die (spec_die, cu);
16156
16157 if (spec_die->name)
16158 {
16159 part_die->name = spec_die->name;
16160
16161 /* Copy DW_AT_external attribute if it is set. */
16162 if (spec_die->is_external)
16163 part_die->is_external = spec_die->is_external;
16164 }
16165 }
16166
16167 /* Set default names for some unnamed DIEs. */
16168
16169 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16170 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16171
16172 /* If there is no parent die to provide a namespace, and there are
16173 children, see if we can determine the namespace from their linkage
16174 name. */
16175 if (cu->language == language_cplus
16176 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16177 && part_die->die_parent == NULL
16178 && part_die->has_children
16179 && (part_die->tag == DW_TAG_class_type
16180 || part_die->tag == DW_TAG_structure_type
16181 || part_die->tag == DW_TAG_union_type))
16182 guess_partial_die_structure_name (part_die, cu);
16183
16184 /* GCC might emit a nameless struct or union that has a linkage
16185 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16186 if (part_die->name == NULL
16187 && (part_die->tag == DW_TAG_class_type
16188 || part_die->tag == DW_TAG_interface_type
16189 || part_die->tag == DW_TAG_structure_type
16190 || part_die->tag == DW_TAG_union_type)
16191 && part_die->linkage_name != NULL)
16192 {
16193 char *demangled;
16194
16195 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16196 if (demangled)
16197 {
16198 const char *base;
16199
16200 /* Strip any leading namespaces/classes, keep only the base name.
16201 DW_AT_name for named DIEs does not contain the prefixes. */
16202 base = strrchr (demangled, ':');
16203 if (base && base > demangled && base[-1] == ':')
16204 base++;
16205 else
16206 base = demangled;
16207
16208 part_die->name
16209 = ((const char *)
16210 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16211 base, strlen (base)));
16212 xfree (demangled);
16213 }
16214 }
16215
16216 part_die->fixup_called = 1;
16217 }
16218
16219 /* Read an attribute value described by an attribute form. */
16220
16221 static const gdb_byte *
16222 read_attribute_value (const struct die_reader_specs *reader,
16223 struct attribute *attr, unsigned form,
16224 const gdb_byte *info_ptr)
16225 {
16226 struct dwarf2_cu *cu = reader->cu;
16227 struct objfile *objfile = cu->objfile;
16228 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16229 bfd *abfd = reader->abfd;
16230 struct comp_unit_head *cu_header = &cu->header;
16231 unsigned int bytes_read;
16232 struct dwarf_block *blk;
16233
16234 attr->form = (enum dwarf_form) form;
16235 switch (form)
16236 {
16237 case DW_FORM_ref_addr:
16238 if (cu->header.version == 2)
16239 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16240 else
16241 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16242 &cu->header, &bytes_read);
16243 info_ptr += bytes_read;
16244 break;
16245 case DW_FORM_GNU_ref_alt:
16246 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16247 info_ptr += bytes_read;
16248 break;
16249 case DW_FORM_addr:
16250 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16251 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16252 info_ptr += bytes_read;
16253 break;
16254 case DW_FORM_block2:
16255 blk = dwarf_alloc_block (cu);
16256 blk->size = read_2_bytes (abfd, info_ptr);
16257 info_ptr += 2;
16258 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16259 info_ptr += blk->size;
16260 DW_BLOCK (attr) = blk;
16261 break;
16262 case DW_FORM_block4:
16263 blk = dwarf_alloc_block (cu);
16264 blk->size = read_4_bytes (abfd, info_ptr);
16265 info_ptr += 4;
16266 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16267 info_ptr += blk->size;
16268 DW_BLOCK (attr) = blk;
16269 break;
16270 case DW_FORM_data2:
16271 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16272 info_ptr += 2;
16273 break;
16274 case DW_FORM_data4:
16275 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16276 info_ptr += 4;
16277 break;
16278 case DW_FORM_data8:
16279 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16280 info_ptr += 8;
16281 break;
16282 case DW_FORM_sec_offset:
16283 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16284 info_ptr += bytes_read;
16285 break;
16286 case DW_FORM_string:
16287 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16288 DW_STRING_IS_CANONICAL (attr) = 0;
16289 info_ptr += bytes_read;
16290 break;
16291 case DW_FORM_strp:
16292 if (!cu->per_cu->is_dwz)
16293 {
16294 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16295 &bytes_read);
16296 DW_STRING_IS_CANONICAL (attr) = 0;
16297 info_ptr += bytes_read;
16298 break;
16299 }
16300 /* FALLTHROUGH */
16301 case DW_FORM_GNU_strp_alt:
16302 {
16303 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16304 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16305 &bytes_read);
16306
16307 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16308 DW_STRING_IS_CANONICAL (attr) = 0;
16309 info_ptr += bytes_read;
16310 }
16311 break;
16312 case DW_FORM_exprloc:
16313 case DW_FORM_block:
16314 blk = dwarf_alloc_block (cu);
16315 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16316 info_ptr += bytes_read;
16317 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16318 info_ptr += blk->size;
16319 DW_BLOCK (attr) = blk;
16320 break;
16321 case DW_FORM_block1:
16322 blk = dwarf_alloc_block (cu);
16323 blk->size = read_1_byte (abfd, info_ptr);
16324 info_ptr += 1;
16325 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16326 info_ptr += blk->size;
16327 DW_BLOCK (attr) = blk;
16328 break;
16329 case DW_FORM_data1:
16330 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16331 info_ptr += 1;
16332 break;
16333 case DW_FORM_flag:
16334 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16335 info_ptr += 1;
16336 break;
16337 case DW_FORM_flag_present:
16338 DW_UNSND (attr) = 1;
16339 break;
16340 case DW_FORM_sdata:
16341 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16342 info_ptr += bytes_read;
16343 break;
16344 case DW_FORM_udata:
16345 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16346 info_ptr += bytes_read;
16347 break;
16348 case DW_FORM_ref1:
16349 DW_UNSND (attr) = (cu->header.offset.sect_off
16350 + read_1_byte (abfd, info_ptr));
16351 info_ptr += 1;
16352 break;
16353 case DW_FORM_ref2:
16354 DW_UNSND (attr) = (cu->header.offset.sect_off
16355 + read_2_bytes (abfd, info_ptr));
16356 info_ptr += 2;
16357 break;
16358 case DW_FORM_ref4:
16359 DW_UNSND (attr) = (cu->header.offset.sect_off
16360 + read_4_bytes (abfd, info_ptr));
16361 info_ptr += 4;
16362 break;
16363 case DW_FORM_ref8:
16364 DW_UNSND (attr) = (cu->header.offset.sect_off
16365 + read_8_bytes (abfd, info_ptr));
16366 info_ptr += 8;
16367 break;
16368 case DW_FORM_ref_sig8:
16369 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16370 info_ptr += 8;
16371 break;
16372 case DW_FORM_ref_udata:
16373 DW_UNSND (attr) = (cu->header.offset.sect_off
16374 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16375 info_ptr += bytes_read;
16376 break;
16377 case DW_FORM_indirect:
16378 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16379 info_ptr += bytes_read;
16380 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16381 break;
16382 case DW_FORM_GNU_addr_index:
16383 if (reader->dwo_file == NULL)
16384 {
16385 /* For now flag a hard error.
16386 Later we can turn this into a complaint. */
16387 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16388 dwarf_form_name (form),
16389 bfd_get_filename (abfd));
16390 }
16391 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16392 info_ptr += bytes_read;
16393 break;
16394 case DW_FORM_GNU_str_index:
16395 if (reader->dwo_file == NULL)
16396 {
16397 /* For now flag a hard error.
16398 Later we can turn this into a complaint if warranted. */
16399 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16400 dwarf_form_name (form),
16401 bfd_get_filename (abfd));
16402 }
16403 {
16404 ULONGEST str_index =
16405 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16406
16407 DW_STRING (attr) = read_str_index (reader, str_index);
16408 DW_STRING_IS_CANONICAL (attr) = 0;
16409 info_ptr += bytes_read;
16410 }
16411 break;
16412 default:
16413 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16414 dwarf_form_name (form),
16415 bfd_get_filename (abfd));
16416 }
16417
16418 /* Super hack. */
16419 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16420 attr->form = DW_FORM_GNU_ref_alt;
16421
16422 /* We have seen instances where the compiler tried to emit a byte
16423 size attribute of -1 which ended up being encoded as an unsigned
16424 0xffffffff. Although 0xffffffff is technically a valid size value,
16425 an object of this size seems pretty unlikely so we can relatively
16426 safely treat these cases as if the size attribute was invalid and
16427 treat them as zero by default. */
16428 if (attr->name == DW_AT_byte_size
16429 && form == DW_FORM_data4
16430 && DW_UNSND (attr) >= 0xffffffff)
16431 {
16432 complaint
16433 (&symfile_complaints,
16434 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16435 hex_string (DW_UNSND (attr)));
16436 DW_UNSND (attr) = 0;
16437 }
16438
16439 return info_ptr;
16440 }
16441
16442 /* Read an attribute described by an abbreviated attribute. */
16443
16444 static const gdb_byte *
16445 read_attribute (const struct die_reader_specs *reader,
16446 struct attribute *attr, struct attr_abbrev *abbrev,
16447 const gdb_byte *info_ptr)
16448 {
16449 attr->name = abbrev->name;
16450 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16451 }
16452
16453 /* Read dwarf information from a buffer. */
16454
16455 static unsigned int
16456 read_1_byte (bfd *abfd, const gdb_byte *buf)
16457 {
16458 return bfd_get_8 (abfd, buf);
16459 }
16460
16461 static int
16462 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16463 {
16464 return bfd_get_signed_8 (abfd, buf);
16465 }
16466
16467 static unsigned int
16468 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16469 {
16470 return bfd_get_16 (abfd, buf);
16471 }
16472
16473 static int
16474 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16475 {
16476 return bfd_get_signed_16 (abfd, buf);
16477 }
16478
16479 static unsigned int
16480 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16481 {
16482 return bfd_get_32 (abfd, buf);
16483 }
16484
16485 static int
16486 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16487 {
16488 return bfd_get_signed_32 (abfd, buf);
16489 }
16490
16491 static ULONGEST
16492 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16493 {
16494 return bfd_get_64 (abfd, buf);
16495 }
16496
16497 static CORE_ADDR
16498 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16499 unsigned int *bytes_read)
16500 {
16501 struct comp_unit_head *cu_header = &cu->header;
16502 CORE_ADDR retval = 0;
16503
16504 if (cu_header->signed_addr_p)
16505 {
16506 switch (cu_header->addr_size)
16507 {
16508 case 2:
16509 retval = bfd_get_signed_16 (abfd, buf);
16510 break;
16511 case 4:
16512 retval = bfd_get_signed_32 (abfd, buf);
16513 break;
16514 case 8:
16515 retval = bfd_get_signed_64 (abfd, buf);
16516 break;
16517 default:
16518 internal_error (__FILE__, __LINE__,
16519 _("read_address: bad switch, signed [in module %s]"),
16520 bfd_get_filename (abfd));
16521 }
16522 }
16523 else
16524 {
16525 switch (cu_header->addr_size)
16526 {
16527 case 2:
16528 retval = bfd_get_16 (abfd, buf);
16529 break;
16530 case 4:
16531 retval = bfd_get_32 (abfd, buf);
16532 break;
16533 case 8:
16534 retval = bfd_get_64 (abfd, buf);
16535 break;
16536 default:
16537 internal_error (__FILE__, __LINE__,
16538 _("read_address: bad switch, "
16539 "unsigned [in module %s]"),
16540 bfd_get_filename (abfd));
16541 }
16542 }
16543
16544 *bytes_read = cu_header->addr_size;
16545 return retval;
16546 }
16547
16548 /* Read the initial length from a section. The (draft) DWARF 3
16549 specification allows the initial length to take up either 4 bytes
16550 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16551 bytes describe the length and all offsets will be 8 bytes in length
16552 instead of 4.
16553
16554 An older, non-standard 64-bit format is also handled by this
16555 function. The older format in question stores the initial length
16556 as an 8-byte quantity without an escape value. Lengths greater
16557 than 2^32 aren't very common which means that the initial 4 bytes
16558 is almost always zero. Since a length value of zero doesn't make
16559 sense for the 32-bit format, this initial zero can be considered to
16560 be an escape value which indicates the presence of the older 64-bit
16561 format. As written, the code can't detect (old format) lengths
16562 greater than 4GB. If it becomes necessary to handle lengths
16563 somewhat larger than 4GB, we could allow other small values (such
16564 as the non-sensical values of 1, 2, and 3) to also be used as
16565 escape values indicating the presence of the old format.
16566
16567 The value returned via bytes_read should be used to increment the
16568 relevant pointer after calling read_initial_length().
16569
16570 [ Note: read_initial_length() and read_offset() are based on the
16571 document entitled "DWARF Debugging Information Format", revision
16572 3, draft 8, dated November 19, 2001. This document was obtained
16573 from:
16574
16575 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16576
16577 This document is only a draft and is subject to change. (So beware.)
16578
16579 Details regarding the older, non-standard 64-bit format were
16580 determined empirically by examining 64-bit ELF files produced by
16581 the SGI toolchain on an IRIX 6.5 machine.
16582
16583 - Kevin, July 16, 2002
16584 ] */
16585
16586 static LONGEST
16587 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16588 {
16589 LONGEST length = bfd_get_32 (abfd, buf);
16590
16591 if (length == 0xffffffff)
16592 {
16593 length = bfd_get_64 (abfd, buf + 4);
16594 *bytes_read = 12;
16595 }
16596 else if (length == 0)
16597 {
16598 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16599 length = bfd_get_64 (abfd, buf);
16600 *bytes_read = 8;
16601 }
16602 else
16603 {
16604 *bytes_read = 4;
16605 }
16606
16607 return length;
16608 }
16609
16610 /* Cover function for read_initial_length.
16611 Returns the length of the object at BUF, and stores the size of the
16612 initial length in *BYTES_READ and stores the size that offsets will be in
16613 *OFFSET_SIZE.
16614 If the initial length size is not equivalent to that specified in
16615 CU_HEADER then issue a complaint.
16616 This is useful when reading non-comp-unit headers. */
16617
16618 static LONGEST
16619 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16620 const struct comp_unit_head *cu_header,
16621 unsigned int *bytes_read,
16622 unsigned int *offset_size)
16623 {
16624 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16625
16626 gdb_assert (cu_header->initial_length_size == 4
16627 || cu_header->initial_length_size == 8
16628 || cu_header->initial_length_size == 12);
16629
16630 if (cu_header->initial_length_size != *bytes_read)
16631 complaint (&symfile_complaints,
16632 _("intermixed 32-bit and 64-bit DWARF sections"));
16633
16634 *offset_size = (*bytes_read == 4) ? 4 : 8;
16635 return length;
16636 }
16637
16638 /* Read an offset from the data stream. The size of the offset is
16639 given by cu_header->offset_size. */
16640
16641 static LONGEST
16642 read_offset (bfd *abfd, const gdb_byte *buf,
16643 const struct comp_unit_head *cu_header,
16644 unsigned int *bytes_read)
16645 {
16646 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16647
16648 *bytes_read = cu_header->offset_size;
16649 return offset;
16650 }
16651
16652 /* Read an offset from the data stream. */
16653
16654 static LONGEST
16655 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16656 {
16657 LONGEST retval = 0;
16658
16659 switch (offset_size)
16660 {
16661 case 4:
16662 retval = bfd_get_32 (abfd, buf);
16663 break;
16664 case 8:
16665 retval = bfd_get_64 (abfd, buf);
16666 break;
16667 default:
16668 internal_error (__FILE__, __LINE__,
16669 _("read_offset_1: bad switch [in module %s]"),
16670 bfd_get_filename (abfd));
16671 }
16672
16673 return retval;
16674 }
16675
16676 static const gdb_byte *
16677 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16678 {
16679 /* If the size of a host char is 8 bits, we can return a pointer
16680 to the buffer, otherwise we have to copy the data to a buffer
16681 allocated on the temporary obstack. */
16682 gdb_assert (HOST_CHAR_BIT == 8);
16683 return buf;
16684 }
16685
16686 static const char *
16687 read_direct_string (bfd *abfd, const gdb_byte *buf,
16688 unsigned int *bytes_read_ptr)
16689 {
16690 /* If the size of a host char is 8 bits, we can return a pointer
16691 to the string, otherwise we have to copy the string to a buffer
16692 allocated on the temporary obstack. */
16693 gdb_assert (HOST_CHAR_BIT == 8);
16694 if (*buf == '\0')
16695 {
16696 *bytes_read_ptr = 1;
16697 return NULL;
16698 }
16699 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16700 return (const char *) buf;
16701 }
16702
16703 static const char *
16704 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16705 {
16706 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16707 if (dwarf2_per_objfile->str.buffer == NULL)
16708 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16709 bfd_get_filename (abfd));
16710 if (str_offset >= dwarf2_per_objfile->str.size)
16711 error (_("DW_FORM_strp pointing outside of "
16712 ".debug_str section [in module %s]"),
16713 bfd_get_filename (abfd));
16714 gdb_assert (HOST_CHAR_BIT == 8);
16715 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16716 return NULL;
16717 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16718 }
16719
16720 /* Read a string at offset STR_OFFSET in the .debug_str section from
16721 the .dwz file DWZ. Throw an error if the offset is too large. If
16722 the string consists of a single NUL byte, return NULL; otherwise
16723 return a pointer to the string. */
16724
16725 static const char *
16726 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16727 {
16728 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16729
16730 if (dwz->str.buffer == NULL)
16731 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16732 "section [in module %s]"),
16733 bfd_get_filename (dwz->dwz_bfd));
16734 if (str_offset >= dwz->str.size)
16735 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16736 ".debug_str section [in module %s]"),
16737 bfd_get_filename (dwz->dwz_bfd));
16738 gdb_assert (HOST_CHAR_BIT == 8);
16739 if (dwz->str.buffer[str_offset] == '\0')
16740 return NULL;
16741 return (const char *) (dwz->str.buffer + str_offset);
16742 }
16743
16744 static const char *
16745 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16746 const struct comp_unit_head *cu_header,
16747 unsigned int *bytes_read_ptr)
16748 {
16749 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16750
16751 return read_indirect_string_at_offset (abfd, str_offset);
16752 }
16753
16754 static ULONGEST
16755 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16756 unsigned int *bytes_read_ptr)
16757 {
16758 ULONGEST result;
16759 unsigned int num_read;
16760 int shift;
16761 unsigned char byte;
16762
16763 result = 0;
16764 shift = 0;
16765 num_read = 0;
16766 while (1)
16767 {
16768 byte = bfd_get_8 (abfd, buf);
16769 buf++;
16770 num_read++;
16771 result |= ((ULONGEST) (byte & 127) << shift);
16772 if ((byte & 128) == 0)
16773 {
16774 break;
16775 }
16776 shift += 7;
16777 }
16778 *bytes_read_ptr = num_read;
16779 return result;
16780 }
16781
16782 static LONGEST
16783 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16784 unsigned int *bytes_read_ptr)
16785 {
16786 LONGEST result;
16787 int shift, num_read;
16788 unsigned char byte;
16789
16790 result = 0;
16791 shift = 0;
16792 num_read = 0;
16793 while (1)
16794 {
16795 byte = bfd_get_8 (abfd, buf);
16796 buf++;
16797 num_read++;
16798 result |= ((LONGEST) (byte & 127) << shift);
16799 shift += 7;
16800 if ((byte & 128) == 0)
16801 {
16802 break;
16803 }
16804 }
16805 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16806 result |= -(((LONGEST) 1) << shift);
16807 *bytes_read_ptr = num_read;
16808 return result;
16809 }
16810
16811 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16812 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16813 ADDR_SIZE is the size of addresses from the CU header. */
16814
16815 static CORE_ADDR
16816 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16817 {
16818 struct objfile *objfile = dwarf2_per_objfile->objfile;
16819 bfd *abfd = objfile->obfd;
16820 const gdb_byte *info_ptr;
16821
16822 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16823 if (dwarf2_per_objfile->addr.buffer == NULL)
16824 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16825 objfile_name (objfile));
16826 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16827 error (_("DW_FORM_addr_index pointing outside of "
16828 ".debug_addr section [in module %s]"),
16829 objfile_name (objfile));
16830 info_ptr = (dwarf2_per_objfile->addr.buffer
16831 + addr_base + addr_index * addr_size);
16832 if (addr_size == 4)
16833 return bfd_get_32 (abfd, info_ptr);
16834 else
16835 return bfd_get_64 (abfd, info_ptr);
16836 }
16837
16838 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16839
16840 static CORE_ADDR
16841 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16842 {
16843 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16844 }
16845
16846 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16847
16848 static CORE_ADDR
16849 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16850 unsigned int *bytes_read)
16851 {
16852 bfd *abfd = cu->objfile->obfd;
16853 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16854
16855 return read_addr_index (cu, addr_index);
16856 }
16857
16858 /* Data structure to pass results from dwarf2_read_addr_index_reader
16859 back to dwarf2_read_addr_index. */
16860
16861 struct dwarf2_read_addr_index_data
16862 {
16863 ULONGEST addr_base;
16864 int addr_size;
16865 };
16866
16867 /* die_reader_func for dwarf2_read_addr_index. */
16868
16869 static void
16870 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16871 const gdb_byte *info_ptr,
16872 struct die_info *comp_unit_die,
16873 int has_children,
16874 void *data)
16875 {
16876 struct dwarf2_cu *cu = reader->cu;
16877 struct dwarf2_read_addr_index_data *aidata =
16878 (struct dwarf2_read_addr_index_data *) data;
16879
16880 aidata->addr_base = cu->addr_base;
16881 aidata->addr_size = cu->header.addr_size;
16882 }
16883
16884 /* Given an index in .debug_addr, fetch the value.
16885 NOTE: This can be called during dwarf expression evaluation,
16886 long after the debug information has been read, and thus per_cu->cu
16887 may no longer exist. */
16888
16889 CORE_ADDR
16890 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16891 unsigned int addr_index)
16892 {
16893 struct objfile *objfile = per_cu->objfile;
16894 struct dwarf2_cu *cu = per_cu->cu;
16895 ULONGEST addr_base;
16896 int addr_size;
16897
16898 /* This is intended to be called from outside this file. */
16899 dw2_setup (objfile);
16900
16901 /* We need addr_base and addr_size.
16902 If we don't have PER_CU->cu, we have to get it.
16903 Nasty, but the alternative is storing the needed info in PER_CU,
16904 which at this point doesn't seem justified: it's not clear how frequently
16905 it would get used and it would increase the size of every PER_CU.
16906 Entry points like dwarf2_per_cu_addr_size do a similar thing
16907 so we're not in uncharted territory here.
16908 Alas we need to be a bit more complicated as addr_base is contained
16909 in the DIE.
16910
16911 We don't need to read the entire CU(/TU).
16912 We just need the header and top level die.
16913
16914 IWBN to use the aging mechanism to let us lazily later discard the CU.
16915 For now we skip this optimization. */
16916
16917 if (cu != NULL)
16918 {
16919 addr_base = cu->addr_base;
16920 addr_size = cu->header.addr_size;
16921 }
16922 else
16923 {
16924 struct dwarf2_read_addr_index_data aidata;
16925
16926 /* Note: We can't use init_cutu_and_read_dies_simple here,
16927 we need addr_base. */
16928 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16929 dwarf2_read_addr_index_reader, &aidata);
16930 addr_base = aidata.addr_base;
16931 addr_size = aidata.addr_size;
16932 }
16933
16934 return read_addr_index_1 (addr_index, addr_base, addr_size);
16935 }
16936
16937 /* Given a DW_FORM_GNU_str_index, fetch the string.
16938 This is only used by the Fission support. */
16939
16940 static const char *
16941 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16942 {
16943 struct objfile *objfile = dwarf2_per_objfile->objfile;
16944 const char *objf_name = objfile_name (objfile);
16945 bfd *abfd = objfile->obfd;
16946 struct dwarf2_cu *cu = reader->cu;
16947 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16948 struct dwarf2_section_info *str_offsets_section =
16949 &reader->dwo_file->sections.str_offsets;
16950 const gdb_byte *info_ptr;
16951 ULONGEST str_offset;
16952 static const char form_name[] = "DW_FORM_GNU_str_index";
16953
16954 dwarf2_read_section (objfile, str_section);
16955 dwarf2_read_section (objfile, str_offsets_section);
16956 if (str_section->buffer == NULL)
16957 error (_("%s used without .debug_str.dwo section"
16958 " in CU at offset 0x%lx [in module %s]"),
16959 form_name, (long) cu->header.offset.sect_off, objf_name);
16960 if (str_offsets_section->buffer == NULL)
16961 error (_("%s used without .debug_str_offsets.dwo section"
16962 " in CU at offset 0x%lx [in module %s]"),
16963 form_name, (long) cu->header.offset.sect_off, objf_name);
16964 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16965 error (_("%s pointing outside of .debug_str_offsets.dwo"
16966 " section in CU at offset 0x%lx [in module %s]"),
16967 form_name, (long) cu->header.offset.sect_off, objf_name);
16968 info_ptr = (str_offsets_section->buffer
16969 + str_index * cu->header.offset_size);
16970 if (cu->header.offset_size == 4)
16971 str_offset = bfd_get_32 (abfd, info_ptr);
16972 else
16973 str_offset = bfd_get_64 (abfd, info_ptr);
16974 if (str_offset >= str_section->size)
16975 error (_("Offset from %s pointing outside of"
16976 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16977 form_name, (long) cu->header.offset.sect_off, objf_name);
16978 return (const char *) (str_section->buffer + str_offset);
16979 }
16980
16981 /* Return the length of an LEB128 number in BUF. */
16982
16983 static int
16984 leb128_size (const gdb_byte *buf)
16985 {
16986 const gdb_byte *begin = buf;
16987 gdb_byte byte;
16988
16989 while (1)
16990 {
16991 byte = *buf++;
16992 if ((byte & 128) == 0)
16993 return buf - begin;
16994 }
16995 }
16996
16997 static void
16998 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16999 {
17000 switch (lang)
17001 {
17002 case DW_LANG_C89:
17003 case DW_LANG_C99:
17004 case DW_LANG_C11:
17005 case DW_LANG_C:
17006 case DW_LANG_UPC:
17007 cu->language = language_c;
17008 break;
17009 case DW_LANG_C_plus_plus:
17010 case DW_LANG_C_plus_plus_11:
17011 case DW_LANG_C_plus_plus_14:
17012 cu->language = language_cplus;
17013 break;
17014 case DW_LANG_D:
17015 cu->language = language_d;
17016 break;
17017 case DW_LANG_Fortran77:
17018 case DW_LANG_Fortran90:
17019 case DW_LANG_Fortran95:
17020 case DW_LANG_Fortran03:
17021 case DW_LANG_Fortran08:
17022 cu->language = language_fortran;
17023 break;
17024 case DW_LANG_Go:
17025 cu->language = language_go;
17026 break;
17027 case DW_LANG_Mips_Assembler:
17028 cu->language = language_asm;
17029 break;
17030 case DW_LANG_Java:
17031 cu->language = language_java;
17032 break;
17033 case DW_LANG_Ada83:
17034 case DW_LANG_Ada95:
17035 cu->language = language_ada;
17036 break;
17037 case DW_LANG_Modula2:
17038 cu->language = language_m2;
17039 break;
17040 case DW_LANG_Pascal83:
17041 cu->language = language_pascal;
17042 break;
17043 case DW_LANG_ObjC:
17044 cu->language = language_objc;
17045 break;
17046 case DW_LANG_Rust:
17047 case DW_LANG_Rust_old:
17048 cu->language = language_rust;
17049 break;
17050 case DW_LANG_Cobol74:
17051 case DW_LANG_Cobol85:
17052 default:
17053 cu->language = language_minimal;
17054 break;
17055 }
17056 cu->language_defn = language_def (cu->language);
17057 }
17058
17059 /* Return the named attribute or NULL if not there. */
17060
17061 static struct attribute *
17062 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17063 {
17064 for (;;)
17065 {
17066 unsigned int i;
17067 struct attribute *spec = NULL;
17068
17069 for (i = 0; i < die->num_attrs; ++i)
17070 {
17071 if (die->attrs[i].name == name)
17072 return &die->attrs[i];
17073 if (die->attrs[i].name == DW_AT_specification
17074 || die->attrs[i].name == DW_AT_abstract_origin)
17075 spec = &die->attrs[i];
17076 }
17077
17078 if (!spec)
17079 break;
17080
17081 die = follow_die_ref (die, spec, &cu);
17082 }
17083
17084 return NULL;
17085 }
17086
17087 /* Return the named attribute or NULL if not there,
17088 but do not follow DW_AT_specification, etc.
17089 This is for use in contexts where we're reading .debug_types dies.
17090 Following DW_AT_specification, DW_AT_abstract_origin will take us
17091 back up the chain, and we want to go down. */
17092
17093 static struct attribute *
17094 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17095 {
17096 unsigned int i;
17097
17098 for (i = 0; i < die->num_attrs; ++i)
17099 if (die->attrs[i].name == name)
17100 return &die->attrs[i];
17101
17102 return NULL;
17103 }
17104
17105 /* Return the string associated with a string-typed attribute, or NULL if it
17106 is either not found or is of an incorrect type. */
17107
17108 static const char *
17109 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17110 {
17111 struct attribute *attr;
17112 const char *str = NULL;
17113
17114 attr = dwarf2_attr (die, name, cu);
17115
17116 if (attr != NULL)
17117 {
17118 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17119 || attr->form == DW_FORM_GNU_strp_alt)
17120 str = DW_STRING (attr);
17121 else
17122 complaint (&symfile_complaints,
17123 _("string type expected for attribute %s for "
17124 "DIE at 0x%x in module %s"),
17125 dwarf_attr_name (name), die->offset.sect_off,
17126 objfile_name (cu->objfile));
17127 }
17128
17129 return str;
17130 }
17131
17132 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17133 and holds a non-zero value. This function should only be used for
17134 DW_FORM_flag or DW_FORM_flag_present attributes. */
17135
17136 static int
17137 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17138 {
17139 struct attribute *attr = dwarf2_attr (die, name, cu);
17140
17141 return (attr && DW_UNSND (attr));
17142 }
17143
17144 static int
17145 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17146 {
17147 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17148 which value is non-zero. However, we have to be careful with
17149 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17150 (via dwarf2_flag_true_p) follows this attribute. So we may
17151 end up accidently finding a declaration attribute that belongs
17152 to a different DIE referenced by the specification attribute,
17153 even though the given DIE does not have a declaration attribute. */
17154 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17155 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17156 }
17157
17158 /* Return the die giving the specification for DIE, if there is
17159 one. *SPEC_CU is the CU containing DIE on input, and the CU
17160 containing the return value on output. If there is no
17161 specification, but there is an abstract origin, that is
17162 returned. */
17163
17164 static struct die_info *
17165 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17166 {
17167 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17168 *spec_cu);
17169
17170 if (spec_attr == NULL)
17171 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17172
17173 if (spec_attr == NULL)
17174 return NULL;
17175 else
17176 return follow_die_ref (die, spec_attr, spec_cu);
17177 }
17178
17179 /* Free the line_header structure *LH, and any arrays and strings it
17180 refers to.
17181 NOTE: This is also used as a "cleanup" function. */
17182
17183 static void
17184 free_line_header (struct line_header *lh)
17185 {
17186 if (lh->standard_opcode_lengths)
17187 xfree (lh->standard_opcode_lengths);
17188
17189 /* Remember that all the lh->file_names[i].name pointers are
17190 pointers into debug_line_buffer, and don't need to be freed. */
17191 if (lh->file_names)
17192 xfree (lh->file_names);
17193
17194 /* Similarly for the include directory names. */
17195 if (lh->include_dirs)
17196 xfree (lh->include_dirs);
17197
17198 xfree (lh);
17199 }
17200
17201 /* Stub for free_line_header to match void * callback types. */
17202
17203 static void
17204 free_line_header_voidp (void *arg)
17205 {
17206 struct line_header *lh = (struct line_header *) arg;
17207
17208 free_line_header (lh);
17209 }
17210
17211 /* Add an entry to LH's include directory table. */
17212
17213 static void
17214 add_include_dir (struct line_header *lh, const char *include_dir)
17215 {
17216 if (dwarf_line_debug >= 2)
17217 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17218 lh->num_include_dirs + 1, include_dir);
17219
17220 /* Grow the array if necessary. */
17221 if (lh->include_dirs_size == 0)
17222 {
17223 lh->include_dirs_size = 1; /* for testing */
17224 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17225 }
17226 else if (lh->num_include_dirs >= lh->include_dirs_size)
17227 {
17228 lh->include_dirs_size *= 2;
17229 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17230 lh->include_dirs_size);
17231 }
17232
17233 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17234 }
17235
17236 /* Add an entry to LH's file name table. */
17237
17238 static void
17239 add_file_name (struct line_header *lh,
17240 const char *name,
17241 unsigned int dir_index,
17242 unsigned int mod_time,
17243 unsigned int length)
17244 {
17245 struct file_entry *fe;
17246
17247 if (dwarf_line_debug >= 2)
17248 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17249 lh->num_file_names + 1, name);
17250
17251 /* Grow the array if necessary. */
17252 if (lh->file_names_size == 0)
17253 {
17254 lh->file_names_size = 1; /* for testing */
17255 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17256 }
17257 else if (lh->num_file_names >= lh->file_names_size)
17258 {
17259 lh->file_names_size *= 2;
17260 lh->file_names
17261 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
17262 }
17263
17264 fe = &lh->file_names[lh->num_file_names++];
17265 fe->name = name;
17266 fe->dir_index = dir_index;
17267 fe->mod_time = mod_time;
17268 fe->length = length;
17269 fe->included_p = 0;
17270 fe->symtab = NULL;
17271 }
17272
17273 /* A convenience function to find the proper .debug_line section for a CU. */
17274
17275 static struct dwarf2_section_info *
17276 get_debug_line_section (struct dwarf2_cu *cu)
17277 {
17278 struct dwarf2_section_info *section;
17279
17280 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17281 DWO file. */
17282 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17283 section = &cu->dwo_unit->dwo_file->sections.line;
17284 else if (cu->per_cu->is_dwz)
17285 {
17286 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17287
17288 section = &dwz->line;
17289 }
17290 else
17291 section = &dwarf2_per_objfile->line;
17292
17293 return section;
17294 }
17295
17296 /* Read the statement program header starting at OFFSET in
17297 .debug_line, or .debug_line.dwo. Return a pointer
17298 to a struct line_header, allocated using xmalloc.
17299 Returns NULL if there is a problem reading the header, e.g., if it
17300 has a version we don't understand.
17301
17302 NOTE: the strings in the include directory and file name tables of
17303 the returned object point into the dwarf line section buffer,
17304 and must not be freed. */
17305
17306 static struct line_header *
17307 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17308 {
17309 struct cleanup *back_to;
17310 struct line_header *lh;
17311 const gdb_byte *line_ptr;
17312 unsigned int bytes_read, offset_size;
17313 int i;
17314 const char *cur_dir, *cur_file;
17315 struct dwarf2_section_info *section;
17316 bfd *abfd;
17317
17318 section = get_debug_line_section (cu);
17319 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17320 if (section->buffer == NULL)
17321 {
17322 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17323 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17324 else
17325 complaint (&symfile_complaints, _("missing .debug_line section"));
17326 return 0;
17327 }
17328
17329 /* We can't do this until we know the section is non-empty.
17330 Only then do we know we have such a section. */
17331 abfd = get_section_bfd_owner (section);
17332
17333 /* Make sure that at least there's room for the total_length field.
17334 That could be 12 bytes long, but we're just going to fudge that. */
17335 if (offset + 4 >= section->size)
17336 {
17337 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17338 return 0;
17339 }
17340
17341 lh = XNEW (struct line_header);
17342 memset (lh, 0, sizeof (*lh));
17343 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17344 (void *) lh);
17345
17346 lh->offset.sect_off = offset;
17347 lh->offset_in_dwz = cu->per_cu->is_dwz;
17348
17349 line_ptr = section->buffer + offset;
17350
17351 /* Read in the header. */
17352 lh->total_length =
17353 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17354 &bytes_read, &offset_size);
17355 line_ptr += bytes_read;
17356 if (line_ptr + lh->total_length > (section->buffer + section->size))
17357 {
17358 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17359 do_cleanups (back_to);
17360 return 0;
17361 }
17362 lh->statement_program_end = line_ptr + lh->total_length;
17363 lh->version = read_2_bytes (abfd, line_ptr);
17364 line_ptr += 2;
17365 if (lh->version > 4)
17366 {
17367 /* This is a version we don't understand. The format could have
17368 changed in ways we don't handle properly so just punt. */
17369 complaint (&symfile_complaints,
17370 _("unsupported version in .debug_line section"));
17371 return NULL;
17372 }
17373 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17374 line_ptr += offset_size;
17375 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17376 line_ptr += 1;
17377 if (lh->version >= 4)
17378 {
17379 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17380 line_ptr += 1;
17381 }
17382 else
17383 lh->maximum_ops_per_instruction = 1;
17384
17385 if (lh->maximum_ops_per_instruction == 0)
17386 {
17387 lh->maximum_ops_per_instruction = 1;
17388 complaint (&symfile_complaints,
17389 _("invalid maximum_ops_per_instruction "
17390 "in `.debug_line' section"));
17391 }
17392
17393 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17394 line_ptr += 1;
17395 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17396 line_ptr += 1;
17397 lh->line_range = read_1_byte (abfd, line_ptr);
17398 line_ptr += 1;
17399 lh->opcode_base = read_1_byte (abfd, line_ptr);
17400 line_ptr += 1;
17401 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17402
17403 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17404 for (i = 1; i < lh->opcode_base; ++i)
17405 {
17406 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17407 line_ptr += 1;
17408 }
17409
17410 /* Read directory table. */
17411 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17412 {
17413 line_ptr += bytes_read;
17414 add_include_dir (lh, cur_dir);
17415 }
17416 line_ptr += bytes_read;
17417
17418 /* Read file name table. */
17419 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17420 {
17421 unsigned int dir_index, mod_time, length;
17422
17423 line_ptr += bytes_read;
17424 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17425 line_ptr += bytes_read;
17426 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17427 line_ptr += bytes_read;
17428 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17429 line_ptr += bytes_read;
17430
17431 add_file_name (lh, cur_file, dir_index, mod_time, length);
17432 }
17433 line_ptr += bytes_read;
17434 lh->statement_program_start = line_ptr;
17435
17436 if (line_ptr > (section->buffer + section->size))
17437 complaint (&symfile_complaints,
17438 _("line number info header doesn't "
17439 "fit in `.debug_line' section"));
17440
17441 discard_cleanups (back_to);
17442 return lh;
17443 }
17444
17445 /* Subroutine of dwarf_decode_lines to simplify it.
17446 Return the file name of the psymtab for included file FILE_INDEX
17447 in line header LH of PST.
17448 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17449 If space for the result is malloc'd, it will be freed by a cleanup.
17450 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17451
17452 The function creates dangling cleanup registration. */
17453
17454 static const char *
17455 psymtab_include_file_name (const struct line_header *lh, int file_index,
17456 const struct partial_symtab *pst,
17457 const char *comp_dir)
17458 {
17459 const struct file_entry fe = lh->file_names [file_index];
17460 const char *include_name = fe.name;
17461 const char *include_name_to_compare = include_name;
17462 const char *dir_name = NULL;
17463 const char *pst_filename;
17464 char *copied_name = NULL;
17465 int file_is_pst;
17466
17467 if (fe.dir_index && lh->include_dirs != NULL)
17468 dir_name = lh->include_dirs[fe.dir_index - 1];
17469
17470 if (!IS_ABSOLUTE_PATH (include_name)
17471 && (dir_name != NULL || comp_dir != NULL))
17472 {
17473 /* Avoid creating a duplicate psymtab for PST.
17474 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17475 Before we do the comparison, however, we need to account
17476 for DIR_NAME and COMP_DIR.
17477 First prepend dir_name (if non-NULL). If we still don't
17478 have an absolute path prepend comp_dir (if non-NULL).
17479 However, the directory we record in the include-file's
17480 psymtab does not contain COMP_DIR (to match the
17481 corresponding symtab(s)).
17482
17483 Example:
17484
17485 bash$ cd /tmp
17486 bash$ gcc -g ./hello.c
17487 include_name = "hello.c"
17488 dir_name = "."
17489 DW_AT_comp_dir = comp_dir = "/tmp"
17490 DW_AT_name = "./hello.c"
17491
17492 */
17493
17494 if (dir_name != NULL)
17495 {
17496 char *tem = concat (dir_name, SLASH_STRING,
17497 include_name, (char *)NULL);
17498
17499 make_cleanup (xfree, tem);
17500 include_name = tem;
17501 include_name_to_compare = include_name;
17502 }
17503 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17504 {
17505 char *tem = concat (comp_dir, SLASH_STRING,
17506 include_name, (char *)NULL);
17507
17508 make_cleanup (xfree, tem);
17509 include_name_to_compare = tem;
17510 }
17511 }
17512
17513 pst_filename = pst->filename;
17514 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17515 {
17516 copied_name = concat (pst->dirname, SLASH_STRING,
17517 pst_filename, (char *)NULL);
17518 pst_filename = copied_name;
17519 }
17520
17521 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17522
17523 if (copied_name != NULL)
17524 xfree (copied_name);
17525
17526 if (file_is_pst)
17527 return NULL;
17528 return include_name;
17529 }
17530
17531 /* State machine to track the state of the line number program. */
17532
17533 typedef struct
17534 {
17535 /* These are part of the standard DWARF line number state machine. */
17536
17537 unsigned char op_index;
17538 unsigned int file;
17539 unsigned int line;
17540 CORE_ADDR address;
17541 int is_stmt;
17542 unsigned int discriminator;
17543
17544 /* Additional bits of state we need to track. */
17545
17546 /* The last file that we called dwarf2_start_subfile for.
17547 This is only used for TLLs. */
17548 unsigned int last_file;
17549 /* The last file a line number was recorded for. */
17550 struct subfile *last_subfile;
17551
17552 /* The function to call to record a line. */
17553 record_line_ftype *record_line;
17554
17555 /* The last line number that was recorded, used to coalesce
17556 consecutive entries for the same line. This can happen, for
17557 example, when discriminators are present. PR 17276. */
17558 unsigned int last_line;
17559 int line_has_non_zero_discriminator;
17560 } lnp_state_machine;
17561
17562 /* There's a lot of static state to pass to dwarf_record_line.
17563 This keeps it all together. */
17564
17565 typedef struct
17566 {
17567 /* The gdbarch. */
17568 struct gdbarch *gdbarch;
17569
17570 /* The line number header. */
17571 struct line_header *line_header;
17572
17573 /* Non-zero if we're recording lines.
17574 Otherwise we're building partial symtabs and are just interested in
17575 finding include files mentioned by the line number program. */
17576 int record_lines_p;
17577 } lnp_reader_state;
17578
17579 /* Ignore this record_line request. */
17580
17581 static void
17582 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17583 {
17584 return;
17585 }
17586
17587 /* Return non-zero if we should add LINE to the line number table.
17588 LINE is the line to add, LAST_LINE is the last line that was added,
17589 LAST_SUBFILE is the subfile for LAST_LINE.
17590 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17591 had a non-zero discriminator.
17592
17593 We have to be careful in the presence of discriminators.
17594 E.g., for this line:
17595
17596 for (i = 0; i < 100000; i++);
17597
17598 clang can emit four line number entries for that one line,
17599 each with a different discriminator.
17600 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17601
17602 However, we want gdb to coalesce all four entries into one.
17603 Otherwise the user could stepi into the middle of the line and
17604 gdb would get confused about whether the pc really was in the
17605 middle of the line.
17606
17607 Things are further complicated by the fact that two consecutive
17608 line number entries for the same line is a heuristic used by gcc
17609 to denote the end of the prologue. So we can't just discard duplicate
17610 entries, we have to be selective about it. The heuristic we use is
17611 that we only collapse consecutive entries for the same line if at least
17612 one of those entries has a non-zero discriminator. PR 17276.
17613
17614 Note: Addresses in the line number state machine can never go backwards
17615 within one sequence, thus this coalescing is ok. */
17616
17617 static int
17618 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17619 int line_has_non_zero_discriminator,
17620 struct subfile *last_subfile)
17621 {
17622 if (current_subfile != last_subfile)
17623 return 1;
17624 if (line != last_line)
17625 return 1;
17626 /* Same line for the same file that we've seen already.
17627 As a last check, for pr 17276, only record the line if the line
17628 has never had a non-zero discriminator. */
17629 if (!line_has_non_zero_discriminator)
17630 return 1;
17631 return 0;
17632 }
17633
17634 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17635 in the line table of subfile SUBFILE. */
17636
17637 static void
17638 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17639 unsigned int line, CORE_ADDR address,
17640 record_line_ftype p_record_line)
17641 {
17642 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17643
17644 if (dwarf_line_debug)
17645 {
17646 fprintf_unfiltered (gdb_stdlog,
17647 "Recording line %u, file %s, address %s\n",
17648 line, lbasename (subfile->name),
17649 paddress (gdbarch, address));
17650 }
17651
17652 (*p_record_line) (subfile, line, addr);
17653 }
17654
17655 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17656 Mark the end of a set of line number records.
17657 The arguments are the same as for dwarf_record_line_1.
17658 If SUBFILE is NULL the request is ignored. */
17659
17660 static void
17661 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17662 CORE_ADDR address, record_line_ftype p_record_line)
17663 {
17664 if (subfile == NULL)
17665 return;
17666
17667 if (dwarf_line_debug)
17668 {
17669 fprintf_unfiltered (gdb_stdlog,
17670 "Finishing current line, file %s, address %s\n",
17671 lbasename (subfile->name),
17672 paddress (gdbarch, address));
17673 }
17674
17675 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17676 }
17677
17678 /* Record the line in STATE.
17679 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17680
17681 static void
17682 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17683 int end_sequence)
17684 {
17685 const struct line_header *lh = reader->line_header;
17686 unsigned int file, line, discriminator;
17687 int is_stmt;
17688
17689 file = state->file;
17690 line = state->line;
17691 is_stmt = state->is_stmt;
17692 discriminator = state->discriminator;
17693
17694 if (dwarf_line_debug)
17695 {
17696 fprintf_unfiltered (gdb_stdlog,
17697 "Processing actual line %u: file %u,"
17698 " address %s, is_stmt %u, discrim %u\n",
17699 line, file,
17700 paddress (reader->gdbarch, state->address),
17701 is_stmt, discriminator);
17702 }
17703
17704 if (file == 0 || file - 1 >= lh->num_file_names)
17705 dwarf2_debug_line_missing_file_complaint ();
17706 /* For now we ignore lines not starting on an instruction boundary.
17707 But not when processing end_sequence for compatibility with the
17708 previous version of the code. */
17709 else if (state->op_index == 0 || end_sequence)
17710 {
17711 lh->file_names[file - 1].included_p = 1;
17712 if (reader->record_lines_p && is_stmt)
17713 {
17714 if (state->last_subfile != current_subfile || end_sequence)
17715 {
17716 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17717 state->address, state->record_line);
17718 }
17719
17720 if (!end_sequence)
17721 {
17722 if (dwarf_record_line_p (line, state->last_line,
17723 state->line_has_non_zero_discriminator,
17724 state->last_subfile))
17725 {
17726 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17727 line, state->address,
17728 state->record_line);
17729 }
17730 state->last_subfile = current_subfile;
17731 state->last_line = line;
17732 }
17733 }
17734 }
17735 }
17736
17737 /* Initialize STATE for the start of a line number program. */
17738
17739 static void
17740 init_lnp_state_machine (lnp_state_machine *state,
17741 const lnp_reader_state *reader)
17742 {
17743 memset (state, 0, sizeof (*state));
17744
17745 /* Just starting, there is no "last file". */
17746 state->last_file = 0;
17747 state->last_subfile = NULL;
17748
17749 state->record_line = record_line;
17750
17751 state->last_line = 0;
17752 state->line_has_non_zero_discriminator = 0;
17753
17754 /* Initialize these according to the DWARF spec. */
17755 state->op_index = 0;
17756 state->file = 1;
17757 state->line = 1;
17758 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17759 was a line entry for it so that the backend has a chance to adjust it
17760 and also record it in case it needs it. This is currently used by MIPS
17761 code, cf. `mips_adjust_dwarf2_line'. */
17762 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17763 state->is_stmt = reader->line_header->default_is_stmt;
17764 state->discriminator = 0;
17765 }
17766
17767 /* Check address and if invalid nop-out the rest of the lines in this
17768 sequence. */
17769
17770 static void
17771 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17772 const gdb_byte *line_ptr,
17773 CORE_ADDR lowpc, CORE_ADDR address)
17774 {
17775 /* If address < lowpc then it's not a usable value, it's outside the
17776 pc range of the CU. However, we restrict the test to only address
17777 values of zero to preserve GDB's previous behaviour which is to
17778 handle the specific case of a function being GC'd by the linker. */
17779
17780 if (address == 0 && address < lowpc)
17781 {
17782 /* This line table is for a function which has been
17783 GCd by the linker. Ignore it. PR gdb/12528 */
17784
17785 struct objfile *objfile = cu->objfile;
17786 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17787
17788 complaint (&symfile_complaints,
17789 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17790 line_offset, objfile_name (objfile));
17791 state->record_line = noop_record_line;
17792 /* Note: sm.record_line is left as noop_record_line
17793 until we see DW_LNE_end_sequence. */
17794 }
17795 }
17796
17797 /* Subroutine of dwarf_decode_lines to simplify it.
17798 Process the line number information in LH.
17799 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17800 program in order to set included_p for every referenced header. */
17801
17802 static void
17803 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17804 const int decode_for_pst_p, CORE_ADDR lowpc)
17805 {
17806 const gdb_byte *line_ptr, *extended_end;
17807 const gdb_byte *line_end;
17808 unsigned int bytes_read, extended_len;
17809 unsigned char op_code, extended_op;
17810 CORE_ADDR baseaddr;
17811 struct objfile *objfile = cu->objfile;
17812 bfd *abfd = objfile->obfd;
17813 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17814 /* Non-zero if we're recording line info (as opposed to building partial
17815 symtabs). */
17816 int record_lines_p = !decode_for_pst_p;
17817 /* A collection of things we need to pass to dwarf_record_line. */
17818 lnp_reader_state reader_state;
17819
17820 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17821
17822 line_ptr = lh->statement_program_start;
17823 line_end = lh->statement_program_end;
17824
17825 reader_state.gdbarch = gdbarch;
17826 reader_state.line_header = lh;
17827 reader_state.record_lines_p = record_lines_p;
17828
17829 /* Read the statement sequences until there's nothing left. */
17830 while (line_ptr < line_end)
17831 {
17832 /* The DWARF line number program state machine. */
17833 lnp_state_machine state_machine;
17834 int end_sequence = 0;
17835
17836 /* Reset the state machine at the start of each sequence. */
17837 init_lnp_state_machine (&state_machine, &reader_state);
17838
17839 if (record_lines_p && lh->num_file_names >= state_machine.file)
17840 {
17841 /* Start a subfile for the current file of the state machine. */
17842 /* lh->include_dirs and lh->file_names are 0-based, but the
17843 directory and file name numbers in the statement program
17844 are 1-based. */
17845 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17846 const char *dir = NULL;
17847
17848 if (fe->dir_index && lh->include_dirs != NULL)
17849 dir = lh->include_dirs[fe->dir_index - 1];
17850
17851 dwarf2_start_subfile (fe->name, dir);
17852 }
17853
17854 /* Decode the table. */
17855 while (line_ptr < line_end && !end_sequence)
17856 {
17857 op_code = read_1_byte (abfd, line_ptr);
17858 line_ptr += 1;
17859
17860 if (op_code >= lh->opcode_base)
17861 {
17862 /* Special opcode. */
17863 unsigned char adj_opcode;
17864 CORE_ADDR addr_adj;
17865 int line_delta;
17866
17867 adj_opcode = op_code - lh->opcode_base;
17868 addr_adj = (((state_machine.op_index
17869 + (adj_opcode / lh->line_range))
17870 / lh->maximum_ops_per_instruction)
17871 * lh->minimum_instruction_length);
17872 state_machine.address
17873 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17874 state_machine.op_index = ((state_machine.op_index
17875 + (adj_opcode / lh->line_range))
17876 % lh->maximum_ops_per_instruction);
17877 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17878 state_machine.line += line_delta;
17879 if (line_delta != 0)
17880 state_machine.line_has_non_zero_discriminator
17881 = state_machine.discriminator != 0;
17882
17883 dwarf_record_line (&reader_state, &state_machine, 0);
17884 state_machine.discriminator = 0;
17885 }
17886 else switch (op_code)
17887 {
17888 case DW_LNS_extended_op:
17889 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17890 &bytes_read);
17891 line_ptr += bytes_read;
17892 extended_end = line_ptr + extended_len;
17893 extended_op = read_1_byte (abfd, line_ptr);
17894 line_ptr += 1;
17895 switch (extended_op)
17896 {
17897 case DW_LNE_end_sequence:
17898 state_machine.record_line = record_line;
17899 end_sequence = 1;
17900 break;
17901 case DW_LNE_set_address:
17902 {
17903 CORE_ADDR address
17904 = read_address (abfd, line_ptr, cu, &bytes_read);
17905
17906 line_ptr += bytes_read;
17907 check_line_address (cu, &state_machine, line_ptr,
17908 lowpc, address);
17909 state_machine.op_index = 0;
17910 address += baseaddr;
17911 state_machine.address
17912 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17913 }
17914 break;
17915 case DW_LNE_define_file:
17916 {
17917 const char *cur_file;
17918 unsigned int dir_index, mod_time, length;
17919
17920 cur_file = read_direct_string (abfd, line_ptr,
17921 &bytes_read);
17922 line_ptr += bytes_read;
17923 dir_index =
17924 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17925 line_ptr += bytes_read;
17926 mod_time =
17927 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17928 line_ptr += bytes_read;
17929 length =
17930 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17931 line_ptr += bytes_read;
17932 add_file_name (lh, cur_file, dir_index, mod_time, length);
17933 }
17934 break;
17935 case DW_LNE_set_discriminator:
17936 /* The discriminator is not interesting to the debugger;
17937 just ignore it. We still need to check its value though:
17938 if there are consecutive entries for the same
17939 (non-prologue) line we want to coalesce them.
17940 PR 17276. */
17941 state_machine.discriminator
17942 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17943 state_machine.line_has_non_zero_discriminator
17944 |= state_machine.discriminator != 0;
17945 line_ptr += bytes_read;
17946 break;
17947 default:
17948 complaint (&symfile_complaints,
17949 _("mangled .debug_line section"));
17950 return;
17951 }
17952 /* Make sure that we parsed the extended op correctly. If e.g.
17953 we expected a different address size than the producer used,
17954 we may have read the wrong number of bytes. */
17955 if (line_ptr != extended_end)
17956 {
17957 complaint (&symfile_complaints,
17958 _("mangled .debug_line section"));
17959 return;
17960 }
17961 break;
17962 case DW_LNS_copy:
17963 dwarf_record_line (&reader_state, &state_machine, 0);
17964 state_machine.discriminator = 0;
17965 break;
17966 case DW_LNS_advance_pc:
17967 {
17968 CORE_ADDR adjust
17969 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17970 CORE_ADDR addr_adj;
17971
17972 addr_adj = (((state_machine.op_index + adjust)
17973 / lh->maximum_ops_per_instruction)
17974 * lh->minimum_instruction_length);
17975 state_machine.address
17976 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17977 state_machine.op_index = ((state_machine.op_index + adjust)
17978 % lh->maximum_ops_per_instruction);
17979 line_ptr += bytes_read;
17980 }
17981 break;
17982 case DW_LNS_advance_line:
17983 {
17984 int line_delta
17985 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17986
17987 state_machine.line += line_delta;
17988 if (line_delta != 0)
17989 state_machine.line_has_non_zero_discriminator
17990 = state_machine.discriminator != 0;
17991 line_ptr += bytes_read;
17992 }
17993 break;
17994 case DW_LNS_set_file:
17995 {
17996 /* The arrays lh->include_dirs and lh->file_names are
17997 0-based, but the directory and file name numbers in
17998 the statement program are 1-based. */
17999 struct file_entry *fe;
18000 const char *dir = NULL;
18001
18002 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18003 &bytes_read);
18004 line_ptr += bytes_read;
18005 if (state_machine.file == 0
18006 || state_machine.file - 1 >= lh->num_file_names)
18007 dwarf2_debug_line_missing_file_complaint ();
18008 else
18009 {
18010 fe = &lh->file_names[state_machine.file - 1];
18011 if (fe->dir_index && lh->include_dirs != NULL)
18012 dir = lh->include_dirs[fe->dir_index - 1];
18013 if (record_lines_p)
18014 {
18015 state_machine.last_subfile = current_subfile;
18016 state_machine.line_has_non_zero_discriminator
18017 = state_machine.discriminator != 0;
18018 dwarf2_start_subfile (fe->name, dir);
18019 }
18020 }
18021 }
18022 break;
18023 case DW_LNS_set_column:
18024 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18025 line_ptr += bytes_read;
18026 break;
18027 case DW_LNS_negate_stmt:
18028 state_machine.is_stmt = (!state_machine.is_stmt);
18029 break;
18030 case DW_LNS_set_basic_block:
18031 break;
18032 /* Add to the address register of the state machine the
18033 address increment value corresponding to special opcode
18034 255. I.e., this value is scaled by the minimum
18035 instruction length since special opcode 255 would have
18036 scaled the increment. */
18037 case DW_LNS_const_add_pc:
18038 {
18039 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18040 CORE_ADDR addr_adj;
18041
18042 addr_adj = (((state_machine.op_index + adjust)
18043 / lh->maximum_ops_per_instruction)
18044 * lh->minimum_instruction_length);
18045 state_machine.address
18046 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18047 state_machine.op_index = ((state_machine.op_index + adjust)
18048 % lh->maximum_ops_per_instruction);
18049 }
18050 break;
18051 case DW_LNS_fixed_advance_pc:
18052 {
18053 CORE_ADDR addr_adj;
18054
18055 addr_adj = read_2_bytes (abfd, line_ptr);
18056 state_machine.address
18057 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18058 state_machine.op_index = 0;
18059 line_ptr += 2;
18060 }
18061 break;
18062 default:
18063 {
18064 /* Unknown standard opcode, ignore it. */
18065 int i;
18066
18067 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18068 {
18069 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18070 line_ptr += bytes_read;
18071 }
18072 }
18073 }
18074 }
18075
18076 if (!end_sequence)
18077 dwarf2_debug_line_missing_end_sequence_complaint ();
18078
18079 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18080 in which case we still finish recording the last line). */
18081 dwarf_record_line (&reader_state, &state_machine, 1);
18082 }
18083 }
18084
18085 /* Decode the Line Number Program (LNP) for the given line_header
18086 structure and CU. The actual information extracted and the type
18087 of structures created from the LNP depends on the value of PST.
18088
18089 1. If PST is NULL, then this procedure uses the data from the program
18090 to create all necessary symbol tables, and their linetables.
18091
18092 2. If PST is not NULL, this procedure reads the program to determine
18093 the list of files included by the unit represented by PST, and
18094 builds all the associated partial symbol tables.
18095
18096 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18097 It is used for relative paths in the line table.
18098 NOTE: When processing partial symtabs (pst != NULL),
18099 comp_dir == pst->dirname.
18100
18101 NOTE: It is important that psymtabs have the same file name (via strcmp)
18102 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18103 symtab we don't use it in the name of the psymtabs we create.
18104 E.g. expand_line_sal requires this when finding psymtabs to expand.
18105 A good testcase for this is mb-inline.exp.
18106
18107 LOWPC is the lowest address in CU (or 0 if not known).
18108
18109 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18110 for its PC<->lines mapping information. Otherwise only the filename
18111 table is read in. */
18112
18113 static void
18114 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18115 struct dwarf2_cu *cu, struct partial_symtab *pst,
18116 CORE_ADDR lowpc, int decode_mapping)
18117 {
18118 struct objfile *objfile = cu->objfile;
18119 const int decode_for_pst_p = (pst != NULL);
18120
18121 if (decode_mapping)
18122 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18123
18124 if (decode_for_pst_p)
18125 {
18126 int file_index;
18127
18128 /* Now that we're done scanning the Line Header Program, we can
18129 create the psymtab of each included file. */
18130 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18131 if (lh->file_names[file_index].included_p == 1)
18132 {
18133 const char *include_name =
18134 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18135 if (include_name != NULL)
18136 dwarf2_create_include_psymtab (include_name, pst, objfile);
18137 }
18138 }
18139 else
18140 {
18141 /* Make sure a symtab is created for every file, even files
18142 which contain only variables (i.e. no code with associated
18143 line numbers). */
18144 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18145 int i;
18146
18147 for (i = 0; i < lh->num_file_names; i++)
18148 {
18149 const char *dir = NULL;
18150 struct file_entry *fe;
18151
18152 fe = &lh->file_names[i];
18153 if (fe->dir_index && lh->include_dirs != NULL)
18154 dir = lh->include_dirs[fe->dir_index - 1];
18155 dwarf2_start_subfile (fe->name, dir);
18156
18157 if (current_subfile->symtab == NULL)
18158 {
18159 current_subfile->symtab
18160 = allocate_symtab (cust, current_subfile->name);
18161 }
18162 fe->symtab = current_subfile->symtab;
18163 }
18164 }
18165 }
18166
18167 /* Start a subfile for DWARF. FILENAME is the name of the file and
18168 DIRNAME the name of the source directory which contains FILENAME
18169 or NULL if not known.
18170 This routine tries to keep line numbers from identical absolute and
18171 relative file names in a common subfile.
18172
18173 Using the `list' example from the GDB testsuite, which resides in
18174 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18175 of /srcdir/list0.c yields the following debugging information for list0.c:
18176
18177 DW_AT_name: /srcdir/list0.c
18178 DW_AT_comp_dir: /compdir
18179 files.files[0].name: list0.h
18180 files.files[0].dir: /srcdir
18181 files.files[1].name: list0.c
18182 files.files[1].dir: /srcdir
18183
18184 The line number information for list0.c has to end up in a single
18185 subfile, so that `break /srcdir/list0.c:1' works as expected.
18186 start_subfile will ensure that this happens provided that we pass the
18187 concatenation of files.files[1].dir and files.files[1].name as the
18188 subfile's name. */
18189
18190 static void
18191 dwarf2_start_subfile (const char *filename, const char *dirname)
18192 {
18193 char *copy = NULL;
18194
18195 /* In order not to lose the line information directory,
18196 we concatenate it to the filename when it makes sense.
18197 Note that the Dwarf3 standard says (speaking of filenames in line
18198 information): ``The directory index is ignored for file names
18199 that represent full path names''. Thus ignoring dirname in the
18200 `else' branch below isn't an issue. */
18201
18202 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18203 {
18204 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18205 filename = copy;
18206 }
18207
18208 start_subfile (filename);
18209
18210 if (copy != NULL)
18211 xfree (copy);
18212 }
18213
18214 /* Start a symtab for DWARF.
18215 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18216
18217 static struct compunit_symtab *
18218 dwarf2_start_symtab (struct dwarf2_cu *cu,
18219 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18220 {
18221 struct compunit_symtab *cust
18222 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18223
18224 record_debugformat ("DWARF 2");
18225 record_producer (cu->producer);
18226
18227 /* We assume that we're processing GCC output. */
18228 processing_gcc_compilation = 2;
18229
18230 cu->processing_has_namespace_info = 0;
18231
18232 return cust;
18233 }
18234
18235 static void
18236 var_decode_location (struct attribute *attr, struct symbol *sym,
18237 struct dwarf2_cu *cu)
18238 {
18239 struct objfile *objfile = cu->objfile;
18240 struct comp_unit_head *cu_header = &cu->header;
18241
18242 /* NOTE drow/2003-01-30: There used to be a comment and some special
18243 code here to turn a symbol with DW_AT_external and a
18244 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18245 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18246 with some versions of binutils) where shared libraries could have
18247 relocations against symbols in their debug information - the
18248 minimal symbol would have the right address, but the debug info
18249 would not. It's no longer necessary, because we will explicitly
18250 apply relocations when we read in the debug information now. */
18251
18252 /* A DW_AT_location attribute with no contents indicates that a
18253 variable has been optimized away. */
18254 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18255 {
18256 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18257 return;
18258 }
18259
18260 /* Handle one degenerate form of location expression specially, to
18261 preserve GDB's previous behavior when section offsets are
18262 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18263 then mark this symbol as LOC_STATIC. */
18264
18265 if (attr_form_is_block (attr)
18266 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18267 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18268 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18269 && (DW_BLOCK (attr)->size
18270 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18271 {
18272 unsigned int dummy;
18273
18274 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18275 SYMBOL_VALUE_ADDRESS (sym) =
18276 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18277 else
18278 SYMBOL_VALUE_ADDRESS (sym) =
18279 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18280 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18281 fixup_symbol_section (sym, objfile);
18282 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18283 SYMBOL_SECTION (sym));
18284 return;
18285 }
18286
18287 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18288 expression evaluator, and use LOC_COMPUTED only when necessary
18289 (i.e. when the value of a register or memory location is
18290 referenced, or a thread-local block, etc.). Then again, it might
18291 not be worthwhile. I'm assuming that it isn't unless performance
18292 or memory numbers show me otherwise. */
18293
18294 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18295
18296 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18297 cu->has_loclist = 1;
18298 }
18299
18300 /* Given a pointer to a DWARF information entry, figure out if we need
18301 to make a symbol table entry for it, and if so, create a new entry
18302 and return a pointer to it.
18303 If TYPE is NULL, determine symbol type from the die, otherwise
18304 used the passed type.
18305 If SPACE is not NULL, use it to hold the new symbol. If it is
18306 NULL, allocate a new symbol on the objfile's obstack. */
18307
18308 static struct symbol *
18309 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18310 struct symbol *space)
18311 {
18312 struct objfile *objfile = cu->objfile;
18313 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18314 struct symbol *sym = NULL;
18315 const char *name;
18316 struct attribute *attr = NULL;
18317 struct attribute *attr2 = NULL;
18318 CORE_ADDR baseaddr;
18319 struct pending **list_to_add = NULL;
18320
18321 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18322
18323 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18324
18325 name = dwarf2_name (die, cu);
18326 if (name)
18327 {
18328 const char *linkagename;
18329 int suppress_add = 0;
18330
18331 if (space)
18332 sym = space;
18333 else
18334 sym = allocate_symbol (objfile);
18335 OBJSTAT (objfile, n_syms++);
18336
18337 /* Cache this symbol's name and the name's demangled form (if any). */
18338 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18339 linkagename = dwarf2_physname (name, die, cu);
18340 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18341
18342 /* Fortran does not have mangling standard and the mangling does differ
18343 between gfortran, iFort etc. */
18344 if (cu->language == language_fortran
18345 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18346 symbol_set_demangled_name (&(sym->ginfo),
18347 dwarf2_full_name (name, die, cu),
18348 NULL);
18349
18350 /* Default assumptions.
18351 Use the passed type or decode it from the die. */
18352 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18353 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18354 if (type != NULL)
18355 SYMBOL_TYPE (sym) = type;
18356 else
18357 SYMBOL_TYPE (sym) = die_type (die, cu);
18358 attr = dwarf2_attr (die,
18359 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18360 cu);
18361 if (attr)
18362 {
18363 SYMBOL_LINE (sym) = DW_UNSND (attr);
18364 }
18365
18366 attr = dwarf2_attr (die,
18367 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18368 cu);
18369 if (attr)
18370 {
18371 int file_index = DW_UNSND (attr);
18372
18373 if (cu->line_header == NULL
18374 || file_index > cu->line_header->num_file_names)
18375 complaint (&symfile_complaints,
18376 _("file index out of range"));
18377 else if (file_index > 0)
18378 {
18379 struct file_entry *fe;
18380
18381 fe = &cu->line_header->file_names[file_index - 1];
18382 symbol_set_symtab (sym, fe->symtab);
18383 }
18384 }
18385
18386 switch (die->tag)
18387 {
18388 case DW_TAG_label:
18389 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18390 if (attr)
18391 {
18392 CORE_ADDR addr;
18393
18394 addr = attr_value_as_address (attr);
18395 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18396 SYMBOL_VALUE_ADDRESS (sym) = addr;
18397 }
18398 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18399 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18400 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18401 add_symbol_to_list (sym, cu->list_in_scope);
18402 break;
18403 case DW_TAG_subprogram:
18404 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18405 finish_block. */
18406 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18407 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18408 if ((attr2 && (DW_UNSND (attr2) != 0))
18409 || cu->language == language_ada)
18410 {
18411 /* Subprograms marked external are stored as a global symbol.
18412 Ada subprograms, whether marked external or not, are always
18413 stored as a global symbol, because we want to be able to
18414 access them globally. For instance, we want to be able
18415 to break on a nested subprogram without having to
18416 specify the context. */
18417 list_to_add = &global_symbols;
18418 }
18419 else
18420 {
18421 list_to_add = cu->list_in_scope;
18422 }
18423 break;
18424 case DW_TAG_inlined_subroutine:
18425 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18426 finish_block. */
18427 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18428 SYMBOL_INLINED (sym) = 1;
18429 list_to_add = cu->list_in_scope;
18430 break;
18431 case DW_TAG_template_value_param:
18432 suppress_add = 1;
18433 /* Fall through. */
18434 case DW_TAG_constant:
18435 case DW_TAG_variable:
18436 case DW_TAG_member:
18437 /* Compilation with minimal debug info may result in
18438 variables with missing type entries. Change the
18439 misleading `void' type to something sensible. */
18440 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18441 SYMBOL_TYPE (sym)
18442 = objfile_type (objfile)->nodebug_data_symbol;
18443
18444 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18445 /* In the case of DW_TAG_member, we should only be called for
18446 static const members. */
18447 if (die->tag == DW_TAG_member)
18448 {
18449 /* dwarf2_add_field uses die_is_declaration,
18450 so we do the same. */
18451 gdb_assert (die_is_declaration (die, cu));
18452 gdb_assert (attr);
18453 }
18454 if (attr)
18455 {
18456 dwarf2_const_value (attr, sym, cu);
18457 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18458 if (!suppress_add)
18459 {
18460 if (attr2 && (DW_UNSND (attr2) != 0))
18461 list_to_add = &global_symbols;
18462 else
18463 list_to_add = cu->list_in_scope;
18464 }
18465 break;
18466 }
18467 attr = dwarf2_attr (die, DW_AT_location, cu);
18468 if (attr)
18469 {
18470 var_decode_location (attr, sym, cu);
18471 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18472
18473 /* Fortran explicitly imports any global symbols to the local
18474 scope by DW_TAG_common_block. */
18475 if (cu->language == language_fortran && die->parent
18476 && die->parent->tag == DW_TAG_common_block)
18477 attr2 = NULL;
18478
18479 if (SYMBOL_CLASS (sym) == LOC_STATIC
18480 && SYMBOL_VALUE_ADDRESS (sym) == 0
18481 && !dwarf2_per_objfile->has_section_at_zero)
18482 {
18483 /* When a static variable is eliminated by the linker,
18484 the corresponding debug information is not stripped
18485 out, but the variable address is set to null;
18486 do not add such variables into symbol table. */
18487 }
18488 else if (attr2 && (DW_UNSND (attr2) != 0))
18489 {
18490 /* Workaround gfortran PR debug/40040 - it uses
18491 DW_AT_location for variables in -fPIC libraries which may
18492 get overriden by other libraries/executable and get
18493 a different address. Resolve it by the minimal symbol
18494 which may come from inferior's executable using copy
18495 relocation. Make this workaround only for gfortran as for
18496 other compilers GDB cannot guess the minimal symbol
18497 Fortran mangling kind. */
18498 if (cu->language == language_fortran && die->parent
18499 && die->parent->tag == DW_TAG_module
18500 && cu->producer
18501 && startswith (cu->producer, "GNU Fortran"))
18502 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18503
18504 /* A variable with DW_AT_external is never static,
18505 but it may be block-scoped. */
18506 list_to_add = (cu->list_in_scope == &file_symbols
18507 ? &global_symbols : cu->list_in_scope);
18508 }
18509 else
18510 list_to_add = cu->list_in_scope;
18511 }
18512 else
18513 {
18514 /* We do not know the address of this symbol.
18515 If it is an external symbol and we have type information
18516 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18517 The address of the variable will then be determined from
18518 the minimal symbol table whenever the variable is
18519 referenced. */
18520 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18521
18522 /* Fortran explicitly imports any global symbols to the local
18523 scope by DW_TAG_common_block. */
18524 if (cu->language == language_fortran && die->parent
18525 && die->parent->tag == DW_TAG_common_block)
18526 {
18527 /* SYMBOL_CLASS doesn't matter here because
18528 read_common_block is going to reset it. */
18529 if (!suppress_add)
18530 list_to_add = cu->list_in_scope;
18531 }
18532 else if (attr2 && (DW_UNSND (attr2) != 0)
18533 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18534 {
18535 /* A variable with DW_AT_external is never static, but it
18536 may be block-scoped. */
18537 list_to_add = (cu->list_in_scope == &file_symbols
18538 ? &global_symbols : cu->list_in_scope);
18539
18540 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18541 }
18542 else if (!die_is_declaration (die, cu))
18543 {
18544 /* Use the default LOC_OPTIMIZED_OUT class. */
18545 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18546 if (!suppress_add)
18547 list_to_add = cu->list_in_scope;
18548 }
18549 }
18550 break;
18551 case DW_TAG_formal_parameter:
18552 /* If we are inside a function, mark this as an argument. If
18553 not, we might be looking at an argument to an inlined function
18554 when we do not have enough information to show inlined frames;
18555 pretend it's a local variable in that case so that the user can
18556 still see it. */
18557 if (context_stack_depth > 0
18558 && context_stack[context_stack_depth - 1].name != NULL)
18559 SYMBOL_IS_ARGUMENT (sym) = 1;
18560 attr = dwarf2_attr (die, DW_AT_location, cu);
18561 if (attr)
18562 {
18563 var_decode_location (attr, sym, cu);
18564 }
18565 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18566 if (attr)
18567 {
18568 dwarf2_const_value (attr, sym, cu);
18569 }
18570
18571 list_to_add = cu->list_in_scope;
18572 break;
18573 case DW_TAG_unspecified_parameters:
18574 /* From varargs functions; gdb doesn't seem to have any
18575 interest in this information, so just ignore it for now.
18576 (FIXME?) */
18577 break;
18578 case DW_TAG_template_type_param:
18579 suppress_add = 1;
18580 /* Fall through. */
18581 case DW_TAG_class_type:
18582 case DW_TAG_interface_type:
18583 case DW_TAG_structure_type:
18584 case DW_TAG_union_type:
18585 case DW_TAG_set_type:
18586 case DW_TAG_enumeration_type:
18587 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18588 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18589
18590 {
18591 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18592 really ever be static objects: otherwise, if you try
18593 to, say, break of a class's method and you're in a file
18594 which doesn't mention that class, it won't work unless
18595 the check for all static symbols in lookup_symbol_aux
18596 saves you. See the OtherFileClass tests in
18597 gdb.c++/namespace.exp. */
18598
18599 if (!suppress_add)
18600 {
18601 list_to_add = (cu->list_in_scope == &file_symbols
18602 && (cu->language == language_cplus
18603 || cu->language == language_java)
18604 ? &global_symbols : cu->list_in_scope);
18605
18606 /* The semantics of C++ state that "struct foo {
18607 ... }" also defines a typedef for "foo". A Java
18608 class declaration also defines a typedef for the
18609 class. */
18610 if (cu->language == language_cplus
18611 || cu->language == language_java
18612 || cu->language == language_ada
18613 || cu->language == language_d
18614 || cu->language == language_rust)
18615 {
18616 /* The symbol's name is already allocated along
18617 with this objfile, so we don't need to
18618 duplicate it for the type. */
18619 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18620 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18621 }
18622 }
18623 }
18624 break;
18625 case DW_TAG_typedef:
18626 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18627 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18628 list_to_add = cu->list_in_scope;
18629 break;
18630 case DW_TAG_base_type:
18631 case DW_TAG_subrange_type:
18632 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18633 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18634 list_to_add = cu->list_in_scope;
18635 break;
18636 case DW_TAG_enumerator:
18637 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18638 if (attr)
18639 {
18640 dwarf2_const_value (attr, sym, cu);
18641 }
18642 {
18643 /* NOTE: carlton/2003-11-10: See comment above in the
18644 DW_TAG_class_type, etc. block. */
18645
18646 list_to_add = (cu->list_in_scope == &file_symbols
18647 && (cu->language == language_cplus
18648 || cu->language == language_java)
18649 ? &global_symbols : cu->list_in_scope);
18650 }
18651 break;
18652 case DW_TAG_imported_declaration:
18653 case DW_TAG_namespace:
18654 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18655 list_to_add = &global_symbols;
18656 break;
18657 case DW_TAG_module:
18658 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18659 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18660 list_to_add = &global_symbols;
18661 break;
18662 case DW_TAG_common_block:
18663 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18664 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18665 add_symbol_to_list (sym, cu->list_in_scope);
18666 break;
18667 default:
18668 /* Not a tag we recognize. Hopefully we aren't processing
18669 trash data, but since we must specifically ignore things
18670 we don't recognize, there is nothing else we should do at
18671 this point. */
18672 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18673 dwarf_tag_name (die->tag));
18674 break;
18675 }
18676
18677 if (suppress_add)
18678 {
18679 sym->hash_next = objfile->template_symbols;
18680 objfile->template_symbols = sym;
18681 list_to_add = NULL;
18682 }
18683
18684 if (list_to_add != NULL)
18685 add_symbol_to_list (sym, list_to_add);
18686
18687 /* For the benefit of old versions of GCC, check for anonymous
18688 namespaces based on the demangled name. */
18689 if (!cu->processing_has_namespace_info
18690 && cu->language == language_cplus)
18691 cp_scan_for_anonymous_namespaces (sym, objfile);
18692 }
18693 return (sym);
18694 }
18695
18696 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18697
18698 static struct symbol *
18699 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18700 {
18701 return new_symbol_full (die, type, cu, NULL);
18702 }
18703
18704 /* Given an attr with a DW_FORM_dataN value in host byte order,
18705 zero-extend it as appropriate for the symbol's type. The DWARF
18706 standard (v4) is not entirely clear about the meaning of using
18707 DW_FORM_dataN for a constant with a signed type, where the type is
18708 wider than the data. The conclusion of a discussion on the DWARF
18709 list was that this is unspecified. We choose to always zero-extend
18710 because that is the interpretation long in use by GCC. */
18711
18712 static gdb_byte *
18713 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18714 struct dwarf2_cu *cu, LONGEST *value, int bits)
18715 {
18716 struct objfile *objfile = cu->objfile;
18717 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18718 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18719 LONGEST l = DW_UNSND (attr);
18720
18721 if (bits < sizeof (*value) * 8)
18722 {
18723 l &= ((LONGEST) 1 << bits) - 1;
18724 *value = l;
18725 }
18726 else if (bits == sizeof (*value) * 8)
18727 *value = l;
18728 else
18729 {
18730 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
18731 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18732 return bytes;
18733 }
18734
18735 return NULL;
18736 }
18737
18738 /* Read a constant value from an attribute. Either set *VALUE, or if
18739 the value does not fit in *VALUE, set *BYTES - either already
18740 allocated on the objfile obstack, or newly allocated on OBSTACK,
18741 or, set *BATON, if we translated the constant to a location
18742 expression. */
18743
18744 static void
18745 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18746 const char *name, struct obstack *obstack,
18747 struct dwarf2_cu *cu,
18748 LONGEST *value, const gdb_byte **bytes,
18749 struct dwarf2_locexpr_baton **baton)
18750 {
18751 struct objfile *objfile = cu->objfile;
18752 struct comp_unit_head *cu_header = &cu->header;
18753 struct dwarf_block *blk;
18754 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18755 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18756
18757 *value = 0;
18758 *bytes = NULL;
18759 *baton = NULL;
18760
18761 switch (attr->form)
18762 {
18763 case DW_FORM_addr:
18764 case DW_FORM_GNU_addr_index:
18765 {
18766 gdb_byte *data;
18767
18768 if (TYPE_LENGTH (type) != cu_header->addr_size)
18769 dwarf2_const_value_length_mismatch_complaint (name,
18770 cu_header->addr_size,
18771 TYPE_LENGTH (type));
18772 /* Symbols of this form are reasonably rare, so we just
18773 piggyback on the existing location code rather than writing
18774 a new implementation of symbol_computed_ops. */
18775 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
18776 (*baton)->per_cu = cu->per_cu;
18777 gdb_assert ((*baton)->per_cu);
18778
18779 (*baton)->size = 2 + cu_header->addr_size;
18780 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
18781 (*baton)->data = data;
18782
18783 data[0] = DW_OP_addr;
18784 store_unsigned_integer (&data[1], cu_header->addr_size,
18785 byte_order, DW_ADDR (attr));
18786 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18787 }
18788 break;
18789 case DW_FORM_string:
18790 case DW_FORM_strp:
18791 case DW_FORM_GNU_str_index:
18792 case DW_FORM_GNU_strp_alt:
18793 /* DW_STRING is already allocated on the objfile obstack, point
18794 directly to it. */
18795 *bytes = (const gdb_byte *) DW_STRING (attr);
18796 break;
18797 case DW_FORM_block1:
18798 case DW_FORM_block2:
18799 case DW_FORM_block4:
18800 case DW_FORM_block:
18801 case DW_FORM_exprloc:
18802 blk = DW_BLOCK (attr);
18803 if (TYPE_LENGTH (type) != blk->size)
18804 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18805 TYPE_LENGTH (type));
18806 *bytes = blk->data;
18807 break;
18808
18809 /* The DW_AT_const_value attributes are supposed to carry the
18810 symbol's value "represented as it would be on the target
18811 architecture." By the time we get here, it's already been
18812 converted to host endianness, so we just need to sign- or
18813 zero-extend it as appropriate. */
18814 case DW_FORM_data1:
18815 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18816 break;
18817 case DW_FORM_data2:
18818 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18819 break;
18820 case DW_FORM_data4:
18821 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18822 break;
18823 case DW_FORM_data8:
18824 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18825 break;
18826
18827 case DW_FORM_sdata:
18828 *value = DW_SND (attr);
18829 break;
18830
18831 case DW_FORM_udata:
18832 *value = DW_UNSND (attr);
18833 break;
18834
18835 default:
18836 complaint (&symfile_complaints,
18837 _("unsupported const value attribute form: '%s'"),
18838 dwarf_form_name (attr->form));
18839 *value = 0;
18840 break;
18841 }
18842 }
18843
18844
18845 /* Copy constant value from an attribute to a symbol. */
18846
18847 static void
18848 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18849 struct dwarf2_cu *cu)
18850 {
18851 struct objfile *objfile = cu->objfile;
18852 LONGEST value;
18853 const gdb_byte *bytes;
18854 struct dwarf2_locexpr_baton *baton;
18855
18856 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18857 SYMBOL_PRINT_NAME (sym),
18858 &objfile->objfile_obstack, cu,
18859 &value, &bytes, &baton);
18860
18861 if (baton != NULL)
18862 {
18863 SYMBOL_LOCATION_BATON (sym) = baton;
18864 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18865 }
18866 else if (bytes != NULL)
18867 {
18868 SYMBOL_VALUE_BYTES (sym) = bytes;
18869 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18870 }
18871 else
18872 {
18873 SYMBOL_VALUE (sym) = value;
18874 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18875 }
18876 }
18877
18878 /* Return the type of the die in question using its DW_AT_type attribute. */
18879
18880 static struct type *
18881 die_type (struct die_info *die, struct dwarf2_cu *cu)
18882 {
18883 struct attribute *type_attr;
18884
18885 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18886 if (!type_attr)
18887 {
18888 /* A missing DW_AT_type represents a void type. */
18889 return objfile_type (cu->objfile)->builtin_void;
18890 }
18891
18892 return lookup_die_type (die, type_attr, cu);
18893 }
18894
18895 /* True iff CU's producer generates GNAT Ada auxiliary information
18896 that allows to find parallel types through that information instead
18897 of having to do expensive parallel lookups by type name. */
18898
18899 static int
18900 need_gnat_info (struct dwarf2_cu *cu)
18901 {
18902 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18903 of GNAT produces this auxiliary information, without any indication
18904 that it is produced. Part of enhancing the FSF version of GNAT
18905 to produce that information will be to put in place an indicator
18906 that we can use in order to determine whether the descriptive type
18907 info is available or not. One suggestion that has been made is
18908 to use a new attribute, attached to the CU die. For now, assume
18909 that the descriptive type info is not available. */
18910 return 0;
18911 }
18912
18913 /* Return the auxiliary type of the die in question using its
18914 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18915 attribute is not present. */
18916
18917 static struct type *
18918 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18919 {
18920 struct attribute *type_attr;
18921
18922 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18923 if (!type_attr)
18924 return NULL;
18925
18926 return lookup_die_type (die, type_attr, cu);
18927 }
18928
18929 /* If DIE has a descriptive_type attribute, then set the TYPE's
18930 descriptive type accordingly. */
18931
18932 static void
18933 set_descriptive_type (struct type *type, struct die_info *die,
18934 struct dwarf2_cu *cu)
18935 {
18936 struct type *descriptive_type = die_descriptive_type (die, cu);
18937
18938 if (descriptive_type)
18939 {
18940 ALLOCATE_GNAT_AUX_TYPE (type);
18941 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18942 }
18943 }
18944
18945 /* Return the containing type of the die in question using its
18946 DW_AT_containing_type attribute. */
18947
18948 static struct type *
18949 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18950 {
18951 struct attribute *type_attr;
18952
18953 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18954 if (!type_attr)
18955 error (_("Dwarf Error: Problem turning containing type into gdb type "
18956 "[in module %s]"), objfile_name (cu->objfile));
18957
18958 return lookup_die_type (die, type_attr, cu);
18959 }
18960
18961 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18962
18963 static struct type *
18964 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18965 {
18966 struct objfile *objfile = dwarf2_per_objfile->objfile;
18967 char *message, *saved;
18968
18969 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18970 objfile_name (objfile),
18971 cu->header.offset.sect_off,
18972 die->offset.sect_off);
18973 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
18974 message, strlen (message));
18975 xfree (message);
18976
18977 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18978 }
18979
18980 /* Look up the type of DIE in CU using its type attribute ATTR.
18981 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18982 DW_AT_containing_type.
18983 If there is no type substitute an error marker. */
18984
18985 static struct type *
18986 lookup_die_type (struct die_info *die, const struct attribute *attr,
18987 struct dwarf2_cu *cu)
18988 {
18989 struct objfile *objfile = cu->objfile;
18990 struct type *this_type;
18991
18992 gdb_assert (attr->name == DW_AT_type
18993 || attr->name == DW_AT_GNAT_descriptive_type
18994 || attr->name == DW_AT_containing_type);
18995
18996 /* First see if we have it cached. */
18997
18998 if (attr->form == DW_FORM_GNU_ref_alt)
18999 {
19000 struct dwarf2_per_cu_data *per_cu;
19001 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19002
19003 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19004 this_type = get_die_type_at_offset (offset, per_cu);
19005 }
19006 else if (attr_form_is_ref (attr))
19007 {
19008 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19009
19010 this_type = get_die_type_at_offset (offset, cu->per_cu);
19011 }
19012 else if (attr->form == DW_FORM_ref_sig8)
19013 {
19014 ULONGEST signature = DW_SIGNATURE (attr);
19015
19016 return get_signatured_type (die, signature, cu);
19017 }
19018 else
19019 {
19020 complaint (&symfile_complaints,
19021 _("Dwarf Error: Bad type attribute %s in DIE"
19022 " at 0x%x [in module %s]"),
19023 dwarf_attr_name (attr->name), die->offset.sect_off,
19024 objfile_name (objfile));
19025 return build_error_marker_type (cu, die);
19026 }
19027
19028 /* If not cached we need to read it in. */
19029
19030 if (this_type == NULL)
19031 {
19032 struct die_info *type_die = NULL;
19033 struct dwarf2_cu *type_cu = cu;
19034
19035 if (attr_form_is_ref (attr))
19036 type_die = follow_die_ref (die, attr, &type_cu);
19037 if (type_die == NULL)
19038 return build_error_marker_type (cu, die);
19039 /* If we find the type now, it's probably because the type came
19040 from an inter-CU reference and the type's CU got expanded before
19041 ours. */
19042 this_type = read_type_die (type_die, type_cu);
19043 }
19044
19045 /* If we still don't have a type use an error marker. */
19046
19047 if (this_type == NULL)
19048 return build_error_marker_type (cu, die);
19049
19050 return this_type;
19051 }
19052
19053 /* Return the type in DIE, CU.
19054 Returns NULL for invalid types.
19055
19056 This first does a lookup in die_type_hash,
19057 and only reads the die in if necessary.
19058
19059 NOTE: This can be called when reading in partial or full symbols. */
19060
19061 static struct type *
19062 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19063 {
19064 struct type *this_type;
19065
19066 this_type = get_die_type (die, cu);
19067 if (this_type)
19068 return this_type;
19069
19070 return read_type_die_1 (die, cu);
19071 }
19072
19073 /* Read the type in DIE, CU.
19074 Returns NULL for invalid types. */
19075
19076 static struct type *
19077 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19078 {
19079 struct type *this_type = NULL;
19080
19081 switch (die->tag)
19082 {
19083 case DW_TAG_class_type:
19084 case DW_TAG_interface_type:
19085 case DW_TAG_structure_type:
19086 case DW_TAG_union_type:
19087 this_type = read_structure_type (die, cu);
19088 break;
19089 case DW_TAG_enumeration_type:
19090 this_type = read_enumeration_type (die, cu);
19091 break;
19092 case DW_TAG_subprogram:
19093 case DW_TAG_subroutine_type:
19094 case DW_TAG_inlined_subroutine:
19095 this_type = read_subroutine_type (die, cu);
19096 break;
19097 case DW_TAG_array_type:
19098 this_type = read_array_type (die, cu);
19099 break;
19100 case DW_TAG_set_type:
19101 this_type = read_set_type (die, cu);
19102 break;
19103 case DW_TAG_pointer_type:
19104 this_type = read_tag_pointer_type (die, cu);
19105 break;
19106 case DW_TAG_ptr_to_member_type:
19107 this_type = read_tag_ptr_to_member_type (die, cu);
19108 break;
19109 case DW_TAG_reference_type:
19110 this_type = read_tag_reference_type (die, cu);
19111 break;
19112 case DW_TAG_const_type:
19113 this_type = read_tag_const_type (die, cu);
19114 break;
19115 case DW_TAG_volatile_type:
19116 this_type = read_tag_volatile_type (die, cu);
19117 break;
19118 case DW_TAG_restrict_type:
19119 this_type = read_tag_restrict_type (die, cu);
19120 break;
19121 case DW_TAG_string_type:
19122 this_type = read_tag_string_type (die, cu);
19123 break;
19124 case DW_TAG_typedef:
19125 this_type = read_typedef (die, cu);
19126 break;
19127 case DW_TAG_subrange_type:
19128 this_type = read_subrange_type (die, cu);
19129 break;
19130 case DW_TAG_base_type:
19131 this_type = read_base_type (die, cu);
19132 break;
19133 case DW_TAG_unspecified_type:
19134 this_type = read_unspecified_type (die, cu);
19135 break;
19136 case DW_TAG_namespace:
19137 this_type = read_namespace_type (die, cu);
19138 break;
19139 case DW_TAG_module:
19140 this_type = read_module_type (die, cu);
19141 break;
19142 case DW_TAG_atomic_type:
19143 this_type = read_tag_atomic_type (die, cu);
19144 break;
19145 default:
19146 complaint (&symfile_complaints,
19147 _("unexpected tag in read_type_die: '%s'"),
19148 dwarf_tag_name (die->tag));
19149 break;
19150 }
19151
19152 return this_type;
19153 }
19154
19155 /* See if we can figure out if the class lives in a namespace. We do
19156 this by looking for a member function; its demangled name will
19157 contain namespace info, if there is any.
19158 Return the computed name or NULL.
19159 Space for the result is allocated on the objfile's obstack.
19160 This is the full-die version of guess_partial_die_structure_name.
19161 In this case we know DIE has no useful parent. */
19162
19163 static char *
19164 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19165 {
19166 struct die_info *spec_die;
19167 struct dwarf2_cu *spec_cu;
19168 struct die_info *child;
19169
19170 spec_cu = cu;
19171 spec_die = die_specification (die, &spec_cu);
19172 if (spec_die != NULL)
19173 {
19174 die = spec_die;
19175 cu = spec_cu;
19176 }
19177
19178 for (child = die->child;
19179 child != NULL;
19180 child = child->sibling)
19181 {
19182 if (child->tag == DW_TAG_subprogram)
19183 {
19184 const char *linkage_name;
19185
19186 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19187 if (linkage_name == NULL)
19188 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19189 cu);
19190 if (linkage_name != NULL)
19191 {
19192 char *actual_name
19193 = language_class_name_from_physname (cu->language_defn,
19194 linkage_name);
19195 char *name = NULL;
19196
19197 if (actual_name != NULL)
19198 {
19199 const char *die_name = dwarf2_name (die, cu);
19200
19201 if (die_name != NULL
19202 && strcmp (die_name, actual_name) != 0)
19203 {
19204 /* Strip off the class name from the full name.
19205 We want the prefix. */
19206 int die_name_len = strlen (die_name);
19207 int actual_name_len = strlen (actual_name);
19208
19209 /* Test for '::' as a sanity check. */
19210 if (actual_name_len > die_name_len + 2
19211 && actual_name[actual_name_len
19212 - die_name_len - 1] == ':')
19213 name = (char *) obstack_copy0 (
19214 &cu->objfile->per_bfd->storage_obstack,
19215 actual_name, actual_name_len - die_name_len - 2);
19216 }
19217 }
19218 xfree (actual_name);
19219 return name;
19220 }
19221 }
19222 }
19223
19224 return NULL;
19225 }
19226
19227 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19228 prefix part in such case. See
19229 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19230
19231 static char *
19232 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19233 {
19234 struct attribute *attr;
19235 const char *base;
19236
19237 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19238 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19239 return NULL;
19240
19241 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19242 return NULL;
19243
19244 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19245 if (attr == NULL)
19246 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19247 if (attr == NULL || DW_STRING (attr) == NULL)
19248 return NULL;
19249
19250 /* dwarf2_name had to be already called. */
19251 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19252
19253 /* Strip the base name, keep any leading namespaces/classes. */
19254 base = strrchr (DW_STRING (attr), ':');
19255 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19256 return "";
19257
19258 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19259 DW_STRING (attr),
19260 &base[-1] - DW_STRING (attr));
19261 }
19262
19263 /* Return the name of the namespace/class that DIE is defined within,
19264 or "" if we can't tell. The caller should not xfree the result.
19265
19266 For example, if we're within the method foo() in the following
19267 code:
19268
19269 namespace N {
19270 class C {
19271 void foo () {
19272 }
19273 };
19274 }
19275
19276 then determine_prefix on foo's die will return "N::C". */
19277
19278 static const char *
19279 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19280 {
19281 struct die_info *parent, *spec_die;
19282 struct dwarf2_cu *spec_cu;
19283 struct type *parent_type;
19284 char *retval;
19285
19286 if (cu->language != language_cplus && cu->language != language_java
19287 && cu->language != language_fortran && cu->language != language_d
19288 && cu->language != language_rust)
19289 return "";
19290
19291 retval = anonymous_struct_prefix (die, cu);
19292 if (retval)
19293 return retval;
19294
19295 /* We have to be careful in the presence of DW_AT_specification.
19296 For example, with GCC 3.4, given the code
19297
19298 namespace N {
19299 void foo() {
19300 // Definition of N::foo.
19301 }
19302 }
19303
19304 then we'll have a tree of DIEs like this:
19305
19306 1: DW_TAG_compile_unit
19307 2: DW_TAG_namespace // N
19308 3: DW_TAG_subprogram // declaration of N::foo
19309 4: DW_TAG_subprogram // definition of N::foo
19310 DW_AT_specification // refers to die #3
19311
19312 Thus, when processing die #4, we have to pretend that we're in
19313 the context of its DW_AT_specification, namely the contex of die
19314 #3. */
19315 spec_cu = cu;
19316 spec_die = die_specification (die, &spec_cu);
19317 if (spec_die == NULL)
19318 parent = die->parent;
19319 else
19320 {
19321 parent = spec_die->parent;
19322 cu = spec_cu;
19323 }
19324
19325 if (parent == NULL)
19326 return "";
19327 else if (parent->building_fullname)
19328 {
19329 const char *name;
19330 const char *parent_name;
19331
19332 /* It has been seen on RealView 2.2 built binaries,
19333 DW_TAG_template_type_param types actually _defined_ as
19334 children of the parent class:
19335
19336 enum E {};
19337 template class <class Enum> Class{};
19338 Class<enum E> class_e;
19339
19340 1: DW_TAG_class_type (Class)
19341 2: DW_TAG_enumeration_type (E)
19342 3: DW_TAG_enumerator (enum1:0)
19343 3: DW_TAG_enumerator (enum2:1)
19344 ...
19345 2: DW_TAG_template_type_param
19346 DW_AT_type DW_FORM_ref_udata (E)
19347
19348 Besides being broken debug info, it can put GDB into an
19349 infinite loop. Consider:
19350
19351 When we're building the full name for Class<E>, we'll start
19352 at Class, and go look over its template type parameters,
19353 finding E. We'll then try to build the full name of E, and
19354 reach here. We're now trying to build the full name of E,
19355 and look over the parent DIE for containing scope. In the
19356 broken case, if we followed the parent DIE of E, we'd again
19357 find Class, and once again go look at its template type
19358 arguments, etc., etc. Simply don't consider such parent die
19359 as source-level parent of this die (it can't be, the language
19360 doesn't allow it), and break the loop here. */
19361 name = dwarf2_name (die, cu);
19362 parent_name = dwarf2_name (parent, cu);
19363 complaint (&symfile_complaints,
19364 _("template param type '%s' defined within parent '%s'"),
19365 name ? name : "<unknown>",
19366 parent_name ? parent_name : "<unknown>");
19367 return "";
19368 }
19369 else
19370 switch (parent->tag)
19371 {
19372 case DW_TAG_namespace:
19373 parent_type = read_type_die (parent, cu);
19374 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19375 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19376 Work around this problem here. */
19377 if (cu->language == language_cplus
19378 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19379 return "";
19380 /* We give a name to even anonymous namespaces. */
19381 return TYPE_TAG_NAME (parent_type);
19382 case DW_TAG_class_type:
19383 case DW_TAG_interface_type:
19384 case DW_TAG_structure_type:
19385 case DW_TAG_union_type:
19386 case DW_TAG_module:
19387 parent_type = read_type_die (parent, cu);
19388 if (TYPE_TAG_NAME (parent_type) != NULL)
19389 return TYPE_TAG_NAME (parent_type);
19390 else
19391 /* An anonymous structure is only allowed non-static data
19392 members; no typedefs, no member functions, et cetera.
19393 So it does not need a prefix. */
19394 return "";
19395 case DW_TAG_compile_unit:
19396 case DW_TAG_partial_unit:
19397 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19398 if (cu->language == language_cplus
19399 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19400 && die->child != NULL
19401 && (die->tag == DW_TAG_class_type
19402 || die->tag == DW_TAG_structure_type
19403 || die->tag == DW_TAG_union_type))
19404 {
19405 char *name = guess_full_die_structure_name (die, cu);
19406 if (name != NULL)
19407 return name;
19408 }
19409 return "";
19410 case DW_TAG_enumeration_type:
19411 parent_type = read_type_die (parent, cu);
19412 if (TYPE_DECLARED_CLASS (parent_type))
19413 {
19414 if (TYPE_TAG_NAME (parent_type) != NULL)
19415 return TYPE_TAG_NAME (parent_type);
19416 return "";
19417 }
19418 /* Fall through. */
19419 default:
19420 return determine_prefix (parent, cu);
19421 }
19422 }
19423
19424 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19425 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19426 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19427 an obconcat, otherwise allocate storage for the result. The CU argument is
19428 used to determine the language and hence, the appropriate separator. */
19429
19430 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19431
19432 static char *
19433 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19434 int physname, struct dwarf2_cu *cu)
19435 {
19436 const char *lead = "";
19437 const char *sep;
19438
19439 if (suffix == NULL || suffix[0] == '\0'
19440 || prefix == NULL || prefix[0] == '\0')
19441 sep = "";
19442 else if (cu->language == language_java)
19443 sep = ".";
19444 else if (cu->language == language_d)
19445 {
19446 /* For D, the 'main' function could be defined in any module, but it
19447 should never be prefixed. */
19448 if (strcmp (suffix, "D main") == 0)
19449 {
19450 prefix = "";
19451 sep = "";
19452 }
19453 else
19454 sep = ".";
19455 }
19456 else if (cu->language == language_fortran && physname)
19457 {
19458 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19459 DW_AT_MIPS_linkage_name is preferred and used instead. */
19460
19461 lead = "__";
19462 sep = "_MOD_";
19463 }
19464 else
19465 sep = "::";
19466
19467 if (prefix == NULL)
19468 prefix = "";
19469 if (suffix == NULL)
19470 suffix = "";
19471
19472 if (obs == NULL)
19473 {
19474 char *retval
19475 = ((char *)
19476 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
19477
19478 strcpy (retval, lead);
19479 strcat (retval, prefix);
19480 strcat (retval, sep);
19481 strcat (retval, suffix);
19482 return retval;
19483 }
19484 else
19485 {
19486 /* We have an obstack. */
19487 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19488 }
19489 }
19490
19491 /* Return sibling of die, NULL if no sibling. */
19492
19493 static struct die_info *
19494 sibling_die (struct die_info *die)
19495 {
19496 return die->sibling;
19497 }
19498
19499 /* Get name of a die, return NULL if not found. */
19500
19501 static const char *
19502 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19503 struct obstack *obstack)
19504 {
19505 if (name && cu->language == language_cplus)
19506 {
19507 char *canon_name = cp_canonicalize_string (name);
19508
19509 if (canon_name != NULL)
19510 {
19511 if (strcmp (canon_name, name) != 0)
19512 name = (const char *) obstack_copy0 (obstack, canon_name,
19513 strlen (canon_name));
19514 xfree (canon_name);
19515 }
19516 }
19517
19518 return name;
19519 }
19520
19521 /* Get name of a die, return NULL if not found.
19522 Anonymous namespaces are converted to their magic string. */
19523
19524 static const char *
19525 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19526 {
19527 struct attribute *attr;
19528
19529 attr = dwarf2_attr (die, DW_AT_name, cu);
19530 if ((!attr || !DW_STRING (attr))
19531 && die->tag != DW_TAG_namespace
19532 && die->tag != DW_TAG_class_type
19533 && die->tag != DW_TAG_interface_type
19534 && die->tag != DW_TAG_structure_type
19535 && die->tag != DW_TAG_union_type)
19536 return NULL;
19537
19538 switch (die->tag)
19539 {
19540 case DW_TAG_compile_unit:
19541 case DW_TAG_partial_unit:
19542 /* Compilation units have a DW_AT_name that is a filename, not
19543 a source language identifier. */
19544 case DW_TAG_enumeration_type:
19545 case DW_TAG_enumerator:
19546 /* These tags always have simple identifiers already; no need
19547 to canonicalize them. */
19548 return DW_STRING (attr);
19549
19550 case DW_TAG_namespace:
19551 if (attr != NULL && DW_STRING (attr) != NULL)
19552 return DW_STRING (attr);
19553 return CP_ANONYMOUS_NAMESPACE_STR;
19554
19555 case DW_TAG_subprogram:
19556 /* Java constructors will all be named "<init>", so return
19557 the class name when we see this special case. */
19558 if (cu->language == language_java
19559 && DW_STRING (attr) != NULL
19560 && strcmp (DW_STRING (attr), "<init>") == 0)
19561 {
19562 struct dwarf2_cu *spec_cu = cu;
19563 struct die_info *spec_die;
19564
19565 /* GCJ will output '<init>' for Java constructor names.
19566 For this special case, return the name of the parent class. */
19567
19568 /* GCJ may output subprogram DIEs with AT_specification set.
19569 If so, use the name of the specified DIE. */
19570 spec_die = die_specification (die, &spec_cu);
19571 if (spec_die != NULL)
19572 return dwarf2_name (spec_die, spec_cu);
19573
19574 do
19575 {
19576 die = die->parent;
19577 if (die->tag == DW_TAG_class_type)
19578 return dwarf2_name (die, cu);
19579 }
19580 while (die->tag != DW_TAG_compile_unit
19581 && die->tag != DW_TAG_partial_unit);
19582 }
19583 break;
19584
19585 case DW_TAG_class_type:
19586 case DW_TAG_interface_type:
19587 case DW_TAG_structure_type:
19588 case DW_TAG_union_type:
19589 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19590 structures or unions. These were of the form "._%d" in GCC 4.1,
19591 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19592 and GCC 4.4. We work around this problem by ignoring these. */
19593 if (attr && DW_STRING (attr)
19594 && (startswith (DW_STRING (attr), "._")
19595 || startswith (DW_STRING (attr), "<anonymous")))
19596 return NULL;
19597
19598 /* GCC might emit a nameless typedef that has a linkage name. See
19599 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19600 if (!attr || DW_STRING (attr) == NULL)
19601 {
19602 char *demangled = NULL;
19603
19604 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19605 if (attr == NULL)
19606 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19607
19608 if (attr == NULL || DW_STRING (attr) == NULL)
19609 return NULL;
19610
19611 /* Avoid demangling DW_STRING (attr) the second time on a second
19612 call for the same DIE. */
19613 if (!DW_STRING_IS_CANONICAL (attr))
19614 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19615
19616 if (demangled)
19617 {
19618 const char *base;
19619
19620 /* FIXME: we already did this for the partial symbol... */
19621 DW_STRING (attr)
19622 = ((const char *)
19623 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19624 demangled, strlen (demangled)));
19625 DW_STRING_IS_CANONICAL (attr) = 1;
19626 xfree (demangled);
19627
19628 /* Strip any leading namespaces/classes, keep only the base name.
19629 DW_AT_name for named DIEs does not contain the prefixes. */
19630 base = strrchr (DW_STRING (attr), ':');
19631 if (base && base > DW_STRING (attr) && base[-1] == ':')
19632 return &base[1];
19633 else
19634 return DW_STRING (attr);
19635 }
19636 }
19637 break;
19638
19639 default:
19640 break;
19641 }
19642
19643 if (!DW_STRING_IS_CANONICAL (attr))
19644 {
19645 DW_STRING (attr)
19646 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19647 &cu->objfile->per_bfd->storage_obstack);
19648 DW_STRING_IS_CANONICAL (attr) = 1;
19649 }
19650 return DW_STRING (attr);
19651 }
19652
19653 /* Return the die that this die in an extension of, or NULL if there
19654 is none. *EXT_CU is the CU containing DIE on input, and the CU
19655 containing the return value on output. */
19656
19657 static struct die_info *
19658 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19659 {
19660 struct attribute *attr;
19661
19662 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19663 if (attr == NULL)
19664 return NULL;
19665
19666 return follow_die_ref (die, attr, ext_cu);
19667 }
19668
19669 /* Convert a DIE tag into its string name. */
19670
19671 static const char *
19672 dwarf_tag_name (unsigned tag)
19673 {
19674 const char *name = get_DW_TAG_name (tag);
19675
19676 if (name == NULL)
19677 return "DW_TAG_<unknown>";
19678
19679 return name;
19680 }
19681
19682 /* Convert a DWARF attribute code into its string name. */
19683
19684 static const char *
19685 dwarf_attr_name (unsigned attr)
19686 {
19687 const char *name;
19688
19689 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19690 if (attr == DW_AT_MIPS_fde)
19691 return "DW_AT_MIPS_fde";
19692 #else
19693 if (attr == DW_AT_HP_block_index)
19694 return "DW_AT_HP_block_index";
19695 #endif
19696
19697 name = get_DW_AT_name (attr);
19698
19699 if (name == NULL)
19700 return "DW_AT_<unknown>";
19701
19702 return name;
19703 }
19704
19705 /* Convert a DWARF value form code into its string name. */
19706
19707 static const char *
19708 dwarf_form_name (unsigned form)
19709 {
19710 const char *name = get_DW_FORM_name (form);
19711
19712 if (name == NULL)
19713 return "DW_FORM_<unknown>";
19714
19715 return name;
19716 }
19717
19718 static char *
19719 dwarf_bool_name (unsigned mybool)
19720 {
19721 if (mybool)
19722 return "TRUE";
19723 else
19724 return "FALSE";
19725 }
19726
19727 /* Convert a DWARF type code into its string name. */
19728
19729 static const char *
19730 dwarf_type_encoding_name (unsigned enc)
19731 {
19732 const char *name = get_DW_ATE_name (enc);
19733
19734 if (name == NULL)
19735 return "DW_ATE_<unknown>";
19736
19737 return name;
19738 }
19739
19740 static void
19741 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19742 {
19743 unsigned int i;
19744
19745 print_spaces (indent, f);
19746 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19747 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19748
19749 if (die->parent != NULL)
19750 {
19751 print_spaces (indent, f);
19752 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19753 die->parent->offset.sect_off);
19754 }
19755
19756 print_spaces (indent, f);
19757 fprintf_unfiltered (f, " has children: %s\n",
19758 dwarf_bool_name (die->child != NULL));
19759
19760 print_spaces (indent, f);
19761 fprintf_unfiltered (f, " attributes:\n");
19762
19763 for (i = 0; i < die->num_attrs; ++i)
19764 {
19765 print_spaces (indent, f);
19766 fprintf_unfiltered (f, " %s (%s) ",
19767 dwarf_attr_name (die->attrs[i].name),
19768 dwarf_form_name (die->attrs[i].form));
19769
19770 switch (die->attrs[i].form)
19771 {
19772 case DW_FORM_addr:
19773 case DW_FORM_GNU_addr_index:
19774 fprintf_unfiltered (f, "address: ");
19775 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19776 break;
19777 case DW_FORM_block2:
19778 case DW_FORM_block4:
19779 case DW_FORM_block:
19780 case DW_FORM_block1:
19781 fprintf_unfiltered (f, "block: size %s",
19782 pulongest (DW_BLOCK (&die->attrs[i])->size));
19783 break;
19784 case DW_FORM_exprloc:
19785 fprintf_unfiltered (f, "expression: size %s",
19786 pulongest (DW_BLOCK (&die->attrs[i])->size));
19787 break;
19788 case DW_FORM_ref_addr:
19789 fprintf_unfiltered (f, "ref address: ");
19790 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19791 break;
19792 case DW_FORM_GNU_ref_alt:
19793 fprintf_unfiltered (f, "alt ref address: ");
19794 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19795 break;
19796 case DW_FORM_ref1:
19797 case DW_FORM_ref2:
19798 case DW_FORM_ref4:
19799 case DW_FORM_ref8:
19800 case DW_FORM_ref_udata:
19801 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19802 (long) (DW_UNSND (&die->attrs[i])));
19803 break;
19804 case DW_FORM_data1:
19805 case DW_FORM_data2:
19806 case DW_FORM_data4:
19807 case DW_FORM_data8:
19808 case DW_FORM_udata:
19809 case DW_FORM_sdata:
19810 fprintf_unfiltered (f, "constant: %s",
19811 pulongest (DW_UNSND (&die->attrs[i])));
19812 break;
19813 case DW_FORM_sec_offset:
19814 fprintf_unfiltered (f, "section offset: %s",
19815 pulongest (DW_UNSND (&die->attrs[i])));
19816 break;
19817 case DW_FORM_ref_sig8:
19818 fprintf_unfiltered (f, "signature: %s",
19819 hex_string (DW_SIGNATURE (&die->attrs[i])));
19820 break;
19821 case DW_FORM_string:
19822 case DW_FORM_strp:
19823 case DW_FORM_GNU_str_index:
19824 case DW_FORM_GNU_strp_alt:
19825 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19826 DW_STRING (&die->attrs[i])
19827 ? DW_STRING (&die->attrs[i]) : "",
19828 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19829 break;
19830 case DW_FORM_flag:
19831 if (DW_UNSND (&die->attrs[i]))
19832 fprintf_unfiltered (f, "flag: TRUE");
19833 else
19834 fprintf_unfiltered (f, "flag: FALSE");
19835 break;
19836 case DW_FORM_flag_present:
19837 fprintf_unfiltered (f, "flag: TRUE");
19838 break;
19839 case DW_FORM_indirect:
19840 /* The reader will have reduced the indirect form to
19841 the "base form" so this form should not occur. */
19842 fprintf_unfiltered (f,
19843 "unexpected attribute form: DW_FORM_indirect");
19844 break;
19845 default:
19846 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19847 die->attrs[i].form);
19848 break;
19849 }
19850 fprintf_unfiltered (f, "\n");
19851 }
19852 }
19853
19854 static void
19855 dump_die_for_error (struct die_info *die)
19856 {
19857 dump_die_shallow (gdb_stderr, 0, die);
19858 }
19859
19860 static void
19861 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19862 {
19863 int indent = level * 4;
19864
19865 gdb_assert (die != NULL);
19866
19867 if (level >= max_level)
19868 return;
19869
19870 dump_die_shallow (f, indent, die);
19871
19872 if (die->child != NULL)
19873 {
19874 print_spaces (indent, f);
19875 fprintf_unfiltered (f, " Children:");
19876 if (level + 1 < max_level)
19877 {
19878 fprintf_unfiltered (f, "\n");
19879 dump_die_1 (f, level + 1, max_level, die->child);
19880 }
19881 else
19882 {
19883 fprintf_unfiltered (f,
19884 " [not printed, max nesting level reached]\n");
19885 }
19886 }
19887
19888 if (die->sibling != NULL && level > 0)
19889 {
19890 dump_die_1 (f, level, max_level, die->sibling);
19891 }
19892 }
19893
19894 /* This is called from the pdie macro in gdbinit.in.
19895 It's not static so gcc will keep a copy callable from gdb. */
19896
19897 void
19898 dump_die (struct die_info *die, int max_level)
19899 {
19900 dump_die_1 (gdb_stdlog, 0, max_level, die);
19901 }
19902
19903 static void
19904 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19905 {
19906 void **slot;
19907
19908 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19909 INSERT);
19910
19911 *slot = die;
19912 }
19913
19914 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19915 required kind. */
19916
19917 static sect_offset
19918 dwarf2_get_ref_die_offset (const struct attribute *attr)
19919 {
19920 sect_offset retval = { DW_UNSND (attr) };
19921
19922 if (attr_form_is_ref (attr))
19923 return retval;
19924
19925 retval.sect_off = 0;
19926 complaint (&symfile_complaints,
19927 _("unsupported die ref attribute form: '%s'"),
19928 dwarf_form_name (attr->form));
19929 return retval;
19930 }
19931
19932 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19933 * the value held by the attribute is not constant. */
19934
19935 static LONGEST
19936 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19937 {
19938 if (attr->form == DW_FORM_sdata)
19939 return DW_SND (attr);
19940 else if (attr->form == DW_FORM_udata
19941 || attr->form == DW_FORM_data1
19942 || attr->form == DW_FORM_data2
19943 || attr->form == DW_FORM_data4
19944 || attr->form == DW_FORM_data8)
19945 return DW_UNSND (attr);
19946 else
19947 {
19948 complaint (&symfile_complaints,
19949 _("Attribute value is not a constant (%s)"),
19950 dwarf_form_name (attr->form));
19951 return default_value;
19952 }
19953 }
19954
19955 /* Follow reference or signature attribute ATTR of SRC_DIE.
19956 On entry *REF_CU is the CU of SRC_DIE.
19957 On exit *REF_CU is the CU of the result. */
19958
19959 static struct die_info *
19960 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19961 struct dwarf2_cu **ref_cu)
19962 {
19963 struct die_info *die;
19964
19965 if (attr_form_is_ref (attr))
19966 die = follow_die_ref (src_die, attr, ref_cu);
19967 else if (attr->form == DW_FORM_ref_sig8)
19968 die = follow_die_sig (src_die, attr, ref_cu);
19969 else
19970 {
19971 dump_die_for_error (src_die);
19972 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19973 objfile_name ((*ref_cu)->objfile));
19974 }
19975
19976 return die;
19977 }
19978
19979 /* Follow reference OFFSET.
19980 On entry *REF_CU is the CU of the source die referencing OFFSET.
19981 On exit *REF_CU is the CU of the result.
19982 Returns NULL if OFFSET is invalid. */
19983
19984 static struct die_info *
19985 follow_die_offset (sect_offset offset, int offset_in_dwz,
19986 struct dwarf2_cu **ref_cu)
19987 {
19988 struct die_info temp_die;
19989 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19990
19991 gdb_assert (cu->per_cu != NULL);
19992
19993 target_cu = cu;
19994
19995 if (cu->per_cu->is_debug_types)
19996 {
19997 /* .debug_types CUs cannot reference anything outside their CU.
19998 If they need to, they have to reference a signatured type via
19999 DW_FORM_ref_sig8. */
20000 if (! offset_in_cu_p (&cu->header, offset))
20001 return NULL;
20002 }
20003 else if (offset_in_dwz != cu->per_cu->is_dwz
20004 || ! offset_in_cu_p (&cu->header, offset))
20005 {
20006 struct dwarf2_per_cu_data *per_cu;
20007
20008 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20009 cu->objfile);
20010
20011 /* If necessary, add it to the queue and load its DIEs. */
20012 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20013 load_full_comp_unit (per_cu, cu->language);
20014
20015 target_cu = per_cu->cu;
20016 }
20017 else if (cu->dies == NULL)
20018 {
20019 /* We're loading full DIEs during partial symbol reading. */
20020 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20021 load_full_comp_unit (cu->per_cu, language_minimal);
20022 }
20023
20024 *ref_cu = target_cu;
20025 temp_die.offset = offset;
20026 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20027 &temp_die, offset.sect_off);
20028 }
20029
20030 /* Follow reference attribute ATTR of SRC_DIE.
20031 On entry *REF_CU is the CU of SRC_DIE.
20032 On exit *REF_CU is the CU of the result. */
20033
20034 static struct die_info *
20035 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20036 struct dwarf2_cu **ref_cu)
20037 {
20038 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20039 struct dwarf2_cu *cu = *ref_cu;
20040 struct die_info *die;
20041
20042 die = follow_die_offset (offset,
20043 (attr->form == DW_FORM_GNU_ref_alt
20044 || cu->per_cu->is_dwz),
20045 ref_cu);
20046 if (!die)
20047 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20048 "at 0x%x [in module %s]"),
20049 offset.sect_off, src_die->offset.sect_off,
20050 objfile_name (cu->objfile));
20051
20052 return die;
20053 }
20054
20055 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20056 Returned value is intended for DW_OP_call*. Returned
20057 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20058
20059 struct dwarf2_locexpr_baton
20060 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20061 struct dwarf2_per_cu_data *per_cu,
20062 CORE_ADDR (*get_frame_pc) (void *baton),
20063 void *baton)
20064 {
20065 struct dwarf2_cu *cu;
20066 struct die_info *die;
20067 struct attribute *attr;
20068 struct dwarf2_locexpr_baton retval;
20069
20070 dw2_setup (per_cu->objfile);
20071
20072 if (per_cu->cu == NULL)
20073 load_cu (per_cu);
20074 cu = per_cu->cu;
20075 if (cu == NULL)
20076 {
20077 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20078 Instead just throw an error, not much else we can do. */
20079 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20080 offset.sect_off, objfile_name (per_cu->objfile));
20081 }
20082
20083 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20084 if (!die)
20085 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20086 offset.sect_off, objfile_name (per_cu->objfile));
20087
20088 attr = dwarf2_attr (die, DW_AT_location, cu);
20089 if (!attr)
20090 {
20091 /* DWARF: "If there is no such attribute, then there is no effect.".
20092 DATA is ignored if SIZE is 0. */
20093
20094 retval.data = NULL;
20095 retval.size = 0;
20096 }
20097 else if (attr_form_is_section_offset (attr))
20098 {
20099 struct dwarf2_loclist_baton loclist_baton;
20100 CORE_ADDR pc = (*get_frame_pc) (baton);
20101 size_t size;
20102
20103 fill_in_loclist_baton (cu, &loclist_baton, attr);
20104
20105 retval.data = dwarf2_find_location_expression (&loclist_baton,
20106 &size, pc);
20107 retval.size = size;
20108 }
20109 else
20110 {
20111 if (!attr_form_is_block (attr))
20112 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20113 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20114 offset.sect_off, objfile_name (per_cu->objfile));
20115
20116 retval.data = DW_BLOCK (attr)->data;
20117 retval.size = DW_BLOCK (attr)->size;
20118 }
20119 retval.per_cu = cu->per_cu;
20120
20121 age_cached_comp_units ();
20122
20123 return retval;
20124 }
20125
20126 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20127 offset. */
20128
20129 struct dwarf2_locexpr_baton
20130 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20131 struct dwarf2_per_cu_data *per_cu,
20132 CORE_ADDR (*get_frame_pc) (void *baton),
20133 void *baton)
20134 {
20135 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20136
20137 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20138 }
20139
20140 /* Write a constant of a given type as target-ordered bytes into
20141 OBSTACK. */
20142
20143 static const gdb_byte *
20144 write_constant_as_bytes (struct obstack *obstack,
20145 enum bfd_endian byte_order,
20146 struct type *type,
20147 ULONGEST value,
20148 LONGEST *len)
20149 {
20150 gdb_byte *result;
20151
20152 *len = TYPE_LENGTH (type);
20153 result = (gdb_byte *) obstack_alloc (obstack, *len);
20154 store_unsigned_integer (result, *len, byte_order, value);
20155
20156 return result;
20157 }
20158
20159 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20160 pointer to the constant bytes and set LEN to the length of the
20161 data. If memory is needed, allocate it on OBSTACK. If the DIE
20162 does not have a DW_AT_const_value, return NULL. */
20163
20164 const gdb_byte *
20165 dwarf2_fetch_constant_bytes (sect_offset offset,
20166 struct dwarf2_per_cu_data *per_cu,
20167 struct obstack *obstack,
20168 LONGEST *len)
20169 {
20170 struct dwarf2_cu *cu;
20171 struct die_info *die;
20172 struct attribute *attr;
20173 const gdb_byte *result = NULL;
20174 struct type *type;
20175 LONGEST value;
20176 enum bfd_endian byte_order;
20177
20178 dw2_setup (per_cu->objfile);
20179
20180 if (per_cu->cu == NULL)
20181 load_cu (per_cu);
20182 cu = per_cu->cu;
20183 if (cu == NULL)
20184 {
20185 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20186 Instead just throw an error, not much else we can do. */
20187 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20188 offset.sect_off, objfile_name (per_cu->objfile));
20189 }
20190
20191 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20192 if (!die)
20193 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20194 offset.sect_off, objfile_name (per_cu->objfile));
20195
20196
20197 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20198 if (attr == NULL)
20199 return NULL;
20200
20201 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20202 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20203
20204 switch (attr->form)
20205 {
20206 case DW_FORM_addr:
20207 case DW_FORM_GNU_addr_index:
20208 {
20209 gdb_byte *tem;
20210
20211 *len = cu->header.addr_size;
20212 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20213 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20214 result = tem;
20215 }
20216 break;
20217 case DW_FORM_string:
20218 case DW_FORM_strp:
20219 case DW_FORM_GNU_str_index:
20220 case DW_FORM_GNU_strp_alt:
20221 /* DW_STRING is already allocated on the objfile obstack, point
20222 directly to it. */
20223 result = (const gdb_byte *) DW_STRING (attr);
20224 *len = strlen (DW_STRING (attr));
20225 break;
20226 case DW_FORM_block1:
20227 case DW_FORM_block2:
20228 case DW_FORM_block4:
20229 case DW_FORM_block:
20230 case DW_FORM_exprloc:
20231 result = DW_BLOCK (attr)->data;
20232 *len = DW_BLOCK (attr)->size;
20233 break;
20234
20235 /* The DW_AT_const_value attributes are supposed to carry the
20236 symbol's value "represented as it would be on the target
20237 architecture." By the time we get here, it's already been
20238 converted to host endianness, so we just need to sign- or
20239 zero-extend it as appropriate. */
20240 case DW_FORM_data1:
20241 type = die_type (die, cu);
20242 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20243 if (result == NULL)
20244 result = write_constant_as_bytes (obstack, byte_order,
20245 type, value, len);
20246 break;
20247 case DW_FORM_data2:
20248 type = die_type (die, cu);
20249 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20250 if (result == NULL)
20251 result = write_constant_as_bytes (obstack, byte_order,
20252 type, value, len);
20253 break;
20254 case DW_FORM_data4:
20255 type = die_type (die, cu);
20256 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20257 if (result == NULL)
20258 result = write_constant_as_bytes (obstack, byte_order,
20259 type, value, len);
20260 break;
20261 case DW_FORM_data8:
20262 type = die_type (die, cu);
20263 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20264 if (result == NULL)
20265 result = write_constant_as_bytes (obstack, byte_order,
20266 type, value, len);
20267 break;
20268
20269 case DW_FORM_sdata:
20270 type = die_type (die, cu);
20271 result = write_constant_as_bytes (obstack, byte_order,
20272 type, DW_SND (attr), len);
20273 break;
20274
20275 case DW_FORM_udata:
20276 type = die_type (die, cu);
20277 result = write_constant_as_bytes (obstack, byte_order,
20278 type, DW_UNSND (attr), len);
20279 break;
20280
20281 default:
20282 complaint (&symfile_complaints,
20283 _("unsupported const value attribute form: '%s'"),
20284 dwarf_form_name (attr->form));
20285 break;
20286 }
20287
20288 return result;
20289 }
20290
20291 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20292 PER_CU. */
20293
20294 struct type *
20295 dwarf2_get_die_type (cu_offset die_offset,
20296 struct dwarf2_per_cu_data *per_cu)
20297 {
20298 sect_offset die_offset_sect;
20299
20300 dw2_setup (per_cu->objfile);
20301
20302 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20303 return get_die_type_at_offset (die_offset_sect, per_cu);
20304 }
20305
20306 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20307 On entry *REF_CU is the CU of SRC_DIE.
20308 On exit *REF_CU is the CU of the result.
20309 Returns NULL if the referenced DIE isn't found. */
20310
20311 static struct die_info *
20312 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20313 struct dwarf2_cu **ref_cu)
20314 {
20315 struct die_info temp_die;
20316 struct dwarf2_cu *sig_cu;
20317 struct die_info *die;
20318
20319 /* While it might be nice to assert sig_type->type == NULL here,
20320 we can get here for DW_AT_imported_declaration where we need
20321 the DIE not the type. */
20322
20323 /* If necessary, add it to the queue and load its DIEs. */
20324
20325 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20326 read_signatured_type (sig_type);
20327
20328 sig_cu = sig_type->per_cu.cu;
20329 gdb_assert (sig_cu != NULL);
20330 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20331 temp_die.offset = sig_type->type_offset_in_section;
20332 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20333 temp_die.offset.sect_off);
20334 if (die)
20335 {
20336 /* For .gdb_index version 7 keep track of included TUs.
20337 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20338 if (dwarf2_per_objfile->index_table != NULL
20339 && dwarf2_per_objfile->index_table->version <= 7)
20340 {
20341 VEC_safe_push (dwarf2_per_cu_ptr,
20342 (*ref_cu)->per_cu->imported_symtabs,
20343 sig_cu->per_cu);
20344 }
20345
20346 *ref_cu = sig_cu;
20347 return die;
20348 }
20349
20350 return NULL;
20351 }
20352
20353 /* Follow signatured type referenced by ATTR in SRC_DIE.
20354 On entry *REF_CU is the CU of SRC_DIE.
20355 On exit *REF_CU is the CU of the result.
20356 The result is the DIE of the type.
20357 If the referenced type cannot be found an error is thrown. */
20358
20359 static struct die_info *
20360 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20361 struct dwarf2_cu **ref_cu)
20362 {
20363 ULONGEST signature = DW_SIGNATURE (attr);
20364 struct signatured_type *sig_type;
20365 struct die_info *die;
20366
20367 gdb_assert (attr->form == DW_FORM_ref_sig8);
20368
20369 sig_type = lookup_signatured_type (*ref_cu, signature);
20370 /* sig_type will be NULL if the signatured type is missing from
20371 the debug info. */
20372 if (sig_type == NULL)
20373 {
20374 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20375 " from DIE at 0x%x [in module %s]"),
20376 hex_string (signature), src_die->offset.sect_off,
20377 objfile_name ((*ref_cu)->objfile));
20378 }
20379
20380 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20381 if (die == NULL)
20382 {
20383 dump_die_for_error (src_die);
20384 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20385 " from DIE at 0x%x [in module %s]"),
20386 hex_string (signature), src_die->offset.sect_off,
20387 objfile_name ((*ref_cu)->objfile));
20388 }
20389
20390 return die;
20391 }
20392
20393 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20394 reading in and processing the type unit if necessary. */
20395
20396 static struct type *
20397 get_signatured_type (struct die_info *die, ULONGEST signature,
20398 struct dwarf2_cu *cu)
20399 {
20400 struct signatured_type *sig_type;
20401 struct dwarf2_cu *type_cu;
20402 struct die_info *type_die;
20403 struct type *type;
20404
20405 sig_type = lookup_signatured_type (cu, signature);
20406 /* sig_type will be NULL if the signatured type is missing from
20407 the debug info. */
20408 if (sig_type == NULL)
20409 {
20410 complaint (&symfile_complaints,
20411 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20412 " from DIE at 0x%x [in module %s]"),
20413 hex_string (signature), die->offset.sect_off,
20414 objfile_name (dwarf2_per_objfile->objfile));
20415 return build_error_marker_type (cu, die);
20416 }
20417
20418 /* If we already know the type we're done. */
20419 if (sig_type->type != NULL)
20420 return sig_type->type;
20421
20422 type_cu = cu;
20423 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20424 if (type_die != NULL)
20425 {
20426 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20427 is created. This is important, for example, because for c++ classes
20428 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20429 type = read_type_die (type_die, type_cu);
20430 if (type == NULL)
20431 {
20432 complaint (&symfile_complaints,
20433 _("Dwarf Error: Cannot build signatured type %s"
20434 " referenced from DIE at 0x%x [in module %s]"),
20435 hex_string (signature), die->offset.sect_off,
20436 objfile_name (dwarf2_per_objfile->objfile));
20437 type = build_error_marker_type (cu, die);
20438 }
20439 }
20440 else
20441 {
20442 complaint (&symfile_complaints,
20443 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20444 " from DIE at 0x%x [in module %s]"),
20445 hex_string (signature), die->offset.sect_off,
20446 objfile_name (dwarf2_per_objfile->objfile));
20447 type = build_error_marker_type (cu, die);
20448 }
20449 sig_type->type = type;
20450
20451 return type;
20452 }
20453
20454 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20455 reading in and processing the type unit if necessary. */
20456
20457 static struct type *
20458 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20459 struct dwarf2_cu *cu) /* ARI: editCase function */
20460 {
20461 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20462 if (attr_form_is_ref (attr))
20463 {
20464 struct dwarf2_cu *type_cu = cu;
20465 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20466
20467 return read_type_die (type_die, type_cu);
20468 }
20469 else if (attr->form == DW_FORM_ref_sig8)
20470 {
20471 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20472 }
20473 else
20474 {
20475 complaint (&symfile_complaints,
20476 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20477 " at 0x%x [in module %s]"),
20478 dwarf_form_name (attr->form), die->offset.sect_off,
20479 objfile_name (dwarf2_per_objfile->objfile));
20480 return build_error_marker_type (cu, die);
20481 }
20482 }
20483
20484 /* Load the DIEs associated with type unit PER_CU into memory. */
20485
20486 static void
20487 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20488 {
20489 struct signatured_type *sig_type;
20490
20491 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20492 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20493
20494 /* We have the per_cu, but we need the signatured_type.
20495 Fortunately this is an easy translation. */
20496 gdb_assert (per_cu->is_debug_types);
20497 sig_type = (struct signatured_type *) per_cu;
20498
20499 gdb_assert (per_cu->cu == NULL);
20500
20501 read_signatured_type (sig_type);
20502
20503 gdb_assert (per_cu->cu != NULL);
20504 }
20505
20506 /* die_reader_func for read_signatured_type.
20507 This is identical to load_full_comp_unit_reader,
20508 but is kept separate for now. */
20509
20510 static void
20511 read_signatured_type_reader (const struct die_reader_specs *reader,
20512 const gdb_byte *info_ptr,
20513 struct die_info *comp_unit_die,
20514 int has_children,
20515 void *data)
20516 {
20517 struct dwarf2_cu *cu = reader->cu;
20518
20519 gdb_assert (cu->die_hash == NULL);
20520 cu->die_hash =
20521 htab_create_alloc_ex (cu->header.length / 12,
20522 die_hash,
20523 die_eq,
20524 NULL,
20525 &cu->comp_unit_obstack,
20526 hashtab_obstack_allocate,
20527 dummy_obstack_deallocate);
20528
20529 if (has_children)
20530 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20531 &info_ptr, comp_unit_die);
20532 cu->dies = comp_unit_die;
20533 /* comp_unit_die is not stored in die_hash, no need. */
20534
20535 /* We try not to read any attributes in this function, because not
20536 all CUs needed for references have been loaded yet, and symbol
20537 table processing isn't initialized. But we have to set the CU language,
20538 or we won't be able to build types correctly.
20539 Similarly, if we do not read the producer, we can not apply
20540 producer-specific interpretation. */
20541 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20542 }
20543
20544 /* Read in a signatured type and build its CU and DIEs.
20545 If the type is a stub for the real type in a DWO file,
20546 read in the real type from the DWO file as well. */
20547
20548 static void
20549 read_signatured_type (struct signatured_type *sig_type)
20550 {
20551 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20552
20553 gdb_assert (per_cu->is_debug_types);
20554 gdb_assert (per_cu->cu == NULL);
20555
20556 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20557 read_signatured_type_reader, NULL);
20558 sig_type->per_cu.tu_read = 1;
20559 }
20560
20561 /* Decode simple location descriptions.
20562 Given a pointer to a dwarf block that defines a location, compute
20563 the location and return the value.
20564
20565 NOTE drow/2003-11-18: This function is called in two situations
20566 now: for the address of static or global variables (partial symbols
20567 only) and for offsets into structures which are expected to be
20568 (more or less) constant. The partial symbol case should go away,
20569 and only the constant case should remain. That will let this
20570 function complain more accurately. A few special modes are allowed
20571 without complaint for global variables (for instance, global
20572 register values and thread-local values).
20573
20574 A location description containing no operations indicates that the
20575 object is optimized out. The return value is 0 for that case.
20576 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20577 callers will only want a very basic result and this can become a
20578 complaint.
20579
20580 Note that stack[0] is unused except as a default error return. */
20581
20582 static CORE_ADDR
20583 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20584 {
20585 struct objfile *objfile = cu->objfile;
20586 size_t i;
20587 size_t size = blk->size;
20588 const gdb_byte *data = blk->data;
20589 CORE_ADDR stack[64];
20590 int stacki;
20591 unsigned int bytes_read, unsnd;
20592 gdb_byte op;
20593
20594 i = 0;
20595 stacki = 0;
20596 stack[stacki] = 0;
20597 stack[++stacki] = 0;
20598
20599 while (i < size)
20600 {
20601 op = data[i++];
20602 switch (op)
20603 {
20604 case DW_OP_lit0:
20605 case DW_OP_lit1:
20606 case DW_OP_lit2:
20607 case DW_OP_lit3:
20608 case DW_OP_lit4:
20609 case DW_OP_lit5:
20610 case DW_OP_lit6:
20611 case DW_OP_lit7:
20612 case DW_OP_lit8:
20613 case DW_OP_lit9:
20614 case DW_OP_lit10:
20615 case DW_OP_lit11:
20616 case DW_OP_lit12:
20617 case DW_OP_lit13:
20618 case DW_OP_lit14:
20619 case DW_OP_lit15:
20620 case DW_OP_lit16:
20621 case DW_OP_lit17:
20622 case DW_OP_lit18:
20623 case DW_OP_lit19:
20624 case DW_OP_lit20:
20625 case DW_OP_lit21:
20626 case DW_OP_lit22:
20627 case DW_OP_lit23:
20628 case DW_OP_lit24:
20629 case DW_OP_lit25:
20630 case DW_OP_lit26:
20631 case DW_OP_lit27:
20632 case DW_OP_lit28:
20633 case DW_OP_lit29:
20634 case DW_OP_lit30:
20635 case DW_OP_lit31:
20636 stack[++stacki] = op - DW_OP_lit0;
20637 break;
20638
20639 case DW_OP_reg0:
20640 case DW_OP_reg1:
20641 case DW_OP_reg2:
20642 case DW_OP_reg3:
20643 case DW_OP_reg4:
20644 case DW_OP_reg5:
20645 case DW_OP_reg6:
20646 case DW_OP_reg7:
20647 case DW_OP_reg8:
20648 case DW_OP_reg9:
20649 case DW_OP_reg10:
20650 case DW_OP_reg11:
20651 case DW_OP_reg12:
20652 case DW_OP_reg13:
20653 case DW_OP_reg14:
20654 case DW_OP_reg15:
20655 case DW_OP_reg16:
20656 case DW_OP_reg17:
20657 case DW_OP_reg18:
20658 case DW_OP_reg19:
20659 case DW_OP_reg20:
20660 case DW_OP_reg21:
20661 case DW_OP_reg22:
20662 case DW_OP_reg23:
20663 case DW_OP_reg24:
20664 case DW_OP_reg25:
20665 case DW_OP_reg26:
20666 case DW_OP_reg27:
20667 case DW_OP_reg28:
20668 case DW_OP_reg29:
20669 case DW_OP_reg30:
20670 case DW_OP_reg31:
20671 stack[++stacki] = op - DW_OP_reg0;
20672 if (i < size)
20673 dwarf2_complex_location_expr_complaint ();
20674 break;
20675
20676 case DW_OP_regx:
20677 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20678 i += bytes_read;
20679 stack[++stacki] = unsnd;
20680 if (i < size)
20681 dwarf2_complex_location_expr_complaint ();
20682 break;
20683
20684 case DW_OP_addr:
20685 stack[++stacki] = read_address (objfile->obfd, &data[i],
20686 cu, &bytes_read);
20687 i += bytes_read;
20688 break;
20689
20690 case DW_OP_const1u:
20691 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20692 i += 1;
20693 break;
20694
20695 case DW_OP_const1s:
20696 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20697 i += 1;
20698 break;
20699
20700 case DW_OP_const2u:
20701 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20702 i += 2;
20703 break;
20704
20705 case DW_OP_const2s:
20706 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20707 i += 2;
20708 break;
20709
20710 case DW_OP_const4u:
20711 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20712 i += 4;
20713 break;
20714
20715 case DW_OP_const4s:
20716 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20717 i += 4;
20718 break;
20719
20720 case DW_OP_const8u:
20721 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20722 i += 8;
20723 break;
20724
20725 case DW_OP_constu:
20726 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20727 &bytes_read);
20728 i += bytes_read;
20729 break;
20730
20731 case DW_OP_consts:
20732 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20733 i += bytes_read;
20734 break;
20735
20736 case DW_OP_dup:
20737 stack[stacki + 1] = stack[stacki];
20738 stacki++;
20739 break;
20740
20741 case DW_OP_plus:
20742 stack[stacki - 1] += stack[stacki];
20743 stacki--;
20744 break;
20745
20746 case DW_OP_plus_uconst:
20747 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20748 &bytes_read);
20749 i += bytes_read;
20750 break;
20751
20752 case DW_OP_minus:
20753 stack[stacki - 1] -= stack[stacki];
20754 stacki--;
20755 break;
20756
20757 case DW_OP_deref:
20758 /* If we're not the last op, then we definitely can't encode
20759 this using GDB's address_class enum. This is valid for partial
20760 global symbols, although the variable's address will be bogus
20761 in the psymtab. */
20762 if (i < size)
20763 dwarf2_complex_location_expr_complaint ();
20764 break;
20765
20766 case DW_OP_GNU_push_tls_address:
20767 /* The top of the stack has the offset from the beginning
20768 of the thread control block at which the variable is located. */
20769 /* Nothing should follow this operator, so the top of stack would
20770 be returned. */
20771 /* This is valid for partial global symbols, but the variable's
20772 address will be bogus in the psymtab. Make it always at least
20773 non-zero to not look as a variable garbage collected by linker
20774 which have DW_OP_addr 0. */
20775 if (i < size)
20776 dwarf2_complex_location_expr_complaint ();
20777 stack[stacki]++;
20778 break;
20779
20780 case DW_OP_GNU_uninit:
20781 break;
20782
20783 case DW_OP_GNU_addr_index:
20784 case DW_OP_GNU_const_index:
20785 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20786 &bytes_read);
20787 i += bytes_read;
20788 break;
20789
20790 default:
20791 {
20792 const char *name = get_DW_OP_name (op);
20793
20794 if (name)
20795 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20796 name);
20797 else
20798 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20799 op);
20800 }
20801
20802 return (stack[stacki]);
20803 }
20804
20805 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20806 outside of the allocated space. Also enforce minimum>0. */
20807 if (stacki >= ARRAY_SIZE (stack) - 1)
20808 {
20809 complaint (&symfile_complaints,
20810 _("location description stack overflow"));
20811 return 0;
20812 }
20813
20814 if (stacki <= 0)
20815 {
20816 complaint (&symfile_complaints,
20817 _("location description stack underflow"));
20818 return 0;
20819 }
20820 }
20821 return (stack[stacki]);
20822 }
20823
20824 /* memory allocation interface */
20825
20826 static struct dwarf_block *
20827 dwarf_alloc_block (struct dwarf2_cu *cu)
20828 {
20829 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
20830 }
20831
20832 static struct die_info *
20833 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20834 {
20835 struct die_info *die;
20836 size_t size = sizeof (struct die_info);
20837
20838 if (num_attrs > 1)
20839 size += (num_attrs - 1) * sizeof (struct attribute);
20840
20841 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20842 memset (die, 0, sizeof (struct die_info));
20843 return (die);
20844 }
20845
20846 \f
20847 /* Macro support. */
20848
20849 /* Return file name relative to the compilation directory of file number I in
20850 *LH's file name table. The result is allocated using xmalloc; the caller is
20851 responsible for freeing it. */
20852
20853 static char *
20854 file_file_name (int file, struct line_header *lh)
20855 {
20856 /* Is the file number a valid index into the line header's file name
20857 table? Remember that file numbers start with one, not zero. */
20858 if (1 <= file && file <= lh->num_file_names)
20859 {
20860 struct file_entry *fe = &lh->file_names[file - 1];
20861
20862 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20863 || lh->include_dirs == NULL)
20864 return xstrdup (fe->name);
20865 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20866 fe->name, (char *) NULL);
20867 }
20868 else
20869 {
20870 /* The compiler produced a bogus file number. We can at least
20871 record the macro definitions made in the file, even if we
20872 won't be able to find the file by name. */
20873 char fake_name[80];
20874
20875 xsnprintf (fake_name, sizeof (fake_name),
20876 "<bad macro file number %d>", file);
20877
20878 complaint (&symfile_complaints,
20879 _("bad file number in macro information (%d)"),
20880 file);
20881
20882 return xstrdup (fake_name);
20883 }
20884 }
20885
20886 /* Return the full name of file number I in *LH's file name table.
20887 Use COMP_DIR as the name of the current directory of the
20888 compilation. The result is allocated using xmalloc; the caller is
20889 responsible for freeing it. */
20890 static char *
20891 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20892 {
20893 /* Is the file number a valid index into the line header's file name
20894 table? Remember that file numbers start with one, not zero. */
20895 if (1 <= file && file <= lh->num_file_names)
20896 {
20897 char *relative = file_file_name (file, lh);
20898
20899 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20900 return relative;
20901 return reconcat (relative, comp_dir, SLASH_STRING,
20902 relative, (char *) NULL);
20903 }
20904 else
20905 return file_file_name (file, lh);
20906 }
20907
20908
20909 static struct macro_source_file *
20910 macro_start_file (int file, int line,
20911 struct macro_source_file *current_file,
20912 struct line_header *lh)
20913 {
20914 /* File name relative to the compilation directory of this source file. */
20915 char *file_name = file_file_name (file, lh);
20916
20917 if (! current_file)
20918 {
20919 /* Note: We don't create a macro table for this compilation unit
20920 at all until we actually get a filename. */
20921 struct macro_table *macro_table = get_macro_table ();
20922
20923 /* If we have no current file, then this must be the start_file
20924 directive for the compilation unit's main source file. */
20925 current_file = macro_set_main (macro_table, file_name);
20926 macro_define_special (macro_table);
20927 }
20928 else
20929 current_file = macro_include (current_file, line, file_name);
20930
20931 xfree (file_name);
20932
20933 return current_file;
20934 }
20935
20936
20937 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20938 followed by a null byte. */
20939 static char *
20940 copy_string (const char *buf, int len)
20941 {
20942 char *s = (char *) xmalloc (len + 1);
20943
20944 memcpy (s, buf, len);
20945 s[len] = '\0';
20946 return s;
20947 }
20948
20949
20950 static const char *
20951 consume_improper_spaces (const char *p, const char *body)
20952 {
20953 if (*p == ' ')
20954 {
20955 complaint (&symfile_complaints,
20956 _("macro definition contains spaces "
20957 "in formal argument list:\n`%s'"),
20958 body);
20959
20960 while (*p == ' ')
20961 p++;
20962 }
20963
20964 return p;
20965 }
20966
20967
20968 static void
20969 parse_macro_definition (struct macro_source_file *file, int line,
20970 const char *body)
20971 {
20972 const char *p;
20973
20974 /* The body string takes one of two forms. For object-like macro
20975 definitions, it should be:
20976
20977 <macro name> " " <definition>
20978
20979 For function-like macro definitions, it should be:
20980
20981 <macro name> "() " <definition>
20982 or
20983 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20984
20985 Spaces may appear only where explicitly indicated, and in the
20986 <definition>.
20987
20988 The Dwarf 2 spec says that an object-like macro's name is always
20989 followed by a space, but versions of GCC around March 2002 omit
20990 the space when the macro's definition is the empty string.
20991
20992 The Dwarf 2 spec says that there should be no spaces between the
20993 formal arguments in a function-like macro's formal argument list,
20994 but versions of GCC around March 2002 include spaces after the
20995 commas. */
20996
20997
20998 /* Find the extent of the macro name. The macro name is terminated
20999 by either a space or null character (for an object-like macro) or
21000 an opening paren (for a function-like macro). */
21001 for (p = body; *p; p++)
21002 if (*p == ' ' || *p == '(')
21003 break;
21004
21005 if (*p == ' ' || *p == '\0')
21006 {
21007 /* It's an object-like macro. */
21008 int name_len = p - body;
21009 char *name = copy_string (body, name_len);
21010 const char *replacement;
21011
21012 if (*p == ' ')
21013 replacement = body + name_len + 1;
21014 else
21015 {
21016 dwarf2_macro_malformed_definition_complaint (body);
21017 replacement = body + name_len;
21018 }
21019
21020 macro_define_object (file, line, name, replacement);
21021
21022 xfree (name);
21023 }
21024 else if (*p == '(')
21025 {
21026 /* It's a function-like macro. */
21027 char *name = copy_string (body, p - body);
21028 int argc = 0;
21029 int argv_size = 1;
21030 char **argv = XNEWVEC (char *, argv_size);
21031
21032 p++;
21033
21034 p = consume_improper_spaces (p, body);
21035
21036 /* Parse the formal argument list. */
21037 while (*p && *p != ')')
21038 {
21039 /* Find the extent of the current argument name. */
21040 const char *arg_start = p;
21041
21042 while (*p && *p != ',' && *p != ')' && *p != ' ')
21043 p++;
21044
21045 if (! *p || p == arg_start)
21046 dwarf2_macro_malformed_definition_complaint (body);
21047 else
21048 {
21049 /* Make sure argv has room for the new argument. */
21050 if (argc >= argv_size)
21051 {
21052 argv_size *= 2;
21053 argv = XRESIZEVEC (char *, argv, argv_size);
21054 }
21055
21056 argv[argc++] = copy_string (arg_start, p - arg_start);
21057 }
21058
21059 p = consume_improper_spaces (p, body);
21060
21061 /* Consume the comma, if present. */
21062 if (*p == ',')
21063 {
21064 p++;
21065
21066 p = consume_improper_spaces (p, body);
21067 }
21068 }
21069
21070 if (*p == ')')
21071 {
21072 p++;
21073
21074 if (*p == ' ')
21075 /* Perfectly formed definition, no complaints. */
21076 macro_define_function (file, line, name,
21077 argc, (const char **) argv,
21078 p + 1);
21079 else if (*p == '\0')
21080 {
21081 /* Complain, but do define it. */
21082 dwarf2_macro_malformed_definition_complaint (body);
21083 macro_define_function (file, line, name,
21084 argc, (const char **) argv,
21085 p);
21086 }
21087 else
21088 /* Just complain. */
21089 dwarf2_macro_malformed_definition_complaint (body);
21090 }
21091 else
21092 /* Just complain. */
21093 dwarf2_macro_malformed_definition_complaint (body);
21094
21095 xfree (name);
21096 {
21097 int i;
21098
21099 for (i = 0; i < argc; i++)
21100 xfree (argv[i]);
21101 }
21102 xfree (argv);
21103 }
21104 else
21105 dwarf2_macro_malformed_definition_complaint (body);
21106 }
21107
21108 /* Skip some bytes from BYTES according to the form given in FORM.
21109 Returns the new pointer. */
21110
21111 static const gdb_byte *
21112 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21113 enum dwarf_form form,
21114 unsigned int offset_size,
21115 struct dwarf2_section_info *section)
21116 {
21117 unsigned int bytes_read;
21118
21119 switch (form)
21120 {
21121 case DW_FORM_data1:
21122 case DW_FORM_flag:
21123 ++bytes;
21124 break;
21125
21126 case DW_FORM_data2:
21127 bytes += 2;
21128 break;
21129
21130 case DW_FORM_data4:
21131 bytes += 4;
21132 break;
21133
21134 case DW_FORM_data8:
21135 bytes += 8;
21136 break;
21137
21138 case DW_FORM_string:
21139 read_direct_string (abfd, bytes, &bytes_read);
21140 bytes += bytes_read;
21141 break;
21142
21143 case DW_FORM_sec_offset:
21144 case DW_FORM_strp:
21145 case DW_FORM_GNU_strp_alt:
21146 bytes += offset_size;
21147 break;
21148
21149 case DW_FORM_block:
21150 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21151 bytes += bytes_read;
21152 break;
21153
21154 case DW_FORM_block1:
21155 bytes += 1 + read_1_byte (abfd, bytes);
21156 break;
21157 case DW_FORM_block2:
21158 bytes += 2 + read_2_bytes (abfd, bytes);
21159 break;
21160 case DW_FORM_block4:
21161 bytes += 4 + read_4_bytes (abfd, bytes);
21162 break;
21163
21164 case DW_FORM_sdata:
21165 case DW_FORM_udata:
21166 case DW_FORM_GNU_addr_index:
21167 case DW_FORM_GNU_str_index:
21168 bytes = gdb_skip_leb128 (bytes, buffer_end);
21169 if (bytes == NULL)
21170 {
21171 dwarf2_section_buffer_overflow_complaint (section);
21172 return NULL;
21173 }
21174 break;
21175
21176 default:
21177 {
21178 complain:
21179 complaint (&symfile_complaints,
21180 _("invalid form 0x%x in `%s'"),
21181 form, get_section_name (section));
21182 return NULL;
21183 }
21184 }
21185
21186 return bytes;
21187 }
21188
21189 /* A helper for dwarf_decode_macros that handles skipping an unknown
21190 opcode. Returns an updated pointer to the macro data buffer; or,
21191 on error, issues a complaint and returns NULL. */
21192
21193 static const gdb_byte *
21194 skip_unknown_opcode (unsigned int opcode,
21195 const gdb_byte **opcode_definitions,
21196 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21197 bfd *abfd,
21198 unsigned int offset_size,
21199 struct dwarf2_section_info *section)
21200 {
21201 unsigned int bytes_read, i;
21202 unsigned long arg;
21203 const gdb_byte *defn;
21204
21205 if (opcode_definitions[opcode] == NULL)
21206 {
21207 complaint (&symfile_complaints,
21208 _("unrecognized DW_MACFINO opcode 0x%x"),
21209 opcode);
21210 return NULL;
21211 }
21212
21213 defn = opcode_definitions[opcode];
21214 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21215 defn += bytes_read;
21216
21217 for (i = 0; i < arg; ++i)
21218 {
21219 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21220 (enum dwarf_form) defn[i], offset_size,
21221 section);
21222 if (mac_ptr == NULL)
21223 {
21224 /* skip_form_bytes already issued the complaint. */
21225 return NULL;
21226 }
21227 }
21228
21229 return mac_ptr;
21230 }
21231
21232 /* A helper function which parses the header of a macro section.
21233 If the macro section is the extended (for now called "GNU") type,
21234 then this updates *OFFSET_SIZE. Returns a pointer to just after
21235 the header, or issues a complaint and returns NULL on error. */
21236
21237 static const gdb_byte *
21238 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21239 bfd *abfd,
21240 const gdb_byte *mac_ptr,
21241 unsigned int *offset_size,
21242 int section_is_gnu)
21243 {
21244 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21245
21246 if (section_is_gnu)
21247 {
21248 unsigned int version, flags;
21249
21250 version = read_2_bytes (abfd, mac_ptr);
21251 if (version != 4)
21252 {
21253 complaint (&symfile_complaints,
21254 _("unrecognized version `%d' in .debug_macro section"),
21255 version);
21256 return NULL;
21257 }
21258 mac_ptr += 2;
21259
21260 flags = read_1_byte (abfd, mac_ptr);
21261 ++mac_ptr;
21262 *offset_size = (flags & 1) ? 8 : 4;
21263
21264 if ((flags & 2) != 0)
21265 /* We don't need the line table offset. */
21266 mac_ptr += *offset_size;
21267
21268 /* Vendor opcode descriptions. */
21269 if ((flags & 4) != 0)
21270 {
21271 unsigned int i, count;
21272
21273 count = read_1_byte (abfd, mac_ptr);
21274 ++mac_ptr;
21275 for (i = 0; i < count; ++i)
21276 {
21277 unsigned int opcode, bytes_read;
21278 unsigned long arg;
21279
21280 opcode = read_1_byte (abfd, mac_ptr);
21281 ++mac_ptr;
21282 opcode_definitions[opcode] = mac_ptr;
21283 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21284 mac_ptr += bytes_read;
21285 mac_ptr += arg;
21286 }
21287 }
21288 }
21289
21290 return mac_ptr;
21291 }
21292
21293 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21294 including DW_MACRO_GNU_transparent_include. */
21295
21296 static void
21297 dwarf_decode_macro_bytes (bfd *abfd,
21298 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21299 struct macro_source_file *current_file,
21300 struct line_header *lh,
21301 struct dwarf2_section_info *section,
21302 int section_is_gnu, int section_is_dwz,
21303 unsigned int offset_size,
21304 htab_t include_hash)
21305 {
21306 struct objfile *objfile = dwarf2_per_objfile->objfile;
21307 enum dwarf_macro_record_type macinfo_type;
21308 int at_commandline;
21309 const gdb_byte *opcode_definitions[256];
21310
21311 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21312 &offset_size, section_is_gnu);
21313 if (mac_ptr == NULL)
21314 {
21315 /* We already issued a complaint. */
21316 return;
21317 }
21318
21319 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21320 GDB is still reading the definitions from command line. First
21321 DW_MACINFO_start_file will need to be ignored as it was already executed
21322 to create CURRENT_FILE for the main source holding also the command line
21323 definitions. On first met DW_MACINFO_start_file this flag is reset to
21324 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21325
21326 at_commandline = 1;
21327
21328 do
21329 {
21330 /* Do we at least have room for a macinfo type byte? */
21331 if (mac_ptr >= mac_end)
21332 {
21333 dwarf2_section_buffer_overflow_complaint (section);
21334 break;
21335 }
21336
21337 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21338 mac_ptr++;
21339
21340 /* Note that we rely on the fact that the corresponding GNU and
21341 DWARF constants are the same. */
21342 switch (macinfo_type)
21343 {
21344 /* A zero macinfo type indicates the end of the macro
21345 information. */
21346 case 0:
21347 break;
21348
21349 case DW_MACRO_GNU_define:
21350 case DW_MACRO_GNU_undef:
21351 case DW_MACRO_GNU_define_indirect:
21352 case DW_MACRO_GNU_undef_indirect:
21353 case DW_MACRO_GNU_define_indirect_alt:
21354 case DW_MACRO_GNU_undef_indirect_alt:
21355 {
21356 unsigned int bytes_read;
21357 int line;
21358 const char *body;
21359 int is_define;
21360
21361 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21362 mac_ptr += bytes_read;
21363
21364 if (macinfo_type == DW_MACRO_GNU_define
21365 || macinfo_type == DW_MACRO_GNU_undef)
21366 {
21367 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21368 mac_ptr += bytes_read;
21369 }
21370 else
21371 {
21372 LONGEST str_offset;
21373
21374 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21375 mac_ptr += offset_size;
21376
21377 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21378 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21379 || section_is_dwz)
21380 {
21381 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21382
21383 body = read_indirect_string_from_dwz (dwz, str_offset);
21384 }
21385 else
21386 body = read_indirect_string_at_offset (abfd, str_offset);
21387 }
21388
21389 is_define = (macinfo_type == DW_MACRO_GNU_define
21390 || macinfo_type == DW_MACRO_GNU_define_indirect
21391 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21392 if (! current_file)
21393 {
21394 /* DWARF violation as no main source is present. */
21395 complaint (&symfile_complaints,
21396 _("debug info with no main source gives macro %s "
21397 "on line %d: %s"),
21398 is_define ? _("definition") : _("undefinition"),
21399 line, body);
21400 break;
21401 }
21402 if ((line == 0 && !at_commandline)
21403 || (line != 0 && at_commandline))
21404 complaint (&symfile_complaints,
21405 _("debug info gives %s macro %s with %s line %d: %s"),
21406 at_commandline ? _("command-line") : _("in-file"),
21407 is_define ? _("definition") : _("undefinition"),
21408 line == 0 ? _("zero") : _("non-zero"), line, body);
21409
21410 if (is_define)
21411 parse_macro_definition (current_file, line, body);
21412 else
21413 {
21414 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21415 || macinfo_type == DW_MACRO_GNU_undef_indirect
21416 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21417 macro_undef (current_file, line, body);
21418 }
21419 }
21420 break;
21421
21422 case DW_MACRO_GNU_start_file:
21423 {
21424 unsigned int bytes_read;
21425 int line, file;
21426
21427 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21428 mac_ptr += bytes_read;
21429 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21430 mac_ptr += bytes_read;
21431
21432 if ((line == 0 && !at_commandline)
21433 || (line != 0 && at_commandline))
21434 complaint (&symfile_complaints,
21435 _("debug info gives source %d included "
21436 "from %s at %s line %d"),
21437 file, at_commandline ? _("command-line") : _("file"),
21438 line == 0 ? _("zero") : _("non-zero"), line);
21439
21440 if (at_commandline)
21441 {
21442 /* This DW_MACRO_GNU_start_file was executed in the
21443 pass one. */
21444 at_commandline = 0;
21445 }
21446 else
21447 current_file = macro_start_file (file, line, current_file, lh);
21448 }
21449 break;
21450
21451 case DW_MACRO_GNU_end_file:
21452 if (! current_file)
21453 complaint (&symfile_complaints,
21454 _("macro debug info has an unmatched "
21455 "`close_file' directive"));
21456 else
21457 {
21458 current_file = current_file->included_by;
21459 if (! current_file)
21460 {
21461 enum dwarf_macro_record_type next_type;
21462
21463 /* GCC circa March 2002 doesn't produce the zero
21464 type byte marking the end of the compilation
21465 unit. Complain if it's not there, but exit no
21466 matter what. */
21467
21468 /* Do we at least have room for a macinfo type byte? */
21469 if (mac_ptr >= mac_end)
21470 {
21471 dwarf2_section_buffer_overflow_complaint (section);
21472 return;
21473 }
21474
21475 /* We don't increment mac_ptr here, so this is just
21476 a look-ahead. */
21477 next_type
21478 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21479 mac_ptr);
21480 if (next_type != 0)
21481 complaint (&symfile_complaints,
21482 _("no terminating 0-type entry for "
21483 "macros in `.debug_macinfo' section"));
21484
21485 return;
21486 }
21487 }
21488 break;
21489
21490 case DW_MACRO_GNU_transparent_include:
21491 case DW_MACRO_GNU_transparent_include_alt:
21492 {
21493 LONGEST offset;
21494 void **slot;
21495 bfd *include_bfd = abfd;
21496 struct dwarf2_section_info *include_section = section;
21497 const gdb_byte *include_mac_end = mac_end;
21498 int is_dwz = section_is_dwz;
21499 const gdb_byte *new_mac_ptr;
21500
21501 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21502 mac_ptr += offset_size;
21503
21504 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21505 {
21506 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21507
21508 dwarf2_read_section (objfile, &dwz->macro);
21509
21510 include_section = &dwz->macro;
21511 include_bfd = get_section_bfd_owner (include_section);
21512 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21513 is_dwz = 1;
21514 }
21515
21516 new_mac_ptr = include_section->buffer + offset;
21517 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21518
21519 if (*slot != NULL)
21520 {
21521 /* This has actually happened; see
21522 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21523 complaint (&symfile_complaints,
21524 _("recursive DW_MACRO_GNU_transparent_include in "
21525 ".debug_macro section"));
21526 }
21527 else
21528 {
21529 *slot = (void *) new_mac_ptr;
21530
21531 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21532 include_mac_end, current_file, lh,
21533 section, section_is_gnu, is_dwz,
21534 offset_size, include_hash);
21535
21536 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21537 }
21538 }
21539 break;
21540
21541 case DW_MACINFO_vendor_ext:
21542 if (!section_is_gnu)
21543 {
21544 unsigned int bytes_read;
21545 int constant;
21546
21547 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21548 mac_ptr += bytes_read;
21549 read_direct_string (abfd, mac_ptr, &bytes_read);
21550 mac_ptr += bytes_read;
21551
21552 /* We don't recognize any vendor extensions. */
21553 break;
21554 }
21555 /* FALLTHROUGH */
21556
21557 default:
21558 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21559 mac_ptr, mac_end, abfd, offset_size,
21560 section);
21561 if (mac_ptr == NULL)
21562 return;
21563 break;
21564 }
21565 } while (macinfo_type != 0);
21566 }
21567
21568 static void
21569 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21570 int section_is_gnu)
21571 {
21572 struct objfile *objfile = dwarf2_per_objfile->objfile;
21573 struct line_header *lh = cu->line_header;
21574 bfd *abfd;
21575 const gdb_byte *mac_ptr, *mac_end;
21576 struct macro_source_file *current_file = 0;
21577 enum dwarf_macro_record_type macinfo_type;
21578 unsigned int offset_size = cu->header.offset_size;
21579 const gdb_byte *opcode_definitions[256];
21580 struct cleanup *cleanup;
21581 htab_t include_hash;
21582 void **slot;
21583 struct dwarf2_section_info *section;
21584 const char *section_name;
21585
21586 if (cu->dwo_unit != NULL)
21587 {
21588 if (section_is_gnu)
21589 {
21590 section = &cu->dwo_unit->dwo_file->sections.macro;
21591 section_name = ".debug_macro.dwo";
21592 }
21593 else
21594 {
21595 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21596 section_name = ".debug_macinfo.dwo";
21597 }
21598 }
21599 else
21600 {
21601 if (section_is_gnu)
21602 {
21603 section = &dwarf2_per_objfile->macro;
21604 section_name = ".debug_macro";
21605 }
21606 else
21607 {
21608 section = &dwarf2_per_objfile->macinfo;
21609 section_name = ".debug_macinfo";
21610 }
21611 }
21612
21613 dwarf2_read_section (objfile, section);
21614 if (section->buffer == NULL)
21615 {
21616 complaint (&symfile_complaints, _("missing %s section"), section_name);
21617 return;
21618 }
21619 abfd = get_section_bfd_owner (section);
21620
21621 /* First pass: Find the name of the base filename.
21622 This filename is needed in order to process all macros whose definition
21623 (or undefinition) comes from the command line. These macros are defined
21624 before the first DW_MACINFO_start_file entry, and yet still need to be
21625 associated to the base file.
21626
21627 To determine the base file name, we scan the macro definitions until we
21628 reach the first DW_MACINFO_start_file entry. We then initialize
21629 CURRENT_FILE accordingly so that any macro definition found before the
21630 first DW_MACINFO_start_file can still be associated to the base file. */
21631
21632 mac_ptr = section->buffer + offset;
21633 mac_end = section->buffer + section->size;
21634
21635 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21636 &offset_size, section_is_gnu);
21637 if (mac_ptr == NULL)
21638 {
21639 /* We already issued a complaint. */
21640 return;
21641 }
21642
21643 do
21644 {
21645 /* Do we at least have room for a macinfo type byte? */
21646 if (mac_ptr >= mac_end)
21647 {
21648 /* Complaint is printed during the second pass as GDB will probably
21649 stop the first pass earlier upon finding
21650 DW_MACINFO_start_file. */
21651 break;
21652 }
21653
21654 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21655 mac_ptr++;
21656
21657 /* Note that we rely on the fact that the corresponding GNU and
21658 DWARF constants are the same. */
21659 switch (macinfo_type)
21660 {
21661 /* A zero macinfo type indicates the end of the macro
21662 information. */
21663 case 0:
21664 break;
21665
21666 case DW_MACRO_GNU_define:
21667 case DW_MACRO_GNU_undef:
21668 /* Only skip the data by MAC_PTR. */
21669 {
21670 unsigned int bytes_read;
21671
21672 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21673 mac_ptr += bytes_read;
21674 read_direct_string (abfd, mac_ptr, &bytes_read);
21675 mac_ptr += bytes_read;
21676 }
21677 break;
21678
21679 case DW_MACRO_GNU_start_file:
21680 {
21681 unsigned int bytes_read;
21682 int line, file;
21683
21684 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21685 mac_ptr += bytes_read;
21686 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21687 mac_ptr += bytes_read;
21688
21689 current_file = macro_start_file (file, line, current_file, lh);
21690 }
21691 break;
21692
21693 case DW_MACRO_GNU_end_file:
21694 /* No data to skip by MAC_PTR. */
21695 break;
21696
21697 case DW_MACRO_GNU_define_indirect:
21698 case DW_MACRO_GNU_undef_indirect:
21699 case DW_MACRO_GNU_define_indirect_alt:
21700 case DW_MACRO_GNU_undef_indirect_alt:
21701 {
21702 unsigned int bytes_read;
21703
21704 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21705 mac_ptr += bytes_read;
21706 mac_ptr += offset_size;
21707 }
21708 break;
21709
21710 case DW_MACRO_GNU_transparent_include:
21711 case DW_MACRO_GNU_transparent_include_alt:
21712 /* Note that, according to the spec, a transparent include
21713 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21714 skip this opcode. */
21715 mac_ptr += offset_size;
21716 break;
21717
21718 case DW_MACINFO_vendor_ext:
21719 /* Only skip the data by MAC_PTR. */
21720 if (!section_is_gnu)
21721 {
21722 unsigned int bytes_read;
21723
21724 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21725 mac_ptr += bytes_read;
21726 read_direct_string (abfd, mac_ptr, &bytes_read);
21727 mac_ptr += bytes_read;
21728 }
21729 /* FALLTHROUGH */
21730
21731 default:
21732 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21733 mac_ptr, mac_end, abfd, offset_size,
21734 section);
21735 if (mac_ptr == NULL)
21736 return;
21737 break;
21738 }
21739 } while (macinfo_type != 0 && current_file == NULL);
21740
21741 /* Second pass: Process all entries.
21742
21743 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21744 command-line macro definitions/undefinitions. This flag is unset when we
21745 reach the first DW_MACINFO_start_file entry. */
21746
21747 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21748 NULL, xcalloc, xfree);
21749 cleanup = make_cleanup_htab_delete (include_hash);
21750 mac_ptr = section->buffer + offset;
21751 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21752 *slot = (void *) mac_ptr;
21753 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21754 current_file, lh, section,
21755 section_is_gnu, 0, offset_size, include_hash);
21756 do_cleanups (cleanup);
21757 }
21758
21759 /* Check if the attribute's form is a DW_FORM_block*
21760 if so return true else false. */
21761
21762 static int
21763 attr_form_is_block (const struct attribute *attr)
21764 {
21765 return (attr == NULL ? 0 :
21766 attr->form == DW_FORM_block1
21767 || attr->form == DW_FORM_block2
21768 || attr->form == DW_FORM_block4
21769 || attr->form == DW_FORM_block
21770 || attr->form == DW_FORM_exprloc);
21771 }
21772
21773 /* Return non-zero if ATTR's value is a section offset --- classes
21774 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21775 You may use DW_UNSND (attr) to retrieve such offsets.
21776
21777 Section 7.5.4, "Attribute Encodings", explains that no attribute
21778 may have a value that belongs to more than one of these classes; it
21779 would be ambiguous if we did, because we use the same forms for all
21780 of them. */
21781
21782 static int
21783 attr_form_is_section_offset (const struct attribute *attr)
21784 {
21785 return (attr->form == DW_FORM_data4
21786 || attr->form == DW_FORM_data8
21787 || attr->form == DW_FORM_sec_offset);
21788 }
21789
21790 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21791 zero otherwise. When this function returns true, you can apply
21792 dwarf2_get_attr_constant_value to it.
21793
21794 However, note that for some attributes you must check
21795 attr_form_is_section_offset before using this test. DW_FORM_data4
21796 and DW_FORM_data8 are members of both the constant class, and of
21797 the classes that contain offsets into other debug sections
21798 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21799 that, if an attribute's can be either a constant or one of the
21800 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21801 taken as section offsets, not constants. */
21802
21803 static int
21804 attr_form_is_constant (const struct attribute *attr)
21805 {
21806 switch (attr->form)
21807 {
21808 case DW_FORM_sdata:
21809 case DW_FORM_udata:
21810 case DW_FORM_data1:
21811 case DW_FORM_data2:
21812 case DW_FORM_data4:
21813 case DW_FORM_data8:
21814 return 1;
21815 default:
21816 return 0;
21817 }
21818 }
21819
21820
21821 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21822 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21823
21824 static int
21825 attr_form_is_ref (const struct attribute *attr)
21826 {
21827 switch (attr->form)
21828 {
21829 case DW_FORM_ref_addr:
21830 case DW_FORM_ref1:
21831 case DW_FORM_ref2:
21832 case DW_FORM_ref4:
21833 case DW_FORM_ref8:
21834 case DW_FORM_ref_udata:
21835 case DW_FORM_GNU_ref_alt:
21836 return 1;
21837 default:
21838 return 0;
21839 }
21840 }
21841
21842 /* Return the .debug_loc section to use for CU.
21843 For DWO files use .debug_loc.dwo. */
21844
21845 static struct dwarf2_section_info *
21846 cu_debug_loc_section (struct dwarf2_cu *cu)
21847 {
21848 if (cu->dwo_unit)
21849 return &cu->dwo_unit->dwo_file->sections.loc;
21850 return &dwarf2_per_objfile->loc;
21851 }
21852
21853 /* A helper function that fills in a dwarf2_loclist_baton. */
21854
21855 static void
21856 fill_in_loclist_baton (struct dwarf2_cu *cu,
21857 struct dwarf2_loclist_baton *baton,
21858 const struct attribute *attr)
21859 {
21860 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21861
21862 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21863
21864 baton->per_cu = cu->per_cu;
21865 gdb_assert (baton->per_cu);
21866 /* We don't know how long the location list is, but make sure we
21867 don't run off the edge of the section. */
21868 baton->size = section->size - DW_UNSND (attr);
21869 baton->data = section->buffer + DW_UNSND (attr);
21870 baton->base_address = cu->base_address;
21871 baton->from_dwo = cu->dwo_unit != NULL;
21872 }
21873
21874 static void
21875 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21876 struct dwarf2_cu *cu, int is_block)
21877 {
21878 struct objfile *objfile = dwarf2_per_objfile->objfile;
21879 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21880
21881 if (attr_form_is_section_offset (attr)
21882 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21883 the section. If so, fall through to the complaint in the
21884 other branch. */
21885 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21886 {
21887 struct dwarf2_loclist_baton *baton;
21888
21889 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
21890
21891 fill_in_loclist_baton (cu, baton, attr);
21892
21893 if (cu->base_known == 0)
21894 complaint (&symfile_complaints,
21895 _("Location list used without "
21896 "specifying the CU base address."));
21897
21898 SYMBOL_ACLASS_INDEX (sym) = (is_block
21899 ? dwarf2_loclist_block_index
21900 : dwarf2_loclist_index);
21901 SYMBOL_LOCATION_BATON (sym) = baton;
21902 }
21903 else
21904 {
21905 struct dwarf2_locexpr_baton *baton;
21906
21907 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
21908 baton->per_cu = cu->per_cu;
21909 gdb_assert (baton->per_cu);
21910
21911 if (attr_form_is_block (attr))
21912 {
21913 /* Note that we're just copying the block's data pointer
21914 here, not the actual data. We're still pointing into the
21915 info_buffer for SYM's objfile; right now we never release
21916 that buffer, but when we do clean up properly this may
21917 need to change. */
21918 baton->size = DW_BLOCK (attr)->size;
21919 baton->data = DW_BLOCK (attr)->data;
21920 }
21921 else
21922 {
21923 dwarf2_invalid_attrib_class_complaint ("location description",
21924 SYMBOL_NATURAL_NAME (sym));
21925 baton->size = 0;
21926 }
21927
21928 SYMBOL_ACLASS_INDEX (sym) = (is_block
21929 ? dwarf2_locexpr_block_index
21930 : dwarf2_locexpr_index);
21931 SYMBOL_LOCATION_BATON (sym) = baton;
21932 }
21933 }
21934
21935 /* Return the OBJFILE associated with the compilation unit CU. If CU
21936 came from a separate debuginfo file, then the master objfile is
21937 returned. */
21938
21939 struct objfile *
21940 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21941 {
21942 struct objfile *objfile = per_cu->objfile;
21943
21944 /* Return the master objfile, so that we can report and look up the
21945 correct file containing this variable. */
21946 if (objfile->separate_debug_objfile_backlink)
21947 objfile = objfile->separate_debug_objfile_backlink;
21948
21949 return objfile;
21950 }
21951
21952 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21953 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21954 CU_HEADERP first. */
21955
21956 static const struct comp_unit_head *
21957 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21958 struct dwarf2_per_cu_data *per_cu)
21959 {
21960 const gdb_byte *info_ptr;
21961
21962 if (per_cu->cu)
21963 return &per_cu->cu->header;
21964
21965 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21966
21967 memset (cu_headerp, 0, sizeof (*cu_headerp));
21968 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21969
21970 return cu_headerp;
21971 }
21972
21973 /* Return the address size given in the compilation unit header for CU. */
21974
21975 int
21976 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21977 {
21978 struct comp_unit_head cu_header_local;
21979 const struct comp_unit_head *cu_headerp;
21980
21981 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21982
21983 return cu_headerp->addr_size;
21984 }
21985
21986 /* Return the offset size given in the compilation unit header for CU. */
21987
21988 int
21989 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21990 {
21991 struct comp_unit_head cu_header_local;
21992 const struct comp_unit_head *cu_headerp;
21993
21994 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21995
21996 return cu_headerp->offset_size;
21997 }
21998
21999 /* See its dwarf2loc.h declaration. */
22000
22001 int
22002 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22003 {
22004 struct comp_unit_head cu_header_local;
22005 const struct comp_unit_head *cu_headerp;
22006
22007 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22008
22009 if (cu_headerp->version == 2)
22010 return cu_headerp->addr_size;
22011 else
22012 return cu_headerp->offset_size;
22013 }
22014
22015 /* Return the text offset of the CU. The returned offset comes from
22016 this CU's objfile. If this objfile came from a separate debuginfo
22017 file, then the offset may be different from the corresponding
22018 offset in the parent objfile. */
22019
22020 CORE_ADDR
22021 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22022 {
22023 struct objfile *objfile = per_cu->objfile;
22024
22025 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22026 }
22027
22028 /* Locate the .debug_info compilation unit from CU's objfile which contains
22029 the DIE at OFFSET. Raises an error on failure. */
22030
22031 static struct dwarf2_per_cu_data *
22032 dwarf2_find_containing_comp_unit (sect_offset offset,
22033 unsigned int offset_in_dwz,
22034 struct objfile *objfile)
22035 {
22036 struct dwarf2_per_cu_data *this_cu;
22037 int low, high;
22038 const sect_offset *cu_off;
22039
22040 low = 0;
22041 high = dwarf2_per_objfile->n_comp_units - 1;
22042 while (high > low)
22043 {
22044 struct dwarf2_per_cu_data *mid_cu;
22045 int mid = low + (high - low) / 2;
22046
22047 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22048 cu_off = &mid_cu->offset;
22049 if (mid_cu->is_dwz > offset_in_dwz
22050 || (mid_cu->is_dwz == offset_in_dwz
22051 && cu_off->sect_off >= offset.sect_off))
22052 high = mid;
22053 else
22054 low = mid + 1;
22055 }
22056 gdb_assert (low == high);
22057 this_cu = dwarf2_per_objfile->all_comp_units[low];
22058 cu_off = &this_cu->offset;
22059 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22060 {
22061 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22062 error (_("Dwarf Error: could not find partial DIE containing "
22063 "offset 0x%lx [in module %s]"),
22064 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22065
22066 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22067 <= offset.sect_off);
22068 return dwarf2_per_objfile->all_comp_units[low-1];
22069 }
22070 else
22071 {
22072 this_cu = dwarf2_per_objfile->all_comp_units[low];
22073 if (low == dwarf2_per_objfile->n_comp_units - 1
22074 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22075 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22076 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22077 return this_cu;
22078 }
22079 }
22080
22081 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22082
22083 static void
22084 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22085 {
22086 memset (cu, 0, sizeof (*cu));
22087 per_cu->cu = cu;
22088 cu->per_cu = per_cu;
22089 cu->objfile = per_cu->objfile;
22090 obstack_init (&cu->comp_unit_obstack);
22091 }
22092
22093 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22094
22095 static void
22096 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22097 enum language pretend_language)
22098 {
22099 struct attribute *attr;
22100
22101 /* Set the language we're debugging. */
22102 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22103 if (attr)
22104 set_cu_language (DW_UNSND (attr), cu);
22105 else
22106 {
22107 cu->language = pretend_language;
22108 cu->language_defn = language_def (cu->language);
22109 }
22110
22111 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22112 }
22113
22114 /* Release one cached compilation unit, CU. We unlink it from the tree
22115 of compilation units, but we don't remove it from the read_in_chain;
22116 the caller is responsible for that.
22117 NOTE: DATA is a void * because this function is also used as a
22118 cleanup routine. */
22119
22120 static void
22121 free_heap_comp_unit (void *data)
22122 {
22123 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22124
22125 gdb_assert (cu->per_cu != NULL);
22126 cu->per_cu->cu = NULL;
22127 cu->per_cu = NULL;
22128
22129 obstack_free (&cu->comp_unit_obstack, NULL);
22130
22131 xfree (cu);
22132 }
22133
22134 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22135 when we're finished with it. We can't free the pointer itself, but be
22136 sure to unlink it from the cache. Also release any associated storage. */
22137
22138 static void
22139 free_stack_comp_unit (void *data)
22140 {
22141 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22142
22143 gdb_assert (cu->per_cu != NULL);
22144 cu->per_cu->cu = NULL;
22145 cu->per_cu = NULL;
22146
22147 obstack_free (&cu->comp_unit_obstack, NULL);
22148 cu->partial_dies = NULL;
22149 }
22150
22151 /* Free all cached compilation units. */
22152
22153 static void
22154 free_cached_comp_units (void *data)
22155 {
22156 struct dwarf2_per_cu_data *per_cu, **last_chain;
22157
22158 per_cu = dwarf2_per_objfile->read_in_chain;
22159 last_chain = &dwarf2_per_objfile->read_in_chain;
22160 while (per_cu != NULL)
22161 {
22162 struct dwarf2_per_cu_data *next_cu;
22163
22164 next_cu = per_cu->cu->read_in_chain;
22165
22166 free_heap_comp_unit (per_cu->cu);
22167 *last_chain = next_cu;
22168
22169 per_cu = next_cu;
22170 }
22171 }
22172
22173 /* Increase the age counter on each cached compilation unit, and free
22174 any that are too old. */
22175
22176 static void
22177 age_cached_comp_units (void)
22178 {
22179 struct dwarf2_per_cu_data *per_cu, **last_chain;
22180
22181 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22182 per_cu = dwarf2_per_objfile->read_in_chain;
22183 while (per_cu != NULL)
22184 {
22185 per_cu->cu->last_used ++;
22186 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22187 dwarf2_mark (per_cu->cu);
22188 per_cu = per_cu->cu->read_in_chain;
22189 }
22190
22191 per_cu = dwarf2_per_objfile->read_in_chain;
22192 last_chain = &dwarf2_per_objfile->read_in_chain;
22193 while (per_cu != NULL)
22194 {
22195 struct dwarf2_per_cu_data *next_cu;
22196
22197 next_cu = per_cu->cu->read_in_chain;
22198
22199 if (!per_cu->cu->mark)
22200 {
22201 free_heap_comp_unit (per_cu->cu);
22202 *last_chain = next_cu;
22203 }
22204 else
22205 last_chain = &per_cu->cu->read_in_chain;
22206
22207 per_cu = next_cu;
22208 }
22209 }
22210
22211 /* Remove a single compilation unit from the cache. */
22212
22213 static void
22214 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22215 {
22216 struct dwarf2_per_cu_data *per_cu, **last_chain;
22217
22218 per_cu = dwarf2_per_objfile->read_in_chain;
22219 last_chain = &dwarf2_per_objfile->read_in_chain;
22220 while (per_cu != NULL)
22221 {
22222 struct dwarf2_per_cu_data *next_cu;
22223
22224 next_cu = per_cu->cu->read_in_chain;
22225
22226 if (per_cu == target_per_cu)
22227 {
22228 free_heap_comp_unit (per_cu->cu);
22229 per_cu->cu = NULL;
22230 *last_chain = next_cu;
22231 break;
22232 }
22233 else
22234 last_chain = &per_cu->cu->read_in_chain;
22235
22236 per_cu = next_cu;
22237 }
22238 }
22239
22240 /* Release all extra memory associated with OBJFILE. */
22241
22242 void
22243 dwarf2_free_objfile (struct objfile *objfile)
22244 {
22245 dwarf2_per_objfile
22246 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22247 dwarf2_objfile_data_key);
22248
22249 if (dwarf2_per_objfile == NULL)
22250 return;
22251
22252 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22253 free_cached_comp_units (NULL);
22254
22255 if (dwarf2_per_objfile->quick_file_names_table)
22256 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22257
22258 if (dwarf2_per_objfile->line_header_hash)
22259 htab_delete (dwarf2_per_objfile->line_header_hash);
22260
22261 /* Everything else should be on the objfile obstack. */
22262 }
22263
22264 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22265 We store these in a hash table separate from the DIEs, and preserve them
22266 when the DIEs are flushed out of cache.
22267
22268 The CU "per_cu" pointer is needed because offset alone is not enough to
22269 uniquely identify the type. A file may have multiple .debug_types sections,
22270 or the type may come from a DWO file. Furthermore, while it's more logical
22271 to use per_cu->section+offset, with Fission the section with the data is in
22272 the DWO file but we don't know that section at the point we need it.
22273 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22274 because we can enter the lookup routine, get_die_type_at_offset, from
22275 outside this file, and thus won't necessarily have PER_CU->cu.
22276 Fortunately, PER_CU is stable for the life of the objfile. */
22277
22278 struct dwarf2_per_cu_offset_and_type
22279 {
22280 const struct dwarf2_per_cu_data *per_cu;
22281 sect_offset offset;
22282 struct type *type;
22283 };
22284
22285 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22286
22287 static hashval_t
22288 per_cu_offset_and_type_hash (const void *item)
22289 {
22290 const struct dwarf2_per_cu_offset_and_type *ofs
22291 = (const struct dwarf2_per_cu_offset_and_type *) item;
22292
22293 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22294 }
22295
22296 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22297
22298 static int
22299 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22300 {
22301 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22302 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22303 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22304 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22305
22306 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22307 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22308 }
22309
22310 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22311 table if necessary. For convenience, return TYPE.
22312
22313 The DIEs reading must have careful ordering to:
22314 * Not cause infite loops trying to read in DIEs as a prerequisite for
22315 reading current DIE.
22316 * Not trying to dereference contents of still incompletely read in types
22317 while reading in other DIEs.
22318 * Enable referencing still incompletely read in types just by a pointer to
22319 the type without accessing its fields.
22320
22321 Therefore caller should follow these rules:
22322 * Try to fetch any prerequisite types we may need to build this DIE type
22323 before building the type and calling set_die_type.
22324 * After building type call set_die_type for current DIE as soon as
22325 possible before fetching more types to complete the current type.
22326 * Make the type as complete as possible before fetching more types. */
22327
22328 static struct type *
22329 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22330 {
22331 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22332 struct objfile *objfile = cu->objfile;
22333 struct attribute *attr;
22334 struct dynamic_prop prop;
22335
22336 /* For Ada types, make sure that the gnat-specific data is always
22337 initialized (if not already set). There are a few types where
22338 we should not be doing so, because the type-specific area is
22339 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22340 where the type-specific area is used to store the floatformat).
22341 But this is not a problem, because the gnat-specific information
22342 is actually not needed for these types. */
22343 if (need_gnat_info (cu)
22344 && TYPE_CODE (type) != TYPE_CODE_FUNC
22345 && TYPE_CODE (type) != TYPE_CODE_FLT
22346 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22347 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22348 && TYPE_CODE (type) != TYPE_CODE_METHOD
22349 && !HAVE_GNAT_AUX_INFO (type))
22350 INIT_GNAT_SPECIFIC (type);
22351
22352 /* Read DW_AT_allocated and set in type. */
22353 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22354 if (attr_form_is_block (attr))
22355 {
22356 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22357 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22358 }
22359 else if (attr != NULL)
22360 {
22361 complaint (&symfile_complaints,
22362 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22363 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22364 die->offset.sect_off);
22365 }
22366
22367 /* Read DW_AT_associated and set in type. */
22368 attr = dwarf2_attr (die, DW_AT_associated, cu);
22369 if (attr_form_is_block (attr))
22370 {
22371 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22372 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22373 }
22374 else if (attr != NULL)
22375 {
22376 complaint (&symfile_complaints,
22377 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22378 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22379 die->offset.sect_off);
22380 }
22381
22382 /* Read DW_AT_data_location and set in type. */
22383 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22384 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22385 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22386
22387 if (dwarf2_per_objfile->die_type_hash == NULL)
22388 {
22389 dwarf2_per_objfile->die_type_hash =
22390 htab_create_alloc_ex (127,
22391 per_cu_offset_and_type_hash,
22392 per_cu_offset_and_type_eq,
22393 NULL,
22394 &objfile->objfile_obstack,
22395 hashtab_obstack_allocate,
22396 dummy_obstack_deallocate);
22397 }
22398
22399 ofs.per_cu = cu->per_cu;
22400 ofs.offset = die->offset;
22401 ofs.type = type;
22402 slot = (struct dwarf2_per_cu_offset_and_type **)
22403 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22404 if (*slot)
22405 complaint (&symfile_complaints,
22406 _("A problem internal to GDB: DIE 0x%x has type already set"),
22407 die->offset.sect_off);
22408 *slot = XOBNEW (&objfile->objfile_obstack,
22409 struct dwarf2_per_cu_offset_and_type);
22410 **slot = ofs;
22411 return type;
22412 }
22413
22414 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22415 or return NULL if the die does not have a saved type. */
22416
22417 static struct type *
22418 get_die_type_at_offset (sect_offset offset,
22419 struct dwarf2_per_cu_data *per_cu)
22420 {
22421 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22422
22423 if (dwarf2_per_objfile->die_type_hash == NULL)
22424 return NULL;
22425
22426 ofs.per_cu = per_cu;
22427 ofs.offset = offset;
22428 slot = ((struct dwarf2_per_cu_offset_and_type *)
22429 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
22430 if (slot)
22431 return slot->type;
22432 else
22433 return NULL;
22434 }
22435
22436 /* Look up the type for DIE in CU in die_type_hash,
22437 or return NULL if DIE does not have a saved type. */
22438
22439 static struct type *
22440 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22441 {
22442 return get_die_type_at_offset (die->offset, cu->per_cu);
22443 }
22444
22445 /* Add a dependence relationship from CU to REF_PER_CU. */
22446
22447 static void
22448 dwarf2_add_dependence (struct dwarf2_cu *cu,
22449 struct dwarf2_per_cu_data *ref_per_cu)
22450 {
22451 void **slot;
22452
22453 if (cu->dependencies == NULL)
22454 cu->dependencies
22455 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22456 NULL, &cu->comp_unit_obstack,
22457 hashtab_obstack_allocate,
22458 dummy_obstack_deallocate);
22459
22460 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22461 if (*slot == NULL)
22462 *slot = ref_per_cu;
22463 }
22464
22465 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22466 Set the mark field in every compilation unit in the
22467 cache that we must keep because we are keeping CU. */
22468
22469 static int
22470 dwarf2_mark_helper (void **slot, void *data)
22471 {
22472 struct dwarf2_per_cu_data *per_cu;
22473
22474 per_cu = (struct dwarf2_per_cu_data *) *slot;
22475
22476 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22477 reading of the chain. As such dependencies remain valid it is not much
22478 useful to track and undo them during QUIT cleanups. */
22479 if (per_cu->cu == NULL)
22480 return 1;
22481
22482 if (per_cu->cu->mark)
22483 return 1;
22484 per_cu->cu->mark = 1;
22485
22486 if (per_cu->cu->dependencies != NULL)
22487 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22488
22489 return 1;
22490 }
22491
22492 /* Set the mark field in CU and in every other compilation unit in the
22493 cache that we must keep because we are keeping CU. */
22494
22495 static void
22496 dwarf2_mark (struct dwarf2_cu *cu)
22497 {
22498 if (cu->mark)
22499 return;
22500 cu->mark = 1;
22501 if (cu->dependencies != NULL)
22502 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22503 }
22504
22505 static void
22506 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22507 {
22508 while (per_cu)
22509 {
22510 per_cu->cu->mark = 0;
22511 per_cu = per_cu->cu->read_in_chain;
22512 }
22513 }
22514
22515 /* Trivial hash function for partial_die_info: the hash value of a DIE
22516 is its offset in .debug_info for this objfile. */
22517
22518 static hashval_t
22519 partial_die_hash (const void *item)
22520 {
22521 const struct partial_die_info *part_die
22522 = (const struct partial_die_info *) item;
22523
22524 return part_die->offset.sect_off;
22525 }
22526
22527 /* Trivial comparison function for partial_die_info structures: two DIEs
22528 are equal if they have the same offset. */
22529
22530 static int
22531 partial_die_eq (const void *item_lhs, const void *item_rhs)
22532 {
22533 const struct partial_die_info *part_die_lhs
22534 = (const struct partial_die_info *) item_lhs;
22535 const struct partial_die_info *part_die_rhs
22536 = (const struct partial_die_info *) item_rhs;
22537
22538 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22539 }
22540
22541 static struct cmd_list_element *set_dwarf_cmdlist;
22542 static struct cmd_list_element *show_dwarf_cmdlist;
22543
22544 static void
22545 set_dwarf_cmd (char *args, int from_tty)
22546 {
22547 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22548 gdb_stdout);
22549 }
22550
22551 static void
22552 show_dwarf_cmd (char *args, int from_tty)
22553 {
22554 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22555 }
22556
22557 /* Free data associated with OBJFILE, if necessary. */
22558
22559 static void
22560 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22561 {
22562 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
22563 int ix;
22564
22565 /* Make sure we don't accidentally use dwarf2_per_objfile while
22566 cleaning up. */
22567 dwarf2_per_objfile = NULL;
22568
22569 for (ix = 0; ix < data->n_comp_units; ++ix)
22570 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22571
22572 for (ix = 0; ix < data->n_type_units; ++ix)
22573 VEC_free (dwarf2_per_cu_ptr,
22574 data->all_type_units[ix]->per_cu.imported_symtabs);
22575 xfree (data->all_type_units);
22576
22577 VEC_free (dwarf2_section_info_def, data->types);
22578
22579 if (data->dwo_files)
22580 free_dwo_files (data->dwo_files, objfile);
22581 if (data->dwp_file)
22582 gdb_bfd_unref (data->dwp_file->dbfd);
22583
22584 if (data->dwz_file && data->dwz_file->dwz_bfd)
22585 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22586 }
22587
22588 \f
22589 /* The "save gdb-index" command. */
22590
22591 /* The contents of the hash table we create when building the string
22592 table. */
22593 struct strtab_entry
22594 {
22595 offset_type offset;
22596 const char *str;
22597 };
22598
22599 /* Hash function for a strtab_entry.
22600
22601 Function is used only during write_hash_table so no index format backward
22602 compatibility is needed. */
22603
22604 static hashval_t
22605 hash_strtab_entry (const void *e)
22606 {
22607 const struct strtab_entry *entry = (const struct strtab_entry *) e;
22608 return mapped_index_string_hash (INT_MAX, entry->str);
22609 }
22610
22611 /* Equality function for a strtab_entry. */
22612
22613 static int
22614 eq_strtab_entry (const void *a, const void *b)
22615 {
22616 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22617 const struct strtab_entry *eb = (const struct strtab_entry *) b;
22618 return !strcmp (ea->str, eb->str);
22619 }
22620
22621 /* Create a strtab_entry hash table. */
22622
22623 static htab_t
22624 create_strtab (void)
22625 {
22626 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22627 xfree, xcalloc, xfree);
22628 }
22629
22630 /* Add a string to the constant pool. Return the string's offset in
22631 host order. */
22632
22633 static offset_type
22634 add_string (htab_t table, struct obstack *cpool, const char *str)
22635 {
22636 void **slot;
22637 struct strtab_entry entry;
22638 struct strtab_entry *result;
22639
22640 entry.str = str;
22641 slot = htab_find_slot (table, &entry, INSERT);
22642 if (*slot)
22643 result = (struct strtab_entry *) *slot;
22644 else
22645 {
22646 result = XNEW (struct strtab_entry);
22647 result->offset = obstack_object_size (cpool);
22648 result->str = str;
22649 obstack_grow_str0 (cpool, str);
22650 *slot = result;
22651 }
22652 return result->offset;
22653 }
22654
22655 /* An entry in the symbol table. */
22656 struct symtab_index_entry
22657 {
22658 /* The name of the symbol. */
22659 const char *name;
22660 /* The offset of the name in the constant pool. */
22661 offset_type index_offset;
22662 /* A sorted vector of the indices of all the CUs that hold an object
22663 of this name. */
22664 VEC (offset_type) *cu_indices;
22665 };
22666
22667 /* The symbol table. This is a power-of-2-sized hash table. */
22668 struct mapped_symtab
22669 {
22670 offset_type n_elements;
22671 offset_type size;
22672 struct symtab_index_entry **data;
22673 };
22674
22675 /* Hash function for a symtab_index_entry. */
22676
22677 static hashval_t
22678 hash_symtab_entry (const void *e)
22679 {
22680 const struct symtab_index_entry *entry
22681 = (const struct symtab_index_entry *) e;
22682 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22683 sizeof (offset_type) * VEC_length (offset_type,
22684 entry->cu_indices),
22685 0);
22686 }
22687
22688 /* Equality function for a symtab_index_entry. */
22689
22690 static int
22691 eq_symtab_entry (const void *a, const void *b)
22692 {
22693 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22694 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
22695 int len = VEC_length (offset_type, ea->cu_indices);
22696 if (len != VEC_length (offset_type, eb->cu_indices))
22697 return 0;
22698 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22699 VEC_address (offset_type, eb->cu_indices),
22700 sizeof (offset_type) * len);
22701 }
22702
22703 /* Destroy a symtab_index_entry. */
22704
22705 static void
22706 delete_symtab_entry (void *p)
22707 {
22708 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
22709 VEC_free (offset_type, entry->cu_indices);
22710 xfree (entry);
22711 }
22712
22713 /* Create a hash table holding symtab_index_entry objects. */
22714
22715 static htab_t
22716 create_symbol_hash_table (void)
22717 {
22718 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22719 delete_symtab_entry, xcalloc, xfree);
22720 }
22721
22722 /* Create a new mapped symtab object. */
22723
22724 static struct mapped_symtab *
22725 create_mapped_symtab (void)
22726 {
22727 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22728 symtab->n_elements = 0;
22729 symtab->size = 1024;
22730 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22731 return symtab;
22732 }
22733
22734 /* Destroy a mapped_symtab. */
22735
22736 static void
22737 cleanup_mapped_symtab (void *p)
22738 {
22739 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
22740 /* The contents of the array are freed when the other hash table is
22741 destroyed. */
22742 xfree (symtab->data);
22743 xfree (symtab);
22744 }
22745
22746 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22747 the slot.
22748
22749 Function is used only during write_hash_table so no index format backward
22750 compatibility is needed. */
22751
22752 static struct symtab_index_entry **
22753 find_slot (struct mapped_symtab *symtab, const char *name)
22754 {
22755 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22756
22757 index = hash & (symtab->size - 1);
22758 step = ((hash * 17) & (symtab->size - 1)) | 1;
22759
22760 for (;;)
22761 {
22762 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22763 return &symtab->data[index];
22764 index = (index + step) & (symtab->size - 1);
22765 }
22766 }
22767
22768 /* Expand SYMTAB's hash table. */
22769
22770 static void
22771 hash_expand (struct mapped_symtab *symtab)
22772 {
22773 offset_type old_size = symtab->size;
22774 offset_type i;
22775 struct symtab_index_entry **old_entries = symtab->data;
22776
22777 symtab->size *= 2;
22778 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22779
22780 for (i = 0; i < old_size; ++i)
22781 {
22782 if (old_entries[i])
22783 {
22784 struct symtab_index_entry **slot = find_slot (symtab,
22785 old_entries[i]->name);
22786 *slot = old_entries[i];
22787 }
22788 }
22789
22790 xfree (old_entries);
22791 }
22792
22793 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22794 CU_INDEX is the index of the CU in which the symbol appears.
22795 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22796
22797 static void
22798 add_index_entry (struct mapped_symtab *symtab, const char *name,
22799 int is_static, gdb_index_symbol_kind kind,
22800 offset_type cu_index)
22801 {
22802 struct symtab_index_entry **slot;
22803 offset_type cu_index_and_attrs;
22804
22805 ++symtab->n_elements;
22806 if (4 * symtab->n_elements / 3 >= symtab->size)
22807 hash_expand (symtab);
22808
22809 slot = find_slot (symtab, name);
22810 if (!*slot)
22811 {
22812 *slot = XNEW (struct symtab_index_entry);
22813 (*slot)->name = name;
22814 /* index_offset is set later. */
22815 (*slot)->cu_indices = NULL;
22816 }
22817
22818 cu_index_and_attrs = 0;
22819 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22820 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22821 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22822
22823 /* We don't want to record an index value twice as we want to avoid the
22824 duplication.
22825 We process all global symbols and then all static symbols
22826 (which would allow us to avoid the duplication by only having to check
22827 the last entry pushed), but a symbol could have multiple kinds in one CU.
22828 To keep things simple we don't worry about the duplication here and
22829 sort and uniqufy the list after we've processed all symbols. */
22830 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22831 }
22832
22833 /* qsort helper routine for uniquify_cu_indices. */
22834
22835 static int
22836 offset_type_compare (const void *ap, const void *bp)
22837 {
22838 offset_type a = *(offset_type *) ap;
22839 offset_type b = *(offset_type *) bp;
22840
22841 return (a > b) - (b > a);
22842 }
22843
22844 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22845
22846 static void
22847 uniquify_cu_indices (struct mapped_symtab *symtab)
22848 {
22849 int i;
22850
22851 for (i = 0; i < symtab->size; ++i)
22852 {
22853 struct symtab_index_entry *entry = symtab->data[i];
22854
22855 if (entry
22856 && entry->cu_indices != NULL)
22857 {
22858 unsigned int next_to_insert, next_to_check;
22859 offset_type last_value;
22860
22861 qsort (VEC_address (offset_type, entry->cu_indices),
22862 VEC_length (offset_type, entry->cu_indices),
22863 sizeof (offset_type), offset_type_compare);
22864
22865 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22866 next_to_insert = 1;
22867 for (next_to_check = 1;
22868 next_to_check < VEC_length (offset_type, entry->cu_indices);
22869 ++next_to_check)
22870 {
22871 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22872 != last_value)
22873 {
22874 last_value = VEC_index (offset_type, entry->cu_indices,
22875 next_to_check);
22876 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22877 last_value);
22878 ++next_to_insert;
22879 }
22880 }
22881 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22882 }
22883 }
22884 }
22885
22886 /* Add a vector of indices to the constant pool. */
22887
22888 static offset_type
22889 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22890 struct symtab_index_entry *entry)
22891 {
22892 void **slot;
22893
22894 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22895 if (!*slot)
22896 {
22897 offset_type len = VEC_length (offset_type, entry->cu_indices);
22898 offset_type val = MAYBE_SWAP (len);
22899 offset_type iter;
22900 int i;
22901
22902 *slot = entry;
22903 entry->index_offset = obstack_object_size (cpool);
22904
22905 obstack_grow (cpool, &val, sizeof (val));
22906 for (i = 0;
22907 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22908 ++i)
22909 {
22910 val = MAYBE_SWAP (iter);
22911 obstack_grow (cpool, &val, sizeof (val));
22912 }
22913 }
22914 else
22915 {
22916 struct symtab_index_entry *old_entry
22917 = (struct symtab_index_entry *) *slot;
22918 entry->index_offset = old_entry->index_offset;
22919 entry = old_entry;
22920 }
22921 return entry->index_offset;
22922 }
22923
22924 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22925 constant pool entries going into the obstack CPOOL. */
22926
22927 static void
22928 write_hash_table (struct mapped_symtab *symtab,
22929 struct obstack *output, struct obstack *cpool)
22930 {
22931 offset_type i;
22932 htab_t symbol_hash_table;
22933 htab_t str_table;
22934
22935 symbol_hash_table = create_symbol_hash_table ();
22936 str_table = create_strtab ();
22937
22938 /* We add all the index vectors to the constant pool first, to
22939 ensure alignment is ok. */
22940 for (i = 0; i < symtab->size; ++i)
22941 {
22942 if (symtab->data[i])
22943 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22944 }
22945
22946 /* Now write out the hash table. */
22947 for (i = 0; i < symtab->size; ++i)
22948 {
22949 offset_type str_off, vec_off;
22950
22951 if (symtab->data[i])
22952 {
22953 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22954 vec_off = symtab->data[i]->index_offset;
22955 }
22956 else
22957 {
22958 /* While 0 is a valid constant pool index, it is not valid
22959 to have 0 for both offsets. */
22960 str_off = 0;
22961 vec_off = 0;
22962 }
22963
22964 str_off = MAYBE_SWAP (str_off);
22965 vec_off = MAYBE_SWAP (vec_off);
22966
22967 obstack_grow (output, &str_off, sizeof (str_off));
22968 obstack_grow (output, &vec_off, sizeof (vec_off));
22969 }
22970
22971 htab_delete (str_table);
22972 htab_delete (symbol_hash_table);
22973 }
22974
22975 /* Struct to map psymtab to CU index in the index file. */
22976 struct psymtab_cu_index_map
22977 {
22978 struct partial_symtab *psymtab;
22979 unsigned int cu_index;
22980 };
22981
22982 static hashval_t
22983 hash_psymtab_cu_index (const void *item)
22984 {
22985 const struct psymtab_cu_index_map *map
22986 = (const struct psymtab_cu_index_map *) item;
22987
22988 return htab_hash_pointer (map->psymtab);
22989 }
22990
22991 static int
22992 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22993 {
22994 const struct psymtab_cu_index_map *lhs
22995 = (const struct psymtab_cu_index_map *) item_lhs;
22996 const struct psymtab_cu_index_map *rhs
22997 = (const struct psymtab_cu_index_map *) item_rhs;
22998
22999 return lhs->psymtab == rhs->psymtab;
23000 }
23001
23002 /* Helper struct for building the address table. */
23003 struct addrmap_index_data
23004 {
23005 struct objfile *objfile;
23006 struct obstack *addr_obstack;
23007 htab_t cu_index_htab;
23008
23009 /* Non-zero if the previous_* fields are valid.
23010 We can't write an entry until we see the next entry (since it is only then
23011 that we know the end of the entry). */
23012 int previous_valid;
23013 /* Index of the CU in the table of all CUs in the index file. */
23014 unsigned int previous_cu_index;
23015 /* Start address of the CU. */
23016 CORE_ADDR previous_cu_start;
23017 };
23018
23019 /* Write an address entry to OBSTACK. */
23020
23021 static void
23022 add_address_entry (struct objfile *objfile, struct obstack *obstack,
23023 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23024 {
23025 offset_type cu_index_to_write;
23026 gdb_byte addr[8];
23027 CORE_ADDR baseaddr;
23028
23029 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23030
23031 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23032 obstack_grow (obstack, addr, 8);
23033 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23034 obstack_grow (obstack, addr, 8);
23035 cu_index_to_write = MAYBE_SWAP (cu_index);
23036 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23037 }
23038
23039 /* Worker function for traversing an addrmap to build the address table. */
23040
23041 static int
23042 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23043 {
23044 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23045 struct partial_symtab *pst = (struct partial_symtab *) obj;
23046
23047 if (data->previous_valid)
23048 add_address_entry (data->objfile, data->addr_obstack,
23049 data->previous_cu_start, start_addr,
23050 data->previous_cu_index);
23051
23052 data->previous_cu_start = start_addr;
23053 if (pst != NULL)
23054 {
23055 struct psymtab_cu_index_map find_map, *map;
23056 find_map.psymtab = pst;
23057 map = ((struct psymtab_cu_index_map *)
23058 htab_find (data->cu_index_htab, &find_map));
23059 gdb_assert (map != NULL);
23060 data->previous_cu_index = map->cu_index;
23061 data->previous_valid = 1;
23062 }
23063 else
23064 data->previous_valid = 0;
23065
23066 return 0;
23067 }
23068
23069 /* Write OBJFILE's address map to OBSTACK.
23070 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23071 in the index file. */
23072
23073 static void
23074 write_address_map (struct objfile *objfile, struct obstack *obstack,
23075 htab_t cu_index_htab)
23076 {
23077 struct addrmap_index_data addrmap_index_data;
23078
23079 /* When writing the address table, we have to cope with the fact that
23080 the addrmap iterator only provides the start of a region; we have to
23081 wait until the next invocation to get the start of the next region. */
23082
23083 addrmap_index_data.objfile = objfile;
23084 addrmap_index_data.addr_obstack = obstack;
23085 addrmap_index_data.cu_index_htab = cu_index_htab;
23086 addrmap_index_data.previous_valid = 0;
23087
23088 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23089 &addrmap_index_data);
23090
23091 /* It's highly unlikely the last entry (end address = 0xff...ff)
23092 is valid, but we should still handle it.
23093 The end address is recorded as the start of the next region, but that
23094 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23095 anyway. */
23096 if (addrmap_index_data.previous_valid)
23097 add_address_entry (objfile, obstack,
23098 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23099 addrmap_index_data.previous_cu_index);
23100 }
23101
23102 /* Return the symbol kind of PSYM. */
23103
23104 static gdb_index_symbol_kind
23105 symbol_kind (struct partial_symbol *psym)
23106 {
23107 domain_enum domain = PSYMBOL_DOMAIN (psym);
23108 enum address_class aclass = PSYMBOL_CLASS (psym);
23109
23110 switch (domain)
23111 {
23112 case VAR_DOMAIN:
23113 switch (aclass)
23114 {
23115 case LOC_BLOCK:
23116 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23117 case LOC_TYPEDEF:
23118 return GDB_INDEX_SYMBOL_KIND_TYPE;
23119 case LOC_COMPUTED:
23120 case LOC_CONST_BYTES:
23121 case LOC_OPTIMIZED_OUT:
23122 case LOC_STATIC:
23123 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23124 case LOC_CONST:
23125 /* Note: It's currently impossible to recognize psyms as enum values
23126 short of reading the type info. For now punt. */
23127 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23128 default:
23129 /* There are other LOC_FOO values that one might want to classify
23130 as variables, but dwarf2read.c doesn't currently use them. */
23131 return GDB_INDEX_SYMBOL_KIND_OTHER;
23132 }
23133 case STRUCT_DOMAIN:
23134 return GDB_INDEX_SYMBOL_KIND_TYPE;
23135 default:
23136 return GDB_INDEX_SYMBOL_KIND_OTHER;
23137 }
23138 }
23139
23140 /* Add a list of partial symbols to SYMTAB. */
23141
23142 static void
23143 write_psymbols (struct mapped_symtab *symtab,
23144 htab_t psyms_seen,
23145 struct partial_symbol **psymp,
23146 int count,
23147 offset_type cu_index,
23148 int is_static)
23149 {
23150 for (; count-- > 0; ++psymp)
23151 {
23152 struct partial_symbol *psym = *psymp;
23153 void **slot;
23154
23155 if (SYMBOL_LANGUAGE (psym) == language_ada)
23156 error (_("Ada is not currently supported by the index"));
23157
23158 /* Only add a given psymbol once. */
23159 slot = htab_find_slot (psyms_seen, psym, INSERT);
23160 if (!*slot)
23161 {
23162 gdb_index_symbol_kind kind = symbol_kind (psym);
23163
23164 *slot = psym;
23165 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23166 is_static, kind, cu_index);
23167 }
23168 }
23169 }
23170
23171 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23172 exception if there is an error. */
23173
23174 static void
23175 write_obstack (FILE *file, struct obstack *obstack)
23176 {
23177 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23178 file)
23179 != obstack_object_size (obstack))
23180 error (_("couldn't data write to file"));
23181 }
23182
23183 /* Unlink a file if the argument is not NULL. */
23184
23185 static void
23186 unlink_if_set (void *p)
23187 {
23188 char **filename = (char **) p;
23189 if (*filename)
23190 unlink (*filename);
23191 }
23192
23193 /* A helper struct used when iterating over debug_types. */
23194 struct signatured_type_index_data
23195 {
23196 struct objfile *objfile;
23197 struct mapped_symtab *symtab;
23198 struct obstack *types_list;
23199 htab_t psyms_seen;
23200 int cu_index;
23201 };
23202
23203 /* A helper function that writes a single signatured_type to an
23204 obstack. */
23205
23206 static int
23207 write_one_signatured_type (void **slot, void *d)
23208 {
23209 struct signatured_type_index_data *info
23210 = (struct signatured_type_index_data *) d;
23211 struct signatured_type *entry = (struct signatured_type *) *slot;
23212 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23213 gdb_byte val[8];
23214
23215 write_psymbols (info->symtab,
23216 info->psyms_seen,
23217 info->objfile->global_psymbols.list
23218 + psymtab->globals_offset,
23219 psymtab->n_global_syms, info->cu_index,
23220 0);
23221 write_psymbols (info->symtab,
23222 info->psyms_seen,
23223 info->objfile->static_psymbols.list
23224 + psymtab->statics_offset,
23225 psymtab->n_static_syms, info->cu_index,
23226 1);
23227
23228 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23229 entry->per_cu.offset.sect_off);
23230 obstack_grow (info->types_list, val, 8);
23231 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23232 entry->type_offset_in_tu.cu_off);
23233 obstack_grow (info->types_list, val, 8);
23234 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23235 obstack_grow (info->types_list, val, 8);
23236
23237 ++info->cu_index;
23238
23239 return 1;
23240 }
23241
23242 /* Recurse into all "included" dependencies and write their symbols as
23243 if they appeared in this psymtab. */
23244
23245 static void
23246 recursively_write_psymbols (struct objfile *objfile,
23247 struct partial_symtab *psymtab,
23248 struct mapped_symtab *symtab,
23249 htab_t psyms_seen,
23250 offset_type cu_index)
23251 {
23252 int i;
23253
23254 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23255 if (psymtab->dependencies[i]->user != NULL)
23256 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23257 symtab, psyms_seen, cu_index);
23258
23259 write_psymbols (symtab,
23260 psyms_seen,
23261 objfile->global_psymbols.list + psymtab->globals_offset,
23262 psymtab->n_global_syms, cu_index,
23263 0);
23264 write_psymbols (symtab,
23265 psyms_seen,
23266 objfile->static_psymbols.list + psymtab->statics_offset,
23267 psymtab->n_static_syms, cu_index,
23268 1);
23269 }
23270
23271 /* Create an index file for OBJFILE in the directory DIR. */
23272
23273 static void
23274 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23275 {
23276 struct cleanup *cleanup;
23277 char *filename, *cleanup_filename;
23278 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23279 struct obstack cu_list, types_cu_list;
23280 int i;
23281 FILE *out_file;
23282 struct mapped_symtab *symtab;
23283 offset_type val, size_of_contents, total_len;
23284 struct stat st;
23285 htab_t psyms_seen;
23286 htab_t cu_index_htab;
23287 struct psymtab_cu_index_map *psymtab_cu_index_map;
23288
23289 if (dwarf2_per_objfile->using_index)
23290 error (_("Cannot use an index to create the index"));
23291
23292 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23293 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23294
23295 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23296 return;
23297
23298 if (stat (objfile_name (objfile), &st) < 0)
23299 perror_with_name (objfile_name (objfile));
23300
23301 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23302 INDEX_SUFFIX, (char *) NULL);
23303 cleanup = make_cleanup (xfree, filename);
23304
23305 out_file = gdb_fopen_cloexec (filename, "wb");
23306 if (!out_file)
23307 error (_("Can't open `%s' for writing"), filename);
23308
23309 cleanup_filename = filename;
23310 make_cleanup (unlink_if_set, &cleanup_filename);
23311
23312 symtab = create_mapped_symtab ();
23313 make_cleanup (cleanup_mapped_symtab, symtab);
23314
23315 obstack_init (&addr_obstack);
23316 make_cleanup_obstack_free (&addr_obstack);
23317
23318 obstack_init (&cu_list);
23319 make_cleanup_obstack_free (&cu_list);
23320
23321 obstack_init (&types_cu_list);
23322 make_cleanup_obstack_free (&types_cu_list);
23323
23324 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23325 NULL, xcalloc, xfree);
23326 make_cleanup_htab_delete (psyms_seen);
23327
23328 /* While we're scanning CU's create a table that maps a psymtab pointer
23329 (which is what addrmap records) to its index (which is what is recorded
23330 in the index file). This will later be needed to write the address
23331 table. */
23332 cu_index_htab = htab_create_alloc (100,
23333 hash_psymtab_cu_index,
23334 eq_psymtab_cu_index,
23335 NULL, xcalloc, xfree);
23336 make_cleanup_htab_delete (cu_index_htab);
23337 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23338 dwarf2_per_objfile->n_comp_units);
23339 make_cleanup (xfree, psymtab_cu_index_map);
23340
23341 /* The CU list is already sorted, so we don't need to do additional
23342 work here. Also, the debug_types entries do not appear in
23343 all_comp_units, but only in their own hash table. */
23344 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23345 {
23346 struct dwarf2_per_cu_data *per_cu
23347 = dwarf2_per_objfile->all_comp_units[i];
23348 struct partial_symtab *psymtab = per_cu->v.psymtab;
23349 gdb_byte val[8];
23350 struct psymtab_cu_index_map *map;
23351 void **slot;
23352
23353 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23354 It may be referenced from a local scope but in such case it does not
23355 need to be present in .gdb_index. */
23356 if (psymtab == NULL)
23357 continue;
23358
23359 if (psymtab->user == NULL)
23360 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23361
23362 map = &psymtab_cu_index_map[i];
23363 map->psymtab = psymtab;
23364 map->cu_index = i;
23365 slot = htab_find_slot (cu_index_htab, map, INSERT);
23366 gdb_assert (slot != NULL);
23367 gdb_assert (*slot == NULL);
23368 *slot = map;
23369
23370 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23371 per_cu->offset.sect_off);
23372 obstack_grow (&cu_list, val, 8);
23373 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23374 obstack_grow (&cu_list, val, 8);
23375 }
23376
23377 /* Dump the address map. */
23378 write_address_map (objfile, &addr_obstack, cu_index_htab);
23379
23380 /* Write out the .debug_type entries, if any. */
23381 if (dwarf2_per_objfile->signatured_types)
23382 {
23383 struct signatured_type_index_data sig_data;
23384
23385 sig_data.objfile = objfile;
23386 sig_data.symtab = symtab;
23387 sig_data.types_list = &types_cu_list;
23388 sig_data.psyms_seen = psyms_seen;
23389 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23390 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23391 write_one_signatured_type, &sig_data);
23392 }
23393
23394 /* Now that we've processed all symbols we can shrink their cu_indices
23395 lists. */
23396 uniquify_cu_indices (symtab);
23397
23398 obstack_init (&constant_pool);
23399 make_cleanup_obstack_free (&constant_pool);
23400 obstack_init (&symtab_obstack);
23401 make_cleanup_obstack_free (&symtab_obstack);
23402 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23403
23404 obstack_init (&contents);
23405 make_cleanup_obstack_free (&contents);
23406 size_of_contents = 6 * sizeof (offset_type);
23407 total_len = size_of_contents;
23408
23409 /* The version number. */
23410 val = MAYBE_SWAP (8);
23411 obstack_grow (&contents, &val, sizeof (val));
23412
23413 /* The offset of the CU list from the start of the file. */
23414 val = MAYBE_SWAP (total_len);
23415 obstack_grow (&contents, &val, sizeof (val));
23416 total_len += obstack_object_size (&cu_list);
23417
23418 /* The offset of the types CU list from the start of the file. */
23419 val = MAYBE_SWAP (total_len);
23420 obstack_grow (&contents, &val, sizeof (val));
23421 total_len += obstack_object_size (&types_cu_list);
23422
23423 /* The offset of the address table from the start of the file. */
23424 val = MAYBE_SWAP (total_len);
23425 obstack_grow (&contents, &val, sizeof (val));
23426 total_len += obstack_object_size (&addr_obstack);
23427
23428 /* The offset of the symbol table from the start of the file. */
23429 val = MAYBE_SWAP (total_len);
23430 obstack_grow (&contents, &val, sizeof (val));
23431 total_len += obstack_object_size (&symtab_obstack);
23432
23433 /* The offset of the constant pool from the start of the file. */
23434 val = MAYBE_SWAP (total_len);
23435 obstack_grow (&contents, &val, sizeof (val));
23436 total_len += obstack_object_size (&constant_pool);
23437
23438 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23439
23440 write_obstack (out_file, &contents);
23441 write_obstack (out_file, &cu_list);
23442 write_obstack (out_file, &types_cu_list);
23443 write_obstack (out_file, &addr_obstack);
23444 write_obstack (out_file, &symtab_obstack);
23445 write_obstack (out_file, &constant_pool);
23446
23447 fclose (out_file);
23448
23449 /* We want to keep the file, so we set cleanup_filename to NULL
23450 here. See unlink_if_set. */
23451 cleanup_filename = NULL;
23452
23453 do_cleanups (cleanup);
23454 }
23455
23456 /* Implementation of the `save gdb-index' command.
23457
23458 Note that the file format used by this command is documented in the
23459 GDB manual. Any changes here must be documented there. */
23460
23461 static void
23462 save_gdb_index_command (char *arg, int from_tty)
23463 {
23464 struct objfile *objfile;
23465
23466 if (!arg || !*arg)
23467 error (_("usage: save gdb-index DIRECTORY"));
23468
23469 ALL_OBJFILES (objfile)
23470 {
23471 struct stat st;
23472
23473 /* If the objfile does not correspond to an actual file, skip it. */
23474 if (stat (objfile_name (objfile), &st) < 0)
23475 continue;
23476
23477 dwarf2_per_objfile
23478 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23479 dwarf2_objfile_data_key);
23480 if (dwarf2_per_objfile)
23481 {
23482
23483 TRY
23484 {
23485 write_psymtabs_to_index (objfile, arg);
23486 }
23487 CATCH (except, RETURN_MASK_ERROR)
23488 {
23489 exception_fprintf (gdb_stderr, except,
23490 _("Error while writing index for `%s': "),
23491 objfile_name (objfile));
23492 }
23493 END_CATCH
23494 }
23495 }
23496 }
23497
23498 \f
23499
23500 int dwarf_always_disassemble;
23501
23502 static void
23503 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23504 struct cmd_list_element *c, const char *value)
23505 {
23506 fprintf_filtered (file,
23507 _("Whether to always disassemble "
23508 "DWARF expressions is %s.\n"),
23509 value);
23510 }
23511
23512 static void
23513 show_check_physname (struct ui_file *file, int from_tty,
23514 struct cmd_list_element *c, const char *value)
23515 {
23516 fprintf_filtered (file,
23517 _("Whether to check \"physname\" is %s.\n"),
23518 value);
23519 }
23520
23521 void _initialize_dwarf2_read (void);
23522
23523 void
23524 _initialize_dwarf2_read (void)
23525 {
23526 struct cmd_list_element *c;
23527
23528 dwarf2_objfile_data_key
23529 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23530
23531 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23532 Set DWARF specific variables.\n\
23533 Configure DWARF variables such as the cache size"),
23534 &set_dwarf_cmdlist, "maintenance set dwarf ",
23535 0/*allow-unknown*/, &maintenance_set_cmdlist);
23536
23537 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23538 Show DWARF specific variables\n\
23539 Show DWARF variables such as the cache size"),
23540 &show_dwarf_cmdlist, "maintenance show dwarf ",
23541 0/*allow-unknown*/, &maintenance_show_cmdlist);
23542
23543 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23544 &dwarf_max_cache_age, _("\
23545 Set the upper bound on the age of cached DWARF compilation units."), _("\
23546 Show the upper bound on the age of cached DWARF compilation units."), _("\
23547 A higher limit means that cached compilation units will be stored\n\
23548 in memory longer, and more total memory will be used. Zero disables\n\
23549 caching, which can slow down startup."),
23550 NULL,
23551 show_dwarf_max_cache_age,
23552 &set_dwarf_cmdlist,
23553 &show_dwarf_cmdlist);
23554
23555 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23556 &dwarf_always_disassemble, _("\
23557 Set whether `info address' always disassembles DWARF expressions."), _("\
23558 Show whether `info address' always disassembles DWARF expressions."), _("\
23559 When enabled, DWARF expressions are always printed in an assembly-like\n\
23560 syntax. When disabled, expressions will be printed in a more\n\
23561 conversational style, when possible."),
23562 NULL,
23563 show_dwarf_always_disassemble,
23564 &set_dwarf_cmdlist,
23565 &show_dwarf_cmdlist);
23566
23567 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23568 Set debugging of the DWARF reader."), _("\
23569 Show debugging of the DWARF reader."), _("\
23570 When enabled (non-zero), debugging messages are printed during DWARF\n\
23571 reading and symtab expansion. A value of 1 (one) provides basic\n\
23572 information. A value greater than 1 provides more verbose information."),
23573 NULL,
23574 NULL,
23575 &setdebuglist, &showdebuglist);
23576
23577 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23578 Set debugging of the DWARF DIE reader."), _("\
23579 Show debugging of the DWARF DIE reader."), _("\
23580 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23581 The value is the maximum depth to print."),
23582 NULL,
23583 NULL,
23584 &setdebuglist, &showdebuglist);
23585
23586 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23587 Set debugging of the dwarf line reader."), _("\
23588 Show debugging of the dwarf line reader."), _("\
23589 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23590 A value of 1 (one) provides basic information.\n\
23591 A value greater than 1 provides more verbose information."),
23592 NULL,
23593 NULL,
23594 &setdebuglist, &showdebuglist);
23595
23596 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23597 Set cross-checking of \"physname\" code against demangler."), _("\
23598 Show cross-checking of \"physname\" code against demangler."), _("\
23599 When enabled, GDB's internal \"physname\" code is checked against\n\
23600 the demangler."),
23601 NULL, show_check_physname,
23602 &setdebuglist, &showdebuglist);
23603
23604 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23605 no_class, &use_deprecated_index_sections, _("\
23606 Set whether to use deprecated gdb_index sections."), _("\
23607 Show whether to use deprecated gdb_index sections."), _("\
23608 When enabled, deprecated .gdb_index sections are used anyway.\n\
23609 Normally they are ignored either because of a missing feature or\n\
23610 performance issue.\n\
23611 Warning: This option must be enabled before gdb reads the file."),
23612 NULL,
23613 NULL,
23614 &setlist, &showlist);
23615
23616 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23617 _("\
23618 Save a gdb-index file.\n\
23619 Usage: save gdb-index DIRECTORY"),
23620 &save_cmdlist);
23621 set_cmd_completer (c, filename_completer);
23622
23623 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23624 &dwarf2_locexpr_funcs);
23625 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23626 &dwarf2_loclist_funcs);
23627
23628 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23629 &dwarf2_block_frame_base_locexpr_funcs);
23630 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23631 &dwarf2_block_frame_base_loclist_funcs);
23632 }