gdb: Make ldirname return a std::string
[binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74
75 #include <fcntl.h>
76 #include <sys/types.h>
77 #include <algorithm>
78
79 typedef struct symbol *symbolp;
80 DEF_VEC_P (symbolp);
81
82 /* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
84 This is in contrast to the low level DIE reading of dwarf_die_debug. */
85 static unsigned int dwarf_read_debug = 0;
86
87 /* When non-zero, dump DIEs after they are read in. */
88 static unsigned int dwarf_die_debug = 0;
89
90 /* When non-zero, dump line number entries as they are read in. */
91 static unsigned int dwarf_line_debug = 0;
92
93 /* When non-zero, cross-check physname against demangler. */
94 static int check_physname = 0;
95
96 /* When non-zero, do not reject deprecated .gdb_index sections. */
97 static int use_deprecated_index_sections = 0;
98
99 static const struct objfile_data *dwarf2_objfile_data_key;
100
101 /* The "aclass" indices for various kinds of computed DWARF symbols. */
102
103 static int dwarf2_locexpr_index;
104 static int dwarf2_loclist_index;
105 static int dwarf2_locexpr_block_index;
106 static int dwarf2_loclist_block_index;
107
108 /* A descriptor for dwarf sections.
109
110 S.ASECTION, SIZE are typically initialized when the objfile is first
111 scanned. BUFFER, READIN are filled in later when the section is read.
112 If the section contained compressed data then SIZE is updated to record
113 the uncompressed size of the section.
114
115 DWP file format V2 introduces a wrinkle that is easiest to handle by
116 creating the concept of virtual sections contained within a real section.
117 In DWP V2 the sections of the input DWO files are concatenated together
118 into one section, but section offsets are kept relative to the original
119 input section.
120 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
121 the real section this "virtual" section is contained in, and BUFFER,SIZE
122 describe the virtual section. */
123
124 struct dwarf2_section_info
125 {
126 union
127 {
128 /* If this is a real section, the bfd section. */
129 asection *section;
130 /* If this is a virtual section, pointer to the containing ("real")
131 section. */
132 struct dwarf2_section_info *containing_section;
133 } s;
134 /* Pointer to section data, only valid if readin. */
135 const gdb_byte *buffer;
136 /* The size of the section, real or virtual. */
137 bfd_size_type size;
138 /* If this is a virtual section, the offset in the real section.
139 Only valid if is_virtual. */
140 bfd_size_type virtual_offset;
141 /* True if we have tried to read this section. */
142 char readin;
143 /* True if this is a virtual section, False otherwise.
144 This specifies which of s.section and s.containing_section to use. */
145 char is_virtual;
146 };
147
148 typedef struct dwarf2_section_info dwarf2_section_info_def;
149 DEF_VEC_O (dwarf2_section_info_def);
150
151 /* All offsets in the index are of this type. It must be
152 architecture-independent. */
153 typedef uint32_t offset_type;
154
155 DEF_VEC_I (offset_type);
156
157 /* Ensure only legit values are used. */
158 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
159 do { \
160 gdb_assert ((unsigned int) (value) <= 1); \
161 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
162 } while (0)
163
164 /* Ensure only legit values are used. */
165 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
166 do { \
167 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
168 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
169 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
170 } while (0)
171
172 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
173 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
174 do { \
175 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
176 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
177 } while (0)
178
179 /* A description of the mapped index. The file format is described in
180 a comment by the code that writes the index. */
181 struct mapped_index
182 {
183 /* Index data format version. */
184 int version;
185
186 /* The total length of the buffer. */
187 off_t total_size;
188
189 /* A pointer to the address table data. */
190 const gdb_byte *address_table;
191
192 /* Size of the address table data in bytes. */
193 offset_type address_table_size;
194
195 /* The symbol table, implemented as a hash table. */
196 const offset_type *symbol_table;
197
198 /* Size in slots, each slot is 2 offset_types. */
199 offset_type symbol_table_slots;
200
201 /* A pointer to the constant pool. */
202 const char *constant_pool;
203 };
204
205 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
206 DEF_VEC_P (dwarf2_per_cu_ptr);
207
208 struct tu_stats
209 {
210 int nr_uniq_abbrev_tables;
211 int nr_symtabs;
212 int nr_symtab_sharers;
213 int nr_stmt_less_type_units;
214 int nr_all_type_units_reallocs;
215 };
216
217 /* Collection of data recorded per objfile.
218 This hangs off of dwarf2_objfile_data_key. */
219
220 struct dwarf2_per_objfile
221 {
222 struct dwarf2_section_info info;
223 struct dwarf2_section_info abbrev;
224 struct dwarf2_section_info line;
225 struct dwarf2_section_info loc;
226 struct dwarf2_section_info loclists;
227 struct dwarf2_section_info macinfo;
228 struct dwarf2_section_info macro;
229 struct dwarf2_section_info str;
230 struct dwarf2_section_info line_str;
231 struct dwarf2_section_info ranges;
232 struct dwarf2_section_info rnglists;
233 struct dwarf2_section_info addr;
234 struct dwarf2_section_info frame;
235 struct dwarf2_section_info eh_frame;
236 struct dwarf2_section_info gdb_index;
237
238 VEC (dwarf2_section_info_def) *types;
239
240 /* Back link. */
241 struct objfile *objfile;
242
243 /* Table of all the compilation units. This is used to locate
244 the target compilation unit of a particular reference. */
245 struct dwarf2_per_cu_data **all_comp_units;
246
247 /* The number of compilation units in ALL_COMP_UNITS. */
248 int n_comp_units;
249
250 /* The number of .debug_types-related CUs. */
251 int n_type_units;
252
253 /* The number of elements allocated in all_type_units.
254 If there are skeleton-less TUs, we add them to all_type_units lazily. */
255 int n_allocated_type_units;
256
257 /* The .debug_types-related CUs (TUs).
258 This is stored in malloc space because we may realloc it. */
259 struct signatured_type **all_type_units;
260
261 /* Table of struct type_unit_group objects.
262 The hash key is the DW_AT_stmt_list value. */
263 htab_t type_unit_groups;
264
265 /* A table mapping .debug_types signatures to its signatured_type entry.
266 This is NULL if the .debug_types section hasn't been read in yet. */
267 htab_t signatured_types;
268
269 /* Type unit statistics, to see how well the scaling improvements
270 are doing. */
271 struct tu_stats tu_stats;
272
273 /* A chain of compilation units that are currently read in, so that
274 they can be freed later. */
275 struct dwarf2_per_cu_data *read_in_chain;
276
277 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
278 This is NULL if the table hasn't been allocated yet. */
279 htab_t dwo_files;
280
281 /* Non-zero if we've check for whether there is a DWP file. */
282 int dwp_checked;
283
284 /* The DWP file if there is one, or NULL. */
285 struct dwp_file *dwp_file;
286
287 /* The shared '.dwz' file, if one exists. This is used when the
288 original data was compressed using 'dwz -m'. */
289 struct dwz_file *dwz_file;
290
291 /* A flag indicating wether this objfile has a section loaded at a
292 VMA of 0. */
293 int has_section_at_zero;
294
295 /* True if we are using the mapped index,
296 or we are faking it for OBJF_READNOW's sake. */
297 unsigned char using_index;
298
299 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
300 struct mapped_index *index_table;
301
302 /* When using index_table, this keeps track of all quick_file_names entries.
303 TUs typically share line table entries with a CU, so we maintain a
304 separate table of all line table entries to support the sharing.
305 Note that while there can be way more TUs than CUs, we've already
306 sorted all the TUs into "type unit groups", grouped by their
307 DW_AT_stmt_list value. Therefore the only sharing done here is with a
308 CU and its associated TU group if there is one. */
309 htab_t quick_file_names_table;
310
311 /* Set during partial symbol reading, to prevent queueing of full
312 symbols. */
313 int reading_partial_symbols;
314
315 /* Table mapping type DIEs to their struct type *.
316 This is NULL if not allocated yet.
317 The mapping is done via (CU/TU + DIE offset) -> type. */
318 htab_t die_type_hash;
319
320 /* The CUs we recently read. */
321 VEC (dwarf2_per_cu_ptr) *just_read_cus;
322
323 /* Table containing line_header indexed by offset and offset_in_dwz. */
324 htab_t line_header_hash;
325 };
326
327 static struct dwarf2_per_objfile *dwarf2_per_objfile;
328
329 /* Default names of the debugging sections. */
330
331 /* Note that if the debugging section has been compressed, it might
332 have a name like .zdebug_info. */
333
334 static const struct dwarf2_debug_sections dwarf2_elf_names =
335 {
336 { ".debug_info", ".zdebug_info" },
337 { ".debug_abbrev", ".zdebug_abbrev" },
338 { ".debug_line", ".zdebug_line" },
339 { ".debug_loc", ".zdebug_loc" },
340 { ".debug_loclists", ".zdebug_loclists" },
341 { ".debug_macinfo", ".zdebug_macinfo" },
342 { ".debug_macro", ".zdebug_macro" },
343 { ".debug_str", ".zdebug_str" },
344 { ".debug_line_str", ".zdebug_line_str" },
345 { ".debug_ranges", ".zdebug_ranges" },
346 { ".debug_rnglists", ".zdebug_rnglists" },
347 { ".debug_types", ".zdebug_types" },
348 { ".debug_addr", ".zdebug_addr" },
349 { ".debug_frame", ".zdebug_frame" },
350 { ".eh_frame", NULL },
351 { ".gdb_index", ".zgdb_index" },
352 23
353 };
354
355 /* List of DWO/DWP sections. */
356
357 static const struct dwop_section_names
358 {
359 struct dwarf2_section_names abbrev_dwo;
360 struct dwarf2_section_names info_dwo;
361 struct dwarf2_section_names line_dwo;
362 struct dwarf2_section_names loc_dwo;
363 struct dwarf2_section_names loclists_dwo;
364 struct dwarf2_section_names macinfo_dwo;
365 struct dwarf2_section_names macro_dwo;
366 struct dwarf2_section_names str_dwo;
367 struct dwarf2_section_names str_offsets_dwo;
368 struct dwarf2_section_names types_dwo;
369 struct dwarf2_section_names cu_index;
370 struct dwarf2_section_names tu_index;
371 }
372 dwop_section_names =
373 {
374 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
375 { ".debug_info.dwo", ".zdebug_info.dwo" },
376 { ".debug_line.dwo", ".zdebug_line.dwo" },
377 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
378 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
379 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
380 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
381 { ".debug_str.dwo", ".zdebug_str.dwo" },
382 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
383 { ".debug_types.dwo", ".zdebug_types.dwo" },
384 { ".debug_cu_index", ".zdebug_cu_index" },
385 { ".debug_tu_index", ".zdebug_tu_index" },
386 };
387
388 /* local data types */
389
390 /* The data in a compilation unit header, after target2host
391 translation, looks like this. */
392 struct comp_unit_head
393 {
394 unsigned int length;
395 short version;
396 unsigned char addr_size;
397 unsigned char signed_addr_p;
398 sect_offset abbrev_offset;
399
400 /* Size of file offsets; either 4 or 8. */
401 unsigned int offset_size;
402
403 /* Size of the length field; either 4 or 12. */
404 unsigned int initial_length_size;
405
406 enum dwarf_unit_type unit_type;
407
408 /* Offset to the first byte of this compilation unit header in the
409 .debug_info section, for resolving relative reference dies. */
410 sect_offset offset;
411
412 /* Offset to first die in this cu from the start of the cu.
413 This will be the first byte following the compilation unit header. */
414 cu_offset first_die_offset;
415
416 /* 64-bit signature of this type unit - it is valid only for
417 UNIT_TYPE DW_UT_type. */
418 ULONGEST signature;
419
420 /* For types, offset in the type's DIE of the type defined by this TU. */
421 cu_offset type_offset_in_tu;
422 };
423
424 /* Type used for delaying computation of method physnames.
425 See comments for compute_delayed_physnames. */
426 struct delayed_method_info
427 {
428 /* The type to which the method is attached, i.e., its parent class. */
429 struct type *type;
430
431 /* The index of the method in the type's function fieldlists. */
432 int fnfield_index;
433
434 /* The index of the method in the fieldlist. */
435 int index;
436
437 /* The name of the DIE. */
438 const char *name;
439
440 /* The DIE associated with this method. */
441 struct die_info *die;
442 };
443
444 typedef struct delayed_method_info delayed_method_info;
445 DEF_VEC_O (delayed_method_info);
446
447 /* Internal state when decoding a particular compilation unit. */
448 struct dwarf2_cu
449 {
450 /* The objfile containing this compilation unit. */
451 struct objfile *objfile;
452
453 /* The header of the compilation unit. */
454 struct comp_unit_head header;
455
456 /* Base address of this compilation unit. */
457 CORE_ADDR base_address;
458
459 /* Non-zero if base_address has been set. */
460 int base_known;
461
462 /* The language we are debugging. */
463 enum language language;
464 const struct language_defn *language_defn;
465
466 const char *producer;
467
468 /* The generic symbol table building routines have separate lists for
469 file scope symbols and all all other scopes (local scopes). So
470 we need to select the right one to pass to add_symbol_to_list().
471 We do it by keeping a pointer to the correct list in list_in_scope.
472
473 FIXME: The original dwarf code just treated the file scope as the
474 first local scope, and all other local scopes as nested local
475 scopes, and worked fine. Check to see if we really need to
476 distinguish these in buildsym.c. */
477 struct pending **list_in_scope;
478
479 /* The abbrev table for this CU.
480 Normally this points to the abbrev table in the objfile.
481 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
482 struct abbrev_table *abbrev_table;
483
484 /* Hash table holding all the loaded partial DIEs
485 with partial_die->offset.SECT_OFF as hash. */
486 htab_t partial_dies;
487
488 /* Storage for things with the same lifetime as this read-in compilation
489 unit, including partial DIEs. */
490 struct obstack comp_unit_obstack;
491
492 /* When multiple dwarf2_cu structures are living in memory, this field
493 chains them all together, so that they can be released efficiently.
494 We will probably also want a generation counter so that most-recently-used
495 compilation units are cached... */
496 struct dwarf2_per_cu_data *read_in_chain;
497
498 /* Backlink to our per_cu entry. */
499 struct dwarf2_per_cu_data *per_cu;
500
501 /* How many compilation units ago was this CU last referenced? */
502 int last_used;
503
504 /* A hash table of DIE cu_offset for following references with
505 die_info->offset.sect_off as hash. */
506 htab_t die_hash;
507
508 /* Full DIEs if read in. */
509 struct die_info *dies;
510
511 /* A set of pointers to dwarf2_per_cu_data objects for compilation
512 units referenced by this one. Only set during full symbol processing;
513 partial symbol tables do not have dependencies. */
514 htab_t dependencies;
515
516 /* Header data from the line table, during full symbol processing. */
517 struct line_header *line_header;
518
519 /* A list of methods which need to have physnames computed
520 after all type information has been read. */
521 VEC (delayed_method_info) *method_list;
522
523 /* To be copied to symtab->call_site_htab. */
524 htab_t call_site_htab;
525
526 /* Non-NULL if this CU came from a DWO file.
527 There is an invariant here that is important to remember:
528 Except for attributes copied from the top level DIE in the "main"
529 (or "stub") file in preparation for reading the DWO file
530 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
531 Either there isn't a DWO file (in which case this is NULL and the point
532 is moot), or there is and either we're not going to read it (in which
533 case this is NULL) or there is and we are reading it (in which case this
534 is non-NULL). */
535 struct dwo_unit *dwo_unit;
536
537 /* The DW_AT_addr_base attribute if present, zero otherwise
538 (zero is a valid value though).
539 Note this value comes from the Fission stub CU/TU's DIE. */
540 ULONGEST addr_base;
541
542 /* The DW_AT_ranges_base attribute if present, zero otherwise
543 (zero is a valid value though).
544 Note this value comes from the Fission stub CU/TU's DIE.
545 Also note that the value is zero in the non-DWO case so this value can
546 be used without needing to know whether DWO files are in use or not.
547 N.B. This does not apply to DW_AT_ranges appearing in
548 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
549 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
550 DW_AT_ranges_base *would* have to be applied, and we'd have to care
551 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
552 ULONGEST ranges_base;
553
554 /* Mark used when releasing cached dies. */
555 unsigned int mark : 1;
556
557 /* This CU references .debug_loc. See the symtab->locations_valid field.
558 This test is imperfect as there may exist optimized debug code not using
559 any location list and still facing inlining issues if handled as
560 unoptimized code. For a future better test see GCC PR other/32998. */
561 unsigned int has_loclist : 1;
562
563 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
564 if all the producer_is_* fields are valid. This information is cached
565 because profiling CU expansion showed excessive time spent in
566 producer_is_gxx_lt_4_6. */
567 unsigned int checked_producer : 1;
568 unsigned int producer_is_gxx_lt_4_6 : 1;
569 unsigned int producer_is_gcc_lt_4_3 : 1;
570 unsigned int producer_is_icc : 1;
571
572 /* When set, the file that we're processing is known to have
573 debugging info for C++ namespaces. GCC 3.3.x did not produce
574 this information, but later versions do. */
575
576 unsigned int processing_has_namespace_info : 1;
577 };
578
579 /* Persistent data held for a compilation unit, even when not
580 processing it. We put a pointer to this structure in the
581 read_symtab_private field of the psymtab. */
582
583 struct dwarf2_per_cu_data
584 {
585 /* The start offset and length of this compilation unit.
586 NOTE: Unlike comp_unit_head.length, this length includes
587 initial_length_size.
588 If the DIE refers to a DWO file, this is always of the original die,
589 not the DWO file. */
590 sect_offset offset;
591 unsigned int length;
592
593 /* DWARF standard version this data has been read from (such as 4 or 5). */
594 short dwarf_version;
595
596 /* Flag indicating this compilation unit will be read in before
597 any of the current compilation units are processed. */
598 unsigned int queued : 1;
599
600 /* This flag will be set when reading partial DIEs if we need to load
601 absolutely all DIEs for this compilation unit, instead of just the ones
602 we think are interesting. It gets set if we look for a DIE in the
603 hash table and don't find it. */
604 unsigned int load_all_dies : 1;
605
606 /* Non-zero if this CU is from .debug_types.
607 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
608 this is non-zero. */
609 unsigned int is_debug_types : 1;
610
611 /* Non-zero if this CU is from the .dwz file. */
612 unsigned int is_dwz : 1;
613
614 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
615 This flag is only valid if is_debug_types is true.
616 We can't read a CU directly from a DWO file: There are required
617 attributes in the stub. */
618 unsigned int reading_dwo_directly : 1;
619
620 /* Non-zero if the TU has been read.
621 This is used to assist the "Stay in DWO Optimization" for Fission:
622 When reading a DWO, it's faster to read TUs from the DWO instead of
623 fetching them from random other DWOs (due to comdat folding).
624 If the TU has already been read, the optimization is unnecessary
625 (and unwise - we don't want to change where gdb thinks the TU lives
626 "midflight").
627 This flag is only valid if is_debug_types is true. */
628 unsigned int tu_read : 1;
629
630 /* The section this CU/TU lives in.
631 If the DIE refers to a DWO file, this is always the original die,
632 not the DWO file. */
633 struct dwarf2_section_info *section;
634
635 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
636 of the CU cache it gets reset to NULL again. This is left as NULL for
637 dummy CUs (a CU header, but nothing else). */
638 struct dwarf2_cu *cu;
639
640 /* The corresponding objfile.
641 Normally we can get the objfile from dwarf2_per_objfile.
642 However we can enter this file with just a "per_cu" handle. */
643 struct objfile *objfile;
644
645 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
646 is active. Otherwise, the 'psymtab' field is active. */
647 union
648 {
649 /* The partial symbol table associated with this compilation unit,
650 or NULL for unread partial units. */
651 struct partial_symtab *psymtab;
652
653 /* Data needed by the "quick" functions. */
654 struct dwarf2_per_cu_quick_data *quick;
655 } v;
656
657 /* The CUs we import using DW_TAG_imported_unit. This is filled in
658 while reading psymtabs, used to compute the psymtab dependencies,
659 and then cleared. Then it is filled in again while reading full
660 symbols, and only deleted when the objfile is destroyed.
661
662 This is also used to work around a difference between the way gold
663 generates .gdb_index version <=7 and the way gdb does. Arguably this
664 is a gold bug. For symbols coming from TUs, gold records in the index
665 the CU that includes the TU instead of the TU itself. This breaks
666 dw2_lookup_symbol: It assumes that if the index says symbol X lives
667 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
668 will find X. Alas TUs live in their own symtab, so after expanding CU Y
669 we need to look in TU Z to find X. Fortunately, this is akin to
670 DW_TAG_imported_unit, so we just use the same mechanism: For
671 .gdb_index version <=7 this also records the TUs that the CU referred
672 to. Concurrently with this change gdb was modified to emit version 8
673 indices so we only pay a price for gold generated indices.
674 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
675 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
676 };
677
678 /* Entry in the signatured_types hash table. */
679
680 struct signatured_type
681 {
682 /* The "per_cu" object of this type.
683 This struct is used iff per_cu.is_debug_types.
684 N.B.: This is the first member so that it's easy to convert pointers
685 between them. */
686 struct dwarf2_per_cu_data per_cu;
687
688 /* The type's signature. */
689 ULONGEST signature;
690
691 /* Offset in the TU of the type's DIE, as read from the TU header.
692 If this TU is a DWO stub and the definition lives in a DWO file
693 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
694 cu_offset type_offset_in_tu;
695
696 /* Offset in the section of the type's DIE.
697 If the definition lives in a DWO file, this is the offset in the
698 .debug_types.dwo section.
699 The value is zero until the actual value is known.
700 Zero is otherwise not a valid section offset. */
701 sect_offset type_offset_in_section;
702
703 /* Type units are grouped by their DW_AT_stmt_list entry so that they
704 can share them. This points to the containing symtab. */
705 struct type_unit_group *type_unit_group;
706
707 /* The type.
708 The first time we encounter this type we fully read it in and install it
709 in the symbol tables. Subsequent times we only need the type. */
710 struct type *type;
711
712 /* Containing DWO unit.
713 This field is valid iff per_cu.reading_dwo_directly. */
714 struct dwo_unit *dwo_unit;
715 };
716
717 typedef struct signatured_type *sig_type_ptr;
718 DEF_VEC_P (sig_type_ptr);
719
720 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
721 This includes type_unit_group and quick_file_names. */
722
723 struct stmt_list_hash
724 {
725 /* The DWO unit this table is from or NULL if there is none. */
726 struct dwo_unit *dwo_unit;
727
728 /* Offset in .debug_line or .debug_line.dwo. */
729 sect_offset line_offset;
730 };
731
732 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
733 an object of this type. */
734
735 struct type_unit_group
736 {
737 /* dwarf2read.c's main "handle" on a TU symtab.
738 To simplify things we create an artificial CU that "includes" all the
739 type units using this stmt_list so that the rest of the code still has
740 a "per_cu" handle on the symtab.
741 This PER_CU is recognized by having no section. */
742 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
743 struct dwarf2_per_cu_data per_cu;
744
745 /* The TUs that share this DW_AT_stmt_list entry.
746 This is added to while parsing type units to build partial symtabs,
747 and is deleted afterwards and not used again. */
748 VEC (sig_type_ptr) *tus;
749
750 /* The compunit symtab.
751 Type units in a group needn't all be defined in the same source file,
752 so we create an essentially anonymous symtab as the compunit symtab. */
753 struct compunit_symtab *compunit_symtab;
754
755 /* The data used to construct the hash key. */
756 struct stmt_list_hash hash;
757
758 /* The number of symtabs from the line header.
759 The value here must match line_header.num_file_names. */
760 unsigned int num_symtabs;
761
762 /* The symbol tables for this TU (obtained from the files listed in
763 DW_AT_stmt_list).
764 WARNING: The order of entries here must match the order of entries
765 in the line header. After the first TU using this type_unit_group, the
766 line header for the subsequent TUs is recreated from this. This is done
767 because we need to use the same symtabs for each TU using the same
768 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
769 there's no guarantee the line header doesn't have duplicate entries. */
770 struct symtab **symtabs;
771 };
772
773 /* These sections are what may appear in a (real or virtual) DWO file. */
774
775 struct dwo_sections
776 {
777 struct dwarf2_section_info abbrev;
778 struct dwarf2_section_info line;
779 struct dwarf2_section_info loc;
780 struct dwarf2_section_info loclists;
781 struct dwarf2_section_info macinfo;
782 struct dwarf2_section_info macro;
783 struct dwarf2_section_info str;
784 struct dwarf2_section_info str_offsets;
785 /* In the case of a virtual DWO file, these two are unused. */
786 struct dwarf2_section_info info;
787 VEC (dwarf2_section_info_def) *types;
788 };
789
790 /* CUs/TUs in DWP/DWO files. */
791
792 struct dwo_unit
793 {
794 /* Backlink to the containing struct dwo_file. */
795 struct dwo_file *dwo_file;
796
797 /* The "id" that distinguishes this CU/TU.
798 .debug_info calls this "dwo_id", .debug_types calls this "signature".
799 Since signatures came first, we stick with it for consistency. */
800 ULONGEST signature;
801
802 /* The section this CU/TU lives in, in the DWO file. */
803 struct dwarf2_section_info *section;
804
805 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
806 sect_offset offset;
807 unsigned int length;
808
809 /* For types, offset in the type's DIE of the type defined by this TU. */
810 cu_offset type_offset_in_tu;
811 };
812
813 /* include/dwarf2.h defines the DWP section codes.
814 It defines a max value but it doesn't define a min value, which we
815 use for error checking, so provide one. */
816
817 enum dwp_v2_section_ids
818 {
819 DW_SECT_MIN = 1
820 };
821
822 /* Data for one DWO file.
823
824 This includes virtual DWO files (a virtual DWO file is a DWO file as it
825 appears in a DWP file). DWP files don't really have DWO files per se -
826 comdat folding of types "loses" the DWO file they came from, and from
827 a high level view DWP files appear to contain a mass of random types.
828 However, to maintain consistency with the non-DWP case we pretend DWP
829 files contain virtual DWO files, and we assign each TU with one virtual
830 DWO file (generally based on the line and abbrev section offsets -
831 a heuristic that seems to work in practice). */
832
833 struct dwo_file
834 {
835 /* The DW_AT_GNU_dwo_name attribute.
836 For virtual DWO files the name is constructed from the section offsets
837 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
838 from related CU+TUs. */
839 const char *dwo_name;
840
841 /* The DW_AT_comp_dir attribute. */
842 const char *comp_dir;
843
844 /* The bfd, when the file is open. Otherwise this is NULL.
845 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
846 bfd *dbfd;
847
848 /* The sections that make up this DWO file.
849 Remember that for virtual DWO files in DWP V2, these are virtual
850 sections (for lack of a better name). */
851 struct dwo_sections sections;
852
853 /* The CU in the file.
854 We only support one because having more than one requires hacking the
855 dwo_name of each to match, which is highly unlikely to happen.
856 Doing this means all TUs can share comp_dir: We also assume that
857 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
858 struct dwo_unit *cu;
859
860 /* Table of TUs in the file.
861 Each element is a struct dwo_unit. */
862 htab_t tus;
863 };
864
865 /* These sections are what may appear in a DWP file. */
866
867 struct dwp_sections
868 {
869 /* These are used by both DWP version 1 and 2. */
870 struct dwarf2_section_info str;
871 struct dwarf2_section_info cu_index;
872 struct dwarf2_section_info tu_index;
873
874 /* These are only used by DWP version 2 files.
875 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
876 sections are referenced by section number, and are not recorded here.
877 In DWP version 2 there is at most one copy of all these sections, each
878 section being (effectively) comprised of the concatenation of all of the
879 individual sections that exist in the version 1 format.
880 To keep the code simple we treat each of these concatenated pieces as a
881 section itself (a virtual section?). */
882 struct dwarf2_section_info abbrev;
883 struct dwarf2_section_info info;
884 struct dwarf2_section_info line;
885 struct dwarf2_section_info loc;
886 struct dwarf2_section_info macinfo;
887 struct dwarf2_section_info macro;
888 struct dwarf2_section_info str_offsets;
889 struct dwarf2_section_info types;
890 };
891
892 /* These sections are what may appear in a virtual DWO file in DWP version 1.
893 A virtual DWO file is a DWO file as it appears in a DWP file. */
894
895 struct virtual_v1_dwo_sections
896 {
897 struct dwarf2_section_info abbrev;
898 struct dwarf2_section_info line;
899 struct dwarf2_section_info loc;
900 struct dwarf2_section_info macinfo;
901 struct dwarf2_section_info macro;
902 struct dwarf2_section_info str_offsets;
903 /* Each DWP hash table entry records one CU or one TU.
904 That is recorded here, and copied to dwo_unit.section. */
905 struct dwarf2_section_info info_or_types;
906 };
907
908 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
909 In version 2, the sections of the DWO files are concatenated together
910 and stored in one section of that name. Thus each ELF section contains
911 several "virtual" sections. */
912
913 struct virtual_v2_dwo_sections
914 {
915 bfd_size_type abbrev_offset;
916 bfd_size_type abbrev_size;
917
918 bfd_size_type line_offset;
919 bfd_size_type line_size;
920
921 bfd_size_type loc_offset;
922 bfd_size_type loc_size;
923
924 bfd_size_type macinfo_offset;
925 bfd_size_type macinfo_size;
926
927 bfd_size_type macro_offset;
928 bfd_size_type macro_size;
929
930 bfd_size_type str_offsets_offset;
931 bfd_size_type str_offsets_size;
932
933 /* Each DWP hash table entry records one CU or one TU.
934 That is recorded here, and copied to dwo_unit.section. */
935 bfd_size_type info_or_types_offset;
936 bfd_size_type info_or_types_size;
937 };
938
939 /* Contents of DWP hash tables. */
940
941 struct dwp_hash_table
942 {
943 uint32_t version, nr_columns;
944 uint32_t nr_units, nr_slots;
945 const gdb_byte *hash_table, *unit_table;
946 union
947 {
948 struct
949 {
950 const gdb_byte *indices;
951 } v1;
952 struct
953 {
954 /* This is indexed by column number and gives the id of the section
955 in that column. */
956 #define MAX_NR_V2_DWO_SECTIONS \
957 (1 /* .debug_info or .debug_types */ \
958 + 1 /* .debug_abbrev */ \
959 + 1 /* .debug_line */ \
960 + 1 /* .debug_loc */ \
961 + 1 /* .debug_str_offsets */ \
962 + 1 /* .debug_macro or .debug_macinfo */)
963 int section_ids[MAX_NR_V2_DWO_SECTIONS];
964 const gdb_byte *offsets;
965 const gdb_byte *sizes;
966 } v2;
967 } section_pool;
968 };
969
970 /* Data for one DWP file. */
971
972 struct dwp_file
973 {
974 /* Name of the file. */
975 const char *name;
976
977 /* File format version. */
978 int version;
979
980 /* The bfd. */
981 bfd *dbfd;
982
983 /* Section info for this file. */
984 struct dwp_sections sections;
985
986 /* Table of CUs in the file. */
987 const struct dwp_hash_table *cus;
988
989 /* Table of TUs in the file. */
990 const struct dwp_hash_table *tus;
991
992 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
993 htab_t loaded_cus;
994 htab_t loaded_tus;
995
996 /* Table to map ELF section numbers to their sections.
997 This is only needed for the DWP V1 file format. */
998 unsigned int num_sections;
999 asection **elf_sections;
1000 };
1001
1002 /* This represents a '.dwz' file. */
1003
1004 struct dwz_file
1005 {
1006 /* A dwz file can only contain a few sections. */
1007 struct dwarf2_section_info abbrev;
1008 struct dwarf2_section_info info;
1009 struct dwarf2_section_info str;
1010 struct dwarf2_section_info line;
1011 struct dwarf2_section_info macro;
1012 struct dwarf2_section_info gdb_index;
1013
1014 /* The dwz's BFD. */
1015 bfd *dwz_bfd;
1016 };
1017
1018 /* Struct used to pass misc. parameters to read_die_and_children, et
1019 al. which are used for both .debug_info and .debug_types dies.
1020 All parameters here are unchanging for the life of the call. This
1021 struct exists to abstract away the constant parameters of die reading. */
1022
1023 struct die_reader_specs
1024 {
1025 /* The bfd of die_section. */
1026 bfd* abfd;
1027
1028 /* The CU of the DIE we are parsing. */
1029 struct dwarf2_cu *cu;
1030
1031 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1032 struct dwo_file *dwo_file;
1033
1034 /* The section the die comes from.
1035 This is either .debug_info or .debug_types, or the .dwo variants. */
1036 struct dwarf2_section_info *die_section;
1037
1038 /* die_section->buffer. */
1039 const gdb_byte *buffer;
1040
1041 /* The end of the buffer. */
1042 const gdb_byte *buffer_end;
1043
1044 /* The value of the DW_AT_comp_dir attribute. */
1045 const char *comp_dir;
1046 };
1047
1048 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1049 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1050 const gdb_byte *info_ptr,
1051 struct die_info *comp_unit_die,
1052 int has_children,
1053 void *data);
1054
1055 struct file_entry
1056 {
1057 const char *name;
1058 unsigned int dir_index;
1059 unsigned int mod_time;
1060 unsigned int length;
1061 /* Non-zero if referenced by the Line Number Program. */
1062 int included_p;
1063 /* The associated symbol table, if any. */
1064 struct symtab *symtab;
1065 };
1066
1067 /* The line number information for a compilation unit (found in the
1068 .debug_line section) begins with a "statement program header",
1069 which contains the following information. */
1070 struct line_header
1071 {
1072 /* Offset of line number information in .debug_line section. */
1073 sect_offset offset;
1074
1075 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1076 unsigned offset_in_dwz : 1;
1077
1078 unsigned int total_length;
1079 unsigned short version;
1080 unsigned int header_length;
1081 unsigned char minimum_instruction_length;
1082 unsigned char maximum_ops_per_instruction;
1083 unsigned char default_is_stmt;
1084 int line_base;
1085 unsigned char line_range;
1086 unsigned char opcode_base;
1087
1088 /* standard_opcode_lengths[i] is the number of operands for the
1089 standard opcode whose value is i. This means that
1090 standard_opcode_lengths[0] is unused, and the last meaningful
1091 element is standard_opcode_lengths[opcode_base - 1]. */
1092 unsigned char *standard_opcode_lengths;
1093
1094 /* The include_directories table. NOTE! These strings are not
1095 allocated with xmalloc; instead, they are pointers into
1096 debug_line_buffer. If you try to free them, `free' will get
1097 indigestion. */
1098 unsigned int num_include_dirs, include_dirs_size;
1099 const char **include_dirs;
1100
1101 /* The file_names table. NOTE! These strings are not allocated
1102 with xmalloc; instead, they are pointers into debug_line_buffer.
1103 Don't try to free them directly. */
1104 unsigned int num_file_names, file_names_size;
1105 struct file_entry *file_names;
1106
1107 /* The start and end of the statement program following this
1108 header. These point into dwarf2_per_objfile->line_buffer. */
1109 const gdb_byte *statement_program_start, *statement_program_end;
1110 };
1111
1112 /* When we construct a partial symbol table entry we only
1113 need this much information. */
1114 struct partial_die_info
1115 {
1116 /* Offset of this DIE. */
1117 sect_offset offset;
1118
1119 /* DWARF-2 tag for this DIE. */
1120 ENUM_BITFIELD(dwarf_tag) tag : 16;
1121
1122 /* Assorted flags describing the data found in this DIE. */
1123 unsigned int has_children : 1;
1124 unsigned int is_external : 1;
1125 unsigned int is_declaration : 1;
1126 unsigned int has_type : 1;
1127 unsigned int has_specification : 1;
1128 unsigned int has_pc_info : 1;
1129 unsigned int may_be_inlined : 1;
1130
1131 /* This DIE has been marked DW_AT_main_subprogram. */
1132 unsigned int main_subprogram : 1;
1133
1134 /* Flag set if the SCOPE field of this structure has been
1135 computed. */
1136 unsigned int scope_set : 1;
1137
1138 /* Flag set if the DIE has a byte_size attribute. */
1139 unsigned int has_byte_size : 1;
1140
1141 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1142 unsigned int has_const_value : 1;
1143
1144 /* Flag set if any of the DIE's children are template arguments. */
1145 unsigned int has_template_arguments : 1;
1146
1147 /* Flag set if fixup_partial_die has been called on this die. */
1148 unsigned int fixup_called : 1;
1149
1150 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1151 unsigned int is_dwz : 1;
1152
1153 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1154 unsigned int spec_is_dwz : 1;
1155
1156 /* The name of this DIE. Normally the value of DW_AT_name, but
1157 sometimes a default name for unnamed DIEs. */
1158 const char *name;
1159
1160 /* The linkage name, if present. */
1161 const char *linkage_name;
1162
1163 /* The scope to prepend to our children. This is generally
1164 allocated on the comp_unit_obstack, so will disappear
1165 when this compilation unit leaves the cache. */
1166 const char *scope;
1167
1168 /* Some data associated with the partial DIE. The tag determines
1169 which field is live. */
1170 union
1171 {
1172 /* The location description associated with this DIE, if any. */
1173 struct dwarf_block *locdesc;
1174 /* The offset of an import, for DW_TAG_imported_unit. */
1175 sect_offset offset;
1176 } d;
1177
1178 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1179 CORE_ADDR lowpc;
1180 CORE_ADDR highpc;
1181
1182 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1183 DW_AT_sibling, if any. */
1184 /* NOTE: This member isn't strictly necessary, read_partial_die could
1185 return DW_AT_sibling values to its caller load_partial_dies. */
1186 const gdb_byte *sibling;
1187
1188 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1189 DW_AT_specification (or DW_AT_abstract_origin or
1190 DW_AT_extension). */
1191 sect_offset spec_offset;
1192
1193 /* Pointers to this DIE's parent, first child, and next sibling,
1194 if any. */
1195 struct partial_die_info *die_parent, *die_child, *die_sibling;
1196 };
1197
1198 /* This data structure holds the information of an abbrev. */
1199 struct abbrev_info
1200 {
1201 unsigned int number; /* number identifying abbrev */
1202 enum dwarf_tag tag; /* dwarf tag */
1203 unsigned short has_children; /* boolean */
1204 unsigned short num_attrs; /* number of attributes */
1205 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1206 struct abbrev_info *next; /* next in chain */
1207 };
1208
1209 struct attr_abbrev
1210 {
1211 ENUM_BITFIELD(dwarf_attribute) name : 16;
1212 ENUM_BITFIELD(dwarf_form) form : 16;
1213
1214 /* It is valid only if FORM is DW_FORM_implicit_const. */
1215 LONGEST implicit_const;
1216 };
1217
1218 /* Size of abbrev_table.abbrev_hash_table. */
1219 #define ABBREV_HASH_SIZE 121
1220
1221 /* Top level data structure to contain an abbreviation table. */
1222
1223 struct abbrev_table
1224 {
1225 /* Where the abbrev table came from.
1226 This is used as a sanity check when the table is used. */
1227 sect_offset offset;
1228
1229 /* Storage for the abbrev table. */
1230 struct obstack abbrev_obstack;
1231
1232 /* Hash table of abbrevs.
1233 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1234 It could be statically allocated, but the previous code didn't so we
1235 don't either. */
1236 struct abbrev_info **abbrevs;
1237 };
1238
1239 /* Attributes have a name and a value. */
1240 struct attribute
1241 {
1242 ENUM_BITFIELD(dwarf_attribute) name : 16;
1243 ENUM_BITFIELD(dwarf_form) form : 15;
1244
1245 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1246 field should be in u.str (existing only for DW_STRING) but it is kept
1247 here for better struct attribute alignment. */
1248 unsigned int string_is_canonical : 1;
1249
1250 union
1251 {
1252 const char *str;
1253 struct dwarf_block *blk;
1254 ULONGEST unsnd;
1255 LONGEST snd;
1256 CORE_ADDR addr;
1257 ULONGEST signature;
1258 }
1259 u;
1260 };
1261
1262 /* This data structure holds a complete die structure. */
1263 struct die_info
1264 {
1265 /* DWARF-2 tag for this DIE. */
1266 ENUM_BITFIELD(dwarf_tag) tag : 16;
1267
1268 /* Number of attributes */
1269 unsigned char num_attrs;
1270
1271 /* True if we're presently building the full type name for the
1272 type derived from this DIE. */
1273 unsigned char building_fullname : 1;
1274
1275 /* True if this die is in process. PR 16581. */
1276 unsigned char in_process : 1;
1277
1278 /* Abbrev number */
1279 unsigned int abbrev;
1280
1281 /* Offset in .debug_info or .debug_types section. */
1282 sect_offset offset;
1283
1284 /* The dies in a compilation unit form an n-ary tree. PARENT
1285 points to this die's parent; CHILD points to the first child of
1286 this node; and all the children of a given node are chained
1287 together via their SIBLING fields. */
1288 struct die_info *child; /* Its first child, if any. */
1289 struct die_info *sibling; /* Its next sibling, if any. */
1290 struct die_info *parent; /* Its parent, if any. */
1291
1292 /* An array of attributes, with NUM_ATTRS elements. There may be
1293 zero, but it's not common and zero-sized arrays are not
1294 sufficiently portable C. */
1295 struct attribute attrs[1];
1296 };
1297
1298 /* Get at parts of an attribute structure. */
1299
1300 #define DW_STRING(attr) ((attr)->u.str)
1301 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1302 #define DW_UNSND(attr) ((attr)->u.unsnd)
1303 #define DW_BLOCK(attr) ((attr)->u.blk)
1304 #define DW_SND(attr) ((attr)->u.snd)
1305 #define DW_ADDR(attr) ((attr)->u.addr)
1306 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1307
1308 /* Blocks are a bunch of untyped bytes. */
1309 struct dwarf_block
1310 {
1311 size_t size;
1312
1313 /* Valid only if SIZE is not zero. */
1314 const gdb_byte *data;
1315 };
1316
1317 #ifndef ATTR_ALLOC_CHUNK
1318 #define ATTR_ALLOC_CHUNK 4
1319 #endif
1320
1321 /* Allocate fields for structs, unions and enums in this size. */
1322 #ifndef DW_FIELD_ALLOC_CHUNK
1323 #define DW_FIELD_ALLOC_CHUNK 4
1324 #endif
1325
1326 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1327 but this would require a corresponding change in unpack_field_as_long
1328 and friends. */
1329 static int bits_per_byte = 8;
1330
1331 struct nextfield
1332 {
1333 struct nextfield *next;
1334 int accessibility;
1335 int virtuality;
1336 struct field field;
1337 };
1338
1339 struct nextfnfield
1340 {
1341 struct nextfnfield *next;
1342 struct fn_field fnfield;
1343 };
1344
1345 struct fnfieldlist
1346 {
1347 const char *name;
1348 int length;
1349 struct nextfnfield *head;
1350 };
1351
1352 struct typedef_field_list
1353 {
1354 struct typedef_field field;
1355 struct typedef_field_list *next;
1356 };
1357
1358 /* The routines that read and process dies for a C struct or C++ class
1359 pass lists of data member fields and lists of member function fields
1360 in an instance of a field_info structure, as defined below. */
1361 struct field_info
1362 {
1363 /* List of data member and baseclasses fields. */
1364 struct nextfield *fields, *baseclasses;
1365
1366 /* Number of fields (including baseclasses). */
1367 int nfields;
1368
1369 /* Number of baseclasses. */
1370 int nbaseclasses;
1371
1372 /* Set if the accesibility of one of the fields is not public. */
1373 int non_public_fields;
1374
1375 /* Member function fields array, entries are allocated in the order they
1376 are encountered in the object file. */
1377 struct nextfnfield *fnfields;
1378
1379 /* Member function fieldlist array, contains name of possibly overloaded
1380 member function, number of overloaded member functions and a pointer
1381 to the head of the member function field chain. */
1382 struct fnfieldlist *fnfieldlists;
1383
1384 /* Number of entries in the fnfieldlists array. */
1385 int nfnfields;
1386
1387 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1388 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1389 struct typedef_field_list *typedef_field_list;
1390 unsigned typedef_field_list_count;
1391 };
1392
1393 /* One item on the queue of compilation units to read in full symbols
1394 for. */
1395 struct dwarf2_queue_item
1396 {
1397 struct dwarf2_per_cu_data *per_cu;
1398 enum language pretend_language;
1399 struct dwarf2_queue_item *next;
1400 };
1401
1402 /* The current queue. */
1403 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1404
1405 /* Loaded secondary compilation units are kept in memory until they
1406 have not been referenced for the processing of this many
1407 compilation units. Set this to zero to disable caching. Cache
1408 sizes of up to at least twenty will improve startup time for
1409 typical inter-CU-reference binaries, at an obvious memory cost. */
1410 static int dwarf_max_cache_age = 5;
1411 static void
1412 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1413 struct cmd_list_element *c, const char *value)
1414 {
1415 fprintf_filtered (file, _("The upper bound on the age of cached "
1416 "DWARF compilation units is %s.\n"),
1417 value);
1418 }
1419 \f
1420 /* local function prototypes */
1421
1422 static const char *get_section_name (const struct dwarf2_section_info *);
1423
1424 static const char *get_section_file_name (const struct dwarf2_section_info *);
1425
1426 static void dwarf2_locate_sections (bfd *, asection *, void *);
1427
1428 static void dwarf2_find_base_address (struct die_info *die,
1429 struct dwarf2_cu *cu);
1430
1431 static struct partial_symtab *create_partial_symtab
1432 (struct dwarf2_per_cu_data *per_cu, const char *name);
1433
1434 static void dwarf2_build_psymtabs_hard (struct objfile *);
1435
1436 static void scan_partial_symbols (struct partial_die_info *,
1437 CORE_ADDR *, CORE_ADDR *,
1438 int, struct dwarf2_cu *);
1439
1440 static void add_partial_symbol (struct partial_die_info *,
1441 struct dwarf2_cu *);
1442
1443 static void add_partial_namespace (struct partial_die_info *pdi,
1444 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1445 int set_addrmap, struct dwarf2_cu *cu);
1446
1447 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1448 CORE_ADDR *highpc, int set_addrmap,
1449 struct dwarf2_cu *cu);
1450
1451 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1452 struct dwarf2_cu *cu);
1453
1454 static void add_partial_subprogram (struct partial_die_info *pdi,
1455 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1456 int need_pc, struct dwarf2_cu *cu);
1457
1458 static void dwarf2_read_symtab (struct partial_symtab *,
1459 struct objfile *);
1460
1461 static void psymtab_to_symtab_1 (struct partial_symtab *);
1462
1463 static struct abbrev_info *abbrev_table_lookup_abbrev
1464 (const struct abbrev_table *, unsigned int);
1465
1466 static struct abbrev_table *abbrev_table_read_table
1467 (struct dwarf2_section_info *, sect_offset);
1468
1469 static void abbrev_table_free (struct abbrev_table *);
1470
1471 static void abbrev_table_free_cleanup (void *);
1472
1473 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1474 struct dwarf2_section_info *);
1475
1476 static void dwarf2_free_abbrev_table (void *);
1477
1478 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1479
1480 static struct partial_die_info *load_partial_dies
1481 (const struct die_reader_specs *, const gdb_byte *, int);
1482
1483 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1484 struct partial_die_info *,
1485 struct abbrev_info *,
1486 unsigned int,
1487 const gdb_byte *);
1488
1489 static struct partial_die_info *find_partial_die (sect_offset, int,
1490 struct dwarf2_cu *);
1491
1492 static void fixup_partial_die (struct partial_die_info *,
1493 struct dwarf2_cu *);
1494
1495 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1496 struct attribute *, struct attr_abbrev *,
1497 const gdb_byte *);
1498
1499 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1500
1501 static int read_1_signed_byte (bfd *, const gdb_byte *);
1502
1503 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1504
1505 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1506
1507 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1508
1509 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1510 unsigned int *);
1511
1512 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1513
1514 static LONGEST read_checked_initial_length_and_offset
1515 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1516 unsigned int *, unsigned int *);
1517
1518 static LONGEST read_offset (bfd *, const gdb_byte *,
1519 const struct comp_unit_head *,
1520 unsigned int *);
1521
1522 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1523
1524 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1525 sect_offset);
1526
1527 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1528
1529 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1530
1531 static const char *read_indirect_string (bfd *, const gdb_byte *,
1532 const struct comp_unit_head *,
1533 unsigned int *);
1534
1535 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1536 const struct comp_unit_head *,
1537 unsigned int *);
1538
1539 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1540
1541 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1542
1543 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1544 const gdb_byte *,
1545 unsigned int *);
1546
1547 static const char *read_str_index (const struct die_reader_specs *reader,
1548 ULONGEST str_index);
1549
1550 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1551
1552 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1553 struct dwarf2_cu *);
1554
1555 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1556 unsigned int);
1557
1558 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1559 struct dwarf2_cu *cu);
1560
1561 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1562 struct dwarf2_cu *cu);
1563
1564 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1565
1566 static struct die_info *die_specification (struct die_info *die,
1567 struct dwarf2_cu **);
1568
1569 static void free_line_header (struct line_header *lh);
1570
1571 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1572 struct dwarf2_cu *cu);
1573
1574 static void dwarf_decode_lines (struct line_header *, const char *,
1575 struct dwarf2_cu *, struct partial_symtab *,
1576 CORE_ADDR, int decode_mapping);
1577
1578 static void dwarf2_start_subfile (const char *, const char *);
1579
1580 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1581 const char *, const char *,
1582 CORE_ADDR);
1583
1584 static struct symbol *new_symbol (struct die_info *, struct type *,
1585 struct dwarf2_cu *);
1586
1587 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1588 struct dwarf2_cu *, struct symbol *);
1589
1590 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1591 struct dwarf2_cu *);
1592
1593 static void dwarf2_const_value_attr (const struct attribute *attr,
1594 struct type *type,
1595 const char *name,
1596 struct obstack *obstack,
1597 struct dwarf2_cu *cu, LONGEST *value,
1598 const gdb_byte **bytes,
1599 struct dwarf2_locexpr_baton **baton);
1600
1601 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1602
1603 static int need_gnat_info (struct dwarf2_cu *);
1604
1605 static struct type *die_descriptive_type (struct die_info *,
1606 struct dwarf2_cu *);
1607
1608 static void set_descriptive_type (struct type *, struct die_info *,
1609 struct dwarf2_cu *);
1610
1611 static struct type *die_containing_type (struct die_info *,
1612 struct dwarf2_cu *);
1613
1614 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1615 struct dwarf2_cu *);
1616
1617 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1618
1619 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1620
1621 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1622
1623 static char *typename_concat (struct obstack *obs, const char *prefix,
1624 const char *suffix, int physname,
1625 struct dwarf2_cu *cu);
1626
1627 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1628
1629 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1630
1631 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1632
1633 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1634
1635 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1636
1637 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1638 struct dwarf2_cu *, struct partial_symtab *);
1639
1640 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1641 values. Keep the items ordered with increasing constraints compliance. */
1642 enum pc_bounds_kind
1643 {
1644 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1645 PC_BOUNDS_NOT_PRESENT,
1646
1647 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1648 were present but they do not form a valid range of PC addresses. */
1649 PC_BOUNDS_INVALID,
1650
1651 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1652 PC_BOUNDS_RANGES,
1653
1654 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1655 PC_BOUNDS_HIGH_LOW,
1656 };
1657
1658 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1659 CORE_ADDR *, CORE_ADDR *,
1660 struct dwarf2_cu *,
1661 struct partial_symtab *);
1662
1663 static void get_scope_pc_bounds (struct die_info *,
1664 CORE_ADDR *, CORE_ADDR *,
1665 struct dwarf2_cu *);
1666
1667 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1668 CORE_ADDR, struct dwarf2_cu *);
1669
1670 static void dwarf2_add_field (struct field_info *, struct die_info *,
1671 struct dwarf2_cu *);
1672
1673 static void dwarf2_attach_fields_to_type (struct field_info *,
1674 struct type *, struct dwarf2_cu *);
1675
1676 static void dwarf2_add_member_fn (struct field_info *,
1677 struct die_info *, struct type *,
1678 struct dwarf2_cu *);
1679
1680 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1681 struct type *,
1682 struct dwarf2_cu *);
1683
1684 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1685
1686 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1687
1688 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1689
1690 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1691
1692 static struct using_direct **using_directives (enum language);
1693
1694 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1695
1696 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1697
1698 static struct type *read_module_type (struct die_info *die,
1699 struct dwarf2_cu *cu);
1700
1701 static const char *namespace_name (struct die_info *die,
1702 int *is_anonymous, struct dwarf2_cu *);
1703
1704 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1705
1706 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1707
1708 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1709 struct dwarf2_cu *);
1710
1711 static struct die_info *read_die_and_siblings_1
1712 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1713 struct die_info *);
1714
1715 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1716 const gdb_byte *info_ptr,
1717 const gdb_byte **new_info_ptr,
1718 struct die_info *parent);
1719
1720 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1721 struct die_info **, const gdb_byte *,
1722 int *, int);
1723
1724 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1725 struct die_info **, const gdb_byte *,
1726 int *);
1727
1728 static void process_die (struct die_info *, struct dwarf2_cu *);
1729
1730 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1731 struct obstack *);
1732
1733 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1734
1735 static const char *dwarf2_full_name (const char *name,
1736 struct die_info *die,
1737 struct dwarf2_cu *cu);
1738
1739 static const char *dwarf2_physname (const char *name, struct die_info *die,
1740 struct dwarf2_cu *cu);
1741
1742 static struct die_info *dwarf2_extension (struct die_info *die,
1743 struct dwarf2_cu **);
1744
1745 static const char *dwarf_tag_name (unsigned int);
1746
1747 static const char *dwarf_attr_name (unsigned int);
1748
1749 static const char *dwarf_form_name (unsigned int);
1750
1751 static char *dwarf_bool_name (unsigned int);
1752
1753 static const char *dwarf_type_encoding_name (unsigned int);
1754
1755 static struct die_info *sibling_die (struct die_info *);
1756
1757 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1758
1759 static void dump_die_for_error (struct die_info *);
1760
1761 static void dump_die_1 (struct ui_file *, int level, int max_level,
1762 struct die_info *);
1763
1764 /*static*/ void dump_die (struct die_info *, int max_level);
1765
1766 static void store_in_ref_table (struct die_info *,
1767 struct dwarf2_cu *);
1768
1769 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1770
1771 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1772
1773 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1774 const struct attribute *,
1775 struct dwarf2_cu **);
1776
1777 static struct die_info *follow_die_ref (struct die_info *,
1778 const struct attribute *,
1779 struct dwarf2_cu **);
1780
1781 static struct die_info *follow_die_sig (struct die_info *,
1782 const struct attribute *,
1783 struct dwarf2_cu **);
1784
1785 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1786 struct dwarf2_cu *);
1787
1788 static struct type *get_DW_AT_signature_type (struct die_info *,
1789 const struct attribute *,
1790 struct dwarf2_cu *);
1791
1792 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1793
1794 static void read_signatured_type (struct signatured_type *);
1795
1796 static int attr_to_dynamic_prop (const struct attribute *attr,
1797 struct die_info *die, struct dwarf2_cu *cu,
1798 struct dynamic_prop *prop);
1799
1800 /* memory allocation interface */
1801
1802 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1803
1804 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1805
1806 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1807
1808 static int attr_form_is_block (const struct attribute *);
1809
1810 static int attr_form_is_section_offset (const struct attribute *);
1811
1812 static int attr_form_is_constant (const struct attribute *);
1813
1814 static int attr_form_is_ref (const struct attribute *);
1815
1816 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1817 struct dwarf2_loclist_baton *baton,
1818 const struct attribute *attr);
1819
1820 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1821 struct symbol *sym,
1822 struct dwarf2_cu *cu,
1823 int is_block);
1824
1825 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1826 const gdb_byte *info_ptr,
1827 struct abbrev_info *abbrev);
1828
1829 static void free_stack_comp_unit (void *);
1830
1831 static hashval_t partial_die_hash (const void *item);
1832
1833 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1834
1835 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1836 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1837
1838 static void init_one_comp_unit (struct dwarf2_cu *cu,
1839 struct dwarf2_per_cu_data *per_cu);
1840
1841 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1842 struct die_info *comp_unit_die,
1843 enum language pretend_language);
1844
1845 static void free_heap_comp_unit (void *);
1846
1847 static void free_cached_comp_units (void *);
1848
1849 static void age_cached_comp_units (void);
1850
1851 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1852
1853 static struct type *set_die_type (struct die_info *, struct type *,
1854 struct dwarf2_cu *);
1855
1856 static void create_all_comp_units (struct objfile *);
1857
1858 static int create_all_type_units (struct objfile *);
1859
1860 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1861 enum language);
1862
1863 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1864 enum language);
1865
1866 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1867 enum language);
1868
1869 static void dwarf2_add_dependence (struct dwarf2_cu *,
1870 struct dwarf2_per_cu_data *);
1871
1872 static void dwarf2_mark (struct dwarf2_cu *);
1873
1874 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1875
1876 static struct type *get_die_type_at_offset (sect_offset,
1877 struct dwarf2_per_cu_data *);
1878
1879 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1880
1881 static void dwarf2_release_queue (void *dummy);
1882
1883 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1884 enum language pretend_language);
1885
1886 static void process_queue (void);
1887
1888 /* The return type of find_file_and_directory. Note, the enclosed
1889 string pointers are only valid while this object is valid. */
1890
1891 struct file_and_directory
1892 {
1893 /* The filename. This is never NULL. */
1894 const char *name;
1895
1896 /* The compilation directory. NULL if not known. If we needed to
1897 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1898 points directly to the DW_AT_comp_dir string attribute owned by
1899 the obstack that owns the DIE. */
1900 const char *comp_dir;
1901
1902 /* If we needed to build a new string for comp_dir, this is what
1903 owns the storage. */
1904 std::string comp_dir_storage;
1905 };
1906
1907 static file_and_directory find_file_and_directory (struct die_info *die,
1908 struct dwarf2_cu *cu);
1909
1910 static char *file_full_name (int file, struct line_header *lh,
1911 const char *comp_dir);
1912
1913 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1914 enum class rcuh_kind { COMPILE, TYPE };
1915
1916 static const gdb_byte *read_and_check_comp_unit_head
1917 (struct comp_unit_head *header,
1918 struct dwarf2_section_info *section,
1919 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1920 rcuh_kind section_kind);
1921
1922 static void init_cutu_and_read_dies
1923 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1924 int use_existing_cu, int keep,
1925 die_reader_func_ftype *die_reader_func, void *data);
1926
1927 static void init_cutu_and_read_dies_simple
1928 (struct dwarf2_per_cu_data *this_cu,
1929 die_reader_func_ftype *die_reader_func, void *data);
1930
1931 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1932
1933 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1934
1935 static struct dwo_unit *lookup_dwo_unit_in_dwp
1936 (struct dwp_file *dwp_file, const char *comp_dir,
1937 ULONGEST signature, int is_debug_types);
1938
1939 static struct dwp_file *get_dwp_file (void);
1940
1941 static struct dwo_unit *lookup_dwo_comp_unit
1942 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1943
1944 static struct dwo_unit *lookup_dwo_type_unit
1945 (struct signatured_type *, const char *, const char *);
1946
1947 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1948
1949 static void free_dwo_file_cleanup (void *);
1950
1951 static void process_cu_includes (void);
1952
1953 static void check_producer (struct dwarf2_cu *cu);
1954
1955 static void free_line_header_voidp (void *arg);
1956 \f
1957 /* Various complaints about symbol reading that don't abort the process. */
1958
1959 static void
1960 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1961 {
1962 complaint (&symfile_complaints,
1963 _("statement list doesn't fit in .debug_line section"));
1964 }
1965
1966 static void
1967 dwarf2_debug_line_missing_file_complaint (void)
1968 {
1969 complaint (&symfile_complaints,
1970 _(".debug_line section has line data without a file"));
1971 }
1972
1973 static void
1974 dwarf2_debug_line_missing_end_sequence_complaint (void)
1975 {
1976 complaint (&symfile_complaints,
1977 _(".debug_line section has line "
1978 "program sequence without an end"));
1979 }
1980
1981 static void
1982 dwarf2_complex_location_expr_complaint (void)
1983 {
1984 complaint (&symfile_complaints, _("location expression too complex"));
1985 }
1986
1987 static void
1988 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1989 int arg3)
1990 {
1991 complaint (&symfile_complaints,
1992 _("const value length mismatch for '%s', got %d, expected %d"),
1993 arg1, arg2, arg3);
1994 }
1995
1996 static void
1997 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1998 {
1999 complaint (&symfile_complaints,
2000 _("debug info runs off end of %s section"
2001 " [in module %s]"),
2002 get_section_name (section),
2003 get_section_file_name (section));
2004 }
2005
2006 static void
2007 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2008 {
2009 complaint (&symfile_complaints,
2010 _("macro debug info contains a "
2011 "malformed macro definition:\n`%s'"),
2012 arg1);
2013 }
2014
2015 static void
2016 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2017 {
2018 complaint (&symfile_complaints,
2019 _("invalid attribute class or form for '%s' in '%s'"),
2020 arg1, arg2);
2021 }
2022
2023 /* Hash function for line_header_hash. */
2024
2025 static hashval_t
2026 line_header_hash (const struct line_header *ofs)
2027 {
2028 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
2029 }
2030
2031 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2032
2033 static hashval_t
2034 line_header_hash_voidp (const void *item)
2035 {
2036 const struct line_header *ofs = (const struct line_header *) item;
2037
2038 return line_header_hash (ofs);
2039 }
2040
2041 /* Equality function for line_header_hash. */
2042
2043 static int
2044 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2045 {
2046 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2047 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2048
2049 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
2050 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2051 }
2052
2053 \f
2054 #if WORDS_BIGENDIAN
2055
2056 /* Convert VALUE between big- and little-endian. */
2057 static offset_type
2058 byte_swap (offset_type value)
2059 {
2060 offset_type result;
2061
2062 result = (value & 0xff) << 24;
2063 result |= (value & 0xff00) << 8;
2064 result |= (value & 0xff0000) >> 8;
2065 result |= (value & 0xff000000) >> 24;
2066 return result;
2067 }
2068
2069 #define MAYBE_SWAP(V) byte_swap (V)
2070
2071 #else
2072 #define MAYBE_SWAP(V) (V)
2073 #endif /* WORDS_BIGENDIAN */
2074
2075 /* Read the given attribute value as an address, taking the attribute's
2076 form into account. */
2077
2078 static CORE_ADDR
2079 attr_value_as_address (struct attribute *attr)
2080 {
2081 CORE_ADDR addr;
2082
2083 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2084 {
2085 /* Aside from a few clearly defined exceptions, attributes that
2086 contain an address must always be in DW_FORM_addr form.
2087 Unfortunately, some compilers happen to be violating this
2088 requirement by encoding addresses using other forms, such
2089 as DW_FORM_data4 for example. For those broken compilers,
2090 we try to do our best, without any guarantee of success,
2091 to interpret the address correctly. It would also be nice
2092 to generate a complaint, but that would require us to maintain
2093 a list of legitimate cases where a non-address form is allowed,
2094 as well as update callers to pass in at least the CU's DWARF
2095 version. This is more overhead than what we're willing to
2096 expand for a pretty rare case. */
2097 addr = DW_UNSND (attr);
2098 }
2099 else
2100 addr = DW_ADDR (attr);
2101
2102 return addr;
2103 }
2104
2105 /* The suffix for an index file. */
2106 #define INDEX_SUFFIX ".gdb-index"
2107
2108 /* Try to locate the sections we need for DWARF 2 debugging
2109 information and return true if we have enough to do something.
2110 NAMES points to the dwarf2 section names, or is NULL if the standard
2111 ELF names are used. */
2112
2113 int
2114 dwarf2_has_info (struct objfile *objfile,
2115 const struct dwarf2_debug_sections *names)
2116 {
2117 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2118 objfile_data (objfile, dwarf2_objfile_data_key));
2119 if (!dwarf2_per_objfile)
2120 {
2121 /* Initialize per-objfile state. */
2122 struct dwarf2_per_objfile *data
2123 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2124
2125 memset (data, 0, sizeof (*data));
2126 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2127 dwarf2_per_objfile = data;
2128
2129 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2130 (void *) names);
2131 dwarf2_per_objfile->objfile = objfile;
2132 }
2133 return (!dwarf2_per_objfile->info.is_virtual
2134 && dwarf2_per_objfile->info.s.section != NULL
2135 && !dwarf2_per_objfile->abbrev.is_virtual
2136 && dwarf2_per_objfile->abbrev.s.section != NULL);
2137 }
2138
2139 /* Return the containing section of virtual section SECTION. */
2140
2141 static struct dwarf2_section_info *
2142 get_containing_section (const struct dwarf2_section_info *section)
2143 {
2144 gdb_assert (section->is_virtual);
2145 return section->s.containing_section;
2146 }
2147
2148 /* Return the bfd owner of SECTION. */
2149
2150 static struct bfd *
2151 get_section_bfd_owner (const struct dwarf2_section_info *section)
2152 {
2153 if (section->is_virtual)
2154 {
2155 section = get_containing_section (section);
2156 gdb_assert (!section->is_virtual);
2157 }
2158 return section->s.section->owner;
2159 }
2160
2161 /* Return the bfd section of SECTION.
2162 Returns NULL if the section is not present. */
2163
2164 static asection *
2165 get_section_bfd_section (const struct dwarf2_section_info *section)
2166 {
2167 if (section->is_virtual)
2168 {
2169 section = get_containing_section (section);
2170 gdb_assert (!section->is_virtual);
2171 }
2172 return section->s.section;
2173 }
2174
2175 /* Return the name of SECTION. */
2176
2177 static const char *
2178 get_section_name (const struct dwarf2_section_info *section)
2179 {
2180 asection *sectp = get_section_bfd_section (section);
2181
2182 gdb_assert (sectp != NULL);
2183 return bfd_section_name (get_section_bfd_owner (section), sectp);
2184 }
2185
2186 /* Return the name of the file SECTION is in. */
2187
2188 static const char *
2189 get_section_file_name (const struct dwarf2_section_info *section)
2190 {
2191 bfd *abfd = get_section_bfd_owner (section);
2192
2193 return bfd_get_filename (abfd);
2194 }
2195
2196 /* Return the id of SECTION.
2197 Returns 0 if SECTION doesn't exist. */
2198
2199 static int
2200 get_section_id (const struct dwarf2_section_info *section)
2201 {
2202 asection *sectp = get_section_bfd_section (section);
2203
2204 if (sectp == NULL)
2205 return 0;
2206 return sectp->id;
2207 }
2208
2209 /* Return the flags of SECTION.
2210 SECTION (or containing section if this is a virtual section) must exist. */
2211
2212 static int
2213 get_section_flags (const struct dwarf2_section_info *section)
2214 {
2215 asection *sectp = get_section_bfd_section (section);
2216
2217 gdb_assert (sectp != NULL);
2218 return bfd_get_section_flags (sectp->owner, sectp);
2219 }
2220
2221 /* When loading sections, we look either for uncompressed section or for
2222 compressed section names. */
2223
2224 static int
2225 section_is_p (const char *section_name,
2226 const struct dwarf2_section_names *names)
2227 {
2228 if (names->normal != NULL
2229 && strcmp (section_name, names->normal) == 0)
2230 return 1;
2231 if (names->compressed != NULL
2232 && strcmp (section_name, names->compressed) == 0)
2233 return 1;
2234 return 0;
2235 }
2236
2237 /* This function is mapped across the sections and remembers the
2238 offset and size of each of the debugging sections we are interested
2239 in. */
2240
2241 static void
2242 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2243 {
2244 const struct dwarf2_debug_sections *names;
2245 flagword aflag = bfd_get_section_flags (abfd, sectp);
2246
2247 if (vnames == NULL)
2248 names = &dwarf2_elf_names;
2249 else
2250 names = (const struct dwarf2_debug_sections *) vnames;
2251
2252 if ((aflag & SEC_HAS_CONTENTS) == 0)
2253 {
2254 }
2255 else if (section_is_p (sectp->name, &names->info))
2256 {
2257 dwarf2_per_objfile->info.s.section = sectp;
2258 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2259 }
2260 else if (section_is_p (sectp->name, &names->abbrev))
2261 {
2262 dwarf2_per_objfile->abbrev.s.section = sectp;
2263 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2264 }
2265 else if (section_is_p (sectp->name, &names->line))
2266 {
2267 dwarf2_per_objfile->line.s.section = sectp;
2268 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2269 }
2270 else if (section_is_p (sectp->name, &names->loc))
2271 {
2272 dwarf2_per_objfile->loc.s.section = sectp;
2273 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2274 }
2275 else if (section_is_p (sectp->name, &names->loclists))
2276 {
2277 dwarf2_per_objfile->loclists.s.section = sectp;
2278 dwarf2_per_objfile->loclists.size = bfd_get_section_size (sectp);
2279 }
2280 else if (section_is_p (sectp->name, &names->macinfo))
2281 {
2282 dwarf2_per_objfile->macinfo.s.section = sectp;
2283 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2284 }
2285 else if (section_is_p (sectp->name, &names->macro))
2286 {
2287 dwarf2_per_objfile->macro.s.section = sectp;
2288 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2289 }
2290 else if (section_is_p (sectp->name, &names->str))
2291 {
2292 dwarf2_per_objfile->str.s.section = sectp;
2293 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2294 }
2295 else if (section_is_p (sectp->name, &names->line_str))
2296 {
2297 dwarf2_per_objfile->line_str.s.section = sectp;
2298 dwarf2_per_objfile->line_str.size = bfd_get_section_size (sectp);
2299 }
2300 else if (section_is_p (sectp->name, &names->addr))
2301 {
2302 dwarf2_per_objfile->addr.s.section = sectp;
2303 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2304 }
2305 else if (section_is_p (sectp->name, &names->frame))
2306 {
2307 dwarf2_per_objfile->frame.s.section = sectp;
2308 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2309 }
2310 else if (section_is_p (sectp->name, &names->eh_frame))
2311 {
2312 dwarf2_per_objfile->eh_frame.s.section = sectp;
2313 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2314 }
2315 else if (section_is_p (sectp->name, &names->ranges))
2316 {
2317 dwarf2_per_objfile->ranges.s.section = sectp;
2318 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2319 }
2320 else if (section_is_p (sectp->name, &names->rnglists))
2321 {
2322 dwarf2_per_objfile->rnglists.s.section = sectp;
2323 dwarf2_per_objfile->rnglists.size = bfd_get_section_size (sectp);
2324 }
2325 else if (section_is_p (sectp->name, &names->types))
2326 {
2327 struct dwarf2_section_info type_section;
2328
2329 memset (&type_section, 0, sizeof (type_section));
2330 type_section.s.section = sectp;
2331 type_section.size = bfd_get_section_size (sectp);
2332
2333 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2334 &type_section);
2335 }
2336 else if (section_is_p (sectp->name, &names->gdb_index))
2337 {
2338 dwarf2_per_objfile->gdb_index.s.section = sectp;
2339 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2340 }
2341
2342 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2343 && bfd_section_vma (abfd, sectp) == 0)
2344 dwarf2_per_objfile->has_section_at_zero = 1;
2345 }
2346
2347 /* A helper function that decides whether a section is empty,
2348 or not present. */
2349
2350 static int
2351 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2352 {
2353 if (section->is_virtual)
2354 return section->size == 0;
2355 return section->s.section == NULL || section->size == 0;
2356 }
2357
2358 /* Read the contents of the section INFO.
2359 OBJFILE is the main object file, but not necessarily the file where
2360 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2361 of the DWO file.
2362 If the section is compressed, uncompress it before returning. */
2363
2364 static void
2365 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2366 {
2367 asection *sectp;
2368 bfd *abfd;
2369 gdb_byte *buf, *retbuf;
2370
2371 if (info->readin)
2372 return;
2373 info->buffer = NULL;
2374 info->readin = 1;
2375
2376 if (dwarf2_section_empty_p (info))
2377 return;
2378
2379 sectp = get_section_bfd_section (info);
2380
2381 /* If this is a virtual section we need to read in the real one first. */
2382 if (info->is_virtual)
2383 {
2384 struct dwarf2_section_info *containing_section =
2385 get_containing_section (info);
2386
2387 gdb_assert (sectp != NULL);
2388 if ((sectp->flags & SEC_RELOC) != 0)
2389 {
2390 error (_("Dwarf Error: DWP format V2 with relocations is not"
2391 " supported in section %s [in module %s]"),
2392 get_section_name (info), get_section_file_name (info));
2393 }
2394 dwarf2_read_section (objfile, containing_section);
2395 /* Other code should have already caught virtual sections that don't
2396 fit. */
2397 gdb_assert (info->virtual_offset + info->size
2398 <= containing_section->size);
2399 /* If the real section is empty or there was a problem reading the
2400 section we shouldn't get here. */
2401 gdb_assert (containing_section->buffer != NULL);
2402 info->buffer = containing_section->buffer + info->virtual_offset;
2403 return;
2404 }
2405
2406 /* If the section has relocations, we must read it ourselves.
2407 Otherwise we attach it to the BFD. */
2408 if ((sectp->flags & SEC_RELOC) == 0)
2409 {
2410 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2411 return;
2412 }
2413
2414 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2415 info->buffer = buf;
2416
2417 /* When debugging .o files, we may need to apply relocations; see
2418 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2419 We never compress sections in .o files, so we only need to
2420 try this when the section is not compressed. */
2421 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2422 if (retbuf != NULL)
2423 {
2424 info->buffer = retbuf;
2425 return;
2426 }
2427
2428 abfd = get_section_bfd_owner (info);
2429 gdb_assert (abfd != NULL);
2430
2431 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2432 || bfd_bread (buf, info->size, abfd) != info->size)
2433 {
2434 error (_("Dwarf Error: Can't read DWARF data"
2435 " in section %s [in module %s]"),
2436 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2437 }
2438 }
2439
2440 /* A helper function that returns the size of a section in a safe way.
2441 If you are positive that the section has been read before using the
2442 size, then it is safe to refer to the dwarf2_section_info object's
2443 "size" field directly. In other cases, you must call this
2444 function, because for compressed sections the size field is not set
2445 correctly until the section has been read. */
2446
2447 static bfd_size_type
2448 dwarf2_section_size (struct objfile *objfile,
2449 struct dwarf2_section_info *info)
2450 {
2451 if (!info->readin)
2452 dwarf2_read_section (objfile, info);
2453 return info->size;
2454 }
2455
2456 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2457 SECTION_NAME. */
2458
2459 void
2460 dwarf2_get_section_info (struct objfile *objfile,
2461 enum dwarf2_section_enum sect,
2462 asection **sectp, const gdb_byte **bufp,
2463 bfd_size_type *sizep)
2464 {
2465 struct dwarf2_per_objfile *data
2466 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2467 dwarf2_objfile_data_key);
2468 struct dwarf2_section_info *info;
2469
2470 /* We may see an objfile without any DWARF, in which case we just
2471 return nothing. */
2472 if (data == NULL)
2473 {
2474 *sectp = NULL;
2475 *bufp = NULL;
2476 *sizep = 0;
2477 return;
2478 }
2479 switch (sect)
2480 {
2481 case DWARF2_DEBUG_FRAME:
2482 info = &data->frame;
2483 break;
2484 case DWARF2_EH_FRAME:
2485 info = &data->eh_frame;
2486 break;
2487 default:
2488 gdb_assert_not_reached ("unexpected section");
2489 }
2490
2491 dwarf2_read_section (objfile, info);
2492
2493 *sectp = get_section_bfd_section (info);
2494 *bufp = info->buffer;
2495 *sizep = info->size;
2496 }
2497
2498 /* A helper function to find the sections for a .dwz file. */
2499
2500 static void
2501 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2502 {
2503 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2504
2505 /* Note that we only support the standard ELF names, because .dwz
2506 is ELF-only (at the time of writing). */
2507 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2508 {
2509 dwz_file->abbrev.s.section = sectp;
2510 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2511 }
2512 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2513 {
2514 dwz_file->info.s.section = sectp;
2515 dwz_file->info.size = bfd_get_section_size (sectp);
2516 }
2517 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2518 {
2519 dwz_file->str.s.section = sectp;
2520 dwz_file->str.size = bfd_get_section_size (sectp);
2521 }
2522 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2523 {
2524 dwz_file->line.s.section = sectp;
2525 dwz_file->line.size = bfd_get_section_size (sectp);
2526 }
2527 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2528 {
2529 dwz_file->macro.s.section = sectp;
2530 dwz_file->macro.size = bfd_get_section_size (sectp);
2531 }
2532 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2533 {
2534 dwz_file->gdb_index.s.section = sectp;
2535 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2536 }
2537 }
2538
2539 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2540 there is no .gnu_debugaltlink section in the file. Error if there
2541 is such a section but the file cannot be found. */
2542
2543 static struct dwz_file *
2544 dwarf2_get_dwz_file (void)
2545 {
2546 char *data;
2547 struct cleanup *cleanup;
2548 const char *filename;
2549 struct dwz_file *result;
2550 bfd_size_type buildid_len_arg;
2551 size_t buildid_len;
2552 bfd_byte *buildid;
2553
2554 if (dwarf2_per_objfile->dwz_file != NULL)
2555 return dwarf2_per_objfile->dwz_file;
2556
2557 bfd_set_error (bfd_error_no_error);
2558 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2559 &buildid_len_arg, &buildid);
2560 if (data == NULL)
2561 {
2562 if (bfd_get_error () == bfd_error_no_error)
2563 return NULL;
2564 error (_("could not read '.gnu_debugaltlink' section: %s"),
2565 bfd_errmsg (bfd_get_error ()));
2566 }
2567 cleanup = make_cleanup (xfree, data);
2568 make_cleanup (xfree, buildid);
2569
2570 buildid_len = (size_t) buildid_len_arg;
2571
2572 filename = (const char *) data;
2573
2574 std::string abs_storage;
2575 if (!IS_ABSOLUTE_PATH (filename))
2576 {
2577 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2578
2579 make_cleanup (xfree, abs);
2580 abs_storage = ldirname (abs) + SLASH_STRING + filename;
2581 filename = abs_storage.c_str ();
2582 }
2583
2584 /* First try the file name given in the section. If that doesn't
2585 work, try to use the build-id instead. */
2586 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2587 if (dwz_bfd != NULL)
2588 {
2589 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2590 dwz_bfd.release ();
2591 }
2592
2593 if (dwz_bfd == NULL)
2594 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2595
2596 if (dwz_bfd == NULL)
2597 error (_("could not find '.gnu_debugaltlink' file for %s"),
2598 objfile_name (dwarf2_per_objfile->objfile));
2599
2600 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2601 struct dwz_file);
2602 result->dwz_bfd = dwz_bfd.release ();
2603
2604 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2605
2606 do_cleanups (cleanup);
2607
2608 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2609 dwarf2_per_objfile->dwz_file = result;
2610 return result;
2611 }
2612 \f
2613 /* DWARF quick_symbols_functions support. */
2614
2615 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2616 unique line tables, so we maintain a separate table of all .debug_line
2617 derived entries to support the sharing.
2618 All the quick functions need is the list of file names. We discard the
2619 line_header when we're done and don't need to record it here. */
2620 struct quick_file_names
2621 {
2622 /* The data used to construct the hash key. */
2623 struct stmt_list_hash hash;
2624
2625 /* The number of entries in file_names, real_names. */
2626 unsigned int num_file_names;
2627
2628 /* The file names from the line table, after being run through
2629 file_full_name. */
2630 const char **file_names;
2631
2632 /* The file names from the line table after being run through
2633 gdb_realpath. These are computed lazily. */
2634 const char **real_names;
2635 };
2636
2637 /* When using the index (and thus not using psymtabs), each CU has an
2638 object of this type. This is used to hold information needed by
2639 the various "quick" methods. */
2640 struct dwarf2_per_cu_quick_data
2641 {
2642 /* The file table. This can be NULL if there was no file table
2643 or it's currently not read in.
2644 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2645 struct quick_file_names *file_names;
2646
2647 /* The corresponding symbol table. This is NULL if symbols for this
2648 CU have not yet been read. */
2649 struct compunit_symtab *compunit_symtab;
2650
2651 /* A temporary mark bit used when iterating over all CUs in
2652 expand_symtabs_matching. */
2653 unsigned int mark : 1;
2654
2655 /* True if we've tried to read the file table and found there isn't one.
2656 There will be no point in trying to read it again next time. */
2657 unsigned int no_file_data : 1;
2658 };
2659
2660 /* Utility hash function for a stmt_list_hash. */
2661
2662 static hashval_t
2663 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2664 {
2665 hashval_t v = 0;
2666
2667 if (stmt_list_hash->dwo_unit != NULL)
2668 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2669 v += stmt_list_hash->line_offset.sect_off;
2670 return v;
2671 }
2672
2673 /* Utility equality function for a stmt_list_hash. */
2674
2675 static int
2676 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2677 const struct stmt_list_hash *rhs)
2678 {
2679 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2680 return 0;
2681 if (lhs->dwo_unit != NULL
2682 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2683 return 0;
2684
2685 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2686 }
2687
2688 /* Hash function for a quick_file_names. */
2689
2690 static hashval_t
2691 hash_file_name_entry (const void *e)
2692 {
2693 const struct quick_file_names *file_data
2694 = (const struct quick_file_names *) e;
2695
2696 return hash_stmt_list_entry (&file_data->hash);
2697 }
2698
2699 /* Equality function for a quick_file_names. */
2700
2701 static int
2702 eq_file_name_entry (const void *a, const void *b)
2703 {
2704 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2705 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2706
2707 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2708 }
2709
2710 /* Delete function for a quick_file_names. */
2711
2712 static void
2713 delete_file_name_entry (void *e)
2714 {
2715 struct quick_file_names *file_data = (struct quick_file_names *) e;
2716 int i;
2717
2718 for (i = 0; i < file_data->num_file_names; ++i)
2719 {
2720 xfree ((void*) file_data->file_names[i]);
2721 if (file_data->real_names)
2722 xfree ((void*) file_data->real_names[i]);
2723 }
2724
2725 /* The space for the struct itself lives on objfile_obstack,
2726 so we don't free it here. */
2727 }
2728
2729 /* Create a quick_file_names hash table. */
2730
2731 static htab_t
2732 create_quick_file_names_table (unsigned int nr_initial_entries)
2733 {
2734 return htab_create_alloc (nr_initial_entries,
2735 hash_file_name_entry, eq_file_name_entry,
2736 delete_file_name_entry, xcalloc, xfree);
2737 }
2738
2739 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2740 have to be created afterwards. You should call age_cached_comp_units after
2741 processing PER_CU->CU. dw2_setup must have been already called. */
2742
2743 static void
2744 load_cu (struct dwarf2_per_cu_data *per_cu)
2745 {
2746 if (per_cu->is_debug_types)
2747 load_full_type_unit (per_cu);
2748 else
2749 load_full_comp_unit (per_cu, language_minimal);
2750
2751 if (per_cu->cu == NULL)
2752 return; /* Dummy CU. */
2753
2754 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2755 }
2756
2757 /* Read in the symbols for PER_CU. */
2758
2759 static void
2760 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2761 {
2762 struct cleanup *back_to;
2763
2764 /* Skip type_unit_groups, reading the type units they contain
2765 is handled elsewhere. */
2766 if (IS_TYPE_UNIT_GROUP (per_cu))
2767 return;
2768
2769 back_to = make_cleanup (dwarf2_release_queue, NULL);
2770
2771 if (dwarf2_per_objfile->using_index
2772 ? per_cu->v.quick->compunit_symtab == NULL
2773 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2774 {
2775 queue_comp_unit (per_cu, language_minimal);
2776 load_cu (per_cu);
2777
2778 /* If we just loaded a CU from a DWO, and we're working with an index
2779 that may badly handle TUs, load all the TUs in that DWO as well.
2780 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2781 if (!per_cu->is_debug_types
2782 && per_cu->cu != NULL
2783 && per_cu->cu->dwo_unit != NULL
2784 && dwarf2_per_objfile->index_table != NULL
2785 && dwarf2_per_objfile->index_table->version <= 7
2786 /* DWP files aren't supported yet. */
2787 && get_dwp_file () == NULL)
2788 queue_and_load_all_dwo_tus (per_cu);
2789 }
2790
2791 process_queue ();
2792
2793 /* Age the cache, releasing compilation units that have not
2794 been used recently. */
2795 age_cached_comp_units ();
2796
2797 do_cleanups (back_to);
2798 }
2799
2800 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2801 the objfile from which this CU came. Returns the resulting symbol
2802 table. */
2803
2804 static struct compunit_symtab *
2805 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2806 {
2807 gdb_assert (dwarf2_per_objfile->using_index);
2808 if (!per_cu->v.quick->compunit_symtab)
2809 {
2810 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2811 increment_reading_symtab ();
2812 dw2_do_instantiate_symtab (per_cu);
2813 process_cu_includes ();
2814 do_cleanups (back_to);
2815 }
2816
2817 return per_cu->v.quick->compunit_symtab;
2818 }
2819
2820 /* Return the CU/TU given its index.
2821
2822 This is intended for loops like:
2823
2824 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2825 + dwarf2_per_objfile->n_type_units); ++i)
2826 {
2827 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2828
2829 ...;
2830 }
2831 */
2832
2833 static struct dwarf2_per_cu_data *
2834 dw2_get_cutu (int index)
2835 {
2836 if (index >= dwarf2_per_objfile->n_comp_units)
2837 {
2838 index -= dwarf2_per_objfile->n_comp_units;
2839 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2840 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2841 }
2842
2843 return dwarf2_per_objfile->all_comp_units[index];
2844 }
2845
2846 /* Return the CU given its index.
2847 This differs from dw2_get_cutu in that it's for when you know INDEX
2848 refers to a CU. */
2849
2850 static struct dwarf2_per_cu_data *
2851 dw2_get_cu (int index)
2852 {
2853 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2854
2855 return dwarf2_per_objfile->all_comp_units[index];
2856 }
2857
2858 /* A helper for create_cus_from_index that handles a given list of
2859 CUs. */
2860
2861 static void
2862 create_cus_from_index_list (struct objfile *objfile,
2863 const gdb_byte *cu_list, offset_type n_elements,
2864 struct dwarf2_section_info *section,
2865 int is_dwz,
2866 int base_offset)
2867 {
2868 offset_type i;
2869
2870 for (i = 0; i < n_elements; i += 2)
2871 {
2872 struct dwarf2_per_cu_data *the_cu;
2873 ULONGEST offset, length;
2874
2875 gdb_static_assert (sizeof (ULONGEST) >= 8);
2876 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2877 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2878 cu_list += 2 * 8;
2879
2880 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2881 struct dwarf2_per_cu_data);
2882 the_cu->offset.sect_off = offset;
2883 the_cu->length = length;
2884 the_cu->objfile = objfile;
2885 the_cu->section = section;
2886 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2887 struct dwarf2_per_cu_quick_data);
2888 the_cu->is_dwz = is_dwz;
2889 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2890 }
2891 }
2892
2893 /* Read the CU list from the mapped index, and use it to create all
2894 the CU objects for this objfile. */
2895
2896 static void
2897 create_cus_from_index (struct objfile *objfile,
2898 const gdb_byte *cu_list, offset_type cu_list_elements,
2899 const gdb_byte *dwz_list, offset_type dwz_elements)
2900 {
2901 struct dwz_file *dwz;
2902
2903 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2904 dwarf2_per_objfile->all_comp_units =
2905 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2906 dwarf2_per_objfile->n_comp_units);
2907
2908 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2909 &dwarf2_per_objfile->info, 0, 0);
2910
2911 if (dwz_elements == 0)
2912 return;
2913
2914 dwz = dwarf2_get_dwz_file ();
2915 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2916 cu_list_elements / 2);
2917 }
2918
2919 /* Create the signatured type hash table from the index. */
2920
2921 static void
2922 create_signatured_type_table_from_index (struct objfile *objfile,
2923 struct dwarf2_section_info *section,
2924 const gdb_byte *bytes,
2925 offset_type elements)
2926 {
2927 offset_type i;
2928 htab_t sig_types_hash;
2929
2930 dwarf2_per_objfile->n_type_units
2931 = dwarf2_per_objfile->n_allocated_type_units
2932 = elements / 3;
2933 dwarf2_per_objfile->all_type_units =
2934 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2935
2936 sig_types_hash = allocate_signatured_type_table (objfile);
2937
2938 for (i = 0; i < elements; i += 3)
2939 {
2940 struct signatured_type *sig_type;
2941 ULONGEST offset, type_offset_in_tu, signature;
2942 void **slot;
2943
2944 gdb_static_assert (sizeof (ULONGEST) >= 8);
2945 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2946 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2947 BFD_ENDIAN_LITTLE);
2948 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2949 bytes += 3 * 8;
2950
2951 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2952 struct signatured_type);
2953 sig_type->signature = signature;
2954 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2955 sig_type->per_cu.is_debug_types = 1;
2956 sig_type->per_cu.section = section;
2957 sig_type->per_cu.offset.sect_off = offset;
2958 sig_type->per_cu.objfile = objfile;
2959 sig_type->per_cu.v.quick
2960 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2961 struct dwarf2_per_cu_quick_data);
2962
2963 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2964 *slot = sig_type;
2965
2966 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2967 }
2968
2969 dwarf2_per_objfile->signatured_types = sig_types_hash;
2970 }
2971
2972 /* Read the address map data from the mapped index, and use it to
2973 populate the objfile's psymtabs_addrmap. */
2974
2975 static void
2976 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2977 {
2978 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2979 const gdb_byte *iter, *end;
2980 struct obstack temp_obstack;
2981 struct addrmap *mutable_map;
2982 struct cleanup *cleanup;
2983 CORE_ADDR baseaddr;
2984
2985 obstack_init (&temp_obstack);
2986 cleanup = make_cleanup_obstack_free (&temp_obstack);
2987 mutable_map = addrmap_create_mutable (&temp_obstack);
2988
2989 iter = index->address_table;
2990 end = iter + index->address_table_size;
2991
2992 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2993
2994 while (iter < end)
2995 {
2996 ULONGEST hi, lo, cu_index;
2997 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2998 iter += 8;
2999 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3000 iter += 8;
3001 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3002 iter += 4;
3003
3004 if (lo > hi)
3005 {
3006 complaint (&symfile_complaints,
3007 _(".gdb_index address table has invalid range (%s - %s)"),
3008 hex_string (lo), hex_string (hi));
3009 continue;
3010 }
3011
3012 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3013 {
3014 complaint (&symfile_complaints,
3015 _(".gdb_index address table has invalid CU number %u"),
3016 (unsigned) cu_index);
3017 continue;
3018 }
3019
3020 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3021 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3022 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3023 }
3024
3025 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3026 &objfile->objfile_obstack);
3027 do_cleanups (cleanup);
3028 }
3029
3030 /* The hash function for strings in the mapped index. This is the same as
3031 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3032 implementation. This is necessary because the hash function is tied to the
3033 format of the mapped index file. The hash values do not have to match with
3034 SYMBOL_HASH_NEXT.
3035
3036 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3037
3038 static hashval_t
3039 mapped_index_string_hash (int index_version, const void *p)
3040 {
3041 const unsigned char *str = (const unsigned char *) p;
3042 hashval_t r = 0;
3043 unsigned char c;
3044
3045 while ((c = *str++) != 0)
3046 {
3047 if (index_version >= 5)
3048 c = tolower (c);
3049 r = r * 67 + c - 113;
3050 }
3051
3052 return r;
3053 }
3054
3055 /* Find a slot in the mapped index INDEX for the object named NAME.
3056 If NAME is found, set *VEC_OUT to point to the CU vector in the
3057 constant pool and return 1. If NAME cannot be found, return 0. */
3058
3059 static int
3060 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3061 offset_type **vec_out)
3062 {
3063 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3064 offset_type hash;
3065 offset_type slot, step;
3066 int (*cmp) (const char *, const char *);
3067
3068 if (current_language->la_language == language_cplus
3069 || current_language->la_language == language_fortran
3070 || current_language->la_language == language_d)
3071 {
3072 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3073 not contain any. */
3074
3075 if (strchr (name, '(') != NULL)
3076 {
3077 char *without_params = cp_remove_params (name);
3078
3079 if (without_params != NULL)
3080 {
3081 make_cleanup (xfree, without_params);
3082 name = without_params;
3083 }
3084 }
3085 }
3086
3087 /* Index version 4 did not support case insensitive searches. But the
3088 indices for case insensitive languages are built in lowercase, therefore
3089 simulate our NAME being searched is also lowercased. */
3090 hash = mapped_index_string_hash ((index->version == 4
3091 && case_sensitivity == case_sensitive_off
3092 ? 5 : index->version),
3093 name);
3094
3095 slot = hash & (index->symbol_table_slots - 1);
3096 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3097 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3098
3099 for (;;)
3100 {
3101 /* Convert a slot number to an offset into the table. */
3102 offset_type i = 2 * slot;
3103 const char *str;
3104 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3105 {
3106 do_cleanups (back_to);
3107 return 0;
3108 }
3109
3110 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3111 if (!cmp (name, str))
3112 {
3113 *vec_out = (offset_type *) (index->constant_pool
3114 + MAYBE_SWAP (index->symbol_table[i + 1]));
3115 do_cleanups (back_to);
3116 return 1;
3117 }
3118
3119 slot = (slot + step) & (index->symbol_table_slots - 1);
3120 }
3121 }
3122
3123 /* A helper function that reads the .gdb_index from SECTION and fills
3124 in MAP. FILENAME is the name of the file containing the section;
3125 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3126 ok to use deprecated sections.
3127
3128 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3129 out parameters that are filled in with information about the CU and
3130 TU lists in the section.
3131
3132 Returns 1 if all went well, 0 otherwise. */
3133
3134 static int
3135 read_index_from_section (struct objfile *objfile,
3136 const char *filename,
3137 int deprecated_ok,
3138 struct dwarf2_section_info *section,
3139 struct mapped_index *map,
3140 const gdb_byte **cu_list,
3141 offset_type *cu_list_elements,
3142 const gdb_byte **types_list,
3143 offset_type *types_list_elements)
3144 {
3145 const gdb_byte *addr;
3146 offset_type version;
3147 offset_type *metadata;
3148 int i;
3149
3150 if (dwarf2_section_empty_p (section))
3151 return 0;
3152
3153 /* Older elfutils strip versions could keep the section in the main
3154 executable while splitting it for the separate debug info file. */
3155 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3156 return 0;
3157
3158 dwarf2_read_section (objfile, section);
3159
3160 addr = section->buffer;
3161 /* Version check. */
3162 version = MAYBE_SWAP (*(offset_type *) addr);
3163 /* Versions earlier than 3 emitted every copy of a psymbol. This
3164 causes the index to behave very poorly for certain requests. Version 3
3165 contained incomplete addrmap. So, it seems better to just ignore such
3166 indices. */
3167 if (version < 4)
3168 {
3169 static int warning_printed = 0;
3170 if (!warning_printed)
3171 {
3172 warning (_("Skipping obsolete .gdb_index section in %s."),
3173 filename);
3174 warning_printed = 1;
3175 }
3176 return 0;
3177 }
3178 /* Index version 4 uses a different hash function than index version
3179 5 and later.
3180
3181 Versions earlier than 6 did not emit psymbols for inlined
3182 functions. Using these files will cause GDB not to be able to
3183 set breakpoints on inlined functions by name, so we ignore these
3184 indices unless the user has done
3185 "set use-deprecated-index-sections on". */
3186 if (version < 6 && !deprecated_ok)
3187 {
3188 static int warning_printed = 0;
3189 if (!warning_printed)
3190 {
3191 warning (_("\
3192 Skipping deprecated .gdb_index section in %s.\n\
3193 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3194 to use the section anyway."),
3195 filename);
3196 warning_printed = 1;
3197 }
3198 return 0;
3199 }
3200 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3201 of the TU (for symbols coming from TUs),
3202 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3203 Plus gold-generated indices can have duplicate entries for global symbols,
3204 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3205 These are just performance bugs, and we can't distinguish gdb-generated
3206 indices from gold-generated ones, so issue no warning here. */
3207
3208 /* Indexes with higher version than the one supported by GDB may be no
3209 longer backward compatible. */
3210 if (version > 8)
3211 return 0;
3212
3213 map->version = version;
3214 map->total_size = section->size;
3215
3216 metadata = (offset_type *) (addr + sizeof (offset_type));
3217
3218 i = 0;
3219 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3220 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3221 / 8);
3222 ++i;
3223
3224 *types_list = addr + MAYBE_SWAP (metadata[i]);
3225 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3226 - MAYBE_SWAP (metadata[i]))
3227 / 8);
3228 ++i;
3229
3230 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3231 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3232 - MAYBE_SWAP (metadata[i]));
3233 ++i;
3234
3235 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3236 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3237 - MAYBE_SWAP (metadata[i]))
3238 / (2 * sizeof (offset_type)));
3239 ++i;
3240
3241 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3242
3243 return 1;
3244 }
3245
3246
3247 /* Read the index file. If everything went ok, initialize the "quick"
3248 elements of all the CUs and return 1. Otherwise, return 0. */
3249
3250 static int
3251 dwarf2_read_index (struct objfile *objfile)
3252 {
3253 struct mapped_index local_map, *map;
3254 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3255 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3256 struct dwz_file *dwz;
3257
3258 if (!read_index_from_section (objfile, objfile_name (objfile),
3259 use_deprecated_index_sections,
3260 &dwarf2_per_objfile->gdb_index, &local_map,
3261 &cu_list, &cu_list_elements,
3262 &types_list, &types_list_elements))
3263 return 0;
3264
3265 /* Don't use the index if it's empty. */
3266 if (local_map.symbol_table_slots == 0)
3267 return 0;
3268
3269 /* If there is a .dwz file, read it so we can get its CU list as
3270 well. */
3271 dwz = dwarf2_get_dwz_file ();
3272 if (dwz != NULL)
3273 {
3274 struct mapped_index dwz_map;
3275 const gdb_byte *dwz_types_ignore;
3276 offset_type dwz_types_elements_ignore;
3277
3278 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3279 1,
3280 &dwz->gdb_index, &dwz_map,
3281 &dwz_list, &dwz_list_elements,
3282 &dwz_types_ignore,
3283 &dwz_types_elements_ignore))
3284 {
3285 warning (_("could not read '.gdb_index' section from %s; skipping"),
3286 bfd_get_filename (dwz->dwz_bfd));
3287 return 0;
3288 }
3289 }
3290
3291 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3292 dwz_list_elements);
3293
3294 if (types_list_elements)
3295 {
3296 struct dwarf2_section_info *section;
3297
3298 /* We can only handle a single .debug_types when we have an
3299 index. */
3300 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3301 return 0;
3302
3303 section = VEC_index (dwarf2_section_info_def,
3304 dwarf2_per_objfile->types, 0);
3305
3306 create_signatured_type_table_from_index (objfile, section, types_list,
3307 types_list_elements);
3308 }
3309
3310 create_addrmap_from_index (objfile, &local_map);
3311
3312 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3313 *map = local_map;
3314
3315 dwarf2_per_objfile->index_table = map;
3316 dwarf2_per_objfile->using_index = 1;
3317 dwarf2_per_objfile->quick_file_names_table =
3318 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3319
3320 return 1;
3321 }
3322
3323 /* A helper for the "quick" functions which sets the global
3324 dwarf2_per_objfile according to OBJFILE. */
3325
3326 static void
3327 dw2_setup (struct objfile *objfile)
3328 {
3329 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3330 objfile_data (objfile, dwarf2_objfile_data_key));
3331 gdb_assert (dwarf2_per_objfile);
3332 }
3333
3334 /* die_reader_func for dw2_get_file_names. */
3335
3336 static void
3337 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3338 const gdb_byte *info_ptr,
3339 struct die_info *comp_unit_die,
3340 int has_children,
3341 void *data)
3342 {
3343 struct dwarf2_cu *cu = reader->cu;
3344 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3345 struct objfile *objfile = dwarf2_per_objfile->objfile;
3346 struct dwarf2_per_cu_data *lh_cu;
3347 struct line_header *lh;
3348 struct attribute *attr;
3349 int i;
3350 void **slot;
3351 struct quick_file_names *qfn;
3352 unsigned int line_offset;
3353
3354 gdb_assert (! this_cu->is_debug_types);
3355
3356 /* Our callers never want to match partial units -- instead they
3357 will match the enclosing full CU. */
3358 if (comp_unit_die->tag == DW_TAG_partial_unit)
3359 {
3360 this_cu->v.quick->no_file_data = 1;
3361 return;
3362 }
3363
3364 lh_cu = this_cu;
3365 lh = NULL;
3366 slot = NULL;
3367 line_offset = 0;
3368
3369 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3370 if (attr)
3371 {
3372 struct quick_file_names find_entry;
3373
3374 line_offset = DW_UNSND (attr);
3375
3376 /* We may have already read in this line header (TU line header sharing).
3377 If we have we're done. */
3378 find_entry.hash.dwo_unit = cu->dwo_unit;
3379 find_entry.hash.line_offset.sect_off = line_offset;
3380 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3381 &find_entry, INSERT);
3382 if (*slot != NULL)
3383 {
3384 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3385 return;
3386 }
3387
3388 lh = dwarf_decode_line_header (line_offset, cu);
3389 }
3390 if (lh == NULL)
3391 {
3392 lh_cu->v.quick->no_file_data = 1;
3393 return;
3394 }
3395
3396 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3397 qfn->hash.dwo_unit = cu->dwo_unit;
3398 qfn->hash.line_offset.sect_off = line_offset;
3399 gdb_assert (slot != NULL);
3400 *slot = qfn;
3401
3402 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3403
3404 qfn->num_file_names = lh->num_file_names;
3405 qfn->file_names =
3406 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3407 for (i = 0; i < lh->num_file_names; ++i)
3408 qfn->file_names[i] = file_full_name (i + 1, lh, fnd.comp_dir);
3409 qfn->real_names = NULL;
3410
3411 free_line_header (lh);
3412
3413 lh_cu->v.quick->file_names = qfn;
3414 }
3415
3416 /* A helper for the "quick" functions which attempts to read the line
3417 table for THIS_CU. */
3418
3419 static struct quick_file_names *
3420 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3421 {
3422 /* This should never be called for TUs. */
3423 gdb_assert (! this_cu->is_debug_types);
3424 /* Nor type unit groups. */
3425 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3426
3427 if (this_cu->v.quick->file_names != NULL)
3428 return this_cu->v.quick->file_names;
3429 /* If we know there is no line data, no point in looking again. */
3430 if (this_cu->v.quick->no_file_data)
3431 return NULL;
3432
3433 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3434
3435 if (this_cu->v.quick->no_file_data)
3436 return NULL;
3437 return this_cu->v.quick->file_names;
3438 }
3439
3440 /* A helper for the "quick" functions which computes and caches the
3441 real path for a given file name from the line table. */
3442
3443 static const char *
3444 dw2_get_real_path (struct objfile *objfile,
3445 struct quick_file_names *qfn, int index)
3446 {
3447 if (qfn->real_names == NULL)
3448 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3449 qfn->num_file_names, const char *);
3450
3451 if (qfn->real_names[index] == NULL)
3452 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3453
3454 return qfn->real_names[index];
3455 }
3456
3457 static struct symtab *
3458 dw2_find_last_source_symtab (struct objfile *objfile)
3459 {
3460 struct compunit_symtab *cust;
3461 int index;
3462
3463 dw2_setup (objfile);
3464 index = dwarf2_per_objfile->n_comp_units - 1;
3465 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3466 if (cust == NULL)
3467 return NULL;
3468 return compunit_primary_filetab (cust);
3469 }
3470
3471 /* Traversal function for dw2_forget_cached_source_info. */
3472
3473 static int
3474 dw2_free_cached_file_names (void **slot, void *info)
3475 {
3476 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3477
3478 if (file_data->real_names)
3479 {
3480 int i;
3481
3482 for (i = 0; i < file_data->num_file_names; ++i)
3483 {
3484 xfree ((void*) file_data->real_names[i]);
3485 file_data->real_names[i] = NULL;
3486 }
3487 }
3488
3489 return 1;
3490 }
3491
3492 static void
3493 dw2_forget_cached_source_info (struct objfile *objfile)
3494 {
3495 dw2_setup (objfile);
3496
3497 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3498 dw2_free_cached_file_names, NULL);
3499 }
3500
3501 /* Helper function for dw2_map_symtabs_matching_filename that expands
3502 the symtabs and calls the iterator. */
3503
3504 static int
3505 dw2_map_expand_apply (struct objfile *objfile,
3506 struct dwarf2_per_cu_data *per_cu,
3507 const char *name, const char *real_path,
3508 gdb::function_view<bool (symtab *)> callback)
3509 {
3510 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3511
3512 /* Don't visit already-expanded CUs. */
3513 if (per_cu->v.quick->compunit_symtab)
3514 return 0;
3515
3516 /* This may expand more than one symtab, and we want to iterate over
3517 all of them. */
3518 dw2_instantiate_symtab (per_cu);
3519
3520 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3521 last_made, callback);
3522 }
3523
3524 /* Implementation of the map_symtabs_matching_filename method. */
3525
3526 static bool
3527 dw2_map_symtabs_matching_filename
3528 (struct objfile *objfile, const char *name, const char *real_path,
3529 gdb::function_view<bool (symtab *)> callback)
3530 {
3531 int i;
3532 const char *name_basename = lbasename (name);
3533
3534 dw2_setup (objfile);
3535
3536 /* The rule is CUs specify all the files, including those used by
3537 any TU, so there's no need to scan TUs here. */
3538
3539 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3540 {
3541 int j;
3542 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3543 struct quick_file_names *file_data;
3544
3545 /* We only need to look at symtabs not already expanded. */
3546 if (per_cu->v.quick->compunit_symtab)
3547 continue;
3548
3549 file_data = dw2_get_file_names (per_cu);
3550 if (file_data == NULL)
3551 continue;
3552
3553 for (j = 0; j < file_data->num_file_names; ++j)
3554 {
3555 const char *this_name = file_data->file_names[j];
3556 const char *this_real_name;
3557
3558 if (compare_filenames_for_search (this_name, name))
3559 {
3560 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3561 callback))
3562 return true;
3563 continue;
3564 }
3565
3566 /* Before we invoke realpath, which can get expensive when many
3567 files are involved, do a quick comparison of the basenames. */
3568 if (! basenames_may_differ
3569 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3570 continue;
3571
3572 this_real_name = dw2_get_real_path (objfile, file_data, j);
3573 if (compare_filenames_for_search (this_real_name, name))
3574 {
3575 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3576 callback))
3577 return true;
3578 continue;
3579 }
3580
3581 if (real_path != NULL)
3582 {
3583 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3584 gdb_assert (IS_ABSOLUTE_PATH (name));
3585 if (this_real_name != NULL
3586 && FILENAME_CMP (real_path, this_real_name) == 0)
3587 {
3588 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3589 callback))
3590 return true;
3591 continue;
3592 }
3593 }
3594 }
3595 }
3596
3597 return false;
3598 }
3599
3600 /* Struct used to manage iterating over all CUs looking for a symbol. */
3601
3602 struct dw2_symtab_iterator
3603 {
3604 /* The internalized form of .gdb_index. */
3605 struct mapped_index *index;
3606 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3607 int want_specific_block;
3608 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3609 Unused if !WANT_SPECIFIC_BLOCK. */
3610 int block_index;
3611 /* The kind of symbol we're looking for. */
3612 domain_enum domain;
3613 /* The list of CUs from the index entry of the symbol,
3614 or NULL if not found. */
3615 offset_type *vec;
3616 /* The next element in VEC to look at. */
3617 int next;
3618 /* The number of elements in VEC, or zero if there is no match. */
3619 int length;
3620 /* Have we seen a global version of the symbol?
3621 If so we can ignore all further global instances.
3622 This is to work around gold/15646, inefficient gold-generated
3623 indices. */
3624 int global_seen;
3625 };
3626
3627 /* Initialize the index symtab iterator ITER.
3628 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3629 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3630
3631 static void
3632 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3633 struct mapped_index *index,
3634 int want_specific_block,
3635 int block_index,
3636 domain_enum domain,
3637 const char *name)
3638 {
3639 iter->index = index;
3640 iter->want_specific_block = want_specific_block;
3641 iter->block_index = block_index;
3642 iter->domain = domain;
3643 iter->next = 0;
3644 iter->global_seen = 0;
3645
3646 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3647 iter->length = MAYBE_SWAP (*iter->vec);
3648 else
3649 {
3650 iter->vec = NULL;
3651 iter->length = 0;
3652 }
3653 }
3654
3655 /* Return the next matching CU or NULL if there are no more. */
3656
3657 static struct dwarf2_per_cu_data *
3658 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3659 {
3660 for ( ; iter->next < iter->length; ++iter->next)
3661 {
3662 offset_type cu_index_and_attrs =
3663 MAYBE_SWAP (iter->vec[iter->next + 1]);
3664 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3665 struct dwarf2_per_cu_data *per_cu;
3666 int want_static = iter->block_index != GLOBAL_BLOCK;
3667 /* This value is only valid for index versions >= 7. */
3668 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3669 gdb_index_symbol_kind symbol_kind =
3670 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3671 /* Only check the symbol attributes if they're present.
3672 Indices prior to version 7 don't record them,
3673 and indices >= 7 may elide them for certain symbols
3674 (gold does this). */
3675 int attrs_valid =
3676 (iter->index->version >= 7
3677 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3678
3679 /* Don't crash on bad data. */
3680 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3681 + dwarf2_per_objfile->n_type_units))
3682 {
3683 complaint (&symfile_complaints,
3684 _(".gdb_index entry has bad CU index"
3685 " [in module %s]"),
3686 objfile_name (dwarf2_per_objfile->objfile));
3687 continue;
3688 }
3689
3690 per_cu = dw2_get_cutu (cu_index);
3691
3692 /* Skip if already read in. */
3693 if (per_cu->v.quick->compunit_symtab)
3694 continue;
3695
3696 /* Check static vs global. */
3697 if (attrs_valid)
3698 {
3699 if (iter->want_specific_block
3700 && want_static != is_static)
3701 continue;
3702 /* Work around gold/15646. */
3703 if (!is_static && iter->global_seen)
3704 continue;
3705 if (!is_static)
3706 iter->global_seen = 1;
3707 }
3708
3709 /* Only check the symbol's kind if it has one. */
3710 if (attrs_valid)
3711 {
3712 switch (iter->domain)
3713 {
3714 case VAR_DOMAIN:
3715 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3716 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3717 /* Some types are also in VAR_DOMAIN. */
3718 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3719 continue;
3720 break;
3721 case STRUCT_DOMAIN:
3722 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3723 continue;
3724 break;
3725 case LABEL_DOMAIN:
3726 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3727 continue;
3728 break;
3729 default:
3730 break;
3731 }
3732 }
3733
3734 ++iter->next;
3735 return per_cu;
3736 }
3737
3738 return NULL;
3739 }
3740
3741 static struct compunit_symtab *
3742 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3743 const char *name, domain_enum domain)
3744 {
3745 struct compunit_symtab *stab_best = NULL;
3746 struct mapped_index *index;
3747
3748 dw2_setup (objfile);
3749
3750 index = dwarf2_per_objfile->index_table;
3751
3752 /* index is NULL if OBJF_READNOW. */
3753 if (index)
3754 {
3755 struct dw2_symtab_iterator iter;
3756 struct dwarf2_per_cu_data *per_cu;
3757
3758 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3759
3760 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3761 {
3762 struct symbol *sym, *with_opaque = NULL;
3763 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3764 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3765 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3766
3767 sym = block_find_symbol (block, name, domain,
3768 block_find_non_opaque_type_preferred,
3769 &with_opaque);
3770
3771 /* Some caution must be observed with overloaded functions
3772 and methods, since the index will not contain any overload
3773 information (but NAME might contain it). */
3774
3775 if (sym != NULL
3776 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3777 return stab;
3778 if (with_opaque != NULL
3779 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3780 stab_best = stab;
3781
3782 /* Keep looking through other CUs. */
3783 }
3784 }
3785
3786 return stab_best;
3787 }
3788
3789 static void
3790 dw2_print_stats (struct objfile *objfile)
3791 {
3792 int i, total, count;
3793
3794 dw2_setup (objfile);
3795 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3796 count = 0;
3797 for (i = 0; i < total; ++i)
3798 {
3799 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3800
3801 if (!per_cu->v.quick->compunit_symtab)
3802 ++count;
3803 }
3804 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3805 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3806 }
3807
3808 /* This dumps minimal information about the index.
3809 It is called via "mt print objfiles".
3810 One use is to verify .gdb_index has been loaded by the
3811 gdb.dwarf2/gdb-index.exp testcase. */
3812
3813 static void
3814 dw2_dump (struct objfile *objfile)
3815 {
3816 dw2_setup (objfile);
3817 gdb_assert (dwarf2_per_objfile->using_index);
3818 printf_filtered (".gdb_index:");
3819 if (dwarf2_per_objfile->index_table != NULL)
3820 {
3821 printf_filtered (" version %d\n",
3822 dwarf2_per_objfile->index_table->version);
3823 }
3824 else
3825 printf_filtered (" faked for \"readnow\"\n");
3826 printf_filtered ("\n");
3827 }
3828
3829 static void
3830 dw2_relocate (struct objfile *objfile,
3831 const struct section_offsets *new_offsets,
3832 const struct section_offsets *delta)
3833 {
3834 /* There's nothing to relocate here. */
3835 }
3836
3837 static void
3838 dw2_expand_symtabs_for_function (struct objfile *objfile,
3839 const char *func_name)
3840 {
3841 struct mapped_index *index;
3842
3843 dw2_setup (objfile);
3844
3845 index = dwarf2_per_objfile->index_table;
3846
3847 /* index is NULL if OBJF_READNOW. */
3848 if (index)
3849 {
3850 struct dw2_symtab_iterator iter;
3851 struct dwarf2_per_cu_data *per_cu;
3852
3853 /* Note: It doesn't matter what we pass for block_index here. */
3854 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3855 func_name);
3856
3857 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3858 dw2_instantiate_symtab (per_cu);
3859 }
3860 }
3861
3862 static void
3863 dw2_expand_all_symtabs (struct objfile *objfile)
3864 {
3865 int i;
3866
3867 dw2_setup (objfile);
3868
3869 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3870 + dwarf2_per_objfile->n_type_units); ++i)
3871 {
3872 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3873
3874 dw2_instantiate_symtab (per_cu);
3875 }
3876 }
3877
3878 static void
3879 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3880 const char *fullname)
3881 {
3882 int i;
3883
3884 dw2_setup (objfile);
3885
3886 /* We don't need to consider type units here.
3887 This is only called for examining code, e.g. expand_line_sal.
3888 There can be an order of magnitude (or more) more type units
3889 than comp units, and we avoid them if we can. */
3890
3891 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3892 {
3893 int j;
3894 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3895 struct quick_file_names *file_data;
3896
3897 /* We only need to look at symtabs not already expanded. */
3898 if (per_cu->v.quick->compunit_symtab)
3899 continue;
3900
3901 file_data = dw2_get_file_names (per_cu);
3902 if (file_data == NULL)
3903 continue;
3904
3905 for (j = 0; j < file_data->num_file_names; ++j)
3906 {
3907 const char *this_fullname = file_data->file_names[j];
3908
3909 if (filename_cmp (this_fullname, fullname) == 0)
3910 {
3911 dw2_instantiate_symtab (per_cu);
3912 break;
3913 }
3914 }
3915 }
3916 }
3917
3918 static void
3919 dw2_map_matching_symbols (struct objfile *objfile,
3920 const char * name, domain_enum domain,
3921 int global,
3922 int (*callback) (struct block *,
3923 struct symbol *, void *),
3924 void *data, symbol_compare_ftype *match,
3925 symbol_compare_ftype *ordered_compare)
3926 {
3927 /* Currently unimplemented; used for Ada. The function can be called if the
3928 current language is Ada for a non-Ada objfile using GNU index. As Ada
3929 does not look for non-Ada symbols this function should just return. */
3930 }
3931
3932 static void
3933 dw2_expand_symtabs_matching
3934 (struct objfile *objfile,
3935 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3936 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3937 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3938 enum search_domain kind)
3939 {
3940 int i;
3941 offset_type iter;
3942 struct mapped_index *index;
3943
3944 dw2_setup (objfile);
3945
3946 /* index_table is NULL if OBJF_READNOW. */
3947 if (!dwarf2_per_objfile->index_table)
3948 return;
3949 index = dwarf2_per_objfile->index_table;
3950
3951 if (file_matcher != NULL)
3952 {
3953 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
3954 htab_eq_pointer,
3955 NULL, xcalloc, xfree));
3956 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
3957 htab_eq_pointer,
3958 NULL, xcalloc, xfree));
3959
3960 /* The rule is CUs specify all the files, including those used by
3961 any TU, so there's no need to scan TUs here. */
3962
3963 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3964 {
3965 int j;
3966 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3967 struct quick_file_names *file_data;
3968 void **slot;
3969
3970 QUIT;
3971
3972 per_cu->v.quick->mark = 0;
3973
3974 /* We only need to look at symtabs not already expanded. */
3975 if (per_cu->v.quick->compunit_symtab)
3976 continue;
3977
3978 file_data = dw2_get_file_names (per_cu);
3979 if (file_data == NULL)
3980 continue;
3981
3982 if (htab_find (visited_not_found.get (), file_data) != NULL)
3983 continue;
3984 else if (htab_find (visited_found.get (), file_data) != NULL)
3985 {
3986 per_cu->v.quick->mark = 1;
3987 continue;
3988 }
3989
3990 for (j = 0; j < file_data->num_file_names; ++j)
3991 {
3992 const char *this_real_name;
3993
3994 if (file_matcher (file_data->file_names[j], false))
3995 {
3996 per_cu->v.quick->mark = 1;
3997 break;
3998 }
3999
4000 /* Before we invoke realpath, which can get expensive when many
4001 files are involved, do a quick comparison of the basenames. */
4002 if (!basenames_may_differ
4003 && !file_matcher (lbasename (file_data->file_names[j]),
4004 true))
4005 continue;
4006
4007 this_real_name = dw2_get_real_path (objfile, file_data, j);
4008 if (file_matcher (this_real_name, false))
4009 {
4010 per_cu->v.quick->mark = 1;
4011 break;
4012 }
4013 }
4014
4015 slot = htab_find_slot (per_cu->v.quick->mark
4016 ? visited_found.get ()
4017 : visited_not_found.get (),
4018 file_data, INSERT);
4019 *slot = file_data;
4020 }
4021 }
4022
4023 for (iter = 0; iter < index->symbol_table_slots; ++iter)
4024 {
4025 offset_type idx = 2 * iter;
4026 const char *name;
4027 offset_type *vec, vec_len, vec_idx;
4028 int global_seen = 0;
4029
4030 QUIT;
4031
4032 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
4033 continue;
4034
4035 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
4036
4037 if (!symbol_matcher (name))
4038 continue;
4039
4040 /* The name was matched, now expand corresponding CUs that were
4041 marked. */
4042 vec = (offset_type *) (index->constant_pool
4043 + MAYBE_SWAP (index->symbol_table[idx + 1]));
4044 vec_len = MAYBE_SWAP (vec[0]);
4045 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4046 {
4047 struct dwarf2_per_cu_data *per_cu;
4048 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4049 /* This value is only valid for index versions >= 7. */
4050 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4051 gdb_index_symbol_kind symbol_kind =
4052 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4053 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4054 /* Only check the symbol attributes if they're present.
4055 Indices prior to version 7 don't record them,
4056 and indices >= 7 may elide them for certain symbols
4057 (gold does this). */
4058 int attrs_valid =
4059 (index->version >= 7
4060 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4061
4062 /* Work around gold/15646. */
4063 if (attrs_valid)
4064 {
4065 if (!is_static && global_seen)
4066 continue;
4067 if (!is_static)
4068 global_seen = 1;
4069 }
4070
4071 /* Only check the symbol's kind if it has one. */
4072 if (attrs_valid)
4073 {
4074 switch (kind)
4075 {
4076 case VARIABLES_DOMAIN:
4077 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4078 continue;
4079 break;
4080 case FUNCTIONS_DOMAIN:
4081 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4082 continue;
4083 break;
4084 case TYPES_DOMAIN:
4085 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4086 continue;
4087 break;
4088 default:
4089 break;
4090 }
4091 }
4092
4093 /* Don't crash on bad data. */
4094 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4095 + dwarf2_per_objfile->n_type_units))
4096 {
4097 complaint (&symfile_complaints,
4098 _(".gdb_index entry has bad CU index"
4099 " [in module %s]"), objfile_name (objfile));
4100 continue;
4101 }
4102
4103 per_cu = dw2_get_cutu (cu_index);
4104 if (file_matcher == NULL || per_cu->v.quick->mark)
4105 {
4106 int symtab_was_null =
4107 (per_cu->v.quick->compunit_symtab == NULL);
4108
4109 dw2_instantiate_symtab (per_cu);
4110
4111 if (expansion_notify != NULL
4112 && symtab_was_null
4113 && per_cu->v.quick->compunit_symtab != NULL)
4114 {
4115 expansion_notify (per_cu->v.quick->compunit_symtab);
4116 }
4117 }
4118 }
4119 }
4120 }
4121
4122 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4123 symtab. */
4124
4125 static struct compunit_symtab *
4126 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4127 CORE_ADDR pc)
4128 {
4129 int i;
4130
4131 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4132 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4133 return cust;
4134
4135 if (cust->includes == NULL)
4136 return NULL;
4137
4138 for (i = 0; cust->includes[i]; ++i)
4139 {
4140 struct compunit_symtab *s = cust->includes[i];
4141
4142 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4143 if (s != NULL)
4144 return s;
4145 }
4146
4147 return NULL;
4148 }
4149
4150 static struct compunit_symtab *
4151 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4152 struct bound_minimal_symbol msymbol,
4153 CORE_ADDR pc,
4154 struct obj_section *section,
4155 int warn_if_readin)
4156 {
4157 struct dwarf2_per_cu_data *data;
4158 struct compunit_symtab *result;
4159
4160 dw2_setup (objfile);
4161
4162 if (!objfile->psymtabs_addrmap)
4163 return NULL;
4164
4165 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4166 pc);
4167 if (!data)
4168 return NULL;
4169
4170 if (warn_if_readin && data->v.quick->compunit_symtab)
4171 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4172 paddress (get_objfile_arch (objfile), pc));
4173
4174 result
4175 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4176 pc);
4177 gdb_assert (result != NULL);
4178 return result;
4179 }
4180
4181 static void
4182 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4183 void *data, int need_fullname)
4184 {
4185 int i;
4186 htab_up visited (htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4187 NULL, xcalloc, xfree));
4188
4189 dw2_setup (objfile);
4190
4191 /* The rule is CUs specify all the files, including those used by
4192 any TU, so there's no need to scan TUs here.
4193 We can ignore file names coming from already-expanded CUs. */
4194
4195 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4196 {
4197 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4198
4199 if (per_cu->v.quick->compunit_symtab)
4200 {
4201 void **slot = htab_find_slot (visited.get (),
4202 per_cu->v.quick->file_names,
4203 INSERT);
4204
4205 *slot = per_cu->v.quick->file_names;
4206 }
4207 }
4208
4209 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4210 {
4211 int j;
4212 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4213 struct quick_file_names *file_data;
4214 void **slot;
4215
4216 /* We only need to look at symtabs not already expanded. */
4217 if (per_cu->v.quick->compunit_symtab)
4218 continue;
4219
4220 file_data = dw2_get_file_names (per_cu);
4221 if (file_data == NULL)
4222 continue;
4223
4224 slot = htab_find_slot (visited.get (), file_data, INSERT);
4225 if (*slot)
4226 {
4227 /* Already visited. */
4228 continue;
4229 }
4230 *slot = file_data;
4231
4232 for (j = 0; j < file_data->num_file_names; ++j)
4233 {
4234 const char *this_real_name;
4235
4236 if (need_fullname)
4237 this_real_name = dw2_get_real_path (objfile, file_data, j);
4238 else
4239 this_real_name = NULL;
4240 (*fun) (file_data->file_names[j], this_real_name, data);
4241 }
4242 }
4243 }
4244
4245 static int
4246 dw2_has_symbols (struct objfile *objfile)
4247 {
4248 return 1;
4249 }
4250
4251 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4252 {
4253 dw2_has_symbols,
4254 dw2_find_last_source_symtab,
4255 dw2_forget_cached_source_info,
4256 dw2_map_symtabs_matching_filename,
4257 dw2_lookup_symbol,
4258 dw2_print_stats,
4259 dw2_dump,
4260 dw2_relocate,
4261 dw2_expand_symtabs_for_function,
4262 dw2_expand_all_symtabs,
4263 dw2_expand_symtabs_with_fullname,
4264 dw2_map_matching_symbols,
4265 dw2_expand_symtabs_matching,
4266 dw2_find_pc_sect_compunit_symtab,
4267 dw2_map_symbol_filenames
4268 };
4269
4270 /* Initialize for reading DWARF for this objfile. Return 0 if this
4271 file will use psymtabs, or 1 if using the GNU index. */
4272
4273 int
4274 dwarf2_initialize_objfile (struct objfile *objfile)
4275 {
4276 /* If we're about to read full symbols, don't bother with the
4277 indices. In this case we also don't care if some other debug
4278 format is making psymtabs, because they are all about to be
4279 expanded anyway. */
4280 if ((objfile->flags & OBJF_READNOW))
4281 {
4282 int i;
4283
4284 dwarf2_per_objfile->using_index = 1;
4285 create_all_comp_units (objfile);
4286 create_all_type_units (objfile);
4287 dwarf2_per_objfile->quick_file_names_table =
4288 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4289
4290 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4291 + dwarf2_per_objfile->n_type_units); ++i)
4292 {
4293 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4294
4295 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4296 struct dwarf2_per_cu_quick_data);
4297 }
4298
4299 /* Return 1 so that gdb sees the "quick" functions. However,
4300 these functions will be no-ops because we will have expanded
4301 all symtabs. */
4302 return 1;
4303 }
4304
4305 if (dwarf2_read_index (objfile))
4306 return 1;
4307
4308 return 0;
4309 }
4310
4311 \f
4312
4313 /* Build a partial symbol table. */
4314
4315 void
4316 dwarf2_build_psymtabs (struct objfile *objfile)
4317 {
4318
4319 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4320 {
4321 init_psymbol_list (objfile, 1024);
4322 }
4323
4324 TRY
4325 {
4326 /* This isn't really ideal: all the data we allocate on the
4327 objfile's obstack is still uselessly kept around. However,
4328 freeing it seems unsafe. */
4329 psymtab_discarder psymtabs (objfile);
4330 dwarf2_build_psymtabs_hard (objfile);
4331 psymtabs.keep ();
4332 }
4333 CATCH (except, RETURN_MASK_ERROR)
4334 {
4335 exception_print (gdb_stderr, except);
4336 }
4337 END_CATCH
4338 }
4339
4340 /* Return the total length of the CU described by HEADER. */
4341
4342 static unsigned int
4343 get_cu_length (const struct comp_unit_head *header)
4344 {
4345 return header->initial_length_size + header->length;
4346 }
4347
4348 /* Return TRUE if OFFSET is within CU_HEADER. */
4349
4350 static inline int
4351 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4352 {
4353 sect_offset bottom = { cu_header->offset.sect_off };
4354 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4355
4356 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4357 }
4358
4359 /* Find the base address of the compilation unit for range lists and
4360 location lists. It will normally be specified by DW_AT_low_pc.
4361 In DWARF-3 draft 4, the base address could be overridden by
4362 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4363 compilation units with discontinuous ranges. */
4364
4365 static void
4366 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4367 {
4368 struct attribute *attr;
4369
4370 cu->base_known = 0;
4371 cu->base_address = 0;
4372
4373 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4374 if (attr)
4375 {
4376 cu->base_address = attr_value_as_address (attr);
4377 cu->base_known = 1;
4378 }
4379 else
4380 {
4381 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4382 if (attr)
4383 {
4384 cu->base_address = attr_value_as_address (attr);
4385 cu->base_known = 1;
4386 }
4387 }
4388 }
4389
4390 /* Read in the comp unit header information from the debug_info at info_ptr.
4391 Use rcuh_kind::COMPILE as the default type if not known by the caller.
4392 NOTE: This leaves members offset, first_die_offset to be filled in
4393 by the caller. */
4394
4395 static const gdb_byte *
4396 read_comp_unit_head (struct comp_unit_head *cu_header,
4397 const gdb_byte *info_ptr,
4398 struct dwarf2_section_info *section,
4399 rcuh_kind section_kind)
4400 {
4401 int signed_addr;
4402 unsigned int bytes_read;
4403 const char *filename = get_section_file_name (section);
4404 bfd *abfd = get_section_bfd_owner (section);
4405
4406 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4407 cu_header->initial_length_size = bytes_read;
4408 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4409 info_ptr += bytes_read;
4410 cu_header->version = read_2_bytes (abfd, info_ptr);
4411 info_ptr += 2;
4412 if (cu_header->version < 5)
4413 switch (section_kind)
4414 {
4415 case rcuh_kind::COMPILE:
4416 cu_header->unit_type = DW_UT_compile;
4417 break;
4418 case rcuh_kind::TYPE:
4419 cu_header->unit_type = DW_UT_type;
4420 break;
4421 default:
4422 internal_error (__FILE__, __LINE__,
4423 _("read_comp_unit_head: invalid section_kind"));
4424 }
4425 else
4426 {
4427 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4428 (read_1_byte (abfd, info_ptr));
4429 info_ptr += 1;
4430 switch (cu_header->unit_type)
4431 {
4432 case DW_UT_compile:
4433 if (section_kind != rcuh_kind::COMPILE)
4434 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4435 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4436 filename);
4437 break;
4438 case DW_UT_type:
4439 section_kind = rcuh_kind::TYPE;
4440 break;
4441 default:
4442 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4443 "(is %d, should be %d or %d) [in module %s]"),
4444 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4445 }
4446
4447 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4448 info_ptr += 1;
4449 }
4450 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4451 &bytes_read);
4452 info_ptr += bytes_read;
4453 if (cu_header->version < 5)
4454 {
4455 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4456 info_ptr += 1;
4457 }
4458 signed_addr = bfd_get_sign_extend_vma (abfd);
4459 if (signed_addr < 0)
4460 internal_error (__FILE__, __LINE__,
4461 _("read_comp_unit_head: dwarf from non elf file"));
4462 cu_header->signed_addr_p = signed_addr;
4463
4464 if (section_kind == rcuh_kind::TYPE)
4465 {
4466 LONGEST type_offset;
4467
4468 cu_header->signature = read_8_bytes (abfd, info_ptr);
4469 info_ptr += 8;
4470
4471 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4472 info_ptr += bytes_read;
4473 cu_header->type_offset_in_tu.cu_off = type_offset;
4474 if (cu_header->type_offset_in_tu.cu_off != type_offset)
4475 error (_("Dwarf Error: Too big type_offset in compilation unit "
4476 "header (is %s) [in module %s]"), plongest (type_offset),
4477 filename);
4478 }
4479
4480 return info_ptr;
4481 }
4482
4483 /* Helper function that returns the proper abbrev section for
4484 THIS_CU. */
4485
4486 static struct dwarf2_section_info *
4487 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4488 {
4489 struct dwarf2_section_info *abbrev;
4490
4491 if (this_cu->is_dwz)
4492 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4493 else
4494 abbrev = &dwarf2_per_objfile->abbrev;
4495
4496 return abbrev;
4497 }
4498
4499 /* Subroutine of read_and_check_comp_unit_head and
4500 read_and_check_type_unit_head to simplify them.
4501 Perform various error checking on the header. */
4502
4503 static void
4504 error_check_comp_unit_head (struct comp_unit_head *header,
4505 struct dwarf2_section_info *section,
4506 struct dwarf2_section_info *abbrev_section)
4507 {
4508 const char *filename = get_section_file_name (section);
4509
4510 if (header->version < 2 || header->version > 5)
4511 error (_("Dwarf Error: wrong version in compilation unit header "
4512 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
4513 filename);
4514
4515 if (header->abbrev_offset.sect_off
4516 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4517 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4518 "(offset 0x%lx + 6) [in module %s]"),
4519 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4520 filename);
4521
4522 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4523 avoid potential 32-bit overflow. */
4524 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4525 > section->size)
4526 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4527 "(offset 0x%lx + 0) [in module %s]"),
4528 (long) header->length, (long) header->offset.sect_off,
4529 filename);
4530 }
4531
4532 /* Read in a CU/TU header and perform some basic error checking.
4533 The contents of the header are stored in HEADER.
4534 The result is a pointer to the start of the first DIE. */
4535
4536 static const gdb_byte *
4537 read_and_check_comp_unit_head (struct comp_unit_head *header,
4538 struct dwarf2_section_info *section,
4539 struct dwarf2_section_info *abbrev_section,
4540 const gdb_byte *info_ptr,
4541 rcuh_kind section_kind)
4542 {
4543 const gdb_byte *beg_of_comp_unit = info_ptr;
4544 bfd *abfd = get_section_bfd_owner (section);
4545
4546 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4547
4548 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
4549
4550 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4551
4552 error_check_comp_unit_head (header, section, abbrev_section);
4553
4554 return info_ptr;
4555 }
4556
4557 /* Fetch the abbreviation table offset from a comp or type unit header. */
4558
4559 static sect_offset
4560 read_abbrev_offset (struct dwarf2_section_info *section,
4561 sect_offset offset)
4562 {
4563 bfd *abfd = get_section_bfd_owner (section);
4564 const gdb_byte *info_ptr;
4565 unsigned int initial_length_size, offset_size;
4566 sect_offset abbrev_offset;
4567 uint16_t version;
4568
4569 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4570 info_ptr = section->buffer + offset.sect_off;
4571 read_initial_length (abfd, info_ptr, &initial_length_size);
4572 offset_size = initial_length_size == 4 ? 4 : 8;
4573 info_ptr += initial_length_size;
4574
4575 version = read_2_bytes (abfd, info_ptr);
4576 info_ptr += 2;
4577 if (version >= 5)
4578 {
4579 /* Skip unit type and address size. */
4580 info_ptr += 2;
4581 }
4582
4583 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4584 return abbrev_offset;
4585 }
4586
4587 /* Allocate a new partial symtab for file named NAME and mark this new
4588 partial symtab as being an include of PST. */
4589
4590 static void
4591 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4592 struct objfile *objfile)
4593 {
4594 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4595
4596 if (!IS_ABSOLUTE_PATH (subpst->filename))
4597 {
4598 /* It shares objfile->objfile_obstack. */
4599 subpst->dirname = pst->dirname;
4600 }
4601
4602 subpst->textlow = 0;
4603 subpst->texthigh = 0;
4604
4605 subpst->dependencies
4606 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4607 subpst->dependencies[0] = pst;
4608 subpst->number_of_dependencies = 1;
4609
4610 subpst->globals_offset = 0;
4611 subpst->n_global_syms = 0;
4612 subpst->statics_offset = 0;
4613 subpst->n_static_syms = 0;
4614 subpst->compunit_symtab = NULL;
4615 subpst->read_symtab = pst->read_symtab;
4616 subpst->readin = 0;
4617
4618 /* No private part is necessary for include psymtabs. This property
4619 can be used to differentiate between such include psymtabs and
4620 the regular ones. */
4621 subpst->read_symtab_private = NULL;
4622 }
4623
4624 /* Read the Line Number Program data and extract the list of files
4625 included by the source file represented by PST. Build an include
4626 partial symtab for each of these included files. */
4627
4628 static void
4629 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4630 struct die_info *die,
4631 struct partial_symtab *pst)
4632 {
4633 struct line_header *lh = NULL;
4634 struct attribute *attr;
4635
4636 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4637 if (attr)
4638 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4639 if (lh == NULL)
4640 return; /* No linetable, so no includes. */
4641
4642 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4643 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4644
4645 free_line_header (lh);
4646 }
4647
4648 static hashval_t
4649 hash_signatured_type (const void *item)
4650 {
4651 const struct signatured_type *sig_type
4652 = (const struct signatured_type *) item;
4653
4654 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4655 return sig_type->signature;
4656 }
4657
4658 static int
4659 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4660 {
4661 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4662 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4663
4664 return lhs->signature == rhs->signature;
4665 }
4666
4667 /* Allocate a hash table for signatured types. */
4668
4669 static htab_t
4670 allocate_signatured_type_table (struct objfile *objfile)
4671 {
4672 return htab_create_alloc_ex (41,
4673 hash_signatured_type,
4674 eq_signatured_type,
4675 NULL,
4676 &objfile->objfile_obstack,
4677 hashtab_obstack_allocate,
4678 dummy_obstack_deallocate);
4679 }
4680
4681 /* A helper function to add a signatured type CU to a table. */
4682
4683 static int
4684 add_signatured_type_cu_to_table (void **slot, void *datum)
4685 {
4686 struct signatured_type *sigt = (struct signatured_type *) *slot;
4687 struct signatured_type ***datap = (struct signatured_type ***) datum;
4688
4689 **datap = sigt;
4690 ++*datap;
4691
4692 return 1;
4693 }
4694
4695 /* A helper for create_debug_types_hash_table. Read types from SECTION
4696 and fill them into TYPES_HTAB. It will process only type units,
4697 therefore DW_UT_type. */
4698
4699 static void
4700 create_debug_type_hash_table (struct dwo_file *dwo_file,
4701 dwarf2_section_info *section, htab_t &types_htab,
4702 rcuh_kind section_kind)
4703 {
4704 struct objfile *objfile = dwarf2_per_objfile->objfile;
4705 struct dwarf2_section_info *abbrev_section;
4706 bfd *abfd;
4707 const gdb_byte *info_ptr, *end_ptr;
4708
4709 abbrev_section = (dwo_file != NULL
4710 ? &dwo_file->sections.abbrev
4711 : &dwarf2_per_objfile->abbrev);
4712
4713 if (dwarf_read_debug)
4714 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4715 get_section_name (section),
4716 get_section_file_name (abbrev_section));
4717
4718 dwarf2_read_section (objfile, section);
4719 info_ptr = section->buffer;
4720
4721 if (info_ptr == NULL)
4722 return;
4723
4724 /* We can't set abfd until now because the section may be empty or
4725 not present, in which case the bfd is unknown. */
4726 abfd = get_section_bfd_owner (section);
4727
4728 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4729 because we don't need to read any dies: the signature is in the
4730 header. */
4731
4732 end_ptr = info_ptr + section->size;
4733 while (info_ptr < end_ptr)
4734 {
4735 sect_offset offset;
4736 struct signatured_type *sig_type;
4737 struct dwo_unit *dwo_tu;
4738 void **slot;
4739 const gdb_byte *ptr = info_ptr;
4740 struct comp_unit_head header;
4741 unsigned int length;
4742
4743 offset.sect_off = ptr - section->buffer;
4744
4745 /* Initialize it due to a false compiler warning. */
4746 header.signature = -1;
4747 header.type_offset_in_tu.cu_off = -1;
4748
4749 /* We need to read the type's signature in order to build the hash
4750 table, but we don't need anything else just yet. */
4751
4752 ptr = read_and_check_comp_unit_head (&header, section,
4753 abbrev_section, ptr, section_kind);
4754
4755 length = get_cu_length (&header);
4756
4757 /* Skip dummy type units. */
4758 if (ptr >= info_ptr + length
4759 || peek_abbrev_code (abfd, ptr) == 0
4760 || header.unit_type != DW_UT_type)
4761 {
4762 info_ptr += length;
4763 continue;
4764 }
4765
4766 if (types_htab == NULL)
4767 {
4768 if (dwo_file)
4769 types_htab = allocate_dwo_unit_table (objfile);
4770 else
4771 types_htab = allocate_signatured_type_table (objfile);
4772 }
4773
4774 if (dwo_file)
4775 {
4776 sig_type = NULL;
4777 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4778 struct dwo_unit);
4779 dwo_tu->dwo_file = dwo_file;
4780 dwo_tu->signature = header.signature;
4781 dwo_tu->type_offset_in_tu = header.type_offset_in_tu;
4782 dwo_tu->section = section;
4783 dwo_tu->offset = offset;
4784 dwo_tu->length = length;
4785 }
4786 else
4787 {
4788 /* N.B.: type_offset is not usable if this type uses a DWO file.
4789 The real type_offset is in the DWO file. */
4790 dwo_tu = NULL;
4791 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4792 struct signatured_type);
4793 sig_type->signature = header.signature;
4794 sig_type->type_offset_in_tu = header.type_offset_in_tu;
4795 sig_type->per_cu.objfile = objfile;
4796 sig_type->per_cu.is_debug_types = 1;
4797 sig_type->per_cu.section = section;
4798 sig_type->per_cu.offset = offset;
4799 sig_type->per_cu.length = length;
4800 }
4801
4802 slot = htab_find_slot (types_htab,
4803 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4804 INSERT);
4805 gdb_assert (slot != NULL);
4806 if (*slot != NULL)
4807 {
4808 sect_offset dup_offset;
4809
4810 if (dwo_file)
4811 {
4812 const struct dwo_unit *dup_tu
4813 = (const struct dwo_unit *) *slot;
4814
4815 dup_offset = dup_tu->offset;
4816 }
4817 else
4818 {
4819 const struct signatured_type *dup_tu
4820 = (const struct signatured_type *) *slot;
4821
4822 dup_offset = dup_tu->per_cu.offset;
4823 }
4824
4825 complaint (&symfile_complaints,
4826 _("debug type entry at offset 0x%x is duplicate to"
4827 " the entry at offset 0x%x, signature %s"),
4828 offset.sect_off, dup_offset.sect_off,
4829 hex_string (header.signature));
4830 }
4831 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4832
4833 if (dwarf_read_debug > 1)
4834 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4835 offset.sect_off,
4836 hex_string (header.signature));
4837
4838 info_ptr += length;
4839 }
4840 }
4841
4842 /* Create the hash table of all entries in the .debug_types
4843 (or .debug_types.dwo) section(s).
4844 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4845 otherwise it is NULL.
4846
4847 The result is a pointer to the hash table or NULL if there are no types.
4848
4849 Note: This function processes DWO files only, not DWP files. */
4850
4851 static void
4852 create_debug_types_hash_table (struct dwo_file *dwo_file,
4853 VEC (dwarf2_section_info_def) *types,
4854 htab_t &types_htab)
4855 {
4856 int ix;
4857 struct dwarf2_section_info *section;
4858
4859 if (VEC_empty (dwarf2_section_info_def, types))
4860 return;
4861
4862 for (ix = 0;
4863 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4864 ++ix)
4865 create_debug_type_hash_table (dwo_file, section, types_htab,
4866 rcuh_kind::TYPE);
4867 }
4868
4869 /* Create the hash table of all entries in the .debug_types section,
4870 and initialize all_type_units.
4871 The result is zero if there is an error (e.g. missing .debug_types section),
4872 otherwise non-zero. */
4873
4874 static int
4875 create_all_type_units (struct objfile *objfile)
4876 {
4877 htab_t types_htab = NULL;
4878 struct signatured_type **iter;
4879
4880 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
4881 rcuh_kind::COMPILE);
4882 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
4883 if (types_htab == NULL)
4884 {
4885 dwarf2_per_objfile->signatured_types = NULL;
4886 return 0;
4887 }
4888
4889 dwarf2_per_objfile->signatured_types = types_htab;
4890
4891 dwarf2_per_objfile->n_type_units
4892 = dwarf2_per_objfile->n_allocated_type_units
4893 = htab_elements (types_htab);
4894 dwarf2_per_objfile->all_type_units =
4895 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4896 iter = &dwarf2_per_objfile->all_type_units[0];
4897 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4898 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4899 == dwarf2_per_objfile->n_type_units);
4900
4901 return 1;
4902 }
4903
4904 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4905 If SLOT is non-NULL, it is the entry to use in the hash table.
4906 Otherwise we find one. */
4907
4908 static struct signatured_type *
4909 add_type_unit (ULONGEST sig, void **slot)
4910 {
4911 struct objfile *objfile = dwarf2_per_objfile->objfile;
4912 int n_type_units = dwarf2_per_objfile->n_type_units;
4913 struct signatured_type *sig_type;
4914
4915 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4916 ++n_type_units;
4917 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4918 {
4919 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4920 dwarf2_per_objfile->n_allocated_type_units = 1;
4921 dwarf2_per_objfile->n_allocated_type_units *= 2;
4922 dwarf2_per_objfile->all_type_units
4923 = XRESIZEVEC (struct signatured_type *,
4924 dwarf2_per_objfile->all_type_units,
4925 dwarf2_per_objfile->n_allocated_type_units);
4926 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4927 }
4928 dwarf2_per_objfile->n_type_units = n_type_units;
4929
4930 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4931 struct signatured_type);
4932 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4933 sig_type->signature = sig;
4934 sig_type->per_cu.is_debug_types = 1;
4935 if (dwarf2_per_objfile->using_index)
4936 {
4937 sig_type->per_cu.v.quick =
4938 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4939 struct dwarf2_per_cu_quick_data);
4940 }
4941
4942 if (slot == NULL)
4943 {
4944 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4945 sig_type, INSERT);
4946 }
4947 gdb_assert (*slot == NULL);
4948 *slot = sig_type;
4949 /* The rest of sig_type must be filled in by the caller. */
4950 return sig_type;
4951 }
4952
4953 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4954 Fill in SIG_ENTRY with DWO_ENTRY. */
4955
4956 static void
4957 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4958 struct signatured_type *sig_entry,
4959 struct dwo_unit *dwo_entry)
4960 {
4961 /* Make sure we're not clobbering something we don't expect to. */
4962 gdb_assert (! sig_entry->per_cu.queued);
4963 gdb_assert (sig_entry->per_cu.cu == NULL);
4964 if (dwarf2_per_objfile->using_index)
4965 {
4966 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4967 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4968 }
4969 else
4970 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4971 gdb_assert (sig_entry->signature == dwo_entry->signature);
4972 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4973 gdb_assert (sig_entry->type_unit_group == NULL);
4974 gdb_assert (sig_entry->dwo_unit == NULL);
4975
4976 sig_entry->per_cu.section = dwo_entry->section;
4977 sig_entry->per_cu.offset = dwo_entry->offset;
4978 sig_entry->per_cu.length = dwo_entry->length;
4979 sig_entry->per_cu.reading_dwo_directly = 1;
4980 sig_entry->per_cu.objfile = objfile;
4981 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4982 sig_entry->dwo_unit = dwo_entry;
4983 }
4984
4985 /* Subroutine of lookup_signatured_type.
4986 If we haven't read the TU yet, create the signatured_type data structure
4987 for a TU to be read in directly from a DWO file, bypassing the stub.
4988 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4989 using .gdb_index, then when reading a CU we want to stay in the DWO file
4990 containing that CU. Otherwise we could end up reading several other DWO
4991 files (due to comdat folding) to process the transitive closure of all the
4992 mentioned TUs, and that can be slow. The current DWO file will have every
4993 type signature that it needs.
4994 We only do this for .gdb_index because in the psymtab case we already have
4995 to read all the DWOs to build the type unit groups. */
4996
4997 static struct signatured_type *
4998 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4999 {
5000 struct objfile *objfile = dwarf2_per_objfile->objfile;
5001 struct dwo_file *dwo_file;
5002 struct dwo_unit find_dwo_entry, *dwo_entry;
5003 struct signatured_type find_sig_entry, *sig_entry;
5004 void **slot;
5005
5006 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5007
5008 /* If TU skeletons have been removed then we may not have read in any
5009 TUs yet. */
5010 if (dwarf2_per_objfile->signatured_types == NULL)
5011 {
5012 dwarf2_per_objfile->signatured_types
5013 = allocate_signatured_type_table (objfile);
5014 }
5015
5016 /* We only ever need to read in one copy of a signatured type.
5017 Use the global signatured_types array to do our own comdat-folding
5018 of types. If this is the first time we're reading this TU, and
5019 the TU has an entry in .gdb_index, replace the recorded data from
5020 .gdb_index with this TU. */
5021
5022 find_sig_entry.signature = sig;
5023 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5024 &find_sig_entry, INSERT);
5025 sig_entry = (struct signatured_type *) *slot;
5026
5027 /* We can get here with the TU already read, *or* in the process of being
5028 read. Don't reassign the global entry to point to this DWO if that's
5029 the case. Also note that if the TU is already being read, it may not
5030 have come from a DWO, the program may be a mix of Fission-compiled
5031 code and non-Fission-compiled code. */
5032
5033 /* Have we already tried to read this TU?
5034 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5035 needn't exist in the global table yet). */
5036 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
5037 return sig_entry;
5038
5039 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5040 dwo_unit of the TU itself. */
5041 dwo_file = cu->dwo_unit->dwo_file;
5042
5043 /* Ok, this is the first time we're reading this TU. */
5044 if (dwo_file->tus == NULL)
5045 return NULL;
5046 find_dwo_entry.signature = sig;
5047 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
5048 if (dwo_entry == NULL)
5049 return NULL;
5050
5051 /* If the global table doesn't have an entry for this TU, add one. */
5052 if (sig_entry == NULL)
5053 sig_entry = add_type_unit (sig, slot);
5054
5055 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5056 sig_entry->per_cu.tu_read = 1;
5057 return sig_entry;
5058 }
5059
5060 /* Subroutine of lookup_signatured_type.
5061 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
5062 then try the DWP file. If the TU stub (skeleton) has been removed then
5063 it won't be in .gdb_index. */
5064
5065 static struct signatured_type *
5066 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5067 {
5068 struct objfile *objfile = dwarf2_per_objfile->objfile;
5069 struct dwp_file *dwp_file = get_dwp_file ();
5070 struct dwo_unit *dwo_entry;
5071 struct signatured_type find_sig_entry, *sig_entry;
5072 void **slot;
5073
5074 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5075 gdb_assert (dwp_file != NULL);
5076
5077 /* If TU skeletons have been removed then we may not have read in any
5078 TUs yet. */
5079 if (dwarf2_per_objfile->signatured_types == NULL)
5080 {
5081 dwarf2_per_objfile->signatured_types
5082 = allocate_signatured_type_table (objfile);
5083 }
5084
5085 find_sig_entry.signature = sig;
5086 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5087 &find_sig_entry, INSERT);
5088 sig_entry = (struct signatured_type *) *slot;
5089
5090 /* Have we already tried to read this TU?
5091 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5092 needn't exist in the global table yet). */
5093 if (sig_entry != NULL)
5094 return sig_entry;
5095
5096 if (dwp_file->tus == NULL)
5097 return NULL;
5098 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5099 sig, 1 /* is_debug_types */);
5100 if (dwo_entry == NULL)
5101 return NULL;
5102
5103 sig_entry = add_type_unit (sig, slot);
5104 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5105
5106 return sig_entry;
5107 }
5108
5109 /* Lookup a signature based type for DW_FORM_ref_sig8.
5110 Returns NULL if signature SIG is not present in the table.
5111 It is up to the caller to complain about this. */
5112
5113 static struct signatured_type *
5114 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5115 {
5116 if (cu->dwo_unit
5117 && dwarf2_per_objfile->using_index)
5118 {
5119 /* We're in a DWO/DWP file, and we're using .gdb_index.
5120 These cases require special processing. */
5121 if (get_dwp_file () == NULL)
5122 return lookup_dwo_signatured_type (cu, sig);
5123 else
5124 return lookup_dwp_signatured_type (cu, sig);
5125 }
5126 else
5127 {
5128 struct signatured_type find_entry, *entry;
5129
5130 if (dwarf2_per_objfile->signatured_types == NULL)
5131 return NULL;
5132 find_entry.signature = sig;
5133 entry = ((struct signatured_type *)
5134 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5135 return entry;
5136 }
5137 }
5138 \f
5139 /* Low level DIE reading support. */
5140
5141 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5142
5143 static void
5144 init_cu_die_reader (struct die_reader_specs *reader,
5145 struct dwarf2_cu *cu,
5146 struct dwarf2_section_info *section,
5147 struct dwo_file *dwo_file)
5148 {
5149 gdb_assert (section->readin && section->buffer != NULL);
5150 reader->abfd = get_section_bfd_owner (section);
5151 reader->cu = cu;
5152 reader->dwo_file = dwo_file;
5153 reader->die_section = section;
5154 reader->buffer = section->buffer;
5155 reader->buffer_end = section->buffer + section->size;
5156 reader->comp_dir = NULL;
5157 }
5158
5159 /* Subroutine of init_cutu_and_read_dies to simplify it.
5160 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5161 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5162 already.
5163
5164 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5165 from it to the DIE in the DWO. If NULL we are skipping the stub.
5166 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5167 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5168 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5169 STUB_COMP_DIR may be non-NULL.
5170 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5171 are filled in with the info of the DIE from the DWO file.
5172 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5173 provided an abbrev table to use.
5174 The result is non-zero if a valid (non-dummy) DIE was found. */
5175
5176 static int
5177 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5178 struct dwo_unit *dwo_unit,
5179 int abbrev_table_provided,
5180 struct die_info *stub_comp_unit_die,
5181 const char *stub_comp_dir,
5182 struct die_reader_specs *result_reader,
5183 const gdb_byte **result_info_ptr,
5184 struct die_info **result_comp_unit_die,
5185 int *result_has_children)
5186 {
5187 struct objfile *objfile = dwarf2_per_objfile->objfile;
5188 struct dwarf2_cu *cu = this_cu->cu;
5189 struct dwarf2_section_info *section;
5190 bfd *abfd;
5191 const gdb_byte *begin_info_ptr, *info_ptr;
5192 ULONGEST signature; /* Or dwo_id. */
5193 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5194 int i,num_extra_attrs;
5195 struct dwarf2_section_info *dwo_abbrev_section;
5196 struct attribute *attr;
5197 struct die_info *comp_unit_die;
5198
5199 /* At most one of these may be provided. */
5200 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5201
5202 /* These attributes aren't processed until later:
5203 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5204 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5205 referenced later. However, these attributes are found in the stub
5206 which we won't have later. In order to not impose this complication
5207 on the rest of the code, we read them here and copy them to the
5208 DWO CU/TU die. */
5209
5210 stmt_list = NULL;
5211 low_pc = NULL;
5212 high_pc = NULL;
5213 ranges = NULL;
5214 comp_dir = NULL;
5215
5216 if (stub_comp_unit_die != NULL)
5217 {
5218 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5219 DWO file. */
5220 if (! this_cu->is_debug_types)
5221 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5222 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5223 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5224 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5225 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5226
5227 /* There should be a DW_AT_addr_base attribute here (if needed).
5228 We need the value before we can process DW_FORM_GNU_addr_index. */
5229 cu->addr_base = 0;
5230 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5231 if (attr)
5232 cu->addr_base = DW_UNSND (attr);
5233
5234 /* There should be a DW_AT_ranges_base attribute here (if needed).
5235 We need the value before we can process DW_AT_ranges. */
5236 cu->ranges_base = 0;
5237 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5238 if (attr)
5239 cu->ranges_base = DW_UNSND (attr);
5240 }
5241 else if (stub_comp_dir != NULL)
5242 {
5243 /* Reconstruct the comp_dir attribute to simplify the code below. */
5244 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5245 comp_dir->name = DW_AT_comp_dir;
5246 comp_dir->form = DW_FORM_string;
5247 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5248 DW_STRING (comp_dir) = stub_comp_dir;
5249 }
5250
5251 /* Set up for reading the DWO CU/TU. */
5252 cu->dwo_unit = dwo_unit;
5253 section = dwo_unit->section;
5254 dwarf2_read_section (objfile, section);
5255 abfd = get_section_bfd_owner (section);
5256 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5257 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5258 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5259
5260 if (this_cu->is_debug_types)
5261 {
5262 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5263
5264 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5265 dwo_abbrev_section,
5266 info_ptr, rcuh_kind::TYPE);
5267 /* This is not an assert because it can be caused by bad debug info. */
5268 if (sig_type->signature != cu->header.signature)
5269 {
5270 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5271 " TU at offset 0x%x [in module %s]"),
5272 hex_string (sig_type->signature),
5273 hex_string (cu->header.signature),
5274 dwo_unit->offset.sect_off,
5275 bfd_get_filename (abfd));
5276 }
5277 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5278 /* For DWOs coming from DWP files, we don't know the CU length
5279 nor the type's offset in the TU until now. */
5280 dwo_unit->length = get_cu_length (&cu->header);
5281 dwo_unit->type_offset_in_tu = cu->header.type_offset_in_tu;
5282
5283 /* Establish the type offset that can be used to lookup the type.
5284 For DWO files, we don't know it until now. */
5285 sig_type->type_offset_in_section.sect_off =
5286 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5287 }
5288 else
5289 {
5290 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5291 dwo_abbrev_section,
5292 info_ptr, rcuh_kind::COMPILE);
5293 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5294 /* For DWOs coming from DWP files, we don't know the CU length
5295 until now. */
5296 dwo_unit->length = get_cu_length (&cu->header);
5297 }
5298
5299 /* Replace the CU's original abbrev table with the DWO's.
5300 Reminder: We can't read the abbrev table until we've read the header. */
5301 if (abbrev_table_provided)
5302 {
5303 /* Don't free the provided abbrev table, the caller of
5304 init_cutu_and_read_dies owns it. */
5305 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5306 /* Ensure the DWO abbrev table gets freed. */
5307 make_cleanup (dwarf2_free_abbrev_table, cu);
5308 }
5309 else
5310 {
5311 dwarf2_free_abbrev_table (cu);
5312 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5313 /* Leave any existing abbrev table cleanup as is. */
5314 }
5315
5316 /* Read in the die, but leave space to copy over the attributes
5317 from the stub. This has the benefit of simplifying the rest of
5318 the code - all the work to maintain the illusion of a single
5319 DW_TAG_{compile,type}_unit DIE is done here. */
5320 num_extra_attrs = ((stmt_list != NULL)
5321 + (low_pc != NULL)
5322 + (high_pc != NULL)
5323 + (ranges != NULL)
5324 + (comp_dir != NULL));
5325 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5326 result_has_children, num_extra_attrs);
5327
5328 /* Copy over the attributes from the stub to the DIE we just read in. */
5329 comp_unit_die = *result_comp_unit_die;
5330 i = comp_unit_die->num_attrs;
5331 if (stmt_list != NULL)
5332 comp_unit_die->attrs[i++] = *stmt_list;
5333 if (low_pc != NULL)
5334 comp_unit_die->attrs[i++] = *low_pc;
5335 if (high_pc != NULL)
5336 comp_unit_die->attrs[i++] = *high_pc;
5337 if (ranges != NULL)
5338 comp_unit_die->attrs[i++] = *ranges;
5339 if (comp_dir != NULL)
5340 comp_unit_die->attrs[i++] = *comp_dir;
5341 comp_unit_die->num_attrs += num_extra_attrs;
5342
5343 if (dwarf_die_debug)
5344 {
5345 fprintf_unfiltered (gdb_stdlog,
5346 "Read die from %s@0x%x of %s:\n",
5347 get_section_name (section),
5348 (unsigned) (begin_info_ptr - section->buffer),
5349 bfd_get_filename (abfd));
5350 dump_die (comp_unit_die, dwarf_die_debug);
5351 }
5352
5353 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5354 TUs by skipping the stub and going directly to the entry in the DWO file.
5355 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5356 to get it via circuitous means. Blech. */
5357 if (comp_dir != NULL)
5358 result_reader->comp_dir = DW_STRING (comp_dir);
5359
5360 /* Skip dummy compilation units. */
5361 if (info_ptr >= begin_info_ptr + dwo_unit->length
5362 || peek_abbrev_code (abfd, info_ptr) == 0)
5363 return 0;
5364
5365 *result_info_ptr = info_ptr;
5366 return 1;
5367 }
5368
5369 /* Subroutine of init_cutu_and_read_dies to simplify it.
5370 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5371 Returns NULL if the specified DWO unit cannot be found. */
5372
5373 static struct dwo_unit *
5374 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5375 struct die_info *comp_unit_die)
5376 {
5377 struct dwarf2_cu *cu = this_cu->cu;
5378 struct attribute *attr;
5379 ULONGEST signature;
5380 struct dwo_unit *dwo_unit;
5381 const char *comp_dir, *dwo_name;
5382
5383 gdb_assert (cu != NULL);
5384
5385 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5386 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5387 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5388
5389 if (this_cu->is_debug_types)
5390 {
5391 struct signatured_type *sig_type;
5392
5393 /* Since this_cu is the first member of struct signatured_type,
5394 we can go from a pointer to one to a pointer to the other. */
5395 sig_type = (struct signatured_type *) this_cu;
5396 signature = sig_type->signature;
5397 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5398 }
5399 else
5400 {
5401 struct attribute *attr;
5402
5403 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5404 if (! attr)
5405 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5406 " [in module %s]"),
5407 dwo_name, objfile_name (this_cu->objfile));
5408 signature = DW_UNSND (attr);
5409 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5410 signature);
5411 }
5412
5413 return dwo_unit;
5414 }
5415
5416 /* Subroutine of init_cutu_and_read_dies to simplify it.
5417 See it for a description of the parameters.
5418 Read a TU directly from a DWO file, bypassing the stub.
5419
5420 Note: This function could be a little bit simpler if we shared cleanups
5421 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5422 to do, so we keep this function self-contained. Or we could move this
5423 into our caller, but it's complex enough already. */
5424
5425 static void
5426 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5427 int use_existing_cu, int keep,
5428 die_reader_func_ftype *die_reader_func,
5429 void *data)
5430 {
5431 struct dwarf2_cu *cu;
5432 struct signatured_type *sig_type;
5433 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5434 struct die_reader_specs reader;
5435 const gdb_byte *info_ptr;
5436 struct die_info *comp_unit_die;
5437 int has_children;
5438
5439 /* Verify we can do the following downcast, and that we have the
5440 data we need. */
5441 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5442 sig_type = (struct signatured_type *) this_cu;
5443 gdb_assert (sig_type->dwo_unit != NULL);
5444
5445 cleanups = make_cleanup (null_cleanup, NULL);
5446
5447 if (use_existing_cu && this_cu->cu != NULL)
5448 {
5449 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5450 cu = this_cu->cu;
5451 /* There's no need to do the rereading_dwo_cu handling that
5452 init_cutu_and_read_dies does since we don't read the stub. */
5453 }
5454 else
5455 {
5456 /* If !use_existing_cu, this_cu->cu must be NULL. */
5457 gdb_assert (this_cu->cu == NULL);
5458 cu = XNEW (struct dwarf2_cu);
5459 init_one_comp_unit (cu, this_cu);
5460 /* If an error occurs while loading, release our storage. */
5461 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5462 }
5463
5464 /* A future optimization, if needed, would be to use an existing
5465 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5466 could share abbrev tables. */
5467
5468 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5469 0 /* abbrev_table_provided */,
5470 NULL /* stub_comp_unit_die */,
5471 sig_type->dwo_unit->dwo_file->comp_dir,
5472 &reader, &info_ptr,
5473 &comp_unit_die, &has_children) == 0)
5474 {
5475 /* Dummy die. */
5476 do_cleanups (cleanups);
5477 return;
5478 }
5479
5480 /* All the "real" work is done here. */
5481 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5482
5483 /* This duplicates the code in init_cutu_and_read_dies,
5484 but the alternative is making the latter more complex.
5485 This function is only for the special case of using DWO files directly:
5486 no point in overly complicating the general case just to handle this. */
5487 if (free_cu_cleanup != NULL)
5488 {
5489 if (keep)
5490 {
5491 /* We've successfully allocated this compilation unit. Let our
5492 caller clean it up when finished with it. */
5493 discard_cleanups (free_cu_cleanup);
5494
5495 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5496 So we have to manually free the abbrev table. */
5497 dwarf2_free_abbrev_table (cu);
5498
5499 /* Link this CU into read_in_chain. */
5500 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5501 dwarf2_per_objfile->read_in_chain = this_cu;
5502 }
5503 else
5504 do_cleanups (free_cu_cleanup);
5505 }
5506
5507 do_cleanups (cleanups);
5508 }
5509
5510 /* Initialize a CU (or TU) and read its DIEs.
5511 If the CU defers to a DWO file, read the DWO file as well.
5512
5513 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5514 Otherwise the table specified in the comp unit header is read in and used.
5515 This is an optimization for when we already have the abbrev table.
5516
5517 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5518 Otherwise, a new CU is allocated with xmalloc.
5519
5520 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5521 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5522
5523 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5524 linker) then DIE_READER_FUNC will not get called. */
5525
5526 static void
5527 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5528 struct abbrev_table *abbrev_table,
5529 int use_existing_cu, int keep,
5530 die_reader_func_ftype *die_reader_func,
5531 void *data)
5532 {
5533 struct objfile *objfile = dwarf2_per_objfile->objfile;
5534 struct dwarf2_section_info *section = this_cu->section;
5535 bfd *abfd = get_section_bfd_owner (section);
5536 struct dwarf2_cu *cu;
5537 const gdb_byte *begin_info_ptr, *info_ptr;
5538 struct die_reader_specs reader;
5539 struct die_info *comp_unit_die;
5540 int has_children;
5541 struct attribute *attr;
5542 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5543 struct signatured_type *sig_type = NULL;
5544 struct dwarf2_section_info *abbrev_section;
5545 /* Non-zero if CU currently points to a DWO file and we need to
5546 reread it. When this happens we need to reread the skeleton die
5547 before we can reread the DWO file (this only applies to CUs, not TUs). */
5548 int rereading_dwo_cu = 0;
5549
5550 if (dwarf_die_debug)
5551 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5552 this_cu->is_debug_types ? "type" : "comp",
5553 this_cu->offset.sect_off);
5554
5555 if (use_existing_cu)
5556 gdb_assert (keep);
5557
5558 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5559 file (instead of going through the stub), short-circuit all of this. */
5560 if (this_cu->reading_dwo_directly)
5561 {
5562 /* Narrow down the scope of possibilities to have to understand. */
5563 gdb_assert (this_cu->is_debug_types);
5564 gdb_assert (abbrev_table == NULL);
5565 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5566 die_reader_func, data);
5567 return;
5568 }
5569
5570 cleanups = make_cleanup (null_cleanup, NULL);
5571
5572 /* This is cheap if the section is already read in. */
5573 dwarf2_read_section (objfile, section);
5574
5575 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5576
5577 abbrev_section = get_abbrev_section_for_cu (this_cu);
5578
5579 if (use_existing_cu && this_cu->cu != NULL)
5580 {
5581 cu = this_cu->cu;
5582 /* If this CU is from a DWO file we need to start over, we need to
5583 refetch the attributes from the skeleton CU.
5584 This could be optimized by retrieving those attributes from when we
5585 were here the first time: the previous comp_unit_die was stored in
5586 comp_unit_obstack. But there's no data yet that we need this
5587 optimization. */
5588 if (cu->dwo_unit != NULL)
5589 rereading_dwo_cu = 1;
5590 }
5591 else
5592 {
5593 /* If !use_existing_cu, this_cu->cu must be NULL. */
5594 gdb_assert (this_cu->cu == NULL);
5595 cu = XNEW (struct dwarf2_cu);
5596 init_one_comp_unit (cu, this_cu);
5597 /* If an error occurs while loading, release our storage. */
5598 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5599 }
5600
5601 /* Get the header. */
5602 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5603 {
5604 /* We already have the header, there's no need to read it in again. */
5605 info_ptr += cu->header.first_die_offset.cu_off;
5606 }
5607 else
5608 {
5609 if (this_cu->is_debug_types)
5610 {
5611 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5612 abbrev_section, info_ptr,
5613 rcuh_kind::TYPE);
5614
5615 /* Since per_cu is the first member of struct signatured_type,
5616 we can go from a pointer to one to a pointer to the other. */
5617 sig_type = (struct signatured_type *) this_cu;
5618 gdb_assert (sig_type->signature == cu->header.signature);
5619 gdb_assert (sig_type->type_offset_in_tu.cu_off
5620 == cu->header.type_offset_in_tu.cu_off);
5621 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5622
5623 /* LENGTH has not been set yet for type units if we're
5624 using .gdb_index. */
5625 this_cu->length = get_cu_length (&cu->header);
5626
5627 /* Establish the type offset that can be used to lookup the type. */
5628 sig_type->type_offset_in_section.sect_off =
5629 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5630
5631 this_cu->dwarf_version = cu->header.version;
5632 }
5633 else
5634 {
5635 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5636 abbrev_section,
5637 info_ptr,
5638 rcuh_kind::COMPILE);
5639
5640 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5641 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5642 this_cu->dwarf_version = cu->header.version;
5643 }
5644 }
5645
5646 /* Skip dummy compilation units. */
5647 if (info_ptr >= begin_info_ptr + this_cu->length
5648 || peek_abbrev_code (abfd, info_ptr) == 0)
5649 {
5650 do_cleanups (cleanups);
5651 return;
5652 }
5653
5654 /* If we don't have them yet, read the abbrevs for this compilation unit.
5655 And if we need to read them now, make sure they're freed when we're
5656 done. Note that it's important that if the CU had an abbrev table
5657 on entry we don't free it when we're done: Somewhere up the call stack
5658 it may be in use. */
5659 if (abbrev_table != NULL)
5660 {
5661 gdb_assert (cu->abbrev_table == NULL);
5662 gdb_assert (cu->header.abbrev_offset.sect_off
5663 == abbrev_table->offset.sect_off);
5664 cu->abbrev_table = abbrev_table;
5665 }
5666 else if (cu->abbrev_table == NULL)
5667 {
5668 dwarf2_read_abbrevs (cu, abbrev_section);
5669 make_cleanup (dwarf2_free_abbrev_table, cu);
5670 }
5671 else if (rereading_dwo_cu)
5672 {
5673 dwarf2_free_abbrev_table (cu);
5674 dwarf2_read_abbrevs (cu, abbrev_section);
5675 }
5676
5677 /* Read the top level CU/TU die. */
5678 init_cu_die_reader (&reader, cu, section, NULL);
5679 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5680
5681 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5682 from the DWO file.
5683 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5684 DWO CU, that this test will fail (the attribute will not be present). */
5685 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5686 if (attr)
5687 {
5688 struct dwo_unit *dwo_unit;
5689 struct die_info *dwo_comp_unit_die;
5690
5691 if (has_children)
5692 {
5693 complaint (&symfile_complaints,
5694 _("compilation unit with DW_AT_GNU_dwo_name"
5695 " has children (offset 0x%x) [in module %s]"),
5696 this_cu->offset.sect_off, bfd_get_filename (abfd));
5697 }
5698 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5699 if (dwo_unit != NULL)
5700 {
5701 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5702 abbrev_table != NULL,
5703 comp_unit_die, NULL,
5704 &reader, &info_ptr,
5705 &dwo_comp_unit_die, &has_children) == 0)
5706 {
5707 /* Dummy die. */
5708 do_cleanups (cleanups);
5709 return;
5710 }
5711 comp_unit_die = dwo_comp_unit_die;
5712 }
5713 else
5714 {
5715 /* Yikes, we couldn't find the rest of the DIE, we only have
5716 the stub. A complaint has already been logged. There's
5717 not much more we can do except pass on the stub DIE to
5718 die_reader_func. We don't want to throw an error on bad
5719 debug info. */
5720 }
5721 }
5722
5723 /* All of the above is setup for this call. Yikes. */
5724 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5725
5726 /* Done, clean up. */
5727 if (free_cu_cleanup != NULL)
5728 {
5729 if (keep)
5730 {
5731 /* We've successfully allocated this compilation unit. Let our
5732 caller clean it up when finished with it. */
5733 discard_cleanups (free_cu_cleanup);
5734
5735 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5736 So we have to manually free the abbrev table. */
5737 dwarf2_free_abbrev_table (cu);
5738
5739 /* Link this CU into read_in_chain. */
5740 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5741 dwarf2_per_objfile->read_in_chain = this_cu;
5742 }
5743 else
5744 do_cleanups (free_cu_cleanup);
5745 }
5746
5747 do_cleanups (cleanups);
5748 }
5749
5750 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5751 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5752 to have already done the lookup to find the DWO file).
5753
5754 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5755 THIS_CU->is_debug_types, but nothing else.
5756
5757 We fill in THIS_CU->length.
5758
5759 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5760 linker) then DIE_READER_FUNC will not get called.
5761
5762 THIS_CU->cu is always freed when done.
5763 This is done in order to not leave THIS_CU->cu in a state where we have
5764 to care whether it refers to the "main" CU or the DWO CU. */
5765
5766 static void
5767 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5768 struct dwo_file *dwo_file,
5769 die_reader_func_ftype *die_reader_func,
5770 void *data)
5771 {
5772 struct objfile *objfile = dwarf2_per_objfile->objfile;
5773 struct dwarf2_section_info *section = this_cu->section;
5774 bfd *abfd = get_section_bfd_owner (section);
5775 struct dwarf2_section_info *abbrev_section;
5776 struct dwarf2_cu cu;
5777 const gdb_byte *begin_info_ptr, *info_ptr;
5778 struct die_reader_specs reader;
5779 struct cleanup *cleanups;
5780 struct die_info *comp_unit_die;
5781 int has_children;
5782
5783 if (dwarf_die_debug)
5784 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5785 this_cu->is_debug_types ? "type" : "comp",
5786 this_cu->offset.sect_off);
5787
5788 gdb_assert (this_cu->cu == NULL);
5789
5790 abbrev_section = (dwo_file != NULL
5791 ? &dwo_file->sections.abbrev
5792 : get_abbrev_section_for_cu (this_cu));
5793
5794 /* This is cheap if the section is already read in. */
5795 dwarf2_read_section (objfile, section);
5796
5797 init_one_comp_unit (&cu, this_cu);
5798
5799 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5800
5801 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5802 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5803 abbrev_section, info_ptr,
5804 (this_cu->is_debug_types
5805 ? rcuh_kind::TYPE
5806 : rcuh_kind::COMPILE));
5807
5808 this_cu->length = get_cu_length (&cu.header);
5809
5810 /* Skip dummy compilation units. */
5811 if (info_ptr >= begin_info_ptr + this_cu->length
5812 || peek_abbrev_code (abfd, info_ptr) == 0)
5813 {
5814 do_cleanups (cleanups);
5815 return;
5816 }
5817
5818 dwarf2_read_abbrevs (&cu, abbrev_section);
5819 make_cleanup (dwarf2_free_abbrev_table, &cu);
5820
5821 init_cu_die_reader (&reader, &cu, section, dwo_file);
5822 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5823
5824 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5825
5826 do_cleanups (cleanups);
5827 }
5828
5829 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5830 does not lookup the specified DWO file.
5831 This cannot be used to read DWO files.
5832
5833 THIS_CU->cu is always freed when done.
5834 This is done in order to not leave THIS_CU->cu in a state where we have
5835 to care whether it refers to the "main" CU or the DWO CU.
5836 We can revisit this if the data shows there's a performance issue. */
5837
5838 static void
5839 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5840 die_reader_func_ftype *die_reader_func,
5841 void *data)
5842 {
5843 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5844 }
5845 \f
5846 /* Type Unit Groups.
5847
5848 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5849 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5850 so that all types coming from the same compilation (.o file) are grouped
5851 together. A future step could be to put the types in the same symtab as
5852 the CU the types ultimately came from. */
5853
5854 static hashval_t
5855 hash_type_unit_group (const void *item)
5856 {
5857 const struct type_unit_group *tu_group
5858 = (const struct type_unit_group *) item;
5859
5860 return hash_stmt_list_entry (&tu_group->hash);
5861 }
5862
5863 static int
5864 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5865 {
5866 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5867 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5868
5869 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5870 }
5871
5872 /* Allocate a hash table for type unit groups. */
5873
5874 static htab_t
5875 allocate_type_unit_groups_table (void)
5876 {
5877 return htab_create_alloc_ex (3,
5878 hash_type_unit_group,
5879 eq_type_unit_group,
5880 NULL,
5881 &dwarf2_per_objfile->objfile->objfile_obstack,
5882 hashtab_obstack_allocate,
5883 dummy_obstack_deallocate);
5884 }
5885
5886 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5887 partial symtabs. We combine several TUs per psymtab to not let the size
5888 of any one psymtab grow too big. */
5889 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5890 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5891
5892 /* Helper routine for get_type_unit_group.
5893 Create the type_unit_group object used to hold one or more TUs. */
5894
5895 static struct type_unit_group *
5896 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5897 {
5898 struct objfile *objfile = dwarf2_per_objfile->objfile;
5899 struct dwarf2_per_cu_data *per_cu;
5900 struct type_unit_group *tu_group;
5901
5902 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5903 struct type_unit_group);
5904 per_cu = &tu_group->per_cu;
5905 per_cu->objfile = objfile;
5906
5907 if (dwarf2_per_objfile->using_index)
5908 {
5909 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5910 struct dwarf2_per_cu_quick_data);
5911 }
5912 else
5913 {
5914 unsigned int line_offset = line_offset_struct.sect_off;
5915 struct partial_symtab *pst;
5916 char *name;
5917
5918 /* Give the symtab a useful name for debug purposes. */
5919 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5920 name = xstrprintf ("<type_units_%d>",
5921 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5922 else
5923 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5924
5925 pst = create_partial_symtab (per_cu, name);
5926 pst->anonymous = 1;
5927
5928 xfree (name);
5929 }
5930
5931 tu_group->hash.dwo_unit = cu->dwo_unit;
5932 tu_group->hash.line_offset = line_offset_struct;
5933
5934 return tu_group;
5935 }
5936
5937 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5938 STMT_LIST is a DW_AT_stmt_list attribute. */
5939
5940 static struct type_unit_group *
5941 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5942 {
5943 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5944 struct type_unit_group *tu_group;
5945 void **slot;
5946 unsigned int line_offset;
5947 struct type_unit_group type_unit_group_for_lookup;
5948
5949 if (dwarf2_per_objfile->type_unit_groups == NULL)
5950 {
5951 dwarf2_per_objfile->type_unit_groups =
5952 allocate_type_unit_groups_table ();
5953 }
5954
5955 /* Do we need to create a new group, or can we use an existing one? */
5956
5957 if (stmt_list)
5958 {
5959 line_offset = DW_UNSND (stmt_list);
5960 ++tu_stats->nr_symtab_sharers;
5961 }
5962 else
5963 {
5964 /* Ugh, no stmt_list. Rare, but we have to handle it.
5965 We can do various things here like create one group per TU or
5966 spread them over multiple groups to split up the expansion work.
5967 To avoid worst case scenarios (too many groups or too large groups)
5968 we, umm, group them in bunches. */
5969 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5970 | (tu_stats->nr_stmt_less_type_units
5971 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5972 ++tu_stats->nr_stmt_less_type_units;
5973 }
5974
5975 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5976 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5977 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5978 &type_unit_group_for_lookup, INSERT);
5979 if (*slot != NULL)
5980 {
5981 tu_group = (struct type_unit_group *) *slot;
5982 gdb_assert (tu_group != NULL);
5983 }
5984 else
5985 {
5986 sect_offset line_offset_struct;
5987
5988 line_offset_struct.sect_off = line_offset;
5989 tu_group = create_type_unit_group (cu, line_offset_struct);
5990 *slot = tu_group;
5991 ++tu_stats->nr_symtabs;
5992 }
5993
5994 return tu_group;
5995 }
5996 \f
5997 /* Partial symbol tables. */
5998
5999 /* Create a psymtab named NAME and assign it to PER_CU.
6000
6001 The caller must fill in the following details:
6002 dirname, textlow, texthigh. */
6003
6004 static struct partial_symtab *
6005 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6006 {
6007 struct objfile *objfile = per_cu->objfile;
6008 struct partial_symtab *pst;
6009
6010 pst = start_psymtab_common (objfile, name, 0,
6011 objfile->global_psymbols.next,
6012 objfile->static_psymbols.next);
6013
6014 pst->psymtabs_addrmap_supported = 1;
6015
6016 /* This is the glue that links PST into GDB's symbol API. */
6017 pst->read_symtab_private = per_cu;
6018 pst->read_symtab = dwarf2_read_symtab;
6019 per_cu->v.psymtab = pst;
6020
6021 return pst;
6022 }
6023
6024 /* The DATA object passed to process_psymtab_comp_unit_reader has this
6025 type. */
6026
6027 struct process_psymtab_comp_unit_data
6028 {
6029 /* True if we are reading a DW_TAG_partial_unit. */
6030
6031 int want_partial_unit;
6032
6033 /* The "pretend" language that is used if the CU doesn't declare a
6034 language. */
6035
6036 enum language pretend_language;
6037 };
6038
6039 /* die_reader_func for process_psymtab_comp_unit. */
6040
6041 static void
6042 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6043 const gdb_byte *info_ptr,
6044 struct die_info *comp_unit_die,
6045 int has_children,
6046 void *data)
6047 {
6048 struct dwarf2_cu *cu = reader->cu;
6049 struct objfile *objfile = cu->objfile;
6050 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6051 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6052 CORE_ADDR baseaddr;
6053 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6054 struct partial_symtab *pst;
6055 enum pc_bounds_kind cu_bounds_kind;
6056 const char *filename;
6057 struct process_psymtab_comp_unit_data *info
6058 = (struct process_psymtab_comp_unit_data *) data;
6059
6060 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6061 return;
6062
6063 gdb_assert (! per_cu->is_debug_types);
6064
6065 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6066
6067 cu->list_in_scope = &file_symbols;
6068
6069 /* Allocate a new partial symbol table structure. */
6070 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6071 if (filename == NULL)
6072 filename = "";
6073
6074 pst = create_partial_symtab (per_cu, filename);
6075
6076 /* This must be done before calling dwarf2_build_include_psymtabs. */
6077 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6078
6079 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6080
6081 dwarf2_find_base_address (comp_unit_die, cu);
6082
6083 /* Possibly set the default values of LOWPC and HIGHPC from
6084 `DW_AT_ranges'. */
6085 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6086 &best_highpc, cu, pst);
6087 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6088 /* Store the contiguous range if it is not empty; it can be empty for
6089 CUs with no code. */
6090 addrmap_set_empty (objfile->psymtabs_addrmap,
6091 gdbarch_adjust_dwarf2_addr (gdbarch,
6092 best_lowpc + baseaddr),
6093 gdbarch_adjust_dwarf2_addr (gdbarch,
6094 best_highpc + baseaddr) - 1,
6095 pst);
6096
6097 /* Check if comp unit has_children.
6098 If so, read the rest of the partial symbols from this comp unit.
6099 If not, there's no more debug_info for this comp unit. */
6100 if (has_children)
6101 {
6102 struct partial_die_info *first_die;
6103 CORE_ADDR lowpc, highpc;
6104
6105 lowpc = ((CORE_ADDR) -1);
6106 highpc = ((CORE_ADDR) 0);
6107
6108 first_die = load_partial_dies (reader, info_ptr, 1);
6109
6110 scan_partial_symbols (first_die, &lowpc, &highpc,
6111 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6112
6113 /* If we didn't find a lowpc, set it to highpc to avoid
6114 complaints from `maint check'. */
6115 if (lowpc == ((CORE_ADDR) -1))
6116 lowpc = highpc;
6117
6118 /* If the compilation unit didn't have an explicit address range,
6119 then use the information extracted from its child dies. */
6120 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6121 {
6122 best_lowpc = lowpc;
6123 best_highpc = highpc;
6124 }
6125 }
6126 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6127 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6128
6129 end_psymtab_common (objfile, pst);
6130
6131 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6132 {
6133 int i;
6134 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6135 struct dwarf2_per_cu_data *iter;
6136
6137 /* Fill in 'dependencies' here; we fill in 'users' in a
6138 post-pass. */
6139 pst->number_of_dependencies = len;
6140 pst->dependencies =
6141 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6142 for (i = 0;
6143 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6144 i, iter);
6145 ++i)
6146 pst->dependencies[i] = iter->v.psymtab;
6147
6148 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6149 }
6150
6151 /* Get the list of files included in the current compilation unit,
6152 and build a psymtab for each of them. */
6153 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6154
6155 if (dwarf_read_debug)
6156 {
6157 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6158
6159 fprintf_unfiltered (gdb_stdlog,
6160 "Psymtab for %s unit @0x%x: %s - %s"
6161 ", %d global, %d static syms\n",
6162 per_cu->is_debug_types ? "type" : "comp",
6163 per_cu->offset.sect_off,
6164 paddress (gdbarch, pst->textlow),
6165 paddress (gdbarch, pst->texthigh),
6166 pst->n_global_syms, pst->n_static_syms);
6167 }
6168 }
6169
6170 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6171 Process compilation unit THIS_CU for a psymtab. */
6172
6173 static void
6174 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6175 int want_partial_unit,
6176 enum language pretend_language)
6177 {
6178 struct process_psymtab_comp_unit_data info;
6179
6180 /* If this compilation unit was already read in, free the
6181 cached copy in order to read it in again. This is
6182 necessary because we skipped some symbols when we first
6183 read in the compilation unit (see load_partial_dies).
6184 This problem could be avoided, but the benefit is unclear. */
6185 if (this_cu->cu != NULL)
6186 free_one_cached_comp_unit (this_cu);
6187
6188 gdb_assert (! this_cu->is_debug_types);
6189 info.want_partial_unit = want_partial_unit;
6190 info.pretend_language = pretend_language;
6191 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6192 process_psymtab_comp_unit_reader,
6193 &info);
6194
6195 /* Age out any secondary CUs. */
6196 age_cached_comp_units ();
6197 }
6198
6199 /* Reader function for build_type_psymtabs. */
6200
6201 static void
6202 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6203 const gdb_byte *info_ptr,
6204 struct die_info *type_unit_die,
6205 int has_children,
6206 void *data)
6207 {
6208 struct objfile *objfile = dwarf2_per_objfile->objfile;
6209 struct dwarf2_cu *cu = reader->cu;
6210 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6211 struct signatured_type *sig_type;
6212 struct type_unit_group *tu_group;
6213 struct attribute *attr;
6214 struct partial_die_info *first_die;
6215 CORE_ADDR lowpc, highpc;
6216 struct partial_symtab *pst;
6217
6218 gdb_assert (data == NULL);
6219 gdb_assert (per_cu->is_debug_types);
6220 sig_type = (struct signatured_type *) per_cu;
6221
6222 if (! has_children)
6223 return;
6224
6225 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6226 tu_group = get_type_unit_group (cu, attr);
6227
6228 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6229
6230 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6231 cu->list_in_scope = &file_symbols;
6232 pst = create_partial_symtab (per_cu, "");
6233 pst->anonymous = 1;
6234
6235 first_die = load_partial_dies (reader, info_ptr, 1);
6236
6237 lowpc = (CORE_ADDR) -1;
6238 highpc = (CORE_ADDR) 0;
6239 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6240
6241 end_psymtab_common (objfile, pst);
6242 }
6243
6244 /* Struct used to sort TUs by their abbreviation table offset. */
6245
6246 struct tu_abbrev_offset
6247 {
6248 struct signatured_type *sig_type;
6249 sect_offset abbrev_offset;
6250 };
6251
6252 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6253
6254 static int
6255 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6256 {
6257 const struct tu_abbrev_offset * const *a
6258 = (const struct tu_abbrev_offset * const*) ap;
6259 const struct tu_abbrev_offset * const *b
6260 = (const struct tu_abbrev_offset * const*) bp;
6261 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6262 unsigned int boff = (*b)->abbrev_offset.sect_off;
6263
6264 return (aoff > boff) - (aoff < boff);
6265 }
6266
6267 /* Efficiently read all the type units.
6268 This does the bulk of the work for build_type_psymtabs.
6269
6270 The efficiency is because we sort TUs by the abbrev table they use and
6271 only read each abbrev table once. In one program there are 200K TUs
6272 sharing 8K abbrev tables.
6273
6274 The main purpose of this function is to support building the
6275 dwarf2_per_objfile->type_unit_groups table.
6276 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6277 can collapse the search space by grouping them by stmt_list.
6278 The savings can be significant, in the same program from above the 200K TUs
6279 share 8K stmt_list tables.
6280
6281 FUNC is expected to call get_type_unit_group, which will create the
6282 struct type_unit_group if necessary and add it to
6283 dwarf2_per_objfile->type_unit_groups. */
6284
6285 static void
6286 build_type_psymtabs_1 (void)
6287 {
6288 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6289 struct cleanup *cleanups;
6290 struct abbrev_table *abbrev_table;
6291 sect_offset abbrev_offset;
6292 struct tu_abbrev_offset *sorted_by_abbrev;
6293 int i;
6294
6295 /* It's up to the caller to not call us multiple times. */
6296 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6297
6298 if (dwarf2_per_objfile->n_type_units == 0)
6299 return;
6300
6301 /* TUs typically share abbrev tables, and there can be way more TUs than
6302 abbrev tables. Sort by abbrev table to reduce the number of times we
6303 read each abbrev table in.
6304 Alternatives are to punt or to maintain a cache of abbrev tables.
6305 This is simpler and efficient enough for now.
6306
6307 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6308 symtab to use). Typically TUs with the same abbrev offset have the same
6309 stmt_list value too so in practice this should work well.
6310
6311 The basic algorithm here is:
6312
6313 sort TUs by abbrev table
6314 for each TU with same abbrev table:
6315 read abbrev table if first user
6316 read TU top level DIE
6317 [IWBN if DWO skeletons had DW_AT_stmt_list]
6318 call FUNC */
6319
6320 if (dwarf_read_debug)
6321 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6322
6323 /* Sort in a separate table to maintain the order of all_type_units
6324 for .gdb_index: TU indices directly index all_type_units. */
6325 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6326 dwarf2_per_objfile->n_type_units);
6327 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6328 {
6329 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6330
6331 sorted_by_abbrev[i].sig_type = sig_type;
6332 sorted_by_abbrev[i].abbrev_offset =
6333 read_abbrev_offset (sig_type->per_cu.section,
6334 sig_type->per_cu.offset);
6335 }
6336 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6337 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6338 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6339
6340 abbrev_offset.sect_off = ~(unsigned) 0;
6341 abbrev_table = NULL;
6342 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6343
6344 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6345 {
6346 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6347
6348 /* Switch to the next abbrev table if necessary. */
6349 if (abbrev_table == NULL
6350 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6351 {
6352 if (abbrev_table != NULL)
6353 {
6354 abbrev_table_free (abbrev_table);
6355 /* Reset to NULL in case abbrev_table_read_table throws
6356 an error: abbrev_table_free_cleanup will get called. */
6357 abbrev_table = NULL;
6358 }
6359 abbrev_offset = tu->abbrev_offset;
6360 abbrev_table =
6361 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6362 abbrev_offset);
6363 ++tu_stats->nr_uniq_abbrev_tables;
6364 }
6365
6366 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6367 build_type_psymtabs_reader, NULL);
6368 }
6369
6370 do_cleanups (cleanups);
6371 }
6372
6373 /* Print collected type unit statistics. */
6374
6375 static void
6376 print_tu_stats (void)
6377 {
6378 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6379
6380 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6381 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6382 dwarf2_per_objfile->n_type_units);
6383 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6384 tu_stats->nr_uniq_abbrev_tables);
6385 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6386 tu_stats->nr_symtabs);
6387 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6388 tu_stats->nr_symtab_sharers);
6389 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6390 tu_stats->nr_stmt_less_type_units);
6391 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6392 tu_stats->nr_all_type_units_reallocs);
6393 }
6394
6395 /* Traversal function for build_type_psymtabs. */
6396
6397 static int
6398 build_type_psymtab_dependencies (void **slot, void *info)
6399 {
6400 struct objfile *objfile = dwarf2_per_objfile->objfile;
6401 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6402 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6403 struct partial_symtab *pst = per_cu->v.psymtab;
6404 int len = VEC_length (sig_type_ptr, tu_group->tus);
6405 struct signatured_type *iter;
6406 int i;
6407
6408 gdb_assert (len > 0);
6409 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6410
6411 pst->number_of_dependencies = len;
6412 pst->dependencies =
6413 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6414 for (i = 0;
6415 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6416 ++i)
6417 {
6418 gdb_assert (iter->per_cu.is_debug_types);
6419 pst->dependencies[i] = iter->per_cu.v.psymtab;
6420 iter->type_unit_group = tu_group;
6421 }
6422
6423 VEC_free (sig_type_ptr, tu_group->tus);
6424
6425 return 1;
6426 }
6427
6428 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6429 Build partial symbol tables for the .debug_types comp-units. */
6430
6431 static void
6432 build_type_psymtabs (struct objfile *objfile)
6433 {
6434 if (! create_all_type_units (objfile))
6435 return;
6436
6437 build_type_psymtabs_1 ();
6438 }
6439
6440 /* Traversal function for process_skeletonless_type_unit.
6441 Read a TU in a DWO file and build partial symbols for it. */
6442
6443 static int
6444 process_skeletonless_type_unit (void **slot, void *info)
6445 {
6446 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6447 struct objfile *objfile = (struct objfile *) info;
6448 struct signatured_type find_entry, *entry;
6449
6450 /* If this TU doesn't exist in the global table, add it and read it in. */
6451
6452 if (dwarf2_per_objfile->signatured_types == NULL)
6453 {
6454 dwarf2_per_objfile->signatured_types
6455 = allocate_signatured_type_table (objfile);
6456 }
6457
6458 find_entry.signature = dwo_unit->signature;
6459 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6460 INSERT);
6461 /* If we've already seen this type there's nothing to do. What's happening
6462 is we're doing our own version of comdat-folding here. */
6463 if (*slot != NULL)
6464 return 1;
6465
6466 /* This does the job that create_all_type_units would have done for
6467 this TU. */
6468 entry = add_type_unit (dwo_unit->signature, slot);
6469 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6470 *slot = entry;
6471
6472 /* This does the job that build_type_psymtabs_1 would have done. */
6473 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6474 build_type_psymtabs_reader, NULL);
6475
6476 return 1;
6477 }
6478
6479 /* Traversal function for process_skeletonless_type_units. */
6480
6481 static int
6482 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6483 {
6484 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6485
6486 if (dwo_file->tus != NULL)
6487 {
6488 htab_traverse_noresize (dwo_file->tus,
6489 process_skeletonless_type_unit, info);
6490 }
6491
6492 return 1;
6493 }
6494
6495 /* Scan all TUs of DWO files, verifying we've processed them.
6496 This is needed in case a TU was emitted without its skeleton.
6497 Note: This can't be done until we know what all the DWO files are. */
6498
6499 static void
6500 process_skeletonless_type_units (struct objfile *objfile)
6501 {
6502 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6503 if (get_dwp_file () == NULL
6504 && dwarf2_per_objfile->dwo_files != NULL)
6505 {
6506 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6507 process_dwo_file_for_skeletonless_type_units,
6508 objfile);
6509 }
6510 }
6511
6512 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6513
6514 static void
6515 psymtabs_addrmap_cleanup (void *o)
6516 {
6517 struct objfile *objfile = (struct objfile *) o;
6518
6519 objfile->psymtabs_addrmap = NULL;
6520 }
6521
6522 /* Compute the 'user' field for each psymtab in OBJFILE. */
6523
6524 static void
6525 set_partial_user (struct objfile *objfile)
6526 {
6527 int i;
6528
6529 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6530 {
6531 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6532 struct partial_symtab *pst = per_cu->v.psymtab;
6533 int j;
6534
6535 if (pst == NULL)
6536 continue;
6537
6538 for (j = 0; j < pst->number_of_dependencies; ++j)
6539 {
6540 /* Set the 'user' field only if it is not already set. */
6541 if (pst->dependencies[j]->user == NULL)
6542 pst->dependencies[j]->user = pst;
6543 }
6544 }
6545 }
6546
6547 /* Build the partial symbol table by doing a quick pass through the
6548 .debug_info and .debug_abbrev sections. */
6549
6550 static void
6551 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6552 {
6553 struct cleanup *back_to, *addrmap_cleanup;
6554 struct obstack temp_obstack;
6555 int i;
6556
6557 if (dwarf_read_debug)
6558 {
6559 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6560 objfile_name (objfile));
6561 }
6562
6563 dwarf2_per_objfile->reading_partial_symbols = 1;
6564
6565 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6566
6567 /* Any cached compilation units will be linked by the per-objfile
6568 read_in_chain. Make sure to free them when we're done. */
6569 back_to = make_cleanup (free_cached_comp_units, NULL);
6570
6571 build_type_psymtabs (objfile);
6572
6573 create_all_comp_units (objfile);
6574
6575 /* Create a temporary address map on a temporary obstack. We later
6576 copy this to the final obstack. */
6577 obstack_init (&temp_obstack);
6578 make_cleanup_obstack_free (&temp_obstack);
6579 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6580 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6581
6582 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6583 {
6584 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6585
6586 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6587 }
6588
6589 /* This has to wait until we read the CUs, we need the list of DWOs. */
6590 process_skeletonless_type_units (objfile);
6591
6592 /* Now that all TUs have been processed we can fill in the dependencies. */
6593 if (dwarf2_per_objfile->type_unit_groups != NULL)
6594 {
6595 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6596 build_type_psymtab_dependencies, NULL);
6597 }
6598
6599 if (dwarf_read_debug)
6600 print_tu_stats ();
6601
6602 set_partial_user (objfile);
6603
6604 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6605 &objfile->objfile_obstack);
6606 discard_cleanups (addrmap_cleanup);
6607
6608 do_cleanups (back_to);
6609
6610 if (dwarf_read_debug)
6611 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6612 objfile_name (objfile));
6613 }
6614
6615 /* die_reader_func for load_partial_comp_unit. */
6616
6617 static void
6618 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6619 const gdb_byte *info_ptr,
6620 struct die_info *comp_unit_die,
6621 int has_children,
6622 void *data)
6623 {
6624 struct dwarf2_cu *cu = reader->cu;
6625
6626 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6627
6628 /* Check if comp unit has_children.
6629 If so, read the rest of the partial symbols from this comp unit.
6630 If not, there's no more debug_info for this comp unit. */
6631 if (has_children)
6632 load_partial_dies (reader, info_ptr, 0);
6633 }
6634
6635 /* Load the partial DIEs for a secondary CU into memory.
6636 This is also used when rereading a primary CU with load_all_dies. */
6637
6638 static void
6639 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6640 {
6641 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6642 load_partial_comp_unit_reader, NULL);
6643 }
6644
6645 static void
6646 read_comp_units_from_section (struct objfile *objfile,
6647 struct dwarf2_section_info *section,
6648 unsigned int is_dwz,
6649 int *n_allocated,
6650 int *n_comp_units,
6651 struct dwarf2_per_cu_data ***all_comp_units)
6652 {
6653 const gdb_byte *info_ptr;
6654 bfd *abfd = get_section_bfd_owner (section);
6655
6656 if (dwarf_read_debug)
6657 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6658 get_section_name (section),
6659 get_section_file_name (section));
6660
6661 dwarf2_read_section (objfile, section);
6662
6663 info_ptr = section->buffer;
6664
6665 while (info_ptr < section->buffer + section->size)
6666 {
6667 unsigned int length, initial_length_size;
6668 struct dwarf2_per_cu_data *this_cu;
6669 sect_offset offset;
6670
6671 offset.sect_off = info_ptr - section->buffer;
6672
6673 /* Read just enough information to find out where the next
6674 compilation unit is. */
6675 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6676
6677 /* Save the compilation unit for later lookup. */
6678 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6679 memset (this_cu, 0, sizeof (*this_cu));
6680 this_cu->offset = offset;
6681 this_cu->length = length + initial_length_size;
6682 this_cu->is_dwz = is_dwz;
6683 this_cu->objfile = objfile;
6684 this_cu->section = section;
6685
6686 if (*n_comp_units == *n_allocated)
6687 {
6688 *n_allocated *= 2;
6689 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6690 *all_comp_units, *n_allocated);
6691 }
6692 (*all_comp_units)[*n_comp_units] = this_cu;
6693 ++*n_comp_units;
6694
6695 info_ptr = info_ptr + this_cu->length;
6696 }
6697 }
6698
6699 /* Create a list of all compilation units in OBJFILE.
6700 This is only done for -readnow and building partial symtabs. */
6701
6702 static void
6703 create_all_comp_units (struct objfile *objfile)
6704 {
6705 int n_allocated;
6706 int n_comp_units;
6707 struct dwarf2_per_cu_data **all_comp_units;
6708 struct dwz_file *dwz;
6709
6710 n_comp_units = 0;
6711 n_allocated = 10;
6712 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6713
6714 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6715 &n_allocated, &n_comp_units, &all_comp_units);
6716
6717 dwz = dwarf2_get_dwz_file ();
6718 if (dwz != NULL)
6719 read_comp_units_from_section (objfile, &dwz->info, 1,
6720 &n_allocated, &n_comp_units,
6721 &all_comp_units);
6722
6723 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6724 struct dwarf2_per_cu_data *,
6725 n_comp_units);
6726 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6727 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6728 xfree (all_comp_units);
6729 dwarf2_per_objfile->n_comp_units = n_comp_units;
6730 }
6731
6732 /* Process all loaded DIEs for compilation unit CU, starting at
6733 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6734 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6735 DW_AT_ranges). See the comments of add_partial_subprogram on how
6736 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6737
6738 static void
6739 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6740 CORE_ADDR *highpc, int set_addrmap,
6741 struct dwarf2_cu *cu)
6742 {
6743 struct partial_die_info *pdi;
6744
6745 /* Now, march along the PDI's, descending into ones which have
6746 interesting children but skipping the children of the other ones,
6747 until we reach the end of the compilation unit. */
6748
6749 pdi = first_die;
6750
6751 while (pdi != NULL)
6752 {
6753 fixup_partial_die (pdi, cu);
6754
6755 /* Anonymous namespaces or modules have no name but have interesting
6756 children, so we need to look at them. Ditto for anonymous
6757 enums. */
6758
6759 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6760 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6761 || pdi->tag == DW_TAG_imported_unit)
6762 {
6763 switch (pdi->tag)
6764 {
6765 case DW_TAG_subprogram:
6766 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6767 break;
6768 case DW_TAG_constant:
6769 case DW_TAG_variable:
6770 case DW_TAG_typedef:
6771 case DW_TAG_union_type:
6772 if (!pdi->is_declaration)
6773 {
6774 add_partial_symbol (pdi, cu);
6775 }
6776 break;
6777 case DW_TAG_class_type:
6778 case DW_TAG_interface_type:
6779 case DW_TAG_structure_type:
6780 if (!pdi->is_declaration)
6781 {
6782 add_partial_symbol (pdi, cu);
6783 }
6784 if (cu->language == language_rust && pdi->has_children)
6785 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6786 set_addrmap, cu);
6787 break;
6788 case DW_TAG_enumeration_type:
6789 if (!pdi->is_declaration)
6790 add_partial_enumeration (pdi, cu);
6791 break;
6792 case DW_TAG_base_type:
6793 case DW_TAG_subrange_type:
6794 /* File scope base type definitions are added to the partial
6795 symbol table. */
6796 add_partial_symbol (pdi, cu);
6797 break;
6798 case DW_TAG_namespace:
6799 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6800 break;
6801 case DW_TAG_module:
6802 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6803 break;
6804 case DW_TAG_imported_unit:
6805 {
6806 struct dwarf2_per_cu_data *per_cu;
6807
6808 /* For now we don't handle imported units in type units. */
6809 if (cu->per_cu->is_debug_types)
6810 {
6811 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6812 " supported in type units [in module %s]"),
6813 objfile_name (cu->objfile));
6814 }
6815
6816 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6817 pdi->is_dwz,
6818 cu->objfile);
6819
6820 /* Go read the partial unit, if needed. */
6821 if (per_cu->v.psymtab == NULL)
6822 process_psymtab_comp_unit (per_cu, 1, cu->language);
6823
6824 VEC_safe_push (dwarf2_per_cu_ptr,
6825 cu->per_cu->imported_symtabs, per_cu);
6826 }
6827 break;
6828 case DW_TAG_imported_declaration:
6829 add_partial_symbol (pdi, cu);
6830 break;
6831 default:
6832 break;
6833 }
6834 }
6835
6836 /* If the die has a sibling, skip to the sibling. */
6837
6838 pdi = pdi->die_sibling;
6839 }
6840 }
6841
6842 /* Functions used to compute the fully scoped name of a partial DIE.
6843
6844 Normally, this is simple. For C++, the parent DIE's fully scoped
6845 name is concatenated with "::" and the partial DIE's name.
6846 Enumerators are an exception; they use the scope of their parent
6847 enumeration type, i.e. the name of the enumeration type is not
6848 prepended to the enumerator.
6849
6850 There are two complexities. One is DW_AT_specification; in this
6851 case "parent" means the parent of the target of the specification,
6852 instead of the direct parent of the DIE. The other is compilers
6853 which do not emit DW_TAG_namespace; in this case we try to guess
6854 the fully qualified name of structure types from their members'
6855 linkage names. This must be done using the DIE's children rather
6856 than the children of any DW_AT_specification target. We only need
6857 to do this for structures at the top level, i.e. if the target of
6858 any DW_AT_specification (if any; otherwise the DIE itself) does not
6859 have a parent. */
6860
6861 /* Compute the scope prefix associated with PDI's parent, in
6862 compilation unit CU. The result will be allocated on CU's
6863 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6864 field. NULL is returned if no prefix is necessary. */
6865 static const char *
6866 partial_die_parent_scope (struct partial_die_info *pdi,
6867 struct dwarf2_cu *cu)
6868 {
6869 const char *grandparent_scope;
6870 struct partial_die_info *parent, *real_pdi;
6871
6872 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6873 then this means the parent of the specification DIE. */
6874
6875 real_pdi = pdi;
6876 while (real_pdi->has_specification)
6877 real_pdi = find_partial_die (real_pdi->spec_offset,
6878 real_pdi->spec_is_dwz, cu);
6879
6880 parent = real_pdi->die_parent;
6881 if (parent == NULL)
6882 return NULL;
6883
6884 if (parent->scope_set)
6885 return parent->scope;
6886
6887 fixup_partial_die (parent, cu);
6888
6889 grandparent_scope = partial_die_parent_scope (parent, cu);
6890
6891 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6892 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6893 Work around this problem here. */
6894 if (cu->language == language_cplus
6895 && parent->tag == DW_TAG_namespace
6896 && strcmp (parent->name, "::") == 0
6897 && grandparent_scope == NULL)
6898 {
6899 parent->scope = NULL;
6900 parent->scope_set = 1;
6901 return NULL;
6902 }
6903
6904 if (pdi->tag == DW_TAG_enumerator)
6905 /* Enumerators should not get the name of the enumeration as a prefix. */
6906 parent->scope = grandparent_scope;
6907 else if (parent->tag == DW_TAG_namespace
6908 || parent->tag == DW_TAG_module
6909 || parent->tag == DW_TAG_structure_type
6910 || parent->tag == DW_TAG_class_type
6911 || parent->tag == DW_TAG_interface_type
6912 || parent->tag == DW_TAG_union_type
6913 || parent->tag == DW_TAG_enumeration_type)
6914 {
6915 if (grandparent_scope == NULL)
6916 parent->scope = parent->name;
6917 else
6918 parent->scope = typename_concat (&cu->comp_unit_obstack,
6919 grandparent_scope,
6920 parent->name, 0, cu);
6921 }
6922 else
6923 {
6924 /* FIXME drow/2004-04-01: What should we be doing with
6925 function-local names? For partial symbols, we should probably be
6926 ignoring them. */
6927 complaint (&symfile_complaints,
6928 _("unhandled containing DIE tag %d for DIE at %d"),
6929 parent->tag, pdi->offset.sect_off);
6930 parent->scope = grandparent_scope;
6931 }
6932
6933 parent->scope_set = 1;
6934 return parent->scope;
6935 }
6936
6937 /* Return the fully scoped name associated with PDI, from compilation unit
6938 CU. The result will be allocated with malloc. */
6939
6940 static char *
6941 partial_die_full_name (struct partial_die_info *pdi,
6942 struct dwarf2_cu *cu)
6943 {
6944 const char *parent_scope;
6945
6946 /* If this is a template instantiation, we can not work out the
6947 template arguments from partial DIEs. So, unfortunately, we have
6948 to go through the full DIEs. At least any work we do building
6949 types here will be reused if full symbols are loaded later. */
6950 if (pdi->has_template_arguments)
6951 {
6952 fixup_partial_die (pdi, cu);
6953
6954 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6955 {
6956 struct die_info *die;
6957 struct attribute attr;
6958 struct dwarf2_cu *ref_cu = cu;
6959
6960 /* DW_FORM_ref_addr is using section offset. */
6961 attr.name = (enum dwarf_attribute) 0;
6962 attr.form = DW_FORM_ref_addr;
6963 attr.u.unsnd = pdi->offset.sect_off;
6964 die = follow_die_ref (NULL, &attr, &ref_cu);
6965
6966 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6967 }
6968 }
6969
6970 parent_scope = partial_die_parent_scope (pdi, cu);
6971 if (parent_scope == NULL)
6972 return NULL;
6973 else
6974 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6975 }
6976
6977 static void
6978 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6979 {
6980 struct objfile *objfile = cu->objfile;
6981 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6982 CORE_ADDR addr = 0;
6983 const char *actual_name = NULL;
6984 CORE_ADDR baseaddr;
6985 char *built_actual_name;
6986
6987 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6988
6989 built_actual_name = partial_die_full_name (pdi, cu);
6990 if (built_actual_name != NULL)
6991 actual_name = built_actual_name;
6992
6993 if (actual_name == NULL)
6994 actual_name = pdi->name;
6995
6996 switch (pdi->tag)
6997 {
6998 case DW_TAG_subprogram:
6999 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
7000 if (pdi->is_external || cu->language == language_ada)
7001 {
7002 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7003 of the global scope. But in Ada, we want to be able to access
7004 nested procedures globally. So all Ada subprograms are stored
7005 in the global scope. */
7006 add_psymbol_to_list (actual_name, strlen (actual_name),
7007 built_actual_name != NULL,
7008 VAR_DOMAIN, LOC_BLOCK,
7009 &objfile->global_psymbols,
7010 addr, cu->language, objfile);
7011 }
7012 else
7013 {
7014 add_psymbol_to_list (actual_name, strlen (actual_name),
7015 built_actual_name != NULL,
7016 VAR_DOMAIN, LOC_BLOCK,
7017 &objfile->static_psymbols,
7018 addr, cu->language, objfile);
7019 }
7020
7021 if (pdi->main_subprogram && actual_name != NULL)
7022 set_objfile_main_name (objfile, actual_name, cu->language);
7023 break;
7024 case DW_TAG_constant:
7025 {
7026 struct psymbol_allocation_list *list;
7027
7028 if (pdi->is_external)
7029 list = &objfile->global_psymbols;
7030 else
7031 list = &objfile->static_psymbols;
7032 add_psymbol_to_list (actual_name, strlen (actual_name),
7033 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
7034 list, 0, cu->language, objfile);
7035 }
7036 break;
7037 case DW_TAG_variable:
7038 if (pdi->d.locdesc)
7039 addr = decode_locdesc (pdi->d.locdesc, cu);
7040
7041 if (pdi->d.locdesc
7042 && addr == 0
7043 && !dwarf2_per_objfile->has_section_at_zero)
7044 {
7045 /* A global or static variable may also have been stripped
7046 out by the linker if unused, in which case its address
7047 will be nullified; do not add such variables into partial
7048 symbol table then. */
7049 }
7050 else if (pdi->is_external)
7051 {
7052 /* Global Variable.
7053 Don't enter into the minimal symbol tables as there is
7054 a minimal symbol table entry from the ELF symbols already.
7055 Enter into partial symbol table if it has a location
7056 descriptor or a type.
7057 If the location descriptor is missing, new_symbol will create
7058 a LOC_UNRESOLVED symbol, the address of the variable will then
7059 be determined from the minimal symbol table whenever the variable
7060 is referenced.
7061 The address for the partial symbol table entry is not
7062 used by GDB, but it comes in handy for debugging partial symbol
7063 table building. */
7064
7065 if (pdi->d.locdesc || pdi->has_type)
7066 add_psymbol_to_list (actual_name, strlen (actual_name),
7067 built_actual_name != NULL,
7068 VAR_DOMAIN, LOC_STATIC,
7069 &objfile->global_psymbols,
7070 addr + baseaddr,
7071 cu->language, objfile);
7072 }
7073 else
7074 {
7075 int has_loc = pdi->d.locdesc != NULL;
7076
7077 /* Static Variable. Skip symbols whose value we cannot know (those
7078 without location descriptors or constant values). */
7079 if (!has_loc && !pdi->has_const_value)
7080 {
7081 xfree (built_actual_name);
7082 return;
7083 }
7084
7085 add_psymbol_to_list (actual_name, strlen (actual_name),
7086 built_actual_name != NULL,
7087 VAR_DOMAIN, LOC_STATIC,
7088 &objfile->static_psymbols,
7089 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7090 cu->language, objfile);
7091 }
7092 break;
7093 case DW_TAG_typedef:
7094 case DW_TAG_base_type:
7095 case DW_TAG_subrange_type:
7096 add_psymbol_to_list (actual_name, strlen (actual_name),
7097 built_actual_name != NULL,
7098 VAR_DOMAIN, LOC_TYPEDEF,
7099 &objfile->static_psymbols,
7100 0, cu->language, objfile);
7101 break;
7102 case DW_TAG_imported_declaration:
7103 case DW_TAG_namespace:
7104 add_psymbol_to_list (actual_name, strlen (actual_name),
7105 built_actual_name != NULL,
7106 VAR_DOMAIN, LOC_TYPEDEF,
7107 &objfile->global_psymbols,
7108 0, cu->language, objfile);
7109 break;
7110 case DW_TAG_module:
7111 add_psymbol_to_list (actual_name, strlen (actual_name),
7112 built_actual_name != NULL,
7113 MODULE_DOMAIN, LOC_TYPEDEF,
7114 &objfile->global_psymbols,
7115 0, cu->language, objfile);
7116 break;
7117 case DW_TAG_class_type:
7118 case DW_TAG_interface_type:
7119 case DW_TAG_structure_type:
7120 case DW_TAG_union_type:
7121 case DW_TAG_enumeration_type:
7122 /* Skip external references. The DWARF standard says in the section
7123 about "Structure, Union, and Class Type Entries": "An incomplete
7124 structure, union or class type is represented by a structure,
7125 union or class entry that does not have a byte size attribute
7126 and that has a DW_AT_declaration attribute." */
7127 if (!pdi->has_byte_size && pdi->is_declaration)
7128 {
7129 xfree (built_actual_name);
7130 return;
7131 }
7132
7133 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7134 static vs. global. */
7135 add_psymbol_to_list (actual_name, strlen (actual_name),
7136 built_actual_name != NULL,
7137 STRUCT_DOMAIN, LOC_TYPEDEF,
7138 cu->language == language_cplus
7139 ? &objfile->global_psymbols
7140 : &objfile->static_psymbols,
7141 0, cu->language, objfile);
7142
7143 break;
7144 case DW_TAG_enumerator:
7145 add_psymbol_to_list (actual_name, strlen (actual_name),
7146 built_actual_name != NULL,
7147 VAR_DOMAIN, LOC_CONST,
7148 cu->language == language_cplus
7149 ? &objfile->global_psymbols
7150 : &objfile->static_psymbols,
7151 0, cu->language, objfile);
7152 break;
7153 default:
7154 break;
7155 }
7156
7157 xfree (built_actual_name);
7158 }
7159
7160 /* Read a partial die corresponding to a namespace; also, add a symbol
7161 corresponding to that namespace to the symbol table. NAMESPACE is
7162 the name of the enclosing namespace. */
7163
7164 static void
7165 add_partial_namespace (struct partial_die_info *pdi,
7166 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7167 int set_addrmap, struct dwarf2_cu *cu)
7168 {
7169 /* Add a symbol for the namespace. */
7170
7171 add_partial_symbol (pdi, cu);
7172
7173 /* Now scan partial symbols in that namespace. */
7174
7175 if (pdi->has_children)
7176 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7177 }
7178
7179 /* Read a partial die corresponding to a Fortran module. */
7180
7181 static void
7182 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7183 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7184 {
7185 /* Add a symbol for the namespace. */
7186
7187 add_partial_symbol (pdi, cu);
7188
7189 /* Now scan partial symbols in that module. */
7190
7191 if (pdi->has_children)
7192 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7193 }
7194
7195 /* Read a partial die corresponding to a subprogram and create a partial
7196 symbol for that subprogram. When the CU language allows it, this
7197 routine also defines a partial symbol for each nested subprogram
7198 that this subprogram contains. If SET_ADDRMAP is true, record the
7199 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7200 and highest PC values found in PDI.
7201
7202 PDI may also be a lexical block, in which case we simply search
7203 recursively for subprograms defined inside that lexical block.
7204 Again, this is only performed when the CU language allows this
7205 type of definitions. */
7206
7207 static void
7208 add_partial_subprogram (struct partial_die_info *pdi,
7209 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7210 int set_addrmap, struct dwarf2_cu *cu)
7211 {
7212 if (pdi->tag == DW_TAG_subprogram)
7213 {
7214 if (pdi->has_pc_info)
7215 {
7216 if (pdi->lowpc < *lowpc)
7217 *lowpc = pdi->lowpc;
7218 if (pdi->highpc > *highpc)
7219 *highpc = pdi->highpc;
7220 if (set_addrmap)
7221 {
7222 struct objfile *objfile = cu->objfile;
7223 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7224 CORE_ADDR baseaddr;
7225 CORE_ADDR highpc;
7226 CORE_ADDR lowpc;
7227
7228 baseaddr = ANOFFSET (objfile->section_offsets,
7229 SECT_OFF_TEXT (objfile));
7230 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7231 pdi->lowpc + baseaddr);
7232 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7233 pdi->highpc + baseaddr);
7234 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7235 cu->per_cu->v.psymtab);
7236 }
7237 }
7238
7239 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7240 {
7241 if (!pdi->is_declaration)
7242 /* Ignore subprogram DIEs that do not have a name, they are
7243 illegal. Do not emit a complaint at this point, we will
7244 do so when we convert this psymtab into a symtab. */
7245 if (pdi->name)
7246 add_partial_symbol (pdi, cu);
7247 }
7248 }
7249
7250 if (! pdi->has_children)
7251 return;
7252
7253 if (cu->language == language_ada)
7254 {
7255 pdi = pdi->die_child;
7256 while (pdi != NULL)
7257 {
7258 fixup_partial_die (pdi, cu);
7259 if (pdi->tag == DW_TAG_subprogram
7260 || pdi->tag == DW_TAG_lexical_block)
7261 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7262 pdi = pdi->die_sibling;
7263 }
7264 }
7265 }
7266
7267 /* Read a partial die corresponding to an enumeration type. */
7268
7269 static void
7270 add_partial_enumeration (struct partial_die_info *enum_pdi,
7271 struct dwarf2_cu *cu)
7272 {
7273 struct partial_die_info *pdi;
7274
7275 if (enum_pdi->name != NULL)
7276 add_partial_symbol (enum_pdi, cu);
7277
7278 pdi = enum_pdi->die_child;
7279 while (pdi)
7280 {
7281 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7282 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7283 else
7284 add_partial_symbol (pdi, cu);
7285 pdi = pdi->die_sibling;
7286 }
7287 }
7288
7289 /* Return the initial uleb128 in the die at INFO_PTR. */
7290
7291 static unsigned int
7292 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7293 {
7294 unsigned int bytes_read;
7295
7296 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7297 }
7298
7299 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7300 Return the corresponding abbrev, or NULL if the number is zero (indicating
7301 an empty DIE). In either case *BYTES_READ will be set to the length of
7302 the initial number. */
7303
7304 static struct abbrev_info *
7305 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7306 struct dwarf2_cu *cu)
7307 {
7308 bfd *abfd = cu->objfile->obfd;
7309 unsigned int abbrev_number;
7310 struct abbrev_info *abbrev;
7311
7312 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7313
7314 if (abbrev_number == 0)
7315 return NULL;
7316
7317 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7318 if (!abbrev)
7319 {
7320 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7321 " at offset 0x%x [in module %s]"),
7322 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7323 cu->header.offset.sect_off, bfd_get_filename (abfd));
7324 }
7325
7326 return abbrev;
7327 }
7328
7329 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7330 Returns a pointer to the end of a series of DIEs, terminated by an empty
7331 DIE. Any children of the skipped DIEs will also be skipped. */
7332
7333 static const gdb_byte *
7334 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7335 {
7336 struct dwarf2_cu *cu = reader->cu;
7337 struct abbrev_info *abbrev;
7338 unsigned int bytes_read;
7339
7340 while (1)
7341 {
7342 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7343 if (abbrev == NULL)
7344 return info_ptr + bytes_read;
7345 else
7346 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7347 }
7348 }
7349
7350 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7351 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7352 abbrev corresponding to that skipped uleb128 should be passed in
7353 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7354 children. */
7355
7356 static const gdb_byte *
7357 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7358 struct abbrev_info *abbrev)
7359 {
7360 unsigned int bytes_read;
7361 struct attribute attr;
7362 bfd *abfd = reader->abfd;
7363 struct dwarf2_cu *cu = reader->cu;
7364 const gdb_byte *buffer = reader->buffer;
7365 const gdb_byte *buffer_end = reader->buffer_end;
7366 unsigned int form, i;
7367
7368 for (i = 0; i < abbrev->num_attrs; i++)
7369 {
7370 /* The only abbrev we care about is DW_AT_sibling. */
7371 if (abbrev->attrs[i].name == DW_AT_sibling)
7372 {
7373 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7374 if (attr.form == DW_FORM_ref_addr)
7375 complaint (&symfile_complaints,
7376 _("ignoring absolute DW_AT_sibling"));
7377 else
7378 {
7379 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7380 const gdb_byte *sibling_ptr = buffer + off;
7381
7382 if (sibling_ptr < info_ptr)
7383 complaint (&symfile_complaints,
7384 _("DW_AT_sibling points backwards"));
7385 else if (sibling_ptr > reader->buffer_end)
7386 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7387 else
7388 return sibling_ptr;
7389 }
7390 }
7391
7392 /* If it isn't DW_AT_sibling, skip this attribute. */
7393 form = abbrev->attrs[i].form;
7394 skip_attribute:
7395 switch (form)
7396 {
7397 case DW_FORM_ref_addr:
7398 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7399 and later it is offset sized. */
7400 if (cu->header.version == 2)
7401 info_ptr += cu->header.addr_size;
7402 else
7403 info_ptr += cu->header.offset_size;
7404 break;
7405 case DW_FORM_GNU_ref_alt:
7406 info_ptr += cu->header.offset_size;
7407 break;
7408 case DW_FORM_addr:
7409 info_ptr += cu->header.addr_size;
7410 break;
7411 case DW_FORM_data1:
7412 case DW_FORM_ref1:
7413 case DW_FORM_flag:
7414 info_ptr += 1;
7415 break;
7416 case DW_FORM_flag_present:
7417 case DW_FORM_implicit_const:
7418 break;
7419 case DW_FORM_data2:
7420 case DW_FORM_ref2:
7421 info_ptr += 2;
7422 break;
7423 case DW_FORM_data4:
7424 case DW_FORM_ref4:
7425 info_ptr += 4;
7426 break;
7427 case DW_FORM_data8:
7428 case DW_FORM_ref8:
7429 case DW_FORM_ref_sig8:
7430 info_ptr += 8;
7431 break;
7432 case DW_FORM_data16:
7433 info_ptr += 16;
7434 break;
7435 case DW_FORM_string:
7436 read_direct_string (abfd, info_ptr, &bytes_read);
7437 info_ptr += bytes_read;
7438 break;
7439 case DW_FORM_sec_offset:
7440 case DW_FORM_strp:
7441 case DW_FORM_GNU_strp_alt:
7442 info_ptr += cu->header.offset_size;
7443 break;
7444 case DW_FORM_exprloc:
7445 case DW_FORM_block:
7446 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7447 info_ptr += bytes_read;
7448 break;
7449 case DW_FORM_block1:
7450 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7451 break;
7452 case DW_FORM_block2:
7453 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7454 break;
7455 case DW_FORM_block4:
7456 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7457 break;
7458 case DW_FORM_sdata:
7459 case DW_FORM_udata:
7460 case DW_FORM_ref_udata:
7461 case DW_FORM_GNU_addr_index:
7462 case DW_FORM_GNU_str_index:
7463 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7464 break;
7465 case DW_FORM_indirect:
7466 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7467 info_ptr += bytes_read;
7468 /* We need to continue parsing from here, so just go back to
7469 the top. */
7470 goto skip_attribute;
7471
7472 default:
7473 error (_("Dwarf Error: Cannot handle %s "
7474 "in DWARF reader [in module %s]"),
7475 dwarf_form_name (form),
7476 bfd_get_filename (abfd));
7477 }
7478 }
7479
7480 if (abbrev->has_children)
7481 return skip_children (reader, info_ptr);
7482 else
7483 return info_ptr;
7484 }
7485
7486 /* Locate ORIG_PDI's sibling.
7487 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7488
7489 static const gdb_byte *
7490 locate_pdi_sibling (const struct die_reader_specs *reader,
7491 struct partial_die_info *orig_pdi,
7492 const gdb_byte *info_ptr)
7493 {
7494 /* Do we know the sibling already? */
7495
7496 if (orig_pdi->sibling)
7497 return orig_pdi->sibling;
7498
7499 /* Are there any children to deal with? */
7500
7501 if (!orig_pdi->has_children)
7502 return info_ptr;
7503
7504 /* Skip the children the long way. */
7505
7506 return skip_children (reader, info_ptr);
7507 }
7508
7509 /* Expand this partial symbol table into a full symbol table. SELF is
7510 not NULL. */
7511
7512 static void
7513 dwarf2_read_symtab (struct partial_symtab *self,
7514 struct objfile *objfile)
7515 {
7516 if (self->readin)
7517 {
7518 warning (_("bug: psymtab for %s is already read in."),
7519 self->filename);
7520 }
7521 else
7522 {
7523 if (info_verbose)
7524 {
7525 printf_filtered (_("Reading in symbols for %s..."),
7526 self->filename);
7527 gdb_flush (gdb_stdout);
7528 }
7529
7530 /* Restore our global data. */
7531 dwarf2_per_objfile
7532 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7533 dwarf2_objfile_data_key);
7534
7535 /* If this psymtab is constructed from a debug-only objfile, the
7536 has_section_at_zero flag will not necessarily be correct. We
7537 can get the correct value for this flag by looking at the data
7538 associated with the (presumably stripped) associated objfile. */
7539 if (objfile->separate_debug_objfile_backlink)
7540 {
7541 struct dwarf2_per_objfile *dpo_backlink
7542 = ((struct dwarf2_per_objfile *)
7543 objfile_data (objfile->separate_debug_objfile_backlink,
7544 dwarf2_objfile_data_key));
7545
7546 dwarf2_per_objfile->has_section_at_zero
7547 = dpo_backlink->has_section_at_zero;
7548 }
7549
7550 dwarf2_per_objfile->reading_partial_symbols = 0;
7551
7552 psymtab_to_symtab_1 (self);
7553
7554 /* Finish up the debug error message. */
7555 if (info_verbose)
7556 printf_filtered (_("done.\n"));
7557 }
7558
7559 process_cu_includes ();
7560 }
7561 \f
7562 /* Reading in full CUs. */
7563
7564 /* Add PER_CU to the queue. */
7565
7566 static void
7567 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7568 enum language pretend_language)
7569 {
7570 struct dwarf2_queue_item *item;
7571
7572 per_cu->queued = 1;
7573 item = XNEW (struct dwarf2_queue_item);
7574 item->per_cu = per_cu;
7575 item->pretend_language = pretend_language;
7576 item->next = NULL;
7577
7578 if (dwarf2_queue == NULL)
7579 dwarf2_queue = item;
7580 else
7581 dwarf2_queue_tail->next = item;
7582
7583 dwarf2_queue_tail = item;
7584 }
7585
7586 /* If PER_CU is not yet queued, add it to the queue.
7587 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7588 dependency.
7589 The result is non-zero if PER_CU was queued, otherwise the result is zero
7590 meaning either PER_CU is already queued or it is already loaded.
7591
7592 N.B. There is an invariant here that if a CU is queued then it is loaded.
7593 The caller is required to load PER_CU if we return non-zero. */
7594
7595 static int
7596 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7597 struct dwarf2_per_cu_data *per_cu,
7598 enum language pretend_language)
7599 {
7600 /* We may arrive here during partial symbol reading, if we need full
7601 DIEs to process an unusual case (e.g. template arguments). Do
7602 not queue PER_CU, just tell our caller to load its DIEs. */
7603 if (dwarf2_per_objfile->reading_partial_symbols)
7604 {
7605 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7606 return 1;
7607 return 0;
7608 }
7609
7610 /* Mark the dependence relation so that we don't flush PER_CU
7611 too early. */
7612 if (dependent_cu != NULL)
7613 dwarf2_add_dependence (dependent_cu, per_cu);
7614
7615 /* If it's already on the queue, we have nothing to do. */
7616 if (per_cu->queued)
7617 return 0;
7618
7619 /* If the compilation unit is already loaded, just mark it as
7620 used. */
7621 if (per_cu->cu != NULL)
7622 {
7623 per_cu->cu->last_used = 0;
7624 return 0;
7625 }
7626
7627 /* Add it to the queue. */
7628 queue_comp_unit (per_cu, pretend_language);
7629
7630 return 1;
7631 }
7632
7633 /* Process the queue. */
7634
7635 static void
7636 process_queue (void)
7637 {
7638 struct dwarf2_queue_item *item, *next_item;
7639
7640 if (dwarf_read_debug)
7641 {
7642 fprintf_unfiltered (gdb_stdlog,
7643 "Expanding one or more symtabs of objfile %s ...\n",
7644 objfile_name (dwarf2_per_objfile->objfile));
7645 }
7646
7647 /* The queue starts out with one item, but following a DIE reference
7648 may load a new CU, adding it to the end of the queue. */
7649 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7650 {
7651 if ((dwarf2_per_objfile->using_index
7652 ? !item->per_cu->v.quick->compunit_symtab
7653 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7654 /* Skip dummy CUs. */
7655 && item->per_cu->cu != NULL)
7656 {
7657 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7658 unsigned int debug_print_threshold;
7659 char buf[100];
7660
7661 if (per_cu->is_debug_types)
7662 {
7663 struct signatured_type *sig_type =
7664 (struct signatured_type *) per_cu;
7665
7666 sprintf (buf, "TU %s at offset 0x%x",
7667 hex_string (sig_type->signature),
7668 per_cu->offset.sect_off);
7669 /* There can be 100s of TUs.
7670 Only print them in verbose mode. */
7671 debug_print_threshold = 2;
7672 }
7673 else
7674 {
7675 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7676 debug_print_threshold = 1;
7677 }
7678
7679 if (dwarf_read_debug >= debug_print_threshold)
7680 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7681
7682 if (per_cu->is_debug_types)
7683 process_full_type_unit (per_cu, item->pretend_language);
7684 else
7685 process_full_comp_unit (per_cu, item->pretend_language);
7686
7687 if (dwarf_read_debug >= debug_print_threshold)
7688 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7689 }
7690
7691 item->per_cu->queued = 0;
7692 next_item = item->next;
7693 xfree (item);
7694 }
7695
7696 dwarf2_queue_tail = NULL;
7697
7698 if (dwarf_read_debug)
7699 {
7700 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7701 objfile_name (dwarf2_per_objfile->objfile));
7702 }
7703 }
7704
7705 /* Free all allocated queue entries. This function only releases anything if
7706 an error was thrown; if the queue was processed then it would have been
7707 freed as we went along. */
7708
7709 static void
7710 dwarf2_release_queue (void *dummy)
7711 {
7712 struct dwarf2_queue_item *item, *last;
7713
7714 item = dwarf2_queue;
7715 while (item)
7716 {
7717 /* Anything still marked queued is likely to be in an
7718 inconsistent state, so discard it. */
7719 if (item->per_cu->queued)
7720 {
7721 if (item->per_cu->cu != NULL)
7722 free_one_cached_comp_unit (item->per_cu);
7723 item->per_cu->queued = 0;
7724 }
7725
7726 last = item;
7727 item = item->next;
7728 xfree (last);
7729 }
7730
7731 dwarf2_queue = dwarf2_queue_tail = NULL;
7732 }
7733
7734 /* Read in full symbols for PST, and anything it depends on. */
7735
7736 static void
7737 psymtab_to_symtab_1 (struct partial_symtab *pst)
7738 {
7739 struct dwarf2_per_cu_data *per_cu;
7740 int i;
7741
7742 if (pst->readin)
7743 return;
7744
7745 for (i = 0; i < pst->number_of_dependencies; i++)
7746 if (!pst->dependencies[i]->readin
7747 && pst->dependencies[i]->user == NULL)
7748 {
7749 /* Inform about additional files that need to be read in. */
7750 if (info_verbose)
7751 {
7752 /* FIXME: i18n: Need to make this a single string. */
7753 fputs_filtered (" ", gdb_stdout);
7754 wrap_here ("");
7755 fputs_filtered ("and ", gdb_stdout);
7756 wrap_here ("");
7757 printf_filtered ("%s...", pst->dependencies[i]->filename);
7758 wrap_here (""); /* Flush output. */
7759 gdb_flush (gdb_stdout);
7760 }
7761 psymtab_to_symtab_1 (pst->dependencies[i]);
7762 }
7763
7764 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7765
7766 if (per_cu == NULL)
7767 {
7768 /* It's an include file, no symbols to read for it.
7769 Everything is in the parent symtab. */
7770 pst->readin = 1;
7771 return;
7772 }
7773
7774 dw2_do_instantiate_symtab (per_cu);
7775 }
7776
7777 /* Trivial hash function for die_info: the hash value of a DIE
7778 is its offset in .debug_info for this objfile. */
7779
7780 static hashval_t
7781 die_hash (const void *item)
7782 {
7783 const struct die_info *die = (const struct die_info *) item;
7784
7785 return die->offset.sect_off;
7786 }
7787
7788 /* Trivial comparison function for die_info structures: two DIEs
7789 are equal if they have the same offset. */
7790
7791 static int
7792 die_eq (const void *item_lhs, const void *item_rhs)
7793 {
7794 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7795 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7796
7797 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7798 }
7799
7800 /* die_reader_func for load_full_comp_unit.
7801 This is identical to read_signatured_type_reader,
7802 but is kept separate for now. */
7803
7804 static void
7805 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7806 const gdb_byte *info_ptr,
7807 struct die_info *comp_unit_die,
7808 int has_children,
7809 void *data)
7810 {
7811 struct dwarf2_cu *cu = reader->cu;
7812 enum language *language_ptr = (enum language *) data;
7813
7814 gdb_assert (cu->die_hash == NULL);
7815 cu->die_hash =
7816 htab_create_alloc_ex (cu->header.length / 12,
7817 die_hash,
7818 die_eq,
7819 NULL,
7820 &cu->comp_unit_obstack,
7821 hashtab_obstack_allocate,
7822 dummy_obstack_deallocate);
7823
7824 if (has_children)
7825 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7826 &info_ptr, comp_unit_die);
7827 cu->dies = comp_unit_die;
7828 /* comp_unit_die is not stored in die_hash, no need. */
7829
7830 /* We try not to read any attributes in this function, because not
7831 all CUs needed for references have been loaded yet, and symbol
7832 table processing isn't initialized. But we have to set the CU language,
7833 or we won't be able to build types correctly.
7834 Similarly, if we do not read the producer, we can not apply
7835 producer-specific interpretation. */
7836 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7837 }
7838
7839 /* Load the DIEs associated with PER_CU into memory. */
7840
7841 static void
7842 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7843 enum language pretend_language)
7844 {
7845 gdb_assert (! this_cu->is_debug_types);
7846
7847 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7848 load_full_comp_unit_reader, &pretend_language);
7849 }
7850
7851 /* Add a DIE to the delayed physname list. */
7852
7853 static void
7854 add_to_method_list (struct type *type, int fnfield_index, int index,
7855 const char *name, struct die_info *die,
7856 struct dwarf2_cu *cu)
7857 {
7858 struct delayed_method_info mi;
7859 mi.type = type;
7860 mi.fnfield_index = fnfield_index;
7861 mi.index = index;
7862 mi.name = name;
7863 mi.die = die;
7864 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7865 }
7866
7867 /* A cleanup for freeing the delayed method list. */
7868
7869 static void
7870 free_delayed_list (void *ptr)
7871 {
7872 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7873 if (cu->method_list != NULL)
7874 {
7875 VEC_free (delayed_method_info, cu->method_list);
7876 cu->method_list = NULL;
7877 }
7878 }
7879
7880 /* Compute the physnames of any methods on the CU's method list.
7881
7882 The computation of method physnames is delayed in order to avoid the
7883 (bad) condition that one of the method's formal parameters is of an as yet
7884 incomplete type. */
7885
7886 static void
7887 compute_delayed_physnames (struct dwarf2_cu *cu)
7888 {
7889 int i;
7890 struct delayed_method_info *mi;
7891 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7892 {
7893 const char *physname;
7894 struct fn_fieldlist *fn_flp
7895 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7896 physname = dwarf2_physname (mi->name, mi->die, cu);
7897 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7898 = physname ? physname : "";
7899 }
7900 }
7901
7902 /* Go objects should be embedded in a DW_TAG_module DIE,
7903 and it's not clear if/how imported objects will appear.
7904 To keep Go support simple until that's worked out,
7905 go back through what we've read and create something usable.
7906 We could do this while processing each DIE, and feels kinda cleaner,
7907 but that way is more invasive.
7908 This is to, for example, allow the user to type "p var" or "b main"
7909 without having to specify the package name, and allow lookups
7910 of module.object to work in contexts that use the expression
7911 parser. */
7912
7913 static void
7914 fixup_go_packaging (struct dwarf2_cu *cu)
7915 {
7916 char *package_name = NULL;
7917 struct pending *list;
7918 int i;
7919
7920 for (list = global_symbols; list != NULL; list = list->next)
7921 {
7922 for (i = 0; i < list->nsyms; ++i)
7923 {
7924 struct symbol *sym = list->symbol[i];
7925
7926 if (SYMBOL_LANGUAGE (sym) == language_go
7927 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7928 {
7929 char *this_package_name = go_symbol_package_name (sym);
7930
7931 if (this_package_name == NULL)
7932 continue;
7933 if (package_name == NULL)
7934 package_name = this_package_name;
7935 else
7936 {
7937 if (strcmp (package_name, this_package_name) != 0)
7938 complaint (&symfile_complaints,
7939 _("Symtab %s has objects from two different Go packages: %s and %s"),
7940 (symbol_symtab (sym) != NULL
7941 ? symtab_to_filename_for_display
7942 (symbol_symtab (sym))
7943 : objfile_name (cu->objfile)),
7944 this_package_name, package_name);
7945 xfree (this_package_name);
7946 }
7947 }
7948 }
7949 }
7950
7951 if (package_name != NULL)
7952 {
7953 struct objfile *objfile = cu->objfile;
7954 const char *saved_package_name
7955 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7956 package_name,
7957 strlen (package_name));
7958 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
7959 saved_package_name);
7960 struct symbol *sym;
7961
7962 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7963
7964 sym = allocate_symbol (objfile);
7965 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7966 SYMBOL_SET_NAMES (sym, saved_package_name,
7967 strlen (saved_package_name), 0, objfile);
7968 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7969 e.g., "main" finds the "main" module and not C's main(). */
7970 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7971 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7972 SYMBOL_TYPE (sym) = type;
7973
7974 add_symbol_to_list (sym, &global_symbols);
7975
7976 xfree (package_name);
7977 }
7978 }
7979
7980 /* Return the symtab for PER_CU. This works properly regardless of
7981 whether we're using the index or psymtabs. */
7982
7983 static struct compunit_symtab *
7984 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7985 {
7986 return (dwarf2_per_objfile->using_index
7987 ? per_cu->v.quick->compunit_symtab
7988 : per_cu->v.psymtab->compunit_symtab);
7989 }
7990
7991 /* A helper function for computing the list of all symbol tables
7992 included by PER_CU. */
7993
7994 static void
7995 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7996 htab_t all_children, htab_t all_type_symtabs,
7997 struct dwarf2_per_cu_data *per_cu,
7998 struct compunit_symtab *immediate_parent)
7999 {
8000 void **slot;
8001 int ix;
8002 struct compunit_symtab *cust;
8003 struct dwarf2_per_cu_data *iter;
8004
8005 slot = htab_find_slot (all_children, per_cu, INSERT);
8006 if (*slot != NULL)
8007 {
8008 /* This inclusion and its children have been processed. */
8009 return;
8010 }
8011
8012 *slot = per_cu;
8013 /* Only add a CU if it has a symbol table. */
8014 cust = get_compunit_symtab (per_cu);
8015 if (cust != NULL)
8016 {
8017 /* If this is a type unit only add its symbol table if we haven't
8018 seen it yet (type unit per_cu's can share symtabs). */
8019 if (per_cu->is_debug_types)
8020 {
8021 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
8022 if (*slot == NULL)
8023 {
8024 *slot = cust;
8025 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8026 if (cust->user == NULL)
8027 cust->user = immediate_parent;
8028 }
8029 }
8030 else
8031 {
8032 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8033 if (cust->user == NULL)
8034 cust->user = immediate_parent;
8035 }
8036 }
8037
8038 for (ix = 0;
8039 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
8040 ++ix)
8041 {
8042 recursively_compute_inclusions (result, all_children,
8043 all_type_symtabs, iter, cust);
8044 }
8045 }
8046
8047 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
8048 PER_CU. */
8049
8050 static void
8051 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
8052 {
8053 gdb_assert (! per_cu->is_debug_types);
8054
8055 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
8056 {
8057 int ix, len;
8058 struct dwarf2_per_cu_data *per_cu_iter;
8059 struct compunit_symtab *compunit_symtab_iter;
8060 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
8061 htab_t all_children, all_type_symtabs;
8062 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
8063
8064 /* If we don't have a symtab, we can just skip this case. */
8065 if (cust == NULL)
8066 return;
8067
8068 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8069 NULL, xcalloc, xfree);
8070 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8071 NULL, xcalloc, xfree);
8072
8073 for (ix = 0;
8074 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
8075 ix, per_cu_iter);
8076 ++ix)
8077 {
8078 recursively_compute_inclusions (&result_symtabs, all_children,
8079 all_type_symtabs, per_cu_iter,
8080 cust);
8081 }
8082
8083 /* Now we have a transitive closure of all the included symtabs. */
8084 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8085 cust->includes
8086 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8087 struct compunit_symtab *, len + 1);
8088 for (ix = 0;
8089 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8090 compunit_symtab_iter);
8091 ++ix)
8092 cust->includes[ix] = compunit_symtab_iter;
8093 cust->includes[len] = NULL;
8094
8095 VEC_free (compunit_symtab_ptr, result_symtabs);
8096 htab_delete (all_children);
8097 htab_delete (all_type_symtabs);
8098 }
8099 }
8100
8101 /* Compute the 'includes' field for the symtabs of all the CUs we just
8102 read. */
8103
8104 static void
8105 process_cu_includes (void)
8106 {
8107 int ix;
8108 struct dwarf2_per_cu_data *iter;
8109
8110 for (ix = 0;
8111 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8112 ix, iter);
8113 ++ix)
8114 {
8115 if (! iter->is_debug_types)
8116 compute_compunit_symtab_includes (iter);
8117 }
8118
8119 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8120 }
8121
8122 /* Generate full symbol information for PER_CU, whose DIEs have
8123 already been loaded into memory. */
8124
8125 static void
8126 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8127 enum language pretend_language)
8128 {
8129 struct dwarf2_cu *cu = per_cu->cu;
8130 struct objfile *objfile = per_cu->objfile;
8131 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8132 CORE_ADDR lowpc, highpc;
8133 struct compunit_symtab *cust;
8134 struct cleanup *back_to, *delayed_list_cleanup;
8135 CORE_ADDR baseaddr;
8136 struct block *static_block;
8137 CORE_ADDR addr;
8138
8139 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8140
8141 buildsym_init ();
8142 back_to = make_cleanup (really_free_pendings, NULL);
8143 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8144
8145 cu->list_in_scope = &file_symbols;
8146
8147 cu->language = pretend_language;
8148 cu->language_defn = language_def (cu->language);
8149
8150 /* Do line number decoding in read_file_scope () */
8151 process_die (cu->dies, cu);
8152
8153 /* For now fudge the Go package. */
8154 if (cu->language == language_go)
8155 fixup_go_packaging (cu);
8156
8157 /* Now that we have processed all the DIEs in the CU, all the types
8158 should be complete, and it should now be safe to compute all of the
8159 physnames. */
8160 compute_delayed_physnames (cu);
8161 do_cleanups (delayed_list_cleanup);
8162
8163 /* Some compilers don't define a DW_AT_high_pc attribute for the
8164 compilation unit. If the DW_AT_high_pc is missing, synthesize
8165 it, by scanning the DIE's below the compilation unit. */
8166 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8167
8168 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8169 static_block = end_symtab_get_static_block (addr, 0, 1);
8170
8171 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8172 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8173 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8174 addrmap to help ensure it has an accurate map of pc values belonging to
8175 this comp unit. */
8176 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8177
8178 cust = end_symtab_from_static_block (static_block,
8179 SECT_OFF_TEXT (objfile), 0);
8180
8181 if (cust != NULL)
8182 {
8183 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8184
8185 /* Set symtab language to language from DW_AT_language. If the
8186 compilation is from a C file generated by language preprocessors, do
8187 not set the language if it was already deduced by start_subfile. */
8188 if (!(cu->language == language_c
8189 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8190 COMPUNIT_FILETABS (cust)->language = cu->language;
8191
8192 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8193 produce DW_AT_location with location lists but it can be possibly
8194 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8195 there were bugs in prologue debug info, fixed later in GCC-4.5
8196 by "unwind info for epilogues" patch (which is not directly related).
8197
8198 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8199 needed, it would be wrong due to missing DW_AT_producer there.
8200
8201 Still one can confuse GDB by using non-standard GCC compilation
8202 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8203 */
8204 if (cu->has_loclist && gcc_4_minor >= 5)
8205 cust->locations_valid = 1;
8206
8207 if (gcc_4_minor >= 5)
8208 cust->epilogue_unwind_valid = 1;
8209
8210 cust->call_site_htab = cu->call_site_htab;
8211 }
8212
8213 if (dwarf2_per_objfile->using_index)
8214 per_cu->v.quick->compunit_symtab = cust;
8215 else
8216 {
8217 struct partial_symtab *pst = per_cu->v.psymtab;
8218 pst->compunit_symtab = cust;
8219 pst->readin = 1;
8220 }
8221
8222 /* Push it for inclusion processing later. */
8223 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8224
8225 do_cleanups (back_to);
8226 }
8227
8228 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8229 already been loaded into memory. */
8230
8231 static void
8232 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8233 enum language pretend_language)
8234 {
8235 struct dwarf2_cu *cu = per_cu->cu;
8236 struct objfile *objfile = per_cu->objfile;
8237 struct compunit_symtab *cust;
8238 struct cleanup *back_to, *delayed_list_cleanup;
8239 struct signatured_type *sig_type;
8240
8241 gdb_assert (per_cu->is_debug_types);
8242 sig_type = (struct signatured_type *) per_cu;
8243
8244 buildsym_init ();
8245 back_to = make_cleanup (really_free_pendings, NULL);
8246 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8247
8248 cu->list_in_scope = &file_symbols;
8249
8250 cu->language = pretend_language;
8251 cu->language_defn = language_def (cu->language);
8252
8253 /* The symbol tables are set up in read_type_unit_scope. */
8254 process_die (cu->dies, cu);
8255
8256 /* For now fudge the Go package. */
8257 if (cu->language == language_go)
8258 fixup_go_packaging (cu);
8259
8260 /* Now that we have processed all the DIEs in the CU, all the types
8261 should be complete, and it should now be safe to compute all of the
8262 physnames. */
8263 compute_delayed_physnames (cu);
8264 do_cleanups (delayed_list_cleanup);
8265
8266 /* TUs share symbol tables.
8267 If this is the first TU to use this symtab, complete the construction
8268 of it with end_expandable_symtab. Otherwise, complete the addition of
8269 this TU's symbols to the existing symtab. */
8270 if (sig_type->type_unit_group->compunit_symtab == NULL)
8271 {
8272 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8273 sig_type->type_unit_group->compunit_symtab = cust;
8274
8275 if (cust != NULL)
8276 {
8277 /* Set symtab language to language from DW_AT_language. If the
8278 compilation is from a C file generated by language preprocessors,
8279 do not set the language if it was already deduced by
8280 start_subfile. */
8281 if (!(cu->language == language_c
8282 && COMPUNIT_FILETABS (cust)->language != language_c))
8283 COMPUNIT_FILETABS (cust)->language = cu->language;
8284 }
8285 }
8286 else
8287 {
8288 augment_type_symtab ();
8289 cust = sig_type->type_unit_group->compunit_symtab;
8290 }
8291
8292 if (dwarf2_per_objfile->using_index)
8293 per_cu->v.quick->compunit_symtab = cust;
8294 else
8295 {
8296 struct partial_symtab *pst = per_cu->v.psymtab;
8297 pst->compunit_symtab = cust;
8298 pst->readin = 1;
8299 }
8300
8301 do_cleanups (back_to);
8302 }
8303
8304 /* Process an imported unit DIE. */
8305
8306 static void
8307 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8308 {
8309 struct attribute *attr;
8310
8311 /* For now we don't handle imported units in type units. */
8312 if (cu->per_cu->is_debug_types)
8313 {
8314 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8315 " supported in type units [in module %s]"),
8316 objfile_name (cu->objfile));
8317 }
8318
8319 attr = dwarf2_attr (die, DW_AT_import, cu);
8320 if (attr != NULL)
8321 {
8322 struct dwarf2_per_cu_data *per_cu;
8323 sect_offset offset;
8324 int is_dwz;
8325
8326 offset = dwarf2_get_ref_die_offset (attr);
8327 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8328 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8329
8330 /* If necessary, add it to the queue and load its DIEs. */
8331 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8332 load_full_comp_unit (per_cu, cu->language);
8333
8334 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8335 per_cu);
8336 }
8337 }
8338
8339 /* Reset the in_process bit of a die. */
8340
8341 static void
8342 reset_die_in_process (void *arg)
8343 {
8344 struct die_info *die = (struct die_info *) arg;
8345
8346 die->in_process = 0;
8347 }
8348
8349 /* Process a die and its children. */
8350
8351 static void
8352 process_die (struct die_info *die, struct dwarf2_cu *cu)
8353 {
8354 struct cleanup *in_process;
8355
8356 /* We should only be processing those not already in process. */
8357 gdb_assert (!die->in_process);
8358
8359 die->in_process = 1;
8360 in_process = make_cleanup (reset_die_in_process,die);
8361
8362 switch (die->tag)
8363 {
8364 case DW_TAG_padding:
8365 break;
8366 case DW_TAG_compile_unit:
8367 case DW_TAG_partial_unit:
8368 read_file_scope (die, cu);
8369 break;
8370 case DW_TAG_type_unit:
8371 read_type_unit_scope (die, cu);
8372 break;
8373 case DW_TAG_subprogram:
8374 case DW_TAG_inlined_subroutine:
8375 read_func_scope (die, cu);
8376 break;
8377 case DW_TAG_lexical_block:
8378 case DW_TAG_try_block:
8379 case DW_TAG_catch_block:
8380 read_lexical_block_scope (die, cu);
8381 break;
8382 case DW_TAG_call_site:
8383 case DW_TAG_GNU_call_site:
8384 read_call_site_scope (die, cu);
8385 break;
8386 case DW_TAG_class_type:
8387 case DW_TAG_interface_type:
8388 case DW_TAG_structure_type:
8389 case DW_TAG_union_type:
8390 process_structure_scope (die, cu);
8391 break;
8392 case DW_TAG_enumeration_type:
8393 process_enumeration_scope (die, cu);
8394 break;
8395
8396 /* These dies have a type, but processing them does not create
8397 a symbol or recurse to process the children. Therefore we can
8398 read them on-demand through read_type_die. */
8399 case DW_TAG_subroutine_type:
8400 case DW_TAG_set_type:
8401 case DW_TAG_array_type:
8402 case DW_TAG_pointer_type:
8403 case DW_TAG_ptr_to_member_type:
8404 case DW_TAG_reference_type:
8405 case DW_TAG_rvalue_reference_type:
8406 case DW_TAG_string_type:
8407 break;
8408
8409 case DW_TAG_base_type:
8410 case DW_TAG_subrange_type:
8411 case DW_TAG_typedef:
8412 /* Add a typedef symbol for the type definition, if it has a
8413 DW_AT_name. */
8414 new_symbol (die, read_type_die (die, cu), cu);
8415 break;
8416 case DW_TAG_common_block:
8417 read_common_block (die, cu);
8418 break;
8419 case DW_TAG_common_inclusion:
8420 break;
8421 case DW_TAG_namespace:
8422 cu->processing_has_namespace_info = 1;
8423 read_namespace (die, cu);
8424 break;
8425 case DW_TAG_module:
8426 cu->processing_has_namespace_info = 1;
8427 read_module (die, cu);
8428 break;
8429 case DW_TAG_imported_declaration:
8430 cu->processing_has_namespace_info = 1;
8431 if (read_namespace_alias (die, cu))
8432 break;
8433 /* The declaration is not a global namespace alias: fall through. */
8434 case DW_TAG_imported_module:
8435 cu->processing_has_namespace_info = 1;
8436 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8437 || cu->language != language_fortran))
8438 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8439 dwarf_tag_name (die->tag));
8440 read_import_statement (die, cu);
8441 break;
8442
8443 case DW_TAG_imported_unit:
8444 process_imported_unit_die (die, cu);
8445 break;
8446
8447 default:
8448 new_symbol (die, NULL, cu);
8449 break;
8450 }
8451
8452 do_cleanups (in_process);
8453 }
8454 \f
8455 /* DWARF name computation. */
8456
8457 /* A helper function for dwarf2_compute_name which determines whether DIE
8458 needs to have the name of the scope prepended to the name listed in the
8459 die. */
8460
8461 static int
8462 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8463 {
8464 struct attribute *attr;
8465
8466 switch (die->tag)
8467 {
8468 case DW_TAG_namespace:
8469 case DW_TAG_typedef:
8470 case DW_TAG_class_type:
8471 case DW_TAG_interface_type:
8472 case DW_TAG_structure_type:
8473 case DW_TAG_union_type:
8474 case DW_TAG_enumeration_type:
8475 case DW_TAG_enumerator:
8476 case DW_TAG_subprogram:
8477 case DW_TAG_inlined_subroutine:
8478 case DW_TAG_member:
8479 case DW_TAG_imported_declaration:
8480 return 1;
8481
8482 case DW_TAG_variable:
8483 case DW_TAG_constant:
8484 /* We only need to prefix "globally" visible variables. These include
8485 any variable marked with DW_AT_external or any variable that
8486 lives in a namespace. [Variables in anonymous namespaces
8487 require prefixing, but they are not DW_AT_external.] */
8488
8489 if (dwarf2_attr (die, DW_AT_specification, cu))
8490 {
8491 struct dwarf2_cu *spec_cu = cu;
8492
8493 return die_needs_namespace (die_specification (die, &spec_cu),
8494 spec_cu);
8495 }
8496
8497 attr = dwarf2_attr (die, DW_AT_external, cu);
8498 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8499 && die->parent->tag != DW_TAG_module)
8500 return 0;
8501 /* A variable in a lexical block of some kind does not need a
8502 namespace, even though in C++ such variables may be external
8503 and have a mangled name. */
8504 if (die->parent->tag == DW_TAG_lexical_block
8505 || die->parent->tag == DW_TAG_try_block
8506 || die->parent->tag == DW_TAG_catch_block
8507 || die->parent->tag == DW_TAG_subprogram)
8508 return 0;
8509 return 1;
8510
8511 default:
8512 return 0;
8513 }
8514 }
8515
8516 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8517 compute the physname for the object, which include a method's:
8518 - formal parameters (C++),
8519 - receiver type (Go),
8520
8521 The term "physname" is a bit confusing.
8522 For C++, for example, it is the demangled name.
8523 For Go, for example, it's the mangled name.
8524
8525 For Ada, return the DIE's linkage name rather than the fully qualified
8526 name. PHYSNAME is ignored..
8527
8528 The result is allocated on the objfile_obstack and canonicalized. */
8529
8530 static const char *
8531 dwarf2_compute_name (const char *name,
8532 struct die_info *die, struct dwarf2_cu *cu,
8533 int physname)
8534 {
8535 struct objfile *objfile = cu->objfile;
8536
8537 if (name == NULL)
8538 name = dwarf2_name (die, cu);
8539
8540 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8541 but otherwise compute it by typename_concat inside GDB.
8542 FIXME: Actually this is not really true, or at least not always true.
8543 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8544 Fortran names because there is no mangling standard. So new_symbol_full
8545 will set the demangled name to the result of dwarf2_full_name, and it is
8546 the demangled name that GDB uses if it exists. */
8547 if (cu->language == language_ada
8548 || (cu->language == language_fortran && physname))
8549 {
8550 /* For Ada unit, we prefer the linkage name over the name, as
8551 the former contains the exported name, which the user expects
8552 to be able to reference. Ideally, we want the user to be able
8553 to reference this entity using either natural or linkage name,
8554 but we haven't started looking at this enhancement yet. */
8555 const char *linkage_name;
8556
8557 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8558 if (linkage_name == NULL)
8559 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8560 if (linkage_name != NULL)
8561 return linkage_name;
8562 }
8563
8564 /* These are the only languages we know how to qualify names in. */
8565 if (name != NULL
8566 && (cu->language == language_cplus
8567 || cu->language == language_fortran || cu->language == language_d
8568 || cu->language == language_rust))
8569 {
8570 if (die_needs_namespace (die, cu))
8571 {
8572 long length;
8573 const char *prefix;
8574 const char *canonical_name = NULL;
8575
8576 string_file buf;
8577
8578 prefix = determine_prefix (die, cu);
8579 if (*prefix != '\0')
8580 {
8581 char *prefixed_name = typename_concat (NULL, prefix, name,
8582 physname, cu);
8583
8584 buf.puts (prefixed_name);
8585 xfree (prefixed_name);
8586 }
8587 else
8588 buf.puts (name);
8589
8590 /* Template parameters may be specified in the DIE's DW_AT_name, or
8591 as children with DW_TAG_template_type_param or
8592 DW_TAG_value_type_param. If the latter, add them to the name
8593 here. If the name already has template parameters, then
8594 skip this step; some versions of GCC emit both, and
8595 it is more efficient to use the pre-computed name.
8596
8597 Something to keep in mind about this process: it is very
8598 unlikely, or in some cases downright impossible, to produce
8599 something that will match the mangled name of a function.
8600 If the definition of the function has the same debug info,
8601 we should be able to match up with it anyway. But fallbacks
8602 using the minimal symbol, for instance to find a method
8603 implemented in a stripped copy of libstdc++, will not work.
8604 If we do not have debug info for the definition, we will have to
8605 match them up some other way.
8606
8607 When we do name matching there is a related problem with function
8608 templates; two instantiated function templates are allowed to
8609 differ only by their return types, which we do not add here. */
8610
8611 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8612 {
8613 struct attribute *attr;
8614 struct die_info *child;
8615 int first = 1;
8616
8617 die->building_fullname = 1;
8618
8619 for (child = die->child; child != NULL; child = child->sibling)
8620 {
8621 struct type *type;
8622 LONGEST value;
8623 const gdb_byte *bytes;
8624 struct dwarf2_locexpr_baton *baton;
8625 struct value *v;
8626
8627 if (child->tag != DW_TAG_template_type_param
8628 && child->tag != DW_TAG_template_value_param)
8629 continue;
8630
8631 if (first)
8632 {
8633 buf.puts ("<");
8634 first = 0;
8635 }
8636 else
8637 buf.puts (", ");
8638
8639 attr = dwarf2_attr (child, DW_AT_type, cu);
8640 if (attr == NULL)
8641 {
8642 complaint (&symfile_complaints,
8643 _("template parameter missing DW_AT_type"));
8644 buf.puts ("UNKNOWN_TYPE");
8645 continue;
8646 }
8647 type = die_type (child, cu);
8648
8649 if (child->tag == DW_TAG_template_type_param)
8650 {
8651 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
8652 continue;
8653 }
8654
8655 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8656 if (attr == NULL)
8657 {
8658 complaint (&symfile_complaints,
8659 _("template parameter missing "
8660 "DW_AT_const_value"));
8661 buf.puts ("UNKNOWN_VALUE");
8662 continue;
8663 }
8664
8665 dwarf2_const_value_attr (attr, type, name,
8666 &cu->comp_unit_obstack, cu,
8667 &value, &bytes, &baton);
8668
8669 if (TYPE_NOSIGN (type))
8670 /* GDB prints characters as NUMBER 'CHAR'. If that's
8671 changed, this can use value_print instead. */
8672 c_printchar (value, type, &buf);
8673 else
8674 {
8675 struct value_print_options opts;
8676
8677 if (baton != NULL)
8678 v = dwarf2_evaluate_loc_desc (type, NULL,
8679 baton->data,
8680 baton->size,
8681 baton->per_cu);
8682 else if (bytes != NULL)
8683 {
8684 v = allocate_value (type);
8685 memcpy (value_contents_writeable (v), bytes,
8686 TYPE_LENGTH (type));
8687 }
8688 else
8689 v = value_from_longest (type, value);
8690
8691 /* Specify decimal so that we do not depend on
8692 the radix. */
8693 get_formatted_print_options (&opts, 'd');
8694 opts.raw = 1;
8695 value_print (v, &buf, &opts);
8696 release_value (v);
8697 value_free (v);
8698 }
8699 }
8700
8701 die->building_fullname = 0;
8702
8703 if (!first)
8704 {
8705 /* Close the argument list, with a space if necessary
8706 (nested templates). */
8707 if (!buf.empty () && buf.string ().back () == '>')
8708 buf.puts (" >");
8709 else
8710 buf.puts (">");
8711 }
8712 }
8713
8714 /* For C++ methods, append formal parameter type
8715 information, if PHYSNAME. */
8716
8717 if (physname && die->tag == DW_TAG_subprogram
8718 && cu->language == language_cplus)
8719 {
8720 struct type *type = read_type_die (die, cu);
8721
8722 c_type_print_args (type, &buf, 1, cu->language,
8723 &type_print_raw_options);
8724
8725 if (cu->language == language_cplus)
8726 {
8727 /* Assume that an artificial first parameter is
8728 "this", but do not crash if it is not. RealView
8729 marks unnamed (and thus unused) parameters as
8730 artificial; there is no way to differentiate
8731 the two cases. */
8732 if (TYPE_NFIELDS (type) > 0
8733 && TYPE_FIELD_ARTIFICIAL (type, 0)
8734 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8735 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8736 0))))
8737 buf.puts (" const");
8738 }
8739 }
8740
8741 const std::string &intermediate_name = buf.string ();
8742
8743 if (cu->language == language_cplus)
8744 canonical_name
8745 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8746 &objfile->per_bfd->storage_obstack);
8747
8748 /* If we only computed INTERMEDIATE_NAME, or if
8749 INTERMEDIATE_NAME is already canonical, then we need to
8750 copy it to the appropriate obstack. */
8751 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8752 name = ((const char *)
8753 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8754 intermediate_name.c_str (),
8755 intermediate_name.length ()));
8756 else
8757 name = canonical_name;
8758 }
8759 }
8760
8761 return name;
8762 }
8763
8764 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8765 If scope qualifiers are appropriate they will be added. The result
8766 will be allocated on the storage_obstack, or NULL if the DIE does
8767 not have a name. NAME may either be from a previous call to
8768 dwarf2_name or NULL.
8769
8770 The output string will be canonicalized (if C++). */
8771
8772 static const char *
8773 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8774 {
8775 return dwarf2_compute_name (name, die, cu, 0);
8776 }
8777
8778 /* Construct a physname for the given DIE in CU. NAME may either be
8779 from a previous call to dwarf2_name or NULL. The result will be
8780 allocated on the objfile_objstack or NULL if the DIE does not have a
8781 name.
8782
8783 The output string will be canonicalized (if C++). */
8784
8785 static const char *
8786 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8787 {
8788 struct objfile *objfile = cu->objfile;
8789 const char *retval, *mangled = NULL, *canon = NULL;
8790 struct cleanup *back_to;
8791 int need_copy = 1;
8792
8793 /* In this case dwarf2_compute_name is just a shortcut not building anything
8794 on its own. */
8795 if (!die_needs_namespace (die, cu))
8796 return dwarf2_compute_name (name, die, cu, 1);
8797
8798 back_to = make_cleanup (null_cleanup, NULL);
8799
8800 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8801 if (mangled == NULL)
8802 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8803
8804 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8805 See https://github.com/rust-lang/rust/issues/32925. */
8806 if (cu->language == language_rust && mangled != NULL
8807 && strchr (mangled, '{') != NULL)
8808 mangled = NULL;
8809
8810 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8811 has computed. */
8812 if (mangled != NULL)
8813 {
8814 char *demangled;
8815
8816 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8817 type. It is easier for GDB users to search for such functions as
8818 `name(params)' than `long name(params)'. In such case the minimal
8819 symbol names do not match the full symbol names but for template
8820 functions there is never a need to look up their definition from their
8821 declaration so the only disadvantage remains the minimal symbol
8822 variant `long name(params)' does not have the proper inferior type.
8823 */
8824
8825 if (cu->language == language_go)
8826 {
8827 /* This is a lie, but we already lie to the caller new_symbol_full.
8828 new_symbol_full assumes we return the mangled name.
8829 This just undoes that lie until things are cleaned up. */
8830 demangled = NULL;
8831 }
8832 else
8833 {
8834 demangled = gdb_demangle (mangled,
8835 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
8836 }
8837 if (demangled)
8838 {
8839 make_cleanup (xfree, demangled);
8840 canon = demangled;
8841 }
8842 else
8843 {
8844 canon = mangled;
8845 need_copy = 0;
8846 }
8847 }
8848
8849 if (canon == NULL || check_physname)
8850 {
8851 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8852
8853 if (canon != NULL && strcmp (physname, canon) != 0)
8854 {
8855 /* It may not mean a bug in GDB. The compiler could also
8856 compute DW_AT_linkage_name incorrectly. But in such case
8857 GDB would need to be bug-to-bug compatible. */
8858
8859 complaint (&symfile_complaints,
8860 _("Computed physname <%s> does not match demangled <%s> "
8861 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8862 physname, canon, mangled, die->offset.sect_off,
8863 objfile_name (objfile));
8864
8865 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8866 is available here - over computed PHYSNAME. It is safer
8867 against both buggy GDB and buggy compilers. */
8868
8869 retval = canon;
8870 }
8871 else
8872 {
8873 retval = physname;
8874 need_copy = 0;
8875 }
8876 }
8877 else
8878 retval = canon;
8879
8880 if (need_copy)
8881 retval = ((const char *)
8882 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8883 retval, strlen (retval)));
8884
8885 do_cleanups (back_to);
8886 return retval;
8887 }
8888
8889 /* Inspect DIE in CU for a namespace alias. If one exists, record
8890 a new symbol for it.
8891
8892 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8893
8894 static int
8895 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8896 {
8897 struct attribute *attr;
8898
8899 /* If the die does not have a name, this is not a namespace
8900 alias. */
8901 attr = dwarf2_attr (die, DW_AT_name, cu);
8902 if (attr != NULL)
8903 {
8904 int num;
8905 struct die_info *d = die;
8906 struct dwarf2_cu *imported_cu = cu;
8907
8908 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8909 keep inspecting DIEs until we hit the underlying import. */
8910 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8911 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8912 {
8913 attr = dwarf2_attr (d, DW_AT_import, cu);
8914 if (attr == NULL)
8915 break;
8916
8917 d = follow_die_ref (d, attr, &imported_cu);
8918 if (d->tag != DW_TAG_imported_declaration)
8919 break;
8920 }
8921
8922 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8923 {
8924 complaint (&symfile_complaints,
8925 _("DIE at 0x%x has too many recursively imported "
8926 "declarations"), d->offset.sect_off);
8927 return 0;
8928 }
8929
8930 if (attr != NULL)
8931 {
8932 struct type *type;
8933 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8934
8935 type = get_die_type_at_offset (offset, cu->per_cu);
8936 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8937 {
8938 /* This declaration is a global namespace alias. Add
8939 a symbol for it whose type is the aliased namespace. */
8940 new_symbol (die, type, cu);
8941 return 1;
8942 }
8943 }
8944 }
8945
8946 return 0;
8947 }
8948
8949 /* Return the using directives repository (global or local?) to use in the
8950 current context for LANGUAGE.
8951
8952 For Ada, imported declarations can materialize renamings, which *may* be
8953 global. However it is impossible (for now?) in DWARF to distinguish
8954 "external" imported declarations and "static" ones. As all imported
8955 declarations seem to be static in all other languages, make them all CU-wide
8956 global only in Ada. */
8957
8958 static struct using_direct **
8959 using_directives (enum language language)
8960 {
8961 if (language == language_ada && context_stack_depth == 0)
8962 return &global_using_directives;
8963 else
8964 return &local_using_directives;
8965 }
8966
8967 /* Read the import statement specified by the given die and record it. */
8968
8969 static void
8970 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8971 {
8972 struct objfile *objfile = cu->objfile;
8973 struct attribute *import_attr;
8974 struct die_info *imported_die, *child_die;
8975 struct dwarf2_cu *imported_cu;
8976 const char *imported_name;
8977 const char *imported_name_prefix;
8978 const char *canonical_name;
8979 const char *import_alias;
8980 const char *imported_declaration = NULL;
8981 const char *import_prefix;
8982 VEC (const_char_ptr) *excludes = NULL;
8983 struct cleanup *cleanups;
8984
8985 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8986 if (import_attr == NULL)
8987 {
8988 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8989 dwarf_tag_name (die->tag));
8990 return;
8991 }
8992
8993 imported_cu = cu;
8994 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8995 imported_name = dwarf2_name (imported_die, imported_cu);
8996 if (imported_name == NULL)
8997 {
8998 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8999
9000 The import in the following code:
9001 namespace A
9002 {
9003 typedef int B;
9004 }
9005
9006 int main ()
9007 {
9008 using A::B;
9009 B b;
9010 return b;
9011 }
9012
9013 ...
9014 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9015 <52> DW_AT_decl_file : 1
9016 <53> DW_AT_decl_line : 6
9017 <54> DW_AT_import : <0x75>
9018 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9019 <59> DW_AT_name : B
9020 <5b> DW_AT_decl_file : 1
9021 <5c> DW_AT_decl_line : 2
9022 <5d> DW_AT_type : <0x6e>
9023 ...
9024 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9025 <76> DW_AT_byte_size : 4
9026 <77> DW_AT_encoding : 5 (signed)
9027
9028 imports the wrong die ( 0x75 instead of 0x58 ).
9029 This case will be ignored until the gcc bug is fixed. */
9030 return;
9031 }
9032
9033 /* Figure out the local name after import. */
9034 import_alias = dwarf2_name (die, cu);
9035
9036 /* Figure out where the statement is being imported to. */
9037 import_prefix = determine_prefix (die, cu);
9038
9039 /* Figure out what the scope of the imported die is and prepend it
9040 to the name of the imported die. */
9041 imported_name_prefix = determine_prefix (imported_die, imported_cu);
9042
9043 if (imported_die->tag != DW_TAG_namespace
9044 && imported_die->tag != DW_TAG_module)
9045 {
9046 imported_declaration = imported_name;
9047 canonical_name = imported_name_prefix;
9048 }
9049 else if (strlen (imported_name_prefix) > 0)
9050 canonical_name = obconcat (&objfile->objfile_obstack,
9051 imported_name_prefix,
9052 (cu->language == language_d ? "." : "::"),
9053 imported_name, (char *) NULL);
9054 else
9055 canonical_name = imported_name;
9056
9057 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
9058
9059 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9060 for (child_die = die->child; child_die && child_die->tag;
9061 child_die = sibling_die (child_die))
9062 {
9063 /* DWARF-4: A Fortran use statement with a “rename list” may be
9064 represented by an imported module entry with an import attribute
9065 referring to the module and owned entries corresponding to those
9066 entities that are renamed as part of being imported. */
9067
9068 if (child_die->tag != DW_TAG_imported_declaration)
9069 {
9070 complaint (&symfile_complaints,
9071 _("child DW_TAG_imported_declaration expected "
9072 "- DIE at 0x%x [in module %s]"),
9073 child_die->offset.sect_off, objfile_name (objfile));
9074 continue;
9075 }
9076
9077 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9078 if (import_attr == NULL)
9079 {
9080 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9081 dwarf_tag_name (child_die->tag));
9082 continue;
9083 }
9084
9085 imported_cu = cu;
9086 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9087 &imported_cu);
9088 imported_name = dwarf2_name (imported_die, imported_cu);
9089 if (imported_name == NULL)
9090 {
9091 complaint (&symfile_complaints,
9092 _("child DW_TAG_imported_declaration has unknown "
9093 "imported name - DIE at 0x%x [in module %s]"),
9094 child_die->offset.sect_off, objfile_name (objfile));
9095 continue;
9096 }
9097
9098 VEC_safe_push (const_char_ptr, excludes, imported_name);
9099
9100 process_die (child_die, cu);
9101 }
9102
9103 add_using_directive (using_directives (cu->language),
9104 import_prefix,
9105 canonical_name,
9106 import_alias,
9107 imported_declaration,
9108 excludes,
9109 0,
9110 &objfile->objfile_obstack);
9111
9112 do_cleanups (cleanups);
9113 }
9114
9115 /* Cleanup function for handle_DW_AT_stmt_list. */
9116
9117 static void
9118 free_cu_line_header (void *arg)
9119 {
9120 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
9121
9122 free_line_header (cu->line_header);
9123 cu->line_header = NULL;
9124 }
9125
9126 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9127 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9128 this, it was first present in GCC release 4.3.0. */
9129
9130 static int
9131 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9132 {
9133 if (!cu->checked_producer)
9134 check_producer (cu);
9135
9136 return cu->producer_is_gcc_lt_4_3;
9137 }
9138
9139 static file_and_directory
9140 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9141 {
9142 file_and_directory res;
9143
9144 /* Find the filename. Do not use dwarf2_name here, since the filename
9145 is not a source language identifier. */
9146 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9147 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9148
9149 if (res.comp_dir == NULL
9150 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9151 && IS_ABSOLUTE_PATH (res.name))
9152 {
9153 res.comp_dir_storage = ldirname (res.name);
9154 if (!res.comp_dir_storage.empty ())
9155 res.comp_dir = res.comp_dir_storage.c_str ();
9156 }
9157 if (res.comp_dir != NULL)
9158 {
9159 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9160 directory, get rid of it. */
9161 const char *cp = strchr (res.comp_dir, ':');
9162
9163 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9164 res.comp_dir = cp + 1;
9165 }
9166
9167 if (res.name == NULL)
9168 res.name = "<unknown>";
9169
9170 return res;
9171 }
9172
9173 /* Handle DW_AT_stmt_list for a compilation unit.
9174 DIE is the DW_TAG_compile_unit die for CU.
9175 COMP_DIR is the compilation directory. LOWPC is passed to
9176 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9177
9178 static void
9179 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9180 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9181 {
9182 struct objfile *objfile = dwarf2_per_objfile->objfile;
9183 struct attribute *attr;
9184 unsigned int line_offset;
9185 struct line_header line_header_local;
9186 hashval_t line_header_local_hash;
9187 unsigned u;
9188 void **slot;
9189 int decode_mapping;
9190
9191 gdb_assert (! cu->per_cu->is_debug_types);
9192
9193 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9194 if (attr == NULL)
9195 return;
9196
9197 line_offset = DW_UNSND (attr);
9198
9199 /* The line header hash table is only created if needed (it exists to
9200 prevent redundant reading of the line table for partial_units).
9201 If we're given a partial_unit, we'll need it. If we're given a
9202 compile_unit, then use the line header hash table if it's already
9203 created, but don't create one just yet. */
9204
9205 if (dwarf2_per_objfile->line_header_hash == NULL
9206 && die->tag == DW_TAG_partial_unit)
9207 {
9208 dwarf2_per_objfile->line_header_hash
9209 = htab_create_alloc_ex (127, line_header_hash_voidp,
9210 line_header_eq_voidp,
9211 free_line_header_voidp,
9212 &objfile->objfile_obstack,
9213 hashtab_obstack_allocate,
9214 dummy_obstack_deallocate);
9215 }
9216
9217 line_header_local.offset.sect_off = line_offset;
9218 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9219 line_header_local_hash = line_header_hash (&line_header_local);
9220 if (dwarf2_per_objfile->line_header_hash != NULL)
9221 {
9222 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9223 &line_header_local,
9224 line_header_local_hash, NO_INSERT);
9225
9226 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9227 is not present in *SLOT (since if there is something in *SLOT then
9228 it will be for a partial_unit). */
9229 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9230 {
9231 gdb_assert (*slot != NULL);
9232 cu->line_header = (struct line_header *) *slot;
9233 return;
9234 }
9235 }
9236
9237 /* dwarf_decode_line_header does not yet provide sufficient information.
9238 We always have to call also dwarf_decode_lines for it. */
9239 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9240 if (cu->line_header == NULL)
9241 return;
9242
9243 if (dwarf2_per_objfile->line_header_hash == NULL)
9244 slot = NULL;
9245 else
9246 {
9247 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9248 &line_header_local,
9249 line_header_local_hash, INSERT);
9250 gdb_assert (slot != NULL);
9251 }
9252 if (slot != NULL && *slot == NULL)
9253 {
9254 /* This newly decoded line number information unit will be owned
9255 by line_header_hash hash table. */
9256 *slot = cu->line_header;
9257 }
9258 else
9259 {
9260 /* We cannot free any current entry in (*slot) as that struct line_header
9261 may be already used by multiple CUs. Create only temporary decoded
9262 line_header for this CU - it may happen at most once for each line
9263 number information unit. And if we're not using line_header_hash
9264 then this is what we want as well. */
9265 gdb_assert (die->tag != DW_TAG_partial_unit);
9266 make_cleanup (free_cu_line_header, cu);
9267 }
9268 decode_mapping = (die->tag != DW_TAG_partial_unit);
9269 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9270 decode_mapping);
9271 }
9272
9273 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9274
9275 static void
9276 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9277 {
9278 struct objfile *objfile = dwarf2_per_objfile->objfile;
9279 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9280 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9281 CORE_ADDR highpc = ((CORE_ADDR) 0);
9282 struct attribute *attr;
9283 struct die_info *child_die;
9284 CORE_ADDR baseaddr;
9285
9286 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9287
9288 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9289
9290 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9291 from finish_block. */
9292 if (lowpc == ((CORE_ADDR) -1))
9293 lowpc = highpc;
9294 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9295
9296 file_and_directory fnd = find_file_and_directory (die, cu);
9297
9298 prepare_one_comp_unit (cu, die, cu->language);
9299
9300 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9301 standardised yet. As a workaround for the language detection we fall
9302 back to the DW_AT_producer string. */
9303 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9304 cu->language = language_opencl;
9305
9306 /* Similar hack for Go. */
9307 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9308 set_cu_language (DW_LANG_Go, cu);
9309
9310 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
9311
9312 /* Decode line number information if present. We do this before
9313 processing child DIEs, so that the line header table is available
9314 for DW_AT_decl_file. */
9315 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
9316
9317 /* Process all dies in compilation unit. */
9318 if (die->child != NULL)
9319 {
9320 child_die = die->child;
9321 while (child_die && child_die->tag)
9322 {
9323 process_die (child_die, cu);
9324 child_die = sibling_die (child_die);
9325 }
9326 }
9327
9328 /* Decode macro information, if present. Dwarf 2 macro information
9329 refers to information in the line number info statement program
9330 header, so we can only read it if we've read the header
9331 successfully. */
9332 attr = dwarf2_attr (die, DW_AT_macros, cu);
9333 if (attr == NULL)
9334 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9335 if (attr && cu->line_header)
9336 {
9337 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9338 complaint (&symfile_complaints,
9339 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
9340
9341 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9342 }
9343 else
9344 {
9345 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9346 if (attr && cu->line_header)
9347 {
9348 unsigned int macro_offset = DW_UNSND (attr);
9349
9350 dwarf_decode_macros (cu, macro_offset, 0);
9351 }
9352 }
9353 }
9354
9355 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9356 Create the set of symtabs used by this TU, or if this TU is sharing
9357 symtabs with another TU and the symtabs have already been created
9358 then restore those symtabs in the line header.
9359 We don't need the pc/line-number mapping for type units. */
9360
9361 static void
9362 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9363 {
9364 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9365 struct type_unit_group *tu_group;
9366 int first_time;
9367 struct line_header *lh;
9368 struct attribute *attr;
9369 unsigned int i, line_offset;
9370 struct signatured_type *sig_type;
9371
9372 gdb_assert (per_cu->is_debug_types);
9373 sig_type = (struct signatured_type *) per_cu;
9374
9375 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9376
9377 /* If we're using .gdb_index (includes -readnow) then
9378 per_cu->type_unit_group may not have been set up yet. */
9379 if (sig_type->type_unit_group == NULL)
9380 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9381 tu_group = sig_type->type_unit_group;
9382
9383 /* If we've already processed this stmt_list there's no real need to
9384 do it again, we could fake it and just recreate the part we need
9385 (file name,index -> symtab mapping). If data shows this optimization
9386 is useful we can do it then. */
9387 first_time = tu_group->compunit_symtab == NULL;
9388
9389 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9390 debug info. */
9391 lh = NULL;
9392 if (attr != NULL)
9393 {
9394 line_offset = DW_UNSND (attr);
9395 lh = dwarf_decode_line_header (line_offset, cu);
9396 }
9397 if (lh == NULL)
9398 {
9399 if (first_time)
9400 dwarf2_start_symtab (cu, "", NULL, 0);
9401 else
9402 {
9403 gdb_assert (tu_group->symtabs == NULL);
9404 restart_symtab (tu_group->compunit_symtab, "", 0);
9405 }
9406 return;
9407 }
9408
9409 cu->line_header = lh;
9410 make_cleanup (free_cu_line_header, cu);
9411
9412 if (first_time)
9413 {
9414 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9415
9416 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9417 still initializing it, and our caller (a few levels up)
9418 process_full_type_unit still needs to know if this is the first
9419 time. */
9420
9421 tu_group->num_symtabs = lh->num_file_names;
9422 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9423
9424 for (i = 0; i < lh->num_file_names; ++i)
9425 {
9426 const char *dir = NULL;
9427 struct file_entry *fe = &lh->file_names[i];
9428
9429 if (fe->dir_index && lh->include_dirs != NULL
9430 && (fe->dir_index - 1) < lh->num_include_dirs)
9431 dir = lh->include_dirs[fe->dir_index - 1];
9432 dwarf2_start_subfile (fe->name, dir);
9433
9434 if (current_subfile->symtab == NULL)
9435 {
9436 /* NOTE: start_subfile will recognize when it's been passed
9437 a file it has already seen. So we can't assume there's a
9438 simple mapping from lh->file_names to subfiles, plus
9439 lh->file_names may contain dups. */
9440 current_subfile->symtab
9441 = allocate_symtab (cust, current_subfile->name);
9442 }
9443
9444 fe->symtab = current_subfile->symtab;
9445 tu_group->symtabs[i] = fe->symtab;
9446 }
9447 }
9448 else
9449 {
9450 restart_symtab (tu_group->compunit_symtab, "", 0);
9451
9452 for (i = 0; i < lh->num_file_names; ++i)
9453 {
9454 struct file_entry *fe = &lh->file_names[i];
9455
9456 fe->symtab = tu_group->symtabs[i];
9457 }
9458 }
9459
9460 /* The main symtab is allocated last. Type units don't have DW_AT_name
9461 so they don't have a "real" (so to speak) symtab anyway.
9462 There is later code that will assign the main symtab to all symbols
9463 that don't have one. We need to handle the case of a symbol with a
9464 missing symtab (DW_AT_decl_file) anyway. */
9465 }
9466
9467 /* Process DW_TAG_type_unit.
9468 For TUs we want to skip the first top level sibling if it's not the
9469 actual type being defined by this TU. In this case the first top
9470 level sibling is there to provide context only. */
9471
9472 static void
9473 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9474 {
9475 struct die_info *child_die;
9476
9477 prepare_one_comp_unit (cu, die, language_minimal);
9478
9479 /* Initialize (or reinitialize) the machinery for building symtabs.
9480 We do this before processing child DIEs, so that the line header table
9481 is available for DW_AT_decl_file. */
9482 setup_type_unit_groups (die, cu);
9483
9484 if (die->child != NULL)
9485 {
9486 child_die = die->child;
9487 while (child_die && child_die->tag)
9488 {
9489 process_die (child_die, cu);
9490 child_die = sibling_die (child_die);
9491 }
9492 }
9493 }
9494 \f
9495 /* DWO/DWP files.
9496
9497 http://gcc.gnu.org/wiki/DebugFission
9498 http://gcc.gnu.org/wiki/DebugFissionDWP
9499
9500 To simplify handling of both DWO files ("object" files with the DWARF info)
9501 and DWP files (a file with the DWOs packaged up into one file), we treat
9502 DWP files as having a collection of virtual DWO files. */
9503
9504 static hashval_t
9505 hash_dwo_file (const void *item)
9506 {
9507 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9508 hashval_t hash;
9509
9510 hash = htab_hash_string (dwo_file->dwo_name);
9511 if (dwo_file->comp_dir != NULL)
9512 hash += htab_hash_string (dwo_file->comp_dir);
9513 return hash;
9514 }
9515
9516 static int
9517 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9518 {
9519 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9520 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9521
9522 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9523 return 0;
9524 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9525 return lhs->comp_dir == rhs->comp_dir;
9526 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9527 }
9528
9529 /* Allocate a hash table for DWO files. */
9530
9531 static htab_t
9532 allocate_dwo_file_hash_table (void)
9533 {
9534 struct objfile *objfile = dwarf2_per_objfile->objfile;
9535
9536 return htab_create_alloc_ex (41,
9537 hash_dwo_file,
9538 eq_dwo_file,
9539 NULL,
9540 &objfile->objfile_obstack,
9541 hashtab_obstack_allocate,
9542 dummy_obstack_deallocate);
9543 }
9544
9545 /* Lookup DWO file DWO_NAME. */
9546
9547 static void **
9548 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9549 {
9550 struct dwo_file find_entry;
9551 void **slot;
9552
9553 if (dwarf2_per_objfile->dwo_files == NULL)
9554 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9555
9556 memset (&find_entry, 0, sizeof (find_entry));
9557 find_entry.dwo_name = dwo_name;
9558 find_entry.comp_dir = comp_dir;
9559 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9560
9561 return slot;
9562 }
9563
9564 static hashval_t
9565 hash_dwo_unit (const void *item)
9566 {
9567 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9568
9569 /* This drops the top 32 bits of the id, but is ok for a hash. */
9570 return dwo_unit->signature;
9571 }
9572
9573 static int
9574 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9575 {
9576 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9577 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9578
9579 /* The signature is assumed to be unique within the DWO file.
9580 So while object file CU dwo_id's always have the value zero,
9581 that's OK, assuming each object file DWO file has only one CU,
9582 and that's the rule for now. */
9583 return lhs->signature == rhs->signature;
9584 }
9585
9586 /* Allocate a hash table for DWO CUs,TUs.
9587 There is one of these tables for each of CUs,TUs for each DWO file. */
9588
9589 static htab_t
9590 allocate_dwo_unit_table (struct objfile *objfile)
9591 {
9592 /* Start out with a pretty small number.
9593 Generally DWO files contain only one CU and maybe some TUs. */
9594 return htab_create_alloc_ex (3,
9595 hash_dwo_unit,
9596 eq_dwo_unit,
9597 NULL,
9598 &objfile->objfile_obstack,
9599 hashtab_obstack_allocate,
9600 dummy_obstack_deallocate);
9601 }
9602
9603 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9604
9605 struct create_dwo_cu_data
9606 {
9607 struct dwo_file *dwo_file;
9608 struct dwo_unit dwo_unit;
9609 };
9610
9611 /* die_reader_func for create_dwo_cu. */
9612
9613 static void
9614 create_dwo_cu_reader (const struct die_reader_specs *reader,
9615 const gdb_byte *info_ptr,
9616 struct die_info *comp_unit_die,
9617 int has_children,
9618 void *datap)
9619 {
9620 struct dwarf2_cu *cu = reader->cu;
9621 sect_offset offset = cu->per_cu->offset;
9622 struct dwarf2_section_info *section = cu->per_cu->section;
9623 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9624 struct dwo_file *dwo_file = data->dwo_file;
9625 struct dwo_unit *dwo_unit = &data->dwo_unit;
9626 struct attribute *attr;
9627
9628 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9629 if (attr == NULL)
9630 {
9631 complaint (&symfile_complaints,
9632 _("Dwarf Error: debug entry at offset 0x%x is missing"
9633 " its dwo_id [in module %s]"),
9634 offset.sect_off, dwo_file->dwo_name);
9635 return;
9636 }
9637
9638 dwo_unit->dwo_file = dwo_file;
9639 dwo_unit->signature = DW_UNSND (attr);
9640 dwo_unit->section = section;
9641 dwo_unit->offset = offset;
9642 dwo_unit->length = cu->per_cu->length;
9643
9644 if (dwarf_read_debug)
9645 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9646 offset.sect_off, hex_string (dwo_unit->signature));
9647 }
9648
9649 /* Create the dwo_unit for the lone CU in DWO_FILE.
9650 Note: This function processes DWO files only, not DWP files. */
9651
9652 static struct dwo_unit *
9653 create_dwo_cu (struct dwo_file *dwo_file)
9654 {
9655 struct objfile *objfile = dwarf2_per_objfile->objfile;
9656 struct dwarf2_section_info *section = &dwo_file->sections.info;
9657 const gdb_byte *info_ptr, *end_ptr;
9658 struct create_dwo_cu_data create_dwo_cu_data;
9659 struct dwo_unit *dwo_unit;
9660
9661 dwarf2_read_section (objfile, section);
9662 info_ptr = section->buffer;
9663
9664 if (info_ptr == NULL)
9665 return NULL;
9666
9667 if (dwarf_read_debug)
9668 {
9669 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9670 get_section_name (section),
9671 get_section_file_name (section));
9672 }
9673
9674 create_dwo_cu_data.dwo_file = dwo_file;
9675 dwo_unit = NULL;
9676
9677 end_ptr = info_ptr + section->size;
9678 while (info_ptr < end_ptr)
9679 {
9680 struct dwarf2_per_cu_data per_cu;
9681
9682 memset (&create_dwo_cu_data.dwo_unit, 0,
9683 sizeof (create_dwo_cu_data.dwo_unit));
9684 memset (&per_cu, 0, sizeof (per_cu));
9685 per_cu.objfile = objfile;
9686 per_cu.is_debug_types = 0;
9687 per_cu.offset.sect_off = info_ptr - section->buffer;
9688 per_cu.section = section;
9689
9690 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9691 create_dwo_cu_reader,
9692 &create_dwo_cu_data);
9693
9694 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9695 {
9696 /* If we've already found one, complain. We only support one
9697 because having more than one requires hacking the dwo_name of
9698 each to match, which is highly unlikely to happen. */
9699 if (dwo_unit != NULL)
9700 {
9701 complaint (&symfile_complaints,
9702 _("Multiple CUs in DWO file %s [in module %s]"),
9703 dwo_file->dwo_name, objfile_name (objfile));
9704 break;
9705 }
9706
9707 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9708 *dwo_unit = create_dwo_cu_data.dwo_unit;
9709 }
9710
9711 info_ptr += per_cu.length;
9712 }
9713
9714 return dwo_unit;
9715 }
9716
9717 /* DWP file .debug_{cu,tu}_index section format:
9718 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9719
9720 DWP Version 1:
9721
9722 Both index sections have the same format, and serve to map a 64-bit
9723 signature to a set of section numbers. Each section begins with a header,
9724 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9725 indexes, and a pool of 32-bit section numbers. The index sections will be
9726 aligned at 8-byte boundaries in the file.
9727
9728 The index section header consists of:
9729
9730 V, 32 bit version number
9731 -, 32 bits unused
9732 N, 32 bit number of compilation units or type units in the index
9733 M, 32 bit number of slots in the hash table
9734
9735 Numbers are recorded using the byte order of the application binary.
9736
9737 The hash table begins at offset 16 in the section, and consists of an array
9738 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9739 order of the application binary). Unused slots in the hash table are 0.
9740 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9741
9742 The parallel table begins immediately after the hash table
9743 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9744 array of 32-bit indexes (using the byte order of the application binary),
9745 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9746 table contains a 32-bit index into the pool of section numbers. For unused
9747 hash table slots, the corresponding entry in the parallel table will be 0.
9748
9749 The pool of section numbers begins immediately following the hash table
9750 (at offset 16 + 12 * M from the beginning of the section). The pool of
9751 section numbers consists of an array of 32-bit words (using the byte order
9752 of the application binary). Each item in the array is indexed starting
9753 from 0. The hash table entry provides the index of the first section
9754 number in the set. Additional section numbers in the set follow, and the
9755 set is terminated by a 0 entry (section number 0 is not used in ELF).
9756
9757 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9758 section must be the first entry in the set, and the .debug_abbrev.dwo must
9759 be the second entry. Other members of the set may follow in any order.
9760
9761 ---
9762
9763 DWP Version 2:
9764
9765 DWP Version 2 combines all the .debug_info, etc. sections into one,
9766 and the entries in the index tables are now offsets into these sections.
9767 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9768 section.
9769
9770 Index Section Contents:
9771 Header
9772 Hash Table of Signatures dwp_hash_table.hash_table
9773 Parallel Table of Indices dwp_hash_table.unit_table
9774 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9775 Table of Section Sizes dwp_hash_table.v2.sizes
9776
9777 The index section header consists of:
9778
9779 V, 32 bit version number
9780 L, 32 bit number of columns in the table of section offsets
9781 N, 32 bit number of compilation units or type units in the index
9782 M, 32 bit number of slots in the hash table
9783
9784 Numbers are recorded using the byte order of the application binary.
9785
9786 The hash table has the same format as version 1.
9787 The parallel table of indices has the same format as version 1,
9788 except that the entries are origin-1 indices into the table of sections
9789 offsets and the table of section sizes.
9790
9791 The table of offsets begins immediately following the parallel table
9792 (at offset 16 + 12 * M from the beginning of the section). The table is
9793 a two-dimensional array of 32-bit words (using the byte order of the
9794 application binary), with L columns and N+1 rows, in row-major order.
9795 Each row in the array is indexed starting from 0. The first row provides
9796 a key to the remaining rows: each column in this row provides an identifier
9797 for a debug section, and the offsets in the same column of subsequent rows
9798 refer to that section. The section identifiers are:
9799
9800 DW_SECT_INFO 1 .debug_info.dwo
9801 DW_SECT_TYPES 2 .debug_types.dwo
9802 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9803 DW_SECT_LINE 4 .debug_line.dwo
9804 DW_SECT_LOC 5 .debug_loc.dwo
9805 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9806 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9807 DW_SECT_MACRO 8 .debug_macro.dwo
9808
9809 The offsets provided by the CU and TU index sections are the base offsets
9810 for the contributions made by each CU or TU to the corresponding section
9811 in the package file. Each CU and TU header contains an abbrev_offset
9812 field, used to find the abbreviations table for that CU or TU within the
9813 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9814 be interpreted as relative to the base offset given in the index section.
9815 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9816 should be interpreted as relative to the base offset for .debug_line.dwo,
9817 and offsets into other debug sections obtained from DWARF attributes should
9818 also be interpreted as relative to the corresponding base offset.
9819
9820 The table of sizes begins immediately following the table of offsets.
9821 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9822 with L columns and N rows, in row-major order. Each row in the array is
9823 indexed starting from 1 (row 0 is shared by the two tables).
9824
9825 ---
9826
9827 Hash table lookup is handled the same in version 1 and 2:
9828
9829 We assume that N and M will not exceed 2^32 - 1.
9830 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9831
9832 Given a 64-bit compilation unit signature or a type signature S, an entry
9833 in the hash table is located as follows:
9834
9835 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9836 the low-order k bits all set to 1.
9837
9838 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9839
9840 3) If the hash table entry at index H matches the signature, use that
9841 entry. If the hash table entry at index H is unused (all zeroes),
9842 terminate the search: the signature is not present in the table.
9843
9844 4) Let H = (H + H') modulo M. Repeat at Step 3.
9845
9846 Because M > N and H' and M are relatively prime, the search is guaranteed
9847 to stop at an unused slot or find the match. */
9848
9849 /* Create a hash table to map DWO IDs to their CU/TU entry in
9850 .debug_{info,types}.dwo in DWP_FILE.
9851 Returns NULL if there isn't one.
9852 Note: This function processes DWP files only, not DWO files. */
9853
9854 static struct dwp_hash_table *
9855 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9856 {
9857 struct objfile *objfile = dwarf2_per_objfile->objfile;
9858 bfd *dbfd = dwp_file->dbfd;
9859 const gdb_byte *index_ptr, *index_end;
9860 struct dwarf2_section_info *index;
9861 uint32_t version, nr_columns, nr_units, nr_slots;
9862 struct dwp_hash_table *htab;
9863
9864 if (is_debug_types)
9865 index = &dwp_file->sections.tu_index;
9866 else
9867 index = &dwp_file->sections.cu_index;
9868
9869 if (dwarf2_section_empty_p (index))
9870 return NULL;
9871 dwarf2_read_section (objfile, index);
9872
9873 index_ptr = index->buffer;
9874 index_end = index_ptr + index->size;
9875
9876 version = read_4_bytes (dbfd, index_ptr);
9877 index_ptr += 4;
9878 if (version == 2)
9879 nr_columns = read_4_bytes (dbfd, index_ptr);
9880 else
9881 nr_columns = 0;
9882 index_ptr += 4;
9883 nr_units = read_4_bytes (dbfd, index_ptr);
9884 index_ptr += 4;
9885 nr_slots = read_4_bytes (dbfd, index_ptr);
9886 index_ptr += 4;
9887
9888 if (version != 1 && version != 2)
9889 {
9890 error (_("Dwarf Error: unsupported DWP file version (%s)"
9891 " [in module %s]"),
9892 pulongest (version), dwp_file->name);
9893 }
9894 if (nr_slots != (nr_slots & -nr_slots))
9895 {
9896 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9897 " is not power of 2 [in module %s]"),
9898 pulongest (nr_slots), dwp_file->name);
9899 }
9900
9901 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9902 htab->version = version;
9903 htab->nr_columns = nr_columns;
9904 htab->nr_units = nr_units;
9905 htab->nr_slots = nr_slots;
9906 htab->hash_table = index_ptr;
9907 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9908
9909 /* Exit early if the table is empty. */
9910 if (nr_slots == 0 || nr_units == 0
9911 || (version == 2 && nr_columns == 0))
9912 {
9913 /* All must be zero. */
9914 if (nr_slots != 0 || nr_units != 0
9915 || (version == 2 && nr_columns != 0))
9916 {
9917 complaint (&symfile_complaints,
9918 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9919 " all zero [in modules %s]"),
9920 dwp_file->name);
9921 }
9922 return htab;
9923 }
9924
9925 if (version == 1)
9926 {
9927 htab->section_pool.v1.indices =
9928 htab->unit_table + sizeof (uint32_t) * nr_slots;
9929 /* It's harder to decide whether the section is too small in v1.
9930 V1 is deprecated anyway so we punt. */
9931 }
9932 else
9933 {
9934 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9935 int *ids = htab->section_pool.v2.section_ids;
9936 /* Reverse map for error checking. */
9937 int ids_seen[DW_SECT_MAX + 1];
9938 int i;
9939
9940 if (nr_columns < 2)
9941 {
9942 error (_("Dwarf Error: bad DWP hash table, too few columns"
9943 " in section table [in module %s]"),
9944 dwp_file->name);
9945 }
9946 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9947 {
9948 error (_("Dwarf Error: bad DWP hash table, too many columns"
9949 " in section table [in module %s]"),
9950 dwp_file->name);
9951 }
9952 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9953 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9954 for (i = 0; i < nr_columns; ++i)
9955 {
9956 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9957
9958 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9959 {
9960 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9961 " in section table [in module %s]"),
9962 id, dwp_file->name);
9963 }
9964 if (ids_seen[id] != -1)
9965 {
9966 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9967 " id %d in section table [in module %s]"),
9968 id, dwp_file->name);
9969 }
9970 ids_seen[id] = i;
9971 ids[i] = id;
9972 }
9973 /* Must have exactly one info or types section. */
9974 if (((ids_seen[DW_SECT_INFO] != -1)
9975 + (ids_seen[DW_SECT_TYPES] != -1))
9976 != 1)
9977 {
9978 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9979 " DWO info/types section [in module %s]"),
9980 dwp_file->name);
9981 }
9982 /* Must have an abbrev section. */
9983 if (ids_seen[DW_SECT_ABBREV] == -1)
9984 {
9985 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9986 " section [in module %s]"),
9987 dwp_file->name);
9988 }
9989 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9990 htab->section_pool.v2.sizes =
9991 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9992 * nr_units * nr_columns);
9993 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9994 * nr_units * nr_columns))
9995 > index_end)
9996 {
9997 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9998 " [in module %s]"),
9999 dwp_file->name);
10000 }
10001 }
10002
10003 return htab;
10004 }
10005
10006 /* Update SECTIONS with the data from SECTP.
10007
10008 This function is like the other "locate" section routines that are
10009 passed to bfd_map_over_sections, but in this context the sections to
10010 read comes from the DWP V1 hash table, not the full ELF section table.
10011
10012 The result is non-zero for success, or zero if an error was found. */
10013
10014 static int
10015 locate_v1_virtual_dwo_sections (asection *sectp,
10016 struct virtual_v1_dwo_sections *sections)
10017 {
10018 const struct dwop_section_names *names = &dwop_section_names;
10019
10020 if (section_is_p (sectp->name, &names->abbrev_dwo))
10021 {
10022 /* There can be only one. */
10023 if (sections->abbrev.s.section != NULL)
10024 return 0;
10025 sections->abbrev.s.section = sectp;
10026 sections->abbrev.size = bfd_get_section_size (sectp);
10027 }
10028 else if (section_is_p (sectp->name, &names->info_dwo)
10029 || section_is_p (sectp->name, &names->types_dwo))
10030 {
10031 /* There can be only one. */
10032 if (sections->info_or_types.s.section != NULL)
10033 return 0;
10034 sections->info_or_types.s.section = sectp;
10035 sections->info_or_types.size = bfd_get_section_size (sectp);
10036 }
10037 else if (section_is_p (sectp->name, &names->line_dwo))
10038 {
10039 /* There can be only one. */
10040 if (sections->line.s.section != NULL)
10041 return 0;
10042 sections->line.s.section = sectp;
10043 sections->line.size = bfd_get_section_size (sectp);
10044 }
10045 else if (section_is_p (sectp->name, &names->loc_dwo))
10046 {
10047 /* There can be only one. */
10048 if (sections->loc.s.section != NULL)
10049 return 0;
10050 sections->loc.s.section = sectp;
10051 sections->loc.size = bfd_get_section_size (sectp);
10052 }
10053 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10054 {
10055 /* There can be only one. */
10056 if (sections->macinfo.s.section != NULL)
10057 return 0;
10058 sections->macinfo.s.section = sectp;
10059 sections->macinfo.size = bfd_get_section_size (sectp);
10060 }
10061 else if (section_is_p (sectp->name, &names->macro_dwo))
10062 {
10063 /* There can be only one. */
10064 if (sections->macro.s.section != NULL)
10065 return 0;
10066 sections->macro.s.section = sectp;
10067 sections->macro.size = bfd_get_section_size (sectp);
10068 }
10069 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10070 {
10071 /* There can be only one. */
10072 if (sections->str_offsets.s.section != NULL)
10073 return 0;
10074 sections->str_offsets.s.section = sectp;
10075 sections->str_offsets.size = bfd_get_section_size (sectp);
10076 }
10077 else
10078 {
10079 /* No other kind of section is valid. */
10080 return 0;
10081 }
10082
10083 return 1;
10084 }
10085
10086 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10087 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10088 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10089 This is for DWP version 1 files. */
10090
10091 static struct dwo_unit *
10092 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10093 uint32_t unit_index,
10094 const char *comp_dir,
10095 ULONGEST signature, int is_debug_types)
10096 {
10097 struct objfile *objfile = dwarf2_per_objfile->objfile;
10098 const struct dwp_hash_table *dwp_htab =
10099 is_debug_types ? dwp_file->tus : dwp_file->cus;
10100 bfd *dbfd = dwp_file->dbfd;
10101 const char *kind = is_debug_types ? "TU" : "CU";
10102 struct dwo_file *dwo_file;
10103 struct dwo_unit *dwo_unit;
10104 struct virtual_v1_dwo_sections sections;
10105 void **dwo_file_slot;
10106 char *virtual_dwo_name;
10107 struct cleanup *cleanups;
10108 int i;
10109
10110 gdb_assert (dwp_file->version == 1);
10111
10112 if (dwarf_read_debug)
10113 {
10114 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10115 kind,
10116 pulongest (unit_index), hex_string (signature),
10117 dwp_file->name);
10118 }
10119
10120 /* Fetch the sections of this DWO unit.
10121 Put a limit on the number of sections we look for so that bad data
10122 doesn't cause us to loop forever. */
10123
10124 #define MAX_NR_V1_DWO_SECTIONS \
10125 (1 /* .debug_info or .debug_types */ \
10126 + 1 /* .debug_abbrev */ \
10127 + 1 /* .debug_line */ \
10128 + 1 /* .debug_loc */ \
10129 + 1 /* .debug_str_offsets */ \
10130 + 1 /* .debug_macro or .debug_macinfo */ \
10131 + 1 /* trailing zero */)
10132
10133 memset (&sections, 0, sizeof (sections));
10134 cleanups = make_cleanup (null_cleanup, 0);
10135
10136 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10137 {
10138 asection *sectp;
10139 uint32_t section_nr =
10140 read_4_bytes (dbfd,
10141 dwp_htab->section_pool.v1.indices
10142 + (unit_index + i) * sizeof (uint32_t));
10143
10144 if (section_nr == 0)
10145 break;
10146 if (section_nr >= dwp_file->num_sections)
10147 {
10148 error (_("Dwarf Error: bad DWP hash table, section number too large"
10149 " [in module %s]"),
10150 dwp_file->name);
10151 }
10152
10153 sectp = dwp_file->elf_sections[section_nr];
10154 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10155 {
10156 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10157 " [in module %s]"),
10158 dwp_file->name);
10159 }
10160 }
10161
10162 if (i < 2
10163 || dwarf2_section_empty_p (&sections.info_or_types)
10164 || dwarf2_section_empty_p (&sections.abbrev))
10165 {
10166 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10167 " [in module %s]"),
10168 dwp_file->name);
10169 }
10170 if (i == MAX_NR_V1_DWO_SECTIONS)
10171 {
10172 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10173 " [in module %s]"),
10174 dwp_file->name);
10175 }
10176
10177 /* It's easier for the rest of the code if we fake a struct dwo_file and
10178 have dwo_unit "live" in that. At least for now.
10179
10180 The DWP file can be made up of a random collection of CUs and TUs.
10181 However, for each CU + set of TUs that came from the same original DWO
10182 file, we can combine them back into a virtual DWO file to save space
10183 (fewer struct dwo_file objects to allocate). Remember that for really
10184 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10185
10186 virtual_dwo_name =
10187 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10188 get_section_id (&sections.abbrev),
10189 get_section_id (&sections.line),
10190 get_section_id (&sections.loc),
10191 get_section_id (&sections.str_offsets));
10192 make_cleanup (xfree, virtual_dwo_name);
10193 /* Can we use an existing virtual DWO file? */
10194 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10195 /* Create one if necessary. */
10196 if (*dwo_file_slot == NULL)
10197 {
10198 if (dwarf_read_debug)
10199 {
10200 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10201 virtual_dwo_name);
10202 }
10203 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10204 dwo_file->dwo_name
10205 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10206 virtual_dwo_name,
10207 strlen (virtual_dwo_name));
10208 dwo_file->comp_dir = comp_dir;
10209 dwo_file->sections.abbrev = sections.abbrev;
10210 dwo_file->sections.line = sections.line;
10211 dwo_file->sections.loc = sections.loc;
10212 dwo_file->sections.macinfo = sections.macinfo;
10213 dwo_file->sections.macro = sections.macro;
10214 dwo_file->sections.str_offsets = sections.str_offsets;
10215 /* The "str" section is global to the entire DWP file. */
10216 dwo_file->sections.str = dwp_file->sections.str;
10217 /* The info or types section is assigned below to dwo_unit,
10218 there's no need to record it in dwo_file.
10219 Also, we can't simply record type sections in dwo_file because
10220 we record a pointer into the vector in dwo_unit. As we collect more
10221 types we'll grow the vector and eventually have to reallocate space
10222 for it, invalidating all copies of pointers into the previous
10223 contents. */
10224 *dwo_file_slot = dwo_file;
10225 }
10226 else
10227 {
10228 if (dwarf_read_debug)
10229 {
10230 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10231 virtual_dwo_name);
10232 }
10233 dwo_file = (struct dwo_file *) *dwo_file_slot;
10234 }
10235 do_cleanups (cleanups);
10236
10237 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10238 dwo_unit->dwo_file = dwo_file;
10239 dwo_unit->signature = signature;
10240 dwo_unit->section =
10241 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10242 *dwo_unit->section = sections.info_or_types;
10243 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10244
10245 return dwo_unit;
10246 }
10247
10248 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10249 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10250 piece within that section used by a TU/CU, return a virtual section
10251 of just that piece. */
10252
10253 static struct dwarf2_section_info
10254 create_dwp_v2_section (struct dwarf2_section_info *section,
10255 bfd_size_type offset, bfd_size_type size)
10256 {
10257 struct dwarf2_section_info result;
10258 asection *sectp;
10259
10260 gdb_assert (section != NULL);
10261 gdb_assert (!section->is_virtual);
10262
10263 memset (&result, 0, sizeof (result));
10264 result.s.containing_section = section;
10265 result.is_virtual = 1;
10266
10267 if (size == 0)
10268 return result;
10269
10270 sectp = get_section_bfd_section (section);
10271
10272 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10273 bounds of the real section. This is a pretty-rare event, so just
10274 flag an error (easier) instead of a warning and trying to cope. */
10275 if (sectp == NULL
10276 || offset + size > bfd_get_section_size (sectp))
10277 {
10278 bfd *abfd = sectp->owner;
10279
10280 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10281 " in section %s [in module %s]"),
10282 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10283 objfile_name (dwarf2_per_objfile->objfile));
10284 }
10285
10286 result.virtual_offset = offset;
10287 result.size = size;
10288 return result;
10289 }
10290
10291 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10292 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10293 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10294 This is for DWP version 2 files. */
10295
10296 static struct dwo_unit *
10297 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10298 uint32_t unit_index,
10299 const char *comp_dir,
10300 ULONGEST signature, int is_debug_types)
10301 {
10302 struct objfile *objfile = dwarf2_per_objfile->objfile;
10303 const struct dwp_hash_table *dwp_htab =
10304 is_debug_types ? dwp_file->tus : dwp_file->cus;
10305 bfd *dbfd = dwp_file->dbfd;
10306 const char *kind = is_debug_types ? "TU" : "CU";
10307 struct dwo_file *dwo_file;
10308 struct dwo_unit *dwo_unit;
10309 struct virtual_v2_dwo_sections sections;
10310 void **dwo_file_slot;
10311 char *virtual_dwo_name;
10312 struct cleanup *cleanups;
10313 int i;
10314
10315 gdb_assert (dwp_file->version == 2);
10316
10317 if (dwarf_read_debug)
10318 {
10319 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10320 kind,
10321 pulongest (unit_index), hex_string (signature),
10322 dwp_file->name);
10323 }
10324
10325 /* Fetch the section offsets of this DWO unit. */
10326
10327 memset (&sections, 0, sizeof (sections));
10328 cleanups = make_cleanup (null_cleanup, 0);
10329
10330 for (i = 0; i < dwp_htab->nr_columns; ++i)
10331 {
10332 uint32_t offset = read_4_bytes (dbfd,
10333 dwp_htab->section_pool.v2.offsets
10334 + (((unit_index - 1) * dwp_htab->nr_columns
10335 + i)
10336 * sizeof (uint32_t)));
10337 uint32_t size = read_4_bytes (dbfd,
10338 dwp_htab->section_pool.v2.sizes
10339 + (((unit_index - 1) * dwp_htab->nr_columns
10340 + i)
10341 * sizeof (uint32_t)));
10342
10343 switch (dwp_htab->section_pool.v2.section_ids[i])
10344 {
10345 case DW_SECT_INFO:
10346 case DW_SECT_TYPES:
10347 sections.info_or_types_offset = offset;
10348 sections.info_or_types_size = size;
10349 break;
10350 case DW_SECT_ABBREV:
10351 sections.abbrev_offset = offset;
10352 sections.abbrev_size = size;
10353 break;
10354 case DW_SECT_LINE:
10355 sections.line_offset = offset;
10356 sections.line_size = size;
10357 break;
10358 case DW_SECT_LOC:
10359 sections.loc_offset = offset;
10360 sections.loc_size = size;
10361 break;
10362 case DW_SECT_STR_OFFSETS:
10363 sections.str_offsets_offset = offset;
10364 sections.str_offsets_size = size;
10365 break;
10366 case DW_SECT_MACINFO:
10367 sections.macinfo_offset = offset;
10368 sections.macinfo_size = size;
10369 break;
10370 case DW_SECT_MACRO:
10371 sections.macro_offset = offset;
10372 sections.macro_size = size;
10373 break;
10374 }
10375 }
10376
10377 /* It's easier for the rest of the code if we fake a struct dwo_file and
10378 have dwo_unit "live" in that. At least for now.
10379
10380 The DWP file can be made up of a random collection of CUs and TUs.
10381 However, for each CU + set of TUs that came from the same original DWO
10382 file, we can combine them back into a virtual DWO file to save space
10383 (fewer struct dwo_file objects to allocate). Remember that for really
10384 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10385
10386 virtual_dwo_name =
10387 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10388 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10389 (long) (sections.line_size ? sections.line_offset : 0),
10390 (long) (sections.loc_size ? sections.loc_offset : 0),
10391 (long) (sections.str_offsets_size
10392 ? sections.str_offsets_offset : 0));
10393 make_cleanup (xfree, virtual_dwo_name);
10394 /* Can we use an existing virtual DWO file? */
10395 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10396 /* Create one if necessary. */
10397 if (*dwo_file_slot == NULL)
10398 {
10399 if (dwarf_read_debug)
10400 {
10401 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10402 virtual_dwo_name);
10403 }
10404 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10405 dwo_file->dwo_name
10406 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10407 virtual_dwo_name,
10408 strlen (virtual_dwo_name));
10409 dwo_file->comp_dir = comp_dir;
10410 dwo_file->sections.abbrev =
10411 create_dwp_v2_section (&dwp_file->sections.abbrev,
10412 sections.abbrev_offset, sections.abbrev_size);
10413 dwo_file->sections.line =
10414 create_dwp_v2_section (&dwp_file->sections.line,
10415 sections.line_offset, sections.line_size);
10416 dwo_file->sections.loc =
10417 create_dwp_v2_section (&dwp_file->sections.loc,
10418 sections.loc_offset, sections.loc_size);
10419 dwo_file->sections.macinfo =
10420 create_dwp_v2_section (&dwp_file->sections.macinfo,
10421 sections.macinfo_offset, sections.macinfo_size);
10422 dwo_file->sections.macro =
10423 create_dwp_v2_section (&dwp_file->sections.macro,
10424 sections.macro_offset, sections.macro_size);
10425 dwo_file->sections.str_offsets =
10426 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10427 sections.str_offsets_offset,
10428 sections.str_offsets_size);
10429 /* The "str" section is global to the entire DWP file. */
10430 dwo_file->sections.str = dwp_file->sections.str;
10431 /* The info or types section is assigned below to dwo_unit,
10432 there's no need to record it in dwo_file.
10433 Also, we can't simply record type sections in dwo_file because
10434 we record a pointer into the vector in dwo_unit. As we collect more
10435 types we'll grow the vector and eventually have to reallocate space
10436 for it, invalidating all copies of pointers into the previous
10437 contents. */
10438 *dwo_file_slot = dwo_file;
10439 }
10440 else
10441 {
10442 if (dwarf_read_debug)
10443 {
10444 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10445 virtual_dwo_name);
10446 }
10447 dwo_file = (struct dwo_file *) *dwo_file_slot;
10448 }
10449 do_cleanups (cleanups);
10450
10451 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10452 dwo_unit->dwo_file = dwo_file;
10453 dwo_unit->signature = signature;
10454 dwo_unit->section =
10455 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10456 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10457 ? &dwp_file->sections.types
10458 : &dwp_file->sections.info,
10459 sections.info_or_types_offset,
10460 sections.info_or_types_size);
10461 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10462
10463 return dwo_unit;
10464 }
10465
10466 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10467 Returns NULL if the signature isn't found. */
10468
10469 static struct dwo_unit *
10470 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10471 ULONGEST signature, int is_debug_types)
10472 {
10473 const struct dwp_hash_table *dwp_htab =
10474 is_debug_types ? dwp_file->tus : dwp_file->cus;
10475 bfd *dbfd = dwp_file->dbfd;
10476 uint32_t mask = dwp_htab->nr_slots - 1;
10477 uint32_t hash = signature & mask;
10478 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10479 unsigned int i;
10480 void **slot;
10481 struct dwo_unit find_dwo_cu;
10482
10483 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10484 find_dwo_cu.signature = signature;
10485 slot = htab_find_slot (is_debug_types
10486 ? dwp_file->loaded_tus
10487 : dwp_file->loaded_cus,
10488 &find_dwo_cu, INSERT);
10489
10490 if (*slot != NULL)
10491 return (struct dwo_unit *) *slot;
10492
10493 /* Use a for loop so that we don't loop forever on bad debug info. */
10494 for (i = 0; i < dwp_htab->nr_slots; ++i)
10495 {
10496 ULONGEST signature_in_table;
10497
10498 signature_in_table =
10499 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10500 if (signature_in_table == signature)
10501 {
10502 uint32_t unit_index =
10503 read_4_bytes (dbfd,
10504 dwp_htab->unit_table + hash * sizeof (uint32_t));
10505
10506 if (dwp_file->version == 1)
10507 {
10508 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10509 comp_dir, signature,
10510 is_debug_types);
10511 }
10512 else
10513 {
10514 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10515 comp_dir, signature,
10516 is_debug_types);
10517 }
10518 return (struct dwo_unit *) *slot;
10519 }
10520 if (signature_in_table == 0)
10521 return NULL;
10522 hash = (hash + hash2) & mask;
10523 }
10524
10525 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10526 " [in module %s]"),
10527 dwp_file->name);
10528 }
10529
10530 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10531 Open the file specified by FILE_NAME and hand it off to BFD for
10532 preliminary analysis. Return a newly initialized bfd *, which
10533 includes a canonicalized copy of FILE_NAME.
10534 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10535 SEARCH_CWD is true if the current directory is to be searched.
10536 It will be searched before debug-file-directory.
10537 If successful, the file is added to the bfd include table of the
10538 objfile's bfd (see gdb_bfd_record_inclusion).
10539 If unable to find/open the file, return NULL.
10540 NOTE: This function is derived from symfile_bfd_open. */
10541
10542 static gdb_bfd_ref_ptr
10543 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10544 {
10545 int desc, flags;
10546 char *absolute_name;
10547 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10548 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10549 to debug_file_directory. */
10550 char *search_path;
10551 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10552
10553 if (search_cwd)
10554 {
10555 if (*debug_file_directory != '\0')
10556 search_path = concat (".", dirname_separator_string,
10557 debug_file_directory, (char *) NULL);
10558 else
10559 search_path = xstrdup (".");
10560 }
10561 else
10562 search_path = xstrdup (debug_file_directory);
10563
10564 flags = OPF_RETURN_REALPATH;
10565 if (is_dwp)
10566 flags |= OPF_SEARCH_IN_PATH;
10567 desc = openp (search_path, flags, file_name,
10568 O_RDONLY | O_BINARY, &absolute_name);
10569 xfree (search_path);
10570 if (desc < 0)
10571 return NULL;
10572
10573 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
10574 xfree (absolute_name);
10575 if (sym_bfd == NULL)
10576 return NULL;
10577 bfd_set_cacheable (sym_bfd.get (), 1);
10578
10579 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10580 return NULL;
10581
10582 /* Success. Record the bfd as having been included by the objfile's bfd.
10583 This is important because things like demangled_names_hash lives in the
10584 objfile's per_bfd space and may have references to things like symbol
10585 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10586 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
10587
10588 return sym_bfd;
10589 }
10590
10591 /* Try to open DWO file FILE_NAME.
10592 COMP_DIR is the DW_AT_comp_dir attribute.
10593 The result is the bfd handle of the file.
10594 If there is a problem finding or opening the file, return NULL.
10595 Upon success, the canonicalized path of the file is stored in the bfd,
10596 same as symfile_bfd_open. */
10597
10598 static gdb_bfd_ref_ptr
10599 open_dwo_file (const char *file_name, const char *comp_dir)
10600 {
10601 if (IS_ABSOLUTE_PATH (file_name))
10602 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10603
10604 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10605
10606 if (comp_dir != NULL)
10607 {
10608 char *path_to_try = concat (comp_dir, SLASH_STRING,
10609 file_name, (char *) NULL);
10610
10611 /* NOTE: If comp_dir is a relative path, this will also try the
10612 search path, which seems useful. */
10613 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10614 1 /*search_cwd*/));
10615 xfree (path_to_try);
10616 if (abfd != NULL)
10617 return abfd;
10618 }
10619
10620 /* That didn't work, try debug-file-directory, which, despite its name,
10621 is a list of paths. */
10622
10623 if (*debug_file_directory == '\0')
10624 return NULL;
10625
10626 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10627 }
10628
10629 /* This function is mapped across the sections and remembers the offset and
10630 size of each of the DWO debugging sections we are interested in. */
10631
10632 static void
10633 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10634 {
10635 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10636 const struct dwop_section_names *names = &dwop_section_names;
10637
10638 if (section_is_p (sectp->name, &names->abbrev_dwo))
10639 {
10640 dwo_sections->abbrev.s.section = sectp;
10641 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10642 }
10643 else if (section_is_p (sectp->name, &names->info_dwo))
10644 {
10645 dwo_sections->info.s.section = sectp;
10646 dwo_sections->info.size = bfd_get_section_size (sectp);
10647 }
10648 else if (section_is_p (sectp->name, &names->line_dwo))
10649 {
10650 dwo_sections->line.s.section = sectp;
10651 dwo_sections->line.size = bfd_get_section_size (sectp);
10652 }
10653 else if (section_is_p (sectp->name, &names->loc_dwo))
10654 {
10655 dwo_sections->loc.s.section = sectp;
10656 dwo_sections->loc.size = bfd_get_section_size (sectp);
10657 }
10658 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10659 {
10660 dwo_sections->macinfo.s.section = sectp;
10661 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10662 }
10663 else if (section_is_p (sectp->name, &names->macro_dwo))
10664 {
10665 dwo_sections->macro.s.section = sectp;
10666 dwo_sections->macro.size = bfd_get_section_size (sectp);
10667 }
10668 else if (section_is_p (sectp->name, &names->str_dwo))
10669 {
10670 dwo_sections->str.s.section = sectp;
10671 dwo_sections->str.size = bfd_get_section_size (sectp);
10672 }
10673 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10674 {
10675 dwo_sections->str_offsets.s.section = sectp;
10676 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10677 }
10678 else if (section_is_p (sectp->name, &names->types_dwo))
10679 {
10680 struct dwarf2_section_info type_section;
10681
10682 memset (&type_section, 0, sizeof (type_section));
10683 type_section.s.section = sectp;
10684 type_section.size = bfd_get_section_size (sectp);
10685 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10686 &type_section);
10687 }
10688 }
10689
10690 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10691 by PER_CU. This is for the non-DWP case.
10692 The result is NULL if DWO_NAME can't be found. */
10693
10694 static struct dwo_file *
10695 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10696 const char *dwo_name, const char *comp_dir)
10697 {
10698 struct objfile *objfile = dwarf2_per_objfile->objfile;
10699 struct dwo_file *dwo_file;
10700 struct cleanup *cleanups;
10701
10702 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
10703 if (dbfd == NULL)
10704 {
10705 if (dwarf_read_debug)
10706 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10707 return NULL;
10708 }
10709 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10710 dwo_file->dwo_name = dwo_name;
10711 dwo_file->comp_dir = comp_dir;
10712 dwo_file->dbfd = dbfd.release ();
10713
10714 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10715
10716 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10717 &dwo_file->sections);
10718
10719 dwo_file->cu = create_dwo_cu (dwo_file);
10720
10721 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10722 dwo_file->tus);
10723
10724 discard_cleanups (cleanups);
10725
10726 if (dwarf_read_debug)
10727 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10728
10729 return dwo_file;
10730 }
10731
10732 /* This function is mapped across the sections and remembers the offset and
10733 size of each of the DWP debugging sections common to version 1 and 2 that
10734 we are interested in. */
10735
10736 static void
10737 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10738 void *dwp_file_ptr)
10739 {
10740 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10741 const struct dwop_section_names *names = &dwop_section_names;
10742 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10743
10744 /* Record the ELF section number for later lookup: this is what the
10745 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10746 gdb_assert (elf_section_nr < dwp_file->num_sections);
10747 dwp_file->elf_sections[elf_section_nr] = sectp;
10748
10749 /* Look for specific sections that we need. */
10750 if (section_is_p (sectp->name, &names->str_dwo))
10751 {
10752 dwp_file->sections.str.s.section = sectp;
10753 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10754 }
10755 else if (section_is_p (sectp->name, &names->cu_index))
10756 {
10757 dwp_file->sections.cu_index.s.section = sectp;
10758 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10759 }
10760 else if (section_is_p (sectp->name, &names->tu_index))
10761 {
10762 dwp_file->sections.tu_index.s.section = sectp;
10763 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10764 }
10765 }
10766
10767 /* This function is mapped across the sections and remembers the offset and
10768 size of each of the DWP version 2 debugging sections that we are interested
10769 in. This is split into a separate function because we don't know if we
10770 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10771
10772 static void
10773 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10774 {
10775 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10776 const struct dwop_section_names *names = &dwop_section_names;
10777 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10778
10779 /* Record the ELF section number for later lookup: this is what the
10780 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10781 gdb_assert (elf_section_nr < dwp_file->num_sections);
10782 dwp_file->elf_sections[elf_section_nr] = sectp;
10783
10784 /* Look for specific sections that we need. */
10785 if (section_is_p (sectp->name, &names->abbrev_dwo))
10786 {
10787 dwp_file->sections.abbrev.s.section = sectp;
10788 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10789 }
10790 else if (section_is_p (sectp->name, &names->info_dwo))
10791 {
10792 dwp_file->sections.info.s.section = sectp;
10793 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10794 }
10795 else if (section_is_p (sectp->name, &names->line_dwo))
10796 {
10797 dwp_file->sections.line.s.section = sectp;
10798 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10799 }
10800 else if (section_is_p (sectp->name, &names->loc_dwo))
10801 {
10802 dwp_file->sections.loc.s.section = sectp;
10803 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10804 }
10805 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10806 {
10807 dwp_file->sections.macinfo.s.section = sectp;
10808 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10809 }
10810 else if (section_is_p (sectp->name, &names->macro_dwo))
10811 {
10812 dwp_file->sections.macro.s.section = sectp;
10813 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10814 }
10815 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10816 {
10817 dwp_file->sections.str_offsets.s.section = sectp;
10818 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10819 }
10820 else if (section_is_p (sectp->name, &names->types_dwo))
10821 {
10822 dwp_file->sections.types.s.section = sectp;
10823 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10824 }
10825 }
10826
10827 /* Hash function for dwp_file loaded CUs/TUs. */
10828
10829 static hashval_t
10830 hash_dwp_loaded_cutus (const void *item)
10831 {
10832 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10833
10834 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10835 return dwo_unit->signature;
10836 }
10837
10838 /* Equality function for dwp_file loaded CUs/TUs. */
10839
10840 static int
10841 eq_dwp_loaded_cutus (const void *a, const void *b)
10842 {
10843 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10844 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10845
10846 return dua->signature == dub->signature;
10847 }
10848
10849 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10850
10851 static htab_t
10852 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10853 {
10854 return htab_create_alloc_ex (3,
10855 hash_dwp_loaded_cutus,
10856 eq_dwp_loaded_cutus,
10857 NULL,
10858 &objfile->objfile_obstack,
10859 hashtab_obstack_allocate,
10860 dummy_obstack_deallocate);
10861 }
10862
10863 /* Try to open DWP file FILE_NAME.
10864 The result is the bfd handle of the file.
10865 If there is a problem finding or opening the file, return NULL.
10866 Upon success, the canonicalized path of the file is stored in the bfd,
10867 same as symfile_bfd_open. */
10868
10869 static gdb_bfd_ref_ptr
10870 open_dwp_file (const char *file_name)
10871 {
10872 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
10873 1 /*search_cwd*/));
10874 if (abfd != NULL)
10875 return abfd;
10876
10877 /* Work around upstream bug 15652.
10878 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10879 [Whether that's a "bug" is debatable, but it is getting in our way.]
10880 We have no real idea where the dwp file is, because gdb's realpath-ing
10881 of the executable's path may have discarded the needed info.
10882 [IWBN if the dwp file name was recorded in the executable, akin to
10883 .gnu_debuglink, but that doesn't exist yet.]
10884 Strip the directory from FILE_NAME and search again. */
10885 if (*debug_file_directory != '\0')
10886 {
10887 /* Don't implicitly search the current directory here.
10888 If the user wants to search "." to handle this case,
10889 it must be added to debug-file-directory. */
10890 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10891 0 /*search_cwd*/);
10892 }
10893
10894 return NULL;
10895 }
10896
10897 /* Initialize the use of the DWP file for the current objfile.
10898 By convention the name of the DWP file is ${objfile}.dwp.
10899 The result is NULL if it can't be found. */
10900
10901 static struct dwp_file *
10902 open_and_init_dwp_file (void)
10903 {
10904 struct objfile *objfile = dwarf2_per_objfile->objfile;
10905 struct dwp_file *dwp_file;
10906
10907 /* Try to find first .dwp for the binary file before any symbolic links
10908 resolving. */
10909
10910 /* If the objfile is a debug file, find the name of the real binary
10911 file and get the name of dwp file from there. */
10912 std::string dwp_name;
10913 if (objfile->separate_debug_objfile_backlink != NULL)
10914 {
10915 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10916 const char *backlink_basename = lbasename (backlink->original_name);
10917
10918 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
10919 }
10920 else
10921 dwp_name = objfile->original_name;
10922
10923 dwp_name += ".dwp";
10924
10925 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
10926 if (dbfd == NULL
10927 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10928 {
10929 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10930 dwp_name = objfile_name (objfile);
10931 dwp_name += ".dwp";
10932 dbfd = open_dwp_file (dwp_name.c_str ());
10933 }
10934
10935 if (dbfd == NULL)
10936 {
10937 if (dwarf_read_debug)
10938 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
10939 return NULL;
10940 }
10941 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10942 dwp_file->name = bfd_get_filename (dbfd.get ());
10943 dwp_file->dbfd = dbfd.release ();
10944
10945 /* +1: section 0 is unused */
10946 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
10947 dwp_file->elf_sections =
10948 OBSTACK_CALLOC (&objfile->objfile_obstack,
10949 dwp_file->num_sections, asection *);
10950
10951 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
10952 dwp_file);
10953
10954 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10955
10956 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10957
10958 /* The DWP file version is stored in the hash table. Oh well. */
10959 if (dwp_file->cus->version != dwp_file->tus->version)
10960 {
10961 /* Technically speaking, we should try to limp along, but this is
10962 pretty bizarre. We use pulongest here because that's the established
10963 portability solution (e.g, we cannot use %u for uint32_t). */
10964 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10965 " TU version %s [in DWP file %s]"),
10966 pulongest (dwp_file->cus->version),
10967 pulongest (dwp_file->tus->version), dwp_name.c_str ());
10968 }
10969 dwp_file->version = dwp_file->cus->version;
10970
10971 if (dwp_file->version == 2)
10972 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
10973 dwp_file);
10974
10975 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10976 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10977
10978 if (dwarf_read_debug)
10979 {
10980 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10981 fprintf_unfiltered (gdb_stdlog,
10982 " %s CUs, %s TUs\n",
10983 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10984 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10985 }
10986
10987 return dwp_file;
10988 }
10989
10990 /* Wrapper around open_and_init_dwp_file, only open it once. */
10991
10992 static struct dwp_file *
10993 get_dwp_file (void)
10994 {
10995 if (! dwarf2_per_objfile->dwp_checked)
10996 {
10997 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10998 dwarf2_per_objfile->dwp_checked = 1;
10999 }
11000 return dwarf2_per_objfile->dwp_file;
11001 }
11002
11003 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11004 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11005 or in the DWP file for the objfile, referenced by THIS_UNIT.
11006 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
11007 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11008
11009 This is called, for example, when wanting to read a variable with a
11010 complex location. Therefore we don't want to do file i/o for every call.
11011 Therefore we don't want to look for a DWO file on every call.
11012 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11013 then we check if we've already seen DWO_NAME, and only THEN do we check
11014 for a DWO file.
11015
11016 The result is a pointer to the dwo_unit object or NULL if we didn't find it
11017 (dwo_id mismatch or couldn't find the DWO/DWP file). */
11018
11019 static struct dwo_unit *
11020 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11021 const char *dwo_name, const char *comp_dir,
11022 ULONGEST signature, int is_debug_types)
11023 {
11024 struct objfile *objfile = dwarf2_per_objfile->objfile;
11025 const char *kind = is_debug_types ? "TU" : "CU";
11026 void **dwo_file_slot;
11027 struct dwo_file *dwo_file;
11028 struct dwp_file *dwp_file;
11029
11030 /* First see if there's a DWP file.
11031 If we have a DWP file but didn't find the DWO inside it, don't
11032 look for the original DWO file. It makes gdb behave differently
11033 depending on whether one is debugging in the build tree. */
11034
11035 dwp_file = get_dwp_file ();
11036 if (dwp_file != NULL)
11037 {
11038 const struct dwp_hash_table *dwp_htab =
11039 is_debug_types ? dwp_file->tus : dwp_file->cus;
11040
11041 if (dwp_htab != NULL)
11042 {
11043 struct dwo_unit *dwo_cutu =
11044 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11045 signature, is_debug_types);
11046
11047 if (dwo_cutu != NULL)
11048 {
11049 if (dwarf_read_debug)
11050 {
11051 fprintf_unfiltered (gdb_stdlog,
11052 "Virtual DWO %s %s found: @%s\n",
11053 kind, hex_string (signature),
11054 host_address_to_string (dwo_cutu));
11055 }
11056 return dwo_cutu;
11057 }
11058 }
11059 }
11060 else
11061 {
11062 /* No DWP file, look for the DWO file. */
11063
11064 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11065 if (*dwo_file_slot == NULL)
11066 {
11067 /* Read in the file and build a table of the CUs/TUs it contains. */
11068 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11069 }
11070 /* NOTE: This will be NULL if unable to open the file. */
11071 dwo_file = (struct dwo_file *) *dwo_file_slot;
11072
11073 if (dwo_file != NULL)
11074 {
11075 struct dwo_unit *dwo_cutu = NULL;
11076
11077 if (is_debug_types && dwo_file->tus)
11078 {
11079 struct dwo_unit find_dwo_cutu;
11080
11081 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11082 find_dwo_cutu.signature = signature;
11083 dwo_cutu
11084 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11085 }
11086 else if (!is_debug_types && dwo_file->cu)
11087 {
11088 if (signature == dwo_file->cu->signature)
11089 dwo_cutu = dwo_file->cu;
11090 }
11091
11092 if (dwo_cutu != NULL)
11093 {
11094 if (dwarf_read_debug)
11095 {
11096 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11097 kind, dwo_name, hex_string (signature),
11098 host_address_to_string (dwo_cutu));
11099 }
11100 return dwo_cutu;
11101 }
11102 }
11103 }
11104
11105 /* We didn't find it. This could mean a dwo_id mismatch, or
11106 someone deleted the DWO/DWP file, or the search path isn't set up
11107 correctly to find the file. */
11108
11109 if (dwarf_read_debug)
11110 {
11111 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11112 kind, dwo_name, hex_string (signature));
11113 }
11114
11115 /* This is a warning and not a complaint because it can be caused by
11116 pilot error (e.g., user accidentally deleting the DWO). */
11117 {
11118 /* Print the name of the DWP file if we looked there, helps the user
11119 better diagnose the problem. */
11120 char *dwp_text = NULL;
11121 struct cleanup *cleanups;
11122
11123 if (dwp_file != NULL)
11124 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11125 cleanups = make_cleanup (xfree, dwp_text);
11126
11127 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11128 " [in module %s]"),
11129 kind, dwo_name, hex_string (signature),
11130 dwp_text != NULL ? dwp_text : "",
11131 this_unit->is_debug_types ? "TU" : "CU",
11132 this_unit->offset.sect_off, objfile_name (objfile));
11133
11134 do_cleanups (cleanups);
11135 }
11136 return NULL;
11137 }
11138
11139 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11140 See lookup_dwo_cutu_unit for details. */
11141
11142 static struct dwo_unit *
11143 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11144 const char *dwo_name, const char *comp_dir,
11145 ULONGEST signature)
11146 {
11147 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11148 }
11149
11150 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11151 See lookup_dwo_cutu_unit for details. */
11152
11153 static struct dwo_unit *
11154 lookup_dwo_type_unit (struct signatured_type *this_tu,
11155 const char *dwo_name, const char *comp_dir)
11156 {
11157 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11158 }
11159
11160 /* Traversal function for queue_and_load_all_dwo_tus. */
11161
11162 static int
11163 queue_and_load_dwo_tu (void **slot, void *info)
11164 {
11165 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11166 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11167 ULONGEST signature = dwo_unit->signature;
11168 struct signatured_type *sig_type =
11169 lookup_dwo_signatured_type (per_cu->cu, signature);
11170
11171 if (sig_type != NULL)
11172 {
11173 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11174
11175 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11176 a real dependency of PER_CU on SIG_TYPE. That is detected later
11177 while processing PER_CU. */
11178 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11179 load_full_type_unit (sig_cu);
11180 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11181 }
11182
11183 return 1;
11184 }
11185
11186 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11187 The DWO may have the only definition of the type, though it may not be
11188 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11189 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11190
11191 static void
11192 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11193 {
11194 struct dwo_unit *dwo_unit;
11195 struct dwo_file *dwo_file;
11196
11197 gdb_assert (!per_cu->is_debug_types);
11198 gdb_assert (get_dwp_file () == NULL);
11199 gdb_assert (per_cu->cu != NULL);
11200
11201 dwo_unit = per_cu->cu->dwo_unit;
11202 gdb_assert (dwo_unit != NULL);
11203
11204 dwo_file = dwo_unit->dwo_file;
11205 if (dwo_file->tus != NULL)
11206 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11207 }
11208
11209 /* Free all resources associated with DWO_FILE.
11210 Close the DWO file and munmap the sections.
11211 All memory should be on the objfile obstack. */
11212
11213 static void
11214 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11215 {
11216
11217 /* Note: dbfd is NULL for virtual DWO files. */
11218 gdb_bfd_unref (dwo_file->dbfd);
11219
11220 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11221 }
11222
11223 /* Wrapper for free_dwo_file for use in cleanups. */
11224
11225 static void
11226 free_dwo_file_cleanup (void *arg)
11227 {
11228 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11229 struct objfile *objfile = dwarf2_per_objfile->objfile;
11230
11231 free_dwo_file (dwo_file, objfile);
11232 }
11233
11234 /* Traversal function for free_dwo_files. */
11235
11236 static int
11237 free_dwo_file_from_slot (void **slot, void *info)
11238 {
11239 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11240 struct objfile *objfile = (struct objfile *) info;
11241
11242 free_dwo_file (dwo_file, objfile);
11243
11244 return 1;
11245 }
11246
11247 /* Free all resources associated with DWO_FILES. */
11248
11249 static void
11250 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11251 {
11252 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11253 }
11254 \f
11255 /* Read in various DIEs. */
11256
11257 /* qsort helper for inherit_abstract_dies. */
11258
11259 static int
11260 unsigned_int_compar (const void *ap, const void *bp)
11261 {
11262 unsigned int a = *(unsigned int *) ap;
11263 unsigned int b = *(unsigned int *) bp;
11264
11265 return (a > b) - (b > a);
11266 }
11267
11268 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11269 Inherit only the children of the DW_AT_abstract_origin DIE not being
11270 already referenced by DW_AT_abstract_origin from the children of the
11271 current DIE. */
11272
11273 static void
11274 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11275 {
11276 struct die_info *child_die;
11277 unsigned die_children_count;
11278 /* CU offsets which were referenced by children of the current DIE. */
11279 sect_offset *offsets;
11280 sect_offset *offsets_end, *offsetp;
11281 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11282 struct die_info *origin_die;
11283 /* Iterator of the ORIGIN_DIE children. */
11284 struct die_info *origin_child_die;
11285 struct cleanup *cleanups;
11286 struct attribute *attr;
11287 struct dwarf2_cu *origin_cu;
11288 struct pending **origin_previous_list_in_scope;
11289
11290 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11291 if (!attr)
11292 return;
11293
11294 /* Note that following die references may follow to a die in a
11295 different cu. */
11296
11297 origin_cu = cu;
11298 origin_die = follow_die_ref (die, attr, &origin_cu);
11299
11300 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11301 symbols in. */
11302 origin_previous_list_in_scope = origin_cu->list_in_scope;
11303 origin_cu->list_in_scope = cu->list_in_scope;
11304
11305 if (die->tag != origin_die->tag
11306 && !(die->tag == DW_TAG_inlined_subroutine
11307 && origin_die->tag == DW_TAG_subprogram))
11308 complaint (&symfile_complaints,
11309 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11310 die->offset.sect_off, origin_die->offset.sect_off);
11311
11312 child_die = die->child;
11313 die_children_count = 0;
11314 while (child_die && child_die->tag)
11315 {
11316 child_die = sibling_die (child_die);
11317 die_children_count++;
11318 }
11319 offsets = XNEWVEC (sect_offset, die_children_count);
11320 cleanups = make_cleanup (xfree, offsets);
11321
11322 offsets_end = offsets;
11323 for (child_die = die->child;
11324 child_die && child_die->tag;
11325 child_die = sibling_die (child_die))
11326 {
11327 struct die_info *child_origin_die;
11328 struct dwarf2_cu *child_origin_cu;
11329
11330 /* We are trying to process concrete instance entries:
11331 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11332 it's not relevant to our analysis here. i.e. detecting DIEs that are
11333 present in the abstract instance but not referenced in the concrete
11334 one. */
11335 if (child_die->tag == DW_TAG_call_site
11336 || child_die->tag == DW_TAG_GNU_call_site)
11337 continue;
11338
11339 /* For each CHILD_DIE, find the corresponding child of
11340 ORIGIN_DIE. If there is more than one layer of
11341 DW_AT_abstract_origin, follow them all; there shouldn't be,
11342 but GCC versions at least through 4.4 generate this (GCC PR
11343 40573). */
11344 child_origin_die = child_die;
11345 child_origin_cu = cu;
11346 while (1)
11347 {
11348 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11349 child_origin_cu);
11350 if (attr == NULL)
11351 break;
11352 child_origin_die = follow_die_ref (child_origin_die, attr,
11353 &child_origin_cu);
11354 }
11355
11356 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11357 counterpart may exist. */
11358 if (child_origin_die != child_die)
11359 {
11360 if (child_die->tag != child_origin_die->tag
11361 && !(child_die->tag == DW_TAG_inlined_subroutine
11362 && child_origin_die->tag == DW_TAG_subprogram))
11363 complaint (&symfile_complaints,
11364 _("Child DIE 0x%x and its abstract origin 0x%x have "
11365 "different tags"), child_die->offset.sect_off,
11366 child_origin_die->offset.sect_off);
11367 if (child_origin_die->parent != origin_die)
11368 complaint (&symfile_complaints,
11369 _("Child DIE 0x%x and its abstract origin 0x%x have "
11370 "different parents"), child_die->offset.sect_off,
11371 child_origin_die->offset.sect_off);
11372 else
11373 *offsets_end++ = child_origin_die->offset;
11374 }
11375 }
11376 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11377 unsigned_int_compar);
11378 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11379 if (offsetp[-1].sect_off == offsetp->sect_off)
11380 complaint (&symfile_complaints,
11381 _("Multiple children of DIE 0x%x refer "
11382 "to DIE 0x%x as their abstract origin"),
11383 die->offset.sect_off, offsetp->sect_off);
11384
11385 offsetp = offsets;
11386 origin_child_die = origin_die->child;
11387 while (origin_child_die && origin_child_die->tag)
11388 {
11389 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11390 while (offsetp < offsets_end
11391 && offsetp->sect_off < origin_child_die->offset.sect_off)
11392 offsetp++;
11393 if (offsetp >= offsets_end
11394 || offsetp->sect_off > origin_child_die->offset.sect_off)
11395 {
11396 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11397 Check whether we're already processing ORIGIN_CHILD_DIE.
11398 This can happen with mutually referenced abstract_origins.
11399 PR 16581. */
11400 if (!origin_child_die->in_process)
11401 process_die (origin_child_die, origin_cu);
11402 }
11403 origin_child_die = sibling_die (origin_child_die);
11404 }
11405 origin_cu->list_in_scope = origin_previous_list_in_scope;
11406
11407 do_cleanups (cleanups);
11408 }
11409
11410 static void
11411 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11412 {
11413 struct objfile *objfile = cu->objfile;
11414 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11415 struct context_stack *newobj;
11416 CORE_ADDR lowpc;
11417 CORE_ADDR highpc;
11418 struct die_info *child_die;
11419 struct attribute *attr, *call_line, *call_file;
11420 const char *name;
11421 CORE_ADDR baseaddr;
11422 struct block *block;
11423 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11424 VEC (symbolp) *template_args = NULL;
11425 struct template_symbol *templ_func = NULL;
11426
11427 if (inlined_func)
11428 {
11429 /* If we do not have call site information, we can't show the
11430 caller of this inlined function. That's too confusing, so
11431 only use the scope for local variables. */
11432 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11433 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11434 if (call_line == NULL || call_file == NULL)
11435 {
11436 read_lexical_block_scope (die, cu);
11437 return;
11438 }
11439 }
11440
11441 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11442
11443 name = dwarf2_name (die, cu);
11444
11445 /* Ignore functions with missing or empty names. These are actually
11446 illegal according to the DWARF standard. */
11447 if (name == NULL)
11448 {
11449 complaint (&symfile_complaints,
11450 _("missing name for subprogram DIE at %d"),
11451 die->offset.sect_off);
11452 return;
11453 }
11454
11455 /* Ignore functions with missing or invalid low and high pc attributes. */
11456 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11457 <= PC_BOUNDS_INVALID)
11458 {
11459 attr = dwarf2_attr (die, DW_AT_external, cu);
11460 if (!attr || !DW_UNSND (attr))
11461 complaint (&symfile_complaints,
11462 _("cannot get low and high bounds "
11463 "for subprogram DIE at %d"),
11464 die->offset.sect_off);
11465 return;
11466 }
11467
11468 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11469 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11470
11471 /* If we have any template arguments, then we must allocate a
11472 different sort of symbol. */
11473 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11474 {
11475 if (child_die->tag == DW_TAG_template_type_param
11476 || child_die->tag == DW_TAG_template_value_param)
11477 {
11478 templ_func = allocate_template_symbol (objfile);
11479 templ_func->base.is_cplus_template_function = 1;
11480 break;
11481 }
11482 }
11483
11484 newobj = push_context (0, lowpc);
11485 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11486 (struct symbol *) templ_func);
11487
11488 /* If there is a location expression for DW_AT_frame_base, record
11489 it. */
11490 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11491 if (attr)
11492 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11493
11494 /* If there is a location for the static link, record it. */
11495 newobj->static_link = NULL;
11496 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11497 if (attr)
11498 {
11499 newobj->static_link
11500 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11501 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11502 }
11503
11504 cu->list_in_scope = &local_symbols;
11505
11506 if (die->child != NULL)
11507 {
11508 child_die = die->child;
11509 while (child_die && child_die->tag)
11510 {
11511 if (child_die->tag == DW_TAG_template_type_param
11512 || child_die->tag == DW_TAG_template_value_param)
11513 {
11514 struct symbol *arg = new_symbol (child_die, NULL, cu);
11515
11516 if (arg != NULL)
11517 VEC_safe_push (symbolp, template_args, arg);
11518 }
11519 else
11520 process_die (child_die, cu);
11521 child_die = sibling_die (child_die);
11522 }
11523 }
11524
11525 inherit_abstract_dies (die, cu);
11526
11527 /* If we have a DW_AT_specification, we might need to import using
11528 directives from the context of the specification DIE. See the
11529 comment in determine_prefix. */
11530 if (cu->language == language_cplus
11531 && dwarf2_attr (die, DW_AT_specification, cu))
11532 {
11533 struct dwarf2_cu *spec_cu = cu;
11534 struct die_info *spec_die = die_specification (die, &spec_cu);
11535
11536 while (spec_die)
11537 {
11538 child_die = spec_die->child;
11539 while (child_die && child_die->tag)
11540 {
11541 if (child_die->tag == DW_TAG_imported_module)
11542 process_die (child_die, spec_cu);
11543 child_die = sibling_die (child_die);
11544 }
11545
11546 /* In some cases, GCC generates specification DIEs that
11547 themselves contain DW_AT_specification attributes. */
11548 spec_die = die_specification (spec_die, &spec_cu);
11549 }
11550 }
11551
11552 newobj = pop_context ();
11553 /* Make a block for the local symbols within. */
11554 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11555 newobj->static_link, lowpc, highpc);
11556
11557 /* For C++, set the block's scope. */
11558 if ((cu->language == language_cplus
11559 || cu->language == language_fortran
11560 || cu->language == language_d
11561 || cu->language == language_rust)
11562 && cu->processing_has_namespace_info)
11563 block_set_scope (block, determine_prefix (die, cu),
11564 &objfile->objfile_obstack);
11565
11566 /* If we have address ranges, record them. */
11567 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11568
11569 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11570
11571 /* Attach template arguments to function. */
11572 if (! VEC_empty (symbolp, template_args))
11573 {
11574 gdb_assert (templ_func != NULL);
11575
11576 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11577 templ_func->template_arguments
11578 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11579 templ_func->n_template_arguments);
11580 memcpy (templ_func->template_arguments,
11581 VEC_address (symbolp, template_args),
11582 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11583 VEC_free (symbolp, template_args);
11584 }
11585
11586 /* In C++, we can have functions nested inside functions (e.g., when
11587 a function declares a class that has methods). This means that
11588 when we finish processing a function scope, we may need to go
11589 back to building a containing block's symbol lists. */
11590 local_symbols = newobj->locals;
11591 local_using_directives = newobj->local_using_directives;
11592
11593 /* If we've finished processing a top-level function, subsequent
11594 symbols go in the file symbol list. */
11595 if (outermost_context_p ())
11596 cu->list_in_scope = &file_symbols;
11597 }
11598
11599 /* Process all the DIES contained within a lexical block scope. Start
11600 a new scope, process the dies, and then close the scope. */
11601
11602 static void
11603 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11604 {
11605 struct objfile *objfile = cu->objfile;
11606 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11607 struct context_stack *newobj;
11608 CORE_ADDR lowpc, highpc;
11609 struct die_info *child_die;
11610 CORE_ADDR baseaddr;
11611
11612 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11613
11614 /* Ignore blocks with missing or invalid low and high pc attributes. */
11615 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11616 as multiple lexical blocks? Handling children in a sane way would
11617 be nasty. Might be easier to properly extend generic blocks to
11618 describe ranges. */
11619 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11620 {
11621 case PC_BOUNDS_NOT_PRESENT:
11622 /* DW_TAG_lexical_block has no attributes, process its children as if
11623 there was no wrapping by that DW_TAG_lexical_block.
11624 GCC does no longer produces such DWARF since GCC r224161. */
11625 for (child_die = die->child;
11626 child_die != NULL && child_die->tag;
11627 child_die = sibling_die (child_die))
11628 process_die (child_die, cu);
11629 return;
11630 case PC_BOUNDS_INVALID:
11631 return;
11632 }
11633 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11634 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11635
11636 push_context (0, lowpc);
11637 if (die->child != NULL)
11638 {
11639 child_die = die->child;
11640 while (child_die && child_die->tag)
11641 {
11642 process_die (child_die, cu);
11643 child_die = sibling_die (child_die);
11644 }
11645 }
11646 inherit_abstract_dies (die, cu);
11647 newobj = pop_context ();
11648
11649 if (local_symbols != NULL || local_using_directives != NULL)
11650 {
11651 struct block *block
11652 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11653 newobj->start_addr, highpc);
11654
11655 /* Note that recording ranges after traversing children, as we
11656 do here, means that recording a parent's ranges entails
11657 walking across all its children's ranges as they appear in
11658 the address map, which is quadratic behavior.
11659
11660 It would be nicer to record the parent's ranges before
11661 traversing its children, simply overriding whatever you find
11662 there. But since we don't even decide whether to create a
11663 block until after we've traversed its children, that's hard
11664 to do. */
11665 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11666 }
11667 local_symbols = newobj->locals;
11668 local_using_directives = newobj->local_using_directives;
11669 }
11670
11671 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
11672
11673 static void
11674 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11675 {
11676 struct objfile *objfile = cu->objfile;
11677 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11678 CORE_ADDR pc, baseaddr;
11679 struct attribute *attr;
11680 struct call_site *call_site, call_site_local;
11681 void **slot;
11682 int nparams;
11683 struct die_info *child_die;
11684
11685 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11686
11687 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11688 if (attr == NULL)
11689 {
11690 /* This was a pre-DWARF-5 GNU extension alias
11691 for DW_AT_call_return_pc. */
11692 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11693 }
11694 if (!attr)
11695 {
11696 complaint (&symfile_complaints,
11697 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
11698 "DIE 0x%x [in module %s]"),
11699 die->offset.sect_off, objfile_name (objfile));
11700 return;
11701 }
11702 pc = attr_value_as_address (attr) + baseaddr;
11703 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11704
11705 if (cu->call_site_htab == NULL)
11706 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11707 NULL, &objfile->objfile_obstack,
11708 hashtab_obstack_allocate, NULL);
11709 call_site_local.pc = pc;
11710 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11711 if (*slot != NULL)
11712 {
11713 complaint (&symfile_complaints,
11714 _("Duplicate PC %s for DW_TAG_call_site "
11715 "DIE 0x%x [in module %s]"),
11716 paddress (gdbarch, pc), die->offset.sect_off,
11717 objfile_name (objfile));
11718 return;
11719 }
11720
11721 /* Count parameters at the caller. */
11722
11723 nparams = 0;
11724 for (child_die = die->child; child_die && child_die->tag;
11725 child_die = sibling_die (child_die))
11726 {
11727 if (child_die->tag != DW_TAG_call_site_parameter
11728 && child_die->tag != DW_TAG_GNU_call_site_parameter)
11729 {
11730 complaint (&symfile_complaints,
11731 _("Tag %d is not DW_TAG_call_site_parameter in "
11732 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11733 child_die->tag, child_die->offset.sect_off,
11734 objfile_name (objfile));
11735 continue;
11736 }
11737
11738 nparams++;
11739 }
11740
11741 call_site
11742 = ((struct call_site *)
11743 obstack_alloc (&objfile->objfile_obstack,
11744 sizeof (*call_site)
11745 + (sizeof (*call_site->parameter) * (nparams - 1))));
11746 *slot = call_site;
11747 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11748 call_site->pc = pc;
11749
11750 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
11751 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11752 {
11753 struct die_info *func_die;
11754
11755 /* Skip also over DW_TAG_inlined_subroutine. */
11756 for (func_die = die->parent;
11757 func_die && func_die->tag != DW_TAG_subprogram
11758 && func_die->tag != DW_TAG_subroutine_type;
11759 func_die = func_die->parent);
11760
11761 /* DW_AT_call_all_calls is a superset
11762 of DW_AT_call_all_tail_calls. */
11763 if (func_die
11764 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
11765 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11766 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
11767 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11768 {
11769 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11770 not complete. But keep CALL_SITE for look ups via call_site_htab,
11771 both the initial caller containing the real return address PC and
11772 the final callee containing the current PC of a chain of tail
11773 calls do not need to have the tail call list complete. But any
11774 function candidate for a virtual tail call frame searched via
11775 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11776 determined unambiguously. */
11777 }
11778 else
11779 {
11780 struct type *func_type = NULL;
11781
11782 if (func_die)
11783 func_type = get_die_type (func_die, cu);
11784 if (func_type != NULL)
11785 {
11786 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11787
11788 /* Enlist this call site to the function. */
11789 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11790 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11791 }
11792 else
11793 complaint (&symfile_complaints,
11794 _("Cannot find function owning DW_TAG_call_site "
11795 "DIE 0x%x [in module %s]"),
11796 die->offset.sect_off, objfile_name (objfile));
11797 }
11798 }
11799
11800 attr = dwarf2_attr (die, DW_AT_call_target, cu);
11801 if (attr == NULL)
11802 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11803 if (attr == NULL)
11804 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
11805 if (attr == NULL)
11806 {
11807 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
11808 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11809 }
11810 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11811 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11812 /* Keep NULL DWARF_BLOCK. */;
11813 else if (attr_form_is_block (attr))
11814 {
11815 struct dwarf2_locexpr_baton *dlbaton;
11816
11817 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11818 dlbaton->data = DW_BLOCK (attr)->data;
11819 dlbaton->size = DW_BLOCK (attr)->size;
11820 dlbaton->per_cu = cu->per_cu;
11821
11822 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11823 }
11824 else if (attr_form_is_ref (attr))
11825 {
11826 struct dwarf2_cu *target_cu = cu;
11827 struct die_info *target_die;
11828
11829 target_die = follow_die_ref (die, attr, &target_cu);
11830 gdb_assert (target_cu->objfile == objfile);
11831 if (die_is_declaration (target_die, target_cu))
11832 {
11833 const char *target_physname;
11834
11835 /* Prefer the mangled name; otherwise compute the demangled one. */
11836 target_physname = dwarf2_string_attr (target_die,
11837 DW_AT_linkage_name,
11838 target_cu);
11839 if (target_physname == NULL)
11840 target_physname = dwarf2_string_attr (target_die,
11841 DW_AT_MIPS_linkage_name,
11842 target_cu);
11843 if (target_physname == NULL)
11844 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11845 if (target_physname == NULL)
11846 complaint (&symfile_complaints,
11847 _("DW_AT_call_target target DIE has invalid "
11848 "physname, for referencing DIE 0x%x [in module %s]"),
11849 die->offset.sect_off, objfile_name (objfile));
11850 else
11851 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11852 }
11853 else
11854 {
11855 CORE_ADDR lowpc;
11856
11857 /* DW_AT_entry_pc should be preferred. */
11858 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
11859 <= PC_BOUNDS_INVALID)
11860 complaint (&symfile_complaints,
11861 _("DW_AT_call_target target DIE has invalid "
11862 "low pc, for referencing DIE 0x%x [in module %s]"),
11863 die->offset.sect_off, objfile_name (objfile));
11864 else
11865 {
11866 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11867 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11868 }
11869 }
11870 }
11871 else
11872 complaint (&symfile_complaints,
11873 _("DW_TAG_call_site DW_AT_call_target is neither "
11874 "block nor reference, for DIE 0x%x [in module %s]"),
11875 die->offset.sect_off, objfile_name (objfile));
11876
11877 call_site->per_cu = cu->per_cu;
11878
11879 for (child_die = die->child;
11880 child_die && child_die->tag;
11881 child_die = sibling_die (child_die))
11882 {
11883 struct call_site_parameter *parameter;
11884 struct attribute *loc, *origin;
11885
11886 if (child_die->tag != DW_TAG_call_site_parameter
11887 && child_die->tag != DW_TAG_GNU_call_site_parameter)
11888 {
11889 /* Already printed the complaint above. */
11890 continue;
11891 }
11892
11893 gdb_assert (call_site->parameter_count < nparams);
11894 parameter = &call_site->parameter[call_site->parameter_count];
11895
11896 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11897 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11898 register is contained in DW_AT_call_value. */
11899
11900 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11901 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
11902 if (origin == NULL)
11903 {
11904 /* This was a pre-DWARF-5 GNU extension alias
11905 for DW_AT_call_parameter. */
11906 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11907 }
11908 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11909 {
11910 sect_offset offset;
11911
11912 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11913 offset = dwarf2_get_ref_die_offset (origin);
11914 if (!offset_in_cu_p (&cu->header, offset))
11915 {
11916 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11917 binding can be done only inside one CU. Such referenced DIE
11918 therefore cannot be even moved to DW_TAG_partial_unit. */
11919 complaint (&symfile_complaints,
11920 _("DW_AT_call_parameter offset is not in CU for "
11921 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11922 child_die->offset.sect_off, objfile_name (objfile));
11923 continue;
11924 }
11925 parameter->u.param_offset.cu_off = (offset.sect_off
11926 - cu->header.offset.sect_off);
11927 }
11928 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11929 {
11930 complaint (&symfile_complaints,
11931 _("No DW_FORM_block* DW_AT_location for "
11932 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11933 child_die->offset.sect_off, objfile_name (objfile));
11934 continue;
11935 }
11936 else
11937 {
11938 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11939 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11940 if (parameter->u.dwarf_reg != -1)
11941 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11942 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11943 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11944 &parameter->u.fb_offset))
11945 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11946 else
11947 {
11948 complaint (&symfile_complaints,
11949 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11950 "for DW_FORM_block* DW_AT_location is supported for "
11951 "DW_TAG_call_site child DIE 0x%x "
11952 "[in module %s]"),
11953 child_die->offset.sect_off, objfile_name (objfile));
11954 continue;
11955 }
11956 }
11957
11958 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
11959 if (attr == NULL)
11960 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11961 if (!attr_form_is_block (attr))
11962 {
11963 complaint (&symfile_complaints,
11964 _("No DW_FORM_block* DW_AT_call_value for "
11965 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11966 child_die->offset.sect_off, objfile_name (objfile));
11967 continue;
11968 }
11969 parameter->value = DW_BLOCK (attr)->data;
11970 parameter->value_size = DW_BLOCK (attr)->size;
11971
11972 /* Parameters are not pre-cleared by memset above. */
11973 parameter->data_value = NULL;
11974 parameter->data_value_size = 0;
11975 call_site->parameter_count++;
11976
11977 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
11978 if (attr == NULL)
11979 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11980 if (attr)
11981 {
11982 if (!attr_form_is_block (attr))
11983 complaint (&symfile_complaints,
11984 _("No DW_FORM_block* DW_AT_call_data_value for "
11985 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11986 child_die->offset.sect_off, objfile_name (objfile));
11987 else
11988 {
11989 parameter->data_value = DW_BLOCK (attr)->data;
11990 parameter->data_value_size = DW_BLOCK (attr)->size;
11991 }
11992 }
11993 }
11994 }
11995
11996 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
11997 reading .debug_rnglists.
11998 Callback's type should be:
11999 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12000 Return true if the attributes are present and valid, otherwise,
12001 return false. */
12002
12003 template <typename Callback>
12004 static bool
12005 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12006 Callback &&callback)
12007 {
12008 struct objfile *objfile = cu->objfile;
12009 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12010 struct comp_unit_head *cu_header = &cu->header;
12011 bfd *obfd = objfile->obfd;
12012 unsigned int addr_size = cu_header->addr_size;
12013 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12014 /* Base address selection entry. */
12015 CORE_ADDR base;
12016 int found_base;
12017 unsigned int dummy;
12018 const gdb_byte *buffer;
12019 CORE_ADDR low = 0;
12020 CORE_ADDR high = 0;
12021 CORE_ADDR baseaddr;
12022 bool overflow = false;
12023
12024 found_base = cu->base_known;
12025 base = cu->base_address;
12026
12027 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12028 if (offset >= dwarf2_per_objfile->rnglists.size)
12029 {
12030 complaint (&symfile_complaints,
12031 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12032 offset);
12033 return false;
12034 }
12035 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12036
12037 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12038
12039 while (1)
12040 {
12041 /* Initialize it due to a false compiler warning. */
12042 CORE_ADDR range_beginning = 0, range_end = 0;
12043 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12044 + dwarf2_per_objfile->rnglists.size);
12045 unsigned int bytes_read;
12046
12047 if (buffer == buf_end)
12048 {
12049 overflow = true;
12050 break;
12051 }
12052 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12053 switch (rlet)
12054 {
12055 case DW_RLE_end_of_list:
12056 break;
12057 case DW_RLE_base_address:
12058 if (buffer + cu->header.addr_size > buf_end)
12059 {
12060 overflow = true;
12061 break;
12062 }
12063 base = read_address (obfd, buffer, cu, &bytes_read);
12064 found_base = 1;
12065 buffer += bytes_read;
12066 break;
12067 case DW_RLE_start_length:
12068 if (buffer + cu->header.addr_size > buf_end)
12069 {
12070 overflow = true;
12071 break;
12072 }
12073 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12074 buffer += bytes_read;
12075 range_end = (range_beginning
12076 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12077 buffer += bytes_read;
12078 if (buffer > buf_end)
12079 {
12080 overflow = true;
12081 break;
12082 }
12083 break;
12084 case DW_RLE_offset_pair:
12085 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12086 buffer += bytes_read;
12087 if (buffer > buf_end)
12088 {
12089 overflow = true;
12090 break;
12091 }
12092 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12093 buffer += bytes_read;
12094 if (buffer > buf_end)
12095 {
12096 overflow = true;
12097 break;
12098 }
12099 break;
12100 case DW_RLE_start_end:
12101 if (buffer + 2 * cu->header.addr_size > buf_end)
12102 {
12103 overflow = true;
12104 break;
12105 }
12106 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12107 buffer += bytes_read;
12108 range_end = read_address (obfd, buffer, cu, &bytes_read);
12109 buffer += bytes_read;
12110 break;
12111 default:
12112 complaint (&symfile_complaints,
12113 _("Invalid .debug_rnglists data (no base address)"));
12114 return false;
12115 }
12116 if (rlet == DW_RLE_end_of_list || overflow)
12117 break;
12118 if (rlet == DW_RLE_base_address)
12119 continue;
12120
12121 if (!found_base)
12122 {
12123 /* We have no valid base address for the ranges
12124 data. */
12125 complaint (&symfile_complaints,
12126 _("Invalid .debug_rnglists data (no base address)"));
12127 return false;
12128 }
12129
12130 if (range_beginning > range_end)
12131 {
12132 /* Inverted range entries are invalid. */
12133 complaint (&symfile_complaints,
12134 _("Invalid .debug_rnglists data (inverted range)"));
12135 return false;
12136 }
12137
12138 /* Empty range entries have no effect. */
12139 if (range_beginning == range_end)
12140 continue;
12141
12142 range_beginning += base;
12143 range_end += base;
12144
12145 /* A not-uncommon case of bad debug info.
12146 Don't pollute the addrmap with bad data. */
12147 if (range_beginning + baseaddr == 0
12148 && !dwarf2_per_objfile->has_section_at_zero)
12149 {
12150 complaint (&symfile_complaints,
12151 _(".debug_rnglists entry has start address of zero"
12152 " [in module %s]"), objfile_name (objfile));
12153 continue;
12154 }
12155
12156 callback (range_beginning, range_end);
12157 }
12158
12159 if (overflow)
12160 {
12161 complaint (&symfile_complaints,
12162 _("Offset %d is not terminated "
12163 "for DW_AT_ranges attribute"),
12164 offset);
12165 return false;
12166 }
12167
12168 return true;
12169 }
12170
12171 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12172 Callback's type should be:
12173 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12174 Return 1 if the attributes are present and valid, otherwise, return 0. */
12175
12176 template <typename Callback>
12177 static int
12178 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
12179 Callback &&callback)
12180 {
12181 struct objfile *objfile = cu->objfile;
12182 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12183 struct comp_unit_head *cu_header = &cu->header;
12184 bfd *obfd = objfile->obfd;
12185 unsigned int addr_size = cu_header->addr_size;
12186 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12187 /* Base address selection entry. */
12188 CORE_ADDR base;
12189 int found_base;
12190 unsigned int dummy;
12191 const gdb_byte *buffer;
12192 CORE_ADDR baseaddr;
12193
12194 if (cu_header->version >= 5)
12195 return dwarf2_rnglists_process (offset, cu, callback);
12196
12197 found_base = cu->base_known;
12198 base = cu->base_address;
12199
12200 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12201 if (offset >= dwarf2_per_objfile->ranges.size)
12202 {
12203 complaint (&symfile_complaints,
12204 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12205 offset);
12206 return 0;
12207 }
12208 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12209
12210 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12211
12212 while (1)
12213 {
12214 CORE_ADDR range_beginning, range_end;
12215
12216 range_beginning = read_address (obfd, buffer, cu, &dummy);
12217 buffer += addr_size;
12218 range_end = read_address (obfd, buffer, cu, &dummy);
12219 buffer += addr_size;
12220 offset += 2 * addr_size;
12221
12222 /* An end of list marker is a pair of zero addresses. */
12223 if (range_beginning == 0 && range_end == 0)
12224 /* Found the end of list entry. */
12225 break;
12226
12227 /* Each base address selection entry is a pair of 2 values.
12228 The first is the largest possible address, the second is
12229 the base address. Check for a base address here. */
12230 if ((range_beginning & mask) == mask)
12231 {
12232 /* If we found the largest possible address, then we already
12233 have the base address in range_end. */
12234 base = range_end;
12235 found_base = 1;
12236 continue;
12237 }
12238
12239 if (!found_base)
12240 {
12241 /* We have no valid base address for the ranges
12242 data. */
12243 complaint (&symfile_complaints,
12244 _("Invalid .debug_ranges data (no base address)"));
12245 return 0;
12246 }
12247
12248 if (range_beginning > range_end)
12249 {
12250 /* Inverted range entries are invalid. */
12251 complaint (&symfile_complaints,
12252 _("Invalid .debug_ranges data (inverted range)"));
12253 return 0;
12254 }
12255
12256 /* Empty range entries have no effect. */
12257 if (range_beginning == range_end)
12258 continue;
12259
12260 range_beginning += base;
12261 range_end += base;
12262
12263 /* A not-uncommon case of bad debug info.
12264 Don't pollute the addrmap with bad data. */
12265 if (range_beginning + baseaddr == 0
12266 && !dwarf2_per_objfile->has_section_at_zero)
12267 {
12268 complaint (&symfile_complaints,
12269 _(".debug_ranges entry has start address of zero"
12270 " [in module %s]"), objfile_name (objfile));
12271 continue;
12272 }
12273
12274 callback (range_beginning, range_end);
12275 }
12276
12277 return 1;
12278 }
12279
12280 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12281 Return 1 if the attributes are present and valid, otherwise, return 0.
12282 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12283
12284 static int
12285 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12286 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12287 struct partial_symtab *ranges_pst)
12288 {
12289 struct objfile *objfile = cu->objfile;
12290 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12291 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12292 SECT_OFF_TEXT (objfile));
12293 int low_set = 0;
12294 CORE_ADDR low = 0;
12295 CORE_ADDR high = 0;
12296 int retval;
12297
12298 retval = dwarf2_ranges_process (offset, cu,
12299 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12300 {
12301 if (ranges_pst != NULL)
12302 {
12303 CORE_ADDR lowpc;
12304 CORE_ADDR highpc;
12305
12306 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12307 range_beginning + baseaddr);
12308 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12309 range_end + baseaddr);
12310 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12311 ranges_pst);
12312 }
12313
12314 /* FIXME: This is recording everything as a low-high
12315 segment of consecutive addresses. We should have a
12316 data structure for discontiguous block ranges
12317 instead. */
12318 if (! low_set)
12319 {
12320 low = range_beginning;
12321 high = range_end;
12322 low_set = 1;
12323 }
12324 else
12325 {
12326 if (range_beginning < low)
12327 low = range_beginning;
12328 if (range_end > high)
12329 high = range_end;
12330 }
12331 });
12332 if (!retval)
12333 return 0;
12334
12335 if (! low_set)
12336 /* If the first entry is an end-of-list marker, the range
12337 describes an empty scope, i.e. no instructions. */
12338 return 0;
12339
12340 if (low_return)
12341 *low_return = low;
12342 if (high_return)
12343 *high_return = high;
12344 return 1;
12345 }
12346
12347 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12348 definition for the return value. *LOWPC and *HIGHPC are set iff
12349 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12350
12351 static enum pc_bounds_kind
12352 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12353 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12354 struct partial_symtab *pst)
12355 {
12356 struct attribute *attr;
12357 struct attribute *attr_high;
12358 CORE_ADDR low = 0;
12359 CORE_ADDR high = 0;
12360 enum pc_bounds_kind ret;
12361
12362 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12363 if (attr_high)
12364 {
12365 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12366 if (attr)
12367 {
12368 low = attr_value_as_address (attr);
12369 high = attr_value_as_address (attr_high);
12370 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12371 high += low;
12372 }
12373 else
12374 /* Found high w/o low attribute. */
12375 return PC_BOUNDS_INVALID;
12376
12377 /* Found consecutive range of addresses. */
12378 ret = PC_BOUNDS_HIGH_LOW;
12379 }
12380 else
12381 {
12382 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12383 if (attr != NULL)
12384 {
12385 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12386 We take advantage of the fact that DW_AT_ranges does not appear
12387 in DW_TAG_compile_unit of DWO files. */
12388 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12389 unsigned int ranges_offset = (DW_UNSND (attr)
12390 + (need_ranges_base
12391 ? cu->ranges_base
12392 : 0));
12393
12394 /* Value of the DW_AT_ranges attribute is the offset in the
12395 .debug_ranges section. */
12396 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12397 return PC_BOUNDS_INVALID;
12398 /* Found discontinuous range of addresses. */
12399 ret = PC_BOUNDS_RANGES;
12400 }
12401 else
12402 return PC_BOUNDS_NOT_PRESENT;
12403 }
12404
12405 /* read_partial_die has also the strict LOW < HIGH requirement. */
12406 if (high <= low)
12407 return PC_BOUNDS_INVALID;
12408
12409 /* When using the GNU linker, .gnu.linkonce. sections are used to
12410 eliminate duplicate copies of functions and vtables and such.
12411 The linker will arbitrarily choose one and discard the others.
12412 The AT_*_pc values for such functions refer to local labels in
12413 these sections. If the section from that file was discarded, the
12414 labels are not in the output, so the relocs get a value of 0.
12415 If this is a discarded function, mark the pc bounds as invalid,
12416 so that GDB will ignore it. */
12417 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12418 return PC_BOUNDS_INVALID;
12419
12420 *lowpc = low;
12421 if (highpc)
12422 *highpc = high;
12423 return ret;
12424 }
12425
12426 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12427 its low and high PC addresses. Do nothing if these addresses could not
12428 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12429 and HIGHPC to the high address if greater than HIGHPC. */
12430
12431 static void
12432 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12433 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12434 struct dwarf2_cu *cu)
12435 {
12436 CORE_ADDR low, high;
12437 struct die_info *child = die->child;
12438
12439 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12440 {
12441 *lowpc = std::min (*lowpc, low);
12442 *highpc = std::max (*highpc, high);
12443 }
12444
12445 /* If the language does not allow nested subprograms (either inside
12446 subprograms or lexical blocks), we're done. */
12447 if (cu->language != language_ada)
12448 return;
12449
12450 /* Check all the children of the given DIE. If it contains nested
12451 subprograms, then check their pc bounds. Likewise, we need to
12452 check lexical blocks as well, as they may also contain subprogram
12453 definitions. */
12454 while (child && child->tag)
12455 {
12456 if (child->tag == DW_TAG_subprogram
12457 || child->tag == DW_TAG_lexical_block)
12458 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12459 child = sibling_die (child);
12460 }
12461 }
12462
12463 /* Get the low and high pc's represented by the scope DIE, and store
12464 them in *LOWPC and *HIGHPC. If the correct values can't be
12465 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12466
12467 static void
12468 get_scope_pc_bounds (struct die_info *die,
12469 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12470 struct dwarf2_cu *cu)
12471 {
12472 CORE_ADDR best_low = (CORE_ADDR) -1;
12473 CORE_ADDR best_high = (CORE_ADDR) 0;
12474 CORE_ADDR current_low, current_high;
12475
12476 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12477 >= PC_BOUNDS_RANGES)
12478 {
12479 best_low = current_low;
12480 best_high = current_high;
12481 }
12482 else
12483 {
12484 struct die_info *child = die->child;
12485
12486 while (child && child->tag)
12487 {
12488 switch (child->tag) {
12489 case DW_TAG_subprogram:
12490 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12491 break;
12492 case DW_TAG_namespace:
12493 case DW_TAG_module:
12494 /* FIXME: carlton/2004-01-16: Should we do this for
12495 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12496 that current GCC's always emit the DIEs corresponding
12497 to definitions of methods of classes as children of a
12498 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12499 the DIEs giving the declarations, which could be
12500 anywhere). But I don't see any reason why the
12501 standards says that they have to be there. */
12502 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12503
12504 if (current_low != ((CORE_ADDR) -1))
12505 {
12506 best_low = std::min (best_low, current_low);
12507 best_high = std::max (best_high, current_high);
12508 }
12509 break;
12510 default:
12511 /* Ignore. */
12512 break;
12513 }
12514
12515 child = sibling_die (child);
12516 }
12517 }
12518
12519 *lowpc = best_low;
12520 *highpc = best_high;
12521 }
12522
12523 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12524 in DIE. */
12525
12526 static void
12527 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12528 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12529 {
12530 struct objfile *objfile = cu->objfile;
12531 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12532 struct attribute *attr;
12533 struct attribute *attr_high;
12534
12535 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12536 if (attr_high)
12537 {
12538 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12539 if (attr)
12540 {
12541 CORE_ADDR low = attr_value_as_address (attr);
12542 CORE_ADDR high = attr_value_as_address (attr_high);
12543
12544 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12545 high += low;
12546
12547 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12548 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12549 record_block_range (block, low, high - 1);
12550 }
12551 }
12552
12553 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12554 if (attr)
12555 {
12556 bfd *obfd = objfile->obfd;
12557 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12558 We take advantage of the fact that DW_AT_ranges does not appear
12559 in DW_TAG_compile_unit of DWO files. */
12560 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12561
12562 /* The value of the DW_AT_ranges attribute is the offset of the
12563 address range list in the .debug_ranges section. */
12564 unsigned long offset = (DW_UNSND (attr)
12565 + (need_ranges_base ? cu->ranges_base : 0));
12566 const gdb_byte *buffer;
12567
12568 /* For some target architectures, but not others, the
12569 read_address function sign-extends the addresses it returns.
12570 To recognize base address selection entries, we need a
12571 mask. */
12572 unsigned int addr_size = cu->header.addr_size;
12573 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12574
12575 /* The base address, to which the next pair is relative. Note
12576 that this 'base' is a DWARF concept: most entries in a range
12577 list are relative, to reduce the number of relocs against the
12578 debugging information. This is separate from this function's
12579 'baseaddr' argument, which GDB uses to relocate debugging
12580 information from a shared library based on the address at
12581 which the library was loaded. */
12582 CORE_ADDR base = cu->base_address;
12583 int base_known = cu->base_known;
12584
12585 dwarf2_ranges_process (offset, cu,
12586 [&] (CORE_ADDR start, CORE_ADDR end)
12587 {
12588 start += baseaddr;
12589 end += baseaddr;
12590 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12591 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12592 record_block_range (block, start, end - 1);
12593 });
12594 }
12595 }
12596
12597 /* Check whether the producer field indicates either of GCC < 4.6, or the
12598 Intel C/C++ compiler, and cache the result in CU. */
12599
12600 static void
12601 check_producer (struct dwarf2_cu *cu)
12602 {
12603 int major, minor;
12604
12605 if (cu->producer == NULL)
12606 {
12607 /* For unknown compilers expect their behavior is DWARF version
12608 compliant.
12609
12610 GCC started to support .debug_types sections by -gdwarf-4 since
12611 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12612 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12613 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12614 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12615 }
12616 else if (producer_is_gcc (cu->producer, &major, &minor))
12617 {
12618 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12619 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12620 }
12621 else if (startswith (cu->producer, "Intel(R) C"))
12622 cu->producer_is_icc = 1;
12623 else
12624 {
12625 /* For other non-GCC compilers, expect their behavior is DWARF version
12626 compliant. */
12627 }
12628
12629 cu->checked_producer = 1;
12630 }
12631
12632 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12633 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12634 during 4.6.0 experimental. */
12635
12636 static int
12637 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12638 {
12639 if (!cu->checked_producer)
12640 check_producer (cu);
12641
12642 return cu->producer_is_gxx_lt_4_6;
12643 }
12644
12645 /* Return the default accessibility type if it is not overriden by
12646 DW_AT_accessibility. */
12647
12648 static enum dwarf_access_attribute
12649 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12650 {
12651 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12652 {
12653 /* The default DWARF 2 accessibility for members is public, the default
12654 accessibility for inheritance is private. */
12655
12656 if (die->tag != DW_TAG_inheritance)
12657 return DW_ACCESS_public;
12658 else
12659 return DW_ACCESS_private;
12660 }
12661 else
12662 {
12663 /* DWARF 3+ defines the default accessibility a different way. The same
12664 rules apply now for DW_TAG_inheritance as for the members and it only
12665 depends on the container kind. */
12666
12667 if (die->parent->tag == DW_TAG_class_type)
12668 return DW_ACCESS_private;
12669 else
12670 return DW_ACCESS_public;
12671 }
12672 }
12673
12674 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12675 offset. If the attribute was not found return 0, otherwise return
12676 1. If it was found but could not properly be handled, set *OFFSET
12677 to 0. */
12678
12679 static int
12680 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12681 LONGEST *offset)
12682 {
12683 struct attribute *attr;
12684
12685 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12686 if (attr != NULL)
12687 {
12688 *offset = 0;
12689
12690 /* Note that we do not check for a section offset first here.
12691 This is because DW_AT_data_member_location is new in DWARF 4,
12692 so if we see it, we can assume that a constant form is really
12693 a constant and not a section offset. */
12694 if (attr_form_is_constant (attr))
12695 *offset = dwarf2_get_attr_constant_value (attr, 0);
12696 else if (attr_form_is_section_offset (attr))
12697 dwarf2_complex_location_expr_complaint ();
12698 else if (attr_form_is_block (attr))
12699 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12700 else
12701 dwarf2_complex_location_expr_complaint ();
12702
12703 return 1;
12704 }
12705
12706 return 0;
12707 }
12708
12709 /* Add an aggregate field to the field list. */
12710
12711 static void
12712 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12713 struct dwarf2_cu *cu)
12714 {
12715 struct objfile *objfile = cu->objfile;
12716 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12717 struct nextfield *new_field;
12718 struct attribute *attr;
12719 struct field *fp;
12720 const char *fieldname = "";
12721
12722 /* Allocate a new field list entry and link it in. */
12723 new_field = XNEW (struct nextfield);
12724 make_cleanup (xfree, new_field);
12725 memset (new_field, 0, sizeof (struct nextfield));
12726
12727 if (die->tag == DW_TAG_inheritance)
12728 {
12729 new_field->next = fip->baseclasses;
12730 fip->baseclasses = new_field;
12731 }
12732 else
12733 {
12734 new_field->next = fip->fields;
12735 fip->fields = new_field;
12736 }
12737 fip->nfields++;
12738
12739 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12740 if (attr)
12741 new_field->accessibility = DW_UNSND (attr);
12742 else
12743 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12744 if (new_field->accessibility != DW_ACCESS_public)
12745 fip->non_public_fields = 1;
12746
12747 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12748 if (attr)
12749 new_field->virtuality = DW_UNSND (attr);
12750 else
12751 new_field->virtuality = DW_VIRTUALITY_none;
12752
12753 fp = &new_field->field;
12754
12755 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12756 {
12757 LONGEST offset;
12758
12759 /* Data member other than a C++ static data member. */
12760
12761 /* Get type of field. */
12762 fp->type = die_type (die, cu);
12763
12764 SET_FIELD_BITPOS (*fp, 0);
12765
12766 /* Get bit size of field (zero if none). */
12767 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12768 if (attr)
12769 {
12770 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12771 }
12772 else
12773 {
12774 FIELD_BITSIZE (*fp) = 0;
12775 }
12776
12777 /* Get bit offset of field. */
12778 if (handle_data_member_location (die, cu, &offset))
12779 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12780 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12781 if (attr)
12782 {
12783 if (gdbarch_bits_big_endian (gdbarch))
12784 {
12785 /* For big endian bits, the DW_AT_bit_offset gives the
12786 additional bit offset from the MSB of the containing
12787 anonymous object to the MSB of the field. We don't
12788 have to do anything special since we don't need to
12789 know the size of the anonymous object. */
12790 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12791 }
12792 else
12793 {
12794 /* For little endian bits, compute the bit offset to the
12795 MSB of the anonymous object, subtract off the number of
12796 bits from the MSB of the field to the MSB of the
12797 object, and then subtract off the number of bits of
12798 the field itself. The result is the bit offset of
12799 the LSB of the field. */
12800 int anonymous_size;
12801 int bit_offset = DW_UNSND (attr);
12802
12803 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12804 if (attr)
12805 {
12806 /* The size of the anonymous object containing
12807 the bit field is explicit, so use the
12808 indicated size (in bytes). */
12809 anonymous_size = DW_UNSND (attr);
12810 }
12811 else
12812 {
12813 /* The size of the anonymous object containing
12814 the bit field must be inferred from the type
12815 attribute of the data member containing the
12816 bit field. */
12817 anonymous_size = TYPE_LENGTH (fp->type);
12818 }
12819 SET_FIELD_BITPOS (*fp,
12820 (FIELD_BITPOS (*fp)
12821 + anonymous_size * bits_per_byte
12822 - bit_offset - FIELD_BITSIZE (*fp)));
12823 }
12824 }
12825 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
12826 if (attr != NULL)
12827 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
12828 + dwarf2_get_attr_constant_value (attr, 0)));
12829
12830 /* Get name of field. */
12831 fieldname = dwarf2_name (die, cu);
12832 if (fieldname == NULL)
12833 fieldname = "";
12834
12835 /* The name is already allocated along with this objfile, so we don't
12836 need to duplicate it for the type. */
12837 fp->name = fieldname;
12838
12839 /* Change accessibility for artificial fields (e.g. virtual table
12840 pointer or virtual base class pointer) to private. */
12841 if (dwarf2_attr (die, DW_AT_artificial, cu))
12842 {
12843 FIELD_ARTIFICIAL (*fp) = 1;
12844 new_field->accessibility = DW_ACCESS_private;
12845 fip->non_public_fields = 1;
12846 }
12847 }
12848 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12849 {
12850 /* C++ static member. */
12851
12852 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12853 is a declaration, but all versions of G++ as of this writing
12854 (so through at least 3.2.1) incorrectly generate
12855 DW_TAG_variable tags. */
12856
12857 const char *physname;
12858
12859 /* Get name of field. */
12860 fieldname = dwarf2_name (die, cu);
12861 if (fieldname == NULL)
12862 return;
12863
12864 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12865 if (attr
12866 /* Only create a symbol if this is an external value.
12867 new_symbol checks this and puts the value in the global symbol
12868 table, which we want. If it is not external, new_symbol
12869 will try to put the value in cu->list_in_scope which is wrong. */
12870 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12871 {
12872 /* A static const member, not much different than an enum as far as
12873 we're concerned, except that we can support more types. */
12874 new_symbol (die, NULL, cu);
12875 }
12876
12877 /* Get physical name. */
12878 physname = dwarf2_physname (fieldname, die, cu);
12879
12880 /* The name is already allocated along with this objfile, so we don't
12881 need to duplicate it for the type. */
12882 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12883 FIELD_TYPE (*fp) = die_type (die, cu);
12884 FIELD_NAME (*fp) = fieldname;
12885 }
12886 else if (die->tag == DW_TAG_inheritance)
12887 {
12888 LONGEST offset;
12889
12890 /* C++ base class field. */
12891 if (handle_data_member_location (die, cu, &offset))
12892 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12893 FIELD_BITSIZE (*fp) = 0;
12894 FIELD_TYPE (*fp) = die_type (die, cu);
12895 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12896 fip->nbaseclasses++;
12897 }
12898 }
12899
12900 /* Add a typedef defined in the scope of the FIP's class. */
12901
12902 static void
12903 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12904 struct dwarf2_cu *cu)
12905 {
12906 struct typedef_field_list *new_field;
12907 struct typedef_field *fp;
12908
12909 /* Allocate a new field list entry and link it in. */
12910 new_field = XCNEW (struct typedef_field_list);
12911 make_cleanup (xfree, new_field);
12912
12913 gdb_assert (die->tag == DW_TAG_typedef);
12914
12915 fp = &new_field->field;
12916
12917 /* Get name of field. */
12918 fp->name = dwarf2_name (die, cu);
12919 if (fp->name == NULL)
12920 return;
12921
12922 fp->type = read_type_die (die, cu);
12923
12924 new_field->next = fip->typedef_field_list;
12925 fip->typedef_field_list = new_field;
12926 fip->typedef_field_list_count++;
12927 }
12928
12929 /* Create the vector of fields, and attach it to the type. */
12930
12931 static void
12932 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12933 struct dwarf2_cu *cu)
12934 {
12935 int nfields = fip->nfields;
12936
12937 /* Record the field count, allocate space for the array of fields,
12938 and create blank accessibility bitfields if necessary. */
12939 TYPE_NFIELDS (type) = nfields;
12940 TYPE_FIELDS (type) = (struct field *)
12941 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12942 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12943
12944 if (fip->non_public_fields && cu->language != language_ada)
12945 {
12946 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12947
12948 TYPE_FIELD_PRIVATE_BITS (type) =
12949 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12950 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12951
12952 TYPE_FIELD_PROTECTED_BITS (type) =
12953 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12954 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12955
12956 TYPE_FIELD_IGNORE_BITS (type) =
12957 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12958 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12959 }
12960
12961 /* If the type has baseclasses, allocate and clear a bit vector for
12962 TYPE_FIELD_VIRTUAL_BITS. */
12963 if (fip->nbaseclasses && cu->language != language_ada)
12964 {
12965 int num_bytes = B_BYTES (fip->nbaseclasses);
12966 unsigned char *pointer;
12967
12968 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12969 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
12970 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12971 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12972 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12973 }
12974
12975 /* Copy the saved-up fields into the field vector. Start from the head of
12976 the list, adding to the tail of the field array, so that they end up in
12977 the same order in the array in which they were added to the list. */
12978 while (nfields-- > 0)
12979 {
12980 struct nextfield *fieldp;
12981
12982 if (fip->fields)
12983 {
12984 fieldp = fip->fields;
12985 fip->fields = fieldp->next;
12986 }
12987 else
12988 {
12989 fieldp = fip->baseclasses;
12990 fip->baseclasses = fieldp->next;
12991 }
12992
12993 TYPE_FIELD (type, nfields) = fieldp->field;
12994 switch (fieldp->accessibility)
12995 {
12996 case DW_ACCESS_private:
12997 if (cu->language != language_ada)
12998 SET_TYPE_FIELD_PRIVATE (type, nfields);
12999 break;
13000
13001 case DW_ACCESS_protected:
13002 if (cu->language != language_ada)
13003 SET_TYPE_FIELD_PROTECTED (type, nfields);
13004 break;
13005
13006 case DW_ACCESS_public:
13007 break;
13008
13009 default:
13010 /* Unknown accessibility. Complain and treat it as public. */
13011 {
13012 complaint (&symfile_complaints, _("unsupported accessibility %d"),
13013 fieldp->accessibility);
13014 }
13015 break;
13016 }
13017 if (nfields < fip->nbaseclasses)
13018 {
13019 switch (fieldp->virtuality)
13020 {
13021 case DW_VIRTUALITY_virtual:
13022 case DW_VIRTUALITY_pure_virtual:
13023 if (cu->language == language_ada)
13024 error (_("unexpected virtuality in component of Ada type"));
13025 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13026 break;
13027 }
13028 }
13029 }
13030 }
13031
13032 /* Return true if this member function is a constructor, false
13033 otherwise. */
13034
13035 static int
13036 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13037 {
13038 const char *fieldname;
13039 const char *type_name;
13040 int len;
13041
13042 if (die->parent == NULL)
13043 return 0;
13044
13045 if (die->parent->tag != DW_TAG_structure_type
13046 && die->parent->tag != DW_TAG_union_type
13047 && die->parent->tag != DW_TAG_class_type)
13048 return 0;
13049
13050 fieldname = dwarf2_name (die, cu);
13051 type_name = dwarf2_name (die->parent, cu);
13052 if (fieldname == NULL || type_name == NULL)
13053 return 0;
13054
13055 len = strlen (fieldname);
13056 return (strncmp (fieldname, type_name, len) == 0
13057 && (type_name[len] == '\0' || type_name[len] == '<'));
13058 }
13059
13060 /* Add a member function to the proper fieldlist. */
13061
13062 static void
13063 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
13064 struct type *type, struct dwarf2_cu *cu)
13065 {
13066 struct objfile *objfile = cu->objfile;
13067 struct attribute *attr;
13068 struct fnfieldlist *flp;
13069 int i;
13070 struct fn_field *fnp;
13071 const char *fieldname;
13072 struct nextfnfield *new_fnfield;
13073 struct type *this_type;
13074 enum dwarf_access_attribute accessibility;
13075
13076 if (cu->language == language_ada)
13077 error (_("unexpected member function in Ada type"));
13078
13079 /* Get name of member function. */
13080 fieldname = dwarf2_name (die, cu);
13081 if (fieldname == NULL)
13082 return;
13083
13084 /* Look up member function name in fieldlist. */
13085 for (i = 0; i < fip->nfnfields; i++)
13086 {
13087 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
13088 break;
13089 }
13090
13091 /* Create new list element if necessary. */
13092 if (i < fip->nfnfields)
13093 flp = &fip->fnfieldlists[i];
13094 else
13095 {
13096 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13097 {
13098 fip->fnfieldlists = (struct fnfieldlist *)
13099 xrealloc (fip->fnfieldlists,
13100 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
13101 * sizeof (struct fnfieldlist));
13102 if (fip->nfnfields == 0)
13103 make_cleanup (free_current_contents, &fip->fnfieldlists);
13104 }
13105 flp = &fip->fnfieldlists[fip->nfnfields];
13106 flp->name = fieldname;
13107 flp->length = 0;
13108 flp->head = NULL;
13109 i = fip->nfnfields++;
13110 }
13111
13112 /* Create a new member function field and chain it to the field list
13113 entry. */
13114 new_fnfield = XNEW (struct nextfnfield);
13115 make_cleanup (xfree, new_fnfield);
13116 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13117 new_fnfield->next = flp->head;
13118 flp->head = new_fnfield;
13119 flp->length++;
13120
13121 /* Fill in the member function field info. */
13122 fnp = &new_fnfield->fnfield;
13123
13124 /* Delay processing of the physname until later. */
13125 if (cu->language == language_cplus)
13126 {
13127 add_to_method_list (type, i, flp->length - 1, fieldname,
13128 die, cu);
13129 }
13130 else
13131 {
13132 const char *physname = dwarf2_physname (fieldname, die, cu);
13133 fnp->physname = physname ? physname : "";
13134 }
13135
13136 fnp->type = alloc_type (objfile);
13137 this_type = read_type_die (die, cu);
13138 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
13139 {
13140 int nparams = TYPE_NFIELDS (this_type);
13141
13142 /* TYPE is the domain of this method, and THIS_TYPE is the type
13143 of the method itself (TYPE_CODE_METHOD). */
13144 smash_to_method_type (fnp->type, type,
13145 TYPE_TARGET_TYPE (this_type),
13146 TYPE_FIELDS (this_type),
13147 TYPE_NFIELDS (this_type),
13148 TYPE_VARARGS (this_type));
13149
13150 /* Handle static member functions.
13151 Dwarf2 has no clean way to discern C++ static and non-static
13152 member functions. G++ helps GDB by marking the first
13153 parameter for non-static member functions (which is the this
13154 pointer) as artificial. We obtain this information from
13155 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
13156 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
13157 fnp->voffset = VOFFSET_STATIC;
13158 }
13159 else
13160 complaint (&symfile_complaints, _("member function type missing for '%s'"),
13161 dwarf2_full_name (fieldname, die, cu));
13162
13163 /* Get fcontext from DW_AT_containing_type if present. */
13164 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13165 fnp->fcontext = die_containing_type (die, cu);
13166
13167 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13168 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
13169
13170 /* Get accessibility. */
13171 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13172 if (attr)
13173 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13174 else
13175 accessibility = dwarf2_default_access_attribute (die, cu);
13176 switch (accessibility)
13177 {
13178 case DW_ACCESS_private:
13179 fnp->is_private = 1;
13180 break;
13181 case DW_ACCESS_protected:
13182 fnp->is_protected = 1;
13183 break;
13184 }
13185
13186 /* Check for artificial methods. */
13187 attr = dwarf2_attr (die, DW_AT_artificial, cu);
13188 if (attr && DW_UNSND (attr) != 0)
13189 fnp->is_artificial = 1;
13190
13191 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13192
13193 /* Get index in virtual function table if it is a virtual member
13194 function. For older versions of GCC, this is an offset in the
13195 appropriate virtual table, as specified by DW_AT_containing_type.
13196 For everyone else, it is an expression to be evaluated relative
13197 to the object address. */
13198
13199 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
13200 if (attr)
13201 {
13202 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
13203 {
13204 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13205 {
13206 /* Old-style GCC. */
13207 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13208 }
13209 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13210 || (DW_BLOCK (attr)->size > 1
13211 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13212 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13213 {
13214 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13215 if ((fnp->voffset % cu->header.addr_size) != 0)
13216 dwarf2_complex_location_expr_complaint ();
13217 else
13218 fnp->voffset /= cu->header.addr_size;
13219 fnp->voffset += 2;
13220 }
13221 else
13222 dwarf2_complex_location_expr_complaint ();
13223
13224 if (!fnp->fcontext)
13225 {
13226 /* If there is no `this' field and no DW_AT_containing_type,
13227 we cannot actually find a base class context for the
13228 vtable! */
13229 if (TYPE_NFIELDS (this_type) == 0
13230 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13231 {
13232 complaint (&symfile_complaints,
13233 _("cannot determine context for virtual member "
13234 "function \"%s\" (offset %d)"),
13235 fieldname, die->offset.sect_off);
13236 }
13237 else
13238 {
13239 fnp->fcontext
13240 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13241 }
13242 }
13243 }
13244 else if (attr_form_is_section_offset (attr))
13245 {
13246 dwarf2_complex_location_expr_complaint ();
13247 }
13248 else
13249 {
13250 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13251 fieldname);
13252 }
13253 }
13254 else
13255 {
13256 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13257 if (attr && DW_UNSND (attr))
13258 {
13259 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13260 complaint (&symfile_complaints,
13261 _("Member function \"%s\" (offset %d) is virtual "
13262 "but the vtable offset is not specified"),
13263 fieldname, die->offset.sect_off);
13264 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13265 TYPE_CPLUS_DYNAMIC (type) = 1;
13266 }
13267 }
13268 }
13269
13270 /* Create the vector of member function fields, and attach it to the type. */
13271
13272 static void
13273 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13274 struct dwarf2_cu *cu)
13275 {
13276 struct fnfieldlist *flp;
13277 int i;
13278
13279 if (cu->language == language_ada)
13280 error (_("unexpected member functions in Ada type"));
13281
13282 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13283 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13284 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13285
13286 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13287 {
13288 struct nextfnfield *nfp = flp->head;
13289 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13290 int k;
13291
13292 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13293 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13294 fn_flp->fn_fields = (struct fn_field *)
13295 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13296 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13297 fn_flp->fn_fields[k] = nfp->fnfield;
13298 }
13299
13300 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13301 }
13302
13303 /* Returns non-zero if NAME is the name of a vtable member in CU's
13304 language, zero otherwise. */
13305 static int
13306 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13307 {
13308 static const char vptr[] = "_vptr";
13309 static const char vtable[] = "vtable";
13310
13311 /* Look for the C++ form of the vtable. */
13312 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13313 return 1;
13314
13315 return 0;
13316 }
13317
13318 /* GCC outputs unnamed structures that are really pointers to member
13319 functions, with the ABI-specified layout. If TYPE describes
13320 such a structure, smash it into a member function type.
13321
13322 GCC shouldn't do this; it should just output pointer to member DIEs.
13323 This is GCC PR debug/28767. */
13324
13325 static void
13326 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13327 {
13328 struct type *pfn_type, *self_type, *new_type;
13329
13330 /* Check for a structure with no name and two children. */
13331 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13332 return;
13333
13334 /* Check for __pfn and __delta members. */
13335 if (TYPE_FIELD_NAME (type, 0) == NULL
13336 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13337 || TYPE_FIELD_NAME (type, 1) == NULL
13338 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13339 return;
13340
13341 /* Find the type of the method. */
13342 pfn_type = TYPE_FIELD_TYPE (type, 0);
13343 if (pfn_type == NULL
13344 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13345 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13346 return;
13347
13348 /* Look for the "this" argument. */
13349 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13350 if (TYPE_NFIELDS (pfn_type) == 0
13351 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13352 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13353 return;
13354
13355 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13356 new_type = alloc_type (objfile);
13357 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13358 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13359 TYPE_VARARGS (pfn_type));
13360 smash_to_methodptr_type (type, new_type);
13361 }
13362
13363 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13364 (icc). */
13365
13366 static int
13367 producer_is_icc (struct dwarf2_cu *cu)
13368 {
13369 if (!cu->checked_producer)
13370 check_producer (cu);
13371
13372 return cu->producer_is_icc;
13373 }
13374
13375 /* Called when we find the DIE that starts a structure or union scope
13376 (definition) to create a type for the structure or union. Fill in
13377 the type's name and general properties; the members will not be
13378 processed until process_structure_scope. A symbol table entry for
13379 the type will also not be done until process_structure_scope (assuming
13380 the type has a name).
13381
13382 NOTE: we need to call these functions regardless of whether or not the
13383 DIE has a DW_AT_name attribute, since it might be an anonymous
13384 structure or union. This gets the type entered into our set of
13385 user defined types. */
13386
13387 static struct type *
13388 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13389 {
13390 struct objfile *objfile = cu->objfile;
13391 struct type *type;
13392 struct attribute *attr;
13393 const char *name;
13394
13395 /* If the definition of this type lives in .debug_types, read that type.
13396 Don't follow DW_AT_specification though, that will take us back up
13397 the chain and we want to go down. */
13398 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13399 if (attr)
13400 {
13401 type = get_DW_AT_signature_type (die, attr, cu);
13402
13403 /* The type's CU may not be the same as CU.
13404 Ensure TYPE is recorded with CU in die_type_hash. */
13405 return set_die_type (die, type, cu);
13406 }
13407
13408 type = alloc_type (objfile);
13409 INIT_CPLUS_SPECIFIC (type);
13410
13411 name = dwarf2_name (die, cu);
13412 if (name != NULL)
13413 {
13414 if (cu->language == language_cplus
13415 || cu->language == language_d
13416 || cu->language == language_rust)
13417 {
13418 const char *full_name = dwarf2_full_name (name, die, cu);
13419
13420 /* dwarf2_full_name might have already finished building the DIE's
13421 type. If so, there is no need to continue. */
13422 if (get_die_type (die, cu) != NULL)
13423 return get_die_type (die, cu);
13424
13425 TYPE_TAG_NAME (type) = full_name;
13426 if (die->tag == DW_TAG_structure_type
13427 || die->tag == DW_TAG_class_type)
13428 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13429 }
13430 else
13431 {
13432 /* The name is already allocated along with this objfile, so
13433 we don't need to duplicate it for the type. */
13434 TYPE_TAG_NAME (type) = name;
13435 if (die->tag == DW_TAG_class_type)
13436 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13437 }
13438 }
13439
13440 if (die->tag == DW_TAG_structure_type)
13441 {
13442 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13443 }
13444 else if (die->tag == DW_TAG_union_type)
13445 {
13446 TYPE_CODE (type) = TYPE_CODE_UNION;
13447 }
13448 else
13449 {
13450 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13451 }
13452
13453 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13454 TYPE_DECLARED_CLASS (type) = 1;
13455
13456 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13457 if (attr)
13458 {
13459 if (attr_form_is_constant (attr))
13460 TYPE_LENGTH (type) = DW_UNSND (attr);
13461 else
13462 {
13463 /* For the moment, dynamic type sizes are not supported
13464 by GDB's struct type. The actual size is determined
13465 on-demand when resolving the type of a given object,
13466 so set the type's length to zero for now. Otherwise,
13467 we record an expression as the length, and that expression
13468 could lead to a very large value, which could eventually
13469 lead to us trying to allocate that much memory when creating
13470 a value of that type. */
13471 TYPE_LENGTH (type) = 0;
13472 }
13473 }
13474 else
13475 {
13476 TYPE_LENGTH (type) = 0;
13477 }
13478
13479 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13480 {
13481 /* ICC does not output the required DW_AT_declaration
13482 on incomplete types, but gives them a size of zero. */
13483 TYPE_STUB (type) = 1;
13484 }
13485 else
13486 TYPE_STUB_SUPPORTED (type) = 1;
13487
13488 if (die_is_declaration (die, cu))
13489 TYPE_STUB (type) = 1;
13490 else if (attr == NULL && die->child == NULL
13491 && producer_is_realview (cu->producer))
13492 /* RealView does not output the required DW_AT_declaration
13493 on incomplete types. */
13494 TYPE_STUB (type) = 1;
13495
13496 /* We need to add the type field to the die immediately so we don't
13497 infinitely recurse when dealing with pointers to the structure
13498 type within the structure itself. */
13499 set_die_type (die, type, cu);
13500
13501 /* set_die_type should be already done. */
13502 set_descriptive_type (type, die, cu);
13503
13504 return type;
13505 }
13506
13507 /* Finish creating a structure or union type, including filling in
13508 its members and creating a symbol for it. */
13509
13510 static void
13511 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13512 {
13513 struct objfile *objfile = cu->objfile;
13514 struct die_info *child_die;
13515 struct type *type;
13516
13517 type = get_die_type (die, cu);
13518 if (type == NULL)
13519 type = read_structure_type (die, cu);
13520
13521 if (die->child != NULL && ! die_is_declaration (die, cu))
13522 {
13523 struct field_info fi;
13524 VEC (symbolp) *template_args = NULL;
13525 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13526
13527 memset (&fi, 0, sizeof (struct field_info));
13528
13529 child_die = die->child;
13530
13531 while (child_die && child_die->tag)
13532 {
13533 if (child_die->tag == DW_TAG_member
13534 || child_die->tag == DW_TAG_variable)
13535 {
13536 /* NOTE: carlton/2002-11-05: A C++ static data member
13537 should be a DW_TAG_member that is a declaration, but
13538 all versions of G++ as of this writing (so through at
13539 least 3.2.1) incorrectly generate DW_TAG_variable
13540 tags for them instead. */
13541 dwarf2_add_field (&fi, child_die, cu);
13542 }
13543 else if (child_die->tag == DW_TAG_subprogram)
13544 {
13545 /* Rust doesn't have member functions in the C++ sense.
13546 However, it does emit ordinary functions as children
13547 of a struct DIE. */
13548 if (cu->language == language_rust)
13549 read_func_scope (child_die, cu);
13550 else
13551 {
13552 /* C++ member function. */
13553 dwarf2_add_member_fn (&fi, child_die, type, cu);
13554 }
13555 }
13556 else if (child_die->tag == DW_TAG_inheritance)
13557 {
13558 /* C++ base class field. */
13559 dwarf2_add_field (&fi, child_die, cu);
13560 }
13561 else if (child_die->tag == DW_TAG_typedef)
13562 dwarf2_add_typedef (&fi, child_die, cu);
13563 else if (child_die->tag == DW_TAG_template_type_param
13564 || child_die->tag == DW_TAG_template_value_param)
13565 {
13566 struct symbol *arg = new_symbol (child_die, NULL, cu);
13567
13568 if (arg != NULL)
13569 VEC_safe_push (symbolp, template_args, arg);
13570 }
13571
13572 child_die = sibling_die (child_die);
13573 }
13574
13575 /* Attach template arguments to type. */
13576 if (! VEC_empty (symbolp, template_args))
13577 {
13578 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13579 TYPE_N_TEMPLATE_ARGUMENTS (type)
13580 = VEC_length (symbolp, template_args);
13581 TYPE_TEMPLATE_ARGUMENTS (type)
13582 = XOBNEWVEC (&objfile->objfile_obstack,
13583 struct symbol *,
13584 TYPE_N_TEMPLATE_ARGUMENTS (type));
13585 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13586 VEC_address (symbolp, template_args),
13587 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13588 * sizeof (struct symbol *)));
13589 VEC_free (symbolp, template_args);
13590 }
13591
13592 /* Attach fields and member functions to the type. */
13593 if (fi.nfields)
13594 dwarf2_attach_fields_to_type (&fi, type, cu);
13595 if (fi.nfnfields)
13596 {
13597 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13598
13599 /* Get the type which refers to the base class (possibly this
13600 class itself) which contains the vtable pointer for the current
13601 class from the DW_AT_containing_type attribute. This use of
13602 DW_AT_containing_type is a GNU extension. */
13603
13604 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13605 {
13606 struct type *t = die_containing_type (die, cu);
13607
13608 set_type_vptr_basetype (type, t);
13609 if (type == t)
13610 {
13611 int i;
13612
13613 /* Our own class provides vtbl ptr. */
13614 for (i = TYPE_NFIELDS (t) - 1;
13615 i >= TYPE_N_BASECLASSES (t);
13616 --i)
13617 {
13618 const char *fieldname = TYPE_FIELD_NAME (t, i);
13619
13620 if (is_vtable_name (fieldname, cu))
13621 {
13622 set_type_vptr_fieldno (type, i);
13623 break;
13624 }
13625 }
13626
13627 /* Complain if virtual function table field not found. */
13628 if (i < TYPE_N_BASECLASSES (t))
13629 complaint (&symfile_complaints,
13630 _("virtual function table pointer "
13631 "not found when defining class '%s'"),
13632 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13633 "");
13634 }
13635 else
13636 {
13637 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13638 }
13639 }
13640 else if (cu->producer
13641 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13642 {
13643 /* The IBM XLC compiler does not provide direct indication
13644 of the containing type, but the vtable pointer is
13645 always named __vfp. */
13646
13647 int i;
13648
13649 for (i = TYPE_NFIELDS (type) - 1;
13650 i >= TYPE_N_BASECLASSES (type);
13651 --i)
13652 {
13653 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13654 {
13655 set_type_vptr_fieldno (type, i);
13656 set_type_vptr_basetype (type, type);
13657 break;
13658 }
13659 }
13660 }
13661 }
13662
13663 /* Copy fi.typedef_field_list linked list elements content into the
13664 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13665 if (fi.typedef_field_list)
13666 {
13667 int i = fi.typedef_field_list_count;
13668
13669 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13670 TYPE_TYPEDEF_FIELD_ARRAY (type)
13671 = ((struct typedef_field *)
13672 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13673 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13674
13675 /* Reverse the list order to keep the debug info elements order. */
13676 while (--i >= 0)
13677 {
13678 struct typedef_field *dest, *src;
13679
13680 dest = &TYPE_TYPEDEF_FIELD (type, i);
13681 src = &fi.typedef_field_list->field;
13682 fi.typedef_field_list = fi.typedef_field_list->next;
13683 *dest = *src;
13684 }
13685 }
13686
13687 do_cleanups (back_to);
13688 }
13689
13690 quirk_gcc_member_function_pointer (type, objfile);
13691
13692 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13693 snapshots) has been known to create a die giving a declaration
13694 for a class that has, as a child, a die giving a definition for a
13695 nested class. So we have to process our children even if the
13696 current die is a declaration. Normally, of course, a declaration
13697 won't have any children at all. */
13698
13699 child_die = die->child;
13700
13701 while (child_die != NULL && child_die->tag)
13702 {
13703 if (child_die->tag == DW_TAG_member
13704 || child_die->tag == DW_TAG_variable
13705 || child_die->tag == DW_TAG_inheritance
13706 || child_die->tag == DW_TAG_template_value_param
13707 || child_die->tag == DW_TAG_template_type_param)
13708 {
13709 /* Do nothing. */
13710 }
13711 else
13712 process_die (child_die, cu);
13713
13714 child_die = sibling_die (child_die);
13715 }
13716
13717 /* Do not consider external references. According to the DWARF standard,
13718 these DIEs are identified by the fact that they have no byte_size
13719 attribute, and a declaration attribute. */
13720 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13721 || !die_is_declaration (die, cu))
13722 new_symbol (die, type, cu);
13723 }
13724
13725 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13726 update TYPE using some information only available in DIE's children. */
13727
13728 static void
13729 update_enumeration_type_from_children (struct die_info *die,
13730 struct type *type,
13731 struct dwarf2_cu *cu)
13732 {
13733 struct obstack obstack;
13734 struct die_info *child_die;
13735 int unsigned_enum = 1;
13736 int flag_enum = 1;
13737 ULONGEST mask = 0;
13738 struct cleanup *old_chain;
13739
13740 obstack_init (&obstack);
13741 old_chain = make_cleanup_obstack_free (&obstack);
13742
13743 for (child_die = die->child;
13744 child_die != NULL && child_die->tag;
13745 child_die = sibling_die (child_die))
13746 {
13747 struct attribute *attr;
13748 LONGEST value;
13749 const gdb_byte *bytes;
13750 struct dwarf2_locexpr_baton *baton;
13751 const char *name;
13752
13753 if (child_die->tag != DW_TAG_enumerator)
13754 continue;
13755
13756 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13757 if (attr == NULL)
13758 continue;
13759
13760 name = dwarf2_name (child_die, cu);
13761 if (name == NULL)
13762 name = "<anonymous enumerator>";
13763
13764 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13765 &value, &bytes, &baton);
13766 if (value < 0)
13767 {
13768 unsigned_enum = 0;
13769 flag_enum = 0;
13770 }
13771 else if ((mask & value) != 0)
13772 flag_enum = 0;
13773 else
13774 mask |= value;
13775
13776 /* If we already know that the enum type is neither unsigned, nor
13777 a flag type, no need to look at the rest of the enumerates. */
13778 if (!unsigned_enum && !flag_enum)
13779 break;
13780 }
13781
13782 if (unsigned_enum)
13783 TYPE_UNSIGNED (type) = 1;
13784 if (flag_enum)
13785 TYPE_FLAG_ENUM (type) = 1;
13786
13787 do_cleanups (old_chain);
13788 }
13789
13790 /* Given a DW_AT_enumeration_type die, set its type. We do not
13791 complete the type's fields yet, or create any symbols. */
13792
13793 static struct type *
13794 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13795 {
13796 struct objfile *objfile = cu->objfile;
13797 struct type *type;
13798 struct attribute *attr;
13799 const char *name;
13800
13801 /* If the definition of this type lives in .debug_types, read that type.
13802 Don't follow DW_AT_specification though, that will take us back up
13803 the chain and we want to go down. */
13804 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13805 if (attr)
13806 {
13807 type = get_DW_AT_signature_type (die, attr, cu);
13808
13809 /* The type's CU may not be the same as CU.
13810 Ensure TYPE is recorded with CU in die_type_hash. */
13811 return set_die_type (die, type, cu);
13812 }
13813
13814 type = alloc_type (objfile);
13815
13816 TYPE_CODE (type) = TYPE_CODE_ENUM;
13817 name = dwarf2_full_name (NULL, die, cu);
13818 if (name != NULL)
13819 TYPE_TAG_NAME (type) = name;
13820
13821 attr = dwarf2_attr (die, DW_AT_type, cu);
13822 if (attr != NULL)
13823 {
13824 struct type *underlying_type = die_type (die, cu);
13825
13826 TYPE_TARGET_TYPE (type) = underlying_type;
13827 }
13828
13829 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13830 if (attr)
13831 {
13832 TYPE_LENGTH (type) = DW_UNSND (attr);
13833 }
13834 else
13835 {
13836 TYPE_LENGTH (type) = 0;
13837 }
13838
13839 /* The enumeration DIE can be incomplete. In Ada, any type can be
13840 declared as private in the package spec, and then defined only
13841 inside the package body. Such types are known as Taft Amendment
13842 Types. When another package uses such a type, an incomplete DIE
13843 may be generated by the compiler. */
13844 if (die_is_declaration (die, cu))
13845 TYPE_STUB (type) = 1;
13846
13847 /* Finish the creation of this type by using the enum's children.
13848 We must call this even when the underlying type has been provided
13849 so that we can determine if we're looking at a "flag" enum. */
13850 update_enumeration_type_from_children (die, type, cu);
13851
13852 /* If this type has an underlying type that is not a stub, then we
13853 may use its attributes. We always use the "unsigned" attribute
13854 in this situation, because ordinarily we guess whether the type
13855 is unsigned -- but the guess can be wrong and the underlying type
13856 can tell us the reality. However, we defer to a local size
13857 attribute if one exists, because this lets the compiler override
13858 the underlying type if needed. */
13859 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13860 {
13861 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13862 if (TYPE_LENGTH (type) == 0)
13863 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13864 }
13865
13866 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13867
13868 return set_die_type (die, type, cu);
13869 }
13870
13871 /* Given a pointer to a die which begins an enumeration, process all
13872 the dies that define the members of the enumeration, and create the
13873 symbol for the enumeration type.
13874
13875 NOTE: We reverse the order of the element list. */
13876
13877 static void
13878 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13879 {
13880 struct type *this_type;
13881
13882 this_type = get_die_type (die, cu);
13883 if (this_type == NULL)
13884 this_type = read_enumeration_type (die, cu);
13885
13886 if (die->child != NULL)
13887 {
13888 struct die_info *child_die;
13889 struct symbol *sym;
13890 struct field *fields = NULL;
13891 int num_fields = 0;
13892 const char *name;
13893
13894 child_die = die->child;
13895 while (child_die && child_die->tag)
13896 {
13897 if (child_die->tag != DW_TAG_enumerator)
13898 {
13899 process_die (child_die, cu);
13900 }
13901 else
13902 {
13903 name = dwarf2_name (child_die, cu);
13904 if (name)
13905 {
13906 sym = new_symbol (child_die, this_type, cu);
13907
13908 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13909 {
13910 fields = (struct field *)
13911 xrealloc (fields,
13912 (num_fields + DW_FIELD_ALLOC_CHUNK)
13913 * sizeof (struct field));
13914 }
13915
13916 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13917 FIELD_TYPE (fields[num_fields]) = NULL;
13918 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13919 FIELD_BITSIZE (fields[num_fields]) = 0;
13920
13921 num_fields++;
13922 }
13923 }
13924
13925 child_die = sibling_die (child_die);
13926 }
13927
13928 if (num_fields)
13929 {
13930 TYPE_NFIELDS (this_type) = num_fields;
13931 TYPE_FIELDS (this_type) = (struct field *)
13932 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13933 memcpy (TYPE_FIELDS (this_type), fields,
13934 sizeof (struct field) * num_fields);
13935 xfree (fields);
13936 }
13937 }
13938
13939 /* If we are reading an enum from a .debug_types unit, and the enum
13940 is a declaration, and the enum is not the signatured type in the
13941 unit, then we do not want to add a symbol for it. Adding a
13942 symbol would in some cases obscure the true definition of the
13943 enum, giving users an incomplete type when the definition is
13944 actually available. Note that we do not want to do this for all
13945 enums which are just declarations, because C++0x allows forward
13946 enum declarations. */
13947 if (cu->per_cu->is_debug_types
13948 && die_is_declaration (die, cu))
13949 {
13950 struct signatured_type *sig_type;
13951
13952 sig_type = (struct signatured_type *) cu->per_cu;
13953 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13954 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13955 return;
13956 }
13957
13958 new_symbol (die, this_type, cu);
13959 }
13960
13961 /* Extract all information from a DW_TAG_array_type DIE and put it in
13962 the DIE's type field. For now, this only handles one dimensional
13963 arrays. */
13964
13965 static struct type *
13966 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13967 {
13968 struct objfile *objfile = cu->objfile;
13969 struct die_info *child_die;
13970 struct type *type;
13971 struct type *element_type, *range_type, *index_type;
13972 struct type **range_types = NULL;
13973 struct attribute *attr;
13974 int ndim = 0;
13975 struct cleanup *back_to;
13976 const char *name;
13977 unsigned int bit_stride = 0;
13978
13979 element_type = die_type (die, cu);
13980
13981 /* The die_type call above may have already set the type for this DIE. */
13982 type = get_die_type (die, cu);
13983 if (type)
13984 return type;
13985
13986 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13987 if (attr != NULL)
13988 bit_stride = DW_UNSND (attr) * 8;
13989
13990 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13991 if (attr != NULL)
13992 bit_stride = DW_UNSND (attr);
13993
13994 /* Irix 6.2 native cc creates array types without children for
13995 arrays with unspecified length. */
13996 if (die->child == NULL)
13997 {
13998 index_type = objfile_type (objfile)->builtin_int;
13999 range_type = create_static_range_type (NULL, index_type, 0, -1);
14000 type = create_array_type_with_stride (NULL, element_type, range_type,
14001 bit_stride);
14002 return set_die_type (die, type, cu);
14003 }
14004
14005 back_to = make_cleanup (null_cleanup, NULL);
14006 child_die = die->child;
14007 while (child_die && child_die->tag)
14008 {
14009 if (child_die->tag == DW_TAG_subrange_type)
14010 {
14011 struct type *child_type = read_type_die (child_die, cu);
14012
14013 if (child_type != NULL)
14014 {
14015 /* The range type was succesfully read. Save it for the
14016 array type creation. */
14017 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
14018 {
14019 range_types = (struct type **)
14020 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
14021 * sizeof (struct type *));
14022 if (ndim == 0)
14023 make_cleanup (free_current_contents, &range_types);
14024 }
14025 range_types[ndim++] = child_type;
14026 }
14027 }
14028 child_die = sibling_die (child_die);
14029 }
14030
14031 /* Dwarf2 dimensions are output from left to right, create the
14032 necessary array types in backwards order. */
14033
14034 type = element_type;
14035
14036 if (read_array_order (die, cu) == DW_ORD_col_major)
14037 {
14038 int i = 0;
14039
14040 while (i < ndim)
14041 type = create_array_type_with_stride (NULL, type, range_types[i++],
14042 bit_stride);
14043 }
14044 else
14045 {
14046 while (ndim-- > 0)
14047 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14048 bit_stride);
14049 }
14050
14051 /* Understand Dwarf2 support for vector types (like they occur on
14052 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14053 array type. This is not part of the Dwarf2/3 standard yet, but a
14054 custom vendor extension. The main difference between a regular
14055 array and the vector variant is that vectors are passed by value
14056 to functions. */
14057 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
14058 if (attr)
14059 make_vector_type (type);
14060
14061 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14062 implementation may choose to implement triple vectors using this
14063 attribute. */
14064 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14065 if (attr)
14066 {
14067 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14068 TYPE_LENGTH (type) = DW_UNSND (attr);
14069 else
14070 complaint (&symfile_complaints,
14071 _("DW_AT_byte_size for array type smaller "
14072 "than the total size of elements"));
14073 }
14074
14075 name = dwarf2_name (die, cu);
14076 if (name)
14077 TYPE_NAME (type) = name;
14078
14079 /* Install the type in the die. */
14080 set_die_type (die, type, cu);
14081
14082 /* set_die_type should be already done. */
14083 set_descriptive_type (type, die, cu);
14084
14085 do_cleanups (back_to);
14086
14087 return type;
14088 }
14089
14090 static enum dwarf_array_dim_ordering
14091 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
14092 {
14093 struct attribute *attr;
14094
14095 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14096
14097 if (attr)
14098 return (enum dwarf_array_dim_ordering) DW_SND (attr);
14099
14100 /* GNU F77 is a special case, as at 08/2004 array type info is the
14101 opposite order to the dwarf2 specification, but data is still
14102 laid out as per normal fortran.
14103
14104 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14105 version checking. */
14106
14107 if (cu->language == language_fortran
14108 && cu->producer && strstr (cu->producer, "GNU F77"))
14109 {
14110 return DW_ORD_row_major;
14111 }
14112
14113 switch (cu->language_defn->la_array_ordering)
14114 {
14115 case array_column_major:
14116 return DW_ORD_col_major;
14117 case array_row_major:
14118 default:
14119 return DW_ORD_row_major;
14120 };
14121 }
14122
14123 /* Extract all information from a DW_TAG_set_type DIE and put it in
14124 the DIE's type field. */
14125
14126 static struct type *
14127 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14128 {
14129 struct type *domain_type, *set_type;
14130 struct attribute *attr;
14131
14132 domain_type = die_type (die, cu);
14133
14134 /* The die_type call above may have already set the type for this DIE. */
14135 set_type = get_die_type (die, cu);
14136 if (set_type)
14137 return set_type;
14138
14139 set_type = create_set_type (NULL, domain_type);
14140
14141 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14142 if (attr)
14143 TYPE_LENGTH (set_type) = DW_UNSND (attr);
14144
14145 return set_die_type (die, set_type, cu);
14146 }
14147
14148 /* A helper for read_common_block that creates a locexpr baton.
14149 SYM is the symbol which we are marking as computed.
14150 COMMON_DIE is the DIE for the common block.
14151 COMMON_LOC is the location expression attribute for the common
14152 block itself.
14153 MEMBER_LOC is the location expression attribute for the particular
14154 member of the common block that we are processing.
14155 CU is the CU from which the above come. */
14156
14157 static void
14158 mark_common_block_symbol_computed (struct symbol *sym,
14159 struct die_info *common_die,
14160 struct attribute *common_loc,
14161 struct attribute *member_loc,
14162 struct dwarf2_cu *cu)
14163 {
14164 struct objfile *objfile = dwarf2_per_objfile->objfile;
14165 struct dwarf2_locexpr_baton *baton;
14166 gdb_byte *ptr;
14167 unsigned int cu_off;
14168 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14169 LONGEST offset = 0;
14170
14171 gdb_assert (common_loc && member_loc);
14172 gdb_assert (attr_form_is_block (common_loc));
14173 gdb_assert (attr_form_is_block (member_loc)
14174 || attr_form_is_constant (member_loc));
14175
14176 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14177 baton->per_cu = cu->per_cu;
14178 gdb_assert (baton->per_cu);
14179
14180 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14181
14182 if (attr_form_is_constant (member_loc))
14183 {
14184 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14185 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14186 }
14187 else
14188 baton->size += DW_BLOCK (member_loc)->size;
14189
14190 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
14191 baton->data = ptr;
14192
14193 *ptr++ = DW_OP_call4;
14194 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
14195 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14196 ptr += 4;
14197
14198 if (attr_form_is_constant (member_loc))
14199 {
14200 *ptr++ = DW_OP_addr;
14201 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14202 ptr += cu->header.addr_size;
14203 }
14204 else
14205 {
14206 /* We have to copy the data here, because DW_OP_call4 will only
14207 use a DW_AT_location attribute. */
14208 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14209 ptr += DW_BLOCK (member_loc)->size;
14210 }
14211
14212 *ptr++ = DW_OP_plus;
14213 gdb_assert (ptr - baton->data == baton->size);
14214
14215 SYMBOL_LOCATION_BATON (sym) = baton;
14216 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
14217 }
14218
14219 /* Create appropriate locally-scoped variables for all the
14220 DW_TAG_common_block entries. Also create a struct common_block
14221 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14222 is used to sepate the common blocks name namespace from regular
14223 variable names. */
14224
14225 static void
14226 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
14227 {
14228 struct attribute *attr;
14229
14230 attr = dwarf2_attr (die, DW_AT_location, cu);
14231 if (attr)
14232 {
14233 /* Support the .debug_loc offsets. */
14234 if (attr_form_is_block (attr))
14235 {
14236 /* Ok. */
14237 }
14238 else if (attr_form_is_section_offset (attr))
14239 {
14240 dwarf2_complex_location_expr_complaint ();
14241 attr = NULL;
14242 }
14243 else
14244 {
14245 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14246 "common block member");
14247 attr = NULL;
14248 }
14249 }
14250
14251 if (die->child != NULL)
14252 {
14253 struct objfile *objfile = cu->objfile;
14254 struct die_info *child_die;
14255 size_t n_entries = 0, size;
14256 struct common_block *common_block;
14257 struct symbol *sym;
14258
14259 for (child_die = die->child;
14260 child_die && child_die->tag;
14261 child_die = sibling_die (child_die))
14262 ++n_entries;
14263
14264 size = (sizeof (struct common_block)
14265 + (n_entries - 1) * sizeof (struct symbol *));
14266 common_block
14267 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14268 size);
14269 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14270 common_block->n_entries = 0;
14271
14272 for (child_die = die->child;
14273 child_die && child_die->tag;
14274 child_die = sibling_die (child_die))
14275 {
14276 /* Create the symbol in the DW_TAG_common_block block in the current
14277 symbol scope. */
14278 sym = new_symbol (child_die, NULL, cu);
14279 if (sym != NULL)
14280 {
14281 struct attribute *member_loc;
14282
14283 common_block->contents[common_block->n_entries++] = sym;
14284
14285 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14286 cu);
14287 if (member_loc)
14288 {
14289 /* GDB has handled this for a long time, but it is
14290 not specified by DWARF. It seems to have been
14291 emitted by gfortran at least as recently as:
14292 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14293 complaint (&symfile_complaints,
14294 _("Variable in common block has "
14295 "DW_AT_data_member_location "
14296 "- DIE at 0x%x [in module %s]"),
14297 child_die->offset.sect_off,
14298 objfile_name (cu->objfile));
14299
14300 if (attr_form_is_section_offset (member_loc))
14301 dwarf2_complex_location_expr_complaint ();
14302 else if (attr_form_is_constant (member_loc)
14303 || attr_form_is_block (member_loc))
14304 {
14305 if (attr)
14306 mark_common_block_symbol_computed (sym, die, attr,
14307 member_loc, cu);
14308 }
14309 else
14310 dwarf2_complex_location_expr_complaint ();
14311 }
14312 }
14313 }
14314
14315 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14316 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14317 }
14318 }
14319
14320 /* Create a type for a C++ namespace. */
14321
14322 static struct type *
14323 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14324 {
14325 struct objfile *objfile = cu->objfile;
14326 const char *previous_prefix, *name;
14327 int is_anonymous;
14328 struct type *type;
14329
14330 /* For extensions, reuse the type of the original namespace. */
14331 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14332 {
14333 struct die_info *ext_die;
14334 struct dwarf2_cu *ext_cu = cu;
14335
14336 ext_die = dwarf2_extension (die, &ext_cu);
14337 type = read_type_die (ext_die, ext_cu);
14338
14339 /* EXT_CU may not be the same as CU.
14340 Ensure TYPE is recorded with CU in die_type_hash. */
14341 return set_die_type (die, type, cu);
14342 }
14343
14344 name = namespace_name (die, &is_anonymous, cu);
14345
14346 /* Now build the name of the current namespace. */
14347
14348 previous_prefix = determine_prefix (die, cu);
14349 if (previous_prefix[0] != '\0')
14350 name = typename_concat (&objfile->objfile_obstack,
14351 previous_prefix, name, 0, cu);
14352
14353 /* Create the type. */
14354 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14355 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14356
14357 return set_die_type (die, type, cu);
14358 }
14359
14360 /* Read a namespace scope. */
14361
14362 static void
14363 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14364 {
14365 struct objfile *objfile = cu->objfile;
14366 int is_anonymous;
14367
14368 /* Add a symbol associated to this if we haven't seen the namespace
14369 before. Also, add a using directive if it's an anonymous
14370 namespace. */
14371
14372 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14373 {
14374 struct type *type;
14375
14376 type = read_type_die (die, cu);
14377 new_symbol (die, type, cu);
14378
14379 namespace_name (die, &is_anonymous, cu);
14380 if (is_anonymous)
14381 {
14382 const char *previous_prefix = determine_prefix (die, cu);
14383
14384 add_using_directive (using_directives (cu->language),
14385 previous_prefix, TYPE_NAME (type), NULL,
14386 NULL, NULL, 0, &objfile->objfile_obstack);
14387 }
14388 }
14389
14390 if (die->child != NULL)
14391 {
14392 struct die_info *child_die = die->child;
14393
14394 while (child_die && child_die->tag)
14395 {
14396 process_die (child_die, cu);
14397 child_die = sibling_die (child_die);
14398 }
14399 }
14400 }
14401
14402 /* Read a Fortran module as type. This DIE can be only a declaration used for
14403 imported module. Still we need that type as local Fortran "use ... only"
14404 declaration imports depend on the created type in determine_prefix. */
14405
14406 static struct type *
14407 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14408 {
14409 struct objfile *objfile = cu->objfile;
14410 const char *module_name;
14411 struct type *type;
14412
14413 module_name = dwarf2_name (die, cu);
14414 if (!module_name)
14415 complaint (&symfile_complaints,
14416 _("DW_TAG_module has no name, offset 0x%x"),
14417 die->offset.sect_off);
14418 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14419
14420 /* determine_prefix uses TYPE_TAG_NAME. */
14421 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14422
14423 return set_die_type (die, type, cu);
14424 }
14425
14426 /* Read a Fortran module. */
14427
14428 static void
14429 read_module (struct die_info *die, struct dwarf2_cu *cu)
14430 {
14431 struct die_info *child_die = die->child;
14432 struct type *type;
14433
14434 type = read_type_die (die, cu);
14435 new_symbol (die, type, cu);
14436
14437 while (child_die && child_die->tag)
14438 {
14439 process_die (child_die, cu);
14440 child_die = sibling_die (child_die);
14441 }
14442 }
14443
14444 /* Return the name of the namespace represented by DIE. Set
14445 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14446 namespace. */
14447
14448 static const char *
14449 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14450 {
14451 struct die_info *current_die;
14452 const char *name = NULL;
14453
14454 /* Loop through the extensions until we find a name. */
14455
14456 for (current_die = die;
14457 current_die != NULL;
14458 current_die = dwarf2_extension (die, &cu))
14459 {
14460 /* We don't use dwarf2_name here so that we can detect the absence
14461 of a name -> anonymous namespace. */
14462 name = dwarf2_string_attr (die, DW_AT_name, cu);
14463
14464 if (name != NULL)
14465 break;
14466 }
14467
14468 /* Is it an anonymous namespace? */
14469
14470 *is_anonymous = (name == NULL);
14471 if (*is_anonymous)
14472 name = CP_ANONYMOUS_NAMESPACE_STR;
14473
14474 return name;
14475 }
14476
14477 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14478 the user defined type vector. */
14479
14480 static struct type *
14481 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14482 {
14483 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14484 struct comp_unit_head *cu_header = &cu->header;
14485 struct type *type;
14486 struct attribute *attr_byte_size;
14487 struct attribute *attr_address_class;
14488 int byte_size, addr_class;
14489 struct type *target_type;
14490
14491 target_type = die_type (die, cu);
14492
14493 /* The die_type call above may have already set the type for this DIE. */
14494 type = get_die_type (die, cu);
14495 if (type)
14496 return type;
14497
14498 type = lookup_pointer_type (target_type);
14499
14500 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14501 if (attr_byte_size)
14502 byte_size = DW_UNSND (attr_byte_size);
14503 else
14504 byte_size = cu_header->addr_size;
14505
14506 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14507 if (attr_address_class)
14508 addr_class = DW_UNSND (attr_address_class);
14509 else
14510 addr_class = DW_ADDR_none;
14511
14512 /* If the pointer size or address class is different than the
14513 default, create a type variant marked as such and set the
14514 length accordingly. */
14515 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14516 {
14517 if (gdbarch_address_class_type_flags_p (gdbarch))
14518 {
14519 int type_flags;
14520
14521 type_flags = gdbarch_address_class_type_flags
14522 (gdbarch, byte_size, addr_class);
14523 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14524 == 0);
14525 type = make_type_with_address_space (type, type_flags);
14526 }
14527 else if (TYPE_LENGTH (type) != byte_size)
14528 {
14529 complaint (&symfile_complaints,
14530 _("invalid pointer size %d"), byte_size);
14531 }
14532 else
14533 {
14534 /* Should we also complain about unhandled address classes? */
14535 }
14536 }
14537
14538 TYPE_LENGTH (type) = byte_size;
14539 return set_die_type (die, type, cu);
14540 }
14541
14542 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14543 the user defined type vector. */
14544
14545 static struct type *
14546 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14547 {
14548 struct type *type;
14549 struct type *to_type;
14550 struct type *domain;
14551
14552 to_type = die_type (die, cu);
14553 domain = die_containing_type (die, cu);
14554
14555 /* The calls above may have already set the type for this DIE. */
14556 type = get_die_type (die, cu);
14557 if (type)
14558 return type;
14559
14560 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14561 type = lookup_methodptr_type (to_type);
14562 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14563 {
14564 struct type *new_type = alloc_type (cu->objfile);
14565
14566 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14567 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14568 TYPE_VARARGS (to_type));
14569 type = lookup_methodptr_type (new_type);
14570 }
14571 else
14572 type = lookup_memberptr_type (to_type, domain);
14573
14574 return set_die_type (die, type, cu);
14575 }
14576
14577 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
14578 the user defined type vector. */
14579
14580 static struct type *
14581 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
14582 enum type_code refcode)
14583 {
14584 struct comp_unit_head *cu_header = &cu->header;
14585 struct type *type, *target_type;
14586 struct attribute *attr;
14587
14588 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
14589
14590 target_type = die_type (die, cu);
14591
14592 /* The die_type call above may have already set the type for this DIE. */
14593 type = get_die_type (die, cu);
14594 if (type)
14595 return type;
14596
14597 type = lookup_reference_type (target_type, refcode);
14598 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14599 if (attr)
14600 {
14601 TYPE_LENGTH (type) = DW_UNSND (attr);
14602 }
14603 else
14604 {
14605 TYPE_LENGTH (type) = cu_header->addr_size;
14606 }
14607 return set_die_type (die, type, cu);
14608 }
14609
14610 /* Add the given cv-qualifiers to the element type of the array. GCC
14611 outputs DWARF type qualifiers that apply to an array, not the
14612 element type. But GDB relies on the array element type to carry
14613 the cv-qualifiers. This mimics section 6.7.3 of the C99
14614 specification. */
14615
14616 static struct type *
14617 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14618 struct type *base_type, int cnst, int voltl)
14619 {
14620 struct type *el_type, *inner_array;
14621
14622 base_type = copy_type (base_type);
14623 inner_array = base_type;
14624
14625 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14626 {
14627 TYPE_TARGET_TYPE (inner_array) =
14628 copy_type (TYPE_TARGET_TYPE (inner_array));
14629 inner_array = TYPE_TARGET_TYPE (inner_array);
14630 }
14631
14632 el_type = TYPE_TARGET_TYPE (inner_array);
14633 cnst |= TYPE_CONST (el_type);
14634 voltl |= TYPE_VOLATILE (el_type);
14635 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14636
14637 return set_die_type (die, base_type, cu);
14638 }
14639
14640 static struct type *
14641 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14642 {
14643 struct type *base_type, *cv_type;
14644
14645 base_type = die_type (die, cu);
14646
14647 /* The die_type call above may have already set the type for this DIE. */
14648 cv_type = get_die_type (die, cu);
14649 if (cv_type)
14650 return cv_type;
14651
14652 /* In case the const qualifier is applied to an array type, the element type
14653 is so qualified, not the array type (section 6.7.3 of C99). */
14654 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14655 return add_array_cv_type (die, cu, base_type, 1, 0);
14656
14657 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14658 return set_die_type (die, cv_type, cu);
14659 }
14660
14661 static struct type *
14662 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14663 {
14664 struct type *base_type, *cv_type;
14665
14666 base_type = die_type (die, cu);
14667
14668 /* The die_type call above may have already set the type for this DIE. */
14669 cv_type = get_die_type (die, cu);
14670 if (cv_type)
14671 return cv_type;
14672
14673 /* In case the volatile qualifier is applied to an array type, the
14674 element type is so qualified, not the array type (section 6.7.3
14675 of C99). */
14676 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14677 return add_array_cv_type (die, cu, base_type, 0, 1);
14678
14679 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14680 return set_die_type (die, cv_type, cu);
14681 }
14682
14683 /* Handle DW_TAG_restrict_type. */
14684
14685 static struct type *
14686 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14687 {
14688 struct type *base_type, *cv_type;
14689
14690 base_type = die_type (die, cu);
14691
14692 /* The die_type call above may have already set the type for this DIE. */
14693 cv_type = get_die_type (die, cu);
14694 if (cv_type)
14695 return cv_type;
14696
14697 cv_type = make_restrict_type (base_type);
14698 return set_die_type (die, cv_type, cu);
14699 }
14700
14701 /* Handle DW_TAG_atomic_type. */
14702
14703 static struct type *
14704 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14705 {
14706 struct type *base_type, *cv_type;
14707
14708 base_type = die_type (die, cu);
14709
14710 /* The die_type call above may have already set the type for this DIE. */
14711 cv_type = get_die_type (die, cu);
14712 if (cv_type)
14713 return cv_type;
14714
14715 cv_type = make_atomic_type (base_type);
14716 return set_die_type (die, cv_type, cu);
14717 }
14718
14719 /* Extract all information from a DW_TAG_string_type DIE and add to
14720 the user defined type vector. It isn't really a user defined type,
14721 but it behaves like one, with other DIE's using an AT_user_def_type
14722 attribute to reference it. */
14723
14724 static struct type *
14725 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14726 {
14727 struct objfile *objfile = cu->objfile;
14728 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14729 struct type *type, *range_type, *index_type, *char_type;
14730 struct attribute *attr;
14731 unsigned int length;
14732
14733 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14734 if (attr)
14735 {
14736 length = DW_UNSND (attr);
14737 }
14738 else
14739 {
14740 /* Check for the DW_AT_byte_size attribute. */
14741 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14742 if (attr)
14743 {
14744 length = DW_UNSND (attr);
14745 }
14746 else
14747 {
14748 length = 1;
14749 }
14750 }
14751
14752 index_type = objfile_type (objfile)->builtin_int;
14753 range_type = create_static_range_type (NULL, index_type, 1, length);
14754 char_type = language_string_char_type (cu->language_defn, gdbarch);
14755 type = create_string_type (NULL, char_type, range_type);
14756
14757 return set_die_type (die, type, cu);
14758 }
14759
14760 /* Assuming that DIE corresponds to a function, returns nonzero
14761 if the function is prototyped. */
14762
14763 static int
14764 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14765 {
14766 struct attribute *attr;
14767
14768 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14769 if (attr && (DW_UNSND (attr) != 0))
14770 return 1;
14771
14772 /* The DWARF standard implies that the DW_AT_prototyped attribute
14773 is only meaninful for C, but the concept also extends to other
14774 languages that allow unprototyped functions (Eg: Objective C).
14775 For all other languages, assume that functions are always
14776 prototyped. */
14777 if (cu->language != language_c
14778 && cu->language != language_objc
14779 && cu->language != language_opencl)
14780 return 1;
14781
14782 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14783 prototyped and unprototyped functions; default to prototyped,
14784 since that is more common in modern code (and RealView warns
14785 about unprototyped functions). */
14786 if (producer_is_realview (cu->producer))
14787 return 1;
14788
14789 return 0;
14790 }
14791
14792 /* Handle DIES due to C code like:
14793
14794 struct foo
14795 {
14796 int (*funcp)(int a, long l);
14797 int b;
14798 };
14799
14800 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14801
14802 static struct type *
14803 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14804 {
14805 struct objfile *objfile = cu->objfile;
14806 struct type *type; /* Type that this function returns. */
14807 struct type *ftype; /* Function that returns above type. */
14808 struct attribute *attr;
14809
14810 type = die_type (die, cu);
14811
14812 /* The die_type call above may have already set the type for this DIE. */
14813 ftype = get_die_type (die, cu);
14814 if (ftype)
14815 return ftype;
14816
14817 ftype = lookup_function_type (type);
14818
14819 if (prototyped_function_p (die, cu))
14820 TYPE_PROTOTYPED (ftype) = 1;
14821
14822 /* Store the calling convention in the type if it's available in
14823 the subroutine die. Otherwise set the calling convention to
14824 the default value DW_CC_normal. */
14825 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14826 if (attr)
14827 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14828 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14829 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14830 else
14831 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14832
14833 /* Record whether the function returns normally to its caller or not
14834 if the DWARF producer set that information. */
14835 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14836 if (attr && (DW_UNSND (attr) != 0))
14837 TYPE_NO_RETURN (ftype) = 1;
14838
14839 /* We need to add the subroutine type to the die immediately so
14840 we don't infinitely recurse when dealing with parameters
14841 declared as the same subroutine type. */
14842 set_die_type (die, ftype, cu);
14843
14844 if (die->child != NULL)
14845 {
14846 struct type *void_type = objfile_type (objfile)->builtin_void;
14847 struct die_info *child_die;
14848 int nparams, iparams;
14849
14850 /* Count the number of parameters.
14851 FIXME: GDB currently ignores vararg functions, but knows about
14852 vararg member functions. */
14853 nparams = 0;
14854 child_die = die->child;
14855 while (child_die && child_die->tag)
14856 {
14857 if (child_die->tag == DW_TAG_formal_parameter)
14858 nparams++;
14859 else if (child_die->tag == DW_TAG_unspecified_parameters)
14860 TYPE_VARARGS (ftype) = 1;
14861 child_die = sibling_die (child_die);
14862 }
14863
14864 /* Allocate storage for parameters and fill them in. */
14865 TYPE_NFIELDS (ftype) = nparams;
14866 TYPE_FIELDS (ftype) = (struct field *)
14867 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14868
14869 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14870 even if we error out during the parameters reading below. */
14871 for (iparams = 0; iparams < nparams; iparams++)
14872 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14873
14874 iparams = 0;
14875 child_die = die->child;
14876 while (child_die && child_die->tag)
14877 {
14878 if (child_die->tag == DW_TAG_formal_parameter)
14879 {
14880 struct type *arg_type;
14881
14882 /* DWARF version 2 has no clean way to discern C++
14883 static and non-static member functions. G++ helps
14884 GDB by marking the first parameter for non-static
14885 member functions (which is the this pointer) as
14886 artificial. We pass this information to
14887 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14888
14889 DWARF version 3 added DW_AT_object_pointer, which GCC
14890 4.5 does not yet generate. */
14891 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14892 if (attr)
14893 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14894 else
14895 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14896 arg_type = die_type (child_die, cu);
14897
14898 /* RealView does not mark THIS as const, which the testsuite
14899 expects. GCC marks THIS as const in method definitions,
14900 but not in the class specifications (GCC PR 43053). */
14901 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14902 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14903 {
14904 int is_this = 0;
14905 struct dwarf2_cu *arg_cu = cu;
14906 const char *name = dwarf2_name (child_die, cu);
14907
14908 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14909 if (attr)
14910 {
14911 /* If the compiler emits this, use it. */
14912 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14913 is_this = 1;
14914 }
14915 else if (name && strcmp (name, "this") == 0)
14916 /* Function definitions will have the argument names. */
14917 is_this = 1;
14918 else if (name == NULL && iparams == 0)
14919 /* Declarations may not have the names, so like
14920 elsewhere in GDB, assume an artificial first
14921 argument is "this". */
14922 is_this = 1;
14923
14924 if (is_this)
14925 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14926 arg_type, 0);
14927 }
14928
14929 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14930 iparams++;
14931 }
14932 child_die = sibling_die (child_die);
14933 }
14934 }
14935
14936 return ftype;
14937 }
14938
14939 static struct type *
14940 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14941 {
14942 struct objfile *objfile = cu->objfile;
14943 const char *name = NULL;
14944 struct type *this_type, *target_type;
14945
14946 name = dwarf2_full_name (NULL, die, cu);
14947 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
14948 TYPE_TARGET_STUB (this_type) = 1;
14949 set_die_type (die, this_type, cu);
14950 target_type = die_type (die, cu);
14951 if (target_type != this_type)
14952 TYPE_TARGET_TYPE (this_type) = target_type;
14953 else
14954 {
14955 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14956 spec and cause infinite loops in GDB. */
14957 complaint (&symfile_complaints,
14958 _("Self-referential DW_TAG_typedef "
14959 "- DIE at 0x%x [in module %s]"),
14960 die->offset.sect_off, objfile_name (objfile));
14961 TYPE_TARGET_TYPE (this_type) = NULL;
14962 }
14963 return this_type;
14964 }
14965
14966 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
14967 (which may be different from NAME) to the architecture back-end to allow
14968 it to guess the correct format if necessary. */
14969
14970 static struct type *
14971 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
14972 const char *name_hint)
14973 {
14974 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14975 const struct floatformat **format;
14976 struct type *type;
14977
14978 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
14979 if (format)
14980 type = init_float_type (objfile, bits, name, format);
14981 else
14982 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
14983
14984 return type;
14985 }
14986
14987 /* Find a representation of a given base type and install
14988 it in the TYPE field of the die. */
14989
14990 static struct type *
14991 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14992 {
14993 struct objfile *objfile = cu->objfile;
14994 struct type *type;
14995 struct attribute *attr;
14996 int encoding = 0, bits = 0;
14997 const char *name;
14998
14999 attr = dwarf2_attr (die, DW_AT_encoding, cu);
15000 if (attr)
15001 {
15002 encoding = DW_UNSND (attr);
15003 }
15004 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15005 if (attr)
15006 {
15007 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
15008 }
15009 name = dwarf2_name (die, cu);
15010 if (!name)
15011 {
15012 complaint (&symfile_complaints,
15013 _("DW_AT_name missing from DW_TAG_base_type"));
15014 }
15015
15016 switch (encoding)
15017 {
15018 case DW_ATE_address:
15019 /* Turn DW_ATE_address into a void * pointer. */
15020 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
15021 type = init_pointer_type (objfile, bits, name, type);
15022 break;
15023 case DW_ATE_boolean:
15024 type = init_boolean_type (objfile, bits, 1, name);
15025 break;
15026 case DW_ATE_complex_float:
15027 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
15028 type = init_complex_type (objfile, name, type);
15029 break;
15030 case DW_ATE_decimal_float:
15031 type = init_decfloat_type (objfile, bits, name);
15032 break;
15033 case DW_ATE_float:
15034 type = dwarf2_init_float_type (objfile, bits, name, name);
15035 break;
15036 case DW_ATE_signed:
15037 type = init_integer_type (objfile, bits, 0, name);
15038 break;
15039 case DW_ATE_unsigned:
15040 if (cu->language == language_fortran
15041 && name
15042 && startswith (name, "character("))
15043 type = init_character_type (objfile, bits, 1, name);
15044 else
15045 type = init_integer_type (objfile, bits, 1, name);
15046 break;
15047 case DW_ATE_signed_char:
15048 if (cu->language == language_ada || cu->language == language_m2
15049 || cu->language == language_pascal
15050 || cu->language == language_fortran)
15051 type = init_character_type (objfile, bits, 0, name);
15052 else
15053 type = init_integer_type (objfile, bits, 0, name);
15054 break;
15055 case DW_ATE_unsigned_char:
15056 if (cu->language == language_ada || cu->language == language_m2
15057 || cu->language == language_pascal
15058 || cu->language == language_fortran
15059 || cu->language == language_rust)
15060 type = init_character_type (objfile, bits, 1, name);
15061 else
15062 type = init_integer_type (objfile, bits, 1, name);
15063 break;
15064 case DW_ATE_UTF:
15065 /* We just treat this as an integer and then recognize the
15066 type by name elsewhere. */
15067 type = init_integer_type (objfile, bits, 0, name);
15068 break;
15069
15070 default:
15071 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15072 dwarf_type_encoding_name (encoding));
15073 type = init_type (objfile, TYPE_CODE_ERROR,
15074 bits / TARGET_CHAR_BIT, name);
15075 break;
15076 }
15077
15078 if (name && strcmp (name, "char") == 0)
15079 TYPE_NOSIGN (type) = 1;
15080
15081 return set_die_type (die, type, cu);
15082 }
15083
15084 /* Parse dwarf attribute if it's a block, reference or constant and put the
15085 resulting value of the attribute into struct bound_prop.
15086 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15087
15088 static int
15089 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15090 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15091 {
15092 struct dwarf2_property_baton *baton;
15093 struct obstack *obstack = &cu->objfile->objfile_obstack;
15094
15095 if (attr == NULL || prop == NULL)
15096 return 0;
15097
15098 if (attr_form_is_block (attr))
15099 {
15100 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15101 baton->referenced_type = NULL;
15102 baton->locexpr.per_cu = cu->per_cu;
15103 baton->locexpr.size = DW_BLOCK (attr)->size;
15104 baton->locexpr.data = DW_BLOCK (attr)->data;
15105 prop->data.baton = baton;
15106 prop->kind = PROP_LOCEXPR;
15107 gdb_assert (prop->data.baton != NULL);
15108 }
15109 else if (attr_form_is_ref (attr))
15110 {
15111 struct dwarf2_cu *target_cu = cu;
15112 struct die_info *target_die;
15113 struct attribute *target_attr;
15114
15115 target_die = follow_die_ref (die, attr, &target_cu);
15116 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
15117 if (target_attr == NULL)
15118 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15119 target_cu);
15120 if (target_attr == NULL)
15121 return 0;
15122
15123 switch (target_attr->name)
15124 {
15125 case DW_AT_location:
15126 if (attr_form_is_section_offset (target_attr))
15127 {
15128 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15129 baton->referenced_type = die_type (target_die, target_cu);
15130 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15131 prop->data.baton = baton;
15132 prop->kind = PROP_LOCLIST;
15133 gdb_assert (prop->data.baton != NULL);
15134 }
15135 else if (attr_form_is_block (target_attr))
15136 {
15137 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15138 baton->referenced_type = die_type (target_die, target_cu);
15139 baton->locexpr.per_cu = cu->per_cu;
15140 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15141 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15142 prop->data.baton = baton;
15143 prop->kind = PROP_LOCEXPR;
15144 gdb_assert (prop->data.baton != NULL);
15145 }
15146 else
15147 {
15148 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15149 "dynamic property");
15150 return 0;
15151 }
15152 break;
15153 case DW_AT_data_member_location:
15154 {
15155 LONGEST offset;
15156
15157 if (!handle_data_member_location (target_die, target_cu,
15158 &offset))
15159 return 0;
15160
15161 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15162 baton->referenced_type = read_type_die (target_die->parent,
15163 target_cu);
15164 baton->offset_info.offset = offset;
15165 baton->offset_info.type = die_type (target_die, target_cu);
15166 prop->data.baton = baton;
15167 prop->kind = PROP_ADDR_OFFSET;
15168 break;
15169 }
15170 }
15171 }
15172 else if (attr_form_is_constant (attr))
15173 {
15174 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15175 prop->kind = PROP_CONST;
15176 }
15177 else
15178 {
15179 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15180 dwarf2_name (die, cu));
15181 return 0;
15182 }
15183
15184 return 1;
15185 }
15186
15187 /* Read the given DW_AT_subrange DIE. */
15188
15189 static struct type *
15190 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15191 {
15192 struct type *base_type, *orig_base_type;
15193 struct type *range_type;
15194 struct attribute *attr;
15195 struct dynamic_prop low, high;
15196 int low_default_is_valid;
15197 int high_bound_is_count = 0;
15198 const char *name;
15199 LONGEST negative_mask;
15200
15201 orig_base_type = die_type (die, cu);
15202 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15203 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15204 creating the range type, but we use the result of check_typedef
15205 when examining properties of the type. */
15206 base_type = check_typedef (orig_base_type);
15207
15208 /* The die_type call above may have already set the type for this DIE. */
15209 range_type = get_die_type (die, cu);
15210 if (range_type)
15211 return range_type;
15212
15213 low.kind = PROP_CONST;
15214 high.kind = PROP_CONST;
15215 high.data.const_val = 0;
15216
15217 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15218 omitting DW_AT_lower_bound. */
15219 switch (cu->language)
15220 {
15221 case language_c:
15222 case language_cplus:
15223 low.data.const_val = 0;
15224 low_default_is_valid = 1;
15225 break;
15226 case language_fortran:
15227 low.data.const_val = 1;
15228 low_default_is_valid = 1;
15229 break;
15230 case language_d:
15231 case language_objc:
15232 case language_rust:
15233 low.data.const_val = 0;
15234 low_default_is_valid = (cu->header.version >= 4);
15235 break;
15236 case language_ada:
15237 case language_m2:
15238 case language_pascal:
15239 low.data.const_val = 1;
15240 low_default_is_valid = (cu->header.version >= 4);
15241 break;
15242 default:
15243 low.data.const_val = 0;
15244 low_default_is_valid = 0;
15245 break;
15246 }
15247
15248 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15249 if (attr)
15250 attr_to_dynamic_prop (attr, die, cu, &low);
15251 else if (!low_default_is_valid)
15252 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15253 "- DIE at 0x%x [in module %s]"),
15254 die->offset.sect_off, objfile_name (cu->objfile));
15255
15256 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15257 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15258 {
15259 attr = dwarf2_attr (die, DW_AT_count, cu);
15260 if (attr_to_dynamic_prop (attr, die, cu, &high))
15261 {
15262 /* If bounds are constant do the final calculation here. */
15263 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15264 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15265 else
15266 high_bound_is_count = 1;
15267 }
15268 }
15269
15270 /* Dwarf-2 specifications explicitly allows to create subrange types
15271 without specifying a base type.
15272 In that case, the base type must be set to the type of
15273 the lower bound, upper bound or count, in that order, if any of these
15274 three attributes references an object that has a type.
15275 If no base type is found, the Dwarf-2 specifications say that
15276 a signed integer type of size equal to the size of an address should
15277 be used.
15278 For the following C code: `extern char gdb_int [];'
15279 GCC produces an empty range DIE.
15280 FIXME: muller/2010-05-28: Possible references to object for low bound,
15281 high bound or count are not yet handled by this code. */
15282 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15283 {
15284 struct objfile *objfile = cu->objfile;
15285 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15286 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15287 struct type *int_type = objfile_type (objfile)->builtin_int;
15288
15289 /* Test "int", "long int", and "long long int" objfile types,
15290 and select the first one having a size above or equal to the
15291 architecture address size. */
15292 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15293 base_type = int_type;
15294 else
15295 {
15296 int_type = objfile_type (objfile)->builtin_long;
15297 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15298 base_type = int_type;
15299 else
15300 {
15301 int_type = objfile_type (objfile)->builtin_long_long;
15302 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15303 base_type = int_type;
15304 }
15305 }
15306 }
15307
15308 /* Normally, the DWARF producers are expected to use a signed
15309 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15310 But this is unfortunately not always the case, as witnessed
15311 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15312 is used instead. To work around that ambiguity, we treat
15313 the bounds as signed, and thus sign-extend their values, when
15314 the base type is signed. */
15315 negative_mask =
15316 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15317 if (low.kind == PROP_CONST
15318 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15319 low.data.const_val |= negative_mask;
15320 if (high.kind == PROP_CONST
15321 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15322 high.data.const_val |= negative_mask;
15323
15324 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15325
15326 if (high_bound_is_count)
15327 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15328
15329 /* Ada expects an empty array on no boundary attributes. */
15330 if (attr == NULL && cu->language != language_ada)
15331 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15332
15333 name = dwarf2_name (die, cu);
15334 if (name)
15335 TYPE_NAME (range_type) = name;
15336
15337 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15338 if (attr)
15339 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15340
15341 set_die_type (die, range_type, cu);
15342
15343 /* set_die_type should be already done. */
15344 set_descriptive_type (range_type, die, cu);
15345
15346 return range_type;
15347 }
15348
15349 static struct type *
15350 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15351 {
15352 struct type *type;
15353
15354 /* For now, we only support the C meaning of an unspecified type: void. */
15355
15356 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15357 TYPE_NAME (type) = dwarf2_name (die, cu);
15358
15359 return set_die_type (die, type, cu);
15360 }
15361
15362 /* Read a single die and all its descendents. Set the die's sibling
15363 field to NULL; set other fields in the die correctly, and set all
15364 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15365 location of the info_ptr after reading all of those dies. PARENT
15366 is the parent of the die in question. */
15367
15368 static struct die_info *
15369 read_die_and_children (const struct die_reader_specs *reader,
15370 const gdb_byte *info_ptr,
15371 const gdb_byte **new_info_ptr,
15372 struct die_info *parent)
15373 {
15374 struct die_info *die;
15375 const gdb_byte *cur_ptr;
15376 int has_children;
15377
15378 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15379 if (die == NULL)
15380 {
15381 *new_info_ptr = cur_ptr;
15382 return NULL;
15383 }
15384 store_in_ref_table (die, reader->cu);
15385
15386 if (has_children)
15387 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15388 else
15389 {
15390 die->child = NULL;
15391 *new_info_ptr = cur_ptr;
15392 }
15393
15394 die->sibling = NULL;
15395 die->parent = parent;
15396 return die;
15397 }
15398
15399 /* Read a die, all of its descendents, and all of its siblings; set
15400 all of the fields of all of the dies correctly. Arguments are as
15401 in read_die_and_children. */
15402
15403 static struct die_info *
15404 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15405 const gdb_byte *info_ptr,
15406 const gdb_byte **new_info_ptr,
15407 struct die_info *parent)
15408 {
15409 struct die_info *first_die, *last_sibling;
15410 const gdb_byte *cur_ptr;
15411
15412 cur_ptr = info_ptr;
15413 first_die = last_sibling = NULL;
15414
15415 while (1)
15416 {
15417 struct die_info *die
15418 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15419
15420 if (die == NULL)
15421 {
15422 *new_info_ptr = cur_ptr;
15423 return first_die;
15424 }
15425
15426 if (!first_die)
15427 first_die = die;
15428 else
15429 last_sibling->sibling = die;
15430
15431 last_sibling = die;
15432 }
15433 }
15434
15435 /* Read a die, all of its descendents, and all of its siblings; set
15436 all of the fields of all of the dies correctly. Arguments are as
15437 in read_die_and_children.
15438 This the main entry point for reading a DIE and all its children. */
15439
15440 static struct die_info *
15441 read_die_and_siblings (const struct die_reader_specs *reader,
15442 const gdb_byte *info_ptr,
15443 const gdb_byte **new_info_ptr,
15444 struct die_info *parent)
15445 {
15446 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15447 new_info_ptr, parent);
15448
15449 if (dwarf_die_debug)
15450 {
15451 fprintf_unfiltered (gdb_stdlog,
15452 "Read die from %s@0x%x of %s:\n",
15453 get_section_name (reader->die_section),
15454 (unsigned) (info_ptr - reader->die_section->buffer),
15455 bfd_get_filename (reader->abfd));
15456 dump_die (die, dwarf_die_debug);
15457 }
15458
15459 return die;
15460 }
15461
15462 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15463 attributes.
15464 The caller is responsible for filling in the extra attributes
15465 and updating (*DIEP)->num_attrs.
15466 Set DIEP to point to a newly allocated die with its information,
15467 except for its child, sibling, and parent fields.
15468 Set HAS_CHILDREN to tell whether the die has children or not. */
15469
15470 static const gdb_byte *
15471 read_full_die_1 (const struct die_reader_specs *reader,
15472 struct die_info **diep, const gdb_byte *info_ptr,
15473 int *has_children, int num_extra_attrs)
15474 {
15475 unsigned int abbrev_number, bytes_read, i;
15476 sect_offset offset;
15477 struct abbrev_info *abbrev;
15478 struct die_info *die;
15479 struct dwarf2_cu *cu = reader->cu;
15480 bfd *abfd = reader->abfd;
15481
15482 offset.sect_off = info_ptr - reader->buffer;
15483 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15484 info_ptr += bytes_read;
15485 if (!abbrev_number)
15486 {
15487 *diep = NULL;
15488 *has_children = 0;
15489 return info_ptr;
15490 }
15491
15492 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15493 if (!abbrev)
15494 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15495 abbrev_number,
15496 bfd_get_filename (abfd));
15497
15498 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15499 die->offset = offset;
15500 die->tag = abbrev->tag;
15501 die->abbrev = abbrev_number;
15502
15503 /* Make the result usable.
15504 The caller needs to update num_attrs after adding the extra
15505 attributes. */
15506 die->num_attrs = abbrev->num_attrs;
15507
15508 for (i = 0; i < abbrev->num_attrs; ++i)
15509 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15510 info_ptr);
15511
15512 *diep = die;
15513 *has_children = abbrev->has_children;
15514 return info_ptr;
15515 }
15516
15517 /* Read a die and all its attributes.
15518 Set DIEP to point to a newly allocated die with its information,
15519 except for its child, sibling, and parent fields.
15520 Set HAS_CHILDREN to tell whether the die has children or not. */
15521
15522 static const gdb_byte *
15523 read_full_die (const struct die_reader_specs *reader,
15524 struct die_info **diep, const gdb_byte *info_ptr,
15525 int *has_children)
15526 {
15527 const gdb_byte *result;
15528
15529 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15530
15531 if (dwarf_die_debug)
15532 {
15533 fprintf_unfiltered (gdb_stdlog,
15534 "Read die from %s@0x%x of %s:\n",
15535 get_section_name (reader->die_section),
15536 (unsigned) (info_ptr - reader->die_section->buffer),
15537 bfd_get_filename (reader->abfd));
15538 dump_die (*diep, dwarf_die_debug);
15539 }
15540
15541 return result;
15542 }
15543 \f
15544 /* Abbreviation tables.
15545
15546 In DWARF version 2, the description of the debugging information is
15547 stored in a separate .debug_abbrev section. Before we read any
15548 dies from a section we read in all abbreviations and install them
15549 in a hash table. */
15550
15551 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15552
15553 static struct abbrev_info *
15554 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15555 {
15556 struct abbrev_info *abbrev;
15557
15558 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15559 memset (abbrev, 0, sizeof (struct abbrev_info));
15560
15561 return abbrev;
15562 }
15563
15564 /* Add an abbreviation to the table. */
15565
15566 static void
15567 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15568 unsigned int abbrev_number,
15569 struct abbrev_info *abbrev)
15570 {
15571 unsigned int hash_number;
15572
15573 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15574 abbrev->next = abbrev_table->abbrevs[hash_number];
15575 abbrev_table->abbrevs[hash_number] = abbrev;
15576 }
15577
15578 /* Look up an abbrev in the table.
15579 Returns NULL if the abbrev is not found. */
15580
15581 static struct abbrev_info *
15582 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15583 unsigned int abbrev_number)
15584 {
15585 unsigned int hash_number;
15586 struct abbrev_info *abbrev;
15587
15588 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15589 abbrev = abbrev_table->abbrevs[hash_number];
15590
15591 while (abbrev)
15592 {
15593 if (abbrev->number == abbrev_number)
15594 return abbrev;
15595 abbrev = abbrev->next;
15596 }
15597 return NULL;
15598 }
15599
15600 /* Read in an abbrev table. */
15601
15602 static struct abbrev_table *
15603 abbrev_table_read_table (struct dwarf2_section_info *section,
15604 sect_offset offset)
15605 {
15606 struct objfile *objfile = dwarf2_per_objfile->objfile;
15607 bfd *abfd = get_section_bfd_owner (section);
15608 struct abbrev_table *abbrev_table;
15609 const gdb_byte *abbrev_ptr;
15610 struct abbrev_info *cur_abbrev;
15611 unsigned int abbrev_number, bytes_read, abbrev_name;
15612 unsigned int abbrev_form;
15613 struct attr_abbrev *cur_attrs;
15614 unsigned int allocated_attrs;
15615
15616 abbrev_table = XNEW (struct abbrev_table);
15617 abbrev_table->offset = offset;
15618 obstack_init (&abbrev_table->abbrev_obstack);
15619 abbrev_table->abbrevs =
15620 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15621 ABBREV_HASH_SIZE);
15622 memset (abbrev_table->abbrevs, 0,
15623 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15624
15625 dwarf2_read_section (objfile, section);
15626 abbrev_ptr = section->buffer + offset.sect_off;
15627 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15628 abbrev_ptr += bytes_read;
15629
15630 allocated_attrs = ATTR_ALLOC_CHUNK;
15631 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15632
15633 /* Loop until we reach an abbrev number of 0. */
15634 while (abbrev_number)
15635 {
15636 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15637
15638 /* read in abbrev header */
15639 cur_abbrev->number = abbrev_number;
15640 cur_abbrev->tag
15641 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15642 abbrev_ptr += bytes_read;
15643 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15644 abbrev_ptr += 1;
15645
15646 /* now read in declarations */
15647 for (;;)
15648 {
15649 LONGEST implicit_const;
15650
15651 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15652 abbrev_ptr += bytes_read;
15653 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15654 abbrev_ptr += bytes_read;
15655 if (abbrev_form == DW_FORM_implicit_const)
15656 {
15657 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15658 &bytes_read);
15659 abbrev_ptr += bytes_read;
15660 }
15661 else
15662 {
15663 /* Initialize it due to a false compiler warning. */
15664 implicit_const = -1;
15665 }
15666
15667 if (abbrev_name == 0)
15668 break;
15669
15670 if (cur_abbrev->num_attrs == allocated_attrs)
15671 {
15672 allocated_attrs += ATTR_ALLOC_CHUNK;
15673 cur_attrs
15674 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15675 }
15676
15677 cur_attrs[cur_abbrev->num_attrs].name
15678 = (enum dwarf_attribute) abbrev_name;
15679 cur_attrs[cur_abbrev->num_attrs].form
15680 = (enum dwarf_form) abbrev_form;
15681 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
15682 ++cur_abbrev->num_attrs;
15683 }
15684
15685 cur_abbrev->attrs =
15686 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15687 cur_abbrev->num_attrs);
15688 memcpy (cur_abbrev->attrs, cur_attrs,
15689 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15690
15691 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15692
15693 /* Get next abbreviation.
15694 Under Irix6 the abbreviations for a compilation unit are not
15695 always properly terminated with an abbrev number of 0.
15696 Exit loop if we encounter an abbreviation which we have
15697 already read (which means we are about to read the abbreviations
15698 for the next compile unit) or if the end of the abbreviation
15699 table is reached. */
15700 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15701 break;
15702 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15703 abbrev_ptr += bytes_read;
15704 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15705 break;
15706 }
15707
15708 xfree (cur_attrs);
15709 return abbrev_table;
15710 }
15711
15712 /* Free the resources held by ABBREV_TABLE. */
15713
15714 static void
15715 abbrev_table_free (struct abbrev_table *abbrev_table)
15716 {
15717 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15718 xfree (abbrev_table);
15719 }
15720
15721 /* Same as abbrev_table_free but as a cleanup.
15722 We pass in a pointer to the pointer to the table so that we can
15723 set the pointer to NULL when we're done. It also simplifies
15724 build_type_psymtabs_1. */
15725
15726 static void
15727 abbrev_table_free_cleanup (void *table_ptr)
15728 {
15729 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15730
15731 if (*abbrev_table_ptr != NULL)
15732 abbrev_table_free (*abbrev_table_ptr);
15733 *abbrev_table_ptr = NULL;
15734 }
15735
15736 /* Read the abbrev table for CU from ABBREV_SECTION. */
15737
15738 static void
15739 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15740 struct dwarf2_section_info *abbrev_section)
15741 {
15742 cu->abbrev_table =
15743 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15744 }
15745
15746 /* Release the memory used by the abbrev table for a compilation unit. */
15747
15748 static void
15749 dwarf2_free_abbrev_table (void *ptr_to_cu)
15750 {
15751 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15752
15753 if (cu->abbrev_table != NULL)
15754 abbrev_table_free (cu->abbrev_table);
15755 /* Set this to NULL so that we SEGV if we try to read it later,
15756 and also because free_comp_unit verifies this is NULL. */
15757 cu->abbrev_table = NULL;
15758 }
15759 \f
15760 /* Returns nonzero if TAG represents a type that we might generate a partial
15761 symbol for. */
15762
15763 static int
15764 is_type_tag_for_partial (int tag)
15765 {
15766 switch (tag)
15767 {
15768 #if 0
15769 /* Some types that would be reasonable to generate partial symbols for,
15770 that we don't at present. */
15771 case DW_TAG_array_type:
15772 case DW_TAG_file_type:
15773 case DW_TAG_ptr_to_member_type:
15774 case DW_TAG_set_type:
15775 case DW_TAG_string_type:
15776 case DW_TAG_subroutine_type:
15777 #endif
15778 case DW_TAG_base_type:
15779 case DW_TAG_class_type:
15780 case DW_TAG_interface_type:
15781 case DW_TAG_enumeration_type:
15782 case DW_TAG_structure_type:
15783 case DW_TAG_subrange_type:
15784 case DW_TAG_typedef:
15785 case DW_TAG_union_type:
15786 return 1;
15787 default:
15788 return 0;
15789 }
15790 }
15791
15792 /* Load all DIEs that are interesting for partial symbols into memory. */
15793
15794 static struct partial_die_info *
15795 load_partial_dies (const struct die_reader_specs *reader,
15796 const gdb_byte *info_ptr, int building_psymtab)
15797 {
15798 struct dwarf2_cu *cu = reader->cu;
15799 struct objfile *objfile = cu->objfile;
15800 struct partial_die_info *part_die;
15801 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15802 struct abbrev_info *abbrev;
15803 unsigned int bytes_read;
15804 unsigned int load_all = 0;
15805 int nesting_level = 1;
15806
15807 parent_die = NULL;
15808 last_die = NULL;
15809
15810 gdb_assert (cu->per_cu != NULL);
15811 if (cu->per_cu->load_all_dies)
15812 load_all = 1;
15813
15814 cu->partial_dies
15815 = htab_create_alloc_ex (cu->header.length / 12,
15816 partial_die_hash,
15817 partial_die_eq,
15818 NULL,
15819 &cu->comp_unit_obstack,
15820 hashtab_obstack_allocate,
15821 dummy_obstack_deallocate);
15822
15823 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15824
15825 while (1)
15826 {
15827 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15828
15829 /* A NULL abbrev means the end of a series of children. */
15830 if (abbrev == NULL)
15831 {
15832 if (--nesting_level == 0)
15833 {
15834 /* PART_DIE was probably the last thing allocated on the
15835 comp_unit_obstack, so we could call obstack_free
15836 here. We don't do that because the waste is small,
15837 and will be cleaned up when we're done with this
15838 compilation unit. This way, we're also more robust
15839 against other users of the comp_unit_obstack. */
15840 return first_die;
15841 }
15842 info_ptr += bytes_read;
15843 last_die = parent_die;
15844 parent_die = parent_die->die_parent;
15845 continue;
15846 }
15847
15848 /* Check for template arguments. We never save these; if
15849 they're seen, we just mark the parent, and go on our way. */
15850 if (parent_die != NULL
15851 && cu->language == language_cplus
15852 && (abbrev->tag == DW_TAG_template_type_param
15853 || abbrev->tag == DW_TAG_template_value_param))
15854 {
15855 parent_die->has_template_arguments = 1;
15856
15857 if (!load_all)
15858 {
15859 /* We don't need a partial DIE for the template argument. */
15860 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15861 continue;
15862 }
15863 }
15864
15865 /* We only recurse into c++ subprograms looking for template arguments.
15866 Skip their other children. */
15867 if (!load_all
15868 && cu->language == language_cplus
15869 && parent_die != NULL
15870 && parent_die->tag == DW_TAG_subprogram)
15871 {
15872 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15873 continue;
15874 }
15875
15876 /* Check whether this DIE is interesting enough to save. Normally
15877 we would not be interested in members here, but there may be
15878 later variables referencing them via DW_AT_specification (for
15879 static members). */
15880 if (!load_all
15881 && !is_type_tag_for_partial (abbrev->tag)
15882 && abbrev->tag != DW_TAG_constant
15883 && abbrev->tag != DW_TAG_enumerator
15884 && abbrev->tag != DW_TAG_subprogram
15885 && abbrev->tag != DW_TAG_lexical_block
15886 && abbrev->tag != DW_TAG_variable
15887 && abbrev->tag != DW_TAG_namespace
15888 && abbrev->tag != DW_TAG_module
15889 && abbrev->tag != DW_TAG_member
15890 && abbrev->tag != DW_TAG_imported_unit
15891 && abbrev->tag != DW_TAG_imported_declaration)
15892 {
15893 /* Otherwise we skip to the next sibling, if any. */
15894 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15895 continue;
15896 }
15897
15898 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15899 info_ptr);
15900
15901 /* This two-pass algorithm for processing partial symbols has a
15902 high cost in cache pressure. Thus, handle some simple cases
15903 here which cover the majority of C partial symbols. DIEs
15904 which neither have specification tags in them, nor could have
15905 specification tags elsewhere pointing at them, can simply be
15906 processed and discarded.
15907
15908 This segment is also optional; scan_partial_symbols and
15909 add_partial_symbol will handle these DIEs if we chain
15910 them in normally. When compilers which do not emit large
15911 quantities of duplicate debug information are more common,
15912 this code can probably be removed. */
15913
15914 /* Any complete simple types at the top level (pretty much all
15915 of them, for a language without namespaces), can be processed
15916 directly. */
15917 if (parent_die == NULL
15918 && part_die->has_specification == 0
15919 && part_die->is_declaration == 0
15920 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15921 || part_die->tag == DW_TAG_base_type
15922 || part_die->tag == DW_TAG_subrange_type))
15923 {
15924 if (building_psymtab && part_die->name != NULL)
15925 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15926 VAR_DOMAIN, LOC_TYPEDEF,
15927 &objfile->static_psymbols,
15928 0, cu->language, objfile);
15929 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15930 continue;
15931 }
15932
15933 /* The exception for DW_TAG_typedef with has_children above is
15934 a workaround of GCC PR debug/47510. In the case of this complaint
15935 type_name_no_tag_or_error will error on such types later.
15936
15937 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15938 it could not find the child DIEs referenced later, this is checked
15939 above. In correct DWARF DW_TAG_typedef should have no children. */
15940
15941 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15942 complaint (&symfile_complaints,
15943 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15944 "- DIE at 0x%x [in module %s]"),
15945 part_die->offset.sect_off, objfile_name (objfile));
15946
15947 /* If we're at the second level, and we're an enumerator, and
15948 our parent has no specification (meaning possibly lives in a
15949 namespace elsewhere), then we can add the partial symbol now
15950 instead of queueing it. */
15951 if (part_die->tag == DW_TAG_enumerator
15952 && parent_die != NULL
15953 && parent_die->die_parent == NULL
15954 && parent_die->tag == DW_TAG_enumeration_type
15955 && parent_die->has_specification == 0)
15956 {
15957 if (part_die->name == NULL)
15958 complaint (&symfile_complaints,
15959 _("malformed enumerator DIE ignored"));
15960 else if (building_psymtab)
15961 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15962 VAR_DOMAIN, LOC_CONST,
15963 cu->language == language_cplus
15964 ? &objfile->global_psymbols
15965 : &objfile->static_psymbols,
15966 0, cu->language, objfile);
15967
15968 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15969 continue;
15970 }
15971
15972 /* We'll save this DIE so link it in. */
15973 part_die->die_parent = parent_die;
15974 part_die->die_sibling = NULL;
15975 part_die->die_child = NULL;
15976
15977 if (last_die && last_die == parent_die)
15978 last_die->die_child = part_die;
15979 else if (last_die)
15980 last_die->die_sibling = part_die;
15981
15982 last_die = part_die;
15983
15984 if (first_die == NULL)
15985 first_die = part_die;
15986
15987 /* Maybe add the DIE to the hash table. Not all DIEs that we
15988 find interesting need to be in the hash table, because we
15989 also have the parent/sibling/child chains; only those that we
15990 might refer to by offset later during partial symbol reading.
15991
15992 For now this means things that might have be the target of a
15993 DW_AT_specification, DW_AT_abstract_origin, or
15994 DW_AT_extension. DW_AT_extension will refer only to
15995 namespaces; DW_AT_abstract_origin refers to functions (and
15996 many things under the function DIE, but we do not recurse
15997 into function DIEs during partial symbol reading) and
15998 possibly variables as well; DW_AT_specification refers to
15999 declarations. Declarations ought to have the DW_AT_declaration
16000 flag. It happens that GCC forgets to put it in sometimes, but
16001 only for functions, not for types.
16002
16003 Adding more things than necessary to the hash table is harmless
16004 except for the performance cost. Adding too few will result in
16005 wasted time in find_partial_die, when we reread the compilation
16006 unit with load_all_dies set. */
16007
16008 if (load_all
16009 || abbrev->tag == DW_TAG_constant
16010 || abbrev->tag == DW_TAG_subprogram
16011 || abbrev->tag == DW_TAG_variable
16012 || abbrev->tag == DW_TAG_namespace
16013 || part_die->is_declaration)
16014 {
16015 void **slot;
16016
16017 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
16018 part_die->offset.sect_off, INSERT);
16019 *slot = part_die;
16020 }
16021
16022 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16023
16024 /* For some DIEs we want to follow their children (if any). For C
16025 we have no reason to follow the children of structures; for other
16026 languages we have to, so that we can get at method physnames
16027 to infer fully qualified class names, for DW_AT_specification,
16028 and for C++ template arguments. For C++, we also look one level
16029 inside functions to find template arguments (if the name of the
16030 function does not already contain the template arguments).
16031
16032 For Ada, we need to scan the children of subprograms and lexical
16033 blocks as well because Ada allows the definition of nested
16034 entities that could be interesting for the debugger, such as
16035 nested subprograms for instance. */
16036 if (last_die->has_children
16037 && (load_all
16038 || last_die->tag == DW_TAG_namespace
16039 || last_die->tag == DW_TAG_module
16040 || last_die->tag == DW_TAG_enumeration_type
16041 || (cu->language == language_cplus
16042 && last_die->tag == DW_TAG_subprogram
16043 && (last_die->name == NULL
16044 || strchr (last_die->name, '<') == NULL))
16045 || (cu->language != language_c
16046 && (last_die->tag == DW_TAG_class_type
16047 || last_die->tag == DW_TAG_interface_type
16048 || last_die->tag == DW_TAG_structure_type
16049 || last_die->tag == DW_TAG_union_type))
16050 || (cu->language == language_ada
16051 && (last_die->tag == DW_TAG_subprogram
16052 || last_die->tag == DW_TAG_lexical_block))))
16053 {
16054 nesting_level++;
16055 parent_die = last_die;
16056 continue;
16057 }
16058
16059 /* Otherwise we skip to the next sibling, if any. */
16060 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
16061
16062 /* Back to the top, do it again. */
16063 }
16064 }
16065
16066 /* Read a minimal amount of information into the minimal die structure. */
16067
16068 static const gdb_byte *
16069 read_partial_die (const struct die_reader_specs *reader,
16070 struct partial_die_info *part_die,
16071 struct abbrev_info *abbrev, unsigned int abbrev_len,
16072 const gdb_byte *info_ptr)
16073 {
16074 struct dwarf2_cu *cu = reader->cu;
16075 struct objfile *objfile = cu->objfile;
16076 const gdb_byte *buffer = reader->buffer;
16077 unsigned int i;
16078 struct attribute attr;
16079 int has_low_pc_attr = 0;
16080 int has_high_pc_attr = 0;
16081 int high_pc_relative = 0;
16082
16083 memset (part_die, 0, sizeof (struct partial_die_info));
16084
16085 part_die->offset.sect_off = info_ptr - buffer;
16086
16087 info_ptr += abbrev_len;
16088
16089 if (abbrev == NULL)
16090 return info_ptr;
16091
16092 part_die->tag = abbrev->tag;
16093 part_die->has_children = abbrev->has_children;
16094
16095 for (i = 0; i < abbrev->num_attrs; ++i)
16096 {
16097 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
16098
16099 /* Store the data if it is of an attribute we want to keep in a
16100 partial symbol table. */
16101 switch (attr.name)
16102 {
16103 case DW_AT_name:
16104 switch (part_die->tag)
16105 {
16106 case DW_TAG_compile_unit:
16107 case DW_TAG_partial_unit:
16108 case DW_TAG_type_unit:
16109 /* Compilation units have a DW_AT_name that is a filename, not
16110 a source language identifier. */
16111 case DW_TAG_enumeration_type:
16112 case DW_TAG_enumerator:
16113 /* These tags always have simple identifiers already; no need
16114 to canonicalize them. */
16115 part_die->name = DW_STRING (&attr);
16116 break;
16117 default:
16118 part_die->name
16119 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
16120 &objfile->per_bfd->storage_obstack);
16121 break;
16122 }
16123 break;
16124 case DW_AT_linkage_name:
16125 case DW_AT_MIPS_linkage_name:
16126 /* Note that both forms of linkage name might appear. We
16127 assume they will be the same, and we only store the last
16128 one we see. */
16129 if (cu->language == language_ada)
16130 part_die->name = DW_STRING (&attr);
16131 part_die->linkage_name = DW_STRING (&attr);
16132 break;
16133 case DW_AT_low_pc:
16134 has_low_pc_attr = 1;
16135 part_die->lowpc = attr_value_as_address (&attr);
16136 break;
16137 case DW_AT_high_pc:
16138 has_high_pc_attr = 1;
16139 part_die->highpc = attr_value_as_address (&attr);
16140 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16141 high_pc_relative = 1;
16142 break;
16143 case DW_AT_location:
16144 /* Support the .debug_loc offsets. */
16145 if (attr_form_is_block (&attr))
16146 {
16147 part_die->d.locdesc = DW_BLOCK (&attr);
16148 }
16149 else if (attr_form_is_section_offset (&attr))
16150 {
16151 dwarf2_complex_location_expr_complaint ();
16152 }
16153 else
16154 {
16155 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16156 "partial symbol information");
16157 }
16158 break;
16159 case DW_AT_external:
16160 part_die->is_external = DW_UNSND (&attr);
16161 break;
16162 case DW_AT_declaration:
16163 part_die->is_declaration = DW_UNSND (&attr);
16164 break;
16165 case DW_AT_type:
16166 part_die->has_type = 1;
16167 break;
16168 case DW_AT_abstract_origin:
16169 case DW_AT_specification:
16170 case DW_AT_extension:
16171 part_die->has_specification = 1;
16172 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
16173 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16174 || cu->per_cu->is_dwz);
16175 break;
16176 case DW_AT_sibling:
16177 /* Ignore absolute siblings, they might point outside of
16178 the current compile unit. */
16179 if (attr.form == DW_FORM_ref_addr)
16180 complaint (&symfile_complaints,
16181 _("ignoring absolute DW_AT_sibling"));
16182 else
16183 {
16184 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
16185 const gdb_byte *sibling_ptr = buffer + off;
16186
16187 if (sibling_ptr < info_ptr)
16188 complaint (&symfile_complaints,
16189 _("DW_AT_sibling points backwards"));
16190 else if (sibling_ptr > reader->buffer_end)
16191 dwarf2_section_buffer_overflow_complaint (reader->die_section);
16192 else
16193 part_die->sibling = sibling_ptr;
16194 }
16195 break;
16196 case DW_AT_byte_size:
16197 part_die->has_byte_size = 1;
16198 break;
16199 case DW_AT_const_value:
16200 part_die->has_const_value = 1;
16201 break;
16202 case DW_AT_calling_convention:
16203 /* DWARF doesn't provide a way to identify a program's source-level
16204 entry point. DW_AT_calling_convention attributes are only meant
16205 to describe functions' calling conventions.
16206
16207 However, because it's a necessary piece of information in
16208 Fortran, and before DWARF 4 DW_CC_program was the only
16209 piece of debugging information whose definition refers to
16210 a 'main program' at all, several compilers marked Fortran
16211 main programs with DW_CC_program --- even when those
16212 functions use the standard calling conventions.
16213
16214 Although DWARF now specifies a way to provide this
16215 information, we support this practice for backward
16216 compatibility. */
16217 if (DW_UNSND (&attr) == DW_CC_program
16218 && cu->language == language_fortran)
16219 part_die->main_subprogram = 1;
16220 break;
16221 case DW_AT_inline:
16222 if (DW_UNSND (&attr) == DW_INL_inlined
16223 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16224 part_die->may_be_inlined = 1;
16225 break;
16226
16227 case DW_AT_import:
16228 if (part_die->tag == DW_TAG_imported_unit)
16229 {
16230 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
16231 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16232 || cu->per_cu->is_dwz);
16233 }
16234 break;
16235
16236 case DW_AT_main_subprogram:
16237 part_die->main_subprogram = DW_UNSND (&attr);
16238 break;
16239
16240 default:
16241 break;
16242 }
16243 }
16244
16245 if (high_pc_relative)
16246 part_die->highpc += part_die->lowpc;
16247
16248 if (has_low_pc_attr && has_high_pc_attr)
16249 {
16250 /* When using the GNU linker, .gnu.linkonce. sections are used to
16251 eliminate duplicate copies of functions and vtables and such.
16252 The linker will arbitrarily choose one and discard the others.
16253 The AT_*_pc values for such functions refer to local labels in
16254 these sections. If the section from that file was discarded, the
16255 labels are not in the output, so the relocs get a value of 0.
16256 If this is a discarded function, mark the pc bounds as invalid,
16257 so that GDB will ignore it. */
16258 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16259 {
16260 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16261
16262 complaint (&symfile_complaints,
16263 _("DW_AT_low_pc %s is zero "
16264 "for DIE at 0x%x [in module %s]"),
16265 paddress (gdbarch, part_die->lowpc),
16266 part_die->offset.sect_off, objfile_name (objfile));
16267 }
16268 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16269 else if (part_die->lowpc >= part_die->highpc)
16270 {
16271 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16272
16273 complaint (&symfile_complaints,
16274 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16275 "for DIE at 0x%x [in module %s]"),
16276 paddress (gdbarch, part_die->lowpc),
16277 paddress (gdbarch, part_die->highpc),
16278 part_die->offset.sect_off, objfile_name (objfile));
16279 }
16280 else
16281 part_die->has_pc_info = 1;
16282 }
16283
16284 return info_ptr;
16285 }
16286
16287 /* Find a cached partial DIE at OFFSET in CU. */
16288
16289 static struct partial_die_info *
16290 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
16291 {
16292 struct partial_die_info *lookup_die = NULL;
16293 struct partial_die_info part_die;
16294
16295 part_die.offset = offset;
16296 lookup_die = ((struct partial_die_info *)
16297 htab_find_with_hash (cu->partial_dies, &part_die,
16298 offset.sect_off));
16299
16300 return lookup_die;
16301 }
16302
16303 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16304 except in the case of .debug_types DIEs which do not reference
16305 outside their CU (they do however referencing other types via
16306 DW_FORM_ref_sig8). */
16307
16308 static struct partial_die_info *
16309 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16310 {
16311 struct objfile *objfile = cu->objfile;
16312 struct dwarf2_per_cu_data *per_cu = NULL;
16313 struct partial_die_info *pd = NULL;
16314
16315 if (offset_in_dwz == cu->per_cu->is_dwz
16316 && offset_in_cu_p (&cu->header, offset))
16317 {
16318 pd = find_partial_die_in_comp_unit (offset, cu);
16319 if (pd != NULL)
16320 return pd;
16321 /* We missed recording what we needed.
16322 Load all dies and try again. */
16323 per_cu = cu->per_cu;
16324 }
16325 else
16326 {
16327 /* TUs don't reference other CUs/TUs (except via type signatures). */
16328 if (cu->per_cu->is_debug_types)
16329 {
16330 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16331 " external reference to offset 0x%lx [in module %s].\n"),
16332 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16333 bfd_get_filename (objfile->obfd));
16334 }
16335 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16336 objfile);
16337
16338 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16339 load_partial_comp_unit (per_cu);
16340
16341 per_cu->cu->last_used = 0;
16342 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16343 }
16344
16345 /* If we didn't find it, and not all dies have been loaded,
16346 load them all and try again. */
16347
16348 if (pd == NULL && per_cu->load_all_dies == 0)
16349 {
16350 per_cu->load_all_dies = 1;
16351
16352 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16353 THIS_CU->cu may already be in use. So we can't just free it and
16354 replace its DIEs with the ones we read in. Instead, we leave those
16355 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16356 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16357 set. */
16358 load_partial_comp_unit (per_cu);
16359
16360 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16361 }
16362
16363 if (pd == NULL)
16364 internal_error (__FILE__, __LINE__,
16365 _("could not find partial DIE 0x%x "
16366 "in cache [from module %s]\n"),
16367 offset.sect_off, bfd_get_filename (objfile->obfd));
16368 return pd;
16369 }
16370
16371 /* See if we can figure out if the class lives in a namespace. We do
16372 this by looking for a member function; its demangled name will
16373 contain namespace info, if there is any. */
16374
16375 static void
16376 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16377 struct dwarf2_cu *cu)
16378 {
16379 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16380 what template types look like, because the demangler
16381 frequently doesn't give the same name as the debug info. We
16382 could fix this by only using the demangled name to get the
16383 prefix (but see comment in read_structure_type). */
16384
16385 struct partial_die_info *real_pdi;
16386 struct partial_die_info *child_pdi;
16387
16388 /* If this DIE (this DIE's specification, if any) has a parent, then
16389 we should not do this. We'll prepend the parent's fully qualified
16390 name when we create the partial symbol. */
16391
16392 real_pdi = struct_pdi;
16393 while (real_pdi->has_specification)
16394 real_pdi = find_partial_die (real_pdi->spec_offset,
16395 real_pdi->spec_is_dwz, cu);
16396
16397 if (real_pdi->die_parent != NULL)
16398 return;
16399
16400 for (child_pdi = struct_pdi->die_child;
16401 child_pdi != NULL;
16402 child_pdi = child_pdi->die_sibling)
16403 {
16404 if (child_pdi->tag == DW_TAG_subprogram
16405 && child_pdi->linkage_name != NULL)
16406 {
16407 char *actual_class_name
16408 = language_class_name_from_physname (cu->language_defn,
16409 child_pdi->linkage_name);
16410 if (actual_class_name != NULL)
16411 {
16412 struct_pdi->name
16413 = ((const char *)
16414 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16415 actual_class_name,
16416 strlen (actual_class_name)));
16417 xfree (actual_class_name);
16418 }
16419 break;
16420 }
16421 }
16422 }
16423
16424 /* Adjust PART_DIE before generating a symbol for it. This function
16425 may set the is_external flag or change the DIE's name. */
16426
16427 static void
16428 fixup_partial_die (struct partial_die_info *part_die,
16429 struct dwarf2_cu *cu)
16430 {
16431 /* Once we've fixed up a die, there's no point in doing so again.
16432 This also avoids a memory leak if we were to call
16433 guess_partial_die_structure_name multiple times. */
16434 if (part_die->fixup_called)
16435 return;
16436
16437 /* If we found a reference attribute and the DIE has no name, try
16438 to find a name in the referred to DIE. */
16439
16440 if (part_die->name == NULL && part_die->has_specification)
16441 {
16442 struct partial_die_info *spec_die;
16443
16444 spec_die = find_partial_die (part_die->spec_offset,
16445 part_die->spec_is_dwz, cu);
16446
16447 fixup_partial_die (spec_die, cu);
16448
16449 if (spec_die->name)
16450 {
16451 part_die->name = spec_die->name;
16452
16453 /* Copy DW_AT_external attribute if it is set. */
16454 if (spec_die->is_external)
16455 part_die->is_external = spec_die->is_external;
16456 }
16457 }
16458
16459 /* Set default names for some unnamed DIEs. */
16460
16461 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16462 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16463
16464 /* If there is no parent die to provide a namespace, and there are
16465 children, see if we can determine the namespace from their linkage
16466 name. */
16467 if (cu->language == language_cplus
16468 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16469 && part_die->die_parent == NULL
16470 && part_die->has_children
16471 && (part_die->tag == DW_TAG_class_type
16472 || part_die->tag == DW_TAG_structure_type
16473 || part_die->tag == DW_TAG_union_type))
16474 guess_partial_die_structure_name (part_die, cu);
16475
16476 /* GCC might emit a nameless struct or union that has a linkage
16477 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16478 if (part_die->name == NULL
16479 && (part_die->tag == DW_TAG_class_type
16480 || part_die->tag == DW_TAG_interface_type
16481 || part_die->tag == DW_TAG_structure_type
16482 || part_die->tag == DW_TAG_union_type)
16483 && part_die->linkage_name != NULL)
16484 {
16485 char *demangled;
16486
16487 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16488 if (demangled)
16489 {
16490 const char *base;
16491
16492 /* Strip any leading namespaces/classes, keep only the base name.
16493 DW_AT_name for named DIEs does not contain the prefixes. */
16494 base = strrchr (demangled, ':');
16495 if (base && base > demangled && base[-1] == ':')
16496 base++;
16497 else
16498 base = demangled;
16499
16500 part_die->name
16501 = ((const char *)
16502 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16503 base, strlen (base)));
16504 xfree (demangled);
16505 }
16506 }
16507
16508 part_die->fixup_called = 1;
16509 }
16510
16511 /* Read an attribute value described by an attribute form. */
16512
16513 static const gdb_byte *
16514 read_attribute_value (const struct die_reader_specs *reader,
16515 struct attribute *attr, unsigned form,
16516 LONGEST implicit_const, const gdb_byte *info_ptr)
16517 {
16518 struct dwarf2_cu *cu = reader->cu;
16519 struct objfile *objfile = cu->objfile;
16520 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16521 bfd *abfd = reader->abfd;
16522 struct comp_unit_head *cu_header = &cu->header;
16523 unsigned int bytes_read;
16524 struct dwarf_block *blk;
16525
16526 attr->form = (enum dwarf_form) form;
16527 switch (form)
16528 {
16529 case DW_FORM_ref_addr:
16530 if (cu->header.version == 2)
16531 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16532 else
16533 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16534 &cu->header, &bytes_read);
16535 info_ptr += bytes_read;
16536 break;
16537 case DW_FORM_GNU_ref_alt:
16538 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16539 info_ptr += bytes_read;
16540 break;
16541 case DW_FORM_addr:
16542 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16543 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16544 info_ptr += bytes_read;
16545 break;
16546 case DW_FORM_block2:
16547 blk = dwarf_alloc_block (cu);
16548 blk->size = read_2_bytes (abfd, info_ptr);
16549 info_ptr += 2;
16550 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16551 info_ptr += blk->size;
16552 DW_BLOCK (attr) = blk;
16553 break;
16554 case DW_FORM_block4:
16555 blk = dwarf_alloc_block (cu);
16556 blk->size = read_4_bytes (abfd, info_ptr);
16557 info_ptr += 4;
16558 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16559 info_ptr += blk->size;
16560 DW_BLOCK (attr) = blk;
16561 break;
16562 case DW_FORM_data2:
16563 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16564 info_ptr += 2;
16565 break;
16566 case DW_FORM_data4:
16567 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16568 info_ptr += 4;
16569 break;
16570 case DW_FORM_data8:
16571 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16572 info_ptr += 8;
16573 break;
16574 case DW_FORM_data16:
16575 blk = dwarf_alloc_block (cu);
16576 blk->size = 16;
16577 blk->data = read_n_bytes (abfd, info_ptr, 16);
16578 info_ptr += 16;
16579 DW_BLOCK (attr) = blk;
16580 break;
16581 case DW_FORM_sec_offset:
16582 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16583 info_ptr += bytes_read;
16584 break;
16585 case DW_FORM_string:
16586 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16587 DW_STRING_IS_CANONICAL (attr) = 0;
16588 info_ptr += bytes_read;
16589 break;
16590 case DW_FORM_strp:
16591 if (!cu->per_cu->is_dwz)
16592 {
16593 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16594 &bytes_read);
16595 DW_STRING_IS_CANONICAL (attr) = 0;
16596 info_ptr += bytes_read;
16597 break;
16598 }
16599 /* FALLTHROUGH */
16600 case DW_FORM_line_strp:
16601 if (!cu->per_cu->is_dwz)
16602 {
16603 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16604 cu_header, &bytes_read);
16605 DW_STRING_IS_CANONICAL (attr) = 0;
16606 info_ptr += bytes_read;
16607 break;
16608 }
16609 /* FALLTHROUGH */
16610 case DW_FORM_GNU_strp_alt:
16611 {
16612 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16613 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16614 &bytes_read);
16615
16616 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16617 DW_STRING_IS_CANONICAL (attr) = 0;
16618 info_ptr += bytes_read;
16619 }
16620 break;
16621 case DW_FORM_exprloc:
16622 case DW_FORM_block:
16623 blk = dwarf_alloc_block (cu);
16624 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16625 info_ptr += bytes_read;
16626 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16627 info_ptr += blk->size;
16628 DW_BLOCK (attr) = blk;
16629 break;
16630 case DW_FORM_block1:
16631 blk = dwarf_alloc_block (cu);
16632 blk->size = read_1_byte (abfd, info_ptr);
16633 info_ptr += 1;
16634 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16635 info_ptr += blk->size;
16636 DW_BLOCK (attr) = blk;
16637 break;
16638 case DW_FORM_data1:
16639 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16640 info_ptr += 1;
16641 break;
16642 case DW_FORM_flag:
16643 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16644 info_ptr += 1;
16645 break;
16646 case DW_FORM_flag_present:
16647 DW_UNSND (attr) = 1;
16648 break;
16649 case DW_FORM_sdata:
16650 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16651 info_ptr += bytes_read;
16652 break;
16653 case DW_FORM_udata:
16654 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16655 info_ptr += bytes_read;
16656 break;
16657 case DW_FORM_ref1:
16658 DW_UNSND (attr) = (cu->header.offset.sect_off
16659 + read_1_byte (abfd, info_ptr));
16660 info_ptr += 1;
16661 break;
16662 case DW_FORM_ref2:
16663 DW_UNSND (attr) = (cu->header.offset.sect_off
16664 + read_2_bytes (abfd, info_ptr));
16665 info_ptr += 2;
16666 break;
16667 case DW_FORM_ref4:
16668 DW_UNSND (attr) = (cu->header.offset.sect_off
16669 + read_4_bytes (abfd, info_ptr));
16670 info_ptr += 4;
16671 break;
16672 case DW_FORM_ref8:
16673 DW_UNSND (attr) = (cu->header.offset.sect_off
16674 + read_8_bytes (abfd, info_ptr));
16675 info_ptr += 8;
16676 break;
16677 case DW_FORM_ref_sig8:
16678 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16679 info_ptr += 8;
16680 break;
16681 case DW_FORM_ref_udata:
16682 DW_UNSND (attr) = (cu->header.offset.sect_off
16683 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16684 info_ptr += bytes_read;
16685 break;
16686 case DW_FORM_indirect:
16687 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16688 info_ptr += bytes_read;
16689 if (form == DW_FORM_implicit_const)
16690 {
16691 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16692 info_ptr += bytes_read;
16693 }
16694 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16695 info_ptr);
16696 break;
16697 case DW_FORM_implicit_const:
16698 DW_SND (attr) = implicit_const;
16699 break;
16700 case DW_FORM_GNU_addr_index:
16701 if (reader->dwo_file == NULL)
16702 {
16703 /* For now flag a hard error.
16704 Later we can turn this into a complaint. */
16705 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16706 dwarf_form_name (form),
16707 bfd_get_filename (abfd));
16708 }
16709 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16710 info_ptr += bytes_read;
16711 break;
16712 case DW_FORM_GNU_str_index:
16713 if (reader->dwo_file == NULL)
16714 {
16715 /* For now flag a hard error.
16716 Later we can turn this into a complaint if warranted. */
16717 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16718 dwarf_form_name (form),
16719 bfd_get_filename (abfd));
16720 }
16721 {
16722 ULONGEST str_index =
16723 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16724
16725 DW_STRING (attr) = read_str_index (reader, str_index);
16726 DW_STRING_IS_CANONICAL (attr) = 0;
16727 info_ptr += bytes_read;
16728 }
16729 break;
16730 default:
16731 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16732 dwarf_form_name (form),
16733 bfd_get_filename (abfd));
16734 }
16735
16736 /* Super hack. */
16737 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16738 attr->form = DW_FORM_GNU_ref_alt;
16739
16740 /* We have seen instances where the compiler tried to emit a byte
16741 size attribute of -1 which ended up being encoded as an unsigned
16742 0xffffffff. Although 0xffffffff is technically a valid size value,
16743 an object of this size seems pretty unlikely so we can relatively
16744 safely treat these cases as if the size attribute was invalid and
16745 treat them as zero by default. */
16746 if (attr->name == DW_AT_byte_size
16747 && form == DW_FORM_data4
16748 && DW_UNSND (attr) >= 0xffffffff)
16749 {
16750 complaint
16751 (&symfile_complaints,
16752 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16753 hex_string (DW_UNSND (attr)));
16754 DW_UNSND (attr) = 0;
16755 }
16756
16757 return info_ptr;
16758 }
16759
16760 /* Read an attribute described by an abbreviated attribute. */
16761
16762 static const gdb_byte *
16763 read_attribute (const struct die_reader_specs *reader,
16764 struct attribute *attr, struct attr_abbrev *abbrev,
16765 const gdb_byte *info_ptr)
16766 {
16767 attr->name = abbrev->name;
16768 return read_attribute_value (reader, attr, abbrev->form,
16769 abbrev->implicit_const, info_ptr);
16770 }
16771
16772 /* Read dwarf information from a buffer. */
16773
16774 static unsigned int
16775 read_1_byte (bfd *abfd, const gdb_byte *buf)
16776 {
16777 return bfd_get_8 (abfd, buf);
16778 }
16779
16780 static int
16781 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16782 {
16783 return bfd_get_signed_8 (abfd, buf);
16784 }
16785
16786 static unsigned int
16787 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16788 {
16789 return bfd_get_16 (abfd, buf);
16790 }
16791
16792 static int
16793 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16794 {
16795 return bfd_get_signed_16 (abfd, buf);
16796 }
16797
16798 static unsigned int
16799 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16800 {
16801 return bfd_get_32 (abfd, buf);
16802 }
16803
16804 static int
16805 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16806 {
16807 return bfd_get_signed_32 (abfd, buf);
16808 }
16809
16810 static ULONGEST
16811 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16812 {
16813 return bfd_get_64 (abfd, buf);
16814 }
16815
16816 static CORE_ADDR
16817 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16818 unsigned int *bytes_read)
16819 {
16820 struct comp_unit_head *cu_header = &cu->header;
16821 CORE_ADDR retval = 0;
16822
16823 if (cu_header->signed_addr_p)
16824 {
16825 switch (cu_header->addr_size)
16826 {
16827 case 2:
16828 retval = bfd_get_signed_16 (abfd, buf);
16829 break;
16830 case 4:
16831 retval = bfd_get_signed_32 (abfd, buf);
16832 break;
16833 case 8:
16834 retval = bfd_get_signed_64 (abfd, buf);
16835 break;
16836 default:
16837 internal_error (__FILE__, __LINE__,
16838 _("read_address: bad switch, signed [in module %s]"),
16839 bfd_get_filename (abfd));
16840 }
16841 }
16842 else
16843 {
16844 switch (cu_header->addr_size)
16845 {
16846 case 2:
16847 retval = bfd_get_16 (abfd, buf);
16848 break;
16849 case 4:
16850 retval = bfd_get_32 (abfd, buf);
16851 break;
16852 case 8:
16853 retval = bfd_get_64 (abfd, buf);
16854 break;
16855 default:
16856 internal_error (__FILE__, __LINE__,
16857 _("read_address: bad switch, "
16858 "unsigned [in module %s]"),
16859 bfd_get_filename (abfd));
16860 }
16861 }
16862
16863 *bytes_read = cu_header->addr_size;
16864 return retval;
16865 }
16866
16867 /* Read the initial length from a section. The (draft) DWARF 3
16868 specification allows the initial length to take up either 4 bytes
16869 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16870 bytes describe the length and all offsets will be 8 bytes in length
16871 instead of 4.
16872
16873 An older, non-standard 64-bit format is also handled by this
16874 function. The older format in question stores the initial length
16875 as an 8-byte quantity without an escape value. Lengths greater
16876 than 2^32 aren't very common which means that the initial 4 bytes
16877 is almost always zero. Since a length value of zero doesn't make
16878 sense for the 32-bit format, this initial zero can be considered to
16879 be an escape value which indicates the presence of the older 64-bit
16880 format. As written, the code can't detect (old format) lengths
16881 greater than 4GB. If it becomes necessary to handle lengths
16882 somewhat larger than 4GB, we could allow other small values (such
16883 as the non-sensical values of 1, 2, and 3) to also be used as
16884 escape values indicating the presence of the old format.
16885
16886 The value returned via bytes_read should be used to increment the
16887 relevant pointer after calling read_initial_length().
16888
16889 [ Note: read_initial_length() and read_offset() are based on the
16890 document entitled "DWARF Debugging Information Format", revision
16891 3, draft 8, dated November 19, 2001. This document was obtained
16892 from:
16893
16894 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16895
16896 This document is only a draft and is subject to change. (So beware.)
16897
16898 Details regarding the older, non-standard 64-bit format were
16899 determined empirically by examining 64-bit ELF files produced by
16900 the SGI toolchain on an IRIX 6.5 machine.
16901
16902 - Kevin, July 16, 2002
16903 ] */
16904
16905 static LONGEST
16906 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16907 {
16908 LONGEST length = bfd_get_32 (abfd, buf);
16909
16910 if (length == 0xffffffff)
16911 {
16912 length = bfd_get_64 (abfd, buf + 4);
16913 *bytes_read = 12;
16914 }
16915 else if (length == 0)
16916 {
16917 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16918 length = bfd_get_64 (abfd, buf);
16919 *bytes_read = 8;
16920 }
16921 else
16922 {
16923 *bytes_read = 4;
16924 }
16925
16926 return length;
16927 }
16928
16929 /* Cover function for read_initial_length.
16930 Returns the length of the object at BUF, and stores the size of the
16931 initial length in *BYTES_READ and stores the size that offsets will be in
16932 *OFFSET_SIZE.
16933 If the initial length size is not equivalent to that specified in
16934 CU_HEADER then issue a complaint.
16935 This is useful when reading non-comp-unit headers. */
16936
16937 static LONGEST
16938 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16939 const struct comp_unit_head *cu_header,
16940 unsigned int *bytes_read,
16941 unsigned int *offset_size)
16942 {
16943 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16944
16945 gdb_assert (cu_header->initial_length_size == 4
16946 || cu_header->initial_length_size == 8
16947 || cu_header->initial_length_size == 12);
16948
16949 if (cu_header->initial_length_size != *bytes_read)
16950 complaint (&symfile_complaints,
16951 _("intermixed 32-bit and 64-bit DWARF sections"));
16952
16953 *offset_size = (*bytes_read == 4) ? 4 : 8;
16954 return length;
16955 }
16956
16957 /* Read an offset from the data stream. The size of the offset is
16958 given by cu_header->offset_size. */
16959
16960 static LONGEST
16961 read_offset (bfd *abfd, const gdb_byte *buf,
16962 const struct comp_unit_head *cu_header,
16963 unsigned int *bytes_read)
16964 {
16965 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16966
16967 *bytes_read = cu_header->offset_size;
16968 return offset;
16969 }
16970
16971 /* Read an offset from the data stream. */
16972
16973 static LONGEST
16974 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16975 {
16976 LONGEST retval = 0;
16977
16978 switch (offset_size)
16979 {
16980 case 4:
16981 retval = bfd_get_32 (abfd, buf);
16982 break;
16983 case 8:
16984 retval = bfd_get_64 (abfd, buf);
16985 break;
16986 default:
16987 internal_error (__FILE__, __LINE__,
16988 _("read_offset_1: bad switch [in module %s]"),
16989 bfd_get_filename (abfd));
16990 }
16991
16992 return retval;
16993 }
16994
16995 static const gdb_byte *
16996 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16997 {
16998 /* If the size of a host char is 8 bits, we can return a pointer
16999 to the buffer, otherwise we have to copy the data to a buffer
17000 allocated on the temporary obstack. */
17001 gdb_assert (HOST_CHAR_BIT == 8);
17002 return buf;
17003 }
17004
17005 static const char *
17006 read_direct_string (bfd *abfd, const gdb_byte *buf,
17007 unsigned int *bytes_read_ptr)
17008 {
17009 /* If the size of a host char is 8 bits, we can return a pointer
17010 to the string, otherwise we have to copy the string to a buffer
17011 allocated on the temporary obstack. */
17012 gdb_assert (HOST_CHAR_BIT == 8);
17013 if (*buf == '\0')
17014 {
17015 *bytes_read_ptr = 1;
17016 return NULL;
17017 }
17018 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17019 return (const char *) buf;
17020 }
17021
17022 /* Return pointer to string at section SECT offset STR_OFFSET with error
17023 reporting strings FORM_NAME and SECT_NAME. */
17024
17025 static const char *
17026 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17027 struct dwarf2_section_info *sect,
17028 const char *form_name,
17029 const char *sect_name)
17030 {
17031 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17032 if (sect->buffer == NULL)
17033 error (_("%s used without %s section [in module %s]"),
17034 form_name, sect_name, bfd_get_filename (abfd));
17035 if (str_offset >= sect->size)
17036 error (_("%s pointing outside of %s section [in module %s]"),
17037 form_name, sect_name, bfd_get_filename (abfd));
17038 gdb_assert (HOST_CHAR_BIT == 8);
17039 if (sect->buffer[str_offset] == '\0')
17040 return NULL;
17041 return (const char *) (sect->buffer + str_offset);
17042 }
17043
17044 /* Return pointer to string at .debug_str offset STR_OFFSET. */
17045
17046 static const char *
17047 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17048 {
17049 return read_indirect_string_at_offset_from (abfd, str_offset,
17050 &dwarf2_per_objfile->str,
17051 "DW_FORM_strp", ".debug_str");
17052 }
17053
17054 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17055
17056 static const char *
17057 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17058 {
17059 return read_indirect_string_at_offset_from (abfd, str_offset,
17060 &dwarf2_per_objfile->line_str,
17061 "DW_FORM_line_strp",
17062 ".debug_line_str");
17063 }
17064
17065 /* Read a string at offset STR_OFFSET in the .debug_str section from
17066 the .dwz file DWZ. Throw an error if the offset is too large. If
17067 the string consists of a single NUL byte, return NULL; otherwise
17068 return a pointer to the string. */
17069
17070 static const char *
17071 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17072 {
17073 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17074
17075 if (dwz->str.buffer == NULL)
17076 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17077 "section [in module %s]"),
17078 bfd_get_filename (dwz->dwz_bfd));
17079 if (str_offset >= dwz->str.size)
17080 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17081 ".debug_str section [in module %s]"),
17082 bfd_get_filename (dwz->dwz_bfd));
17083 gdb_assert (HOST_CHAR_BIT == 8);
17084 if (dwz->str.buffer[str_offset] == '\0')
17085 return NULL;
17086 return (const char *) (dwz->str.buffer + str_offset);
17087 }
17088
17089 /* Return pointer to string at .debug_str offset as read from BUF.
17090 BUF is assumed to be in a compilation unit described by CU_HEADER.
17091 Return *BYTES_READ_PTR count of bytes read from BUF. */
17092
17093 static const char *
17094 read_indirect_string (bfd *abfd, const gdb_byte *buf,
17095 const struct comp_unit_head *cu_header,
17096 unsigned int *bytes_read_ptr)
17097 {
17098 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17099
17100 return read_indirect_string_at_offset (abfd, str_offset);
17101 }
17102
17103 /* Return pointer to string at .debug_line_str offset as read from BUF.
17104 BUF is assumed to be in a compilation unit described by CU_HEADER.
17105 Return *BYTES_READ_PTR count of bytes read from BUF. */
17106
17107 static const char *
17108 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17109 const struct comp_unit_head *cu_header,
17110 unsigned int *bytes_read_ptr)
17111 {
17112 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17113
17114 return read_indirect_line_string_at_offset (abfd, str_offset);
17115 }
17116
17117 ULONGEST
17118 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
17119 unsigned int *bytes_read_ptr)
17120 {
17121 ULONGEST result;
17122 unsigned int num_read;
17123 int shift;
17124 unsigned char byte;
17125
17126 result = 0;
17127 shift = 0;
17128 num_read = 0;
17129 while (1)
17130 {
17131 byte = bfd_get_8 (abfd, buf);
17132 buf++;
17133 num_read++;
17134 result |= ((ULONGEST) (byte & 127) << shift);
17135 if ((byte & 128) == 0)
17136 {
17137 break;
17138 }
17139 shift += 7;
17140 }
17141 *bytes_read_ptr = num_read;
17142 return result;
17143 }
17144
17145 static LONGEST
17146 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17147 unsigned int *bytes_read_ptr)
17148 {
17149 LONGEST result;
17150 int shift, num_read;
17151 unsigned char byte;
17152
17153 result = 0;
17154 shift = 0;
17155 num_read = 0;
17156 while (1)
17157 {
17158 byte = bfd_get_8 (abfd, buf);
17159 buf++;
17160 num_read++;
17161 result |= ((LONGEST) (byte & 127) << shift);
17162 shift += 7;
17163 if ((byte & 128) == 0)
17164 {
17165 break;
17166 }
17167 }
17168 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
17169 result |= -(((LONGEST) 1) << shift);
17170 *bytes_read_ptr = num_read;
17171 return result;
17172 }
17173
17174 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
17175 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17176 ADDR_SIZE is the size of addresses from the CU header. */
17177
17178 static CORE_ADDR
17179 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17180 {
17181 struct objfile *objfile = dwarf2_per_objfile->objfile;
17182 bfd *abfd = objfile->obfd;
17183 const gdb_byte *info_ptr;
17184
17185 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17186 if (dwarf2_per_objfile->addr.buffer == NULL)
17187 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
17188 objfile_name (objfile));
17189 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17190 error (_("DW_FORM_addr_index pointing outside of "
17191 ".debug_addr section [in module %s]"),
17192 objfile_name (objfile));
17193 info_ptr = (dwarf2_per_objfile->addr.buffer
17194 + addr_base + addr_index * addr_size);
17195 if (addr_size == 4)
17196 return bfd_get_32 (abfd, info_ptr);
17197 else
17198 return bfd_get_64 (abfd, info_ptr);
17199 }
17200
17201 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17202
17203 static CORE_ADDR
17204 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17205 {
17206 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17207 }
17208
17209 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17210
17211 static CORE_ADDR
17212 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
17213 unsigned int *bytes_read)
17214 {
17215 bfd *abfd = cu->objfile->obfd;
17216 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17217
17218 return read_addr_index (cu, addr_index);
17219 }
17220
17221 /* Data structure to pass results from dwarf2_read_addr_index_reader
17222 back to dwarf2_read_addr_index. */
17223
17224 struct dwarf2_read_addr_index_data
17225 {
17226 ULONGEST addr_base;
17227 int addr_size;
17228 };
17229
17230 /* die_reader_func for dwarf2_read_addr_index. */
17231
17232 static void
17233 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
17234 const gdb_byte *info_ptr,
17235 struct die_info *comp_unit_die,
17236 int has_children,
17237 void *data)
17238 {
17239 struct dwarf2_cu *cu = reader->cu;
17240 struct dwarf2_read_addr_index_data *aidata =
17241 (struct dwarf2_read_addr_index_data *) data;
17242
17243 aidata->addr_base = cu->addr_base;
17244 aidata->addr_size = cu->header.addr_size;
17245 }
17246
17247 /* Given an index in .debug_addr, fetch the value.
17248 NOTE: This can be called during dwarf expression evaluation,
17249 long after the debug information has been read, and thus per_cu->cu
17250 may no longer exist. */
17251
17252 CORE_ADDR
17253 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17254 unsigned int addr_index)
17255 {
17256 struct objfile *objfile = per_cu->objfile;
17257 struct dwarf2_cu *cu = per_cu->cu;
17258 ULONGEST addr_base;
17259 int addr_size;
17260
17261 /* This is intended to be called from outside this file. */
17262 dw2_setup (objfile);
17263
17264 /* We need addr_base and addr_size.
17265 If we don't have PER_CU->cu, we have to get it.
17266 Nasty, but the alternative is storing the needed info in PER_CU,
17267 which at this point doesn't seem justified: it's not clear how frequently
17268 it would get used and it would increase the size of every PER_CU.
17269 Entry points like dwarf2_per_cu_addr_size do a similar thing
17270 so we're not in uncharted territory here.
17271 Alas we need to be a bit more complicated as addr_base is contained
17272 in the DIE.
17273
17274 We don't need to read the entire CU(/TU).
17275 We just need the header and top level die.
17276
17277 IWBN to use the aging mechanism to let us lazily later discard the CU.
17278 For now we skip this optimization. */
17279
17280 if (cu != NULL)
17281 {
17282 addr_base = cu->addr_base;
17283 addr_size = cu->header.addr_size;
17284 }
17285 else
17286 {
17287 struct dwarf2_read_addr_index_data aidata;
17288
17289 /* Note: We can't use init_cutu_and_read_dies_simple here,
17290 we need addr_base. */
17291 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17292 dwarf2_read_addr_index_reader, &aidata);
17293 addr_base = aidata.addr_base;
17294 addr_size = aidata.addr_size;
17295 }
17296
17297 return read_addr_index_1 (addr_index, addr_base, addr_size);
17298 }
17299
17300 /* Given a DW_FORM_GNU_str_index, fetch the string.
17301 This is only used by the Fission support. */
17302
17303 static const char *
17304 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
17305 {
17306 struct objfile *objfile = dwarf2_per_objfile->objfile;
17307 const char *objf_name = objfile_name (objfile);
17308 bfd *abfd = objfile->obfd;
17309 struct dwarf2_cu *cu = reader->cu;
17310 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17311 struct dwarf2_section_info *str_offsets_section =
17312 &reader->dwo_file->sections.str_offsets;
17313 const gdb_byte *info_ptr;
17314 ULONGEST str_offset;
17315 static const char form_name[] = "DW_FORM_GNU_str_index";
17316
17317 dwarf2_read_section (objfile, str_section);
17318 dwarf2_read_section (objfile, str_offsets_section);
17319 if (str_section->buffer == NULL)
17320 error (_("%s used without .debug_str.dwo section"
17321 " in CU at offset 0x%lx [in module %s]"),
17322 form_name, (long) cu->header.offset.sect_off, objf_name);
17323 if (str_offsets_section->buffer == NULL)
17324 error (_("%s used without .debug_str_offsets.dwo section"
17325 " in CU at offset 0x%lx [in module %s]"),
17326 form_name, (long) cu->header.offset.sect_off, objf_name);
17327 if (str_index * cu->header.offset_size >= str_offsets_section->size)
17328 error (_("%s pointing outside of .debug_str_offsets.dwo"
17329 " section in CU at offset 0x%lx [in module %s]"),
17330 form_name, (long) cu->header.offset.sect_off, objf_name);
17331 info_ptr = (str_offsets_section->buffer
17332 + str_index * cu->header.offset_size);
17333 if (cu->header.offset_size == 4)
17334 str_offset = bfd_get_32 (abfd, info_ptr);
17335 else
17336 str_offset = bfd_get_64 (abfd, info_ptr);
17337 if (str_offset >= str_section->size)
17338 error (_("Offset from %s pointing outside of"
17339 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
17340 form_name, (long) cu->header.offset.sect_off, objf_name);
17341 return (const char *) (str_section->buffer + str_offset);
17342 }
17343
17344 /* Return the length of an LEB128 number in BUF. */
17345
17346 static int
17347 leb128_size (const gdb_byte *buf)
17348 {
17349 const gdb_byte *begin = buf;
17350 gdb_byte byte;
17351
17352 while (1)
17353 {
17354 byte = *buf++;
17355 if ((byte & 128) == 0)
17356 return buf - begin;
17357 }
17358 }
17359
17360 static void
17361 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17362 {
17363 switch (lang)
17364 {
17365 case DW_LANG_C89:
17366 case DW_LANG_C99:
17367 case DW_LANG_C11:
17368 case DW_LANG_C:
17369 case DW_LANG_UPC:
17370 cu->language = language_c;
17371 break;
17372 case DW_LANG_Java:
17373 case DW_LANG_C_plus_plus:
17374 case DW_LANG_C_plus_plus_11:
17375 case DW_LANG_C_plus_plus_14:
17376 cu->language = language_cplus;
17377 break;
17378 case DW_LANG_D:
17379 cu->language = language_d;
17380 break;
17381 case DW_LANG_Fortran77:
17382 case DW_LANG_Fortran90:
17383 case DW_LANG_Fortran95:
17384 case DW_LANG_Fortran03:
17385 case DW_LANG_Fortran08:
17386 cu->language = language_fortran;
17387 break;
17388 case DW_LANG_Go:
17389 cu->language = language_go;
17390 break;
17391 case DW_LANG_Mips_Assembler:
17392 cu->language = language_asm;
17393 break;
17394 case DW_LANG_Ada83:
17395 case DW_LANG_Ada95:
17396 cu->language = language_ada;
17397 break;
17398 case DW_LANG_Modula2:
17399 cu->language = language_m2;
17400 break;
17401 case DW_LANG_Pascal83:
17402 cu->language = language_pascal;
17403 break;
17404 case DW_LANG_ObjC:
17405 cu->language = language_objc;
17406 break;
17407 case DW_LANG_Rust:
17408 case DW_LANG_Rust_old:
17409 cu->language = language_rust;
17410 break;
17411 case DW_LANG_Cobol74:
17412 case DW_LANG_Cobol85:
17413 default:
17414 cu->language = language_minimal;
17415 break;
17416 }
17417 cu->language_defn = language_def (cu->language);
17418 }
17419
17420 /* Return the named attribute or NULL if not there. */
17421
17422 static struct attribute *
17423 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17424 {
17425 for (;;)
17426 {
17427 unsigned int i;
17428 struct attribute *spec = NULL;
17429
17430 for (i = 0; i < die->num_attrs; ++i)
17431 {
17432 if (die->attrs[i].name == name)
17433 return &die->attrs[i];
17434 if (die->attrs[i].name == DW_AT_specification
17435 || die->attrs[i].name == DW_AT_abstract_origin)
17436 spec = &die->attrs[i];
17437 }
17438
17439 if (!spec)
17440 break;
17441
17442 die = follow_die_ref (die, spec, &cu);
17443 }
17444
17445 return NULL;
17446 }
17447
17448 /* Return the named attribute or NULL if not there,
17449 but do not follow DW_AT_specification, etc.
17450 This is for use in contexts where we're reading .debug_types dies.
17451 Following DW_AT_specification, DW_AT_abstract_origin will take us
17452 back up the chain, and we want to go down. */
17453
17454 static struct attribute *
17455 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17456 {
17457 unsigned int i;
17458
17459 for (i = 0; i < die->num_attrs; ++i)
17460 if (die->attrs[i].name == name)
17461 return &die->attrs[i];
17462
17463 return NULL;
17464 }
17465
17466 /* Return the string associated with a string-typed attribute, or NULL if it
17467 is either not found or is of an incorrect type. */
17468
17469 static const char *
17470 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17471 {
17472 struct attribute *attr;
17473 const char *str = NULL;
17474
17475 attr = dwarf2_attr (die, name, cu);
17476
17477 if (attr != NULL)
17478 {
17479 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
17480 || attr->form == DW_FORM_string || attr->form == DW_FORM_GNU_strp_alt)
17481 str = DW_STRING (attr);
17482 else
17483 complaint (&symfile_complaints,
17484 _("string type expected for attribute %s for "
17485 "DIE at 0x%x in module %s"),
17486 dwarf_attr_name (name), die->offset.sect_off,
17487 objfile_name (cu->objfile));
17488 }
17489
17490 return str;
17491 }
17492
17493 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17494 and holds a non-zero value. This function should only be used for
17495 DW_FORM_flag or DW_FORM_flag_present attributes. */
17496
17497 static int
17498 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17499 {
17500 struct attribute *attr = dwarf2_attr (die, name, cu);
17501
17502 return (attr && DW_UNSND (attr));
17503 }
17504
17505 static int
17506 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17507 {
17508 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17509 which value is non-zero. However, we have to be careful with
17510 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17511 (via dwarf2_flag_true_p) follows this attribute. So we may
17512 end up accidently finding a declaration attribute that belongs
17513 to a different DIE referenced by the specification attribute,
17514 even though the given DIE does not have a declaration attribute. */
17515 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17516 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17517 }
17518
17519 /* Return the die giving the specification for DIE, if there is
17520 one. *SPEC_CU is the CU containing DIE on input, and the CU
17521 containing the return value on output. If there is no
17522 specification, but there is an abstract origin, that is
17523 returned. */
17524
17525 static struct die_info *
17526 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17527 {
17528 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17529 *spec_cu);
17530
17531 if (spec_attr == NULL)
17532 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17533
17534 if (spec_attr == NULL)
17535 return NULL;
17536 else
17537 return follow_die_ref (die, spec_attr, spec_cu);
17538 }
17539
17540 /* Free the line_header structure *LH, and any arrays and strings it
17541 refers to.
17542 NOTE: This is also used as a "cleanup" function. */
17543
17544 static void
17545 free_line_header (struct line_header *lh)
17546 {
17547 if (lh->standard_opcode_lengths)
17548 xfree (lh->standard_opcode_lengths);
17549
17550 /* Remember that all the lh->file_names[i].name pointers are
17551 pointers into debug_line_buffer, and don't need to be freed. */
17552 if (lh->file_names)
17553 xfree (lh->file_names);
17554
17555 /* Similarly for the include directory names. */
17556 if (lh->include_dirs)
17557 xfree (lh->include_dirs);
17558
17559 xfree (lh);
17560 }
17561
17562 /* Stub for free_line_header to match void * callback types. */
17563
17564 static void
17565 free_line_header_voidp (void *arg)
17566 {
17567 struct line_header *lh = (struct line_header *) arg;
17568
17569 free_line_header (lh);
17570 }
17571
17572 /* Add an entry to LH's include directory table. */
17573
17574 static void
17575 add_include_dir (struct line_header *lh, const char *include_dir)
17576 {
17577 if (dwarf_line_debug >= 2)
17578 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17579 lh->num_include_dirs + 1, include_dir);
17580
17581 /* Grow the array if necessary. */
17582 if (lh->include_dirs_size == 0)
17583 {
17584 lh->include_dirs_size = 1; /* for testing */
17585 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17586 }
17587 else if (lh->num_include_dirs >= lh->include_dirs_size)
17588 {
17589 lh->include_dirs_size *= 2;
17590 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17591 lh->include_dirs_size);
17592 }
17593
17594 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17595 }
17596
17597 /* Add an entry to LH's file name table. */
17598
17599 static void
17600 add_file_name (struct line_header *lh,
17601 const char *name,
17602 unsigned int dir_index,
17603 unsigned int mod_time,
17604 unsigned int length)
17605 {
17606 struct file_entry *fe;
17607
17608 if (dwarf_line_debug >= 2)
17609 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17610 lh->num_file_names + 1, name);
17611
17612 /* Grow the array if necessary. */
17613 if (lh->file_names_size == 0)
17614 {
17615 lh->file_names_size = 1; /* for testing */
17616 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17617 }
17618 else if (lh->num_file_names >= lh->file_names_size)
17619 {
17620 lh->file_names_size *= 2;
17621 lh->file_names
17622 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
17623 }
17624
17625 fe = &lh->file_names[lh->num_file_names++];
17626 fe->name = name;
17627 fe->dir_index = dir_index;
17628 fe->mod_time = mod_time;
17629 fe->length = length;
17630 fe->included_p = 0;
17631 fe->symtab = NULL;
17632 }
17633
17634 /* A convenience function to find the proper .debug_line section for a CU. */
17635
17636 static struct dwarf2_section_info *
17637 get_debug_line_section (struct dwarf2_cu *cu)
17638 {
17639 struct dwarf2_section_info *section;
17640
17641 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17642 DWO file. */
17643 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17644 section = &cu->dwo_unit->dwo_file->sections.line;
17645 else if (cu->per_cu->is_dwz)
17646 {
17647 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17648
17649 section = &dwz->line;
17650 }
17651 else
17652 section = &dwarf2_per_objfile->line;
17653
17654 return section;
17655 }
17656
17657 /* Forwarding function for read_formatted_entries. */
17658
17659 static void
17660 add_include_dir_stub (struct line_header *lh, const char *name,
17661 unsigned int dir_index, unsigned int mod_time,
17662 unsigned int length)
17663 {
17664 add_include_dir (lh, name);
17665 }
17666
17667 /* Read directory or file name entry format, starting with byte of
17668 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17669 entries count and the entries themselves in the described entry
17670 format. */
17671
17672 static void
17673 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17674 struct line_header *lh,
17675 const struct comp_unit_head *cu_header,
17676 void (*callback) (struct line_header *lh,
17677 const char *name,
17678 unsigned int dir_index,
17679 unsigned int mod_time,
17680 unsigned int length))
17681 {
17682 gdb_byte format_count, formati;
17683 ULONGEST data_count, datai;
17684 const gdb_byte *buf = *bufp;
17685 const gdb_byte *format_header_data;
17686 int i;
17687 unsigned int bytes_read;
17688
17689 format_count = read_1_byte (abfd, buf);
17690 buf += 1;
17691 format_header_data = buf;
17692 for (formati = 0; formati < format_count; formati++)
17693 {
17694 read_unsigned_leb128 (abfd, buf, &bytes_read);
17695 buf += bytes_read;
17696 read_unsigned_leb128 (abfd, buf, &bytes_read);
17697 buf += bytes_read;
17698 }
17699
17700 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17701 buf += bytes_read;
17702 for (datai = 0; datai < data_count; datai++)
17703 {
17704 const gdb_byte *format = format_header_data;
17705 struct file_entry fe;
17706
17707 memset (&fe, 0, sizeof (fe));
17708
17709 for (formati = 0; formati < format_count; formati++)
17710 {
17711 ULONGEST content_type, form;
17712 const char *string_trash;
17713 const char **stringp = &string_trash;
17714 unsigned int uint_trash, *uintp = &uint_trash;
17715
17716 content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
17717 format += bytes_read;
17718 switch (content_type)
17719 {
17720 case DW_LNCT_path:
17721 stringp = &fe.name;
17722 break;
17723 case DW_LNCT_directory_index:
17724 uintp = &fe.dir_index;
17725 break;
17726 case DW_LNCT_timestamp:
17727 uintp = &fe.mod_time;
17728 break;
17729 case DW_LNCT_size:
17730 uintp = &fe.length;
17731 break;
17732 case DW_LNCT_MD5:
17733 break;
17734 default:
17735 complaint (&symfile_complaints,
17736 _("Unknown format content type %s"),
17737 pulongest (content_type));
17738 }
17739
17740 form = read_unsigned_leb128 (abfd, format, &bytes_read);
17741 format += bytes_read;
17742 switch (form)
17743 {
17744 case DW_FORM_string:
17745 *stringp = read_direct_string (abfd, buf, &bytes_read);
17746 buf += bytes_read;
17747 break;
17748
17749 case DW_FORM_line_strp:
17750 *stringp = read_indirect_line_string (abfd, buf, cu_header, &bytes_read);
17751 buf += bytes_read;
17752 break;
17753
17754 case DW_FORM_data1:
17755 *uintp = read_1_byte (abfd, buf);
17756 buf += 1;
17757 break;
17758
17759 case DW_FORM_data2:
17760 *uintp = read_2_bytes (abfd, buf);
17761 buf += 2;
17762 break;
17763
17764 case DW_FORM_data4:
17765 *uintp = read_4_bytes (abfd, buf);
17766 buf += 4;
17767 break;
17768
17769 case DW_FORM_data8:
17770 *uintp = read_8_bytes (abfd, buf);
17771 buf += 8;
17772 break;
17773
17774 case DW_FORM_udata:
17775 *uintp = read_unsigned_leb128 (abfd, buf, &bytes_read);
17776 buf += bytes_read;
17777 break;
17778
17779 case DW_FORM_block:
17780 /* It is valid only for DW_LNCT_timestamp which is ignored by
17781 current GDB. */
17782 break;
17783 }
17784 }
17785
17786 callback (lh, fe.name, fe.dir_index, fe.mod_time, fe.length);
17787 }
17788
17789 *bufp = buf;
17790 }
17791
17792 /* Read the statement program header starting at OFFSET in
17793 .debug_line, or .debug_line.dwo. Return a pointer
17794 to a struct line_header, allocated using xmalloc.
17795 Returns NULL if there is a problem reading the header, e.g., if it
17796 has a version we don't understand.
17797
17798 NOTE: the strings in the include directory and file name tables of
17799 the returned object point into the dwarf line section buffer,
17800 and must not be freed. */
17801
17802 static struct line_header *
17803 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17804 {
17805 struct cleanup *back_to;
17806 struct line_header *lh;
17807 const gdb_byte *line_ptr;
17808 unsigned int bytes_read, offset_size;
17809 int i;
17810 const char *cur_dir, *cur_file;
17811 struct dwarf2_section_info *section;
17812 bfd *abfd;
17813
17814 section = get_debug_line_section (cu);
17815 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17816 if (section->buffer == NULL)
17817 {
17818 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17819 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17820 else
17821 complaint (&symfile_complaints, _("missing .debug_line section"));
17822 return 0;
17823 }
17824
17825 /* We can't do this until we know the section is non-empty.
17826 Only then do we know we have such a section. */
17827 abfd = get_section_bfd_owner (section);
17828
17829 /* Make sure that at least there's room for the total_length field.
17830 That could be 12 bytes long, but we're just going to fudge that. */
17831 if (offset + 4 >= section->size)
17832 {
17833 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17834 return 0;
17835 }
17836
17837 lh = XNEW (struct line_header);
17838 memset (lh, 0, sizeof (*lh));
17839 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17840 (void *) lh);
17841
17842 lh->offset.sect_off = offset;
17843 lh->offset_in_dwz = cu->per_cu->is_dwz;
17844
17845 line_ptr = section->buffer + offset;
17846
17847 /* Read in the header. */
17848 lh->total_length =
17849 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17850 &bytes_read, &offset_size);
17851 line_ptr += bytes_read;
17852 if (line_ptr + lh->total_length > (section->buffer + section->size))
17853 {
17854 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17855 do_cleanups (back_to);
17856 return 0;
17857 }
17858 lh->statement_program_end = line_ptr + lh->total_length;
17859 lh->version = read_2_bytes (abfd, line_ptr);
17860 line_ptr += 2;
17861 if (lh->version > 5)
17862 {
17863 /* This is a version we don't understand. The format could have
17864 changed in ways we don't handle properly so just punt. */
17865 complaint (&symfile_complaints,
17866 _("unsupported version in .debug_line section"));
17867 return NULL;
17868 }
17869 if (lh->version >= 5)
17870 {
17871 gdb_byte segment_selector_size;
17872
17873 /* Skip address size. */
17874 read_1_byte (abfd, line_ptr);
17875 line_ptr += 1;
17876
17877 segment_selector_size = read_1_byte (abfd, line_ptr);
17878 line_ptr += 1;
17879 if (segment_selector_size != 0)
17880 {
17881 complaint (&symfile_complaints,
17882 _("unsupported segment selector size %u "
17883 "in .debug_line section"),
17884 segment_selector_size);
17885 return NULL;
17886 }
17887 }
17888 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17889 line_ptr += offset_size;
17890 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17891 line_ptr += 1;
17892 if (lh->version >= 4)
17893 {
17894 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17895 line_ptr += 1;
17896 }
17897 else
17898 lh->maximum_ops_per_instruction = 1;
17899
17900 if (lh->maximum_ops_per_instruction == 0)
17901 {
17902 lh->maximum_ops_per_instruction = 1;
17903 complaint (&symfile_complaints,
17904 _("invalid maximum_ops_per_instruction "
17905 "in `.debug_line' section"));
17906 }
17907
17908 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17909 line_ptr += 1;
17910 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17911 line_ptr += 1;
17912 lh->line_range = read_1_byte (abfd, line_ptr);
17913 line_ptr += 1;
17914 lh->opcode_base = read_1_byte (abfd, line_ptr);
17915 line_ptr += 1;
17916 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17917
17918 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17919 for (i = 1; i < lh->opcode_base; ++i)
17920 {
17921 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17922 line_ptr += 1;
17923 }
17924
17925 if (lh->version >= 5)
17926 {
17927 /* Read directory table. */
17928 read_formatted_entries (abfd, &line_ptr, lh, &cu->header,
17929 add_include_dir_stub);
17930
17931 /* Read file name table. */
17932 read_formatted_entries (abfd, &line_ptr, lh, &cu->header, add_file_name);
17933 }
17934 else
17935 {
17936 /* Read directory table. */
17937 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17938 {
17939 line_ptr += bytes_read;
17940 add_include_dir (lh, cur_dir);
17941 }
17942 line_ptr += bytes_read;
17943
17944 /* Read file name table. */
17945 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17946 {
17947 unsigned int dir_index, mod_time, length;
17948
17949 line_ptr += bytes_read;
17950 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17951 line_ptr += bytes_read;
17952 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17953 line_ptr += bytes_read;
17954 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17955 line_ptr += bytes_read;
17956
17957 add_file_name (lh, cur_file, dir_index, mod_time, length);
17958 }
17959 line_ptr += bytes_read;
17960 }
17961 lh->statement_program_start = line_ptr;
17962
17963 if (line_ptr > (section->buffer + section->size))
17964 complaint (&symfile_complaints,
17965 _("line number info header doesn't "
17966 "fit in `.debug_line' section"));
17967
17968 discard_cleanups (back_to);
17969 return lh;
17970 }
17971
17972 /* Subroutine of dwarf_decode_lines to simplify it.
17973 Return the file name of the psymtab for included file FILE_INDEX
17974 in line header LH of PST.
17975 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17976 If space for the result is malloc'd, it will be freed by a cleanup.
17977 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17978
17979 The function creates dangling cleanup registration. */
17980
17981 static const char *
17982 psymtab_include_file_name (const struct line_header *lh, int file_index,
17983 const struct partial_symtab *pst,
17984 const char *comp_dir)
17985 {
17986 const struct file_entry fe = lh->file_names [file_index];
17987 const char *include_name = fe.name;
17988 const char *include_name_to_compare = include_name;
17989 const char *dir_name = NULL;
17990 const char *pst_filename;
17991 char *copied_name = NULL;
17992 int file_is_pst;
17993
17994 if (fe.dir_index && lh->include_dirs != NULL
17995 && (fe.dir_index - 1) < lh->num_include_dirs)
17996 dir_name = lh->include_dirs[fe.dir_index - 1];
17997
17998 if (!IS_ABSOLUTE_PATH (include_name)
17999 && (dir_name != NULL || comp_dir != NULL))
18000 {
18001 /* Avoid creating a duplicate psymtab for PST.
18002 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18003 Before we do the comparison, however, we need to account
18004 for DIR_NAME and COMP_DIR.
18005 First prepend dir_name (if non-NULL). If we still don't
18006 have an absolute path prepend comp_dir (if non-NULL).
18007 However, the directory we record in the include-file's
18008 psymtab does not contain COMP_DIR (to match the
18009 corresponding symtab(s)).
18010
18011 Example:
18012
18013 bash$ cd /tmp
18014 bash$ gcc -g ./hello.c
18015 include_name = "hello.c"
18016 dir_name = "."
18017 DW_AT_comp_dir = comp_dir = "/tmp"
18018 DW_AT_name = "./hello.c"
18019
18020 */
18021
18022 if (dir_name != NULL)
18023 {
18024 char *tem = concat (dir_name, SLASH_STRING,
18025 include_name, (char *)NULL);
18026
18027 make_cleanup (xfree, tem);
18028 include_name = tem;
18029 include_name_to_compare = include_name;
18030 }
18031 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18032 {
18033 char *tem = concat (comp_dir, SLASH_STRING,
18034 include_name, (char *)NULL);
18035
18036 make_cleanup (xfree, tem);
18037 include_name_to_compare = tem;
18038 }
18039 }
18040
18041 pst_filename = pst->filename;
18042 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18043 {
18044 copied_name = concat (pst->dirname, SLASH_STRING,
18045 pst_filename, (char *)NULL);
18046 pst_filename = copied_name;
18047 }
18048
18049 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
18050
18051 if (copied_name != NULL)
18052 xfree (copied_name);
18053
18054 if (file_is_pst)
18055 return NULL;
18056 return include_name;
18057 }
18058
18059 /* State machine to track the state of the line number program. */
18060
18061 typedef struct
18062 {
18063 /* These are part of the standard DWARF line number state machine. */
18064
18065 unsigned char op_index;
18066 unsigned int file;
18067 unsigned int line;
18068 CORE_ADDR address;
18069 int is_stmt;
18070 unsigned int discriminator;
18071
18072 /* Additional bits of state we need to track. */
18073
18074 /* The last file that we called dwarf2_start_subfile for.
18075 This is only used for TLLs. */
18076 unsigned int last_file;
18077 /* The last file a line number was recorded for. */
18078 struct subfile *last_subfile;
18079
18080 /* The function to call to record a line. */
18081 record_line_ftype *record_line;
18082
18083 /* The last line number that was recorded, used to coalesce
18084 consecutive entries for the same line. This can happen, for
18085 example, when discriminators are present. PR 17276. */
18086 unsigned int last_line;
18087 int line_has_non_zero_discriminator;
18088 } lnp_state_machine;
18089
18090 /* There's a lot of static state to pass to dwarf_record_line.
18091 This keeps it all together. */
18092
18093 typedef struct
18094 {
18095 /* The gdbarch. */
18096 struct gdbarch *gdbarch;
18097
18098 /* The line number header. */
18099 struct line_header *line_header;
18100
18101 /* Non-zero if we're recording lines.
18102 Otherwise we're building partial symtabs and are just interested in
18103 finding include files mentioned by the line number program. */
18104 int record_lines_p;
18105 } lnp_reader_state;
18106
18107 /* Ignore this record_line request. */
18108
18109 static void
18110 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18111 {
18112 return;
18113 }
18114
18115 /* Return non-zero if we should add LINE to the line number table.
18116 LINE is the line to add, LAST_LINE is the last line that was added,
18117 LAST_SUBFILE is the subfile for LAST_LINE.
18118 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18119 had a non-zero discriminator.
18120
18121 We have to be careful in the presence of discriminators.
18122 E.g., for this line:
18123
18124 for (i = 0; i < 100000; i++);
18125
18126 clang can emit four line number entries for that one line,
18127 each with a different discriminator.
18128 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18129
18130 However, we want gdb to coalesce all four entries into one.
18131 Otherwise the user could stepi into the middle of the line and
18132 gdb would get confused about whether the pc really was in the
18133 middle of the line.
18134
18135 Things are further complicated by the fact that two consecutive
18136 line number entries for the same line is a heuristic used by gcc
18137 to denote the end of the prologue. So we can't just discard duplicate
18138 entries, we have to be selective about it. The heuristic we use is
18139 that we only collapse consecutive entries for the same line if at least
18140 one of those entries has a non-zero discriminator. PR 17276.
18141
18142 Note: Addresses in the line number state machine can never go backwards
18143 within one sequence, thus this coalescing is ok. */
18144
18145 static int
18146 dwarf_record_line_p (unsigned int line, unsigned int last_line,
18147 int line_has_non_zero_discriminator,
18148 struct subfile *last_subfile)
18149 {
18150 if (current_subfile != last_subfile)
18151 return 1;
18152 if (line != last_line)
18153 return 1;
18154 /* Same line for the same file that we've seen already.
18155 As a last check, for pr 17276, only record the line if the line
18156 has never had a non-zero discriminator. */
18157 if (!line_has_non_zero_discriminator)
18158 return 1;
18159 return 0;
18160 }
18161
18162 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18163 in the line table of subfile SUBFILE. */
18164
18165 static void
18166 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18167 unsigned int line, CORE_ADDR address,
18168 record_line_ftype p_record_line)
18169 {
18170 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18171
18172 if (dwarf_line_debug)
18173 {
18174 fprintf_unfiltered (gdb_stdlog,
18175 "Recording line %u, file %s, address %s\n",
18176 line, lbasename (subfile->name),
18177 paddress (gdbarch, address));
18178 }
18179
18180 (*p_record_line) (subfile, line, addr);
18181 }
18182
18183 /* Subroutine of dwarf_decode_lines_1 to simplify it.
18184 Mark the end of a set of line number records.
18185 The arguments are the same as for dwarf_record_line_1.
18186 If SUBFILE is NULL the request is ignored. */
18187
18188 static void
18189 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18190 CORE_ADDR address, record_line_ftype p_record_line)
18191 {
18192 if (subfile == NULL)
18193 return;
18194
18195 if (dwarf_line_debug)
18196 {
18197 fprintf_unfiltered (gdb_stdlog,
18198 "Finishing current line, file %s, address %s\n",
18199 lbasename (subfile->name),
18200 paddress (gdbarch, address));
18201 }
18202
18203 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18204 }
18205
18206 /* Record the line in STATE.
18207 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
18208
18209 static void
18210 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
18211 int end_sequence)
18212 {
18213 const struct line_header *lh = reader->line_header;
18214 unsigned int file, line, discriminator;
18215 int is_stmt;
18216
18217 file = state->file;
18218 line = state->line;
18219 is_stmt = state->is_stmt;
18220 discriminator = state->discriminator;
18221
18222 if (dwarf_line_debug)
18223 {
18224 fprintf_unfiltered (gdb_stdlog,
18225 "Processing actual line %u: file %u,"
18226 " address %s, is_stmt %u, discrim %u\n",
18227 line, file,
18228 paddress (reader->gdbarch, state->address),
18229 is_stmt, discriminator);
18230 }
18231
18232 if (file == 0 || file - 1 >= lh->num_file_names)
18233 dwarf2_debug_line_missing_file_complaint ();
18234 /* For now we ignore lines not starting on an instruction boundary.
18235 But not when processing end_sequence for compatibility with the
18236 previous version of the code. */
18237 else if (state->op_index == 0 || end_sequence)
18238 {
18239 lh->file_names[file - 1].included_p = 1;
18240 if (reader->record_lines_p && is_stmt)
18241 {
18242 if (state->last_subfile != current_subfile || end_sequence)
18243 {
18244 dwarf_finish_line (reader->gdbarch, state->last_subfile,
18245 state->address, state->record_line);
18246 }
18247
18248 if (!end_sequence)
18249 {
18250 if (dwarf_record_line_p (line, state->last_line,
18251 state->line_has_non_zero_discriminator,
18252 state->last_subfile))
18253 {
18254 dwarf_record_line_1 (reader->gdbarch, current_subfile,
18255 line, state->address,
18256 state->record_line);
18257 }
18258 state->last_subfile = current_subfile;
18259 state->last_line = line;
18260 }
18261 }
18262 }
18263 }
18264
18265 /* Initialize STATE for the start of a line number program. */
18266
18267 static void
18268 init_lnp_state_machine (lnp_state_machine *state,
18269 const lnp_reader_state *reader)
18270 {
18271 memset (state, 0, sizeof (*state));
18272
18273 /* Just starting, there is no "last file". */
18274 state->last_file = 0;
18275 state->last_subfile = NULL;
18276
18277 state->record_line = record_line;
18278
18279 state->last_line = 0;
18280 state->line_has_non_zero_discriminator = 0;
18281
18282 /* Initialize these according to the DWARF spec. */
18283 state->op_index = 0;
18284 state->file = 1;
18285 state->line = 1;
18286 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18287 was a line entry for it so that the backend has a chance to adjust it
18288 and also record it in case it needs it. This is currently used by MIPS
18289 code, cf. `mips_adjust_dwarf2_line'. */
18290 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
18291 state->is_stmt = reader->line_header->default_is_stmt;
18292 state->discriminator = 0;
18293 }
18294
18295 /* Check address and if invalid nop-out the rest of the lines in this
18296 sequence. */
18297
18298 static void
18299 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
18300 const gdb_byte *line_ptr,
18301 CORE_ADDR lowpc, CORE_ADDR address)
18302 {
18303 /* If address < lowpc then it's not a usable value, it's outside the
18304 pc range of the CU. However, we restrict the test to only address
18305 values of zero to preserve GDB's previous behaviour which is to
18306 handle the specific case of a function being GC'd by the linker. */
18307
18308 if (address == 0 && address < lowpc)
18309 {
18310 /* This line table is for a function which has been
18311 GCd by the linker. Ignore it. PR gdb/12528 */
18312
18313 struct objfile *objfile = cu->objfile;
18314 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18315
18316 complaint (&symfile_complaints,
18317 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18318 line_offset, objfile_name (objfile));
18319 state->record_line = noop_record_line;
18320 /* Note: sm.record_line is left as noop_record_line
18321 until we see DW_LNE_end_sequence. */
18322 }
18323 }
18324
18325 /* Subroutine of dwarf_decode_lines to simplify it.
18326 Process the line number information in LH.
18327 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18328 program in order to set included_p for every referenced header. */
18329
18330 static void
18331 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18332 const int decode_for_pst_p, CORE_ADDR lowpc)
18333 {
18334 const gdb_byte *line_ptr, *extended_end;
18335 const gdb_byte *line_end;
18336 unsigned int bytes_read, extended_len;
18337 unsigned char op_code, extended_op;
18338 CORE_ADDR baseaddr;
18339 struct objfile *objfile = cu->objfile;
18340 bfd *abfd = objfile->obfd;
18341 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18342 /* Non-zero if we're recording line info (as opposed to building partial
18343 symtabs). */
18344 int record_lines_p = !decode_for_pst_p;
18345 /* A collection of things we need to pass to dwarf_record_line. */
18346 lnp_reader_state reader_state;
18347
18348 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18349
18350 line_ptr = lh->statement_program_start;
18351 line_end = lh->statement_program_end;
18352
18353 reader_state.gdbarch = gdbarch;
18354 reader_state.line_header = lh;
18355 reader_state.record_lines_p = record_lines_p;
18356
18357 /* Read the statement sequences until there's nothing left. */
18358 while (line_ptr < line_end)
18359 {
18360 /* The DWARF line number program state machine. */
18361 lnp_state_machine state_machine;
18362 int end_sequence = 0;
18363
18364 /* Reset the state machine at the start of each sequence. */
18365 init_lnp_state_machine (&state_machine, &reader_state);
18366
18367 if (record_lines_p && lh->num_file_names >= state_machine.file)
18368 {
18369 /* Start a subfile for the current file of the state machine. */
18370 /* lh->include_dirs and lh->file_names are 0-based, but the
18371 directory and file name numbers in the statement program
18372 are 1-based. */
18373 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
18374 const char *dir = NULL;
18375
18376 if (fe->dir_index && lh->include_dirs != NULL
18377 && (fe->dir_index - 1) < lh->num_include_dirs)
18378 dir = lh->include_dirs[fe->dir_index - 1];
18379
18380 dwarf2_start_subfile (fe->name, dir);
18381 }
18382
18383 /* Decode the table. */
18384 while (line_ptr < line_end && !end_sequence)
18385 {
18386 op_code = read_1_byte (abfd, line_ptr);
18387 line_ptr += 1;
18388
18389 if (op_code >= lh->opcode_base)
18390 {
18391 /* Special opcode. */
18392 unsigned char adj_opcode;
18393 CORE_ADDR addr_adj;
18394 int line_delta;
18395
18396 adj_opcode = op_code - lh->opcode_base;
18397 addr_adj = (((state_machine.op_index
18398 + (adj_opcode / lh->line_range))
18399 / lh->maximum_ops_per_instruction)
18400 * lh->minimum_instruction_length);
18401 state_machine.address
18402 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18403 state_machine.op_index = ((state_machine.op_index
18404 + (adj_opcode / lh->line_range))
18405 % lh->maximum_ops_per_instruction);
18406 line_delta = lh->line_base + (adj_opcode % lh->line_range);
18407 state_machine.line += line_delta;
18408 if (line_delta != 0)
18409 state_machine.line_has_non_zero_discriminator
18410 = state_machine.discriminator != 0;
18411
18412 dwarf_record_line (&reader_state, &state_machine, 0);
18413 state_machine.discriminator = 0;
18414 }
18415 else switch (op_code)
18416 {
18417 case DW_LNS_extended_op:
18418 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18419 &bytes_read);
18420 line_ptr += bytes_read;
18421 extended_end = line_ptr + extended_len;
18422 extended_op = read_1_byte (abfd, line_ptr);
18423 line_ptr += 1;
18424 switch (extended_op)
18425 {
18426 case DW_LNE_end_sequence:
18427 state_machine.record_line = record_line;
18428 end_sequence = 1;
18429 break;
18430 case DW_LNE_set_address:
18431 {
18432 CORE_ADDR address
18433 = read_address (abfd, line_ptr, cu, &bytes_read);
18434
18435 line_ptr += bytes_read;
18436 check_line_address (cu, &state_machine, line_ptr,
18437 lowpc, address);
18438 state_machine.op_index = 0;
18439 address += baseaddr;
18440 state_machine.address
18441 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
18442 }
18443 break;
18444 case DW_LNE_define_file:
18445 {
18446 const char *cur_file;
18447 unsigned int dir_index, mod_time, length;
18448
18449 cur_file = read_direct_string (abfd, line_ptr,
18450 &bytes_read);
18451 line_ptr += bytes_read;
18452 dir_index =
18453 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18454 line_ptr += bytes_read;
18455 mod_time =
18456 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18457 line_ptr += bytes_read;
18458 length =
18459 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18460 line_ptr += bytes_read;
18461 add_file_name (lh, cur_file, dir_index, mod_time, length);
18462 }
18463 break;
18464 case DW_LNE_set_discriminator:
18465 /* The discriminator is not interesting to the debugger;
18466 just ignore it. We still need to check its value though:
18467 if there are consecutive entries for the same
18468 (non-prologue) line we want to coalesce them.
18469 PR 17276. */
18470 state_machine.discriminator
18471 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18472 state_machine.line_has_non_zero_discriminator
18473 |= state_machine.discriminator != 0;
18474 line_ptr += bytes_read;
18475 break;
18476 default:
18477 complaint (&symfile_complaints,
18478 _("mangled .debug_line section"));
18479 return;
18480 }
18481 /* Make sure that we parsed the extended op correctly. If e.g.
18482 we expected a different address size than the producer used,
18483 we may have read the wrong number of bytes. */
18484 if (line_ptr != extended_end)
18485 {
18486 complaint (&symfile_complaints,
18487 _("mangled .debug_line section"));
18488 return;
18489 }
18490 break;
18491 case DW_LNS_copy:
18492 dwarf_record_line (&reader_state, &state_machine, 0);
18493 state_machine.discriminator = 0;
18494 break;
18495 case DW_LNS_advance_pc:
18496 {
18497 CORE_ADDR adjust
18498 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18499 CORE_ADDR addr_adj;
18500
18501 addr_adj = (((state_machine.op_index + adjust)
18502 / lh->maximum_ops_per_instruction)
18503 * lh->minimum_instruction_length);
18504 state_machine.address
18505 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18506 state_machine.op_index = ((state_machine.op_index + adjust)
18507 % lh->maximum_ops_per_instruction);
18508 line_ptr += bytes_read;
18509 }
18510 break;
18511 case DW_LNS_advance_line:
18512 {
18513 int line_delta
18514 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18515
18516 state_machine.line += line_delta;
18517 if (line_delta != 0)
18518 state_machine.line_has_non_zero_discriminator
18519 = state_machine.discriminator != 0;
18520 line_ptr += bytes_read;
18521 }
18522 break;
18523 case DW_LNS_set_file:
18524 {
18525 /* The arrays lh->include_dirs and lh->file_names are
18526 0-based, but the directory and file name numbers in
18527 the statement program are 1-based. */
18528 struct file_entry *fe;
18529 const char *dir = NULL;
18530
18531 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18532 &bytes_read);
18533 line_ptr += bytes_read;
18534 if (state_machine.file == 0
18535 || state_machine.file - 1 >= lh->num_file_names)
18536 dwarf2_debug_line_missing_file_complaint ();
18537 else
18538 {
18539 fe = &lh->file_names[state_machine.file - 1];
18540 if (fe->dir_index && lh->include_dirs != NULL
18541 && (fe->dir_index - 1) < lh->num_include_dirs)
18542 dir = lh->include_dirs[fe->dir_index - 1];
18543 if (record_lines_p)
18544 {
18545 state_machine.last_subfile = current_subfile;
18546 state_machine.line_has_non_zero_discriminator
18547 = state_machine.discriminator != 0;
18548 dwarf2_start_subfile (fe->name, dir);
18549 }
18550 }
18551 }
18552 break;
18553 case DW_LNS_set_column:
18554 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18555 line_ptr += bytes_read;
18556 break;
18557 case DW_LNS_negate_stmt:
18558 state_machine.is_stmt = (!state_machine.is_stmt);
18559 break;
18560 case DW_LNS_set_basic_block:
18561 break;
18562 /* Add to the address register of the state machine the
18563 address increment value corresponding to special opcode
18564 255. I.e., this value is scaled by the minimum
18565 instruction length since special opcode 255 would have
18566 scaled the increment. */
18567 case DW_LNS_const_add_pc:
18568 {
18569 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18570 CORE_ADDR addr_adj;
18571
18572 addr_adj = (((state_machine.op_index + adjust)
18573 / lh->maximum_ops_per_instruction)
18574 * lh->minimum_instruction_length);
18575 state_machine.address
18576 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18577 state_machine.op_index = ((state_machine.op_index + adjust)
18578 % lh->maximum_ops_per_instruction);
18579 }
18580 break;
18581 case DW_LNS_fixed_advance_pc:
18582 {
18583 CORE_ADDR addr_adj;
18584
18585 addr_adj = read_2_bytes (abfd, line_ptr);
18586 state_machine.address
18587 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18588 state_machine.op_index = 0;
18589 line_ptr += 2;
18590 }
18591 break;
18592 default:
18593 {
18594 /* Unknown standard opcode, ignore it. */
18595 int i;
18596
18597 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18598 {
18599 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18600 line_ptr += bytes_read;
18601 }
18602 }
18603 }
18604 }
18605
18606 if (!end_sequence)
18607 dwarf2_debug_line_missing_end_sequence_complaint ();
18608
18609 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18610 in which case we still finish recording the last line). */
18611 dwarf_record_line (&reader_state, &state_machine, 1);
18612 }
18613 }
18614
18615 /* Decode the Line Number Program (LNP) for the given line_header
18616 structure and CU. The actual information extracted and the type
18617 of structures created from the LNP depends on the value of PST.
18618
18619 1. If PST is NULL, then this procedure uses the data from the program
18620 to create all necessary symbol tables, and their linetables.
18621
18622 2. If PST is not NULL, this procedure reads the program to determine
18623 the list of files included by the unit represented by PST, and
18624 builds all the associated partial symbol tables.
18625
18626 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18627 It is used for relative paths in the line table.
18628 NOTE: When processing partial symtabs (pst != NULL),
18629 comp_dir == pst->dirname.
18630
18631 NOTE: It is important that psymtabs have the same file name (via strcmp)
18632 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18633 symtab we don't use it in the name of the psymtabs we create.
18634 E.g. expand_line_sal requires this when finding psymtabs to expand.
18635 A good testcase for this is mb-inline.exp.
18636
18637 LOWPC is the lowest address in CU (or 0 if not known).
18638
18639 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18640 for its PC<->lines mapping information. Otherwise only the filename
18641 table is read in. */
18642
18643 static void
18644 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18645 struct dwarf2_cu *cu, struct partial_symtab *pst,
18646 CORE_ADDR lowpc, int decode_mapping)
18647 {
18648 struct objfile *objfile = cu->objfile;
18649 const int decode_for_pst_p = (pst != NULL);
18650
18651 if (decode_mapping)
18652 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18653
18654 if (decode_for_pst_p)
18655 {
18656 int file_index;
18657
18658 /* Now that we're done scanning the Line Header Program, we can
18659 create the psymtab of each included file. */
18660 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18661 if (lh->file_names[file_index].included_p == 1)
18662 {
18663 const char *include_name =
18664 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18665 if (include_name != NULL)
18666 dwarf2_create_include_psymtab (include_name, pst, objfile);
18667 }
18668 }
18669 else
18670 {
18671 /* Make sure a symtab is created for every file, even files
18672 which contain only variables (i.e. no code with associated
18673 line numbers). */
18674 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18675 int i;
18676
18677 for (i = 0; i < lh->num_file_names; i++)
18678 {
18679 const char *dir = NULL;
18680 struct file_entry *fe;
18681
18682 fe = &lh->file_names[i];
18683 if (fe->dir_index && lh->include_dirs != NULL
18684 && (fe->dir_index - 1) < lh->num_include_dirs)
18685 dir = lh->include_dirs[fe->dir_index - 1];
18686 dwarf2_start_subfile (fe->name, dir);
18687
18688 if (current_subfile->symtab == NULL)
18689 {
18690 current_subfile->symtab
18691 = allocate_symtab (cust, current_subfile->name);
18692 }
18693 fe->symtab = current_subfile->symtab;
18694 }
18695 }
18696 }
18697
18698 /* Start a subfile for DWARF. FILENAME is the name of the file and
18699 DIRNAME the name of the source directory which contains FILENAME
18700 or NULL if not known.
18701 This routine tries to keep line numbers from identical absolute and
18702 relative file names in a common subfile.
18703
18704 Using the `list' example from the GDB testsuite, which resides in
18705 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18706 of /srcdir/list0.c yields the following debugging information for list0.c:
18707
18708 DW_AT_name: /srcdir/list0.c
18709 DW_AT_comp_dir: /compdir
18710 files.files[0].name: list0.h
18711 files.files[0].dir: /srcdir
18712 files.files[1].name: list0.c
18713 files.files[1].dir: /srcdir
18714
18715 The line number information for list0.c has to end up in a single
18716 subfile, so that `break /srcdir/list0.c:1' works as expected.
18717 start_subfile will ensure that this happens provided that we pass the
18718 concatenation of files.files[1].dir and files.files[1].name as the
18719 subfile's name. */
18720
18721 static void
18722 dwarf2_start_subfile (const char *filename, const char *dirname)
18723 {
18724 char *copy = NULL;
18725
18726 /* In order not to lose the line information directory,
18727 we concatenate it to the filename when it makes sense.
18728 Note that the Dwarf3 standard says (speaking of filenames in line
18729 information): ``The directory index is ignored for file names
18730 that represent full path names''. Thus ignoring dirname in the
18731 `else' branch below isn't an issue. */
18732
18733 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18734 {
18735 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18736 filename = copy;
18737 }
18738
18739 start_subfile (filename);
18740
18741 if (copy != NULL)
18742 xfree (copy);
18743 }
18744
18745 /* Start a symtab for DWARF.
18746 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18747
18748 static struct compunit_symtab *
18749 dwarf2_start_symtab (struct dwarf2_cu *cu,
18750 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18751 {
18752 struct compunit_symtab *cust
18753 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18754
18755 record_debugformat ("DWARF 2");
18756 record_producer (cu->producer);
18757
18758 /* We assume that we're processing GCC output. */
18759 processing_gcc_compilation = 2;
18760
18761 cu->processing_has_namespace_info = 0;
18762
18763 return cust;
18764 }
18765
18766 static void
18767 var_decode_location (struct attribute *attr, struct symbol *sym,
18768 struct dwarf2_cu *cu)
18769 {
18770 struct objfile *objfile = cu->objfile;
18771 struct comp_unit_head *cu_header = &cu->header;
18772
18773 /* NOTE drow/2003-01-30: There used to be a comment and some special
18774 code here to turn a symbol with DW_AT_external and a
18775 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18776 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18777 with some versions of binutils) where shared libraries could have
18778 relocations against symbols in their debug information - the
18779 minimal symbol would have the right address, but the debug info
18780 would not. It's no longer necessary, because we will explicitly
18781 apply relocations when we read in the debug information now. */
18782
18783 /* A DW_AT_location attribute with no contents indicates that a
18784 variable has been optimized away. */
18785 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18786 {
18787 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18788 return;
18789 }
18790
18791 /* Handle one degenerate form of location expression specially, to
18792 preserve GDB's previous behavior when section offsets are
18793 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18794 then mark this symbol as LOC_STATIC. */
18795
18796 if (attr_form_is_block (attr)
18797 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18798 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18799 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18800 && (DW_BLOCK (attr)->size
18801 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18802 {
18803 unsigned int dummy;
18804
18805 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18806 SYMBOL_VALUE_ADDRESS (sym) =
18807 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18808 else
18809 SYMBOL_VALUE_ADDRESS (sym) =
18810 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18811 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18812 fixup_symbol_section (sym, objfile);
18813 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18814 SYMBOL_SECTION (sym));
18815 return;
18816 }
18817
18818 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18819 expression evaluator, and use LOC_COMPUTED only when necessary
18820 (i.e. when the value of a register or memory location is
18821 referenced, or a thread-local block, etc.). Then again, it might
18822 not be worthwhile. I'm assuming that it isn't unless performance
18823 or memory numbers show me otherwise. */
18824
18825 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18826
18827 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18828 cu->has_loclist = 1;
18829 }
18830
18831 /* Given a pointer to a DWARF information entry, figure out if we need
18832 to make a symbol table entry for it, and if so, create a new entry
18833 and return a pointer to it.
18834 If TYPE is NULL, determine symbol type from the die, otherwise
18835 used the passed type.
18836 If SPACE is not NULL, use it to hold the new symbol. If it is
18837 NULL, allocate a new symbol on the objfile's obstack. */
18838
18839 static struct symbol *
18840 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18841 struct symbol *space)
18842 {
18843 struct objfile *objfile = cu->objfile;
18844 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18845 struct symbol *sym = NULL;
18846 const char *name;
18847 struct attribute *attr = NULL;
18848 struct attribute *attr2 = NULL;
18849 CORE_ADDR baseaddr;
18850 struct pending **list_to_add = NULL;
18851
18852 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18853
18854 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18855
18856 name = dwarf2_name (die, cu);
18857 if (name)
18858 {
18859 const char *linkagename;
18860 int suppress_add = 0;
18861
18862 if (space)
18863 sym = space;
18864 else
18865 sym = allocate_symbol (objfile);
18866 OBJSTAT (objfile, n_syms++);
18867
18868 /* Cache this symbol's name and the name's demangled form (if any). */
18869 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18870 linkagename = dwarf2_physname (name, die, cu);
18871 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18872
18873 /* Fortran does not have mangling standard and the mangling does differ
18874 between gfortran, iFort etc. */
18875 if (cu->language == language_fortran
18876 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18877 symbol_set_demangled_name (&(sym->ginfo),
18878 dwarf2_full_name (name, die, cu),
18879 NULL);
18880
18881 /* Default assumptions.
18882 Use the passed type or decode it from the die. */
18883 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18884 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18885 if (type != NULL)
18886 SYMBOL_TYPE (sym) = type;
18887 else
18888 SYMBOL_TYPE (sym) = die_type (die, cu);
18889 attr = dwarf2_attr (die,
18890 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18891 cu);
18892 if (attr)
18893 {
18894 SYMBOL_LINE (sym) = DW_UNSND (attr);
18895 }
18896
18897 attr = dwarf2_attr (die,
18898 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18899 cu);
18900 if (attr)
18901 {
18902 int file_index = DW_UNSND (attr);
18903
18904 if (cu->line_header == NULL
18905 || file_index > cu->line_header->num_file_names)
18906 complaint (&symfile_complaints,
18907 _("file index out of range"));
18908 else if (file_index > 0)
18909 {
18910 struct file_entry *fe;
18911
18912 fe = &cu->line_header->file_names[file_index - 1];
18913 symbol_set_symtab (sym, fe->symtab);
18914 }
18915 }
18916
18917 switch (die->tag)
18918 {
18919 case DW_TAG_label:
18920 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18921 if (attr)
18922 {
18923 CORE_ADDR addr;
18924
18925 addr = attr_value_as_address (attr);
18926 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18927 SYMBOL_VALUE_ADDRESS (sym) = addr;
18928 }
18929 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18930 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18931 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18932 add_symbol_to_list (sym, cu->list_in_scope);
18933 break;
18934 case DW_TAG_subprogram:
18935 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18936 finish_block. */
18937 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18938 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18939 if ((attr2 && (DW_UNSND (attr2) != 0))
18940 || cu->language == language_ada)
18941 {
18942 /* Subprograms marked external are stored as a global symbol.
18943 Ada subprograms, whether marked external or not, are always
18944 stored as a global symbol, because we want to be able to
18945 access them globally. For instance, we want to be able
18946 to break on a nested subprogram without having to
18947 specify the context. */
18948 list_to_add = &global_symbols;
18949 }
18950 else
18951 {
18952 list_to_add = cu->list_in_scope;
18953 }
18954 break;
18955 case DW_TAG_inlined_subroutine:
18956 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18957 finish_block. */
18958 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18959 SYMBOL_INLINED (sym) = 1;
18960 list_to_add = cu->list_in_scope;
18961 break;
18962 case DW_TAG_template_value_param:
18963 suppress_add = 1;
18964 /* Fall through. */
18965 case DW_TAG_constant:
18966 case DW_TAG_variable:
18967 case DW_TAG_member:
18968 /* Compilation with minimal debug info may result in
18969 variables with missing type entries. Change the
18970 misleading `void' type to something sensible. */
18971 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18972 SYMBOL_TYPE (sym)
18973 = objfile_type (objfile)->nodebug_data_symbol;
18974
18975 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18976 /* In the case of DW_TAG_member, we should only be called for
18977 static const members. */
18978 if (die->tag == DW_TAG_member)
18979 {
18980 /* dwarf2_add_field uses die_is_declaration,
18981 so we do the same. */
18982 gdb_assert (die_is_declaration (die, cu));
18983 gdb_assert (attr);
18984 }
18985 if (attr)
18986 {
18987 dwarf2_const_value (attr, sym, cu);
18988 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18989 if (!suppress_add)
18990 {
18991 if (attr2 && (DW_UNSND (attr2) != 0))
18992 list_to_add = &global_symbols;
18993 else
18994 list_to_add = cu->list_in_scope;
18995 }
18996 break;
18997 }
18998 attr = dwarf2_attr (die, DW_AT_location, cu);
18999 if (attr)
19000 {
19001 var_decode_location (attr, sym, cu);
19002 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19003
19004 /* Fortran explicitly imports any global symbols to the local
19005 scope by DW_TAG_common_block. */
19006 if (cu->language == language_fortran && die->parent
19007 && die->parent->tag == DW_TAG_common_block)
19008 attr2 = NULL;
19009
19010 if (SYMBOL_CLASS (sym) == LOC_STATIC
19011 && SYMBOL_VALUE_ADDRESS (sym) == 0
19012 && !dwarf2_per_objfile->has_section_at_zero)
19013 {
19014 /* When a static variable is eliminated by the linker,
19015 the corresponding debug information is not stripped
19016 out, but the variable address is set to null;
19017 do not add such variables into symbol table. */
19018 }
19019 else if (attr2 && (DW_UNSND (attr2) != 0))
19020 {
19021 /* Workaround gfortran PR debug/40040 - it uses
19022 DW_AT_location for variables in -fPIC libraries which may
19023 get overriden by other libraries/executable and get
19024 a different address. Resolve it by the minimal symbol
19025 which may come from inferior's executable using copy
19026 relocation. Make this workaround only for gfortran as for
19027 other compilers GDB cannot guess the minimal symbol
19028 Fortran mangling kind. */
19029 if (cu->language == language_fortran && die->parent
19030 && die->parent->tag == DW_TAG_module
19031 && cu->producer
19032 && startswith (cu->producer, "GNU Fortran"))
19033 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19034
19035 /* A variable with DW_AT_external is never static,
19036 but it may be block-scoped. */
19037 list_to_add = (cu->list_in_scope == &file_symbols
19038 ? &global_symbols : cu->list_in_scope);
19039 }
19040 else
19041 list_to_add = cu->list_in_scope;
19042 }
19043 else
19044 {
19045 /* We do not know the address of this symbol.
19046 If it is an external symbol and we have type information
19047 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19048 The address of the variable will then be determined from
19049 the minimal symbol table whenever the variable is
19050 referenced. */
19051 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19052
19053 /* Fortran explicitly imports any global symbols to the local
19054 scope by DW_TAG_common_block. */
19055 if (cu->language == language_fortran && die->parent
19056 && die->parent->tag == DW_TAG_common_block)
19057 {
19058 /* SYMBOL_CLASS doesn't matter here because
19059 read_common_block is going to reset it. */
19060 if (!suppress_add)
19061 list_to_add = cu->list_in_scope;
19062 }
19063 else if (attr2 && (DW_UNSND (attr2) != 0)
19064 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
19065 {
19066 /* A variable with DW_AT_external is never static, but it
19067 may be block-scoped. */
19068 list_to_add = (cu->list_in_scope == &file_symbols
19069 ? &global_symbols : cu->list_in_scope);
19070
19071 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19072 }
19073 else if (!die_is_declaration (die, cu))
19074 {
19075 /* Use the default LOC_OPTIMIZED_OUT class. */
19076 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
19077 if (!suppress_add)
19078 list_to_add = cu->list_in_scope;
19079 }
19080 }
19081 break;
19082 case DW_TAG_formal_parameter:
19083 /* If we are inside a function, mark this as an argument. If
19084 not, we might be looking at an argument to an inlined function
19085 when we do not have enough information to show inlined frames;
19086 pretend it's a local variable in that case so that the user can
19087 still see it. */
19088 if (context_stack_depth > 0
19089 && context_stack[context_stack_depth - 1].name != NULL)
19090 SYMBOL_IS_ARGUMENT (sym) = 1;
19091 attr = dwarf2_attr (die, DW_AT_location, cu);
19092 if (attr)
19093 {
19094 var_decode_location (attr, sym, cu);
19095 }
19096 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19097 if (attr)
19098 {
19099 dwarf2_const_value (attr, sym, cu);
19100 }
19101
19102 list_to_add = cu->list_in_scope;
19103 break;
19104 case DW_TAG_unspecified_parameters:
19105 /* From varargs functions; gdb doesn't seem to have any
19106 interest in this information, so just ignore it for now.
19107 (FIXME?) */
19108 break;
19109 case DW_TAG_template_type_param:
19110 suppress_add = 1;
19111 /* Fall through. */
19112 case DW_TAG_class_type:
19113 case DW_TAG_interface_type:
19114 case DW_TAG_structure_type:
19115 case DW_TAG_union_type:
19116 case DW_TAG_set_type:
19117 case DW_TAG_enumeration_type:
19118 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19119 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
19120
19121 {
19122 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
19123 really ever be static objects: otherwise, if you try
19124 to, say, break of a class's method and you're in a file
19125 which doesn't mention that class, it won't work unless
19126 the check for all static symbols in lookup_symbol_aux
19127 saves you. See the OtherFileClass tests in
19128 gdb.c++/namespace.exp. */
19129
19130 if (!suppress_add)
19131 {
19132 list_to_add = (cu->list_in_scope == &file_symbols
19133 && cu->language == language_cplus
19134 ? &global_symbols : cu->list_in_scope);
19135
19136 /* The semantics of C++ state that "struct foo {
19137 ... }" also defines a typedef for "foo". */
19138 if (cu->language == language_cplus
19139 || cu->language == language_ada
19140 || cu->language == language_d
19141 || cu->language == language_rust)
19142 {
19143 /* The symbol's name is already allocated along
19144 with this objfile, so we don't need to
19145 duplicate it for the type. */
19146 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19147 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19148 }
19149 }
19150 }
19151 break;
19152 case DW_TAG_typedef:
19153 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19154 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19155 list_to_add = cu->list_in_scope;
19156 break;
19157 case DW_TAG_base_type:
19158 case DW_TAG_subrange_type:
19159 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19160 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19161 list_to_add = cu->list_in_scope;
19162 break;
19163 case DW_TAG_enumerator:
19164 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19165 if (attr)
19166 {
19167 dwarf2_const_value (attr, sym, cu);
19168 }
19169 {
19170 /* NOTE: carlton/2003-11-10: See comment above in the
19171 DW_TAG_class_type, etc. block. */
19172
19173 list_to_add = (cu->list_in_scope == &file_symbols
19174 && cu->language == language_cplus
19175 ? &global_symbols : cu->list_in_scope);
19176 }
19177 break;
19178 case DW_TAG_imported_declaration:
19179 case DW_TAG_namespace:
19180 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19181 list_to_add = &global_symbols;
19182 break;
19183 case DW_TAG_module:
19184 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19185 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19186 list_to_add = &global_symbols;
19187 break;
19188 case DW_TAG_common_block:
19189 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
19190 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19191 add_symbol_to_list (sym, cu->list_in_scope);
19192 break;
19193 default:
19194 /* Not a tag we recognize. Hopefully we aren't processing
19195 trash data, but since we must specifically ignore things
19196 we don't recognize, there is nothing else we should do at
19197 this point. */
19198 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
19199 dwarf_tag_name (die->tag));
19200 break;
19201 }
19202
19203 if (suppress_add)
19204 {
19205 sym->hash_next = objfile->template_symbols;
19206 objfile->template_symbols = sym;
19207 list_to_add = NULL;
19208 }
19209
19210 if (list_to_add != NULL)
19211 add_symbol_to_list (sym, list_to_add);
19212
19213 /* For the benefit of old versions of GCC, check for anonymous
19214 namespaces based on the demangled name. */
19215 if (!cu->processing_has_namespace_info
19216 && cu->language == language_cplus)
19217 cp_scan_for_anonymous_namespaces (sym, objfile);
19218 }
19219 return (sym);
19220 }
19221
19222 /* A wrapper for new_symbol_full that always allocates a new symbol. */
19223
19224 static struct symbol *
19225 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19226 {
19227 return new_symbol_full (die, type, cu, NULL);
19228 }
19229
19230 /* Given an attr with a DW_FORM_dataN value in host byte order,
19231 zero-extend it as appropriate for the symbol's type. The DWARF
19232 standard (v4) is not entirely clear about the meaning of using
19233 DW_FORM_dataN for a constant with a signed type, where the type is
19234 wider than the data. The conclusion of a discussion on the DWARF
19235 list was that this is unspecified. We choose to always zero-extend
19236 because that is the interpretation long in use by GCC. */
19237
19238 static gdb_byte *
19239 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
19240 struct dwarf2_cu *cu, LONGEST *value, int bits)
19241 {
19242 struct objfile *objfile = cu->objfile;
19243 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19244 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
19245 LONGEST l = DW_UNSND (attr);
19246
19247 if (bits < sizeof (*value) * 8)
19248 {
19249 l &= ((LONGEST) 1 << bits) - 1;
19250 *value = l;
19251 }
19252 else if (bits == sizeof (*value) * 8)
19253 *value = l;
19254 else
19255 {
19256 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
19257 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19258 return bytes;
19259 }
19260
19261 return NULL;
19262 }
19263
19264 /* Read a constant value from an attribute. Either set *VALUE, or if
19265 the value does not fit in *VALUE, set *BYTES - either already
19266 allocated on the objfile obstack, or newly allocated on OBSTACK,
19267 or, set *BATON, if we translated the constant to a location
19268 expression. */
19269
19270 static void
19271 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
19272 const char *name, struct obstack *obstack,
19273 struct dwarf2_cu *cu,
19274 LONGEST *value, const gdb_byte **bytes,
19275 struct dwarf2_locexpr_baton **baton)
19276 {
19277 struct objfile *objfile = cu->objfile;
19278 struct comp_unit_head *cu_header = &cu->header;
19279 struct dwarf_block *blk;
19280 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19281 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19282
19283 *value = 0;
19284 *bytes = NULL;
19285 *baton = NULL;
19286
19287 switch (attr->form)
19288 {
19289 case DW_FORM_addr:
19290 case DW_FORM_GNU_addr_index:
19291 {
19292 gdb_byte *data;
19293
19294 if (TYPE_LENGTH (type) != cu_header->addr_size)
19295 dwarf2_const_value_length_mismatch_complaint (name,
19296 cu_header->addr_size,
19297 TYPE_LENGTH (type));
19298 /* Symbols of this form are reasonably rare, so we just
19299 piggyback on the existing location code rather than writing
19300 a new implementation of symbol_computed_ops. */
19301 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
19302 (*baton)->per_cu = cu->per_cu;
19303 gdb_assert ((*baton)->per_cu);
19304
19305 (*baton)->size = 2 + cu_header->addr_size;
19306 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
19307 (*baton)->data = data;
19308
19309 data[0] = DW_OP_addr;
19310 store_unsigned_integer (&data[1], cu_header->addr_size,
19311 byte_order, DW_ADDR (attr));
19312 data[cu_header->addr_size + 1] = DW_OP_stack_value;
19313 }
19314 break;
19315 case DW_FORM_string:
19316 case DW_FORM_strp:
19317 case DW_FORM_GNU_str_index:
19318 case DW_FORM_GNU_strp_alt:
19319 /* DW_STRING is already allocated on the objfile obstack, point
19320 directly to it. */
19321 *bytes = (const gdb_byte *) DW_STRING (attr);
19322 break;
19323 case DW_FORM_block1:
19324 case DW_FORM_block2:
19325 case DW_FORM_block4:
19326 case DW_FORM_block:
19327 case DW_FORM_exprloc:
19328 case DW_FORM_data16:
19329 blk = DW_BLOCK (attr);
19330 if (TYPE_LENGTH (type) != blk->size)
19331 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19332 TYPE_LENGTH (type));
19333 *bytes = blk->data;
19334 break;
19335
19336 /* The DW_AT_const_value attributes are supposed to carry the
19337 symbol's value "represented as it would be on the target
19338 architecture." By the time we get here, it's already been
19339 converted to host endianness, so we just need to sign- or
19340 zero-extend it as appropriate. */
19341 case DW_FORM_data1:
19342 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
19343 break;
19344 case DW_FORM_data2:
19345 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
19346 break;
19347 case DW_FORM_data4:
19348 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
19349 break;
19350 case DW_FORM_data8:
19351 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
19352 break;
19353
19354 case DW_FORM_sdata:
19355 *value = DW_SND (attr);
19356 break;
19357
19358 case DW_FORM_udata:
19359 *value = DW_UNSND (attr);
19360 break;
19361
19362 default:
19363 complaint (&symfile_complaints,
19364 _("unsupported const value attribute form: '%s'"),
19365 dwarf_form_name (attr->form));
19366 *value = 0;
19367 break;
19368 }
19369 }
19370
19371
19372 /* Copy constant value from an attribute to a symbol. */
19373
19374 static void
19375 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
19376 struct dwarf2_cu *cu)
19377 {
19378 struct objfile *objfile = cu->objfile;
19379 LONGEST value;
19380 const gdb_byte *bytes;
19381 struct dwarf2_locexpr_baton *baton;
19382
19383 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19384 SYMBOL_PRINT_NAME (sym),
19385 &objfile->objfile_obstack, cu,
19386 &value, &bytes, &baton);
19387
19388 if (baton != NULL)
19389 {
19390 SYMBOL_LOCATION_BATON (sym) = baton;
19391 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
19392 }
19393 else if (bytes != NULL)
19394 {
19395 SYMBOL_VALUE_BYTES (sym) = bytes;
19396 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
19397 }
19398 else
19399 {
19400 SYMBOL_VALUE (sym) = value;
19401 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
19402 }
19403 }
19404
19405 /* Return the type of the die in question using its DW_AT_type attribute. */
19406
19407 static struct type *
19408 die_type (struct die_info *die, struct dwarf2_cu *cu)
19409 {
19410 struct attribute *type_attr;
19411
19412 type_attr = dwarf2_attr (die, DW_AT_type, cu);
19413 if (!type_attr)
19414 {
19415 /* A missing DW_AT_type represents a void type. */
19416 return objfile_type (cu->objfile)->builtin_void;
19417 }
19418
19419 return lookup_die_type (die, type_attr, cu);
19420 }
19421
19422 /* True iff CU's producer generates GNAT Ada auxiliary information
19423 that allows to find parallel types through that information instead
19424 of having to do expensive parallel lookups by type name. */
19425
19426 static int
19427 need_gnat_info (struct dwarf2_cu *cu)
19428 {
19429 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19430 of GNAT produces this auxiliary information, without any indication
19431 that it is produced. Part of enhancing the FSF version of GNAT
19432 to produce that information will be to put in place an indicator
19433 that we can use in order to determine whether the descriptive type
19434 info is available or not. One suggestion that has been made is
19435 to use a new attribute, attached to the CU die. For now, assume
19436 that the descriptive type info is not available. */
19437 return 0;
19438 }
19439
19440 /* Return the auxiliary type of the die in question using its
19441 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19442 attribute is not present. */
19443
19444 static struct type *
19445 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19446 {
19447 struct attribute *type_attr;
19448
19449 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19450 if (!type_attr)
19451 return NULL;
19452
19453 return lookup_die_type (die, type_attr, cu);
19454 }
19455
19456 /* If DIE has a descriptive_type attribute, then set the TYPE's
19457 descriptive type accordingly. */
19458
19459 static void
19460 set_descriptive_type (struct type *type, struct die_info *die,
19461 struct dwarf2_cu *cu)
19462 {
19463 struct type *descriptive_type = die_descriptive_type (die, cu);
19464
19465 if (descriptive_type)
19466 {
19467 ALLOCATE_GNAT_AUX_TYPE (type);
19468 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19469 }
19470 }
19471
19472 /* Return the containing type of the die in question using its
19473 DW_AT_containing_type attribute. */
19474
19475 static struct type *
19476 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
19477 {
19478 struct attribute *type_attr;
19479
19480 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
19481 if (!type_attr)
19482 error (_("Dwarf Error: Problem turning containing type into gdb type "
19483 "[in module %s]"), objfile_name (cu->objfile));
19484
19485 return lookup_die_type (die, type_attr, cu);
19486 }
19487
19488 /* Return an error marker type to use for the ill formed type in DIE/CU. */
19489
19490 static struct type *
19491 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19492 {
19493 struct objfile *objfile = dwarf2_per_objfile->objfile;
19494 char *message, *saved;
19495
19496 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
19497 objfile_name (objfile),
19498 cu->header.offset.sect_off,
19499 die->offset.sect_off);
19500 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19501 message, strlen (message));
19502 xfree (message);
19503
19504 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19505 }
19506
19507 /* Look up the type of DIE in CU using its type attribute ATTR.
19508 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19509 DW_AT_containing_type.
19510 If there is no type substitute an error marker. */
19511
19512 static struct type *
19513 lookup_die_type (struct die_info *die, const struct attribute *attr,
19514 struct dwarf2_cu *cu)
19515 {
19516 struct objfile *objfile = cu->objfile;
19517 struct type *this_type;
19518
19519 gdb_assert (attr->name == DW_AT_type
19520 || attr->name == DW_AT_GNAT_descriptive_type
19521 || attr->name == DW_AT_containing_type);
19522
19523 /* First see if we have it cached. */
19524
19525 if (attr->form == DW_FORM_GNU_ref_alt)
19526 {
19527 struct dwarf2_per_cu_data *per_cu;
19528 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19529
19530 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19531 this_type = get_die_type_at_offset (offset, per_cu);
19532 }
19533 else if (attr_form_is_ref (attr))
19534 {
19535 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19536
19537 this_type = get_die_type_at_offset (offset, cu->per_cu);
19538 }
19539 else if (attr->form == DW_FORM_ref_sig8)
19540 {
19541 ULONGEST signature = DW_SIGNATURE (attr);
19542
19543 return get_signatured_type (die, signature, cu);
19544 }
19545 else
19546 {
19547 complaint (&symfile_complaints,
19548 _("Dwarf Error: Bad type attribute %s in DIE"
19549 " at 0x%x [in module %s]"),
19550 dwarf_attr_name (attr->name), die->offset.sect_off,
19551 objfile_name (objfile));
19552 return build_error_marker_type (cu, die);
19553 }
19554
19555 /* If not cached we need to read it in. */
19556
19557 if (this_type == NULL)
19558 {
19559 struct die_info *type_die = NULL;
19560 struct dwarf2_cu *type_cu = cu;
19561
19562 if (attr_form_is_ref (attr))
19563 type_die = follow_die_ref (die, attr, &type_cu);
19564 if (type_die == NULL)
19565 return build_error_marker_type (cu, die);
19566 /* If we find the type now, it's probably because the type came
19567 from an inter-CU reference and the type's CU got expanded before
19568 ours. */
19569 this_type = read_type_die (type_die, type_cu);
19570 }
19571
19572 /* If we still don't have a type use an error marker. */
19573
19574 if (this_type == NULL)
19575 return build_error_marker_type (cu, die);
19576
19577 return this_type;
19578 }
19579
19580 /* Return the type in DIE, CU.
19581 Returns NULL for invalid types.
19582
19583 This first does a lookup in die_type_hash,
19584 and only reads the die in if necessary.
19585
19586 NOTE: This can be called when reading in partial or full symbols. */
19587
19588 static struct type *
19589 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19590 {
19591 struct type *this_type;
19592
19593 this_type = get_die_type (die, cu);
19594 if (this_type)
19595 return this_type;
19596
19597 return read_type_die_1 (die, cu);
19598 }
19599
19600 /* Read the type in DIE, CU.
19601 Returns NULL for invalid types. */
19602
19603 static struct type *
19604 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19605 {
19606 struct type *this_type = NULL;
19607
19608 switch (die->tag)
19609 {
19610 case DW_TAG_class_type:
19611 case DW_TAG_interface_type:
19612 case DW_TAG_structure_type:
19613 case DW_TAG_union_type:
19614 this_type = read_structure_type (die, cu);
19615 break;
19616 case DW_TAG_enumeration_type:
19617 this_type = read_enumeration_type (die, cu);
19618 break;
19619 case DW_TAG_subprogram:
19620 case DW_TAG_subroutine_type:
19621 case DW_TAG_inlined_subroutine:
19622 this_type = read_subroutine_type (die, cu);
19623 break;
19624 case DW_TAG_array_type:
19625 this_type = read_array_type (die, cu);
19626 break;
19627 case DW_TAG_set_type:
19628 this_type = read_set_type (die, cu);
19629 break;
19630 case DW_TAG_pointer_type:
19631 this_type = read_tag_pointer_type (die, cu);
19632 break;
19633 case DW_TAG_ptr_to_member_type:
19634 this_type = read_tag_ptr_to_member_type (die, cu);
19635 break;
19636 case DW_TAG_reference_type:
19637 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
19638 break;
19639 case DW_TAG_rvalue_reference_type:
19640 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
19641 break;
19642 case DW_TAG_const_type:
19643 this_type = read_tag_const_type (die, cu);
19644 break;
19645 case DW_TAG_volatile_type:
19646 this_type = read_tag_volatile_type (die, cu);
19647 break;
19648 case DW_TAG_restrict_type:
19649 this_type = read_tag_restrict_type (die, cu);
19650 break;
19651 case DW_TAG_string_type:
19652 this_type = read_tag_string_type (die, cu);
19653 break;
19654 case DW_TAG_typedef:
19655 this_type = read_typedef (die, cu);
19656 break;
19657 case DW_TAG_subrange_type:
19658 this_type = read_subrange_type (die, cu);
19659 break;
19660 case DW_TAG_base_type:
19661 this_type = read_base_type (die, cu);
19662 break;
19663 case DW_TAG_unspecified_type:
19664 this_type = read_unspecified_type (die, cu);
19665 break;
19666 case DW_TAG_namespace:
19667 this_type = read_namespace_type (die, cu);
19668 break;
19669 case DW_TAG_module:
19670 this_type = read_module_type (die, cu);
19671 break;
19672 case DW_TAG_atomic_type:
19673 this_type = read_tag_atomic_type (die, cu);
19674 break;
19675 default:
19676 complaint (&symfile_complaints,
19677 _("unexpected tag in read_type_die: '%s'"),
19678 dwarf_tag_name (die->tag));
19679 break;
19680 }
19681
19682 return this_type;
19683 }
19684
19685 /* See if we can figure out if the class lives in a namespace. We do
19686 this by looking for a member function; its demangled name will
19687 contain namespace info, if there is any.
19688 Return the computed name or NULL.
19689 Space for the result is allocated on the objfile's obstack.
19690 This is the full-die version of guess_partial_die_structure_name.
19691 In this case we know DIE has no useful parent. */
19692
19693 static char *
19694 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19695 {
19696 struct die_info *spec_die;
19697 struct dwarf2_cu *spec_cu;
19698 struct die_info *child;
19699
19700 spec_cu = cu;
19701 spec_die = die_specification (die, &spec_cu);
19702 if (spec_die != NULL)
19703 {
19704 die = spec_die;
19705 cu = spec_cu;
19706 }
19707
19708 for (child = die->child;
19709 child != NULL;
19710 child = child->sibling)
19711 {
19712 if (child->tag == DW_TAG_subprogram)
19713 {
19714 const char *linkage_name;
19715
19716 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19717 if (linkage_name == NULL)
19718 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19719 cu);
19720 if (linkage_name != NULL)
19721 {
19722 char *actual_name
19723 = language_class_name_from_physname (cu->language_defn,
19724 linkage_name);
19725 char *name = NULL;
19726
19727 if (actual_name != NULL)
19728 {
19729 const char *die_name = dwarf2_name (die, cu);
19730
19731 if (die_name != NULL
19732 && strcmp (die_name, actual_name) != 0)
19733 {
19734 /* Strip off the class name from the full name.
19735 We want the prefix. */
19736 int die_name_len = strlen (die_name);
19737 int actual_name_len = strlen (actual_name);
19738
19739 /* Test for '::' as a sanity check. */
19740 if (actual_name_len > die_name_len + 2
19741 && actual_name[actual_name_len
19742 - die_name_len - 1] == ':')
19743 name = (char *) obstack_copy0 (
19744 &cu->objfile->per_bfd->storage_obstack,
19745 actual_name, actual_name_len - die_name_len - 2);
19746 }
19747 }
19748 xfree (actual_name);
19749 return name;
19750 }
19751 }
19752 }
19753
19754 return NULL;
19755 }
19756
19757 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19758 prefix part in such case. See
19759 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19760
19761 static char *
19762 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19763 {
19764 struct attribute *attr;
19765 const char *base;
19766
19767 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19768 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19769 return NULL;
19770
19771 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19772 return NULL;
19773
19774 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19775 if (attr == NULL)
19776 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19777 if (attr == NULL || DW_STRING (attr) == NULL)
19778 return NULL;
19779
19780 /* dwarf2_name had to be already called. */
19781 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19782
19783 /* Strip the base name, keep any leading namespaces/classes. */
19784 base = strrchr (DW_STRING (attr), ':');
19785 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19786 return "";
19787
19788 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19789 DW_STRING (attr),
19790 &base[-1] - DW_STRING (attr));
19791 }
19792
19793 /* Return the name of the namespace/class that DIE is defined within,
19794 or "" if we can't tell. The caller should not xfree the result.
19795
19796 For example, if we're within the method foo() in the following
19797 code:
19798
19799 namespace N {
19800 class C {
19801 void foo () {
19802 }
19803 };
19804 }
19805
19806 then determine_prefix on foo's die will return "N::C". */
19807
19808 static const char *
19809 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19810 {
19811 struct die_info *parent, *spec_die;
19812 struct dwarf2_cu *spec_cu;
19813 struct type *parent_type;
19814 char *retval;
19815
19816 if (cu->language != language_cplus
19817 && cu->language != language_fortran && cu->language != language_d
19818 && cu->language != language_rust)
19819 return "";
19820
19821 retval = anonymous_struct_prefix (die, cu);
19822 if (retval)
19823 return retval;
19824
19825 /* We have to be careful in the presence of DW_AT_specification.
19826 For example, with GCC 3.4, given the code
19827
19828 namespace N {
19829 void foo() {
19830 // Definition of N::foo.
19831 }
19832 }
19833
19834 then we'll have a tree of DIEs like this:
19835
19836 1: DW_TAG_compile_unit
19837 2: DW_TAG_namespace // N
19838 3: DW_TAG_subprogram // declaration of N::foo
19839 4: DW_TAG_subprogram // definition of N::foo
19840 DW_AT_specification // refers to die #3
19841
19842 Thus, when processing die #4, we have to pretend that we're in
19843 the context of its DW_AT_specification, namely the contex of die
19844 #3. */
19845 spec_cu = cu;
19846 spec_die = die_specification (die, &spec_cu);
19847 if (spec_die == NULL)
19848 parent = die->parent;
19849 else
19850 {
19851 parent = spec_die->parent;
19852 cu = spec_cu;
19853 }
19854
19855 if (parent == NULL)
19856 return "";
19857 else if (parent->building_fullname)
19858 {
19859 const char *name;
19860 const char *parent_name;
19861
19862 /* It has been seen on RealView 2.2 built binaries,
19863 DW_TAG_template_type_param types actually _defined_ as
19864 children of the parent class:
19865
19866 enum E {};
19867 template class <class Enum> Class{};
19868 Class<enum E> class_e;
19869
19870 1: DW_TAG_class_type (Class)
19871 2: DW_TAG_enumeration_type (E)
19872 3: DW_TAG_enumerator (enum1:0)
19873 3: DW_TAG_enumerator (enum2:1)
19874 ...
19875 2: DW_TAG_template_type_param
19876 DW_AT_type DW_FORM_ref_udata (E)
19877
19878 Besides being broken debug info, it can put GDB into an
19879 infinite loop. Consider:
19880
19881 When we're building the full name for Class<E>, we'll start
19882 at Class, and go look over its template type parameters,
19883 finding E. We'll then try to build the full name of E, and
19884 reach here. We're now trying to build the full name of E,
19885 and look over the parent DIE for containing scope. In the
19886 broken case, if we followed the parent DIE of E, we'd again
19887 find Class, and once again go look at its template type
19888 arguments, etc., etc. Simply don't consider such parent die
19889 as source-level parent of this die (it can't be, the language
19890 doesn't allow it), and break the loop here. */
19891 name = dwarf2_name (die, cu);
19892 parent_name = dwarf2_name (parent, cu);
19893 complaint (&symfile_complaints,
19894 _("template param type '%s' defined within parent '%s'"),
19895 name ? name : "<unknown>",
19896 parent_name ? parent_name : "<unknown>");
19897 return "";
19898 }
19899 else
19900 switch (parent->tag)
19901 {
19902 case DW_TAG_namespace:
19903 parent_type = read_type_die (parent, cu);
19904 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19905 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19906 Work around this problem here. */
19907 if (cu->language == language_cplus
19908 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19909 return "";
19910 /* We give a name to even anonymous namespaces. */
19911 return TYPE_TAG_NAME (parent_type);
19912 case DW_TAG_class_type:
19913 case DW_TAG_interface_type:
19914 case DW_TAG_structure_type:
19915 case DW_TAG_union_type:
19916 case DW_TAG_module:
19917 parent_type = read_type_die (parent, cu);
19918 if (TYPE_TAG_NAME (parent_type) != NULL)
19919 return TYPE_TAG_NAME (parent_type);
19920 else
19921 /* An anonymous structure is only allowed non-static data
19922 members; no typedefs, no member functions, et cetera.
19923 So it does not need a prefix. */
19924 return "";
19925 case DW_TAG_compile_unit:
19926 case DW_TAG_partial_unit:
19927 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19928 if (cu->language == language_cplus
19929 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19930 && die->child != NULL
19931 && (die->tag == DW_TAG_class_type
19932 || die->tag == DW_TAG_structure_type
19933 || die->tag == DW_TAG_union_type))
19934 {
19935 char *name = guess_full_die_structure_name (die, cu);
19936 if (name != NULL)
19937 return name;
19938 }
19939 return "";
19940 case DW_TAG_enumeration_type:
19941 parent_type = read_type_die (parent, cu);
19942 if (TYPE_DECLARED_CLASS (parent_type))
19943 {
19944 if (TYPE_TAG_NAME (parent_type) != NULL)
19945 return TYPE_TAG_NAME (parent_type);
19946 return "";
19947 }
19948 /* Fall through. */
19949 default:
19950 return determine_prefix (parent, cu);
19951 }
19952 }
19953
19954 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19955 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19956 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19957 an obconcat, otherwise allocate storage for the result. The CU argument is
19958 used to determine the language and hence, the appropriate separator. */
19959
19960 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19961
19962 static char *
19963 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19964 int physname, struct dwarf2_cu *cu)
19965 {
19966 const char *lead = "";
19967 const char *sep;
19968
19969 if (suffix == NULL || suffix[0] == '\0'
19970 || prefix == NULL || prefix[0] == '\0')
19971 sep = "";
19972 else if (cu->language == language_d)
19973 {
19974 /* For D, the 'main' function could be defined in any module, but it
19975 should never be prefixed. */
19976 if (strcmp (suffix, "D main") == 0)
19977 {
19978 prefix = "";
19979 sep = "";
19980 }
19981 else
19982 sep = ".";
19983 }
19984 else if (cu->language == language_fortran && physname)
19985 {
19986 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19987 DW_AT_MIPS_linkage_name is preferred and used instead. */
19988
19989 lead = "__";
19990 sep = "_MOD_";
19991 }
19992 else
19993 sep = "::";
19994
19995 if (prefix == NULL)
19996 prefix = "";
19997 if (suffix == NULL)
19998 suffix = "";
19999
20000 if (obs == NULL)
20001 {
20002 char *retval
20003 = ((char *)
20004 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
20005
20006 strcpy (retval, lead);
20007 strcat (retval, prefix);
20008 strcat (retval, sep);
20009 strcat (retval, suffix);
20010 return retval;
20011 }
20012 else
20013 {
20014 /* We have an obstack. */
20015 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
20016 }
20017 }
20018
20019 /* Return sibling of die, NULL if no sibling. */
20020
20021 static struct die_info *
20022 sibling_die (struct die_info *die)
20023 {
20024 return die->sibling;
20025 }
20026
20027 /* Get name of a die, return NULL if not found. */
20028
20029 static const char *
20030 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
20031 struct obstack *obstack)
20032 {
20033 if (name && cu->language == language_cplus)
20034 {
20035 std::string canon_name = cp_canonicalize_string (name);
20036
20037 if (!canon_name.empty ())
20038 {
20039 if (canon_name != name)
20040 name = (const char *) obstack_copy0 (obstack,
20041 canon_name.c_str (),
20042 canon_name.length ());
20043 }
20044 }
20045
20046 return name;
20047 }
20048
20049 /* Get name of a die, return NULL if not found.
20050 Anonymous namespaces are converted to their magic string. */
20051
20052 static const char *
20053 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
20054 {
20055 struct attribute *attr;
20056
20057 attr = dwarf2_attr (die, DW_AT_name, cu);
20058 if ((!attr || !DW_STRING (attr))
20059 && die->tag != DW_TAG_namespace
20060 && die->tag != DW_TAG_class_type
20061 && die->tag != DW_TAG_interface_type
20062 && die->tag != DW_TAG_structure_type
20063 && die->tag != DW_TAG_union_type)
20064 return NULL;
20065
20066 switch (die->tag)
20067 {
20068 case DW_TAG_compile_unit:
20069 case DW_TAG_partial_unit:
20070 /* Compilation units have a DW_AT_name that is a filename, not
20071 a source language identifier. */
20072 case DW_TAG_enumeration_type:
20073 case DW_TAG_enumerator:
20074 /* These tags always have simple identifiers already; no need
20075 to canonicalize them. */
20076 return DW_STRING (attr);
20077
20078 case DW_TAG_namespace:
20079 if (attr != NULL && DW_STRING (attr) != NULL)
20080 return DW_STRING (attr);
20081 return CP_ANONYMOUS_NAMESPACE_STR;
20082
20083 case DW_TAG_class_type:
20084 case DW_TAG_interface_type:
20085 case DW_TAG_structure_type:
20086 case DW_TAG_union_type:
20087 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20088 structures or unions. These were of the form "._%d" in GCC 4.1,
20089 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20090 and GCC 4.4. We work around this problem by ignoring these. */
20091 if (attr && DW_STRING (attr)
20092 && (startswith (DW_STRING (attr), "._")
20093 || startswith (DW_STRING (attr), "<anonymous")))
20094 return NULL;
20095
20096 /* GCC might emit a nameless typedef that has a linkage name. See
20097 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20098 if (!attr || DW_STRING (attr) == NULL)
20099 {
20100 char *demangled = NULL;
20101
20102 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
20103 if (attr == NULL)
20104 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
20105
20106 if (attr == NULL || DW_STRING (attr) == NULL)
20107 return NULL;
20108
20109 /* Avoid demangling DW_STRING (attr) the second time on a second
20110 call for the same DIE. */
20111 if (!DW_STRING_IS_CANONICAL (attr))
20112 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
20113
20114 if (demangled)
20115 {
20116 const char *base;
20117
20118 /* FIXME: we already did this for the partial symbol... */
20119 DW_STRING (attr)
20120 = ((const char *)
20121 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20122 demangled, strlen (demangled)));
20123 DW_STRING_IS_CANONICAL (attr) = 1;
20124 xfree (demangled);
20125
20126 /* Strip any leading namespaces/classes, keep only the base name.
20127 DW_AT_name for named DIEs does not contain the prefixes. */
20128 base = strrchr (DW_STRING (attr), ':');
20129 if (base && base > DW_STRING (attr) && base[-1] == ':')
20130 return &base[1];
20131 else
20132 return DW_STRING (attr);
20133 }
20134 }
20135 break;
20136
20137 default:
20138 break;
20139 }
20140
20141 if (!DW_STRING_IS_CANONICAL (attr))
20142 {
20143 DW_STRING (attr)
20144 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
20145 &cu->objfile->per_bfd->storage_obstack);
20146 DW_STRING_IS_CANONICAL (attr) = 1;
20147 }
20148 return DW_STRING (attr);
20149 }
20150
20151 /* Return the die that this die in an extension of, or NULL if there
20152 is none. *EXT_CU is the CU containing DIE on input, and the CU
20153 containing the return value on output. */
20154
20155 static struct die_info *
20156 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
20157 {
20158 struct attribute *attr;
20159
20160 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
20161 if (attr == NULL)
20162 return NULL;
20163
20164 return follow_die_ref (die, attr, ext_cu);
20165 }
20166
20167 /* Convert a DIE tag into its string name. */
20168
20169 static const char *
20170 dwarf_tag_name (unsigned tag)
20171 {
20172 const char *name = get_DW_TAG_name (tag);
20173
20174 if (name == NULL)
20175 return "DW_TAG_<unknown>";
20176
20177 return name;
20178 }
20179
20180 /* Convert a DWARF attribute code into its string name. */
20181
20182 static const char *
20183 dwarf_attr_name (unsigned attr)
20184 {
20185 const char *name;
20186
20187 #ifdef MIPS /* collides with DW_AT_HP_block_index */
20188 if (attr == DW_AT_MIPS_fde)
20189 return "DW_AT_MIPS_fde";
20190 #else
20191 if (attr == DW_AT_HP_block_index)
20192 return "DW_AT_HP_block_index";
20193 #endif
20194
20195 name = get_DW_AT_name (attr);
20196
20197 if (name == NULL)
20198 return "DW_AT_<unknown>";
20199
20200 return name;
20201 }
20202
20203 /* Convert a DWARF value form code into its string name. */
20204
20205 static const char *
20206 dwarf_form_name (unsigned form)
20207 {
20208 const char *name = get_DW_FORM_name (form);
20209
20210 if (name == NULL)
20211 return "DW_FORM_<unknown>";
20212
20213 return name;
20214 }
20215
20216 static char *
20217 dwarf_bool_name (unsigned mybool)
20218 {
20219 if (mybool)
20220 return "TRUE";
20221 else
20222 return "FALSE";
20223 }
20224
20225 /* Convert a DWARF type code into its string name. */
20226
20227 static const char *
20228 dwarf_type_encoding_name (unsigned enc)
20229 {
20230 const char *name = get_DW_ATE_name (enc);
20231
20232 if (name == NULL)
20233 return "DW_ATE_<unknown>";
20234
20235 return name;
20236 }
20237
20238 static void
20239 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
20240 {
20241 unsigned int i;
20242
20243 print_spaces (indent, f);
20244 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
20245 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
20246
20247 if (die->parent != NULL)
20248 {
20249 print_spaces (indent, f);
20250 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
20251 die->parent->offset.sect_off);
20252 }
20253
20254 print_spaces (indent, f);
20255 fprintf_unfiltered (f, " has children: %s\n",
20256 dwarf_bool_name (die->child != NULL));
20257
20258 print_spaces (indent, f);
20259 fprintf_unfiltered (f, " attributes:\n");
20260
20261 for (i = 0; i < die->num_attrs; ++i)
20262 {
20263 print_spaces (indent, f);
20264 fprintf_unfiltered (f, " %s (%s) ",
20265 dwarf_attr_name (die->attrs[i].name),
20266 dwarf_form_name (die->attrs[i].form));
20267
20268 switch (die->attrs[i].form)
20269 {
20270 case DW_FORM_addr:
20271 case DW_FORM_GNU_addr_index:
20272 fprintf_unfiltered (f, "address: ");
20273 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
20274 break;
20275 case DW_FORM_block2:
20276 case DW_FORM_block4:
20277 case DW_FORM_block:
20278 case DW_FORM_block1:
20279 fprintf_unfiltered (f, "block: size %s",
20280 pulongest (DW_BLOCK (&die->attrs[i])->size));
20281 break;
20282 case DW_FORM_exprloc:
20283 fprintf_unfiltered (f, "expression: size %s",
20284 pulongest (DW_BLOCK (&die->attrs[i])->size));
20285 break;
20286 case DW_FORM_data16:
20287 fprintf_unfiltered (f, "constant of 16 bytes");
20288 break;
20289 case DW_FORM_ref_addr:
20290 fprintf_unfiltered (f, "ref address: ");
20291 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20292 break;
20293 case DW_FORM_GNU_ref_alt:
20294 fprintf_unfiltered (f, "alt ref address: ");
20295 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20296 break;
20297 case DW_FORM_ref1:
20298 case DW_FORM_ref2:
20299 case DW_FORM_ref4:
20300 case DW_FORM_ref8:
20301 case DW_FORM_ref_udata:
20302 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
20303 (long) (DW_UNSND (&die->attrs[i])));
20304 break;
20305 case DW_FORM_data1:
20306 case DW_FORM_data2:
20307 case DW_FORM_data4:
20308 case DW_FORM_data8:
20309 case DW_FORM_udata:
20310 case DW_FORM_sdata:
20311 fprintf_unfiltered (f, "constant: %s",
20312 pulongest (DW_UNSND (&die->attrs[i])));
20313 break;
20314 case DW_FORM_sec_offset:
20315 fprintf_unfiltered (f, "section offset: %s",
20316 pulongest (DW_UNSND (&die->attrs[i])));
20317 break;
20318 case DW_FORM_ref_sig8:
20319 fprintf_unfiltered (f, "signature: %s",
20320 hex_string (DW_SIGNATURE (&die->attrs[i])));
20321 break;
20322 case DW_FORM_string:
20323 case DW_FORM_strp:
20324 case DW_FORM_line_strp:
20325 case DW_FORM_GNU_str_index:
20326 case DW_FORM_GNU_strp_alt:
20327 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
20328 DW_STRING (&die->attrs[i])
20329 ? DW_STRING (&die->attrs[i]) : "",
20330 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
20331 break;
20332 case DW_FORM_flag:
20333 if (DW_UNSND (&die->attrs[i]))
20334 fprintf_unfiltered (f, "flag: TRUE");
20335 else
20336 fprintf_unfiltered (f, "flag: FALSE");
20337 break;
20338 case DW_FORM_flag_present:
20339 fprintf_unfiltered (f, "flag: TRUE");
20340 break;
20341 case DW_FORM_indirect:
20342 /* The reader will have reduced the indirect form to
20343 the "base form" so this form should not occur. */
20344 fprintf_unfiltered (f,
20345 "unexpected attribute form: DW_FORM_indirect");
20346 break;
20347 default:
20348 fprintf_unfiltered (f, "unsupported attribute form: %d.",
20349 die->attrs[i].form);
20350 break;
20351 }
20352 fprintf_unfiltered (f, "\n");
20353 }
20354 }
20355
20356 static void
20357 dump_die_for_error (struct die_info *die)
20358 {
20359 dump_die_shallow (gdb_stderr, 0, die);
20360 }
20361
20362 static void
20363 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20364 {
20365 int indent = level * 4;
20366
20367 gdb_assert (die != NULL);
20368
20369 if (level >= max_level)
20370 return;
20371
20372 dump_die_shallow (f, indent, die);
20373
20374 if (die->child != NULL)
20375 {
20376 print_spaces (indent, f);
20377 fprintf_unfiltered (f, " Children:");
20378 if (level + 1 < max_level)
20379 {
20380 fprintf_unfiltered (f, "\n");
20381 dump_die_1 (f, level + 1, max_level, die->child);
20382 }
20383 else
20384 {
20385 fprintf_unfiltered (f,
20386 " [not printed, max nesting level reached]\n");
20387 }
20388 }
20389
20390 if (die->sibling != NULL && level > 0)
20391 {
20392 dump_die_1 (f, level, max_level, die->sibling);
20393 }
20394 }
20395
20396 /* This is called from the pdie macro in gdbinit.in.
20397 It's not static so gcc will keep a copy callable from gdb. */
20398
20399 void
20400 dump_die (struct die_info *die, int max_level)
20401 {
20402 dump_die_1 (gdb_stdlog, 0, max_level, die);
20403 }
20404
20405 static void
20406 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
20407 {
20408 void **slot;
20409
20410 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
20411 INSERT);
20412
20413 *slot = die;
20414 }
20415
20416 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20417 required kind. */
20418
20419 static sect_offset
20420 dwarf2_get_ref_die_offset (const struct attribute *attr)
20421 {
20422 sect_offset retval = { DW_UNSND (attr) };
20423
20424 if (attr_form_is_ref (attr))
20425 return retval;
20426
20427 retval.sect_off = 0;
20428 complaint (&symfile_complaints,
20429 _("unsupported die ref attribute form: '%s'"),
20430 dwarf_form_name (attr->form));
20431 return retval;
20432 }
20433
20434 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20435 * the value held by the attribute is not constant. */
20436
20437 static LONGEST
20438 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
20439 {
20440 if (attr->form == DW_FORM_sdata)
20441 return DW_SND (attr);
20442 else if (attr->form == DW_FORM_udata
20443 || attr->form == DW_FORM_data1
20444 || attr->form == DW_FORM_data2
20445 || attr->form == DW_FORM_data4
20446 || attr->form == DW_FORM_data8)
20447 return DW_UNSND (attr);
20448 else
20449 {
20450 /* For DW_FORM_data16 see attr_form_is_constant. */
20451 complaint (&symfile_complaints,
20452 _("Attribute value is not a constant (%s)"),
20453 dwarf_form_name (attr->form));
20454 return default_value;
20455 }
20456 }
20457
20458 /* Follow reference or signature attribute ATTR of SRC_DIE.
20459 On entry *REF_CU is the CU of SRC_DIE.
20460 On exit *REF_CU is the CU of the result. */
20461
20462 static struct die_info *
20463 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
20464 struct dwarf2_cu **ref_cu)
20465 {
20466 struct die_info *die;
20467
20468 if (attr_form_is_ref (attr))
20469 die = follow_die_ref (src_die, attr, ref_cu);
20470 else if (attr->form == DW_FORM_ref_sig8)
20471 die = follow_die_sig (src_die, attr, ref_cu);
20472 else
20473 {
20474 dump_die_for_error (src_die);
20475 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
20476 objfile_name ((*ref_cu)->objfile));
20477 }
20478
20479 return die;
20480 }
20481
20482 /* Follow reference OFFSET.
20483 On entry *REF_CU is the CU of the source die referencing OFFSET.
20484 On exit *REF_CU is the CU of the result.
20485 Returns NULL if OFFSET is invalid. */
20486
20487 static struct die_info *
20488 follow_die_offset (sect_offset offset, int offset_in_dwz,
20489 struct dwarf2_cu **ref_cu)
20490 {
20491 struct die_info temp_die;
20492 struct dwarf2_cu *target_cu, *cu = *ref_cu;
20493
20494 gdb_assert (cu->per_cu != NULL);
20495
20496 target_cu = cu;
20497
20498 if (cu->per_cu->is_debug_types)
20499 {
20500 /* .debug_types CUs cannot reference anything outside their CU.
20501 If they need to, they have to reference a signatured type via
20502 DW_FORM_ref_sig8. */
20503 if (! offset_in_cu_p (&cu->header, offset))
20504 return NULL;
20505 }
20506 else if (offset_in_dwz != cu->per_cu->is_dwz
20507 || ! offset_in_cu_p (&cu->header, offset))
20508 {
20509 struct dwarf2_per_cu_data *per_cu;
20510
20511 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20512 cu->objfile);
20513
20514 /* If necessary, add it to the queue and load its DIEs. */
20515 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20516 load_full_comp_unit (per_cu, cu->language);
20517
20518 target_cu = per_cu->cu;
20519 }
20520 else if (cu->dies == NULL)
20521 {
20522 /* We're loading full DIEs during partial symbol reading. */
20523 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20524 load_full_comp_unit (cu->per_cu, language_minimal);
20525 }
20526
20527 *ref_cu = target_cu;
20528 temp_die.offset = offset;
20529 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20530 &temp_die, offset.sect_off);
20531 }
20532
20533 /* Follow reference attribute ATTR of SRC_DIE.
20534 On entry *REF_CU is the CU of SRC_DIE.
20535 On exit *REF_CU is the CU of the result. */
20536
20537 static struct die_info *
20538 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20539 struct dwarf2_cu **ref_cu)
20540 {
20541 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20542 struct dwarf2_cu *cu = *ref_cu;
20543 struct die_info *die;
20544
20545 die = follow_die_offset (offset,
20546 (attr->form == DW_FORM_GNU_ref_alt
20547 || cu->per_cu->is_dwz),
20548 ref_cu);
20549 if (!die)
20550 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20551 "at 0x%x [in module %s]"),
20552 offset.sect_off, src_die->offset.sect_off,
20553 objfile_name (cu->objfile));
20554
20555 return die;
20556 }
20557
20558 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20559 Returned value is intended for DW_OP_call*. Returned
20560 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20561
20562 struct dwarf2_locexpr_baton
20563 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20564 struct dwarf2_per_cu_data *per_cu,
20565 CORE_ADDR (*get_frame_pc) (void *baton),
20566 void *baton)
20567 {
20568 struct dwarf2_cu *cu;
20569 struct die_info *die;
20570 struct attribute *attr;
20571 struct dwarf2_locexpr_baton retval;
20572
20573 dw2_setup (per_cu->objfile);
20574
20575 if (per_cu->cu == NULL)
20576 load_cu (per_cu);
20577 cu = per_cu->cu;
20578 if (cu == NULL)
20579 {
20580 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20581 Instead just throw an error, not much else we can do. */
20582 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20583 offset.sect_off, objfile_name (per_cu->objfile));
20584 }
20585
20586 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20587 if (!die)
20588 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20589 offset.sect_off, objfile_name (per_cu->objfile));
20590
20591 attr = dwarf2_attr (die, DW_AT_location, cu);
20592 if (!attr)
20593 {
20594 /* DWARF: "If there is no such attribute, then there is no effect.".
20595 DATA is ignored if SIZE is 0. */
20596
20597 retval.data = NULL;
20598 retval.size = 0;
20599 }
20600 else if (attr_form_is_section_offset (attr))
20601 {
20602 struct dwarf2_loclist_baton loclist_baton;
20603 CORE_ADDR pc = (*get_frame_pc) (baton);
20604 size_t size;
20605
20606 fill_in_loclist_baton (cu, &loclist_baton, attr);
20607
20608 retval.data = dwarf2_find_location_expression (&loclist_baton,
20609 &size, pc);
20610 retval.size = size;
20611 }
20612 else
20613 {
20614 if (!attr_form_is_block (attr))
20615 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20616 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20617 offset.sect_off, objfile_name (per_cu->objfile));
20618
20619 retval.data = DW_BLOCK (attr)->data;
20620 retval.size = DW_BLOCK (attr)->size;
20621 }
20622 retval.per_cu = cu->per_cu;
20623
20624 age_cached_comp_units ();
20625
20626 return retval;
20627 }
20628
20629 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20630 offset. */
20631
20632 struct dwarf2_locexpr_baton
20633 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20634 struct dwarf2_per_cu_data *per_cu,
20635 CORE_ADDR (*get_frame_pc) (void *baton),
20636 void *baton)
20637 {
20638 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20639
20640 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20641 }
20642
20643 /* Write a constant of a given type as target-ordered bytes into
20644 OBSTACK. */
20645
20646 static const gdb_byte *
20647 write_constant_as_bytes (struct obstack *obstack,
20648 enum bfd_endian byte_order,
20649 struct type *type,
20650 ULONGEST value,
20651 LONGEST *len)
20652 {
20653 gdb_byte *result;
20654
20655 *len = TYPE_LENGTH (type);
20656 result = (gdb_byte *) obstack_alloc (obstack, *len);
20657 store_unsigned_integer (result, *len, byte_order, value);
20658
20659 return result;
20660 }
20661
20662 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20663 pointer to the constant bytes and set LEN to the length of the
20664 data. If memory is needed, allocate it on OBSTACK. If the DIE
20665 does not have a DW_AT_const_value, return NULL. */
20666
20667 const gdb_byte *
20668 dwarf2_fetch_constant_bytes (sect_offset offset,
20669 struct dwarf2_per_cu_data *per_cu,
20670 struct obstack *obstack,
20671 LONGEST *len)
20672 {
20673 struct dwarf2_cu *cu;
20674 struct die_info *die;
20675 struct attribute *attr;
20676 const gdb_byte *result = NULL;
20677 struct type *type;
20678 LONGEST value;
20679 enum bfd_endian byte_order;
20680
20681 dw2_setup (per_cu->objfile);
20682
20683 if (per_cu->cu == NULL)
20684 load_cu (per_cu);
20685 cu = per_cu->cu;
20686 if (cu == NULL)
20687 {
20688 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20689 Instead just throw an error, not much else we can do. */
20690 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20691 offset.sect_off, objfile_name (per_cu->objfile));
20692 }
20693
20694 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20695 if (!die)
20696 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20697 offset.sect_off, objfile_name (per_cu->objfile));
20698
20699
20700 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20701 if (attr == NULL)
20702 return NULL;
20703
20704 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20705 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20706
20707 switch (attr->form)
20708 {
20709 case DW_FORM_addr:
20710 case DW_FORM_GNU_addr_index:
20711 {
20712 gdb_byte *tem;
20713
20714 *len = cu->header.addr_size;
20715 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20716 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20717 result = tem;
20718 }
20719 break;
20720 case DW_FORM_string:
20721 case DW_FORM_strp:
20722 case DW_FORM_GNU_str_index:
20723 case DW_FORM_GNU_strp_alt:
20724 /* DW_STRING is already allocated on the objfile obstack, point
20725 directly to it. */
20726 result = (const gdb_byte *) DW_STRING (attr);
20727 *len = strlen (DW_STRING (attr));
20728 break;
20729 case DW_FORM_block1:
20730 case DW_FORM_block2:
20731 case DW_FORM_block4:
20732 case DW_FORM_block:
20733 case DW_FORM_exprloc:
20734 case DW_FORM_data16:
20735 result = DW_BLOCK (attr)->data;
20736 *len = DW_BLOCK (attr)->size;
20737 break;
20738
20739 /* The DW_AT_const_value attributes are supposed to carry the
20740 symbol's value "represented as it would be on the target
20741 architecture." By the time we get here, it's already been
20742 converted to host endianness, so we just need to sign- or
20743 zero-extend it as appropriate. */
20744 case DW_FORM_data1:
20745 type = die_type (die, cu);
20746 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20747 if (result == NULL)
20748 result = write_constant_as_bytes (obstack, byte_order,
20749 type, value, len);
20750 break;
20751 case DW_FORM_data2:
20752 type = die_type (die, cu);
20753 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20754 if (result == NULL)
20755 result = write_constant_as_bytes (obstack, byte_order,
20756 type, value, len);
20757 break;
20758 case DW_FORM_data4:
20759 type = die_type (die, cu);
20760 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20761 if (result == NULL)
20762 result = write_constant_as_bytes (obstack, byte_order,
20763 type, value, len);
20764 break;
20765 case DW_FORM_data8:
20766 type = die_type (die, cu);
20767 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20768 if (result == NULL)
20769 result = write_constant_as_bytes (obstack, byte_order,
20770 type, value, len);
20771 break;
20772
20773 case DW_FORM_sdata:
20774 type = die_type (die, cu);
20775 result = write_constant_as_bytes (obstack, byte_order,
20776 type, DW_SND (attr), len);
20777 break;
20778
20779 case DW_FORM_udata:
20780 type = die_type (die, cu);
20781 result = write_constant_as_bytes (obstack, byte_order,
20782 type, DW_UNSND (attr), len);
20783 break;
20784
20785 default:
20786 complaint (&symfile_complaints,
20787 _("unsupported const value attribute form: '%s'"),
20788 dwarf_form_name (attr->form));
20789 break;
20790 }
20791
20792 return result;
20793 }
20794
20795 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
20796 valid type for this die is found. */
20797
20798 struct type *
20799 dwarf2_fetch_die_type_sect_off (sect_offset offset,
20800 struct dwarf2_per_cu_data *per_cu)
20801 {
20802 struct dwarf2_cu *cu;
20803 struct die_info *die;
20804
20805 dw2_setup (per_cu->objfile);
20806
20807 if (per_cu->cu == NULL)
20808 load_cu (per_cu);
20809 cu = per_cu->cu;
20810 if (!cu)
20811 return NULL;
20812
20813 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20814 if (!die)
20815 return NULL;
20816
20817 return die_type (die, cu);
20818 }
20819
20820 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20821 PER_CU. */
20822
20823 struct type *
20824 dwarf2_get_die_type (cu_offset die_offset,
20825 struct dwarf2_per_cu_data *per_cu)
20826 {
20827 sect_offset die_offset_sect;
20828
20829 dw2_setup (per_cu->objfile);
20830
20831 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20832 return get_die_type_at_offset (die_offset_sect, per_cu);
20833 }
20834
20835 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20836 On entry *REF_CU is the CU of SRC_DIE.
20837 On exit *REF_CU is the CU of the result.
20838 Returns NULL if the referenced DIE isn't found. */
20839
20840 static struct die_info *
20841 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20842 struct dwarf2_cu **ref_cu)
20843 {
20844 struct die_info temp_die;
20845 struct dwarf2_cu *sig_cu;
20846 struct die_info *die;
20847
20848 /* While it might be nice to assert sig_type->type == NULL here,
20849 we can get here for DW_AT_imported_declaration where we need
20850 the DIE not the type. */
20851
20852 /* If necessary, add it to the queue and load its DIEs. */
20853
20854 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20855 read_signatured_type (sig_type);
20856
20857 sig_cu = sig_type->per_cu.cu;
20858 gdb_assert (sig_cu != NULL);
20859 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20860 temp_die.offset = sig_type->type_offset_in_section;
20861 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20862 temp_die.offset.sect_off);
20863 if (die)
20864 {
20865 /* For .gdb_index version 7 keep track of included TUs.
20866 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20867 if (dwarf2_per_objfile->index_table != NULL
20868 && dwarf2_per_objfile->index_table->version <= 7)
20869 {
20870 VEC_safe_push (dwarf2_per_cu_ptr,
20871 (*ref_cu)->per_cu->imported_symtabs,
20872 sig_cu->per_cu);
20873 }
20874
20875 *ref_cu = sig_cu;
20876 return die;
20877 }
20878
20879 return NULL;
20880 }
20881
20882 /* Follow signatured type referenced by ATTR in SRC_DIE.
20883 On entry *REF_CU is the CU of SRC_DIE.
20884 On exit *REF_CU is the CU of the result.
20885 The result is the DIE of the type.
20886 If the referenced type cannot be found an error is thrown. */
20887
20888 static struct die_info *
20889 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20890 struct dwarf2_cu **ref_cu)
20891 {
20892 ULONGEST signature = DW_SIGNATURE (attr);
20893 struct signatured_type *sig_type;
20894 struct die_info *die;
20895
20896 gdb_assert (attr->form == DW_FORM_ref_sig8);
20897
20898 sig_type = lookup_signatured_type (*ref_cu, signature);
20899 /* sig_type will be NULL if the signatured type is missing from
20900 the debug info. */
20901 if (sig_type == NULL)
20902 {
20903 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20904 " from DIE at 0x%x [in module %s]"),
20905 hex_string (signature), src_die->offset.sect_off,
20906 objfile_name ((*ref_cu)->objfile));
20907 }
20908
20909 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20910 if (die == NULL)
20911 {
20912 dump_die_for_error (src_die);
20913 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20914 " from DIE at 0x%x [in module %s]"),
20915 hex_string (signature), src_die->offset.sect_off,
20916 objfile_name ((*ref_cu)->objfile));
20917 }
20918
20919 return die;
20920 }
20921
20922 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20923 reading in and processing the type unit if necessary. */
20924
20925 static struct type *
20926 get_signatured_type (struct die_info *die, ULONGEST signature,
20927 struct dwarf2_cu *cu)
20928 {
20929 struct signatured_type *sig_type;
20930 struct dwarf2_cu *type_cu;
20931 struct die_info *type_die;
20932 struct type *type;
20933
20934 sig_type = lookup_signatured_type (cu, signature);
20935 /* sig_type will be NULL if the signatured type is missing from
20936 the debug info. */
20937 if (sig_type == NULL)
20938 {
20939 complaint (&symfile_complaints,
20940 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20941 " from DIE at 0x%x [in module %s]"),
20942 hex_string (signature), die->offset.sect_off,
20943 objfile_name (dwarf2_per_objfile->objfile));
20944 return build_error_marker_type (cu, die);
20945 }
20946
20947 /* If we already know the type we're done. */
20948 if (sig_type->type != NULL)
20949 return sig_type->type;
20950
20951 type_cu = cu;
20952 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20953 if (type_die != NULL)
20954 {
20955 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20956 is created. This is important, for example, because for c++ classes
20957 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20958 type = read_type_die (type_die, type_cu);
20959 if (type == NULL)
20960 {
20961 complaint (&symfile_complaints,
20962 _("Dwarf Error: Cannot build signatured type %s"
20963 " referenced from DIE at 0x%x [in module %s]"),
20964 hex_string (signature), die->offset.sect_off,
20965 objfile_name (dwarf2_per_objfile->objfile));
20966 type = build_error_marker_type (cu, die);
20967 }
20968 }
20969 else
20970 {
20971 complaint (&symfile_complaints,
20972 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20973 " from DIE at 0x%x [in module %s]"),
20974 hex_string (signature), die->offset.sect_off,
20975 objfile_name (dwarf2_per_objfile->objfile));
20976 type = build_error_marker_type (cu, die);
20977 }
20978 sig_type->type = type;
20979
20980 return type;
20981 }
20982
20983 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20984 reading in and processing the type unit if necessary. */
20985
20986 static struct type *
20987 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20988 struct dwarf2_cu *cu) /* ARI: editCase function */
20989 {
20990 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20991 if (attr_form_is_ref (attr))
20992 {
20993 struct dwarf2_cu *type_cu = cu;
20994 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20995
20996 return read_type_die (type_die, type_cu);
20997 }
20998 else if (attr->form == DW_FORM_ref_sig8)
20999 {
21000 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21001 }
21002 else
21003 {
21004 complaint (&symfile_complaints,
21005 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21006 " at 0x%x [in module %s]"),
21007 dwarf_form_name (attr->form), die->offset.sect_off,
21008 objfile_name (dwarf2_per_objfile->objfile));
21009 return build_error_marker_type (cu, die);
21010 }
21011 }
21012
21013 /* Load the DIEs associated with type unit PER_CU into memory. */
21014
21015 static void
21016 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
21017 {
21018 struct signatured_type *sig_type;
21019
21020 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21021 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21022
21023 /* We have the per_cu, but we need the signatured_type.
21024 Fortunately this is an easy translation. */
21025 gdb_assert (per_cu->is_debug_types);
21026 sig_type = (struct signatured_type *) per_cu;
21027
21028 gdb_assert (per_cu->cu == NULL);
21029
21030 read_signatured_type (sig_type);
21031
21032 gdb_assert (per_cu->cu != NULL);
21033 }
21034
21035 /* die_reader_func for read_signatured_type.
21036 This is identical to load_full_comp_unit_reader,
21037 but is kept separate for now. */
21038
21039 static void
21040 read_signatured_type_reader (const struct die_reader_specs *reader,
21041 const gdb_byte *info_ptr,
21042 struct die_info *comp_unit_die,
21043 int has_children,
21044 void *data)
21045 {
21046 struct dwarf2_cu *cu = reader->cu;
21047
21048 gdb_assert (cu->die_hash == NULL);
21049 cu->die_hash =
21050 htab_create_alloc_ex (cu->header.length / 12,
21051 die_hash,
21052 die_eq,
21053 NULL,
21054 &cu->comp_unit_obstack,
21055 hashtab_obstack_allocate,
21056 dummy_obstack_deallocate);
21057
21058 if (has_children)
21059 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21060 &info_ptr, comp_unit_die);
21061 cu->dies = comp_unit_die;
21062 /* comp_unit_die is not stored in die_hash, no need. */
21063
21064 /* We try not to read any attributes in this function, because not
21065 all CUs needed for references have been loaded yet, and symbol
21066 table processing isn't initialized. But we have to set the CU language,
21067 or we won't be able to build types correctly.
21068 Similarly, if we do not read the producer, we can not apply
21069 producer-specific interpretation. */
21070 prepare_one_comp_unit (cu, cu->dies, language_minimal);
21071 }
21072
21073 /* Read in a signatured type and build its CU and DIEs.
21074 If the type is a stub for the real type in a DWO file,
21075 read in the real type from the DWO file as well. */
21076
21077 static void
21078 read_signatured_type (struct signatured_type *sig_type)
21079 {
21080 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
21081
21082 gdb_assert (per_cu->is_debug_types);
21083 gdb_assert (per_cu->cu == NULL);
21084
21085 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21086 read_signatured_type_reader, NULL);
21087 sig_type->per_cu.tu_read = 1;
21088 }
21089
21090 /* Decode simple location descriptions.
21091 Given a pointer to a dwarf block that defines a location, compute
21092 the location and return the value.
21093
21094 NOTE drow/2003-11-18: This function is called in two situations
21095 now: for the address of static or global variables (partial symbols
21096 only) and for offsets into structures which are expected to be
21097 (more or less) constant. The partial symbol case should go away,
21098 and only the constant case should remain. That will let this
21099 function complain more accurately. A few special modes are allowed
21100 without complaint for global variables (for instance, global
21101 register values and thread-local values).
21102
21103 A location description containing no operations indicates that the
21104 object is optimized out. The return value is 0 for that case.
21105 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21106 callers will only want a very basic result and this can become a
21107 complaint.
21108
21109 Note that stack[0] is unused except as a default error return. */
21110
21111 static CORE_ADDR
21112 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
21113 {
21114 struct objfile *objfile = cu->objfile;
21115 size_t i;
21116 size_t size = blk->size;
21117 const gdb_byte *data = blk->data;
21118 CORE_ADDR stack[64];
21119 int stacki;
21120 unsigned int bytes_read, unsnd;
21121 gdb_byte op;
21122
21123 i = 0;
21124 stacki = 0;
21125 stack[stacki] = 0;
21126 stack[++stacki] = 0;
21127
21128 while (i < size)
21129 {
21130 op = data[i++];
21131 switch (op)
21132 {
21133 case DW_OP_lit0:
21134 case DW_OP_lit1:
21135 case DW_OP_lit2:
21136 case DW_OP_lit3:
21137 case DW_OP_lit4:
21138 case DW_OP_lit5:
21139 case DW_OP_lit6:
21140 case DW_OP_lit7:
21141 case DW_OP_lit8:
21142 case DW_OP_lit9:
21143 case DW_OP_lit10:
21144 case DW_OP_lit11:
21145 case DW_OP_lit12:
21146 case DW_OP_lit13:
21147 case DW_OP_lit14:
21148 case DW_OP_lit15:
21149 case DW_OP_lit16:
21150 case DW_OP_lit17:
21151 case DW_OP_lit18:
21152 case DW_OP_lit19:
21153 case DW_OP_lit20:
21154 case DW_OP_lit21:
21155 case DW_OP_lit22:
21156 case DW_OP_lit23:
21157 case DW_OP_lit24:
21158 case DW_OP_lit25:
21159 case DW_OP_lit26:
21160 case DW_OP_lit27:
21161 case DW_OP_lit28:
21162 case DW_OP_lit29:
21163 case DW_OP_lit30:
21164 case DW_OP_lit31:
21165 stack[++stacki] = op - DW_OP_lit0;
21166 break;
21167
21168 case DW_OP_reg0:
21169 case DW_OP_reg1:
21170 case DW_OP_reg2:
21171 case DW_OP_reg3:
21172 case DW_OP_reg4:
21173 case DW_OP_reg5:
21174 case DW_OP_reg6:
21175 case DW_OP_reg7:
21176 case DW_OP_reg8:
21177 case DW_OP_reg9:
21178 case DW_OP_reg10:
21179 case DW_OP_reg11:
21180 case DW_OP_reg12:
21181 case DW_OP_reg13:
21182 case DW_OP_reg14:
21183 case DW_OP_reg15:
21184 case DW_OP_reg16:
21185 case DW_OP_reg17:
21186 case DW_OP_reg18:
21187 case DW_OP_reg19:
21188 case DW_OP_reg20:
21189 case DW_OP_reg21:
21190 case DW_OP_reg22:
21191 case DW_OP_reg23:
21192 case DW_OP_reg24:
21193 case DW_OP_reg25:
21194 case DW_OP_reg26:
21195 case DW_OP_reg27:
21196 case DW_OP_reg28:
21197 case DW_OP_reg29:
21198 case DW_OP_reg30:
21199 case DW_OP_reg31:
21200 stack[++stacki] = op - DW_OP_reg0;
21201 if (i < size)
21202 dwarf2_complex_location_expr_complaint ();
21203 break;
21204
21205 case DW_OP_regx:
21206 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21207 i += bytes_read;
21208 stack[++stacki] = unsnd;
21209 if (i < size)
21210 dwarf2_complex_location_expr_complaint ();
21211 break;
21212
21213 case DW_OP_addr:
21214 stack[++stacki] = read_address (objfile->obfd, &data[i],
21215 cu, &bytes_read);
21216 i += bytes_read;
21217 break;
21218
21219 case DW_OP_const1u:
21220 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21221 i += 1;
21222 break;
21223
21224 case DW_OP_const1s:
21225 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21226 i += 1;
21227 break;
21228
21229 case DW_OP_const2u:
21230 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21231 i += 2;
21232 break;
21233
21234 case DW_OP_const2s:
21235 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21236 i += 2;
21237 break;
21238
21239 case DW_OP_const4u:
21240 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21241 i += 4;
21242 break;
21243
21244 case DW_OP_const4s:
21245 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21246 i += 4;
21247 break;
21248
21249 case DW_OP_const8u:
21250 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21251 i += 8;
21252 break;
21253
21254 case DW_OP_constu:
21255 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21256 &bytes_read);
21257 i += bytes_read;
21258 break;
21259
21260 case DW_OP_consts:
21261 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21262 i += bytes_read;
21263 break;
21264
21265 case DW_OP_dup:
21266 stack[stacki + 1] = stack[stacki];
21267 stacki++;
21268 break;
21269
21270 case DW_OP_plus:
21271 stack[stacki - 1] += stack[stacki];
21272 stacki--;
21273 break;
21274
21275 case DW_OP_plus_uconst:
21276 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21277 &bytes_read);
21278 i += bytes_read;
21279 break;
21280
21281 case DW_OP_minus:
21282 stack[stacki - 1] -= stack[stacki];
21283 stacki--;
21284 break;
21285
21286 case DW_OP_deref:
21287 /* If we're not the last op, then we definitely can't encode
21288 this using GDB's address_class enum. This is valid for partial
21289 global symbols, although the variable's address will be bogus
21290 in the psymtab. */
21291 if (i < size)
21292 dwarf2_complex_location_expr_complaint ();
21293 break;
21294
21295 case DW_OP_GNU_push_tls_address:
21296 case DW_OP_form_tls_address:
21297 /* The top of the stack has the offset from the beginning
21298 of the thread control block at which the variable is located. */
21299 /* Nothing should follow this operator, so the top of stack would
21300 be returned. */
21301 /* This is valid for partial global symbols, but the variable's
21302 address will be bogus in the psymtab. Make it always at least
21303 non-zero to not look as a variable garbage collected by linker
21304 which have DW_OP_addr 0. */
21305 if (i < size)
21306 dwarf2_complex_location_expr_complaint ();
21307 stack[stacki]++;
21308 break;
21309
21310 case DW_OP_GNU_uninit:
21311 break;
21312
21313 case DW_OP_GNU_addr_index:
21314 case DW_OP_GNU_const_index:
21315 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21316 &bytes_read);
21317 i += bytes_read;
21318 break;
21319
21320 default:
21321 {
21322 const char *name = get_DW_OP_name (op);
21323
21324 if (name)
21325 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21326 name);
21327 else
21328 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21329 op);
21330 }
21331
21332 return (stack[stacki]);
21333 }
21334
21335 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21336 outside of the allocated space. Also enforce minimum>0. */
21337 if (stacki >= ARRAY_SIZE (stack) - 1)
21338 {
21339 complaint (&symfile_complaints,
21340 _("location description stack overflow"));
21341 return 0;
21342 }
21343
21344 if (stacki <= 0)
21345 {
21346 complaint (&symfile_complaints,
21347 _("location description stack underflow"));
21348 return 0;
21349 }
21350 }
21351 return (stack[stacki]);
21352 }
21353
21354 /* memory allocation interface */
21355
21356 static struct dwarf_block *
21357 dwarf_alloc_block (struct dwarf2_cu *cu)
21358 {
21359 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
21360 }
21361
21362 static struct die_info *
21363 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
21364 {
21365 struct die_info *die;
21366 size_t size = sizeof (struct die_info);
21367
21368 if (num_attrs > 1)
21369 size += (num_attrs - 1) * sizeof (struct attribute);
21370
21371 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
21372 memset (die, 0, sizeof (struct die_info));
21373 return (die);
21374 }
21375
21376 \f
21377 /* Macro support. */
21378
21379 /* Return file name relative to the compilation directory of file number I in
21380 *LH's file name table. The result is allocated using xmalloc; the caller is
21381 responsible for freeing it. */
21382
21383 static char *
21384 file_file_name (int file, struct line_header *lh)
21385 {
21386 /* Is the file number a valid index into the line header's file name
21387 table? Remember that file numbers start with one, not zero. */
21388 if (1 <= file && file <= lh->num_file_names)
21389 {
21390 struct file_entry *fe = &lh->file_names[file - 1];
21391
21392 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
21393 || lh->include_dirs == NULL
21394 || (fe->dir_index - 1) >= lh->num_include_dirs)
21395 return xstrdup (fe->name);
21396 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
21397 fe->name, (char *) NULL);
21398 }
21399 else
21400 {
21401 /* The compiler produced a bogus file number. We can at least
21402 record the macro definitions made in the file, even if we
21403 won't be able to find the file by name. */
21404 char fake_name[80];
21405
21406 xsnprintf (fake_name, sizeof (fake_name),
21407 "<bad macro file number %d>", file);
21408
21409 complaint (&symfile_complaints,
21410 _("bad file number in macro information (%d)"),
21411 file);
21412
21413 return xstrdup (fake_name);
21414 }
21415 }
21416
21417 /* Return the full name of file number I in *LH's file name table.
21418 Use COMP_DIR as the name of the current directory of the
21419 compilation. The result is allocated using xmalloc; the caller is
21420 responsible for freeing it. */
21421 static char *
21422 file_full_name (int file, struct line_header *lh, const char *comp_dir)
21423 {
21424 /* Is the file number a valid index into the line header's file name
21425 table? Remember that file numbers start with one, not zero. */
21426 if (1 <= file && file <= lh->num_file_names)
21427 {
21428 char *relative = file_file_name (file, lh);
21429
21430 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21431 return relative;
21432 return reconcat (relative, comp_dir, SLASH_STRING,
21433 relative, (char *) NULL);
21434 }
21435 else
21436 return file_file_name (file, lh);
21437 }
21438
21439
21440 static struct macro_source_file *
21441 macro_start_file (int file, int line,
21442 struct macro_source_file *current_file,
21443 struct line_header *lh)
21444 {
21445 /* File name relative to the compilation directory of this source file. */
21446 char *file_name = file_file_name (file, lh);
21447
21448 if (! current_file)
21449 {
21450 /* Note: We don't create a macro table for this compilation unit
21451 at all until we actually get a filename. */
21452 struct macro_table *macro_table = get_macro_table ();
21453
21454 /* If we have no current file, then this must be the start_file
21455 directive for the compilation unit's main source file. */
21456 current_file = macro_set_main (macro_table, file_name);
21457 macro_define_special (macro_table);
21458 }
21459 else
21460 current_file = macro_include (current_file, line, file_name);
21461
21462 xfree (file_name);
21463
21464 return current_file;
21465 }
21466
21467
21468 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
21469 followed by a null byte. */
21470 static char *
21471 copy_string (const char *buf, int len)
21472 {
21473 char *s = (char *) xmalloc (len + 1);
21474
21475 memcpy (s, buf, len);
21476 s[len] = '\0';
21477 return s;
21478 }
21479
21480
21481 static const char *
21482 consume_improper_spaces (const char *p, const char *body)
21483 {
21484 if (*p == ' ')
21485 {
21486 complaint (&symfile_complaints,
21487 _("macro definition contains spaces "
21488 "in formal argument list:\n`%s'"),
21489 body);
21490
21491 while (*p == ' ')
21492 p++;
21493 }
21494
21495 return p;
21496 }
21497
21498
21499 static void
21500 parse_macro_definition (struct macro_source_file *file, int line,
21501 const char *body)
21502 {
21503 const char *p;
21504
21505 /* The body string takes one of two forms. For object-like macro
21506 definitions, it should be:
21507
21508 <macro name> " " <definition>
21509
21510 For function-like macro definitions, it should be:
21511
21512 <macro name> "() " <definition>
21513 or
21514 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21515
21516 Spaces may appear only where explicitly indicated, and in the
21517 <definition>.
21518
21519 The Dwarf 2 spec says that an object-like macro's name is always
21520 followed by a space, but versions of GCC around March 2002 omit
21521 the space when the macro's definition is the empty string.
21522
21523 The Dwarf 2 spec says that there should be no spaces between the
21524 formal arguments in a function-like macro's formal argument list,
21525 but versions of GCC around March 2002 include spaces after the
21526 commas. */
21527
21528
21529 /* Find the extent of the macro name. The macro name is terminated
21530 by either a space or null character (for an object-like macro) or
21531 an opening paren (for a function-like macro). */
21532 for (p = body; *p; p++)
21533 if (*p == ' ' || *p == '(')
21534 break;
21535
21536 if (*p == ' ' || *p == '\0')
21537 {
21538 /* It's an object-like macro. */
21539 int name_len = p - body;
21540 char *name = copy_string (body, name_len);
21541 const char *replacement;
21542
21543 if (*p == ' ')
21544 replacement = body + name_len + 1;
21545 else
21546 {
21547 dwarf2_macro_malformed_definition_complaint (body);
21548 replacement = body + name_len;
21549 }
21550
21551 macro_define_object (file, line, name, replacement);
21552
21553 xfree (name);
21554 }
21555 else if (*p == '(')
21556 {
21557 /* It's a function-like macro. */
21558 char *name = copy_string (body, p - body);
21559 int argc = 0;
21560 int argv_size = 1;
21561 char **argv = XNEWVEC (char *, argv_size);
21562
21563 p++;
21564
21565 p = consume_improper_spaces (p, body);
21566
21567 /* Parse the formal argument list. */
21568 while (*p && *p != ')')
21569 {
21570 /* Find the extent of the current argument name. */
21571 const char *arg_start = p;
21572
21573 while (*p && *p != ',' && *p != ')' && *p != ' ')
21574 p++;
21575
21576 if (! *p || p == arg_start)
21577 dwarf2_macro_malformed_definition_complaint (body);
21578 else
21579 {
21580 /* Make sure argv has room for the new argument. */
21581 if (argc >= argv_size)
21582 {
21583 argv_size *= 2;
21584 argv = XRESIZEVEC (char *, argv, argv_size);
21585 }
21586
21587 argv[argc++] = copy_string (arg_start, p - arg_start);
21588 }
21589
21590 p = consume_improper_spaces (p, body);
21591
21592 /* Consume the comma, if present. */
21593 if (*p == ',')
21594 {
21595 p++;
21596
21597 p = consume_improper_spaces (p, body);
21598 }
21599 }
21600
21601 if (*p == ')')
21602 {
21603 p++;
21604
21605 if (*p == ' ')
21606 /* Perfectly formed definition, no complaints. */
21607 macro_define_function (file, line, name,
21608 argc, (const char **) argv,
21609 p + 1);
21610 else if (*p == '\0')
21611 {
21612 /* Complain, but do define it. */
21613 dwarf2_macro_malformed_definition_complaint (body);
21614 macro_define_function (file, line, name,
21615 argc, (const char **) argv,
21616 p);
21617 }
21618 else
21619 /* Just complain. */
21620 dwarf2_macro_malformed_definition_complaint (body);
21621 }
21622 else
21623 /* Just complain. */
21624 dwarf2_macro_malformed_definition_complaint (body);
21625
21626 xfree (name);
21627 {
21628 int i;
21629
21630 for (i = 0; i < argc; i++)
21631 xfree (argv[i]);
21632 }
21633 xfree (argv);
21634 }
21635 else
21636 dwarf2_macro_malformed_definition_complaint (body);
21637 }
21638
21639 /* Skip some bytes from BYTES according to the form given in FORM.
21640 Returns the new pointer. */
21641
21642 static const gdb_byte *
21643 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21644 enum dwarf_form form,
21645 unsigned int offset_size,
21646 struct dwarf2_section_info *section)
21647 {
21648 unsigned int bytes_read;
21649
21650 switch (form)
21651 {
21652 case DW_FORM_data1:
21653 case DW_FORM_flag:
21654 ++bytes;
21655 break;
21656
21657 case DW_FORM_data2:
21658 bytes += 2;
21659 break;
21660
21661 case DW_FORM_data4:
21662 bytes += 4;
21663 break;
21664
21665 case DW_FORM_data8:
21666 bytes += 8;
21667 break;
21668
21669 case DW_FORM_data16:
21670 bytes += 16;
21671 break;
21672
21673 case DW_FORM_string:
21674 read_direct_string (abfd, bytes, &bytes_read);
21675 bytes += bytes_read;
21676 break;
21677
21678 case DW_FORM_sec_offset:
21679 case DW_FORM_strp:
21680 case DW_FORM_GNU_strp_alt:
21681 bytes += offset_size;
21682 break;
21683
21684 case DW_FORM_block:
21685 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21686 bytes += bytes_read;
21687 break;
21688
21689 case DW_FORM_block1:
21690 bytes += 1 + read_1_byte (abfd, bytes);
21691 break;
21692 case DW_FORM_block2:
21693 bytes += 2 + read_2_bytes (abfd, bytes);
21694 break;
21695 case DW_FORM_block4:
21696 bytes += 4 + read_4_bytes (abfd, bytes);
21697 break;
21698
21699 case DW_FORM_sdata:
21700 case DW_FORM_udata:
21701 case DW_FORM_GNU_addr_index:
21702 case DW_FORM_GNU_str_index:
21703 bytes = gdb_skip_leb128 (bytes, buffer_end);
21704 if (bytes == NULL)
21705 {
21706 dwarf2_section_buffer_overflow_complaint (section);
21707 return NULL;
21708 }
21709 break;
21710
21711 default:
21712 {
21713 complain:
21714 complaint (&symfile_complaints,
21715 _("invalid form 0x%x in `%s'"),
21716 form, get_section_name (section));
21717 return NULL;
21718 }
21719 }
21720
21721 return bytes;
21722 }
21723
21724 /* A helper for dwarf_decode_macros that handles skipping an unknown
21725 opcode. Returns an updated pointer to the macro data buffer; or,
21726 on error, issues a complaint and returns NULL. */
21727
21728 static const gdb_byte *
21729 skip_unknown_opcode (unsigned int opcode,
21730 const gdb_byte **opcode_definitions,
21731 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21732 bfd *abfd,
21733 unsigned int offset_size,
21734 struct dwarf2_section_info *section)
21735 {
21736 unsigned int bytes_read, i;
21737 unsigned long arg;
21738 const gdb_byte *defn;
21739
21740 if (opcode_definitions[opcode] == NULL)
21741 {
21742 complaint (&symfile_complaints,
21743 _("unrecognized DW_MACFINO opcode 0x%x"),
21744 opcode);
21745 return NULL;
21746 }
21747
21748 defn = opcode_definitions[opcode];
21749 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21750 defn += bytes_read;
21751
21752 for (i = 0; i < arg; ++i)
21753 {
21754 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21755 (enum dwarf_form) defn[i], offset_size,
21756 section);
21757 if (mac_ptr == NULL)
21758 {
21759 /* skip_form_bytes already issued the complaint. */
21760 return NULL;
21761 }
21762 }
21763
21764 return mac_ptr;
21765 }
21766
21767 /* A helper function which parses the header of a macro section.
21768 If the macro section is the extended (for now called "GNU") type,
21769 then this updates *OFFSET_SIZE. Returns a pointer to just after
21770 the header, or issues a complaint and returns NULL on error. */
21771
21772 static const gdb_byte *
21773 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21774 bfd *abfd,
21775 const gdb_byte *mac_ptr,
21776 unsigned int *offset_size,
21777 int section_is_gnu)
21778 {
21779 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21780
21781 if (section_is_gnu)
21782 {
21783 unsigned int version, flags;
21784
21785 version = read_2_bytes (abfd, mac_ptr);
21786 if (version != 4 && version != 5)
21787 {
21788 complaint (&symfile_complaints,
21789 _("unrecognized version `%d' in .debug_macro section"),
21790 version);
21791 return NULL;
21792 }
21793 mac_ptr += 2;
21794
21795 flags = read_1_byte (abfd, mac_ptr);
21796 ++mac_ptr;
21797 *offset_size = (flags & 1) ? 8 : 4;
21798
21799 if ((flags & 2) != 0)
21800 /* We don't need the line table offset. */
21801 mac_ptr += *offset_size;
21802
21803 /* Vendor opcode descriptions. */
21804 if ((flags & 4) != 0)
21805 {
21806 unsigned int i, count;
21807
21808 count = read_1_byte (abfd, mac_ptr);
21809 ++mac_ptr;
21810 for (i = 0; i < count; ++i)
21811 {
21812 unsigned int opcode, bytes_read;
21813 unsigned long arg;
21814
21815 opcode = read_1_byte (abfd, mac_ptr);
21816 ++mac_ptr;
21817 opcode_definitions[opcode] = mac_ptr;
21818 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21819 mac_ptr += bytes_read;
21820 mac_ptr += arg;
21821 }
21822 }
21823 }
21824
21825 return mac_ptr;
21826 }
21827
21828 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21829 including DW_MACRO_import. */
21830
21831 static void
21832 dwarf_decode_macro_bytes (bfd *abfd,
21833 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21834 struct macro_source_file *current_file,
21835 struct line_header *lh,
21836 struct dwarf2_section_info *section,
21837 int section_is_gnu, int section_is_dwz,
21838 unsigned int offset_size,
21839 htab_t include_hash)
21840 {
21841 struct objfile *objfile = dwarf2_per_objfile->objfile;
21842 enum dwarf_macro_record_type macinfo_type;
21843 int at_commandline;
21844 const gdb_byte *opcode_definitions[256];
21845
21846 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21847 &offset_size, section_is_gnu);
21848 if (mac_ptr == NULL)
21849 {
21850 /* We already issued a complaint. */
21851 return;
21852 }
21853
21854 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21855 GDB is still reading the definitions from command line. First
21856 DW_MACINFO_start_file will need to be ignored as it was already executed
21857 to create CURRENT_FILE for the main source holding also the command line
21858 definitions. On first met DW_MACINFO_start_file this flag is reset to
21859 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21860
21861 at_commandline = 1;
21862
21863 do
21864 {
21865 /* Do we at least have room for a macinfo type byte? */
21866 if (mac_ptr >= mac_end)
21867 {
21868 dwarf2_section_buffer_overflow_complaint (section);
21869 break;
21870 }
21871
21872 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21873 mac_ptr++;
21874
21875 /* Note that we rely on the fact that the corresponding GNU and
21876 DWARF constants are the same. */
21877 switch (macinfo_type)
21878 {
21879 /* A zero macinfo type indicates the end of the macro
21880 information. */
21881 case 0:
21882 break;
21883
21884 case DW_MACRO_define:
21885 case DW_MACRO_undef:
21886 case DW_MACRO_define_strp:
21887 case DW_MACRO_undef_strp:
21888 case DW_MACRO_define_sup:
21889 case DW_MACRO_undef_sup:
21890 {
21891 unsigned int bytes_read;
21892 int line;
21893 const char *body;
21894 int is_define;
21895
21896 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21897 mac_ptr += bytes_read;
21898
21899 if (macinfo_type == DW_MACRO_define
21900 || macinfo_type == DW_MACRO_undef)
21901 {
21902 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21903 mac_ptr += bytes_read;
21904 }
21905 else
21906 {
21907 LONGEST str_offset;
21908
21909 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21910 mac_ptr += offset_size;
21911
21912 if (macinfo_type == DW_MACRO_define_sup
21913 || macinfo_type == DW_MACRO_undef_sup
21914 || section_is_dwz)
21915 {
21916 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21917
21918 body = read_indirect_string_from_dwz (dwz, str_offset);
21919 }
21920 else
21921 body = read_indirect_string_at_offset (abfd, str_offset);
21922 }
21923
21924 is_define = (macinfo_type == DW_MACRO_define
21925 || macinfo_type == DW_MACRO_define_strp
21926 || macinfo_type == DW_MACRO_define_sup);
21927 if (! current_file)
21928 {
21929 /* DWARF violation as no main source is present. */
21930 complaint (&symfile_complaints,
21931 _("debug info with no main source gives macro %s "
21932 "on line %d: %s"),
21933 is_define ? _("definition") : _("undefinition"),
21934 line, body);
21935 break;
21936 }
21937 if ((line == 0 && !at_commandline)
21938 || (line != 0 && at_commandline))
21939 complaint (&symfile_complaints,
21940 _("debug info gives %s macro %s with %s line %d: %s"),
21941 at_commandline ? _("command-line") : _("in-file"),
21942 is_define ? _("definition") : _("undefinition"),
21943 line == 0 ? _("zero") : _("non-zero"), line, body);
21944
21945 if (is_define)
21946 parse_macro_definition (current_file, line, body);
21947 else
21948 {
21949 gdb_assert (macinfo_type == DW_MACRO_undef
21950 || macinfo_type == DW_MACRO_undef_strp
21951 || macinfo_type == DW_MACRO_undef_sup);
21952 macro_undef (current_file, line, body);
21953 }
21954 }
21955 break;
21956
21957 case DW_MACRO_start_file:
21958 {
21959 unsigned int bytes_read;
21960 int line, file;
21961
21962 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21963 mac_ptr += bytes_read;
21964 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21965 mac_ptr += bytes_read;
21966
21967 if ((line == 0 && !at_commandline)
21968 || (line != 0 && at_commandline))
21969 complaint (&symfile_complaints,
21970 _("debug info gives source %d included "
21971 "from %s at %s line %d"),
21972 file, at_commandline ? _("command-line") : _("file"),
21973 line == 0 ? _("zero") : _("non-zero"), line);
21974
21975 if (at_commandline)
21976 {
21977 /* This DW_MACRO_start_file was executed in the
21978 pass one. */
21979 at_commandline = 0;
21980 }
21981 else
21982 current_file = macro_start_file (file, line, current_file, lh);
21983 }
21984 break;
21985
21986 case DW_MACRO_end_file:
21987 if (! current_file)
21988 complaint (&symfile_complaints,
21989 _("macro debug info has an unmatched "
21990 "`close_file' directive"));
21991 else
21992 {
21993 current_file = current_file->included_by;
21994 if (! current_file)
21995 {
21996 enum dwarf_macro_record_type next_type;
21997
21998 /* GCC circa March 2002 doesn't produce the zero
21999 type byte marking the end of the compilation
22000 unit. Complain if it's not there, but exit no
22001 matter what. */
22002
22003 /* Do we at least have room for a macinfo type byte? */
22004 if (mac_ptr >= mac_end)
22005 {
22006 dwarf2_section_buffer_overflow_complaint (section);
22007 return;
22008 }
22009
22010 /* We don't increment mac_ptr here, so this is just
22011 a look-ahead. */
22012 next_type
22013 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22014 mac_ptr);
22015 if (next_type != 0)
22016 complaint (&symfile_complaints,
22017 _("no terminating 0-type entry for "
22018 "macros in `.debug_macinfo' section"));
22019
22020 return;
22021 }
22022 }
22023 break;
22024
22025 case DW_MACRO_import:
22026 case DW_MACRO_import_sup:
22027 {
22028 LONGEST offset;
22029 void **slot;
22030 bfd *include_bfd = abfd;
22031 struct dwarf2_section_info *include_section = section;
22032 const gdb_byte *include_mac_end = mac_end;
22033 int is_dwz = section_is_dwz;
22034 const gdb_byte *new_mac_ptr;
22035
22036 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22037 mac_ptr += offset_size;
22038
22039 if (macinfo_type == DW_MACRO_import_sup)
22040 {
22041 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22042
22043 dwarf2_read_section (objfile, &dwz->macro);
22044
22045 include_section = &dwz->macro;
22046 include_bfd = get_section_bfd_owner (include_section);
22047 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22048 is_dwz = 1;
22049 }
22050
22051 new_mac_ptr = include_section->buffer + offset;
22052 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22053
22054 if (*slot != NULL)
22055 {
22056 /* This has actually happened; see
22057 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22058 complaint (&symfile_complaints,
22059 _("recursive DW_MACRO_import in "
22060 ".debug_macro section"));
22061 }
22062 else
22063 {
22064 *slot = (void *) new_mac_ptr;
22065
22066 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
22067 include_mac_end, current_file, lh,
22068 section, section_is_gnu, is_dwz,
22069 offset_size, include_hash);
22070
22071 htab_remove_elt (include_hash, (void *) new_mac_ptr);
22072 }
22073 }
22074 break;
22075
22076 case DW_MACINFO_vendor_ext:
22077 if (!section_is_gnu)
22078 {
22079 unsigned int bytes_read;
22080
22081 /* This reads the constant, but since we don't recognize
22082 any vendor extensions, we ignore it. */
22083 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22084 mac_ptr += bytes_read;
22085 read_direct_string (abfd, mac_ptr, &bytes_read);
22086 mac_ptr += bytes_read;
22087
22088 /* We don't recognize any vendor extensions. */
22089 break;
22090 }
22091 /* FALLTHROUGH */
22092
22093 default:
22094 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22095 mac_ptr, mac_end, abfd, offset_size,
22096 section);
22097 if (mac_ptr == NULL)
22098 return;
22099 break;
22100 }
22101 } while (macinfo_type != 0);
22102 }
22103
22104 static void
22105 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22106 int section_is_gnu)
22107 {
22108 struct objfile *objfile = dwarf2_per_objfile->objfile;
22109 struct line_header *lh = cu->line_header;
22110 bfd *abfd;
22111 const gdb_byte *mac_ptr, *mac_end;
22112 struct macro_source_file *current_file = 0;
22113 enum dwarf_macro_record_type macinfo_type;
22114 unsigned int offset_size = cu->header.offset_size;
22115 const gdb_byte *opcode_definitions[256];
22116 struct cleanup *cleanup;
22117 void **slot;
22118 struct dwarf2_section_info *section;
22119 const char *section_name;
22120
22121 if (cu->dwo_unit != NULL)
22122 {
22123 if (section_is_gnu)
22124 {
22125 section = &cu->dwo_unit->dwo_file->sections.macro;
22126 section_name = ".debug_macro.dwo";
22127 }
22128 else
22129 {
22130 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22131 section_name = ".debug_macinfo.dwo";
22132 }
22133 }
22134 else
22135 {
22136 if (section_is_gnu)
22137 {
22138 section = &dwarf2_per_objfile->macro;
22139 section_name = ".debug_macro";
22140 }
22141 else
22142 {
22143 section = &dwarf2_per_objfile->macinfo;
22144 section_name = ".debug_macinfo";
22145 }
22146 }
22147
22148 dwarf2_read_section (objfile, section);
22149 if (section->buffer == NULL)
22150 {
22151 complaint (&symfile_complaints, _("missing %s section"), section_name);
22152 return;
22153 }
22154 abfd = get_section_bfd_owner (section);
22155
22156 /* First pass: Find the name of the base filename.
22157 This filename is needed in order to process all macros whose definition
22158 (or undefinition) comes from the command line. These macros are defined
22159 before the first DW_MACINFO_start_file entry, and yet still need to be
22160 associated to the base file.
22161
22162 To determine the base file name, we scan the macro definitions until we
22163 reach the first DW_MACINFO_start_file entry. We then initialize
22164 CURRENT_FILE accordingly so that any macro definition found before the
22165 first DW_MACINFO_start_file can still be associated to the base file. */
22166
22167 mac_ptr = section->buffer + offset;
22168 mac_end = section->buffer + section->size;
22169
22170 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22171 &offset_size, section_is_gnu);
22172 if (mac_ptr == NULL)
22173 {
22174 /* We already issued a complaint. */
22175 return;
22176 }
22177
22178 do
22179 {
22180 /* Do we at least have room for a macinfo type byte? */
22181 if (mac_ptr >= mac_end)
22182 {
22183 /* Complaint is printed during the second pass as GDB will probably
22184 stop the first pass earlier upon finding
22185 DW_MACINFO_start_file. */
22186 break;
22187 }
22188
22189 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22190 mac_ptr++;
22191
22192 /* Note that we rely on the fact that the corresponding GNU and
22193 DWARF constants are the same. */
22194 switch (macinfo_type)
22195 {
22196 /* A zero macinfo type indicates the end of the macro
22197 information. */
22198 case 0:
22199 break;
22200
22201 case DW_MACRO_define:
22202 case DW_MACRO_undef:
22203 /* Only skip the data by MAC_PTR. */
22204 {
22205 unsigned int bytes_read;
22206
22207 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22208 mac_ptr += bytes_read;
22209 read_direct_string (abfd, mac_ptr, &bytes_read);
22210 mac_ptr += bytes_read;
22211 }
22212 break;
22213
22214 case DW_MACRO_start_file:
22215 {
22216 unsigned int bytes_read;
22217 int line, file;
22218
22219 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22220 mac_ptr += bytes_read;
22221 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22222 mac_ptr += bytes_read;
22223
22224 current_file = macro_start_file (file, line, current_file, lh);
22225 }
22226 break;
22227
22228 case DW_MACRO_end_file:
22229 /* No data to skip by MAC_PTR. */
22230 break;
22231
22232 case DW_MACRO_define_strp:
22233 case DW_MACRO_undef_strp:
22234 case DW_MACRO_define_sup:
22235 case DW_MACRO_undef_sup:
22236 {
22237 unsigned int bytes_read;
22238
22239 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22240 mac_ptr += bytes_read;
22241 mac_ptr += offset_size;
22242 }
22243 break;
22244
22245 case DW_MACRO_import:
22246 case DW_MACRO_import_sup:
22247 /* Note that, according to the spec, a transparent include
22248 chain cannot call DW_MACRO_start_file. So, we can just
22249 skip this opcode. */
22250 mac_ptr += offset_size;
22251 break;
22252
22253 case DW_MACINFO_vendor_ext:
22254 /* Only skip the data by MAC_PTR. */
22255 if (!section_is_gnu)
22256 {
22257 unsigned int bytes_read;
22258
22259 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22260 mac_ptr += bytes_read;
22261 read_direct_string (abfd, mac_ptr, &bytes_read);
22262 mac_ptr += bytes_read;
22263 }
22264 /* FALLTHROUGH */
22265
22266 default:
22267 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22268 mac_ptr, mac_end, abfd, offset_size,
22269 section);
22270 if (mac_ptr == NULL)
22271 return;
22272 break;
22273 }
22274 } while (macinfo_type != 0 && current_file == NULL);
22275
22276 /* Second pass: Process all entries.
22277
22278 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22279 command-line macro definitions/undefinitions. This flag is unset when we
22280 reach the first DW_MACINFO_start_file entry. */
22281
22282 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22283 htab_eq_pointer,
22284 NULL, xcalloc, xfree));
22285 mac_ptr = section->buffer + offset;
22286 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
22287 *slot = (void *) mac_ptr;
22288 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
22289 current_file, lh, section,
22290 section_is_gnu, 0, offset_size,
22291 include_hash.get ());
22292 }
22293
22294 /* Check if the attribute's form is a DW_FORM_block*
22295 if so return true else false. */
22296
22297 static int
22298 attr_form_is_block (const struct attribute *attr)
22299 {
22300 return (attr == NULL ? 0 :
22301 attr->form == DW_FORM_block1
22302 || attr->form == DW_FORM_block2
22303 || attr->form == DW_FORM_block4
22304 || attr->form == DW_FORM_block
22305 || attr->form == DW_FORM_exprloc);
22306 }
22307
22308 /* Return non-zero if ATTR's value is a section offset --- classes
22309 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22310 You may use DW_UNSND (attr) to retrieve such offsets.
22311
22312 Section 7.5.4, "Attribute Encodings", explains that no attribute
22313 may have a value that belongs to more than one of these classes; it
22314 would be ambiguous if we did, because we use the same forms for all
22315 of them. */
22316
22317 static int
22318 attr_form_is_section_offset (const struct attribute *attr)
22319 {
22320 return (attr->form == DW_FORM_data4
22321 || attr->form == DW_FORM_data8
22322 || attr->form == DW_FORM_sec_offset);
22323 }
22324
22325 /* Return non-zero if ATTR's value falls in the 'constant' class, or
22326 zero otherwise. When this function returns true, you can apply
22327 dwarf2_get_attr_constant_value to it.
22328
22329 However, note that for some attributes you must check
22330 attr_form_is_section_offset before using this test. DW_FORM_data4
22331 and DW_FORM_data8 are members of both the constant class, and of
22332 the classes that contain offsets into other debug sections
22333 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22334 that, if an attribute's can be either a constant or one of the
22335 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
22336 taken as section offsets, not constants.
22337
22338 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22339 cannot handle that. */
22340
22341 static int
22342 attr_form_is_constant (const struct attribute *attr)
22343 {
22344 switch (attr->form)
22345 {
22346 case DW_FORM_sdata:
22347 case DW_FORM_udata:
22348 case DW_FORM_data1:
22349 case DW_FORM_data2:
22350 case DW_FORM_data4:
22351 case DW_FORM_data8:
22352 return 1;
22353 default:
22354 return 0;
22355 }
22356 }
22357
22358
22359 /* DW_ADDR is always stored already as sect_offset; despite for the forms
22360 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22361
22362 static int
22363 attr_form_is_ref (const struct attribute *attr)
22364 {
22365 switch (attr->form)
22366 {
22367 case DW_FORM_ref_addr:
22368 case DW_FORM_ref1:
22369 case DW_FORM_ref2:
22370 case DW_FORM_ref4:
22371 case DW_FORM_ref8:
22372 case DW_FORM_ref_udata:
22373 case DW_FORM_GNU_ref_alt:
22374 return 1;
22375 default:
22376 return 0;
22377 }
22378 }
22379
22380 /* Return the .debug_loc section to use for CU.
22381 For DWO files use .debug_loc.dwo. */
22382
22383 static struct dwarf2_section_info *
22384 cu_debug_loc_section (struct dwarf2_cu *cu)
22385 {
22386 if (cu->dwo_unit)
22387 {
22388 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22389
22390 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22391 }
22392 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22393 : &dwarf2_per_objfile->loc);
22394 }
22395
22396 /* A helper function that fills in a dwarf2_loclist_baton. */
22397
22398 static void
22399 fill_in_loclist_baton (struct dwarf2_cu *cu,
22400 struct dwarf2_loclist_baton *baton,
22401 const struct attribute *attr)
22402 {
22403 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22404
22405 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
22406
22407 baton->per_cu = cu->per_cu;
22408 gdb_assert (baton->per_cu);
22409 /* We don't know how long the location list is, but make sure we
22410 don't run off the edge of the section. */
22411 baton->size = section->size - DW_UNSND (attr);
22412 baton->data = section->buffer + DW_UNSND (attr);
22413 baton->base_address = cu->base_address;
22414 baton->from_dwo = cu->dwo_unit != NULL;
22415 }
22416
22417 static void
22418 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
22419 struct dwarf2_cu *cu, int is_block)
22420 {
22421 struct objfile *objfile = dwarf2_per_objfile->objfile;
22422 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22423
22424 if (attr_form_is_section_offset (attr)
22425 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
22426 the section. If so, fall through to the complaint in the
22427 other branch. */
22428 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
22429 {
22430 struct dwarf2_loclist_baton *baton;
22431
22432 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
22433
22434 fill_in_loclist_baton (cu, baton, attr);
22435
22436 if (cu->base_known == 0)
22437 complaint (&symfile_complaints,
22438 _("Location list used without "
22439 "specifying the CU base address."));
22440
22441 SYMBOL_ACLASS_INDEX (sym) = (is_block
22442 ? dwarf2_loclist_block_index
22443 : dwarf2_loclist_index);
22444 SYMBOL_LOCATION_BATON (sym) = baton;
22445 }
22446 else
22447 {
22448 struct dwarf2_locexpr_baton *baton;
22449
22450 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
22451 baton->per_cu = cu->per_cu;
22452 gdb_assert (baton->per_cu);
22453
22454 if (attr_form_is_block (attr))
22455 {
22456 /* Note that we're just copying the block's data pointer
22457 here, not the actual data. We're still pointing into the
22458 info_buffer for SYM's objfile; right now we never release
22459 that buffer, but when we do clean up properly this may
22460 need to change. */
22461 baton->size = DW_BLOCK (attr)->size;
22462 baton->data = DW_BLOCK (attr)->data;
22463 }
22464 else
22465 {
22466 dwarf2_invalid_attrib_class_complaint ("location description",
22467 SYMBOL_NATURAL_NAME (sym));
22468 baton->size = 0;
22469 }
22470
22471 SYMBOL_ACLASS_INDEX (sym) = (is_block
22472 ? dwarf2_locexpr_block_index
22473 : dwarf2_locexpr_index);
22474 SYMBOL_LOCATION_BATON (sym) = baton;
22475 }
22476 }
22477
22478 /* Return the OBJFILE associated with the compilation unit CU. If CU
22479 came from a separate debuginfo file, then the master objfile is
22480 returned. */
22481
22482 struct objfile *
22483 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22484 {
22485 struct objfile *objfile = per_cu->objfile;
22486
22487 /* Return the master objfile, so that we can report and look up the
22488 correct file containing this variable. */
22489 if (objfile->separate_debug_objfile_backlink)
22490 objfile = objfile->separate_debug_objfile_backlink;
22491
22492 return objfile;
22493 }
22494
22495 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22496 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22497 CU_HEADERP first. */
22498
22499 static const struct comp_unit_head *
22500 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22501 struct dwarf2_per_cu_data *per_cu)
22502 {
22503 const gdb_byte *info_ptr;
22504
22505 if (per_cu->cu)
22506 return &per_cu->cu->header;
22507
22508 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
22509
22510 memset (cu_headerp, 0, sizeof (*cu_headerp));
22511 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22512 rcuh_kind::COMPILE);
22513
22514 return cu_headerp;
22515 }
22516
22517 /* Return the address size given in the compilation unit header for CU. */
22518
22519 int
22520 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22521 {
22522 struct comp_unit_head cu_header_local;
22523 const struct comp_unit_head *cu_headerp;
22524
22525 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22526
22527 return cu_headerp->addr_size;
22528 }
22529
22530 /* Return the offset size given in the compilation unit header for CU. */
22531
22532 int
22533 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22534 {
22535 struct comp_unit_head cu_header_local;
22536 const struct comp_unit_head *cu_headerp;
22537
22538 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22539
22540 return cu_headerp->offset_size;
22541 }
22542
22543 /* See its dwarf2loc.h declaration. */
22544
22545 int
22546 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22547 {
22548 struct comp_unit_head cu_header_local;
22549 const struct comp_unit_head *cu_headerp;
22550
22551 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22552
22553 if (cu_headerp->version == 2)
22554 return cu_headerp->addr_size;
22555 else
22556 return cu_headerp->offset_size;
22557 }
22558
22559 /* Return the text offset of the CU. The returned offset comes from
22560 this CU's objfile. If this objfile came from a separate debuginfo
22561 file, then the offset may be different from the corresponding
22562 offset in the parent objfile. */
22563
22564 CORE_ADDR
22565 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22566 {
22567 struct objfile *objfile = per_cu->objfile;
22568
22569 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22570 }
22571
22572 /* Return DWARF version number of PER_CU. */
22573
22574 short
22575 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22576 {
22577 return per_cu->dwarf_version;
22578 }
22579
22580 /* Locate the .debug_info compilation unit from CU's objfile which contains
22581 the DIE at OFFSET. Raises an error on failure. */
22582
22583 static struct dwarf2_per_cu_data *
22584 dwarf2_find_containing_comp_unit (sect_offset offset,
22585 unsigned int offset_in_dwz,
22586 struct objfile *objfile)
22587 {
22588 struct dwarf2_per_cu_data *this_cu;
22589 int low, high;
22590 const sect_offset *cu_off;
22591
22592 low = 0;
22593 high = dwarf2_per_objfile->n_comp_units - 1;
22594 while (high > low)
22595 {
22596 struct dwarf2_per_cu_data *mid_cu;
22597 int mid = low + (high - low) / 2;
22598
22599 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22600 cu_off = &mid_cu->offset;
22601 if (mid_cu->is_dwz > offset_in_dwz
22602 || (mid_cu->is_dwz == offset_in_dwz
22603 && cu_off->sect_off >= offset.sect_off))
22604 high = mid;
22605 else
22606 low = mid + 1;
22607 }
22608 gdb_assert (low == high);
22609 this_cu = dwarf2_per_objfile->all_comp_units[low];
22610 cu_off = &this_cu->offset;
22611 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22612 {
22613 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22614 error (_("Dwarf Error: could not find partial DIE containing "
22615 "offset 0x%lx [in module %s]"),
22616 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22617
22618 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22619 <= offset.sect_off);
22620 return dwarf2_per_objfile->all_comp_units[low-1];
22621 }
22622 else
22623 {
22624 this_cu = dwarf2_per_objfile->all_comp_units[low];
22625 if (low == dwarf2_per_objfile->n_comp_units - 1
22626 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22627 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22628 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22629 return this_cu;
22630 }
22631 }
22632
22633 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22634
22635 static void
22636 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22637 {
22638 memset (cu, 0, sizeof (*cu));
22639 per_cu->cu = cu;
22640 cu->per_cu = per_cu;
22641 cu->objfile = per_cu->objfile;
22642 obstack_init (&cu->comp_unit_obstack);
22643 }
22644
22645 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22646
22647 static void
22648 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22649 enum language pretend_language)
22650 {
22651 struct attribute *attr;
22652
22653 /* Set the language we're debugging. */
22654 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22655 if (attr)
22656 set_cu_language (DW_UNSND (attr), cu);
22657 else
22658 {
22659 cu->language = pretend_language;
22660 cu->language_defn = language_def (cu->language);
22661 }
22662
22663 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22664 }
22665
22666 /* Release one cached compilation unit, CU. We unlink it from the tree
22667 of compilation units, but we don't remove it from the read_in_chain;
22668 the caller is responsible for that.
22669 NOTE: DATA is a void * because this function is also used as a
22670 cleanup routine. */
22671
22672 static void
22673 free_heap_comp_unit (void *data)
22674 {
22675 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22676
22677 gdb_assert (cu->per_cu != NULL);
22678 cu->per_cu->cu = NULL;
22679 cu->per_cu = NULL;
22680
22681 obstack_free (&cu->comp_unit_obstack, NULL);
22682
22683 xfree (cu);
22684 }
22685
22686 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22687 when we're finished with it. We can't free the pointer itself, but be
22688 sure to unlink it from the cache. Also release any associated storage. */
22689
22690 static void
22691 free_stack_comp_unit (void *data)
22692 {
22693 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22694
22695 gdb_assert (cu->per_cu != NULL);
22696 cu->per_cu->cu = NULL;
22697 cu->per_cu = NULL;
22698
22699 obstack_free (&cu->comp_unit_obstack, NULL);
22700 cu->partial_dies = NULL;
22701 }
22702
22703 /* Free all cached compilation units. */
22704
22705 static void
22706 free_cached_comp_units (void *data)
22707 {
22708 struct dwarf2_per_cu_data *per_cu, **last_chain;
22709
22710 per_cu = dwarf2_per_objfile->read_in_chain;
22711 last_chain = &dwarf2_per_objfile->read_in_chain;
22712 while (per_cu != NULL)
22713 {
22714 struct dwarf2_per_cu_data *next_cu;
22715
22716 next_cu = per_cu->cu->read_in_chain;
22717
22718 free_heap_comp_unit (per_cu->cu);
22719 *last_chain = next_cu;
22720
22721 per_cu = next_cu;
22722 }
22723 }
22724
22725 /* Increase the age counter on each cached compilation unit, and free
22726 any that are too old. */
22727
22728 static void
22729 age_cached_comp_units (void)
22730 {
22731 struct dwarf2_per_cu_data *per_cu, **last_chain;
22732
22733 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22734 per_cu = dwarf2_per_objfile->read_in_chain;
22735 while (per_cu != NULL)
22736 {
22737 per_cu->cu->last_used ++;
22738 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22739 dwarf2_mark (per_cu->cu);
22740 per_cu = per_cu->cu->read_in_chain;
22741 }
22742
22743 per_cu = dwarf2_per_objfile->read_in_chain;
22744 last_chain = &dwarf2_per_objfile->read_in_chain;
22745 while (per_cu != NULL)
22746 {
22747 struct dwarf2_per_cu_data *next_cu;
22748
22749 next_cu = per_cu->cu->read_in_chain;
22750
22751 if (!per_cu->cu->mark)
22752 {
22753 free_heap_comp_unit (per_cu->cu);
22754 *last_chain = next_cu;
22755 }
22756 else
22757 last_chain = &per_cu->cu->read_in_chain;
22758
22759 per_cu = next_cu;
22760 }
22761 }
22762
22763 /* Remove a single compilation unit from the cache. */
22764
22765 static void
22766 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22767 {
22768 struct dwarf2_per_cu_data *per_cu, **last_chain;
22769
22770 per_cu = dwarf2_per_objfile->read_in_chain;
22771 last_chain = &dwarf2_per_objfile->read_in_chain;
22772 while (per_cu != NULL)
22773 {
22774 struct dwarf2_per_cu_data *next_cu;
22775
22776 next_cu = per_cu->cu->read_in_chain;
22777
22778 if (per_cu == target_per_cu)
22779 {
22780 free_heap_comp_unit (per_cu->cu);
22781 per_cu->cu = NULL;
22782 *last_chain = next_cu;
22783 break;
22784 }
22785 else
22786 last_chain = &per_cu->cu->read_in_chain;
22787
22788 per_cu = next_cu;
22789 }
22790 }
22791
22792 /* Release all extra memory associated with OBJFILE. */
22793
22794 void
22795 dwarf2_free_objfile (struct objfile *objfile)
22796 {
22797 dwarf2_per_objfile
22798 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22799 dwarf2_objfile_data_key);
22800
22801 if (dwarf2_per_objfile == NULL)
22802 return;
22803
22804 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22805 free_cached_comp_units (NULL);
22806
22807 if (dwarf2_per_objfile->quick_file_names_table)
22808 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22809
22810 if (dwarf2_per_objfile->line_header_hash)
22811 htab_delete (dwarf2_per_objfile->line_header_hash);
22812
22813 /* Everything else should be on the objfile obstack. */
22814 }
22815
22816 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22817 We store these in a hash table separate from the DIEs, and preserve them
22818 when the DIEs are flushed out of cache.
22819
22820 The CU "per_cu" pointer is needed because offset alone is not enough to
22821 uniquely identify the type. A file may have multiple .debug_types sections,
22822 or the type may come from a DWO file. Furthermore, while it's more logical
22823 to use per_cu->section+offset, with Fission the section with the data is in
22824 the DWO file but we don't know that section at the point we need it.
22825 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22826 because we can enter the lookup routine, get_die_type_at_offset, from
22827 outside this file, and thus won't necessarily have PER_CU->cu.
22828 Fortunately, PER_CU is stable for the life of the objfile. */
22829
22830 struct dwarf2_per_cu_offset_and_type
22831 {
22832 const struct dwarf2_per_cu_data *per_cu;
22833 sect_offset offset;
22834 struct type *type;
22835 };
22836
22837 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22838
22839 static hashval_t
22840 per_cu_offset_and_type_hash (const void *item)
22841 {
22842 const struct dwarf2_per_cu_offset_and_type *ofs
22843 = (const struct dwarf2_per_cu_offset_and_type *) item;
22844
22845 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22846 }
22847
22848 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22849
22850 static int
22851 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22852 {
22853 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22854 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22855 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22856 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22857
22858 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22859 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22860 }
22861
22862 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22863 table if necessary. For convenience, return TYPE.
22864
22865 The DIEs reading must have careful ordering to:
22866 * Not cause infite loops trying to read in DIEs as a prerequisite for
22867 reading current DIE.
22868 * Not trying to dereference contents of still incompletely read in types
22869 while reading in other DIEs.
22870 * Enable referencing still incompletely read in types just by a pointer to
22871 the type without accessing its fields.
22872
22873 Therefore caller should follow these rules:
22874 * Try to fetch any prerequisite types we may need to build this DIE type
22875 before building the type and calling set_die_type.
22876 * After building type call set_die_type for current DIE as soon as
22877 possible before fetching more types to complete the current type.
22878 * Make the type as complete as possible before fetching more types. */
22879
22880 static struct type *
22881 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22882 {
22883 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22884 struct objfile *objfile = cu->objfile;
22885 struct attribute *attr;
22886 struct dynamic_prop prop;
22887
22888 /* For Ada types, make sure that the gnat-specific data is always
22889 initialized (if not already set). There are a few types where
22890 we should not be doing so, because the type-specific area is
22891 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22892 where the type-specific area is used to store the floatformat).
22893 But this is not a problem, because the gnat-specific information
22894 is actually not needed for these types. */
22895 if (need_gnat_info (cu)
22896 && TYPE_CODE (type) != TYPE_CODE_FUNC
22897 && TYPE_CODE (type) != TYPE_CODE_FLT
22898 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22899 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22900 && TYPE_CODE (type) != TYPE_CODE_METHOD
22901 && !HAVE_GNAT_AUX_INFO (type))
22902 INIT_GNAT_SPECIFIC (type);
22903
22904 /* Read DW_AT_allocated and set in type. */
22905 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22906 if (attr_form_is_block (attr))
22907 {
22908 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22909 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22910 }
22911 else if (attr != NULL)
22912 {
22913 complaint (&symfile_complaints,
22914 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22915 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22916 die->offset.sect_off);
22917 }
22918
22919 /* Read DW_AT_associated and set in type. */
22920 attr = dwarf2_attr (die, DW_AT_associated, cu);
22921 if (attr_form_is_block (attr))
22922 {
22923 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22924 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22925 }
22926 else if (attr != NULL)
22927 {
22928 complaint (&symfile_complaints,
22929 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22930 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22931 die->offset.sect_off);
22932 }
22933
22934 /* Read DW_AT_data_location and set in type. */
22935 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22936 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22937 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22938
22939 if (dwarf2_per_objfile->die_type_hash == NULL)
22940 {
22941 dwarf2_per_objfile->die_type_hash =
22942 htab_create_alloc_ex (127,
22943 per_cu_offset_and_type_hash,
22944 per_cu_offset_and_type_eq,
22945 NULL,
22946 &objfile->objfile_obstack,
22947 hashtab_obstack_allocate,
22948 dummy_obstack_deallocate);
22949 }
22950
22951 ofs.per_cu = cu->per_cu;
22952 ofs.offset = die->offset;
22953 ofs.type = type;
22954 slot = (struct dwarf2_per_cu_offset_and_type **)
22955 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22956 if (*slot)
22957 complaint (&symfile_complaints,
22958 _("A problem internal to GDB: DIE 0x%x has type already set"),
22959 die->offset.sect_off);
22960 *slot = XOBNEW (&objfile->objfile_obstack,
22961 struct dwarf2_per_cu_offset_and_type);
22962 **slot = ofs;
22963 return type;
22964 }
22965
22966 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22967 or return NULL if the die does not have a saved type. */
22968
22969 static struct type *
22970 get_die_type_at_offset (sect_offset offset,
22971 struct dwarf2_per_cu_data *per_cu)
22972 {
22973 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22974
22975 if (dwarf2_per_objfile->die_type_hash == NULL)
22976 return NULL;
22977
22978 ofs.per_cu = per_cu;
22979 ofs.offset = offset;
22980 slot = ((struct dwarf2_per_cu_offset_and_type *)
22981 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
22982 if (slot)
22983 return slot->type;
22984 else
22985 return NULL;
22986 }
22987
22988 /* Look up the type for DIE in CU in die_type_hash,
22989 or return NULL if DIE does not have a saved type. */
22990
22991 static struct type *
22992 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22993 {
22994 return get_die_type_at_offset (die->offset, cu->per_cu);
22995 }
22996
22997 /* Add a dependence relationship from CU to REF_PER_CU. */
22998
22999 static void
23000 dwarf2_add_dependence (struct dwarf2_cu *cu,
23001 struct dwarf2_per_cu_data *ref_per_cu)
23002 {
23003 void **slot;
23004
23005 if (cu->dependencies == NULL)
23006 cu->dependencies
23007 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23008 NULL, &cu->comp_unit_obstack,
23009 hashtab_obstack_allocate,
23010 dummy_obstack_deallocate);
23011
23012 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23013 if (*slot == NULL)
23014 *slot = ref_per_cu;
23015 }
23016
23017 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23018 Set the mark field in every compilation unit in the
23019 cache that we must keep because we are keeping CU. */
23020
23021 static int
23022 dwarf2_mark_helper (void **slot, void *data)
23023 {
23024 struct dwarf2_per_cu_data *per_cu;
23025
23026 per_cu = (struct dwarf2_per_cu_data *) *slot;
23027
23028 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23029 reading of the chain. As such dependencies remain valid it is not much
23030 useful to track and undo them during QUIT cleanups. */
23031 if (per_cu->cu == NULL)
23032 return 1;
23033
23034 if (per_cu->cu->mark)
23035 return 1;
23036 per_cu->cu->mark = 1;
23037
23038 if (per_cu->cu->dependencies != NULL)
23039 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23040
23041 return 1;
23042 }
23043
23044 /* Set the mark field in CU and in every other compilation unit in the
23045 cache that we must keep because we are keeping CU. */
23046
23047 static void
23048 dwarf2_mark (struct dwarf2_cu *cu)
23049 {
23050 if (cu->mark)
23051 return;
23052 cu->mark = 1;
23053 if (cu->dependencies != NULL)
23054 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23055 }
23056
23057 static void
23058 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23059 {
23060 while (per_cu)
23061 {
23062 per_cu->cu->mark = 0;
23063 per_cu = per_cu->cu->read_in_chain;
23064 }
23065 }
23066
23067 /* Trivial hash function for partial_die_info: the hash value of a DIE
23068 is its offset in .debug_info for this objfile. */
23069
23070 static hashval_t
23071 partial_die_hash (const void *item)
23072 {
23073 const struct partial_die_info *part_die
23074 = (const struct partial_die_info *) item;
23075
23076 return part_die->offset.sect_off;
23077 }
23078
23079 /* Trivial comparison function for partial_die_info structures: two DIEs
23080 are equal if they have the same offset. */
23081
23082 static int
23083 partial_die_eq (const void *item_lhs, const void *item_rhs)
23084 {
23085 const struct partial_die_info *part_die_lhs
23086 = (const struct partial_die_info *) item_lhs;
23087 const struct partial_die_info *part_die_rhs
23088 = (const struct partial_die_info *) item_rhs;
23089
23090 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
23091 }
23092
23093 static struct cmd_list_element *set_dwarf_cmdlist;
23094 static struct cmd_list_element *show_dwarf_cmdlist;
23095
23096 static void
23097 set_dwarf_cmd (char *args, int from_tty)
23098 {
23099 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
23100 gdb_stdout);
23101 }
23102
23103 static void
23104 show_dwarf_cmd (char *args, int from_tty)
23105 {
23106 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
23107 }
23108
23109 /* Free data associated with OBJFILE, if necessary. */
23110
23111 static void
23112 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
23113 {
23114 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
23115 int ix;
23116
23117 /* Make sure we don't accidentally use dwarf2_per_objfile while
23118 cleaning up. */
23119 dwarf2_per_objfile = NULL;
23120
23121 for (ix = 0; ix < data->n_comp_units; ++ix)
23122 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
23123
23124 for (ix = 0; ix < data->n_type_units; ++ix)
23125 VEC_free (dwarf2_per_cu_ptr,
23126 data->all_type_units[ix]->per_cu.imported_symtabs);
23127 xfree (data->all_type_units);
23128
23129 VEC_free (dwarf2_section_info_def, data->types);
23130
23131 if (data->dwo_files)
23132 free_dwo_files (data->dwo_files, objfile);
23133 if (data->dwp_file)
23134 gdb_bfd_unref (data->dwp_file->dbfd);
23135
23136 if (data->dwz_file && data->dwz_file->dwz_bfd)
23137 gdb_bfd_unref (data->dwz_file->dwz_bfd);
23138 }
23139
23140 \f
23141 /* The "save gdb-index" command. */
23142
23143 /* The contents of the hash table we create when building the string
23144 table. */
23145 struct strtab_entry
23146 {
23147 offset_type offset;
23148 const char *str;
23149 };
23150
23151 /* Hash function for a strtab_entry.
23152
23153 Function is used only during write_hash_table so no index format backward
23154 compatibility is needed. */
23155
23156 static hashval_t
23157 hash_strtab_entry (const void *e)
23158 {
23159 const struct strtab_entry *entry = (const struct strtab_entry *) e;
23160 return mapped_index_string_hash (INT_MAX, entry->str);
23161 }
23162
23163 /* Equality function for a strtab_entry. */
23164
23165 static int
23166 eq_strtab_entry (const void *a, const void *b)
23167 {
23168 const struct strtab_entry *ea = (const struct strtab_entry *) a;
23169 const struct strtab_entry *eb = (const struct strtab_entry *) b;
23170 return !strcmp (ea->str, eb->str);
23171 }
23172
23173 /* Create a strtab_entry hash table. */
23174
23175 static htab_t
23176 create_strtab (void)
23177 {
23178 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
23179 xfree, xcalloc, xfree);
23180 }
23181
23182 /* Add a string to the constant pool. Return the string's offset in
23183 host order. */
23184
23185 static offset_type
23186 add_string (htab_t table, struct obstack *cpool, const char *str)
23187 {
23188 void **slot;
23189 struct strtab_entry entry;
23190 struct strtab_entry *result;
23191
23192 entry.str = str;
23193 slot = htab_find_slot (table, &entry, INSERT);
23194 if (*slot)
23195 result = (struct strtab_entry *) *slot;
23196 else
23197 {
23198 result = XNEW (struct strtab_entry);
23199 result->offset = obstack_object_size (cpool);
23200 result->str = str;
23201 obstack_grow_str0 (cpool, str);
23202 *slot = result;
23203 }
23204 return result->offset;
23205 }
23206
23207 /* An entry in the symbol table. */
23208 struct symtab_index_entry
23209 {
23210 /* The name of the symbol. */
23211 const char *name;
23212 /* The offset of the name in the constant pool. */
23213 offset_type index_offset;
23214 /* A sorted vector of the indices of all the CUs that hold an object
23215 of this name. */
23216 VEC (offset_type) *cu_indices;
23217 };
23218
23219 /* The symbol table. This is a power-of-2-sized hash table. */
23220 struct mapped_symtab
23221 {
23222 offset_type n_elements;
23223 offset_type size;
23224 struct symtab_index_entry **data;
23225 };
23226
23227 /* Hash function for a symtab_index_entry. */
23228
23229 static hashval_t
23230 hash_symtab_entry (const void *e)
23231 {
23232 const struct symtab_index_entry *entry
23233 = (const struct symtab_index_entry *) e;
23234 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
23235 sizeof (offset_type) * VEC_length (offset_type,
23236 entry->cu_indices),
23237 0);
23238 }
23239
23240 /* Equality function for a symtab_index_entry. */
23241
23242 static int
23243 eq_symtab_entry (const void *a, const void *b)
23244 {
23245 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
23246 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
23247 int len = VEC_length (offset_type, ea->cu_indices);
23248 if (len != VEC_length (offset_type, eb->cu_indices))
23249 return 0;
23250 return !memcmp (VEC_address (offset_type, ea->cu_indices),
23251 VEC_address (offset_type, eb->cu_indices),
23252 sizeof (offset_type) * len);
23253 }
23254
23255 /* Destroy a symtab_index_entry. */
23256
23257 static void
23258 delete_symtab_entry (void *p)
23259 {
23260 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
23261 VEC_free (offset_type, entry->cu_indices);
23262 xfree (entry);
23263 }
23264
23265 /* Create a hash table holding symtab_index_entry objects. */
23266
23267 static htab_t
23268 create_symbol_hash_table (void)
23269 {
23270 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
23271 delete_symtab_entry, xcalloc, xfree);
23272 }
23273
23274 /* Create a new mapped symtab object. */
23275
23276 static struct mapped_symtab *
23277 create_mapped_symtab (void)
23278 {
23279 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
23280 symtab->n_elements = 0;
23281 symtab->size = 1024;
23282 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
23283 return symtab;
23284 }
23285
23286 /* Destroy a mapped_symtab. */
23287
23288 static void
23289 cleanup_mapped_symtab (void *p)
23290 {
23291 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
23292 /* The contents of the array are freed when the other hash table is
23293 destroyed. */
23294 xfree (symtab->data);
23295 xfree (symtab);
23296 }
23297
23298 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
23299 the slot.
23300
23301 Function is used only during write_hash_table so no index format backward
23302 compatibility is needed. */
23303
23304 static struct symtab_index_entry **
23305 find_slot (struct mapped_symtab *symtab, const char *name)
23306 {
23307 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
23308
23309 index = hash & (symtab->size - 1);
23310 step = ((hash * 17) & (symtab->size - 1)) | 1;
23311
23312 for (;;)
23313 {
23314 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
23315 return &symtab->data[index];
23316 index = (index + step) & (symtab->size - 1);
23317 }
23318 }
23319
23320 /* Expand SYMTAB's hash table. */
23321
23322 static void
23323 hash_expand (struct mapped_symtab *symtab)
23324 {
23325 offset_type old_size = symtab->size;
23326 offset_type i;
23327 struct symtab_index_entry **old_entries = symtab->data;
23328
23329 symtab->size *= 2;
23330 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
23331
23332 for (i = 0; i < old_size; ++i)
23333 {
23334 if (old_entries[i])
23335 {
23336 struct symtab_index_entry **slot = find_slot (symtab,
23337 old_entries[i]->name);
23338 *slot = old_entries[i];
23339 }
23340 }
23341
23342 xfree (old_entries);
23343 }
23344
23345 /* Add an entry to SYMTAB. NAME is the name of the symbol.
23346 CU_INDEX is the index of the CU in which the symbol appears.
23347 IS_STATIC is one if the symbol is static, otherwise zero (global). */
23348
23349 static void
23350 add_index_entry (struct mapped_symtab *symtab, const char *name,
23351 int is_static, gdb_index_symbol_kind kind,
23352 offset_type cu_index)
23353 {
23354 struct symtab_index_entry **slot;
23355 offset_type cu_index_and_attrs;
23356
23357 ++symtab->n_elements;
23358 if (4 * symtab->n_elements / 3 >= symtab->size)
23359 hash_expand (symtab);
23360
23361 slot = find_slot (symtab, name);
23362 if (!*slot)
23363 {
23364 *slot = XNEW (struct symtab_index_entry);
23365 (*slot)->name = name;
23366 /* index_offset is set later. */
23367 (*slot)->cu_indices = NULL;
23368 }
23369
23370 cu_index_and_attrs = 0;
23371 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23372 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23373 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23374
23375 /* We don't want to record an index value twice as we want to avoid the
23376 duplication.
23377 We process all global symbols and then all static symbols
23378 (which would allow us to avoid the duplication by only having to check
23379 the last entry pushed), but a symbol could have multiple kinds in one CU.
23380 To keep things simple we don't worry about the duplication here and
23381 sort and uniqufy the list after we've processed all symbols. */
23382 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
23383 }
23384
23385 /* qsort helper routine for uniquify_cu_indices. */
23386
23387 static int
23388 offset_type_compare (const void *ap, const void *bp)
23389 {
23390 offset_type a = *(offset_type *) ap;
23391 offset_type b = *(offset_type *) bp;
23392
23393 return (a > b) - (b > a);
23394 }
23395
23396 /* Sort and remove duplicates of all symbols' cu_indices lists. */
23397
23398 static void
23399 uniquify_cu_indices (struct mapped_symtab *symtab)
23400 {
23401 int i;
23402
23403 for (i = 0; i < symtab->size; ++i)
23404 {
23405 struct symtab_index_entry *entry = symtab->data[i];
23406
23407 if (entry
23408 && entry->cu_indices != NULL)
23409 {
23410 unsigned int next_to_insert, next_to_check;
23411 offset_type last_value;
23412
23413 qsort (VEC_address (offset_type, entry->cu_indices),
23414 VEC_length (offset_type, entry->cu_indices),
23415 sizeof (offset_type), offset_type_compare);
23416
23417 last_value = VEC_index (offset_type, entry->cu_indices, 0);
23418 next_to_insert = 1;
23419 for (next_to_check = 1;
23420 next_to_check < VEC_length (offset_type, entry->cu_indices);
23421 ++next_to_check)
23422 {
23423 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
23424 != last_value)
23425 {
23426 last_value = VEC_index (offset_type, entry->cu_indices,
23427 next_to_check);
23428 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
23429 last_value);
23430 ++next_to_insert;
23431 }
23432 }
23433 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
23434 }
23435 }
23436 }
23437
23438 /* Add a vector of indices to the constant pool. */
23439
23440 static offset_type
23441 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
23442 struct symtab_index_entry *entry)
23443 {
23444 void **slot;
23445
23446 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
23447 if (!*slot)
23448 {
23449 offset_type len = VEC_length (offset_type, entry->cu_indices);
23450 offset_type val = MAYBE_SWAP (len);
23451 offset_type iter;
23452 int i;
23453
23454 *slot = entry;
23455 entry->index_offset = obstack_object_size (cpool);
23456
23457 obstack_grow (cpool, &val, sizeof (val));
23458 for (i = 0;
23459 VEC_iterate (offset_type, entry->cu_indices, i, iter);
23460 ++i)
23461 {
23462 val = MAYBE_SWAP (iter);
23463 obstack_grow (cpool, &val, sizeof (val));
23464 }
23465 }
23466 else
23467 {
23468 struct symtab_index_entry *old_entry
23469 = (struct symtab_index_entry *) *slot;
23470 entry->index_offset = old_entry->index_offset;
23471 entry = old_entry;
23472 }
23473 return entry->index_offset;
23474 }
23475
23476 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
23477 constant pool entries going into the obstack CPOOL. */
23478
23479 static void
23480 write_hash_table (struct mapped_symtab *symtab,
23481 struct obstack *output, struct obstack *cpool)
23482 {
23483 offset_type i;
23484 htab_t symbol_hash_table;
23485 htab_t str_table;
23486
23487 symbol_hash_table = create_symbol_hash_table ();
23488 str_table = create_strtab ();
23489
23490 /* We add all the index vectors to the constant pool first, to
23491 ensure alignment is ok. */
23492 for (i = 0; i < symtab->size; ++i)
23493 {
23494 if (symtab->data[i])
23495 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
23496 }
23497
23498 /* Now write out the hash table. */
23499 for (i = 0; i < symtab->size; ++i)
23500 {
23501 offset_type str_off, vec_off;
23502
23503 if (symtab->data[i])
23504 {
23505 str_off = add_string (str_table, cpool, symtab->data[i]->name);
23506 vec_off = symtab->data[i]->index_offset;
23507 }
23508 else
23509 {
23510 /* While 0 is a valid constant pool index, it is not valid
23511 to have 0 for both offsets. */
23512 str_off = 0;
23513 vec_off = 0;
23514 }
23515
23516 str_off = MAYBE_SWAP (str_off);
23517 vec_off = MAYBE_SWAP (vec_off);
23518
23519 obstack_grow (output, &str_off, sizeof (str_off));
23520 obstack_grow (output, &vec_off, sizeof (vec_off));
23521 }
23522
23523 htab_delete (str_table);
23524 htab_delete (symbol_hash_table);
23525 }
23526
23527 /* Struct to map psymtab to CU index in the index file. */
23528 struct psymtab_cu_index_map
23529 {
23530 struct partial_symtab *psymtab;
23531 unsigned int cu_index;
23532 };
23533
23534 static hashval_t
23535 hash_psymtab_cu_index (const void *item)
23536 {
23537 const struct psymtab_cu_index_map *map
23538 = (const struct psymtab_cu_index_map *) item;
23539
23540 return htab_hash_pointer (map->psymtab);
23541 }
23542
23543 static int
23544 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
23545 {
23546 const struct psymtab_cu_index_map *lhs
23547 = (const struct psymtab_cu_index_map *) item_lhs;
23548 const struct psymtab_cu_index_map *rhs
23549 = (const struct psymtab_cu_index_map *) item_rhs;
23550
23551 return lhs->psymtab == rhs->psymtab;
23552 }
23553
23554 /* Helper struct for building the address table. */
23555 struct addrmap_index_data
23556 {
23557 struct objfile *objfile;
23558 struct obstack *addr_obstack;
23559 htab_t cu_index_htab;
23560
23561 /* Non-zero if the previous_* fields are valid.
23562 We can't write an entry until we see the next entry (since it is only then
23563 that we know the end of the entry). */
23564 int previous_valid;
23565 /* Index of the CU in the table of all CUs in the index file. */
23566 unsigned int previous_cu_index;
23567 /* Start address of the CU. */
23568 CORE_ADDR previous_cu_start;
23569 };
23570
23571 /* Write an address entry to OBSTACK. */
23572
23573 static void
23574 add_address_entry (struct objfile *objfile, struct obstack *obstack,
23575 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23576 {
23577 offset_type cu_index_to_write;
23578 gdb_byte addr[8];
23579 CORE_ADDR baseaddr;
23580
23581 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23582
23583 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23584 obstack_grow (obstack, addr, 8);
23585 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23586 obstack_grow (obstack, addr, 8);
23587 cu_index_to_write = MAYBE_SWAP (cu_index);
23588 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23589 }
23590
23591 /* Worker function for traversing an addrmap to build the address table. */
23592
23593 static int
23594 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23595 {
23596 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23597 struct partial_symtab *pst = (struct partial_symtab *) obj;
23598
23599 if (data->previous_valid)
23600 add_address_entry (data->objfile, data->addr_obstack,
23601 data->previous_cu_start, start_addr,
23602 data->previous_cu_index);
23603
23604 data->previous_cu_start = start_addr;
23605 if (pst != NULL)
23606 {
23607 struct psymtab_cu_index_map find_map, *map;
23608 find_map.psymtab = pst;
23609 map = ((struct psymtab_cu_index_map *)
23610 htab_find (data->cu_index_htab, &find_map));
23611 gdb_assert (map != NULL);
23612 data->previous_cu_index = map->cu_index;
23613 data->previous_valid = 1;
23614 }
23615 else
23616 data->previous_valid = 0;
23617
23618 return 0;
23619 }
23620
23621 /* Write OBJFILE's address map to OBSTACK.
23622 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23623 in the index file. */
23624
23625 static void
23626 write_address_map (struct objfile *objfile, struct obstack *obstack,
23627 htab_t cu_index_htab)
23628 {
23629 struct addrmap_index_data addrmap_index_data;
23630
23631 /* When writing the address table, we have to cope with the fact that
23632 the addrmap iterator only provides the start of a region; we have to
23633 wait until the next invocation to get the start of the next region. */
23634
23635 addrmap_index_data.objfile = objfile;
23636 addrmap_index_data.addr_obstack = obstack;
23637 addrmap_index_data.cu_index_htab = cu_index_htab;
23638 addrmap_index_data.previous_valid = 0;
23639
23640 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23641 &addrmap_index_data);
23642
23643 /* It's highly unlikely the last entry (end address = 0xff...ff)
23644 is valid, but we should still handle it.
23645 The end address is recorded as the start of the next region, but that
23646 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23647 anyway. */
23648 if (addrmap_index_data.previous_valid)
23649 add_address_entry (objfile, obstack,
23650 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23651 addrmap_index_data.previous_cu_index);
23652 }
23653
23654 /* Return the symbol kind of PSYM. */
23655
23656 static gdb_index_symbol_kind
23657 symbol_kind (struct partial_symbol *psym)
23658 {
23659 domain_enum domain = PSYMBOL_DOMAIN (psym);
23660 enum address_class aclass = PSYMBOL_CLASS (psym);
23661
23662 switch (domain)
23663 {
23664 case VAR_DOMAIN:
23665 switch (aclass)
23666 {
23667 case LOC_BLOCK:
23668 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23669 case LOC_TYPEDEF:
23670 return GDB_INDEX_SYMBOL_KIND_TYPE;
23671 case LOC_COMPUTED:
23672 case LOC_CONST_BYTES:
23673 case LOC_OPTIMIZED_OUT:
23674 case LOC_STATIC:
23675 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23676 case LOC_CONST:
23677 /* Note: It's currently impossible to recognize psyms as enum values
23678 short of reading the type info. For now punt. */
23679 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23680 default:
23681 /* There are other LOC_FOO values that one might want to classify
23682 as variables, but dwarf2read.c doesn't currently use them. */
23683 return GDB_INDEX_SYMBOL_KIND_OTHER;
23684 }
23685 case STRUCT_DOMAIN:
23686 return GDB_INDEX_SYMBOL_KIND_TYPE;
23687 default:
23688 return GDB_INDEX_SYMBOL_KIND_OTHER;
23689 }
23690 }
23691
23692 /* Add a list of partial symbols to SYMTAB. */
23693
23694 static void
23695 write_psymbols (struct mapped_symtab *symtab,
23696 htab_t psyms_seen,
23697 struct partial_symbol **psymp,
23698 int count,
23699 offset_type cu_index,
23700 int is_static)
23701 {
23702 for (; count-- > 0; ++psymp)
23703 {
23704 struct partial_symbol *psym = *psymp;
23705 void **slot;
23706
23707 if (SYMBOL_LANGUAGE (psym) == language_ada)
23708 error (_("Ada is not currently supported by the index"));
23709
23710 /* Only add a given psymbol once. */
23711 slot = htab_find_slot (psyms_seen, psym, INSERT);
23712 if (!*slot)
23713 {
23714 gdb_index_symbol_kind kind = symbol_kind (psym);
23715
23716 *slot = psym;
23717 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23718 is_static, kind, cu_index);
23719 }
23720 }
23721 }
23722
23723 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23724 exception if there is an error. */
23725
23726 static void
23727 write_obstack (FILE *file, struct obstack *obstack)
23728 {
23729 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23730 file)
23731 != obstack_object_size (obstack))
23732 error (_("couldn't data write to file"));
23733 }
23734
23735 /* A helper struct used when iterating over debug_types. */
23736 struct signatured_type_index_data
23737 {
23738 struct objfile *objfile;
23739 struct mapped_symtab *symtab;
23740 struct obstack *types_list;
23741 htab_t psyms_seen;
23742 int cu_index;
23743 };
23744
23745 /* A helper function that writes a single signatured_type to an
23746 obstack. */
23747
23748 static int
23749 write_one_signatured_type (void **slot, void *d)
23750 {
23751 struct signatured_type_index_data *info
23752 = (struct signatured_type_index_data *) d;
23753 struct signatured_type *entry = (struct signatured_type *) *slot;
23754 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23755 gdb_byte val[8];
23756
23757 write_psymbols (info->symtab,
23758 info->psyms_seen,
23759 info->objfile->global_psymbols.list
23760 + psymtab->globals_offset,
23761 psymtab->n_global_syms, info->cu_index,
23762 0);
23763 write_psymbols (info->symtab,
23764 info->psyms_seen,
23765 info->objfile->static_psymbols.list
23766 + psymtab->statics_offset,
23767 psymtab->n_static_syms, info->cu_index,
23768 1);
23769
23770 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23771 entry->per_cu.offset.sect_off);
23772 obstack_grow (info->types_list, val, 8);
23773 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23774 entry->type_offset_in_tu.cu_off);
23775 obstack_grow (info->types_list, val, 8);
23776 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23777 obstack_grow (info->types_list, val, 8);
23778
23779 ++info->cu_index;
23780
23781 return 1;
23782 }
23783
23784 /* Recurse into all "included" dependencies and write their symbols as
23785 if they appeared in this psymtab. */
23786
23787 static void
23788 recursively_write_psymbols (struct objfile *objfile,
23789 struct partial_symtab *psymtab,
23790 struct mapped_symtab *symtab,
23791 htab_t psyms_seen,
23792 offset_type cu_index)
23793 {
23794 int i;
23795
23796 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23797 if (psymtab->dependencies[i]->user != NULL)
23798 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23799 symtab, psyms_seen, cu_index);
23800
23801 write_psymbols (symtab,
23802 psyms_seen,
23803 objfile->global_psymbols.list + psymtab->globals_offset,
23804 psymtab->n_global_syms, cu_index,
23805 0);
23806 write_psymbols (symtab,
23807 psyms_seen,
23808 objfile->static_psymbols.list + psymtab->statics_offset,
23809 psymtab->n_static_syms, cu_index,
23810 1);
23811 }
23812
23813 /* Create an index file for OBJFILE in the directory DIR. */
23814
23815 static void
23816 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23817 {
23818 struct cleanup *cleanup;
23819 char *filename;
23820 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23821 struct obstack cu_list, types_cu_list;
23822 int i;
23823 FILE *out_file;
23824 struct mapped_symtab *symtab;
23825 offset_type val, size_of_contents, total_len;
23826 struct stat st;
23827 struct psymtab_cu_index_map *psymtab_cu_index_map;
23828
23829 if (dwarf2_per_objfile->using_index)
23830 error (_("Cannot use an index to create the index"));
23831
23832 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23833 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23834
23835 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23836 return;
23837
23838 if (stat (objfile_name (objfile), &st) < 0)
23839 perror_with_name (objfile_name (objfile));
23840
23841 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23842 INDEX_SUFFIX, (char *) NULL);
23843 cleanup = make_cleanup (xfree, filename);
23844
23845 out_file = gdb_fopen_cloexec (filename, "wb");
23846 if (!out_file)
23847 error (_("Can't open `%s' for writing"), filename);
23848
23849 gdb::unlinker unlink_file (filename);
23850
23851 symtab = create_mapped_symtab ();
23852 make_cleanup (cleanup_mapped_symtab, symtab);
23853
23854 obstack_init (&addr_obstack);
23855 make_cleanup_obstack_free (&addr_obstack);
23856
23857 obstack_init (&cu_list);
23858 make_cleanup_obstack_free (&cu_list);
23859
23860 obstack_init (&types_cu_list);
23861 make_cleanup_obstack_free (&types_cu_list);
23862
23863 htab_up psyms_seen (htab_create_alloc (100, htab_hash_pointer,
23864 htab_eq_pointer,
23865 NULL, xcalloc, xfree));
23866
23867 /* While we're scanning CU's create a table that maps a psymtab pointer
23868 (which is what addrmap records) to its index (which is what is recorded
23869 in the index file). This will later be needed to write the address
23870 table. */
23871 htab_up cu_index_htab (htab_create_alloc (100,
23872 hash_psymtab_cu_index,
23873 eq_psymtab_cu_index,
23874 NULL, xcalloc, xfree));
23875 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23876 dwarf2_per_objfile->n_comp_units);
23877 make_cleanup (xfree, psymtab_cu_index_map);
23878
23879 /* The CU list is already sorted, so we don't need to do additional
23880 work here. Also, the debug_types entries do not appear in
23881 all_comp_units, but only in their own hash table. */
23882 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23883 {
23884 struct dwarf2_per_cu_data *per_cu
23885 = dwarf2_per_objfile->all_comp_units[i];
23886 struct partial_symtab *psymtab = per_cu->v.psymtab;
23887 gdb_byte val[8];
23888 struct psymtab_cu_index_map *map;
23889 void **slot;
23890
23891 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23892 It may be referenced from a local scope but in such case it does not
23893 need to be present in .gdb_index. */
23894 if (psymtab == NULL)
23895 continue;
23896
23897 if (psymtab->user == NULL)
23898 recursively_write_psymbols (objfile, psymtab, symtab,
23899 psyms_seen.get (), i);
23900
23901 map = &psymtab_cu_index_map[i];
23902 map->psymtab = psymtab;
23903 map->cu_index = i;
23904 slot = htab_find_slot (cu_index_htab.get (), map, INSERT);
23905 gdb_assert (slot != NULL);
23906 gdb_assert (*slot == NULL);
23907 *slot = map;
23908
23909 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23910 per_cu->offset.sect_off);
23911 obstack_grow (&cu_list, val, 8);
23912 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23913 obstack_grow (&cu_list, val, 8);
23914 }
23915
23916 /* Dump the address map. */
23917 write_address_map (objfile, &addr_obstack, cu_index_htab.get ());
23918
23919 /* Write out the .debug_type entries, if any. */
23920 if (dwarf2_per_objfile->signatured_types)
23921 {
23922 struct signatured_type_index_data sig_data;
23923
23924 sig_data.objfile = objfile;
23925 sig_data.symtab = symtab;
23926 sig_data.types_list = &types_cu_list;
23927 sig_data.psyms_seen = psyms_seen.get ();
23928 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23929 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23930 write_one_signatured_type, &sig_data);
23931 }
23932
23933 /* Now that we've processed all symbols we can shrink their cu_indices
23934 lists. */
23935 uniquify_cu_indices (symtab);
23936
23937 obstack_init (&constant_pool);
23938 make_cleanup_obstack_free (&constant_pool);
23939 obstack_init (&symtab_obstack);
23940 make_cleanup_obstack_free (&symtab_obstack);
23941 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23942
23943 obstack_init (&contents);
23944 make_cleanup_obstack_free (&contents);
23945 size_of_contents = 6 * sizeof (offset_type);
23946 total_len = size_of_contents;
23947
23948 /* The version number. */
23949 val = MAYBE_SWAP (8);
23950 obstack_grow (&contents, &val, sizeof (val));
23951
23952 /* The offset of the CU list from the start of the file. */
23953 val = MAYBE_SWAP (total_len);
23954 obstack_grow (&contents, &val, sizeof (val));
23955 total_len += obstack_object_size (&cu_list);
23956
23957 /* The offset of the types CU list from the start of the file. */
23958 val = MAYBE_SWAP (total_len);
23959 obstack_grow (&contents, &val, sizeof (val));
23960 total_len += obstack_object_size (&types_cu_list);
23961
23962 /* The offset of the address table from the start of the file. */
23963 val = MAYBE_SWAP (total_len);
23964 obstack_grow (&contents, &val, sizeof (val));
23965 total_len += obstack_object_size (&addr_obstack);
23966
23967 /* The offset of the symbol table from the start of the file. */
23968 val = MAYBE_SWAP (total_len);
23969 obstack_grow (&contents, &val, sizeof (val));
23970 total_len += obstack_object_size (&symtab_obstack);
23971
23972 /* The offset of the constant pool from the start of the file. */
23973 val = MAYBE_SWAP (total_len);
23974 obstack_grow (&contents, &val, sizeof (val));
23975 total_len += obstack_object_size (&constant_pool);
23976
23977 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23978
23979 write_obstack (out_file, &contents);
23980 write_obstack (out_file, &cu_list);
23981 write_obstack (out_file, &types_cu_list);
23982 write_obstack (out_file, &addr_obstack);
23983 write_obstack (out_file, &symtab_obstack);
23984 write_obstack (out_file, &constant_pool);
23985
23986 fclose (out_file);
23987
23988 /* We want to keep the file. */
23989 unlink_file.keep ();
23990
23991 do_cleanups (cleanup);
23992 }
23993
23994 /* Implementation of the `save gdb-index' command.
23995
23996 Note that the file format used by this command is documented in the
23997 GDB manual. Any changes here must be documented there. */
23998
23999 static void
24000 save_gdb_index_command (char *arg, int from_tty)
24001 {
24002 struct objfile *objfile;
24003
24004 if (!arg || !*arg)
24005 error (_("usage: save gdb-index DIRECTORY"));
24006
24007 ALL_OBJFILES (objfile)
24008 {
24009 struct stat st;
24010
24011 /* If the objfile does not correspond to an actual file, skip it. */
24012 if (stat (objfile_name (objfile), &st) < 0)
24013 continue;
24014
24015 dwarf2_per_objfile
24016 = (struct dwarf2_per_objfile *) objfile_data (objfile,
24017 dwarf2_objfile_data_key);
24018 if (dwarf2_per_objfile)
24019 {
24020
24021 TRY
24022 {
24023 write_psymtabs_to_index (objfile, arg);
24024 }
24025 CATCH (except, RETURN_MASK_ERROR)
24026 {
24027 exception_fprintf (gdb_stderr, except,
24028 _("Error while writing index for `%s': "),
24029 objfile_name (objfile));
24030 }
24031 END_CATCH
24032 }
24033 }
24034 }
24035
24036 \f
24037
24038 int dwarf_always_disassemble;
24039
24040 static void
24041 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
24042 struct cmd_list_element *c, const char *value)
24043 {
24044 fprintf_filtered (file,
24045 _("Whether to always disassemble "
24046 "DWARF expressions is %s.\n"),
24047 value);
24048 }
24049
24050 static void
24051 show_check_physname (struct ui_file *file, int from_tty,
24052 struct cmd_list_element *c, const char *value)
24053 {
24054 fprintf_filtered (file,
24055 _("Whether to check \"physname\" is %s.\n"),
24056 value);
24057 }
24058
24059 void _initialize_dwarf2_read (void);
24060
24061 void
24062 _initialize_dwarf2_read (void)
24063 {
24064 struct cmd_list_element *c;
24065
24066 dwarf2_objfile_data_key
24067 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
24068
24069 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24070 Set DWARF specific variables.\n\
24071 Configure DWARF variables such as the cache size"),
24072 &set_dwarf_cmdlist, "maintenance set dwarf ",
24073 0/*allow-unknown*/, &maintenance_set_cmdlist);
24074
24075 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24076 Show DWARF specific variables\n\
24077 Show DWARF variables such as the cache size"),
24078 &show_dwarf_cmdlist, "maintenance show dwarf ",
24079 0/*allow-unknown*/, &maintenance_show_cmdlist);
24080
24081 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24082 &dwarf_max_cache_age, _("\
24083 Set the upper bound on the age of cached DWARF compilation units."), _("\
24084 Show the upper bound on the age of cached DWARF compilation units."), _("\
24085 A higher limit means that cached compilation units will be stored\n\
24086 in memory longer, and more total memory will be used. Zero disables\n\
24087 caching, which can slow down startup."),
24088 NULL,
24089 show_dwarf_max_cache_age,
24090 &set_dwarf_cmdlist,
24091 &show_dwarf_cmdlist);
24092
24093 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
24094 &dwarf_always_disassemble, _("\
24095 Set whether `info address' always disassembles DWARF expressions."), _("\
24096 Show whether `info address' always disassembles DWARF expressions."), _("\
24097 When enabled, DWARF expressions are always printed in an assembly-like\n\
24098 syntax. When disabled, expressions will be printed in a more\n\
24099 conversational style, when possible."),
24100 NULL,
24101 show_dwarf_always_disassemble,
24102 &set_dwarf_cmdlist,
24103 &show_dwarf_cmdlist);
24104
24105 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24106 Set debugging of the DWARF reader."), _("\
24107 Show debugging of the DWARF reader."), _("\
24108 When enabled (non-zero), debugging messages are printed during DWARF\n\
24109 reading and symtab expansion. A value of 1 (one) provides basic\n\
24110 information. A value greater than 1 provides more verbose information."),
24111 NULL,
24112 NULL,
24113 &setdebuglist, &showdebuglist);
24114
24115 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24116 Set debugging of the DWARF DIE reader."), _("\
24117 Show debugging of the DWARF DIE reader."), _("\
24118 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24119 The value is the maximum depth to print."),
24120 NULL,
24121 NULL,
24122 &setdebuglist, &showdebuglist);
24123
24124 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24125 Set debugging of the dwarf line reader."), _("\
24126 Show debugging of the dwarf line reader."), _("\
24127 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24128 A value of 1 (one) provides basic information.\n\
24129 A value greater than 1 provides more verbose information."),
24130 NULL,
24131 NULL,
24132 &setdebuglist, &showdebuglist);
24133
24134 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24135 Set cross-checking of \"physname\" code against demangler."), _("\
24136 Show cross-checking of \"physname\" code against demangler."), _("\
24137 When enabled, GDB's internal \"physname\" code is checked against\n\
24138 the demangler."),
24139 NULL, show_check_physname,
24140 &setdebuglist, &showdebuglist);
24141
24142 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24143 no_class, &use_deprecated_index_sections, _("\
24144 Set whether to use deprecated gdb_index sections."), _("\
24145 Show whether to use deprecated gdb_index sections."), _("\
24146 When enabled, deprecated .gdb_index sections are used anyway.\n\
24147 Normally they are ignored either because of a missing feature or\n\
24148 performance issue.\n\
24149 Warning: This option must be enabled before gdb reads the file."),
24150 NULL,
24151 NULL,
24152 &setlist, &showlist);
24153
24154 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
24155 _("\
24156 Save a gdb-index file.\n\
24157 Usage: save gdb-index DIRECTORY"),
24158 &save_cmdlist);
24159 set_cmd_completer (c, filename_completer);
24160
24161 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24162 &dwarf2_locexpr_funcs);
24163 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24164 &dwarf2_loclist_funcs);
24165
24166 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24167 &dwarf2_block_frame_base_locexpr_funcs);
24168 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24169 &dwarf2_block_frame_base_loclist_funcs);
24170 }